

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 1

Xilinx Answer 53776

Generating Quick Test Cases for Xilinx Integrated PCI Express Block and Serial
RapidIO Cores Verilog Simulation

Important Note: This downloadable PDF of an Answer Record is provided to enhance its usability and
readability. It is important to note that Answer Records are Web-based content that are frequently updated as new
information becomes available. You are reminded to visit the Xilinx Technical Support Website and review (Xilinx Answer
53776) for the latest version of this Answer.

Introduction

This document primarily focuses on techniques to create test cases in simulation by forcing certain data pattern on core
interfaces. When designing a system with IPs such as PCI Express and Serial Rapid IO, designers may run into issues
where the system halts due to a certain incoming packet or incorrect toggling of signals. To debug such issues in
hardware could be difficult and time consuming as this would need debugging using tools such as Chipscope. The best
option is to try to reproduce the issue in simulation by writing a specific testbench. The problem with this is you will need
to write a comprehensive code in the testbench to capture that particular use case scenario. This takes time and
designers mostly wouldn’t be in condition to afford much time due to time critical nature of their project. This document
describes how a designer can drive custom packets on an interface of designs with PCI Express and Serial RapidIO cores
with ‘force’ command in Verilog. ‘force’ is a powerful Verilog command which you can use to drive signals at any
timestamp of your simulation.

The first part of this document describes different Verilog simulation statements such as ‘force-release’, ‘initial-begin’, ‘
display’, ‘monitor’ etc. The remainder of the document presents specific test cases to illustrate how a packet can be
injected into Xilinx Integrated PCI Express Block and Serial Rapid IO cores for quick simulation.

Verilog Simulation

Verilog provides powerful features that allow users to model designs for particular use case and do required analysis.
There are number of Verilog features, tailored for simulation, a designer can use. This section describes some major
features that are helpful in reproducing design issues in simulation, seen in hardware:

1. Procedural Continuous Assignments
2. Conditional Compilation
3. System Tasks
4. Looping Constructs
5. Structured Procedures
6. fork-join

Procedural Continuous Assignments

Procedural continuous assignments allow values to be driven continuously onto a register or a net for a limited period of
time. It is different from procedural assignments where the value will be there in the register after the assignment until a
new procedural assignment assigns a new value. force-release is a powerful procedural continuous assignment feature in
Verilog which will be used in all the test cases described in this document. The force assignment is used to assign a new
value to a register or a net. The value assigned will be retained till it is released with release command or with another
force assignment. force-release is used only for design verification and is not synthesizable.

http://www.xilinx.com/support/answers/53776.htm
http://www.xilinx.com/support/answers/53776.htm

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 2

Conditional Compilation

The compiler directive for conditional compilation are: `ifdef, `ifndef, `else, `elsif and `endif. Conditional compilation is
useful to conditionally output the debug message on the terminal or an output file. Figure 1 illustrates how conditional
compilation directives could be used to conditionally output the waveform dump depending on which simulator was used.

Figure 1 - Conditional Compilation

System Tasks

System tasks for outputting simulation result into a file can be useful to analyze the simulation output. Verilog provides
tasks to record the output in a file. The $fopen function is used to open a file. The call to this function returns a 32 bit
descriptor. This descriptor is unique for each file and is the main communication bridge between the simulator and the
file. If the file doesn't already exist, $fopen will create a new file with the provided name in the default folder or a folder
given in the full path description.

$fclose can be called to close the all opened files. However, explicit call to this function is not necessary as all open files
are closed before the simulator terminates. This happens by default.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 3

$fdisplay is used to write to files. A file descriptor returned when opening the file with $fopen is passed as an argument
to $fdisplay. Like $fdisplay, there is another system task called $fwrite. Both of them write data to a file whenever they
are executed. The difference between $display and $fwrite is that the former inserts a new line after every execution and
the latter doesn't.

The system tasks $fdisplay and $fwrite are for writing to a file. To display the output only on the console, the system task
used is $display. Similar to $display, there are two other system tasks called $monitor and $strobe. $display and
$strobe write to the output only when they are executed. The difference between the two is that $display displays the
result right after it is executed whereas $strobe displays the result at the end of the current simulation time instant i.e.
after all the events that have been scheduled for the current simulation time have been completed. The other system task
similar to $display and $strobe is $monitor. The main feature of $monitor is that it displays in the standard output or the
log file everything when any of its parameter changes.

In Figure 2, rx_file_ptr and tx_file_ptr are the file handles for receive data log file and transmit data log file. Both of them
are defined as 32 bit reg since $fopen returns 32 bit file descriptor.

Figure 2 - File System Tasks in Verilog

After a file has been successfully opened, the next step is to write to that file. It is done by calling $fdisplay system task
as shown in Figure 3.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 4

Figure 3 - Writing to a file using $fdisplay

An example output in the file for the above system calls is shown below.

Figure 4 shows the output for the trasmit data output log.

Figure 4 - Transmit Data Output Log

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 5

There are two system tasks for stopping and finishing a simulation. $stop is used to suspend the simulation and $finish
system task is called to terminate the simulation. Figure 5 shows how $finish system task is called in a testbench.

Figure 5 - $finish System Task in Verilog

Looping constructs

Verilog-2001 supports the following looping constructs: forever, repeat, while, and for. They are useful in Xilinx Integrated
PCI Express Block and SRIO cores simulation typically for generating repetitive packets.

 forever is used to execute statements inside its begin and end block forever. There are no variables to control the
loop. The loop exits only after the simulation session terminates.

 repeat executes the statements inside it for a fixed number of times.

 while executes the statements till its expression becomes false.

 for executes the statements based on the number of times its variable changes.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 6

 do-while is similar to while loop except that the expression is calculated at the end of the loop.

Structured Procedures

The following are four statements in Verilog that are used for creating structural HDL design. All procedures in Verilog
designs are specified in one of the following:

 initial

 always

 Task

 Function

The main difference between initial and always is that initial executes only once i.e. it ceases after all the statements in
the initial block have finished executing whereas always executes repeatedly and it ceases only when the simulation
terminates.

Initial

As mentioned above, initial block executes only once. If there is more than one initial block in the design, it will be
executed at the same time independent of each other. initial block is a powerful tool in simulation. The test cases provided
in this document later use initial block to inject packets into core interfaces using the force statement and release them
later using the release statement.

Always

An always block executes repeatedly unless the simulation terminates or is stopped by $finish or $stop. An always block
executes repeatedly unless the simulation terminates or is stopped by $finish or $stop. always is used in a design to
model a block of activity that is repeated in a looping fashion. In simulation, it is used mostly for generating clock as
shown in Figure 6.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 7

Figure 6 - Clock Generation Using 'always' statement

Figure 7 – Message Display on the Output Console after port_initialized assertion in SRIO Simulation

Figure 7 shows an example of always block usage in SRIO simulation where the message shown is displayed after the
assertion of port_initialized is asserted.

Task

Tasks are used to reduce code repetition in a Verilog design. They are called in the main body of the design with
necessary input and output parameters. Tasks can also be defined in a separate file instead of embedding into the main
code. If defined separately, it is included in the design by using compile directive 'include.

Figure 8 shows a system initialization task in Xilinx Integrated PCI Express core testbench. There is another task called
TSK_SYSTEM_CONFIGURATION_CHECK which is separately defined and is called within the definition of
TSK_SYSTEM_INITIALIZATION. There are no inputs or outputs in this task.

Figure 8 - System Initialization Task in Xilinx Integrated PCI Express Block Example Design Testbench

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 8

Figure 9, from Xilinx PCI Express core example design testbench, shows definition of a task to do 64 bits memory write to
the downstream endpoint core. It shows a list of inputs this task takes. The output is the correct toggling of the core
interface signals to generate 64-bit Memory Write packet.

Figure 9 - 64-bits Memory Write Task in Xilinx Integrated PCI Express Block Example Design Testbench

function

function is similar to task but there are few differences between the two. The major differences to take into account during
simulation are listed below:

 function executes in Zero simulation time whereas task can contain time control statements such as @(posedge.)
and delay operator (#).

 task doesn't return a value. However, it can have output arguments. This is in contrast to function where it returns
a value or optionally can be voided.

Fork-join

The fork-join pair is used to create parallel processes. All the statements between fork and join are executed
simultaneously as soon as the control hits the fork statement. It will exit from a fork-join block only after the completion of
the longest running statement or block that is defined inside the fork-join block. Figure 10 is from the Serial RapidIO Gen2
example design testbench. Here, the initial block kicks in at simulation time 0. Both statements defined in the fork-join
block are executed simultaneously. The simulation will stop in one of two scenarios: simulation_finished is asserted i.e.
the simulation completed without any issue or after 600000 ns. 600000 ns is the time out value. If simulation_finished is
not asserted even after 600000 ns, the simulation will time out and exits the fork-join block and then displays the error
message shown.

disable is a Verilog feature to abort the execution of a task or a block of code. Figure 10 uses disable statement to abort
the execution of sim_in_progress block after simulation_finished is asserted or after 600000 ns.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 9

Figure 10 - fork-join Statement in Verilog

Xilinx IP Simulation

When generating Xilinx Integrated PCI Express Block and Serial Rapid IO cores in Coregen or Vivado, there are two HDL
options: VHDL and Verilog. Verilog is more powerful for simulation due to different simulation specific constructs that are
integrated with the language. Both Coregen and Vivado allow generating the cores in both languages. If Verilog is
selected, the output files including the wrapper and example design files will all be in Verilog.

The simulation of Xilinx Integrated PCI Express and Serial Rapid IO cores are straight forward as all necessary setup to
get a user started with the simulation is provided with the generation of the cores. When generating these cores in
Coregen or Vivado, the tools generate all required files for the core and also generate example design with a top level
wrapper that instantiates both example user application and the core top level wrapper module. This design is
synthesizable. Users can quickly implement this design and download it on their board to check the general functionality
of the cores. Apart from the example design, a test bench is also generated to simulate the entire design. The users can
run simulation in one of the supported simulators by just running the provided script which is generated along with the
generation of the cores.

Xilinx Integrated PCI Express Block Simulation

This section describes techniques to reproduce specific test cases with the Xilinx Integrated PCI Express Block example
design simulation. As mentioned above, this is done by using force-release feature in Verilog. With this technique, users
can reproduce different test cases such as generation of MSI interrupt, generation of MWr/MRd packets, malformed
packets from Endpoint to the Root Port etc.

MSI Interrupt Simulation

The Xilinx Integrated PCI Express Block example design simulation does not contain MSI generation. How to generate an
MSI from Endpoint to the Root Port is described in the respective product guides. This section describes how to generate
an MSI in the example design simulation for the core generated for Kintex-7.

To generate an MSI, follow the steps below:

1. Enable ‘Bus Master Enable’ bit in the Root Port by adding the code shown in Figure 11, in board.v.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 10

Figure 11 – Enabling ‘Bus Master Enable’ bit in Root Port Command Register

2. In dsport/pci_exp_usrapp_tx.v, do the following modification to enable Bus Master Enable bit in the Endpoint

Command Register.

3. Add the following in dsport/pci_exp_usrapp_tx.v to configure the MSI registers.

4. Figure 12 shows interface waveform for requesting interrupt service from the user application to the core. Users
should assert cfg_interrupt and provide the Message data on cfg_interrupt_di as shown in the waveform. A
detailed information on generating an MSI interrupt request can be found in PG054 [1].

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 11

Figure 12 – Requesting Interrupt Service

In order to generate an MSI, assert cfg_interrupt and provide Message data on cfg_interrupt_di. This can be done by
using verilog force-release statements as shown in Figure 13. Add the following code snippet to board.v.

Figure 13 – MSI Generation using force/release Statement

Figure 14 shows the interrupt configuration interface after adding the above code.

Figure 14 – Requesting MSI in Simulation

Figure 15 shows MSI at the receive side of the Root Port.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 12

Figure 15 – MSI TLP at Root Port

While simulating MSI or debugging MSI issues in hardware, make sure ‘Bus Master Enable’ bit in both Endpoint and Root
Port are asserted. You could do so by checking cfg_command[2] as shown in Figure 16:

Figure 16 – ‘Bus Master Bit’ assertion in both Endpoint and Root Port

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 13

Upstream Memory Write TLP Simulation

The example design doesn’t have a feature to send a TLP upstream from the Endpoint to the Root Port. One could add
this feature in the user application or just inject the packet into the TX user interface using force-release to send the
required packet (MWr or MRd) upstream.

Figure 17 shows the Endpoint transmit user interface in the default example design simulation. In the default simulation,
you would see only one packet i.e. a completion packet (yellow circle in waveform shown below) on the Endpoint TX user
interface for an incoming MRd from the Root Port.

Figure 17 – Completion Packet at Endpoint Transmit Interface

Add the code below, in board.v, to inject MWr packet at the cursor shown in the waveform in Figure 17.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 14

Figure 18 – Generating MWr TLP from Endpoint to Root Port using force/release Statement

The waveform in Figure 19 shows the TX Endpoint interface simulation after the above modification of the board.v file.

Figure 19 – MWr TLP on Endpoint Transmit Interface

Figure 20 shows the MWr packet at the receive side of the Root Port.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 15

Figure 20 - MWr TLP on Root Port Receive Interface

To simulate upstream MWr/MRd, make sure to enable 'Bus Master Enable' bit in both Root Port and Endpoint command
register as described in 'MSI Simulation' section above.

Continuous MWr packets upstream can be simulated by using a while loop as shown in Figure 21.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 16

Figure 21 – Simulating Continuous MWr TLPs from Endpoint to Rootport

Figure 22 shows multiple MWr packets heading upstream on the transmit side of the user interface (interface between the
user application and the core).

Figure 22 – Multiple MWr TLPs on Endpoint Transmit Interface

Malformed TLP Simulation

According to the PCI Express Base Specification, if the length field doesn’t match the actual payload in the packet it
results in a malformed TLP which is a fatal error. This is one of the causes that results in the generation of a malformed
TLP. In simulation and in hardware, this can be checked by monitoring cfg_dstatus[2]. The code in Figure 23 has been
modified to assign length field to 3DW. The actual length of the data in the MWr packet is 1DW.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 17

Figure 23 – MWr TLP Modification to generate a Malformed TLP

As this TLP travels through to the Root Port, the dsport model asserts cfg_dstatus[2], indicating a receipt of a malformed
TLP. This is shown in Figure 24:

Figure 24 – Malformed TLP from Endpoint to Root Port and Fatal Error detection at the Root Port

Spartan-6 ‘Unsupported Request Detected’ Simulation

This section describes Spartan-6 PCI Express Block ‘Unsupported Request Detected’ simulation. Add the following code
(Figure 25) in simulation/tests.v of the example design project files generated during the generation of the core.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 18

Figure 25 – Setting and Clearing ‘Unsupported Request Detected’ bit in Device Status Register

The code does the following:

1. Assert cfg_err_ur and cfg_err_posted to inform the core that the user application has detected unsupported
request.

As soon as these signals are asserted, the unsupported request detected bit in the Device Status Register is set
as described in the spec.

There is a signal called dbg_reg_detected_unsupported in the core.This signal is a mirror of the ‘Unsupported
Request Detected’ in the Device Status Register. This bit is cleared by writing to this bit from the root complex.

2. Write to the Device Status register at address 12h’60 to clear ‘Unsupported Request Detected’ bit.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 19

Figure 26 – PCI Express Configuration Space

Figure 27 shows the assertion of dbg_reg_detected_unsupported signal as a result of asserting cfg_err_ur and
cfg_err_posted from the user sider. Both these signals are input to the core. The box in yellow shows the Configuration
Memory Write transaction issued from the Root Port to write to the Device Status Register to clear the ‘Unsupported
Request Detected’ bit.

Figure 27 – Assertion and Deassertion of dgb_reg_detected_unsupported

Serial Rapid IO Simulation

Sometimes in SRIO systems, the core may react unexpectedly due to certain data pattern received from the link partner.
This section describes how to reproduce such issues in simulation.

Back to Back Packet Retry (PR) and Packet Not Accepted Simulation

The specific example here is a hypothetical case to reproduce a scenario where Packet Retry (PR) and Packet Not
Accepted (PNA) control symbols are received at the same time. For comprehensive Serial Rapid IO packet analysis and
to understand how to decode packets, refer Xilinx Answer 50166 [3].

Generate Serial Rapid IO gen1 core in Coregen and add the following code in ep_tb.v file.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 20

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 21

The waveform in

Figure 28 shows the Packet Retry (PR) control symbol (Yellow Box) followed by the Packet Not Accepted (PNA) control
symbol (Red Box) on the receive side of the GT interface. As the result of receiving a PNA, the core asserts lnk_pna_n as
shown in yellow circle in the waveform.

© Copyright 2012 Xilinx

 Xilinx Answer 53776 – Generating Test Cases in Verilog Simulation 22

Figure 28 – Back to back PR and PNA simulation

Conclusion

This document described techniques for injecting packets in simulation of Xilinx Integrated PCI Express Block and Serial
RapidIO cores using force-release statement in Verilog. In corner case scenarios, it becomes quite complex and time
consuming to generate packets by writing code in test bench. In such situations, the techniques described in this
document could be used to easily inject desired packets on any interface of the core or in the user's design.

References

1. PG054, 7 Series FPGAs Integrated Block for PCI Express Product Guide
2. UG503, LogiCORE IP Serial RapidIO v5.6, User Guide
3. LogiCORE IP Serial RapidIO Gen2 - Debugging and Packet Analysis Guide
4. Virtex-5 Integrated PCI Express Block Plus - Debugging Guide for Link Training Issues
5. Virtex-6 Integrated PCIe Block Wrapper - Debugging and Packet Analysis Guide
6. Virtex-5 Endpoint Block Plus for PCI Express - Debugging and Packet Analysis Guide with Downstream Port

Model and PIO Example Design

Revision History

25/06/2013 – Initial Release

http://www.xilinx.com/support/documentation/ipbusinterfacei-o_pci-express.htm#157679
http://www.xilinx.com/support/documentation/ip_documentation/srio_ug503.pdf
http://www.xilinx.com/support/answers/50166.htm
http://www.xilinx.com/support/answers/42368.htm
http://www.xilinx.com/support/answers/50234.htm
http://www.xilinx.com/support/answers/46888.htm
http://www.xilinx.com/support/answers/46888.htm

	Xilinx Answer 53776
	Generating Quick Test Cases for Xilinx Integrated PCI Express Block and Serial RapidIO Cores Verilog Simulation
	Introduction
	Verilog Simulation
	Procedural Continuous Assignments
	Conditional Compilation
	System Tasks
	Looping constructs
	Structured Procedures

	Xilinx IP Simulation
	Xilinx Integrated PCI Express Block Simulation
	MSI Interrupt Simulation
	Upstream Memory Write TLP Simulation
	Malformed TLP Simulation
	Spartan-6 ‘Unsupported Request Detected’ Simulation

	Serial Rapid IO Simulation
	Back to Back Packet Retry (PR) and Packet Not Accepted Simulation

	Conclusion
	References
	Revision History

