
李昀

软件与 AI 加速技术市场部

July 2021

超越CPU及GPU性能的Vitis加
速应用C++内核开发实例

Edge to Cloud

Software & AI

Adaptive Computing

Vitis: Unified Software Platform

3

Vitis core

development kit

compilers

OpenCV

Library

BLAS

Library

Vitis accelerated

libraries

Vitis drivers & runtime (XRT)

analyzers debuggers

Domain-Specific

development

environment

Fintech

Library

Vitis target platform

AI /ML
Video

Transcoding
Partner

Framework

Vitis AI

Vitis: Unified Software Platform

4

Vitis core

development kit

compilers

Vitis drivers & runtime (XRT)

Vitis target platform

Accelerated

C++ algorithm

Developing Accelerators

Accelerators placed into the FPGA as “kernels”

Kernels can be developed using different methods

 High-level synthesis with C, C++, and OpenCL

 Model Composer, MATLAB, and Simulink

 RTL

Vitis links the kernels into reconfigurable binaries

Emulation support

 System-level verification and quick debug

LinkLink

Compile
(.xo)

Compile

Build target
selection

Host
Application

Kernel (C++)

Application Program

Kernel Binary (.xclbin)

Runtime (XRT)

Host Executable (.exe)

C++ Kernel Build

LinkLink

Compile
(.xo)

Compile

Build target
selection

Host
Application

Kernel (C++)

Application Program

Kernel Binary (.xclbin)

Runtime (XRT)

Host Executable (.exe)

Application Build Process

✓ v++ compiles host code with APIs

✓ v++ compiles kernels into .xo

✓ v++ links kernels to the platform

✓ Final .xclbin binary loads into the device

Compiler Directives

Vitis HLS: A Parallel Hardware Compiler

C++ code compiler for highly optimized implementation onto logic fabric

Input Code
Sequential and Untimed

Vitis HLS

Kernel C++ code

Micro-architecture

Pragmas / Directives

Optimized Circuit

HLS Engine

PIPELINE SIMD
vectors

Dataflow

PIPELINE

Reading new inputs before a loop finishes processing current

input…

 Tied to the concept of “initiation interval” or II

 e.g., an initiation interval of 1 means a loop processes an input at every clock cycle

 The tool automatically pipelines the most inner loops

 C functions might be pipelined too but could unroll all loops in function

body hence leading to a prohibitive amount of resource used

PIPELINE

Reading new inputs before a loop finishes processing current

input…

https://github.com/Xilinx/Vitis_Accel_Examples/

SIMD
vectors

Single-Instruction-Multiple-Data and Vectors for parallelism

 Unrolling a loop to call a sub-function multiple times

 Vectors leverage the GCC __attribute__ (vector_size())

SIMD
vectors

Single-Instruction-Multiple-Data and Vectors for parallelism

https://github.com/Xilinx/Vitis_Accel_Examples/

Dataflow

Separating sub-functions as individual processes and creating

expanded memory channels…

 Significantly reduces latency and hardware resources for tasks that are

otherwise serial

 Duplicated memory channels ensure efficient processing

 Channels can be FIFO too…

Dataflow

Separating sub-functions as individual processes and creating

expanded memory channels…

https://github.com/Xilinx/Vitis_Accel_Examples/

load →

compute →

store →

Pragmas / Directives

PIPELINE SIMD
vectors

Dataflow

Other pragmas support the main optimization pillars…

 Array partitioning and reshaping

 Help ensure the accesses are not limiting the II

 Directives BIND_OP, BIND_STORAGE help customize resources…

 …

Ports and Interfaces

C++ Kernel Interfaces in Vitis

C++ Kernel
Code

Arrays Scalars Streams

C types for top function ports

C++ Kernel Interfaces in Vitis

C++ datatypes and default hardware implementation…

Arrays AXI-4 Memory Mapped

Scalars AXI-4 Lite

Streams
hls::stream

AXI-4 Stream

C++ Kernel
synthesized to RTL

m_axi
adapter

axilite
adapter

clock

reset

˃ The INTERFACE pragma specifies the physical connection for C++ function arguments…

Interface Optimization for Pointers

Step1: Apply the INTERFACE pragmas

DDRIPgmemC++ Kernel

vadd
void vadd(const unsigned int *in1,

const unsigned int *in2,
unsigned int *out,
int size)

{
#pragma HLS INTERFACE m_axi bundle=gmem port=in1
#pragma HLS INTERFACE m_axi bundle=gmem port=in2
#pragma HLS INTERFACE m_axi bundle=gmem port=out
for(int i=0; i<size; i++)
out[i] = in1[i] + in2[i]; }

platform and v++ dependent

m_axi
adapter

Throughput limited by I/Os
(gmem_load in schedule viewer,
we need more wires!)

synthesis report

schedule viewer

 C synthesis results:
Vitis HLS output

Interface Optimization for Pointers (continued)

Step 2: Add a new adapter…

DDRIP

gmem0
C++ Kernel

vadd
...
#pragma HLS INTERFACE m_axi bundle=gmem0 port=in1
#pragma HLS INTERFACE m_axi bundle=gmem port=in2
#pragma HLS INTERFACE m_axi bundle=gmem port=out
...

gmem

 Now II is 1, data can be written at each clock cycle

 The physical interface interface is 32-bit when the platform can use 512-bit buses

platform and v++ dependent

m_axi adapters

Interface Optimization for m_axi (continued)

void vadd(const unsigned int *in1,
const unsigned int *in2,
unsigned int *out,
int size)

{
#pragma HLS INTERFACE m_axi bundle=gmem0 port=in1
#pragma HLS INTERFACE m_axi bundle=gmem port=in2
#pragma HLS INTERFACE m_axi bundle=gmem port=out

for(int i=0; i<(size/16)*16; i++)
out[i] = in1[i] + in2[i]; }

Step 3: Provide a hint to the compiler to align data on 512-bit boundaries…

💡: the simplest is to
pass a fixed sized array…
It will also need to be a
multiple of 512-bit.

The bit width is now set to 512-bit…

Interface Optimization for m_axi (continued)

void vadd(const unsigned int *in1,
const unsigned int *in2,
unsigned int *out,
int size) {

#pragma HLS INTERFACE m_axi bundle=gmem0 port=in1
#pragma HLS INTERFACE m_axi bundle=gmem port=in2
#pragma HLS INTERFACE m_axi bundle=gmem port=out
for(int i=0; i<(size/16)*16; i++) {
#pragma HLS UNROLL factor=16
out[i] = in1[i] + in2[i]; }

}

Step 4: Unroll by a factor of 16…

Scheduler view (filtering on “adder”)Bind report

1
6

 p
a

ra
lle

l “
th

re
a

d
s

”

Interface Optimization for m_axi (continued)

void vadd(const unsigned int *in1,
const unsigned int *in2,
unsigned int *out,
int size) {

#pragma HLS INTERFACE m_axi bundle=gmem0 port=in1
#pragma HLS INTERFACE m_axi bundle=gmem port=in2
#pragma HLS INTERFACE m_axi bundle=gmem port=out
for(int i=0; i<(size/16)*16; i++) {
#pragma HLS UNROLL factor=16
out[i] = in1[i] + in2[i]; }

}

Step 4: Unroll by a factor of 16…

Scheduler view (filtering on “adder”)Bind report

16 parallel “threads”

out

in2

in1

“vector add” with 512-bit wide interfaces

void vadd(const unsigned int *in1,
const unsigned int *in2,
unsigned int *out, int size) {

#pragma HLS INTERFACE m_axi bundle=gmem0 port=in1
#pragma HLS INTERFACE m_axi bundle=gmem port=in2
#pragma HLS INTERFACE m_axi bundle=gmem port=out

for(int i=0; i<(size/16)*16; i++) {
#pragma HLS UNROLL factor=16
out[i] = in1[i] + in2[i]; }

}Cosim waveforms…

concurrency between reads
and writes

Simulation with 1,024 int vectors
64 clock cycles with 512-bit buses

Interface:
 Consider duplication adapters

 Use 512-bit alignment to improve throughput

gmem

gmem0

>> 25

typedef unsigned int foo __attribute__((vector_size(64)));

void vadd(const foo *in1,
const foo *in2,
foo *out,
int size) {

#pragma HLS INTERFACE m_axi bundle=gmem0 port=in1
#pragma HLS INTERFACE m_axi bundle=gmem port=in2
#pragma HLS INTERFACE m_axi bundle=gmem port=out
for(int i=0; i< size; i++)
out[i] = in1[i] + in2[i];

}

With vector data types…

▪Simpler coding style

▪Explicit widening

▪Relies on vector types

Interface Optimization for m_axi with Vector Types

>> 26

… and without

void vadd(const unsigned int *in1,
const unsigned int *in2,
unsigned int *out,
int size) {

#pragma HLS INTERFACE m_axi bundle=gmem0 port=in1
#pragma HLS INTERFACE m_axi bundle=gmem port=in2
#pragma HLS INTERFACE m_axi bundle=gmem port=out
for(int i=0; i<(size/16)*16; i++) {
#pragma HLS UNROLL factor=16
out[i] = in1[i] + in2[i]; }

}

▪Preserves function signature

▪Needs “unroll” pragma

▪Relies on the “widen” option

Traveler Salesman Problem

Travelling Salesman Problem (TSP)

28

The algorithm increases superpolynomially with the number of cities

The most direct solution is to try all permutations to see which one is cheapest

 Runtime for this approach lies within a polynomial factor of O (n!)

Given a list of cities and the distances between
each pair of cities, what is the shortest possible
route that visits each city exactly once and returns
to the origin city?

https://en.wikipedia.org/wiki/Time_complexity#Superpolynomial_time

TSP – Benchmarks

Conference data (Cppcon 2019)

 Faster Code Through Parallelism on CPUs and GPUs

 URL: https://www.youtube.com/watch?v=cbbKEAWf1ow : TSP algorithm for 13 cities

https://www.youtube.com/watch?v=cbbKEAWf1ow

TSP – Benchmarks

>> 30

Conference data (Cppcon 2019)

Coding Style Notes Speedup (reference: 22min40s)

Sequential code reference
custom compiler PGI (22min40s)
GCC 6.2 (27min41s)

1x
0.82x

C++ threads (machine with 40 physical cores)
with PGI
with GCC

43.7x
30.6x

OpenMP (with pragma) same as sequential code and GCC 32.1x

OpenACC (manual reduction)
manual reduction: X30.5
GPU (1.25 seconds)

30.5x
1073x

CUDA GPU (1.1 seconds) 1248x

Kokkos
OpenMP backend
Cuda backend
Cuda backend + patch (compute intensive)

33.4x
384x
1241x

C++17
CPU target
GPU target (1 second)

33.7x
1355x

C++ HLS sequential with PIPELINE (next slides)

Overall Approach – FPGA Implementation

The distances are sent from the host

 Loaded in global memory and accessed in the kernel via the m_axi adapter

Critical for acceleration…

 Implement an efficient permutation algorithm

 Run lookups with on-chip memories

Efficient Permutation – Factoradics!

auto compute(const unsigned long int i_, const uint16_t distances[N][N])
{
#pragma HLS INLINE

unsigned long int i = i_;
int perm[N] = {0};

for (int k = 0; k < N; ++k) {
perm[k] = i / factorial(N - 1 - k);
i = i % factorial(N - 1 - k);

}

for (char k = N - 1; k > 0; --k)
for (char j = k - 1; j >= 0; --j)
perm[k] += (perm[j] <= perm[k]);

cout << "getDistance: "<< getDistance(perm,distances) << endl;
return getDistance(perm,distances);

}

1. Represent the index in its factorial
base (first loop)

2. Create a permutation array with the
factorial representation (second loop)

On-Chip Memory Lookups

Lookups with on-chip memories

 Enough ports all necessary reads at each clock cycle

Distances calculated at each clock cycle

template<typename T>
unsigned int getDistance(const T perm[N], const uint16_t distances[N][N])
{
unsigned int ret = 0;
for(int i = 0; i < N-1; ++i)
ret += distances[perm[i]][perm[i+1]];

return ret;
}

ret+

distances

RAM 1WnR

RAM

RAM

RAM

Results – TSP with 13 Cities

1 43.7 32.1 30.5

1073
1248 1355

7556

Sequential C++ threads OpenMP OpenACC
(manual)

OpenACC(GPU) CUDA (GPU) C++17 (GPU) C++ (FPGA)

CPU

GPU

FPGAAcceleration Factor Relative to “Sequential” on CPU

Acceleration
Factor

Experiments

0.18s

Results – TSP with 13 Cities

7,500x speedup

 2% LUTs(*)

 2.1 W (*) of dynamic power @300MHz

0.18s

PowerUtilization Floorplan (VU9P)

Yellow: On-chip storage
Magenta: Permutations

(*): Based on UltraScale+ VU9P

Summary and Wrap-up

Summary

Vitis enables C++ applications

Directives parallelize the code implementation

Compute intensive algorithms mapped effectively onto FPGAs

 … thanks to on-chip RAM, micro-arch restructuring and efficient data types

Resources

Take a test drive! Try Vitis in the cloud or get an acceleration card!

Refer to the Vitis getting started examples here (including C++ kernels):

 https://github.com/Xilinx/Vitis_Accel_Examples

Point to the Vitis In-Depth Tutorials repo:

 https://xilinx.github.io/Vitis-Tutorials/master/docs/index.html

Check out the Xilinx Developer Site!

 Find tutorials, onboarding, application examples, and documentation to get started

 https://developer.xilinx.com

Download Vitis from Xilinx.com today!

 https://www.xilinx.com/support/download.html

38

https://github.com/Xilinx/Vitis_Accel_Examples
https://github.com/Xilinx/Vitis_Accel_Examples
https://developer.xilinx.com/

Thank you!

