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Abstract 

IBIS-AMI modeling for high-speed serial link systems becomes the de facto standard in the 

industry. The evolution of IBIS-AMI modeling standard started from a pure THRU channel 

modeling for NRZ signaling and expanded to the inclusion of crosstalk aggressors, to links 

containing repeaters, to back-channel transmitter (TX) and receiver (RX) equalizer training 

process, to the modeling of PAM4 and duobinary signaling.  

However, to date IBIS-AMI modeling can only deal with a synchronous system, indicating that 

the TX and RX share a common reference clock source. In real applications, there are many more 

systems that are designed for asynchronous operations, i.e., there exists certain frequency offset 

between the reference clocks for the transmitter and the receiver. Thus, clock-data-recovery (CDR) 

behavior in the case of frequency offset between the TX and the RX is not verified through the 

standard IBIS-AMI simulation. As a result, the impact of the frequency offset is not rigorously 

evaluated, leading to potential overoptimistic estimation of system performance.   

In this paper we propose an approach such that an asynchronous high-speed link system can be 

modeled within the existing IBIS-AMI framework, making it possible to study the dynamics of 

the CDR under the asynchronous condition through time domain simulations. The paper explains 

what it takes to perform asynchronous link system simulations. Details of enhancements to the 

existing modeling and simulation practice required to capture the asynchronous effect are 

described. Specific examples of asynchronous links are analyzed using the proposed approach, 

and simulation results are presented. The behavior of the CDR in the presence of reference clock 

frequency offset is demonstrated, and the consequent timing impairment is measured. The system 

tolerance to frequency ppm offset is investigated with channels having different loss profiles at 

different data rates. Finally, the impact of asynchronous TX and RX clocks on link budget and 

system performance is discussed. 
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1. Introduction 

This paper introduces Input/Output Buffer Information Specification Algorithmic Model Interface 

(IBIS-AMI) modeling and simulation of asynchronous high speed link systems. However, to date 

IBIS-AMI modeling can only deal with a synchronous system, indicating that the TX and RX 

share a common reference clock source. In real applications, there are many more systems that are 

designed for asynchronous operations, i.e., there exists certain frequency offset between the 

reference clocks for the transmitter and the receiver. Thus, clock-data-recovery (CDR) behavior 

in the case of a frequency offset between the TX and the RX is not verified through simulations. 

Hence, the impact of the frequency offset is not rigorously evaluated, leading to potential 

overoptimistic estimation of system performance.   

To accurately simulate a serial link, it is critical to model the link channel and SerDes (or other 

active component, such as repeaters or retimers) accurately, besides setting up system parameters 

such as jitter and noise. Inside the SerDes we need to model the behavior of feed-forward-

equalization (FFE), continuous-time-linear-equalization (CTLE), decision-feedback-equalization 

(DFE) and CDR, both hardware and adaptations. Impairments and design trade-offs also have to 

be represented inside the model. However, such information is typically proprietary for SerDes 

vendors, thus unavailable to system engineers. This poses a challenge to the system simulation.  

Another challenge is model interoperability. As a third-party SerDes IP is usually required in many 

application scenarios, there is a need to establish a common interface standard for interoperability 

simulation. Still another challenge is simulation speed. As most design specs are defined at bit-

error-ratio (BER) of 1e-12 or lower, designers need to run millions of bits in order to predict a link 

performance at very low BER levels with good statistical confidence. 

Above challenges are addressed by the IBIS-AMI standard. By defining a common SerDes model 

interface, the standard allows SerDes vendors to encapsulate SerDes behaviors in model 

executables without exposing their IP. The models can be used by system designers to perform 

end-to-end link simulations. Furthermore, in AMI simulations analog channels are assumed to be 

linear-time-invariant (LTI) and can be represented by impulse responses. The highly efficient 

convolution method can be applied to calculating signal waveforms at channel outputs. As a result, 

millions of bits can be simulated in minutes, allowing accurate predictions of link performance at 

low BER with good confidence. 

This paper proposes details of modifications to the current IBIS-AMI simulation flow so that 

asynchronous systems can be simulated for a given frequency ppm offset. The paper provides 

background information of IBIS-AMI basics, highlight of serial interface link analysis, and PLL 

and CDR fundamentals. The paper then prescribes details on how the existing system can be 

modified such that the simulation scope can be extended from the synchronous system to both 

synchronous and asynchronous systems. By doing so the IBIS-AMI modeling becomes a step 

forward toward more comprehensive solution.  

The paper provides examples using the modified platform to analyze asynchronous links. An 

example is also presented to show link margin is over-optimistically represented if CDR 

performance in the presence of frequency offset is ignored. The newly proposed IBIS-AMI 

platform will help the industry to better analyze link performance and budget system designs.      



 

 
 

2. IBIS-AMI Modeling Basics 

A brief discussion of IBIS-AMI modeling for an NRZ link is presented in this section. AMI 

defines the SerDes behavioral modeling interface and an efficient channel simulation 

methodology. A serial link consists of a TX, a physical channel and a RX. Each SerDes device 

(TX or RX) is represented by an IBIS-AMI model, which contains analog and algorithmic 

portions. The analog portion is a regular IBIS model, and the algorithmic part is a Dynamic Link 

Library (DLL) executable of a data flow model.  

In a typical TX model, the analog portion models rise and fall waveforms and the output 

impedance and the DLL the de-emphasis. In a typical RX model, the analog portion represents 

the input termination and the DLL the functionalities of AGC, equalization (such as CTLE, FFE 

and DFE) and CDR. The TX DLL output is considered an ideal voltage source, and the RX DLL 

input is assumed to have high impedance. Therefore, DLLs are electrically decoupled from the 

analog channel, which includes the TX analog model, the physical channel and the RX analog 

model. Furthermore, the analog channel is assumed to be LTI, thus can be represented by a 

combined analog channel impulse response. A graphical representation is given in Figure 1. 

 

Figure 1. Graphical representation of IBIS-AMI modeling. 

In AMI simulations, the TX DLL input is a square wave switching between 0.5V and -0.5V that 

represents the data pattern. The transmitted data rate is controlled through AMI parameter 

bit_time and sample_interval. The TX output is convolved with the analog channel impulse 

response. The highly efficient FFT algorithm can be employed in the convolution calculation. 

The resulting signal is the input to the RX DLL, which applies equalizations and CDR to it and 

returns the equalized signal and the recovered clocks.  

The expected data rate on the RX side is again determined from the AMI parameter bit_time and 

sample_interval. The RX output is sampled at each clock time and compared with the reference 

voltage at 0V and the transmitted bit to compute the BER. If the RX DLL has the AMI_GetWave 

function, the RX signal processing is performed inside the function. In a typical setting, the RX 

input waveform is divided into segments. The simulator repeatedly calls AMI_GetWave, using 



 

 
 

sequentially the waveform of each segment as the input of each function call until all segments 

are processed. The recovered clock tick information is passed from the RX DLL to the EDA tool 

through the AMI parameter clock_times. 

It is noted that the frequency offset between the TX and the RX is not explicitly handled, thus the 

existing platform cannot handle asynchronous link simulations. This is what this paper is 

discussing and is trying to accomplish. 

3. Synchronous and Asynchronous Systems 

In the context of this paper we only deal with embedded clock I/O architecture such as SerDes. 

SerDes is an interface IC that converts n-bit parallel data into serial data at the transmitter and 

converts this serial data back to n-bit parallel data at the receiver. The transmitter side of the 

SerDes has serializer, de-emphasis, and line drivers. The receiver side has clock and data 

recovery (CDR), equalizer, and deserializer. This is captured in Figure 2. 

 

Figure 2. SerDes block diagram. 

3.1 Synchronous and Asynchronous Systems 

In this architecture of SerDes, there is no explicit clock being transmitted together with the data; 

the clock information, due to data transitions, is embedded in the data. There are protocols 

designed for different applications. SONET, USB, Ethernet, and PCIe are some well-known 

serial interfaces. Each of these serial interfaces can be sorted into one of two groups, 

synchronous or asynchronous. 

As illustrated in Figure 3, a synchronous serial interface has both the transmitter and the receiver 

share a common reference clock. That is, the normalized reference clock frequency is identical to 

both the TX and the RX. Over time, the synthesizer output clock frequency might drift due to 

environment changes such as temperature or voltage, but the frequency seen on the RX side 

follows that seen on the TX side. The CDR in the RX would only need to track the instantaneous 

phase variations between the TX and the RX due to noise and jitter. 



 

 
 

Asynchronous serial interface, on the other hand, implies that the transmitter and the receiver 

have different reference clocks which could differ by some small values, usually defined as ppm 

(parts per million, defined as the difference between the TX and RX normalized frequencies over 

the normalized frequency). When the TX and the RX reference clocks come from different on-

board clock synthesizers, this system is considered to be an asynchronous system (or plesio-

chronous system). The RX clock frequency cannot be guaranteed to be the same as the TX clock 

frequency even over a short period of time. Due to temperature, voltage or process variations 

between the two clock synthesizers, an on-average ppm offset could exist between the two clock 

frequencies.  The CDR in the RX not only needs to track the instantaneous phase difference, but 

also needs to compensate for the frequency difference between the two sides. 

 

Figure 3. Two clocking architectures. 

3.2 Clock Data Recovery 

A PLL in SerDes is used to sync the local clock frequency with the reference clock frequency 

and also to multiply the reference clock frequency up for the actual data rate. In a synchronous 

system, the receiver PLL and the transmitter PLL gets the same reference clock, while in an 

asynchronous system, the reference clock frequency to the RX PLL and to the TX PLL could be 

different. One approach for clock recovery is to have a phase-frequency detector (PFD) on the 

RX side to directly adjust the PLL frequency. When there is no data or no lock the internal PLL 

will normally frequency/ phase lock onto the reference clock. Once the SerDes receiver starts to 

receives, the PLL clock is compared in frequency and phase in a PFD to generate the error 

signal, which is then used to adjust the PLL in such a way that the incoming data is more or less 

sampled around the bit center. Figure 4 shows the general concept for timing recovery. 

 

Figure 4. General concept for timing recovery. 



 

 
 

Another commonly used approach is to use a phase interpolator (PI) based block to adjust the 

RX sampling clock phase from a local PLL to track and match the TX frequency and phase. The 

block diagram for these two approaches are shown in Figure 5. PD is the phase detector and are 

generally very different for different architectures. 

data PD
Charg 
Pump

Low Pass 
Filter

VCO

data PD Accumulators

Phase 
Interpolator

PLL

PLL based clock data recovery Phase Interpolator based clock data recovery

 

Figure 5. PLL based versus Phase Interpolator based clock data recovery 

The commonly used CDR can be categorized into either a first order or a second order CDR. A 

first order CDR can track phase offsets within its loop bandwidth and loop gain range, but would 

result in phase error if a frequency offset exists in the system. The larger the frequency offset is, 

the larger the phase error becomes. A second order CDR, on the hand, can track the frequency 

offset without phase errors within its tracking range. In this paper, we will use the PI based clock 

data recovery as an example to explain the timing recovery behavior in an asynchronous system. 

The analysis of PLL based timing recovery is very similar. 

3.3 System Performance Impact 

For an asynchronous system, frequency offset ppm has to be well controlled. When system margin 

is small, a very small ppm offset needs to be guaranteed and/or a second order CDR has to be used 

to reduce the margin loss. 

A PI-based 2nd-order CDR architecture is typically modeled as shown in Figure 6. Gp is the 1st 

order path gain and Gf is the 2nd order path gain. PD is the phase detector and PI is the phase 

interpolator. It is straightforward to analyze the system behavior when we can reasonably 

linearize the PD. When the CDR loop is in lock, the PD output, the phase error, is expected to be 

0 in the ideal case. It is worth mentioning that when Gf is 0, this architecture becomes a 1st order 

CDR. 

Z+ Gf

Gp + Z+PD

PI

data

-1

-1

-

 

Figure 6. Block diagram of a 2nd order CDR. 



 

 
 

With a small frequency offset, the PD output in the steady state does not approach 0 if the CDR 

loop is only of the 1st order. This phase error is proportional to the ppm offset magnitude and 

inversely proportional to Gp and Gpi (the PI gain) as shown in Equation (1). However, when the 

2nd order CDR is used, the phase error can be reduced to a small number within the PI resolution 

as in Equation (2).  Here, Pe is the phase error and Δf is the frequency ppm offset. 

𝑃𝑒
1𝑠𝑡−𝑜𝑟𝑑𝑒𝑟 ~  

𝛥𝑓

𝐺𝑝𝑖×𝐺𝑝
                      Equation (1) 

𝑃𝑒
2𝑛𝑑−𝑜𝑟𝑑𝑒𝑟 ~  0                 Equation (2) 

In practice, the PD cannot track large frequency offset due to its phase wrapping-around nature, 

resulting in incorrect phase detection output. The CDR loop will not converge properly even 

with the 2nd order path. Thus, when the frequency offset is out of the CDR capture range, the 

CDR can no longer lock to the incoming data and the eye is closed. This behavior can be seen 

from the time domain simulation in Figure 7 based on the simple architecture model given in 

Figure 6. 

 

Figure 7. Eye width as a function of ppm offset for the 1st order and the 2nd order CDR. 

Another insight we can derive from this simple model is for jitter tolerance. It is well known that 

the CDR can track low frequency jitter up to its bandwidth. The 2nd order CDR loop can 

especially help with very low frequency jitter because of the 2nd pole it introduced in its jitter 

transfer function. In addition, the 1st order CDR jitter tolerance is compromised in the 

asynchronous system while the 2nd order CDR is barely affected. This can be observed in either 

the small signal analysis or a simple time domain simulation as shown in Figure 8.  

Although a simple architecture model can predict, to a large degree, the behavior of a CDR in the 

presence of a frequency offset and a sinusoidal jitter, a time domain simulation is desired for 



 

 
 

higher accuracy and to account for the convergence complexities and interactions among various 

adaptation loops in the SerDes system. This is where an IBIS-AMI simulation can help. 

      

Figure 8. Jitter Tolerance analysis in time domain and frequency domain. 

 

4. IBIS-AMI Simulation for Asynchronous Systems 

The existing IBIS-AMI standard supports system level simulations but does not explicitly require 

its application in an asynchronous system. We can take advantage of the independency between 

the RX model and the TX model to apply the asynchronous reference clocks through the EDA 

platform. The reference clock frequency offset can be applied on either the TX or the RX side by 

varying the AMI parameter input bit_time and sample_interval. If it is applied on the TX side, 

the bit_time argument value in the AMI_Init call is the actual TX reference clock frequency 

determined by the TX frequency offset relative to the nominal data rate. In addition, the ideal 

unit interval (without TX jitter) of the input digital stimulus to the TX DLL is equal to the 

inverse of the actual TX reference clock frequency. If it is applied on the RX side, the bit_time 

argument value in the AMI_Init call is the actual RX reference clock frequency determined by 

the RX frequency offset relative to the nominal data rate. It should be pointed out that in both 

cases the sample_interval argument value in the AMI_Init call does not need to depend on either 

actual reference clock frequencies.  

If the same sample_interval is used by the TX and the RX, the samples per bit could be different 

between the TX and the RX due to the small ppm offset and could be non-integer. Although the 

IBIS-AMI standard requires the DLL to handle the re-sampling, it is possible that many DLLs 

expect an integer samples per bit and could fail with an exit code 0. 

On the other hand, if different sample_intervals are used by the TX and the RX to keep the 

samples per bit an integer number for both sides, then the EDA tool needs to handle the re-

sampling. For example, the EDA tool sends the waveform to the TX at the TX sample rate, 

receives the TX DLL output and convolves it with the channel impulse response, which is 



 

 
 

sampled at the same rate as the TX. Then the EDA tool interpolates the convolved output 

waveform and re-sample it to match the RX side sampling rate before sending the waveform to 

the RX DLL. 

The two approaches are illustrated in Figure 9(a) and 9(b) respectively, assuming offset is added 

on the TX side. It is not the intention of this paper to endorse or to dictate which approach should 

be adopted. 

EDA Tool Sends waveform to 
TX DLL at nominal sampling 
rate and passes the revised 
bit_time (nominal adjusted 

by ppm offset) and the 
nominal sample_interval 

AMI_parameters

TX DLL handles 
the necessary 

interpolation and 
re-sampling and 

processes the 
waveform before 

sends it out to 
the EDA tool 

EDA Tool then 
convolves the 

waveform with 
the channel 

impulse 
response, which 
is sampled at the 

nominal 
sampling rate

EDA Tool sends the 
waveform to the RX 
DLL and passes the 
nominal bit_time 

and sample_interval 
to the RX DLL

RX DLL processes the data 
and sends the processed 

waveform along with 
clock_times to the EDA tool 

for post processing

(a)

  

 

EDA Tool Sends waveform to 
TX DLL at TX side sampling 

rate (nominal sampling rate 
with ppm offset) and passes 

the corresponding 
AMI_parameters to the TX 
DLL: revised bit_time and 
revised sample_interval

TX DLL processes 
the waveform 

and sends it out 
to the EDA tool 

EDA Tool then interpolates 
and resamples the 

waveform according to the 
nominal sampling rate 

determined by the original 
AMI_parameters: bit_time 

and sample_interval

EDA Tool then convolves the 
waveform with the channel 
impulse response, which is 

sampled at the TX sampling rate

EDA Tool sends the 
re-sampled 

waveform to the RX 
DLL and passes the 
nominal bit_time 
and the nominal 

sample_interval to 
the RX DLL

RX DLL processes the data 
and sends the processed 

waveform along with 
clock_times to the EDA tool 

for post processing

(b)

 

Figure 9. (a) Frequency offset added on the TX side and the TX DLL handles the re-sampling.       

(b) Frequency offset added on the TX side and EDA tools handles the re-sampling. 



 

 
 

5. Asynchronous System Simulation and Measurement 

Three channels, with high, medium and low losses, are analyzed. Insertion and return losses of 

these channels are plotted in Figure 10 and Figure 11. Insertions losses of the three channels are 

36dB, 30dB and 18dB, respectively. 

 
Figure 10. Channel insertion losses. 

 
Figure 11. Channel return losses.  

The simulation setup is shown in Figure 12. The TX package, the physical channel and the RX 

package are represented by 4-port S-parameters, which are cascaded to model the link. The 

nominal data rate is 28Gbps. Each simulation runs one million PRBS23 bits. The frequency ppm 

offset is set inside the EDA tool, so the interface of the simulation bench looks the same as that 

for the conventional IBIS-AMI simulations for synchronous links. 

The TX model implements a 3-tap FIR for de-emphasis. The RX model implements adaptive 

CTLE, AGC and DFE. In this study the high and medium loss channels use the same TX 

equalizer setting and the low loss channel uses a different setting. The default CDR in the RX 

model is 2nd order. The model has a parameter knob to switch the CDR between the 1st order and 

the 2nd order. In this example the reference clock offset is applied on the TX side through the 

EDA. Positive offset means TX side data rate is higher than that on the RX side. All the denoted 

frequency offsets are measured relative to a reference offset f. 

 

Figure 12. Simulation setup for an asynchronous link. 



 

 
 

5.1 High Loss Channel 

The CDR phase shifts as a function of time in the high loss channel with frequency offset 

relative to the nominal data rate at 5 and -5 reference offset f are shown in Figure 13. The CDR 

phase shift is defined as 

𝒑𝒉𝒂𝒔𝒆 𝒔𝒉𝒊𝒇𝒕(𝒏) =
𝒕𝒄𝒍𝒌(𝒏)−𝒕𝒄𝒍𝒌(𝟎)

𝑻𝟎
− 𝒏                      Equation (3) 

where tclk(n) is the nth clock time returned by the RX AMI_GetWave call and T0 is the nominal 

unit interval, which is 1/28G, or 35.71 ps, in this study. Figure 13 shows that the CDR tracks the 

TX frequency offset at 5 and -5 f. As a result, the eyes are open and similar to the eye without 

frequency offset (in a synchronous channel), as shown with the eye diagrams in Figure 14. 

 
Figure 13. CDR phase shift in the high loss channel. 

Figure 14 also shows that at 8.5 f frequency offset the eye is closed. The CDR phase shift at 

this offset, plotted in Figure 15, indicates that the CDR fails to fully track the TX frequency 

offset and is output of lock with the data, resulting in a closed eye. The red line is the actual CDR 

output phase shift. The blue line is the hypothetical ideal phase shift if the CDR tracks the TX 

frequency offset perfectly. 



 

 
 

 

Figure 14. High loss channel eyes with frequency offset at 0, 5, -5 and 8.5 reference offset f. 

 

Figure 15. CDR phase shift in the high loss channel with frequency offset at 8.5 reference offset f.  

Timing bathtub curves and eye contours at 10-12 BER with frequency offset at 0, 5 and -5 

reference offset f are plotted in Figure 16 and Figure 17, respectively. Comparison with the 

data in the synchronous channel (with 0 offset) shows that in the asynchronous channels (with 5 

and -5 f offsets) the frequency offset introduces a slight additional timing closure. 



 

 
 

 

Figure 16. Timing bathtub curves in the high loss channel. 

 
Figure 17. Eye contours at 10-12 BER in the high loss channel. 

5.2 Medium Loss Channel 

Figure 18 shows the eyes for the medium channel with frequency offset at 0, 5, -5 and 10 

reference offset f. At 10 f. The CDR fails to track the frequency offset and the eye is closed. 



 

 
 

 

Figure 18. Medium loss channel eyes with different frequency offsets.  

Timing bathtub curves and eye contours at 10-12 BER with frequency offset at 0, 5 and -5 

reference offset f are plotted in Figure 19 and Figure 20, respectively. Again, we can see that 

with 2nd order CDR loop, as long as it is within the frequency capture range, margin loss with 

frequency offset is small. 

 

Figure 19. Timing bathtub curves in the medium loss channel. 



 

 
 

 

Figure 20. Eye contours at 10-12 BER in the medium loss channel. 

5.3 Low Loss Channel 

Figure 21 shows the eyes in the low channel with frequency offset at 0, 5, -5 and 10 reference 

offset f. At 10 f the RX CDR fails to track the TX frequency offset and the eye is closed. 

Timing bathtub curves and eye contours at 10-12 BER with frequency offset at 0, 5 and -5 

reference offset f are plotted in Figure 22 and Figure 23, respectively. The same conclusion on 

the margin loss is drawn here. Also worth noting is the very small phase shift with positive and 

negative ppm offset. 

 

Figure 21. Low loss channel eyes with different frequency offsets. 



 

 
 

 

Figure 22. Timing bathtub curves in the low loss channel. 

 

Figure 23. Eye contours at 10-12 BER in the low loss channel. 

5.4 Frequency Offset Tolerance 

Eye widths at 10-12 BER vs frequency offset are plotted in Figure 24 for the three channels. It is 

seen that the CDR is able to track the offset between -11 f and 8 f. The high loss channel 

seems better equalized than the medium loss channel with the equalization settings from the TX 

and the RX side, leading to a slightly larger eye width.  

Timing bathtubs and eye contours at 10-12 BER between +/-15 f frequency offset are shown in 

Figure 25 and Figure 26. Again, we can see that within the capture range, frequency offset 

impact to a second order CDR system exists but is relatively small. 

 



 

 
 

 

Figure 24. Eye width at 10-12 BER vs frequency offset. 

    

Figure 25. Timing bathtub curves in three channels with different frequency offsets. 

 

Figure 26. Eye contours at 10-12 BER in three channels with frequency offset between -15 and 15. 

To compare the frequency offset tolerance between the 1st order CDR and the 2nd order CDR, 

eye widths at 10-12 BER with 1st order CDR vs frequency offset are plotted in Figure 27. The 

result indicates that,for all three channels, the 1st order CDR can only track the offset between +/-

1.3 f. The frequency offset tolerance is much lower in the 1st order CDR than in the 2nd order 

CDR. Please note that the EW seems flat within the capture range, but it is actually not (as 

expected in the theoretical analysis in Figure 6). The locking point is severely impacted by the 

ppm offset (Figure 28), so the effective EW degrades proportionally to the ppm offset. 



 

 
 

Timing bathtubs and eye contours at 10-12 BER with the 1st order CDR are shown in Figure 26 

with frequency offset between -1.5 and 1.5 reference offset f and Figure 29 with frequency 

offset between -1.5 and 1.5 reference offset f.  Closed eyes at the BER are not shown. As ppm 

offset becomes more positive, the eye is shifted to the left, resulting less and less horizontal eye 

margin on the right. Similarly, as ppm offset becomes more negative, the eye is shifted to the 

right, resulting less and less horizontal eye margin on the left. This is in contrast to a second 

order CDR system, where eye is not shifted as long as the ppm offset is within the capture range.  

 

Figure 27. Eye width at 1e-12 BER with 1st order CDR vs frequency offset. 

 
Figure 28. Timing bathtub curves for the three channels with the 1st order CDR. 

 

Figure 29. Eye contours at 1e-12 BER for three channels with 1st order CDR. 



 

 
 

5.5 Frequency Offset Impact on Jitter Tolerance 

To investigate the frequency offset impact on RX jitter tolerance, a sinusoidal jitter (SJ) is 

injected into the TX data stream. In this paper, all SJ frequencies are measured relative to a 

reference FSJ, and all SJ amplitudes are measured relative to a reference ASJ. 

The CDR phase shift in the high loss channel with frequency offset at 5 reference offset f and 

TX SJ frequency at 10 reference SJ frequency FSJ is plotted in Figure 30. The result shows that 

the CDR tracked both the TX frequency offset and the TX SJ. 

 

Figure 30. CDR phase shift in the high loss channel with frequency offset. 

Figure 31. Eye width at 10-12 BER vs TX SJ amplitude for the high loss channel. 



 

 
 

The TX SJ amplitude is swept between 1 ASJ and 1000 ASJ for the high loss channel with 10 and 

100 FSJ TX SJ frequencies and with 0 and 5 f frequency offsets. Eye widths at 10-12 BER vs TX 

SJ amplitude are plotted in Figure 31. At both SJ frequencies the frequency offset reduces the 

eye width. For a certain eye width threshold, the maximum SJ amplitude tolerable by the CDR is 

around 200 ASJ at 10 FSJ and 5 ASJ at 100 FSJ SJ frequency for both frequency offsets. 

Figure 32 shows the CDR jitter tolerance for the high loss channel for the 2nd order CDR and the 

1st order CDR. For the 2nd order CDR the frequency offset is found to negligibly impact the jitter 

tolerance. For the 1st order CDR the impact of the frequency offset is more prominent and occurs 

in the entire TX SJ frequency range. 

 

Figure 32. Maximum TX SJ amplitude tolerable by CDR vs SJ frequency for the high loss channel. 

  



 

 
 

6. Conclusions and Future Work 

In this paper, we proposed a modified IBIS-AMI model simulation flow for asynchronous link 

systems. The reference clock frequency offset between TX and RX can be modeled on either the 

TX or the RX sides. The bit_time input value to the AMI_Init function is the actual reference 

clock period, and the nominal unit interval of the input digital stimulus to the TX DLL is the 

inverse of the actual TX reference clock frequency.  

The feasibility of the proposed approach is demonstrated by simulating three asynchronous 

channels with different losses. The results show that the frequency offset can cause timing 

impairments and reduce link margin. The 2nd order CDR is found to have much better frequency 

offset tolerance than the 1st order CDR. The frequency offset also impacts the CDR jitter 

tolerance as predicated.  

The capability of simulating system performance in the presence of jitter and frequency offset is 

valuable for system level timing budgeting. Doing so we are closer to more realistic results than 

simply treating the link as synchronous. One approximation we did make is by assuming the 

channel response changes negligibly with ppm offset, which is reasonable given the small ppm 

offset in typical systems. 

The principles of the proposed simulation approach can be extended to the case of spread 

spectrum clocking (SSC) when the signal frequency is modulated by a low frequency periodic 

signal to reduce the electromagnetic interference (EMI). SSC is permitted in specifications such 

as PCIe and CCIX. The complication is that the frequency is no longer constant but changes 

periodically. As a result, the bit_time (and maybe sample_interval) needs to be updated 

periodically by the EDA tool. The DLL needs to be able to handle this dynamic change. This 

would be a good topic for future study. 
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