# End-to-End System-Level Simulations with Repeaters for PCle Gen4: A How-To Guide

Casey Morrison, Texas Instruments Cindy Cui, Keysight

Yongyao Li (Huawei), Casey Morrison (Texas Instruments), Fangyi Rao (Keysight), Cindy Cui (Keysight), Geoff Zhang (Xilinx)







### **SPEAKERS**



**Casey Morrison** 

Systems Engineering Manager, Texas Instruments cmorrison@ti.com | www.linkedin.com/in/casey-morrison | @CaseyTMorrison

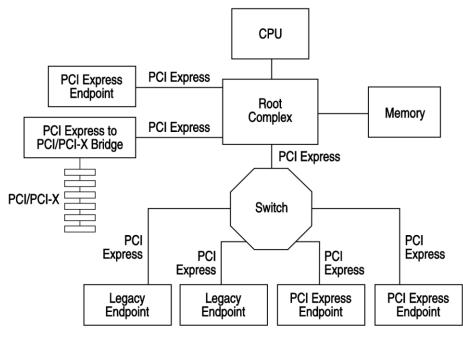


**Cindy Cui** 

Application Engineer, Keysight Technologies Cindy\_cui@keysight.com






# **PCI-Express Gen-4 Overview**

### PCI-Express Gen-4:

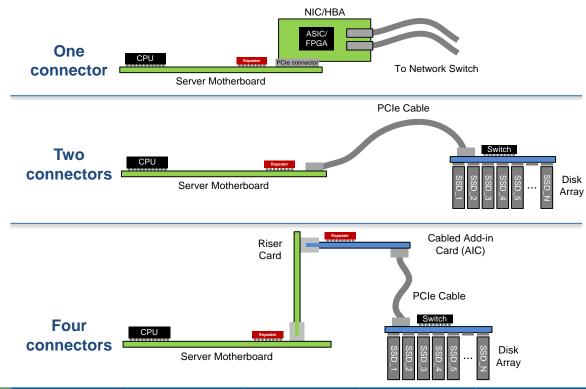
- Base Specification revision 4.0 expected to reach version 1.0
   in 2017
- Maximum speed: 16 Gbps / Lane / direction
- Single- or multi-lane links to scale aggregate bandwidth: x1, x2, x4, x8, x16, and x32

### Applications:

- Servers: CPU-to-network and CPU-to-storage interconnects
- Client compute: CPU-to-peripheral (i.e. graphics card) interconnect
- High-performance compute / Compute clusters: CPU-to-CPU interconnect



Example PCle Topology (From Base Specification)


OM13751A





# **PCI-Express Gen-4 System Topologies**

- System designers anticipate various topologies ranging from one to five connectors.
- High channel attenuation:
  - ~5 dB from CPU package
  - ~3 dB from End Point package
  - ~1 dB from each connector
  - o ~1 dB / inch from PCB
- Linear Repeaters are commonly used to achieve reach extension while minimizing added latency, cost, and power consumption.
- System designers need a way to gain confidence in their chosen topology and its viability.
- System-level simulations are one way to achieve this goal.



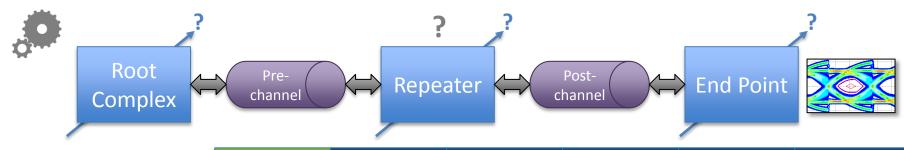


**Repeater Required?** 

**Define Sim Space** 

**Define Pass Criteria** 

**Execute & Analyze** 


**UBM** 

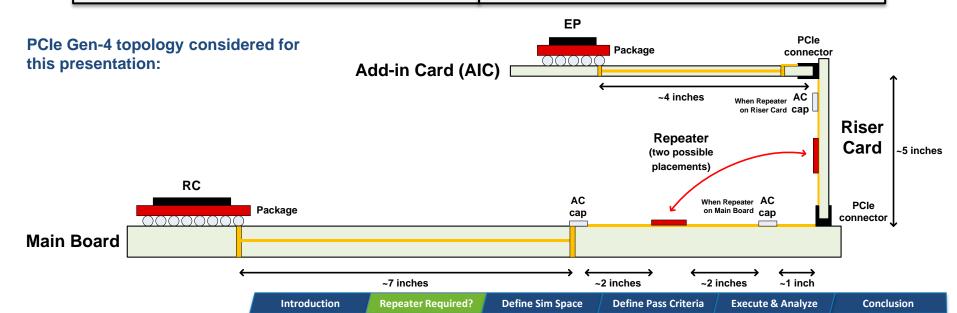




### **End-to-End System-Level Simulations**

- The proposed methodology for simulating a *Tx+Repeater+Rx system* in the context of PCle Gen-4:
  - 1. Determine if a Repeater is required.
  - Define a simulation space.
  - Define evaluation criteria.
  - 4. Execute the simulation matrix and analyze the results.
- Goal: Reach a conclusion regarding the optimum configuration of the system in an efficient and timely manner.

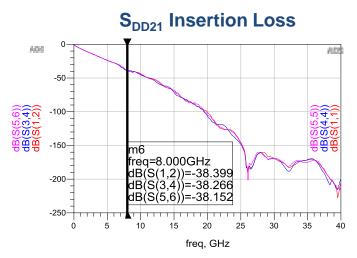






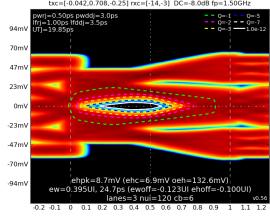

# Step 1: Determine if a Repeater is Necessary

### Two ways to determine if a Repeater is necessary:


- Compare end-to-end channel loss to PCIe channel requirements
- 2. Simulate end-to-end channel s-parameter in Seasim








### Step 1: Determine if a Repeater is Necessary



### **Seasim Analysis**





| Channel analysis method |                                                        | Value            | PCIe Requirement | Conclusion           |  |
|-------------------------|--------------------------------------------------------|------------------|------------------|----------------------|--|
| 1.                      | End-to-end channel insertion loss                      | 38.8 dB at 8 GHz |                  | Repeater is required |  |
| 2.                      | Channel simulation with behavioral Tx, Rx, and package |                  |                  | Repeater is required |  |

Introduction

**Repeater Required?** 

**Define Sim Space** 

**Define Pass Criteria** 

**Execute & Analyze** 

Conclusion



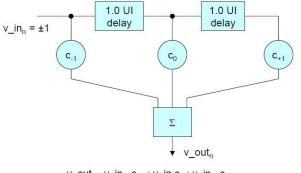


### **Step 2: Define a Simulation Space**

The system-level simulation task is broken down into two sequential phases:

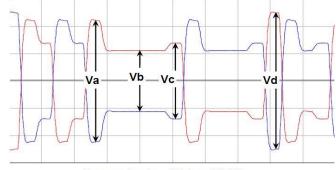
- **1. Initial link performance analysis**. Analyze the impact of Repeater placement and Tx/Repeater/Rx settings on link performance.
- 2. Sensitivity analysis. Quantify the sensitivity of link performance to process/voltage/temperature (PVT) variation and to variations in Repeater placement.

|    | mulation<br>nase                        | RC Tx<br>Parameters                        | Repeater<br>Parameters                                    | EP Rx<br>Parameters                  | Channel Parameters                                                                                         |
|----|-----------------------------------------|--------------------------------------------|-----------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------|
| 1. | Initial link<br>performance<br>analysis | Presets:<br>0, 1,, 9<br>VOD:<br>1000 mVppd | Boost: Sweep six values Wide-band gain: -1 dB             | Rx parameters automatically adaptive | Channel topologies considered: 1. Repeater placed on Main Board 2. Repeater placed on Riser Card           |
| 2. | Sensitivity<br>analysis                 | Presets:<br>0, 1,, 9<br>VOD:<br>1000 mVppd | Boost: Optimum setting from Phase 1 Wide-band gain: ±4 dB | Rx parameters automatically adaptive | Focus on optimum topology. Vary specific Repeater placement by ±2 inch to assess sensitivity to placement. |






### **Root Complex Tx Parameters**


- A Xilinx FPGA SerDes is used as the Root Complex Tx in this analysis.
- It implements a three-tap FIR filter which can be configured to achieve any of the ten PCle Presets.

| Preset<br># | Pre-<br>shoot<br>(dB) | De-<br>emphasis<br>(dB) | C <sub>-1</sub> | C <sub>+1</sub> | Va/Vd | Vb/Vd | Vc/Vd |
|-------------|-----------------------|-------------------------|-----------------|-----------------|-------|-------|-------|
| P4          | 0.0                   | 0.0                     | 0.000           | 0.000           | 1.000 | 1.000 | 1.000 |
| P1          | 0.0                   | -3.5 ± 1                | 0.000           | -0.167          | 1.000 | 0.668 | 0.668 |
| P0          | 0.0                   | -6.0 ± 1.5              | 0.000           | -0.250          | 1.000 | 0.500 | 0.500 |
| P9          | 3.5 ± 1               | 0.0                     | -0.166          | 0.000           | 0.668 | 0.668 | 1.000 |
| P8          | 3.5 ± 1               | -3.5 ± 1                | -0.125          | -0.125          | 0.750 | 0.500 | 0.750 |
| P7          | 3.5 ± 1               | -6.0 ± 1.5              | -0.100          | -0.200          | 0.800 | 0.400 | 0.600 |
| P5          | 1.9 ± 1               | 0.0                     | -0.100          | 0.000           | 0.800 | 0.800 | 1.000 |
| P6          | 2.5 ± 1               | 0.0                     | -0.125          | 0.000           | 0.750 | 0.750 | 1.000 |
| P3          | 0.0                   | -2.5 ± 1                | 0.000           | -0.125          | 1.000 | 0.750 | 0.750 |
| P2          | 0.0                   | -4.4 ± 1.5              | 0.000           | -0.200          | 1.000 | 0.600 | 0.600 |



 $v_{out_n} = v_{in_{n-1}}c_{n-1} + v_{in_n}c_n + v_{in_{n+1}}c_{n+1}$ 

 $|c_{-1}| + |c_{0}| + |c_{-1}| = 1$   $c_{-1} \le 0$   $c_{-1} \le 0$ 



De-emphasis = 20 log<sub>10</sub>Vb/Va Preshoot = 20log<sub>10</sub>Vc/Vb Boost = 20log<sub>10</sub> Vd/Vb

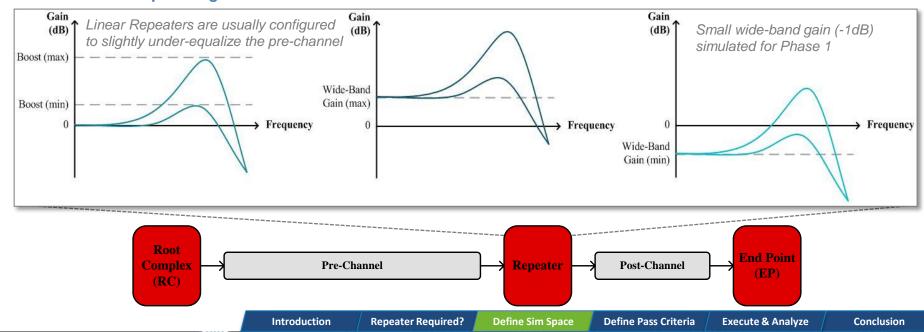
Introduction

**Repeater Required?** 

**Define Sim Space** 

**Define Pass Criteria** 

**Execute & Analyze** 

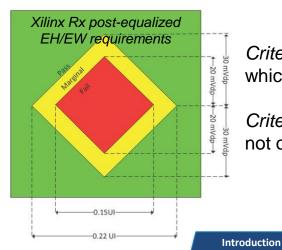

**UBM** 





### **Repeater Parameters**

- A Texas Instruments Linear Repeater is used to extend the reach between the RC and EP.
- Linear Repeaters conventionally provide two mechanisms for signal conditioning: High-frequency boost and wide-band amplitude gain.








### **Step 3: Define Pass/Fail Criteria**

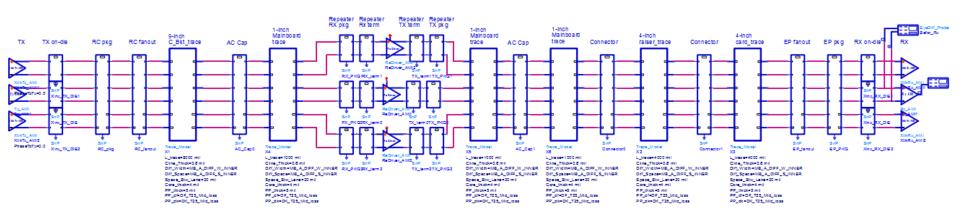
- Bit error rate (BER) is the ultimate gauge of link performance, but an accurate measure of BER is not possible in relatively short, multi-million-bit simulations.
- Instead, the methodology proposed here uses two criteria to establish link performance:
  - 1. A link must meet receiver's EH and EW requirements
  - 2. A link must meet criterion 1 for all Tx Preset settings



*Criterion 1* establishes that the there is a viable set of settings which will result in the desired BER.

Criterion 2 ensures that the link has adequate margin and is not overly-sensitive to the Tx Preset setting.

**Define Sim Space** 






**Repeater Required?** 

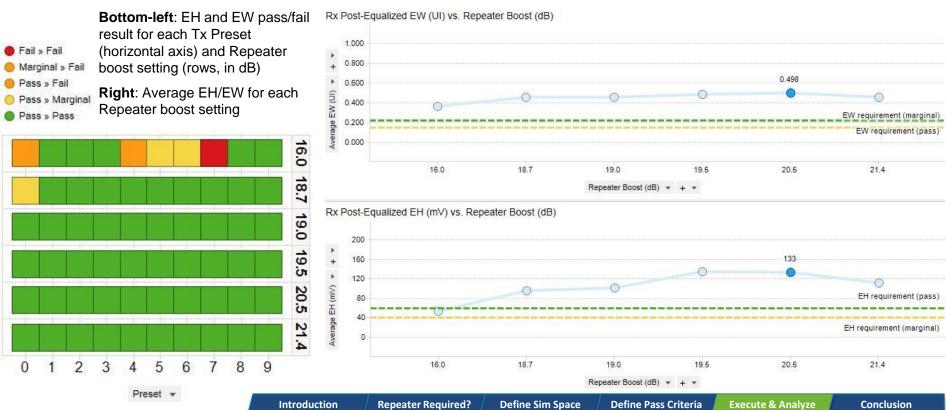
### **Step 4: Execute and Analyze**

- IBIS-AMI models are used for each active component: RC and EP SerDes from Xilinx and **Linear Repeater from Texas Instruments.**
- Keysight ADS is used to execute the IBIS-AMI simulations, measure the extrapolated EH and EW, and plot post-equalized eye.



Simulation Schematic used for this Analysis

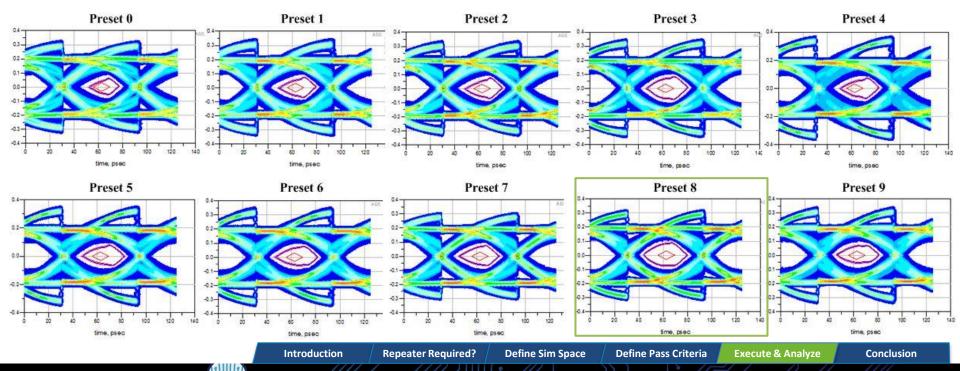





The focus of Phase 1 is to run a broad set of relatively short simulations to explore the design solution space. Minimizing the simulation time for each simulation is crucial.

| Simulation Parameter     | Value                                                                                                                                                        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Rate                | 16.0 GT/s                                                                                                                                                    |
| Data Pattern             | PRBS31                                                                                                                                                       |
| Total number of bits     | 1 Million                                                                                                                                                    |
| Crosstalk                | Yes. Two far-end crosstalk (FEXT) aggressors.                                                                                                                |
| Ignore_Bits              | 500k<br>Note: This is set by the Rx model                                                                                                                    |
| Simulation type          | Time domain (a.k.a. bit-by-bit) Note: Simulations will be faster running in Statistical mode, however non-linear behavior may not be adequately represented. |
| Bit-by-bit extrapolation | Enabled Note: Simulations will be faster without this mode enabled, however RJ will not be accounted for as accurately.                                      |

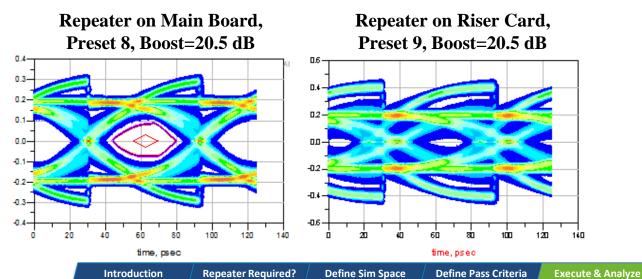



**UBM** 








Post-equalized eye diagram for all Tx Preset settings. The optimum Repeater boost (20.5 dB) is used for these cases. Tx Preset 8 yields the largest post-equalized eye opening.

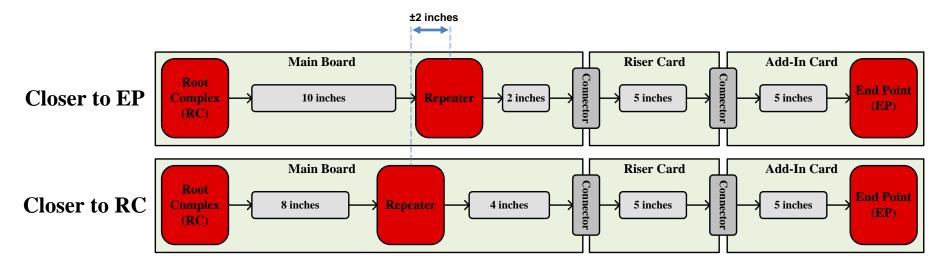






- A similar analysis is conducted for the alternate placement: Repeater on the Riser Card.
- In this configuration, the pre-channel loss is ~25 dB at 8 GHz; post-channel loss is ~14 GHz at 8 GHz.
- This placement shows consistently reduced performance compared to Main Board placement of the Repeater.





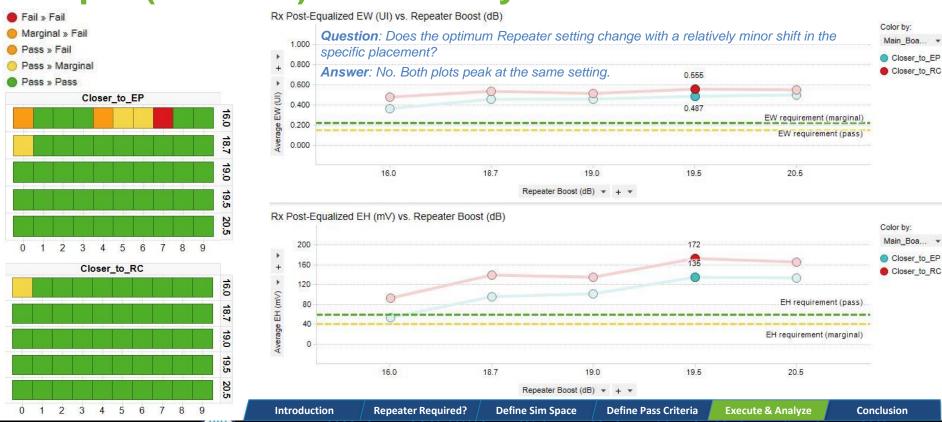



Conclusion

# Step 4 (Phase 2): Sensitivity to Placement

- Optimum Repeater placement is on the Main Board.
- Analyze the sensitivity of link performance due to the specific placement of the Repeater.
- Simulations are run with a ±2 inch variation in Repeater placement.




**Repeater Required?** 





**UBM** 

# **Step 4 (Phase 2): Sensitivity to Placement**







### **Step 4 (Phase 2): Sensitivity to PVT Variations**

- The last part of the Phase 2 sensitivity analysis is to look at the sensitivity of link performance to process, voltage, and temperature (PVT) variations.
- To exacerbate the effects of PVT variation, the Repeater's wide-band gain is varied by ±4 dB.
- Overall link performance is not affected until both extremes of PVT variation and wide-band gain are realized.
- As long as the Repeater's wide-band gain setting is kept to a reasonable, mid-level value, the link performance will be robust across PVT corners.







Introduction

JAN 31-FEB 2, 2017

**UBM** 

### **Conclusions**

### A simple four-step process for evaluating *Root Complex* + *Repeater* + *End Point* PCle Links:

### Determine if a Repeater is necessary

- Does end-to-end channel exceed PCle Base Specification?
- Does channel fail Seasim EH/EW analysis?

Understand if reach extension device is needed.

### Setup simulation sweep space

- Include all Tx Presets
- Chose Repeater boost around pre-channel loss

Chose limited set of parameters which are most likely to impact system performance.

### Define a pass/fail criteria

- Final Receiver's post-equalized eye height (EH) and eye width (EW)
- Achieving Rx EH/EW requirements across all Tx Presets

Define evaluation criteria up front to avoid subjective conclusions later on.

### **Execute simulation matrix**

- Phase 1: Initial link performance analysis (simulating the sweep space)
- Phase 2: Understand link's sensitivity to specific Repeater placement and PVT

Break execution into two phases to minimize overall simulation time.

Introduction

Repeater Required?

**Define Sim Space** 

**Define Pass Criteria** 

**Execute & Analyze** 

Conclusion







# Thank you!

**QUESTIONS?** 







### **Appendix: Terminology**

■ Root Complex (RC) A defined System Element that includes at least one Host Bridge, Root Port, or Root Complex Integrated Endpoint.

 End Point (EP)
 One of several defined System Elements. A Function that has a Type 00h Configuration Space header.

Linear Repeater
 An analog reach extension device which generally provides continuous time linear equalization (CTLE) and wide-band amplitude gain.

Link
 The collection of two Ports and their interconnecting Lanes. A Link is a dual-simplex communications path between two components.

Link Segment The collection of a Port and a Pseudo Port or two Pseudo Ports and their 45 interconnecting
 Lanes. A Link Segment is a dual simplex communications path between a Component and a

Retimer or between two Retimers (two Pseudo Ports).





