
Quenton Hall
Avnet Field Applications Engineer / ML Specialist

Detroit | November 2018

Slide credit: Michaela Blott, Hot Chips 2018 Tutorial, “Overview of

Deep Learning and Computer Architectures for Accelerating DNNs”

The Future of Machine Learning
Acceleration

>> 1

˃ Neural Networks

˃ Computation & Memory Requirements

˃ Algorithmic Optimization Techniques

˃ Hardware Architectures

>> 2

Neural Networks

>> 3

A.I. – Machine Learning - Neural Networks

Artificial Intelligence (A.I.)

Computer Vision Pattern Recognition Machine Learning Cognitive Robotics . . .

Linear Regression K-Means Clustering Decision TreesNeural Networks . . .

“machine mimics cognitive

functions such as learning and

problem solving”

“Predominantly used ML algorithm

Mimics the human brain”

“Gives computers the ability to

learn without being explicitly

programmed”

>> 4

Increasing Range of Applications

>> 5

Computer Vision
CNNs

Object Detection Semantic Segmentation Image Classification

Sedan

Road

Sedan

Road

Speech Recognition

RNNs, LSTMs
Speech

Recognition

Speaker

Diarization

Others

Natural Language Processing
Sequence to sequence

Sentiment AnalysisTranslation

Recommender
>> 5

GamePlay

Many more emerging…

Popular Neural Networks

>> 6

Computer Vision
CNNs

Object Detection Semantic Segmentation Image Classification

Sedan

Road

Sedan

Road

Speech Recognition

RNNs, LSTMs
Speech

Recognition

Speaker

Diarization

Others

Natural Language Processing
Sequence to sequence

Sentiment AnalysisTranslation

Recommender
>> 6

GamePlay

ResNet50, VGG,

AlexNet, InceptionV3
Faster R-CNN,

Yolo9000, YoloV2

Mask-R-CNN,

SSD

DeepSpeech2

Seq2Seq,

Transformer
Seq-CNN

NCF
MiniGo,

DeepQ, A3C

Adopted from MLPerf, Fathom, TDP

Convolutional Neural Networks (CNNs)
from a computational point of view

˃ CNNs are usually feed forward* computational
graphs constructed from one or more layers

Up to 1000s of layers

˃ Each layer consists of neurons nininini which are
interconnected with synapses, associated with
weights wijwijwijwij

˃ Each neuron computes:

Typically linear transform (dot-product of receptive field)

Followed by a non-linear “activation” function
Layer

L0

Layer

L1

Layer

L2

Weights

W2

Weights

W1

Weights

W0

Inputs Outputs

i0

i1

w00

w12

n0

n1

n2

n0 = Act(w00*i0 + w10*i1)

Synapse with weight wji

Neuron ni

>> 7
* With exception of RNNs

Convolutional Neural Networks (CNNs)
Why are they so popular?

˃ Requires little or no domain expertise

˃ NNs are a “universal approximation function”

˃ If you make it big enough and train it enough

Can outperform humans on specific tasks

˃ Will increasingly replace other
algorithms

unless for example simple rules can
describe the problem

˃ Solve problems previously
unsolved by computers

˃ And solve completely unsolved
problems

>> 8

Training
Process for a machine to learn by
optimizing models (weights) from labeled

data.

Typically computed in the cloud

Inference
Using trained models to predict or
estimate outcomes from new inputs.

Deployment at the edge

From Training to Inference

“dog”
“dog”

“dog”
“dog”

“dog”

Training

dataset labels

“dog”

Trained weights

(model)

>> 9

Cat?

Input Image

Example: ResNet50
Forward Pass (Inference)

(initialized)

Neural Network Neural Network

For ResNet50:

70 Layers

7.7 Billion operations

25.5 MBytes of weight storage*

10.1 MBytes for activations*

*Assuming int8

WeightsWeightsWeights

>> 10

NNs in More Detail

Layer

L0

Layer

L1

Layer

L2

Weights

W2

Weights

W1

Weights

W0

Inputs Outputs

Weights

W5

Weights

W4

Weights

W3

Weights

W6

Layer

L3

Layer

L4

Layer

L5

Layer

L6

feature extraction classification

>> 11

Fully Connected Layers

Convolutional Layers (CNV)

Pooling Layers (POOL)

Recurrent Layers (RL)

Activation & Batch Normalization

Activation Functions

˃ Implements the concept of “Firing”

Non-linear so we can approximate more complex functions

˃ Most popular for CNN: rectified linear unit (ReLU)**

Popular as it propagates gradients better than bounded and easy
to compute

However, recent work says as long as you have the proper
initialization, it'll be fine even with bounded act. function*

˃ Other common ones include: tanh, leaky ReLU, sigmoid,
threshold functions for quantized neural networks

˃ Implementation:

Support for special functions as well as some level of flexibility

>> 12

*Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S.S. and Pennington "Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-

Layer Vanilla Convolutional Neural Networks." arXiv preprint arXiv:1806.05393 (2018).

**Nair, V. and Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international

conference on machine learning (ICML-10) (pp. 807-814).

Batch Normalization

˃ Normalizes the statistics of activation values
across layers

˃ Significantly reduces the training time of
networks, can improve accuracy and makes
it less sensitive to initialization

˃ Compute:

Lightweight at inference

Heavy duty during training

‒ Subtract mean, divide by standard deviation to
achieve zero-centered distribution with unit
variance

>> 13

https://en.wikipedia.org/wiki/Normal_distribution

Ioffe, S. and Szegedy, C., 2015. Batch normalization:

Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Fully Connected Layers
(aka inner product or dense layers)

˃ Each input activation is connected to every output activation

Receptive field encompasses the full input

˃ Can be written as a matrix-vector product with an element-
wise non-linearity applied afterwards.

˃ Implementation Challenges

Connectivity

High weight memory requirement: #IN * #OUT * BITS

Low arithmetic intensity assuming weights off-chip

2 * #IN* #OUT / #IN * #OUT * BITS/8

i0

i1

i2

w00

w23

n0

n1

n2

n3

W00 W01 W02 W03
W10 W11 W12 W13
W20 W21 W22 W23

i0 i1 i2 x = n0’ n1’ n2’ n3’

(n0 n1 n2 n3) = Act(n0’ n1’ n2’ n3’)

>> 14

IN: number of input channels
OUT: number of output channels
BITS: bit precision in data types

MODEL CONV WEIGHTS (M) FC WEIGHTS (M)

ResNet50 23.454912 2.048

AlexNet 2.332704 58.621952

VGG16 14.710464 123.633664

Convolutional Layers
Example 2D Convolution

˃ Convolutions capture some kind of locality, spatial or temporal, that we know exists in
the domain

˃ Receptive field of each neuron reduced

Applying convolution to all images in the previous layer

˃ Weights represent the filters used for convolutions

w00 w01

w10 w11

filter

i00 i01

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11

w00 w01

w10 w11

n00 = Act(w00*i00 + w01*i01+w10*i10 + w11*i11 +
w00*i00 + w01*i01+w10*i10 + w11*i11 +
w00*i00 + w01*i01+w10*i10 + w11*i11)

Input channel 0

>> 15

Output

channels

Feature maps

i02

2D Convolutional Layers

˃ Slide the window till one feature map is complete

With a given stride size

w00 w01

w10 w11

filter

i00

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11

w00 w01

w10 w11

Stride = 1

>> 16

2D Convolutional Layers

˃ Compute next channel

w00 w01

w10 w11

filter

i00 i01

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11

w00 w01

w10 w11

>> 17

Output

channels

Convolutions
Challenges

˃ Channel connectivity issue

Every input channel information broadcasts to every output channel

˃ Huge amounts of compute

Dense convolutions account for the majority of the compute

˃ Novel (Non-Dense) Convolutions

Less spatial convolutions (1x1) (SqueezeNet’s FireModules)

Connectivity reduction between in and out channels (Shuffle, Shift layers)

i0

i1

i2

n0

n1

nm-1

…

in-1

#
IN

_
C

H

… #
O

U
T

_
C

H

100s to 1000 channels

=> Optimizations

>> 18

MODEL CONV [GOPS] FC [GOPS]

ResNet50 7.712 0.004

AlexNet 1.332 0.044

VGG16 30.693 0.247

Convolutions
Challenges

˃ Parallelization of compute across layers reduces memory bandwidth required for
buffering activations in between layers

˃ Pyramid-shaped data dependency between activations across layers

>> 21 Alwani, M., Chen, H., Ferdman, M. and Milder, P., 2016, October. Fused-layer CNN accelerators. Micro 2016

Pooling Layer

˃ Down-samplers of images

˃ Reduces compute in subsequent layers

˃ May use MAX or AVERAGE

˃ Compute:

Low amount of compute

Potentially replaceable with larger strides in
previous convolution

Max pool with 2x2 filters and stride of 2:

i00 i01

i10 i11

input

i02

i12

i20 i21 i22

i03

i13

i23

i30 i31 i32 i33

output

n00 n01

n10 n11

n00 = Max(i00, i01, i10, i11)

>> 22 *Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for Simplicity: The all convolutional net.

Recurrent Layer Types

˃ Contain state for processing sequences

For example needed in speech or optical character
recognition

“Apocal???”

˃ Uni-directional or bi-directional

“I ???? You”

˃ More sophisticated types to address the
vanishing gradients problem for learning more
than 5-10 timesteps

GRU (gated recurrent unit)

LSTM (long short term memory)

>> 23

i0

i1

i2

w00

w23

n0

n1

n2

n3

i0

i1

i2

w00

w23

n0

n1

n2

n3

Hopefully the AI Apocalypse won’t happen during my lifetime.Hopefully the AI Apocalypse won’t happen during my lifetime.Hopefully the AI Apocalypse won’t happen during my lifetime.Hopefully the AI Apocalypse won’t happen during my lifetime.

Recurrent Layers
Challenges in Additional Data Dependencies

˃ Input sequence

Unlike batch, additional data dependencies between inputs of the same sequence and state

˃ Bi-directional NNs

Full sequence needs to be completed before the next layer

>> 24

Meta-Layers

˃ Residual layers (ResNets *)

Introduced to make larger networks more trainable

Better gradient propagation through skip connections during
training

Plus 1x1 convolutions to reduce dimensionality and save
compute

˃ Inception layers (GoogleNet**)

Huge variation in spatial features => combining different
size convolutions in one layer

Plus 1x1 convolutions to reduce dimensionality and save
compute

Later on additional factorization to reduce compute

‒ 3x3 = 1x3 and 3x1

˃ Many more…

˃ Implementation: support for non-linear topologies!

>> 25
*He, K., Zhang, X., Ren, S. and Sun, J. "Deep residual learning for image recognition." CVPR’ 2016.

** Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. "Rethinking the inception architecture for computer vision." CVPR’ 2016.

+

CNV 3x3, 64, Relu

CNV 3x3, 64, Relu

+

CNV 3x3, 64, Relu

CNV 1x1, 256, Relu

CNV 1x1, 64, Relu

CNV 3x3

CNV 1x1

CNV 5x5

CNV 1x1

CNV 1x1

CNV 3x3
CNV 1x1

cc

Elementwise addition

Concatenation

Computation & Memory
Requirements

>> 26

Weights

Compute Activations

Compute and Memory Requirements
Architecture Neutral, Per Layer

Memory Requirements:Memory Requirements:Memory Requirements:Memory Requirements:
012134 = ∑ 06
712134 = ∑ 76

Compute Requirements:Compute Requirements:Compute Requirements:Compute Requirements:
912134 = ∑ 96

>> 27

Compute Elements

Number of Operations : 96

Layer i

Memory Elements

Weights 76

Activations 06

IN, IN_CH: number of inputs and input channels
OUT, OUT_CH: number of outputs and output channels
F_DIM, FM_DIM: filter and feature map dimensions (assumed square)
BATCH: batch size
BITS: bit precision in data types
GATES: number of gates in RNNs:
STATES: worst case
SEQ: sequence length
HID: hidden size (state + output from each state)
DIRS: 1 for unidirectional and 2 for bidirectional RNN

Inference Compute and Memory
Across a Spectrum of Neural Networks

Inference (1 input)

GOPS

Inference (1 input)

GOPS

average

Inference (1 input)

MBytes

Inference (1 input)

MBytes

average

Spectrum of Neural Networks

MLP ImageNet Classification CNNs
Object

Detection

Semantic

Segmentation
OCR

Speech

Recognition

*architecture independent

**1 image forward

*** batch = 1

**** int8

G
O

P
S

 a
n

d
 M

B
y

te
s

re
sp

e
ct

iv
e

ly

L3 Cache size Processor 1. Inference is hard

2. Huge Variation in Compute and Memory Requirements,

even within subgroups

3. Models typically don’t fit into cache

>> 28

Rooflines*

*Williams, S., Waterman, A. and Patterson, D., 2009.

Roofline: an insightful visual performance model for multicore architectures. Communications of the ACM>> 29

Theoretical Peak Performance

Memory Bound

Number of Operations per Read/Write Byte in Memory

log

axes

Application

Arithmetic Intensity
Across a Spectrum of Neural Networks

˃ Memory requirement for weights, activations are beyond typically available on-chip memory

˃ This yields low arithmetic intensity

For example for inference, assuming weights off-chip and naïve implementation, majority of networks is
below 6OPS:Byte

>> 30

* batch = 1

** with respect to weights assuming

weights are off-chip

Inference

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates,

S., Bhatia, S., Boden, N., Borchers, A. and Boyle, R., 2017, June. In-

datacenter performance analysis of a tensor processing unit. ISCA’2017

In Summary: CNNs are associated with…

˃ Significant amounts of memory and
computation

˃ Huge variation between topologies and
within them

˃ Fast changing algorithms

˃ Special functions, non-linear topologies

˃ However, incredibly parallel!
For convolutions: filter dimensions, feature map
dimensions, input & output channels, batches,
layers, and even precisions (discussed later)

>> 31

Adopted from Ce Zhang, ETH Zurich, Systems Group Retreat

Architectural Challenges/ Pain Points

>> 32

NN Inference/ Training Accelerator

Input samples

DRAM

Results

Activation Functions/ Pooling…

Weight Buffer

DMA

Input &

Activation

Buffering Compute Array

Huge amount of memory

spilling into DRAM

And variations

Weight & activation

fetching: bandwidth

throttles performance

Power consumption for

embedded

Latency in real-time

processing

Partial Sums

Huge amount of compute and variation-

Limited scalability with new technology nodes

Requires algorithmic & architectural innovation

Algorithmic Optimization Techniques

>> 33

Optimization Techniques

>> 34

Loop transformations to minimize memory access*

Pruning

Compression

Winograd, Strassen and FFT

Novel layer types (squeeze, shuffle, shift)

Numerical Representations & Reducing Precision

*Chen, Y.H., Krishna, T., Emer, J.S. and Sze, V., 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep
convolutional neural networks. IEEE Journal of Solid-State Circuits, 52(1), pp.127-13

Example: Reducing Bit-Precision

˃ Linear reduction in memory footprint

Reduces weight fetching memory bandwidth

NN model may even stay on-chip

˃ Reducing precision shrinks inherent arithmetic cost in both
ASICs and FPGAs

Instantiate 100x more compute within the same fabric and thereby
scale performance

Precision Modelsize [MB]

(ResNet50)

1b 3.2

8b 25.5

32b 102.5

C= size of accumulator * size of weight * size of activation
(to appear in ACM TRETS SE on DL, FINN-R)

>> 35

Assumptions: Application can fill device to 90% (fully parallelizable) 710MHz

Reducing Precision provides Performance Scalability
Example: ResNet50, ResNet152 and TinyYolo

RP reduces model size=> to stay on-chip

Theoretical Peak Performance for a VU13P with different Precision Operations

>> 36

Reducing Precision Inherently Saves Power

Source: Bill Dally (Stanford), Cadence Embedded Neural

Network Summit, February 1, 2017

Target Device ZU7EV ● Ambient temperature: 25 °C ● 12.5% of toggle rate ● 0.5 of Static

Probability ● Power reported for PL accelerated block only

2/2

0.500 0.700 0.900 1.100 1.300 1.500 1.700 1.900 2.100

8

10

12

14

16

18

20

Estimated Power Consumption [W]

T
e

s
t

e
rr

o
r

[%
]

LSTM - Test Error vs Power(W)

Bits (W/A)

Pareto Optimal

>> 37
Rybalkin, V., Pappalardo, A., Ghaffar, M.M., Gambardella, G., Wehn, N. and Blott, M. "FINN-L: Library Extensions and Design Trade-
off Analysis for Variable Precision LSTM Networks on FPGAs."

FPGA:

ASIC:

2/3

3/4

2/4

2/8
4/4

3/8
8/8

3/3

4/8

RPNNs: Closing the Accuracy Gap

>> 38

Float point improvements are slowing down

Reduced precision highly competitive and rapidly improving

BNNs and TNNs are still rapidly improving <10% top5

Latest numbers: Dongqing Zhang∗ , Jiaolong Yang∗ , Dongqiangzi Ye∗ , and Gang Hua

“LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks”

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1.0 10.0 100.0 1000.0 10000.0 100000.0 1000000.0 10000000.0 100000000.0 1000000000.0

V
A

L.
 E

R
R

O
R

 (
%

)

COMPUTE COST (LUTS + 100*DSPS)

IMAGENET CLASSIFICATION TOP5% VS COMPUTE COST F(LUT,DSP)

1b weights 2b weights 5bit weights 8bit weights FP weights minifloat ResNet-50 Syq

Design Space Trade-Offs

Resnet18

8b/8b

Compute Cost 286

Error 10.68%

Resnet50

2b/8b

Compute Cost 127

Error 9.86% Reduced Precision can provide better accuracy and lower

considered and allow for algorithmic freedom

Reduced Precision can provide better accuracy and lower

hardware cost for specific accuracy targets

In order to find optimal solutions, solution space needs to be

considered and allow for algorithmic freedom

Pareto-optimal solutions

Hardware Architectures and their
Specialization Towards CNN Workloads
Exciting Times in Computer
Architecture Research!

>> 40

Spectrum of New Architectures for Deep Learning

CPUs GPUs
Soft DPUs

(FPGA)

Hard DPUs

(ASIC)

TPU, Cerebras, Graphcore,

Groq, Nervana, Wave

Computing, Eyeriss,

Movidius, Kalray

Intel

AMD

ARM

AMD

NVIDIA

DeePhi

Teradeep

XDNN

DPU: Deep Learning Processing Unit

>> 41

In-Memory

Compute

Using non-volatile

resistive memories

or

stacked DRAM*

*Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M., Williams, R.S. and Srikumar, V., 2016. ISAAC: A convolutional neural

network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y. and Xie, Y., 2016, June. Prime: A novel processing-in-memory architecture for neural network

computation in reram-based main memory. In ACM SIGARCH

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N. and Temam, O., 2014, December. Dadiannao: A machine-learning

supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (pp. 609-622). IEEE Computer Society.

ISAAC, Tetris,

Neurcube

Vector-based SIMD processors

becoming increasingly customized for Deep Learning

(Tensor Cores, Reduced Precision,…)

Architectural Choices – Macro-Architecture

Soft DPUs

(FPGA)

Hard DPUs

(ASIC)

Customized

macro-architecture

(Synchronous Dataflow)

TPU, Cerebras, Graphcore,

Groq, Nervana, Wave

Computing, Eyeriss,

Movidius, Kalray

MSR Brainwave*

FINN**

DeePhi

Teradeep

XDNN

>> 42

*Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield, A., Massengill, T., Liu, M., Lo, D., Alkalay, S., Haselman, M.

and Abeydeera, M.Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro, 38(2)

https://www.microsoft.com/en-us/research/uploads/prod/2018/06/ISCA18-Brainwave-CameraReady.pdf

**Umuroglu, Yaman, Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P., Jahre, M. and Vissers, K. “FINN: A

framework for fast, scalable binarized neural network inference.” ISFPGA’2017

Matrix of PE

Synchronous Dataflow (SDF) vs
Matrix of Processing Elements (MPE)

DEFGFHIJ = KLF(DEM)

DEM = NOPQR ∗ STMUVT ∗ WXM ∗ YM + KM

>> 43

CNV

Layer

Weight

WeightsActivations

Ping-pong

CNV

Layer

Weights

CNV

Layer

Weights ZWFGFHIJ = TD[ZM

DEFGFHIJ =

\ ∗ NOPQR ∗ TO](STMUVT ∗ STMUVT ∗ #WXM)

ZWFGFHIJ = K_T ZM

End points are pure layer-by-layer compute and feed-forward dataflow architecture

Spectrum of Options

MAC, Vector Processor

Lin, X., Yin, S., Tu, F., Liu, L., Li, X. and Wei, S. LCP: a layer clusters paralleling mapping method for accelerating inception and residual networks on FPGA. DAC’2016

Alwani, M., Chen, H., Ferdman, M. and Milder, P. Fused-layer CNN accelerators. MICRO 2016.

>> 44

Degree of parallelization

across layers

• Requires less activation buffering

• Higher compute and memory efficiency due to

custom-tailored hardware design

• Less flexibility

• Less latency (reduced buffering)

• No control flow (static schedule)

• Requires less on-chip weight memory, but more

activation buffers

• Efficiency of memory for weights and activations

depends on how well balanced the topology is

• Flexible hardware, which can scale to arbitrary large

networks

• Compute efficiency is a scheduling problem

=> generating sophisticated scheduling algorithms

Synchronous Dataflow (SDF) vs
Matrix of Processing Elements (MPE)

Architectural Choices – Micro-Architecture

CPUs GPUs
Soft DPUs

(FPGA)

Hard DPUs

(ASIC)

Customized

arithmetic

TPU, Cerebras, Graphcore,

Groq, Nervana, Wave

Computing, Eyeriss,

Movidius, Kalray

Intel

AMD

ARM

AMD

NVIDIA

MSR Brainwave

FINN

BISMO

DeePhi

Teradeep

XDNN

>> 45

Stripes (bit-serial ASIC),

Stanford, Leuven: BinarEye

IBMs’ TrueNorth & latest AI

accelerator

Judd, P., Albericio, J., Hetherington, T., Aamodt, T.M. and Moshovos, A., 2016, October. Stripes: Bit-serial deep neural network computing. MICRO’2016

Moons, B., Bankman, D., Yang, L., Murmann, B. and Verhelst, M. BinarEye: An always-on energy-accuracy-scalable binary CNN processor with all memory on

chip in 28nm CMOS, ICC’2018

Lin, X., Yin, S., Tu, F., Liu, L., Li, X. and Wei, S. LCP: a layer clusters paralleling mapping method for accelerating inception and residual networks on FPGA.

DAC’2016

Micro-Architecture:
Customized Arithmetic for Specific Numerical Representations

˃ Customizing arithmetic compute allows to maximize

performance at minimal accuracy loss

Flexpoint, Microsoft Floating Point formats, Binary & Ternary,
Bfloat16

˃ Which do we support?

Perhaps too risky to support numerous, and too risky to fix on one?

˃ What’s more, non-uniform arithmetic can yield more efficient

hardware implementations for a fixed accuracy*

Run-time programmable precision: Bit-Serial

>> 46
*Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo, “Weighted-Entropy-based Quantization for Deep Neural Networks” CVPR’2017]

Summary

>> 47

Summary

˃ CNNs are increasingly being adopted for new workloads and key to the current
industrial revolution and perhaps the next

˃ Associated with significant challenges

˃ Requires algorithmic and architectural innovation (co-designed)

˃ Emerging: Huge spectrum of algorithms and increasingly diverse & heterogenous
hardware architectures

˃ Clear metrics for comparison needed

Hardware performance always tying back to application performance (accuracy) to allow for
algorithmic optimizations

Ideally in form of pareto curves: Accuracy - performance (TOPS/sec) - response time (1 input) -
power consumption

>> 48

Exciting Times for our Community:
Many New Architectures Evolving - Programmable and Hardened

Application:

Algorithm:

Dataset:

Hardware:

Implementation:

>> 49

• Finding optimal solutions within a multi-dimensional design space

combinations trained network topologies on different datasets implemented in

different ways on different hardware architectures

