
XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 1

© Copyright 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

Summary VxWorks from Wind River:

• Is a Real Time Operating system (RTOS).

• Is a platform-based approach with configurable components that relate to different
architecture support, network, file system, compiler and development tool chains.

• Supports the Zynq®-7000 All Programmable (AP) SoC architecture of multicore processor
systems.

• Has support for asymmetric multiprocessing (AMP) and symmetric multiprocessing
(SMP).

This application note is intended as a getting started guide for new users of VxWorks on the
Zynq-7000 device. The document contains the following primary sections:

• Introduction: Explains the important elements of the Zynq-7000 software environment to
provide a better understanding of BSP and application generation. This includes the:

• ROM mechanism

• Function of the first stage bootloader (FSBL)

• Wind River bootloader

• Explanation of the Zynq-7000 processor subsystem boot process

• Building VxWorks for Zynq-7000 AP SoC, page 5: Explains native flash (SD Card) and
remote Ethernet (FTP) boot source options and the bootloader configurations for both
options.

• Building and Debugging the Application, page 17: Explains how to create, build and
remotely run a custom application with VxWorks on a Zynq-7000 device.

This document assumes familiarity with the Xilinx® ISE® Design Suite and Zynq-7000 AP
SoC design methodology. This document includes a reference system for the Xilinx ZC702
board derived from the Zynq-7000 AP SOC - Concepts, Tools and Techniques User Guide
[Ref 1], which provides the details on how to rebuild such a system.

• Accessing a Peripheral in the Processing System, page 20: Describes how to access
peripheral systems in the Zynq-7000 Processing System (PS).

• Conclusion, page 25: Summarizes what this application note describes.

• Additional Resources, page 25: Provides additional resource links.

Application Note: Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013

Using VxWorks BSP with Zynq-7000 AP SoC
Authors: Uwe Gertheinrich, Simon George, Kester Aernoudt

http://www.xilinx.com

Hardware and Software Requirements

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 2

Hardware and
Software
Requirements

Software Requirements
• Xilinx® ISE® Design Suite: Embedded or System Edition 14.6 or Vivado® Design Suite,

2013.2.

• Wind River Workbench for VxWorks 6.9.3, which includes a Zynq-7000 AP SoC BSP

• Serial Communication utility program (such as Tera Term)

Hardware Requirements
• Xilinx ZC702 Development Board

• Ethernet Cable

• USB UART Cable

Introduction The Zynq-7000 AP SOC devices takes advantage of the on-chip CPU to facilitate configuration.
Initial device configuration of the processing system (PS) and the programmable logic (PL)
must take place through the PS when not using JTAG.

Two major blocks control the configuration:

• The first is the BootROM which is a static block of memory that is executed by the
multiprocessor core after power-on reset and warm reset.

• The second major block is the device configuration unit which controls JTAG debug
access and provides an interface to the AES, HMAC, and PCAP blocks for PL
configuration and data decryption.

Both the PS and PL can be configured under PS control either securely or non-securely.
Configuration under external host control is also possible using JTAG.

Unlike other Xilinx 7 series devices, Zynq-7000 AP SOC devices do not support initial PL
controlled configuration. Configuration on the Zynq-7000 AP SOC devices is a multi-step
process. The configuration process involves a minimum of two stages, but generally requires
three stages.

The stages are:

• Stage 0: BootROM, page 3: Referred to as the BootROM, this stage controls initial device
startup. The BootROM is non-modifiable code executed by the processor after power-on
reset and warm reset.

• Stage 1: First Stage Bootloader, page 4: This is generally a first stage boot loader (FSBL),
but it can be any user-controlled code. See the Zynq-7000 AP SOC Software Developers
Guide (UG821) [Ref 1] for details about FSBL.

• Stage 2: VxWorks Bootloader, page 4: This is generally user-configurable software that
can act as a second stage boot loader (SSBL). This stage is completely within user
control. In the case of this document, it is part of the VxWorks bootloader.

Figure 1, page 3 illustrates a non-secure boot process for typical Linux system. Uboot is an
example for higher-level boot loader and can be exchanged by VxWorks bootloader.

http://www.xilinx.com

Introduction

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 3

Stage 0: BootROM

The Zynq-7000 AP SoC processor subsystem configuration starts after power-on reset. The
ARM® CPU starts executing code from the on-chip BootROM with JTAG disabled. The
BootROM contains code for base drivers for NAND, NOR, Quad-SPI, SD, and PCAP. DDR and
other peripheral initializations are not performed from the BootROM and must be done in the
Stage 1 image, First Stage Bootload (FSBL) or later.

For security, the CPU is always the first device out of reset among all master modules within the
PS. When the BootROM is running the JTAG is disabled to ensure security.

The BootROM code is also responsible for loading the FSBL. Zynq-7000 AP SoC architecture
supports multi-stage user boot image loading; any further user boot image loading after FSBL
is the responsibility of the user. When the BootROM releases control to FSBL, user software
assumes full control of entire system. The only way to execute the BootROM again is by
performing a reset.

The PS boot source is selected using the mode-pin signals (indicated by a weak pull-up or
pull-down applied to specific pins), which are sampled after during power-on reset. The
sampled value is stored in the BOOT_MODE register.

The BootROM supports encrypted and unencrypted images referred to as secure boot and
non-secure boot, respectively. Additionally, the BootROM supports beginning execution of the
stage 1 image from OCM after copying the image or executing direct from linear flash (NOR or
QSPI) when using the execute-in-place (XIP) feature.

• In secure boot the CPU, running from secure BootROM code, decrypts and authenticates
the incoming user PS image, stores it in the OCM RAM, and then branches into that RAM.

• In non-secure boot the CPU, running from BootROM code, disables all secure boot
features including the AES engine within the PL before branching to the user image in the
OCM RAM or flash, if XIP is used. The Processor System (PS) boot image is limited to
192 KB unless booting with XIP.

Any subsequent boot stages for either the PS or the PL are the responsibility of the user and
are under user control. The BootROM code is not accessible to the user.

• Following the stage 1 secure boot, you can proceed with either secure or non-secure
subsequent boot stages.

X-Ref Target - Figure 1

Figure 1: Boot Flow

http://www.xilinx.com

Introduction

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 4

• Following a non-secure first stage boot, only non-secure subsequent stage boots are
possible.

For secure boot decryption and authentication, the PS uses the hard-wired AES-256 and
SHA-256 modules within the PL. For this reason, the PL must be powered up during any secure
boot, even if only the PS is configured. The device encryption key is user-selectable from either
the on-chip eFUSE unit or the on-chip block RAM.

The possible boot sources are: NAND, NOR, SD, Quad-SPI, and JTAG. The first four boot
sources are used in master boot methods in which the CPU loads the external boot image from
nonvolatile memory into the PS.

Stage 1: First Stage Bootloader

The First Stage Bootloader (FSBL) starts after the execution of the BootROM. BootRom loads
the FSBL into the OCM, or the FSBL executes in place (XIP) unencrypted from memory
mapped flash (NOR or Quad-SPI), contingent upon the BootROM header description.

The FSBL is responsible for:

• Initialization using the PS configuration data provided by Xilinx Platform Studio (XPS) (see
"Zynq-7000 PS Configuration" in the Zynq-7000 AP SOC Software Developers Guide
(UG821) [Ref 2].

• Programming the PL using a bitstream

• Loading second stage bootloader or bare-metal application code into DDR memory

• Starting execution of the second stage bootloader or bare-metal application

Note: Before handoff to the second stage bootloader or bare-metal application, the FSBL
invalidates the instruction cache and disables the cache and MMU, because Linux (and
perhaps other operating systems) assume it is disabled upon start.

See the FSBL code provided with SDK for details on how the FSBL initializes the CPU and
peripherals used by the FSBL, and how it uses a simple C run time library.

The bitstream for the PL and the second stage bootloader or bare-metal application data, as
well as other code and data used by the second stage bootloader, Linux (or other operating
system), or bare-metal application are grouped into partitions in the flash image.

Stage 2: VxWorks Bootloader

The VxWorks bootloader application loads a VxWorks image onto a target. Like VxWorks, you
can configure the VxWorks bootloader with various facilities; such as a command line interface
for dynamically setting boot parameters, a network loader, and a file system loader.

Uniprocessor (UP), symmetric multiprocessor (SMP), and asymmetric multiprocessor (AMP),
configurations of VxWorks use the same bootloader.

In a development environment, a bootloader is useful for loading a VxWorks image from a host
system, where you can modify and rebuild VxWorks. You can also use a VxWorks bootloader
in production systems when the bootloader and operating system are stored on a disk or other
media.

Self-booting (standalone) VxWorks images do not require a bootloader. These images are
commonly used in production systems (stored in nonvolatile devices).

Usually, the bootloader is programmed in a nonvolatile device (usually flash memory or
EEPROM) at an address such that it is the first code run by the processor when the target is
powered on or rebooted. The procedure to get the boot loader programmed in a nonvolatile
device or written to a disk is dependent on the target, and is described in following section using
an SD card image.

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 5

The VxWorks product installation includes default bootloader images for each installed BSP. If
they do not meet your needs, you can create a custom bootloader.

Building
VxWorks for
Zynq-7000 AP
SoC

Host Environment Configuration

The following steps are one-time only:

1. Install VxWorks Tool chain 6.9.3.1.

a. Install Base Tools Package.

b. Invoke the Product Maintenance GUI.

- Update the installer.

- Configure online Content Update Network settings.

2. Apply updates based upon your license file, as shown in Figure 2.
X-Ref Target - Figure 2

Figure 2: Select Products Dialog Box

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 6

The Zynq-7000 BSP is a standard part of the 6.9.3.1 install, as shown in Figure 3:

3. Because of the asynchronous nature of VxWorks BSPs, verify that you install the latest
Xilinx BSP. The link is provided at [Ref 4].

4. Install the BSP patches as described in the BSP download link: VxWorks 6.9.3.1 BSP
Driver Source Patch for BSP, The link is provided at [Ref 5].

5. Complete all details of the build steps to apply the patch into the source tree.

Configure and Build a VxWorks BootROM and Kernel Image

The default BSP does not enable support for accessing an SD card. Because you use the SD
card to store the VxWorks image, the first step is to modify the BSP configuration.

1. In a text editor, open the <Install_Dir>/vxworks-6.9/target/config
xlnx -zynq7k/config.h file, and modify line 197 from:

#undef DRV_STORAGE_SDHC/

to

#define DRV_STORAGE_SDHC
#define INCLUDE_DOSFS
#define INCLUDE_DOSFS_MAIN
#define INCLUDE_DOSFS_CHKDSK
#define INCLUDE_DOSFS_FMT
#define INCLUDE_DOSFS_FAT
#define INCLUDE_DOSFS_SHOW
#define INCLUDE_DOSFS_DIR_VFAT
#define INCLUDE_DOSFS_DIR_FIXED
#define INCLUDE_FS_MONITOR

X-Ref Target - Figure 3

Figure 3: VxWorks BSP: Xilinx Zynq-7000 EPP

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 7

#define INCLUDE_FS_EVENT_UTIL
#define INCLUDE_ERF
#define INCLUDE_XBD
#define INCLUDE_XBD_BLKDEV
#define INCLUDE_XBD_TRANS
#define INCLUDE_DEVICE_MANAGER
#define INCLUDE_XBD_BLK_DEV
#define INCLUDE_XBD_PART_LIB
#define INCLUDE_DISK_UTIL

This enables the SDHC controller, as well as drivers for the FAT file system.

To use the VxWorks BSP with the Wind River Workbench to create a VxWorks Kernel
Image, do the following:

2. Start the Wind River Workbench tool and select a workspace.

The Wind River SDK opens.

3. In the main context menu select File > New > Project.

The New Project Wizard opens.

4. Under VxWorks 6.x, select the VxWorks Image Project, as shown in Figure 4.
X-Ref Target - Figure 4

Figure 4: VxWorks Image Project

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 8

The New VxWorks Image Project multipage wizard opens.

5. Enter a project name, for example, zynq_vxworks_01, and click Next.

6. Select the xlnx_zynq7k BSP used for this project as highlighted in Figure 5.
X-Ref Target - Figure 5

Figure 5: VxWorks Image Project Multipage Wizard

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 9

7. From the New VxWorks Image Project wizard, select PROFILE_DEVELOPMENT
(Figure 6).

8. Click Finish.

9. Open the Kernel configuration. Change the configuration to include the symbol table in the
Kernel image (Figure 7, page 10).

X-Ref Target - Figure 6

Figure 6: New VxWorks Image Project: PROFILE_DEVELOPMENT Option

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 10

You can now build the Kernel image.

X-Ref Target - Figure 7

Figure 7: Component Configuration

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 11

Building the Kernel Image
1. In the Project Explorer window, mouse over to the Image project, right-click and select

Build Project. The VxWorks image file is located in the ,.\<project_name>\default
directory. Figure 8 shows the Build Project option.

2. When the project build is complete, start a Wind River VxWorks development shell.

Use this shell to build a bootROM binary. The bootROM binary is the VxWorks bootloader
(similar to Uboot); it is not within the Zynq-7000 device ROM.

3. Within the shell, type:

cd ..\<install_dir>\Wind
River\vxworks-6.9\target\config\xlnx_zynq7k\
make clean make bootROM

The commands generate a file with the name bootROM. Rename the file to bootROM.elf

4. Create a boot.bif and a zynq_fsbl_0.elf file, with the following format:

ZC702_bif_for_VxWorks:
{
[bootloader]zynq_fsbl_0.elf
bootROM.elf
}

5. Copy the bootROM.elf, zynq_fsbl_0.elf, and the boot.bif file to the /bootgen
directory.

Alternatively, you can copy the bootgen.exe tool to the current installation directory.

C:\<install_dir>\Wind
River\vxworks-6.9\target\config\xlnx_zynq7k\

X-Ref Target - Figure 8

Figure 8: Build Project Option

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 12

6. In the Wind River shell, type:

bootgen image boot.bif I BOOT.BIN

7. Copy the following files onto an SD card:

• VxWorks from the ..\<project_name>\default directory

• BOOT.BIN from the ...<install_dir>\WindRiver\vxworks
6.9\xlnx_zynq7k\ directory.

This creates a system that can boot from an SD card.

The following subsection describes the required steps to boot from an SD card.

Booting From an Secure Digital Card

Use the Secure Digital (SD) card to boot the Zynq-7000 AP SoC Processor System (PS).

1. Connect a power cable, a Xilinx USB download cable, an Ethernet cable, and a USB UART
cable to the board.

2. Put the SD Card in the SD card pole of the board. Ensure that the switches for booting from
SD Card are in the right position. Ensure that the settings of Jumpers J27 and J28 are the
same as shown. Move the DIP-Switches 3 and 4 of SW 16 to the left (this sets the switches
to 1) (Figure 9, page 13).

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 13

These settings ensure an SD card boot.

3. Open a terminal session, and choose the right COM port () function, and set the Baud
Rate to 115200.

4. Switch on the board.

5. Stop the Autoboot process by pressing the keyboard Return key.

The VxWorks bootROM prompt opens.

6. Type C at the boot prompt, and press Return to start the boot configuration.

7. Change the boot device to fs and press Return until you reach the file name.

8. Change to /sd0:1/vxWorks and press Return until you reach other (o).

9. If no entry exists, type gem0. Press Return and the boot prompt opens.

10. Type @ to proceed the boot process.

11. Type i to display all running tasks.

VxWorks boots and presents the output as shown in Figure 10.

X-Ref Target - Figure 9

Figure 9: Image of SD Card and USB Connection

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 14

Booting Using FTP

Repeat the first four steps shown in Booting From an Secure Digital Card, page 12, as follows:

1. Connect a power cable, a Xilinx USB download cable, an Ethernet cable, and a USB UART
cable to the board.

2. Put the SD Card in the SD card pole of the board. Ensure that the switches for booting from
SD Card are in the right position. Open a terminal session, and choose the right COM
port () function, and set the Baud Rate to 115200.

3. Change the local area network (LAN) connection of your system network settings to the IP
address 192.168.1.1.

X-Ref Target - Figure 10

Figure 10: SD Boot Terminal Transcript

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 15

4. Start an FTP server. You can use the server delivered with the Wind River tool chain.

If you use the Wind River FTP server, select Security > User/rights.

5. Click New User and type a name; for example, Zynq and a password.

6. Type the home directory of the VxWorks image, then click Done.

7. Switch on the board.

8. Stop the Autoboot process by pressing Return.

The VxWorks bootROM prompt opens.

9. At the boot prompt, type c then press Return to start the boot configuration.

10. Type gem0 to change boot device then press Return until you reach File Name.

11. Type VxWorks, then press Return until you reach inet on ethernet (e).

12. Change the inet on ethernet (e) to IP address 192.168.1.2:0xffffff00, then press Return
until you reach host inet (h).

13. Change host inet (h) IP address 192.169.1.1, then press Return until you reach user.

14. Type the user name you choose for the server then press Return until you reach
password (pw).

15. Type password you choose for the server, then press Return until you reach
other (o).

21. If no entry exists, type gem0, then press Return.

The boot prompt opens.

22. Type @ to start the boot process.

VxWorks boots from the image using the terminal (Figure 12, page 16).

X-Ref Target - Figure 11

Figure 11: Host Ethernet MAC Configuration

http://www.xilinx.com

Building VxWorks for Zynq-7000 AP SoC

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 16

X-Ref Target - Figure 12

Figure 12: Boot Terminal Transcript

http://www.xilinx.com

Building and Debugging the Application

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 17

Building and
Debugging the
Application

Creating the Hello World Application

As short example, the following instructions describe how to build and download a small
"Hello World" application to the remote target after you have set up and are running
VxWorks.

The assumptions are:

• You have followed the prior stages of this document.

• VxWorks is executing on the target (with remote debug enabled).

• An Ethernet connection is present between the host and the target.

To create the "Hello World" application:

1. Select File > New > Project > VxWorks Downloadable Kernel Module Project, as
shown in Figure 13.

2. Click Next and enter a project name; for example, hello_world, (Figure 14, page 18), then
press Finish.

X-Ref Target - Figure 13

Figure 13: New Project Wizard

http://www.xilinx.com

Building and Debugging the Application

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 18

A hello_world project opens in the Project Explorer Window.

3. Move the mouse to the Project. Click the right button and select New > File.

4. Enter a file name; for example, hello.c, and click Finish.

5. Enter the following code into the file:

#include <stdio.h>
void hello()
{
printf("Hello Wind River\n");
}

6. In the Project Explorer window, select Build Targets (Figure 15), and click the right mouse
button.

X-Ref Target - Figure 14

Figure 14: New Kernel Module Project

X-Ref Target - Figure 15

Figure 15: Build Target Selection

http://www.xilinx.com

Building and Debugging the Application

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 19

7. Select Build Options > Set Active Build Spec > ARMARCH7<gnu|diab>.

A message opens that asks if you want to set the active build spec to
ARMARCH7<gnu|diab> (Figure 16).

8. Select YES.

9. Build the project. A message opens.

10. Click Continue.

11. In the bottom-left corner of the Wind River Workbench, go to Remote Systems.

12. In the window, right-click and select New > Connection.

13. Select Wind River VxWorks 6.x Target Server Connection, and click Next.

14. Type the target IP address of 192.168.1.2, and the path to the kernel image (in this case
type: \..\<project_name>\default). Click Finish.

15. Right-click the new connection, and click Connect.

16. In the Project Explorer window, right-click Build Targets, then select Debug VxWorks
Kernel Task.

14. The Debug Configuration window opens, as shown in Figure 17, page 20.

X-Ref Target - Figure 16

Figure 16: Build Target Configuration

http://www.xilinx.com

Accessing a Peripheral in the Processing System

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 20

17. From General > Entry, type hello to locate the hello world project.

Alternatively, you can use the Browse button to find the hello world project.

18. Click Debug.

The terminal window that is connected to the board issue the following message:

>> Break at 0x0144accc: hello +0x4 Task: 0x14cdfc0 (Hello)

Note: The message can differ slightly from yours as it depends on your Kernel settings. It just gives
you the hint that a task was downloaded and stopped for debug.

19. In the debug window, click the Run button.

The terminal window displays: Hello Wind River.

20. Type i to see the tasks in the VxWorks task list.

21. Type repeat 10,hello to repeat the task 10 times.

Accessing a
Peripheral in
the Processing
System

In the ARM® Cortex™ A9 processor, every peripheral is memory mapped. The address map for
the Zynq-7000 AP SoC processor, for example, is listed in the Zynq-7000 AP SoC Technical
Reference Manual (UG585) [Ref 2].

Modifying the Hello World Application

Modify the "Hello World" application to access the GPIO peripheral. On the ZC702 board, MIO
pin 10 is connected to an LED (DS12).

From the Zynq-7000 AP SoC Technical Reference Manual, (UG585) [Ref 6], you see that the
base address of the GPIO peripheral is 0XE000A000. To access pin 10 as an output, you must
configure this peripheral first:

1. Set the direction to output by writing a 1 to bit 10 of the gpio.DIRM_0 register.

2. Enable the output by writing a 1 to bit 10 of the gpio.OEN_0 register.

3. Write to bit 10 of the gpio.DATA_0 register to control the LED.

The updated source code of the hello world application now looks like the following:

#include <stdio.h>

X-Ref Target - Figure 17

Figure 17: Debug Configuration Window

http://www.xilinx.com

Accessing a Peripheral in the Programmable Logic

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 21

#include <sys/mman.h>

#define GPIO_BASE 0xE000A000
#define GPIO_DIRM_0 0x00000204
#define GPIO_OEN_0 0x00000208
#define GPIO_DATA_0 0x00000040

int main(void)
{

 printf("Hello World!\n");

int val = 0xffffffff;
sysOutLong(GPIO_BASE + GPIO_DIRM_0, 0x00000400);
sysOutLong(GPIO_BASE + GPIO_OEN_0, 0x00000400);

while (1) {
sysOutLong(GPIO_BASE + GPIO_DATA_0, val);
sleep(1);
val ^= 0xffffffff;
}

return 0;
}

4. Save this file, then build and debug this application following steps 9 to 19 of the previous
section. The result is that the LED toggles every second.

Accessing a
Peripheral in
the
Programmable
Logic

Accessing a peripheral in the Programmable Logic is very similar to accessing a peripheral in
the processing system: both master GP AXI interfaces have an address space of 1GB, as can
be seen in the Address Map table in the Zynq-7000 AP SoC Technical Reference Manual
(UG585) [Ref 6]. The differences are:

• You must first program the PL with a BIT file containing the AXI_GPIO peripheral.

• You must modify the VxWorks BSP to allow access to the address range that you
configured for that peripheral.

The design created for this section contains an AXI_GPIO peripheral connected to the
M_AXI_GP0 port of the PS.

The four GPIO pins of the AXI_GPIO peripheral are connected to the DS15 to DS18 LEDs on
the ZC702 board.

http://www.xilinx.com

Accessing a Peripheral in the Programmable Logic

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 22

The Address Editor shows the base address where this peripheral is mapped, as shown in
Figure 19.

After implementing this design, you generate a new FSBL, and use this FSBL, together
with the generated BIT file, to create a new boot.bin file to download to the SD card.

5. Follow the same steps as you used but use a slightly modified boot.bif file, as follows:

//ZC702_bif_for_VxWorks:
{
[bootloader]fsbl.elf
bitfile.bit
bootROM.elf

}

Where:

- fsbl.elf is the new FSBL.

- bitfile.bit is the BIT created by the hardware design.

This produces a new boot.bin file to boot the ZC702 board.

6. To access the peripheral from within a VxWorks kernel module, first modify the BSP.

The default configuration of the VxWorks BSP configures the MMU to allow access to a
limited set of addresses, listed in the documentation of the BSP.

X-Ref Target - Figure 18

Figure 18: Zynq-7000 Processor System and Peripherals

X-Ref Target - Figure 19

Figure 19: Address Editor

http://www.xilinx.com

Accessing a Peripheral in the Programmable Logic

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 23

Adding the Address Range to the MMU Configuration

The M_AXI_GP ports are not mapped.

To add the address range to the MMU configuration, modify the VxWorks BSP:

1. Open the VxWorks image project, then browse to the /xlns_zynq7k folder.

2. Double-click the sysLib.c file to open the file in the Text Editor.

X-Ref Target - Figure 20

Figure 20: Memory Map

X-Ref Target - Figure 21

Figure 21: MMU Configuration

http://www.xilinx.com

Accessing a Peripheral in the Programmable Logic

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 24

3. In the syslib.c file, scroll down to line 109, find the struct containing the MMU
configuration.

For example, on line 225, find the mapping for the GPIO peripheral used in the previous
example:

{
ZYNQ7K_GPIO_BASE,/* Zynq-7000 gpio */ ZYNQ7K_GPIO_BASE,
PAGE_SIZE,
 MMU_ATTR_VALID_MSK | MMU_ATTR_PROT_MSK |
MMU_ATTR_DEVICE_SHARED_MSK,
MMU_ATTR_VALID |MMU_ATTR_SUP_RWX|
MMU_ATTR_DEVICE_SHARED
},

4. Add the mapping for the AXI_GPIO peripheral by adding the following line:

{
0x41200000,/* My AXI gpio */
0x41200000, PAGE_SIZE,
 MMU_ATTR_VALID_MSK | MMU_ATTR_PROT_MSK |
MMU_ATTR_DEVICE_SHARED_MSK,
 MMU_ATTR_VALID| MMU_ATTR_SUP_RWX|
MMU_ATTR_DEVICE_SHARED
},

5. Save the file, and rebuild the VxWorks project.

6. Use this VxWorks image, and either:

- Put the image on the SD card to boot from SD, or

- When fetching the VxWorks image over FTP, boot the board with the updated
boot.bin file.

7. After booting the ZC702 board with this SD card, the FSBL configures the PL before
launching the VxWorks BootROM.

The BootROM then loads the updated VxWorks image.

Updating the Hello World Project

Update the "hello world" project to access the AXI peripheral. The AXI_GPIO peripheral is
slightly different from the hardened GPIO peripheral: you need only to set the direction, not
enable the output driver.

Change the contents of the file to:

#include <stdio.h>
#include <sys/mman.h>
#define AXI_GPIO_BASE0x41200000
#define AXI_GPIO_TRI????????0x04
#define AXI_GPIO_DATA????????0x00
int main(void)
{

printf("Hello World!\n");

int val = 0;
sysOutLong(AXI_GPIO_BASE + AXI_GPIO_TRI, 0);

while (1) {

http://www.xilinx.com

Conclusion

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 25

sysOutLong(AXI_GPIO_BASE + AXI_GPIO_DATA, val);
printf("%d\n", val);
sleep(1);
val++;
if (val == 0x10000)(val = 0;
}
return 0;
}

When you rebuild this project, and run it on the ZC702 board, it toggles the LEDs every second.

Conclusion This application note has provided step-by-step instructions for running the VxWorks 6.9.3.1
BSP on the Zynq-7000 SoC All Programmable device platform, and additionally provided an
overview of the boot process for the Zynq-7000 AP SoC platform.

You now know the steps for using VxWorks RTOS on the Zynq-7000 AP SoC platform.

Additional
Resources

The following links are to additional resources referenced in this document:

1. Zynq-7000 AP SOC - Concepts, Tools and Techniques User Guide (UG837)

2. Zynq-7000 All Programmable SoC Software Developers Guide (UG821)

3. Zynq-7000 AP SoC Technical Reference Manual, (UG585)

4. Xilinx BSP: gppve_6_9_xlnx_zynq7k_6_9_2:
https://portal.windriver.com/cgi-bin/windsurf/bsp/infoBSP.cgi?id=12020

5. VxWorks 6.9.3.1 BSP Driver Source Patch:
https://support.windriver.com/olsPortal/faces/maintenance/downloadDetails.jspx?contentId=041654

6. VxWorks 6.9.3.1 USB L2 Cache Source Patch:
https://support.windriver.com/olsPortal/faces/maintenance/downloadDetails.jspx?contentId=041575

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS
IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Date Version Description of Revisions

09/27/2013 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug821-zynq-7000-swdev.pdf
https://support.windriver.com/olsPortal/faces/maintenance/downloadDetails.jspx?contentId=041654
https://support.windriver.com/olsPortal/faces/maintenance/downloadDetails.jspx?contentId=041575
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug873-zynq-ctt.pdf
https://portal.windriver.com/cgi-bin/windsurf/bsp/infoBSP.cgi?id=12020

	Using VxWorks BSP with Zynq-7000 AP SoC
	Summary
	Hardware and Software Requirements
	Software Requirements
	Hardware Requirements

	Introduction
	Stage 0: BootROM
	Stage 1: First Stage Bootloader
	Stage 2: VxWorks Bootloader

	Building VxWorks for Zynq-7000 AP SoC
	Host Environment Configuration

	Configure and Build a VxWorks BootROM and Kernel Image
	Building the Kernel Image
	Booting From an Secure Digital Card
	Booting Using FTP

	Building and Debugging the Application
	Creating the Hello World Application

	Accessing a Peripheral in the Processing System
	Modifying the Hello World Application
	Accessing a Peripheral in the Programmable Logic
	Adding the Address Range to the MMU Configuration
	Updating the Hello World Project

	Conclusion
	Additional Resources
	Revision History
	Notice of Disclaimer

