

 Mipsology © 2022, all rights reserved 1

Zebra®

VMAccel™ FPGA Cloud

AMD/Xilinx® Versal VCK5000

User Guide

Zebra Version: V2022.versal.07

 Mipsology © 2022, all rights reserved 2

TABLE OF CONTENTS

1 INTRODUCTION & SCOPE .. 3

2 LICENSE ... 3

3 CONTACT & SUPPORT .. 3

4 REQUIREMENTS ... 3

5 VMACCEL CLOUD ACCESS .. 3

6 GETTING STARTED ON VMACCEL ... 4

6.1 LAUNCHING ZEBRA VM INSTANCE .. 4
6.2 STARTING ZEBRA ON VM INSTANCE .. 5

7 MIPSOLOGY EXAMPLES AND DEMOS .. 6

7.1 EXAMPLES QUICK START ... 6
7.2 EXAMPLES DETAILS .. 6
7.3 DEMOS QUICK START .. 8
7.4 DEMOS DETAILS.. 8

7.4.1 Input for Docker Demos ... 10
7.5 LIST OF REPOSITORIES THAT ARE KNOWN TO WORK WITH ZEBRA ... 10

8 RELEASE DETAILS ... 11

8.1 SUPPORTED FRAMEWORKS AND VERSIONS ... 11
8.2 RELEASE LIMITATIONS .. 11

8.2.1 Layers ... 11
8.2.2 All Frameworks .. 11
8.2.3 PyTorch .. 12
8.2.4 TensorFlow 1 & 2 ... 12

8.3 ACCELERATED LAYERS ... 13

9 PERFORMANCE .. 14

10 ACCURACY ... 16

11 NEURAL NETWORK (GRAPH) MANAGEMENT .. 17

11.1 AUTOMATIC SPLITTING OF NEURAL NETWORKS ... 17
11.2 MANUALLY SPLITTING A NEURAL NETWORKS .. 18

11.2.1 Graph Splitting ... 18
11.2.2 Zebra Legacy Mode ... 19

12 RUNNING YOUR NEURAL NETWORK ON ZEBRA .. 20

13 FAQ ... 21

14 APPENDIX 1: LIST OF TESTED NEURAL NETWORK REPOSITORIES ... 23

LEGAL NOTICE .. 32

 Mipsology © 2022, all rights reserved 3

1 Introduction & Scope
This document is a guide for running Mipsology® Zebra CNN inference acceleration software on

AMD/Xilinx® VCK5000 PCIe Acceleration Card hosted at VMAccel® FPGA Cloud with your neural network.

Note that this is an Alpha quality release with following goals:

• Demonstrates Zebra functionality on VCK5000 board.

• Demonstrates Zebra software Ease-of-Use (EoU).

o Accelerate trained Convolution Neural Network (CNN) model without any structural

modification. NO pruning or re-training of the model.

o Automatic and in-line quantization/calibration. NO offline or separate compilation tool.

For Performance and Accuracy, please refer to respective section in this document.

2 License
VMAccel Zebra virtual machines (VM) are pre-configured with software license. This license is not

designed for production deployment. Any CNN inference running continuously for more than 15 minutes

will experience significant slowdown in execution.

3 Contact & Support
Please email support@mipsology.com for questions, concerns, technical help or discuss your project’s

unique requirements.

Please email licenses@mipsology.com for questions related to Zebra License.

4 Requirements
VMAccel Zebra instances are pre-configured with all required software and hardware. Only requirement

on client side is a computer with internet connection and web browser.

5 VMAccel Cloud Access
To gain access to VMAccel cloud, please fill the form https://www.vmaccel.com/zebrademo

For any questions or concerns, please contact support@vmaccel.com

mailto:support@mipsology.com
mailto:licenses@mipsology.com
https://www.vmaccel.com/zebrademo
mailto:support@vmaccel.com

 Mipsology © 2022, all rights reserved 4

6 Getting Started on VMAccel

6.1 Launching Zebra VM Instance
Once you have the access credentials from VMAccel, please follow “Getting Started” section from

https://vmaccel.atlassian.net/wiki/spaces/docs/pages/59212022/Getting+Started

Summary:

• In a web browser navigate to: https://xilinx2.vmaccel.com/dashboard/project/

• On left hand side: Click on “Instances”

• On right hand side: Click on “Launch Instance”

• Follow GUI instructions/options for configuration

IMP: Use following details when creating Zebra VM instance:

• Source : Secure Boot Image = “Mipsology Zebra VCK5000 ES1”

• Flavor = “Mipsology Zebra VCK5000-ES1.1 (16.32.128)”

• Network = “mipsology_local”

For advanced features like enabling external ssh access, follow instructions here :

https://vmaccel.atlassian.net/wiki/spaces/docs/pages/38830174/Connect+to+Instance+via+SSH

Once created, you should see the instance listed as a row on “Instances” web page/view. Example

screenshot:

https://vmaccel.atlassian.net/wiki/spaces/docs/pages/59212022/Getting+Started
https://xilinx2.vmaccel.com/dashboard/project/
https://vmaccel.atlassian.net/wiki/spaces/docs/pages/38830174/Connect+to+Instance+via+SSH

 Mipsology © 2022, all rights reserved 5

6.2 Starting Zebra on VM Instance

After the VM instance is created

successfully:

1. Start the instance by clicking on the

“Instance Name”

2. Click on “Console”

3. “Connect” to noVNC

Inside VNC session:

This User Guide is open by default.

Open “Terminal Emulator”
(Icon available on Desktop)

cd zebra

cd V2022.versal.07

./examples/docker/run.bash

(starts Zebra Docker)

cd zebra

. settings.sh

cd examples

zebra_tools --checkCores

Zebra is ready IF above command
shows status without any errors.

At this point, User is inside Zebra docker running on user-configured VM instance targeting VCK5000

board.

 Mipsology © 2022, all rights reserved 6

7 Mipsology Examples and Demos
Zebra ships with many Examples and Demos provided inside Zebra Docker image. For all of these, the CNN

model / Neural Network (NN) is from open-source community.

No modifications are done to the NNs. These models/NNs are used as-is and are exactly same as the ones

executed on GPU/CPU. The models/NNs are trained in 32-bit Floating Point (FP32). NO training or

retraining or pruning is required when running inference with Zebra software. Zebra starts from the

trained model and automatically maps the neural network for the FPGA target, including operation like

quantization.

Mipsology does not provide a model-zoo because Zebra software is designed to accelerate neural

networks trained on GPU without modification.

7.1 Examples Quick Start
Inside Zebra docker
cd

cd zebra

. settings.sh

cd examples

./run_classification.sh -n resnet50 -f tensorflow

(runs TensorFlow1 ResNet-50v1 Inference on VCK5000)

➢ NOTE: when a network is executed for 1st time, Zebra will automatically perform

Quantization/Calibration for INT8 inference. Result of calibration is saved and reused in future.

./run_classification.sh -n resnet50 -f pytorch

(runs PyTorch ResNet-50v1.5 inference on VCK5000)

./run_classification.sh -n resnet50 -f tensorflow2

(runs TensorFlow2 ResNet-50 Inference on VCK5000).

➢ NOTE: For Pytorch and TensorFlow2 : when executed 1st time, the model gets automatically

downloaded from Internet. Downloaded models are saved and reused in future.

Results of inferences can be found in predict.log file.

7.2 Examples Details
Zebra provides example scripts and software to execute inference on various CNN post-trained models.

All the models are open source – i.e. downloaded from internet (graph and weights/parameters). In case

of Pytorch and TensorFlow2 frameworks, the models get automatically downloaded when a User executes

for first time. Intent of Examples is to demonstrate seamless flow for FPGA acceleration of the CNN model.

Intent is not to demonstrate full application execution.

 Mipsology © 2022, all rights reserved 7

User interface is “run_classification.sh” script located inside examples directory. The

associated Python software is developed my Mipsology to let users run inference on these NNs easily.

User’s application can also be used if they are using supported framework and APIs.

Table below shows list of networks supported across frameworks in current release. Please use network

and framework names in this table to run inference on associated model. For e.g.:

PyTorch ResNet-18 : ./run_classification.sh -f pytorch -n resnet18
TensorFlow2 ResNet101 : ./run_classification.sh -f tensorflow2 -n resnet101
TensorFlow1 Inceptionv4 : ./run_classification.sh -f tensorflow -n inceptionv4

pytorch tensorflow tensorflow2

Model Source:
https://pytorch.org/vision/0.9/models.html

Model Source:
Open-source models

gathered from internet.

Model Source:
https://tfhub.dev/

https://storage.googleapis.com/

resnet50 inceptionv4 resnet50v1

resnet18 inceptionv3 resnet50

resnet34 vgg16 resnet50v2

resnet101 vgg19 resnet101

resnet152 resnet50 resnet101v2

densenet121 resnet50-v1.5 resnet152

densenet161 resnet152 resnet152v2

densenet169 mobilenet_v1 inceptionv1

densenet201 mobilenet_v2 inceptionv2

inceptionv3 yolov1 inceptionv3

mobilenet_v2 yolov2 inception_resnet_v2

wide_resnet50_2 yolov3 mobilenet_v1

wide_resnet101_2 mobilenet_v2

squeezenet vgg16

squeezenet1_1 vgg19

vgg11 densenet121

vgg11_bn densenet169

vgg13 densenet201

vgg13_bn

vgg16

vgg16_bn

vgg19

vgg19_bn

resnext50_32x4d

resnext101_32x8d

https://pytorch.org/vision/0.9/models.html
https://tfhub.dev/
https://storage.googleapis.com/

 Mipsology © 2022, all rights reserved 8

run_classification.sh has many options that you can discover by adding the option “--help".

Note that some options will force the mapping, optimization and/or quantization of the network to be

redone as they impact the way the computation of the network is done on Zebra; then requiring more

time than a simple inference execution.

Note that in the log file, all lines not preceded by “[ZEBRA]” are from libraries (like Python). “[ZEBRA]”

is the header for lines printed by Zebra. “[MIPSO]” is the header printed by the application when

Mipsology’s general application is used.

Expectation for Future Release
In upcoming releases, Zebra is expected to support and demonstrate increasing number of CNN models
(and associated layers) across all three popular ML Frameworks.

7.3 Demos Quick Start
Inside Zebra docker

cd

source zebra/settings.sh

cd tensorflow-yolov4-tflite

(taking YOLO-v4 as an example)

zebra_config --system --add runSession.enableTimeStatistics=true

(enable printing performance table/statistics at end of Zebra run. By adding “system” flag, this option
is enabled globally for all subsequent Zebra runs.)

./run ~/zebra/examples/VIDEO/paris_cut1.mkv

(run YOLO-v4 inference on VCK5000)

NOTES:

• By default, the application will show output video/pictures in a new GUI window.

• By default, inference is executed using batch=1.

o Which means only 1 Zebra core is being utilized.

o For VCK5000 this means throughput (FPS) is 1/8th of full Zebra performance.

• Summary table printed (in terminal window) by Zebra at end of inference execution provides

many relevant details.

• This demo supports other pretrained CNN models – YOLO-v3, TinyYOLO-v4 and TinyYOLO-v3.

• Please study the ‘run’ script and detect.py application for more options.

7.4 Demos Details
Zebra executes inside an ML framework. Zebra executes “in-line” with user application, including

Quantization and Calibration. When accelerating CNN inference with Zebra, there is no additional tool for

offline processing. Intent of Demos is to demonstrate effortless FPGA acceleration of applications. Intent

is not to demonstrate a fully optimized and ready-to-deploy application.

 Mipsology © 2022, all rights reserved 9

Zebra aims to run inference with no change to application software and the model/NN. However, many

GitHub repositories are not designed for easy execution on CPU or any accelerator (including GPU). Hence,

Zebra makes following modifications for smooth User Experience (UX):

a) For repositories that only provide post-trained weights; Zebra generates a frozen graph before

running the demo when required.

b) Provide ability to use videos OR image OR directory_of_images as input.

c) Provide a ‘run’ script.

This is a wrapper script that enables all demos to run with similar command line. E.g.:

./run <input_source> [--batch B] [--out_file <file>] [--inputSize WxH]

• input_source = video file / image file / directory with images / usb cameras

• B = size of batch to use. Default = 1

• out_file = video file to save the output. Default = display output in new window.

• WxH = input image size to Neural Network for inference.

o Unless the post-trained model has strict restrictions, the input image size can be user

defined.

User is encouraged to study the ‘run’ script and related application *.py code to understand various

options.

Table below shows the various demos and associated CNN model along with how to enable Zebra.

Demo Name Framework Supported CNN Models Command to enable Zebra

darkflow TF1 YOLO-v2, TinyYOLO-v2 source settings.sh

tensorflow-yolo3 TF1 YOLO-v3 source settings.sh

tensorflow-yolov4-
tflite

TF1
YOLO-v4, TinyYOLO-v4,
YOLO-v3, TinyYOLO-v3

source settings.sh

yolov5 PT

YOLO-v5 N/S/M/L/N6/S6/M6
NOTE:
This demo supports 7 different
models. Models X, L6 and X6 are not
supported in this release.

source settings.sh

Ildoonet-tf-pose-
estimation

TF1 Pose-Estimation source settings.sh legacy

EDSR PT Super Resolution source settings.sh legacy

Table below gives list of GitHub source link for the demos:

Demo Name GitHub Source Link

darkflow https://github.com/thtrieu/darkflow

tensorflow-yolo3 https://github.com/aloyschen/tensorflow-yolo3

tensorflow-yolov4-tflite https://github.com/hunglc007/tensorflow-yolov4-tflite

yolov5 https://github.com/ultralytics/yolov5

Ildoonet-tf-pose-estimation https://github.com/jiajunhua/ildoonet-tf-pose-estimation

EDSR https://github.com/thstkdgus35/EDSR-PyTorch

https://github.com/thtrieu/darkflow
https://github.com/aloyschen/tensorflow-yolo3
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/ultralytics/yolov5
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/thstkdgus35/EDSR-PyTorch

 Mipsology © 2022, all rights reserved 10

7.4.1 Input for Docker Demos
Docker demos can accept input in either of the following formats:

• Video file

• Image file

• Directory of Images

Users are encouraged to use the input of their choice. Off course some demos may need appropriate input

– for example Pose-Estimation demo needs input where it can detect human pose. Unless specified by

the demo, the input can be of variable dimensions.

To make it easier for Users to run the demo on VMAccel Cloud instances, Mipsology provides sample

inputs videos. These video files are located inside ~/zebra/examples/VIDEO directory (let’s call it

<VID_DIR> in table below) which is automatically mounted when starting the docker container.

Table below gives example of command to start the demos.

Demo Name Basic Command Optional Switches

darkflow ./run <VID_DIR>/paris_cut1.mkv --batch 8 --out_file YLv2_dk_out.mp4

tensorflow-yolo3 ./run <VID_DIR>/paris_cut2.mkv --batch 8 --out_file YLv3_tf_out.mp4

tensorflow-yolov4-
tflite

./run <VID_DIR>/paris_cut3.mkv --batch 8 --out_file YLv4_tf_out.mp4

yolov5 ./run <VID_DIR>/paris_cut2.mkv --batch 8 --out_file YLv5s_tf_out.mp4

Ildoonet-tf-pose-
estimation

./run

<VID_DIR>/kulam_dance_27sec.mp4
--batch 8 --out_file pose_tf_out.mp4

NOTE: the output videos will be lost when docker is closed and when saved inside docker the video cannot

be viewed. User can choose to save the video outside docker by mounting a directory when starting the

docker container. For e.g.: ./docker/run.bash -v <dir_of choice>:/VIDS

7.5 List of Repositories that are known to work with Zebra
Please refer to Appendix 1 for a list of repositories and neural networks that were tested on Zebra, with

notes on limitations or issues.

Expectation for Future Release
In upcoming releases, Zebra is expected to enable more demos from open-source repositories covering

wide variety of CNN models and end applications.

 Mipsology © 2022, all rights reserved 11

8 Release Details

8.1 Supported Frameworks and versions
Zebra supports the following frameworks:

Framework Recommended version

PyTorch 1.9.0

TensorFlow 1 2.8.0

TensorFlow 2 2.8.0

ONNX 1.10.2 (opset 12)

8.2 Release Limitations

8.2.1 Layers
In this alpha release:

• MobileNet-v3, EfficientDet and EfficientNet models are not supported.

• Custom layers in middle of NN graph are not supported by the automatic graph split feature.

o For e.g. FB Detectron2 does not work because the graph includes custom layers.

o However, in TensorFlow, a custom layer at the beginning or the end of the graph may be

supported by execution on CPU.

• Layers that are not rightly supported by ONNX will cause Zebra to return an error when trying to

convert the graph.

8.2.2 All Frameworks
In this alpha release:

• Some open-source models may experience an error during conversion to ONNX.

o In such cases, the error message will mention which opset_version to use.

o Please use Zebra’s SW API to force this setting and re-run the application. For e.g.:

zebra_config --add debug.opset_version=<num_in_error_message>

<run_your_application_again>

• When a layer cannot be split into pieces that are smaller than 131072 pixels, an error will happen.

• Inputs wider than 4096 pixels are not supported. Consider doing a manual tiling for those large

images.

• Calibration duration is limited by default to avoid wasting resources on wrong use of Zebra.

However, on network using very large images or having many layers or very large layers,

increasing the calibration time can allow to pass the stage and run. This is done only once and will

not impact the eventual performance.

• Input in 8-bit integer format are supported only with legacy mode.

 Mipsology © 2022, all rights reserved 12

• Neural networks trained with FP16 must be converted into FP32 (changing type) before a

quantization can be done. Alternatively, the legacy mode can be used if no automatic split is

needed.

• The size of the batch must be constant over an execution

• The size of the input images must be constant over an execution

8.2.3 PyTorch

• This alpha release does not support the explicit “forward” inference API. For example:

o The following code will FAIL with Zebra error

output = model.forward(input)

o The following code will PASS

output = model(input)

- Upsample layer with ratio larger than 16 are not supported by Zebra and not automatically

mapped on the CPU. Use the manual split for that purpose.

- ConvTranspose layer are not supported if an output padding is used.

8.2.4 TensorFlow 1 & 2

• Some demos may experience Zebra error related to automatic graph splitting.

o We are still working on covering all ways in which TF developers train models and

generate graphs.

o The solution is to use Zebra Software API to ‘manually’ split the graph (a.k.a. ‘Legacy’

mode)

o Details about graph splitting provided in a dedicated section of this document.

• Dilatation with ratio larger than 16 are not supported by Zebra and not automatically mapped on

the CPU. Use the manual split for that purpose.

• Floating point NaN values in Python are not automatically converted into 8-bit integer and will

result in a conversion error.

• In TensorFlow1, only 1 graph per session is supported. If you have multiple graphs attached to a

single session, please use one session per graph and map the right graph to Zebra.

Expectations for Future Release

In upcoming releases, Zebra is expected to improve automatic graph splitting for all frameworks and

support models/graphs with custom layers (i.e. layers not supported by ONNX).

 Mipsology © 2022, all rights reserved 13

8.3 Accelerated layers
The following table summarize the layers that are accelerated on Zebra.

Layer Parameter Values
2D Convolution,

2D DepthWise Convolution,

2D Transpose Convolution,

2D Grouped Convolution,

2D Dilated Convolution,

2D Separable Convolution

Kernel Size 1 <= W <=64
1 <= H <=64
D = unlimited;
1 <= W*H <= 256

Stride 1 <= W <=256
1 <= H <= 256

Dilation 1 <= dil <= 15

Padding 0 <= P <= 15

Input size 1 <= W <= 32767
1 <= H <= 4095
D = unlimited

Groups 1 <= G <= 2

Max Pooling

Average Pooling

Kernel Size 1 <= W <= 255
1 <= H <= 255

Stride 1 <= W <=256
1 <= H <= 256

Padding 0 <= P <= 15

Eltwise Sum Input size 1 <= W <= 32767
1 <= H <= 4095
D = unlimited

Concat On output channels only
Input channels multiple of 4

Reorg Stride 1 <= S <= 2

Pad Input size 1 <= W <= 32767
1 <= H <= 4095
D=unlimited

Padding 1 <= P <= 15

Value Constant

Global Pool, Mean No limit

Inner Product Input size 1 <= W <= 32767
1 <= H <= 4095
D = unlimited

Fully Connected Input size 1 <= W <= 32767
1 <= H <= 4095
D=unlimited

Matmul Input size 1 <= W <= 32767
1 <= H <= 4095
D = unlimited

Depth2Space

Split Group G = 2

Crop & Resize Input size 1 <= W <= 32767
1 <= H <= 4095
D = unlimited

Ratio R = a/b with

 Mipsology © 2022, all rights reserved 14

Layer Parameter Values
1 <= a <= 16
1 <= b <= 16
Nearest ratio used

Upsample Factor N = 2

Clip by Value Input size 1 <= W <= 32767
1 <= H <= 4095
D = unlimited

BiasAdd Input size 1 <= W <= 32767
1 <= H <= 4095
D = unlimited

Value Any

Batch Normalisation Input size 1 <= W <= 32767
1 <= H <= 4095
D = unlimited

Values Any

Activation Functions Kind Relu, LRelu, Relu6, PRelu, Swish, Mish, Sigmoid, Tanh, hard-
sigmoid, hard-swish, hard-mish.

Position Any position in the neural network.

Squeeze, Flatten, Reshape,

ExpandDims

 Accelerated only if can be merged with following layer

Const, Input No limitation

9 Performance
In this Alpha release, performance is medium-to-high depending on CNN. In near future we expect rolling
releases/updates with significant performance improvements to all supported CNNs. For example, when
targeting ResNet50 with a dedicated configuration (different VM instance available on VMAccel), Zebra
today can achieve up to 2x higher FPS (depending on framework and model). And Zebra is expected to
improve this number further. Similar increase in performance is expected for all supported CNNs.

Note: When analyzing performance from the summary table printed by Zebra, please note following:

• The main line of interest is the “FPGA” line – this is the CNN inference on FPGA

• Non-FPGA portion (i.e. Software running on CPU) will be pipelined in parallel of the FPGA
o When fully pipelined, the gap between ‘FPGA’ and ‘Total’ FPS will be minimal.

Each customer’s requirement will be unique. For questions or concerns, please reach out to Mipsology.

The two figures below show examples of performance summary table printed by Zebra on terminal at the

end of the inference execution when statistics are enabled. Note: these figures are for illustrative

purposes. Each run’s summary table will include details of that CNN execution.

 Mipsology © 2022, all rights reserved 15

 Mipsology © 2022, all rights reserved 16

Total execution time = 1 + 2a + 2b + 3 { 52.69 ms/batch (mean) == 7.17+9.40+30.95+5.18 }

• 2a == ALL / Majority CNN layers accelerated on FPGA

• 1, 2b, 3 == processes executing on CPU

Future Zebra release(s) will automatically pipeline/parallelize 1, 2b and 3

10 Accuracy
In this Alpha release, current Zebra delivers good accuracy. However, some CNNs may show larger than
expected accuracy drop. It is recommended to compare Zebra accuracy with an inference execution done
on CPU/GPU using the same training mode, dataset, image pre-processing, etc. Zebra makes switching
between FPGA and CPU/GPU execution very easy : 1-line Linux command to enable and disable Zebra.

In case the inference accuracy is observed to be lower than expected in a default run, Zebra provides SW
switches to improve the accuracy (the same FPGA bitstream is used).

Examples of Zebra SW switches/APIs to improve accuracy:

• quantization.mode=dynamic (default = constrainedCalibrationV1.5)

• quantization.forceSatCheckOnLastLayer=false (default = true)

• quantization.algorithmVersion=1.0 (default = 3.1)
• quantization.ignoreNegativeValuesOnLastLayer=false (default = true)
• runOptimization.addOptimizers=PrecisionRecovery:RUN

Example : zebra_config --add quantization.mode=dynamic

In our experience, accuracy is a topic that usually attracts intellectual discussions. Please check this FAQ

question for more information on understanding accuracy and Zebra Quantization/Calibration.

Note: achieving desired accuracy for CNN Inference is a 1-time R&D effort. Once achieved, Zebra saves

the results of quantization/calibration process in a file and always re-use for future execution. The

quantization results file can be deployed on target inference servers.

Quantization/Calibration is executed again in event of a change in inputs that can influence the quality of

results – for e.g. change in model weights.

Please email Mipsology for any questions or concerns or unique requirements for Your CNN.

 Mipsology © 2022, all rights reserved 17

11 Neural Network (Graph) Management

11.1 Automatic splitting of Neural Networks
The default mode of Zebra is to read the full graph including the pre and post processing of images and to

automatically create the proper execution on CPU and Zebra. Some pre/post processing cannot be

accelerated on Zebra or don’t need to be accelerated on Zebra. They are then mapped automatically on

the CPU.

In case a layer is not accelerated by Zebra, it will be mapped by Zebra and executed by the framework or

by ONNX-runtime. The format conversion between Zebra and the CPU are automatically handled.

Therefore, in this mode, user does not need to perform any special modification to run a neural network.

By default, the split of a neural network will be automatically performed by Zebra and without any input

from the user. The automatic split may result in:

- One or multiple graphs accelerated by Zebra based on the previously listed accelerated layers.

- A potential pre-processing graph. Typically, a pre-processing can read an image on a disk and do

some pre-formatting before a core neural network is applied. Note that some pre-processing may

be changed for Zebra to run them, like a resize, a crop or a color operation.

- A potential post-processing graph. Typically, a post-processing formats the output data to be used

in a further processing, like a database or to draw boxes on an image.

- Some potential internal graphs kept on the CPU. Typically, this is because some layers are not

possible to be accelerated by Zebra in the middle of the graph (for example selecting some parts

of the data based on result of a first-level neural network), or because a layer is not supported yet

by Zebra, or because the automatic split did not recognize a form of a layer.

Zebra creates a graph_execution_report.json file that contain information on how the mapping is

performed. This information can be used to inspect the mapping or as a starting point for manual mapping

if that is eventually required.

Frameworks offer a lot of flexibility to describe sometimes the same processing. Zebra can recognize

layers or sets of layers to be a specific processing that can be accelerated. However, this recognition is not

perfect for all forms of the same processing, leading to sub-optimal mapping. This can be fixed by using a

manual mapping. In case a layer or structure is not properly recognized by Zebra, or if a layer has a

limitation that the automatic mapping does not process yet correctly, a manual mapping can be done as

described here after. Examples of such limitations are part of the neural network list provided in the

Appendix 1.

Note that if a graph is split in many pieces, the performance can be highly impacted. Mipsology adds

regularly new layers and more parameters to the accelerator. If you face a layer that is not accelerated

and impact largely the performance, please contact us so we can investigate its acceleration.

 Mipsology © 2022, all rights reserved 18

11.2 Manually splitting a Neural Networks
This section describes how to split a graph between Zebra and the CPU. Zebra will honor user’s explicit

instructions. However it is possible Zebra may assign more layers to CPU in case some layer cannot be

accelerated by Zebra. Alternatively, if a layer is mapped on CPU while it could be accelerated on Zebra, it

may result in sub-optimal acceleration.

The execution and data management are performed automatically by Zebra without user intervention

based on the provided commands.

11.2.1 Graph Splitting
Manual graph splitting is an advanced concept that assumes user is well aware of CNNs and their analysis

using framework tools. To use this explicit API, user needs to identify appropriate layers for FPGA or CPU

execution and instruct Zebra using software API/command. Zebra will then split the graph as per user

directive.

Identification of layer names can be done using Framework APIs or using graphical tools like Netron. Layer

names are case sensitive.

Format of the software API/command :

zebra_config --add runSession.subGraphs=<MODE>:<endLayer>

where:

• <MODE> == ZEBRA or CPU

• <endLayer> == Name of last layer in the model to be executed on MODE

"endLayer” can be composed of multiple layers separated by a ‘,’ when the graph includes multiple

branches.

Multiple subgraphs can be declared using the same command with "|" (pipe) or “@” to separate each of

the subgraph. For example, declaring two subgraphs would look like (the ‘\’ is from a usual shell syntax

and is added here for clarity purpose only):

zebra_config --add \

runSession.subGraphs=”<MODE1>:<endLayer1a,endLayer1b>|<MODE2>:<endLayer2>”

or

zebra_config --add \

runSession.subGraphs=<MODE1>:<endLayer1a,endLayer1b>@<MODE2>:<endLayer2>

Please email Mipsology for any questions around ‘manual’ graph splitting and use of Legacy mode.

If the last graph goes up to the last layer of the graph, the keyword "AUTO" can be used. Here, AUTO does

not mean automatic split but “end of the graph”:

zebra_config --add runSession.subGraphs=<MODE1><endLayer1a>@<MODE2>:AUTO

This command needs to be used only once. Once the syntax is verified, the command is saved in the file

named zebra.ini, which is used at run time. It is also possible to modify the file.

For example:

 Mipsology © 2022, all rights reserved 19

zebra_config --add runSession.subGraphs= \

 "CPU:layer3a,layer3b,layer4c| \

 ZEBRA:layer73| \

 CPU:AUTO"

Means:

- The initial part of the graph is mapped on CPU, with 3 branches in parallel up to layer3a, layer3b

and layer3c for the three branches.

- The middle of the graph is mapped on Zebra up to the layer layer73, which assumes that the 3

branches from the CPU execution were merged at some times during the normal processing of

the graph.

- The end of the network, from the layer that follows the layer73 is executed on the CPU.

Note that each <MODE>:<layers> means a subgraph. If two subgraphs in a row are described on the same

resource, implicit communications and conversions may be applied. For example, if two subgraphs are

mapped on Zebra, there will be a communication with CPU added between the subgraphs, which is not

optimal.

Please email Mipsology for any questions around ‘manual’ graph splitting and use of Legacy mode.

11.2.2 Zebra Legacy Mode
A legacy mode is included in this release for specific cases. Legacy mode refers to the support of the

frameworks prior to the 2022 releases. Legacy mode does not support the automatic split of graphs, only

the manual split. It can be used for specific cases like:

- Some specific forms of graphs are not yet properly supported by the latest SW but can be used

with manual mapping in legacy mode.

- The training was done using FP16 instead of FP32. Alternatively, you can use the automatic split

by converting your FP16-trained network into a FP32 model, that Zebra can process. This step will

be automated in future release.

- The input data are provided as 8-bit integers. In many applications, the input data are provided

as floating point, but the original type is 8-bit integer. As Zebra performs computation using 8-bit

integer, the back-and-forth conversion is detrimental to performance. Using directly int8 data

may be possible in some applications. This mode is not supported yet in the latest Zebra SW but

can be used in legacy mode.

Please, contact Mipsology if you believe the legacy mode is useful for your application.

 Mipsology © 2022, all rights reserved 20

12 Running Your Neural Network on Zebra
Zebra uses the post-training Neural Network (NN) as-is. Zebra expects the training to be performed in 32-

bit Floating Point (FP32) data type. No pruning, re-training, quantization, or any other specific prior

operation is expected. Zebra executes within the ML Framework and in-line with the application. No

specific software development or proprietary/external tool is required.

Once the NN inference executes successfully on the training hardware (CPU/GPU), switching to Zebra is

1-line Linux command. For example when inside Zebra docker on VMAccel cloud instance:

source ~/zebra/settings.sh

With this setting, Zebra will automatically intercept NN inference calls, execute the computation on

FPGA+CPU and return output data in same format as the application expects. All communication and data

conversions are automatically handled by Zebra.

When an application executes for first time, Zebra will perform some one-time initialization operations

like neural network mapping on the Zebra accelerator, quantization and calibration of the parameters,

optimization of performance, etc. The configuration related to the preparation are saved and reused if

further runs are done with the same condition (neural network, weights, options). IF something changes,

Zebra will automatically detect changes and re-run the initial operations then save the configuration.

Note that Zebra does not replace nVidia’s CUDA but from a user point of view, it offers the same

abstraction. So CUDA calls will not be caught by Zebra, but neural network layers in the frameworks will

be.

As it is a “plug-and-play” solution, custom and open-source repositories can easily be executed by Zebra.

This is one reason we don’t provide a model-zoo. However, we strongly advise to check that a repository

you plan to use works correctly on CPU before switching to Zebra. Many repositories don’t include all

elements required to run or their accuracy is wrong. In few cases, some minor modifications need to be

done for running on Zebra, we have listed some in the Appendix 1. Please contact us if you think a

repository is of general interest so we can add it to our tests.

Zebra software is evolving fast and tested thoroughly. But it is not perfect. Particularly, some ML

frameworks contain rich API with many ways to achieve the same purpose. Zebra may not support all API

calls. Please email support@mipsology.com for any limitations that prevents to use Zebra with your neural

network.

We also advise to run Zebra demos and examples to get familiar with Zebra and its environment.

mailto:support@mipsology.com

 Mipsology © 2022, all rights reserved 21

13 FAQ

Can I control FPGA operating frequency?
On this alpha release for VCK5000, user cannot control FPGA operating frequency. We expect to enable

this feature in next release.

Why do I get CUDA related messages when running some demos?
Depending on the demo, some CUDA related messages may be printed on terminal by the ML Framework.

This should not result in any error during execution. This is not related to Zebra. If absolutely needed,

these messages can be suppressed by compiling the framework from source.

Does Mipsology provide a Model-Zoo?
Mipsology does not provide a model-zoo. This is because Zebra software is designed to accelerate neural

networks (CNNs) trained on GPU without modification. In other words, Zebra accelerates post-training

CNN graph as-is without any

structural change. User does not

need to prune the model. There are

no offline tools to use before

running Zebra.

Zebra works inside User’s ML

Framework and in-line with User’s

Application. Figure here shows

simplified Zebra software stack.

Please reach out to Mipsology for

further questions or to discuss

project’s unique requirements.

 Mipsology © 2022, all rights reserved 22

Can You give more information about Accuracy and Zebra Quantization?
High Accuracy for CNN Inference is important for production deployment. Inference accuracy depends on

many factors like model training, dataset used, image pre-processing, etc. Based on our experience, it is

not a correct practice to compare Zebra result with theoretical accuracy found in an article or on internet.

Best practice is to compare results of 2 executions – one with CPU/GPU and one with Zebra on FPGA –

using exact same weights/parameters, input data, pre-processing and application software.

Zebra does not need any offline tool for quantization. The process of FP32 to INT8 conversion happens in-

line with user’s application. From User’s point of view, they run the inference application just as they

would normally run on CPU/GPU.

Zebra makes switching between FPGA and CPU/GPU very easy – 1-line Linux command : source
settings.sh.

Zebra aims to provide optimal accuracy by default. In case the accuracy is still observed to be lower than

expected, Zebra provides SW switches to improve the accuracy (NOTE: the same FPGA bitstream is used).

Some examples of this are shown in Accuracy section.

Most of the software options are influencing the calibration and quantization algorithms, and don’t impact

performance. The reason different algorithms may be required is that Zebra does not use the training

data or expected results to map a model, which sometimes can influence the quality of the results.

Typically, the options found for a given model will be reusable if the model goes through various training.

It is also a good practice that the first batch of images, which is used by Zebra for quantization/calibration,
are diversified and of good quality. For example:

• Images should cover a good spread of target classes (classification) and objects (detection)

• Not all images should be very dark or very bright

• Not all images expected to give wrong result

• Not all images should be known outliers

• Not all images with extreme size (e.g. largely enlarged)

Users well versed with CNN model and intent of the application typically understand these requirements.

Note that achieving desired accuracy for CNN Inference is a 1-time R&D effort. Once achieved, Zebra

saves the results of quantization/calibration process in a file and always re-use for future execution. The

quantization results file can be deployed on target inference servers.

Quantization/Calibration is executed again in event of a change in inputs that can influence the quality of
results – for e.g. change in model weights.

Please email Mipsology for any questions or concerns or unique requirements for Your CNN.

How do I contact Mipsology for support or questions?
Please email support@mipsology.com with any questions or concerns or to discuss your unique

requirements.

mailto:support@mipsology.com

 Mipsology © 2022, all rights reserved 23

14 Appendix 1: List of Tested Neural Network Repositories
The following table provides a list of models that were tested at the time this manual was written. New

repositories and models are tested daily by Mipsology to improve the coverage of frameworks and

models. In table below:

• Repository: internet address where to find the model. Please consult the license of the repository.

Typically, the models can be executed on CPU and/or GPU. Zebra reuses the same post-training neural

network and application SW (if available) found in the repositories.

• Neural Network Kind: the name of the neural network or its kind. More details can be found in the

repository.

• FWK: ML Framework used to describe the neural network model.

o PT = PyTorch. TF1 = TensorFlow1. TF2 = TensorFlow2.

• Dataset: dataset used by the repository to our knowledge.

• Graph splitting: type of graph management used when executing on Zebra.

o Auto: the automatic mode was used.

o Manual: a manual splitting was done to run this model because of a limitation in the

automatic mode. Limitations are addressed regularly in new releases to remove manual

splitting.

o Legacy: Zebra has a legacy software, which has some specific capabilities that may not be yet

available with the automatic mode. It is expected that those models are supported in the

automatic mode in a future release if not deprecated. See comments for more details.

• Software – from repo: the repository has an application that allows to do the computation. Zebra

replaced transparently the CPU/GPU for those computation with a single line command.

o Pass: functional.

o Fail: the model fails with the default setup. See comments for more details. In some cases, a

minor change or a work-around can be used to make the model functional. In many instances,

the neural network is functional, but the application fails for minor issues.

• Software – Zebra App: the repository may not have an application that allows inference execution.

Or the neural network was ported to the Zebra application to be easily executed.

• Comment: specific information that are useful to use the repository or model.

o “Functional but lower-than-expected accuracy” : the model can be executed by Zebra and is

known to work with different trainings. However, this specific repository version is not ideal

and Zebra reduces accuracy more than what can be expected for such a model. You can use

another repository for a similar model or perform your own training. The next version of

Zebra software will look to improve accuracy for these cases – including new quantization

algorithms – allowing to reduce the accuracy loss further.

Note that Mipsology does not control these open-source repositories and pointers may change at any

time.

 Mipsology © 2022, all rights reserved 24

Repository
Neural Network

Kind FW
K

Dataset
Graph
Split

Software

From
repo

Zebra
SW

Comment

https://github.com/osmr/imgclsmob Resnet18 PT ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet34 PT ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet50 PT ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet101 PT ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet152 PT ImageNet auto pass

https://github.com/osmr/imgclsmob VGG11 PT ImageNet auto pass

https://github.com/osmr/imgclsmob VGG13 PT ImageNet auto pass

https://github.com/osmr/imgclsmob VGG16 PT ImageNet auto pass

https://github.com/osmr/imgclsmob VGG19 PT ImageNet auto pass

https://github.com/osmr/imgclsmob mobileNet_W1 PT ImageNet auto pass

https://github.com/osmr/imgclsmob mobileNetV2_W1 PT ImageNet auto pass

https://github.com/osmr/imgclsmob denseNet121 PT ImageNet auto pass

https://github.com/osmr/imgclsmob inceptionv3 PT ImageNet auto pass

https://github.com/osmr/imgclsmob inceptionv4 PT ImageNet auto pass

https://github.com/osmr/imgclsmob xception PT ImageNet auto pass

https://github.com/osmr/imgclsmob inceptionresnetv1 PT ImageNet auto pass

https://github.com/osmr/imgclsmob inceptionresnetv2 PT ImageNet auto pass

https://github.com/osmr/imgclsmob hrnet_w18_small_v1 PT auto pass

https://github.com/osmr/imgclsmob hrnet_w18_small_v2 PT auto pass

https://github.com/osmr/imgclsmob hrnetv2_w18 PT auto pass

https://github.com/osmr/imgclsmob hrnetv2_w30 PT auto pass

https://github.com/osmr/imgclsmob hrnetv2_w32 PT auto pass

https://github.com/osmr/imgclsmob hrnetv2_w40 PT auto pass

https://github.com/osmr/imgclsmob hrnetv2_w44 PT auto pass

https://github.com/osmr/imgclsmob hrnetv2_w48 PT auto pass

https://github.com/osmr/imgclsmob hrnetv2_w64 PT auto pass

https://github.com/osmr/imgclsmob hardnet39ds PT manual pass Graph splitting must be done manually to
avoid a concat layer limitation https://github.com/osmr/imgclsmob hardnet68ds PT manual pass

https://github.com/osmr/imgclsmob hardnet68 PT auto pass

https://github.com/osmr/imgclsmob hardnet85 PT auto pass

https://github.com/osmr/imgclsmob vovnet27s PT auto pass

https://github.com/osmr/imgclsmob vovnet39 PT auto pass

https://github.com/osmr/imgclsmob vovnet57 PT auto pass

https://github.com/osmr/imgclsmob

simplepose_resnet18_c
oco

PT

auto pass Functional but lower-than-expected accuracy

https://github.com/osmr/imgclsmob

simplepose_resnet50b
_coco

PT

auto pass Functional but lower-than-expected accuracy

https://github.com/osmr/imgclsmob

simplepose_mobile_m
obilenet_w1_coco

PT

auto pass Functional but lower-than-expected accuracy

https://github.com/osmr/imgclsmob

simplepose_mobile_m
obilenetv2b_w1_coco

PT

auto pass Functional but lower-than-expected accuracy

https://github.com/osmr/imgclsmob Resnet18 TF1 ImageNet auto pass
Requires minor modifications in application:
- Graph has no inputs. Application is using an
old TF1 API to get inputs without explicit
graph connection for inputs.

Without modification: runs fully on CPU,
Zebra does not intercept the graph.

With modification: functional on Zebra.

Modification involves addition of explicit
input connections.

https://github.com/osmr/imgclsmob Resnet34 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet50 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet101 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet152 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob VGG11 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob VGG13 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob VGG16 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob VGG19 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob mobileNet_W1 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob mobileNetV2_W1 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob DenseNet121 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet18 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob

 Mipsology © 2022, all rights reserved 25

https://github.com/osmr/imgclsmob Resnet34 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet50 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet101 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob Resnet152 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob VGG11 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob VGG13 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob VGG16 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob VGG19 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob mobileNet_W1 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob mobileNetV2_W1 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob denseNet121 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob denseNet161 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob denseNet169 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob denseNet201 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob inceptionv3 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob inceptionv4 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob xception TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob inceptionresnetv1 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob inceptionresnetv2 TF2 ImageNet auto pass

https://github.com/osmr/imgclsmob hrnet_w18_small_v1 TF2 auto pass

https://github.com/osmr/imgclsmob hrnet_w18_small_v2 TF2 auto pass

https://github.com/osmr/imgclsmob hrnetv2_w18 TF2 auto pass

https://github.com/osmr/imgclsmob hrnetv2_w30 TF2 auto pass

https://github.com/osmr/imgclsmob hrnetv2_w32 TF2 auto pass

https://github.com/osmr/imgclsmob hrnetv2_w40 TF2 auto pass

https://github.com/osmr/imgclsmob hrnetv2_w44 TF2 auto pass

https://github.com/osmr/imgclsmob hrnetv2_w48 TF2 auto pass

https://github.com/osmr/imgclsmob hrnetv2_w64 TF2 auto pass

https://github.com/osmr/imgclsmob

hardnet39ds
TF2

manual pass

Graph splitting must be done manually to
avoid a concat layer limitation

https://github.com/osmr/imgclsmob

hardnet68ds
TF2

manual pass

Graph spliting must be done manually to
avoid a concat layer limitation

https://github.com/osmr/imgclsmob hardnet68 TF2 auto pass

https://github.com/osmr/imgclsmob hardnet85 TF2 auto pass

https://github.com/osmr/imgclsmob vovnet27s TF2 auto pass

https://github.com/osmr/imgclsmob vovnet39 TF2 auto pass

https://github.com/osmr/imgclsmob vovnet57 TF2 auto pass

https://github.com/osmr/imgclsmob

simplepose_resnet18_c
oco

TF2

auto

fail

Zebra execution is successful. But application
ends with error: conflict of type in
Python/numpy ('list' object has no attribute
'numpy').

The Error is caused by ONNX operations.

Using different type for outputs in the Python
test resolves the issue.

https://github.com/osmr/imgclsmob

simplepose_resnet50b
_coco

TF2

auto

https://github.com/osmr/imgclsmob

simplepose_resnet101
b_coco

TF2

auto

https://github.com/osmr/imgclsmob

simplepose_resnet152
b_coco

TF2

auto

https://github.com/osmr/imgclsmob

simplepose_resneta50
b_coco

TF2

auto

https://github.com/osmr/imgclsmob

simplepose_resneta10
1b_coco

TF2

auto

https://github.com/osmr/imgclsmob

simplepose_resneta15
2b_coco

TF2

auto

https://github.com/osmr/imgclsmob

simplepose_mobile_res
net18_coco

TF2

auto

https://github.com/osmr/imgclsmob

simplepose_mobile_res
net50b_coco

TF2

auto

https://github.com/osmr/imgclsmob

simplepose_mobile_m
obilenet_w1_coco

TF2

auto

https://github.com/osmr/imgclsmob

simplepose_mobile_m
obilenetv2b_w1_coco

TF2

auto

https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob

 Mipsology © 2022, all rights reserved 26

https://github.com/osmr/imgclsmob

simplepose_mobile_m
obilenetv3_small_w1_c
oco

TF2

auto

https://github.com/osmr/imgclsmob

simplepose_mobile_m
obilenetv3_large_w1_c
oco

TF2

auto

https://github.com/osmr/imgclsmob mobilenetv3_large_w1 TF2 auto pass Functional but lower-than-expected accuracy

https://rwightman.github.io/pytorch-
image-models/

Resnet18 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

Resnet34 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

Resnet50 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

Resnet101 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

Resnet152 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

inception_resnet_v2 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

InceptionV3 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

InceptionV4 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

VGG11 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

VGG13 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

VGG16 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

VGG19 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

mobileNetV2 PT ImageNet auto pass

https://rwightman.github.io/pytorch-
image-models/

DenseNet121 PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

Resnet18 PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

Resnet34 PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

Resnet50 PT ImageNet auto pass

Inference fails on CPU due to explicit CUDA
calls in the application.

With minor modification of removing the
'.cuda' in calls, Inference runs successfully on
CPU and Zebra.

NOTE: Execution is correct in Zebra, however
accuracy is not tested by this repository.

https://github.com/wang-
xinyu/pytorchx

Resnext50 PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

VGG11 PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

mobilenetv2 PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

googlenet PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

InceptionV3 PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

lenet5 PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

mnasnet PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

shufflenet PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

squeezenet PT ImageNet auto pass

https://github.com/wang-
xinyu/pytorchx

alexnet PT ImageNet auto pass

https://github.com/divamgupta/imag
e-segmentation-keras

fcn_8 TF2 auto pass

https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://rwightman.github.io/pytorch-image-models/
https://rwightman.github.io/pytorch-image-models/
https://rwightman.github.io/pytorch-image-models/
https://rwightman.github.io/pytorch-image-models/
https://rwightman.github.io/pytorch-image-models/
https://rwightman.github.io/pytorch-image-models/
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/wang-xinyu/pytorchx
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras

 Mipsology © 2022, all rights reserved 27

https://github.com/divamgupta/imag
e-segmentation-keras

fcn_32 TF2 auto fail

https://github.com/divamgupta/imag
e-segmentation-keras

fcn_8_vgg TF2 auto pass

https://github.com/divamgupta/imag
e-segmentation-keras

fcn_32_vgg TF2 auto fail

https://github.com/divamgupta/imag
e-segmentation-keras

fcn_8_resnet50 TF2 auto pass

https://github.com/divamgupta/imag
e-segmentation-keras

fcn_32_resnet50 TF2 auto fail
Calibration exits due to memory allocation
issue. It may pass on host with very large
memory.

https://github.com/divamgupta/imag
e-segmentation-keras

fcn_8_mobilenet TF2 auto pass Functional but lower-than-expected accuracy

https://github.com/divamgupta/imag
e-segmentation-keras

fcn_32_mobilenet TF2 auto fail

https://github.com/divamgupta/imag
e-segmentation-keras

vgg_pspnet TF2 auto pass Functional but lower-than-expected accuracy

https://github.com/divamgupta/imag
e-segmentation-keras

resnet50_pspnet TF2 auto pass Functional but lower-than-expected accuracy

https://github.com/divamgupta/imag
e-segmentation-keras

unet_mini TF2 auto pass

https://github.com/divamgupta/imag
e-segmentation-keras

vgg_unet TF2 auto pass Functional but lower-than-expected accuracy

https://github.com/divamgupta/imag
e-segmentation-keras

resnet50_unet TF2 auto pass

https://github.com/divamgupta/imag
e-segmentation-keras

mobilenet_unet TF2 auto pass Functional but lower-than-expected accuracy

https://github.com/divamgupta/imag
e-segmentation-keras

segnet TF2 auto pass

https://github.com/divamgupta/imag
e-segmentation-keras

vgg_segnet TF2 auto pass

https://github.com/divamgupta/imag
e-segmentation-keras

resnet50_segnet TF2 auto pass Functional but lower-than-expected accuracy

https://github.com/divamgupta/imag
e-segmentation-keras

mobilenet_segnet TF2 auto pass Functional but lower-than-expected accuracy

https://github.com/divamgupta/imag
e-segmentation-keras

pspnet_ade TF2 auto pass

https://github.com/Xilinx/Vitis-AI/ efficientnet-edgetpu-L TF1 ImageNet auto pass

TF application includes graphs/layers not
related to the computing NN.

Need following Zebra option for successful
inference execution:
"rejectTfRunSession=<LayerName>:0".

With <LayerName> being one of: Mul,
ExpandDims or ExpandDims_1.

Note: Lower-than-expected accuracy for
mobilenetv1 and mobilenetv2.

https://github.com/Xilinx/Vitis-AI/ efficientnet-edgetpu-M TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ efficientnet-edgetpu-S TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ inceptionresnetv2 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ inceptionv1 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ inceptionv2 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ inceptionv3 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ inceptionv4 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ mlperf_resnet50 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ mobilenetEdge0.75 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ mobilenetEdge1.0 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ mobilenetv1_0.25 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ mobilenetv1_0.5 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ mobilenetv1_1.0 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ mobilenetv2_1.0 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ mobilenetv2_1.4 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ resnetv1_101 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ resnetv1_152 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ resnetv1_50 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ resnetv2_101 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ resnetv2_152 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ resnetv2_50 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ vgg16 TF1 ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/ vgg19 TF1 ImageNet auto pass

https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/
https://github.com/Xilinx/Vitis-AI/

 Mipsology © 2022, all rights reserved 28

https://github.com/Xilinx/Vitis-AI/ refinedet TF1 auto pass

https://github.com/Xilinx/Vitis-AI/ RefineDet-Medical TF1 auto pass

https://github.com/Xilinx/Vitis-AI/ personreid-res50 PT auto pass

https://github.com/Xilinx/Vitis-AI/ personreid-res18 PT auto pass

https://github.com/Xilinx/Vitis-AI/ unet PT auto pass

https://github.com/Xilinx/Vitis-AI/ FairMOT auto pass Functional but lower-than-expected accuracy

https://github.com/jiajunhua/ildoonet
-tf-pose-estimation

backbone: CMU TF1 auto pass

https://github.com/jiajunhua/ildoonet
-tf-pose-estimation

backbone:
mobilenet_thin

TF1 auto pass

https://github.com/jiajunhua/ildoonet
-tf-pose-estimation

backbone:
mobilenet_v2_small

TF1 auto pass

https://github.com/jiajunhua/ildoonet
-tf-pose-estimation

backbone:
mobilenet_v2_large

TF1 auto fail
Model does not get correctly converted by
Zebra. May be supported in a future version.

https://github.com/thstkdgus35/EDSR
-PyTorch

EDSR PT DIV2K auto pass

https://github.com/thstkdgus35/EDSR
-PyTorch

EDSR PT DIV2K auto pass

https://github.com/thstkdgus35/EDSR
-PyTorch

EDSR PT DIV2K legacy pass

Legacy mode must be used for models with
int8 inputs (instead of FP32).
Zebra SW automatic split currently supports
NN trained with FP32 for data type.

https://github.com/charlesq34/pointn
et

pointnet classification TF1
ShapeNetP
art

manual pass
Graph splitting must be done manually to
avoid a layer limitation

https://github.com/charlesq34/pointn
et

pointnet sementic
segmentation

TF1
ShapeNetP
art

manual pass
Graph splitting must be done manually to
avoid a layer limitation

https://github.com/thangvubk/FEQE FEQE TF1 DIV2K manual pass
Graph splitting must be done manually to
avoid a layer limitation

https://github.com/zhixuhao/unet UNet TF1
membrane
(isbi
challenge)

auto pass

https://github.com/ultralytics/yolov5 YoloV5 PT COCO auto pass

Graph correctly executed by Zebra.
Implicit PyTorch output type not detected by
Zebra, requires explicit type declaration.
Passes with minor modification in application
to define the correct type.

https://github.com/qfgaohao/pytorch
-ssd

mobilenetV2 SSD lite PT COCO auto pass

https://github.com/qfgaohao/pytorch
-ssd

mobilenetV1 SSD PT COCO auto pass

https://github.com/tensorflow/tpu/ EfficientNet TF1 ImageNet manual pass
EfficientNet and EfficientDet are not officially
supported with this release.
Functional but lower-than-expected accuracy

https://github.com/osmr/imgclsmob VGG16 TF1 ImageNet auto pass

https://github.com/osmr/imgclsmob mobileNetV1 PT ImageNet auto pass

https://github.com/aloyschen/tensorf
low-yolo3

YoloV3 TF1 COCO auto pass

https://github.com/thunil/TecoGAN TEcoGAN TF1 legacy
accura

cy
Legacy mode must be used for this model.

https://github.com/marvis/pytorch-
yolo2 (removed on github)

yolov2 PT COCO auto pass

https://github.com/hellochick/ICNet-
tensorflow

ICNet TF1 Cityscape auto pass

https://github.com/matterport/Mask
_RCNN

Mask_RCNN TF1 COCO legacy pass Legacy mode must be used for this model.

https://github.com/DevKiHyun/VDSR-
Tensorflow

VDSR TF1 auto pass

https://github.com/kcosta42/Tensorfl
ow-YOLOv3

YOLOv3 TF1 COCO manual pass

https://github.com/longcw/yolo2-
pytorch

YoloV2 PT COCO auto pass

https://github.com/twhui/SRGAN-
PyTorch

SRResnet PT ImageNet auto pass

https://github.com/Xilinx/Vitis-AI/
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/thstkdgus35/EDSR-PyTorch
https://github.com/thstkdgus35/EDSR-PyTorch
https://github.com/thstkdgus35/EDSR-PyTorch
https://github.com/thstkdgus35/EDSR-PyTorch
https://github.com/thstkdgus35/EDSR-PyTorch
https://github.com/thstkdgus35/EDSR-PyTorch
https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet
https://github.com/thangvubk/FEQE
https://github.com/zhixuhao/unet
https://github.com/ultralytics/yolov5
https://github.com/qfgaohao/pytorch-ssd
https://github.com/qfgaohao/pytorch-ssd
https://github.com/qfgaohao/pytorch-ssd
https://github.com/qfgaohao/pytorch-ssd
https://github.com/tensorflow/tpu/
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://github.com/aloyschen/tensorflow-yolo3
https://github.com/aloyschen/tensorflow-yolo3
https://github.com/thunil/TecoGAN
https://github.com/marvis/pytorch-yolo2%20(removed%20on%20github)
https://github.com/marvis/pytorch-yolo2%20(removed%20on%20github)
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
https://github.com/DevKiHyun/VDSR-Tensorflow
https://github.com/DevKiHyun/VDSR-Tensorflow
https://github.com/kcosta42/Tensorflow-YOLOv3
https://github.com/kcosta42/Tensorflow-YOLOv3
https://github.com/longcw/yolo2-pytorch
https://github.com/longcw/yolo2-pytorch
https://github.com/twhui/SRGAN-PyTorch
https://github.com/twhui/SRGAN-PyTorch

 Mipsology © 2022, all rights reserved 29

https://github.com/twhui/SRGAN-
PyTorch

SRGAN PT ImageNet auto pass

https://github.com/milesial/Pytorch-
Unet

UNet PT
Carvana

auto pass

https://github.com/ultralytics/yolov5/
releases

yolov5n.pt PT COCO auto pass

https://github.com/ultralytics/yolov5/
releases

yolov5n.pb TF1 COCO auto fail
Model currently failing for a problem of
tensor conversion in Python.

https://github.com/ultralytics/yolov5/
releases

yolov5n-fp16 TF1 COCO auto fail

Zebra SW does not convert automatically
FP16 into int8 for quantization.
This can be worked around by converting the
FP16 models into FP32 prior to running in
Zebra.

https://github.com/hunglc007/tensorf
low-yolov4-tflite

YoloV3 TF1 COCO auto pass

Functional on Zebra when using proper
method:
- exporting the graph, as indicated in the
repository, must be done using CPU, prior to
enable Zebra.

https://github.com/hunglc007/tensorf
low-yolov4-tflite

tinyYoloV3 TF1 COCO auto pass

https://github.com/hunglc007/tensorf
low-yolov4-tflite

YoloV4 TF1 COCO auto pass

https://github.com/hunglc007/tensorf
low-yolov4-tflite

tinyYoloV4 TF1 COCO auto pass

https://github.com/Megvii-
BaseDetection/YOLOX

Yolo-X PT COCO auto pass

Fully functional on Zebra.
However, the application is designed to run a
profiling. This profiling is done with random
weights, which forces Zebra to execute a
useless quantization at start. The proper
weights are quantized once and reloaded.
Removing the profiling reduces the launch
time.

https://github.com/WongKinYiu/yolor YoloR PT auto pass

The application does not resize automatically
images to the same size. This repo is
functional if all images computed are of the
same size.

https://github.com/uvipen/SSD-
pytorch

SSD ResNet50 PT COCO auto pass

https://github.com/dd604/refinedet.p
ytorch

refinedet
resnet101_320

PT auto pass

https://github.com/dd604/refinedet.p
ytorch

refinedet
resnet101_512

PT auto pass

https://github.com/dd604/refinedet.p
ytorch

refinedet_vgg16* PT auto fail

ConvTranspose layer of PyTorch is not
supported when output padding is used.
Can be used with manual mapping those
layers on CPU.

https://github.com/ultralytics/yolov3 yolov3 PT COCO auto pass

https://github.com/ultralytics/yolov3 yolov3_fixed PT COCO auto pass

https://github.com/ultralytics/yolov3 yolov3_tiny PT COCO auto pass

https://github.com/ultralytics/yolov3 yolov3_spp PT COCO auto pass

https://github.com/aloyschen/tensorf
low-yolo3

YoloV3 TF1 COCO auto pass

https://github.com/KleinYuan/tf-
object-detection

ssdMobileNetV1 TF1 COCO auto pass

https://github.com/KleinYuan/tf-
object-detection

ssdInceptionV2 TF1 COCO auto pass

https://github.com/thtrieu/darkflow YoloV2-tiny frozen TF1 COCO auto pass

https://github.com/thtrieu/darkflow YoloV2 frozen TF1 COCO auto pass

https://github.com/milesial/Pytorch-
Unet

Unet scale 0.5 PT Carvana auto pass This repo does not test accuracy

https://github.com/milesial/Pytorch-
Unet

UNet scale 1 PT Carvana auto pass This repo does not test accuracy

https://github.com/jiajunhua/ildoonet
-tf-pose-estimation

backbone: CMU TF1 auto pass

https://github.com/jiajunhua/ildoonet
-tf-pose-estimation

backbone:
mobilenet_thin

TF1 auto pass Functional but lower-than-expected accuracy

https://github.com/twhui/SRGAN-PyTorch
https://github.com/twhui/SRGAN-PyTorch
https://github.com/milesial/Pytorch-Unet
https://github.com/milesial/Pytorch-Unet
https://github.com/ultralytics/yolov5/releases
https://github.com/ultralytics/yolov5/releases
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/Megvii-BaseDetection/YOLOX
https://github.com/Megvii-BaseDetection/YOLOX
https://github.com/WongKinYiu/yolor
https://github.com/uvipen/SSD-pytorch
https://github.com/uvipen/SSD-pytorch
https://github.com/dd604/refinedet.pytorch
https://github.com/dd604/refinedet.pytorch
https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3
https://github.com/aloyschen/tensorflow-yolo3
https://github.com/aloyschen/tensorflow-yolo3
https://github.com/KleinYuan/tf-object-detection
https://github.com/KleinYuan/tf-object-detection
https://github.com/KleinYuan/tf-object-detection
https://github.com/KleinYuan/tf-object-detection
https://github.com/thtrieu/darkflow
https://github.com/thtrieu/darkflow
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation

 Mipsology © 2022, all rights reserved 30

https://github.com/jiajunhua/ildoonet
-tf-pose-estimation

backbone:
mobilenet_v2_small

TF1 auto
fail

 Application does not work automatically with
Zebra as some values in Python are float
NaN, which cannot be quantized into int8 https://github.com/jiajunhua/ildoonet

-tf-pose-estimation

backbone:
mobilenet_v2_large

TF1 auto

https://github.com/barisbatuhan/Fac
eDetector

FaceDetector wf_r50 PT auto pass

https://github.com/barisbatuhan/Fac
eDetector

FaceDetector icf_r50 PT auto pass

https://github.com/barisbatuhan/Fac
eDetector

FaceDetector
mixed_r50

PT auto pass

https://github.com/barisbatuhan/Fac
eDetector

FaceDetector
mixed_r152

PT auto pass

https://github.com/mikel-
brostrom/Yolov5_DeepSort_Pytorch

Yolov5_DeepSort PT auto pass

Application working properly on Zebra with a
minor modification in application SW:
- forced fixed batch-size for tracking,
- removing calibration of random weights
done at each launch for some metric
measurement makes launch faster.

https://github.com/clovaai/CRAFT-
pytorch

craft mlt_25k PT SynthText auto pass

https://github.com/clovaai/CRAFT-
pytorch

craft ic15_20k PT SynthText auto pass Functional but lower-than-expected accuracy

https://github.com/clovaai/CRAFT-
pytorch

craft refiner_CTW1500 PT SynthText auto fail Test fails on ONNX conversion

Model provided in the Zebra examples inceptionv2 TF1 ImageNet auto pass

Model provided in the Zebra examples inceptionv3 TF1 ImageNet auto pass

Model provided in the Zebra examples inceptionv4 TF1 ImageNet auto pass

Model provided in the Zebra examples googlenet_no_lrn TF1 ImageNet auto pass

Model provided in the Zebra examples googlenet TF1 ImageNet auto pass

Model provided in the Zebra examples caffenet TF1 ImageNet auto pass

Model provided in the Zebra examples vgg16 TF1 ImageNet auto pass

Model provided in the Zebra examples vgg19 TF1 ImageNet auto pass

Model provided in the Zebra examples nin TF1 ImageNet auto pass

Model provided in the Zebra examples car_nin TF1 ImageNet auto pass

Model provided in the Zebra examples resnet50 TF1 ImageNet auto pass

Model provided in the Zebra examples resnet50-V1.5 TF1 ImageNet auto pass

Model provided in the Zebra examples
resnet50_reduce_mea
n

TF1 ImageNet auto pass

Model provided in the Zebra examples resnet152 TF1 ImageNet auto pass

Model provided in the Zebra examples caffenet_no_lrn TF1 ImageNet auto pass

http://download.tensorflow.org/mod
els/mobilenet_v1_2018_08_02/mobil
enet_v1_1.0_224.tgz

mobilenet_v1 TF1 ImageNet auto pass Functional but lower-than-expected accuracy

https://storage.googleapis.com/mobil
enet_v2/checkpoints/mobilenet_v2_1
.4_224.tgz

mobilenet_v2 TF1 ImageNet auto pass Functional but lower-than-expected accuracy

Model provided in the Zebra examples yolov1 TF1 PascalVOC auto pass

Model provided in the Zebra examples yolov2 TF1 COCO auto pass

Model provided in the Zebra examples yolov3 TF1 COCO auto pass

Model provided in the Zebra examples edsr_x2 TF1 auto pass

https://tfhub.dev/google/imagenet mobilenet_v1 TF2 ImageNet auto pass Functional but lower-than-expected accuracy

https://tfhub.dev/google/imagenet mobilenet_v2 TF2 ImageNet auto pass Functional but lower-than-expected accuracy

https://keras.io/api/applications VGG16 TF2 ImageNet auto pass

https://keras.io/api/applications VGG19 TF2 ImageNet auto pass

https://tfhub.dev/google/imagenet inceptionv1 TF2 ImageNet auto pass

https://tfhub.dev/google/imagenet inceptionv2 TF2 ImageNet auto pass

https://tfhub.dev/google/imagenet inceptionv3 TF2 ImageNet auto pass

https://keras.io/api/applications xception TF2 ImageNet auto pass

https://tfhub.dev/google/imagenet inception_resnet_v2 TF2 ImageNet auto pass

https://tfhub.dev/google/imagenet resnet50 TF2 ImageNet auto pass

https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch
https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz
https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz
https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz
https://tfhub.dev/google/imagenet
https://tfhub.dev/google/imagenet
https://keras.io/api/applications
https://keras.io/api/applications
https://tfhub.dev/google/imagenet
https://tfhub.dev/google/imagenet
https://tfhub.dev/google/imagenet
https://keras.io/api/applications
https://tfhub.dev/google/imagenet
https://tfhub.dev/google/imagenet

 Mipsology © 2022, all rights reserved 31

https://tfhub.dev/google/imagenet resnet50v1 TF2 ImageNet auto pass

https://tfhub.dev/google/imagenet resnet101 TF2 ImageNet auto pass

https://tfhub.dev/google/imagenet resnet152 TF2 ImageNet auto pass

https://tfhub.dev/google/imagenet resnet50v2 TF2 ImageNet auto pass

https://tfhub.dev/google/imagenet resnet101v2 TF2 ImageNet auto pass

https://tfhub.dev/google/imagenet resnet152v2 TF2 ImageNet auto pass

https://keras.io/api/applications/ densenet121 TF2 ImageNet auto pass

https://keras.io/api/applications/ densenet169 TF2 ImageNet auto pass

https://keras.io/api/applications/ densenet201 TF2 ImageNet auto pass

https://github.com/ultralytics/yolov5.
git

yolov5n TF2 COCO auto pass

https://github.com/ultralytics/yolov5.
git

yolov5s TF2 COCO auto pass

https://github.com/ultralytics/yolov5.
git

yolov5m TF2 COCO auto pass

https://github.com/ultralytics/yolov5.
git

yolov5l TF2 COCO auto pass

https://github.com/ultralytics/yolov5.
git

yolov3 TF2 COCO auto pass

https://github.com/ultralytics/yolov5.
git

yolov3-spp TF2 COCO auto pass

https://pytorch.org/hub/ Resnet50 PT ImageNet auto pass

https://pytorch.org/hub/ alexnet PT ImageNet auto pass

https://pytorch.org/hub/ googlenet_no_lrn PT ImageNet auto pass

https://pytorch.org/hub/ inceptionv3 PT ImageNet auto pass

https://pytorch.org/hub/ Resnet18 PT ImageNet auto pass

https://pytorch.org/hub/ Resnet34 PT ImageNet auto pass

https://pytorch.org/hub/ Resnet101 PT ImageNet auto pass

https://pytorch.org/hub/ Resnet152 PT ImageNet auto pass

https://pytorch.org/hub/ resnext50_32x4d PT ImageNet auto pass

https://pytorch.org/hub/ resnext101_32x8d PT ImageNet auto pass

https://pytorch.org/hub/ wide_resnet50_2 PT ImageNet auto pass

https://pytorch.org/hub/ wide_resnet101_2 PT ImageNet auto pass

https://pytorch.org/hub/ shufflenet_v2_x0_5 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://pytorch.org/hub/ shufflenet_v2_x1_0 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://pytorch.org/hub/ squeezenet PT ImageNet auto pass

https://pytorch.org/hub/ squeezenet1_1 PT ImageNet auto pass

https://pytorch.org/hub/ VGG11 PT ImageNet auto pass

https://pytorch.org/hub/ VGG11_bn PT ImageNet auto pass

https://pytorch.org/hub/ VGG13 PT ImageNet auto pass

https://pytorch.org/hub/ VGG13_bn PT ImageNet auto pass

https://pytorch.org/hub/ VGG16 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://pytorch.org/hub/ VGG16_bn PT ImageNet auto pass

https://pytorch.org/hub/ VGG19 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://pytorch.org/hub/ VGG19_bn PT ImageNet auto pass

https://pytorch.org/hub/ mobilenet_v2 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://pytorch.org/hub/ densenet121 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://pytorch.org/hub/ densenet161 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://pytorch.org/hub/ densenet169 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://pytorch.org/hub/ densenet201 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://pytorch.org/hub/ mobilenet_v3_small PT ImageNet auto
fail

These networks are not supported with
current Release https://pytorch.org/hub/ mobilenet_v3_large PT ImageNet auto

https://pytorch.org/hub/ mnasnet0_5 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://pytorch.org/hub/ mnasnet1_0 PT ImageNet auto pass Functional but lower-than-expected accuracy

https://tfhub.dev/google/imagenet
https://tfhub.dev/google/imagenet
https://tfhub.dev/google/imagenet
https://tfhub.dev/google/imagenet
https://tfhub.dev/google/imagenet
https://tfhub.dev/google/imagenet
https://keras.io/api/applications/
https://keras.io/api/applications/
https://keras.io/api/applications/
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://github.com/ultralytics/yolov5.git
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/
https://pytorch.org/hub/

 Mipsology © 2022, all rights reserved 32

Legal Notice
The information disclosed to you (the “User”) hereunder is provided solely for the selection and use of Mipsology

products. The information, the applications, and the tools (together referred as the “Materials”) are made available

“AS IS” and with all mistakes, errors, inconsistencies, or defects, without warranty of any kind. To the maximum

extent permitted by applicable law:

(1) The Materials are provided "as is" and "as available", without warranty of any kind. Mipsology, its affiliates, its

officers, its employees, or its suppliers and representatives, do not warrant in any way that the Materials is error

free or satisfy licensee's specific requirements and disclaim any and all warranties of any kind or nature, whether

express, implied, or statutory, relating to or arising with respect to the Materials, including but not limited to implied

warranties of merchantability, warranty of fitness for a particular purpose, title, and noninfringement. Mipsology

makes no warranty concerning the data, results or information resulting in using the Materials.

(2) To the maximum extent permitted by applicable law, in no event shall Mipsology, its affiliates, its officers, its

employees, or its suppliers and representatives be liable for any special, exemplary, consequential, incidental,

punitive, direct or indirect damages whatsoever including, but not limited, to loss of business profit, loss of use, loss

of data, business interruption, loss of revenue, loss of orders, loss of business or profits, anticipated savings, loss of

information and data, damage to brand image, or any other financial loss arising out of or in connection with the use

of the Materials or the operation of the application or any other product or services, even if advised beforehand of

the possibility of such damages. In no event will Mipsology total liability under or arising out of this agreement

exceed the actual received payment from User, directly or through the cloud, in the last billing period or the duration

of the incident, whichever is the lowest amount, reduced by any other amount Mipsology would have paid back to

User. To the extent that the applicable jurisdiction limits licensee's ability to disclaim any implied warranties, this

disclaimer shall be effective to the maximum extent permitted. Without limiting the foregoing, the User is

responsible for determining and verifying that the Materials, its environment, and the hardware used to run the

application are compatible. Mipsology further decline any warranties of any kind or nature on the hardware used in

conjunction with the Materials. Mipsology shall not be liable to User nor any third parties (whether arising in

contract, tort (including negligence), breach of statutory duty or otherwise) for failure of fitness or any of its or a

third party's systems that results in the inability to process or use the Material, User's failure to meet any of its

payment obligations, negligence, fraud or fraudulent misrepresentation of User or any other actions which result

from misuse or inappropriate use of the Materials.

Without prior written agreement, User will not knowingly, or allow others, including internally, to copy, reproduce,

modify, obliterate, distribute, or publicly display the Materials in any form, partially or fully, whatsoever except for

the normal usage of the Materials.

Mipsology assumes no obligation to correct any errors contained in the Materials or to notify User of updates to the

Materials. This document is subject to change without notice.

Please refer to Mipsology’s End User License Agreement (EULA.txt) and other legal notices available in the ‘doc’

directory of the provided release.

Copyright

© Copyright 2019–2022 Mipsology SAS. Mipsology and Zebra are registered trademarks of Mipsology SAS. All other

trademarks are the property of their respective owners.

