

Accelerating databases with FPGAs

Presented By

TENIAC

Prasanna Sukumar Head of Engineering December 10, 2018

Our DNA – Hardware, Software, Systems & Data

Management

Prasanna Sundararajan, CEO & Founder Ex-Computing Market Architect, Xilinx

Thomas Jorgensen, VP, Customer Success Co-founder & ex-VP, Napatech (IPO)

Nishant Vyas, VP, Products First DB Engineer @ LinkedIn; Former CTO & Head of Product @ MariaDB.

Investors

Chidamber Kulkarni, CTO & Founder Ex-Staff Engineer, Network Solutions, Xilinx

Prasanna Sukumar, Head of Engineering Ex-Technical Director, Riverbed

Key team members past companies

THE PROBLEM

Today's performance requirements are inhibited by CPU bottlenecks

REQUIREMENTS

Low Latency

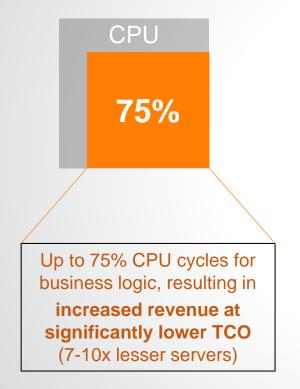
Predictable low-latency SLAs at scale

High Throughput

Handle billions of transactions

Scale

Serve massive data & transactions while limiting cost

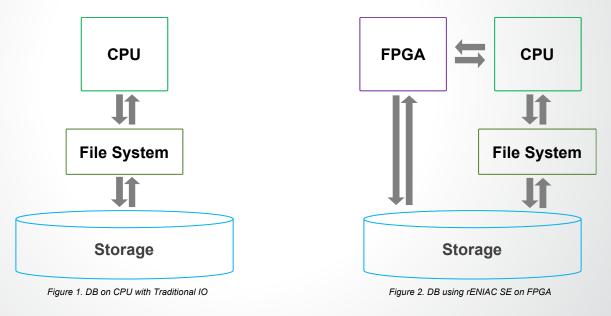

CPU 25%

When running an Open Source DB on a standard CPU-based system, ~75% CPU cycles are spent on system compute & I/O

Leaving only 25% devoted to business logic. Not enough to meet increasingly complex requirements of Distributed Databases and AI systems

THE SOLUTION

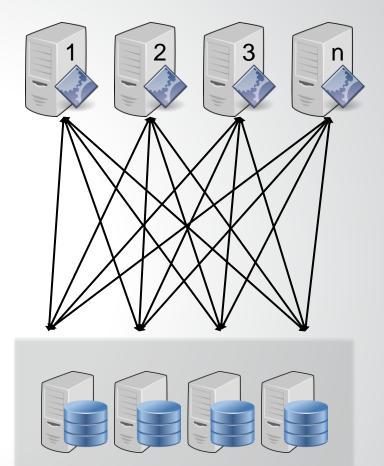
rENIAC Software solves system + I/O bottlenecks


rENIAC

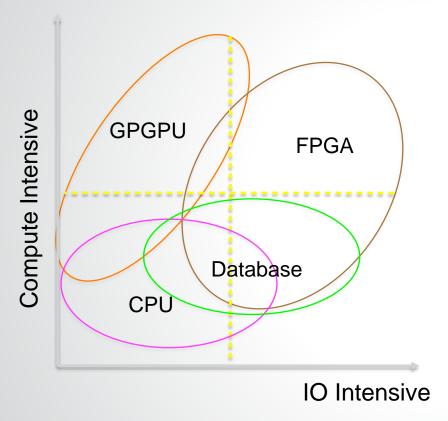
Distributed Data Engine

- Decouples data and application layers, simultaneously acting as an I/O accelerator to resolve any bottlenecks
- Unique ability to accelerate AI inference algorithms close to the data store and speeding up analytics
- Tightly couples storage class memory to a low latency network stack
- Up to 30x increase in performance
- Leverages COTS servers/CPU + FPGA + SSD
- Deployed as a network service with
 no software change required

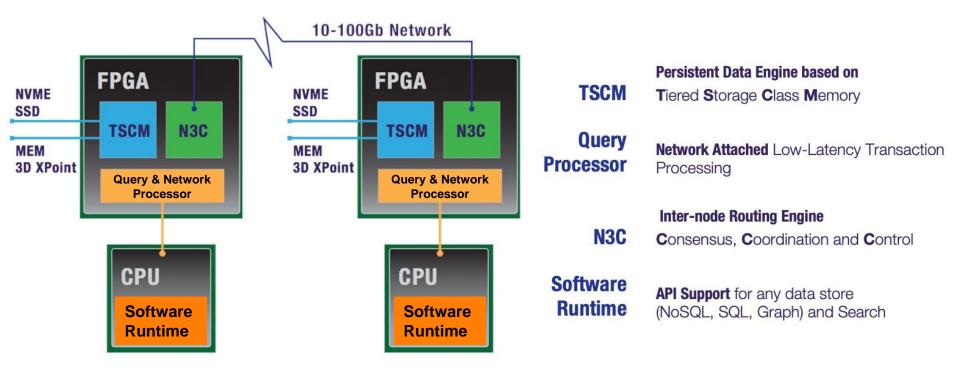
rENIAC Solution using FPGA


- Move Compute & IO from SW (CPU) to FPGA,
 - TCP Engine
 - Cluster, Control & Consensus
 - Storage Engine

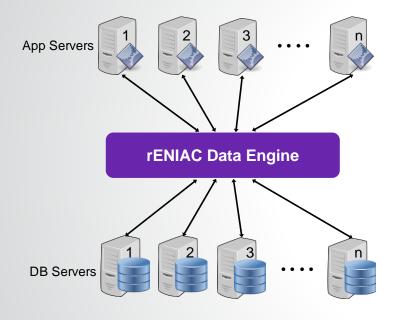
Deployment and Architecture challenges in C*


- Being a write-optimized NoSQL store (using LSMT) Cassandra has to manage memtables and SStables, forcing further IO amplification/bottlenecks by
 - compaction
 - repairs and
 - JVM garbage collection
- Additionally, multi-threaded SW is not scaling well with multi-core HWs.

This impacts 99th percentile, Tput per node and TCO


Cassandra DataStore

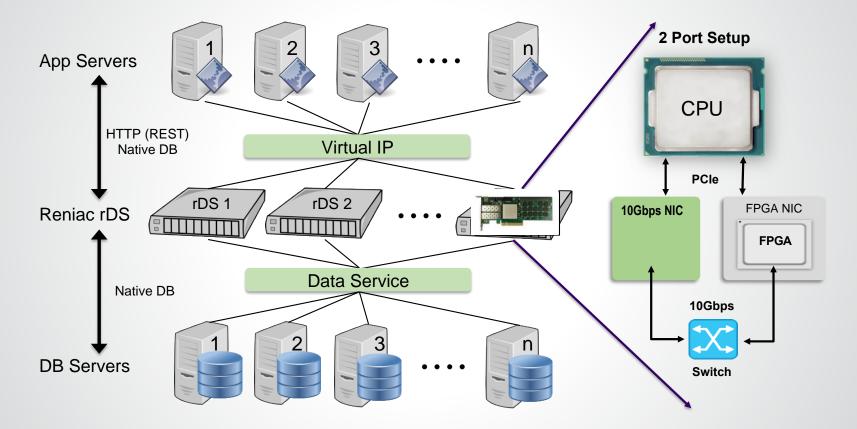
FPGAs for Data Acceleration



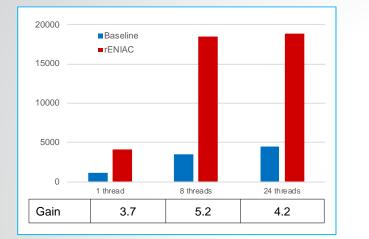
- Key parameters for accelerator choice:
 - Compute intensive
 - IO intensive
 - Network
 - Storage
 - Cost (f(\$, power/TCO))
- Databases are:
 - IO intensive
 - Moderately compute intensive
 - Exceptions like, read repairs, compression, encryption, OLAP queries, etc

rENIAC Core Technology

rENIAC DB Acceleration Engine



Advantages of rENIAC Engine with Open-Source Apache Cassandra


- Read scaling by facilitating extremely high read throughput per node.
- Predictable lower latency per read transaction (up to 99.99th percentile)
- Reduce compaction/garbage collection/thread concurrency inefficiencies

Throughput	4-10x increase	
Latency	1/3-1/10 lower latency	
Deployment	Plug & Play: No SW changes	
Technology	Leveraging state of the art technology: FPGA, CPU, Memory and SSD	

Deployment and Architecture

rENIAC Data Engine Benchmark Results

Latency (ms)	Baseline	rENIAC (rDS)	Perf Gain
95p latency	26.8	1.5	18x
99p latency	55.1	1.9	29x
99.9p latency	123.3	5	25x

Data Engine delivers up to 29x lower latency, over 5x Tput

Headroom for up to additional 12x Tput

	rENIAC Data Engine - host server	Cassandra Client/Server	
Processor	Intel Xeon 16C/32T	Intel Xeon 16C/32T	
Memory	64GB DDR3	64-128GB RDIMM, 2666MT/s, Dual Rank	
Hard drive/Boot	220GB SATA SSD	500GB-1TB SSD SATA/NVMe	
NVME/Storage	1TB SSD NVMe	1TB SSD (DB Server)	
OS and kernel	CentOS 7.3, Kernel 3.10	CentOS 7.3, Kernel 3.10	
Software	rENIAC FPGA Data Engine & SW Connectors	Apache Cassandra v3.10 or later	

Workload

- Read-only
- Partitions 5M
- Num trans 100K
- Dist Uniform
- Data size 4KB
- Cassandra v3.10

Roadmap

- Current design is running on a Virtex7 FPGA
- We have started porting the design to the Alveo card

Questions, Comments or Demo request:

- Prasanna Sukumar (Head of Engineering)
 - psukumar@reniac.com
- Thomas Jorgensen (VP Operations & Customer Success)
 - <u>thomas@reniac.com</u>

XILINX DEVELOPER FORUM