

Xilinx Machine Learning Strategies for the Edge

Jon Cory, Embedded Vision Specialist FAE, NA

GET READY GET SET GO ADAPT

AI/ML Monetization Is Here and Growing



EXILINX.

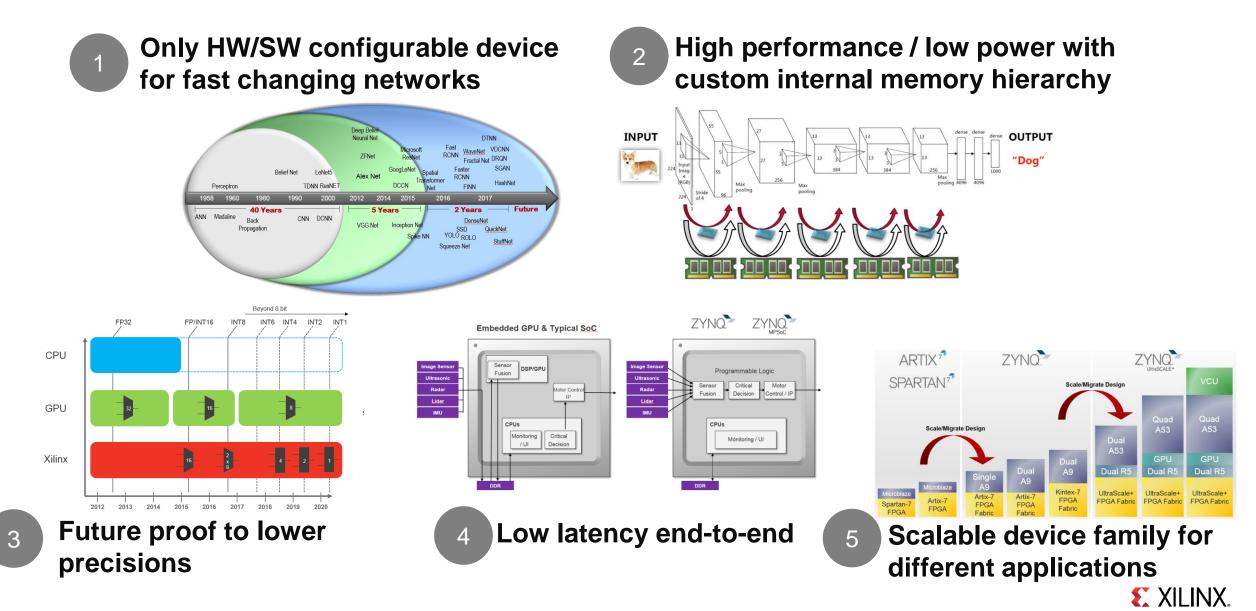
copyright sources: Avigilon, Amazon GO, Daimler, SK Telecom

Challenges in Monetizing AI/ML

1080p Object Detection (SSD) @ 30 FPS

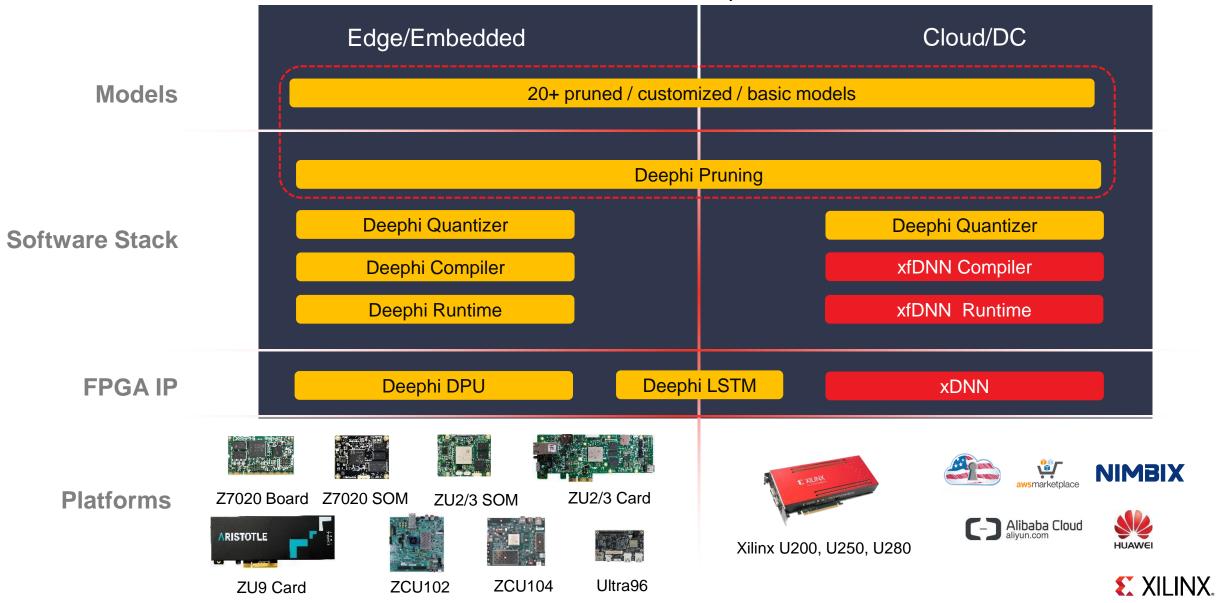
< 10W, < 50 ms latency, <\$50

Who is Xilinx? Why Should I Care for ML?



Integrated Xilinx-Deephi Roadmap

Xilinx AI Development



Xilinx Network Development

Application	Module	Algorithm	Model Development	Compression	Deployment
	Face detection	SSD, Densebox	√	√	✓
	Landmark Localization	Coordinates Regression	√	N / A	✓
Face	Face recognition	ResNet + Triplet / A-softmax Loss	√	√	✓
	Face attributes recognition	Classification and regression	√	N/A	✓
	Pedestrian Detection	SSD	√	√	✓
Pedestrian	Pose Estimation	Coordinates Regression	√	√	✓
	Person Re-identification	ResNet + Loss Fusion	√		
	Object detection	SSD, RefineDet	√	√	✓
	Pedestrian Attributes Recognition	GoogleNet	√	√	✓
	Car Attributes Recognition	GoogleNet	√	✓	√
Video Analytics	Car Logo Detection	DenseBox	√	✓	
	Car Logo Recognition	GoogleNet + Loss Fusion	√	✓	
	License Plate Detection	Modified DenseBox	√	√	✓
	License Plate Recognition	GoogleNet + Multi-task Learning	√	√	✓
	Object Detection	SSD, YOLOv2, YOLOv3	√	√	√
	3D Car Detection	F-PointNet, AVOD-FPN	\checkmark		
	Lane Detection	VPGNet	√	√	✓
	Traffic Sign Detection	Modified SSD	\checkmark		
ADAS/AD	Semantic Segmentation	FPN	√	\checkmark	\checkmark
	Drivable Space Detection	MobilenetV2-FPN	\checkmark		
	Multi-task (Detection+Segmentation)	Deephi	√		

DEEPHi Now XILINX。 深 鉴 科 技 Part of

GET READY GET SET GO ADAPT

Long History, Close Collaboration, and Better Future

Collaboration with Xilinx University Program

Deep learning acceleration Time series analysis Stereo vision

.

Development of products on Xilinx FPGA platform since inception of DeePhi

Face recognition Video analysis Speech recognition acceleration

.

DEEPHi 深 鉴 科 技 Co-Marketing and Co-Sales with Xilinx Team

> Data Center Automotive Video surveillance

> >

DEEPHi 深鉴科技 Now Part of Xilinx

Pioneer in sparse-neural-network-based AI computing, explorer from theory to commercialization

NIPS 2015: Top conference in neural information processing FPGA 2016 & 2017: Top academic conference in FPGA ICLR 2016 : Top academic conference in machine learning ISCA 2016 : Top academic conference in computer architecture Hot Chips 2016 : Top academic conference in semiconductor First prize of tech innovation China Computer Federation

Registering more than 100 invention patents both in China and US

First Paper in the World on Compressed and Sparse Neural Networks "Learning both Weights and Connections for Efficient Neural Networks", NIPS 2015 <u>"Deep Compression", ICLR 2016 Best Paper</u>

First Paper in the World on Sparse Neural Network Accelerator "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016

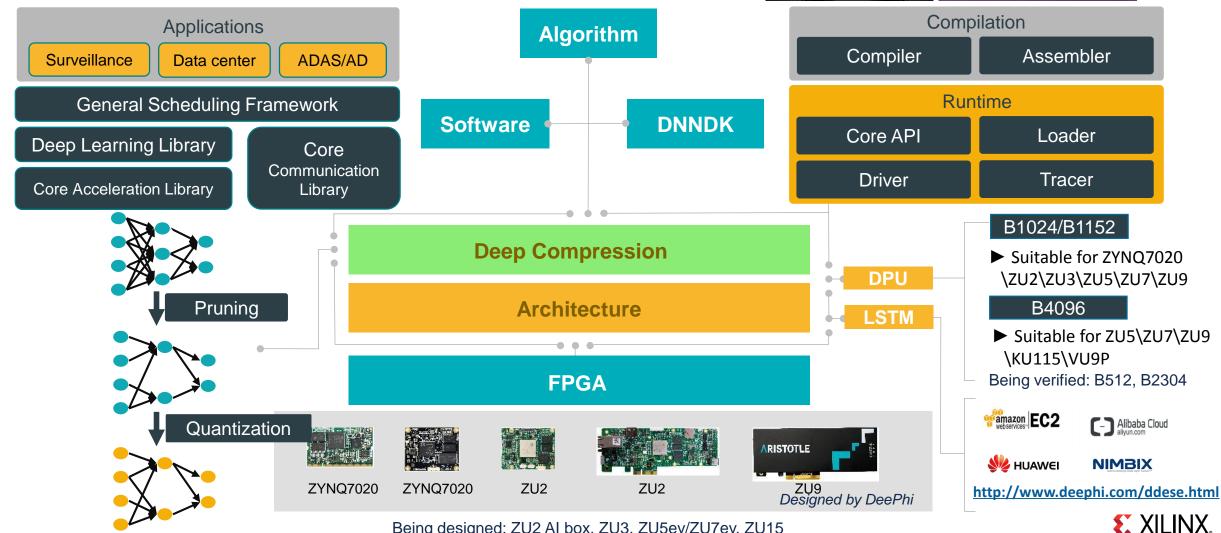
First Practical Case Using Sparse Neural Network Processor

Collaboration with Sogou Inc, partly revealed in :

"ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA",

FPGA 2017 Best Paper

Leading Solution for Deep Learning Acceleration



Being designed: ZU2 AI box, ZU3, ZU5ev/ZU7ev, ZU15

How Is Acceleration of CNNs Handled in the PL?

> DPU Soft IP: <u>Deep learning Processor Unit</u> - Optimized for convolutional neural networks

> Consists of 3 Main modules

- » Configuration module
- >> Data Controller module
- » Convolution Computing module

> Instruction Set

- >> Tensor based instructions
- >> Up to 268,435,456 MACs/instruction

> DPU Targets the Zynq Device Family

- >> APU required:
 - Interrupt handling
 - Data transfers
 - Unsupported operations

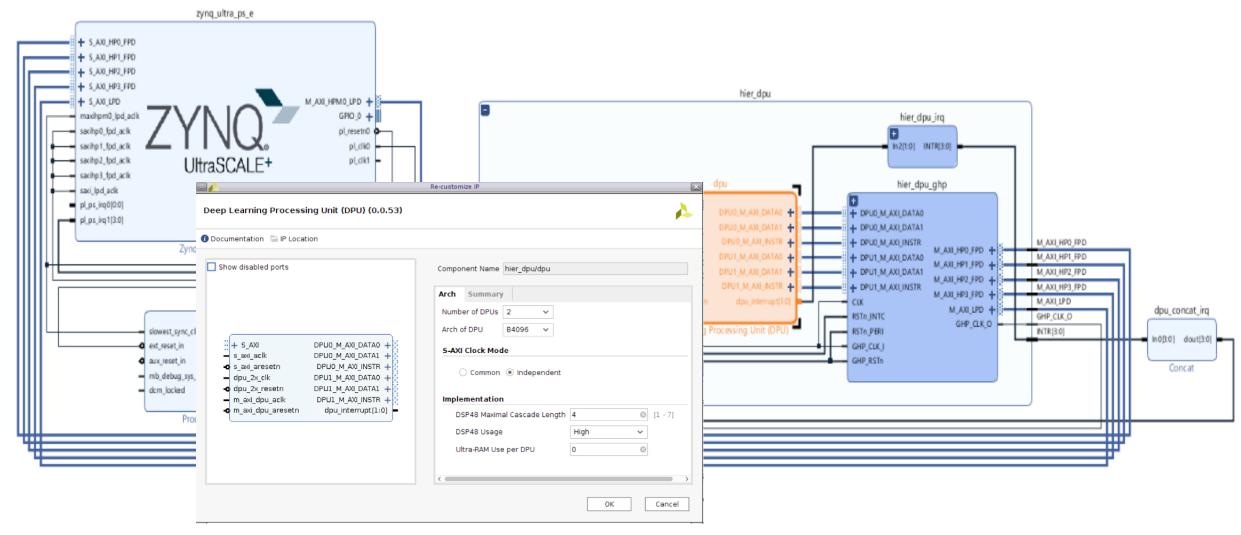
Zynq / MPSoC / Ver	sal
Configuration Module reg reg : : reg	Convolution Computing Module PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE </td

DPU Scalability

E XILINX

DSP

Zyng UltraScale+ MPSoC DPU TRD



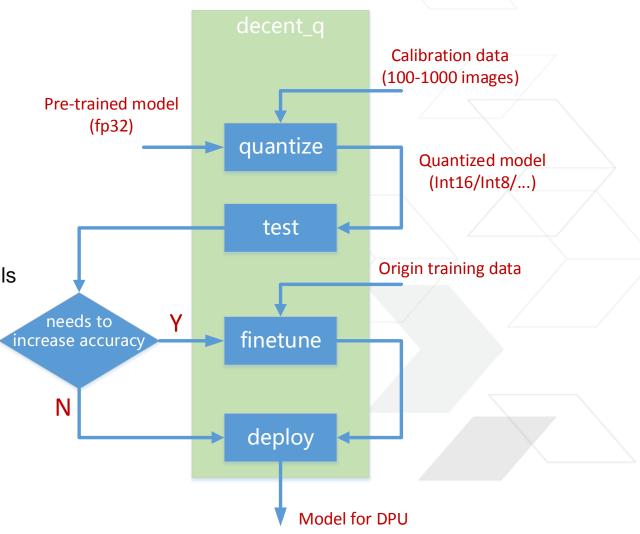
Quantization Tool – decent

> 4 steps in decent quantization

- >> quantize quantize network
 - Calibration images required
- >> test test network accuracy/mAP
- >> finetune finetune quantized network
 - Usually not needed
 - Requires entire training data set
 - Not documented contact factory for more details
- >> deploy generate model for DPU
 - This is input to the dnnc compiler

> Data

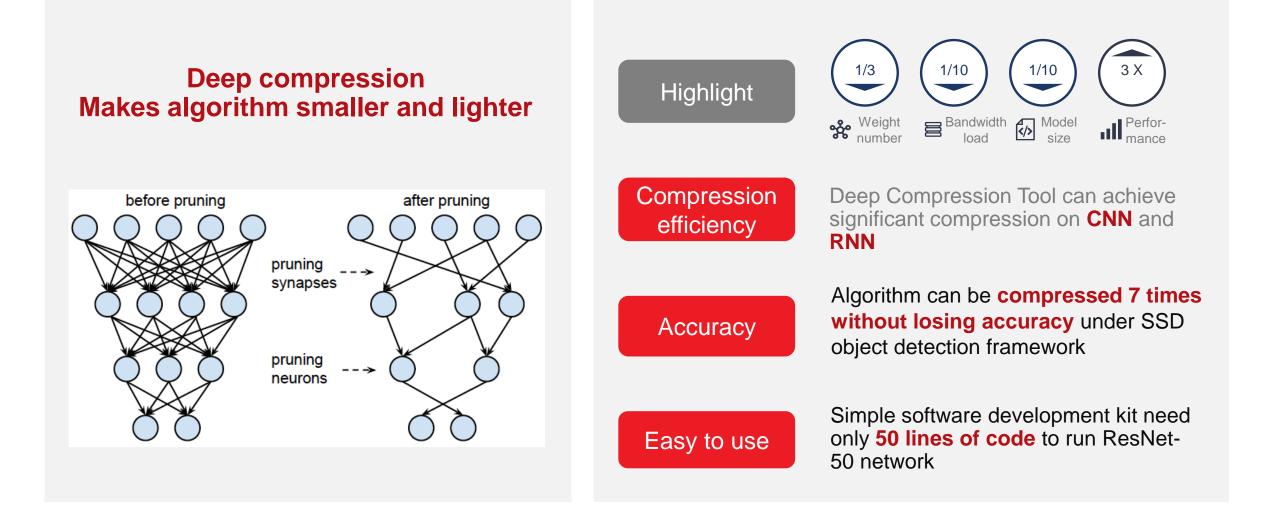
- > Calibration data quantize activation
- >> Training data further increase accuracy



Quantization Results for Popular Networks

Classification	flo	oat	8-b	oit fix
Classification	Top1	Тор5	∆Top1	∆Тор5
Inception_v1	66.90%	87.68%	-0.28%	-0.10%
Inception_v2	72.78%	91.04%	-0.38%	-0.23%
Inception_v3	77.01%	93.29%	-0.45%	-0.29%
Inception_v4	79.74%	94.80%	-0.32%	-0.16%
ResNet-50	74.76%	92.09%	-0.17%	-0.14%
ResNet-50-v2	75.39%	92.45%	-0.60%	-0.33%
VGG16-3fc-float	70.97%	89.85%	-0.23%	-0.06%
VGG16-1fc-float	70.97%	89.85%	-0.20%	-0.09%
Inception-ResNet-v2	79.95%	95.13%	-0.51%	-0.16%
Detection	Float mAP		8-bit	fix mAP
SSD_VGG	76.4	47%	-0.	20%

Core advantage | Deep compression algorithm



Pruning Results

FPN [163G]

Classification Networks	Baseline	Pru	ning Result	1	Prun	ing Result 2	2	
Classification networks	Тор-5	Top-5	ΔΤορ5	ratio	Top-5	∆Тор5	ratio	
Resnet50 [7.7G]	91.65%	1.65% 91.23%		40%	90.79%	-0.86%	32%	
Inception_v1 [3.2G]	89.60%	89.02%	-0.58%	80%	88.58%	-1.02%	72%	
Inception_v2 [4.0G]	91.07%	90.37%	-0.70%	60%	90.07%	-1.00%	55%	
SqueezeNet [778M]	83.19%	82.46%	-0.73%	89%	81.57%	-1.62%	75%	
Detection Networks	Baseline	Pruning Result 1			Pruning Result 2			
Detection Networks	mAP	mAP	ΔmAP	ratio	mAP	ΔmAP	ratio	
DetectNet [17.5G]	44.46	45.7	+1.24	63%	45.12	+0.66	50%	
SSD+VGG [117G]	61.5	62.0	+0.5	16%	60.4	-1.1	10%	
[A] SSD+VGG [173G]	57.1	58.7	+1.6	40%	56.6	-0.5	12%	
[B] Yolov2 [198G]	80.4	81.9	+1.5	28%	79.2	-1.2	7%	
Commentation Naturalia	Baseline	Pru	Pruning Result 1			Pruning Result 2		
Segmentation Networks	mloU	mloU	ΔmloU	ratio	mloU	ΔmloU	ratio	

65.21%

65.69%

80%

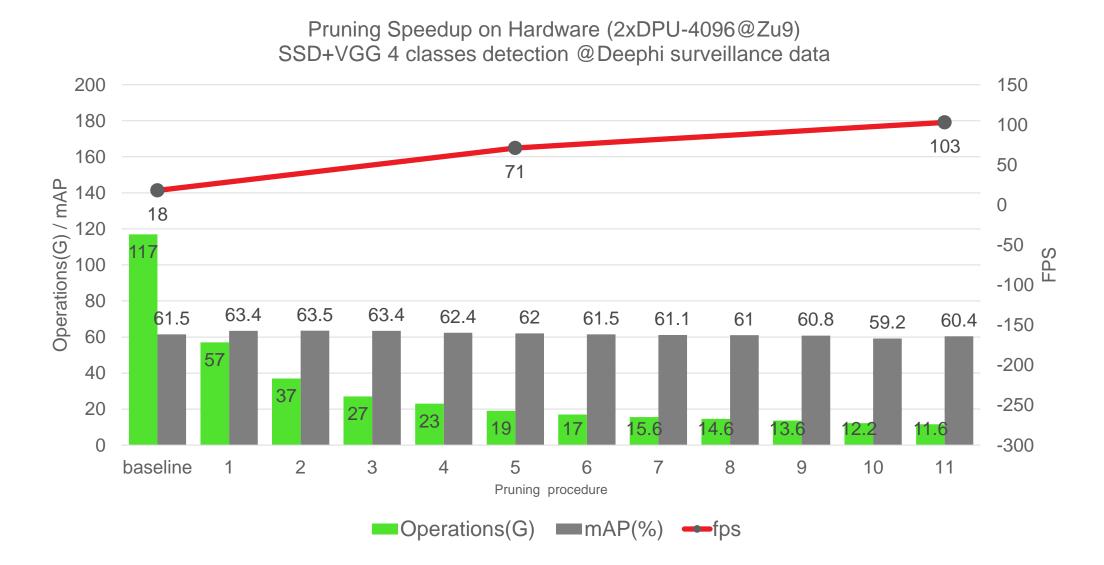
-0.48%

64.07%

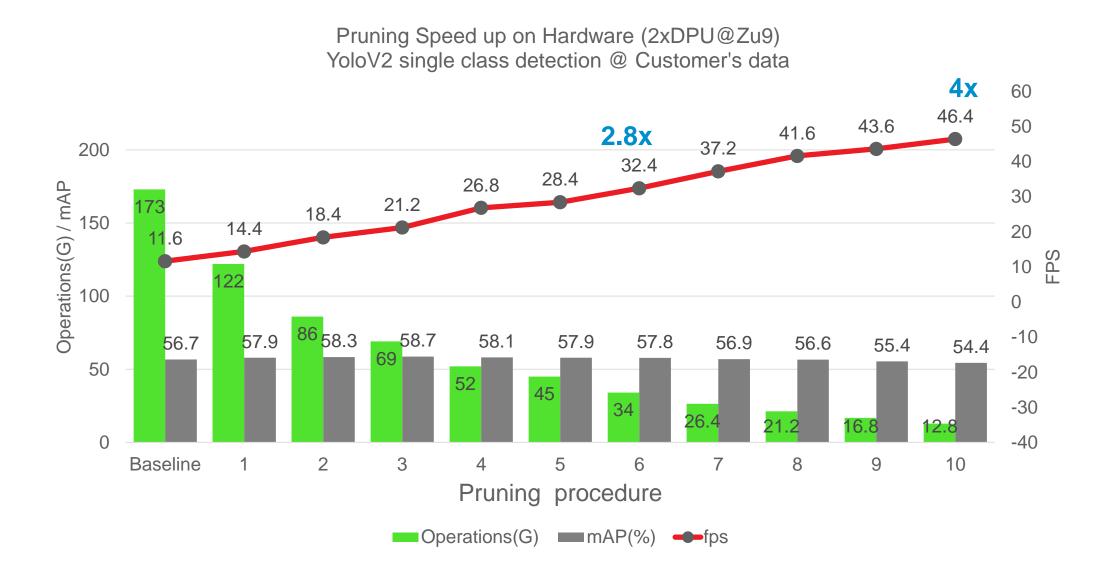
-1.62%

60%

Pruning Speedup Example – SSD



Pruning Speedup Example – Yolo_v2



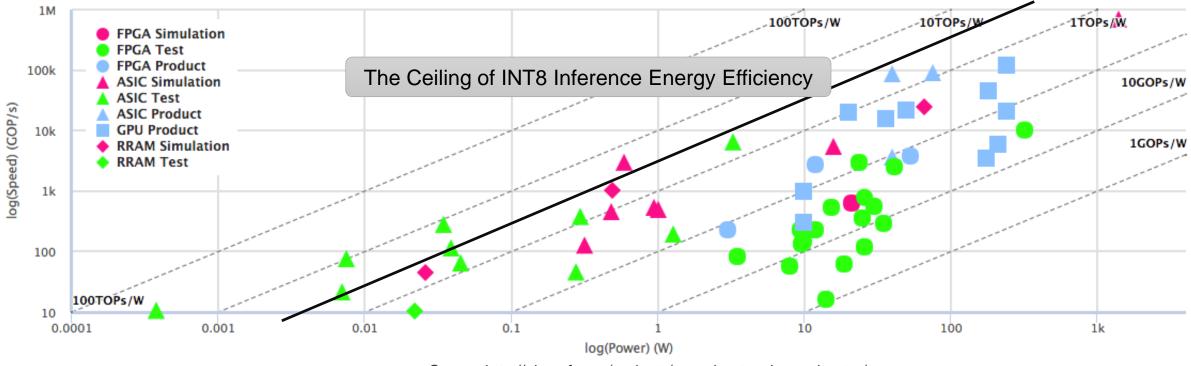
Compression perspective

Research	Quantization	 > Low-bit and hybrid low-bit quantization > Some simple hybrid low-bit experiments [Compared to 8bit results, without finetune] > 20% model size reduce, <1% accuracy drop > 10% model size reduce, <1% accuracy drop (hardware-friendly low-bit patterns) > 7nm FPGA with Al Engines > Some fp32/fp16 resources -> Relax some restrictions for quantization -> Better performance > For low-bit quantization, non-uniform quantization with lookup tables is possible > Some layers can run without quantization > AutoML for quantization > Automated quantization for hybrid low-bit quantization
	Pruning	 AutoML for pruning Automated pruning by reinforcement learning
Tools	> Fully tested to	ession tool supporting different frameworks ols, ease of use ed for pruning tool, supporting cluster Caffe Pytorch
		IENSOFFIOW

Current Ceiling of CNN Architecture

Neural network accelerator comparison

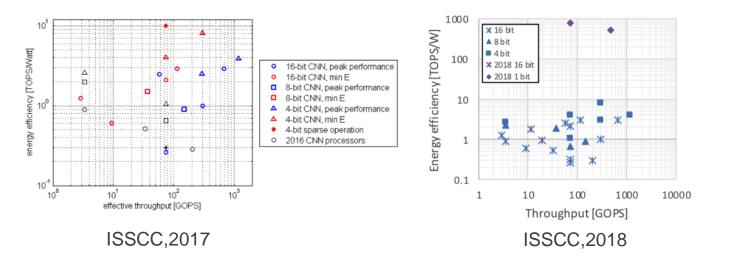
Click and drag to zoom in. Hold down shift key to pan.



Source:http://nics-efc.org/projects/neural-network-accelerator/

INT8 improvements are slowing down and approaching the ceiling.

Potentials of low precision



Scales performance

- > Reduces hardware resources
- Less bandwidth/on-chip memory requirement

Low Precision Becomes Popular

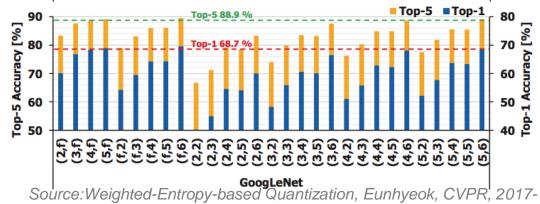
Energy Cost				
Operation	Energy(pJ)			
1bit Fixed-point MAC	0.118			
4bit Fixed-point MAC	0.517			
8bit Fixed-point MAC	0.865			
16bit Fixed-point MAC	1.64			
*65nm process,200Mhz,1.	2v,25°C			

Model Size(ResNet-50)			
Precision Size(MB)			
1b	3.2		
8b	25.5		
32b	102.5		

Regular memory access pattern and calculating pattern

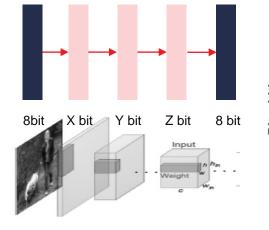
FPGA benefits a lot from low-precision.

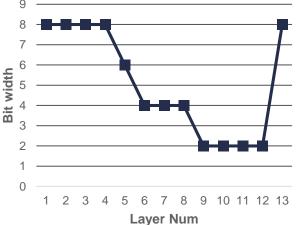
Architecture perspective: Mixed Low-Precision

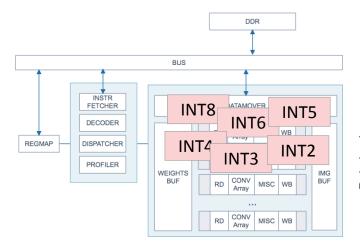


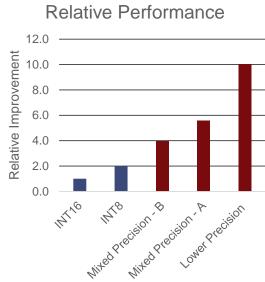
Fixed low-precision quantization already showed competitive results.

Next generation: **Variable** precision of activation/weights among layers









*accuracy drop less than 1%

BW	2	3	4	5	6	7	8
wgt	0	3	4	6	0	0	3
act	0	0	0	2	5	10	5
		-					
BW	2	3	4	5	6	7	8
BW wgt	2 0	3 0	4 3	5 22	6 17	7 10	8 2
					-	7 10 13	

BW	2	3	4	5	6	7	8
wgt	0	0	0	15	84	38	13
act	0	0	0	0	6	84	99

Preliminary experiments on popular networks. (vgg-16,resNet-50,inceptionv4)

Architecture perspective: Mixed Low-Precision CNN

> Mixed Precision Support

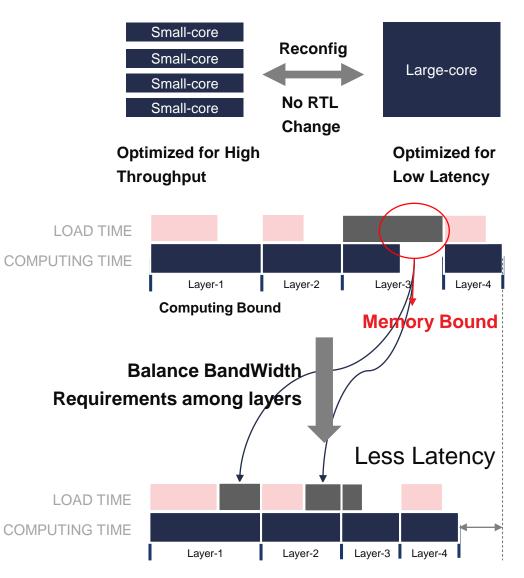
>> INT8/6/5/4/3/2

> Flexible Between Throughput and Latency

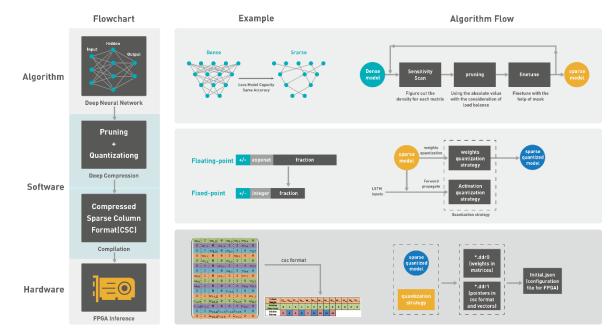
Switch between Throughput-Opt-Mode and Latency-Opt-Mode without RTL change

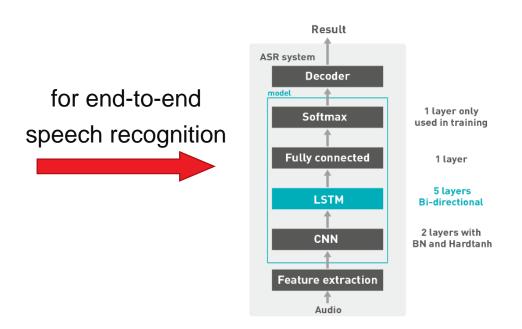
> Enhanced Dataflow Techniques

- Make the balance among different layers. Do NOT require the model can be fully placed on chip, but load the data at the right time.
- > Physical-aware data flow design to meet higher frequency.
- Supports high-resolution images at high utilization.



Sparsity architecture exploration





Partners

On cloud, aiming at customers all over the world

W HUAWEI

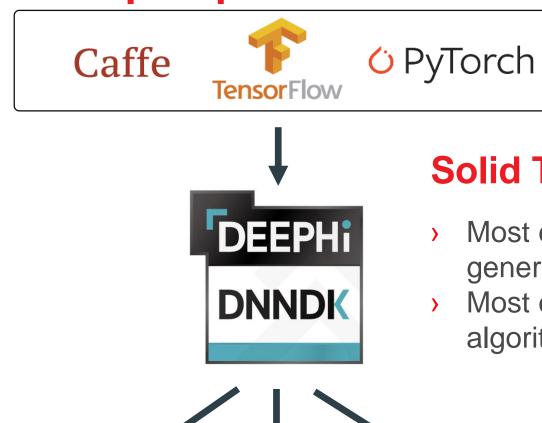
NIMBIX

- Already officially launched in AWS Marketplace and HUAWEI cloud (http://www.deephi.com/ddese.html)
- ✓ Now transplanting to Alibaba cloud

Features

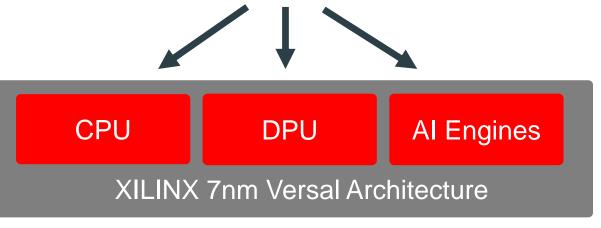
Low storage	Model compressed more than 10X with negligible loss of accuracy
Low latency	More than 2X speedup compared to GPU (P4)
Programmable	Reconfigurable for different requirements

DNNDK perspective



Solid Toolchain Stack for XILINX Versal

- Most efficiency solution for ML on XILINX next generation computing platform
- Most easy-to-use & productive toolchain for ML algorithms deployment



System perspective: schedule ADAS tasks in single FPGA

> Multi-task Models

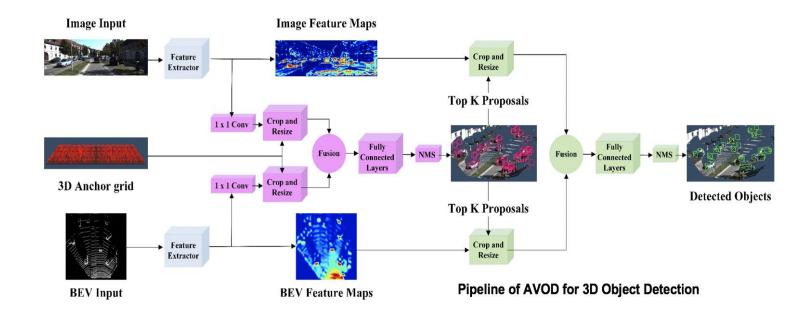
- >> Training:
 - Knowledge sharing
 - Reduce computation cost
- >> Pruning:
 - Balance different objective functions

> Sensor Fusion

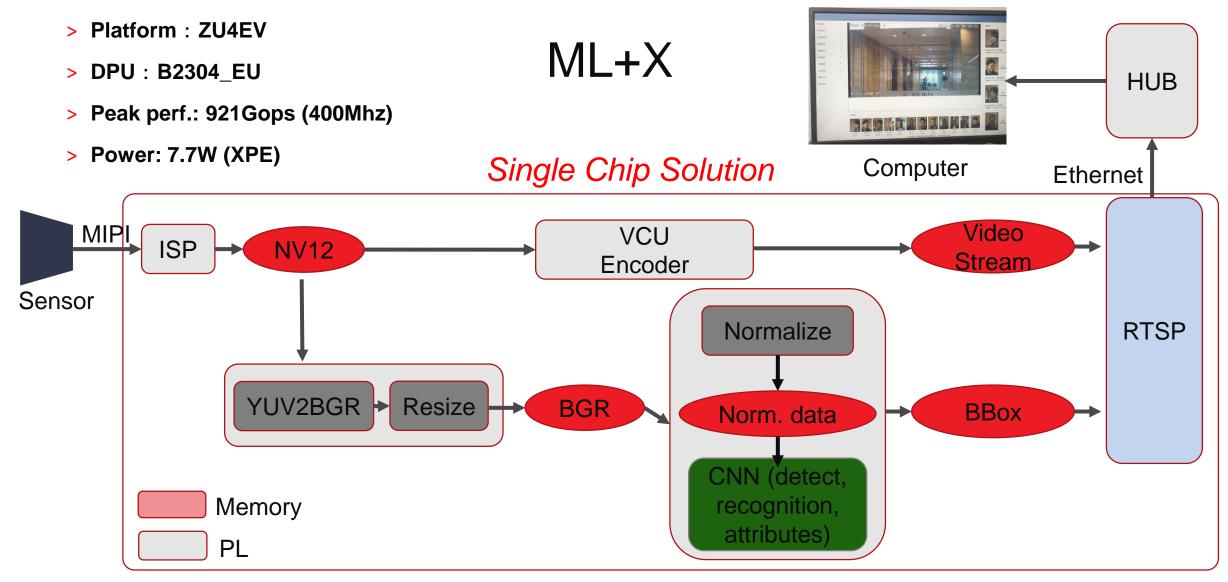
>> Sensor alignment & Data Fusion

> Task scheduling

- Resource constrained scheduling: Serialization & Parallelization
- Task scheduling and memory management framework with low context-switching cost
- Support new operations with runtime variable parameter by software and hardware co-design



System perspective: Video Surveillance in single FPGA



This solution needs to further enhance ISP functionality

Adaptable. Intelligent.

