Application Note: Zynq-7000 AP SoC

& XILINX.

XAPP1158 (v1.0) September 27, 2013

Using VxWorks BSP with Zynq-7000 AP SoC

Authors: Uwe Gertheinrich, Simon George, Kester Aernoudt

Summary VxWorks from Wind River:

Is a Real Time Operating system (RTOS).

Is a platform-based approach with configurable components that relate to different
architecture support, network, file system, compiler and development tool chains.

Supports the Zyng®-7000 All Programmable (AP) SoC architecture of multicore processor
systems.

Has support for asymmetric multiprocessing (AMP) and symmetric multiprocessing
(SMP).

This application note is intended as a getting started guide for new users of VxWorks on the
Zyng-7000 device. The document contains the following primary sections:

Introduction: Explains the important elements of the Zyng-7000 software environment to
provide a better understanding of BSP and application generation. This includes the:

* ROM mechanism

* Function of the first stage bootloader (FSBL)

* Wind River bootloader

» Explanation of the Zyng-7000 processor subsystem boot process

Building VxWorks for Zyng-7000 AP SoC, page 5: Explains native flash (SD Card) and
remote Ethernet (FTP) boot source options and the bootloader configurations for both
options.

Building and Debugging the Application, page 17: Explains how to create, build and
remotely run a custom application with VxWorks on a Zyng-7000 device.

This document assumes familiarity with the Xilinx® ISE® Design Suite and Zyng-7000 AP
SoC design methodology. This document includes a reference system for the Xilinx ZC702
board derived from the Zyng-7000 AP SOC - Concepts, Tools and Techniques User Guide
[Ref 1], which provides the details on how to rebuild such a system.

Accessing a Peripheral in the Processing System, page 20: Describes how to access
peripheral systems in the Zyng-7000 Processing System (PS).

Conclusion, page 25: Summarizes what this application note describes.
Additional Resources, page 25: Provides additional resource links.

© Copyright 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zyng, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 1

http://www.xilinx.com

£ XILINX.

Hardware and Software Requirements

Hardware and Software Requirements
Software + Xilinx® ISE® Design Suite: Embedded or System Edition 14.6 or Vivado® Design Suite,
Requirements 2013.2.

» Wind River Workbench for VxWorks 6.9.3, which includes a Zyng-7000 AP SoC BSP
« Serial Communication utility program (such as Tera Term)

Hardware Requirements

» Xilinx ZC702 Development Board
* Ethernet Cable
+ USB UART Cable

Introduction The Zyng-7000 AP SOC devices takes advantage of the on-chip CPU to facilitate configuration.
Initial device configuration of the processing system (PS) and the programmable logic (PL)
must take place through the PS when not using JTAG.

Two major blocks control the configuration:

» Thefirst is the BootROM which is a static block of memory that is executed by the
multiprocessor core after power-on reset and warm reset.

e The second major block is the device configuration unit which controls JTAG debug
access and provides an interface to the AES, HMAC, and PCAP blocks for PL
configuration and data decryption.

Both the PS and PL can be configured under PS control either securely or non-securely.
Configuration under external host control is also possible using JTAG.

Unlike other Xilinx 7 series devices, Zyng-7000 AP SOC devices do not support initial PL
controlled configuration. Configuration on the Zyng-7000 AP SOC devices is a multi-step
process. The configuration process involves a minimum of two stages, but generally requires
three stages.

The stages are:

» Stage 0: BootROM, page 3: Referred to as the BootROM, this stage controls initial device
startup. The BootROM is non-modifiable code executed by the processor after power-on
reset and warm reset.

» Stage 1: First Stage Bootloader, page 4: This is generally a first stage boot loader (FSBL),
but it can be any user-controlled code. See the Zyng-7000 AP SOC Software Developers
Guide (UG821) [Ref 1] for details about FSBL.

» Stage 2: VxWorks Bootloader, page 4: This is generally user-configurable software that
can act as a second stage boot loader (SSBL). This stage is completely within user
control. In the case of this document, it is part of the VxWorks bootloader.

Figure 1, page 3 illustrates a non-secure boot process for typical Linux system. Uboot is an
example for higher-level boot loader and can be exchanged by VxWorks bootloader.

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 2

http://www.xilinx.com

£ XILINX.

Introduction

= L1-Bootruns from DOR

* Lovads 05 kernel from selected boot device
= Loads ramdisk from default boot device
* First Stage Baot Loader runs from OC M RAM
= Bitstream is loaded and PL is configured
= U-Boot is loaded from boot Device into DDE /

= Povver up Zyng

+ o e TI_—F?: it d = On Chip ROM code runs = identifies the boy
- [cimee |- Stage 0 device by reading the mode pin status
:j% i * Coples First Stage Boot Loader from selects
g o — boot device to DO RAM

Figure 1: Boot Flow
Stage 0: BootROM

The Zyng-7000 AP SoC processor subsystem configuration starts after power-on reset. The
ARM® CPU starts executing code from the on-chip BootROM with JTAG disabled. The
BootROM contains code for base drivers for NAND, NOR, Quad-SPI, SD, and PCAP. DDR and
other peripheral initializations are not performed from the BootROM and must be done in the
Stage 1 image, First Stage Bootload (FSBL) or later.

For security, the CPU is always the first device out of reset among all master modules within the
PS. When the BootROM is running the JTAG is disabled to ensure security.

The BootROM code is also responsible for loading the FSBL. Zyng-7000 AP SoC architecture
supports multi-stage user boot image loading; any further user boot image loading after FSBL
is the responsibility of the user. When the BootROM releases control to FSBL, user software
assumes full control of entire system. The only way to execute the BootROM again is by
performing a reset.

The PS boot source is selected using the mode-pin signals (indicated by a weak pull-up or
pull-down applied to specific pins), which are sampled after during power-on reset. The
sampled value is stored in the BOOT_MODE register.

The BootROM supports encrypted and unencrypted images referred to as secure boot and
non-secure boot, respectively. Additionally, the BootROM supports beginning execution of the
stage 1 image from OCM after copying the image or executing direct from linear flash (NOR or
QSPI) when using the execute-in-place (XIP) feature.

* In secure boot the CPU, running from secure BootROM code, decrypts and authenticates
the incoming user PS image, stores it in the OCM RAM, and then branches into that RAM.

* In non-secure boot the CPU, running from BootROM code, disables all secure boot
features including the AES engine within the PL before branching to the user image in the
OCM RAM or flash, if XIP is used. The Processor System (PS) boot image is limited to
192 KB unless booting with XIP.

Any subsequent boot stages for either the PS or the PL are the responsibility of the user and
are under user control. The BootROM code is not accessible to the user.

» Following the stage 1 secure boot, you can proceed with either secure or non-secure
subsequent boot stages.

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 3

http://www.xilinx.com

£ XILINX.

Introduction

» Following a non-secure first stage boot, only non-secure subsequent stage boots are
possible.

For secure boot decryption and authentication, the PS uses the hard-wired AES-256 and
SHA-256 modules within the PL. For this reason, the PL must be powered up during any secure
boot, even if only the PS is configured. The device encryption key is user-selectable from either
the on-chip eFUSE unit or the on-chip block RAM.

The possible boot sources are: NAND, NOR, SD, Quad-SPI, and JTAG. The first four boot
sources are used in master boot methods in which the CPU loads the external boot image from
nonvolatile memory into the PS.

Stage 1: First Stage Bootloader

The First Stage Bootloader (FSBL) starts after the execution of the BootROM. BootRom loads
the FSBL into the OCM, or the FSBL executes in place (XIP) unencrypted from memory
mapped flash (NOR or Quad-SPI), contingent upon the BootROM header description.

The FSBL is responsible for:

« Initialization using the PS configuration data provided by Xilinx Platform Studio (XPS) (see
"Zyng-7000 PS Configuration” in the Zyng-7000 AP SOC Software Developers Guide
(UG821) [Ref 2].

* Programming the PL using a bitstream
» Loading second stage bootloader or bare-metal application code into DDR memory
» Starting execution of the second stage bootloader or bare-metal application

Note: Before handoff to the second stage bootloader or bare-metal application, the FSBL
invalidates the instruction cache and disables the cache and MMU, because Linux (and
perhaps other operating systems) assume it is disabled upon start.

See the FSBL code provided with SDK for details on how the FSBL initializes the CPU and
peripherals used by the FSBL, and how it uses a simple C run time library.

The bitstream for the PL and the second stage bootloader or bare-metal application data, as
well as other code and data used by the second stage bootloader, Linux (or other operating
system), or bare-metal application are grouped into partitions in the flash image.

Stage 2: VxWorks Bootloader

The VxWorks bootloader application loads a VxWorks image onto a target. Like VxWorks, you
can configure the VxWorks bootloader with various facilities; such as a command line interface
for dynamically setting boot parameters, a network loader, and a file system loader.

Uniprocessor (UP), symmetric multiprocessor (SMP), and asymmetric multiprocessor (AMP),
configurations of VxWorks use the same bootloader.

In a development environment, a bootloader is useful for loading a VxWorks image from a host
system, where you can modify and rebuild VxWorks. You can also use a VxWorks bootloader
in production systems when the bootloader and operating system are stored on a disk or other
media.

Self-booting (standalone) VxWorks images do not require a bootloader. These images are
commonly used in production systems (stored in nonvolatile devices).

Usually, the bootloader is programmed in a nonvolatile device (usually flash memory or
EEPROM) at an address such that it is the first code run by the processor when the target is
powered on or rebooted. The procedure to get the boot loader programmed in a nonvolatile
device or written to a disk is dependent on the target, and is described in following section using
an SD card image.

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 4

http://www.xilinx.com

£ XILINX.
Building VxWorks for Zyng-7000 AP SoC

The VxWorks product installation includes default bootloader images for each installed BSP. If
they do not meet your needs, you can create a custom bootloader.

Building Host Environment Configuration

VxWorks for The following steps are one-time only:
Zynq-?OOO AP 1. Install VXWorks Tool chain 6.9.3.1.
SoC a. Install Base Tools Package.
b. Invoke the Product Maintenance GUI.
- Update the installer.
- Configure online Content Update Network settings.
2. Apply updates based upon your license file, as shown in Figure 2.

Select Products

P = V¥Works 6.9.3.1 and V¥Werks Edition 5.9.3.1 Platforms
, 3 Board Support Packages for ViWorks 6.9.3.1 for ARM
, A3 ViWorks 6.9.3.1 and General Purpose Technolegies
, % Wind River Diab Compiler 5.9.1 for ViWorks 6.9
43 Wind River Setup 2.0.11 (shared)
4 = Wind River Workbench 3.3.4 Processor Pack1
) 53 Wind River Legal Notices 1.0
3 Wind River Setup 2.0.11 (shared)
» 3 Wind River Workbench 334 for VxWorks 5.5 (Enabler Rev &)
» 3 Wind River Workbench 334 for VkWorks 6.3 - 6.9 (Enabler Rev 6)
- 5% Wind River Workbench 3.3.4 for Wind River Linux 4.0 - 5.0 (Enabler Rev 6)
» 3 Wind River Workbench Core 3.3.4

Figure 2: Select Products Dialog Box

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com

http://www.xilinx.com

£ XILINX.
Building VxWorks for Zyng-7000 AP SoC

The Zyng-7000 BSP is a standard part of the 6.9.3.1 install, as shown in Figure 3:

Select Products

a [J] = ViWorks 6.9.31 and VeWerks Edition 6.9.3.1 Platforms
a [<j.‘ Board Support Packages for ViWorks 59.3.1 for ARM
a4 [2 veWorks Reference BSPs, Architecture: ARM
7 43 ViWarks BSP: ARM Versatile EB11 MP Core
7] 4P VeMorks BSP: ARM Versatile Express Afhed with Cortexd® MPCore
7| 4 Vorks BSP: ARM Versatile Express with CoreTile Express ALS<2_ATx3
7] L5 ViWorks BSP: Atmel ATO1RMIZE0
7] P VWorks BSP: Atmel AT91SAMSG20-EK
7] 4 Vidorks BSP: Freescale i.MX35 PDK
7] L3 Viorks BSP: Freescale i MX51 babbage board
¥ 4 VaWarks BSP: Freescale 1.MX53 Quick Start Board
7] 3 Ve\Works BSP: Freescale i M6 SABRE Lite
7| 3 ViWorks BSP: Freescale iMXEILITE
7] S5 VeWorks BSP: Intel DXDP46S
] P VW orks BSP: Keil Mcb2460
7] {3 Vilarks BSP: Marvell Littleton
7] L5 Viorks BSP: Marvell PXA320 (Zylonite)
7 3 ViWarks BSP: Mistral OMAP35x: Thumb-2
7] 4 VeWorks BSP: ST Micro SPEAr 1310
7] K3 Vaorks BSP: TTAM/DM3EToEVM
7] {51 VeWarks BSP: TIAM3358 EVM
7] P VeWorks BSP: TI AM3517
7 3 ViWarks BSP: TTDMB1xx EVM
7] <P VeMorks BSP: T1 DaVinci DM355 Evaluation Module
7| B VWorks BSP: T1 DaVinci DMG44x Evaluation Module
7] 55 VeWaorks BSP: TIOMAP L137 Evaluation Module
7] K3 Vlorks BSP: TT OMAP L1138 Evaluation Module
7] ¥ VeWarks BSP: TIOMAP3
7] 4P VeWorks BSP: TIOMAP3530 EVM (Mistral)

Versatile Express Al

7] 452 VeWarks BSP: Xilinx Zyng-T000 EPP
(o] Wt VTRt FrperreFeC IS gies

Figure 3: VxWorks BSP: Xilinx Zyng-7000 EPP
3. Because of the asynchronous nature of VxWorks BSPs, verify that you install the latest
Xilinx BSP. The link is provided at [Ref 4].

4. Install the BSP patches as described in the BSP download link: VxWorks 6.9.3.1 BSP
Driver Source Patch for BSP, The link is provided at [Ref 5].

5. Complete all details of the build steps to apply the patch into the source tree.

Configure and Build a VxWorks BootROM and Kernel Image

The default BSP does not enable support for accessing an SD card. Because you use the SD
card to store the VxWorks image, the first step is to modify the BSP configuration.

1. In atext editor, open the <Install_Dir>/vxworks-6.9/target/config
x1lnx -zyng7k/config.h file, and modify 1ine 197 from:

#undef DRV_STORAGE_SDHC/
to

#define DRV_STORAGE_SDHC
#define INCLUDE_DOSFS

#define INCLUDE_DOSFS_MAIN
#define INCLUDE_DOSFS_CHKDSK
#define INCLUDE_DOSFS_FMT
#define INCLUDE_DOSFS_FAT
#define INCLUDE_DOSFS_SHOW
#define INCLUDE_DOSFS_DIR_VFAT
#define INCLUDE_DOSFS_DIR_FIXED
#define INCLUDE_FS_MONITOR

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 6

http://www.xilinx.com

Building VxWorks for Zyng-7000 AP SoC

£ XILINX.

#define INCLUDE_FS_EVENT_UTIL
#define INCLUDE_ERF

#define INCLUDE_XBD

#define INCLUDE_XBD_BLKDEV
#define INCLUDE_XBD_TRANS
#define INCLUDE_DEVICE_MANAGER
#define INCLUDE_XBD_BLK_DEV
#define INCLUDE_XBD_PART LIB
#define INCLUDE_DISK_UTIL

This enables the SDHC controller, as well as drivers for the FAT file system.

To use the VxWorks BSP with the Wind River Workbench to create a VxWorks Kernel

Image, do the following:

2. Start the Wind River Workbench tool and select a workspace.
The Wind River SDK opens.

3. In the main context menu select File > New > Project.
The New Project Wizard opens.

4. Under VxWorks 6.x, select the VxWorks Image Project, as shown in Figure 4.

i New Project

|
| Select a wizard

Creates a new ViWorks image project with all available kernel build specs

Wizards:
type filter text

fiii Wind River Workbench Project
= General
= CVS
= Desktop
= JavaScript
= VWorks B.x
B VxWorks Boot Loader / BSP Project
H{ VxWorks Downloadable Kernel Moedule Project
(7% ViWorks Real Time Process Project
[F5 VaeWorks ROMFS File System Project

Show All Wizards.

Mext >

= —

Cancel

Figure 4: VxWorks Image Project

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com

http://www.xilinx.com

& XILINX-
Building VxWorks for Zyng-7000 AP SoC

The New VxWorks Image Project multipage wizard opens.
Enter a project name, for example, zynq_vxworks_01, and click Next.
6. Select the xInx_zynq7k BSP used for this project as highlighted in Figure 5.

Creste o few Wilerkd image project wath all reailslle kimel budd ipedi. i ,".

Propectneme: L J g Mew Vi = 5
Locatin |q.:-_-..-_il.
@ Creste projest in wodkipace 1 Project Setup T —_

Bt thee i et eithetr on B0 geisting project, or on @ boaed wuppont 15
Creste project o external locabon pockige wd s toed chuin |

ERGNT TN I FT e oW erkrmsriapace

Setup the Eawdt
| Bused on | & bossd puppen packige - ‘

’IM
3 shna_syng T = | | Browie.. |
Addness mode | 32-at keenel -

Tool chain | dish -

| T
I o Ersble WDE Target Agint I

BSP wakdatom best nuste
Add suppor 1o peoject

? o Bty v St e mirnatinn
Bave diresctory: CoICAD WindRivan WR_EI fonworks 53 targetfconfig n_ymaTk

Figure 5: VxWorks Image Project Multipage Wizard

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 8

http://www.xilinx.com

£ XILINX.
Building VxWorks for Zyng-7000 AP SoC

7. From the New VxWorks Image Project wizard, select PROFILE_DEVELOPMENT

(Figure 6).
I New ViWorks Image Project &lﬂlﬂ
Configuration Profile —
Select kernel configuration profile, @
Profile [[no profile) VI
Profil (no profile)
ToM'E PROFILE_BOOTAPP
Descrip PROFILE_COMPATIELE -

PROFILE_ DEVELOPMENT

PROFILE_EMHAMNCED_MET
PROFILE_SMALL_FOOTPRINT
PROFILE_STAMDALOME_DEVELOPMENT

Synopsis: The kernel will be configured with its predefined defaults. -

@ <Back | Met> || Finsh || Cancel

h

Figure 6: New VxWorks Image Project: PROFILE_DEVELOPMENT Option

8. Click Finish.

9. Open the Kernel configuration. Change the configuration to include the symbol table in the
Kernel image (Figure 7, page 10).

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 9

http://www.xilinx.com

Building VxWorks for Zyng-7000 AP SoC

£ XILINX.

Component Configuration
Description MName Type
4 [, development tool components (default) FOLDER_TOOLS
- [Cafe analysis systermn FOLDER_CAFE
- [Core Dump components FOLDER_CORE_DUMP
> % Downloadable kernel modules compiler sup SELECT_COMPILER_INT...
. [Kernel-write components FOLDER_KERMEL_DEBUG
- @ System Viewer components FOLDER_WINDVIEW
. [USB Debug FOLDER_USB_DEBUG
- [WDB Agent Proxy components FOLDER_WDB_PROXY
- @ WDB agent components (default) FOLDER_WDB
. [boot application components FOLDER_BOOT_APP

- @ kernel shell col EQOLDER SHELL
‘omponents FOLDER_LOA
show routines FOLDER_SHOW_ROUTL...
4 symbol table components FOLDER_SYMTBL

4 @ symbol table initialization components FOLDER_SYM_TEL_INIT
4 % select symbol table initialization (dei SELECT_SYM_TBL_INIT
[é built-in symbaol table (default) INCLUDE_STANDALONE...
{'gy downloaded symbol table INCLUDE_MET_SYM

] | table initialization (de INCLLLDE “TBL_INIT
@ C++ symbol demangler INCLUDE_CPLUS_DEMA...
y [E error status table INCLUDE_STAT_SYM_TBL

Figure 7. Component Configuration

You can now build the Kernel image.

XAPP1158 (v1.0) September 27, 2013

www.xilinx.com

10

http://www.xilinx.com

£ XILINX.
Building VxWorks for Zyng-7000 AP SoC

Building the Kernel Image

1. Inthe Project Explorer window, mouse over to the Image project, right-click and select
Build Project. The VxWorks image file is located in the ,. \<project_name>\default
directory. Figure 8 shows the Build Project option.

1 Propect Esplorer. 21 0| i Getting Started creation oy I
- . o= = Cutput of C:VCaD\blndAliver W8 _¢

a Bk Zyng ZCT02 (Wl Faves ¥
il Kernel Conliguration
B wa'Wiorks bir [def suit)

Fiews k
Edit Kernel Conlguration

B weWodks hes (delaun) Go Into

ﬁb walork (defsun) o i Wl
ta Dendned

mp Imchudes Ly

o™ default Banbs

U sl ryngTh

(A Nyt W Delete Detete
(A ppEempih Adteebautes B
[f prpConlig.c SouscE B
e piParamLk [-
fur TEMMSLEITC R 2
| wsrdppdnit.c
1} uirRipAppinit.C ey Impod
compObpeid e Exgrorts,
creaton.log
;. INLEk el il Chpers Ve Flrogd ViWWerka 6.9 Descelaprment Shell
Nakefile.mk " Fafieih [
v PIPhji s Clerse Proge<t
Wi Fraloede i
— B BN al - Ll Lhnaedated Be
o Remiete Sytternt 11 Project el erenoes ¥

*

Figure 8: Build Project Option

FARS t Build Preject Ctll= B Cusl=P
Y Logal - '

2. When the project build is complete, start a Wind River VxWorks development shell.

Use this shell to build a bootROM binary. The bootROM binary is the VxWorks bootloader
(similar to Uboot); it is not within the Zyng-7000 device ROM.

3. Within the shell, type:
cd ..\<install dir>\Wind

River\vxworks-6.9\target\config\xlnx_zyng7k\
make clean make bootROM

The commands generate a file with the name bootROM. Rename the file to bootROM. el f
4. Create aboot.bif and a zyng_fsbl_0.elf file, with the following format:

ZC702 _bif for VxWorks:

{
[bootloader]zyng fsbl_0.elf

bootROM.elf
}

5. Copy the bootROM.elf, zyng_fsbl_0.elf, and the boot .bi f file to the /bootgen
directory.

Alternatively, you can copy the bootgen.exe tool to the current installation directory.

C:\<install_dir>\Wind
River\vxworks-6.9\target\config\xlnx_ zyng7k\

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 11

http://www.xilinx.com

£ XILINX.

Building VxWorks for Zyng-7000 AP SoC

6.

In the Wind River shell, type:

bootgen image boot.bif I BOOT.BIN

Copy the following files onto an SD card:

* VxWorks from the ..\<project_name>\default directory

e BOOT.BIN fromthe ...<install_dir>\WindRiver\vxworks
6.9\x1nx_zyng7k\ directory.

This creates a system that can boot from an SD card.
The following subsection describes the required steps to boot from an SD card.

Booting From an Secure Digital Card

Use the Secure Digital (SD) card to boot the Zyng-7000 AP SoC Processor System (PS).

1.

Connect a power cable, a Xilinx USB download cable, an Ethernet cable, and a USB UART
cable to the board.

Put the SD Card in the SD card pole of the board. Ensure that the switches for booting from
SD Card are in the right position. Ensure that the settings of Jumpers J27 and J28 are the
same as shown. Move the DIP-Switches 3 and 4 of SW 16 to the left (this sets the switches
to 1) (Figure 9, page 13).

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 12

http://www.xilinx.com

£ XILINX-

Building VxWorks for Zyng-7000 AP SoC

o

ibidiiaf

["
#fe !'i-';lll| -

Ly T .
.

= vJ
EEspERENFEREN

\ |. e
T

.‘I ."..‘.!.' | ‘

Figure 9: Image of SD Card and USB Connection

These settings ensure an SD card boot.

Open a terminal session, and choose the right COM port () function, and set the Baud
Rate to 115200.

Switch on the board.

Stop the Autoboot process by pressing the keyboard Return key.

The VxWorks bootROM prompt opens.

Type C at the boot prompt, and press Return to start the boot configuration.
Change the boot device to £s and press Return until you reach the file name.
Change to /sd0:1/vxWorks and press Return until you reach other (o).
If no entry exists, type gem0. Press Return and the boot prompt opens.

. Type @ to proceed the boot process.
. Type i to display all running tasks.

VxWorks boots and presents the output as shown in Figure 10.

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 13

http://www.xilinx.com

Building VxWorks for Zyng-7000 AP SoC

£ XILINX.

0 PEHD
0 PEHD
0 PEHD
1 RERADY
3 PEHD
10 PEHD
20 PEHD 1444del
PEHD 14
50 PEHD
50 PEHD
50 PEHD
50 PEHD

RH0 DELAY

Figure 10: SD Boot TerminaITranscript
Booting Using FTP

Repeat the first four steps shown in Booting From an Secure Digital Card, page 12, as follows:

1. Connect a power cable, a Xilinx USB download cable, an Ethernet cable, and a USB UART

cable to the board.

2. Putthe SD Card in the SD card pole of the board. Ensure that the switches for booting from
SD Card are in the right position. Open a terminal session, and choose the right COM
port () function, and set the Baud Rate to 115200.

3. Change the local area network (LAN) connection of your system network settings to the IP

address 192.168.1.1.

XAPP1158 (v1.0) September 27, 2013

www.xilinx.com

14

http://www.xilinx.com

£ XILINX.

Building VxWorks for Zyng-7000 AP SoC

© N o v

10.
11.
12.

13.
14.

15.

21.

22,

% Local Area Connection Properties

Hetwordking | Shasng

Conract using

& s = i 7
Intemet Profoce] Version 4 [TCP/IPw) Properties L

General
This conne
W ey ou can get [P settings assigned automatcally if your network supports
- H o this capability. Othervese, you need to ask your network administrator
for the appropriate [P settings.

= H? Obtain an 7 address sutomatcaly

e i

F - inf &) s the folowing [P address:

¥ - i 1P axdress: \2.188. 1 .1
Subnet mask: 255,255,256 . 0
Default gabeway:

Descript

Tranamia

widks are|

aciods o @) Lise the folowing DHS server addresses:

Prafermed DNS perver:

Altgrngte DNS server:

‘alidabe setings upon et A d

(=9 Cancel

Figure 11: Host Ethernet MAC Configuration

Start an FTP server. You can use the server delivered with the Wind River tool chain.
If you use the Wind River FTP server, select Security > User/rights.

Click New User and type a nhame; for example, Zynq and a password.

Type the home directory of the VxWorks image, then click Done.

Switch on the board.

Stop the Autoboot process by pressing Return.

The VxWorks bootROM prompt opens.

At the boot prompt, type ¢ then press Return to start the boot configuration.

Type gemO to change boot device then press Return until you reach File Name.
Type VxWorks, then press Return until you reach inet on ethernet (e).

Change the inet on ethernet (e) to IP address 192.168.1.2:0xffffffO0, then press Return
until you reach host inet (h).

Change host inet (h) IP address 192.169.1.1, then press Return until you reach user.

Type the user name you choose for the server then press Return until you reach
password (pw).

Type password you choose for the server, then press Return until you reach
other (0).

If no entry exists, type gem0O, then press Return.
The boot prompt opens.
Type @ to start the boot process.

VxWorks boots from the image using the terminal (Figure 12, page 16).

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 15

http://www.xilinx.com

£ XILINX.

Building VxWorks for Zyng-7000 AP SoC

Window Help

Setup Control

Edit

File

Figure 12: Boot Terminal Transcript

16

www.xilinx.com

XAPP1158 (v1.0) September 27, 2013

http://www.xilinx.com

£ XILINX.

Building and Debugging the Application

Building and
Debugging the
Application

Creating the Hello World Application

As short example, the following instructions describe how to build and download a small
"Hello World" application to the remote target after you have set up and are running
VxWorks.

The assumptions are:

* You have followed the prior stages of this document.

» VxWorks is executing on the target (with remote debug enabled).

» An Ethernet connection is present between the host and the target.
To create the "Hello World" application:

1. Select File > New > Project > VxWorks Downloadable Kernel Module Project, as
shown in Figure 13.

(9 New Project — - [EEr)

Select a wizard —

Creates a new ViWorks downloadable kernel module project with all available
kernel build specs

Wizards:
type filter text

B4 Wind River Warkbench Project -
= General
= OVs
= Desktop
(= JavaScript =

a4 = VWorks 6x

g VxWorks Boot Loader 7 BSP Project

LIy vXvvOrks Image Froje

1B VaWorks Real Time Process Praject

B VxWorks ROMFS File System Project -

Show All Wizards.

@ < Back Mext > Fir [conca | |

Figure 13: New Project Wizard

2. Click Next and enter a project name; for example, hello_world, (Figure 14, page 18), then
press Finish.

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 17

http://www.xilinx.com

Building and Debugging the Application

£ XILINX.

—
@ New VxWorks Downloadable Kerne

 —— .
| Module Project b | B

Project

kernel build specs

Creates a new V¥Works downloadable kernel module project with all available B

Project name: hello_world

Location
@ Create project in workspace

() Create project at external location

ChXilime_Workingwaoworl

() Create project in workspace with content at external lecation

ks_zyng_xapphhello_world Browse...

@ [<Back |

Net> || Finish || Cancel

Figure 14:

New Kernel Module Project

A hello_world project opens in the Project Explorer Window.

3. Move the mouse to the Project. Click the right button and select New > File.

Enter a file name; for example, hello.c, and click Finish.
5. Enter the following code into the file:

#include <stdio.h>

void

{

printf ("Hello Wind River\n");

}

hello ()

7

6. Inthe Project Explorer window, select Build Targets (Figure 15), and click the right mouse

button.

urce . Refactor

Navigate
i g w A :' i

L5 Project Exploter £ =

Search f

4 1 helle wedd (Wind Rive

Tﬁ Build Targets (SIMNT diak - debug)
Lﬁm‘!‘rﬂm_l.. et Lot
wik Includes
ig] hello.c
@ Ll:yﬂqynwwksjn Wand five
@ Kemel Configuration
§ veWorks.bin (default)
B viWorks.hex (default)

& veWorks (default)
4 Binaries
il Includes
(5 default
L ro_zyng Tk
el linkSerms.r

roject Run Window Help
~ Q- ¥ - - s == e B - | pd

Sl 2@ =T T 0O creationtog @ zyng_vaworks 01
Yy & #include <stdic.h>

void hello()
{
printf("Hello wWindRiverin®);

}

Figure 15:

Build Target Selection

XAPP1158 (v1.0) September 27, 2013

www.xilinx.com

18

http://www.xilinx.com

Building and Debugging the Application

£ XILINX.

7. Select Build Options > Set Active Build Spec > ARMARCH7<gnu |diab>.

A message opens that asks if you want to set the active build spec to
ARMARCH7<gnu | diab> (Figure 16).

B b, bl pem

Figure 16: Buill-d“'ll'arget Configuration

8. Select YES.

9. Build the project. A message opens.
10. Click Continue.

11. In the bottom-left corner of the Wind River Workbench, go to Remote Systems.

12. In the window, right-click and select New > Connection.

13. Select Wind River VxWorks 6.x Target Server Connection, and click Next.

14. Type the target IP address of 192.168.1.2, and the path to the kernel image (in this case
type: \. .\<project_name>\default). Click Finish.

15. Right-click the new connection, and click Connect.

16. In the Project Explorer window, right-click Build Targets, then select Debug VxWorks
Kernel Task.

14. The Debug Configuration window opens, as shown in Figure 17, page 20.

XAPP1158 (v1.0) September 27, 2013

www.xilinx.com

19

http://www.xilinx.com

Accessing a Peripheral in the Processing System

£ XILINX.

§ Debug Configurations
Create, manage, and run configurations
Select the launch contet fice executing the launch operations.

® o

Hame: hello - hello_wordd out - VaWorkeln 192168.1.2 1)

ach Target Context
Zes Appheation
=+ Adtach to Application

VxWorks Kernel Task Options

Launch Context:
Z+= Postmortem Debugger

te s Bemote Application W @ defaut (locathast)
vl vacsind () Works 6.9)
Hl vesim_smp ver ViNprks 6.5)
41 ViWoricsfia_192.168.1.2 (Wind River VitWoris 6.9)

inch Control

et Cornenunic stson Framenerk

“arks Kennel Task
hella - hello_wordd.cut - VeWaord
noEntryPoint - hello_werld.out
Yorks Real Time Process
* General
Entry Point: helle|

Argurnents
* Advanced
- Debug

¥ Bueak on Entry

Filter matched 11 of 11 iterns.

7

38l Launch Context .) Downloads | ** Projects to Build | 5o Source| [

Common

Browse...

Apply Revert

Debug Close

Figure 17: Debug Configuration Window

17.

From General > Entry, type hello to locate the hello world project.

Alternatively, you can use the Browse button to find the hello world project.

18. Click Debug.

The terminal window that is connected to the board issue the following message:

>> Break at 0x01l44accc:

hello +0x4 Task:

0x14cdfcO0 (Hello)

Note: The message can differ slightly from yours as it depends on your Kernel settings. It just gives

you the hint that a task was downloaded and stopped for debug.

19. In the debug window, click the Run button.
The terminal window displays: Hello Wind River.
Type i to see the tasks in the VxWorks task list.

Type repeat 10,hello to repeat the task 10 times.

20.
21.

Accessing a
Peripheral in
the Processing
System

Reference Manual (UG585) [Ref 2].

In the ARM® Cortex™ A9 processor, every peripheral is memory mapped. The address map for
the Zyng-7000 AP SoC processor, for example, is listed in the Zyng-7000 AP SoC Technical

Modifying the Hello World Application

Modify the "Hello World" application to access the GPIO peripheral. On the ZC702 board, MIO

pin 10 is connected to an LED (DS12).

From the Zyng-7000 AP SoC Technical Reference Manual, (UG585) [Ref 6], you see that the
base address of the GPIO peripheral is 0OXEOOOA0QO. To access pin 10 as an output, you must

configure this peripheral first:

1. Set the direction to output by writing a 1 to bit 10 of the gpio.DIRM_O register.
2. Enable the output by writing a 1 to bit 10 of the gpio.OEN_0 register.
3. Write to bit 10 of the gpio.DATA_O register to control the LED.
The updated source code of the hello world application now looks like the following:

#include <stdio.h>

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com

20

http://www.xilinx.com

£ XILINX.

Accessing a Peripheral in the Programmable Logic

Accessing a
Peripheral in
the
Programmable
Logic

#include <sys/mman.h>

#define GPIO_BASE 0xE000A000

#define GPIO_DIRM 0 0x00000204
#define GPIO_OEN_O0 0x00000208
#define GPIO_DATA_0 0x00000040

int main (void)

{
printf ("Hello World!\n");
int val = Oxffffffff;
sysOutLong (GPIO_BASE + GPIO_DIRM_0, 0x00000400) ;

sysOutLong (GPIO_BASE + GPIO_OEN_0, 0x00000400) ;

while (1) {
sysOutLong (GPIO_BASE + GPIO_DATA_0, wval);

sleep(1l);

val "= Oxffffffff;
}

return 0;

}

4. Save this file, then build and debug this application following steps 9 to 19 of the previous
section. The result is that the LED toggles every second.

Accessing a peripheral in the Programmable Logic is very similar to accessing a peripheral in
the processing system: both master GP AXI interfaces have an address space of 1GB, as can
be seen in the Address Map table in the Zyng-7000 AP SoC Technical Reference Manual
(UG585) [Ref 6]. The differences are:

You must first program the PL with a BIT file containing the AXI_GPIO peripheral.

* You must modify the VxWorks BSP to allow access to the address range that you
configured for that peripheral.

The design created for this section contains an AXI_GPIO peripheral connected to the
M _AXI_GPO port of the PS.

The four GPIO pins of the AXI_GPIO0 peripheral are connected to the DS15 to DS18 LEDs on
the ZC702 board.

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 21

http://www.xilinx.com

£ XILINX.

Accessing a Peripheral in the Programmable Logic

processing_system7_1_axi_periph
[+]

proc_sys_reset)
e e . _Egzi[m';;]n
d_reset_in bus_struct_reset{0:0] fm o . 1
lax_reset_in peripheral_reset[0:0] I SWBE R '1,] | s ug
=mib_debug sys st interconnect_aresetn{0c0] _ACLK]O: H —
[S00_ARESETN[O: ad_aclk
—dem_lacked ¢ | aresetn[0:0] T M[] 0] s.m.: gpio 4 ||} LEDs_4t
Proc Sys Resat 400_ARESETM[0:0)
AXD Interconnect
processing_system? 1
oo+ DDR
FIxED 10+ [|} IXED_I
- usemp_04 |||
M_AX]_GPO_ACLK]0:0] ZYNO i cre s =t
FOLK_CLKD[0:0]

FOLK_RESETO_N[0:0] el

ZYNQ7 Processing System

Figure 18: Zynqg-7000 Processor System and Peripherals

The Address Editor shows the base address where this peripheral is mapped, as shown in

Figure 19.
Cell Base Name Offset Address Range High Addr
=-4F fprocessing_system7 1
- Data
= [axi_gpio_1 Reg 041200000 64K 0x4120FF|

Figure 19: Address Editor

After implementing this design, you generate a new FSBL, and use this FSBL, together
with the generated BIT file, to create a new boot . bin file to download to the SD card.

Follow the same steps as you used but use a slightly modified boot . bif file, as follows:

//ZC702_bif_ for_ VxWorks:
{

[bootloader] fsbl.elf
bitfile.bit
bootROM.elf

}

Where:
- fsbl.elf isthe new FSBL.
- bitfile.bit isthe BIT created by the hardware design.
This produces a new boot .bin file to boot the ZC702 board.
To access the peripheral from within a VxWorks kernel module, first modify the BSP.

The default configuration of the VxWorks BSP configures the MMU to allow access to a
limited set of addresses, listed in the documentation of the BSP.

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 22

http://www.xilinx.com

Accessing a Peripheral in the Programmable Logic

£ XILINX.

Memory Maps

The default memory map of this BSP is as bellows:
Start Size End Access to

0x0000_0000 1M 0x000F_FFFF OCM
0x0010_0000 1019M 0x3FBF_FFFF DDR3 SDRAM
0xOFCO_0000 4MB 0xOFFF_FFFF ROM
0xE000_0000 32MB OxE1FF_FFFF /O PERIPHERALS
0xF800_0000 60008 0xF800 0BFF SLCR

0xF8F0D 0000 16KB 0xF800 OBFF SCU
0xFCO00_0000 16MB 0xFCFF_FFFF QSPI FLASH
OXFEFF_0000 4KB 0xF800_0BFF OCM

Figure 20: Memory Map

Adding the Address Range to the MMU Configuration

The M_AXI_GP ports are not mapped.
To add the address range to the MMU configuration, modify the VxWorks BSP:

1. Open the VxWorks image project, then browse to the /x1ns_zyng7k folder.
2. Double-click the sysLib. c file to open the file in the Text Editor.

@ Kernel Configuration
B vxWorks.bin (default)
& vxWorks.hex (default)
& vxWorks (default)
1‘;;? Binaries
[p Includes
(28 default

4 (g xinx_zynq7k

[S] bootapp.Z.s

¥

config.h
confighet.h
ctdt.c

hwconf.c
nvRamToFlash.c
gspiFlashMem.c
qspiFlashMem.h
romlnit.s
sysALib.s
sysBspCommon.c
sysL2Cache.c
sysLib.c

sysMtd.c
sysNet.c

Figure 21: MMU Configuration

PR EREREEEE

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com

23

http://www.xilinx.com

£ XILINX.

Accessing a Peripheral in the Programmable Logic

3. Inthe syslib.c file, scroll down to line 109, find the struct containing the MMU
configuration.

For example, on line 225, find the mapping for the GPIO peripheral used in the previous
example:

{
ZYNQ7K_GPIO_BASE, /* Zyng-7000 gpio */ ZYNQ7K_GPIO_BASE,
PAGE_SIZE,

MMU_ATTR_VALID_MSK | MMU_ATTR_PROT_MSK |
MMU_ATTR_DEVICE_SHARED_MSK,
MMU_ATTR_VALID |MMU_ATTR_SUP_RWX |
MMU_ATTR_DEVICE_SHARED
},

4. Add the mapping for the AXI_GPI10 peripheral by adding the following line:

{
0x41200000, /* My AXI gpio */
0x41200000, PAGE_SIZE,

MMU_ATTR_VALID_MSK | MMU_ATTR_PROT MSK |
MMU_ATTR_DEVICE_SHARED_MSK,

MMU_ATTR_VALID| MMU_ATTR_SUP_RWX |
MMU_ATTR_DEVICE_SHARED
b,

Save the file, and rebuild the VxWorks project.
Use this VxWorks image, and either:
- Put the image on the SD card to boot from SD, or

- When fetching the VxWorks image over FTP, boot the board with the updated
boot .bin file.

7. After booting the ZC702 board with this SD card, the FSBL configures the PL before
launching the VxWorks BootROM.

The BootROM then loads the updated VxWorks image.

Updating the Hello World Project

Update the "hello world" project to access the AXI peripheral. The AXI_GPIO peripheral is
slightly different from the hardened GPIO peripheral: you need only to set the direction, not
enable the output driver.

Change the contents of the file to:

#include <stdio.h>
#include <sys/mman.h>
#define AXI_ _GPIO_BASEO0x41200000

int main(void)
{

printf ("Hello World!\n");

int val = 0;
sysOutLong (AXI_GPIO_BASE + AXI_GPIO_TRI, O0);

while (1) {

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 24

http://www.xilinx.com

£ XILINX.

Conclusion
sysOutLong (AXI_GPIO_BASE + AXI_GPIO_DATA, val);
printf ("$d\n", wval);
sleep(l);
val++;
if (val == 0x10000) (val = 0;
}
return 0;
}
When you rebuild this project, and run it on the ZC702 board, it toggles the LEDs every second.
Conclusion This application note has provided step-by-step instructions for running the VxWorks 6.9.3.1
BSP on the Zyng-7000 SoC All Programmable device platform, and additionally provided an
overview of the boot process for the Zyng-7000 AP SoC platform.
You now know the steps for using VxWorks RTOS on the Zyng-7000 AP SoC platform.
Additional The following links are to additional resources referenced in this document:
Resources Zyng-7000 AP SOC - Concepts, Tools and Techniques User Guide (UG837)
2. Zyng-7000 All Programmable SoC Software Developers Guide (UG821)
3. Zyng-7000 AP SoC Technical Reference Manual, (UG585)
4, Xilinx BSP: gppve_6_9_xlnx_zyng7k_6_9_2:
https://portal.windriver.com/cgi-bin/windsurf/bsp/infoBSP.cgi?id=12020
5. VxWorks 6.9.3.1 BSP Driver Source Patch:
https://support.windriver.com/olsPortal/faces/maintenance/downloadDetails.jspx?contentld=041654
6. VxWorks 6.9.3.1 USB L2 Cache Source Patch:
https://support.windriver.com/olsPortal/faces/maintenance/downloadDetails.jspx?contentld=041575
Revision The following table shows the revision history for this document.
History
Date Version Description of Revisions
09/27/2013 1.0 Initial Xilinx release.
Notice of The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Disclaimer Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS

IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

XAPP1158 (v1.0) September 27, 2013 www.xilinx.com 25

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug821-zynq-7000-swdev.pdf
https://support.windriver.com/olsPortal/faces/maintenance/downloadDetails.jspx?contentId=041654
https://support.windriver.com/olsPortal/faces/maintenance/downloadDetails.jspx?contentId=041575
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug873-zynq-ctt.pdf
https://portal.windriver.com/cgi-bin/windsurf/bsp/infoBSP.cgi?id=12020

	Using VxWorks BSP with Zynq-7000 AP SoC
	Summary
	Hardware and Software Requirements
	Software Requirements
	Hardware Requirements

	Introduction
	Stage 0: BootROM
	Stage 1: First Stage Bootloader
	Stage 2: VxWorks Bootloader

	Building VxWorks for Zynq-7000 AP SoC
	Host Environment Configuration

	Configure and Build a VxWorks BootROM and Kernel Image
	Building the Kernel Image
	Booting From an Secure Digital Card
	Booting Using FTP

	Building and Debugging the Application
	Creating the Hello World Application

	Accessing a Peripheral in the Processing System
	Modifying the Hello World Application
	Accessing a Peripheral in the Programmable Logic
	Adding the Address Range to the MMU Configuration
	Updating the Hello World Project

	Conclusion
	Additional Resources
	Revision History
	Notice of Disclaimer

