
XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 1

Summary
In the Zynq®-7000 All Programmable (AP) SoC device, it is possible to implement the following
types of quality of service (QoS):

• Basic QoS, which is a per-transaction priority based on the AXI QoS signals You can use the
Basic QoS signals of Interconnect AXI HP ports by configuring the priorities, and
controlling the read and write transactions. Additionally, you can use Port DDR QoS signals
in DDR slave ports to control traff ic from and to AXI HP master ports during video
playback.

• Advanced QoS, which is based on QOS-301 block, and has additional capability to control
peak rate, bursting, and so forth. You can use the Advanced QoS signals of CPU by using
the peak rate, burst rate, and average rate of the CPU along with enabling the regulation
for read or write transactions to avoid the latency issues during video playback.

The application uses the AXI traff ic generator IP (ATG), test pattern generator (TPG) and also the
Sobel f ilter.

• ATG IP is used to generate the traff ic on one of the AXI HP ports and the ACP port.

• TPG IP is used to generate the test pattern video source on one of the AXI HP ports.

• Sobel f ilter IP is used to filter the video source given by TPG on one of the AXI HP ports.

• The Linux application running on the Zynq device controls the ATG traffic by enabling the
QoS for the CPU, AXI HP ports and also on the DDR ports.

Note: If there is no latency or bandwidth issue in DDR ports, while writing the data using AXI HP or ACP
ports, there is no requirement for QoS.

The performance of the ATG, TPG and Sobel f ilter are measured using the AXI performance
monitor (APM) IP. This application note demonstrates the operation of both basic QoS and
advanced QoS in Zynq-7000 devices, and describes the following:

1. The hardware and software design

2. A web-server based GUI interface used to enable or disable the video

3. A Sobel f ilter

4. An AXI traff ic generator (ATG)

5. The QoS services

Application Note: Zynq-7000 AP SoC

XAPP1266 (v1.0) September 18,
2015

Using Quality of Service (QoS)
Capabilities in Zynq-7000 AP SoC
Devices
Authors: Mrinal J. Sarmah, Naveen Kumar Gadddipati

http://www.xilinx.com

Prerequisites

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 2

Prerequisites
The following are the pre-requisites for running this reference design:

• Vivado Design Suite (version 2015.2 or higher (this is an IP integrator design).

• Petalinux Tools version 2015.2 or higher (one that includes XSDK) [Ref 9].

Also, see the following documents for more information:

• SDK System Performance Guide (UG1145) [Ref 7]

• System Performance Analysis of an All Programmable SoC Application Note (XAPP1219)
[Ref 8]

Note: If there is no latency or bandwidth issue in the system, there is no need for QoS.

Introduction
The Zynq-7000 family is based on the Xilinx All Programmable (AP) SoC architecture. These
products integrate a feature-rich dual-core ARM® Cortex™-A9 MPCore™ based processing
system (PS) and Xilinx programmable logic (PL) in a single device. The ARM Cortex-A9 MPCore
CPUs are central to the PS, and the PS also includes on-chip memory, external memory
interfaces, and a rich set of I/O peripherals.

The communication between PS and PL happens using dedicated PS-PL interface ports. In a
system-level design, there are multiple sources of data generators in the PS and PL that include
the Cortex-A9 CPU, PS DMA, PL masters, and so on.

The PL masters can be attached to the PS-PL interface slave ports. Congestion in the
Interconnect can be caused when all the masters try to access a shared resource (for example,
DDR memory). This becomes critical for latency-sensitive applications, like video, because not
ensuring the required latency might cause jitter in the output video.

The AXI interface offers basic QoS on a per-transaction basis using the AXI QoS signals that
have a 4-bit QoS configuration f ield. The value in this f ield determines the priority of the AXI
transaction.

You can implement QoS in two ways in the Zynq-7000 device, using the following:

• Dynamic QoS configuration that requires the QoS value to be driven in a PL master per
transaction basis. Dynamic QoS is managed with AXI-compliant AxQoS signals.

• Static QoS setting of the AXI Interconnect and the DDR controller ports. Static QoS setting
fixes the priority of the port in AXI Interconnect irrespective of the value of the AxQoS
signal.

Figure 1, page 3 shows the placement of the QoS blocks in PS of the Zynq-7000 device.

http://www.xilinx.com

Introduction

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 3

The QoS blocks can be configured using register programming interface.

In Zynq-7000 AP SoC devices, it is possible to enable the advanced QoS option using the
QoS-301 block that enables rate control, based on number of bursts in the data traff ic.

X-Ref Target - Figure 1

Figure 1: System View Diagram
UG585_c3_02_101614

PL Fabric

High Performance
AXI Controllers

(AXI_HP)

Application
Processing Unit

PL Clocks

M0

FIFO

ASYNC

M1 M2 M3

Cache
Coherent
ACP Port

Cortex-A9
NEON MMU

L1 I/D Caches

Slave Interconnect for
Master Peripherals

DMA
Controller

IOP

Instruction
Data Snoop

CPU_6x4x

M

General
Purpose

AXI Masters

M0 M1

General
Purpose

AXI Slaves

S0 S1

FIFOFIFO FIFO

32-/
64-bit

64-bit 64-bit

64-bit 64-bit

32-bit

32-bit

64-bit

ASYNC
ASYNC

Snoop Control Unit

32-/
64-bit

32-/
64-bit

ASYNC

ASYNC

ASYNC

32-/
64-bit

ASYNC
4

DevC

8

QoS

CPU_2x

DDR_3x

Read/Write
Requests
(e.g., 8 reads,
8 writes)

Clock
Synchronizer

Quality of
Service
Priority

Clock Domains
are specified within
Some Blocks

CPU_1x

On-chip
RAM
256 kB

16

4 8 16

8

88 1

ASYNC

ASYNC
DAP

CPU_2x

L2 Cache
512 KB

M0 M1

IOP
Masters

IOP
Slave
Reg &
Data

M

Central Interconnect

DDR Controller

CPU_2x

Master Interconnect
for Slave Peripherals

OCM
Interconnect

QoS

QoS

8

QoS

QoS

QoS QoS

AXI_HP
to DDR
Interconnect

ASYNC

ASYNC

ASYNC

1 84 8

M3 M2 M1 M0

8

http://www.xilinx.com

Introduction

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 4

Each Interconnect in the PS (central, master, slave, memory) uses a two-level arbitration scheme
to resolve traff ic contention.

• The f irst-level arbitration is based on the priority indicated by the AW/RQOS signals from
the master or programmable registers. The highest QoS value has the highest priority.

• The second-level arbitration is based on a least recently granted (LRG) scheme and is used
when multiple requests are pending with the same QoS signal value.

In addition to the basic arbitration, the AXI Interconnect in the PS provides an advanced QoS
control mechanism using the QoS-301 block. This programmable mechanism influences
arbitration within the Interconnect for requests from these masters:

• CPUs and ACP requests to DDR

• DMA controller requests to DDR and OCM (through the central Interconnect)

• AMBA master requests to DDR and OCM (through the central Interconnect)

In the PS, advanced QoS signals exist on the following paths:

• Path from L2 cache to DDR

• Path from DMA controller to the central interconnect

• Path from AHB masters to the central interconnect

The QoS-301 signals in the ARM processor provides facilities to regulate transactions as
follows:

• Maximum number of outstanding transactions

• Peak rates

• Average rates

• Burst rates

For more information, see Section “B.20 Interconnect QoS (QoS-301)” in the Zynq-7000
Technical Reference Manual (UG585) [Ref 1].

You need to perform QoS arbitration for all slave interfaces with careful deliberation, because
fixed priority arbitration leads to starvation issues if not used properly. By default, all ports have
equal priority so starvation is not an issue.

This reference design describes an approach that demonstrates how you can use QoS when the
memory subsystem is stressed.

A designer is expected to create “well behaved” masters in the PL, which sufficiently throttle
their rate of command issuance, or use the AXI_HP issuance capability settings. However,
traff ic from CPUs (through L2 cache), the DMA controller, and the IOP masters can interfere with
traff ic from the PL. The QoS modules allow throttling these PS masters to ensure expected and
consistent throughput and latency for the user design in the PL or in specif ic PS masters.

http://www.xilinx.com

Hardware Design Overview

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 5

The PS Interconnect uses all four QoS signals except where it attaches to the DDR memory
controller, which takes only the most signif icant QoS signal. A three-input MUX selects among
the QoS signals, another signal from the SLCR register, and a DDRARB signal directly from the
PL to determine if a request is urgent.

This application note describes a QoS example that is an embedded video processing
application designed to showcase the feature and capabilities of the Z-7020 device QoS signals.
This design consists of the following elements:

• The Zynq-7000 AP SoC device processing system (PS)

• A test pattern generator (TPG) connected to one PS AXI HP port

• A video processing pipeline in programmable logic (PL)

• ATG is used to measure performance in the HP and ACP interfaces.

You can control the ATG using the EMIO pins to start and stop the traff ic generation, and
change the traffic in the ATG by changing the burst size of the traff ic in the ATG IP.

The AXI performance monitor (APM) monitors and measures the memory bandwidth used on
different AXI HP ports.

This application note demonstrates how a user application can control the traff ic using QoS
signals on AXI HP ports and DDR ports when the data is congested during high traff ic
conditions.

Hardware Design Overview
The hardware design is based on the Zynq-7000 All Programmable SoC ZC702 Base Targeted
Reference Design (Vivado Design Suite 2015.2) (UG925) [Ref 6].

The hardware design is intended to provide the connectivity between the TPG block, the Sobel
image filter, the ATG block in the PL, and the Processing System-7, as follows:

• The PL uses the TPG block to generate the test pattern of different colors in vertical blocks
by writing into DDR.

• The Sobel image filter block f ilters the image by reading and writing into the DDR.

• The ATG block generates the traff ic by writing the data into pre-defined address range of
the DDR.

• The APM is used to monitor the data coming out of the different AXI HPI ports.

See the ZC702 Video and Imaging Kit Reference Design [Ref 6] for more details about the
hardware design.

The ATG IP is configured to generate high-level data traffic. The burst size is configured
between four to 16 bursts to allow generation of an average AXI burst length of eight. The
inter-frame gap is set to five cycles so that the ATG master does not create a starvation scenario.

http://www.xilinx.com

Hardware Design Overview

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 6

The start and stop signals are mapped to EMIO and the signals can be controlled using software
running in PS block.

The following describes the hardware data flow in the design:

1. The TPG block generates video traffic of resolution 1080p or 760p, based on the software
configuration.

2. The VDMA interfacing to the TPG block writes the streaming video frames to the DDR of the
PS.

3. The VDMA interfacing to the Sobel IP fetches the raw video frames from memory and passes
the frames to Sobel f ilter for image edge detection

4. The PS DDR memory stores the Sobel-processed frames.

5. The display controller fetches the processed frames from memory and displays the video
frames using HDMI interface to display device

6. The AXI traff ic generator (ATG) blocks are enabled or disabled, based on user selection, to
create contention and show jitter on output video.

7. The QoS option is enabled to prioritize the video traff ic and demonstrate jitter removal.

The following diagram shows the hardware block diagram.

X-Ref Target - Figure 1-1

Figure 2: Hardware Block Diagram

http://www.xilinx.com

Software Architecture

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 7

The design is created using the Vivado® IP integrator tool flow. After you create the block
design, the IP integrator generates a hardware wrapper that instantiates the IP-specific wrapper
files. The following table lists the Xilinx IP in the hardware design.

Software Architecture
Linux provides the following facilities to the user space application:

• Character driver interface for receiving and controlling the information.

• Media control and V4L2 framework is the standard framework used to stream video using
TPG as input source

Table 1-1: IP in Hardware Design

IP Name Description Configuration

Processing
System-7

Generates a wrapper that instantiates
Processing System-7 hard block.

Configured with ZC702 default values
that are preset from the Processing
System-7 IP wizard.

Image Filter IP Used to f ilter the outline of the input
video source.

AXI Interconnect IP AXI Interconnect IP that sends the AXI4
transactions from AXI4 to DDR of
processing system.

Configured for 1 master and 1 slave
interface.

ATG IP Used to generate the traffic. Configured to start and stop the traffic
using EMIO pins. Configured to
generate high level traffic.

Proc Sys Reset Applies reset to peripherals and AXI
Interconnect IP.

Configured to apply reset to AXI
Interconnect and ATG IP.

AXI Performance
Monitor

Used to monitor the traff ic at different AXI
HP interfaces.

Configured for different APM slots for
each HP Interface.

http://www.xilinx.com

Software Architecture

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 8

The software application implemented for this application note can be divided into four logical
sections:

1. Video playback IP:

a. In this application, the TPG IP provides for video input, which copies the data into DDR
using AXI HP0 interface.

b. The AXI HP0 by the LogicCVC controller reads the input video data to display the frames
on a connected monitor using HDMI.

c. The Sobel image filter reads that same data to apply the filtering for getting the outline
of the image and writing into the output into the DDR using AXI HP2 interface.

d. The LogicCVC reads the output of the Sobel image f ilter concurrently for display on the
monitor.

2. The AXI traff ic generation IP (ATG):

a. Is configured to high-level traff ic mode.

b. Writes the data into a specific region of DDR using AXI HP1, which creates the
congestion on the DDR S2 port.

c. EMIO pins control the start and stop signals of the ATG core.

X-Ref Target - Figure 1-1

Figure 3: Software Architecture Block Diagram

http://www.xilinx.com

Software Architecture

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 9

3. QoS signals:

a. Basic QoS are the AXI interface signals that the master generates.

b. Enable the DDR urgent arbitration signals for DDR S2 and S3 ports.

c. Advance QoS configures the QoS301 block for regulating the transactions using peak
rate and the number of burst transactions.

4. QT interface: The following figure shows the QT interface:

The application normally runs as a demon process in the background on the Zynq-7000
system. The following setting are included in the QT interface:

a. Video Control: This control is used to switch on and off the video on the QT interface, which
is supplied by TPG and display using LogicCVC IP.

b. Filter Mode: This control is used to switch between on and off the Hardware Filtering of the
video on the QT interface, which is supplied by TPG.

When you switch on the Hardware Filter mode, this control used to get the outline of the video
source and display using LogicCVC IP. When we switch the filter off, normal TPG video source
displays using LogicCVC IP.

c. ATG: This control used to start and stop the ATG controllers using EMIO pins on AXI HP
ports in basic QoS. When you switch on the ATG along with hardware f ilter on, it will
create congestion while writing the data into DDR ports. This congestion affects the
video display and causes flickering on the screen based on the available bandwidths.
When you switch off the ATG, you will not see any flickering on the video.

d. Basic QoS: This controls enables the QoS signals for static and dynamic configurations
of AXI HP ports and DDR ports. It switches off the QoS signals used for the AXI HP ports
and DDR ports. By applying the static or dynamic configuration, you can limit the
bandwidth for the required AXI HP ports and make the smooth display by decreasing the
priority on HP1 and increasing the priority on HP0 and HP2 interfaces. In addition to this
configuration, you need to enable the DDR QoS signals in the DDR Urgent Selection
Register.

e. ATG ACP: This control starts and stops the ATG controllers using EMIO pins on ACP port
for advanced QoS along with the Hardware Filter on. When you enable the ATG control,
ATG makes the congestion while writing the data into DDR ports. This congestion affects
the video display and causes flickering on the screen based on the available bandwidths.
When you switch off the ATG, you do not see any flickering on the video.

X-Ref Target - Figure 1-1

Figure 4: QT User Interface

http://www.xilinx.com

Application Code

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 10

f. Advanced QoS: This controls enabling and disabling configurations of CPU write
transactions. By applying the QoS-301 configuration to enable the regulation on write
rate and outstanding transactions, you can avoid the congestion and make the smooth
display by decreasing the peak rate and number of transfers on CPU.

g. AQoS Peak rate: This control lets you select the number of cycles required for each
transfer, which affects the peak rate graph for various cycles. The following f igure shows
the peak rate graph.

h. CPU Utilization: This plots the graph of the utilization of both CPUs during different use
case scenarios.

i. Performance: This control used to plot the graph of the performance combination of
HP0 and HP2 throughput measured using APM controller slots during usage of the
different use case scenarios with and without enabling the f ilter mode. This control also
plot the graph of the performance of HP1 during basic QoS mode and ACP performance
during QoS advance mode measured using APM controller slots during usage of the
different use case scenarios.

Application Code
The application code has the following components:

1. For video playback, use the Base TRD source code with QoS hardware design file along with
the modified Linux application from reference design zip file. For the build procedure, see
the Base TRD URL.

2. To control the ATG start and stop, these are the steps for Basic and Advanced QoS.

a. Set the respective ATG EMIO pin to start and stop by writing the data into a specif ic
region of the DDR port using atg_on.sh and atg_acp.sh scripts.

i. Read and write the GPIO direction register for particular GPIO

ii. Read and write the GPIO output enable register for particular GPIO

X-Ref Target - Figure 1-1

Figure 5: Peak Rate Graph Results

http://www.xilinx.com
http://www.wiki.xilinx.com/Zynq+Base+TRD+14.5

Application Code

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 11

iii. Read and write the GPIO data register for particular GPIO

iv. Repeat the above three steps to start each ATG controller with the respective GPIO
pin.

2. To enable the Basic QoS signals, the following code base in qos_en.sh has been used:

a. Configure the priorities on AXI HP interface and DDR ports statically for all transactions
as follows:

i. Assert the write priority for each HP interface

ii. Assert the read priority for each HP interface

iii. Assert the DDR S2 and S3 ports QoS signals for static configuration

#echo Write priority asset for each HP port
devmem 0xF800801C 32 0xF
devmem 0xF800901C 32 0x1
devmem 0xF800A01C 32 0xF

#echo Read priority asset for each HP port
devmem 0xF8008008 32 0xF
devmem 0xF8009008 32 0x1
devmem 0xF800A008 32 0xF

#SLCR reg for unlock
devmem 0xf8000008 16 0xDF0D
#set the DDR to select ARQoS & AWQoS
devmem 0xf800061C 32 0x5050
#SLCR reg for lock
devmem 0xf8000004 16 0x767B

b. Configure the priorities on AXI HP Ports and DDR ports dynamically for all transactions
source code as follows using qos_en.sh

i. Assert the write priority for each HP interface

ii. Assert the read priority for each HP interface

Assert the DDR S2 and S3 ports QoS signals for Dynamic configuration
 #echo write channel control using QoS for HP0 and HP2
devmem 0xF8008014 32 0xF0A
devmem 0xF800A014 32 0xF0A

#echo read channel control using QoS for HP0 and HP2
devmem 0xF8008000 32 0xA
devmem 0xF800A000 32 0xA

 #SLCR reg for unlock
devmem 0xf8000008 16 0xDF0D
#set the DDR to select ARQoS & AWQoS
devmem 0xf800061C 32 0xA0A0
#SLCR reg for lock
devmem 0xf8000004 16 0x767B

4. To enable the Advanced QoS signals, the following code base used in aqos_en.sh:

a. Configure the ACP write transactions as follows:

i. Enable QoS regulation for AW rate and outstanding write transactions.

http://www.xilinx.com

Procedure to use the QT interface

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 12

ii. Set the maximum number of write outstanding transactions.

iii. Set the number of cycles required for each transaction.

iv. Set the number of transfers required:

#Enable QoS regulation for AW rate & outstanding write transactions
devmem 0xF894610C 32 0x21
max no of aw_ot transactions
devmem 0xF8946110 32 0xF00
#Number of cycles for every transaction selected by user
devmem 0xF8946118 32 <peak rate value>
#channel burstiness set to 1 for write transfers
devmem 0xF894611C 32 0x1
 #SLCR reg for unlock
devmem 0xf8000008 16 0xDF0D
#set the DDR to select ARQoS & AWQoS
devmem 0xf800061C 32 0xA0A2
#SLCR reg for lock
devmem 0xf8000004 16 0x767B

Procedure to use the QT interface
1. Select the Video control to switch on the Video; this enables the Filter mode, ATG, and

ATG_ACP control settings.

2. Select the Hardware Filter mode to filter the video source generated by TPG.

3. Select the ATG control; this enables the Basic QoS control selection. Observe the flickering
on the screen.

4. Select the Basic QoS either in static or dynamic configuration to avoid the flickering on the
display screen.

5. Select the QoS off mode or ATG off mode to enable the ATG_ACP control setting.

6. Select the ATG_ACP control to switch on the ATG on ACP, which enables the Advance QoS
control setting.

Observe the flickering on the screen.

7. Set the Advanced QoS control on by selecting various peak rate cycles from AQoS peak rate
interface, which decreases the ATG write transactions while increasing the number of cycles.

Conclusion
This application note demonstrates the use of Basic and Advanced QOS features to counter
traff ic congestion issues for video applications.

IMPORTANT: If there is no latency or bandwidth issue, there is no requirement for QoS.

http://www.xilinx.com

Reference Design

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 13

You can use the Basic QoS signals of Interconnect AXI HP ports by configuring the priorities and
controlling the read and write transactions channels along with the DDR QoS signal
configuration for DDR slave ports controlling for AXI HP master ports during video playback.

You can use the Advanced QoS signals of CPU by using the peak rate, burst rate, and average
rate of the CPU along with enabling the regulation for read or write transactions to avoid the
latency issues during video playback.

Note: Follow the instructions provided in the Base TRD for building hardware and software code
provided in the xapp1266-zynq-7000-qos.zip f ile.

Reference Design
You can download the Reference Design Files for this application note from the Xilinx website.

The following table shows the reference design matrix.

Table 1-2: Reference Design Matrix

Parameter Description

General

Developer Name Xilinx

Target Devices Zynq-7000 AP SOC

Source code provided Yes

Source code format C

Design uses code and IP from existing Xilinx
application note and reference designs, CORE™
Generator software, or third-party.

Yes

Simulation

Functional Simulation Performed No

Timing simulation performed No

Test bench used for functional and timing
Simulations

No

Test bench format -NA-

Simulator software/version used -NA-

SPICE/IBIS simulations -NA-

Implementation

Synthesis software tools/version used Vivado Design Suite 2015.2

Implementation software tools/versions used Vivado Design Suite 2015.2

Static timing analysis performed Vivado Design Suite 2015.2

Hardware Verif ication

Hardware verif ied Yes

Hardware platform used for verif ication ZC702

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=395528

References

XAPP1266 (v1.0) September 18, 2015 www.xilinx.com 14

References
1. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

2. Zynq-7000 All Programmable SoC Software Developer User Guide (UG821)

3. LogicCORE IP AXI Traffic Generator Product Guide (PG125)

4. LogicCORE IP AXI Performance Monitor Product Guide (PG037)

5. Vivado Design Suite AXI Reference Guide (UG1037)

6. Zynq-7000 All Programmable SoC ZC702 Base Targeted Reference Design (Vivado Design
Suite 2015.2 User Guide) (UG925)

7. SDK System Performance Guide (UG1145)

8. System Performance Analysis of an All Programmable SoC Application Note (XAPP1219)

9. PetaLinux Tools

VIDEO: Zynq-7000 Quick Take Videos

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

Date Version Revision

09/18/2015 1.0 Initial Xilinx release.

http://www.xilinx.com/training/zynq/index.htm
http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/design_tools/software-development/petaLinux-sdk.html
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;d=ug1145-sdk-system-performance.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1219-system-performance-modeling.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_traffic_gen;v=v2.0;d=pg125-axi-traffic-gen.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_perf_mon;v=v5.0;d=pg037_axi_perf_mon.pdf
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug821-zynq-7000-swdev.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/2015_2/ug925-zynq-zc702-base-trd.pdf

	Using Quality of Service (QoS) Capabilities in Zynq-7000 AP SoC Devices
	Summary
	Prerequisites
	Introduction
	Hardware Design Overview
	Software Architecture
	Application Code
	Procedure to use the QT interface
	Conclusion
	Reference Design
	References
	Revision History
	Please Read: Important Legal Notices

