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Neural Networks E
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'A.I. — Machine Learning - Neural Networks

“machine mimics cognitive

Artificial Intelligence (A.L)
l

functions such as learning and
problem solving”

Computer Vision

Pattern Recognition

Machine Learning

Cognitive Rob

Linear Regression

K-Means Clustering

Neural Networks

— “Gives computers the ability to
Decision Trees

>>4

learn without being explicitly
programmed”

“Predominantly used ML algorithm

Mimics the human brain”

& XILINX.



Computer Vision
CNNs

‘aEEEE

Speech Recognition
RNNs, LSTMs

o S

Speaker
Diarization Recognition

Natural Language Processing
Sequence to sequence

Translation Sentiment Analysis

Many more emerging... Others

Recommender GamePlay

>> 3 7 XILINX.



' Popular Neural Networks

e T
Faster R-CNN,
Yolo9000, YoloV2

ResNet50, VGG,

. Computer Vision
AlexNet, InceptionV3

CNNs

Mask-R-CNN,

Image Classification Semantic Segmentation

Object Detection

-~ AR

_ A -
2]
= 8 ~ epSpeeChz pech Recognition
- l-‘ RNNs, LSTMs
peaker peec _
Diarization Recognition S % E N1
e eq, _ 3
4<>¢d Seq-CNN Natural Language Processing
Transformer S =G
am——— Sequence to sequence
Translation Sentiment AnalySiS

Others

Recommender GamePlay
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'Convolutional Neural Networks (CNNs)

from a computational point of view

wdd 10 Synapse with weight wyi

> CNNs are usually feed forward* computational 10 O~ nl
graphs constructed from one or more layers 1 &W 530 n2 Neuron ni
>> Up to 1000s of layers
> !Each layer consis_ts of neurons ni wh_ich are n0 = Act(100%0 + %1)
interconnected with synapses, associated with
weights wij
> Each neuron computes: [ e ] [ M ] [ M ]
>> Typically linear transform (dot-product of receptive field) v v v
>> Followed by a non-linear “activation” function
Inputs Layer Layer Layer outputs
LO L1 L2
>> 7 & XILINX.

* With exception of RNNs



' Convolutional Neural Networks (CNNs)
Why are they so popular?

> Requires little or no domain expertise

> NNs are a “universal approximation function”

> If you make it big enough and train it enough

>>8

>> Gan outperform humans on specific tasks

30

225

7.5

2010

ILSVRC top-5 error on ImageNet

2011 2012 2013 2014 Human  ArXiv 2015

—

> Will increasingly replace other
algorithms

>> unless for example simple rules can
describe the problem

> Solve problems previously
unsolved by computers

> And solve completely unsolved
problems

& XILINX.



'From Training to Inference

Training
dataset labels Training
Process for a machine to learn by
EESIER optimizing models (weights) from labeled

82 ¥ ¥
Layer Layer Layer d ata .
| S Outputs
Lo L1 L2
u d o g ”

Typically computed in the cloud

Inference
Using trained models to predict or
G ERED estimate outcomes from new inputs.

Layer Layer Layer “« ”
Lo L1 L2 oueus dog

Deployment at the edge

>>9 7 XILINX.



' Example: ResNet50
Forward Pass (Inference)

>> 10

Input Image

(initialized)
Neural Network

Neural Network

[ Weights ] [ Weights ] [Weights]

Cat?

For ResNet50:

70 Layers

7.7 Billion operations

25.5 MBytes of weight storage*
10.1 MBytes for activations*

*Assuming int8

& XILINX.



'NNs in More Detail

Weights Weights Weights Weights Weights Weights Weights
WO W1 W2 W3 w4 W5 W6

% % \% 2 v v 3
Layer Layer Layer Layer Layer Layer Layer
Inputs Outputs
LO L1 L2 L3 L4 L5 L6
' feature éxtraction classification .

Convolutional Layers (CNV)

Pooling Layers (POOL) Fully Connected Layers

Recurrent Layers (RL)

Activation & Batch Normalization

>>11 7 XILINX.



'Activation Functions

> Implements the concept of “Firing”
>> Non-linear so we can approximate more complex functions

> Most popular for CNN: rectified linear unit (ReLU)**
>> Popular as it propagates gradients better than bounded and easy

to compute

>> However, recent work says as long as you have the proper
initialization, it'll be fine even with bounded act. function*

v

> Other common ones include: tanh, leaky ReLU, sigmoid,
for quantized neural networks

> Implementation:
>> Support for special functions as well as some level of flexibility

*Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S.S. and Pennington "Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-

Layer Vanilla Convolutional Neural Networks." arXiv preprint arXiv:1806.05393 (2018).
**Nair, V. and Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international { Xl LINX

conference on machine learning (ICML-10) (pp. 807-814).

>> 12



' Batch Normalization

> Normalizes the statistics of activation values

across layers y —
B H=0, 0°z0.2 —| |
ek =
> Significantly reduces the training time of . / \ Heme T
networks, can improve accuracy and makes |Z | /\ / \ ]
it less sensitive to initialization S oaf
AR
> Compute: ool AN NS
>> Lightweight at inference [ e
>> Heavy duty during training https.//en.wikipedia.org/wiki/Normal_distribution
- Subtract mean, divide by standard deviation to
achieve zero-centered distribution with unit
variance
S>> 13 loffe, S. and Szegedy, C., 2015. Batch normalization: g X”_INX

Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.



' Fully Connected Layers

(aka inner product or dense layers)

w00 no

> Each input activation is connected to every output activation i0 i
>> Receptive field encompasses the full input i1 n2

2 n3

w23
> Can be written as a matrix-vector product with an element-

wise non-linearity applied afterwards.
W00 Wo1 woz2 wo3
[1‘01‘1 1‘2] x| Wiowiiwizwiz | = [n0'n1'n2'n3']

> Implementation Challenges w20 w21 wzz w23

> Connectivity

>> High weight memory requirement: #IN * #OUT * BITS
>> Low arithmetic intensity assuming weights off-chip

(n0ni1n2n3)=Act(n0’nl’n2’n3’)

MODEL | CONV WEIGHTS (M) | FC WEIGHTS (M)

2 * #IN* #OUT / #IN * #OUT * BITS/8 ResNet50 23.454912 2.048
AlexNet 2.332704 58.621952
VGG16 14.710464 123.633664
IN: number of input channels
>= 14 OUT: number of output channels

BITS: bit precision in data types & XILINX.



'Convolutional Layers
Example 2D Convolution

> Convolutions capture some kind of locality, spatial or temporal, that we know exists in
the domain

> Receptive field of each neuron reduced
>> Applying convolution to all images in the previous layer

> Weights represent the filters used for convolutions

X
filter \Q@fj input output Y Input channel 0
Q _
)
& n01 n00 = Act(w00%*00 + w01*01+w10%*10 + wi1*11 +)
00 woO01 « 1 2 v00*00 + w01*01+w10%*10 + wil*i11 +
= n10 nil (w0000 + wo1*i01+w10%10 + wi1%i11) )
- i 2
| Output
channels
w00 wo1 nd0 noO1
: ni10 nll
wl0 will Feature maps

>> 15 & XILINX.



'2D Convolutional Layers

> Slide the window till one feature map is complete
>> With a given stride size

Stride=1
Em—
filter input output
i oo [ror
00 w01 %« 100 _
| -
- i10
i20

w00  wO1 n00 n01
wl0 will ni0  nll

>> 16 & XILINX.



'2D Convolutional Layers

> Compute next channel
filter

w00 w01 %

wl0 will

>> 17

output

n00 nO1

nl10 nll

nl0 nll

Output
channels

& XILINX.



' Convolutions
Challenges

> Channel connectivity issue
>> Every input channel information broadcasts to every output channel

0
! no -
- | i1 P S
R, n 5 100s to 1000 channels
2 o
X : £33
-1
in-1 frm
MODEL CONV [GOPS] | FC[GOPS]
ResNet50 7.712 0.004
> Huge amounts of compute AlexNet 1.332 0.044
>> Dense convolutions account for the majority of the compute VGG16 30.693 0.247

> Novel (Non-Dense) Convolutions

>> Less spatial convolutions (1x1) (SqueezeNet’s FireModules) —> Optimizations
>> Connectivity reduction between in and out channels (Shuffle, Shift layers) P

>> 18 & XILINX.



VZD Convolutional Layers

1 input and 1 output channel

> Can be lowered to a matrix-matrix multiply using a Toeplitz Matrix

filter input output
Convolution w00 wo01 i02 n01
* -
wl0 will i12 nl0 nll
122 n00 = Act(w00%i00 + w01%i01+w10%10 + wi1%11)
______________ <=> e e B e P L L e T e e s
Toeplitz Matrix (“lowered image matrix”)
. ’ output
: filter i10 i1l
Matrix Vector n01 n10 nll
w00 w0l w10 will | x i02 | 11 | 12 =
N\ i11 | i20 | i21
O
W 12 21 22
Q
>> 24 Q® & XILINX.



' 2D Convolutional Layers
3 input and 2 output channels

filter input output
Convolution = buniean
W00 | wo1 n00 nO1
L nl0 nll
-------------- <=>
. & Toeplitz Matrix
Matrix Matrix
filters _ ik ¢he output
Input channels . & e
2 c| Enl e —
Output o . : \ ;
channel 0,1 | KM T Data duplication for taking advantage of linear algebra libraries such as
OpenBLAS, cuBLAS, cuDNN
>> 25 l ::- 2 ﬁ

&2 XILINX.



' Convolutions
Challenges

> Parallelization of compute across layers reduces memory bandwidth required for
buffering activations in between layers

> Pyramid-shaped data dependency between activations across layers

>> 21 Alwani, M., Chen, H., Ferdman, M. and Milder, P, 2016, October. Fused-layer CNN accelerators. Micro 2016 { X”_INX



' Pooling Layer

Max pool with 2x2 filters and stride of 2:
> Down-samplers of images

> Reduces compute in subsequent layers

> May use MAX or AVERAGE

i20 21 22 i23 nl0 nll

i30 i31 32 i33
> Compute:
>> Low amount of compute n00 = Max(i00, i01, i10, i11)

>> Potentially replaceable with larger strides in
previous convolution

>> 22 *Springenberg, J. T, Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for Simplicity: The all convolutional net. 8 X”_lNX



' Recurrent Layer Types

> Contain state for processing sequences . g’m
>> For example needed in speech or optical character i1 q’”
recognition - nz
> “Apocal??? 53 Y 1 n3
> Uni-directional or bi-directional —
> “1 2?7?77 You” 1
7 i0
| i1
> More sophisticated types to address the 1.2
vanishing gradients problem for learning more )
than 5-10 timesteps
>> GRU (gated recurrent unit) .
> LSTM (long short term memory) Hipefully the AL Apocalypse won't happen during my lifetime

>> 23 & XILINX.



' Recurrent Layers
Challenges in Additional Data Dependencies

> Input sequence
>> Unlike batch, additional data dependencies between inputs of the same sequence and state

> Bi-directional NNs
>> Full sequence needs to be completed before the next layer

Recurrent Fully Connected
Bidirectional Layer 0 Layer

L. \

s

. AN
- I
HjEn o
: & %'cs
3 l[.= FC — @
“E e
yd =
/ <

>> 24 & XILINX.



Meta-Layers

> Residual layers (ResNets *)
>> |ntroduced to make larger networks more trainable

CNV 1x1, 64, Relu

CNV 3x3, 64, Relu
CNV 3x3, 64, Relu

>> Better gradient propagation through skip connections during CNV 333, 64. Relu
training — CNV 1x1, 256, Relu
>> Plus 1x1 convolutions to reduce dimensionality and save + +
compute . .1
P Elementwise addition

> Inception layers (GoogleNet**)

>> Huge variation in spatial features => combining different

size convolutions in one layer

>> Plus 1x1 convolutions to reduce dimensionality and save CNV1x1 | | CNV1x1 || CNV 3x3

compute

>> Later on additional factorization to reduce compute

- 3x3 = 1x3 and 3x1

> Many more...

CNV 1x1
CNV 3x3 CNV 5x5 || CNV 1x1

- cC

Concatenation

> Implementation: support for non-linear topologies!

25 *He, K., Zhang, X., Ren, S. and Sun, J. "Deep residual learning for image recognition." CVPR’ 2016.
>= ** Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J. and Wojna, Z. "Rethinking the inception architecture for computer vision." CVPR’ 2016. 8 Xl LINX



Computation & Memory
Requirements

-~ XILINX.
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' Compute and Memory Requirements Memory Requirements:

Architecture Neutral, Per Layer Arorar = S A;
Weotar = ) Wi

Compute Requirements:
Ototar = % 0;

Compute Elements
Number of Operations

Weights

Compute

IN, IN_CH: number of inputs and input channels

oUT, OUT CH: number of outputs and output channels

F DIM, FM_DIM: filter and feature map dimensions (assumed square)
BATCH: batch size

BITS: bit precision in data types

GATES: number of gates in RNNs:

STATES: worst case

SEQ: sequence length

HID: hidden size (state + output from each state)

>s 27 DIRS: 1 for unidirectional and 2 for bidirectional RNN § XILINX.



'Inference Compute and Memory
Across a Spectrum of Neural Networks

GOPS and MBytes respectively

100.

50.

Spectrum of Neural Networks

*architecture independent
**1 image forward
*** patch=1

Inference (1 input)
GOPS

> >
(\Q é"

ImﬁgeNet CIassfca"floh CNNs

5" © & LS

oy B Object

Detection

oy Q}Q \f? \@-

1. Inference is hard

2. Huge Variation in Compute and Memory Requirements,

even within subgroups
3. Models typically don’t fit into cache

>> 28
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Rooflines*

axes

>> 29

Performance (TOPS/s)

100

Application

10

0.1 /

0.1 1 10

Theoretical Peak Performance

Memory Bound

Number of Operations per Read/Write Byte in Memory

100 /‘1 1000 10000 100000

Arithmetic Intensity (OPS/Byte)
—TPUv1 TPUV2 - 1chip —V100 —P100 —P4 —P40

*Williams, S., Waterman, A. and Patterson, D., 2009.

Roofline: an insightful visual performance model for multicore architectures. Communications of the ACM

& XILINX.



* batch=1

Arit h met i C I ntens ity :/*ei\g:t}; ;ersep;f:_zﬁi\geights assuming
Across a Spectrum of Neural Networks

> Memory requirement for weights, activations are beyond typically available on-chip memory

> This yields low arithmetic intensity

>> For example for inference, assuming weights off-chip and naive implementation, majority of networks is
below 60PS:Byte

100 = TPU Roofline
= K80 Roofline

100 HSW Roofling

* LSTMO
* LSTM1
* MLP1

* MLPO
* CNNO

* CNN1
A LSTMO
LSTM1

TeraOps/sec (log scale)

Performance (TOPS/s)

A MLP1
A MLPO
4 CNNO

4 CNN1
0.1

® LST™MO
0.1 1 10 100 1000 10000 100000

o Arithmetic '”te”S_'t‘(,,g?PS/ B‘/t_e)pm T Jouppi, N.P, Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates,

S., Bhatia, S., Boden, N., Borchers, A. and Boyle, R., 2017, June. In-

datacenter performance analysis of a tensor processing unit. ISCA’2017

>>30 & XILINX.



'In Summary: CNNs are associated with...

> Significant amounts of memory and
computation

> Huge variation between topologies and
within them

> Fast changing algorithms

> Special functions, non-linear topologies

> However, incredibly parallel!

>> For convolutions: filter dimensions, feature map
dimensions, input & output channels, batches,
layers, and even precisions (discussed later)

>> 31

1800

1350

900

450

0

2013

# Stat.ML Papers on ArXiv

2014 2015 2016

1732!

2017

Adopted from Ce Zhang, ETH Zurich, Systems Group Retreat

& XILINX.



'Architectural Challenges/ Pain Points

DRA Weight & activation

fetching: bandwidth

NN Inference/ Training Accelerator throttles performance

Power consumption for
— ‘ embedded
Neight Buffer |
Huge amount of memory ¢
spilling into DRAM

And variations
Input samples nCtivation Results

Buffering Compute Array

Latency in real-time
processing

Huge amount of compute and variation-

Limited scalability with new technology nodes
Partial Sums

Activation Functions/ Pooling...

Requires algorithmic & architectural innovation

>> 32 & XILINX.




Algorithmic Optimization Techniques E

-~ XILINX.
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Weight & activation
fetching: bandwidth

' Optimization Techniques

NN Inference/ Training Accelerator *

‘ Power consumption for

4 N\
e embedded
LOOp transformations to minimize memory access Huge amout of memory Neight Buffer A Latency in real-time
> / spilling into DRAM processing
Input & I
g < Tnput samples Activation Results
. Buffering ompd - 4 Huge amount of compute -
Pruni ng Limited scalability with new
L ) Partial Sums technology nodes
( ) M
Compression
\ v
'd N\
Winograd, Strassen and FFT
L J
4 N\
Novel layer types (squeeze, shuffle, shift)
\ J
e I
Numerical Representations & Reducing Precision
- /

*Chen, Y.H., Krishna, T., Emer, J.S. and Sze, V., 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep
34 convolutional neural networks. IEEE Journal of Solid-State Circuits, 52(1), pp.127-13
>>

& XILINX.



'Example: Reducing Bit-Precision

> Linear reduction in memory footprint Precision Mose'ls\;z‘iég’m]
>> Reduces weight fetching memory bandwidth (ResNet50)
>> NN model may even stay on-chip 1b 3.2
8b 25.5
> Reducing precision shrinks inherent arithmetic cost in both 32b 102.5

ASICs and FPGAs

>> |nstantiate 100x more compute within the same fabric and thereby
scale performance

2000

T T T T ]
1800 F T O;‘I"IL*gompresslon ///X =
1600 - His Compression // 7
1400  — 1.6*C
— %

1200
1000
800 -
600
400
200 |

LUT Costs

| C= size of accumulator * size of weight * size of activation
1000 1200\ (to appear in ACM TRETS SE on DL, FINN-R)

L 1 1 1
0 200 400 600 800
C - Complexity (Bit Products)

>>35 £ XILINX.




' Reducing Precision provides Performance Scalability
Example: ResNet50, ResNet152 and TinyYolo

1000000.0

= = ) ¥
——VUI3P-1b  ——VU13P-2b g| 2 £ £
g = g gl
VUI3P4b  ==—mVU13P-8b z| g ES =
o — Ql
2l = o 2
VUI3P-FP 5| £ £y =
=l 2 [5 c
gl 3 2 S
I = o o
3l o 2 2
100000.0 =l z i o o
| = z | 0
= g = . (&)
gl = &1 =1 C
i ] ©
I I £
1 | O
?-% 10000.0 ] ! ! b=
o : vl | | (D)
@ o
/ ! ! [}
! ' 5
\o ! ! o
o
o ! ! £
\,\’Q | |
1000.0 AN o Q
T~ I ! o
Q}
A I I n
P b
(2 ” | | -
N @
.- | | O
1000 | | (a
1 10 100 1000 10000 100000 x
OPS:BYTE

Theoretical Peak Performance for a VU13P with different Precision Operations
Assumptions: Application can fill device to 90% (fully parallelizable) 710MHz

RP reduces model size=> to stay on-chip >

>> 36 £ XILINX.



'Reducing Precision Inherently Saves Power

FPGA:
LSTM - Test Error vs Power(W)
20
3/3
®2/2 . /
18
— 16
S
5 ...2/3
5 14 -_“
@ ‘-‘3/4
F 12 T Trre e 2/8
2/4 *.4/4
10 4/8
(X [ ]
S 8/8
8 ------- [ ]
0.500 0.700 0.900 1.100 1.300 1.500 1.700 1.900 2.100
Estimated Power Consumption [W]
® Bits (W/A)
=«0=:Pareto Optimal

ASIC:
Relative Energy Cost

Operation: Energy (pJ) ]
8b Add 0.03 |
16b Add 0.05 |
32b Add 0.1

16b FP Add 0.4 |
32b FP Add 0.9 |
8b Mult 0.2
32b Mult 3.1

16b FP Mult 1.1
32b FP Mult 37 |
32b SRAM Read (8KB) 5

32b DRAM Read 640 |

—

10 100 1000 10000

Target Device ZU7EV o Ambient temperature: 25 °C o 12.5% of toggle rate e 0.5 of Static
Probability @ Power reported for PL accelerated block only

Source: Bill Dally (Stanford), Cadence Embedded Neural
Network Summit, February 1, 2017

37 Rybalkin, V., Pappalardo, A., Ghaffar, M.M., Gambardella, G., Wehn, N. and Blott, M. "FINN-L: Library Extensions and Design Trade-
>>

off Analysis for Variable Precision LSTM Networks on FPGAs."

& XILINX.



' RPNNSs: Closing the Accuracy Gap

Top-5 Error (ImageNet)
G0.00
Float point improvements are slowing down
50.00 Reduced precision highly competitive and rapidly improving
BNNs and TNNs are still rapidly improving <10% top5
40.00
:5; 30.00
20.00
10.00
0.c0
06/07/2009 18/11/2010 01/04/2012 14/08/2013 27/12/2014 10/05/2016 22/09/2017 04/02/2019
Publicatiun Dale
ENN CNN Reduced Precision
>> 38 Latest numbers: Dongqing Zhang *, Jiaolong Yang ¥, Dongqiangzi Ye *, and Gang Hua

“LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks”

& XILINX.




' Design Space Trade-Offs

30.00

25.00

5.0

0.00

IMAGENET CLASSIFICATION TOP5% VS COMPUTE COST F(LUT,DSP)

8bit weights FP weights minifloat + ResNet-50 = Syq

2b weights

¢ 1b weights Sbit weights

Resnetl8

8b/8b

Compute Cost 286
Error 10.68%

;Ejgstso Pareto-optimal solutions \

Compute Cost 127

Error 9.86% Reduced Precision can provide better accuracy and lower
10 100 100.0 1000.0 1 hardware cost for specific accuracy targets

comi In order to find optimal solutions, solution space needs to be

considered and allow for algorithmic freedom
& XILINX.



Hardware Architectures and their
Specialization Towards CNN Workload

-~ XILINX.
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'Spectrum of New Architectures for Deep Learning
™

/

DPU: Deep Learning Processing Unit

Soft DPUs Hard DPUs In-Memory
CPUs GPUs
‘ (FPGA) (ASIC) Compute
EEEE \ T 11 / Using non-volatile
Intel T AMD BN DeePhi resistive memories
AMD Teradeep or
O EE | NVIDIA EEEE
ARM EEEE EEEE XDNN stacked DRAM*
ISAAC, Tetris,
TPU, Cerebras, Graphcore, Neurcube
Vector-based SIMD processors o o
becoming increasingly customized for Deep Learning Movidius, Kalray
(Tensor Cores, Reduced Precision,...)

*Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M., Williams, R.S. and Srikumar, V., 2016. ISAAC: A convolutional neural
network accelerator with in-situ analog arithmeticin crossbars. ACM SIGARCH
Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y. and Xie, Y., 2016, June. Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. In ACM SIGARCH
- 41 Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N. and Temam, O., 2014, December. Dadiannao: A machine-learning { Xl LINX
supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (pp. 609-622). IEEE Computer Society. - »



'Architectural Choices — Macro-Architecture

Soft DPUs
(FPGA)

Hard DPUs
(ASIC)

EEEE DeePhi

Matrix of PE [/ - Teradeep

EEEE |,

EE BEE EE BN
. | | g | mmg [ BN |
Customized HE EE EE BN

MSR Brainwave*

macro-architecture

(Synchronous Dataflow)

>> 42

BE-BEE —-gp FIN

B8 BE0 BO

*Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield, A., Massengill, T.,, Liu, M., Lo, D., Alkalay, S., Haselman, M.

TPU, Cerebras, Graphcore,
Groq, Nervana, Wave
Computing, Eyeriss,
Movidius, Kalray

and Abeydeera, M.Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro, 38(2)
https://www.microsoft.com/en-us/research/uploads/prod/2018/06/ISCA18-Brainwave-CameraReady.pdf

**Umuroglu, Yaman, Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P, Jahre, M. and Vissers, K. “FINN: A
framework for fast, scalable binarized neural network inference.” ISFPGA’2017

& XILINX.



r‘Synchronous Dataflow (SDF) vs

Matrix of Processing Elements (MPE)

S . -
T Spectrum of Options %%%% ‘‘‘‘‘ 5

>> End points are pure layer-by-layer compute and feed-forward dataflow architecture

memory - SUM(W")

Welghts Welghts Wcmemory = MAX(Wi) —
E

ATmemory =

Activations
Ping-pong

W W ||H' CNV

Layer Layer

CNV
Layer

AT emory = Sum(ATi)
ATi = batch * FMip;y *» CHi * (Ki + Si)

s> 43 Lin, X, Yin, S., Tu, F, Liu, L., Li, X. and Wei, S. LCP: a layer clusters paralleling mapping method for accelerating inception and residual networks on FPGA. DAC ’2‘1;6 X”_INX
Alwani, M., Chen, H., Ferdman, M. and Milder, P. Fused-layer CNN accelerators. MICRO 2016. - g



'Synchronous Dataflow (SDF) vs
Matrix of Processing Elements (MPE)

HE EN BN =W Degree of parallelization EE%D
| g | e | ey | | EEEE
BEE BE BE BB acCross layers T
* Requires less activation buffering * Requires less on-chip weight memory, but more

activation buffers

* Higher compute and memory efficiency due to
custom-tailored hardware design * Efficiency of memory for weights and activations

depends on how well balanced the topology is

* Less flexibility

* Flexible hardware, which can scale to arbitrary large

* Less latency (reduced buffering) networks

* No control flow (static schedule) * Compute efficiency is a scheduling problem
=> generating sophisticated scheduling algorithms
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'Architectural Choices — Micro-Architecture
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' Micro-Architecture:
Customized Arithmetic for Specific Numerical Representations

> Customizing arithmetic compute allows to maximize

erformance at minimal accuracy loss
; v

>> Flexpoint, Microsoft Floating Point formats, Binary & Ternary,

Bfloat16

> Which do we support?
>> Perhaps too risky to support numerous, and too risky to fix on one?

> What’s more, non-uniform arithmetic can yield more efficient
. . . * DEC INC CONCAVE CONVEX
hardware implementations for a fixed accuracy
. o . . Top-1[%] 53.79 50.35 54.45 54.33
>> Run-time programmable precision: Bit-Serial Top-5[%] 77.59 7489 7643 78.20

Table 2. Accuracy comparison of our approach under different
styles of layer-wise quantization.
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' Summary

> CNNs are increasingly being adopted for new workloads and key to the current
industrial revolution and perhaps the next

> Associated with significant challenges
> Requires algorithmic and architectural innovation (co-designed)

> Emerging: Huge spectrum of algorithms and increasingly diverse & heterogenous
hardware architectures

> Clear metrics for comparison needed

>> Hardware performance always tying back to application performance (accuracy) to allow for
algorithmic optimizations

>> |deally in form of pareto curves: Accuracy - performance (TOPS/sec) - response time (1 input) -
power consumption
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' Exciting Times for our Community:
Many New Architectures Evolving - Programmable and Hardened

Application:

Dataset:

Algorithm:

Hardware:

Implementation:
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[ranl ¥ * Finding optimal solutions within a multi-dimensional design space

Impl3

combinations trained network topologies on different datasets implemented in

different ways on different hardware architectures
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