Why Xilinx for Machine Learning?

Craig Abramson Senior Technical Marketing Engineer Longmont, CO

EXILINX.

Machine Learning Challenges

The rate of AI innovation

Performance at low latency

Low power consumption

Whole app acceleration

Inference is Moving to Lower Precision

RELATIVE ENERGY COST

8b Add	0.03	
16b Add	0.05	
32b Add	0.1	
16b FP Add	0.4	
32b FP Add	0.9	

Source: Bill Dally (Stanford), Cadence Embedded Neural Network Summit, February 1, 2017

Machine Learning Inference is Xilinx Focus

Input

INFERENCE

Fewer

Training: Process for machine to "learn" and optimize model from data

Focus

``dog″√

Inference: Using trained models to predict/estimate outcomes from new observations in efficient deployments

Why ML Inference? It's Where the Market is going to be...

Barclays Research, Company Reports May 2018

Delivering Adaptable ML Compute Acceleration

Why GPUs in the First Place?

GPU Graphics Pipeline: Converts 3D representations of images into 2D space

"Can we apply GPUs to other problems?"

CPU / GPU Architecture

Data Flow and Data Precision Matters

GPU (Basically a SW Engine)

> Software Defined Data Flow

- >> Major overhead (memory, comms, power)
- >> Non-deterministic Behavior (latency)

> Fixed Data Precision Support

- >> Floating point / Integer units
- >> Native precisions defined at T/O

> Hardware Defined Data Flow

- >> Minimum overhead, custom compute / memory
- >> Deterministic Behavior (latency)
- >> Reconfigurable to current / future workloads

> Variable Data Precision Support

- >> Optimize for memory, power, cost
- >> Future proof, adapts to future precision trends

Memory Hierarchy: Very Fundamental FPGA Advantage

- > Rigid memory hierarchy & data duplication
- > High "data locality" required for workload efficiency

Fixed Memory Hierarchy & Shared Interconnect: Robs Bandwidth / Capacity & Stalls Compute

- > Adaptable memory hierarchy & datapath
- > ~5X more on-chip memory / less off-chip required

Match Memory Hierarchy & Bandwidth to Compute Requirements

What About Batching?

Fundamental to GPU Architecture

(Software Defined Data Flow)

Batching: Loading up lots of similar Data Sets

- Keep compute cores busy
- Hide some memory latency
- Create better SIMT efficiency

Not Required for FPGA / ACAP

(Hardware Defined Data Flow)

Independent of Data Set count

- Custom HW kernels
- Custom Memory Hierarchy
- HW pipeline data flow

High Throughput OR Low Latency High

High Throughput AND Low Latency

EXILINX

Batching doesn't even really apply in an FPGA

A Batching Example: Image Classification

GPU

A Batching Example: Image Classification

"Dog" "Cat" "Truck" "Duck" "Cat" "Dog" "Duck" "Truck"

The Benefits of Pruning & Compression

Before Pruning

Pruning Benefits:

- Smaller, "lighter" networks
- Less mem capacity & b/w req'd
- Reduced compute requirement
- Higher performance
- Lower power

Applies to Both ..BUT..

- Issues w/ sparse & small matrices
- Compute efficiency degrades
- Still more off-chip mem req'd
- Better w/ sparse matrices
- Single-chip solutions possible
- Device scales w/ compute/resources

Up to 30+% Better Compression

Ω

...

Only Adaptable Hardware Addresses Inference Challenges

Custom data flow (Address new architectures)

Custom memory hierarchy (Address power/performance challenges

Custom precision (Address power/cost)

Domain Specific Architectures (DSAs) on Adaptable Platforms

Do TOPs/FLOPs Matter?

Putting Metrics & Benchmarks in Focus

Focus on Application Level Performance Where Xilinx Solutions Shine

Bi-directional LSTM Performance: Speech to Text

Xilinx Machine Learning Customer Successes

- USB Camera +CV +ML +Display
- 5x better Perf/Watt than GPU / SSD (no pruning!)
- > ML benchmarks (pruning)
- <u>93% Reduction</u> of resources within 1% of initial precision
- Camera +CV +12 SSD +Display
- 12 channel object detection in 1 ZU9 (with pruning)

Video Success Story

E XILINX.

Conclusion

FPGAs Address the Machine Learning Challenges . . .

The rate of AI innovation

Performance at low latency

... and today's activities will show you exactly how.

Thank you.

Adaptable Advantage

