
Summary
Isolation design methods help protect the system from erroneous application software and
misbehaving hardware interfaces. Erroneous software may include malicious or unintentional
code behavior that may corrupt system memory or cause system failures. Misbehaving hardware
includes incorrect device configuration, malicious functionality, or unintentional design. The
Zynq® UltraScale+™ devices includes TrustZone (TZ) technology to facilitate system design
isolation.

The Zynq UltraScale+ MPSoCs and Zynq UltraScale+ RFSoCs incorporate many features for
design security that includes Arm® TrustZone (TZ) technology, Xilinx® peripheral protection units
(XPPU), Xilinx memory protection units (XMPU), a system memory management unit (SMMU),
AXI translation buffer units (TBU), and TZ control registers for protection within the PS AXI
infrastructure.

For more information, on TrustZone, Security, and Anti-Tamper measures, refer to the Zynq
UltraScale+ Device Technical Reference Manual (UG1085). Isolation Methods in Zynq UltraScale+
MPSoCs (XAPP1320) provides a detailed example of implementing design isolation for the PS
sub-systems.

This application note extends the isolation methods, described in XAPP1320, into the
programmable Logic (PL) sub-system of the example design, by introducing a VHDL based XMPU
PL softcore, to bridge the gap between PS and PL isolation methods including PS-to-PL
interfaces.

Note: It is strongly recommended that you complete the isolation design tutorial in Isolation Methods in
Zynq UltraScale+ MPSoCs (XAPP1320) prior to proceeding with the tutorials in this document. While the
reference design in this application note specifically targets Zynq UltraScale+ MPSoC, all isolation methods
apply to the Zynq UltraScale+ devices as well.

Introduction
This application note includes all of the design concepts, functional descriptions, and
specifications. If you need to fast-track the use of the XMPU in a PL design, you may skip ahead
to the tutorials provided in the Isolation Example Design section, and refer to the Overview,
Functional Description, and XMPU_PL Usage Examples sections as needed.

The reference design provided with this application note (zupl_xmpu_v1_0) implements an
XMPU_PL for Zynq PL designs. It is a functionally tested reference IP that includes software
driver support for bare-metal standalone OS applications, but it is not a part of the Xilinx
LogiCORE Library. This application note provides a detailed functional description of the
XMPU_PL module with implementation and usage tutorials.

Application Note: Zynq UltraScale+ Devices

Memory and Peripheral Protection
Unit for PL Isolation in Zynq

UltraScale+ Devices
XAPP1353 (v1.0) January 14, 2021

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 1

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com

Hardware and Software Requirements

The hardware and software requirements for the reference design system includes:

• Xilinx ZCU102 evaluation platform

• Two USB type-A to USB mini-B cables (for UART, JTAG communication)

• Secure Digital (SD) memory card

• Xilinx Software Development Kit (SDK) 2019.1 or Vitis™ 2019.2/2020.1

• Xilinx Vivado® Design Suite

• Serial communication terminal software (such as Tera Term or PuTTY)

Overview
The Processor System (PS) of the Zynq UltraScale+ devices have eight XMPUs to protect the
memory and FPD slaves (XMPU_OCM, XMPU_DDR (6) and XMPU_FPD), and one XPPU to
protect the LPD peripherals. However, the PL AXI interfaces are not protected by any of these
protection units.

The reference design implements the XMPU_PL function for Zynq UltraScale+ devices. It serves
as both a memory and peripheral protection unit for the PL and utilizes a functional interface,
similar to the XMPUs in the PS. Multiple XMPU_PL(s) may be used within the PL design to
selectively monitor AXI transactions. XMPU_PL(s) may be used to provide protection to PL slaves
from the PS masters, PS slaves from PL masters (such as MicroBlaze, PicoBlaze processors,
DMAs, or custom PL masters), or anywhere within the user’s PL AXI network design.

The Zynq UltraScale+ MPSoCs and Zynq UltraScale+ RFSoCs have three (PS->PL) AXI4-master
I/Fs that may transmit AXI transactions originating from any one of fifty (50) PS masters. See
Appendix A: Master ID List for a list of PS masters. The PS->PL master I/Fs are:

• M_AXI_HPM0_LPD

• M_AXI_HPM0_FPD

• M_AXI_HPM1_FPD

The XMPU_PL verifies that a system master has access to an address and poisons unauthorized
transactions. The XMPU_PL IP Integrator (IPI) symbol is shown in the following figure and
provides the following features:

• Slave AXI4-Full (32 bit) port for XMPU run-time configuration

• Slave AXI4-Full (32, 64, 128 bit) port for incoming AXI transactions to be monitored

• Master AXI4-Full port for transferred incoming transactions

• A single IRQ interrupt output for access attempt violations

• Up to 16 (sixteen) individually configurable address regions

• Supports Secure, Non-Secure, and Strictly Non-Secure regions

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=2

• Supports IP integrator with busif ports

• Supports static configuration through Customization GUI

• Detects the originating AXI master ID of incoming PS AXI transactions

• Detects the security level of transactions

• Supports poison-by-address and poison-by-attribute

• Supports both internal and external AXI Sink

Figure 1: zupl_xmpu_v1_0 (XMPU_PL) IPI Symbol

Figure 2: zupl_xmpu_v1_0 (XMPU_PL) IPI Customization Window

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=3

XMPU_PL Configuration
The XMPU_PL may be statically configured from the customization window in the IP Integrator.
Refer to the Functional Description section for a detailed description of all the configuration
registers. Alternatively, the XMPU_PL may be dynamically configured at run-time through the
S_AXI_XMPU AXI4 slave port. While some of the run-time interface registers are read-only,
their initialization values may be controlled through the static interface of the customization GUI.

S_AXI_XMPU has been implemented as an AXI4-Full I/F to ensure the Master ID of the
originating AXI master is available within the transaction, via the AxUser bus. AxUser is
collectively AWUSER and ARUSER for write and read transactions, respectively.

The Regions Max, S_AXI_ DATA_WIDTH, M_AXI_BASEADDR, and M_AXI_HIGHADDR values
are VHDL parameters only and not available through the run-time interface.

Regions Max sets the number of AXI Monitors to be synthesized in the core. The SW cannot
define more regions than this setting. The absolute maximum value is sixteen (16). Reducing this
number decreases the utilized PL resources by ~130 LUTs per region. This parameter is exported
to xparameters.h. Region configuration and Master IDs are explained in the following section.

S AXI DATA WIDTH sets the width of the AXI data bus to be protected. This must be selected by
the user to match the upstream master. Available options are: 32, 64, 128-bit.

M AXI BASEADDR and M AXI HIGHADDR are not required to be set, and have no impact on the
core’s functionality. Their presence is for the user’s convenience and they provide the address
range mapped to M_AXI. These values are exported to the xparameters.h

Configuration Lock
The LOCK register, when set, locks out changes to all configuration registers (except interrupt
status and control) by making the configuration registers read only. The lock can only be
bypassed by those Master IDs enabled in the LOCK_BYPASS register. However, any master with
a mapped address to the S_AXI_XMPU port can enable, disable, or respond to XMPU_PL
interrupts.

Note: If LOCK is statically set and no Master IDs are enabled in the LOCK_BYPASS, then run-time
configuration changes will not be possible. Refer to Isolating the XMPU_PL Configuration on how to
restrict read access to the configuration registers.

Regions
Each XMPU_PL provides up to sixteen (16) regions, numbered from zero (0) to fifteen (15). Each
region is defined by a start address and an end address. Regions are 256B address aligned. The
start and ending address registers hold the upper 32 bits of a 40 bit address[39:8].

When a memory space is included in more than one XMPU_PL region configuration, if any of the
corresponding regions trigger a violation, then the transaction is poisoned in accordance with the
REGION CONFIG register option settings. Refer to Functional Description for a detailed
description.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=4

Each region can be independently enabled or disabled. If a region is disabled, it is not used for
protection checking. Each region is assigned a list of masters that are authorized to access the
region and has an independent security and check type selection.

• Secure: Secure transactions from authorized masters.

• Non-Secure: Secure and non-secure transactions from authorized masters.

• Non-Secure Strict Check Type: Non-secure transactions from authorized masters.

Note: Non-secure transactions from unauthorized masters will be poisoned.

If the address requested does not match any of the regions, then the XMPU_PL takes the default
action (allow or poison) as specified in the control register options. There are three ways to
poison a request:

• Poison by address - internally

Divert the transaction to a sink that resides inside the core.

• Poison by address - externally

Forward the transaction replacing the address with the value in the poison register.

• Poison by attribute

Forward the transaction with a poison attribute (AxProt[1]=1)

Master IDs
Each XMPU_PL Region and Lock_Bypass monitors use the Master ID in each AXI transaction to
validate the transaction. The REGION MASTERS register selects specific Masters. Refer to the
Functional Description section for a detailed register description. All the Master IDs and
associated Masks are stored in the zupl_xmpu reference design vhdl package. The Master ID is
masked by a [MIDM] bit field and then compared against a [MID] bit field.

Depending on AXI Security Permission checks, the transaction is allowed when the following
equation is satisfied:

[MID] and [MIDM] == AXI_MasterID and [MIDM]

For more information on Master ID, refer to the Zynq UltraScale+ Device Technical Reference
Manual (UG1085). There are fifty masters with unique IDs in the Zynq UltraScale+ MPSoCs.
These are summarized in the Appendix A: Master ID List.

Note: The user need not know the specific MasterID values to configure the XMPU_PL Region and
Lock_Bypass. As described in the Functional Description section, each bit position within those registers
corresponds to a particular master (master-pairs for DMA channels) that are enabled or disabled.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 5Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=5

AXI Permissions
The AxProt[2:0] (ARPROT and AWPROT, collectively) holds the permission levels for the AXI
transaction. AxProt[0] indicates the Privilege level, AxProt[1] indicates Security level, and
AxProt[2] indicates whether it's an instruction or data type transaction. The definitions and
values are shown in Table 1.

ARPROT: Read Transaction Permissions

AWPROT: Write Transaction Permissions

Table 1: AXI Protection Permissions

AxPROT[2:0] AXI Protection Level
000 Data Access, Secure, Unprivileged

001 Data Access, Secure, Privileged

010 Data Access, Non-secure, Unprivileged

011 Data Access, Non-secure, Privileged

100 Instruction Access, Secure, Unprivileged

101 Instruction Access, Secure, Privileged

110 Instruction Access, Non-secure, Unprivileged

111 Instruction Access, Non-secure, Privileged

AxProt[1]holds the security level for the AXI transaction. In the Processing System (PS), the
TrustZone (TZ) setting for an AXI master is transferred over the AXI3 infrastructure using
AxUser[10], but this information is not transferred to the AXI4 PL interfaces. Unfortunately,
AxProt[1] does not directly reflect the TZ setting for all masters.

PS masters having a TZ NONSECURE register setting, such as DMAs, use AxProt[1] to
communicate the AXI Permission security level in accordance with its TZ setting. Therefore,
regardless of whether isolation is enabled in the design, the DMA may be dynamically configured
to make AXI transfers with either secure or non-secure AXI Permissions.

The APU sets AxProt bits in accordance with the exception level of the thread requesting the AXI
transfer. Bare-metal standalone OS applications always execute at EL3 (AxProt[1]=0) which
is AXI secure. Therefore, even if an APU application may be considered non-secure in the
Isolated System, its AXI Permissions indicate it as it being secure. This is why you must use
Master IDs to control region access authorization. However, APU applications running from a
Linux kernel execute at EL0 (AxProt[1]=1) which is non-secure and may be elevated by the OS or
hypervisor.

The RPU and PMU do not support multiple exception levels and always operate at EL3.
Therefore, you must use the MasterIDs to block their access to a region.

TIP: Non-Secure Strict Check Type Regions will only allow transactions from authorized masters with a
Non-Secure TZ setting, like DMAs, or with multiple exception level settings, such as a Linux app in the APU.
Otherwise, simply define the region as secure and specify which masters should have access in the region
configuration.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=6

Poison By Address
Poison-by-Address is enabled by default in the XMPU_PL CTRL control register. This causes a
poisoned transaction to be redirected to either an internal or external sink. If external sink is
selected, then the poisoned transaction is redirected to the address specified in the POISON
register. As with the region start and end registers, the poison register is 256B aligned and
specifies the upper 32 bits of the 40-bit address[39:8].

Internal Sink is enabled by default and causes the poisoned transaction to be redirected to a
hidden peripheral inside the core.

Note: The internal sink is not visible to, or address mapped, in the system.

DECERR (decode error) is the default setting in the CTRL register. The DECERR will likely result
in an EXCEPTION in the processor that receives the response. Exception Handling should be
installed in the application to avoid hanging the processor.

The data that is written to the internal sink is not stored and gets lost. The external sink option
exists in the event that the designer wishes to construct their own SINK peripheral in order to
capture additional information from the transaction.

Table 2: SINK AXI Response

AXI Response Encoding
RRESP[1:0] BRESP[1:0] Response Description

0 OKAY OK

1 EXOKAY Exclusive OK

2 SLVERR Slave Error

3 DECERR1 Decode Error

Notes:
1. Default

Poison by Attribute
The Poison-by-Attribute is enabled by default in the CTRL register. This results in any poisoned
transaction that is transferred to the M_AXI port to have non-secure privilege set
(AxProt[1]=1).

There are only two conditions when this occurs:

• Poison by address is not enabled

• Poison by address is enabled with external sink

TIP: Using the Poison-by-Attribute while disabling Poison-by-Address can also be used with the secure
option in the AXI interconnect advanced settings. The method is demonstrated in the XMPU_PL Usage
Examples section, Isolating Secure Slaves.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=7

Functional Description
This section provides further details on the core’s architecture, functionality, and the
configuration register module.

XMPU_PL Architecture
The XMPU_PL block diagram is shown in the following figure. S_AXI (slave) and M_AXI (master)
AXI4 ports form an AXI Bridge that passes through authorized transactions and blocks
unauthorized transactions. AXI Read and Write channels are completely independent of each
other. If one channel is blocked for a violation, the other proceeds; if it does not trigger a
violation.

Figure 3: XMPU_PL Block Diagram

The bridge relationship makes the XMPU_PL transparent to the system address mapping. Up-
stream masters still map directly to down-stream slaves. Incoming transactions are subject to a
two clock-cycle delay while the AXI-Monitor determines whether to allow or block. An example
timing diagram is shown in the following figure.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=8

Figure 4: AXI Bridge Monitoring Delay Timing Diagram

S_AXI_ACLK

S_AXI_AxVALID

M_AXI_AxVALID

M_AXI_AxREADY

Bridged AXI Transaction

Transaction Proceeds

Delay 2 Clocks

X24677-100520

Transactions between the upstream master and downstream slave are initiated by the master
with the VALID signal. The XMPU_PL initially delays the transmission of the VALID signal to
evaluate the transaction. If a transaction is not to be blocked (not poisoned) it proceeds without
any additional or accumulative clock cycle latency. This results in all following transitions of
signals are not delayed.

Each region in the XMPU_PL is independently activated and monitored. If a region is enabled and
the requested transaction address is within its range, then the MasterID is compared to the
enabled masters, and the AXI permissions are compared against the region’s configuration
settings to determine if a violation has been triggered. If any region triggers a violation, then the
transaction is blocked in accordance with the poisoning type configuration settings.

When a violation occurs, the status is communicated back to the Configuration Registers Module
to capture the transaction’s target address and originating MasterID into the error status
registers. If the violation corresponds to an enabled interrupt flag, then the ISR register is
updated and the IRQ output is asserted.

Module Registers Summary

The XMPU_PL module registers and address offsets are shown in the following table. The
following sections provide the bit field definitions for each module register.

Table 3: XMPU_PL Module Registers

Register Name Address Offset Type Description
Control and Status

CTRL 0x000 mixed Control and Implementation

ERR_STATUS1 0x004 ro Error Status, Violation
Address

ERR_STATUS2 0x008 ro Error Status, Violation
Master ID

POISON 0x00C rw External Sink Address

ISR 0x010 mixed Interrupt Status and Clear

IMR 0x014 ro Interrupt Mask

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=9

Table 3: XMPU_PL Module Registers (cont'd)

Register Name Address Offset Type Description
IEN 0x018 wo Interrupt Enable

IDS 0x01C wo Interrupt Disable

LOCK 0x020 rw Register Write Lock

LOCK_BYPASS 0x024 mixed Enable Master Access

REGIONS 0x028 ro Number of Active Regions

Region Control

R{00:15}_START 0x100+ mixed Region starting base address

R{00:15}_END 0x104+ ro Region ending address

R{00:15}_MASTERS 0x108+ ro Select authorized PS Masters

R{00:15}_CONFIG 0x10C+ rw Enable and Configure

CTRL Control Register

The CTRL register is shown in the following table.

Table 4: XMPU_PL CTRL Register Bit Field Summary

Field Name Bits Type Reset Value Description
Reserved 31:7 ro 0x0 Reserved

PoisonAxiResp 6:5 rw 0x3 Select AXI response to poisoned transactions.
• 0x0: OKAY
• 0x0: EXOKAY
• 0x2: SLVERR
• x3: DECERR

Note: If ExternalSinkEn is enabled, then the peripheral at
the address specified in the POISON register transmits the
response.

ExternalSinkEn 4 rw 0x0 0: Transactions poisoned by address terminate in the
XMPU_PL
1: Transactions poisoned by address are routed to a sink
specified by POISON[PL_SINK_ADDR]

PoisonAttributeEn 3 rw 0x1 0: Transaction is not poisoned. AxProt[1] remains at
original value.
1: Enables Poison by Address. Transaction routed to
internal or external sink address. See CTRL[ExternalSinkEn]

PoisonAddressEn 2 rw 0x1 0: Transaction is not poisoned. Transaction proceeds to
original address.
1: Enables Poison by Address. Transaction routed to
internal or external sink address. See CTRL[ExternalSinkEn]

DefWrAllowed 0 rw 0x1 Default Write Allowed. Ensure the following steps are
implemented if a write transaction address and master ID
miss in the Region List:
0: poison the transaction with a Write Permission Violation
1: transaction allowed, regardless of security level

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=10

Table 4: XMPU_PL CTRL Register Bit Field Summary (cont'd)

Field Name Bits Type Reset Value Description
DefRdAllowed 0 rw 0x1 Default Read Allowed. If a read transaction address and

master ID miss in the Region List, then:
0: poison the transaction with a Read Permission Violation
1: transaction allowed, regardless of security level

Error Status 1 Register

The ERR_STATUS1 register is shown in the following table. The first AXI violation is recorded.
Once an ISR[3:1] status bit is set, subsequent violations are not recorded, but their transactions
are poisoned. The status bits are cleared by a system reset and can be cleared by software.

Table 5: ERR_STATUS1 (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

AXI_ADDR 31:0 ro 0x0 Address bits of a poisoned read or write transaction. Read-
only.

Error Status 2 Register

The ERR_STATUS2 register is shown in the following table. The first AXI violation is recorded.
Once an ISR[3:1] status bit is set, subsequent violations are not recorded, but their transactions
are poisoned. The status bits are cleared by a system reset and can be cleared by a software.

Table 6: ERR_STATUS2 (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

Reserved 31:10 ro 0x0 Reserved

AXI_ID 9:0 ro 0x0 Master ID from a poisoned read or write transaction. Read-
only.

Poison Address Register

The POISON register is shown in the following table.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=11

Table 7: POISON (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

PL_SINK_ADDR 31:0 rw 0x00800000 The value is set by user for poison base address, determined
by PL Address Mapping. The XMPU replaces the incoming AXI
address (39 down to 8) with the PL_SINK_ADDR. Address (7
down to 0) is retained from the originating address for
alignment. Downstream, the XMPU_PL_Sink unit responds to
the transaction.

ISR Interrupt Status Register

The ISR register interrupts are shown in the following table. The bits in the status register are
sticky and remain asserted until cleared by writing a 1 to the asserted bit.

Reading AXI Access Violations:

• 0: no interrupt request

• 1: interrupt requested

Writing AXI Access Violations:

• 0: no effect

• 1: clear bit to 0

If a Status bit is 1 and its Mask is 0, then the IRQ interrupt signal is activated to the interrupt
controller. The first AXI violation is recorded. Once an ISR[3:1] status bit is set, subsequent AXI
violations are not recorded, but their transactions are poisoned. The status bits are cleared by a
system reset and can be cleared by a software

Table 8: ISR (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

Reserved 31:4 ro 0x0 Reserved

SecurityVIO 3 wtc 0x0 Security violation by AXI Master: A non-secure master tries to
access a secure memory space.

WrPermVIO 2 wtc 0x0 Write Permission violation by AXI Master. Write access
attempted to enabled region with WrAllowed = 0. Or the
transaction missed in the region list and CNTRL
[DefWrAllowed] = 0.

RdPermVIO 1 wtc 0x0 Read Permission violation by AXI Master.
Read access attempted to enabled region with RdAllowed =
0.The transaction missed in the region list and CNTRL
[DefRdAllowed] = 0.

Reserved 0 ro 0x0 Reserved

IMR Interrupt Mask Register
The IMR register is shown in the following table. For each violation interrupt mask bit:

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=12

• 0: enabled.

• 1: masked (disabled). If the ISR bit = 1 (asserted interrupt) and the IMR bit = 0 (not masked),
then the IRQ to the interrupt controller is asserted.

Software checks the ISR to determine the cause of the interrupt. Read only.

Table 9: IMR (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

Reserved 31:4 ro 0x0 Reserved

SecurityVIO 3 ro 0x1 Security violation by AXI master

WrPermVIO 2 ro 0x1 Write Permission violation by AXI Master

RdPermVIO 1 ro 0x1 Read Permission violation by AXI Master

Reserved 0 ro 0x0 Reserved

IEN Interrupt Enable Register

The IEN register is shown in the following table.

• 0: no effect.

• 1: enable interrupt (sets mask = 0). Write-only.

Table 10: IEN (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

Reserved 31:4 ro 0x0 Reserved

SecurityVIO 3 wo 0x0 Security violation by AXI Master

WrPermVIO3 2 wo 0x0 Write Permission violation

RdPermVIO1 1 wo 0x0 Read Permission violation

Reserved 0 wo 0x0 Reserved

IDS Interrupt Disable Register
The IDS register is shown in the following table.

• 0: no effect.

• 1: disable interrupt (sets mask = 1). Write-only.

Table 11: IDS (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

Reserved 31:4 ro 0x0 Reserved

SecurityVIO 3 wo 0x0 Security violation by AXI Master

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=13

Table 11: IDS (XMPU_PL) Register Bit Field Summary (cont'd)

Field Name Bits Type Reset
Value Description

WrPermVIO 2 wo 0x0 Write Permission violation

RdPermVIO 1 wo 0x0 Read Permission violation

Reserved 0 wo 0x0 Reserved

LOCK Register

The LOCK register is shown in the following table.

Register writes to ZUP_XMPU_PL may be done by any bus masters when LOCK [RegWrDis] = 0.
When LOCK [RegWrDis] = 1, all register writes may only be done by secure bus masters enabled
in LOCK_BYPASS register. The write lock prevents all other masters from writing to all registers
except the interrupt status registers: ISR, IMR, IEN and IDS.

Note: All ZUP_XMPU_PL registers are readable by secure or non-secure bus masters.

Note: Regardless of the LOCK [RegWrDis] setting, the status registers are always writable by secure and
non-secure bus masters.

Table 12: LOCK (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

RegWrDis 0 rw 0x0 Register Write Disable. Applies to all registers except ISR, IMR,
IEN and IDS.
0: read/write allowed
1: read-only
Once this bit is set, it can only be cleared by a master enabled
in the LOCK_BYPASS register.

BYPASS Register

The BYPASS register is shown in the following table.

Register writes to ZUP_XMPU_PL may be done by any bus masters when LOCK [RegWrDis] = 0.
When LOCK [RegWrDis] = 1, all register writes may only be done by secure bus masters enabled
in LOCK_BYPASS register. The write lock prevents all other masters from writing to all registers
except the status registers: ISR, IMR, IEN, and IDS.

Note: All ZUP_XMPU_PL registers are readable by secure or non-secure bus masters.

Note: Regardless of the LOCK [RegWrDis] setting, the status registers are always writable by secure and
non-secure bus masters.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=14

Table 13: LOCK_BYPASS (XMPU_PL) Register Bit-Field Summary

Field Name Bits Type Reset
Value Description

Reserved 31 ro 0x0 Reserved

MID_FPD_DMA[6:7] 30 rw 0x0 Enable FPD DMA [ch 6:7]

MID_FPD_DMA[4:5] 29 rw 0x0 Enable FPD DMA [ch 4:5]

MID_FPD_DMA[2:3] 28 rw 0x0 Enable FPD DMA [ch 2:3]

MID_FPD_DMA[0:1] 27 rw 0x0 Enable FPD DMA [ch 0:1]

MID_DP_DMA[4:5] 26 rw 0x0 Enable DisplayPort DMA [ch 4:5]

MID_DP_DMA[2:3] 25 rw 0x0 Enable DisplayPort DMA [ch 2:3]

MID_DP_DMA[0:1] 24 rw 0x0 Enable DisplayPort DMA [ch 0:1]

MID_PCIE 23 rw 0x0 Enable PCIe

MID_DAP_AX1 22 rw 0x0 Enable Debug Access Port AXI

MID_GPU 21 rw 0x0 Enable GPU

MID_SATA1 20 rw 0x0 Enable SATA1

MID_SATA0 19 rw 0x0 Enable SATA0

MID_APU 18 rw 0x0 Enable APU.

Note: Requires that AxProt[1]=0

MID_GEM3 17 rw 0x0 Enable GEM3

MID_GEM2 16 rw 0x0 Enable GEM2

MID_GEM1 15 rw 0x0 Enable GE1

MID_GEM0 14 rw 0x0 Enable GEM0

MID_QSPI 13 rw 0x0 Enable QSPI

MID_NAND 12 rw 0x0 Enable NAND

MID_SD1 11 rw 0x0 Enable SD1

MID_SD0 10 rw 0x0 Enable SD0

MID_LPD_DMA[6:7] 9 rw 0x0 Enable LPD DMA [ch 6:7]

MID_LPD_DMA[4:5] 8 rw 0x0 Enable LPD DMA [ch 4:5]

MID_LPD_DMA[2:3] 7 rw 0x0 Enable LPD DMA [ch 2:3]

MID_LPD_DMA[0:1] 6 rw 0x0 Enable LPD DMA [ch 0:1]

MID_DAP_APB 5 rw 0x0 Enable Debug Access Port APB

MID_USB1 4 rw 0x0 Enable USB1

MID_USB0 3 rw 0x0 Enable USB0

MID_PMU 2 rw 0x1 Enable PMU

MID_RPU1 1 rw 0x0 Enable RPU1

MID_RPU0 0 rw 0x0 Enable RPU0

Regions Register

The regions register is shown in the following table. The table displays the number of secure
regions enabled. It is a read only register.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=15

Table 14: Regions (XMPU_PL) Register Bit-Field Summary

Field Name Bits Type Reset
Value Description

Reserved 31:5 ro 0x0 Reserved

ENABLED 4:0 ro 0x0 Number of active regions

Note: There are 16 available regions that are independently
enabled in the R[region]_CONFIG registers.

Rxx_START Region Starting Address Register

The R[n]_START register is shown in the following table. Each region is defined by a start and end
address base addresses mapped to the PL.

Note: Address Offset: 0x00000[n]00

Table 15: R[n]_START (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

ADDR 31:0 rw 0x0 AXI address within the PL.

Note: Bits [31:0] correspond to address bits [39:8].

Rxx_END Region Ending Address Register

The R[n]_END register is shown in the following table. Each region is defined by a start and end
address base addresses mapped to the PL.

Note: Address Offset: 0x00000[n]04

Table 16: R[n]_END (XMPU_PL) Register Bit Field Summary

Field name Bits Type Reset
Value Description

ADDR 31:0 rw 0x0 AXI address within the PL.

Note: Bits [31:0] correspond to address bits [39:8].

Rxx_MASTERS Region Masters Register

The AXI_MasterID from the requester is compared with all authorized secure MasterIDs for the
region addressed. If the originating master is authorized: False, transaction is poisoned; if it is
True, transaction is forwarded downstream.

Note: Address Offset: 0x00000[n]08

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=16

Note: PMU is always authorized by default.

The R[n]_MASTERS register is shown in the following table.

Table 17: R[n]_MASTERS (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

Reserved 31 ro 0x0 Reserved

MID_FPD_DMA[6:7] 30 rw 0x0 Enable FPD DMA [ch 6:7]

MID_FPD_DMA[4:5] 29 rw 0x0 Enable FPD DMA [ch 4:5]

MID_FPD_DMA[2:3] 28 rw 0x0 Enable FPD DMA [ch 2:3]

MID_FPD_DMA[0:1] 27 rw 0x0 Enable FPD DMA [ch 0:1]

MID_DP_DMA[4:5] 26 rw 0x0 Enable DisplayPort DMA [ch 4:5]

MID_DP_DMA[2:3] 25 rw 0x0 Enable DisplayPort DMA [ch 2:3]

MID_DP_DMA[0:1] 24 rw 0x0 Enable DisplayPort DMA [ch 0:1]

MID_PCIE 23 rw 0x0 Enable PCIe

MID_DAP_AXI 22 rw 0x0 Enable Debug Access Port AXI

MID_GPU 21 rw 0x0 Enable GPU

MID_SATA1 20 rw 0x0 Enable SATA1

MID_SATA0 19 rw 0x0 Enable SATA0

MID_APU 18 rw 0x0 Enable APU.

Note: Requires that AxProt[1]=0.

MID_GEM3 17 rw 0x0 Enable GEM3

MID_GEM2 16 rw 0x0 Enable GEM2

MID_GEM1 15 rw 0x0 Enable GEM1

MID_GEM0 14 rw 0x0 Enable GEM0

MID_QSPI 13 rw 0x0 Enable QSPI

MID_NAND 12 rw 0x0 Enable NAND

MID_SD1 11 rw 0x0 Enable SD1

MID_SD0 10 rw 0x0 Enable SD0

MID_LPD_DMA[6:7] 9 rw 0x0 Enable LPD DMA [ch 6:7]

MID_LPD_DMA[4:5] 8 rw 0x0 Enable LPD DMA [ch4:5]

MID_LPD_DMA[2:3] 7 rw 0x0 Enable LPD DMA [ch 2:3]

MID_LPD_DMA[0:1] 6 rw 0x0 Enable LPD DMA [ch 0:1]

MID_DAP_APB 5 rw 0x0 Enable Debug Access Port APB

MID_USB1 4 rw 0x0 Enable USB1

MID_USB0 3 rw 0x0 Enable USB0

MID_PMU 2 rw 0x1 Enable PMU

MID_RPU1 1 rw 0x0 Enable RPU1

MID_RPU0 0 rw 0x0 Enable RPU0

Rxx_CONFIG Region Configuration Register

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=17

The R[n]_CONFIG register is shown in the following table. If a transaction address is within an
enabled region's start and end addresses, then the [WrAllowed]/[RdAllowed] condition is checked.
If the transaction R/W type is allowed, then the security Master ID check is performed. When
more than one address region includes the transaction address (regions overlap) or if any region
poisons the transaction, then it takes precedence.

Note: Address Offset: 0x00000[n]0C

Table 18: R[n]_CONFIG (XMPU_PL) Register Bit Field Summary

Field Name Bits Type Reset
Value Description

Reserved 31:6 ro 0x0 Reserved

MidCheckDisable 5 rw 0x0 0: [default] Master ID is checked. Transactions are only
considered secure when MasterID aligns with R00_MASTERS[]
Register.
1: Disables Master ID check during security check. Any
transaction with AxProt[1] = 0 will be considered Secure.

Note: PL_Masters such as MicroBlaze™ do not propagate a
MasterID. Setting MidCheckDisable = 1 allows WrAllow and
RdAllow to define the permissions for the region.

NSCheckType 4 rw 0x0 Non-secure Region Check Type. Secure masters may or may
not be allowed to access Non-Secure (NS) memory regions.
0: relaxed checking; secure requests may access a non-secure
(NS) region.
1: strict checking; secure requests may only access a secure
region.
A non-secure access request can only access non-secure
regions regardless of bit setting.

RegionNS 3 rw 0x0 Select security level of region:
0: secure.
1: non-secure (NS).

WrAllowed 2 rw 0x1 Allow writers to region:
0: not allowed; write transaction poisoned.
1: allowed.

RdAllowed 1 rw 0x1 Allow writers to region:
0: not allowed; read transaction poisoned.
1: allowed.

Enable 0 rw 0x0 Enable region:
0:disabled.
1: enabled.

XMPU_PL Usage Examples
The Programmable Logic (PL) of the Zynq UltraScale+ devices allows the designer to create a
fully custom system. This section provides some guidance on various design scenarios.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=18

AXI SmartConnect
The XMPU_PL functionality relies on access to the AXI MasterID contained in transactions from
PS masters. The S_AXI and S_AXI_XMPU have been implemented as AXI4 full interfaces to
maintain the AxUser port connections which carries the MasterID values. If an inter-connect
block is needed between the PS and the XMPU_PL, use the AXI SmartConnect, as shown in the
following figure, instead of AXI Interconnect. AXI Interconnect blocks to do not pass the AxUser
bus and block the transmission of the MasterIDs. However, AXI Interconnect blocks may be used
to connect to PL Masters or multiple end-point slaves, as MasterIDs are not utilized in those
connections.

Figure 5: Using AXI SmartConnect

Connecting to Multiple PS Master I/Fs
The SmartConnect combines multiple PS Master I/Fs into a single or multiple XMPU_PLs, as
evidenced from the following figure. Use SmartConnect instead of AXI-Interconnect to maintain
access to PS MasterIDs.

Figure 6: Connecting Multiple PS Masters I/Fs

Note: The XMPU_PL will not provide any AXI data width conversion. Use SmartConnect upstream, and/or
AXI-Interconnect downstream, to provide any needed data or clock conversions between the PS Master
and end-point PL-Slaves.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=19

Connecting Directly to PS Master I/Fs
The following figure shows the S_AXI port of the XMPU_PL may be directly connected to a PS
master I/F. The data widths of both interfaces are selectable in their respective IP customization
settings in the IP integrator. It is the responsibility of the user to ascertain that both are set to the
same value.

Figure 7: PS Master I/F Direct Connection

Note: The XMPU_PL will not provide any AXI data width conversion. Use SmartConnect upstream, and/or
AXI-Interconnect downstream, to provide any needed data or clock conversions between the PS Master
and end-point PL-Slaves.

Connecting Directly to PL Slave I/Fs
An XMPU_PL can be dedicated to a specific PL Slave and directly connected to the slave I/F
without an interconnect stage. The XMPU_PL AXI Data Width must be set in accordance with
the slave’s data width (typically, 32-bits).

Figure 8: Slave I/F Direct Connection

Isolating the XMPU_PL Configuration
As described in Configuration Lock, from the Overview section, the XMPU_PL configuration
registers can be write protected from unauthorized masters, but are still readable. The following
figure demonstrates one way to completely isolate the configuration I/F.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=20

Figure 9: Configuration I/F Isolation

Map the S_AXI_XMPU configuration slave port to the M_AXI of the zupl_xmpu instead of using
the Configuration Lock. Either the static or run-time configuration can define a region to protect
the XMPU_PL configuration from both read and write accesses.

TIP: If using a run-time application to define the XMPU_PL configuration protection region, ensure that the
DefRdAllowed and DefWrAllowed settings in the CTRL register are set. Otherwise, the run-time application
may not have access to load the region parameters. DefRdAllowed and DefWrAllowed are set by default.

Isolating Secure Slaves
Enabling the Advanced Configuration Options in the AXI-Interconnect IPI customization window
reveals Master Interface Options to select AXI Master output ports as being connected to Secure
Slaves. The AXI-Interconnect customization window is shown in the following figure.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=21

Figure 10: AXI-Interconnect Secure Slaves

Applying this setting causes the AXI-Interconnect to poison any transaction targeting a secure
slave with an unsecure protection level (AxProt[1]=1).

This feature can be used in conjunction with the XMPU_PL Poison-by-Attribute setting. By
disabling Poison-by-Address setting in the XMPU_PL, a poisoned transaction gets forwarded
with non-secure protection level (AxProt[1]=1) causing the AXI-Interconnect to block the
transaction.

Note: The SmartConnect does not have this feature.

TIP: The AXI-Interconnect Secure Slave feature may also be used to isolate secure slaves from Non-secure
PL masters without the use of an XMPU_PL.

Isolating PL Masters
PL masters, such as MicroBlaze or AXI DMA, do not output a MasterID, nor do they utilize the
AxUser side-channel. Therefore, such masters cannot be differentiated from each other on that
basis. The following figure shows MicroBlaze processors that supports a Non_Secure operating
mode.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=22

Figure 11: Secure and Non_Secure MicroBlazes

The Non_Secure[0:3] inputs may be asserted by a constant in the IPI block design. Each of the
four bits control the Security level (AxProt[1]) for each of the AXI master ports
(M_AXI_DP,M_AXI_IP,M_AXI_DC,M_AXI_IC).

For the configuration above, it is recommended to disable the MasterID checks in the region
configuration, Rxx_CONFIG[MidCheckDisable], and rely on the security level to differentiate
between the processors.

TIP: Using security level controls on the PL master enables the capability of using NonSecure with Strict
Check Type regions.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=23

Figure 12: S_AXI_XMPU Isolated to Secure MicroBlaze

The previous figure shows an example of isolating the S_AXI_XMPU configuration port to the
secure MicroBlaze. Additional protections are not required as only the secure MicroBlaze has a
physical connection. Similarly, the designer can establish a path to any secure processor, in the PL
or PS, of their choosing to configure and manage any XMPU_PL in the system.

Figure 13: MicroBlaze with Dedicated XMPU

The previous example exhibits that each and every MicroBlaze processor has a dedicated
XMPU_PL. There is no need to differentiate between masters in this configuration.

TIP: If the run-time configuration access is not needed for system operation, the example in the previous
figure could have alternatively been implemented with the AXI MMU IP which also provides address
decoding, read and write access control, and is only statically configured.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=24

Isolation Example Design
System Isolation
The isolation reference design created in Isolation Methods in Zynq UltraScale+ MPSoCs
(XAPP1320) is the starting point for building the PL isolation example design. The TrustZone (TZ)
settings for the Processing System (PS) are shown in the following figure.

Figure 14: Isolation Reference Design TrustZone Settings

TTC_0

SDWT_0

GPIO UART_0 UART_0

APU
Subsystem

PMU
Subsystem

RPU
Subsystem

TTC_1

SDWT_1

I2C_1

CRF_APB
CRL_APB

RPU
EFUSE

IOU_SLCR

DDR
0x0000_0000

0x01FF_FFFF

0x4000_0000

0x04FF_FFFF

0x6000_0000
0x06FF_FFFF

OCM
0xFFFC_0000

0xFFFF_0000

0xFFFF_FFFF

R5_0 ATCM

0xFFE0_0000

0xFFE0_FFFF

Non-secure (shared with Secure)

Non-secure

Secure

X24678-100520

The system contains three active PS masters. The PMU and RPU (r5_0) are designated Secure,
and the APU is designated Non-Secure. All three masters execute as bare metal standalone OS.

The PL isolation example design adds the PL memory and peripheral elements shown in the
following figure.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 25Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=25

Figure 15: PL Isolation Security Settings

BRAM

Non-secure (shared with Secure)

Non-secure

Secure

PMU

RPU
R5_0

APU

0xA000_0000

0xA000_03FF

0xA000_0C00

0xA000_0FFF

XMPU
0xA000_2000

0xA000_2FFF

GPIO
0xA000_1000

0xA000_1FFF

MASTERS MEMORY PERIPHERALS

X24679-100520

Secure PL Memory
The first KB of the PL BRAM will be designated as secure, which means that it must only be
accessible by the secure masters, PMU and RPU (R5_0).

Secure PL Peripherals
The S_AXI_XMPU configuration port of the XMPU_PL will be designated as secure, which means
that it will only be accessible by the Secure masters, PMU and RPU (R5_0). If you use the LOCK
registers in the XMPU, the configuration port becomes writable to only the designated masters,
but still is readable by other masters.

Non Secure PL Memory
PL BRAM's last KB is designated as non-secure and is accessible only by the APU. Configure the
associated XMPU region as non-secure with Strict Check Type. The APU has to set the AXI
protection security level to non-secure (AxProt[1]=1) to access the region. Since bare metal
standalone applications are being run in this example, all transactions originating from the APU
enters the PL as secure (AxProt[1]=0). Therefore, to isolate the region to the APU, the region
is configured as secure, but only the APU is authorized to access it.

Non-Secure Shared Memory & Peripherals

The middle two KBs of the PL BRAM and the AXI GPIO are designated as non-secure shared.
They must be accessible by both secure and non-secure masters. One way to accomplish this is
to designate regions to cover their respective address ranges and list all the masters as
authorized. Alternatively, omit defining a region and instead utilize the default CTRL register
settings to allow read and write access to undefined ranges.

The following table shows the XMPU_PL configuration for the example design. The MACRO
definitions can be found in the zupl_xmpu BSP SW driver (zupl_xmpu_hw.h).

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=26

Table 19: XMPU PL Region Definitions

CONTROL MACROS Description
CTRL XMPU_PL_CTRL_DEFRD +

XMPU_PL_CTRL_DEFWR +
XMPU_PL_CTRL_PSNATTREN +
XMPU_PL_CTRL_PSNADDREN +

XMPU_PL_CTRL_ARSP_DEC

Default Read
Default Write

Poison by Attribute
Poison by Address

Poison Response DECERR

LOCK 1 enable

LOCK_BYPASS XMPU_PL_MID_RPU0 +
XMPU_PL_MID_PMU

RPU0
PMU

REGION 0

R00_START BRAM BASEADDR BRAM Base Address

R00_END BRAM BASEADDR + 0x03FF Size 1KB

R00_MASTERS XMPU_PL_MID_RPU0 +
XMPU_PL_MID_PMU

RPU0
PMU

R00_CONFIG XMPU_PL_REGION_WR_ALLOW +
XMPU_PL_REGION_RD_ALLOW +

XMPU_PL_REGION_ENABLE

Region Write Allow
Region Read Allow

Region Enable

REGION 1

R01_START BRAM BASEADDR + 0x0C00 BRAM Base Address + 3 KB

R01_END BRAM BASEADDR + 0x0FFF Size 1 KB

R01_MASTERS XMPU_PL_MID_APU0 APU

R01_CONFIG XMPU_PL_REGION_WR_ALLOW +
XMPU_PL_REGION_RD_ALLOW +

XMPU_PL_REGION_ENABLE

Region Write Allow
Region Read Allow

Region Enable

Reference Design
Download the reference design files for this application note from the Xilinx website.

Reference Design Matrix

The following checklist indicates the procedures used for the provided reference design.

Table 20: Reference Design Matrix

Parameter Description
General

Developer name Carl Carmichael

Target devices Zynq UltraScale+ Devices

Source code provided? Yes

Source code format (if provided) C, VHDL

Design uses code or IP from existing reference design,
application note, 3rd party or Vivado software? If yes, list.

Isolation Methods in Zynq UltraScale+ MPSoCs (XAPP1320)

Simulation

Functional simulation performed Yes

Timing simulation performed? No

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 27Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=339bc792-90d7-452e-864b-50cb521a0530;d=xapp1353-pl-isolation.zip
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=27

Table 20: Reference Design Matrix (cont'd)

Parameter Description
Test bench provided for functional and timing simulation? No

Test bench format No

Simulator software and version Yes

SPICE/IBIS simulations N/A

Implementation

Synthesis software tools/versions used N/A

Implementation software tool(s) and version N/A

Static timing analysis performed? Yes

Hardware Verification

Hardware verified? Yes

Platform used for verification ZCU102 Evaluation Board

Reference Design Zip File
The xapp1353-pl-isolation.zip file (download from Xilinx website) contains a Vivado packaged IP
with example design support files. A description of the zip archive is provided in the following
table.

Table 21: Contents of Reference Design Archive

Directory/File Name Description
./XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0 IP Repository Package
./XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/

component.xml
This IP-XACT file defines the contents of the IP to Vivado.

./XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/bd/bd.tcl The Tcl script used by Vivado IP Integrator supports
integration of the IP in the Block Design.

./XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/drivers/
zupl_xmpu_v1_0

This is the directory of the low-level software drivers for the
zupl_xmpu PL peripheral. When the Vivado project’s
hardware is exported to SDK/Vitis, these drivers are
included in the export, and will be included in any board
support package (BSP) created within the SDK/Vitis
workspace that uses the exported hardware.

./XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/
example_designs/xapp1320_isolation

This directory contains files to build the isolation example
reference design from Isolation Methods in Zynq UltraScale+
MPSoCs (XAPP1320).

./XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/
example_designs/xcu102_example

This directory contains files to build the PL isolation example
reference design.

./XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/gui/
zupl_xmpu_v1_0.gtc./XmpuPL_ZUplus_v1.0a/
zupl_xmpu_v1_0/xgui/zupl_xmpu_v1_0.tcl

The Tcl script used by Vivado IP Integrator creates the
configuration GUI for the PL instance IP.

./XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/hdl Reference core (vhdl) source files

Build HW Design in Vivado (2019.1 – 2020.1)
Once you have obtained and extracted the design files for this tutorial, you have the option to
either manually add the zupl_xmpu reference core to the isolation reference design, or use an
automated script to build the completed HW platform.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 28Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=339bc792-90d7-452e-864b-50cb521a0530;d=xapp1353-pl-isolation.zip
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=28

If you wish to make the modifications manually, proceed to Start with the XAPP1320 Isolation
Reference Design . If you wish to build the HW platform with an automated script, proceed to
Build with the Automated Design Script section.

Start with the XAPP1320 Isolation Reference Design

Isolation Reference Design

The next section provides a step-by-step instruction to manually add the zupl_xmpu reference
core to isolation reference design. Reconstruct the reference design from Isolation Methods in
Zynq UltraScale+ MPSoCs (XAPP1320).

An automated script is provided to build the design. If you wish to review the procedures for
creating an isolated design, refer to Isolation Methods in Zynq UltraScale+ MPSoCs (XAPP1320).

Following are the steps to build the isolation reference design:

1. Unzip the zupl_xmpu archive: zupl_xmpu_v1_0[revision].zip.

2. a. If running on Linux: Browse to the ./zupl_xmpu_v1_0/example_designs/
xapp1320_isolation directory and run Vivado.

b. If running Vivado on Windows, use the Tcl Console to navigate to the
zupl_xmpu_v1_0/example_designs/xapp1320_isolation directory:

cd{<your_path>/XmpuPL_ZUplus_v1.0[revision]/zupl_xmpu_v1_0/
example_designs/xapp1320_isolation}

3. Run the example_design.tcl script:

source./example_design.tcl

When the IP Integrator Block Design is complete, it looks like the following figure.

Figure 16: Isolation Example Block Design

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 29Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=29

4. Right-click zynq_ultra_ps_e_0 and select Customize Block....

Figure 17: Customize Zynq_Ultra_PS

5. Click Switch to Advanced Mode, then click Isolation Configuration, and you can see that the
isolation parameters as described in Isolation Methods in Zynq UltraScale+ MPSoCs
(XAPP1320) have been implemented. The following figure shows a sample of the settings.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 30Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=30

Figure 18: Isolation Configuration Parameters

a. Click Cancel to close the customization window.

6. Save the project to a new name before making modifications.

a. File-> Project->Save As

b. Fill in the required information as shown in the following figure:

i. Project name: pl_isolation_lab

ii. Project Location: <your_path>/XmpuPL_ZUplus_v1.0a/zcu102_<version>/
xmpu_example

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=31

Figure 19: Save Project As

iii. Do not create project sub directory. Do not include run results. Click OK.

Manual Insertion of the XMPU_PL in the IP Integrator

Manual Insertion in the IP Integrator

Isolation reference design gets created in the previous section, Start with the XAPP1320
Isolation Reference Design, and is saved to the following location:

/XmpuPL_ZUplus_v1.0a/xcu102_<version>/xmpu_example/pl_isolation_lab.xpr

Open the project in Vivado, and click Open Block Design if you have it closed.

You will go through the following steps to add a XMPU_PL module to the block design.

1. Click the Address Editor and note the current mappings in the following pane.

a. axi_bram_ctrl_0 is mapped to 0x00_A000_0000 (4K) and axi_gpio_0 is mapped
to 0x00_A000_1000 (4K) in the Address Editor window. Return to the diagram.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=32

Figure 20: Address Editor

2. Add the zupl_xmpu_v1_0 core to your repository.

a. Click Settings beneath Project Manager. This is located in the Flow Manager.

b. Under Project Settings, expand > IP, and click Repository.

c. Click the + symbol in the IP Repositories.

d. Browse to the zupl_xmpu_v1_0 directory and click Select.

e. One (1) repositiory must be added to the project. Click OK to clear the Add Repository
window.

f. Click OK to clear the Settings window.

3. Add the zupl_xmpu_v1_0 core to the block design.

a. Click the + symbol in the Block Diagram window.

b. Type zupl in the Search field type and double-click zupl_xmpu_v1_0 or press enter.

4. Add a SmartConnect IP core.

a. Click the + symbol in the Block Diagram window.

b. Type smart in the search field type.

c. Double-click AXI SmartConnect or just press enter.

d. Right-click the smartconnect_0 instance and select Customize Block.

e. Change the Number of Master Interfaces to 2 and click OK.

5. Disconnect the AXI Interconnect block from the Zynqzynq PS block.

a. Select and delete the bus signals between zynq_ultra_ps_e_0 and
ps8_0_axi_periph.

b. Right-click ps8_0_axi_periph and Customize Block.

c. Reduce the Number of Slave Interfaces to 1. Click OK.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=33

6. Connect the Zynq PS M_AXI_ ports.

a. Connect zynq_ultra_ps_e_0/M_AXI_HPM0_FPD to smartconnect_0/S00_AXI.

b. Connect zynq_ultra_ps_e_0/M_AXI_HPM1_FPD to smartconnect_0/S01_AXI.

7. Connect the XMPU AXI ports.

a. Connect zupl_xmpu_0/S_AXI_XMPU to smartconnect_0/M00_AXI.

b. Connect zupl_xmpu_0/S_AXI to smartconnect_0/M01_AXI.

c. Connect zupl_xmpu_0/M_AXI to ps8_0_axi_periph/S00_AXI.

d. Regenerate Layout. Click OK.

8. Connect the AXI clock and reset ports.

a. Click Run Connection Automation.

b. Select All Automation. Click the Regenerate button.

c. Manually connect any unconnected aclk or aresetn ports.

9. Connect the IRQ signal.

a. This example design demonstrates the usage of PMU and RPU to receive interrupts from
the XMPU so the pmu_error_from_pl port needs to be enabled. Right-click
zynq_ultra_ps_e_0 and select Customize Block.

b. Click PS-PL Configuration. Expand > General. Expand > Others.

c. Select the check box for Errors to and from PMU. Click OK.

d. Connect zupl_xmpu_0/irq port to both pl_ps_irq0[0:0] and
pmu_error_from_pl[3:0] ports on zynq_ultra_ps_e_0.

e. Regenerate Layout. The diagram resembles the following.

Figure 21: xmpu_pl Example Block Diagram

10. Map the Address segments.

a. Click Address Editor.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=34

b. If using 2019.1 or 2019.2:

i. Expand > zupl_xmpu_0 > M_AXI > Unmapped Slaves (2).

ii. Right-click axi_bram_ctrl_0 and axi_gpio_0 and select Assign Address.

iii. If the new address mappings do not match the size and base address shown in
>zynq_ultra_ps_e_0>Data>, then fix the values to match. Fix the range value
first and then the offset address.

iv. Expand > zynq_ultra_ps_e_0 > Data > Unmapped Slaves (1).

v. Right-click zupl_xmpu_0 and select Assign Address.

vi. S_AXI_XMPU must be mapped to 0x00_A000_2000(4K).

vii. The final configuration is shown in the following diagram.

Note: The zupl_xmpu_0/S_AXI still shows as an Unmapped Slave. This is due to the AXI
Bridge in the core. Do not map this segment.

Figure 22: xmpu_pl Example Address Map

c. If using 2020.1:

i. Expand > Network 0 > zynq_ultra_ps_e_0 > Data > Unassigned (4).

ii. Right-click zupl_xmpu_0: S_AXI_XMPU (S_AXI_XMPU_Config) and select
Assign.

iii. Change the range of S_AXI_XMPU to 4K.

iv. Change the Master Base Address of S_AXI_XMPU to 0x00_A000_2000.

v. Select File > Save Block Design.

vi. Select Tools > Validate Design.

vii. Ignore warnings about unmapped slaves. Click OK.

viii. Right-click Unconnected Slaves/zupl_xmpu_0: S_AXI (S_AXI) and select Exclude.

ix. Select File > Save Block Design.

11. Customize the zupl_xmpu_0 block.

a. Return to the previous diagram and right-click zupl_xmpu_0 and Customize Block.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=35

b. Select AXI Settings.

c. The C_S_AXI_ DATA_WIDTH is set to the default value of 32. Leave it at default setting.
The AXI infrastructure blocks adjusts for the PS M_AXI_ bus widths.

d. The M_AXI_BASEADDR and M_AXI_HIGHADDR will not have any functional effect.
However they are provided as a means to communicate to the SW Driver the address
range that the XMPU monitor. These values will be exported to the xparameters.h file
and be included in the peripheral's instance configuration data.

e. (Optional) Set these values to correspond with the address ranges shown in the previous
figure.

i. HIGHADDR:0xA0001FFF

ii. BASEADDR:0xA0000000

TIP: Use the upper 32 bits if you need to specify a 40 bit address..

f. Select the Regions Tab and note the value for Regions Max. The default is the absolute
maximum setting at 16. If the HW designer knows exactly how many regions the SW
designer needs, they could select a lower number to conserve the PL resources. The
setting can be kept to default for the time being.

g. Click OK.

12. (Optional) Set Project Synthesis Language.

a. The top level synthesis language for the project may optionally be set to either VHDL or
Verilog. You can choose either one of them for this demonstration.

b. Click Settings in the Flow Manager under Project Settings.

c. Click General under Project Settings.

d. Select the Target Language: VHDL or Verilog. Click OK.

13. Create the top level wrapper.

a. Right-click Base_Zynq_MPSoC and select Create HDL Wrapper in the Block Design
Sources window.

b. Let Vivado manage wrapper. Click OK.

c. Click OK if using 2020.1 and a Critical Messages window appears.

14. Implement design.

a. Click Generate Block Design under IP Integrator.

i. Select Out of context per IP and click Generate.

b. If a Generate Output Products dialogue appears when the module runs have launched:

i. Click OK.

ii. If using 2020.1, a Critical Messages window appears; click OK.

c. Wait for all the block runs to complete.

i. View the status in the upper right corner or monitor the Out-of-Context Module Runs
on the Design Runs tab below.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=36

d. Click Generate Bitstream in the Flow Navigator, click OK or Yes and then OK.

e. When the Bitstream Generation Completed window appears (see the following figure),
click OK to open implemented design.

Figure 23: Bitstream Genertion Completed

Note: For the Vitis flow, it is recommended to have the implemented design open when exporting
hardware to Vitis. For SDK, it is not used.

15. Export hardware.

a. Select File->Export->Export Hardware if using Vivado 2019.1.

i. Check Include bitstream and click OK.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=37

Figure 24: Export Hardware in SDK

b. Open the implemented design if using Vivado 2019.2 or 2020.1.

i. Select File-> Export->Export Hardware

ii. Select Fixed, and click Next if using 2020.1.

iii. Check Include bistream. If using 2020.1, click Next.

iv. XSA file name: Bas_Zynq_MPSoC_wrapper

v. Export to:

 <your_path>/XmpuPL_ZUplus_v1.0a/zcu102_<version>/xmpu_example/
pl_isolation_lab.vitis/Base_Zynq_MPSoC_wrapper_hw_platform

If prompted, click OK to Create Directory.

Figure 25: Export Hardware in Vitis

vi. Click OK or Next > then Finish.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=38

The hardware design is now complete. If using Vivado 2019.1, then proceed to Creating the
Isolation Test SW Applications in SDK 2019.1. If using Vivado 2019.2 or newer, proceed to
Creating the Isolation Test SW Applications in Vitis 2019.2 or Creating the Isolation Test SW
Applications in Vitis 2020.1, accordingly.

Build with the Automated Design Script
The previous section provided step-by-step instructions for manually creating the isolation
example design from the isolation reference design provided in Isolation Methods in Zynq
UltraScale+ MPSoCs (XAPP1320). The following steps have been included in a script for an
automated design build.

CAUTION! Running this script overwrites any existing build of the xmpu_example design.

Run the following steps to build the xmpu example design:

1. Unzip the zupl_xmpu archive: zupl_xmpu_v1_0[revision].zip

2. Start Vivado 2019.1, 2019.2, or 2020.1

a. If running Linux, browse to the ./zupl_xmpu_v1_0/example_designs/
zcu102_example directory and run Vivado.

b. If running Vivado on Windows, use the Tcl Console to navigate to the ./
zupl_xmpu_v1_0/example_designs/zcu102_example directory:

cd{<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example}

3. Run the xmpu_example_design.tcl script:

source./xmpu_example_design.tcl

4. Click Cancel when the Bitstream Generation successfully completed window appears.

Note: For details on the address mapping and xmpu configuration for the design, refer to step 10 and step
11 in the previous chapter: Manual Insertion of the XMPU_PL in the IP Integrator.

The hardware design is now complete. The automated script has already exported the hardware. If using
Vivado 2019.1, proceed to Creating the Isolation Test SW Applications in SDK 2019.1.

If using version 2019.2 or newer, proceed to Creating the Isolation Test SW Applications in Vitis 2019.2 or
Creating the Isolation Test SW Applications in Vitis 2020.1.

Creating the Isolation Test SW Applications in SDK 2019.1

This section describes how to use SDK to create software that runs on the isolated system,
created in the previous section. The following sections demonstrate five software projects that
are created to test the features previously discussed. These projects and their functions are listed
in the following table.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 39Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=39

Table 22: Isolation Test Application Projects

Project Description
r5_fsbl FSBL running on R5_0

pmu_fw_u0 PMU firmware: event handler (prints to uart0)

pmu_fw_u1 PMU firmware: event handler (prints to uart1)

rpu_fault_injection Fault Injection code running on R5_0

apu_fault_injection Fault Injection code running on APU_0

Launch SDK

1. Open the pl_isolation_lab project in Vivado 2019.1 and select File > Launch SDK.

2. Click OK on the Launch Software Development Kit (SDK) tool dialog box.

3. Take a look at the system.hdf displayed in the middle screen, after SDK has been initialized
and finished importing its hardware specification.

4. Note that the address map for each processor now contains an entry for zupl_xmpu_0.

5. In the project explorer frame, expand:

Base_Zynq_MPSoC_wrapper_hw_platform_0>drivers>zupl_xmpu_v1_0>src

You will find the zupl_xmpu SW driver files. These will be included in the board support
packages (BSP) created for each project.

First Stage Boot Loader (FSBL)
The FSBL runs at boot time and loads the PS software projects and the PL bitstream. This section
provides the steps necessary for creating this project.

1. Select File > New > Application Project.

a. Project Name: r5_fsbl

b. OS Platform: <default>

c. Hardware Platform: <default>

d. Processor: psu_cortexr5_0

e. Language: <default>

f. Compiler: <default>

g. Hypervisor Guest: <default>

h. Board Support Package: <default>

2. Click Next.

a. Available Templates: Zynq MP FSBL

3. Click Finish.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=40

PMU Error Manager

The PMU firmware is required for any MPSoC processor system. The isolation reference design
additionally utilized the error manager to handle and report violations detected by the PS
XMPU/XPPU. Therefore, in this lab the PMU is also used for the initialization, configuration, and
interrupt handling from the XMPU_PL.

The PMU Scheduler is used for XMPU_PL initialization and configuration, while the PMU Event
Manager responds to interrupts and reports access violations from the core. The necessary code
modifications are provided, and will be imported into the project. For a more detailed view of the
implementation, refer to A closer Look at the Platform Management Unit (PMU).

Note: Some safety critical applications may prohibit the use of any modifications to the PMU firmware. For
this reason, an additional lab, Creating the Simple XMPU_PL (RPU) Example in SDK 2019.1, has been
provided to demonstrate XMPU_PL initialization, configuration, and handling entirely from within the RPU.

For the isolation test, the APU can only print to UART0, and the RPU can only print to UART1.
Therefore, two versions of the PMU firmware application is created. One prints to the UART0,
and one to the UART1, to complement the RPU and APU fault injection applications.

To create the PMU firmware for UART0:

1. Select File > New > Application Project.

a. Project Name: pmu_fw_u0

b. OS Platform: <default>standalone

c. Hardware Platform: <default> Base_Zynq_MPSoC_wrapper_hw_platform_0

d. Processor: psu_pmu_0

e. Language: <default>C

f. Board Support Package: <default>Create New pmu_fw_u0_bsp

2. Click Next.

a. Available Templates: Zynq PMU Firmware

3. Click Finish.

4. Click to expand pmu_fw_u0 in the project explorer.

5. Right-click src and select Import....

6. Select General > File System and click Next.

7. Browse and navigate to:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/pmu_fw_2019.1

8. Click Select Folder.

9. Click Select All.

10. Click Overwrite existing sources.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=41

11. Click Finish.

To create the PMU firmware for UART1:

1. Select File > New > Application Project.

a. Project Name: pmu_fw_u1

b. OS Platform: <default>standalone

c. Hardware Platform: <default> Base_Zynq_MPSoC_wrapper_hw_platform_0

d. Processor: psu_pmu_0

e. Language: <default>C

f. Board Support Package: <default>Create New pmu_fw_u1_bsp

2. Click Next.

a. Available Templates: Zynq PMU Firmware

3. Click Finish.

4. Click to expand pmu_fw_u1 in the project explorer.

5. Right-click src and select Import....

6. Select General > File System and click Next.

7. Browse and navigate to :

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/pmu_fw_2019.1

8. Click Select Folder.

9. Click Select All.

10. Click Overwrite existing sources.

11. Click Finish.

12. Right-click pmu_fw_u1_bsp and select Board Support Package Settings.

13. Select standalone.

14. Change stdin and stdout to psu_uart_1.

15. Click OK.

APU Fault Injection Application in SDK

The fault injection applications from Isolation Methods in Zynq UltraScale+ MPSoCs (XAPP1320)
performs read and write tests on various memory and peripheral locations to demonstrate the
application of the TrustZone settings and response to the identity of the requesting master.
These applications have been expanded to include the PL memory and peripheral locations
shown in the following table.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 42Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=42

Table 23: Fault Injection PL Memory Addresses

PL Memory Addresses
PL_BRAM_S_BASE 0xA0000000

PL_BRAM_NS_SHARED_BASE 0xA0000400

PL_BRAM_NS_BASE 0xA0000C00

Table 24: Fault Injection PL Peripheral Addresses

PL Peripheral Addresses
PL_XMPU_S_START 0xA0002000

PL_XMPU_S_LOCK 0xA0002020

PL_GPIO_NS_SHARED_START 0xA0001000

The following steps show how to create the APU fault injection application:

1. Select File > New > Application Project.

a. Project Name: apu_fault_injection

b. OS Platform: <default>standalone

c. Hardware Platform: <default>

d. Processor: psu_cortexa53_0

e. Language: <default>C

f. Compiler: <default>64-bit

g. Hypervisor Guest: <default>No

h. Board Support Package: <default>Create new apu_fault_injection_bsp

2. Click Next.

a. Available Templates: Empty Application

3. Click Finish.

4. Click to expand apu_fault_injection in the project explorer.

5. Right-click src and select Import....

6. Select General > File System and click Next.

7. Browse and navigate to:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/apu_fault_injection

8. Click Select Folder.

9. Click Select All.

10. Click Overwrite existing sources...

11. Click Finish.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=43

Create the APU Fault Injection Boot Image

Note: For the following steps:

<build_path>=<your_path>/XmpuPL_ZUplus_v1.0a/zcu102_2019.1/xmpu_example/
pl_isolation_lab.sdk

To create the boot image:

1. Select Xilinx> Create Boot Image

a. Architecture: Zynq MP

b. Check create new BIF file

c. Output BIF file path: <build_path>/apu_fault_injection/output.bif

d. Output path: <build_path>/apu_fault_injection/BOOT.bin

e. Continue without clicking create image

2. Click Add

a. File path: <build_path>/r5_fsbl/Debug/r5_fsbl.elf

b. Partition type: bootloader

c. Destination device: PS

d. Destination CPU: R5 Single

e. Click OK

3. Click Add

a. File path: <build_path>/pmu_fw_u1/Debug/pmu_fw_u1.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: PMU

e. Click OK

4. Click Add

a. File path:

<build_path>/Base_Zynq_MPSoC_wrapper_hw_platform_0/
Base_Zynq_MPSoC_wrapper.bit

b. Partition type: datafile

c. Destination device: PL

d. Click OK

5. Click Add

a. File path:

<build_path>/apu_fault_injection/Debug/apu_fault_injection.elf

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=44

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: A53 0

e. Exception Level: Enable trust zone

f. Click OK

6. The create boot image window looks like the following figure:

7. Click create image. If prompted, select overwrite.

Figure 26: APU Fault Injection Boot Image

RPU Fault Injection Application in SDK

The following steps show how to create the RPU fault injection application:

1. Select File > New > Application Project.

a. Project Name: rpu_fault_injection

b. OS Platform: <default>standalone

c. Hardware Platform: <default>

d. Processor: psu_cortexr5_0

e. Language: <default>C

f. Compiler: <default>32-bit

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=45

g. Hypervisor Guest: <default>No

h. Board Support Package: <default>Create new rpu_fault_injection_bsp

2. Click Next.

a. Available Templates: Empty Application

3. Click Finish.

4. Click to expand rpu_fault_injection in the project explorer.

5. Right-click src and select Import...

6. Select General > File System and click Next.

7. Browse and navigate to:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/rpu_fault_injection

8. Click Select Folder.

9. Click Select All.

10. Click Overwrite existing sources.

11. Click Finish.

12. Select Project>Clean to ensure the applications correctly compiled the imported source.

13. Select Clean all projects and click OK.

a. This rebuilds all the BSPs and re-compiles all the applications so it may take a few
minutes to complete the process.

Create the RPU Fault Injection Boot Image

Note: For the following steps:

<build_path>=<your_path>/XmpuPL_ZUplus_v1.0a/zcu102_2019.1/xmpu_example/
pl_isolation_lab.sdk

To create the boot image:

1. Select Xilinx> Create Boot Image

a. Architecture: Zynq MP

b. Check create new BIF file

c. Output BIF file path: <build_path>/rpu_fault_injection/output.bif

d. Output path: <build_path>/rpu_fault_injection/BOOT.bin

e. Continue without clicking create image

2. Click Add

a. File path: <build_path>/r5_fsbl/Debug/r5_fsbl.elf

b. Partition type: bootloader

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=46

c. Destination device: PS

d. Destination CPU: R5 Single

e. Click OK

3. Click Add

a. File path: <build_path>/pmu_fw_u0/Debug/pmu_fw_u0.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: PMU

e. Click OK

4. Click Add

a. File path: <build_path>/Base_Zynq_MPSoC_wrapper_hw_platform_0/
Base_Zynq_MPSoC_wrapper.bit

b. Partition type: datafile

c. Destination device:PL

d. Click OK

5. Click Add

a. File path: <build_path>/apu_fault_injection/Debug/
apu_fault_injection.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: R5 0

e. Exception Level: Enable trust zone

f. Click OK

6. The create boot image window looks like the following figure

7. Click create image. If prompted, select overwrite.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=47

Figure 27: RPU Fault Injection Boot Image

For further details on how to run the test applications, refer to Running the Isolation Example on
the ZCU102 Board.

Creating the Isolation Test SW Applications in Vitis 2019.2
The Build HW Design in Vivado must export the XSA hardware file to:

<your_path>XmpuPL_ZUplus_v1.0a/zcu102_2019.2/xmpu_example/
pl_isolation_lab.vitis/Base_Zynq_MPSoC_wrapper_hw_platform/
Base_Zynq_MPSoC_wrapper.xsa

1. Select the workspace in Eclipse Launcher.

a. Workspace:

<your_path>\XmpuPL_ZUplus_v1.0a\zcu102_2019.2\xmpu_example
\pl_isolation_lab.vitis

b. Click Launch

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=48

Figure 28: Eclipse Launcher

Build the Isolation Test Platform

Create the platform for the isolation test:

1. Select Create Platform Project

a. Project name: zcu102_isolation_test

b. Check Use default location

c. Click Next

2. Select Create from hardware specification (XSA)

a. Click Next

3. Select XSA file

a. Browse to:

/Base_Zynq_MPSoC_wrapper_hw_platform/Base_Zynq_MPSoC_wrapper.xsa/

b. Click Open

c. Operating system: standalone

d. Processor: psu_cortexa53_0

e. Do not select Generate boot components

• Uncheck if it is selected.

f. Click Finish

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=49

Figure 29: Platform Project Specification

4. In the newly created zcu102_isolation_test tab, right-click psu_cortexa53_0, and
select Add Domain:

a. Name: standalone_psu_cortexr5_0

b. Display name: standalone_psu_cortexr5_0

c. OS: standalone

d. Processor: psu_cortexr5_0

e. Click OK

Figure 30: Add Domain R5_0 Standalone

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=50

5. In the zcu102_isolation_test tab, right-click psu_cortexr5_0, and select Add Domain:

a. Name: zynqmp_fsbl

b. Display name: zynqmp_fsbl

c. OS: standalone

d. Processor: psu_cortexr5_0

e. Click OK

Figure 31: Add Domain FSBL

6. In the zcu102_isolation_test tab, select psu_cortexr5_0> zynqmp_fsbl >Board Support
Package

a. Click Modify BSP Settings

b. Select Overview

c. Check Libraries

i. xilffs Generic Fat File System Library

ii. xilpm Platform Management API Library for ZynqMP and Versal

iii. xilsecure Xilinx Secure Library

d. Select Overview >standalone

i. Set zynqmp_fsbl_bsp true

e. Click OK

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=51

Figure 32: FSBL Board Support Package Settings

7. In the zcu102_isolation_test tab, right-click psu_cortexr5_0, and select Add Domain:

a. Name: zynqmp_pmufw_u0

b. Display name: zynqmp_pmufw_u0

c. OS: standalone

d. Processor: psu_pmu_0

e. Click OK

8. In the zcu102_isolation_test tab, right-click psu_pmu_0, and select Add Domain:

a. Name: zynqmp_pmufw_u1

b. Display name: zynqmp_pmufw_u1

c. OS: standalone

d. Processor: psu_pmu_0

e. Click OK

9. In the zcu102_isolation_test tab, select psu_pmu_0 > zynqmp_pmufw_u1 > Board Support
Package

a. Click Modify BSP Settings

b. Select Overview > standalone

c. Change stdin and stdout to : psu_uart_1

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=52

d. Processor: psu_pmu_0

e. Click OK

Figure 33: zynqmp_pmufw_u1 Board Support Package Settings

10. Right-click zcu102_isolation_test and select Build Project

APU Isolation Test System

The APU isolation test system is a container of the necessary applications to run the APU fault
injection application to test the isolated system.

1. Select File>New>Application Project

a. Check Use default location

b. Project name: apu_fault_injection

c. System project: Create New > apu_fault_injection_system

d. Click Next

e. Select platform from repository: zcu102_isolation_test

f. Click Next

g. Domain: standalone psu_cortexa53_0

h. Click Next

i. Select Empty Application

j. Click Finish

2. Right-click apu_fault_injection_system > apu_fault_injection > src and select Import sources

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=53

a. Browse and navigate to:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/apu_fault_injection

b. Click Select Folder.

c. Click Select All

d. Click Overwrite existing sources

e. Click Finish

3. Right-click apu_fault_injection_system and select Add.>Application Project

a. Check Use default location

b. Project name: r5_fsbl

c. System project: Select apu_fault_injection_system from a drop-down menu

d. Click Next

e. Select zynqmp_fsbl

f. Click Next

g. Select Zynq MP FSBL

h. Click Finish

4. Right-click apu_fault_injection_system and select Add.>Application Project

a. Check Use default location

b. Project name: pmu_fw_u1

c. System project: Select apu_fault_injection_system from a drop-down menu

d. Click Next

e. Select zynqmp_pmufw_u1

f. Click Next

g. Select Zynq MP PMU firmware

h. Click Finish

5. Right-click apu_fault_injection_system > pmufw_u1 > src and select Import sources

a. Browse and navigate to:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/pmu_fw_2019.2

b. Click Select Folder.

c. Click Select All

d. Click Overwrite existing sources

e. Click Finish

6. Click apu_fault_injection_system and select Project>Build Project

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=54

When completed if there is an error: platform file not found, ignore it. This is because default
boot components were not used. You will be creating a boot image in the following steps.

Create the APU Fault Injection Boot Image

To create the boot image

For the following steps:

build_path>=<your_path>/XmpuPL_ZUplus_v1.0a/zcu102_2019.2/xmpu_example/
pl_isolation_lab.vitis

1. Select Xilinx> Create Boot Image

a. Architecture: Zynq MP

b. Check Create new BIF file

c. Output BIF file path: <build_path>/apu_fault_injection/output.bif

d. Output path: <build_path>/apu_fault_injection/BOOT.bin

e. Continue without clicking create image

Note: If the boot image partitions are automatically filled, select each one and delete them so that the
next steps are performed from scratch.

2. Click Add

a. File path: <build_path>/r5_fsbl/Debug/r5_fsbl.elf

b. Partition type: bootloader

c. Destination device: PS

d. Destination CPU: R5 0

e. Click OK

3. Click Add

a. File path: <build_path>/pmu_fw_u1/Debug/pmu_fw_u1.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: PMU

e. Click OK

4. Click Add

a. File path: <build_path>Base_Zynq_MPSoC_wrapper_hw_platform/
BaseZynq_MPSoC_hw_platform/Base_Zynq_MPSoC_wrapper.bit

b. Partition type: datafile

c. Destination device: PL

d. Click OK

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=55

5. Click Add

a. File path: <build_path>/apu_fault_injection/Debug/
apu_fault_injection_elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: A53 0

e. Click OK

CAUTION! The destination CPU defaults to A53_0; but if you do not actually select it from the drop-
down, then the parameter may not get written to the BIF file. Use Preview BIF changes to verify. If
using Linux, try changing the destination CPU and then changing it back to A53 0.

6. The Create Boot Image window looks like the following figure.

7. Click Create Image and select Overwrite if prompted.

Figure 34: Create Boot Image for APU Fault Injection System

Note: This example is not using secure boot and all applications are standalone OS, hence the exception
level and TrustZone settings for BootGen does not matter.

RPU Isolation Test System

The RPU isolation test system is a container of the necessary applications to run the rpu fault
injection application to test the isolated system.

1. Select File>New>Application Project

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=56

a. Check Use default location

b. Project name: rpu_fault_injection

c. System project: Create New > rpu_fault_injection_system

d. Click Next

e. Select platform from repository: zcu102_isolation_test

f. Click Next

g. Domain: standalone_ psu_cortexr5_0

h. Click Next

i. Select Empty Application

j. Click Finish

2. Right-click rpu_fault_injection_system > rpu_fault_injection > src and select Import sources

a. Browse and navigate to:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/rpu_fault_injection

b. Click Select Folder

c. Click Select All

d. Click Overwrite existing sources

e. Click Finish

3. Right-click rpu_fault_injection_system and select Add > Application Project

a. Check Use default location

b. Project name: pmu_fw_u0

c. System project: Select rpu_fault_injection_system from a drop-down menu

d. Click Next

e. Select zynqmp_pmufw_u0

f. Click Next

g. Select Zynq MP PMU firmware

h. Click Finish

4. Right-click rpu_fault_injection_system > pmufw_u0> src and select Import sources

a. Browse and navigate:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/pmu_fw_2019.2

b. Click Select Folder

c. Click Select All

d. Click Overwrite existing sources

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=57

e. Click Finish

5. Click rpu_fault_injection_system and select Project>Build Project

Note: When completed if there is an error: platform file not found, ignore it. This is because default
boot components were not used. You will be creating a boot image in the following steps.

Create the RPU Fault Injection Boot Image

To create the boot image

For the following steps:

build_path> = <your_path>/XmpuPL_ZUplus_v1.0a/zcu102_2019.2/xmpu_example/
pl_isolation_lab.Vitis

1. Select Xilinx> Create Boot Image

a. Architecture: Zynq MP

b. Check Create new BIF file

c. Output BIF file path: <build_path>/rpu_fault_injection/output.bif

d. Output path: <build_path>/rpu_fault_injection/BOOT.bin

e. Continue without clicking create image

Note: If the boot image partitions are automatically filled, select each one and delete them so that the
next steps are performed from scratch.

Note: The RPU isolation test system uses the same r5_fsb that was created in the APU isolation test
system.

2. Click Add

a. File path: <build_path>/r5_fsbl/Debug/r5_fsbl.elf

b. Partition type: bootloader

c. Destination device: PS

d. Destination CPU: R5 0

e. Click OK

3. Click Add

a. File path: <build_path>/pmu_fw_u0/Debug/pmu_fw_u0.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: PMU

e. Click OK

4. Click Add

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=58

a. File path: <build_path> Base_Zynq_MPSoC_wrapper_hw_platform/
BaseZynq_MPSoC_hw_platform/Base_Zynq_MPSoC_wrapper.bit

b. Partition type: datafile

c. Destination device: PL

d. Click OK

5. Click Add

a. File path: <build_path>/apu_fault_injection/Debug/
rpu_fault_injection_elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: R5 0

e. Click OK

6. The Creat Boot Image window looks like the following figure

7. Click Create Image and select Overwrite if prompted.

Figure 35: Create Boot Image for RPU Fault Injection System

Creating the Isolation Test SW Applications in Vitis 2020.1
The Build HW Design in Vivado section should have exported the XSA hardware file to:

<your_path>/XmpuPL_ZUplus_v1.0a/zcu102_2020.1/xmpu_example/
pl_isolation_lab.vitis/Base_Zynq_MPSoC_wrapper_hw_platform/
Base_Zynq_MPSoC_wrapper.xsa

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=59

1. If the pl_isolation_lab project is open in Vivado 2020.1, run the following steps:

2. Select Tools>Launch Vitis IDE

3. Select the workspace in Eclipse Launcher

a. Workspace: <your_path>\XmpuPL_ZUplus_v1.0a\zcu102_2020.1\xmpu_example
\pl_isolation_lab.Vitis

b. Click Launch

Figure 36: Eclipse Launcher

Build the Isolation Test Platform

Create the platform for the isolation test:

1. Select Create Platform Project

a. Project name: zcu102_isolation_test

b. Check Use default location

c. Click Next

2. Select Create from hardware specification (XSA)

a. Click Next

3. Select the XSA file

a. Browse to:

<Workspace>/Base_Zynq_MPSoC_wrapper_hw_platform/
Base_Zynq_MPSoC_wrapper.xsa

b. Click Open

c. Operating system: standalone

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=60

d. Processor: psu_cortexa53_0

e. Architecture: 64-bit

f. Do not select Generate boot components

• Uncheck if it is selected.

g. Click Finish

Figure 37: Platform Project Specification

4. In the newly created zcu102_isolation_test tab, right-click psu_cortexa53_0, and select Add
Domain:

a. Name: standalone_psu_cortexr5_0

b. Display name: standalone_psu_cortexr5_0

c. OS: standalone

d. Processor: psu_cortexr5_0

e. Click OK

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=61

Figure 38: Add Domain R5_0 Standalone

5. In the zcu102_isolation_test tab, right-click psu_cortexr5_0, and select Add Domain:

a. Name: zynqmp_fsbl

b. Display name: zynqmp_fsbl

c. OS: standalone

d. Processor: psu_cortexr5

e. Click OK

Figure 39: Add Domain FSBL

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=62

6. In the zcu102_isolation_test tab, select psu_cortexr5_0> zynqmp_fsbl >Board Support
Package

a. Click Modify BSP Settings

b. Select Overview

c. Check Libraries

i. xilffs Generic Fat File System Library

ii. xilpm Platform Management API Library for ZynqMP and Versal

iii. xilsecure Xilinx Secure Library

d. Select Overview >standalone

i. Set zynqmp_fsbl_bsp true

e. Click OK

Figure 40: FSBL Board Support Package Settings

7. In the zcu102_isolation_test tab, right-click psu_cortexr5, and select Add Domain:

a. Name: zynqmp_pmufw_u0

b. Display name: zynqmp_pmufw_u0

c. OS: standalone

d. Processor: psu_pmu_0

e. Click OK

8. In the zcu102_isolation_test tab, right-click psu_pmu_0, and select Add Domain:

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=63

a. Name: zynqmp_pmufw_u1

b. Display name: zynqmp_pmufw_u1

c. OS: standalone

d. Processor: psu_pmu_0

e. Click OK

9. In the zcu102_isolation_test tab, select psu_pmu_0 > zynqmp_pmufw_u1 > Board Support
Package:

a. Click Modify BSP Settings

b. Select Overview > standalone

c. Change stdin and stdout to : psu_uart_1

d. Processor: psu_pmu_0

e. Click OK

Figure 41: zynqmp_pmufw_u1 Board Support Package Settings

10. Right-click zcu102_isolation_test and select Build Project.

APU Isolation Test System

The APU isolation test system is a container of the necessary applications to run the APU fault
injection application to test the isolated system.

1. Select File>New>Application

a. Click Next if the welcome page opens

b. Project name: apu_fault_injection

c. System project: Create New apu_fault_injection_system

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=64

d. Click Next

e. Select platform from repository: zcu102_isolation_test

f. Click Next

g. Domain: standalone psu_cortexa53_0

h. Click Next

i. Select Empty Application

j. Click Finish

2. Right-click apu_fault_injection_system > apu_fault_injection > src and select Import
sources...

a. Browse and navigate to:

<your_path>\XmpuPL_ZUplus_v1.0a\zcu102_2019.2\xmpu_example
\pl_isolation_lab.vitis

b. Click Select Folder.

c. Click Select All

d. Click Overwrite existing sources

e. Click Finish

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=65

Figure 42: Import Sources

3. Right-click apu_fault_injection_system and select Add Application Project...

a. Application project name: r5_fsbl

b. Processor: psu_cortexr5_0

c. System project: Select apu_fault_injection_system from a drop-down menu

d. Click Next

e. Select zynqmp_fsbl

f. Click Next

g. Select Zynq MP FSBL

h. Click Finish

4. Right-click apu_fault_injection_system and select Add Application Project...

a. Project name: pmu_fw_u1

b. System project: Select apu_fault_injection_system from a drop-down menu

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=66

c. Processor: psu_pmu_0

d. Click Next

e. Domain: zynqmp_pmufw_u1

f. Click Next

g. Select Zynq MP PMU firmware

h. Click Finish

5. Right-click apu_fault_injection_system > pmufw_u1 > src and select Import sources...

a. Browse and navigate to:

your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/pmu_fw_2020.1

b. Click Select Folder

c. Click Select All

d. Click Overwrite existing sources...

e. Click Finish

6. Click apu_fault_injection_system and select Project>Build Project

Note: When completed if there is an error: platform file not found, ignore it. This is because default
boot components were not used. You will be creating a boot image in the following steps.

Create the APU Fault Injection Boot Image

To create the boot image

For the following steps:

build_path=<your_path>/XmpuPL_ZUplus_v1.0a/zcu102_2019.2/xmpu_example/
pl_isolation_lab.vitis

1. Select Xilinx> Create Boot Image

a. Architecture: Zynq MP

b. Check Create new BIF file

c. Output BIF file path: <build_path>/apu_fault_injection/output.bif

d. Output path: <build_path>/apu_fault_injection/BOOT.bin

e. Continue without clicking create image

Note: If the boot image partitions are automatically filled, select each one and delete, so that the next
steps are performed from scratch.

Note: The RPU isolation test system uses the same r5_fsb that was created in the APU isolation test
system.

2. Click Add

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=67

a. File path: <build_path>/r5_fsbl/Debug/r5_fsbl.elf

b. Partition type: bootloader

c. Destination device: PS

d. Destination CPU: R5 0

e. Click OK

3. Click Add

a. File path: <build_path>/pmu_fw_u0/Debug/pmu_fw_u1.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: PMU

e. Click OK

4. Click Add

a. File path: <build_path>Base_Zynq_MPSoC_wrapper_hw_platform/
BaseZynq_MPSoC_hw_platform/Base_Zynq_MPSoC_wrapper.bit

b. Partition type: datafile

c. Destination device: PL

d. Click OK

5. Click Add

a. File path: <build_path>/apu_fault_injection/Debug/
rpu_fault_injection_elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: A53 0

CAUTION! The destination CPU defaults to A53_0, but if you do not actually select it from the
drop-down menu, then the parameter may not get written to the BIF file. Use Preview BIF
Changes to verify.

Figure 43: Preview BIF Changes

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=68

e. Click OK

6. The Create Boot Image window looks like the following figure.

7. Click Create Image and select Overwrite if prompted.

Figure 44: Create Boot Image for RPU Fault Injection System

Note: This example is not using secure boot and all applications are standalone OS, hence the exception
level and TrustZone settings for BootGen does not matter.

RPU Isolation Test System

The RPU isolation test system is a container of the necessary applications to run the RPU fault
injection application to test the isolated system.

1. Select File > New > Application Project.

a. Click Next if the welcome page opens.

b. Select platform from repository: zcu102_isolation_test [custom]

c. Click Next

d. Project name: rpu_fault_injection

e. System project: Create New…

f. System project details: Project name: rpu_fault_injection_system

g. Processor: psu_cortexr5_0

h. Click Next

i. Select a domain: standalone on psu_cortexr5_0

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=69

j. Click Next

k. Select Empty Application

l. Click Finish

2. Right-click rpu_fault_injection_system > rpu_fault_injection > src and select Import sources

a. Browse and navigate to:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/rpu_fault_injection

b. Click Select Folder.

c. Click Select All.

d. Click Overwrite existing sources

e. Click Finish

3. Right-click rpu_fault_injection_system and select Add Application Project...

a. Project name: pmu_fw_u0

b. System project: Select rpu_fault_injection_system from a drop-down menu

c. Processor: psu_pmu_0

d. Click Next

e. Select zynqmp_pmufw_u0

f. Click Next

g. Select Zynq MP PMU firmware

h. Click Finish

4. Right-click rpu_fault_injection_system > pmufw_u0> src and select Import sources

a. Browse and navigate to:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/pmu_fw_2020.1

b. Click Select Folder.

c. Click Select All.

d. Click Overwrite existing sources...

e. Click Finish.

5. Click rpu_fault_injection_system and select Project>Build Project

Note: When completed if there is an error: platform file not found, ignore it. This is because default
boot components were not used. You will be creating a boot image in the following steps.

Create the RPU Fault Injection Boot Image

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=70

To create the boot image

For the following steps:

build_path = <your_path>/XmpuPL_ZUplus_v1.0a/zcu102_2020.1/xmpu_example/
pl_isolation_lab.vitis

1. Select > Create Boot Image

a. Architecture: Zynq MP

b. Check Create new BIF file

c. Output BIF file path: <build_path>/rpu_fault_injection/output.bif

d. Output path: <build_path>/rpu_fault_injection/BOOT.bin

e. Continue without clicking create image

Note: If the boot image partitions are automatically filled, select each one and delete, so that the next
steps are performed from scratch.

Note: The RPU isolation test system uses the same r5_fsbl that was created in the APU isolation test
system.

2. Click Add

a. File path: <build_path>/r5_fsbl/Debug/r5_fsbl.elf

b. Partition type: bootloader

c. Destination device: PS

d. Destination CPU: R5 0

e. Click OK

3. Click Add

a. File path: <build_path>/pmu_fw_u0/Debug/pmu_fw_u0.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: PMU

e. Click OK

4. Click Add

a. File path:<build_path>/Base_Zynq_MPSoC_wrapper_hw_platform/
BaseZynq_MPSoC_hw_platform/Base_Zynq_MPSoC_wrapper.bit

b. Partition type: datafile

c. Destination device: PL

d. Click OK

5. Click Add

a. File path: <build_path>/rpu_fault_injection/Debug/
rpu_fault_injection.elf

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=71

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: R5 0

e. Click OK

6. The Create Boot Image window looks like the following figure

7. Click Create Image and select Overwrite if prompted.

Figure 45: Create Boot Image for RPU Fault Injection System

Running the Isolation Example on the ZCU102 Board
The ZCU102 Evaluation Board is shown in the following figure. For further details, refer to the
ZCU102 Evaluation Board User Guide (UG1182).

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 72Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?k=zcu102;d=ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=72

Figure 46: ZCU102 Evaluation Board

ZCU102 Evaluation Board Setup

1. Connect a USB cable to the UART port of the board and identify the COM ports that were
mapped to it.

2. (Optional) Connect a USB cable to the JTAG port of the board to utilize the Debugger.

3. Set up two (2) serial communication terminals to observe output on UART0 (APU) and
UART1 (RPU).

a. Baud rate: 115200

b. Date bits: 8

c. Parity: None

4. Stop bits: 1

5. Set boot mode:SD (see the following figure for reference)

a. MODE[3:0]>1110>SW6-[4:1]>OFF-OFF-OFF-ON

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=73

Figure 47: SW6 Boot Mode

APU Fault Injection Test
• Copy the BOOT.bin file for the APU fault injection application as follows to the SD card:

<build_path>/apu_fault_injection/BOOT.bin

• Place the SD Card into the socket J100 and power the board

○ After completing initial boot, the fault injection test runs and displays its output to
terminals 0 and 1 as shown in the following figure. Term 0 shows the APU output, and term
1 shows the APU output.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=74

Figure 48: APU Fault Injection Output

The read/write address tests shown in term 0 must either PASS or FAIL in correspondence to the
isolation layout of the system. You can refer to figure 14 for further clarity.

The APU is designated non-secure, and hence can successfully read/write to NS (non-secure) and
NS_SHARED (non-secure shared with secure) memory and peripherals. Each time a test fails, a
violation is reported by the PMU in term 1.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=75

Figure 49: PL Memory and Peripheral Test Results (APU)

Examine the term 0 output for the PL memory and peripheral tests, shown in the previous figure.
The failed test, on PL_BRAM_S_BASE, violations are reported in term 1, as shown in the
following figure.

Figure 50: PL Address Violations in APU

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=76

Note: There is one read permission violation and one write permission violation including the address and
originating master ID. ErrorId:8 corresponds to activity detected on the pmu_error_from_pl port
used by the zupl_xmpu_v1_0 irq port, in the PL design, to communicate interrupts to the PMU. The code
to respond to this interrupt type has been added to the PMU firmware. You can refer to A closer Look at
the Platform Management Unit (PMU) for a detailed understanding of how this was accomplished.

Examining the PL Peripherals tests leads to discovering that the read/write tests to the secure
address PL_XMPU_S_START did not FAIL. This is only because these access attempts did not
result in an AXI violation. The XMPU_PL was configured to Lock Out configuration changes by
any master not authorized by the LOCK_BYPASS register.

Although the APU can read the configuration registers, any write attempts are ignored, however,
the AXI transaction is processed without error.

The final test from term 0 is to unlock the XMPU_PL Configuration.

Figure 51: Unlock XMPU_PL (APU)

As shown in the previous figure, the LOCK register is read and indicates the status as locked. An
attempt to clear the register is performed and then re-read. The attempt to write 0x0 to the
register is ignored, and the lock remains active.

TIP: The PL design can be altered to completely isolate the S_AXI_XMPU slave configuration port of the
zupl_xmpu_v1_0  core and block all read and write access from the unauthorized masters. An example
of this is shown in the Isolating the XMPU_PL Configuration from the XMPU_PL Usage Examples section.
This is left as an exercise for the reader.

RPU Fault Injection Test
Copy the BOOT.bin file for the RPU fault injection application <build_path>/
rpu_fault_injection/BOOT.bin to the SD Card, place the SD Card into the socket J100,
and power the board.

After completing initial boot, the fault injection test runs and displays its output to terminals 0
and 1 as shown in the following figure. Term 0 shows the APU output, and term 1 shows the RPU
output.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=77

Figure 52: RPU Fault Injection Output

The read/write address tests shown in term 1 must either PASS or FAIL in correspondence to the
isolation layout of the system. You can refer to Figure 14 for further clarity.

The RPU is designated non-secure, and hence can successfully read/write to NS (non-secure) and
NS_SHARED (non-secure shared with secure) memory and peripherals. Each time a test fails, a
violation is reported by the PMU in term 0.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=78

Figure 53: PL Memory and Peripherals Test Results (RPU)

Examine the term 0 output for the PL memory and peripheral tests, shown in the previous figure.
The failed test, on PL_BRAM_S_BASE, violations are reported in term 1, as shown in the
following figure.

Figure 54: PL Address Violations in RPU

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=79

Note: There is one read permission violation and one write permission violation including the address and
originating master ID. ErrorId:8 corresponds to activity detected on the pmu_error_from_pl port
used by the zupl_xmpu_v1_0 irq port, in the PL design, to communicate interrupts to the PMU. The code
to respond to this interrupt type has been added to the PMU firmware.

You can refer to A closer Look at the Platform Management Unit (PMU) for a detailed
understanding of how this was accomplished.

The final test from term 1 is to unlock the XMPU_PL Configuration.

Figure 55: Unlock XMPU_PL (RPU)

As shown in the previous figure, the LOCK register is read and indicates the status as locked. The
register is cleared and then re-read. The RPU is an authorized master in the LOCK_BYPASS
registers and retains write privileges to the XMPU_PL configuration registers.

A closer Look at the Platform Management Unit (PMU)

PMU Configuration
To configure the PMU, five source files and a linker script are imported into the pmufw src
directory:

1. xpfw_config.h

2. xpfw_mod_sched.c

3. xpfw_mod_em.c

4. xpfw_pl_xmpu.c

5. xpfw_pl_xmpu.h

6. lscript.ld

In the xpfw_config.h , you can enable the options for the scheduler, error manager, XMPU/
XPPU (PS) interrupts, and detailed print statements. The following figure shows a code snippet.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=80

Figure 56: xpfw_config.h Snippets

This configuration greatly increases the memory footprint of the PMU, mostly due to the detailed
debug messaging enabled for this demonstration. The linker script, lscript.ld, reduces the size of
the stack from 0x1000 to 0x800 so that pmufw can fit into the allotted 128 KB:

_STACK_SIZE = DEFINED(_STACK_SIZE) ? _STACK_SIZE: 0x800;

Configuring the XMPU_PL in the PMU Scheduler
The PMU scheduler is used to periodically call a task. In this example, a scheduler task is used to
initialize and configure the XMPU_PL. While it only needs to be initialized once, the task needs to
wait until PL configuration and start up are complete. A flag indicates whether the XMPU_PL has
already been initialized.

The xpfw_pl_xmpu.h header file provides API declarations for the following functions:

void XMpuPl_PmuTaskInit(const XPfw_Module_t*SchModPtr);

Task initialization function registers the Task function in the scheduler.

void XMpuPl_PmuTask(void);

The Task function is periodically called by the scheduler at a defined interval.

void XmpuPl_Interrupt_Handler(u8 ErrorId);

The interrupt handler for the XMPU_PL is called by the PMU Error Manager.

To schedule the task, a function call to XMpuPl_PmuTaskInit is added to the SchCfgInit function
in xpfw_mod_sched.c, shown in the following figure.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=81

Figure 57: Scheduler Task Initialization in xpfw_mod_sched.c

The source file xpfw_pl_xmpu.c and header file xpfw_pl_xmpu.h are not a part of the
standard PMU source nor is it from the zupl_xmpu SW driver set. These are examples of user-
created files, created specifically for this demonstration.

The following figure shows the XMpuPl_PmuTaskInit function. The XPfw_CoreScheduleTask API
function schedules the XMpuPl_PmuTask task as a callback function in the scheduler. The
XMPUPL_TASK_INTERVAL sets a callback period of 25 ms.

Figure 58: XMpuPl_PmuTaskInit Function in xpfw_pl_xmpu.c

The xpfw_pl_xmpu.c file defines two static variables:

static u8 XMpuPl_Initialized = {0U};
 Flag to indicate XMPU_PL initialization status.

 static XmpuPl XmpuInst;
 XMPU_PL instance.

The XMpuPl_PmuTask function is shown in the following figure. First, it checks the
XMpuPl_Initialized flag to see if the XMPU_PL needs to be initialized. Next, it checks the PCAP
Status to see if the PL configuration is DONE and has reached the end of start up (EOS). Then it
calls the configureXMPU function. If the configureXMPU function completes successfully, then
the XMpuPl_Initialized flag is set.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=82

Figure 59: XMpuPl_PmuTask function in xpfw_pl_xmpu.c

TIP: Though it is not necessary to do so, once the XMPU_PL has been configured, the XMpuPl_PmuTask
function can be removed from the scheduler, using the XPfw_CoreRemoveTask, to avoid continuing to
unnecessarily task the PMU. This is left as an exercise for the reader.

The configureXMPU function, shown in the previous figure, first initializes the XmpuPl instance,
and then configures the XMPU_PL core. Only one instance is needed for this demonstration
design, however, the Simple XMPU_PL (RPU) Example demonstrates initialization for any number
of instances.

The SW Driver functions that configures the XMPU_PL are shown in Appendix B: SW Driver
Library. See thexpfw_pl_xmpu.h header file for the macro definitions of the constants used in
the configureXMPU function.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=83

Figure 60: configureXMPU Function in xpfw_pl_xmpu.c

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=84

Handling XMPU_PL Interrupts in the PMU (EM) Error
Manager
In the PL design shown in Figure 21, the zupl_xmpu reference core interrupt output port, irq,
is routed to the PS ports pl_ps_irq[0] and pmu_error_from_pl[0]. The pl_ps_irq
signal can be used by the global interrupt controller (GIC) to trigger interrupts in the RPU and
APU processors. Similarly, the pmu_error_from_pl signal triggers an interrupt in the PMU
Error Manager.

The PMU Error Manager is customized to respond to system events. The default configuration of
the EmEventHandler, in xpfw_mod_em.c, installs event detection modules for the PMU global
registers ERROR_STATUS_1 and ERROR_STATUS_2. The ERROR_STATUS_2 register provides
event triggers for pmu_error_from_pl [0:3] on bits ERROR_STATUS_2[2:5]. Refer to Zynq
UltraScale+ Device Register Reference (UG1087) for more details of the PMU global registers.

The Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) provides a detailed description
of the PMU firmware and error manager. To enable an event handler for the PL signals, an
XPfw_EmSetAction function call is added to the EmCfgInit function in xpfw_mod_em.c, shown
in the following figure.

Figure 61: Error Manager Configuration Initialization in xpfw_mod_em.c

The EM error IDs are defined inxpfw_error_manager.h. EM_ERR_ID_PL (8U) identifies the
PL to PS portion of the ERROR_STATUS_2 register. The XPfw_EmSetAction function call
provides the error ID, action type and event handler. Setting the action type to
EM_ACTION_CUSTOM enables a callback to the event handler.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 85Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=85

In the following figure, the event handler, PL_ErrorHandler, has been added to xpfw_mod_em.c.
This specific example shows the event handler, PL_ErrorHandler, calls for the XMPU_PL interrupt
handler, XmpuPl_Interrupt_Handler, and then clears the event in the ERROR_STATUS_2 Register.

Note: Only PL_TO_PS events are cleared by this handler.

Figure 62: PL Event Handler

The XmpuPl_Interrupt_Handler function is shown in the following figure:

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=86

Figure 63: XMPU_PL Interrupt Handler

The XmpuPl_Interrupt_Handler function has been specifically designed for the purposes of this
demonstration to output XMPU_PL violations in the same format as that used for the XMPU/
XPPU (PS) events handled in xpfw_xpu. For reference, see figure 49 and figure 53.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=87

As with any handler written for XMPU_PL interrupts, you must first get the interrupt status from
the ISR register to determine the violation type (read or write). The ERR_STATUS1 and
ERR_STATUS2 registers provide the originating AXI address and Master ID, respectively. After
printing out the violation data, the interrupt status is cleared from the ISR register. To identify the
PS master from the master ID, the static XpuMasterID list has been copied from xpfw_xpu.c
and placed into the xpfw_pl_xmpu.c file.

Note: In the Vitis 2019.2 version of the pmufw imported files, the XpuMasterID struct content has been
reduced to the APU and RPU0 entries to conserve memory consumption. These are the only masters
utilized in this demonstration.

Creating the Simple XMPU_PL (RPU) Example in SDK 2019.1
The previous isolation example utilized the platform management unit (PMU) to handle
initialization, configuration, and error handling for the XMPU_PL module. Some applications such
as safety critical, may have restrictions on modifying the PMU firmware. Thus, this example
provides a simpler demonstration from a single application running in the RPU.

FSBL- First Stage Boot Loader
This example uses the same FSBL created in the previous example. If it does not already exist,
follow the steps from First Stage Boot Loader (FSBL). This is located in the Creating the Isolation
Test SW Applications in SDK 2019.1.

Default PMU

This example will not use the PMU to manage the XMPU_PL. However, a default PMU is needed
for booting from the SD Card.

You must build a new PMU with default settings:

1. Select File>New>Application Project

a. Project Name: pmu_fw_default

b. OS Platform: <default> standalone

c. Hardware Platform: Base_Zynq_MPSoC_wrapper_hw_platform_0

d. Processor: psu_pmu_0

e. Language: C

f. Board Support Package: <default> Create New pmu_fw_default_bsp

2. Click Next

a. Available Templates: Zynq PMU Firmware

3. Click Finish

RPU XMPU_PL Example Application in SDK

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=88

To create the RPU example application:

For the following steps:

<your_path>/XmpuPL_ZUplus_v1.0a/zcu102_2019.1/xmpu_example/
pl_isolation_lab.sdk

1. Select File>New>Application Project

a. Project name: rpu_xmpu_example

b. OS Platform: <default> standalone

c. Hardware Platform: <default>

d. Processor: psu_cortexr5_0

e. Language: <default> C

f. Compiler: <default> 32-bit

g. Hypervisor Guest: <default> No

h. Board Support Package: <default> Create New rpu_xmpu_example_bsp

2. Click Next

a. Available templates: Empty Application

3. Click Finish

4. Click and expand rpu_xmpu_example in the Project Explorer window

5. Right-click src and select Import...

6. Click General > File System and click Next

7. Browse and navigate to:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/rpu_xmpu_simple_example

8. Click Select Folder

9. Click Select All

10. Click Overwrite existing sources...

11. Click Finish

Create the RPU Simple Example Boot Image

To create the boot image

For the following steps:

<your_path>/XmpuPL_ZUplus_v1.0a/zcu102_2019.1/xmpu_example/
pl_isolation_lab.sdk

1. Select > Create Boot Image

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=89

a. Architecture: Zynq MP

b. Check Create new BIF file

c. Output BIF file path: <build_path>/rpu_fault_injection/output.bif

d. Output path: <build_path>/rpu_fault_injection/BOOT.bin

e. Continue without clicking create image

2. Click Add

a. File path: <build_path>/r5_fsbl/Debug/r5_fsbl.elf

b. Partition type: bootloader

c. Destination device: PS

d. Destination CPU: RS Single

e. Click OK

3. Click Add

a. File path: <build_path>/pmu_fw_default/Debug/pmu_fw_default.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: PMU

e. Click OK

4. Click Add

a. File path: <build_path>/Base_Zynq_MPSoC_wrapper_hw_platform/
BaseZynq_MPSoC_hw_platform/Base_Zynq_MPSoC_wrapper.bit

b. Partition type: datafile

c. Destination device: PL

d. Click OK

5. Click Add

a. File path: <build_path>/rpu_fault_injection/Debug/
rpu_fault_injection.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: R5 0

e. Click OK

6. Click Create Image and select Overwrite if prompted.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=90

Creating the Simple XMPU_PL (RPU) Example in Vitis 2019.2
The previous isolation example utilized the platform management unit (PMU) to handle
initialization, configuration, and error handling for the XMPU_PL module. Some applications such
as safety critical, may have restrictions on modifying the PMU firmware. Thus, this example
provides a simpler demonstration from a single application running in the RPU.

This example uses the same platform created in the previous example. If it does not already exist,
follow the steps in Build the Isolation Test Platform in the Creating the Isolation Test SW
Applications in Vitis 2019.2 section.

This example also uses the same R5_FSBL created in the previous example. However, you must
create a new default PMU application without any modifications.

RPU Simple XMPU_PL Test System

The RPU simple test system will be a container of the necessary applications to run the simple
rpu application to test the XMPU_PL on the isolated system.

1. Select File>New>Application Project

a. Check Use Default Location

b. Project Name: rpu_xmpu_example

c. System project: Create New > rpu_xmpu_example_system

d. Click Next

e. Select platform from repository: zcu102_isolation_test [custom]

f. Click Next

g. Domain: standalone on psu_cortexr5_0

h. Click Next

i. Select Empty Application

j. Click Finish

2. Right-click rpu_xmpu_example_system > rpu_xmpu_example > src and select Import Sources

a. Browse and navigate to:

<your_path>/XmpuPL_ZUplus_v1.0a/zupl_xmpu_v1_0/example_designs/
zcu102_example/sources/src/rpu_simple_example

b. Click Select Folder.

c. Click Select All

d. Click Overwrite existing sources...

e. Click Finish

3. Right-click rpu_fault_example_system and select Add Application Project

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=91

a. Check Use default location

b. Project name: pmufw

c. System project: Select rpu_ xmpu_example_system from a drop-down menu

d. Click Next

e. Domain: zynqmp_ pmufw_u0

f. Click Next

g. Select ZynqMP PMU Firmware

h. Click Finish

4. Click rpu_fault_example_system and select Project>Build project

a. If there is an error when the process is completed and platform file is not found, ignore it.

FSBL

Skip this step if the R5_FSBL from the previous example already exists in the workspace.

To build an FSBL for the R5:

1. Select File>New>Application Project

a. Check Use default location

b. Project name: r5_fsbl

c. System project: Select Create New>r5_fsbl_system from a drop-down menu

d. Click Next

e. Select platform from repository: zcu102_isolation_test [custom]

f. Click Next

g. Domain: zynqmp_ fsbl

h. Click Next

i. Select Zynq MP FSBL

j. Click Finish

2. Click r5_fsbl_system and select Project>Build project

Note: The FSBL for this system had to be created in a separate system because the R5_0 is also being used
by the example application. Both the FSBL and the application may utilize the same processor, just not in
the same system. They get combined in the boot image.

Create the RPU Simple Example Boot Image

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=92

To create the boot image

For the following steps:

build_path=<your_path>/XmpuPL_ZUplus_v1.0a/zcu102_2019.2/xmpu_example/
pl_isolation_lab.vitis

1. Select Xilinx > Create Boot Image

a. Architecture: Zynq MP

b. Check Create new BIF file

c. Output BIF file path: <build_path>/rpu_xmpu_example/output.bif

d. Output path: <build_path>/rpu_xmpu_example/BOOT.bin

e. Continue without clicking create image

2. Click Add

a. File path: <build_path>/r5_fsbl/Debug/r5_fsbl.elf

b. Partition type: bootloader

c. Destination device: PS

d. Destination CPU: R5 0

e. Click OK

3. Click Add

a. File path: <build_path>/pmufw/Debug/pmufw.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: PMU

e. Click OK

4. Click Add

a. File path:

<build_path>Base/Zynq_MPSoC_wrapper_hw_platform/
BaseZynq_MPSoC_hw_platform/Base_Zynq_MPSoC_wrapper.bit

b. Partition type: Datafile

c. Destination device: PL

d. Click OK

5. Click Add

a. File path: <build_path>/rpu_xmpu_example/Debug/rpu_xmpu_example.elf

b. Partition type: datafile

c. Destination device: PS

d. Destination CPU: R5 0

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=93

e. Click OK

6. Click Create Image and select Overwrite if prompted.

Running the Simple Example on the ZCU102 Board
The procedure for setting up the evaluation board is provided in the previous example, ZCU102
Evaluation Board Setup. Copy the BOOT.bin file for the RPU simple example application
<build_path>/rpu_xmpu_example/BOOT.bin to the SD Card, place the SD card into
socket J100, and power the board. If the board is already powered, then cycle PROG_B by
pressing SW4.

After completing the initial boot, the PL portion of the fault injection test, also demonstrated in
the previous example, runs and displays its output to terminal 1. See the following figure for
reference.

Figure 64: Simple XMPU_PL Example Output

A Closer Look at the Simple XMPU_PL Example Application

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=94

In this example the PL addresses portion of the RPU fault injection test is combined with the
initialization, configuration, and management of the XMPU_PL module examples that were
previously implemented in the PMU. The zupl_xmpu software drivers can be found in the
following program:

/rpu_example_bsp/psu_cortexr5_0/libsrc/zupl_xmpu_v1_0(SDK)/
zcu102_isolation_test/psu_cortexr5_0/standalone_psu_cortexr5_0/bsp/
psu_cortexr5_0/libsrc/zupl_xmpu_v1_0(Vitis)

The source file pl_xmpu_example.c includes the declarations shown in the following figure.

• SetupInterruptSystem installs the general interrupt controller (GIC) and enables exception
handling for interrupts and synchronous data aborts.

• SAbort_DataAbortHandler clears the ArmR5 aborts exception, returns the program pointer to
the next instruction, and allows the application to continue operation.

• The readReg and writeReg memory tests use the exception detection to determine PASS/FAIL
and prints the result.

• The XMpuPl_IntrHandler responds to interrupts triggered by the zupl_xmpu core’s irq signal. It
stores the violation data and clears the interrupt status register.

• The exceptionDetected flag is set by SAbort_DataAbortHandler and indicates that exception
has occurred.

• XMpuPl_IntrHandler stores the number of interrupt occurrences in xmpu_intr and the
status of the most previous interrupt in xmpu_isr.

Figure 65: pl_xmpu_example declarations

The main (A) begins with instance declarations for the general interrupt controller and XMPU_PL,
followed by the SetupInterruptSystem function call to set up the interrupt controller and
exception handling.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=95

Figure 66: pl_xmpu_example Main (A)

Although this example PL design only implements a single XMPU_PL, the demonstration code
declares the XmpuPl instance as an array to support any number of instances, defined by
XMPU_PL_NUM_INST in pl_xmpu_example.h:

#define XMPU_PL_NUM_INST XPAR_ZUPL_XMPU_NUM_INSTANCES

Note: The zupl_xmpu SW driver supports a maximum of 16 zupl_xmpu instances. Each instance can
support a maximum of 16 regions.

The ZUPL_XMPU parameters are defined in xparameters.h:

Figure 67: xparameters.h ZUPL_XMPU Parameters

Initialization of the XMPU_PL instance(s), shown in the following figure, is carried out in a FOR loop. Each
instance number represents the Device ID.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=96

Figure 68: pl_xmpu_example Main (B)

The interrupt ID for instance 0 is defined pl_xmpu_example.h

#define XMPU_PL_INTR_ID XPAR_FABRIC_ZUPL_XMPU_0_IRQ_INTR

For each instance, the interrupt ID is registered to the XMpuPl_IntrHandler function which is
passed the starting address of the instance array as its parameter. Since the design only contains
a single instance, only instance 0 is configured.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=97

Figure 69: pl_xmpu_example Main (C)

The CTRL register is configured with default read allowed, default write allowed, poison attribute
and poison address enabled, and poisoned AXI response DECERR, by XMPU_CTLR_VAL defined
in the following pl_xmpu_example.h::

#define XMPU_CTRL_VAL (XMPU_PL_CTRL_DEFRD \
 | XMPU_PL_CTRL_DEFWR \
 | XMPU_PL_CTRL_PSNATTREN \
 | XMPU_PL_CTRL_PSNADDREN \
 | XMPU_PL_CTRL_ARSP_DEC)

The defined register offsets and configuration options are found in the zupl_xmpu SW driver file
zupl_xmpu_hw.h. The LOCK BYPASS register configuration allows the PMU and RPU0 to have
write access after the LOCK is enabled.

#define XMPU_LOCK_MASTERS (XMPU_PL_MID_PMU | XMPU_PL_MID_RPU0)

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=98

Read and write violations are enabled interrupts by XMPU_INT_EN.

#define XMPU_INT_EN (XMPU_PL_IXR_WRVIO_MSK \
| XMPU_PL_IXR_RDVIO_MSK)

Region 0 is set to a 1 KB size starting at the base of the secure (S) BRAM area, and configured
with the following parameters:

#define REGION_0_ADDR PL_BRAM_S_BASE
#define REGION_0_MASTERS (XMPU_PL_MID_RPU0)
#define REGION_0_CFG (XMPU_PL_REGION_WR_ALLOW \
 | XMPU_PL_REGION_RD_ALLOW \
 | XMPU_PL_REGION_ENABLE)

Only RPU0 has read and write privileges.

Region 1 is also set to a 1 KB size starting at the base of the non-secure (NS) BRAM area, and
configured with the following parameters:

#define REGION_1_ADDR PL_BRAM_NS_BASE
#define REGION_1_MASTERS (XMPU_PL_MID_APU)
#define REGION_1_CFG (XMPU_PL_REGION_WR_ALLOW \
 | XMPU_PL_REGION_RD_ALLOW \
 | XMPU_PL_REGION_ENABLE)

Only the APU has read and write privileges. PL_BRAM_NS_SHARED is set to an address
between region 0 end and region 1 start. A region miss falls to the default settings specified in
the CTRL registers that gives read and write access to all masters making the memory space
shared.

The rest of main () runs the read/write tests and finally prints the number of interrupts recorded
by the interrupt handler, XMpuPl_IntrHandler, shown in the following figure. In this example, one
interrupt handler is shared by all instances. The interrupt status register of each instance is
checked until an active violation is found. The interrupt status is stored, the number of interrupts
is incremented, and then the interrupt status is cleared. If there is more than one instance issuing
an interrupt, the handler gets recalled until all interrupts are cleared.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=99

Figure 70: pl_xmpu_example XMpuPl_IntrHandler

This is an example of one way a designer chooses to configure and handle the zupl_xmpu_v1_0
core. Additionally, you can add multiple instances into the PL design and add their configurations
to this application. This is left for you as an exercise.

Conclusion
The zupl_xmpu_v1_0 bridges PL and PS security and isolation for AXI based embedded designs
in Zynq UltraScale+ devices. The following appendix provides the Master ID list and SW driver
details.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=100

Appendix A: Master ID List
Table 25: PS Master IDs

Master ID Mask Master ID Mask
MID_RPU0 x"0000" x"03F0" MID_GPU x"00C4" x"03FF"

MID_RPU1 x"0010" x"03F0" MID_DAP_AXI x"00C5" x"03FF"

MID_PMU x"0040" x"03FF" MID_PCIE x"00D0" x"03FF"

MID_USB0 x"0060" x"03FF" MID_DP_DMA0 x"00E0" x"03FE"

MID_USB1 x"0061" x"03FF" MID_DP_DMA1 x"00E1" x"03FE"

MID_DAP_APB x"0062" x"03FF" MID_DP_DMA2 x"00E2" x"03FE"

MID_LPD_DMA0 x"0068" x"03FE" MID_DP_DMA3 x"00E3" x"03FE"

MID_LPD_DMA1 x"0069" x"03FE" MID_DP_DMA4 x"00E4" x"03FE"

MID_LPD_DMA2 x"006A" x"03FE" MID_DP_DMA5 x"00E5" x"03FE"

MID_LPD_DMA2 x"03FB" x"03FE" MID_FPD_DMA0 x"00E8" x"03FE"

MID_LPD_DMA4 x"006C" x"03FE" MID_FPD_DMA1 x"00E9" x"03FE"

MID_LPD_DMA5 x"006D" x"03FE" MID_FPD_DMA2 x"00EA" x"03FE"

MID_LPD_DMA6 x"006E" x"03FE" MID_FPD_DMA3 x"00EB" x"03FE"

MID_LPD_DMA7 x"006F" x"03FE" MID_FPD_DMA4 x"00EC" x"03FE"

MID_SD0 x"0070" x"03FF" MID_FPD_DMA5 x"00ED" x"03FE"

MID_SD1 x"0071" x"03FF" MID_FPD_DMA6 x"00EE" x"03FE"

MID_NAND x"0072" x"03FF" MID_FPD_DMA7 x"00EF" x"03FE"

MID_QSPI x"0073" x"03FF" MID_HPC0_FPD x"0200" x"03C0"

MID_GEM0 x"0074" x"03FF" MID_HPC1_FPD x"0240" x"03C0"

MID_GEM1 x"0075" x"03FF" MID_HP0_FPD x"0280" x"03C0"

MID_GEM2 x"0076" x"03FF" MID_HP1_FPD x"02C0" x"03C0"

MID_GEM3 x"0077" x"03FF" MID_HP2_FPD x"0300" x"03C0"

MID_APU x"0080" x"03FF" MID_HP3_LPD x"0340" x"03C0"

MID_APU x"00C0" x"03C0" MID_PL_LPD x"0380" x"03C0"

MID_SATA1 x"00C1" x"03FF" MID_ACE_FPD x"03C0" x"03C0"

Appendix B: SW Driver Library
Overview
The zupl_xmpu driver provides standard C functions and macros for Zynq UltraScale+ MPSoC PS
and PL processor applications that initializes, configures, and manages the XMPU_PL memory
and peripheral protection unit implemented by the zupl_xmpu_v1_0 reference core.

The zupl_xmpu_v1_0 source and include directories contain the files shown in the following
figure:

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=101

Figure 71: ZUPL_XMPU SW Driver Files

Structs

XmpuPl_Config Struct

The XmpuPl_Config struct passes exported device parameters.

typedef struct {
 u16 DeviceId; /**< Unique ID for device */
 u32 BaseAddress; /**< Base address for device */
 u32 M_Axi_BaseAddress; /**< Base Address for Protected Master */
 u32 M_Axi_HighAddress; /**< Base Address for Protected Master */
 u32 MaxRegions; /**< Maximum allowed Regions for device */
} XmpuPl_Config;

XmpuPl_Regions Struct

The XmpuPl_Regions struct stores a copy of region configuration register values.

typedef struct {
 u64 Start;
 u64 End;
 u32 Masters;
 u32 Config;
} XmpuPl_Regions;

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=102

XmpuPl_Regs Struct

The XmpuPl_Regs struct stores a copy of device instance register values. This includes
XmpuPl_Regions.

typedef struct {
 u32 CTRL;
 u32 POISON;
 u32 IMR;
 u32 LOCK;
 u32 BYPASS;
 u32 REGIONS;
 XmpuPl_Regions Region_Regs[16U];
} XmpuPl_Regs;

XmpuPl Struct

The XmpuPl struct stores and passes all device instance register, configuration, and exported
values. This includes XmpuPl_Config and XmpuPl_Regs.

typedef struct {
 XmpuPl_Config Config; /**< Configuration structure */
 XmpuPl_Regs Regs;
 u32 IsReady; /**< Device is initialized and ready */
} XmpuPl;

Functions

XMpuPl_LookupConfig
XmpuPl_Config *XMpuPl_LookupConfig(u16 DeviceId);

This searches the XMpuPlInst_ConfigTable for the device configuration based on the
unique device ID, and returns a pointer to the element at the associated table index.

Parameters

• DeviceId: DeviceId contains the unique ID of the device

Return

• XmpuPl_Config *: Pointer to XMpuPlInst_ConfigTable element

XMpuPl_CfgInitialize
u32 XMpuPl_CfgInitialize(XmpuPl *InstancePtr, XmpuPl_Config *ConfigPtr, u32
EffectiveAddr);

This initializes the XMpuPl Instance Configuration

Parameters

• InstancePtr *: Pointer to XmpuPl instance

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=103

• XmpuPl_Config *: Pointer to XMpuPlInst_ConfigTable element

• EffectiveAddr: Base address of the device. This is typically set to XmpuPl_Config ->
BaseAddress, but is also used for system address mapping.

Return

• Status: Function execution status: 0U Success; 1U Error.

XMpuPl_IsActive
u32 XMpuPl_IsActive(XmpuPl *InstancePtr);

Note: This checks if the device has been configured.

Parameters

• InstancePtr *: Pointer to XmpuPl instance

Return

• Status: Instance configuration status: 0U Active; 1U Unconfigured.

XMpuPl_AddRegion
u32 XMpuPl_AddRegion(XmpuPl *InstancePtr, u64 start, u32 size, u32 masters,
u32 config);

This configures a protected address region in to the next available region.

Parameters

• InstancePtr *: Pointer to XmpuPl instance

• Start: Upper 32 bits of a 40-bit starting address for the region.

• Size: Size of the region in KB(s)

• Masters: Value written to R[n]_MASTERS register. Each bit authorizes a PS Master.

• Config: Value written to R[n]_CONFIG register.

Return

• Status: Function execution status: 0U Success; 1U Error.

XMpuPL_GetConfig
u32 XMpuPl_GetConfig(XmpuPl *InstancePtr);

This loads all device and region configuration data into instance.

Parameters

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=104

• InstancePtr *: Pointer to XmpuPl instance

Return

• Status: Function execution status: 0U Success; 1U Error.

XMpuPL_SelfTest
u32 XMpuPL_SelfTest(XmpuPl *InstancePtr);

This runs a read and write self-test on the device.

Parameters

• InstancePtr *: Pointer to XmpuPl instance

Return

• Status: Function execution status: 0U Success; 1U Error.

Macros

InstReadReg
#define InstReadReg(InstancePtr, RegOffset) \
 (Xil_In32(((InstancePtr)->Config.BaseAddress) + (u32)
(RegOffset)))

This returns the value of the selected device register.

Parameters

• InstancePtr *: Pointer to XmpuPl instance

• RegOffset: Use register offset values provided in zupl_xmpu_hw.h

Return

• Returns register value.

InstWriteReg

#define InstWriteReg(InstancePtr,RegOffset,Data)\
 (Xil_Out32(((InstancePtr)-Config.BaseAddress)+(u32)(RegOffset,
(u32)(Data)))

This writes the value to the selected device register.

Parameters

• InstancePtr*: Pointer to XmpuPl instance

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=105

• RegOffset: Use register offset values provided in zupl_xmpu_hw.h

• Data: Value to be written to register

Return

• None: none

XMpuPl_EnableInterrupts
#define XMpuPl_EnableInterrupts(InstancePtr, InterruptMask) \
 InstWriteReg((InstancePtr), XMPU_PL_IER_OFFSET, \
 (InstReadReg((InstancePtr), XMPU_PL_IER_OFFSET) | \
 (InterruptMask)))

This enables the selected interrupts. The unselected interrupts maintain their current settings.

Parameters

• InstancePtr *: Pointer to XmpuPl instance

• InterruptMask : Use interrupt mask values provided in zupl_xmpu_hw.h

Return

• None: none

XMpuPl_DisableInterrupts
#define XMpuPl_DisableInterrupts(InstancePtr, InterruptMask) \
 InstWriteReg((InstancePtr), XMPU_PL_IDS_OFFSET, \
 (~InstReadReg((InstancePtr), XMPU_PL_IMR_OFFSET) & \
 (InterruptMask)))

This disables the selected interrupts. The unselected interrupts maintains their current settings.

Parameters

• InstancePtr *: Pointer to XmpuPl instance

• InterruptMask: Use interrupt mask values provided in zupl_xmpu_hw.h

Return

• None: none

XMpuPl_GetInterruptStatus
#define XMpuPl_GetInterruptStatus(InstancePtr) \
 InstReadReg((InstancePtr), XMPU_PL_ISR_OFFSET)

This returns the value of the interrupt status register.

Parameters

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=106

• InstancePtr *: Pointer to XmpuPl instance

Return

• Return Status: Returns ISR register value

XMpuPl_ClearInterruptStatus
#define XMpuPl_ClearInterruptStatus(InstancePtr, InterruptMask) \
 InstWriteReg((InstancePtr), XMPU_PL_ISR_OFFSET, (InterruptMask))

This clears the selected interrupts. The unselected interrupts maintain their current settings.

Parameters

• InstancePtr *: Pointer to XmpuPl instance

• InterruptMask: Use interrupt mask values provided in zupl_xmpu_hw.h

Return

• Return Status: None

Constants
/*REGISTER OFFSETS*/
#define XMPU_PL_CTRL_OFFSET 0x0U
#define XMPU_PL_ERRS1_OFFSET 0x4U
#define XMPU_PL_ERRS2_OFFSET 0x8U
#define XMPU_PL_POISON_OFFSET 0xCU
#define XMPU_PL_ISR_OFFSET 0x10U
#define XMPU_PL_IMR_OFFSET 0x14U
#define XMPU_PL_IER_OFFSET 0x18U
#define XMPU_PL_IDS_OFFSET 0x1CU
#define XMPU_PL_LOCK_OFFSET 0x20U
#define XMPU_PL_BYPASS_OFFSET 0x24U
#define XMPU_PL_REGIONS_OFFSET 0x28U
#define XMPU_PL_R00_START_OFFSET 0x100U
#define XMPU_PL_R00_END_OFFSET 0x104U
#define XMPU_PL_R00_MASTERS_OFFSET 0x108U
#define XMPU_PL_R00_CONFIG_OFFSET 0x10CU
#define XMPU_PL_R01_START_OFFSET 0x110U
#define XMPU_PL_R01_END_OFFSET 0x114U
#define XMPU_PL_R01_MASTERS_OFFSET 0x118U
#define XMPU_PL_R01_CONFIG_OFFSET 0x11CU
#define XMPU_PL_R02_START_OFFSET 0x120U
#define XMPU_PL_R02_END_OFFSET 0x124U
#define XMPU_PL_R02_MASTERS_OFFSET 0x128U
#define XMPU_PL_R02_CONFIG_OFFSET 0x12CU
#define XMPU_PL_R03_START_OFFSET 0x130U
#define XMPU_PL_R03_END_OFFSET 0x134U
#define XMPU_PL_R03_MASTERS_OFFSET 0x138U
#define XMPU_PL_R03_CONFIG_OFFSET 0x13CU
#define XMPU_PL_R04_START_OFFSET 0x140U
#define XMPU_PL_R04_END_OFFSET 0x144U
#define XMPU_PL_R04_MASTERS_OFFSET 0x148U
#define XMPU_PL_R04_CONFIG_OFFSET 0x14CU
#define XMPU_PL_R05_START_OFFSET 0x150U
#define XMPU_PL_R05_END_OFFSET 0x154U
#define XMPU_PL_R05_MASTERS_OFFSET 0x158U

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=107

#define XMPU_PL_R05_CONFIG_OFFSET 0x15CU
#define XMPU_PL_R06_START_OFFSET 0x160U
#define XMPU_PL_R06_END_OFFSET 0x164U
#define XMPU_PL_R06_MASTERS_OFFSET 0x168U
#define XMPU_PL_R06_CONFIG_OFFSET 0x16CU
#define XMPU_PL_R07_START_OFFSET 0x170U
#define XMPU_PL_R07_END_OFFSET 0x174U
#define XMPU_PL_R07_MASTERS_OFFSET 0x178U
#define XMPU_PL_R07_CONFIG_OFFSET 0x17CU
#define XMPU_PL_R08_START_OFFSET 0x180U
#define XMPU_PL_R08_END_OFFSET 0x184U
#define XMPU_PL_R08_MASTERS_OFFSET 0x188U
#define XMPU_PL_R08_CONFIG_OFFSET 0x18CU
#define XMPU_PL_R09_START_OFFSET 0x190U
#define XMPU_PL_R09_END_OFFSET 0x194U
#define XMPU_PL_R09_MASTERS_OFFSET 0x198U
#define XMPU_PL_R09_CONFIG_OFFSET 0x19CU
#define XMPU_PL_R10_START_OFFSET 0x1A0U
#define XMPU_PL_R10_END_OFFSET 0x1A4U
#define XMPU_PL_R10_MASTERS_OFFSET 0x1A8U
#define XMPU_PL_R10_CONFIG_OFFSET 0x1ACU
#define XMPU_PL_R11_START_OFFSET 0x1B0U
#define XMPU_PL_R11_END_OFFSET 0x1B4U
#define XMPU_PL_R11_MASTERS_OFFSET 0x1B8U
#define XMPU_PL_R11_CONFIG_OFFSET 0x1BCU
#define XMPU_PL_R12_START_OFFSET 0x1C0U
#define XMPU_PL_R12_END_OFFSET 0x1C4U
#define XMPU_PL_R12_MASTERS_OFFSET 0x1C8U
#define XMPU_PL_R12_CONFIG_OFFSET 0x1CCU
#define XMPU_PL_R13_START_OFFSET 0x1D0U
#define XMPU_PL_R13_END_OFFSET 0x1D4U
#define XMPU_PL_R13_MASTERS_OFFSET 0x1D8U
#define XMPU_PL_R13_CONFIG_OFFSET 0x1DCU
#define XMPU_PL_R14_START_OFFSET 0x1E0U
#define XMPU_PL_R14_END_OFFSET 0x1E4U
#define XMPU_PL_R14_MASTERS_OFFSET 0x1E8U
#define XMPU_PL_R14_CONFIG_OFFSET 0x1ECU
#define XMPU_PL_R15_START_OFFSET 0x1F0U
#define XMPU_PL_R15_END_OFFSET 0x1F4U
#define XMPU_PL_R15_MASTERS_OFFSET 0x1F8U
#define XMPU_PL_R15_CONFIG_OFFSET 0x1FCU

/*CONTROL REGISTER*/
#define XMPU_PL_CTRL_DEFRD 0x00000001U
#define XMPU_PL_CTRL_DEFWR 0x00000002U
#define XMPU_PL_CTRL_PSNADDREN 0x00000004U
#define XMPU_PL_CTRL_PSNATTREN 0x00000008U
#define XMPU_PL_CTRL_EXTSINKEN 0x00000010U
#define XMPU_PL_CTRL_ARSP_OKA 0x00000000U
#define XMPU_PL_CTRL_ARSP_EXO 0x00000020U
#define XMPU_PL_CTRL_ARSP_SLV 0x00000040U
#define XMPU_PL_CTRL_ARSP_DEC 0x00000060U
#define XMPU_PL_CTRL_DEFRD_MSK 0x00000001U
#define XMPU_PL_CTRL_DEFWR_MSK 0x00000002U
#define XMPU_PL_CTRL_PSNADDREN_MSK 0x00000004U
#define XMPU_PL_CTRL_PSNATTREN_MSK 0x00000008U
#define XMPU_PL_CTRL_EXTSINKEN_MSK 0x00000010U
#define XMPU_PL_CTRL_ARSP_MSK 0x00000060U
#define XMPU_PL_CTRL_ADDRHIGH_MSK 0x00FF0000U

/*MASTERS*/
#define XMPU_PL_MID_FPD_DMA_6_7 (1U << 30U)
#define XMPU_PL_MID_FPD_DMA_4_5 (1U << 29U)
#define XMPU_PL_MID_FPD_DMA_2_3 (1U << 28U)
#define XMPU_PL_MID_FPD_DMA_0_1 (1U << 27U)
#define XMPU_PL_MID_DP_DMA_4_5 (1U << 26U)

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=108

#define XMPU_PL_MID_DP_DMA_2_3 (1U << 25U)
#define XMPU_PL_MID_DP_DMA_0_1 (1U << 24U)
#define XMPU_PL_MID_PCIE (1U << 23U)
#define XMPU_PL_MID_DAP_AXI (1U << 22U)
#define XMPU_PL_MID_GPU (1U << 21U)
#define XMPU_PL_MID_SATA1 (1U << 20U)
#define XMPU_PL_MID_SATA0 (1U << 19U)
#define XMPU_PL_MID_APU (1U << 18U)
#define XMPU_PL_MID_GEM3 (1U << 17U)
#define XMPU_PL_MID_GEM2 (1U << 16U)
#define XMPU_PL_MID_GEM1 (1U << 15U)
#define XMPU_PL_MID_GEM0 (1U << 14U)
#define XMPU_PL_MID_QSPI (1U << 13U)
#define XMPU_PL_MID_NAND (1U << 12U)
#define XMPU_PL_MID_SD1 (1U << 11U)
#define XMPU_PL_MID_SD0 (1U << 10U)
#define XMPU_PL_MID_LPD_DMA_6_7 (1U << 9U)
#define XMPU_PL_MID_LPD_DMA_4_5 (1U << 8U)
#define XMPU_PL_MID_LPD_DMA_2_3 (1U << 7U)
#define XMPU_PL_MID_LPD_DMA_0_1 (1U << 6U)
#define XMPU_PL_MID_DAP_APB (1U << 5U)
#define XMPU_PL_MID_USB1 (1U << 4U)
#define XMPU_PL_MID_USB0 (1U << 3U)
#define XMPU_PL_MID_PMU (1U << 2U)
#define XMPU_PL_MID_RPU1 (1U << 1U)
#define XMPU_PL_MID_RPU0 (1U << 0U)

/*REGION CONFIGURATION*/
#define XMPU_PL_REGION_ENABLE 0x00000001U
#define XMPU_PL_REGION_RD_ALLOW 0x00000002U
#define XMPU_PL_REGION_WR_ALLOW 0x00000004U
#define XMPU_PL_REGION_REGIONNS 0x00000008U
#define XMPU_PL_REGION_NSCHECK 0x00000010U
#define XMPU_PL_REGION_MIDDISABLE 0x00000020U

/*INTERRUPTS*/
#define XMPU_PL_IXR_RDVIO_MSK 0x00000002U /* RdPermVIO Interrupt */
#define XMPU_PL_IXR_WRVIO_MSK 0x00000004U /* WrPermVIO Interrupt */
#define XMPU_PL_IXR_SECVIO_MSK 0x00000008U /* SecurityVIO Interrupt
*/

Revision History
The following table shows the revision history for this document.

Section Revision Summary
01/14/2021 Version 1.0

Initial release. N/A

References
These documents provide supplemental material useful with this guide:

1. Zynq UltraScale+ Device Technical Reference Manual (UG1085)

2. Isolation Methods in Zynq UltraScale+ MPSoCs (XAPP1320)

3. ZCU102 Evaluation Board User Guide (UG1182)

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 109Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=zcu102;d=ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=109

4. Zynq UltraScale+ Device Register Reference (UG1087)

5. Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137)

Additional Resources and Legal Notices
Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 110Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=110

www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex,
PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. PCI,
PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks
are the property of their respective owners.

Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices

XAPP1353 (v1.0) January 14, 2021 www.xilinx.com
Application Note 111Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1353&Title=Memory%20and%20Peripheral%20Protection%20Unit%20for%20PL%20Isolation%20in%20Zynq%20UltraScale+%20Devices&releaseVersion=1.0&docPage=111

	Memory and Peripheral Protection Unit for PL Isolation in Zynq UltraScale+ Devices
	Summary
	Introduction
	Hardware and Software Requirements

	Overview
	XMPU_PL Configuration
	Configuration Lock
	Regions
	Master IDs
	AXI Permissions
	Poison By Address
	Poison by Attribute

	Functional Description
	XMPU_PL Architecture
	Module Registers Summary
	CTRL Control Register
	Error Status 1 Register
	Error Status 2 Register
	Poison Address Register
	ISR Interrupt Status Register
	IMR Interrupt Mask Register
	IEN Interrupt Enable Register
	IDS Interrupt Disable Register
	LOCK Register
	BYPASS Register
	Regions Register
	Rxx_START Region Starting Address Register
	Rxx_END Region Ending Address Register
	Rxx_MASTERS Region Masters Register
	Rxx_CONFIG Region Configuration Register

	XMPU_PL Usage Examples
	AXI SmartConnect
	Connecting to Multiple PS Master I/Fs
	Connecting Directly to PS Master I/Fs
	Connecting Directly to PL Slave I/Fs
	Isolating the XMPU_PL Configuration
	Isolating Secure Slaves
	Isolating PL Masters

	Isolation Example Design
	System Isolation
	Secure PL Memory
	Secure PL Peripherals
	Non Secure PL Memory
	Non-Secure Shared Memory & Peripherals

	Reference Design
	Reference Design Zip File

	Build HW Design in Vivado (2019.1 – 2020.1)
	Start with the XAPP1320 Isolation Reference Design
	Manual Insertion of the XMPU_PL in the IP Integrator
	Build with the Automated Design Script

	Creating the Isolation Test SW Applications in SDK 2019.1
	Launch SDK
	First Stage Boot Loader (FSBL)
	PMU Error Manager
	APU Fault Injection Application in SDK
	Create the APU Fault Injection Boot Image
	RPU Fault Injection Application in SDK
	Create the RPU Fault Injection Boot Image

	Creating the Isolation Test SW Applications in Vitis 2019.2
	Build the Isolation Test Platform
	APU Isolation Test System
	Create the APU Fault Injection Boot Image
	RPU Isolation Test System
	Create the RPU Fault Injection Boot Image

	Creating the Isolation Test SW Applications in Vitis 2020.1
	Build the Isolation Test Platform
	APU Isolation Test System
	Create the APU Fault Injection Boot Image
	RPU Isolation Test System
	Create the RPU Fault Injection Boot Image

	Running the Isolation Example on the ZCU102 Board
	ZCU102 Evaluation Board Setup
	APU Fault Injection Test
	RPU Fault Injection Test

	A closer Look at the Platform Management Unit (PMU)
	PMU Configuration
	Configuring the XMPU_PL in the PMU Scheduler
	Handling XMPU_PL Interrupts in the PMU (EM) Error Manager

	Creating the Simple XMPU_PL (RPU) Example in SDK 2019.1
	FSBL- First Stage Boot Loader
	Default PMU
	RPU XMPU_PL Example Application in SDK
	Create the RPU Simple Example Boot Image

	Creating the Simple XMPU_PL (RPU) Example in Vitis 2019.2
	RPU Simple XMPU_PL Test System
	FSBL
	Create the RPU Simple Example Boot Image

	Running the Simple Example on the ZCU102 Board
	A Closer Look at the Simple XMPU_PL Example Application

	Conclusion
	Appendix A: Master ID List
	Appendix B: SW Driver Library
	Overview
	Structs
	XmpuPl_Config Struct
	XmpuPl_Regions Struct
	XmpuPl_Regs Struct
	XmpuPl Struct

	Functions
	XMpuPl_LookupConfig
	XMpuPl_CfgInitialize
	XMpuPl_IsActive
	XMpuPl_AddRegion
	XMpuPL_GetConfig
	XMpuPL_SelfTest

	Macros
	InstReadReg
	InstWriteReg
	XMpuPl_EnableInterrupts
	XMpuPl_DisableInterrupts
	XMpuPl_GetInterruptStatus
	XMpuPl_ClearInterruptStatus

	Constants

	Revision History
	References
	Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	Please Read: Important Legal Notices

