

Vitis TM Al start to finish

Fan Zhang Ph.D Software and AI Technical Marketing

Vitis AI: Unified AI Inference Solution Stack

© Copyright 2020 Xilinx

EXILINX.

Vitis AI: Unified AI Inference Solution Stack

E XILINX.

description: inception-v1 classifier on ImageNet.

input size: 224*224

float ops: 3.16G

task: classification

framework: caffe

prune: 'no'

version: 1.3

files:

- name: cf_inceptionv1_imagenet_224_224_3.16G_1.3
type: float & quantized

board: GPU

download link: download link
checksum: md5sum value

- name: inception_v1

type: xmodel

board: zcu102 & zcu104

download link: download link

checksum: md5sum value

- name: inception_v1

type: xmodel

board: vck190

download link: download link

checksum: md5sum value

Yaml file for each model

Link for different overlays

Readable from AI Library

Al Parser & Quantizer: Workflow

- I. Gather batch data distribution
- II. Configure bit width position base on hardware constraint
- III. Reconstruct OP behavior
- IV. Add fix-neuron OP at correct position

====> Bulid Networks	
[NNDCT_WARN]: CUDA is not available, change device to CPU	
[NNDCT_WARN]: quant_mode will not support integer value in future version. It supports string values 'calib' and 'te	est'.
[NNDCT_NOTE]: Quantization calibration process start up	
[NNDCT_NOTE]: =>Quant Module is in 'cpu'.	
[NNDCT_NOTE]: =>Parsing ENet	
[NNDCT_NOTE]: =>Doing weights equalization	
[NNDCT_NOTE]: =>Quantizable module is generated.(quantize_result/ENet.py)	
[NNDCT_NOTE]: =>Get module with quantization. ====> Evaluation mIoU ====> Bulid Dataset	

Al Compiler

VART: Unified runtime APIs

New added APIs to achieve zero copy

Vitis Al Library: the What?

- Vitis AI Library provides high-level API based libraries across different vision tasks: classification, detection, segmentation and etc.
 - Reference applications to help customers' fast prototyping
 - Optimized codes used in AI applications and products

AI Application General Processing Flow

• A typical abstraction of processing flow:

> Algorithm-level processing

- » Data normalization before sending to DPU
- » Post processing (e.g. bounding boxes decoding in detection)

> Additional system-level workloads for AI inference

- » Color conversion / resizing
- » Path planning / control / status update

What Vitis Al Library Provides

• Al Library offers libraries for

- Algorithm-level optimization
- Open and easy to extend
- Directly support models in Al Model Zoo

AI Library Samples

- The Vitis AI Library provides image test samples ,video test samples, performance test samples for all the above networks. Each sample has the following four kinds of test sample.
 - test_jpeg_[model type]
 - test_video_[model type]
 - test_performance_[model type]
 - test_accuracy_[model type]
- In addition, the kit provides the corresponding performance test program. For video based testing, we recommend to use raw video for evaluation. Because decoding by software libraries on Arm® CPU may have inconsistent decoding time, which may affect the accuracy of evaluation.

Al Library Samples: test_jpeg_yolov3

root@xilinx-zcu102-2019 1:/usr/share/XILINX AI SDK/samples/yolov3#./test jpeg yolov3 voc 416x416 sample yolov3 voc 416x416.jpg WARNING: Logging before InitGoogleLogging() is written to STDERR I0923 02:13:51.147414 15392 process result.hpp:78] RESULT: 6 133.408 139.6652 -9.86494 55.254 0.999673 I0923 02:13:51.147737 15392 process result.hpp:78] RESULT: 6 113.796 142.11 190.103 182.4020 .990521 I0923 02:13:51.147800 15392 process result.hpp:78] RESULT: 6 402.753 129.565 512 251.4110 .970362 I0923 02:13:51.147862 15392 process result.hpp:78] RESULT: 6 351.843 144.018 415.105 168.4570 .873677

Fast implementation of YOLOv3 demo by very simple code

int main(int argc, char *argv[]) { <mark>return</mark> xilinx::ai::main_for_jpeg_demo(argc, argv, [] {

return xilinx::ai::YOLOv3::create(xilinx::ai::YOLOV3_VOC_416x416);
},
process result);

Easy-to-Use APIs to Deploy Full Algorithm

Seamlessly compatible with AI Model Zoo

- Classification, detection, segmentation and others

Samples for fast prototyping

2

3

4

- Every algorithm has several samples, image, video and performance benchmarking
- Complicated samples can be refer to AI Demo Zoo which is also built on AI Library

High-level APIs to deploy algorithm

- No need to consider algorithm-level processing and DPU running codes

Support multiple deploying approaches

- Besides suggested high-level APIs, DPU running can be also controlled by users

DPU Overlays

Example	DPU	Application (C, R, B, F) C – CNN R – RNN B – Bert F – Random Forest	Hardware platform (AD, AH, VD, VH, ZD) AD – Alveo DDR AH – Alveo HBM VD – Versal DDR with AIE & PL VH – Versal HBM VP – Versal DDR with PL only ZD – Zynq DDR	Quantization Method (X, F, I) X – DECENT F – Float threshold I – Integer threshold M – Metropolis R – RNN	Quantization Bitwidth (4, 8, 16, M) 4 – 4 bit 8 – 8 bit 16 – 16 bit M – Mixed Precision	Design Target (G, H, L, P, C) G – General purpose H – High throughput L – Low latency C – Cost optimized	Major	Mino r	Patc h	DPU name
DPUv1	DPU	С	AD	Х	8	G	3	0	0	DPU-CADX8G-3.0.0
DPUv2	DPU	С	ZD	Х	8	G	1	4	1	DPU-CZDX8G-1.4.1
DPUv3e	DPU	С	AH	Х	8	Н	1	0	0	DPU-CAHX8H-1.0.0
DPUv3me	DPU	С	AH	Х	8	L	1	0	0	DPU-CAHX8L-1.0.0
DPUv3int8	DPU	С	AD	F	8	Н	1	0	0	DPU-CADF8H-1.0.0
XRNN	DPU	R	AH	R	16	L	1	0	0	DPU-RAHR16L-1.0.0
XVDPU	DPU	С	VD	Х	8	G	1	0	0	DPU-CVDX8G-1.0.0
DPUv4e	DPU	С	VD	Х	8	Н	1	0	0	DPU-CVDX8H-1.0.0

To build up the Demo

① Please get the boards ready.

② Install image flashing tool *eg. etcher* <u>https://etcher.io/</u>

Vitis Al v1.3 will be available on Dec 18th

https://github.com/Xilinx/Vitis-Al

XILINX.

Thank You

Xilinx Core Values

Excellence

- Question, learn, and innovate for exceptional results

Teamwork

- Work together in the best interest of Xilinx
- Embrace diversity of thought and experience
- Collaborate effectively and respectfully
- Accountability
 - Own commitments to their full conclusion
 - Deal with the unexpected quickly and professionally
 - Be transparent about issues, see them as opportunities, and learn from them

