The Future of Machine Learning Acceleration

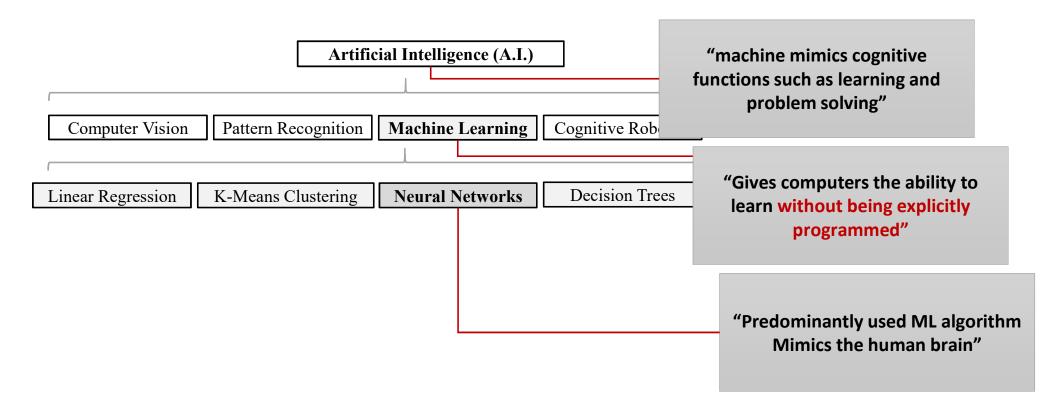
Jeff Fifield Xilinx Labs Nov 2018

Slides from Michaela Blott, Hot Chips 2018 Tutorial, "Overview of Deep Learning and Computer Architectures for Accelerating DNNs"

- Neural Networks
- > Computation & Memory Requirements
- > Algorithmic Optimization Techniques
- > Hardware Architectures

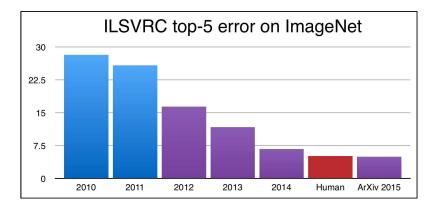
Neural Networks

A.I. – Machine Learning - Neural Networks



Convolutional Neural Networks (CNNs) Why are they so popular?

- > Requires little or no domain expertise
- > NNs are a "universal approximation function"
- > If you make it big enough and train it enough
 - >> Can outperform humans on specific tasks



- > Will increasingly replace other algorithms
 - unless for example simple rules can describe the problem
- Solve problems previously unsolved by computers
- > And solve completely unsolved problems

Increasing Range of Applications

Image Classification

Object Detection

Semantic Segmentation

Computer Vision CNNs

Speaker Diarization

Speech Recognition

Speech Recognition RNNs, LSTMs

Translation

Sentiment Analysis

Natural Language Processing Sequence to sequence

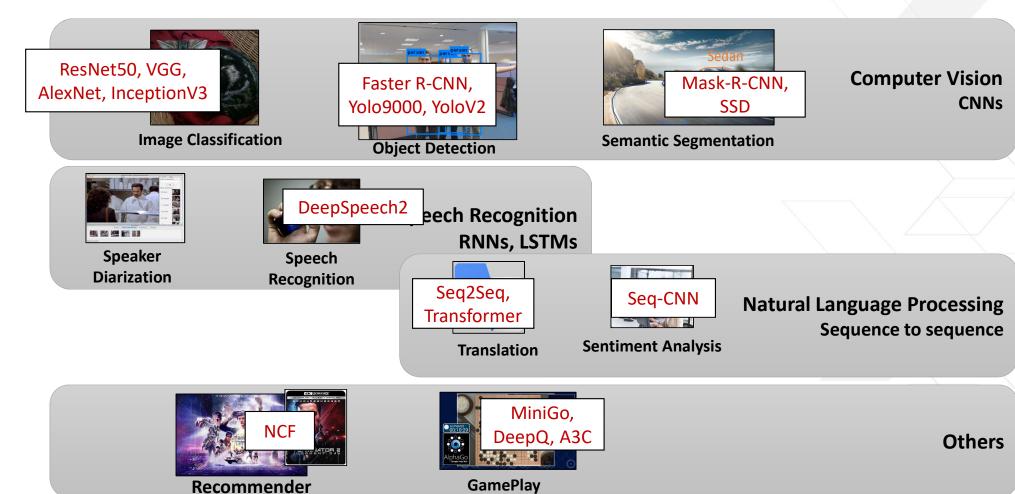
Recommender

GamePlay

Many more emerging...

Others

Popular Neural Networks



Convolutional Neural Networks (CNNs) from a computational point of view

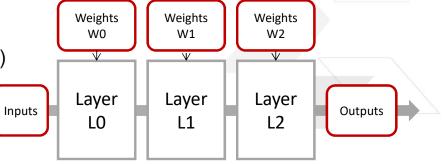
- > CNNs are usually feed forward* computational graphs constructed from one or more layers
 - >> Up to 1000s of layers

Synapse with weight wji

Neuron ni

- Each layer consists of neurons ni which are interconnected with synapses, associated with weights wij
- n0 = Act(w00*i0 + w10*i1)

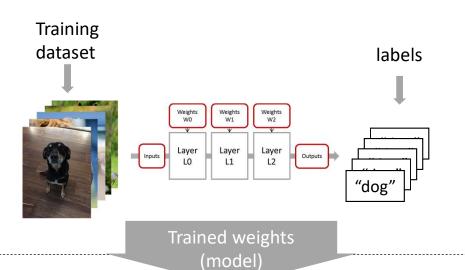
- > Each neuron computes:
 - >> Typically linear transform (dot-product of receptive field)
 - >> Followed by a non-linear "activation" function



>> 8

E XILINX.

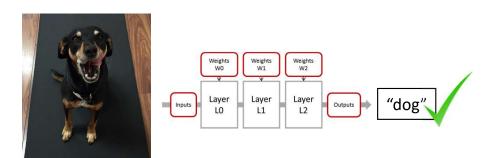
From Training to Inference



Training

Process for a machine to *learn* by optimizing models (weights) from labeled data.

Typically computed in the cloud



Inference

Using trained models to predict or estimate outcomes from new inputs.

Deployment at the edge

Example: ResNet50

Forward Pass (Inference)

(initialized)
Input Image
Neural Network
Neural Network
Weights
Weights
Cat?

For ResNet50:

70 Layers

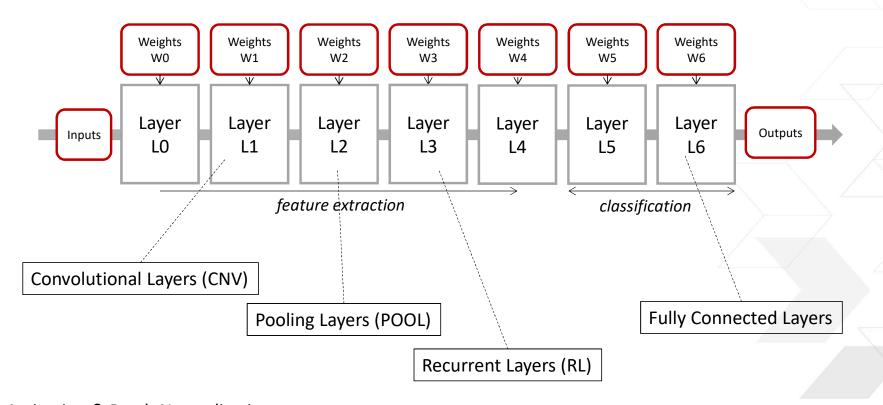
7.7 Billion operations

25.5 MBytes of weight storage*

10.1 MBytes for activations*

*Assuming int8

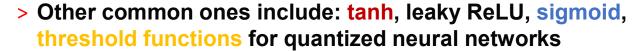
NNs in More Detail

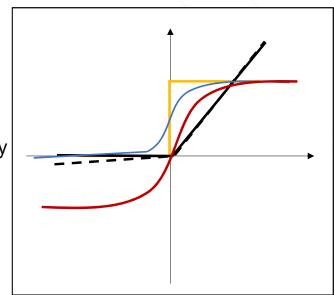


Activation & Batch Normalization

Activation Functions

- > Implements the concept of "Firing"
 - >> Non-linear so we can approximate more complex functions
- Most popular for CNN: rectified linear unit (ReLU)**
 - Popular as it propagates gradients better than bounded and easy to compute
 - >> However, recent work says as long as you have the proper initialization, it'll be fine even with bounded act. function*





> Implementation:

>> Support for special functions as well as some level of flexibility

*Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S.S. and Pennington "Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks." arXiv preprint arXiv:1806.05393 (2018).

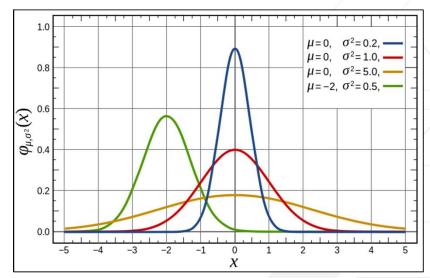
**Nair, V. and Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807-814).

Batch Normalization

- Normalizes the statistics of activation values across layers
- Significantly reduces the training time of networks, can improve accuracy and makes it less sensitive to initialization

> Compute:

- >> Lightweight at inference
- >> Heavy duty during training
 - Subtract mean, divide by standard deviation to achieve zero-centered distribution with unit variance

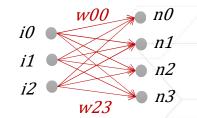


https://en.wikipedia.org/wiki/Normal_distribution

Fully Connected Layers

(aka inner product or dense layers)

- > Each input activation is connected to every output activation
 - >> Receptive field encompasses the full input



- Can be written as a matrix-vector product with an elementwise non-linearity applied afterwards.
- > Implementation Challenges
 - >> Connectivity
 - >> High weight memory requirement: #IN * #OUT * BITS
 - >> Low arithmetic intensity assuming weights off-chip 2 * #IN* #OUT / #IN * #OUT * BITS/8

		W00 W01 W02 W	03		
[<i>i0 i1 i2</i>]	X	W10 W11 W12 W	13	=	[n0'n1'n2'n3']
		W20 W21 W22 W	23		

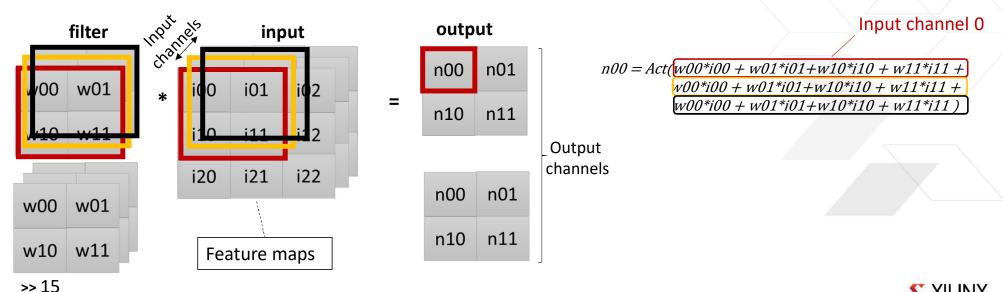
(n0 n1 n2 n3) = Act(n0'n1'n2'n3')

MODEL	CONV WEIGHTS (M)	FC WEIGHTS (M)
ResNet50	23.454912	2.048
AlexNet	2.332704	58.621952
VGG16	14.710464	123.633664

IN: number of input channelsOUT: number of output channelsBITS: bit precision in data types

Convolutional Layers Example 2D Convolution

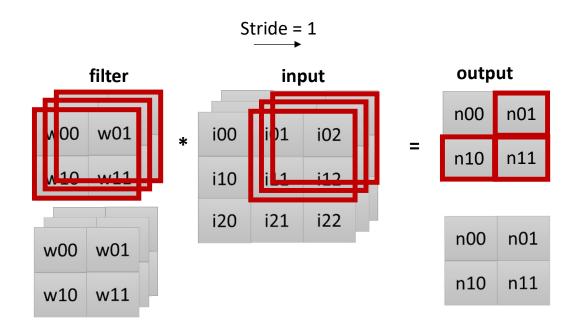
- > Convolutions capture some kind of locality, spatial or temporal, that we know exists in the domain
- > Receptive field of each neuron reduced
 - >> Applying convolution to all images in the previous layer
- > Weights represent the filters used for convolutions



E XILINX.

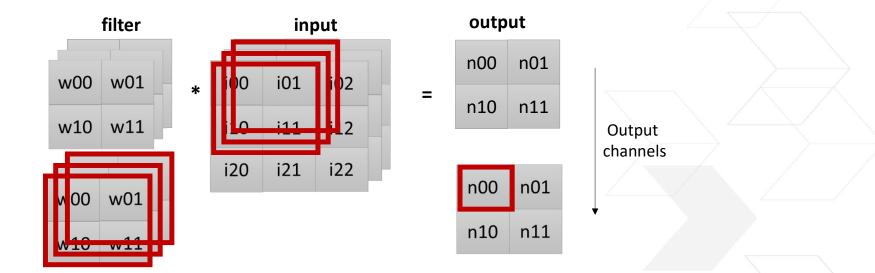
2D Convolutional Layers

- > Slide the window till one feature map is complete
 - >> With a given stride size



2D Convolutional Layers

> Compute next channel

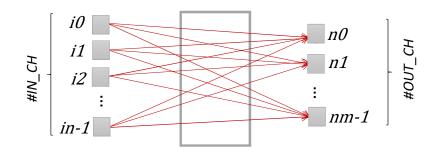


Convolutions

Challenges

> Channel connectivity issue

>> Every input channel information broadcasts to every output channel



100s to 1000 channels

> Huge amounts of compute

>> Dense convolutions account for the majority of the compute

MODEL	CONV [GOPS]	FC [GOPS]
ResNet50	7.712	0.004
AlexNet	1.332	0.044
VGG16	30.693	0.247

> Novel (Non-Dense) Convolutions

- >> Less spatial convolutions (1x1) (SqueezeNet's FireModules)
- >> Connectivity reduction between in and out channels (Shuffle, Shift layers)

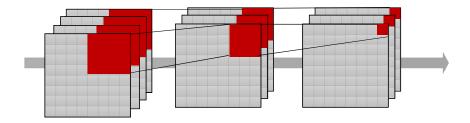
=> Optimizations

>> 18

Convolutions

Challenges

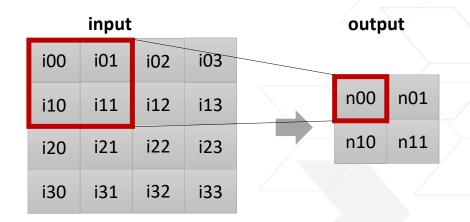
- > Parallelization of compute across layers reduces memory bandwidth required for buffering activations in between layers
- > Pyramid-shaped data dependency between activations across layers



Pooling Layer

- > Down-samplers of images
- > Reduces compute in subsequent layers
- > May use MAX or AVERAGE
- > Compute:
 - >> Low amount of compute
 - >> Potentially replaceable with larger strides in previous convolution

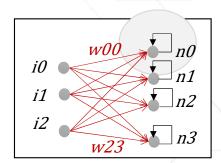
Max pool with 2x2 filters and stride of 2:

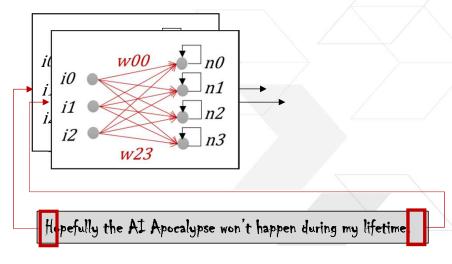


$$n00 = Max(i00, i01, i10, i11)$$

Recurrent Layer Types

- > Contain state for processing sequences
 - For example needed in speech or optical character recognition
 - >> "Apocal???"
- > Uni-directional or bi-directional
 - >> "I ???? You"
- More sophisticated types to address the vanishing gradients problem for learning more than 5-10 timesteps
 - GRU (gated recurrent unit)
 - >> LSTM (long short term memory)





Recurrent Layers

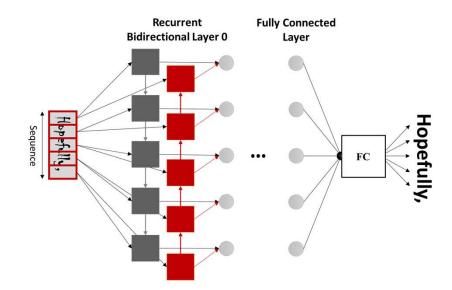
Challenges in Additional Data Dependencies

> Input sequence

>> Unlike batch, additional data dependencies between inputs of the same sequence and state

> Bi-directional NNs

>> Full sequence needs to be completed before the next layer

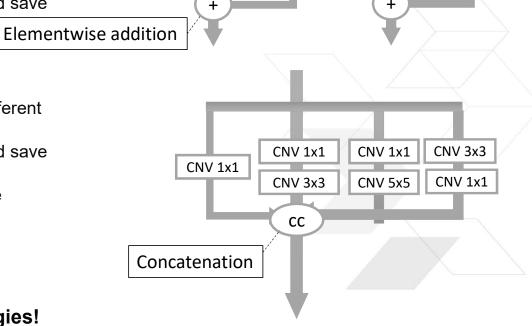


Meta-Layers

- > Residual layers (ResNets *)
 - >> Introduced to make larger networks more trainable
 - Better gradient propagation through skip connections during training
 - Plus 1x1 convolutions to reduce dimensionality and save compute
- > Inception layers (GoogleNet**)
 - Huge variation in spatial features => combining different size convolutions in one layer
 - Plus 1x1 convolutions to reduce dimensionality and save compute
 - >> Later on additional factorization to reduce compute
 - -3x3 = 1x3 and 3x1
- > Many more...

>> 23

> Implementation: support for non-linear topologies!



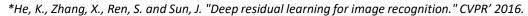
CNV 3x3, 64, Relu

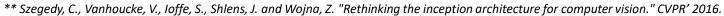
CNV 3x3, 64, Relu

CNV 1x1, 64, Relu

CNV 3x3, 64, Relu

CNV 1x1, 256, Relu



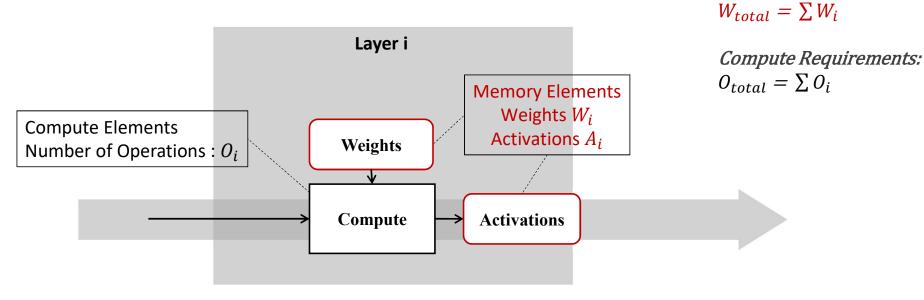


Computation & Memory Requirements

Compute and Memory Requirements

Architecture Neutral, Per Layer

>> 25



IN, IN_CH: number of inputs and input channels OUT, OUT_CH: number of outputs and output channels

F_DIM, FM_DIM: filter and feature map dimensions (assumed square)

BATCH: batch size

BITS: bit precision in data types GATES: number of gates in RNNs:

STATES: worst case

SEQ: sequence length

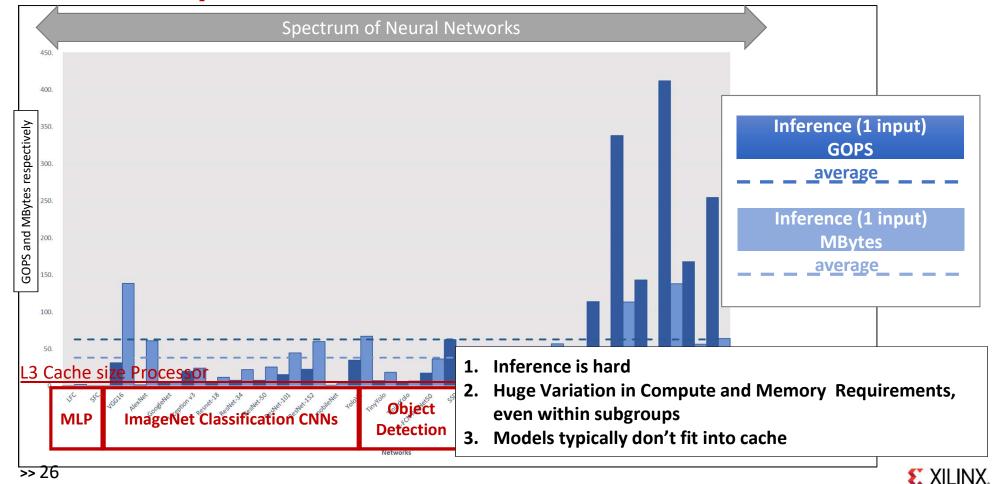
HID: hidden size (state + output from each state)
DIRS: 1 for unidirectional and 2 for bidirectional RNN

Memory Requirements:

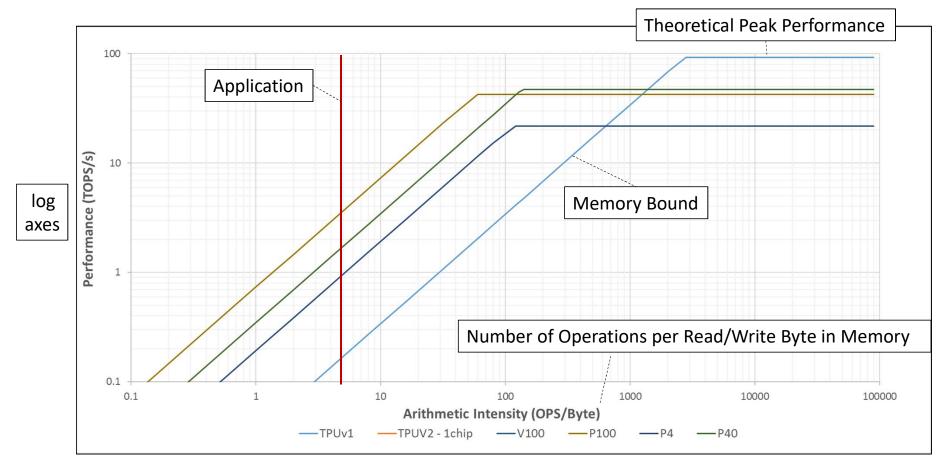
 $A_{total} = \sum A_i$

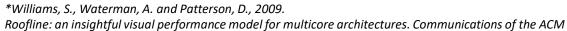
Inference Compute and Memory Across a Spectrum of Neural Networks

*architecture independent
**1 image forward
*** batch = 1
**** int8



Rooflines*



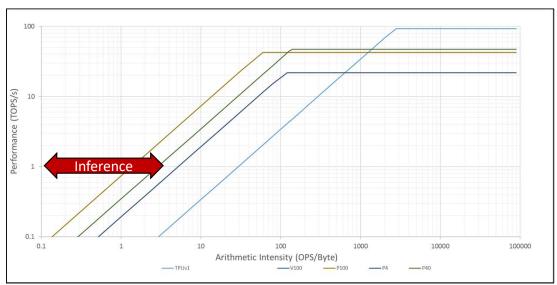


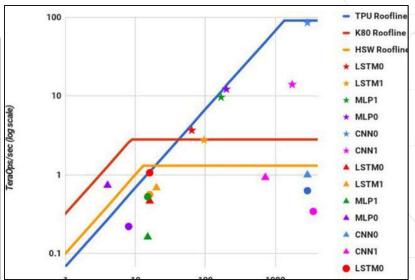
** with respect to weights assuming weights are off-chip

Arithmetic Intensity

Across a Spectrum of Neural Networks

- > Memory requirement for weights, activations are beyond typically available on-chip memory
- > This yields low arithmetic intensity
 - >> For example for inference, assuming weights off-chip and naïve implementation, majority of networks is below 6OPS:Byte

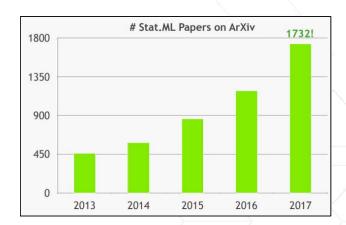




Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A. and Boyle, R., 2017, June. Indatacenter performance analysis of a tensor processing unit. ISCA'2017

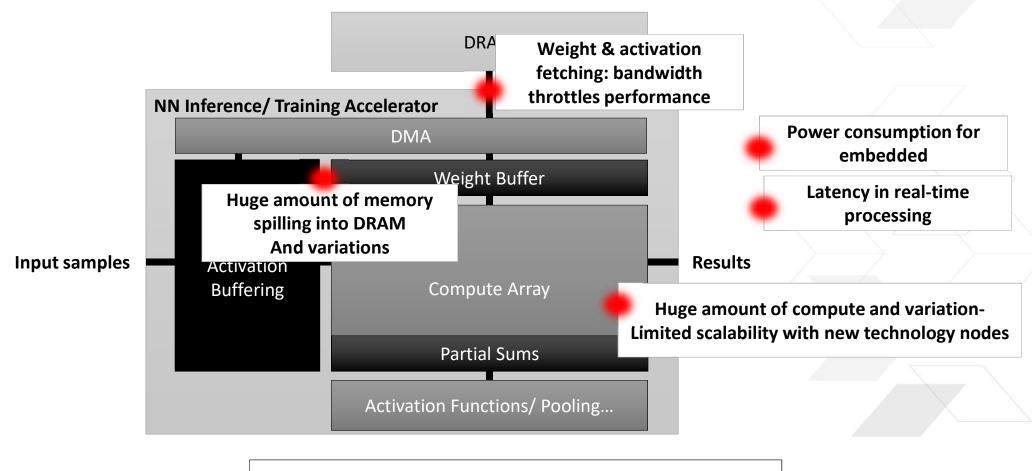
In Summary: CNNs are associated with...

- Significant amounts of memory and computation
- > Huge variation between topologies and within them
- > Fast changing algorithms
- > Special functions, non-linear topologies
- > However, incredibly parallel!
 - >> For convolutions: filter dimensions, feature map dimensions, input & output channels, batches, layers, and even precisions (discussed later)



Adopted from Ce Zhang, ETH Zurich, Systems Group Retreat

Architectural Challenges/ Pain Points



>> 30

Requires algorithmic & architectural innovation

Algorithmic Optimization Techniques

Optimization Techniques DRA Weight & activation fetching: bandwidth throttles performance NN Inference/ Training Accelerator Power consumption for embedded Loop transformations to minimize memory access* Weight Buffer Latency in real-time Huge amount of memory processing spilling into DRAM Input & Results Input samples Activation Buffering Huge amount of compute -**Pruning** Limited scalability with new technology nodes Partial Sums Activation Functions/Pooling. Compression Winograd, Strassen and FFT Novel layer types (squeeze, shuffle, shift) **Numerical Representations & Reducing Precision**

Example: Reducing Bit-Precision

- > Linear reduction in memory footprint
 - >> Reduces weight fetching memory bandwidth
 - >> NN model may even stay on-chip

Reducing precision sl	rinks inherent arithmetic cost	in both
ASICs and FPGAs		

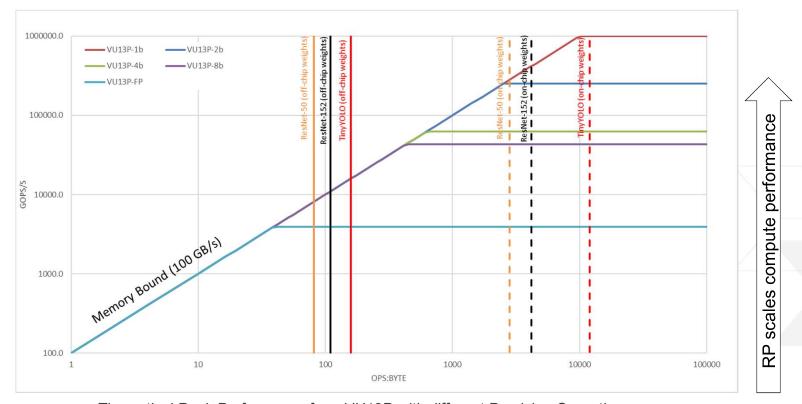
>> Instantiate 100x more compute within the same fabric and thereby scale performance

	1800	1.1*C				×
	1400	HLS Com1.6*C	pression			
sts	1200				XX	 + -
.UT Costs	1000			X		
5	800 -		8	*		
_	600	**	X	+		
	400	N N				
	200	++				
	O THE PARTY	1,000				

Modelsize [MB] (ResNet50)		
3.2		
25.5		
102.5		

C= size of accumulator * size of weight * size of activation (to appear in ACM TRETS SE on DL, FINN-R)

Reducing Precision provides Performance Scalability Example: ResNet50, ResNet152 and TinyYolo

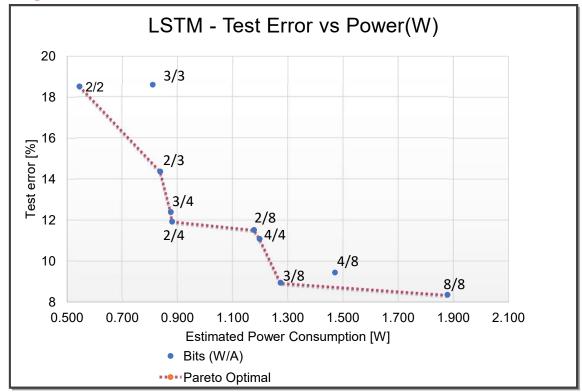


Theoretical Peak Performance for a VU13P with different Precision Operations Assumptions: Application can fill device to 90% (fully parallelizable) 710MHz

RP reduces model size=> to stay on-chip

Reducing Precision Inherently Saves Power

FPGA:



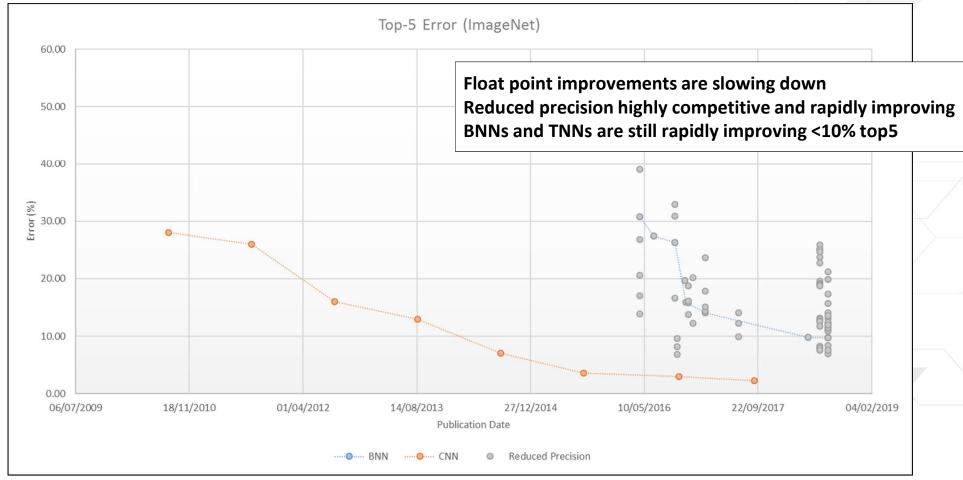
Target Device ZU7EV \bullet Ambient temperature: 25 °C \bullet 12.5% of toggle rate \bullet 0.5 of Static Probability \bullet Power reported for PL accelerated block only

ASIC:

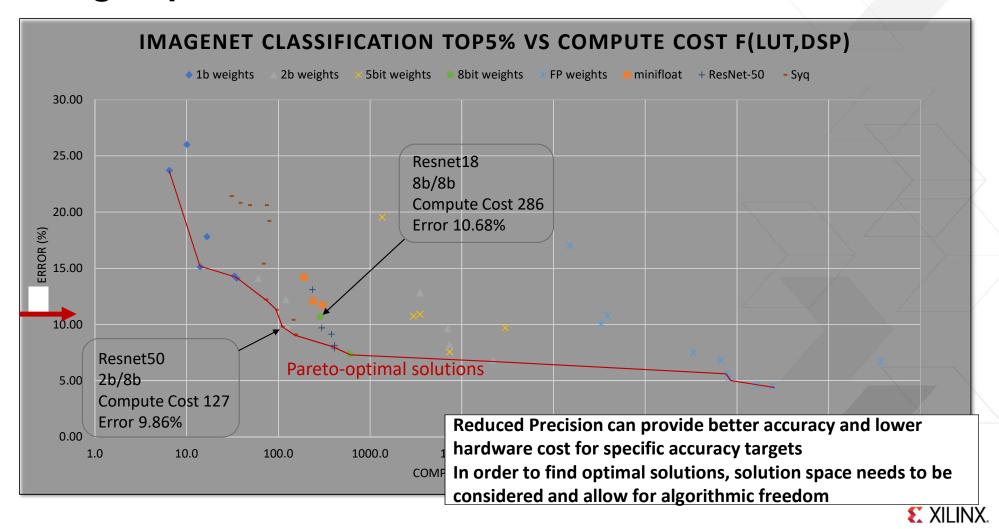
		Relative Energy Cost
Operation:	Energy (pJ)	
8b Add	0.03	
16b Add	0.05	
32b Add	0.1	
16b FP Add	0.4	
32b FP Add	0.9	
8b Mult	0.2	
32b Mult	3.1	
16b FP Mult	1.1	
32b FP Mult	3.7	
32b SRAM Read (8KB)	5	
32b DRAM Read	640	
		1 10 100 1000 1000

Source: Bill Dally (Stanford), Cadence Embedded Neural Network Summit, February 1, 2017

RPNNs: Closing the Accuracy Gap



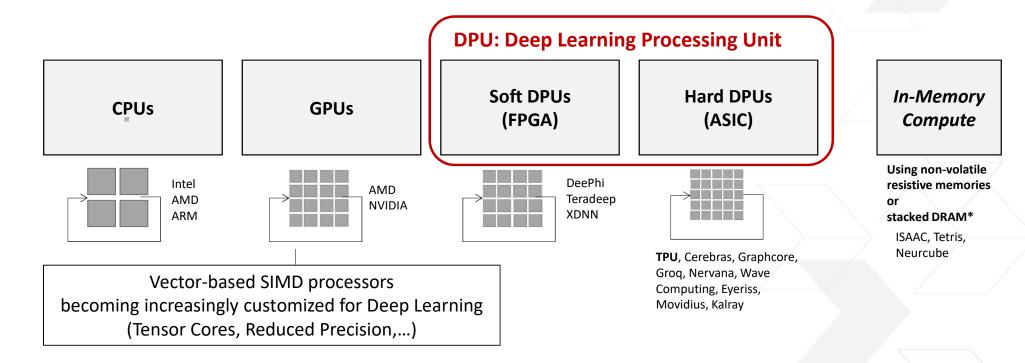
Design Space Trade-Offs



Hardware Architectures and their Specialization Towards CNN Workloads

Exciting Times in Computer Architecture Research!

Spectrum of New Architectures for Deep Learning

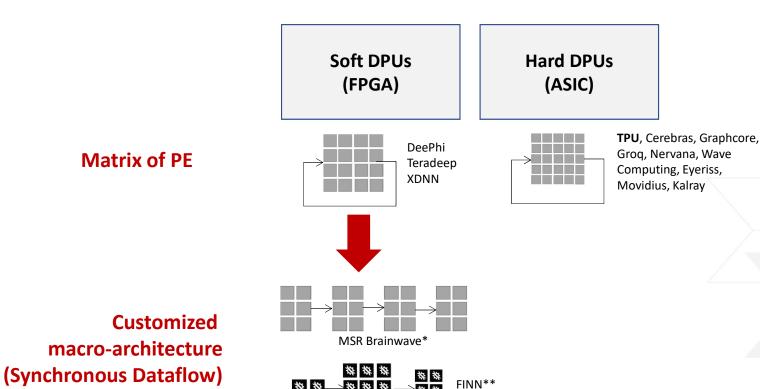


Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N. and Temam, O., 2014, December. Dadiannao: A machine-learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (pp. 609-622). IEEE Computer Society.

^{*}Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M., Williams, R.S. and Srikumar, V., 2016. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y. and Xie, Y., 2016, June. Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory. In ACM SIGARCH

Architectural Choices – Macro-Architecture



^{*}Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield, A., Massengill, T., Liu, M., Lo, D., Alkalay, S., Haselman, M. and Abeydeera, M.Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro, 38(2)

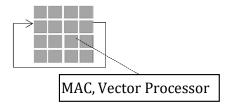
https://www.microsoft.com/en-us/research/uploads/prod/2018/06/ISCA18-Brainwave-CameraReady.pdf

**Ilmurogly, Yaman, Ilmurogly, Y. Fraser, N.L. Gambardella, G. Blott, M. Leong, P. Jahre, M. and Vissers, K. "FINN: A

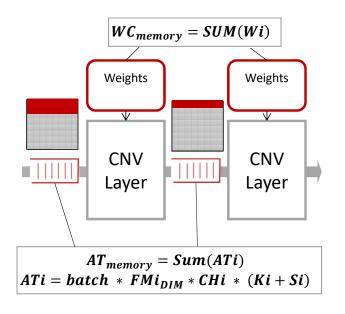
^{**}Umuroglu, Yaman, Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P., Jahre, M. and Vissers, K. "FINN: A framework for fast, scalable binarized neural network inference." ISFPGA'2017

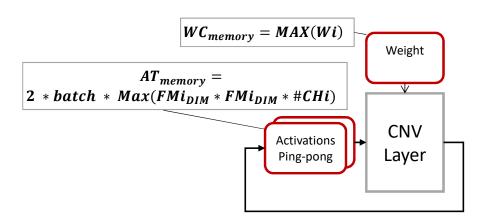
Synchronous Dataflow (SDF) vs Matrix of Processing Elements (MPE)

Spectrum of Options



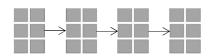
End points are pure layer-by-layer compute and feed-forward dataflow architecture



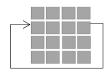


>> 41 Lin, X., Yin, S., Tu, F., Liu, L., Li, X. and Wei, S. LCP: a layer clusters paralleling mapping method for accelerating inception and residual networks on FPGA. DAC'2016 XILINX. Alwani, M., Chen, H., Ferdman, M. and Milder, P. Fused-layer CNN accelerators. MICRO 2016.

Synchronous Dataflow (SDF) vs Matrix of Processing Elements (MPE)



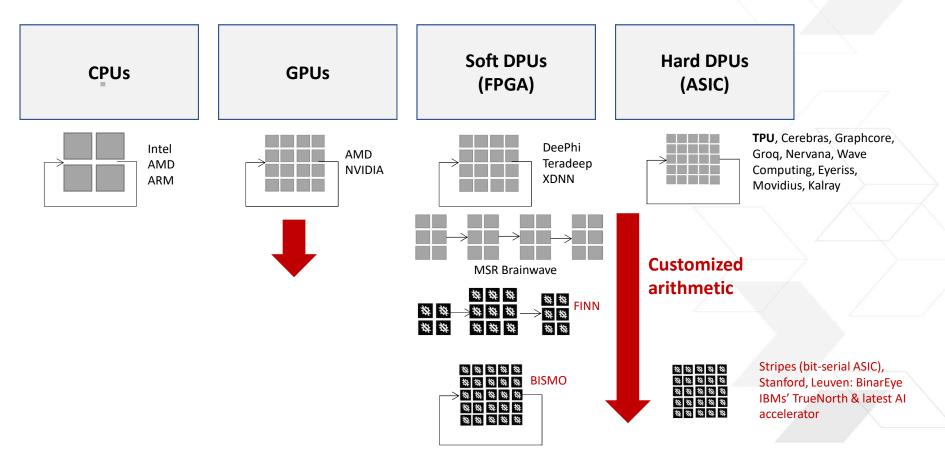
Degree of parallelization across layers



- · Requires less activation buffering
- Higher compute and memory efficiency due to custom-tailored hardware design
- · Less flexibility
- Less latency (reduced buffering)
- No control flow (static schedule)

- Requires less on-chip weight memory, but more activation buffers
- Efficiency of memory for weights and activations depends on how well balanced the topology is
- Flexible hardware, which can scale to arbitrary large networks
- Compute efficiency is a scheduling problem=> generating sophisticated scheduling algorithms

Architectural Choices – Micro-Architecture



Judd, P., Albericio, J., Hetherington, T., Aamodt, T.M. and Moshovos, A., 2016, October. Stripes: Bit-serial deep neural network computing. MICRO'2016 Moons, B., Bankman, D., Yang, L., Murmann, B. and Verhelst, M. BinarEye: An always-on energy-accuracy-scalable binary CNN processor with all memory on chip in 28nm CMOS, ICC'2018

>> 43 Lin, X., Yin, S., Tu, F., Liu, L., Li, X. and Wei, S. LCP: a layer clusters paralleling mapping method for accelerating inception and residual networks on FPGA.

DAC'2016

Micro-Architecture:

Customized Arithmetic for Specific Numerical Representations

- Customizing arithmetic compute allows to maximize performance at minimal accuracy loss
 - >> Flexpoint, Microsoft Floating Point formats, Binary & Ternary, Bfloat16

- > Which do we support?
 - >> Perhaps too risky to support numerous, and too risky to fix on one?
- > What's more, non-uniform arithmetic can yield more efficient hardware implementations for a fixed accuracy*
 - >> Run-time programmable precision: Bit-Serial

	DEC	INC	CONCAVE	CONVEX
Top-1 [%]	53.79	50.35	54.45	54.33
Top-5 [%]	77.59	74.89	76.43	78.20

Table 2. Accuracy comparison of our approach under different styles of layer-wise quantization.

Summary

Summary

- CNNs are increasingly being adopted for new workloads and key to the current industrial revolution and perhaps the next
- > Associated with significant challenges
- > Requires algorithmic and architectural innovation (co-designed)
- > Emerging: Huge spectrum of algorithms and increasingly diverse & heterogenous hardware architectures
- > Clear metrics for comparison needed
 - Hardware performance always tying back to application performance (accuracy) to allow for algorithmic optimizations
 - Ideally in form of pareto curves: Accuracy performance (TOPS/sec) response time (1 input) power consumption

Exciting Times for our Community:

Many New Architectures Evolving - Programmable and Hardened

