
XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 1

© Copyright 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

Summary This application note describes how a Xilinx analog-to-digital converter (XADC) can be used for
system monitoring applications. The XADC Wizard IP offers an AXI4-Lite(1) interface which is
connected to a Zynq®-7000 All Programmable SoC (AP SoC) processing system AXI general
purpose (GP) port to get system control information from the XADC. The XADC block provides
dedicated alarm output signals that trigger based on preset events. This application note has a
Linux application running on an ARM® Cortex™-A9 CPU on a Zynq-7000 All Programmable
SoC device that controls the alarm threshold of the XADC and monitors the alarm output.

Introduction The Zynq-7000 family is based on the Xilinx All Programmable SoC architecture. These
products integrate a feature-rich dual-core ARM Cortex-A9 based processing system (PS) and
28 nm Xilinx programmable logic (PL) in a single device. The ARM Cortex-A9 CPUs are the
heart of the PS and include on-chip memory, external memory interfaces, and a rich set of
peripheral connectivity interfaces.

The Zynq-7000 AP SoC PS can establish connectivity to the XADC, an integrated 12-bit,
17-channel, 1 MSPS analog-to-digital converter using the AXI interface when the XADC is
instantiated in the PL. The XADC is an embedded block offered in all Zynq-7000 All
Programmable SoC devices.

The LogiCORE™ XADC Wizard IP provides an AXI4-Lite compatible interface and an optional
AXI4-Stream interface. The AXI4-Lite interface can be used to configure the XADC, and the
AXI4-Stream interface can be used for data communication. The AXI4-Stream interface
provides an option to interface the XADC data interface to other signal processing IP. This
application note demonstrates the use of the AXI4-Lite interface for system monitoring
applications using the XADC.

The XADC has a power supply and temperature sensor that can be used for system
monitoring. Each of these sensors has configurable minimum and maximum threshold limits.
When the measured physical parameter (voltage or temperature) crosses the threshold
condition, an alarm signal is asserted. For more details on the on-chip sensors, see 7 Series
FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital
Converter User Guide (UG480) [Ref 1].

Xilinx provides an Industrial Input/Output (IIO) framework-based Linux driver which acts as a
device driver for the XADC applications that use the AXI interface. The driver can configure the
XADC for various operating modes, collect data from XADC, and make data available in the
user space layer.

This application note shows how the IIO based Linux driver can be used to configure the XADC
and provides a hardware design in the PL that establishes the datapath between the XADC and
the PS using the AXI GP port interface. The Cortex-A9 processor is used to configure the
XADC for user-specific configuration parameters.

Application Note: Zynq-7000 All Programmable SoC

XAPP1182 (v1.0)
November 18, 2013

System Monitoring using the Zynq-7000
AP SoC Processing System with the XADC
AXI Interface
Authors: Mrinal J. Sarmah and Radhey S. Pandey

1. ARM® Advanced eXtensible Interface 4 (AXI4)

http://www.xilinx.com

Hardware Design Overview

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 2

A web server based GUI interface is used to configure the XADC and display the collected
samples.

Hardware
Design
Overview

The hardware design is intended to provide connectivity between the XADC block in the PL and
the Processing System-7 embedded block. The XADC embedded block has a DRP interface
for reading and writing data into the XADC DRP addressable register map. The XADC wizard
converts the AXI4-Lite transactions into the DRP address map. The XADC wizard instantiates
the AXI interrupt controller that converts the alarm output from the XADC embedded block into
interrupt events for the processor.

Figure 1 shows the hardware block diagram.

The following sequence describes the data flow:

1. The Linux driver for the XADC initializes the XADC Wizard IP.

2. The Linux driver sets up the alarm registers with user-defined threshold values.

3. The alarm output from the XADC is set when the measured voltage or temperature value
crosses the preset alarm threshold.

4. The XADC Wizard IP raises interrupts through the Fabric-to-PS interrupt pin.

5. The processor serves the interrupt and reports to the user interface about the alarm event.

6. The alarm event stays high until the alarm condition is valid.

The interrupt port from XADC wizard is connected to IRQ_F2P interrupt port 0 with ID 91.

The design uses the Vivado® Design Suite IP Integrator flow for creation of the block design.
After the block design is created, a hardware wrapper is generated that instantiates the
IP-specific wrapper files.

X-Ref Target - Figure 1

Figure 1: Hardware Block Diagram

http://www.xilinx.com

Software Architecture

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 3

Table 1 shows the Xilinx IPs used in the hardware design.

Table 2 shows the address map of the memory mapped peripheral in the PL.

Software
Architecture

The software application used in this application note is based on the Industrial Input/Output
(IIO) framework driver, which is part of the Linux git tree.

The Linux IIO subsystem is the standard framework used for providing support for devices that
fall into ADC/DAC categories.

The subsystem provides the following facilities to the user space:

• Sysfs interface for communicating with the devices

• Character driver interface for receiving the event information

The software application used in this application note can be divided into four logical sections:

• XADC core

• This part of the application is like a library that is solely responsible for communicating
with the IIO system for hardware configuration, retrieving sensor values, and event
handling.

• Web server

• The web server listens to the connection request from the remote web clients. Web
clients running on a remote computer system can acquire sensor data and event
notifications through the web server interface. The server gets sensor data and event
notifications through the XADC core.

• It also acquires threshold values from the web client and passes them over to the
XADC core to configure the hardware for events/alarms generation.

• Web interface

• This section is responsible for stitching the web server to the XADC core. It uses the
API exposed by XADC core to get the sensor alarm values and to set the thresholds. It
passes these values to and from web server.

Table 1: IPs Used in the Hardware Design

IP Name Description Configuration

Processing System-7
Generates a wrapper that
instantiates the Processing
System-7 embedded block

Configured with ZC702 default
preset from the Processing
System-7 IP wizard

AXI Interconnect IP

AXI Interconnect IP that
converts AXI3 transactions from
Processing System-7 IP to AXI4
transactions for XADC Wizard IP

Configured for one master and one
slave interface

XADC Wizard IP

XADC Wizard IP instantiates the
XADC embedded block and
converts AXI4-Lite transactions
to DRP transactions required by
the embedded block

Configured to support continuous
sampling mode

Proc Sys Reset Applies reset to peripherals and
AXI Interconnect IP

Configured to apply reset to AXI
Interconnect and XADC Wizard IP

Table 2: Address Map of Memory-Mapped Peripheral in the PL

Peripheral in PL Address map (Hex)

XADC Wizard IP 43C00000-43C0FFFF

http://www.xilinx.com

Software Architecture

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 4

• Web client

• The web client runs on the remote system in a web browser. The client communicates
with the web server on http port 9090.

• The client runs a GUI application you can use as a front end. The GUI displays the
captured sensor data along with graphs. It also provides you an interface to program
threshold values for the sensor events.

The application normally runs as a daemon process in the background on a Zynq-7000 All
Programmable SoC device. Figure 2 shows the top-level view of the application and IIO
framework.

X-Ref Target - Figure 2

Figure 2: Software Block Diagram

http://www.xilinx.com

Application XADC Core APIs

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 5

Application
XADC Core
APIs

The XADC core section of the application is responsible for all communication with the XADC
device through the IIO subsystem.

The implementation for this section is available in the xadc_core.h and xadc_core.c files.

Other applications can call the APIs provided by this section in the xadc_core_if.h file.

The following are descriptions for the enumerations, structures, and APIs declared in the
xadc_core_if.h file:

Enumerations
• XADC_Parm—This enumeration defines the available parameters that can be queried for

the statistic.

• XADC_Alarm—This enumeration defines the available alarms on the system which can
be programmed and queried for status.

Structures
• Xadc_callback—This structure contains the call-back information for the alarm. It has a

function pointer and an argument pointer that should be passed for the function.

Function APIs
• int xadc_core_init(void);

This function should be called once in the beginning of the program. It is responsible for
finding the XADC device nodes and initializing global variables.

Argument: N/A

Return Value: [Integer] 0: For success, -1: Device node not found

• int xadc_core_deinit(void);

This function should be called at the end of program. It is responsible for releasing
resources.

Argument: N/A

Return Value: [Integer] 0: Success

• void xadc_update_stat(void);

This function updates the global caches for all statistic parameters. This should be called
before the xadc_get_value() function, which reads the statistic from the cache.

Argument: N/A

Return Value: N/A

• float xadc_get_value(enum XADC_Param parameter);

This function returns the cached statistics value of a given parameter. For voltage, the
return value is in millivolts, and for temperature, it is in degrees Celsius.

Argument: parameter: enumeration value for the parameter whose value is
needed

Return Value: [float] cached statistic of the given parameter [mV/degree C].

• float xadc_touch(enum XADC_Param parameter);

This function updates the global cache statistic for the given parameter. It returns the
realtime value of the given parameter, unlike xadc_get_value.

Argument: parameter: enumeration value for the parameter whose value is
needed.

Return Value: [float] realtime value of the given parameter[mV/degree C].

http://www.xilinx.com

Linux Driver

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 6

• int xadc_set_threshold(enum XADC_Alarm alarm,

float threshold_low,

float threshold_high,

struct Xadc_callback *callback);

This function sets the threshold values for the given alarm.

Argument:

- alarm: enumeration value for the alarm for which the threshold is set.

- threshold_low: Low threshold value for the alarm [mV/degree C].

- threshold_high: High threshold value for the alarm [mV/degree C]

- callback: callback information for the event on the given alarm. If NULL is passed
in this argument, no callback is registered, otherwise, on event occurrence,
callback > func(arg) is called.

Return Value: [Integer] 0: Success, Non-zero: Error

• bool xadc_get_alarm_status(enum XADC_Alarm alarm);

This function returns the current status of the event for the given alarm, valid only after
setting the threshold. It is useful in cases where one does not need callback, but just
wants to get the status of the event at some stage.

Argument: alarm: enumeration value for the alarm for which event status is
needed.

Return Value: [bool] 1 = Event Active, 0 = Event Inactive.

Linux Driver The IIO framework (subsystem) is implemented in kernel space. It provides IIO device driver
registration for the low-level device drivers. The device drivers have to implement the required
functions as specified by the IIO framework and register them as part the framework. These
functions get called for all the hardware-specific operations.

This driver replaces the functionality for hwmon based ADC driver. Therefore, to use this
subsystem for XADC, hwmon xadc should be disabled in the kernel build.

Sysfs Interface If there is an XADC entry in the .dts file, the IIO subsystem populates the sysfs interface for
the XADC. The sysfs entries can be found in the
/sys/bus/iio/devices/<populated-device> file.

The path /sys/bus/iio/devices/<populated-device> contains the file nodes for
different values of various parameters.

You can confirm the correct device by reading the
/sys/bus/iio/devices/<populated-device>/name file (it is read as "xadc" in our
case).

For example, to get the sensor raw code value of VCCINT, read the following file:

/sys/bus/iio/devices/<populated-device>/in_voltage0_vccint_raw

http://www.xilinx.com

Command Line Execution

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 7

Figure 3 shows a command line example.

Command Line
Execution

This application note provides a command line interface for monitoring the internal VCCINT,
VCCAUX, and VCCBRAM channels. The commands can be executed in the command line shell of
the Linux OS. These commands are installed in the system while the Linux OS boots up.

The commands in Table 3 are available.

Event
Notifications

The event notification can be enabled by writing to the files under the
/sys/bus/iio/devices/<populated-device>/events/ directory.

For example, to set the high and low threshold of VCCINT, write the raw code of the value to the
following files respectively.

/sys/bus/iio/devices/<populated-device>/events/in_voltage0_vccint_thresh_rising_value

/sys/bus/iio/devices/<populated-device>/events/in_voltage0_vccint_thresh_falling_value

And, to enable the VCCINT event for both high and low, write 1 to following files:

/sys/bus/iio/devices/<populated-device>/events/in_voltage0_vccint_thresh_rising_en

/sys/bus/iio/devices/<populated-device>/events/in_voltage0_vccint_thresh_falling_en

After setting the threshold, to get an event there is a character driver interface.

X-Ref Target - Figure 3

Figure 3: Figure 3: Command Line Example

Table 3: System Monitoring Commands

Command Explanation Example

xadc_get_value_vccint
This command returns the monitored
VCCINT value.

Type this command in the console:
$ xadc_get_value_vccint

to return the VCCINT value in millivolts.

xadc_get_value_vccaux
This command returns the monitored
VCCAUX value.

Type this command in the console:
$ xadc_get_value_vccaux

to return the VCCAUX value in millivolts.

xadc_get_value_vccbram
This command returns the monitored
VCCBRAM value.

Type this command in the console:
$ xadc_get_value_vccbram

to return the VCCBRAM value in millivolts.

xadc_get_value_temp
This command returns the monitored
temperature value.

Type this command in the console:
$ xadc_get_value_temp

to return the temperature value in degrees Celsius

http://www.xilinx.com

GUI Interface

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 8

To receive an event, follow these steps after setting the threshold:

1. Include <linux/iio/events.h> for the events and ioctl definitions.

#include <linux/iio/events.h>

2. Use the <populate-device> directory name and open the device file

"/dev/<populate-device>".

3. Use this fd (of step 2) to get the event file descriptor:

ioctl(fd, IIO_GET_EVENT_FD_IOCTL, &event_fd)

4. Call read on this event_fd.

read(event_fd, &event, sizeof(event));

Here “event" is of type "struct iio_event_data".

Decipher this event as described in events.h file to locate the exact event.

5. This read is a blocking call, which is released when any event has occurred.

GUI Interface The GUI for AXI-XADC is based on Webserver. This is done using HTML, JavaScript, and
TCP-HTTP protocol handlers. The GUI screen is shown in Figure 4. The GUI screen is divided
into two panels:

• XADC Control Panel

• XADC Monitor Panel

http://www.xilinx.com

GUI Interface

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 9

Notes relevant to Figure 4:

1. XADC Control Panel

2. XADC Monitor Panel

3. Graphs

4. Readings

5. Alarms

6. Remote Command Line

XADC Control Panel

This panel is located on the left side of the screen (numbered 1 in Figure 4). Use this panel to
modify the minimum and maximum threshold values for VCCINT, VCCBRAM, VCCAUX, and
temperature. When you click the Apply button, these values are programmed in the
appropriate Zynq-7000 All Programmable SoC device register. This causes the AXI-XADC
Alarm system to get adjusted to the new threshold values you specified.

X-Ref Target - Figure 4

Figure 4: Webserver Based GUI Application

http://www.xilinx.com

External Channel Measurement

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 10

XADC Monitor Panel

This panel is shown with number 2 in Figure 4. The web client collects readings from the AXI
XADC interface periodically (once every second) and populates the readings on the XADC
Monitor Panel.

The XADC Monitor Panel has four parts, showing various readings and graphs.

Graphs

The graphs are shown with number 3 in Figure 4. There are four linear graphs plotted by the
web page.

• VCCINT graph is plotted with a scale of 0–1200 millivolts.

• VCCBRAM graph is plotted with a scale of 0–1200 millivolts.

• VCCAUX graph is plotted with a scale of 0–1000 millivolts.

• External voltage graph is plotted with a scale of 0–1000 millivolts.

Each of these graphs is plotted with readings collected every one second. Also, the graphs
maintain a history of the last 10 readings. As time moves, the graphs scroll from right-to-left and
plot the latest values on the right side.

Readings

The various readings are shown with number 4 in Figure 4. WebClient probes the XADC every
second and gets the latest readings. These values are also plotted on the graphs.

Alarms

The alarm indications are shown with number 5 in Figure 4. The Zynq-7000 device’s AXI XADC
interface can monitor whether or not the current value of a parameter is out of bounds
(minimum, maximum threshold values). If a value is out of bounds, a corresponding alarm is
raised.

The web page tracks and updates the alarm status for four parameters (VCCINT, VCCAUX,
VCCBRAM, and temperature). The color of each alarm turns to green (within bounds) or red (out
of bounds) in real time.

You can program the MIN or MAX threshold values of a parameter and test the alarms. The
alarm turns red as soon as values go beyond the programmed threshold.

Remote Command Line

The Remote Command Line window is shown with number 6 in Figure 4. This is an extended
Linux prompt onto the GUI. This control acts as shell prompt for the Zynq-7000 device. You can
treat it as a Zynq-7000 AP SoC shell, and enter any valid Linux command. The text is carried
to the Zynq-7000 device and an attempt is made to execute it as a Linux command. After
executing the command, the Zynq-7000 device sends the results to the GUI and displays
results on the Remote Command Line console.

The command entered here is executed in a temporary process that gets killed after completing
the execution. That means the results of a command are not persistent.

For example, if the command executed is cd /usr, the shell returns to the home folder after it
returns (it does not stay in new changed folder).

External
Channel
Measurement

For measuring the voltage level in an external channel, the IIO framework provides an external
channel measurement option. You have to enable the external channel, intended to be
monitored in the device tree source (.dts) file. In the Zynq-7000 All Programmable SoC
ZC702 Evaluation Kit, the AMS101 daughter card is shipped and can be inserted into the

http://www.xilinx.com

Hardware Requirements

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 11

XADC header pin. For more details on connecting an external signal source to the AMS101
card, see AMS101 Evaluation Card User Guide (UG886) [Ref 2].

Hardware
Requirements

The design can be tested using the ZC702 evaluation platform. To collect external data using
the AMS101 evaluator card, you need to follow instructions listed in the AMS101 Evaluation
Card User Guide (UG886) [Ref 2] to connect the AMS101 card to the ZC702 evaluation board.
An external signal can be applied to the auxiliary channel of the AMS101 card and the collected
samples can be read through the AXI XADC interface.

Experimental
Results

The maximum external signal bandwidth that can be supported with the AXI4-Lite interface of
XADC Wizard IP to AXI GP interface in the Zynq-7000 family has been measured and found to
be 2.12 MHz. The measurement is taken in ideal conditions with the CPU running only the
XADC application. No other applications are run. The measurement is taken with alarm events
enabled in the driver.

The time taken from issuing a read request to the reception of completion data has been
experimentally measured. The completion data is read when End Of Conversion (EOC)
interrupt is asserted. Table 4 summarizes the latency value under different operating
conditions.

Conclusion This design provides the platform for using the AXI4-Lite interface of XADC for system
monitoring. The design also explores the possibility of using an external auxiliary channel
through the AXI4-Lite interface of XADC and characterizes the maximum signal frequency that
can be monitored using the interface.

The latency number provided in this application note is the best that can be achieved through
this interface. It can vary depending on CPU load conditions.

Reference
Design

The reference design ZIP file can be downloaded from the following URL:

https://secure.xilinx.com/webreg/clickthrough.do?cid=346167

Follow the instructions provided in the readme file for building hardware and software code.
Table 5 shows the reference design checklist.

See the Zynq AXI XADC App Note Wiki page for rebuilding the design.

Table 4: Latency Values

Command Type Worst Case Latency(1) Average Latency(1)

Memory read 0,72 μs 0.4771μs

1. The values are measured with AXI4-Lite clock frequency set to 100 MHz.

Table 5: Reference Design Checklist

Parameter Description

General

Developer name Xilinx

Target devices Zynq-7000 All Programmable SoC

Source code provided Yes

Source code format C

Design uses code and IP from existing Xilinx
application note and reference designs, CORE
Generator™ technology, or third parties

Yes

https://secure.xilinx.com/webreg/clickthrough.do?cid=346167
http://www.xilinx.com
http://www.wiki.xilinx.com/Zynq+AXI+XADC+App+Note

Device Tree

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 12

Device Tree Here is the snippet of XADC entry in the Xilinx Linux device tree:

 xadc@43c00000 {
 compatible = "xlnx,axi-xadc-1.00.a";
 reg = <0x43c00000 0x10000>;
 interrupts = <0 59 4>;
 interrupt-parent = <&gic>;
 clocks = <&ps_clk>;
 xlnx,channels {
 #address-cells = <1>;
 #size-cells = <0>;
 channel@0 {
 reg = <0>;
 };
 };
 };

For more information on possible XADC entries, please see the Linux kernel documentation:

Documentation/devicetree/bindings/iio/xilinx-xadc.txt

References The following references are cited or useful with this application note:

1. 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS
Analog-to-Digital Converter User Guide (UG480)

2. AMS101 Evaluation Card User Guide (UG886)

3. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

4. Analog Devices Wiki, Linux Industrial I/O Subsystem, IIO Overview:
https://wiki.analog.com/software/linux/docs/iio/iio

5. Zynq AXI XADC App Note Wiki

Simulation

Functional simulation performed No

Timing simulation performed No

Test bench used for functional and timing simulations No

Test bench format Not applicable

Simulator software/version used Not applicable

SPICE/IBIS simulations Not applicable

Implementation

Synthesis software tools/version used Vivado Design Suite 2013.3

Implementation software tools/versions used Vivado Design Suite 2013.3

Static timing analysis performed Vivado Design Suite 2013.3

Hardware Verification

Hardware verified Yes

Hardware platform used for verification ZC702

Table 5: Reference Design Checklist (Cont’d)

Parameter Description

https://wiki.analog.com/software/linux/docs/iio/iio
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.wiki.xilinx.com/Zynq+AXI+XADC+App+Note
http://www.xilinx.com/support/documentation/boards_and_kits/ams101/ug886-ams101-eval-card.pdf

Revision History

XAPP1182 (v1.0) November 18, 2013 www.xilinx.com 13

Revision
History

The following table shows the revision history for this document.

Disclaimer The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx
products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all
faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY,
INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR
FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,
including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct,
indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type
of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was
reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications.
You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain
products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale
which can be viewed at www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms
contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in
such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at
www.xilinx.com/legal.htm#tos.

Date Version Description of Revisions

11/18/2013 1.0 Initial Xilinx release.

www.xilinx.com/legal.htm#tos
www.xilinx.com/legal.htm#tos
http://www.xilinx.com
www.xilinx.com/legal.htm#tos
www.xilinx.com/legal.htm#tos
www.xilinx.com/legal.htm#tos

	System Monitoring using the Zynq-7000 AP SoC Processing System with the XADC AXI Interface
	Summary
	Introduction
	Hardware Design Overview
	Software Architecture
	Application XADC Core APIs
	Enumerations
	Structures
	Function APIs

	Linux Driver
	Sysfs Interface
	Command Line Execution
	Event Notifications
	GUI Interface
	XADC Control Panel
	XADC Monitor Panel
	Alarms
	Remote Command Line

	External Channel Measurement
	Hardware Requirements
	Experimental Results
	Conclusion
	Reference Design
	Device Tree
	References
	Revision History
	Disclaimer

