
XAPP1319 (v2.1) November 23, 2020 1
www.xilinx.com

Summary
The Zynq® UltraScale+™ MPSoC family is based on the Xilinx® UltraScale™ MPSoC
architecture. The Zynq UltraScale+ RFSoCs are similar to the basic MPSoCs with the addition of
key RF subsystems for multi-band, multi-mode cellular radios, and cable infrastructure. These
MPSoC and RFSoC products integrate a feature rich 64-bit quad-core or dual-core Arm®
Cortex™-A53 and dual core Arm Cortex R5 based processing system (PS) and Xilinx
programmable logic (PL) UltraScale™ architecture in a single device. Nonvolatile memory
(NVM) in the form of eFUSEs and battery-backed RAM (BBRAM) is used for advanced
encryption standard (AES) keys, Rivest-Shamir-Adleman (RSA) key hashes, security control, and
user-defined applications. This application note describes the programming of BBRAM and
eFUSEs in Zynq UltraScale+ devices. The capability to program BBRAM and eFUSEs increases
the field programmability of Xilinx FPGAs and SoCs. The programming of BBRAM and eFUSEs in
Zynq UltraScale+ devices provides ease-of-use and security advantages over the programming
capabilities of the Zynq-7000 SoC and UltraScale devices.

Download the reference design files for this application note from the Xilinx website. For
detailed information about the design files, see Reference Design.

Introduction
The BBRAM and eFUSEs in Zynq UltraScale+ devices are principally used to store AES keys and
the hashes of RSA keys. Self-programming of BBRAM and eFUSEs in Zynq UltraScale+ devices
does not require an IP core. Software running on the Arm® Cortex-A53 or Cortex-R5 processor
uses the Xilinx Secure Key (XilSKey) library to program the BBRAM or the eFUSEs. Example C
code is provided with the XilSKey library to program the BBRAM or eFUSEs.

This application note provides two methods to program the BBRAM and eFUSEs:

• Create and run software built in the Vitis™ software platform to program the BBRAM and
eFUSEs

• Use Xilinx Lightweight Provisioning (XLWP) command line tool to program the BBRAM and
eFUSEs

Along with instructions to program BBRAM and eFUSEs, steps are provided to create and run an
application software project in Vitis to test the cryptographic functionality, enabled by
programmed memory. For example, run the zcu102_program_bbram software project to
program the BBRAM, and then test the functionality using the standard hello_world software
project.

Application Note: Zynq UltraScale+ Devices

XAPP1319 (v2.1) November 23, 2020

Programming BBRAM and eFUSEs
Author: Mir Sayed Ali

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=3de24b46-b712-46e9-9023-ed8b52287286;d=xapp1319-zynq-usp-prog-nvm.zip

Hardware and Software Requirements

XAPP1319 (v2.1) November 23, 2020 2
www.xilinx.com

The uses of programming the BBRAM and eFUSEs are listed as follows:

• AES Key
• RSA Support
• Security Control Support
• Physically Uncloneable Function (PUF) Support
• User Defined eFUSEs

For a complete list of programmable eFUSEs, see the Zynq UltraScale+ MPSoC: Technical
Reference Manual (UG1085) [Ref 2].

Programming BBRAM and eFUSEs is a prerequisite for the secure boot functionality discussed in
the Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209) [Ref 1].

Note: This application note applies to eFUSEs located in the processor system (PS) of Zynq UltraScale+
MPSoC/RFSoC devices, not the eFUSEs located in the programmable logic (PL). For details on
programming the eFUSEs located in the programmable logic (PL) of Zynq UltraScale+ devices, see
Internal Programming of BBRAM and eFUSEs (XAPP1283) [Ref 3].

Hardware and Software Requirements
The hardware and software requirements for the reference systems are as follows:

• ZCU102 evaluation board or Avnet UltraZed-EG board
• AC power adapter (12 VDC)
• USB type-A to USB mini-B cables (for UART, JTAG communication)
• SD-Card (FAT32)
• Xilinx Vitis software platform 2020.1 or newer

IMPORTANT: Programming any of the noted eFUSE settings preclude Xilinx test access. Consequently, Xilinx
may not accept return material authorization (RMA) requests. The eFUSEs are ENC_ONLY, JTAG_DIS,
DFT_DIS, RSA_EN, and AES key. For further details, refer to Table 12-13 in the Zynq UltraScale+ MPSoC:
Technical Reference Manual (UG1085) [Ref 2].

Programming BBRAM and eFUSEs Using XilSKey Library
The software projects in Vitis uses the XilSKey library to program the BBRAM and eFUSEs. The
XilSKey library is located at <Vitis_install>/data/embeddedsw/lib/sw_services.

The XilSKey library provides examples for programming Zynq UltraScale+ device eFUSEs and
BBRAM. The high-level steps using the XilSKey library are explained in the following sections:

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=2

BBRAM and eFUSE Uses

XAPP1319 (v2.1) November 23, 2020 3
www.xilinx.com

• Programming the AES Key in BBRAM.
• Programming eFUSEs for AES and RSA Cryptographic Functions.
• Programming PUF-related eFUSEs.

BBRAM and eFUSE Uses
This section describes the uses cases of programming the BBRAM and eFUSEs in Zynq
UltraScale+ devices:

AES Key
Zynq UltraScale+ devices use a hardened AES cryptographic block for AES encryption and
decryption. The AES cryptographic block accepts keys from several sources to include storing a
256-bit AES key in BBRAM or eFUSEs. The AES key can also be stored in an obfuscated or black
format either externally in flash or internally in eFUSEs. The AES key cannot be read out of
BBRAM or eFUSEs once it has been programmed. The integrity of the key loading operation is
verified using a 32-bit CRC. The Zynq UltraScale+ device also supports AES encryption and
decryption using a PUF generated key, as discussed in Physically Uncloneable Function (PUF)
Support. In the PUF eFUSEs mode, the CHASH, AUX data, and SYNDROME or PUF helper data
are programmed into the eFUSEs.

eFUSE Uses
Additional eFUSE fields use cases are described in the following section.

RSA Support

Zynq UltraScale+ devices use silicon-based RSA and SHA3 cryptographic blocks for RSA
authentication. RSA uses a 4096-bit private/public key pair. Only the 384 bit hash of the primary
public key (PKK) is stored in the eFUSEs to save area on the device. The configuration security
unit (CSU) reads the public key from external memory, calculates its cryptographic checksum
using the SHA-3/384 engine, and compares it to the value stored in eFUSEs. For further details,
you can refer to Zynq UltraScale+ MPSoC: Technical Reference Manual (UG1085) [Ref 2].

You can also program eFUSEs for revoking public keys of applications and partitions. For further
details, you can refer to Key Revocation Lab (XAPP1344) [Ref 8].

Security Control Support

Zynq UltraScale+ devices provide eFUSEs that increase the security of the device. For example,
some eFUSE bits can permanently disable the JTAG and design for testing (DFT) functionality of
the device which is useful during the development phase. When a device moves to the
production phase, disabling the JTAG and DFT ensures these ports are no longer accessible,
preventing an adversary from gaining access to the hardware.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/documentation/application_notes/xapp1344-key-revocation-lab.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=3

XilSKey

XAPP1319 (v2.1) November 23, 2020 4
www.xilinx.com

Physically Uncloneable Function (PUF) Support

The principle use of the PUF in Zynq UltraScale+ devices is black key storage. Black key storage
stores the user’s AES key in the eFUSEs or in the Bootheader in an encrypted format. At the time
of use, the encrypted key in the eFUSEs or Bootheader is decrypted, and the resulting plaintext
key is used for the encryption and decryption operation. As a secondary usage of the PUF, the
PUF along with the AES engine, can be used to encrypt and decrypt user data. Refer to External
Secure Storage Using the PUF (XAPP1333) [Ref 9].

The PUF registration software commands the PUF to generate values and program the eFUSEs
used by the PUF. This software is included in the XilSKey library. The registration software
commands the PUF to generate the following values:

• Helper data
• Black key (encrypted user key)

The values generated by the PUF registration software are programmed into the eFUSEs. In the
PUF Bootheader mode, the values are included in the Bootheader by Bootgen.

The steps used to generate and program PUF values into the eFUSEs are explained in
Programming PUF-related eFUSEs. The use of the PUF Bootheader mode is discussed in Secure
Boot of Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209) [Ref 1].

User Defined eFUSEs

Zynq UltraScale+ devices provides eight 32-bit registers for user-defined eFUSEs. These eFUSEs
can be written to and read from, for various user-defined functions. They can be used for
enhanced secondary key revocation.

XilSKey
The XilSKey library provides a convenient structure to program the BBRAM and eFUSEs.

Table 1 provides a summary of the user-defined macros used in BBRAM and eFUSE
programming. These are used in the xilskey_bbramps_zynqmp.c,
xilskey_efuseps_zynqmp_input.h, and xilskey_puf_registration.h files used in the example
designs.
Table 1: Zynq UltraScale+ User-configurable PS eFUSE Parameters

Macro Description
AES
XSK_EFUSEPS_WRITE_AES_KEY Commands to write the value defined in the

XSK_EFUSEPS_AES_KEY macro to the AES eFUSE
XSK_EFUSEPS_AES_KEY 256-bit AES key for use in eFUSE
XSK_ZYNQMP_BBRAMPS_AES_KEY 256-bit AES key for use in BBRAM

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=4

XilSKey

XAPP1319 (v2.1) November 23, 2020 5
www.xilinx.com

XSK_EFUSEPS_AES_RD_LOCK Disables the AES key cyclic redundancy check (CRC) for eFUSE
key storage

XSK_EFUSEPS_AES_WR_LOCK Disables write to AES eFUSEs
XSK_EFUSEPS_ENC_ONLY Requires that the boot image be encrypted with eFUSE AES key,

when programmed. It only applies to the encryption status and
is independent of the RSA_EN.

XSK_EFUSEPS_BBRAM_DISABLE Disables use of AES key from BBRAM permanently
RSA
XSK_EFUSEPS_PPK0_IS_SHA3 Specifies secure hash algorithm-2 (SHA-2) or SHA-3 of PPK0
XSK_EFUSEPS_WRITE_PPK0_HASH Causes hash of public-private key 0 (PPK0) to be programmed

into eFUSEs
XSK_EFUSEPS_PPK0_HASH PPK0 hash
XSK_EFUSEPS_PPK1_IS_SHA3 Specifies SHA-2 or SHA-3 of PPK1
XSK_EFUSEPS_WRITE_PPK1_HASH Causes hash of PPK1 to be programmed into eFUSEs
XSK_EFUSEPS_PPK1_HASH PPK1 hash
XSK_EFUSEPS_PPK0_WR_LOCK Disables writing to PPK0 eFUSEs permanently
XSK_EFUSEPS_PPK0_INVLD Revokes PPK0 permanently
XSK_EFUSEPS_PPK1_INVLD Revokes PPK1 permanently
XSK_EFUSEPS_PPK1_WR_LOCK Disables writing to PPK1 eFUSEs permanently
XSK_EFUSEPS_RSA_ENABLE Forces RSA authentication during boot permanently
XSK_EFUSEPS_SPK_ID Selects SPK to use
XSK_EFUSEPS_WRITE_SPK Writes control for SPK selection
Security Control
XSK_EFUSEPS_ERR_DISABLE Prohibits error messages from being read via JTAG

(ERROR_STATUS register)
XSK_EFUSEPS_JTAG_DISABLE Disables JTAG. IDCODE and BYPASS are the only allowed

commands.
XSK_EFUSEPS_DFT_DISABLE Disables DFT boot mode permanently
XSK_EFUSEPS_PROG_GATE_DISABLE When programmed, these fuses prohibit the PROG_GATE feature

from being engaged. If any of these are programmed, the PL is
always reset when the PS is reset.

XSK_EFUSEPS_SECURE_LOCK When programmed, the device does not enable boundary scan
(BSCAN) capability while in secure lockdown.

XSK_EFUSEPS_LBIST_EN Enables logic built-in self-test (BIST) to be run during boot
permanently

XSK_EFUSEPS_LPD_SC_EN Enables zeroization of registers in low-power domain (LPD)
during boot permanently

XSK_EFUSEPS_FPD_SC_EN Enables zeroization of registers in full-power domain (FPD)
during boot permanently

XSK_EFUSEPS_PBR_BOOT_ERR Enables boot halt after a platform management unit (PMU) error
permanently

Table 1: Zynq UltraScale+ User-configurable PS eFUSE Parameters (Cont’d)

Macro Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=5

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 6
www.xilinx.com

Programming the AES Key in BBRAM
This section provides step-by-step procedures to program a user AES key in BBRAM for the
ZCU102 evaluation board. The main steps are as follows:

• Launch Vitis and create a platform project.
• Import the example BBRAM project in Vitis and generate the elf file.
• Generate the boot image and program the BBRAM.
• Test the functionality of the programmed BBRAM using a hello_world software project.
Note: These steps demonstrated here are for a Windows machine but could be performed in a Linux
machine (either physical or virtual).

Launch Vitis and create a platform project:

1. Launch the Vitis IDE in Windows by using the desktop shortcut or by double-clicking the
C:\Xilinx\Vitis\2020.1\bin\vitis.bat file. The Eclipse Launcher dialog box
opens.

PUF
XSK_PUF_PROGRAM_EFUSE Programs syndrome data, CHASH, AUX, and black key into

eFUSEs
XSK_PUF_IF_CONTRACT_MANUFACTURER Checks whether or not RSA is enabled prior to issuing PUF

commands
XSK_PUF_READ_SECUREBITS Reads status of secure bits (SYN_INVALID, REGISTER_DISABLE,

SYN_WRLK) for display on communication terminal
XSK_PUF_PROGRAM_SECUREBITS Programs PUF secure bits (SYN_INVALID, REGISTER_DISABLE,

SYN_WRLK)
XSK_PUF_SYN_INVALID Invalidates the programmed helper data permanently
XSK_PUF_REGISTER_DISABLE Disables PUF regeneration permanently
XSK_PUF_AES_KEY Red key value used in black key generation
XSK_PUF_IV User-provided initialization vector
XSK_PUF_SYN_WRLK Locks PUF helper data from future programming
User eFUSEs
XSK_EFUSEPS_USER[0-7]_FUSES User eFUSE value
XSK_EFUSEPS_WRITE_USER[0-7]_FUSE Burns value in XSK_EFUSEPS_USER[0-7] to user eFUSEs
XSK_EFUSEPS_USER_WRLK_[0-7] Locks the corresponding user eFUSE register so it cannot be

written to again

Table 1: Zynq UltraScale+ User-configurable PS eFUSE Parameters (Cont’d)

Macro Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=6

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 7
www.xilinx.com

2. Select the workspace location (for example: D:\designs\workspace). Create the
workspace folder if it is not already created.

3. Click Launch. The Vitis integrated design environment (IDE) opens.
4. Click File > New > Platform Project to create platform project using ZCU102 Vivado Xilinx

Shell Archive (XSA).

X-Ref Target - Figure 1

Figure 1: Vitis IDE Eclipse Launcher Dialog Box

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=7

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 8
www.xilinx.com

5. Enter the project name as hw_platform, when the New Platform Project dialog box opens as
shown in Figure 2. Click Next.

X-Ref Target - Figure 2

Figure 2: New Platform Window in Vitis

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=8

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 9
www.xilinx.com

6. Choose Create from hardware specification (XSA) in the Platform Project dialog box, and
click Next.

X-Ref Target - Figure 3

Figure 3: Setting Custom Hardware

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=9

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 10
www.xilinx.com

7. Browse and select zcu102.xsa from the Vitis installation folder. To create the platform
based on your selection, the tool automatically selects the appropriate operating system
and processor.

X-Ref Target - Figure 4

Figure 4: Hardware and Software Specification in Vitis

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=10

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 11
www.xilinx.com

8. Click Finish to create your platform project. The platform project editor opens as shown in
Figure 5.

9. Right-click hw_platform and select Platform Build >Project to build the hardware platform.

When the platform is generated, the dialog box shows the status of platform generation and
the Board Support Package settings dialog box opens.

10. Select Board Support Package under psu_cortexa53_0. The Board Support Package
opens as shown in Figure 6.

X-Ref Target - Figure 5

Figure 5: Platform View in Vitis

X-Ref Target - Figure 6

Figure 6: Board Support Package View in Vitis

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=11

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 12
www.xilinx.com

11. In the Board Support Package page, click Modify BSP Settings.
12. Select xilskey under Supported Libraries in Board Support Package Settings window, and

click OK.

X-Ref Target - Figure 7

Figure 7: Board Support Package Settings - Xilinx Secure Key Library

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=12

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 13
www.xilinx.com

Import the example BBRAM project in Vitis and generate the elf project:

1. Select the Libraries tab under Board Support Package and click Import Examples to the
right of the xilskey libraries to view the xilskey example projects.

2. Select the check box for xilskey_bbramps_zynqmp_example. Click OK.

X-Ref Target - Figure 8

Figure 8: Import Example Project for Xilinx Secure Key Library

X-Ref Target - Figure 9

Figure 9: Import Xilskey BBRAM Example Project

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=13

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 14
www.xilinx.com

The xilskey_bbramps_zynqmp_example_1 project gets added to the workspace. This project
contains the example C code to program a key into BBRAM and verify the key.

3. Double-click xilskey_bbramps_zynqmp_example.c so that it is displayed in the text
window.

4. From the aes.nky file in the reference design files (see Reference Design), copy the AES key
to line 41 in the xilskey_bbramps_zynqmp_example.c file as shown in Figure 10.

5. Save the file.
6. Right-click xilskey_bbramps_zynqmp_example_1 in the Project Explorer, and select

Build Project to build the application.

X-Ref Target - Figure 10

Figure 10: xilskey_bbramps_zynqmp_example.c file

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=14

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 15
www.xilinx.com

Generate the boot image and program the BBRAM fuse:

1. Right-click xilskey_bbramps_zynqmp_example_1 and select Create Boot Image. The
Create Boot Image dialog box opens with pre-populated setting as shown in Figure 11.

2. Click Create Image to create boot image (.Bin) file.

X-Ref Target - Figure 11

Figure 11: Create Boot Image in Vitis

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=15

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 16
www.xilinx.com

The console window (Figure 12) shows the boot generation command line setting and result.

3. Verify that the BOOT.BIN and program_aes_bbram_key.bif files are written to the specified
directory D:/Designs/workspace/ xilskey_bbramps_zynqmp_example_1/_ide/bootimage.

4. Use a text editor to review the program_bbram_aes_key.bif file.
5. Insert an SD card into the SD card slot of the PC. Copy BOOT.BIN to the SD card.
6. Set up the ZCU102 or UltraZed-EG evaluation board.
7. Set up a communication terminal such as Tera Term using Interface 0, 115200 baud rate, and

default settings.
8. Move the SD card from the PC to the SD card slot on the ZCU102 or UltraZed-EG evaluation

board. The ZCU102 evaluation board uses a standard SD card. The UltraZed-EG board uses
a mini SD card.

9. Configure the board to boot in SD-Boot mode by setting switch SW6 as shown in Figure 13
below.

X-Ref Target - Figure 12

Figure 12: Create a Zynq MP Boot Image for the BBRAM AES Key

X-Ref Target - Figure 13

Figure 13: SD-Boot Mode for Switch SW6

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=16

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 17
www.xilinx.com

10. Apply power to the evaluation board.
11. Verify that the output on the communication terminal indicates successful programming of

the BBRAM AES key (Figure 14).

Test the functionality of the programmed BBRAM by using a hello software project:

X-Ref Target - Figure 14

Figure 14: Programmed and Verified BBRAM AES Key

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=17

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 18
www.xilinx.com

1. In the Vitis IDE, select File > New >Application Project. The New Application Project
wizard welcome screen opens.

2. Click Next, and use the information in Table 2 to make your selections in the “New
Application Project” wizard screen.

The hello_world project gets created.

X-Ref Target - Figure 15

Figure 15: Create hello_world Application Project

Table 2: New Application Project Settings for Standalone APU Application
Wizard Screen System Properties Settings

Platform Select platform from repository hw_platform
Application project
details

Application project name hello_world
System project name hello_world_system
Target processor psu_cortexa53_0

Domain Domain standalone on psu_cortexa53_0
Templates Available templates Hello World

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=18

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 19
www.xilinx.com

3. Right-click hello_world under hello_world_system and select Build Project to build the
project.

4. Right-click hello_world once more and select Create Boot Image.
5. Rename the output BIF file as test_encrypted_hello.bif (Figure 16), in the Output

BIF file path field.
X-Ref Target - Figure 16

Figure 16: Create Boot Image for hello_world

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=19

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 20
www.xilinx.com

6. Click Security tab, then click Encryption tab, and check Use Encryption. Under Key store
select BBRAM RED (Figure 17).

7. Double-click fsbl to open edit partition window and change the encrypted option to AES,
and browse to aes_fsbl.nky for key file (Figure 18). Click OK.

X-Ref Target - Figure 17

Figure 17: Create Boot Image Encryption

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=20

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 21
www.xilinx.com

Note: The file aes_fsbl.nky is available in the Reference Design file.
X-Ref Target - Figure 18

Figure 18: Encryption for fsbl Boot Image

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=21

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 22
www.xilinx.com

8. Next, double-click the hello_world.elf, change the encrypted option to AES, and browse to
aes.nky file as Key file as shown in Figure 19. Click OK.

X-Ref Target - Figure 19

Figure 19: Encryption for hello_world Boot Image

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=22

Programming the AES Key in BBRAM

XAPP1319 (v2.1) November 23, 2020 23
www.xilinx.com

Figure 20 shows the encrypted boot image creation GUI for hello_world project.

9. Click Create Image to create a boot image (.Bin) file for hello_world.
10. Insert an SD card into the SD card slot of the PC. Copy the BOOT.BIN to the SD card.
11. Move the SD card from the PC to the SD card slot on the evaluation board.
12. Apply power to the evaluation board.

X-Ref Target - Figure 20

Figure 20: Create Boot Image Using Encryption

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=23

Programming eFUSEs for AES and RSA Cryptographic Functions

XAPP1319 (v2.1) November 23, 2020 24
www.xilinx.com

13. Verify that Hello World is displayed on the communication terminal (Figure 21).

Programming eFUSEs for AES and RSA Cryptographic
Functions

The following section provides step-by-step procedures to program the AES eFUSEs and hash
of the primary public key. These steps can be used to program any of the other eFUSEs as well.
Additionally, it includes steps to test the functionality of the programmed eFUSEs, using a
hello_world software project.

1. Follow steps from Launch Vitis and create a platform project: to create a platform project.
2. Expand Libraries under Board Support Package and click Import Examples to the right of

the xilskey.
3. Select the check box for xilskey_efuseps_zynqmp_example (Figure 22) in the import

examples pane, and click OK.

X-Ref Target - Figure 21

Figure 21: Verified Hello World

X-Ref Target - Figure 22

Figure 22: Import Xilskey eFUSEs Examples Project

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=24

Programming eFUSEs for AES and RSA Cryptographic Functions

XAPP1319 (v2.1) November 23, 2020 25
www.xilinx.com

4. Expand xilskey_efuseps_zynqmp_example_1 in the project explorer pane, and
double-click puf_registration > src > xilskey_efuseps_zynqmp_input.h to invoke
the file in the Vitis source editor (Figure 23).

This file contains the #define statements that specifies the eFUSE functionality.

5. Change the xilskey_efuseps_zynqmp_input.h as defined in Table 3.

6. Open the supplied xilskey_efuseps_zynqmp_input.h file in the Reference Design files,
update the following keys and hash value, and save the
xilskey_efuseps_zynqmp_input.h file:

° XSK_EFUSEPS_AES_KEY (Line 455)

° XSK_EFUSEPS_PPK0_HASH (Line 458)

X-Ref Target - Figure 23

Figure 23: xilskey_efuseps_zynqmp_input.h File in Source Editor

Table 3: Cryptographic Macros in xilskey_efuseps_zynqmp.h
Line No Macro Value

416 XSK_EFUSEPS_WRITE_AES_KEY TRUE TRUE
417 XSK_EFUSEPS_WRITE_PPK0_HASH TRUE TRUE
441 XSK_EFUSEPS_WRITE_PPK1_HASH TRUE TRUE

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=25

Programming eFUSEs for AES and RSA Cryptographic Functions

XAPP1319 (v2.1) November 23, 2020 26
www.xilinx.com

° XSK_EFUSEPS_PPK1_HASH (Line 461) (Figure 24)

7. In the project explorer pane, right-click xilskey_efuseps_zynqmp_example_1, and select
Build Project.

8. Right-click xilskey_efuseps_zynqmp_example_1, and select Xilinx > Create Boot Image.
9. Use default settings and Click Create Image.
10. Insert an SD card into the SD card slot of the PC. Copy

<workspace>/xilskey_efuseps_zynqmp_example_1/_ide/bootimage
/BOOT.BIN to the SD card.

11. Move the SD card from the PC to the SD card slot on the ZCU102 or UltraZed-EG evaluation
board.

12. Set the Boot Mode switch to SD mode.
13. Apply power to the board.
14. Verify that the log in the communication terminal indicates that programming of eFUSEs

works as expected.

To test the functionality of the programmed eFUSEs, create a hello_world software project:

15. In the Vitis IDE, select File > New Application Project. The Create New Application
project wizard welcome screen opens.

16. Click Next and use the information in Table 2 to make your selections in the New
Application Project wizard screens.

17. Right-click hello_world and select Build Project.
18. Right-click hello_world and select Create Boot Image.

X-Ref Target - Figure 24

Figure 24: Updated Keys in Hash Values

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=26

Programming PUF-related eFUSEs

XAPP1319 (v2.1) November 23, 2020 27
www.xilinx.com

19. Rename the BIF file as test_encrypted_hello.bif in the Output BIF file path field.
20. Click Security > Encryption tab and check Use Encryption. Select EFUSE RED under key

store.
21. Double-click the zynqmp_fsbl.elf and change the Encrypted option to AES, and browse

to aes_fsbl.nky (Figure 18). Click OK.
22. Next, double-click the hello_world.elf and change the encrypted option to AES, and

browse to aes.nky file (Figure 19). Click OK.
23. In the Create Boot Image GUI, click Create Image.
24. Insert an SD card into the SD card slot of the PC. Copy the BOOT.BIN to the SD card.
25. Move the SD card from the PC to the SD card slot on the evaluation board.
26. Apply power to the evaluation board.
27. Verify that Hello World is displayed on the communication terminal. If the RSA_EN eFUSE is

programmed, every boot is required to be authenticated.

Programming PUF-related eFUSEs
This section provides step-by-step procedure to program eFUSEs used by the PUF. In
Programming eFUSEs for AES and RSA Cryptographic Functions, a red AES key is programmed
in the eFUSEs. This section show the user how to program a black key in the eFUSEs.

Note: The users cannot run this section after Programming eFUSEs for AES and RSA Cryptographic
Functions, as the eFUSEs have already been programmed with the red AES key. Also, the users who want
a Black Key cannot program the AES key in the earlier section.
1. Follow steps from Launch Vitis and create a platform project:
2. Select Board Support Package under psu_cortexa53_0 and the Board Support Package

page opens.
3. In the Board Support Package window, click Modify BSP Settings.
4. Select xilskey and xilsecure under Supported Libraries and click OK.
5. Expand Libraries under Board Support Package and click Import Examples to the right of

the xilskey.
6. Select the check box for xilskey_puf_registration in the examples for xilskey pane, and click

OK.
7. Expand xilskey_puf_registration_1 in the project explorer pane.
8. Double-click xilskey_puf_registration_1 > src >xilskey_puf_registration.h in the project

explorer pane, to invoke the file in the source editor.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=27

Programming PUF-related eFUSEs

XAPP1319 (v2.1) November 23, 2020 28
www.xilinx.com

9. Edit the xilskey_puf_registration.h as shown in Table 4.

10. Save the file and exit.
11. In the project explorer, right-click the xilskey_puf_registration_1 project, and select Build

Project.
12. Right-click the xilskey_puf_registration_1 project, and select Create Boot Image.
13. In the Create Boot Image GUI, ensure that Zynq MP is selected in the architecture field.
14. Use default settings and Click Create Image. Click Create Image to create boot image (.Bin)

file.
15. Insert an SD card into the SD card slot of the PC. Copy

D:/Designs/workspace/xilskey_puf_registration_1/ide/boot
image/BOOT.bin to the SD card.

16. Move the SD card from the PC to the SD card slot on the ZCU102 or UltraZed-EG evaluation
board.

17. Set the Boot Mode switch to SD mode.
18. Set up a communication terminal.
19. Power cycle the board.
20. Verify that the log displayed in the communication terminal indicates that the security

control eFUSEs are programmed as expected.

Table 4: Cryptographic Macros in xilskey_puf_registration.h
Line No Macro Value
131 XSK_PUF_PROGRAM_EFUSE TRUE
145 XSK_PUF_AES_KEY 45195DE9B5B80119D8DD4E7DF032736D53CF7

5AD1DCE61C5BA681CFA0724E8
146 XSK_PUF_BLACK_KEY_IV 62A4B57D0F121CCB02CB8336

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=28

Use XLWP Command Line Tool to Program the BBRAM and eFUSEs

XAPP1319 (v2.1) November 23, 2020 29
www.xilinx.com

Use XLWP Command Line Tool to Program the BBRAM and
eFUSEs

Xilinx Lightweight Provisioning (XLWP) Tool is a simple way to program BBRAM and eFUSEs. It
performs all of its functionality via JTAG. It allows an interactive user mode via JTAG UART to
terminal app or via Tcl script mode. Contact your local sales team to download the XLWP tool.
For windows, it is recommended to install the TeraTerm terminal program to use the XLWP tool.
TeraTerm is an open-source and free terminal emulator for Windows available from Tera Term
Home Page.

There are three Tcl files and one .ELF file that comprise the XLWP tool:

• xlwp_tool.tcl: Main XLWP Tcl that gets called by XSCT -- sets up JTAG connection
downloads .elf, launches terminal -or- user_script, etc.

• xlwp_zup_cmds.tcl: Contains all the commands to allow reading/programming of Zynq
UltraScale+ eFUSEs and load the AES key into BBRAM when running in script mode

• xlwp_zup_script.tcl: Template modified by user to define which ZU+ eFUSEs to
read/program and the AES key to load into BBRAM when running in script mode

• xlwp_zup_<nn>mhz.elf: Binary files based on xilskey and xilsecure libraries that is
downloaded to Zynq UltraScale+ A53_0 via JTAG - where <nn> must match the external
PS_REF_CLK frequency on the customer's board

There are two batch (.bat) files and one initialization file for Windows and sample script for
Linux included here. Here are the windows batch files:

• xlwp_tool.bat: Starts the hw_server application and then calls xlwp_tool.tcl via XSDB
with command-line arguments (ensure the path setting matches your system)

• xlwp_term.bat: Starts the TeraTerm terminal program in user mode and passes in the
hw_server hostname and TCP port number (ensure the path setting matches your system)

• tt_jtag_uart.ini: TeraTerm initialization file to setup proper operation with the XLWP
tool via the JTAG UART over TCP

Send Feedback

https://www.xilinx.com
https://ttssh2.osdn.jp/index.html.en
https://ttssh2.osdn.jp/index.html.en
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=29

Use XLWP Command Line Tool to Program the BBRAM and eFUSEs

XAPP1319 (v2.1) November 23, 2020 30
www.xilinx.com

Launching XLWP Tool in Command Line Mode to Program the
BBRAM
1. Double-click xlwp_tool.bat file to run the batch file.

2. Press any key and XLWP tool will open in TeraTerm terminal. Figure 25 shows XLWP tool
running in Teraterm GUI.

3. Press 4 to load BBRAM AES key, and enter your 256-bit AES key (you can use the same one
that is used in Vitis flow).

4. Press y for “Is the key correct” instruction, and press y once more for Load key into BRAM
instruction.

X-Ref Target - Figure 25

Figure 25: XLWP Tool Launch

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=30

Use XLWP Command Line Tool to Program the BBRAM and eFUSEs

XAPP1319 (v2.1) November 23, 2020 31
www.xilinx.com

The AES key will be programmed in BBRAM and a CRC value will be calculated. Refer to
Figure 26.

5. Press any key to continue.

X-Ref Target - Figure 26

Figure 26: BBRAM AES Programming Using XLWP Tool

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=31

Conclusion

XAPP1319 (v2.1) November 23, 2020 32
www.xilinx.com

6. Press x to quit XLWP tool and then y for “Quit XLWP tool” instruction (Figure 27).

7. Close any terminal that remains open.
Note: You can follow similar steps and use a script to program BBRAM or eFUSE using the supplied
script.

Conclusion
BBRAM in Zynq UltraScale+ devices can be used to store the 256-bit AES image decryption key.
This AES key can also be stored in the eFUSEs with the important difference that it can neither
be modified nor erased. Additionally, various custom use cases are also available for eFUSEs.

This application note provides a straightforward and secure method to self-program BBRAM
and eFUSEs in the Zynq UltraScale+ devices. It also shows a hello_world design with an
encrypted image to verify the BBRAM key.

X-Ref Target - Figure 27

Figure 27: Exiting XLWP Tool

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=32

Reference Design

XAPP1319 (v2.1) November 23, 2020 33
www.xilinx.com

Reference Design
Download the reference design files for this application note from the Xilinx website.

Table 5 shows the reference design matrix.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

Table 5: Reference Design Matrix
Parameter Description

General
Target devices Zynq UltraScale+ devices
Source code provided Yes
Source code format C
Design uses code and IP from existing Xilinx
application note and reference designs or
third party

No

Static code analysis/MISRA C Yes
Simulation
Functional simulation performed No
Timing simulation performed No
Test bench used for functional and timing
simulations

No

Test bench format N/A
Simulator software/version used N/A
SPICE/IBIS simulations N/A
Implementation
Synthesis software tools/versions used N/A
Implementation software tools/versions used N/A
Static timing analysis performed No
Hardware Verification
Hardware verified Yes
Hardware platform used for verification Avnet UltraZed-EG and ZCU102 evaluation

boards

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=3de24b46-b712-46e9-9023-ed8b52287286;d=xapp1319-zynq-usp-prog-nvm.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=33

References

XAPP1319 (v2.1) November 23, 2020 34
www.xilinx.com

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page on
the Xilinx website.

References
1. Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209)
2. Zynq UltraScale+ MPSoC: Technical Reference Manual (UG1085)
3. Internal Programming of BBRAM and eFUSEs (XAPP1283)
4. Secure Boot of Zynq-7000 SoC (XAPP1175)
5. Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)
6. Changing the Cryptographic Key in Zynq-7000 SoC (XAPP1223)
7. Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)
8. Key Revocation Lab (XAPP1344)
9. External Secure Storage using the PUF (XAPP1333)
10. Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209)

Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1175_zynq_secure_boot.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1283-internalprogramming-bbram-efuses.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1223-crypto-key-change.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1344-key-revocation-lab.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1333-external-storage-puf.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=34

Revision History

XAPP1319 (v2.1) November 23, 2020 35
www.xilinx.com

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER

Date Version Revision
11/23/2020 2.1 Updated the flow and design example using Vitis IDE 2020.1.

Updated the Introduction section to clarify the BBRAM and eFUSEs
programming options.
Added Figure 10.
Modified Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8,
Figure 9, Figure 11, Figure 12, Figure 13, Figure 14, Figure 16, Figure 17,
Figure 18, Figure 19, Figure 20, Figure 21.
Modified Table 2, Table 3, Table 4.
Updated application projection creation flow for Vitis IDE 2020.1 in Test the
functionality of the programmed BBRAM by using a hello software project:
section.

08/31/2020 2.0 Updated for Vitis™ unified software platform. Validated for Vitis IDE 2019.2.
Updates describe how to program eFUSEs in the field. Added new section
Programming BBRAM and eFUSEs Using XilSKey Library. Added procedural
steps in section Programming the AES Key in BBRAM. Added Figure 1, Figure 2,
Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 11,
Figure 12, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19,
Figure 20, and Figure 21 in section Programming the AES Key in BBRAM.
Added procedural steps in section Programming eFUSEs for AES and RSA
Cryptographic Functions. Added Figure 22, Figure 23, and Figure 25. Added
Table 3. Added procedural steps inProgramming PUF-related eFUSEs. Added
Table 4. Added new section Use XLWP Command Line Tool to Program the
BBRAM and eFUSEs. Added Launching XLWP Tool in Command Line Mode to
Program the BBRAM. Added procedural steps in section Launching XLWP Tool
in Command Line Mode to Program the BBRAM. Added Figure 25, Figure 26,
and Figure 27.

07/26/2017 1.0 Initial Xilinx release.

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=35

Please Read: Important Legal Notices

XAPP1319 (v2.1) November 23, 2020 36
www.xilinx.com

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN").
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF
CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
© Copyright 2017-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, ISE, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe, and PCI Express are
trademarks of PCI-SIG and used under license. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and
MPCore are trademarks of Arm Limited in the EU and other countries. All other trademarks are the property of their respective owners.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1319&Title=Programming%20BBRAM%20and%20eFUSEs&releaseVersion=2.1&docPage=36

	Programming BBRAM and eFUSEs
	Summary
	Introduction
	Hardware and Software Requirements
	Programming BBRAM and eFUSEs Using XilSKey Library
	BBRAM and eFUSE Uses
	AES Key
	eFUSE Uses
	RSA Support
	Security Control Support
	Physically Uncloneable Function (PUF) Support
	User Defined eFUSEs

	XilSKey
	Programming the AES Key in BBRAM
	Launch Vitis and create a platform project:
	Import the example BBRAM project in Vitis and generate the elf project:
	Generate the boot image and program the BBRAM fuse:
	Test the functionality of the programmed BBRAM by using a hello software project:

	Programming eFUSEs for AES and RSA Cryptographic Functions
	Programming PUF-related eFUSEs
	Use XLWP Command Line Tool to Program the BBRAM and eFUSEs
	Launching XLWP Tool in Command Line Mode to Program the BBRAM

	Conclusion
	Reference Design
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

