y a

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide

SF-116303-CD , Issue 9

2019/09/26 12:43:34

Xilinx, Inc

TCPDirect User Guide ‘SOLARFLARE”

A XILINX COMPANY

TCPDirect User Guide

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx
products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all
faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY,
INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR
FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,
including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct,
indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of
loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was
reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which can be
viewed at https://www.xilinx.com/legal.htm#tos.

Onload is licensed under the GNU General Public License (Version 2, June 1991). See the LICENSE file in the
distribution for details. The Onload Extensions Stub Library is Copyright licensed under the BSD 2-Clause License.

You will not disclose to a third party the results of any performance tests carried out using Onload, Cloud Onload or
EnterpriseOnload without the prior written consent of Xilinx, Inc.

A list of patents associated with this product is at http://www.solarflare.com/patent.
AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE
IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A
VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE
CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY DESIGN”). CUSTOMER
SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS,
THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY
APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

Copyright

© Copyright 2019 Xilinx, Inc. Xilinx, the Xilinx logo, Solarflare, Onload, TCPDirect, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the
property of their respective owners.

SF-116303-CD

Last Revised: September 2019

Issue 9

Issue 9 © Copyright 2019 Xilinx, Inc iii

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
http://www.solarflare.com/patent

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide

© Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide SOLARFLARE®

Contents A XILINX COMPANY

Contents

1 TCPDirect 1
1.1 Introduction L e e 1

2 What's New 3
2.1 Bugfixes. e 3

3 Overview 5
3.1 Platforms L e e 5
3.2 CompoNeNtS e e e e e e e e e e e e 5
3.3 Capabilities and Restrictions L 6
3.3.1 Protocols e 6

3.3.2 OS . ee 6

3.3.3 Network Interface Configuration 7

3.4 How TCPDirect Increases Performance i 7
3.4.1 Overhead e e 7

3.4.2 Latency e e 8

343 Bandwidth L 8

3.4.4 Scalability e e e e 8

3.5 Requirements L e e e e 8
3.5.1 Adapter e e e 8

352 License e e 9

353 Onload e e e 9

3.54 HugePages e e 9

355 PlO . . 9

Issue 9 © Copyright 2019 Xilinx, Inc v

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY Contents
4 Concepts 1
4.1 Stackso e e e e 11
4.2 Zockets e e e 11
421 TCPzockets e e e e 11

422 UDPzockets e e e 12

423 Waitables e 12

4.3 Multiplexers o e e e e e 12
4.4 TXalternatives L e e 12
45 Cut-through PIO e e e 12
4.6 Delegatedsends L e e e e 13

5 Example Applications 15
5.1 zfudppingpong« . o e e e e e e e e e e 15
511 Usage o e 15

5.2 ZflCppingpoNg e e e e e e e e 16
521 Usage L 16

5.3 zfallpingpong e e e e 16
5.4 zfsink . . L e e e e e 16
541 Usage o e 16

5.5 zflepmipong e e e e 17
551 Usage o 17

5.6 exchange e e 17
5.7 trader_tcpdirect_ds_efvi L e 17
571 USage e 17

5.8 Building the Example Applications L 18

vi © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide SOLARFLARE®

Contents A XILINX COMPANY
6 Using TCPDirect 19
6.1 Components e e e e e e e e 19
6.2 Compilingand Linking o e e e e e 19
6.2.1 Headerfiles e 19
6.2.2 LinKiNg L e e e 19
6.2.3 Debugging e e e e e 20
6.3 General e e e 20
6.4 Usingstacks L e e e e e 21
6.5 Usingzockets L e e e e e 21
6.6 UDPreceive e e e e 21
6.7 UDPsend e e e e 22
6.8 TCPIistening L e e e e 22
6.9 TCPsendandreceive o o i i i i e e e e e 23
6.10 Alternative TX QUEUES« o o L i e e e e e e e 24
6.11 Epoll—muxer.h e 26
6.12 Stack polling o e e e e e 27
6.13 Cut-through PIO e e 28
6.13.1 Underrun, poisoning and fallback: 28
6.13.2 CTPIOdiagnostics i e e e e e e 28
6.14 Delegatedsends L e 29
6.15 Timestamps e e e e e e e e 29
6.16 VLANS 30
6.17 Miscellaneous L e e e 30
6.18 Errorsissued by newer C++ compilers L Lo 30
6.19 zf stackdump L e e 30
6.19.1 Usage o o e 31
6.19.2 stackdumpoutput: stack 31
6.19.3 stackdump output: UDP RX 32
6.19.4 stackdumpoutput: UDP TX e e 32
6.19.5 stackdumpoutput: TCP TX/RX o o e 32
Issue 9 © Copyright 2019 Xilinx, Inc vii

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY Contents
7 Worked Examples 35
7.1 UDPpingpongexample e e e e 35
7.2 TCPpingpongexample o o e e e e e e e 36

8 Attributes 39
8.1 alt_buf size Attribute Reference e 40
8.2 alt_count Attribute Reference 40
8.3 arp_reply_timeout Attribute Reference o Lo L 4
8.4 ctpio Attribute Reference L L 41
8.5 ctpio_mode Attribute Reference e 42
8.6 interface Attribute Reference L 43
8.7 log_file Attribute Reference L L 43
8.8 log_format Attribute Reference oL 44
8.9 log_level Attribute Reference L 44
8.10 max_tcp_endpoints Attribute Referenceo o oL Lo 45
8.11 max_tcp_listen_endpoints Attribute Referenceo oo oL 46
8.12 max_tcp_syn_backlog Attribute Reference oL Lo oL 46
8.13 max_udp_rx_endpoints Attribute Referenceo oL 47
8.14 max_udp_tx_endpoints Attribute Reference oL Lo 47
8.15 n_bufs Attribute Reference L L e e 48
8.16 name Attribute Reference L 48
8.17 pio Attribute Reference L 49
8.18 reactor_spin_count Attribute Reference L L 50
8.19 rx_ring_max Attribute Reference L L 50
8.20 rx_ring_refill_batch_size Attribute Reference oo Lo 51
8.21 rx_ring_refill_interval Attribute Reference L 51
8.22 rx_timestamping Attribute Reference L Lo Lo 52
8.23 tcp_alt_ack_rewind Attribute Reference Lo 52
8.24 tcp_delayed_ack Attribute Referenceo 53
8.25 tcp_finwait_ms Attribute Reference oL 53
8.26 tcp_initial_cwnd Attribute Referenceo o oL 54
8.27 tcp_retries Attribute Reference oL L 54
8.28 tcp_syn_retries Attribute Reference Lo oL L 55
8.29 tcp_synack_retries Attribute Reference oo oL Lo 55
8.30 tcp_timewait_ms Attribute Reference Lo 56
8.31 tcp_wait_for_time_wait Attribute Reference oL o 56
8.32 tx_ring_max Attribute Reference L Lo 57
8.33 tx_timestamping Attribute Reference 57
viii © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Contents

SOLARFLARE®

A XILINX COMPANY

9 Data Structure Index

9.1 Data Structures e e e

10 File Index

10.1 FileList e

11 Data Structure Documentation

11.1 zf attr StructReference oL o
11.1.1 Detailed Description oo,

11.2 zf_ds Struct Referenceo Lo
11.2.1 Detailed Description Lo
11.2.2 Field Documentation
11.221 cong_wnd

11.2.22 delegated wnd. oo,

11223 headers

11.224 headers_len

11.225 headers size

11.22.6 ip_len_ offset oL,

11.22.7 ip_tcp_hdrlen oL

11228 MSS. o e

11229 reserved e
11.2210send wnd e

11.2.211 tcp_seq_offset

11.3 zf_muxer_set Struct Reference
11.3.1 Detailed Description L

11.4 zf_pkt_report Struct Referenceo
11.4.1 Detailed Descriptiono oo
11.4.2 Field Documentation
11421 bytes

11422 flags o .

59

Issue 9 © Copyright 2019 Xilinx, Inc

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY Contents
11.4.2.3 start o e 68

11.4.24 timestamp e 68

11.5 zf stack Struct Reference e 68
11.5.1 Detailed Description e 69

11.6 zf waitable Struct Reference e e 69
11.6.1 Detailed Description e e 69

11.7 zft Struct Reference L 69
11.7.1 Detailed Description e 70

11.8 zft_handle Struct Reference e 70
11.8.1 Detailed Description e 70

11.9 zft_msg Struct Reference 70
11.9.1 Detailed Description 70
11.9.2 Field Documentation e 71
11.9.2.1 flags o e e e e e e 71

11.9.2.2 00V . . o o e 71

11.9.2.3 dovent o e e 71

11.9.2.4 pkis_left o 71

11.9.2.5 reserved 72

11.10zftl Struct Reference 72
11.10.1 Detailed Description e 72
11.11zfur Struct Reference o L e 72
11.11.1 Detailed Description e 72
11.12zfur_msg Struct Reference L e e 73
11.12.1 Detailed Description e 73
11.12.2 Field Documentation e 73
11.12.2.1 dgrams_left oL 73

111222 flags o e e e 73
111223100V . . o o e 74

111224 00ovent . . . o L o e 74

111225 reserved L e e 74

11.13zfut Struct Reference 74
11.13.1 Detailed Description 74

© Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Contents

SOLARFLARE®

A XILINX COMPANY

12 File Documentation

12.1 attr.h File Reference
12.1.1 Detailed Description

12.1.2 Function Documentation

12.1.2.1

12.1.2.2

12.1.2.3

12.1.2.4

12.1.2.5

12.1.2.6

12.1.2.7

12.1.2.8

12.1.2.9

12.1.2.10 zf_attr_set_int()

12.1.2.11 zf_attr_set_str()

12.2 muxer.h File Reference
12.2.1 Detailed Description

12.2.2 Function Documentation

12.2.2.1

12.2.2.2

12.2.2.3

12.2.2.4

12.2.2.5

12.2.2.6

12.2.2.7

12.2.2.8

12.2.2.9

12.3 types.h File Reference

12.3.1 Detailed Description

zf attralloc()
zf attr doc()
zf attr dup()o
zf attr free() oo
zf attr get int()
zf attr_get str()o
zf attr reset()
zf_attr set from_fmt()

zf_attr set from_str()

zf muxer_add()
zf muxer_alloc(),
zf muxer_del() Lo
zf muxer_free() oo
zf muxer_mod()
zf muxer_ wait()
zf waitable_event(),
zf waitable_fd_get()

zf waitable_fd_prime()

75

Issue 9

© Copyright 2019 Xilinx, Inc

Xi

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY Contents
12.3.2 Macro Definition Documentation 87
12.3.21 ZF_PKT_REPORT_CLOCK_SET it it i i e 87

12.3.22 ZF_PKT_REPORT_DROPPED 87

12.3.23 ZF_PKT_REPORT_IN_SYNC it 88

12.3.24 ZF_PKT_REPORT_NO_TIMESTAMP 88

12.3.25 ZF_PKT_REPORT_TCP_FIN et 88

12.3.2.6 ZF_PKT_REPORT_TCP_RETRANS 88

12.3.2.7 ZF_PKT_REPORT_TCP_SYN i 88

12.4 x86.h File Reference 89
12.4.1 Detailed Description e e 89

12,5 zf.h File Reference o e 89
12.5.1 Detailed Description e 89

12.6 zf alts.h File Reference e 89
12.6.1 Detailed Description 90
12.6.2 Function Documentation 90
12.6.2.1 zf_alternatives_alloc() o oL 90

12.6.2.2 zf_alternatives_cancel() 90

12.6.2.3 zf_alternatives_free_space() Lo 91

12.6.2.4 zf_alternatives_query_overhead tcp() 91

12.6.2.5 zf alternatives_release() e 92

12.6.2.6 zf_alternatives_send() L 92

12.6.2.7 zft_alternatives_queue() L 93

12.7 zf ds.h File Reference e e e e 94
12.7.1 Detailed Description e e e 95
12.7.2 Enumeration Type Documentation o 95
12.7.21 zf delegated_send_rc e 95

12.7.3 Function Documentation 95
12.7.3.1 zf_delegated_send_cancel() Lo 95

12.7.3.2 zf_delegated_send_complete() oL 96

Xii © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide SOLARFLARE®

Contents A XILINX COMPANY
12.7.3.3 zf_delegated_send_prepare() o oo e 96

12.7.3.4 zf_delegated_send_tcp_advance() 97

12.7.3.5 zf_delegated_send_tcp_update() 98

12.8 zf_platform.h File Reference 98
12.8.1 Detailed Description e e e 98

12.9 zf reactor.h File Reference e 98
12.9.1 Detailed Description 99
12.9.2 Function Documentation 99
12.9.2.1 zf_reactor_perform() 99

12.9.2.2 zf_reactor_perform_attr() L 99

12.9.2.3 zf stack_has_pending_events() 0. 100

12.9.2.4 zf_stack_has_pending_work()o Lo 101
12.10zf_stack.h File Reference e e 101
12.10.1 Detailed Description e 102
12.10.2 Macro Definition Documentation o 102
12.10.2.1 EPOLLSTACKHUP e e e e e 102

12.10.3 Function Documentation 102
12.10.3.1 zf_deinit() 102

12.10.3.2 zF init() e 102

12.10.3.3 zf_stack_alloc() e e e 103

12.10.3.4 zf_stack free() o 103

12.10.3.5 zf_stack_is_quiescent() L 104

12.10.3.6 zf_stack_to_waitable() Lo 104
12.11zf_tep.h File Reference o 105
12.11.1 Detailed Description e 106
12.11.2 Function Documentation 106
12.11.21 zft_addr_bind() 106

1211.22 zft_alloc() o o e 107

1211.23 zft_connect() e e 108

Issue 9 © Copyright 2019 Xilinx, Inc Xiii

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY Contents
12.11.2.4 ZfL_error() o o e e e e 108
121125 Zffre€() .« « o o o o e e 109
12.11.2.6 zft_get_header_size() L 109
1211.2.7 zft_get. mss() e 110
12.11.2.8 zft_get_tx_timestamps() e 110
12.11.2.9 zft_getname() L e e e e 110
12.11.210ft_handle_free()o 111
12.11.2.11zft_handle_getname() Lo 111
12.11.2.12zft_pkt_get_timestamp() 112
12.11.213ft_ recv() o o e e e e e e e e e 112
12.11.214zft_send() e e e e e e e 113
12.11.215ft_send_single() Lo 114
12.11.2.16zft_send_single_warm()o 115
12.11.217zft_send_space() o o e 116
12.11.2.1&ft_shutdown_tx() e 116
1201.24%ft State() . . . v o e e e e 117
12.11.2.20ft_to_waitable() 117
12.11.2.21zft_zc_recv() o 117
12.11.2.22zft_zc_recv_done() o o o e e 118
12.11.2.2%ft_zc recv_done_some() o o e e e e e e e e 118
12.11.2.24zft_accept() o o e 119
12.11.2.254t free() o o e 119
12.11.2.26zftl_getname() L e 120
12.11.2.27At_listen() o o e 120
12.11.2.2&ftl_to_waitable() e 121

12.12zf_udp.h File Reference« . . . o o e 121
12.12.1 Detailed Description e 123
12.12.2 Function Documentation 123

12.12.21 zfur_addr_bind() e 123

Xiv © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide

SOLARFLARE®

Contents A XILINX COMPANY
12.12.2.2 zfur_addr_unbind() e e e 123
12.12.2.3 zfur_alloc() o e 124
12.12.2.4 zfur_free() o . o e e 124
12.12.2.5 zfur_pkt_get_header() 125
12.12.2.6 zfur_pkt_get_timestamp()o 125
12.12.2.7 zfur_to_waitable() 126
12.12.2.8 zfur_zc_recv() o o e e e 126
12.12.2.9 zfur_zc_recv_done() e e e e e e e 127
12.12.210fut_alloc() L 127
1212.2.112fUt_free() . . o o o e e e e 128
12.12.2.12zfut_get_header_size() Lo 128
12.12.213fut_get_ mss() e 129
12.12.2.14zfut_get_tx_timestamps()o 129
12122 15z0ut_send() L. 129
12.12.216zfut_send_single() Lo 130
12.12.2.17zfut_send_single_warm() 131
12.12.2.1&fut_to_waitable() 131

Index 133

Issue 9 © Copyright 2019 Xilinx, Inc XV

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY Contents

XVi © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

TCPDirect A XILINX COMPANY

Chapter 1

TCPDirect

Solarflare's TCPDirect is highly accelerated network middleware. It uses similar techniques to Onload, but delivers
lower latency. In order to achieve this, TCPDirect supports a reduced feature set and uses a proprietary API.

1.1 Introduction

The TCPDirect API provides an interface to an implementation of TCP and UDP over IP. This is dynamically linked
into the address space of user-mode applications, and granted direct (but safe) access to the network-adapter
hardware. The result is that data can be transmitted to and received from the network directly by the application,
without involvement of the operating system. This technique is known as 'kernel bypass'.

Kernel bypass avoids disruptive events such as system calls, context switches and interrupts and so increases the
efficiency with which a processor can execute application code. This also directly reduces the host processing
overhead, typically by a factor of two, leaving more CPU time available for application processing. This effect is
most pronounced for applications which are network intensive.

The key features of TCPDirect are:

» User-space: TCPDirect can be used by unprivileged user-space applications.
» Kernel bypass: Data path operations do not require system calls.

» Low CPU overhead: Data path operations consume very few CPU cycles.

» Low latency: Suitable for low latency applications.

» High packet rates: Supports millions of packets per second per core.

« Zero-copy: Particularly efficient for filtering and forwarding applications.

* Flexibility: Supports many use cases.

Issue 9 © Copyright 2019 Xilinx, Inc 1

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY TCPDirect

2 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ; SOLARFLARE®
What's New A XILINX COMPANY

Chapter 2

What's New

This chapter tells you what's new in this release of TCPDirect.

If you are not a previous user of TCPDirect, go to Overview.

2.1 Bug fixes

Various bugs have been fixed. For details, see the ChangeLog file.

Issue 9 © Copyright 2019 Xilinx, Inc 3

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY What's New

4 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Overview A XILINX COMPANY

Chapter 3

Overview

This part of the documentation gives an overview of TCPDirect and how it is often used.

3.1 Platforms

TCPDirect can be run on X2000-series and 8000-series Solarflare adapters with a suitable license (e.g. the 'Plus'
license).

TCPDirect can also be run on 7000-series adapters which require both the Onload license and a TCPDirect
license.

Refer to the Solarflare Server Adapter User Guide ‘Product Specifications’ for adapter details; for licensing queries,
please contact your sales representative.

TCPDirect is supported on the same Linux distributions as Onload. For details, refer to the Onload User Guide that
was supplied with the Onload package.

3.2 Components

TCPDirect is supplied as:

+ header files containing the proprietary public API

+ a binary library for linking into your application.

To use TCPDirect, you must have access to the source code for your application, and the toolchain required to
build it. You must then replace the existing calls for network access with appropriate calls from the TCPDirect API.
Typically this involves replacing calls to the BSD sockets API. Finally you must recompile your application, linking in
the TCPDirect library.

For more details, see Using TCPDirect.

If you do not have access to source code for your application, you can instead accelerate it with Onload.

Issue 9 © Copyright 2019 Xilinx, Inc 5

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide

Overview

3.3 Capabilities and Restrictions

TCPDirect supports a carefully selected feature set that allows it to run many real-world applications, without losing

performance to resource-intensive features that are seldom used.

Before porting an application to TCPDirect, you should ensure that it supports the features that you require. The
subsections below list the support for different features.

If your application requires features that are unsupported by TCPDirect, consider instead using Onload or ef_vi:

» Onload has higher latency than TCPDirect, but a full feature set.

Onload supports all of the standard BSD sockets API, meaning that no modifications are required to
POSIX-compliant socket-based applications being accelerated. Like TCPDirect, Onload uses kernel bypass
for applications over TCP/IP and UDP/IP protocols.

» Ef_vi has even lower latency than TCPDirect, but operates at a lower level.

Ef_viis a low level OSlI level 2 interface which sends and receives raw Ethernet frames, and exposes many
of the advanced capabilities of Solarflare network adapters. But because the ef_vi AP| operates at this low
level, any application using it must implement the higher layer protocols itself, and also deal with any

exceptions or other unusual conditions.

3.3.1 Protocols

The table below shows the protocols that are supported by TCPDirect and (for comparison) by Onload:

Protocol TCPDirect | Onload
IPv4 Yes Yes
IPv6 No No
UDP Yes Yes
TCP Yes Yes
TCP header options (e.g. timestamps) | No Yes
VLANs Yes Yes
Multicast RX Yes Yes
Multicast TX Yes Yes
Multicast loopback No Yes

33.2 0OS

The table below shows the OS features that are supported by TCPDirect and (for comparison) by Onload:

(013] TCPDirect Onload
Preload No Yes
Static link Yes Yes
Dynamic link Yes Yes
Direct API Yes Yes
Bonding Yes Yes
Teaming Yes Yes
Send/receive via non-SFC interface No Yes
6 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Overview A XILINX COMPANY
0S TCPDirect Onload
Multiple threads Yes Yes
Multiple processes Yes Yes
Sharing stacks between threads and processes | No Yes
Multiple stacks Yes Yes
fork() Yes, with limitations (no shared stacks or zockets) | Yes
dup() N/A (no file descriptors) Yes
User-level only Yes No
Interrupts No Yes
Huge pages Yes Yes

As mentioned in the table above, TCPDirect stacks and zockets cannot be shared between processes. The one
partial exception is that a stack may be used in a fork () child if it is not used in the parent after calling fork ().

3.3.3 Network Interface Configuration

TCPDirect can accelerate traffic over Solarflare network interfaces, and will respect the operating system's address
and routing configuration. It can also accelerate traffic over bonds whose slaves are all Solarflare interfaces. The
bonding implementations provided by both the bonding and teaming drivers are supported. This functionality
is subject to the following restrictions:

* Only LACP and active-backup modes are supported.
» With LACP, the only supported hashing modes are layer2, layer2+3, and layer3+4.

» There is no support for the addition of slaves to bonds during the lifetime of the stack, and nor is there
support for the removal of slaves from bonds. Failover between interfaces in a bond is supported, however.

TX alternatives are not supported on stacks created on bonded interfaces.

3.4 How TCPDirect Increases Performance

TCPDirect can significantly reduce the costs associated with networking by reducing CPU overheads and
improving performance for latency, bandwidth and application scalability.

3.4.1 Overhead

Transitioning into and out of the kernel from a user-space application is a relatively expensive operation: the
equivalent of hundreds or thousands of instructions. With conventional networking such a transition is required
every time the application sends and receives data. With TCPDirect, the TCP/IP processing can be done entirely
within the user-process, eliminating expensive application/kernel transitions, i.e. system calls. In addition, the
TCPDirect TCP/IP stack is highly tuned, offering further overhead savings.

The overhead savings of TCPDirect mean more of the CPU's computing power is available to the application to do
useful work.

Issue 9 © Copyright 2019 Xilinx, Inc 7

‘SOLARFLARE‘” TCPDirect User Guide

A XILINX COMPANY Overview

3.4.2 Latency

Conventionally, when a server application is ready to process a transaction it calls into the OS kernel to perform a
'receive’ operation, where the kernel puts the calling thread 'to sleep’ until a request arrives from the network.
When such a request arrives, the network hardware 'interrupts' the kernel, which receives the request and 'wakes'
the application.

All of this overhead takes CPU cycles as well as increasing cache and translation lookaside-buffer (TLB) footprint.
With TCPDirect, the application can remain at user level waiting for requests to arrive at the network adapter and
process them directly. The elimination of a kernel-to-user transition, an interrupt, and a subsequent user-to-kernel
transition can significantly reduce latency. In short, reduced overheads mean reduced latency.

3.4.3 Bandwidth

Because TCPDirect imposes less overhead, it can process more bytes of network traffic every second. Along with
specially tuned buffering and algorithms designed for high speed networks, TCPDirect allows applications to
achieve significantly improved bandwidth.

3.4.4 Scalability

Modern multi-core systems are capable of running many applications simultaneously. However, the advantages
can be quickly lost when the multiple cores contend on a single resource, such as locks in a kernel network stack
or device driver. These problems are compounded on modern systems with multiple caches across many CPU
cores and Non-Uniform Memory Architectures.

TCPDirect results in the network adapter being partitioned and each partition being accessed by an independent
copy of the TCP/IP stack. The result is that with TCPDirect, doubling the cores really can result in doubled
throughput.

3.5 Requirements

3.5.1 Adapter

The following list identifies the minimum driver and firwmare requirements for adapters running TCPDirect
applications:

* Net driver minimum: 4.10.1011 - this is available in the openonload-201606-u1 and Enterprise Onload 5.0
distributions.

* Firmware minimum: 6.2.3.1000

» Firmware variant: The adapter must be configured to use the ultra-low-latency firmware variant. The
firmware variant can be identified/set using the Solarflare sfboot utility from the Solarflare Linux Utilities
package (SF-107601-LS).

8 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Overview A XILINX COMPANY

3.5.2 License

SFNB8000 series adapters - require an Onload license and TCPDirect license. The 'Plus' license will include both
required licenses.

X2000 series adapters - require an Onload license and TCPDirect license. The 'Plus’ license will include both
required licenses.

SFN7000 series adapters - require an Onload license and TCPDirect license.

Installed licenses can be identified using the Solarflare sfkey utility from the Solarflare Linux Utilities package
(SF-107601-LS).

sfkey

enp4s0f0, enpd4s0fl: 712200205071234567890123 (Flareon)
Product name Solarflare SFN7122F SFP+ Server Adapter
Serial number 712200205071234567890123
Installed keys Onload, TCP Direct

enp5s0£f0, enp5s0fl: 000F5341C700 (8xxx)

Product name Solarflare Flareon Ultra 8000 Series 10G Adapter
Serial number 852200203001234567890123
Installed keys Plus

3.5.3 Onload

Openonload from version 201606-u1 or EnterpriseOnload 5.0 must be installed on the server.

3.5.4 Huge Pages

TCPDirect requires the allocation of huge pages. Huge pages are needed for each stack created - approximate
mininum 10 huge pages per stack, the number of zockets created and number of packet buffers required. Some
experimentation is needed to identify suitable page allocation needs for an application, but a general
recommendation would be to allocate at least 40 huge pages per stack and then to use zf_stackdump to identify
packet buffer usage.

Further information including allocation commands for huge pages is available in the Onload User Guide
(SF-104474-CD).

3.5.5 PIO

TCPDirect uses PIO packet buffers and these are available by default from the adapter driver. Users should be
aware that P1O buffers are a limited resource used by the driver for non-accelerated sockets, by Onload stacks
which require 1 PIO buffer per VI created and by the TCPDirect application which require 1 PIO buffer per stack.

To ensure there are sufficient PIO buffers available, it may be necessary to restrict or prevent the driver and Onload
non-critical sockets from using PIO.

Further information about PIO including configuration commands can be found in the Onload User Guide
(SF-104474-CD).

Issue 9 © Copyright 2019 Xilinx, Inc 9

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Overview

10

© Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Concepts A XILINX COMPANY

Chapter 4

Concepts

This part of the documentation describes the concepts involved in TCPDirect.

4.1 Stacks

TCPDirect can have multiple network stacks. Each stack accesses a separate partition of the network adaptor,
which improves security. Access to a given stack is not thread-safe, so typically each thread uses a separate
TCPDirect stack. This model avoids problems of lock-contention and cache-line bouncing and allows for scalability
in a natural way.

4.2 Zockets

TCPDirect endpoints are represented by zockets. Zockets are similar to BSD or POSIX sockets, but are
categorized by protocol and state into different zocket types.

Each type of zocket is represented by its own distinct data structure, and is handled by its own API calls. Because
the type of zocket is known, code can be more efficient.

Zockets cannot be converted from one type to another.

4.2.1 TCP zockets
For TCP, a new zocket can be listening or non-listening:

+ a listening zocket is represented by a TCP listening zocket data structure

» a non-listening zocket is represented by a TCP zocket handle.
If the zocket is later connected, a TCP zocket data structure is created and returned. This occurs if:

 a connection to a TCP listening zocket is accepted

« a TCP zocket handle is connected.

Issue 9 © Copyright 2019 Xilinx, Inc 11

‘SOLARFLARE‘” TCPDirect User Guide

A XILINX COMPANY Concepts

4.2.2 UDP zockets

For UDP, a zocket can be used to receive or transmit:

* areceive zocket is represented by a UDP receive zocket data structure

+ atransmit zocket is represented by a UDP transmit zocket data structure

4.2.3 Waitables

Waitables are handles that represent zockets and are used with the multiplexer interface.

Each type of zocket has an API call to return a waitable representing the zocket.

4.3 Multiplexers

A multiplexer (or muxer) allows multiple zockets to be polled for activity through a single call. The interface and
behaviour are similar to the standard Linux epoll mechanism.

Each multiplexer is associated with a stack and can only be used to poll zockets from that stack. Zockets
(represented by waitables) can be added to a multiplexer together with the set of events that the application is
interested in. A zocket can only be a member of one multiplexer at a time.

When a multiplexer is polled the corresponding stack is polled for network events, and a list of zockets that are
ready (readable, writable etc.) is returned.

4.4 TX alternatives

TX alternatives provide multiple alternative queues for transmission, that can be used to minimize latency. Different
possible responses can be pushed through the TX path on the NIC, and held in different queues ready to transmit.
When it is decided which response to transmit, the appropriate alternative queue is selected, and the queued
packets are sent. Because the packets are already prepared, and are held close to the wire, latency is greatly
reduced.

Due to differences in hardware architecture, the TX alternatives feature is not available on SFN7000-series
adapters. It is also not supported on stacks running on bonded interfaces.

4.5 Cut-through PIO

CTPIO (Cut-through PIO) improves send latency by moving packets from the PCle bus to network port with
minimal latency. It can be used in three modes:

1. Cut-through: The frame is transmitted onto the network as it is streamed across the PCle bus. This mode
offers the best latency.

2. Store-and-forward: The frame is buffered on the adapter before transmitting onto the network.

3. Store-and-forward with poison disabled: As for (2), except that it is guaranteed that frames are never

poisoned. When this mode is enabled on any VI, all Vis are placed into store-and-forward mode.

Due to differences in hardware architecture, CTPIO is not available on SFN8000-series or SFN7000-series
adapters.

12 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Concepts A XILINX COMPANY

4.6 Delegated sends

Delegated sends allow the user to have TCPDirect handle the TCP state machine while performing critical sends
through another mechanism (such as ef_vi) to achieve lower latency. This is analogous both in principle and in the
arrangement of the API to the delegated sends feature of Onload.

Issue 9 © Copyright 2019 Xilinx, Inc 13

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Concepts

14

© Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Example Applications A XILINX COMPANY

Chapter 5

Example Applications

Solarflare TCPDirect comes with a range of example applications - including source code and make files. This is a
quick guide to using them, both for testing TCPDirect's effectiveness in an environment, and as starting points for
developing applications.

Application Description

zfudppingpong Measure round-trip latency with UDP.

zftcppingpong Measure round-trip latency with TCP.

zfaltpingpong Measure round-trip latency with TCP TX Alternatives.
zfsink Receive stream of UDP datagrams and demonstrate muxer.
zftcpmtpong Use of TCPDirect in multi-threaded applications.

exchange Simplified electronic trading exchange.
trader_tcpdirect_ds_efvi | Simplified electronic trader.

5.1 zfudppingpong

The zfudppingpong application passes messages back and forth between two hosts using UDP, and uses this to
measure the average round-trip latency.

5.1.1 Usage

Server:

export ZF_ATTR=interface=ethX
zfudppingpong pong serverhost:serverport clienthost:clientport

Client:

export ZF_ATTR=interface=ethX
zfudppingpong ping clienthost:clientport serverhost:serverport

where:

« ethXis the name of the network interface to use,

* serverhost and clienthost identify the server and client machines (e.g. hostname or 192.168.0.10),
and

 serverport and clientport are port numbers of your choosing on the server and client machines

There are various additional options. See the help text for details.

Issue 9 © Copyright 2019 Xilinx, Inc 15

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY Example Applications

5.2 zftcppingpong

The zftcppingpong application passes messages back and forth between two hosts using TCP, and uses this to
measure the average round-trip latency. It illustrates actively and passively opened TCP connections, and has an
option to use a muxer.

5.2.1 Usage
Server:

export ZF_ATTR=interface=ethX
zftcppingpong pong serverhost:serverport

Client:

export ZF_ATTR=interface=ethX
zftcppingpong ping serverhost:serverport

5.3 zfaltpingpong

The zfaltpingpong application illustrates use of the TX alternatives feature, which supports lower latency sends
with TCP.

Usage is as for zftcppingpong.

5.4 zfsink

The zfsink application demonstrates how to receive UDP datagrams, how to use the muxer, and the "waitable fd"
mechanism for integration with other I/O and blocking.

By default it traces the calls it makes, and this can be suppressed with the -q option.

5.4.1 Usage

export ZF_ATTR=interface=ethX
zfsink localaddr:port

localadddr should be an IP address on interface ethX, or a multicast address. There are various additional options
—run "zfsink -h" for details.

16 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Example Applications A XILINX COMPANY

5.5 zftcpmtpong

The zftcpmtpong application demonstrates how to use TCPDirect in an application that does sends and receives
on TCP sockets in separate threads.

By default it traces the calls it makes, and this can be suppressed with the -q option.

5.5.1 Usage

export ZF_ATTR=interface=ethX
zftcpmtpong localaddr:port

localadddr should be an IP address on interface ethX. This application accepts incoming TCP connections and
waits for messages to arrive. It sends on each connection an equal number of bytes as are received (although not
with the same contents).

5.6 exchange

The exchange application plays the role of a simplified electronic trading exchange. It is to be used in conjunction
with the trader_tcpdirect_ds_efvi application.

5.7 trader_tcpdirect_ds_efvi

The trader_tcpdirect_ds_efvi application demonstrates various techniques to reduce latency. These techniques are
often useful in electronic trading applications, and so this example takes the form of an extremely simplified
electronic trading system.

The exchange application provides a simplified electronic trading exchange, and this application provides a
simplified electronic trader.

A trader_onload_ds_efvi application demonstrates similar techniques for Onload.

For full details, see the README file in the tests/trade_sim directory.

5.7.1 Usage

For normal socket-based sends, run as follows:

Server: onload -p latency-best ./exchange mcast-intf
Client: . /trader_tcpdirect_ds_efvi mcast—-intf server
For "delegated" sends, run as follows:

Server: onload -p latency-best ./exchange mcast-intf
Client: . /trader_tcpdirect_ds_efvi -d mcast-intf server

where:

» mcast-intfis the multicast interface on the server or client machine (e.g. eth0)

« serveris the |P address of the server machine (e.g. 192.168.0.10)

There are various additional options. See the help text for details.

Issue 9 © Copyright 2019 Xilinx, Inc 17

‘SOLARFLARE“’ TCPDirect User Guide

A XILINX COMPANY Example Applications

5.8 Building the Example Applications

The TCPDirect example applications are built along with the Onload installation and should be present in the
openonload/build/gnu_x86_64/tests/zf_apps subdirectory.

Source code for the example applications is in the src/tests/zf_apps subdirectory.

To rebuild the example applications use the following procedure:

cd openonload/scripts/

export PATH="$PWD:$PATH"

cd ../build/gnu_x86_64/tests/zf_apps/
make clean

make

18 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ; SOLARFLARE®
Using TCPDirect A XILINX COMPANY

Chapter 6

Using TCPDirect

This part of the documentation gives information on using TCPDirect to write and build applications.

6.1 Components

All components required to build and link a user application with the Solarflare TCPDirect API are distributed with
Onload. When Onload is installed all required directories/files are located under the Onload distribution directory.

6.2 Compiling and Linking

6.2.1 Header files

Applications or libraries using TCPDirect include the z £ . h header which is installed into the system include
directory. For example:

#include <zf/zf.h>

6.2.2 Linking

The application will need to be linked either:

* with 1ibonload_zf_static.aand libciull. a, to link statically, or

* with 1ibonload_zf. so, to link dynamically.

All of the above libraries are deployed to the system library directory by onload_install.

TCPDirect provides a stable APl and ABI between the application and TCPDirect library. An application that works
with an older version of TCPDirect should also work with newer versions of TCPDirect. Exceptions to this are
noted in the Release Notes.

The TCPDirect user-space library and kernel drivers must always match. The best way to ensure this is to link to
TCPDirect dynamically. Then when the Onload packages are upgraded to a newer version both the user-space
and kernel components are upgraded together.

Applications that link to TCPDirect statically are effectively tied to a single version of Onload, and must be re-linked
when Onload packages are upgraded.

For those wishing to use TCPDirect in combination with Onload, it is possible to link either statically or dynamically
to TCPDirect and then to run the application with the on1oad wrapper in the usual way to allow the Onload
intercepts to take effect.

Issue 9 © Copyright 2019 Xilinx, Inc 19

‘SOLARFLARE‘” TCPDirect User Guide

A XILINX COMPANY Using TCPDirect

6.2.3 Debugging

By default, the TCPDirect libraries are optimized for performance, and in particular perform only a minimum of
logging and parameter-validation. To aid testing, debug versions of the TCPDirect libraries are provided, which do
offer such validation and logging. As with the production libraries, these are available both as static and as shared
libraries.

To use the static debug library, an application must be linked against it explicitly, rather than being linked against
the production library. The debug library is not installed to the linker's default search path, and so the full path to
the library must be passed to the linker. The debug library is named 1ibonload_zf_static.a, asisthe
production library, but is installed to the z £ /debug subdirectory of the system library directory (typically
/usr/1ib64).

To use the shared debug library, the application should link as normal against the shared library as described in

the Linking section above, but when run should be invoked via the zf__debug wrapper. For example, an
application called app linked against the shared TCPDirect library will use the production library when invoked as

app

and will use the debug library when invoked as

zf_debug app

By default, the debug libraries emit the same logging messages as do the production libraries:

» Additional logging can be selectively enabled at application start-up by using the ZF_ATTR environment
variable to set the log_level attribute, as described in the Attributes chapter.

» As a convenience, the —1 option to the zf_debug wrapper will set the log_level attribute to the specified
value.

» Changing the log_level attribute while the application is running has no effect.

6.3 General

The majority of the functions in this API will return 0 on success, or a negative error code on failure. These are
negated values of standard Linux error codes as defined in the system's errno.h. errno itself is not used.

Most of the APl is non-blocking. The cases where this is not the case (e.g. zf_muxer_wait()) are highlighted in the
rest of this document.

The APl is not re-entrant, and so cannot be called from signal handlers.

The public API is defined by the headers in the z £ subdirectory of the system include directory (typically
/usr/include).

Attributes (defined by struct zf_attr) are used to pass configuration details through the API. This is similar to the
existing SolarCapture attribute system.

The following sections discuss the most common operations. Zocket shutdown, obtaining addresses, and some
other details are generally omitted for clarity — please refer to the suggested headers and example code for full
details.

20 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Using TCPDirect A XILINX COMPANY

6.4 Using stacks

Before zockets can be created, the calling application must first create a stack using the following functions:

int zf_stack_alloc(struct zf_attrx attr, struct zf_stack** stack_out);
int zf_stack_free(struct zf_stackx stack);

The attr parameter to zf_stack_alloc() configures various aspects of the stack's behavior. In particular, the
interface attribute specifies which network interface the stack should use, and the n_bufs attribute
determines the total number of packet buffers allocated by the stack. Packet buffers are required to send and
receive packets to and from the network, and also to queue packets on zockets for sending and receiving. A value
of n_bufs that is too small can result in dropped packets and in various API calls failing with ENOMEM. Please
see the Attributes chapter and the documentation for each API call for more details.

6.5 Using zockets

TCPDirect supports both TCP and UDP, but in contrast to the BSD sockets API the type of these zockets is explicit
through the API types and function calls and UDP zockets are separated into receive (RX) and transmit (TX) parts.

6.6 UDP receive

First allocate a UDP receive zocket:

int zfur_alloc(struct zfurx* us_out,
struct zf_stackx st,
const struct zf_attrx attr);

Then bind to associate the zocket with an address, port, and add filters:

int zfur_addr_bind(struct zfursx us,
struct sockaddrx laddr,
socklen_t laddrlen,
const struct sockaddr* raddr,
socklen_t raddrlen,
int flags);

Then receive packets:

int zfur_zc_recv(struct zfur* us,
struct zfur_msg* msg,
int flags);

zfur_zc_recv() will perform a zero-copy read of a single UDP datagram. The struct zfur_msg is completed to point
to the buffers used by this message. Because it is zero-copy, the buffers used are locked (preventing re-use by the
stack) until zfur_zc_recv_done() is called:

int zfur_zc_recv_done (struct zfurx us,
struct zfur_msg* msg);

Note

These functions can all be found in zf_udp.h.

Issue 9 © Copyright 2019 Xilinx, Inc 21

SOLARFLARE®

TCPDirect User Guide

A XILINX COMPANY Using TCPDirect
6.7 UDP send
First allocate a UDP TX zocket, using the supplied addresses and ports:
int zfut_alloc(struct zfut** us_out,
struct zf_stackx st,
const struct sockaddr* laddr,
socklen_t laddrlen,
const struct sockaddr* raddr,
socklen_t raddrlen,
int flags,
const struct zf_attr* attr);
Then perform a copy-based send (potentially using P1O) of a single datagram:
int zfut_send(struct zfutx us,
const struct iovecx iov,
int iov_cnt,
int flags);
Note
These functions can all be found in zf_udp.h.
6.8 TCP listening
A TCP listening zocket can be created:
int zftl_listen(struct zf_stackx st,
const struct sockaddr* laddr,
socklen_t laddrlen,
const struct zf_attr* attr,
struct zftl*+ tl_out);
And a passively opened zocket accepted:
int zftl_accept (struct zftlx tl,
struct zftxx ts_out);
Listening zockets can be closed and freed:
int zftl_free(struct zftl* ts);
Note
These functions can all be found in zf_tcp.h.
22 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Using TCPDirect A XILINX COMPANY

6.9 TCP send and receive

Allocate a TCP (non-listening) zocket. Unlike UDP, this can be used for both send and receive:

int zft_alloc(struct zf_stackx st,
const struct zf_attr* attr,
struct zft_handle** handle_out);

Bind the zocket to a local address/port:

int zft_addr_bind(struct zft_handlex handle,
const struct sockaddrx laddr,
socklen_t laddrlen,
int flags);

Then connect the zocket to a remote address/port. Note that the supplied zocket handle is replaced with a different
type as part of this operation. This function does not block (subsequent operations will return an error until it has
completed).

int zft_connect (struct zft_handlex handle,
const struct sockaddr* raddr,
socklen_t raddrlen,
struct zftx* ts_out);

Perform a zero-copy receive on the connected TCP zocket:

int zft_zc_recv(struct zft«* ts,
struct zft_msgx msg,
int flags);

The struct zft_msg is completed to point to the received message. Because it is zero-copy, this will lock the buffers
used until the caller indicates that it has finished with them by calling:

void zft_zc_recv_done (struct zftx ts,
struct zft_msgx msg);

Alternatively a copy-based receive call can be made:

int zft_recv(struct zftx* ts,
struct iovec* iov_out,
int iovent,
int flags);

A copy-based send call can be made, and the supplied buffers reused immediately after this call returns:

int zft_send(struct zftx ts,
const struct iovec* iov,
int iov_cnt,
int flags);

Note

These functions can all be found in zf_tcp.h.

Issue 9 © Copyright 2019 Xilinx, Inc 23

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY Using TCPDirect

6.10 Alternative Tx queues

Finally, for lowest latency on the fast path, a special API based around different alternative queues of data can be
used. The TX alternative APl is used to minimise latency on send, by pushing packets though the TX path on the
NIC before a decision can be made whether they are needed.

int zf_alternatives_alloc(struct zf_stack* stack,
const struct zf_attr* attr,
zf_althandle* alt_out);
int zf_alternatives_release(struct zf_stack* stack,
zf_althandle alt);
int zf_alternatives_send(struct zf_stackx stack,
zf_althandle alt);
int zf_alternatives_cancel (struct zf_stackx stack,
zf_althandle alt);
int zft_alternatives_queue (struct zftx ts,
zf_althandle alt,
const struct iovecx iov,
int iov_cnt,
int flags);
unsigned zf_alternatives_free_space (struct zf_stackx stack,
zf_althandle alt);

At the point when the decision to send is made the packet has already nearly reached the wire, minimising latency
on the critical path.

Multiple queues are available for this, allowing alternative packets to be queued. Then when it is known what
needs to be sent the appropriate alternative queue is selected. Packets queued on this are then sent to the wire.

When a packet is queued a handle is provided to allow future updates to the packet data. However, packet data
update requires requeuing all packets on the affected alternative, so incurs a time penalty.

The number of stacks that can use TX alternatives simultaneously is limited, and varies by adapter and port mode.
Typical limitations are as follows:

SFN8522, 2x10Gb: at least 6 stacks can use TX alternatives

SFN8542, 2x40Gb: at least 6 stacks can use TX alternatives

SFN8542, 1x40Gb + 2x10Gb: at least 3 stacks can use TX alternatives

« SFN8542, 4x10Gb: TX alternatives are not available.

Here is an example, where there are 2 things that need updates, A and B, but it's not yet known which will be
needed. The application has allocated 3 alternative queues, allowing them to queue updates for either A only, B
only, or both:

zf_alternatives_alloc(ts, attr, &queue_a);
zft_alternatives_queue (ts, queue_a, <UpdateA_data>, flags);
zf_alternatives_alloc(ts, attr, &queue_b);

zft_alternatives_queue (ts, queue_b, <UpdateB_data>, flags);
zf_alternative lloc(ts, attr, &queue_ab);

zft_alternatives_queue (ts, queue_ab, <UpdateA_data>, flags);
zft_alternatives_queue (ts, queue_ab, <UpdateB_data>, flags);

After running the above code, the queues are as follows:

* queue_a: <UpdateA_data>

+ queue_b: <UpdateB_data>

24 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Using TCPDirect A XILINX COMPANY

* queue_ab: <UpdateA_ data><UpdateB_data>

A single packet can only be queued on one alternative. In the example above each instance of an update is a
separate buffer.

When it is known which update is required the application can select the appropriate alternative. The
zf_alternatives_send() function is used to do this. This will send out the packets on the selected alternative. If other
alternatives have queued packets, you must flush them without sending them, as the TCP headers will then be
incorrect on these packets. The zf_alternatives_cancel() function is used to do this.

zf_alternatives_send(ts, queue_a);
zf_alternatives_cancel (ts, queue_b);
zf_alternatives_cancel (ts, queue_ab);

After running the above code, the packet containing <UpdateA_data> has been sent from queue_a, and all three
queues are empty and available for re-use.

Packet data cannot be edited in place once a packet has been queued on an alternative. If a queued packet needs
to be updated it must be requeued, together with all other packets currently queued on the alternative. The

zf_alternatives_cancel() and zft_alternatives_queue() functions are used to do this.

To avoid having to wait for the original alternative to be canceled before re-use a replacement alternative can be
supplied. The unwanted alternative could then be freed:

zf_alternatives_alloc(ts, attr, &queue_new_ab);
zft_alternatives_queue (ts, queue_new_ab, <UpdateA_edited_data>, flags);
zft_alternatives_qgueue (ts, queue_new_ab, <UpdateB_data>, flags);
zf_alternatives_release (ts, queue_ab);

Before running the above code, queue_ab contains unwanted data for editing:

* queue_ab: <UpdateA_data><UpdateB_data>

After running the above code, queue_new_ab contains the new edited data, and queue_ab has been freed:

» queue_new_ab: <UpdateA_edited_data><UpdateB_data>

Mixing zft_recv() with calls to zft_alternatives functions is OK. But receiving more than tcp_alt_ack rewind bytes of
data will trigger an automatic rebuild of the alternative, which might add a bit of latency to any other sends which
are happening at the time.

Mixing zft_send() or zft_send_single() with an alternative is OK, except if zft_send() or zft_send_single() is called
after a zft_alternatives_queue() call for the same zocket. In this situation:

+ any subsequent call to zf_alternatives_send() for the same alternative will fail (returning -EINVAL)

« the alternative must be cancelled before it can be re-used.

So this is OK:

Issue 9 © Copyright 2019 Xilinx, Inc 25

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY Using TCPDirect

zft_send(ts,<data>, 0);
alternatives_queue (ts, q, <data>, flags);
zf_alternatives_send(stack, q);

and this is also OK:

zft_alternatives_queue (ts, g, <data>, flags);
alternatives_send(stack, q);
zft_send(ts,<data>, 0);

but this is not OK:

zft_alternatives_queue (ts, g, <data>, flags);

send (ts,<data>, 0);
zf_alternatives_send(stack, q); // Will return -EINVAL

To determine the maximum packet size you can queue on an alternative, use the zf_alternatives_free space()
function.

fs = zf_alternatives_free_space(ts, queue_ab);

Note

These functions can all be found in zf_alts.h.

6.11 Epoll — muxer.h

The multiplexer allows multiple zockets to be polled in a single operation. The multiplexer owes much of its design
(and some of its datatypes) to epoll.

The basic unit of functionality is the multiplexer set implemented by zf _muxer_set. Each type of zocket (e.g. UDP
receive, UDP transmit, TCP listening, TCP) that can be multiplexed is equipped with a method for obtaining a
zf_waitable that represents a given zocket:

struct zf_waitable* zfur_to_waitable(struct zfur* us);
struct zf_waitablex zfut_to_wa able (struct zfut* us);
struct zf_waitablex zftl_to_waitable(struct zftl* tl);
struct zf_waitablex zft_to_waitable(struct zft* ts);

This zf_waitable can then be added to a multiplexer set by calling zf_muxer_add(). Each waitable can only exist in
a single multiplexer set at once. Each multiplexer set can only contain waitables from a single stack.

int zf_muxer_add(struct zf_muxer_setx,
struct zf_waitablex w,
const struct epoll_eventx event);

Having added all of the desired zockets to a set, the set can be polled using zf_muxer_wait().

int zf_muxer_wait (struct zf_muxer_setx,
struct epoll_eventx events,
int maxevents,
int64_t timeout);

26 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Using TCPDirect A XILINX COMPANY

This function polls a multiplexer set and populates an array of event descriptors representing the zockets in that set
that are ready. The events member of each descriptor specifies the events for which the zocket is actually ready,
and the data member is set to the user-data associated with that descriptor, as specified in the call to
zf_muxer_add() or zf_muxer_mod().

Before checking for ready zockets, the function calls zf_reactor_perform() on the set's stack in order to process
events from the hardware. In contrast to the rest of the API, zf_muxer_wait() can block. The maximum time to block
is specified timeout, and a value of zero results in non-blocking behaviour. A negative value for timeout will allow
the function to block indefinitely. If the function blocks, it will call zf_reactor_perform() repeatedly in a tight loop.

The multiplexer supports only edge-triggered events: that is, if zf_muxer_wait() reports that an zocket is ready, it
will not do so again until a new event occurs on that zocket, even if the zocket is in fact ready.

Waitables already in a set can be modified:

int zf_muxer_mod(struct zf_waitablex w,
const struct epoll_eventx event);

and deleted from the set:

int zf_muxer_del (struct zf_waitablex w);

These functions can all be found in muxer.h.

6.12 Stack polling

The majority of the calls in the APl are non-blocking and for performance reasons do not attempt to speculatively
process events on a stack. The API provides the following function to allow the calling application to request the
stack process events. It will return zero if nothing user-visible occurred as a result, or greater than zero if
something potentially user-visible happened (e.g. received packet delivered to a zocket, zocket became writeable,
etc). It may return false positives, i.e. report that something user-visible occurred, when in fact it did not.

int zf_reactor_perform(struct zf_stackx st);

Any calls which block (e.g. zf_muxer_wait()) will make this call internally. The code examples at the end of this
document show how zf _reactor_perform() can be used.

The API also provides the following function to determine whether a stack has work pending. It will return non-zero
if the stack has work pending, and therefore the application should call zf_reactor_perform() or zf_muxer_wait().

int zf_stack_has_pending_work (const struct zf_stackx st);

These functions can all be found in zf _reactor.h.

Issue 9 © Copyright 2019 Xilinx, Inc 27

SOLGRFLARE TCPDirect User Guide
A XILINX COMPANY Using TCPDirect

6.13 Cut-through PIO

When using a suitable adapter CTPIO is enabled by default in "sf-np" mode. The operation of CTPIO can be
controlled via the following TCPDirect attributes:

ctpio:

» 0: disable
* 1: enable (default)
« 2: enable, warn if not available

« 3: enable, fail if not available
ctpio_mode:

« ct: cut-through mode
« sf: store-and-forward mode

« sf-np: store-and-forward with no poisoning

6.13.1 Underrun, poisoning and fallback:

When using cut-through mode, if the frame is not streamed to the adapter at at least line rate, then the frame is
likely to be poisoned. This is most likely to happen if the application thread is interrupted while writing the frame to
the adapter. In the underrun case, the frame is terminated with an invalid FCS — this is referred to as "poisoning" —
and so will be discarded by the link partner. Cut-through mode is currently expected to perform well only on 10G
links.

CTPIO may be aborted for other reasons, including timeout while writing a frame, contention between threads
using CTPIO at the same time, and the CPU writing data to the adapter in the wrong order.

In all of the above failure cases the adapter falls-back to sending via the traditional DMA mechanism, which incurs a
latency penalty. So a valid copy of the packet is always transmitted, whether the CTPIO operation succeeds or not.

Normally only an underrun in cut-through mode will result in a poisoned frame being transmitted. In rare cases it is
also possible for a poisoned frame to be emitted in store-and-forward mode. If it is necessary to strictly prevent
poisoned packets from reaching the network, then poisoning can be disabled globally.

6.13.2 CTPIO diagnostics

The adapter maintains counters that show whether CTPIO is being used, and any reasons for CTPIO sends failing.
These can be inspected as follows:

ethtool -S ethX | grep ctpio

Note that some of these counters are maintained on a per-adapter basis, whereas others are per network port.

28 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Using TCPDirect A XILINX COMPANY

6.14 Delegated sends

TCPDirect supports delegated sends.

Note

This is a new API that is offered as a technology preview: it is functionally complete but has had limited
testing, and the APl may change in future releases. Customers are invited to experiment with the feature and
to direct feedback to support@solarflare.com.

Zockets are created through the TCPDirect APl as normal. The user can then request that TCPDirect delegate
sending to their application. Once the application has completed a send through (for example) ef_vi, it updates
TCPDirect and TCPDirect will handle the TCP state machinery, retransmissions, and so on.

There is an example application at
<onload_install_dir>/src/tests/zf_apps/zfdelegated_client.c
which is intended to be used in conjunction with the existing f_vi server test app at
<onload_install_dir>/src/tests/ef_vi/efdelegated_server.c

This APl is intended to be used by servers that make sporadic TCP sends on a zocket rather than large amounts of
bi-directional traffic. It should be used carefully as there are small windows of time (while the send has been
delegated to the application) where either the application or TCPDirect could be using out of date sequence or
acknowledgement numbers. It has been designed such that this should be harmless, but may still have the
potential to confuse other TCP implementations.

6.15 Timestamps

To enable RX timestamping, use the rx_timestamping attribute. To get the RX timestamps:

int zft_pkt_get_timestamp (struct zftx ts, const struct
zft_msg*x msg,
struct timespec* ts_out, int pktind,
unsignedx flags);

int zfur_pkt_get_timestamp (struct zfurx us, const struct
zfur_msg* msg,
struct timespec xts_out, int pktind,
unsigned* flags);

To enable TX timestamping, use the tx_timestamping attribute. To get the TX timestamps:

int zft_get_tx_timestamps (struct zft* ts, struct
zf_pkt_reportx reports,
int* count_in_out);

int zfut_get_tx_timestamps (struct zfutx us, struct

zf_pkt_reportx reports_out,
intx count_in_out);

These functions can all be found in zf_tcp.h and zf_udp.h.

Issue 9 © Copyright 2019 Xilinx, Inc 29

mailto:support@solarflare.com

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY Using TCPDirect

6.16 VLANSs

TCPDirect only supports a single interface per stack, and this restriction also applies to VLAN interfaces.
Therefore, a separate TCPDirect stack is required for each separate VLAN tagged interface used (even if the
underlying interface is the same).

The name of the VLAN tagged interface (e.g. enp4s0f0.100) must be specified in the interface attribute.
TCPDirect does not check VLAN tags when traffic is received. If traffic that arrives has a VLAN tag that does not

match that of the specified interface, it will still be received. This includes untagged traffic to a tagged interface and
vice-versa.

6.17 Miscellaneous

For TCP zockets you can discover the local and/or remote IP addresses and ports in use:

void zft_getname (struct zftx ts, struct sockaddr* laddr_out,
struct sockaddrx raddr_out);

These functions can all be found in zf_tcp.h and zf_udp.h.

6.18 Errors issued by newer C++ compilers

Applications using TCPDirect may fail to build with g++ version 6 and above with the message "error: flexible array
member 'zft_msg::iov' not at end of 'struct my_msg". To work around this issue, application code may be modified
from:

struct my_msg {
zft_msg msg;
iovec iovI[1l];

}i

to:

typedef struct {
zft_msg msg;
iovec iovI[1l];
} my_msg;

6.19 zf stackdump

TCPDirect does not use the Onload bypass datapaths, it uses its own datapath therefore traffic sent/received by
TCPDirect stacks and zockets is NOT visible using tcpdump or onload_tcpdump or onload_stackdump.

The TCPDirect zf_stackdump feature can be used to analyse stacks/zockets created by the TCPDirect application.

30 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Using TCPDirect

SOLARFLARE®

A XILINX COMPANY

6.19.1 Usage
zf_stackdump -h
zf_stackdump [command [stack_ids...
Commands :

list List stack (s)

dump Show state of stack(s)
The command is ’list’.
stacks no stacks
enp4s0£f0/0£0 id=10

zf_stackdump dump

Commands iterate over all
are specified on the command line.
pid=8845

name=enp4s0£0/0£f0

pool:
config:

alts:
stats:

nicO:

pkt_bufs_n=17536 free=17025

tcp_timewait_ticks=666 tcp_finwait_ticks=666
config: tcp_initial cwnd=0 ms_per_tcp_tick=90

n_alts=0

ring_refill nomem=0 discard_csum_bad=0 discard_mcast_mismatch=0
discard_crc_bad=0 discard_trunc=0 discard_rights=0
discard_ev_error=0 discard_other=0 discard_inner_csum_bad=0

cplane_alien_ifindex=0

txqg: pio_buf_size=2048

vi=240 flags=0 intf=enp4s0f0 index=6 hw=1Al

UDP RX enp4s0£f0/0£0:0
1c1=172.16.130.252:8012 rmt=0.0.0.0:0

filter:
rx:

unread=1 begin=0 process=0 end=1

udp rx: release_n=1 g_drops=0
6.19.2 stackdump output: stack
Title Parameter Description
- name name of the stack.
pool pkt_bufs_n num of packet buffers allocated to the stack.
pool free num of free (available) packet buffers.
config | tcp_timewait_ticks length of the TIME-WAIT timer in ticks.
config | tcp_finwait_ticks length of the FIN-WAIT-2 timer in ticks.
config | ctpio_threshold the cut-through threshold for CTPIO transmits.
config | tcp_initial_cwnd size of TCP congestion window.
config | ms_per_tcp_tick granularity of TCP timer in milliseconds.
alts n_alts total number of TX alternatives allocated to this stack.
stats ring_refill_nomem num times there were no free packet buffers to refill rx ring (increase
buffers with n_bufs attr).
stats discard_csum_bad num of packets discarded due to IP, UDP or TCP checksum error.
stats discard_mcast_mismatch | num of packets discarded due to hash mismatch in a multicast packet.
stats discard_crc_bad num of packets discarded due to Ethernet CRC error.
stats discard_trunc num of packets discarded due to a truncated frame
stats discard_rights num of packets discarded due to non-ownership rights to the packet.
stats discard_ev_error num of events discarded due to event queue overrun.
stats discard_other num of packets discarded due to other unspecified reason.
stats discard_inner_csum_bad | num of packets discarded due to inner IP, UDP or TCP checksum error.
nic Vi vi_i instance id of the VI being used by this stack.
nic flags ef_vi_flags of the VI being used by this stack.
nic intf name of the physical interface being used.
nic index ifindex of the physical interface being used.
Issue 9 © Copyright 2019 Xilinx, Inc 31

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Using TCPDirect

nic

hw

type of the physical interface being used.

txq

pio_buf_size

size (bytes) of a PIO buffer.

6.19.3 stackdump output: UDP RX

Title Parameter | Description

- - local interface.

filter Icl local_ip:port.

filter rmt remote_ip:port.

filter identifies filters installed on the adapter.

rx unread num packets received, but still in zocket buffer rx queue.
rx begin zf_rx_ring: oldest pkt buffer not yet read.

rx process zf_rx_ring: oldest pkt buffer not yet processed - so buffer not yet reaped.
rx end zf_rx_ring: index of the last pkt in the queue.

udp rx | release_n num zero-copy packet awaiting release.

udp rx | g_drops num packets dropped from the zockets rx queue.

6.19.4 stackdump output: UDP TX

Title | Parameter | Description

- - local interface.

- Il local_ip:port.

- rmt remote_ip:port.
path | dst destination server.
path | src source server.

6.19.5 stackdump output: TCP TX/RX

Title Parameter Description

path dst destination server.

path src source server.

rx rx unread num packets received, but still in zocket buffer rx queue

rx rx begin zf_rx_ring: oldest pkt buffer not yet read.

rx X process zf_rx_ring: oldest pkt buffer not yet processed - so buffer not yet reaped.

rx rx end zf_rx_ring: index of the last pkt in the queue.

tcp flags zocket flags.

tep flags_ack_delay ACK flags TF_ACK_DELAY 0x01 | TF_ACK_NOW 0x02 | TF_INTR 0x04
(in fast recovery) | TF_ACK_NEXT 0x08.

tep error error count.

tcp parent identifies the listeing zocket from which a passive-open zocket was
accepted.

tcp refcount when a zocket is used both from the TCP state machine and the
application. This allows us to track when both have finished using it, and
it can be freed.

snd snd_nxt next sequence num to send.

32 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Using TCPDirect

SOLARFLARE®

A XILINX COMPANY

Title Parameter Description

snd lastack last acknowledged sequence num.

snd wnd sender window.

snd snd_wnd_max maximum sender window advertised by the peer.

snd snd_wl1 max sequence number advertised.

snd snd_wl2 last sequence number acknowledged.

snd snd_lbb sequence num of next byte to be buffered.

snd snd_right_edge sequence num of TCP send window.

snd delegated bytes reserved by user of delegated send API

snd send num segments held in the send buffer.

snd inflight num segments sent, but not yet acknowledged.

snd gbegin TCP segment at sendq start.

snd gmiddle TCP segment at sendg middle.

snd gend TCP segment at sendq end.

snd sndbuf zocket send buffer size (bytes).

snd cwnd size of congestion avoidance window.

snd ssthresh slow start threshold - num bytes that have to be sent before exiting slow
start.

snd mss_lim max segment size limit set by peer, in bytes.

rcv rcv_nxt next expected sequence number.

rcv rcv_ann_wnd receiver window to announce.

rcv rcv_ann_right_edge announced right edge of window.

rcv mss max segment size, in bytes.

rtt est RTT estimate in ticks.

rit seq sequence number used for RTT estimation.

rit sa smoothed round trip time.

rit 5% round trip time variance estimate.

cong nrtx num of RTO retransmission attempts - reset to zero when a new ACK is
received.

cong dupacks num duplicate acks received.

cong persist_backoff num of zero send win probes - sends probe pkt to keep connection alive.

timers | - types of active timers (e.g. RTO, DACK, ZWIN, TIMEWAIT).

000 added out of order pkt added to sendq.

000 removed count removals from overflow including segments that become in-order.

000 replaced out of order pkt replaced in sendq.

000 handling deferred count of deffered out-of-order pkts.

000 dropped_nomem num of out of order pkts dropped when memory allocation fails.

000 drop_overfilled num of out of order pkts dropped to prevent buffer overflowing.

stats msg_more_send_delayed | num of times there was no send because of MSG_MORE flag.

stats send_nomem num of times there were no free packet buffers to perform a send.

Issue 9 © Copyright 2019 Xilinx, Inc 33

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Using TCPDirect

34

© Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE“‘

Worked Examples A XILINX COMPANY

Chapter 7

Worked Examples

This part of the documentation examines simplified versions of zfudppingpong and zftcppingpong. These are small
applications which listen for packets and replies, with as low latency as possible.

Note

These examples do not set the values of attributes programmatically. Instead, they are left with the values set
from the defaults and the ZF_ATTR environment variable. In particular, it is necessary to set the value of the
interface attribute in ZF_ATTR in order to use these examples. Fully-fledged applications might prefer
instead to set attributes using (for example) zf_attr_set_str(). Please see the Attributes chapter and the
documentation for atir.h for more information.

7.1 UDP ping pong example

In the following example various boiler plate code has been omitted for clarity. For a full usable version of this
example see src/tests/zf_apps/zfudppingpong. c, which includes how to use timestamping, and
other details.

#define SIZE 12
#define ITERATIONS 1000000
int ping;

static void ping_pongs (struct zf_stacksx stack, struct zfurx ur, struct
zfut* ut)
{
char send_buf[SIZE];
int sends_left = ITERATIONS;
int recvs_left = ITERATIONS;

struct {
/* The iovec used by zfur_msg must be immediately afterwards. */
struct zfur_msg msg;
struct iovec iov([2];

} msg;
const int max_iov = sizeof (msg.iov) / sizeof (msg.iov[0]);
if(ping) {

ZF_TEST (zfut_send_single (ut, send_buf, SIZE) == SIZE);

——sends_left;
}

o {
/* Poll the stack until something happens. */
vhile (zf_reactor_perform(stack) ==)

Issue 9 © Copyright 2019 Xilinx, Inc 35

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY Worked Examples

i
msg.msg.iovent = max_iov;
zfur_zc_recv(ur, &msg.msg, 0);
if(msg.msg.iovent) {
if(sends_left) {
ZF_TEST (zfut_send_single (ut, send_buf, SIZE) == SIZE);
—-—-sends_left;
}
zfur_zc_recv_done (ur, &msg.msg);
—--recvs_left;

} while(recvs_left);

int main(int argc, charx argv[])
{
if(argc != 3
usage_err () ;

(! strcmp(argv[0], "ping"))
ping = true;
lse if(! strcmp(argv[0], "pong")
ping = false;

usage_err () ;

struct addrinfo xai_local, xai_remote;

*(getaddrinfo_hostport (argv([1l], NULL, &ai_local) != 0) {
fprintf (stderr, "ERROR: failed to lookup address ’%s'\n", argv[1l]);
exit (2);

}

if(getaddrinfo_hostport (argv([2], NULL, &ai_remote) != 0) {
fprintf (stderr, "ERROR: failed to lookup address ’%s'\n", argv[2]);
exit (2);

}

/* Initialise the TCPDirect library and allocate a stack. x/
ZF_TRY (zf_init ());

struct zf_attr* attr;
ZF_TRY (zf_attr_alloc(&attr));

struct zf_stacks* stack;
ZF_TRY (zf_stack_alloc (attr, &stack));

/* Allocate zockets and bind them to the given addresses. TCPDirect has
separate objects for sending and receiving UDP datagrams.
*/
struct zfur* ur;
ZF_TRY (zfur_alloc (&ur, stack, attr));
ZF_TRY (zfur_addr_bind(ur, ai_local->ai_addr, ai_local->ai_addrlen,
ai_remote->ai_addr, ai_remote->ai_addrlen, 0));

struct zfut* ut;
ZF_TRY (zfut_alloc (&ut, stack, ai_local->ai_addr, ai_local->ai_addrlen,
ai_remote->ai_addr, ai_remote->ai_addrlen, 0, attr));

ping_pongs (stack, ur, ut);

return 0;

7.2 TCP ping pong example

In the following example some boiler plate code has been omitted for clarity. For a full usable version of this
example see src/tests/zf_apps/zftcppingpong.c, which includes how to use timestamping, the
multiplexer, and other details.

#define SIZE 12
#define ITERATIONS 1000000
int ping;

struct rx_msg {

36 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Worked Examples

SOLARFLARE®

A XILINX COMPANY

/* The iovec used by zft_msg must be immediately afterwards =/
struct zft_msg msg;
struct iovec iov[1l];

bi

static void ping_pongs (struct zf stackx stack, struct zfts zock)
{

char send_buf[SIZE];

struct rx_msg msg;

const int max_iov = sizeof (msg.iov) / sizeof (msg.iov[0]);

int sends_left = ITERATIONS;

int recvs_left = ITERATIONS;

bool zock_has_rx_data = false;

f(ping) {
ZF_TEST (zft_send_single (zock, send_buf, SIZE, 0) == SIZE);
—-sends_left;

{

size_t bytes_left = SIZE;

dc (

if(! zock_has_rx_data
/* Poll the stack until something happens. */
while(zf_reactor_perform(stack) ==)

i
msg.msg.iovent = max_iov;
zft_zc_recv(zock, &msg.msg, 0);
1f(msg.msg.iovent) {

/* NB. msg.iov[0].iov_len==0 indicates we’re not going to get any
more data (ie. the other end has shutdown or connection has

died). We don’t check for that here...instead it will be
detected if zft_zc_recv_done() !=1.
*/
ZF_TEST (msg.iov[0].iov_len <= bytes_left);
bytes_left -= msg.iov[0].iov_len;
if(bytes_left == 0
/+* Break out to do send before zft_zc_recv_done() to save a few
nanoseconds.
*/
preak;
ZF_TEST (zft_zc_recv_done (zock, &msg.msg) == 1);
}
zock_has_rx_data = msg.msg.pkts_left != 0;
} while(bytes_left);
if(sends_left) {
ZF_TEST (zft_send_single (zock, send_buf, SIZE, 0) == SIZE);

—-—-sends_left;
}
ZF_TEST (zft_zc_recv_done (zock, &msg.msg) == 1);
—--recvs_left;
} while(recvs_left);

int main(int argc, charx argv[])
{
if(argc != 2
usage_err () ;

strcmp (argv[0], "ping"))

= true;

if(! strcmp(argv([0], "pong"))
= false;

usage_err () ;

struct addrinfox ai;
if(getaddrinfo_hostport (argv([1l], NULL, &ai) != 0) {

fprintf (stderr, "ERROR: failed to lookup address ’%s'\n", argv[1l]);

exit (2);
}

/* Initialise the TCPDirect library and allocate a stack. =/
ZF_TRY (zf_init ());

struct zf_attr* attr;
ZF_TRY (zf_attr_alloc (&attr));

struct zf_stacks* stack;
ZF_TRY (zf_stack_alloc (attr, &stack));

Issue 9 © Copyright 2019 Xilinx, Inc

37

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY Worked Examples

struct zftx zock;

1f(ping) |
/* In ’'ping’ mode, connect to the specified remote address. */
struct zft_handlex tcp_handle;
ZF_TRY (zft_alloc(stack, attr, &tcp_handle));
printf ("Connecting to ponger\n");
ZF_TRY (zft_connect (tcp_handle, ai->ai_addr, ai->ai_addrlen, &zock));

/* The zft_connect () call is non-blocking, so the zocket is not yet
connected. Wait until the connect completes or fails...
*/
while(zft_state(zock) == TCP_SYN_SENT)
zf_reactor_perform(stack);
ZF_TEST(zft_state(zock) == TCP_ESTABLISHED);

{
/+ In ’'pong’ mode, create a listening zocket and wait until we’ve
accepted a connection.
x/
struct zftls listener;
int rc;
ZF_TRY (zftl_listen(stack, ai->ai_addr, ai->ai_addrlen, attr, &listener));
printf ("Waiting for incoming connection\n");
do {

while(zf_reactor_perform(stack) == 0);
} while((rc = zftl accept (listener, &zock)) == -EAGAIN);
ZF_TRY (rc);
ZF_TRY (zftl_free(listener));

}

printf ("Connection established\n");
ping_pongs (stack, zock);

/+* Do a clean shutdown and free all resources. =/

printf ("Completed\n");

hile(zft_shutdown_tx (zock) == —-EAGAIN)
zf_reactor_perform(stack);

while (! zf_stack_is_quiescent (stack))
zf_reactor_perform(stack);

ZF_TRY (zft_free(zock));
ZF_TRY (zf_stack_free(stack));
ZF_TRY (zf_deinit ());

return 0;

38 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Attributes

SOLARFLARE®

A XILINX COMPANY

Chapter 8

Attributes

Many TCPDirect API functions take an attribute object of type zf_attr. Each attribute object specifies a set of
attributes, which are key-value pairs. These attributes are documented in this section.

Attribute Description

alt_buf_size Amount of NIC-side buffer space to allocate for use with TCP alternatives on this
VI.

alt_count Number of TCP alternatives to allocate on this VI.

arp_reply_timeout

Maximum time to wait for ARP replies, in microseconds (approx).

ctpio Enable/Disable CTPIO.

ctpio_mode Set the CTPIO mode to use.

interface Use this interface name as zf stack interface.

log_file Use this file instead of stderr for log messages.

log_format Bitmask to set the format of log messages.

log_level Bitmask to enable different log message levels for each logging component.

max_tcp_endpoints

Sets the maximum number of TCP endpoints (i.e. struct zft).

max_tcp_listen_endpoints

Sets the maximum number of TCP listen endpoints (i.e. struct zftl).

max_tcp_syn_backlog

Sets the maximum number of half-open connections maintained in the stack.

max_udp_rx_endpoints

Sets the maximum number of UDP RX endpoints (i.e. struct zfur).

max_udp_tx_endpoints

Sets the maximum number of UDP TX endpoints (i.e. struct zfut).

n_bufs Number of packet buffers to allocate for the stack.
name The object name.
pio Enable/Disable PIO buffers.

reactor_spin_count

Sets how many iterations of the event processing loop zf_reactor_perform() will
make (in the absence of any events) before returning.

rx_ring_max

Set the size and maximum fill level of the RX descriptor ring, which provides
buffering between the network adapter and software.

rx_ring_refill_batch_size

Sets the number of packet buffers rx refiled with on each

zf_reactor_perform() call.

ring is

rx_ring_refill_interval

Sets the frequency of rx buffer ring refilling during inner zf_reactor_perform() loop.

rx_timestamping

Add timestamps to received packets.

tcp_alt_ack_rewind

The maximum number of bytes by which outgoing ACKs will be allowed to go
backwards when sending an alternative queue.

tcp_delayed_ack

Enable TCP delayed ACK ("on" by default).

tcp_finwait_ms

Length of TCP FIN-WAIT-2 timer in ms, 0 - disabled.

Issue 9

© Copyright 2019 Xilinx, Inc 39

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Attributes

Attribute Description
tep_initial_cwnd The initial congestion window for new TCP zockets.
tcp_retries The maximum number of TCP retransmits if data is not acknowledged by the

network peer in general case.

tcp_syn_retries

The maximum number of TCP SYN retransmits during zft_connect().

tcp_synack_retries

The maximum number of TCP SYN-ACK retransmits before incoming connection
is dropped.

tcp_timewait_ms

Length of TCP TIME-WAIT timer in ms.

tcp_wait_for_time_wait

Do not consider a stack to be quiescent if there are any TCP zockets in the
TIME_WAIT state.

tx_ring_max

Set the size of the TX descriptor ring, which provides buffering between the
software and the network adaptor.

tx_timestamping

Report timestamps for transmitted packets.

8.1 alt_buf_size Attribute Reference

Amount of NIC-side buffer space to allocate for use with TCP alternatives on this VI.

Detailed Description

Type

Integer.

Default

40960.

Relevant components

zf vi.

8.2 alt_count Attribute Reference

Number of TCP alternatives to allocate on this VI.

Detailed Description

Not supported on stacks running on bonded network interfaces.

40

© Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Attributes

SOLARFLARE®

A XILINX COMPANY

Type

Integer.

Default

Relevant components

zf vi.

8.3 arp_reply_timeout Attribute Reference

Maximum time to wait for ARP replies, in microseconds (approx).

Detailed Description

Type

Integer.

Default

1000.

Relevant components

zf_stack.

8.4 ctpio Attribute Reference

Enable/Disable CTPIO.

Issue 9 © Copyright 2019 Xilinx, Inc

41

‘SOLARFLARE“’ TCPDirect User Guide

A XILINX COMPANY Attributes

Detailed Description

0: don't use CTPIO,

1: CTPIO if available, no warning if not (default),
2: CTPIO if available, warn if not,

3: CTPIO else fail + error messages.

Note that warnings are disabled by default. If setting this attribute to 2, then bit 1 of the log_level attribute must also
be set to enable warnings for the stack component.

Type

Integer.

Default

Relevant components

zf vi.

8.5 ctpio_mode Attribute Reference

Set the CTPIO mode to use.

Detailed Description

Set to:

'sf' for store-and-forward;

'ct' for cut-through;

'sf-np' to guarantee that poisoned frames are never emitted.

Type

String.

Default

sf-np.

42 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Attributes

SOLARFLARE®

A XILINX COMPANY

Relevant components

zf vi.

8.6 interface Attribute Reference

Use this interface name as zf_stack interface.

Detailed Description

Type

String.

Default

none.

Relevant components

zf_stack.

8.7 log_file Attribute Reference

Use this file instead of stderr for log messages.

Detailed Description

Type

String.

Default

(stderr).

Relevant components

zf stack.

Issue 9 © Copyright 2019 Xilinx, Inc

43

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Attributes

8.8 log_format Attribute Reference

Bitmask to set the format of log messages.

Detailed Description

Combination of flags:
ZF_LF_STACK_NAME (0x1),
ZF_LF_FRC(0x2),

ZF _LF_TCP_TIME(0x4),
ZF_LF_PROCESS(0x8).

Type

Integer.

Default

stack name and tcp time.

Relevant components

zf stack.

8.9 log_level Attribute Reference

Bitmask to enable different log message levels for each logging component.

Detailed Description

The log message level for each component is specified using a separate 4 bit nibble within the bitmask. The value

of each nibble is a bitwise combination of:
0(none),

0x1(errors),

0x2(warnings),

0x4(info),

0x8(trace - debug build only).

The following components are available:
stack (bits 0-3),

TCP-rx (bits 4-7),

TCP-tx (bits 8-11),

TCP-connection (bits 12-15),

44 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Attributes A XILINX COMPANY

UDP-rx (bits 16-19),

UDP-tx (bits 20-23),
UDP-connection (bits 24-27),
muxer (bits 28-31),

pool (bits 32-35),

fast-path (bits 36-39),

timers (bits 40-43),

filters (bits 44-47),

cplane (bits 48-51).

E.g. 0xfffO will enable all TCP related logging and disable all other logging.

Type

Bitmask.

Default

ERR-level on all components.
Relevant components

zf_stack.

8.10 max_tcp_endpoints Attribute Reference

Sets the maximum number of TCP endpoints (i.e. struct zft).

Detailed Description

This can be a value up to 64 (which is also the default).

Type

Integer.

Default

64.

Issue 9 © Copyright 2019 Xilinx, Inc 45

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY Attributes

Relevant components

zf stack.

8.11 max_tcp_listen_endpoints Attribute Reference

Sets the maximum number of TCP listen endpoints (i.e. struct zftl).

Detailed Description

This can be a value up to 64.

Type

Integer.

Default

16.

Relevant components

zf stack.

8.12 max_tcp_syn_backlog Attribute Reference

Sets the maximum number of half-open connections maintained in the stack.

Detailed Description

Type

Integer.

Default

net.ipv4.tcp_max_syn_backlog.

46 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE“‘

Attributes A XILINX COMPANY

Relevant components

zf_stack.

8.13 max_udp_rx_endpoints Attribute Reference

Sets the maximum number of UDP RX endpoints (i.e. struct zfur).

Detailed Description

This can be a value up to 64 (which is also the default).

Type

Integer.

Default

64.

Relevant components

zf_stack.

8.14 max_udp_tx_endpoints Attribute Reference

Sets the maximum number of UDP TX endpoints (i.e. struct zfut).

Detailed Description

This can be a value up to 64 (which is also the default).’

Type

Integer.

Issue 9 © Copyright 2019 Xilinx, Inc 47

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY Attributes

Default

64.

Relevant components

zf_stack.

8.15 n_bufs Attribute Reference

Number of packet buffers to allocate for the stack.

Detailed Description

The optimal value for this parameter depends on the size of the RX and TX queues, the total number of zockets in
the stack, the number of alternatives in use and the frequency at which the application polls the stack and reads
pending data from zockets. 0 - use maximum the stack with given parameters can use.

Type

Integer.

Default

Relevant components

zf_pool.

8.16 name Attribute Reference

The object name.

Detailed Description

The object name has a maximum length of 20 characters. Object names are visible in log messages, but have no
other effect.

48 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Attributes A XILINX COMPANY

Type

String.

Default

(none).

Relevant components

zf_stack, zf_pool, zf_vi.

8.17 pio Attribute Reference

Enable/Disable PIO buffers.

Detailed Description

0: don't use PIO,

1: PIO if available, no warning if not,

2: PIO if available, warn if not,

3: PIO else fail + error messages (default).

Note that warnings are disabled by default. If setting this attribute to 2, then bit 1 of the log_level attribute must also
be set to enable warnings for the stack component.

Type

Integer.

Default

Relevant components

zf vi.

Issue 9 © Copyright 2019 Xilinx, Inc 49

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY Attributes

8.18 reactor_spin_count Attribute Reference

Sets how many iterations of the event processing loop zf_reactor_perform() will make (in the absence of any
events) before returning.

Detailed Description

The default value makes zf_reactor_perform() briefly spin if there are no new events present. A higher number can
give better latency, however zf_reactor_perform() will take more time to return when no new events are present.
The minimum value is 1, which disables spinning. This attribute also affects the cost of zf_muxer_wait() when
invoked with timeout_ns=0.

Type

Integer.

Default

128.

Relevant components

zf stack.

8.19 rx_ring_max Attribute Reference

Set the size and maximum fill level of the RX descriptor ring, which provides buffering between the network
adapter and software.

Detailed Description

The RX ring sizes supported are 512, 1024, 2048 and 4096. The n_bufs attribute may need to be increased when
changing this value.

Type

Integer.

Default

512.

50 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Attributes

SOLARFLARE®

A XILINX COMPANY

Relevant components

zf vi.

8.20 rx_ring_refill_batch_size Attribute Reference

Sets the number of packet buffers rx ring is refilled with on each zf reactor_perform() call.

Detailed Description

Must be multiple of 8.

Type

Integer.

Default

16.

Relevant components

zf_stack.

8.21 rx_ring_refill_interval Attribute Reference

Sets the frequency of rx buffer ring refilling during inner zf_reactor_perform() loop.

Detailed Description

Set to 1 to have the ring refilled at each iteration.

Type

Integer.

Issue 9 © Copyright 2019 Xilinx, Inc

51

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Attributes

Default

Relevant components

zf stack.

8.22 rx_timestamping Attribute Reference

Add timestamps to received packets.

Detailed Description

"off" by default.

Type

Integer.

Default

Relevant components

zf vi.

8.23 tcp_alt_ack _rewind Attribute Reference

The maximum number of bytes by which outgoing ACKs will be allowed to go backwards when sending an

alternative queue.

Detailed Description

Type

Integer.

52 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide
Attributes

SOLARFLARE®

A XILINX COMPANY

Default

64K.

Relevant components

zf_stack.

8.24 tcp_delayed_ack Attribute Reference

Enable TCP delayed ACK ("on" by default).

Detailed Description

Type

Integer.

Default

Relevant components

zf stack.

8.25 tcp_finwait_ms Attribute Reference

Length of TCP FIN-WAIT-2 timer in ms, O - disabled.

Detailed Description

Type

Integer.

Default

net.ipv4.tcp_fin_timeout.

Issue 9 © Copyright 2019 Xilinx, Inc

53

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Attributes

Relevant components

zf stack.

8.26 tcp_initial_cwnd Attribute Reference

The initial congestion window for new TCP zockets.

Detailed Description

Type

Integer.

Default

10 x MSS.

Relevant components

zf stack.

8.27 tcp_retries Attribute Reference

The maximum number of TCP retransmits if data is not acknowledged by the network peer in general case.

Detailed Description

See also tcp_synack_retries, tcp_syn_retries.

Type

Integer.

Default

net.ipv4.tcp_retries2.

54 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide
Attributes

SOLARFLARE®

A XILINX COMPANY

Relevant components

zf stack.

8.28 tcp_syn_retries Attribute Reference

The maximum number of TCP SYN retransmits during zft_connect().

Detailed Description

Type

Integer.

Default

net.ipv4.tcp_syn_retries.

Relevant components

zf_stack.

8.29 tcp_synack_retries Attribute Reference

The maximum number of TCP SYN-ACK retransmits before incoming connection is dropped.

Detailed Description

Type

Integer.

Default

net.ipv4.tcp_synack_retries.

Relevant components

zf stack.

Issue 9 © Copyright 2019 Xilinx, Inc

55

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY Attributes

8.30 tcp_timewait_ms Attribute Reference

Length of TCP TIME-WAIT timer in ms.

Detailed Description

Type

Integer.

Default

net.ipv4.tcp_fin_timeout.

Relevant components

zf_stack.

8.31 tcp_wait_for_time_wait Attribute Reference

Do not consider a stack to be quiescent if there are any TCP zockets in the TIME_WAIT state.

Detailed Description

("off" by default).

Type

Integer.

Default

Relevant components

zf stack.

56 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Attributes

SOLARFLARE®

A XILINX COMPANY

8.32 tx_ring_max Attribute Reference

Set the size of the TX descriptor ring, which provides buffering between the software and the network adaptor.

Detailed Description

The requested value is rounded up to the next size supported by the adapter. At time of writing the ring sizes
supported are 512, 1024 and 2048. The n_bufs attribute may need to be increased when changing this value.

Type

Integer.

Default

512.
Relevant components

zf vi.

8.33 tx_timestamping Attribute Reference

Report timestamps for transmitted packets.

Detailed Description

"off" by default.

Type

Integer.

Default

Relevant components

zf vi.

Issue 9 © Copyright 2019 Xilinx, Inc

57

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Attributes

58

© Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE“‘

Data Structure Index A XILINX COMPANY

Chapter 9

Data Structure Index

9.1 Data Structures

Here are the data structures with brief descriptions:

zf_attr

Attribute object L L 63
zf ds

Structure used for delegated sends 64
zf _muxer_set

Multiplexer set 67
zf_pkt_report

Report structure providing timestamp and other packet information 67
zf stack . . . e e e e 68
zf waitable

Abstract multiplexable objecto 69
zft

Opagque structure describing a TCP zocket thatis connected 69
zft_handle

Opaque structure describing a TCP zocket that is passive and not connected 70
zft_msg

TCP zero-copy RX message structure 70
zftl

Opagque structure describing a TCP listening zocket 72
zfur

Opaque structure describing a UDP-receive zocket 72
zfur_msg

UDP zero-copy RX message structure oo 73
zfut

Opaque structure describing a UDP-transmit zocket 74

Issue 9 © Copyright 2019 Xilinx, Inc 59

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Data Structure Index

60

© Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE“‘

File Index A XILINX COMPANY

Chapter 10

File Index

10.1 File List

Here is a list of all documented files with brief descriptions:

attr.h

TCPDirect APl for attribute objects L 75
muxer.h

TCPDirect multiplexer e 81
types.h

TCPDirecttypes o e 87
x86.h

TCPDirect x86-specific definitions L 89
zfh

TCPDirect top-level API 89
zf alts.h

TCPDirect Alternative Sends APl 89
zf ds.h

TCPDirect Delegated Sends APl 94
zf_platform.h

TCPDirect platform API 98
zf _reactor.h

TCPDirect reactor API for processing stackevents 98
zf_stack.h

TCPDirect stack APl e 101
zf_tep.h

TCPDirect TCP API o 105
zf_udp.h

TCPDirect UDP APl e 121

Issue 9 © Copyright 2019 Xilinx, Inc 61

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
File Index

62

© Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Data Structure Documentation A XILINX COMPANY

Chapter 11

Data Structure Documentation

11.1 zf_attr Struct Reference

Attribute object.

#include <zf/attr.h>

11.1.1 Detailed Description

Attribute object.

Attributes are used to specify optional behaviours and parameters, usually when allocating objects. Each attribute
object defines a complete set of the attributes that the stack understands.

For example, the "max_udp_rx_endpoints" attribute controls how many UDP-receive zockets can be created per
zf stack.

The default values for attributes may be overridden by setting the environment variable ZF_ATTR. For example:

ZF_ATTR="interface=enp4s0£f0; log_level=3"

Each function that takes an attribute argument will only be interested in a subset of the attributes specified by an
zf_attr instance. Other attributes are ignored.

The set of attributes supported may change between releases, so applications should where possible tolerate
failures when setting attributes.

The documentation for this struct was generated from the following file:

« attr.h

Issue 9 © Copyright 2019 Xilinx, Inc 63

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY Data Structure Documentation

11.2 zf_ds Struct Reference

Structure used for delegated sends.

#include <zf/zf_ds.h>

Data Fields

» void * headers

* int headers_size
* int headers_len

* int mss

* int send_wnd

* int cong_wnd

* int delegated_wnd
* int tcp_seq_offset
* intip_len_offset
* intip_tcp_hdr_len
* int reserved

11.2.1 Detailed Description

Structure used for delegated sends.

This structure is used for delegated sends. Field usage varies:

* in: input
+ out: output

« internal: internal use only.

Definition at line 24 of file zf_ds.h.

11.2.2 Field Documentation

11.2.2.1 cong_wnd

int cong_wnd
out: congestion window

Definition at line 37 of file zf_ds.h.

64 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Data Structure Documentation

SOLARFLARE®

A XILINX COMPANY

11.2.2.2 delegated_wnd

int delegated_wnd
out: max bytes application can send

Definition at line 40 of file zf_ds.h.

11.2.2.3 headers

voidx headers
in: set to buffer to store headers to

Definition at line 26 of file zf_ds.h.

11.2.2.4 headers_len

int headers_len
out: length of headers

Definition at line 30 of file zf_ds.h.

11.2.2.5 headers_size

int headers_size
in: size of headers buffer

Definition at line 28 of file zf_ds.h.

11.2.2.6 ip_len_offset

int ip_len_offset
internal

Definition at line 45 of file zf_ds.h.

Issue 9 © Copyright 2019 Xilinx, Inc

65

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Data Structure Documentation

11.2.2.7 ip_tcp_hdr_len

int ip_tcp_hdr_len
internal

Definition at line 47 of file zf_ds.h.

11.2.2.8 mss

int mss
out: max segment size (max payload per packet)

Definition at line 33 of file zf_ds.h.

11.2.2.9 reserved

int reserved
internal

Definition at line 49 of file zf_ds.h.

11.2.2.10 send wnd

int send_wnd
out: send window

Definition at line 35 of file zf_ds.h.

11.2.2.11 tcp_seq_offset

int tcp_seqg offset
internal
Definition at line 43 of file zf_ds.h.

The documentation for this struct was generated from the following file:

« zf_ds.h

66 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE“‘

Data Structure Documentation A XILINX COMPANY

11.3 zf_muxer_set Struct Reference

Multiplexer set.

#include <zf/muxer.h>

11.3.1 Detailed Description

Multiplexer set.
Represents multiple objects (including zockets) that can be polled simultaneously.

The documentation for this struct was generated from the following file:

e muxer.h

11.4 zf _pkt_report Struct Reference

Report structure providing timestamp and other packet information.

#include <zf/types.h>

Data Fields
« struct timespec timestamp
» uint32_t start

* uint16_t bytes
 uint16_t flags

11.4.1 Detailed Description

Report structure providing timestamp and other packet information.

This is provided by zfut_get_tx_timestamps() and zft_get_tx_timestamps() to associate timestamps with packet
data.

Definition at line 24 of file types.h.

11.4.2 Field Documentation

Issue 9 © Copyright 2019 Xilinx, Inc 67

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Data Structure Documentation

11.4.2.1 bytes

uintl6_t bytes
Byte count for this packet

Definition at line 33 of file types.h.

11.4.2.2 flags

uintlé6_t flags
Flags set for this packet

Definition at line 49 of file types.h.

11.4.2.3 start

uint32_t start

Total count for the socket up to the start of this packet. For UDP, this is a count of datagrams. For TCP, this is a

count of bytes. The counter will wrap when it reaches the end of its 32-bit range.

Definition at line 31 of file types.h.

11.4.2.4 timestamp

struct timespec timestamp
Hardware timestamp for packet transmission
Definition at line 26 of file types.h.

The documentation for this struct was generated from the following file:

* types.h

11.5 zf_stack Struct Reference

#include <zf/zf_ stack.h>

68 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE”

Data Structure Documentation A XILINX COMPANY

11.5.1 Detailed Description

A stack encapsulates hardware and protocol state. It is the fundamental object used to drive TCPDirect. Individual
objects for handling TCP and UDP traffic — zockets — are created within a stack.

See also

zf_stack_alloc()
zf_stack_free()
zf_reactor_perform()

The documentation for this struct was generated from the following file:

» zf_stack.h

11.6 zf_ waitable Struct Reference

Abstract multiplexable object.

#include <zf/muxer.h>

11.6.1 Detailed Description

Abstract multiplexable object.

Zockets that can be added to a multiplexer set can be represented by a pointer of this type, which can be obtained
by making the appropriate API call for the given zocket.

A waitable can also be retrieved for a stack by calling zf_stack_to_waitable(). Such waitables indicate whether a
stack has quiesced, in the sense documented at zf_stack is_quiescent().

Definition at line 45 of file muxer.h.

The documentation for this struct was generated from the following file:

* muxer.h

11.7 zft Struct Reference

Opaque structure describing a TCP zocket that is connected.

#include <zf/zf_tcp.h>

Issue 9 © Copyright 2019 Xilinx, Inc 69

‘SOLARFLARE“’ TCPDirect User Guide

A XILINX COMPANY Data Structure Documentation

11.7.1 Detailed Description

Opagque structure describing a TCP zocket that is connected.
Definition at line 154 of file zf_tcp.h.

The documentation for this struct was generated from the following file:

« zf tcp.h

11.8 zft_handle Struct Reference

Opagque structure describing a TCP zocket that is passive and not connected.

#include <zf/zf_tcp.h>

11.8.1 Detailed Description

Opaque structure describing a TCP zocket that is passive and not connected.

The documentation for this struct was generated from the following file:

« zf_tcp.h

11.9 zft_msg Struct Reference

TCP zero-copy RX message structure.

#include <zf/zf_tcp.h>

Data Fields
* int reserved [4]
* int pkis_left
* int flags

* intiovent
« struct iovec iov [ZF_FLEXIBLE_ARRAY_COUNT]

11.9.1 Detailed Description

TCP zero-copy RX message structure.

This structure is passed to zft_zc_recv(), which will populate it and a referenced iovec array with pointers to
received packets.

Definition at line 393 of file zf_tcp.h.

70 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Data Structure Documentation

SOLARFLARE®

A XILINX COMPANY

11.9.2 Field Documentation

11.9.2.1 flags

int flags
Reserved.

Definition at line 399 of file zf_tcp.h.

11.9.2.2 iov

struct iovec iov[ZF_FLEXIBLE_ARRAY_COUNT]

In: A separate iovec array, available for writing, with 1ovcnt entries, must immediately follow this structure. This
structure and the iovec array are typically wrapped by a structure. For an example, see the zftcppingpong

application.

Out: iovec array is filled with iovecs pointing to the payload of the received packets.

Definition at line 409 of file zf_tcp.h.

11.9.2.3 iovcnt

int iovent

In: Length of iov array expressed as a count of iovecs.
Out: number of entries of iov populated with pointers to packets.

Definition at line 402 of file zf_tcp.h.

11.9.2.4 pkis_left

int pkts_left
Out: Number of outstanding packets in the queue after this read.

Definition at line 397 of file zf_tcp.h.

Issue 9 © Copyright 2019 Xilinx, Inc

71

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
Data Structure Documentation

11.9.2.5 reserved

int reserved([4]
Reserved.
Definition at line 395 of file zf_tcp.h.

The documentation for this struct was generated from the following file:

« zf tcp.h

11.10 zftl Struct Reference

Opaque structure describing a TCP listening zocket.

#include <zf/zf_tcp.h>

11.10.1 Detailed Description

Opaque structure describing a TCP listening zocket.
Definition at line 38 of file zf_tcp.h.

The documentation for this struct was generated from the following file:

» zf_tcp.h

11.11 zfur Struct Reference

Opaque structure describing a UDP-receive zocket.

#include <zf/zf_udp.h>

11.11.1 Detailed Description

Opaque structure describing a UDP-receive zocket.
Definition at line 27 of file zf_udp.h.

The documentation for this struct was generated from the following file:

« zf_udp.h

72 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide
Data Structure Documentation

SOLARFLARE®

A XILINX COMPANY

11.12 zfur_msg Struct Reference

UDP zero-copy RX message structure.

#include <zf/zf_udp.h>

Data Fields

* int reserved [4]

+ intdgrams_left

« int flags

* intiovent

« struct iovec iov [ZF_FLEXIBLE_ARRAY_COUNT]

11.12.1 Detailed Description

UDP zero-copy RX message structure.

This structure is passed to zfur_zc_recv(), which will populate it and a referenced iovec array with pointers to

received packets.

Definition at line 124 of file zf_udp.h.

11.12.2 Field Documentation

11.12.2.1 dgrams_left

int dgrams_left
Out: Number of outstanding datagrams in the queue after this read.

Definition at line 128 of file zf_udp.h.

11.12.2.2 flags

int flags
Reserved.

Definition at line 130 of file zf_udp.h.

Issue 9 © Copyright 2019 Xilinx, Inc

73

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY Data Structure Documentation

11.12.2.3 iov

struct iovec iov[ZF_FLEXIBLE_ARRAY_ COUNT]

In: A separate iovec array, available for writing, with 1ovcnt entries, must immediately follow this structure. This
structure and the iovec array are typically wrapped by a structure. For an example, see the zfudppingpong
application.

Out: iovec array is filled with iovecs pointing to the payload of the received packets.

Definition at line 140 of file zf_udp.h.

11.12.2.4 iovent

int iovent

In: Length of iov array expressed as a count of iovecs.
Out: number of entries of iov populated with pointers to packets.

Definition at line 133 of file zf_udp.h.

11.12.2.5 reserved

int reserved([4]
Reserved.
Definition at line 126 of file zf_udp.h.

The documentation for this struct was generated from the following file:

+ zf _udp.h

11.13 zfut Struct Reference

Opaque structure describing a UDP-transmit zocket.

#include <zf/zf_udp.h>

11.13.1 Detailed Description

Opaque structure describing a UDP-transmit zocket.

A UDP-transmit zocket encapsulates the state required to send UDP datagrams. Each such zocket supports only a
single destination address.

Definition at line 271 of file zf_udp.h.

The documentation for this struct was generated from the following file:

o zf_udp.h

74 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
File Documentation

SOLARFLARE®

A XILINX COMPANY

Chapter 12

File Documentation

12.1 attr.h File Reference

TCPDirect API for attribute objects.

Functions

* int zf_attr_alloc (struct zf_attr sxattr_out)

Allocate an attribute object.
» void zf_attr_free (struct zf_attr xattr)

Free an attribute object.
» void zf_attr_reset (struct zf_atir xattr)

Return attributes to their default values.
« int zf_attr_set_int (struct zf_attr xattr, const char xname, int64_t val)

Set an attribute to an integer value.
* int zf_attr_get_int (struct zf_atir xattr, const char xname, int64_t xval)

Get an integer-valued attribute.
« int zf_attr_set_str (struct zf_attr xattr, const char xname, const char xval)

Set an attribute to a string value.
 int zf_attr_get_sir (struct zf_attr xattr, const char xname, char xxval)

Get a string-valued attribute.
« int zf_attr_set_from_str (struct zf_attr xattr, const char xname, const char xval)

Set an attribute from a string value.
« int zf_attr_set_from_fmt (struct zf_attr xattr, const char xname, const char xfmt,...)

Set an attribute to a string value (with formatting).
« struct zf_attr x zf_attr_dup (const struct zf_attr xattr)

Duplicate an attribute object.
« int zf_attr_doc (const char xattr_name_opt, const char xxxdocs_out, int xdocs_len_out)

Returns documentation for an attribute, or names of all attributes.

12.1.1 Detailed Description

TCPDirect API for attribute objects.

Issue 9 © Copyright 2019 Xilinx, Inc

75

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation

12.1.2 Function Documentation

12.1.2.1 zf_attr_alloc()

int zf_attr_alloc (

struct zf_attr *xkx attr_out)

Allocate an attribute object.

Parameters

attr_out | The attribute object is returned here.

Returns

0 on success, or a negative error code:
-ENOMEM if memory could not be allocated
-EINVAL if the ZF_ATTR environment variable is malformed.

12.1.2.2 zf_attr_doc()

int zf_attr_doc (
const char * attr_name_opt,
const char *x* docs_out,

int % docs_len_out)

Returns documentation for an attribute, or names of all attributes.

Parameters

attr_name_opt | The attribute name.

docs_out On success, a pointer to an array of pointers to doc strings.

docs_len_out On success, the number of entries in docs_out.

Returns

0 on success, or a negative error code.

This function returns pointers to the documentation for an attribute, or to the names of all attributes.

If attr_name_opt is the name of an attribute, the array referenced by docs_out contains the following
strings in order:

 the name of the attribute

« the type of the attribute (e.g. "int", "str")

« the status of the attribute (e.g. "stable", "hidden", "beta")

+ adescription of the default value of the attribute

« the type(s) of objects the attribute applies to (e.g. "zf_stack”, "zf_pool", "zf_vi")

 adescription of the attribute.

If attr_name_opt is NULL or the empty string, the array referenced by docs_out instead contains all
attribute names.

After calling this function, the memory it allocates for pointers must be freed by calling free(docs_out).

76 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

12.1.2.3 zf attr_dup()

struct zf_ attrx zf_attr_dup (

const struct zf attr % attr)
Duplicate an attribute object.

Parameters

‘ attr ‘ The attribute object.

Returns

A new attribute object.

This function is useful when you want to make non-destructive changes to an existing attribute object.

12.1.2.4 zf _attr_free()

void zf_attr_free (

struct zf_attr *x attr)
Free an attribute object.

Parameters

‘ attr ‘ The attribute object.

12.1.2.5 zf_attr_get_int()

int zf_attr_get_int (
struct zf_ attr * attr,
const char * name,

int64_t *x val)

Get an integer-valued attribute.

Parameters

attr The attribute object.

name | Name of the attribute.
val Value of the attribute (output).

Returns

0 on success, or a negative error code: -ENOENT if name is not a valid attribute name -EINVAL if name
does not have an integer type

Issue 9 © Copyright 2019 Xilinx, Inc 77

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
File Documentation

12.1.2.6 zf attr_get_str()

int zf_attr_get_str (
struct zf_ attr * attr,
const char *x name,

char **x val)

Get a string-valued attribute.

78

© Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide
File Documentation

SOLARFLARE®

A XILINX COMPANY

Parameters

attr

The attribute object.

name

Name of the attribute.

val

Value of the attribute (output). This is allocated with strdup() and must be free()ed by the caller.

Returns

0 on success, or a negative error code: -ENOENT if name is not a valid attribute name -EINVAL if name

does not have a string type

12.1.2.7

zf_attr_reset()

void zf_attr_reset (

Return att

Parameters

struct zf_ attr x attr)

ributes to their default values.

‘ attr ‘ The attribute object.

12.1.2.8

zf_attr_set_from_fmt()

int zf_attr_set_from_fmt (

struct zf_ attr * attr,
const char * name,
const char *x fmt,

)

Set an attribute to a string value (with formatting).

Parameters

attr

The attribute object.

name

Name of the attribute.

fmt

Format string for the new attribute value.

Returns

Oon

success, or a negative error code:

-ENOENT if name is not a valid attribute name

-EIN

VAL if it is not possible to convert fmt to a valid value for the attribute

-EOVERFLOW if £fmt is not within the range of values this attribut can take.

This functi
printf()-sty

on behaves exactly as zf_attr_set from_str(), except that the string value is generated from a
le format string.

Issue 9

© Copyright 2019 Xilinx, Inc

79

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
File Documentation

12.1.2.9 zf attr_set_from_str()

int zf_attr_set_from_str (
struct zf attr % attr,
const char *x name,

const char x val)
Set an attribute from a string value.

Parameters

attr The attribute object.

name | Name of the attribute.
val New value for the attribute.

Returns

0 on success, or a negative error code:

-ENOENT if name is not a valid attribute name

-EINVAL if it is not possible to convert val to a valid value for the attribute
-EOVERFLOW if val is not within the range of values this attribut can take.

12.1.2.10 zf_attr_set_int()

int zf_attr_set_int (
struct zf attr * attr,
const char *x name,

int64_t val)
Set an attribute to an integer value.

Parameters

attr The attribute object.

name | Name of the attribute.
val New value for the attribute.

Returns

0 on success, or a negative error code:
-ENOENT if name is not a valid attribute name
-EOVERFLOW if val is not within the range of values this attribute can take.

12.1.2.11 zf_attr_set_str()

int zf_attr_set_str (
struct zf_attr *x attr,
const char * name,

const char x val)

Set an attribute to a string value.

80 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE“‘

File Documentation A XILINX COMPANY

Parameters

attr The attribute object.

name | Name of the attribute.
val New value for the attribute (may be NULL).

Returns

0 on success, or a negative error code:
-ENOENT if name is not a valid attribute name
-ENOMSG if the attribute is not a string attribute.

12.2 muxer.h File Reference

TCPDirect multiplexer.

#include <sys/epoll.h>

Functions

« int zf_muxer_alloc (struct zf_stack xstack, struct zf_muxer_set «xxmuxer_out)
Allocates a multiplexer set.
» void zf_muxer_free (struct zf_muxer_set xmuxer)
Frees a multiplexer set.
« int zf_muxer_add (struct zf_muxer_set xmuxer, struct zf_waitable xw, const struct epoll_event xevent)
Adds a waitable object to a multiplexer set.
* int zf_muxer_mod (struct zf_waitable xw, const struct epoll_event xevent)
Modifies the event data for a waitable object in a multiplexer set.
« int zf_muxer_del (struct zf_waitable xw)
Removes a waitable object from a multiplexer set.

« int zf_muxer_wait (struct zf_muxer_set xmuxer, struct epoll_event xevents, int maxevents, int64_t
timeout_ns)

Polls a multiplexer set.
» const struct epoll_event x zf waitable_event (struct zf_waitable xw)

Find out the epoll_event data in use with this waitable.
« int zf_waitable_fd_get (struct zf_stack xstack, int xfd)

Create an fd that can be used within an epoll set or other standard muxer.
* int zf_waitable_fd_prime (struct zf_stack xstack)

Prime the fd before blocking.

Issue 9 © Copyright 2019 Xilinx, Inc 81

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation

12.2.1 Detailed Description

TCPDirect multiplexer.
The multiplexer, which allows multiple objects to be polled in a single operation.

The multiplexer allows multiple zockets to be polled in a single operation. The basic unit of functionality is the
multiplexer setimplemented by zf_muxer_set. Each type of zocket that can be multiplexed is equipped with a
method for obtaining a zf_waitable that represents a given zocket; this zf_waitable can then be added to a
multiplexer set by calling zf_muxer_add(). Having added all of the desired zockets to a set, the set can be polled
using zf_muxer_wait().

The multiplexer owes much of its design (and some of its datatypes) to epol1 (7).

12.2.2 Function Documentation

12.2.2.1 zf_muxer_add()

int zf_muxer_add (
struct zf muxer_ set x* muxer,
struct zf_waitable *x w,

const struct epoll_event % event)

Adds a waitable object to a multiplexer set.

Parameters

muxer | Multiplexer set.
w Waitable to add.

event | Descriptor specifying the events that will be polled on the waitable, and the data to be returned when
those events are detected.

Returns

0 on success, or a negative error code:

-EXDEV Waitable does not belong to the multiplexer set's stack.
-EALREADY Waitable is already in this multiplexer set.

-EBUSY Waitable is already in another multiplexer set.

Adds a waitable object to a multiplexer set. Each waitable may belong to at most one multiplexer set at a time. The
events of interest are specified by event . events, which is a bitfield that should be populated from one or more
of EPOLLIN, EPOLLOUT, EPOLLHUP and EPOLLERR as desired. event . data specifies the data to be
returned to a caller of zf_muxer_wait() when that waitable is ready. Note that the waitable itself is not in general
returned to such callers; if this is desired, then event . data must be set in such a way that the waitable can be
determined.

Note

Unlike epoll functions in Linux, you have to explicitly set EPOLLHUP and EPOLLERR if you want to be
notified about these events.

82 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
File Documentation

SOLARFLARE®

A XILINX COMPANY

12.2.2.2 zf_muxer_alloc()

int zf_muxer_alloc (
struct zf_stack x stack,
struct zf muxer_ set *x muxer_out)

Allocates a multiplexer set.

Parameters

stack Stack to associate with multiplexer set.

muxer_out | Holds the address of the allocated multiplexer set on success.

Returns

0 on success, or a negative error code:
-ENOMEM Out of memory.

Allocates a multiplexer set, which allows multiple waitable objects to be polled in a single operation. Waitable
objects, together with a mask of desired events, can be added to the set using zf_muxer_add(). The set can then

be polled using zf_muxer_wait().

12.2.2.3 zf _muxer_del()

int zf_muxer_del (

struct zf_waitable *x w)
Removes a waitable object from a multiplexer set.

Parameters

\ w \ Waitable to remove.

Returns

0 on success, or a negative error code:
-EINVAL w has not been added to a multiplexer set.

Note

This operation should be avoided on fast paths.

12.2.2.4 zf_muxer_free()

void zf_muxer_free (

struct zf muxer_set *x muxer)

Frees a multiplexer set.

Issue 9 © Copyright 2019 Xilinx, Inc

83

‘SOLARFLARE“’ TCPDirect User Guide

A XILINX COMPANY File Documentation

Parameters

‘ muxer ‘ The multiplexer set to free.

Note

If there are waitables in the set at the point at which it is freed, the underlying memory will not be freed until
all of those waitables have been removed from the set. Nonetheless, the caller should never continue to use
a pointer passed to this function.

12.2.2.5 zf_muxer_mod()

int zf_muxer_mod (
struct zf_waitable *x w,
const struct epoll_event % event)

Modifies the event data for a waitable object in a multiplexer set.

Parameters

w Waitable to modify.

event | Descriptor specifying the events that will be polled on the waitable, and the data to be returned when
those events are detected.

Returns

0 on success, or a negative error code:
-EINVAL w has not been added to a multiplexer set.

See also

zf_muxer_add().

Note

This function can be used to re-arm waitable after it is returned by zf_muxer_wait() if user likes something
like level-triggered events:

zf_muxer_mod(w, zf_waitable_event(w));

12.2.2.6 zf_muxer_wait()

int zf_muxer_wait (
struct zf muxer_set *x muxer,
struct epoll_event * events,
int maxevents,

int64_t timeout_ns)

Polls a multiplexer set.

84 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY
Parameters

muxer Multiplexer set.

events Array into which to return event descriptors.

maxevents | Maximum number of events to return.
timeout_ns | Maximum time in nanoseconds to block.

Returns

Number of events. Negative values are reserved for future use as error codes, but are not returned at
present.

This function polls a multiplexer set and populates an array of event descriptors representing the waitables in that
set that are ready. The event s member of each descriptor specifies the events for which the waitable is actually
ready, and the dat a member is set to the user-data associated with that descriptor, as specified in the call to
zf_muxer_add() or zf_muxer_mod().

Before checking for ready objects, the function calls zf_reactor_perform() on the set's stack in order to process
events from the hardware. In contrast to the rest of the API, zf_muxer_wait() can block. The maximum time to
block is specified by t imeout_ns, and a value of zero results in non-blocking behaviour. A negative value for
timeout_ns will allow the function to block indefinitely. If the function blocks, it will call zf_reactor_perform()
repeatedly in a tight loop.

The multiplexer only supports edge-triggered events: that is, if zf_muxer_wait() reports that a waitable is ready, it
need not do so again until a new event occurs on tha waitable, even if the waitable is in fact ready. On the other
hand, a waitable may be reported as ready even when a new event has not occurred, but only when the waitable is
in fact ready. A transition from "not ready" to "ready" always constitutes an edge, and in particular, for EPOLLIN,
the arrival of any new data constitutes an edge.

By default this function has relatively high CPU overhead when no events are ready to be processed and
timeout_ns==0, because it polls repeatedly for events. The amount of time spent polling is controlled by stack
attribute reactor_spin_count. Setting reactor_spin_count to 1 disables polling and minimises the cost of
zf_muxer_wait(timeout_ns=0).

12.2.2.7 zf waitable_event()

const struct epoll_event* zf_waitable_event (

struct zf_ waitable x w)
Find out the epoll_event data in use with this waitable.

Parameters

‘ w ‘ Waitable to explore.

Returns

The event data.

Note

Function behaviour is undefined if the waitable is not a member of any multiplexer set.

Issue 9 © Copyright 2019 Xilinx, Inc 85

‘SOLARFLARE‘” TCPDirect User Guide

A XILINX COMPANY File Documentation

12.2.2.8 zf waitable_fd_get()

int zf_waitable_fd_get (
struct zf_ stack *x stack,
int x fd)

Create an fd that can be used within an epoll set or other standard muxer.

Parameters

stack | Stack the fd should indicate activity for

fd Updated on success to contain the fd to use

Returns

0 on success, or a negative error code. The possible error-codes are returned from system calls and are
system-dependent.

This function creates a file descriptor that can be used within an epoll set (or other standard muxer such as poll or
select) to be notified when there is activity on the corresponding stack.

The fd supplied may indicate readiness for a variety of reasons not directly related to the availability of data on a
zocket. For example, there is an event that needs processing, a timer has expired, or a connection has changed
state. When this occurs the caller should ensure they call zf_muxer_wait() to allow the required activity to take
place, and discover if this affected any of the stack's zockets that the caller is interested in. This may or may not
result in a zocket within the stack becoming readable or writeable.

Using a waitable FD with the zf_waitable_fd. .. () family of functions enables interrupts. For
latency-critical applications, you should instead manually poll each reactor in turn, after first setting the
reactor_spin_count attribute to 1.

Freeing the zf_stack will release all the resources associated with this fd, so it must not be used afterwards. You do
not need to call close() on the supplied fd, it will be closed when the stack is freed as part of the zf_stack free()
call.

12.2.2.9 zf waitable_fd_prime()

int zf_waitable_fd_prime (

struct zf_ stack * stack)
Prime the fd before blocking.

Parameters

\ stack \ Stack that matches the fd

Returns

0 on success, or a negative error code. The possible error-codes are returned from system calls and are
system-dependent.

This primes an fd previously allocated with zf waitable fd_get() so it is ready for use with a standard muxer like
epoll_wait. The fd should be primed in this way each time the caller blocks waiting for activity.

86 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
File Documentation

SOLARFLARE®

A XILINX COMPANY

12.3 types.h File Reference

TCPDirect types.

Data Structures

« struct zf_pkt_report

Report structure providing timestamp and other packet information.

Macros

- #define ZF_PKT _REPORT CLOCK_SET 0x0001

- #define ZF_PKT _REPORT IN_SYNC 0x0002

« #define ZF_PKT _REPORT NO_TIMESTAMP 0x0004
- #define ZF_PKT _REPORT DROPPED 0x0008

. #define ZF_PKT _REPORT TCP_RETRANS 0x2000
- #define ZF_PKT REPORT TCP_SYN 0x4000

- #define ZF PKT REPORT TCP_FIN 0x8000

12.3.1 Detailed Description

TCPDirect types.

12.3.2 Macro Definition Documentation

12.3.2.1 ZF_PKT_REPORT_CLOCK_SET

#define ZF_PKT_REPORT_CLOCK_SET 0x0001
Adapter clock has been set

Definition at line 35 of file types.h.

12.3.2.2 ZF_PKT_REPORT_DROPPED

#define ZF_PKT_REPORT_DROPPED 0x0008
Dropped reports before this

Definition at line 41 of file types.h.

Issue 9 © Copyright 2019 Xilinx, Inc

87

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
File Documentation

12.3.2.3 ZF_PKT_REPORT_IN_SYNC

#define ZF_PKT_REPORT_IN_SYNC 0x0002
Adapter clock is in sync

Definition at line 37 of file types.h.

12.3.2.4 ZF_PKT_REPORT_NO_TIMESTAMP

#define ZF_PKT_REPORT_NO_TIMESTAMP 0x0004
No timestamp available

Definition at line 39 of file types.h.

12.3.2.5 ZF_PKT_REPORT_TCP_FIN

#define ZF_PKT_REPORT_TCP_FIN 0x8000
Final TCP FIN packet

Definition at line 47 of file types.h.

12.3.2.6 ZF_PKT_REPORT_TCP_RETRANS

#define ZF_PKT_REPORT_TCP_RETRANS 0x2000
Retransmitted TCP packet

Definition at line 43 of file types.h.

12.3.2.7 ZF_PKT_REPORT_TCP_SYN

#define ZF_PKT_REPORT_TCP_SYN 0x4000
Initial TCP SYN packet

Definition at line 45 of file types.h.

88 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE“‘

File Documentation A XILINX COMPANY

12.4 x86.h File Reference

TCPDirect x86-specific definitions.

12.4.1 Detailed Description

TCPDirect x86-specific definitions.

This file contains system-dependent code that is used by the other header files. It has no end-user API.

12.5 zf.h File Reference

TCPDirect top-level API.

12.5.1 Detailed Description

TCPDirect top-level APL.

This file should be included in TCPDirect clients. It includes any other TCPDirect header files that are required.

12.6 2zf_alts.h File Reference

TCPDirect Alternative Sends API.

Typedefs

+ typedef uint64_t zf althandle

Opaque handle for an alternative.

Functions

« int zf_alternatives_alloc (struct zf_stack xstack, const struct zf_attr xattr, zf_althandle xalt_out)

Acquire an ID for an alternative queue.
« int zf_alternatives_release (struct zf_stack xstack, zf_althandle alt)

Release an ID for an alternative queue.
« int zf_alternatives_send (struct zf_stack xstack, zf_althandle alt)

Select an alternative and send those messages.
* int zf_alternatives_cancel (struct zf_stack xstack, zf_althandle alt)

Cancel an alternative.
« int zft_alternatives_queue (struct zft xts, zf_althandle alt, const struct iovec xiov, int iov_cnt, int flags)

Queue a TCP message for sending.
* unsigned zf_alternatives_free_space (struct zf_stack xstack, zf_althandle alt)

Query the amount of free buffering on an alt.
« int zf_alternatives_query_overhead_tcp (struct zft xts, struct ef_vi_transmit_alt_overhead xout)

Query TCP per-packet overhead parameters.

Issue 9 © Copyright 2019 Xilinx, Inc 89

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation

12.6.1 Detailed Description

TCPDirect Alternative Sends API.

12.6.2 Function Documentation

12.6.2.1 zf_alternatives_alloc()

int zf_alternatives_alloc (
struct zf_stack *x stack,
const struct zf_attr * attr,

zf_althandle * alt_out)

Acquire an ID for an alternative queue.

Parameters

stack Stack to allocate the alternative for

attr Requested attributes for the alternative. At the present time, the attributes are unused. Refer to the
attribute documentation in Attributes for details.

alt_out | Handle for the allocated alternative

Returns

0 Success
-ENOMEM No alternative queues available

The alternative queue is identified by opaque handles, and is only able to be used with zockets in the stack
provided to this function.

The number of alternatives available to a stack is controlled by the value of the alt_count attribute used when
creating the stack. This value defaults to zero.

Note

TX alternatives are not supported on stacks running on bonded network interfaces.

See also

zf_alternatives_release()

12.6.2.2 2zf alternatives_cancel()

int zf_alternatives_cancel (
struct zf_stack x stack,

zf_althandle alt)

Cancel an alternative.

90 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ; SOLARFLARE®
File Documentation A XILINX COMPANY

Parameters

stack | Stack the alternative was allocated on
alt Selected alternative

Returns

0 Success

Drops messages queued on this alternative without sending.

You can reuse the alternative queue immediately for new messages (including messages on a different zocket from
the previous use) but zft_alternatives_queue() may return -EBUSY until the cancel operation is completed.

12.6.2.3 zf alternatives_free_space()

unsigned zf_alternatives_free_space (
struct zf_ stack * stack,

zf _althandle alt)

Query the amount of free buffering on an alt.

Parameters

stack | Stack the alternative was allocated on
alt Selected alternative

Returns

Number of bytes available

The return value of this function is the payload size in bytes of the largest packet which can be sent into this
alternative at this moment. Larger packets than this will cause -ENOMEM errors from functions which queue data
on alternatives.

Due to per-packet and other overheads, this amount may be different on different alternatives, and is not
guaranteed to rise and fall by exactly the sizes of packets queued and sent.

The returned value includes all packet headers. The maximum length of data accepted by zft_alternatives_queue()

will be lower than this by the size of the TCP+IP+Ethernet headers. To find a zocket's header size, use
zft_get_header_size() or zfut_get_header_size().

12.6.2.4 zf_alternatives_query_overhead_tcp()

int zf_alternatives_query_overhead_tcp (
struct zft * ts,

struct ef_vi_transmit_alt_overhead *x out)

Query TCP per-packet overhead parameters.

Issue 9 © Copyright 2019 Xilinx, Inc 91

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation

Parameters

ts TCP connection to be queried
out | Returned overhead parameters

Returns

0 on success or -EINVAL if this stack doesn't support alternatives.

This function returns a set of parameters which can be used with ef_vi_transmit_alt_usage() to calculate the
amount of buffer space used when sending data via TCP, taking into account the space taken up by headers,
VLAN tags, IP options etc.

Use of this function in this way assumes that the transmitted data fits entirely into a single TCP packet.

See the documentation for ef_vi_transmit_alt_usage() for more.

12.6.2.5 zf alternatives_release()

int zf_alternatives_release (
struct zf_stack x stack,
zf_althandle alt)

Release an ID for an alternative queue.

Parameters

stack | Stack to release the alternative for
alt zf_alternative to release

Returns

0 Success

Releases allocated alternative queue. If any messages are queued on the specified queue they will be flushed
without being sent.

See also

zf_alternatives_alloc()

12.6.2.6 zf alternatives_send()

int zf_alternatives_send (
struct zf_stack x stack,

zf_althandle alt)

Select an alternative and send those messages.

92 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

Parameters

stack | Stack the alternative was allocated on
alt Selected alternative

Returns

0 Success

-EBUSY Unable to send due to a transient state (e.g. the alternative queue is being refreshed in response to
receiving data).

-EINVAL Unable to send due to inconsistent TCP state (e.g. the zocket is not connected, or has been used
via the normal send path after queueing messages on this alternative queue)

On success messages queued on the selected alternative are sent. If other alternative queues have messages
queued for the same zocket, their headers will now be out of date and you must call zf_alternatives_cancel() on
those queues. You are free to reuse this alternative queue, but until it has finished sending the current set of
messages calls to zft_alternatives_queue() will return -EBUSY.

12.6.2.7 zft_alternatives_queue()

int zft_alternatives_queue (
struct zft *x ts,
zf_althandle alt,
const struct iovec x iov,
int iov_cnt,

int flags)

Queue a TCP message for sending.

Parameters
ts TCP zocket
alt ID of the queue to push this message to. Must have been allocated via zf_alternatives_alloc()
iov TCP payload data to send in this message.
iov_cnt | Number of iovecs to send. Currently must be 1.
flags Reserved for future use; must be zero.
Returns
0 Success

-EAGAIN Unable to queue due to a transient problem, e.g. the TCP send queue is not empty. These errors
may remain present for many milliseconds; the caller should decide whether to retry immediately or to
perform other work in the meantime.

-EBUSY Unable to queue due to a transient problem, e.g. the alternative queue is still draining from a
previous operation. These errors are expected to clear quickly without outside intervention; the caller can
react by calling zf_reactor_perform() and retrying the operation.

-EMSGSIZE Enqueuing the message would exceed the total congestion window.

-ENOMEM Unable to queue due to all packet buffers being allocated already.

-ENOBUFS Unable to queue due to a lack of available buffer space, either in TCP Direct or in the NIC
hardware.

-EINVAL Invalid parameters. This includes the case where the alternative already has data queued on
another zocket.

Issue 9 © Copyright 2019 Xilinx, Inc 93

SOLARFLARE® TCPDirect User Guide

A XILINX COMPANY File Documentation

This function behaves similarly to zft_send(), but doesn't actually put the data on the wire.

For now it is only possible to send a single buffer of data in each call to zft_alternatives_queue(); this function will
return -EINVAL if 'iov_cnt' is not equal to 1. Future releases may change this. Multiple messages can be queued
for sending on a single alternative by calling zft_alternatives_queue() for each message.

The current implementation limits all messages enqueued on an alternative to be from the same zocket. This may
change in future.

In some cases where an alternative is in the middle of an operation such as a send, cancel, etc. this function may
return -EBUSY. In this case the caller should process some events and retry.

12.7 2zf_ds.h File Reference

TCPDirect Delegated Sends API.

Data Structures

* struct zf ds

Structure used for delegated sends.

Macros

» #define ZF_DELEGATED_SEND_RC_FATAL 0x80
Mask to test for fatal errors in the Delegated Sends API.

Enumerations

» enum zf_delegated_send_rc {
ZF _DELEGATED_SEND_RC_OK = 0x00, ZF_DELEGATED_SEND_RC_NOCWIN = 0x01,
ZF DELEGATED_SEND_ RC_NOWIN = 0x02, ZF DELEGATED_SEND RC_BAD_SOCKET = 0x83,
ZF DELEGATED_SEND RC_SMALL HEADER = 0x84, ZF DELEGATED _SEND RC_SENDQ_BUSY =
0x85, ZF _DELEGATED_SEND_RC_NOARP = 0x86 }

Return codes for functions in the Delegated Sends API.

Functions

» enum zf_delegated_send_rc zf_delegated_send_prepare (struct zft xts, int max_delegated_wnd, int
cong_wnd_override, unsigned flags, struct zf_ds xds)

Delegate sends to the application.
« static void zf_delegated_send_tcp_update (struct zf_ds xds, int bytes, int push)

Update packet headers with correct data length and PUSH flag.
« static void zf_delegated_send_tcp_advance (struct zf_ds xds, int bytes)

Update packet headers to reflect that a packet has been sent.
« int zf_delegated_send_complete (struct zft xts, const struct iovec xiov, int iovlen, int flags)

Notify TCPDirect that some data have been sent via delegated sends.
* int zf_delegated_send_cancel (struct zft xts)

Notify TCPDirect that a reserved set of bytes are no longer required.

94 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

12.7.1 Detailed Description

TCPDirect Delegated Sends API.

12.7.2 Enumeration Type Documentation

12.7.2.1 zf_delegated_send_rc

enum zf_delegated_send_rc
Return codes for functions in the Delegated Sends API.

Enumerator

ZF_DELEGATED_SEND_RC_OK | Success
ZF_DELEGATED_SEND_RC_NOCWIN | Insufficient congestion window
ZF _DELEGATED_SEND_RC_NOWIN | Insufficient send window
ZF_DELEGATED_SEND_RC_BAD_SOCKET | Zocket not in a state to send
ZF _DELEGATED_SEND_RC_SMALL_HEADER | headers_size too small (headers_len gives size required)
ZF_DELEGATED_SEND_RC_SENDQ_BUSY | Zocket has data in send queue
ZF_DELEGATED_SEND_RC_NOARP | Remote MAC for peer not known

Definition at line 54 of file zf_ds.h.

12.7.3 Function Documentation

12.7.3.1 zf_delegated_send_cancel()

int zf_delegated_send_cancel (
struct zft x ts)

Notify TCPDirect that a reserved set of bytes are no longer required.

Parameters

\ ts \ TCP zocket

Returns

0 on success, or negative error on failure

Notify TCPDirect that a previously reserved set of bytes (obtained using zf_delegated_send_prepare()) are no
longer required.

This must be used if the caller has not called zf_delegated_send_complete() for all the bytes reserved. After
successful return, the caller can use other TCPDirect send API calls, or start another delegated send operation
with zf_delegated_send_prepare().

Issue 9 © Copyright 2019 Xilinx, Inc 95

‘SOLARFLARE“’ TCPDirect User Guide

A XILINX COMPANY File Documentation

12.7.3.2 zf delegated_send_complete()

int zf_delegated_send_complete (
struct zft *x ts,
const struct iovec x iov,
int iovlen,

int flags)

Notify TCPDirect that some data have been sent via delegated sends.

Parameters
ts TCP zocket
iov Start of the iovec array describing the packet buffers

iovlen | Length of the iovec array

flags | Reserved for future use

Returns

Number of bytes completed on success (which may be less than the requested number of bytes for partial
success)

Negative error on failure:

-EMSGSIZE: attempt to "complete"” more bytes than were "prepared"”

-EAGAIN: no space on send queue (prepare should already have failed)

Notify TCPDirect that some data have been sent via delegated sends. If successful, TCPDirect will handle all
further aspects of the TCP protocol (e.g. acknowledgements, retransmissions) for those bytes.

12.7.3.3 zf_delegated_send_prepare()

enum zf_delegated_send_rc zf_delegated_send_prepare (
struct zft x ts,
int max_delegated_wnd,
int cong_wnd _override,
unsigned flags,

struct zf ds * ds

Delegate sends to the application.

Parameters

ts TCP zocket
max_delegated_wnd | Bytes to reserve for future delegated sends

cong_wnd_override Minimum congestion window, or zero

flags Reserved for future use

ds Structure used for delegated sends

96 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

Returns

ZF_DELEGATED_SEND_RC_OK: Success

ZF_DELEGATED_SEND_RC_NOCWIN: Insufficient congestion window
ZF_DELEGATED_SEND_RC_NOWIN: Insufficient send window
ZF_DELEGATED_SEND_RC_BAD_SOCKET: Zocket not in a state to send
ZF_DELEGATED_SEND_RC_SMALL_HEADER: headers_size too small (headers_len gives size required)
ZF_DELEGATED_SEND_RC_SENDQ_BUSY: Zocket has data in send queue
ZF_DELEGATED_SEND_RC_NOARP: Remote MAC for peer not known

This function delegates sends to the application. It reserves up to max_delegated_wnd bytes for future
delegated sends, and returns the Ethernet-IP-TCP headers. The maximum amount of data that the application can
send is then returned in ds->delegated_wnd. Both max_delegated_wnd and ds->delegated_wnd are relative
to sends already completed.

If cong_wnd_override is non-zero, it specifies a minimum congestion window. This call behaves as if the
congestion window is the larger of cong_wnd_override and the zocket's actual congestion window.

Once a send has been completed, call zf _delegated send_complete() to indicate how many bytes were used, and
make further calls to this function to extend the window for delegated sends.

If not all the bytes reserved with this call are used then zf_delegated_send_cancel() must be called before further
normal sends. A subsequent call to zf_delegated_send_prepare() is safe without calling
zf_delegated_send_cancel().

When the return code is RC_OK, RC_NOWIN or RC_NOCWIN, the headers and other fields in ds are initialised.
This set is indicated by !(rc & ZF_DELEGATED_SEND_RC_FATAL). When RC_SMALL_HEADER is returned,
ds->headers_len is initialised. In other cases ds is not filled in.

Note that the delegated window is never reduced by this call, so ds->delegated_wnd may be non-zero even if
RC_NOWIN or RC_NOCWIN is returned.

12.7.3.4 zf _delegated_send_tcp_advance()

static void zf_delegated_send_tcp_advance (
struct zf_ds x ds,
int bytes) [inline], [static]

Update packet headers to reflect that a packet has been sent.

Parameters

ds Structure used for delegated sends

bytes | Bytes sent

Update packet headers created by zf_delegated_send_prepare() to reflect that a packet of length bytes has
been sent.

zf_delegated_send_prepare() reserves a potentially long area for delegated sends. If these bytes are sent in
multiple packets, this function must be used in between each delegated send to update the TCP headers
appropriately.

Definition at line 179 of file zf_ds.h.

Issue 9 © Copyright 2019 Xilinx, Inc 97

‘SOLARFLARE“’ TCPDirect User Guide

A XILINX COMPANY File Documentation

12.7.3.5 zf delegated_send_tcp_update()

static void zf_delegated_send_tcp_update (
struct zf_ds x ds,
int bytes,

int push) [inline], [static]
Update packet headers with correct data length and PUSH flag.

Parameters

ds Structure used for delegated sends

bytes | Correct data length
push | Zero to clear PUSH flag, non-zero to set PUSH flag

Update packet headers created by zf_delegated _send_prepare() with correct data length and PUSH flag details.

zf_delegated_send_prepare() assumes that the delegated send will be the maximum segment size, and that no
PUSH flag will be set in the TCP header. If this assumption is correct there is no need to call
zf_delegated_send_tcp_update().

Definition at line 142 of file zf_ds.h.

12.8 zf platform.h File Reference

TCPDirect platform API.

12.8.1 Detailed Description

TCPDirect platform API.

This file contains platform-dependent code that is used by the other header files. It has no end-user API.

12.9 zf reactor.h File Reference

TCPDirect reactor API for processing stack events.

Functions

« int zf_reactor_perform (struct zf_stack xst)

Process events on a stack.
* int zf_reactor_perform_attr (struct zf_stack xst, const struct zf_attr xattr)

Process events on a stack, with overridden attributes.
« int zf_stack_has_pending_work (const struct zf_stack xst)

Determine whether a stack has work pending.
« int zf_stack_has_pending_events (const struct zf_stack xst)

Determine whether a stack has events pending, but don't check TCP-specific non-event-based work.

98 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
File Documentation

SOLARFLARE®

A XILINX COMPANY

12.9.1 Detailed Description

TCPDirect reactor API for processing stack events.

12.9.2 Function Documentation

12.9.2.1 zf reactor_perform()

int zf_reactor_perform (

struct zf stack *x st)

Process events on a stack.

Parameters

‘ st ‘ Stack for which to process events.

This function processes events on a stack and performs the necessary handling. These events include transmit
and receive events raised by the hardware, and also software events such as TCP timers. Applications must call
zf_reactor_perform(), zf_reactor_perform_attr() or zf_muxer_wait() frequently for each stack that is in use. Please

see Stack polling in the User Guide for further information.

By default this function has relatively high CPU overhead when no events are ready to be processed, because it
polls repeatedly for events. The amount of time spent polling is controlled by stack attribute reactor_spin_count.
Setting reactor_spin_count to 1 disables polling and minimises the cost of zf_reactor_perform(). To override

reactor_spin_count for a single call, zf_reactor_perform_attr() can be used instead.

Returns

0 if nothing user-visible occurred as a result.

>0 if something user-visible might have occurred as a result.

Here, "something user-visible occurred” means that the event-processing just performed has had an effect
that can be seen by another API call: for example, new data might have arrived on a zocket, in which case
that data can be retrieved by one of the receive functions. False positives are possible: a value greater than
zero indicates to the application that it should process its zockets, but it does not guarantee that this will yield
anything new. Finer-grained advertisement of interesting events can be achieved using the multiplexer.

See also

zf_reactor_perform_attr() zf_muxer_wait()

12.9.2.2 2zf reactor_perform_attr()

int zf_reactor_perform_attr (
struct zf_stack x st,

const struct zf_attr % attr)

Process events on a stack, with overridden attributes.

Issue 9 © Copyright 2019 Xilinx, Inc

99

SOLGRFLARE TCPDirect User Guide
A XILINX COMPANY File Documentation

Parameters

st Stack for which to process events.

attr | Overridden properties for event processing. Only reactor_spin_count is currently supported.

This function processes events on a stack and performs the necessary handling. These events include transmit
and receive events raised by the hardware, and also software events such as TCP timers. Applications must call
zf_reactor_perform(), zf_reactor_perform_attr() or zf_muxer_wait() frequently for each stack that is in use. Please
see Stack polling in the User Guide for further information.

This function differs from zf_reactor_perform() in that the reactor_spin_count stack attribute will be overriden using
the provided attributes. In all other respects it is identical to zf_reactor_perform().

reactor_spin_count is the only supported override at this time. Other attributes may be added in future versions so
callers need to take care with the setting of other attributes to avoid unintended side effects when run against
future versions.

This function polls repeatedly for events. The amount of time spent polling is controlled by the attribute
reactor_spin_count. Setting reactor_spin_count to 1 disables polling and minimises the cost of
zf_reactor_perform_attr().

Returns

0 if nothing user-visible occurred as a result.

>0 if something user-visible might have occurred as a result.

Here, "something user-visible occurred” means that the event-processing just performed has had an effect
that can be seen by another API call: for example, new data might have arrived on a zocket, in which case
that data can be retrieved by one of the receive functions. False positives are possible: a value greater than
zero indicates to the application that it should process its zockets, but it does not guarantee that this will yield
anything new. Finer-grained advertisement of interesting events can be achieved using the multiplexer.

See also

zf_reactor_perform() zf_muxer_wait()

12.9.2.3 zf_stack_has_pending_events()

int zf_stack_has_pending_events (

const struct zf_stack x st)
Determine whether a stack has events pending, but don't check TCP-specific non-event-based work.

Parameters

‘ st ‘ Stack to check for pending work.

This function is a cut-down version of zf_stack has_pending_work(). It returns non-zero if the stack has events
pending, and therefore the application should call zf_reactor_perform(), zf_reactor_perform_attr() or
zf_muxer_wait().

This differs from zf_stack _has_pending_work() in that it never tries to check whether there is non-event-based
work (such as processing TCP timers) pending. If the calling application knows there is no TCP work (e.g. it is
using only UDP zockets) this function may be a few cycles cheaper.

100 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE“‘

File Documentation A XILINX COMPANY

12.9.2.4 zf stack_has_pending_work()

int zf_stack_has_pending_work (

const struct zf stack x st)

Determine whether a stack has work pending.

Parameters

‘ st ‘ Stack to check for pending work. ‘

This function returns non-zero if the stack has work pending, and therefore the application should call
zf_reactor_perform(), zf_reactor_perform_attr() or zf_muxer_wait().

This function can be called concurrently with other calls on a stack, and so can be used to avoid taking a
serialisation lock (and therefore avoid inducing lock contention) when there isn't any work to do.

Returns

0 if there is nothing to do.
>0 if there is some work pending.

See also

zf_reactor_perform() zf_reactor_perform_attr() zf_muxer_wait()

12.10 zf_stack.h File Reference

TCPDirect stack API.

Macros
« #define EPOLLSTACKHUP EPOLLRDHUP

Event indicating stack quiescence.

Functions

* int zf_init (void)
Initialize zf library.
* int zf_deinit (void)
Deinitialize zf library.
« int zf_stack_alloc (struct zf_attr xattr, struct zf_stack sxstack_out)

Allocate a stack with the supplied attributes.
« int zf_stack_free (struct zf_stack xstack)

Free a stack previously allocated with zf_stack_alloc().
« struct zf_waitable x zf_stack_to_waitable (struct zf_stack x)

Returns a waitable object representing the quiescence of a stack.
« int zf_stack_is_quiescent (struct zf_stack x)

Returns a boolean value indicating whether a stack is quiescent.
» const char * zf_version (void)

Returns library name and version.
+ void zf_print_version (void)

Prints library name and version to stderr, then exits.

Issue 9 © Copyright 2019 Xilinx, Inc 101

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation

12.10.1 Detailed Description

TCPDirect stack API.

12.10.2 Macro Definition Documentation

12.10.2.1 EPOLLSTACKHUP

#define EPOLLSTACKHUP EPOLLRDHUP

Event indicating stack quiescence.

See also

zf_stack_to_waitable()

Definition at line 90 of file zf_stack.h.

12.10.3 Function Documentation

12.10.3.1 zf_deinit()

int zf_deinit (

void)

Deinitialize zf library.

Returns

0. Negative values are reserved for future use as error returns.

12.10.3.2 zf_init()
int zf_init (

void)
Initialize zf library.

Should be called exactly once per process, and before any other API calls are made.

Returns

0 on success, or a negative error code. This function uses attributes internally and can return any of the error
codes returned by zf_attr_alloc(). Additionally, it can return the following:
-ENOENT Failed to initialize control plane. A likely cause is that Onload drivers are not loaded.

102 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

12.10.3.3 zf_stack_alloc()

int zf_stack_alloc (
struct zf_ attr * attr,

struct zf_ stack *x stack_out)

Allocate a stack with the supplied attributes.

Parameters

attr A set of properties to apply to the stack.
stack_out | A pointer to the newly allocated stack.

A stack encapsulates hardware and protocol state. A stack binds to a single network interface, specified by the
interface attribute in attr. To process events on a stack, call zf_reactor_perform() or zf_muxer_wait().

Relevant attributes to setin at tr are those inthe zf_stack, zf_pool and zf_vi categories described in
the attributes documentation in Attributes.

Returns

0 on success, or a negative error code:

-EBUSY Out of VI instances or resources for alternatives.

-EINVAL Attribute out of range.

-ENODEYV Interface was not specified or was invalid.

-ENOENT Failed to initialize ef_vi or Onload libraries. A likely cause is that Onload drivers are not loaded.
-ENOKEY Adapter is not licensed for TCPDirect.

-ENOMEM Out of memory. N.B. Huge pages are required.

-ENOSPC Out of PIO buffers.

Errors from system calls are also possible. Please consult your system's documentation for errno (3).

12.10.3.4 zf_stack_free()

int zf_stack_free (

struct zf_stack x stack)

Free a stack previously allocated with zf_stack_alloc().

Parameters

\ stack \ Stack to free

Returns

When called with a valid stack, this function always returns zero. Results on invalid stacks are undefined.

Issue 9 © Copyright 2019 Xilinx, Inc 103

SOLGRFLARE TCPDirect User Guide
A XILINX COMPANY File Documentation

12.10.3.5 zf _stack_is_quiescent()

int zf_stack_is_quiescent (

struct zf stack x)
Returns a boolean value indicating whether a stack is quiescent.

A stack is quiescent precisely when all of the following are true:

« the stack will not transmit any packets except in response to external stimuli (including relevant API calls),
* closing zockets will not result in the transmission of any packets, and

+ (optionally, controlled by the tcp_wait_for_time_wait stack attribute) there are no TCP zockets in
the TIME_WAIT state. In practice, this is equivalent altogether to the condition that there are no open TCP
connections.

This can be used to ensure that all connections have been closed gracefully before destroying a stack (or exiting
the application). Destroying a stack while it is not quiescent is permitted by the API, but when doing so there is no
guarantee that sent data has been acknowledged by the peer or even transmitted, and there is the possibility that
peers' connections will be reset.

See also

zf _stack_to_waitable()

Returns

Non-zero if the stack is quiescent, or zero otherwise.

12.10.3.6 zf_stack_to_waitable()

struct zf_waitablex zf_stack_to_waitable (

struct zf_ stack x)
Returns a waitable object representing the quiescence of a stack.
The waitable will be ready for EPOLLSTACKHUP if the stack is quiescent.

See also

zf_stack_is_quiescent|()

Returns

Waitable.

104 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE“‘

File Documentation A XILINX COMPANY

12.11 zf_tcp.h File Reference

TCPDirect TCP APL.

#include <netinet/in.h>
#include <sys/uio.h>

Data Structures

* struct zftl

Opaque structure describing a TCP listening zocket.
* struct zft

Opaque structure describing a TCP zocket that is connected.
« struct zft_msg

TCP zero-copy RX message structure.

Functions

« int zftl_listen (struct zf_stack xst, const struct sockaddr xladdr, socklen_t laddrlen, const struct zf_attr *attr,
struct zftl *xtl_out)
Allocate TCP listening zocket.
« int zftl_accept (struct zftl *tl, struct zft *xts_out)
Accept incoming TCP connection.
« struct zf_waitable * zftl_to_waitable (struct zftl «tl)
Returns a zf_waitable representing t1.
« void zftl_getname (struct zftl *ts, struct sockaddr xladdr_out, socklen_t xladdrlen)
Retrieve the local address of the zocket.
« int zftl_free (struct zfil *ts)
Release resources associated with a TCP listening zocket.
« struct zf_waitable x zft_to_waitable (struct zft xts)
Returns a zf_waitable representing the given zft.
« int zft_alloc (struct zf_stack xst, const struct zf_attr xattr, struct zft_handle xxhandle_out)
Allocate active-open TCP zocket.
« int zft_handle_free (struct zft_handle xhandle)
Release a handle to a TCP zocket.
» void zft_handle_getname (struct zft_handle xts, struct sockaddr xladdr_out, socklen_t xladdrlen)
Retrieve the local address to which a zft _handle is bound.
« int zft_addr_bind (struct zft_handle xhandle, const struct sockaddr xladdr, socklen_t laddrlen, int flags)
Bind to a specific local address.
* int zft_connect (struct zft_handle xhandle, const struct sockaddr xraddr, socklen_t raddrlen, struct zft
*xts_out)
Connect a TCP zocket.
* int zft_shutdown_tx (struct zft xts)
Shut down outgoing TCP connection.
* int zft_free (struct zft xts)

Release resources associated with a TCP zocket.
* int zft_state (struct zft xts)

Issue 9 © Copyright 2019 Xilinx, Inc 105

‘SOLARFLARE“’ TCPDirect User Guide

A XILINX COMPANY File Documentation

Return the TCP state of a TCP zocket.
int zft_error (struct zft xts)
Find out the error type happened on the TCP zocket.
void zft_getname (struct zft xts, struct sockaddr xladdr_out, socklen_t xladdrlen, struct sockaddr xraddr_out,
socklen_t xraddrlen)
Retrieve the local address of the zocket.
void zft_zc_recv (struct zft xts, struct zfi_msg xmsg, int flags)
Zero-copy read of available packets.
int zft_zc_recv_done (struct zft xts, struct zft_msg *xmsQ)
Concludes pending zc_recv operation as done.
int zft_zc_recv_done_some (struct zft xts, struct zft_msg xmsg, size_t len)
Concludes pending zc_recv operation as done acknowledging all or some of the data to have been read.
int zft_recv (struct zft xts, const struct iovec *iov, int iovent, int flags)
Copy-based receive.
int zft_pkt_get_timestamp (struct zft xts, const struct zft_msg xmsg, struct timespec *ts_out, int pktind,
unsigned xflags)
Retrieve the UTC timestamp associated with a received packet, and the clock sync status flags.
ssize_t zft_send (struct zft xts, const struct iovec *iov, int iov_cnt, int flags)
Send data specified in iovec array.
ZF_NOCLONE ssize_t zft_send_single (struct zft xts, const void xbuf, size_t buflen, int flags)
Send data given in single buffer.
ssize_t zft_send_single_warm (struct zft xts, const void xbuf, size_t buflen)
Warms code path used by zft send_single() without sending data.
int zft_send_space (struct zft xts, size_t xspace)
Query available space in the send queue.
int zft_get_mss (struct zft xts)
Retrieve the maximum segment size (MSS) for a TCP connection.
unsigned zft_get_header_size (struct zft xts)
Return protocol header size for this connection.
int zft_get_tx_timestamps (struct zft xts, struct zf_pkt_report xreports, int xcount_in_out)

Retrieve timestamp reports from previously sent data.

12.11.1 Detailed Description

TCPDirect TCP API.

12.11.2 Function Documentation

12.11.2.1 zft_addr_bind()

int zft_addr_bind (
struct zft_handle * handle,
const struct sockaddr * laddr,
socklen_t laddrlen,

int flags)

Bind to a specific local address.

106 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY
Parameters

handle TCP zocket handle.

laddr Local address.

laddrlen | Length of structure pointed to by laddr

flags Reserved. Must be zero.
Returns

0 Success.

-EADDRINUSE Local address already in use.

-EADDRNQOTAVAIL 1addr is not a local address.
-EAFNOSUPPORT laddr is not an AF_INET address.

-EFAULT Invalid pointer.

-EINVAL Zocket is already bound, invalid £1ags, or invalid laddrlen.
-ENOMEM Out of memory.

12.11.2.2 zft_alloc()

int zft_alloc (
struct zf stack x st,
const struct zf_attr % attr,

struct zft_handle %% handle out)

Allocate active-open TCP zocket.

Parameters
st Initialized zf_stack.
attr Attributes required for this TCP zocket. Note that not all attributes are relevant; only those which
apply to objects of type "zf_socket" are applicable here. Refer to the Attributes documentation for
details.

handle_out | On successful return filled with pointer to a zocket handle. This handle can be used to refer to the
zocket before it is connected.

Returns

0 Success.

-ENOBUFS No zockets of this type available.
This function initialises the datastructures needed to make an outgoing TCP connection.
The returned handle can be used to refer to the zocket before it is connected.

The handle must be released either by explicit release with zft_handle_free(), or by conversion to a connected
zocket via zft_connect().

See also

zft_addr_bind() zft_connect() zft_handle_free()

Issue 9 © Copyright 2019 Xilinx, Inc 107

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
File Documentation

12.11.2.3 zft_connect()

int zft_connect (
struct zft_handle *x handle,
const struct sockaddr * raddr,
socklen_t raddrlen,

struct zft *x ts_out)
Connect a TCP zocket.

Parameters

handle TCP zocket handle, to be replaced by the returned zocket.

raddr Remote address to connect to.

raddrlen | Length of structure pointed to by raddr.

ts_out On successful return, a pointer to a TCP zocket.

This replaces the zocket handle with a TCP zocket. On successful return the zocket handle has been released and

is no longer valid.

If a specific local address has not been set via zft_addr_bind() then an appropriate one will be selected.

This function does not block. Functions that attempt to transfer data on the zocket between zft_connect() and the
successful establishment of the underlying TCP connection will return an error. Furthermore, failure of the remote
host to accept the connection will not be reported by this function, but instead by any attempts to read from the

zocket (or by zft_error()). As such, after calling zft_connect(), either

* read calls that fail with ~-ENOTCONN should be repeated after calling zf_reactor_perform(), or

+ the zocket should be polled for readiness using zf_muxer_wait().

This is analogous to the non-blocking connection model for POSIX sockets.

Returns

0 Success.

-EAFNOSUPPORT raddr is not an AF_INET address
-EADDRINUSE Address already in use.

-EBUSY Out of hardware resources.

-EFAULT Invalid pointer.

-EHOSTUNREACH No route to remote host.

-ENOMEM Out of memory.

-EINVAL Zocket in unexpected TCP state, or no raddr supplied

See also

zft_addr_bind()

12.11.2.4 zft_error()

int zft_error (

struct zft % ts)

Find out the error type happened on the TCP zocket.

108 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

Parameters

| ts | TCP zocket.

Return values

errno | value, similar to SO_ERROR value for sockets.
Error | values are designed to be similar to Linux SO_ERROR:
ECONNREFUSED | The connection attempt was refused by server.
ECONNRESET | The connection was reset by the peer after it was established.

ETIMEDOUT | The connection was timed out, probably because of network failure.

EPIPE | The connection was closed gracefully by the peer (i.e. we've received all the data they've
sent to us), but the peer refused to receive the data we've tried to send.

12.11.2.5 zft_free()

int zft_free (
struct zft % ts)

Release resources associated with a TCP zocket.
Parameters

\ ts \ TCP zocket.

This call shuts down the zocket if necessary. The application must not use t s after this call.

Returns

0 on success. Negative values are reserved for future use as error codes, but are not returned at present.

12.11.2.6 zft_get_header_size()

unsigned zft_get_header_size (
struct zft % ts)

Return protocol header size for this connection.

Parameters

‘ ts ‘ The TCP zocket to query the header size for.

Returns

Protocol header size in bytes.
This function returns the total size of all protocol headers in bytes. An outgoing packet's size will be exactly the
sum of this value and the number of payload data bytes it contains.

This function cannot fail.

Issue 9 © Copyright 2019 Xilinx, Inc 109

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
File Documentation

12.11.2.7 zft_get_mss()

int zft_get_mss (
struct zft * ts)

Retrieve the maximum segment size (MSS) for a TCP connection.

Parameters

‘ ts ‘ The TCP zocket to query. ‘

Returns

>= 0 The value of the MSS in bytes.
-ENOTCONN Zocket is not in a valid TCP state for sending.

12.11.2.8 zft_get_tx_timestamps()

int zft_get_tx_timestamps (
struct zft x ts,
struct zf_pkt_report * reports,

int * count_in_out)

Retrieve timestamp reports from previously sent data.

Parameters
ts TCP zocket.
reports Array to fill with timestamp reports

count_in_out | IN: size of array, OUT: number of reports

Returns

0 on success, or negative error code.

If transmit timestamps are enabled, then one report will be generated for each segment. The segment can be
identified by the "start" field of the report, which begins at 0 and increments for each byte sent on this zocket.

Retransmission will cause multiple reports for that segment, and is indicated by the

ZF_PKT_REPORT_TCP_RETRANS flag as well as discontinuities in the reported location. Timestamps are also
reported for the packets sent to open and close the stream, indicated by the ZF_PKT_REPORT_TCP_SYN and

ZF_PKT_REPORT_TCP_FIN flags.

12.11.2.9 zft_getname()

void zft_getname (
struct zft * ts,
struct sockaddr * laddr_out,
socklen_t *x laddrlen,
struct sockaddr * raddr_out,

socklen_t * raddrlen)

Retrieve the local address of the zocket.

110 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY
Parameters
ts TCP zocket.

laddr_out | Return the local address of the zocket.

laddrlen The length of the structure pointed to by laddr_out

raddr_out | Return the remote address of the zocket.
raddrlen The length of the structure pointed to by raddr_out

This function returns local and/or remote IP address and TCP port of the given connection. Caller may pass NULL
pointer for local or remote address if he is interested in the other address only.

If the supplied address structures are too small the result will be truncated and addrlen updated to a length greater
than that supplied.

12.11.2.10 zft_handle_free()

int zft_handle_free (
struct zft_handle *x handle)

Release a handle to a TCP zocket.

Parameters

handle | Handle to be released.

This function releases resources associated with a zft_handle.

Returns

0 Success.

12.11.2.11 =zft_handle_getname()

void zft_handle_getname (
struct zft_handle * ts,
struct sockaddr * laddr_out,

socklen_t * laddrlen)
Retrieve the local address to which a zft handle is bound.

Parameters

ts TCP zocket handle
laddr_out | Return the local address of the zocket

laddrlen On entry, the size in bytes of the structure pointed to by laddr_out. Set on return to be the size in
bytes of the result.

This function returns the local IP address and TCP port of the given listener. The behavior is undefined if the
zocket is not bound.

If the supplied structure is too small the result will be truncated and laddrlen updated to a length greater than that
supplied.

Issue 9 © Copyright 2019 Xilinx, Inc 111

‘SOLARFLARE*’ TCPDirect User Guide

A XILINX COMPANY File Documentation

12.11.2.12 zft_pkt_get_timestamp()

int zft_pkt_get_timestamp (
struct zft * ts,
const struct zft_msg % msg,
struct timespec * ts_out,
int pktind,

unsigned * flags)

Retrieve the UTC timestamp associated with a received packet, and the clock sync status flags.

Parameters

ts TCP zocket.
msg Pointer to the received message for which the RX timestamp will be retrieved.

ts_out | Pointer to a timespec that is updated on return with the UTC timestamp for the packet.
pktind | Index of packet within msg->iov.

flags Pointer to an unsigned that is updated on return with the sync flags for the packet.

Returns

0 Success.

-ENOMSG Synchronisation with adapter has not yet been achieved. This only happens with old firmware.
-ENODATA Packet does not have a timestamp. On current Solarflare adapters, packets that are switched
from TX to RX do not get timestamped.

-EL2NSYNC Synchronisation with adapter has been lost. This should never happen!

Note

This function must be called after zf_reactor_perform() returns a value greater than zero, and before
zf_reactor_perform() is called again.
If RX timestamps were not enabled during stack initialisation, the behaviour of this function is undefined.

On success the t s_out and flags_out fields are updated, and a value of zero is returned. The flags_out
field contains the following flags:

* EF_VI_SYNC_FLAG_CLOCK_SET is set if the adapter clock has ever been set (in sync with system)

* EF_VI_SYNC_FLAG_CLOCK_IN_SYNC is set if the adapter clock is in sync with the external clock (PTP).

12.11.2.13 zft_recv()

int zft_recv (
struct zft * ts,
const struct iovec * iov,
int iovent,

int flags)

Copy-based receive.

112 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

Parameters

ts TCP zocket
iov Array with vectors pointing to buffers to fill with packet payloads.

iovent | The maximum number of buffers supplied (i.e. size of iov)

flags None yet, must be zero.

Returns

>0 Number of bytes successfully received

0 End of File - other end has closed the connection
-EAGAIN No data avaible to read.

Other error codes are as for zft_zc_recv_done().

Copies received data on a zocket into buffers provided by the caller. The number of bytes received is returned. The
caller's buffers will be filled as far as possible, and so a positive return value of less than the total space available in
iov implies that no further data is available.

If no data is available, there are two possibilities: either the connection is still open, in which case ~-EAGAIN is
returned, or else the connection has been closed by the peer, in which case the function succeeds and returns
zero.

12.11.2.14 zft_send()

ssize_t zft_send (
struct zft x ts,
const struct iovec x iov,
int iov_cnt,

int flags)

Send data specified in iovec array.

Parameters
ts The TCP zocket to send on.
iov The iovec of data to send.

iov_cnt | The length of iov.
flags Flags. 0 or MSG_MORE.

This function adds the supplied data (as indicated by the iov argument) to the zocket's send queue and if possible
will send it (or part of it) on the wire. To prevent a small packet being sent the MSG_MORE flag can be used: it will
prevent a packet that is not filled up to MSS from being sent.

There is no guarantee that separate calls to this function, or separate entries in the iovec array, will result in
separate packets. To achieve control over packet boundaries the delegated sends API can be used instead.

Provided buffers may be re-used on return from this function.

Issue 9 © Copyright 2019 Xilinx, Inc 113

‘SOLARFLARE‘” TCPDirect User Guide

A XILINX COMPANY File Documentation

Returns

Number of bytes sent on success.

-EINVAL Incorrect arguments supplied.

-ENOTCONN Zocket is not in a valid TCP state for sending.

-EAGAIN Not enough space (either bytes or buffers) in the send queue to send any portion of the data.
-ENOMEM Not enough packet buffers available.

Note

This function does not support sending zero-length data, and does not raise an error if you do so. Every
iovec in the iov array must have length greater than 0, and iov_cnt must also be greater than 0.

The flags argument must be set to 0 or MSG_MORE.

This function will send only part of the data provided if there is insufficient space in the send queue to send
all of it (and there are no error conditions). Use zft_send_space() immediately before this call to determine in
advance whether only part of the data would be sent.

Notes on current implementation:

1. Currently, this function will return ~-ENOMEM without sending any data if it is unable to send the entire
message due to shortage of packet buffers. This behaviour might change in future releases.

2. In case of partial send, the data is queued with MSG_MORE flag set, and so may not go out
immediately. See below for details of how to flush a MSG_MORE send.

3. MSG_MORE flag prevents the last partially filled segment from being sent immediately. The only
guaranteed way to flush such a segment is to follow MSG_MORE send with normal send - otherwise
the segment might never get sent at all or it may take undefined amount of time. Some non-guaranteed
triggers that might induce flush of a MSG_MORE segment:

« further MSG_MORE send causes the segment to become full,
» preceding normal send left paritally filled segment in sendqueue, or
* during stack polling TCP state machine intends to send ACK in response to incoming data.

12.11.2.15 zft_send_single()

ZF_NOCLONE ssize_t zft_send_single (
struct zft * ts,
const void *x buf,
size_t buflen,

int flags)
Send data given in single buffer.

Parameters

ts The TCP zocket to send on.
buf The buffer of data to send.
buflen | The length of buffer.

flags Flags. 0 or MSG_MORE.

This function adds the supplied data (as indicated by the buf argument) to the zocket's send queue and if possible
will send it (or part of it) on the wire. To prevent a small packet being sent the MSG_MORE flag can be used: it will
prevent a packet that is not filled up to MSS from being sent.

There is no guarantee that separate calls to this function will result in separate packets. To achieve control over
packet boundaries the delegated sends API can be used instead. The "single" in the name of the function refers to
it taking a single buffer rather than an iovec of buffers.

Provided buffer may be re-used on return from this function.

114 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
File Documentation

SOLARFLARE®

A XILINX COMPANY

Returns

Number of bytes sent on success.

-EINVAL Incorrect arguments supplied.

-ENOTCONN Zocket is not in a valid TCP state for sending.
-EAGAIN Not enough space (either bytes or buffers) in the send queue to send any portion of the data.
-ENOMEM Not enough packet buffers available.

Note

This function does not support sending zero-length data, and does not raise an error if you do so.
The flags argument must be set to 0 or MSG_MORE.
This function will send only part of the data provided if there is insufficient space in the send queue to send

all of it (and there are no error conditions). Use zft_send_space() immediately before this call to determine in
advance whether only part of the data would be sent.
Notes on current implementation:

1. Currently, this function will return ~-ENOMEM without sending any data if it is unable to send the entire
message due to shortage of packet buffers. This behaviour might change in future releases.

2. MSG_MORE flag prevents the last partially filled segment from being sent immediately. The only
guaranteed way to flush such a segment is to follow MSG_MORE send with normal send - otherwise
the segment might never get sent at all or it may take undefined amount of time. Some non-guaranteed
triggers that might induce flush of a MSG_MORE segment:

« further MSG_MORE send causes the segment to become full,
 preceding normal send left paritally filled segment in sendqueue, or

* during stack polling TCP state machine intends to send ACK in response to incoming data.

12.11.2.16 zft_send_single_warm()

ssize_t zft_send_single_warm (

struct zft * ts,
const void * buf,

size_t buflen)

Warms code path used by zft_send_single() without sending data.

Parameters

Is

The TCP zocket to send on.

buf

The buffer of data to send.

buflen

The length of buffer.

Returns

Number of bytes warmed on success.

-EAGAIN Events need to be processed before warming. Call zf_reactor_perform()
-EMSGSIZE Data buffer too long.

-ENOTCONN Zocket is not in a valid TCP state for sending.
-ENOMEM Not enough packet buffers available.

Issue 9

© Copyright 2019 Xilinx, Inc

115

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation

This function can be called repeatedly while the application waits for an input that will trigger a call to
zft_send_single(). Doing so warms the code path to avoid cache and TLB misses when actually sending data in
the subsequent zft_send_single() call. buf need not contain the exact data that will eventually be sent.

This function only supports warming the code path where the send queue is empty and a PIO or CTPIO send
would be performed. If buflen is too large for PIO then -EMSGSIZE will be returned. If previous sends may still
be in progress -EAGAIN will be returned. In this case, the application can call zf_reactor_perform() and then try
again.

See also

zft_send_single()

12.11.2.17 zft_send_space()

int zft_send_space (
struct zft x ts,
size_t * space)

Query available space in the send queue.

Parameters

ts The TCP zocket to query the send queue for.

space | On successful return, the available space in bytes.

This function will return the current space available in the send queue for the given zocket. This can be used to
avoid zft_send() returning ~-EAGAIN.

Returns

0 Success.
-ENOTCONN Zocket is not in a valid TCP state for sending.

Note

Available send queue space is a function of the number of the number of bytes queued, the number of
internal buffers in the queue, and the MSS. Making many small sends can therefore consume more space
than a single large send, and force zft_send() to compress the send queue to avoid returning ~-EAGAIN.

12.11.2.18 zft_shutdown_tx()

int zft_shutdown_tx (
struct zft * ts)

Shut down outgoing TCP connection.

116 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

Parameters

\ ts \ A connected TCP zocket.

This function closes the TCP connection, preventing further data transmission except for already-queued data.
This function does not prevent the connection from receiving more data.

Returns

0 on success, or a negative error code. Error codes returned are similar to zft_send() ones:
-ENOTCONN Inappropriate TCP state: not connected or already shut down.

-EAGAIN Not enough space (either bytes or buffers) in the send queue.

-ENOMEM Not enough packet buffers available.

-EBUSY Delegated send in progress

12.11.2.19 zft_state()

int zft_state (
struct zft *x ts)
Return the TCP state of a TCP zocket.

Parameters

| ts | TCP zocket.

Returns

Standard TCP_ x state constant (e.g. TCP_ESTABLISHED).

12.11.2.20 zft_to_waitable()

struct zf _waitablex zft_to_waitable (
struct zft % ts)

Returns a zf_waitable representing the given zft.

Parameters

‘ ts ‘ The zft to return as a zf waitable

Returns

The zf_waitable

This function is necessary to use TCP zockets with the multiplexer.

12.11.2.21 zft_zc_recv()

void zft_zc_recv (
struct zft *x ts,
struct zft_msg * msg,

int flags)

Zero-copy read of available packets.

Issue 9 © Copyright 2019 Xilinx, Inc 117

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation

Parameters

ts TCP zocket.
msg | Message structure.

flags | Reserved. Must be zero.

This function completes the supplied msg structure and its referenced iovec array with details of received packet
buffers.

In case of EOF a zero-length buffer is appended at the end of data stream, and to identify the reason of stream
termination check the result of zft_zc_recv_done() or of zft_zc_recv_done_some().

The function will only fill fewer iovecs in msg than are provided in the case where no further data is available.

Buffers are 'locked' until zft_zc_recv_done() or zft_zc_recv_done_some() is performed. The caller must not modify
the contents of msg until after it has been passed to zft_zc_recv_done() or to zft_zc_recv_done_some().

12.11.2.22 2zft_zc_recv_done()

int zft_zc_recv_done (
struct zft * ts,
struct zft_msg * msg)

Concludes pending zc_recv operation as done.

Parameters

ts TCP zocket
msg | Message

Returns

>= 1 Connection still receiving.

0 EOF.

-ECONNREFUSED Connection refused. This is possible as zft_connect() is non-blocking.
-ECONNRESET Connection reset by peer.

-EPIPE Peer closed connection gracefully, but refused to receive some data sent on this zocket.
-ETIMEDOUT Connection timed out.

This function (or zft_zc_recv_done_some()) must be called after each successful zft_zc_recv() operation that
returned at least one packet. It must not be called otherwise (in particular, when zft_zc_recv() returned no
packets). The function releases resources and enables subseqgent calls to zft_zc_recv() or zft_recv(). msg must be
passed unmodified from the call to zft_zc_recv().

12.11.2.23 zft_zc_recv_done_some()

int zft_zc_recv_done_some (
struct zft * ts,
struct zft_msg * msg,

size_t len)

Concludes pending zc_recv operation as done acknowledging all or some of the data to have been read.

118 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

Parameters

ts TCP zocket.
msg | Message.

len Total number of bytes read by the client.

Returns

As for zft_zc_recv_done().

Can be called after each successful zft_zc_recv() operation as an alternative to zft_zc_recv_done() or in cases
where not all payload have been consumed. The restictions on when it may be called are the same as for
zft_zc_recv_done(). The function releases resources and enables subsegent calls to zft_zc_recv() or zft_recv().
zft_zc_recv() or zft_recv() functions will return data indicated as non-read when they are called next time. msg
must be passed unmodified from the call to zft_zc_recv(). 1en must not be greater than total payload returned by
zft_zc_recv().

12.11.2.24 zftl_accept()

int zftl_accept (
struct zftl * t1I,
struct zft *x ts_out)

Accept incoming TCP connection.

Parameters

t The listening zocket from which to accept the connection.

ts_out | On successful return filled with pointer to a TCP zocket for the new connection.

Returns

0 Success.
-EAGAIN No incoming connections available.

12.11.2.25 zftl_free()

int zftl_free (
struct zftl x ts)

Release resources associated with a TCP listening zocket.

Parameters

| ts | ATCP listening zocket.

This call shuts down the listening zocket, closing any connections waiting on the zocket that have not yet been
accepted. The application must not use t s after this call.

Issue 9 © Copyright 2019 Xilinx, Inc 119

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation

Note

The listening zocket is not removed until all accepted zockets have also been freed. If any connections to the
listening zocket have been accepted, but the resulting zocket has not been freed by calling zft_free(), the
listening zocket remains. It will not accept any new connections, and is shown in the output from
zf_stackdump. Attempting to create an additional listening zocket on the same port results in an error.

Returns

0 Success.

12.11.2.26 zftl_getname()

void zftl_getname (
struct zftl x ts,
struct sockaddr * lIaddr_out,

socklen_t *x laddrlen)

Retrieve the local address of the zocket.

Parameters

ts TCP zocket.
laddr_out | Set on return to the local address of the zocket.

laddrlen On entry, the size in bytes of the structure pointed to by laddr_out. Set on return to be the size in
bytes of the result.

This function returns the local IP address and TCP port of the listening zocket. If the supplied structure is too small
the result will be truncated and laddrlen updated to a length greater than that supplied.

12.11.2.27 zftl_listen()

int zftl_listen (
struct zf_stack x st,
const struct sockaddr x Iaddr,
socklen_t laddrlen,
const struct zf attr x attr,

struct zftl *x tl_out)

Allocate TCP listening zocket.

Parameters

st Initialized z £ st ack in which to created the listener.

laddr Local address on which to listen. Must be non-null, and must be a single local address (not
INADDR_ANY).

laddrlen | The size in bytes of the structure pointed to by laddr

attr Attributes to apply to this zocket. Note that not all attributes are relevant; only those which apply to
objects of type "zf_socket" are applicable here. Refer to the attribute documentation in Attributes for
details.

tl_out On successful return filled with pointer to created TCP listening zocket.

120 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
File Documentation

SOLARFLARE®

A XILINX COMPANY

Returns

0 Success.

-EFAULT Invalid laddr pointer.

-EADDRINUSE Local address already in use.
-EADDRNOTAVAIL 1addr is not a local address.
-EAFNOSUPPORT laddr is not an AF_INET address.
-EINVAL Zocket is already listening, or invalid addr length.
-ENOBUFS No zockets of this type available.

-ENOMEM Out of memory.

-EOPNOTSUPP 1addr is INADDR_ANY.

12.11.2.28 =zftl_to_waitable()

struct zf waitablex zftl_to_waitable (

struct zftl x tl1)

Returns a zf_waitable representing t 1.

Parameters

‘ t ‘ The zftl to return as a zf waitable

Returns

The zf_waitable

This function is necessary to use TCP listening zockets with the multiplexer.

12.12 zf udp.h File Reference

TCPDirect UDP APL.

#include
#include
#include
#include

<netinet/in.h>
<netinet/ip.h>
<netinet/udp.h>
<assert.h>

Data Structures

* struct zfur

Opaque structure describing a UDP-receive zocket.
« struct zfur_msg

UDP zero-copy RX message structure.
* struct zfut

Opaque structure describing a UDP-transmit zocket.

Issue 9

© Copyright 2019 Xilinx, Inc

121

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation

Macros

+ #define ZFUT_FLAG_DONT_FRAGMENT IP_DF /* 0x2000x*/

Flags for zfut_send()

Functions

int zfur_alloc (struct zfur *xus_out, struct zf_stack xst, const struct zf_attr xattr)
Creates UDP-receive zocket.
int zfur_free (struct zfur xus)
Release UDP-receive zocket previously created with zfur_alloc().
int zfur_addr_bind (struct zfur xus, struct sockaddr xladdr, socklen_t laddrlen, const struct sockaddr xraddr,
socklen_t raddrlen, int flags)
Configures UDP-receive zocket to receive on a specified address.
int zfur_addr_unbind (struct zfur xus, const struct sockaddr xladdr, socklen_t laddrlen, const struct sockaddr
xraddr, socklen_t raddrlen, int flags)
Unbind UDP-receive zocket from address.
void zfur_zc_recv (struct zfur xus, struct zfur_msg xmsg, int flags)
Zero-copy read of single datagram.
void zfur_zc_recv_done (struct zfur *xus, struct zfur_msg xmsg)

Concludes pending zero-copy receive operation as done.
int zfur_pkt_get_header (struct zfur *us, const struct zfur_msg *msg, const struct iphdr *xiphdr, const struct
udphdr sxudphdr, int pktind)

Retrieves remote address from the header of a received packet.
int zfur_pkt_get_timestamp (struct zfur xus, const struct zfur_msg *msg, struct timespec *ts_out, int pktind,
unsigned xflags)

Retrieve the UTC timestamp associated with a received packet, and the clock sync status flags.
struct zf_waitable x zfur_to_waitable (struct zfur xus)

Returns a zf_waitable representing the given zfur.
int zfut_alloc (struct zfut xxus_out, struct zf_stack xst, const struct sockaddr xladdr, socklen_t laddrlen,
const struct sockaddr xraddr, socklen_t raddrlen, int flags, const struct zf_attr xattr)

Allocate a UDP-transmit zocket.
int zfut_free (struct zfut xus)

Free UDP-transmit zocket.
int zfut_get_mss (struct zfut xus)

Get the maximum segment size which can be transmitted.
ZF_NOCLONE int zfut_send_single (struct zfut xus, const void xbuf, size_t buflen)

Copy-based send of single non-fragmented UDP packet.
int zfut_send_single_warm (struct zfut *us, const void xbuf, size_t buflen)

Warms code path used by zfut_send_single() without sending data.
int zfut_send (struct zfut xus, const struct iovec *iov, int iov_cnt, int flags)

Copy-based send of single UDP packet (possibly fragmented).
int zfut_get_tx_timestamps (struct zfut xus, struct zf_pkt_report xreports_out, int xcount_in_out)

Retrieve timestamp reports from previously sent data.
struct zf_waitable % zfut_to_waitable (struct zfut xus)

Returns a zf_waitable representing the given zfut.
unsigned zfut_get_header_size (struct zfut xus)

Return protocol header size for this zocket.

122

© Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

12.12.1 Detailed Description

TCPDirect UDP API.

12.12.2 Function Documentation

12.12.2.1 zfur_addr_bind()

int zfur_addr_bind (
struct zfur * us,
struct sockaddr * laddr,
socklen_t laddrlen,
const struct sockaddr *x raddr,
socklen_t raddrlen,

int flags)
Configures UDP-receive zocket to receive on a specified address.

Parameters

us The zocket to bind

laddr Local address. Cannot be NULL or INADDR_ANY, but the port may be zero, in which case an
ephemeral port is allocated.

laddrlen | Length of the structure pointed to by laddr.
raddr Remote address. If NULL, traffic will be accepted from all remote addresses.
raddrlen | Length of the structure pointed to by raddr.

flags Flags. Must be zero.
Returns
0 Success.

-EADDRINUSE Address already in use.

-EAFNOSUPPORT laddr and/or raddr are not AF_INET addresses
-EBUSY Out of hardware resources.

-EINVAL Invalid address length supplied.

-EFAULT Invalid address supplied.

-ENOMEM Out of memory.

The port number in 1addr is updated if it was set to 0 by the caller.

If the specified local address is multicast then this has the effect of joining the multicast group as well as setting the
filter. The group membership will persist until either the address is unbound (see zfur_addr_unbind()), or the zocket
is closed.

12.12.2.2 zfur_addr_unbind()

int zfur_addr_unbind (
struct zfur x* us,
const struct sockaddr x laddr,
socklen_t laddrlen,
const struct sockaddr x raddr,
socklen_t raddrlen,

int flags)

Unbind UDP-receive zocket from address.

Issue 9 © Copyright 2019 Xilinx, Inc 123

‘SOLARFLARE“’ TCPDirect User Guide

A XILINX COMPANY File Documentation
Parameters

us The zocket to unbind.

laddr Local address. Can be NULL to match any local address.

laddrlen | Length of the structure pointed to by laddr.

raddr Remote address. Can be NULL to match any remote address.

raddrlen | Length of the structure pointed to by raddr.

flags Flags. Must be zero.
Returns

0 Success.

-EINVAL The zocket is not bound to the specified address.

The addresses specified must match those used in zfur_addr_bind().

12.12.2.3 zfur_alloc()

int zfur_alloc (
struct zfur *x us_out,
struct zf_ stack x st,

const struct zf attr % attr)

Creates UDP-receive zocket.

Parameters
us_out | Pointer to receive new UDP-receive zocket's address.
st Initialized zf_stack in which to create the zocket.
attr Attributes to apply to this zocket. Note that not all attributes are relevant; only those which apply to
objects of type "zf_socket" are applicable here. Refer to the attribute documentation in Attributes for
details.
Returns
0 Success.

-ENOBUFS No zockets of this type available.

Associates UDP-receive zocket with semi-wild or full hardware filter. Creates software filter and initializes receive
queue. The zocket becomes ready to receive packets after this call.

12.12.2.4 zfur_free()

int zfur_free (

struct zfur x us)

Release UDP-receive zocket previously created with zfur_alloc().

124 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

Parameters

\ us \ The UDP zocket to release.

Returns

0 on success. Negative values are reserved for future use as error codes, but are not returned at present.

12.12.2.5 zfur_pkt_get_header()

int zfur_pkt_get_header (
struct zfur x us,
const struct zfur_msg * msg,
const struct iphdr ** iphdr,
const struct udphdr #** udphdr,

int pktind)

Retrieves remote address from the header of a received packet.

Parameters
us UDP zocket.
msg Message.

iphdr Location to receive IP header.

udphdr | Location to receive UDP header.

pktind | Index of packet within msg—>iov.

This is useful for zockets that can receive from many remote addresses, i.e. those for which zfur_addr_bind() was
called with raddr == NULL.

12.12.2.6 zfur_pkt_get_timestamp()

int zfur_pkt_get_timestamp (
struct zfur x* us,
const struct zfur_msg * msg,
struct timespec * ts_out,
int pktind,

unsigned * flags)
Retrieve the UTC timestamp associated with a received packet, and the clock sync status flags.

Parameters

us UDP zocket.

msg Pointer to the received message for which the RX timestamp will be retrieved.

ts_out | Pointer to a timespec that is updated on return with the UTC timestamp for the packet.
pktind | Index of packet within msg->1iov.

flags Pointer to an unsigned that is updated on return with the sync flags for the packet.

Issue 9 © Copyright 2019 Xilinx, Inc 125

SOLARFLARE®

A XILINX COMPANY

TCPDirect User Guide
File Documentation

Returns

0 Success.

-ENOMSG Synchronisation with adapter has not yet been achieved. This only happens with old firmware.
-ENODATA Packet does not have a timestamp. On current Solarflare adapters, packets that are switched

from TX to RX do not get timestamped.

-EL2NSYNC Synchronisation with adapter has been lost. This should never happen!

Note

This function must be called after zf_reactor_perform() returns a value greater than zero, and before

zf_reactor_perform() is called again.

If RX timestamps were not enabled during stack initialisation, the behaviour of this function is undefined.

On success the t s_out and flags_out fields are updated, and a value of zero is returned. The flags_out

field contains the following flags:

* EF_VI_SYNC_FLAG_CLOCK_SET is set if the adapter clock has ever been set (in sync with system)

* EF_VI_SYNC_FLAG_CLOCK_IN_SYNC is set if the adapter clock is in sync with the external clock (PTP).

12.12.2.7 zfur_to_waitable()

struct zf_waitablex zfur_to_waitable (

struct zfur * us)

Returns a zf_waitable representing the given zfur.

Parameters

‘ us ‘ The zfur to return as a zf_waitable

Returns

The zf_waitable

This is necessary for use with the multiplexer.

12.12.2.8 zfur_zc_recv()

void zfur_zc_recv (
struct zfur * us,
struct zfur_msg * msg,

int flags)

Zero-copy read of single datagram.

126 © Copyright 2019 Xilinx, Inc

Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

Parameters

us UDP zocket.
msg | Message structure.

flags | Must be zero.

This function completes the supplied msg structure with details of a received UDP datagram.

The function may not fill all the supplied iovecs in msg even in the case where further data is available, but you can
discover if there is more data available using the dgrams_left field in zfur_msg after making this call.

TCPDirect does not yet support fragmented datagrams, but in the future such datagrams will be represented in the

msg iovec as a scatter-gather array of packet buffers. If the iovec is not long enough it may return a partial
datagram.

Buffers are 'locked' until zfur_zc_recv_done() is performed. The caller must not modify the contents of msg until
after it has been passed to zfur_zc_recv_done().

12.12.2.9 zfur_zc_recv_done()

void zfur_zc_recv_done (
struct zfur * us,

struct zfur_msg * msg)

Concludes pending zero-copy receive operation as done.

Parameters

us UDP zocket.
msg | Message.

Must be called after each successful zfur_zc_recv() operation that returns at least one packet. It must not be called
otherwise (in particular, when zfur_zc_recv() returned no packets). The function releases resources and enables
subsegent calls to zfur_zc_recv(). msg must be passed unmodified from the call to zfur_zc_recv().

12.12.2.10 zfut_alloc()

int zfut_alloc (
struct zfut =*x us_out,
struct zf_stack * st,
const struct sockaddr * laddr,
socklen_t lIaddrlen,
const struct sockaddr * raddr,
socklen_t raddrlen,
int flags,

const struct zf attr *x attr)

Allocate a UDP-transmit zocket.

Issue 9 © Copyright 2019 Xilinx, Inc 127

‘SOLARFLARE“’ TCPDirect User Guide

A XILINX COMPANY File Documentation
Parameters
us_out On success contains pointer to newly created UDP transmit zocket
st Stack in which to create zocket
laddr Local address. If INADDR_ANY is specified, the local address will be selected according to the
route to raddr, but the port must be non-zero.
laddrlen | Length of the structure pointed to by laddr.
raddr Remote address.
raddrlen | Length of the structure pointed to by raddr.
flags Must be zero.
attr Attributes to apply to the zocket. Note that not all attributes are relevant; only those which apply to
objects of type "zf_socket" are applicable here. Refer to the attribute documentation in Attributes for
details.
Returns
0 Success.
-EFAULT Invalid pointer.
-EHOSTUNREACH No route to remote host.
-EINVAL Invalid local or remote address, or address lengths.
-ENOBUFS No zockets of this type available.
Note
Once the zocket is created, neither the local address nor the remote address can be changed.
12.12.2.11 zfut_free()

int zfut_free (

struct zfut *x us)

Free UDP-transmit zocket.

Parameters

\ us \ UDP-transmit zocket to free.

Returns

0 on success. Negative values are reserved for future use as error codes, but are not returned at present.

12.12.2.12 zfut_get_header_size()

unsigned zfut_get_header_size (

struct zfut x us)

Return protocol header size for this zocket.

128

© Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

Parameters

‘ us ‘ The UDP-TX zocket to query the header size for.

Returns

Protocol header size in bytes.

This function returns the total size of all protocol headers in bytes. An outgoing packet's size will be exactly the
sum of this value and the number of payload data bytes it contains.

This function cannot fail.

12.12.2.13 zfut_get_mss()

int zfut_get_mss (

struct zfut x us)

Get the maximum segment size which can be transmitted.
Returns

Maximum buflen parameter which can be passed to zfut_send_single(). This value is constant for a given
zocket.

12.12.2.14 zfut_get_tx_timestamps()

int zfut_get_tx_timestamps (
struct zfut * us,
struct zf pkt_report *x reports_out,

int * count_in_out)

Retrieve timestamp reports from previously sent data.

Parameters

us UDP zocket.
reports_out | Array to fill with timestamp reports

count_in_out | IN: size of array, OUT: number of reports

Returns

0 on success
negative error code on failure. None are currently specified.

If transmit timestamps are enabled, then one report will be generated for each packet. The packet can be identi
by the "start" field of the report, which begins at 0 and increments after each packet is sent on this zocket. If a
packet is fragmented, then a single report will be generated with the timestamp for the final fragment.

12.12.2.15 zfut_send()

int zfut_send (
struct zfut * us,
const struct iovec x iov,
int iov_cnt,

int flags)

Copy-based send of single UDP packet (possibly fragmented).

fied

Issue 9 © Copyright 2019 Xilinx, Inc

129

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation
Parameters

us The UDP zocket to send on.

iov The iovec of data to send.

iov_cnt | The length of iov.

flags Flags.
Returns

Payload bytes sent (i.e. buflen) on success.

-EAGAIN Hardware queue full. Call zf_reactor_perform() until it returns non-zero and try again.
-EMSGSIZE Message too large.

-ENOBUFS Out of packet buffers.

For a small packet in a plain buffer with the ZFUT_FLAG_DONT_FRAGMENT flag set, this function just calls
zfut_send_single(). Otherwise it handles 10 vector and fragments a UDP packet into multiple IP fragments as
needed.

If ZFUT_FLAG_DONT_FRAGMENT flag is specified, then the datagram should fit to the MSS value (see
zfut_get_mss() above), and the DontFragment bit in the IP header will be set.

See also

zfut_send_single()

12.12.2.16 zfut_send_single()

ZF_NOCLONE int zfut_send_single (
struct zfut x us,
const void x buf,

size_t buflen)
Copy-based send of single non-fragmented UDP packet.

Parameters

us The UDP zocket to send on.
buf A buffer of the data to send.
buflen | The length of the buffer, in bytes.

Returns

Payload bytes sent (i.e. buflen) on success.
-EAGAIN Hardware queue full. Call zf_reactor_perform() until it returns non-zero and try again.
-ENOBUFS Out of packet buffers.

The function uses PIO when possible (i.e. for small datagrams), and always sets the DontFragment bit in the IP
header. buflen must be no larger than the value returned by zfut_get_mss().

See also

zfut_get_mss() zfut_send()

130 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide ‘SOLARFLARE”

File Documentation A XILINX COMPANY

12.12.2.17 zfut_send_single_warm()

int zfut_send_single_warm (
struct zfut * us,
const void *x buf,

size_t buflen)

Warms code path used by zfut_send_single() without sending data.

Parameters

us The UDP zocket to warm for subsequent send
buf A buffer of the data to send.
buflen | The length of the buffer, in bytes.

Returns

Payload bytes that would have been sent (i.e. buflen) on success.

-EAGAIN Events need to be processed before warming. Call zf_reactor_perform()
-EMSGSIZE Message too large.

-ENOBUFS Out of packet buffers.

This function can be called repeatedly while the application waits for an input that will trigger a call to
zfut_send_single(). Doing so warms the code path to avoid cache and TLB misses when actually sending data in
the subsequent zfut_send_single() call. buf need not contain the data that will eventually be sent.

This function only supports warming the code path where a PIO or CTPIO send would be performed. If buflen is
too large for PIO then -EMSGSIZE will be returned. If PIO is currently in use then -EAGAIN will be returned. In this
case, the application can call zf_reactor_perform() and then try again.

See also

zfut_send_single()

12.12.2.18 =zfut_to_waitable()

struct zf_ waitablex zfut_to_waitable (

struct zfut x us)
Returns a zf_waitable representing the given zfut.

Parameters

‘ us ‘ The zfut to return as a zf_waitable.

Returns

The zf waitable.

This function is necessary to use UDP-transmit zockets with the multiplexer.

Issue 9 © Copyright 2019 Xilinx, Inc 131

‘SOLARFLARE” TCPDirect User Guide

A XILINX COMPANY File Documentation

132 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Index

SOLARFLARE®

A XILINX COMPANY

Index

attr.h, 75
zf_attr_alloc, 76
zf_attr_doc, 76
zf_attr_dup, 76
zf_attr_free, 77
zf_attr_get_int, 77
zf_attr_get_str, 77
zf_attr_reset, 79
zf_attr_set_from_fmt, 79
zf_attr_set from_str, 79
zf _attr_set_int, 80
zf_attr_set_str, 80

bytes
zf_pkt_report, 67

cong_wnd
zf_ds, 64

delegated_wnd
zf_ds, 64

dgrams_left
zfur_msg, 73

EPOLLSTACKHUP
zf_stack.h, 102

mss
zf ds, 66

muxer.h, 81
zf_muxer_add, 82
zf_muxer_alloc, 82
zf _muxer_del, 83
zf_muxer_free, 83
zf _muxer_mod, 84
zf_muxer_wait, 84
zf waitable_event, 85
zf_waitable_fd_get, 85
zf_waitable_fd_prime, 86

pkts_left
zft_msg, 71

reserved
zf ds, 66
zft_msg, 71
zfur_msg, 74

send_wnd
zf_ds, 66
start
zf_pkt_report, 68

tcp_seq_offset

flags zf _ds, 66
zf_pkt_report, 68 timestamp
zft_msg, 71 zf_pkt_report, 68
zfur_msg, 73 types.h, 87
ZF_PKT_REPORT_CLOCK_SET, 87
headers ZF_PKT_REPORT_DROPPED, 87
zf_ds, 65 ZF_PKT_REPORT_IN_SYNC, 87
headers_len ZF_PKT_REPORT_NO_TIMESTAMP, 88
zf_ds, 65 ZF_PKT_REPORT_TCP_FIN, 88
headers_size ZF_PKT_REPORT_TCP_RETRANS, 88
zf_ds, 65 ZF_PKT_REPORT_TCP_SVYN, 88
iov x86.h, 89
zft_msg, 71
zfur_msg, 73 ZF_PKT_REPORT_CLOCK_SET
iovent types.h, 87
zft_msg, 71 ZF_PKT_REPORT_DROPPED
zfur_msg, 74 types.h, 87
ip_len_offset ZF_PKT_REPORT_IN_SYNC
zf_ds, 65 types.h, 87
ip_tcp_hdr_len ZF_PKT_REPORT_NO_TIMESTAMP
zf _ds, 65 types.h, 88
Issue 9 © Copyright 2019 Xilinx, Inc 133

SOLARFLARE®

TCPDirect User Guide

A XILINX COMPANY Index
ZF _PKT_REPORT_TCP_FIN zf_delegated_send_prepare
types.h, 88 zf ds.h, 96
ZF_PKT_REPORT_TCP_RETRANS zf_delegated_send_rc
types.h, 88 zf ds.h, 95
ZF PKT_REPORT_TCP_SYN zf_delegated_send_tcp_advance
types.h, 88 zf _ds.h, 97
zf.h, 89 zf_delegated_send_tcp_update
zf_alternatives_alloc zf_ds.h, 97
zf_alts.h, 90 zf_ds, 64
zf_alternatives_cancel cong_wnd, 64
zf_alts.h, 90 delegated_wnd, 64
zf_alternatives_free_space headers, 65
zf_alts.h, 91 headers_len, 65
zf_alternatives_query_overhead_tcp headers_size, 65
zf_alts.h, 91 ip_len_offset, 65
zf_alternatives_release ip_tcp_hdr_len, 65
zf_alts.h, 92 mss, 66
zf_alternatives_send reserved, 66
zf_alts.h, 92 send_wnd, 66
zf_alts.h, 89 tcp_seq_offset, 66
zf_alternatives_alloc, 90 zf ds.h, 94
zf_alternatives_cancel, 90 zf_delegated_send_cancel, 95
zf_alternatives_free_space, 91 zf_delegated_send_complete, 95
zf_alternatives_query_overhead_tcp, 91 zf_delegated_send_prepare, 96
zf_alternatives_release, 92 zf_delegated_send_rc, 95
zf_alternatives_send, 92 zf_delegated_send_tcp_advance, 97
zft_alternatives_queue, 93 zf_delegated_send_tcp_update, 97
zf_attr, 63 zf_init
zf_attr_alloc zf_stack.h, 102
attr.h, 76 zf _muxer_add
zf_attr_doc muxer.h, 82
attr.h, 76 zf_muxer_alloc
zf_attr_dup muxer.h, 82
attr.h, 76 zf_muxer_del
zf_attr_free muxer.h, 83
attr.h, 77 zf_muxer_free
zf_attr_get_int muxer.h, 83
attr.h, 77 zf_muxer_mod
zf_attr_get_str muxer.h, 84
attr.h, 77 zf_muxer_set, 67
zf_attr_reset zf_muxer_wait
attr.h, 79 muxer.h, 84
zf_attr_set_from_fmt zf_pkt_report, 67
attr.h, 79 bytes, 67
zf_attr_set_from_str flags, 68
attr.h, 79 start, 68
zf_attr_set_int timestamp, 68
attr.h, 80 zf_platform.h, 98
zf_attr_set_str zf_reactor.h, 98
attr.h, 80 zf_reactor_perform, 99
zf_deinit zf_reactor_perform_attr, 99
zf_stack.h, 102 zf_stack_has_pending_events, 100
zf_delegated_send_cancel zf_stack_has_pending_work, 100
zf ds.h, 95 zf_reactor_perform
zf_delegated_send_complete zf_reactor.h, 99
zf ds.h, 95 zf_reactor_perform_attr
134 © Copyright 2019 Xilinx, Inc Issue 9

TCPDirect User Guide
Index

SOLARFLARE®

A XILINX COMPANY

zf_reactor.h, 99
zf stack, 68
zf_stack.h, 101
EPOLLSTACKHUP, 102
zf_deinit, 102
zf init, 102
zf stack alloc, 102
zf stack free, 103
zf_stack_is_quiescent, 103
zf stack to_waitable, 104
zf stack alloc
zf _stack.h, 102
zf_stack_free
zf _stack.h, 103
zf_stack_has_pending_events
zf_reactor.h, 100
zf_stack_has_pending_work
zf _reactor.h, 100
zf_stack_is_quiescent
zf_stack.h, 103
zf stack to_waitable
zf_stack.h, 104
zf_tep.h, 105
zft_addr_bind, 106
zft_alloc, 107
zft_connect, 107
zft_error, 108
zft_free, 109
zft_get_header_size, 109
zft_get_mss, 109
zft_get_tx_timestamps, 110
zft_getname, 110
zft_handle_free, 111
zft_handle_getname, 111
zft_pkt_get_timestamp, 111
zft_recv, 112
zft_send, 113
zft_send_single, 114
zft_send_single_warm, 115
zft_send_space, 116
zft_shutdown_tx, 116
zft_state, 117
zft_to_waitable, 117
zft_zc recv, 117
zft_zc_recv_done, 118

zft_zc_recv_done_some, 118

zftl_accept, 119
zftl_free, 119
zftl_getname, 120
zftl_listen, 120
zftl_to_waitable, 121
zf_udp.h, 121
zfur_addr_bind, 123
zfur_addr_unbind, 123
zfur_alloc, 124
zfur_free, 124

zfur_pkt_get_header, 125
zfur_pkt_get_timestamp, 125
zfur_to_waitable, 126
zfur_zc_recv, 126
zfur_zc_recv_done, 127
zfut_alloc, 127
zfut_free, 128
zfut_get_header_size, 128
zfut_get_mss, 129
zfut_get_tx_timestamps, 129
zfut_send, 129
zfut_send_single, 130
zfut_send_single_warm, 130
zfut_to_waitable, 131
zf_waitable, 69
zf_waitable_event
muxer.h, 85
zf_waitable_fd_get
muxer.h, 85
zf_waitable_fd_prime
muxer.h, 86
ZF_DELEGATED_SEND_RC_BAD_SOCKET
zf ds.h, 95
ZF_DELEGATED_SEND_RC_NOARP
zf_ds.h, 95
ZF_DELEGATED_SEND_RC_NOCWIN
zf ds.h, 95
ZF_DELEGATED_SEND_RC_NOWIN
zf ds.h, 95
ZF_DELEGATED_SEND_RC_OK
zf_ds.h, 95
ZF_DELEGATED_SEND_RC_SENDQ_BUSY
zf ds.h, 95
ZF_DELEGATED_SEND_RC_SMALL_HEADER
zf ds.h, 95
zf ds.h
ZF_DELEGATED_SEND_RC_BAD_SOCKET, 95
ZF_DELEGATED_SEND_RC_NOARP, 95
ZF_DELEGATED_SEND_RC_NOCWIN, 95
ZF_DELEGATED_SEND_RC_NOWIN, 95
ZF_DELEGATED_SEND_RC_OK, 95
ZF_DELEGATED_SEND_RC_SENDQ_BUSY, 95
ZF_DELEGATED_SEND_RC_SMALL_HEADER,
95
zft, 69
zft_addr_bind
zf_tcp.h, 106
zft_alloc
zf_tep.h, 107
zft_alternatives_queue
zf_alts.h, 93
zft_connect
zf_tcp.h, 107
zft_error
zf_tcp.h, 108
zft_free

Issue 9

© Copyright 2019 Xilinx, Inc 135

SOLARFLARE®

TCPDirect User Guide

A XILINX COMPANY Index
zf_tep.h, 109 zfur_addr_bind
zft_get_header_size zf_udp.h, 123
zf_tcp.h, 109 zfur_addr_unbind
zft_get_mss zf_udp.h, 123
zf_tcp.h, 109 zfur_alloc
zft_get_tx_timestamps zf_udp.h, 124
zf_tep.h, 110 zfur_free
zft_getname zf_udp.h, 124
zf_tcp.h, 110 zfur_msg, 73
zft_handle, 70 dgrams_left, 73
zft_handle_free flags, 73
zf_tep.h, 111 iov, 73
zft_handle_getname iovent, 74
zf_tep.h, 111 reserved, 74
zft_msg, 70 zfur_pkt_get_header
flags, 71 zf_udp.h, 125
iov, 71 zfur_pkt_get_timestamp
iovent, 71 zf_udp.h, 125
pkts_left, 71 zfur_to_waitable
reserved, 71 zf_udp.h, 126
zft_pkt_get_timestamp zfur_zc_recv
zf_tep.h, 111 zf_udp.h, 126
zft_recv zfur_zc _recv_done
zf_tep.h, 112 zf_udp.h, 127
zft_send zfut, 74
zf_tcp.h, 113 zfut_alloc
zft_send_single zf_udp.h, 127
zf_tep.h, 114 zfut_free
zft_send_single_warm zf_udp.h, 128
zf_tcp.h, 115 zfut_get_header_size
zft_send_space zf_udp.h, 128
zf_tcp.h, 116 zfut_get_mss
zft_shutdown_tx zf_udp.h, 129
zf_tcp.h, 116 zfut_get_tx_timestamps
zft_state zf_udp.h, 129
zf_tep.h, 117 zfut_send
zft_to_waitable zf_udp.h, 129
zf_tep.h, 117 zfut_send_single
zft_zc_recv zf_udp.h, 130
zf_tep.h, 117 zfut_send_single_warm
zft_zc_recv_done zf_udp.h, 130
zf_tcp.h, 118 zfut_to_waitable
zft_zc_recv_done_some zf_udp.h, 131
zf_tcp.h, 118
zftl, 72
zftl_accept
zf_tcp.h, 119
zftl_free
zf_tep.h, 119
zftl_getname
zf_tep.h, 120
zftl_listen
zf_tcp.h, 120
zftl_to_waitable
zf_tep.h, 121
zfur, 72
136 © Copyright 2019 Xilinx, Inc Issue 9

	1 TCPDirect
	1.1 Introduction

	2 What's New
	2.1 Bug fixes

	3 Overview
	3.1 Platforms
	3.2 Components
	3.3 Capabilities and Restrictions
	3.3.1 Protocols
	3.3.2 OS
	3.3.3 Network Interface Configuration

	3.4 How TCPDirect Increases Performance
	3.4.1 Overhead
	3.4.2 Latency
	3.4.3 Bandwidth
	3.4.4 Scalability

	3.5 Requirements
	3.5.1 Adapter
	3.5.2 License
	3.5.3 Onload
	3.5.4 Huge Pages
	3.5.5 PIO

	4 Concepts
	4.1 Stacks
	4.2 Zockets
	4.2.1 TCP zockets
	4.2.2 UDP zockets
	4.2.3 Waitables

	4.3 Multiplexers
	4.4 TX alternatives
	4.5 Cut-through PIO
	4.6 Delegated sends

	5 Example Applications
	5.1 zfudppingpong
	5.1.1 Usage

	5.2 zftcppingpong
	5.2.1 Usage

	5.3 zfaltpingpong
	5.4 zfsink
	5.4.1 Usage

	5.5 zftcpmtpong
	5.5.1 Usage

	5.6 exchange
	5.7 trader_tcpdirect_ds_efvi
	5.7.1 Usage

	5.8 Building the Example Applications

	6 Using TCPDirect
	6.1 Components
	6.2 Compiling and Linking
	6.2.1 Header files
	6.2.2 Linking
	6.2.3 Debugging

	6.3 General
	6.4 Using stacks
	6.5 Using zockets
	6.6 UDP receive
	6.7 UDP send
	6.8 TCP listening
	6.9 TCP send and receive
	6.10 Alternative Tx queues
	6.11 Epoll – muxer.h
	6.12 Stack polling
	6.13 Cut-through PIO
	6.13.1 Underrun, poisoning and fallback:
	6.13.2 CTPIO diagnostics

	6.14 Delegated sends
	6.15 Timestamps
	6.16 VLANs
	6.17 Miscellaneous
	6.18 Errors issued by newer C++ compilers
	6.19 zf_stackdump
	6.19.1 Usage
	6.19.2 stackdump output: stack
	6.19.3 stackdump output: UDP RX
	6.19.4 stackdump output: UDP TX
	6.19.5 stackdump output: TCP TX/RX

	7 Worked Examples
	7.1 UDP ping pong example
	7.2 TCP ping pong example

	8 Attributes
	8.1 alt_buf_size Attribute Reference
	8.2 alt_count Attribute Reference
	8.3 arp_reply_timeout Attribute Reference
	8.4 ctpio Attribute Reference
	8.5 ctpio_mode Attribute Reference
	8.6 interface Attribute Reference
	8.7 log_file Attribute Reference
	8.8 log_format Attribute Reference
	8.9 log_level Attribute Reference
	8.10 max_tcp_endpoints Attribute Reference
	8.11 max_tcp_listen_endpoints Attribute Reference
	8.12 max_tcp_syn_backlog Attribute Reference
	8.13 max_udp_rx_endpoints Attribute Reference
	8.14 max_udp_tx_endpoints Attribute Reference
	8.15 n_bufs Attribute Reference
	8.16 name Attribute Reference
	8.17 pio Attribute Reference
	8.18 reactor_spin_count Attribute Reference
	8.19 rx_ring_max Attribute Reference
	8.20 rx_ring_refill_batch_size Attribute Reference
	8.21 rx_ring_refill_interval Attribute Reference
	8.22 rx_timestamping Attribute Reference
	8.23 tcp_alt_ack_rewind Attribute Reference
	8.24 tcp_delayed_ack Attribute Reference
	8.25 tcp_finwait_ms Attribute Reference
	8.26 tcp_initial_cwnd Attribute Reference
	8.27 tcp_retries Attribute Reference
	8.28 tcp_syn_retries Attribute Reference
	8.29 tcp_synack_retries Attribute Reference
	8.30 tcp_timewait_ms Attribute Reference
	8.31 tcp_wait_for_time_wait Attribute Reference
	8.32 tx_ring_max Attribute Reference
	8.33 tx_timestamping Attribute Reference

	9 Data Structure Index
	9.1 Data Structures

	10 File Index
	10.1 File List

	11 Data Structure Documentation
	11.1 zf_attr Struct Reference
	11.1.1 Detailed Description

	11.2 zf_ds Struct Reference
	11.2.1 Detailed Description
	11.2.2 Field Documentation
	11.2.2.1 cong_wnd
	11.2.2.2 delegated_wnd
	11.2.2.3 headers
	11.2.2.4 headers_len
	11.2.2.5 headers_size
	11.2.2.6 ip_len_offset
	11.2.2.7 ip_tcp_hdr_len
	11.2.2.8 mss
	11.2.2.9 reserved
	11.2.2.10 send_wnd
	11.2.2.11 tcp_seq_offset

	11.3 zf_muxer_set Struct Reference
	11.3.1 Detailed Description

	11.4 zf_pkt_report Struct Reference
	11.4.1 Detailed Description
	11.4.2 Field Documentation
	11.4.2.1 bytes
	11.4.2.2 flags
	11.4.2.3 start
	11.4.2.4 timestamp

	11.5 zf_stack Struct Reference
	11.5.1 Detailed Description

	11.6 zf_waitable Struct Reference
	11.6.1 Detailed Description

	11.7 zft Struct Reference
	11.7.1 Detailed Description

	11.8 zft_handle Struct Reference
	11.8.1 Detailed Description

	11.9 zft_msg Struct Reference
	11.9.1 Detailed Description
	11.9.2 Field Documentation
	11.9.2.1 flags
	11.9.2.2 iov
	11.9.2.3 iovcnt
	11.9.2.4 pkts_left
	11.9.2.5 reserved

	11.10 zftl Struct Reference
	11.10.1 Detailed Description

	11.11 zfur Struct Reference
	11.11.1 Detailed Description

	11.12 zfur_msg Struct Reference
	11.12.1 Detailed Description
	11.12.2 Field Documentation
	11.12.2.1 dgrams_left
	11.12.2.2 flags
	11.12.2.3 iov
	11.12.2.4 iovcnt
	11.12.2.5 reserved

	11.13 zfut Struct Reference
	11.13.1 Detailed Description

	12 File Documentation
	12.1 attr.h File Reference
	12.1.1 Detailed Description
	12.1.2 Function Documentation
	12.1.2.1 zf_attr_alloc()
	12.1.2.2 zf_attr_doc()
	12.1.2.3 zf_attr_dup()
	12.1.2.4 zf_attr_free()
	12.1.2.5 zf_attr_get_int()
	12.1.2.6 zf_attr_get_str()
	12.1.2.7 zf_attr_reset()
	12.1.2.8 zf_attr_set_from_fmt()
	12.1.2.9 zf_attr_set_from_str()
	12.1.2.10 zf_attr_set_int()
	12.1.2.11 zf_attr_set_str()

	12.2 muxer.h File Reference
	12.2.1 Detailed Description
	12.2.2 Function Documentation
	12.2.2.1 zf_muxer_add()
	12.2.2.2 zf_muxer_alloc()
	12.2.2.3 zf_muxer_del()
	12.2.2.4 zf_muxer_free()
	12.2.2.5 zf_muxer_mod()
	12.2.2.6 zf_muxer_wait()
	12.2.2.7 zf_waitable_event()
	12.2.2.8 zf_waitable_fd_get()
	12.2.2.9 zf_waitable_fd_prime()

	12.3 types.h File Reference
	12.3.1 Detailed Description
	12.3.2 Macro Definition Documentation
	12.3.2.1 ZF_PKT_REPORT_CLOCK_SET
	12.3.2.2 ZF_PKT_REPORT_DROPPED
	12.3.2.3 ZF_PKT_REPORT_IN_SYNC
	12.3.2.4 ZF_PKT_REPORT_NO_TIMESTAMP
	12.3.2.5 ZF_PKT_REPORT_TCP_FIN
	12.3.2.6 ZF_PKT_REPORT_TCP_RETRANS
	12.3.2.7 ZF_PKT_REPORT_TCP_SYN

	12.4 x86.h File Reference
	12.4.1 Detailed Description

	12.5 zf.h File Reference
	12.5.1 Detailed Description

	12.6 zf_alts.h File Reference
	12.6.1 Detailed Description
	12.6.2 Function Documentation
	12.6.2.1 zf_alternatives_alloc()
	12.6.2.2 zf_alternatives_cancel()
	12.6.2.3 zf_alternatives_free_space()
	12.6.2.4 zf_alternatives_query_overhead_tcp()
	12.6.2.5 zf_alternatives_release()
	12.6.2.6 zf_alternatives_send()
	12.6.2.7 zft_alternatives_queue()

	12.7 zf_ds.h File Reference
	12.7.1 Detailed Description
	12.7.2 Enumeration Type Documentation
	12.7.2.1 zf_delegated_send_rc

	12.7.3 Function Documentation
	12.7.3.1 zf_delegated_send_cancel()
	12.7.3.2 zf_delegated_send_complete()
	12.7.3.3 zf_delegated_send_prepare()
	12.7.3.4 zf_delegated_send_tcp_advance()
	12.7.3.5 zf_delegated_send_tcp_update()

	12.8 zf_platform.h File Reference
	12.8.1 Detailed Description

	12.9 zf_reactor.h File Reference
	12.9.1 Detailed Description
	12.9.2 Function Documentation
	12.9.2.1 zf_reactor_perform()
	12.9.2.2 zf_reactor_perform_attr()
	12.9.2.3 zf_stack_has_pending_events()
	12.9.2.4 zf_stack_has_pending_work()

	12.10 zf_stack.h File Reference
	12.10.1 Detailed Description
	12.10.2 Macro Definition Documentation
	12.10.2.1 EPOLLSTACKHUP

	12.10.3 Function Documentation
	12.10.3.1 zf_deinit()
	12.10.3.2 zf_init()
	12.10.3.3 zf_stack_alloc()
	12.10.3.4 zf_stack_free()
	12.10.3.5 zf_stack_is_quiescent()
	12.10.3.6 zf_stack_to_waitable()

	12.11 zf_tcp.h File Reference
	12.11.1 Detailed Description
	12.11.2 Function Documentation
	12.11.2.1 zft_addr_bind()
	12.11.2.2 zft_alloc()
	12.11.2.3 zft_connect()
	12.11.2.4 zft_error()
	12.11.2.5 zft_free()
	12.11.2.6 zft_get_header_size()
	12.11.2.7 zft_get_mss()
	12.11.2.8 zft_get_tx_timestamps()
	12.11.2.9 zft_getname()
	12.11.2.10 zft_handle_free()
	12.11.2.11 zft_handle_getname()
	12.11.2.12 zft_pkt_get_timestamp()
	12.11.2.13 zft_recv()
	12.11.2.14 zft_send()
	12.11.2.15 zft_send_single()
	12.11.2.16 zft_send_single_warm()
	12.11.2.17 zft_send_space()
	12.11.2.18 zft_shutdown_tx()
	12.11.2.19 zft_state()
	12.11.2.20 zft_to_waitable()
	12.11.2.21 zft_zc_recv()
	12.11.2.22 zft_zc_recv_done()
	12.11.2.23 zft_zc_recv_done_some()
	12.11.2.24 zftl_accept()
	12.11.2.25 zftl_free()
	12.11.2.26 zftl_getname()
	12.11.2.27 zftl_listen()
	12.11.2.28 zftl_to_waitable()

	12.12 zf_udp.h File Reference
	12.12.1 Detailed Description
	12.12.2 Function Documentation
	12.12.2.1 zfur_addr_bind()
	12.12.2.2 zfur_addr_unbind()
	12.12.2.3 zfur_alloc()
	12.12.2.4 zfur_free()
	12.12.2.5 zfur_pkt_get_header()
	12.12.2.6 zfur_pkt_get_timestamp()
	12.12.2.7 zfur_to_waitable()
	12.12.2.8 zfur_zc_recv()
	12.12.2.9 zfur_zc_recv_done()
	12.12.2.10 zfut_alloc()
	12.12.2.11 zfut_free()
	12.12.2.12 zfut_get_header_size()
	12.12.2.13 zfut_get_mss()
	12.12.2.14 zfut_get_tx_timestamps()
	12.12.2.15 zfut_send()
	12.12.2.16 zfut_send_single()
	12.12.2.17 zfut_send_single_warm()
	12.12.2.18 zfut_to_waitable()

	Index

