
XAPP592 (v2.0) July 14, 2014 www.xilinx.com 1

© Copyright 2012–2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included
herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Summary The Society of Motion Picture and Television Engineers (SMPTE) serial digital interface (SDI)
family of standards is widely used in professional broadcast video equipment. These interfaces
are used in broadcast studios and video production centers to carry uncompressed digital
video, along with embedded ancillary data such as multiple audio channels.

The Xilinx® SMPTE SD/HD/3G-SDI LogiCORE™ IP is a generic SDI receive/transmit datapath
that does not have any device-specific control functions. This application note provides a
module containing control logic to couple the SMPTE SD/HD/3G-SDI LogiCORE IP with the
Kintex®-7 FPGA GTX transceivers to form a complete SDI interface. This application note also
provides several example SDI designs that run on the Xilinx Kintex-7 FPGA KC705 evaluation
board.

Terms used in this document are explained in the Glossary, page 63. Titles of SMPTE reports
and standards are listed in References, page 66, and referred to by SMPTE document number
in text.

Introduction The Xilinx SMPTE SD/HD/3G-SDI LogiCORE IP (called the SDI core in the rest of this
document) can be connected to a Kintex-7 GTX transceiver to implement an SDI interface
capable of supporting the SMPTE SD-SDI, HD-SDI, and 3G-SDI standards. The SDI core and
GTX transceiver must be supplemented with some additional logic to connect them together to
implement a fully functional SDI interface. This application note describes this additional control
and interface logic and provides the necessary control and interface modules in both Verilog
and VHDL source code.

The primary functions of the device-specific control logic are:

• Reset logic for the GTX transceiver

• Dynamic switching of the GTX RX and TX serial clock dividers to support the three SDI
standards

• Dynamic TX reference clock switching to support the two different bit rates in each of the
HD-SDI and 3G-SDI standards: 1.485 Gb/s and 1.485/1.001 Gb/s in HD-SDI mode and
2.97 Gb/s and 2.97/1.001 Gb/s in 3G-SDI mode

• Data recovery unit for recovering data in SD-SDI mode

• RX bit rate detection used to determine if the RX is receiving a 1/1 bit rate signal or a
1/1.001 bit rate signal

Also supplied with this application note is a wrapper file that contains an instance of the control
module for the GTX transceiver and an instance of the SMPTE SD/HD/3G-SDI core with the
necessary connections between them. This file simplifies the process of creating an SDI
interface.

In this document, the following terms are used. The SDI core refers to the SMPTE
SD/HD/3G-SDI core generated by the CORE Generator™ tool or the Vivado® tool IP catalog.
The control module is a module that implements the various device-specific functions required
when using the GTX to implement an SDI interface using the SMPTE SD/HD/3G-SDI core. The
control module is supplied in source code form with this application note. The SDI wrapper is a

Application Note: Kintex-7 Family

XAPP592 (v2.0) July 14, 2014

Implementing SMPTE SDI Interfaces with
Kintex-7 GTX Transceivers
Author: John Snow

http://www.xilinx.com

Introduction

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 2

wrapper module that instances and interconnects the SMPTE SD/HD/3G-SDI core and the
control module. The SDI wrapper is supplied in source code form with this application note.
Figure 1 is a simplified block diagram of how the various pieces fit together to form an SDI
interface. The GTX wrapper is a wrapper file for a single GTX transceiver generated by the
7 Series FPGAs Transceivers Wizard that is available in the CORE Generator and IP Catalog
tools. The GTX common wrapper is a wrapper file containing the QPLL for the GTX Quad also
generated by the 7 Series FPGAs Transceivers Wizard when the GTX wrapper is generated.

The SDI wrapper includes one instance of a control module and one instance of an SMPTE
SD/HD/3G-SDI core. The SMPTE SD/HD/3G-SDI core includes both an SDI RX and an SDI TX
datapath. The wrapper module is usually connected to the GTX RX and TX units in the same
GTX transceiver, but this does not have to be the case. The RX and TX units of different GTX
transceivers can be connected to the same SDI wrapper. If only an SDI RX or only an SDI TX
is required, the unused portions of the control module and the SMPTE SD/HD/3G-SDI core are
optimized away during synthesis.

This application note includes two example demonstration applications using the SDI core.
These applications run on the KC705 evaluation board. An inrevium SDI FPGA mezzanine
card (FMC) is also required to provide the SDI physical interfaces.

X-Ref Target - Figure 1

Figure 1: Block Diagram of Complete SDI RX/TX Interface

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 3

Notes relevant to Figure 1:

1. These 40-bit buses are actually four buses, each of which is 10 bits wide, and each carrying
a different SDI data stream. The number of active data streams, and therefore buses,
varies depending on the SDI mode. For example, in SD-SDI mode, only one 10-bit data
stream is active and in HD-SDI mode, two 10-bit data streams are active.

2. The optional audio embedder is a separate core and is not included with the SMPTE
SD/HD/3G-SDI core nor with this application note.

Using Kintex-7
GTX
Transceivers for
SDI Interfaces

The information in this section is intended to supplement, not replace, the information in
7 Series GTX/GTX Transceivers User Guide (UG476) [Ref 1]. This information highlights
features of the GTX transceivers that are of particular importance for SDI applications.

In this document, the naming convention used in the 7 Series GTX/GTX Transceivers User
Guide (UG476) for the GTX transceiver ports is followed. This convention is to use only the
base name of a port. When the 7 Series FPGAs Transceivers Wizard is used to create a GTX
wrapper, all input ports have a suffix of _in and all outputs have a suffix of _out. For example,
when a port named txrate is discussed in this document, the actual name of that port in the
GTX wrapper would be gt0_txrate_in.

There are several clocks required in applications using GTX transceivers. The SDI protocol,
which does not allow for clock correction by stuffing and removing extra data in the data stream,
requires careful attention to how these clocks are generated and used in the application. GTX
transceivers require reference clocks to operate. The reference clocks are used by
phase-locked loops (PLLs) in the GTX transceiver Quad to generate serial clocks for the
receiver and transmitter sections of each transceiver. As described in more detail in the GTX
Transceiver Reference Clocks section, the serial bit rate of the GTX transmitter is an integer
multiple of the reference clock frequency it is using. Furthermore, the data rate of the video
provided to the input of the SDI transmitter datapath must also exactly match (or be a specific
multiple of) the frequency of the reference clock used by the GTX transmitter. Consequently,
you must determine how to generate the transmitter reference clock so that it is
frequency-locked exactly with the data rate of the video stream being transmitted.

The GTX transmitter outputs a clock on its txoutclk port at a frequency that is exactly equal to
the word rate of the data that must enter the txdata port of the GTX transmitter. The txoutclk is
generated in the GTX transmitter by dividing the serial clock from the PLL down to the word
rate. In most applications, the txoutclk from the GTX transmitter is buffered by a global (BUFG)
or horizontal (BUFH) clock buffer and then used to clock the SDI transmitter datapath and the
txusrclk and txusrclk2 clock inputs of the GTX transmitter. It is possible to use a clock other than
one derived directly from txoutclk as the clock source for the SDI transmitter datapath and the
txusrclk and txusrclk2 ports of the GTX transmitter. A shallow TX buffer in the GTX transmitter
does allow for phase differences between the data entering the txdata port and the internal
clock of the GTX transmitter. However, any frequency difference between the incoming data
and the internal clock frequency of the GTX transmitter (as represented by txoutclk) quickly
causes the TX buffer to underflow or overflow, resulting in errors in the serial bitstream
generated by the GTX transmitter. Consequently, the data rate of the data stream entering the
txdata port of the GTX transmitter (as represented by the frequency of the txusrclk and
txusrclk2 clocks) and the internal data rate of the GTX transmitter (as set by the transmitter
reference clock and represented by the frequency of txoutclk) must match exactly.

The GTX receiver reference clock, however, does not need an exact relationship with the bit
rate of the incoming SDI signal. This is because the clock and data recovery (CDR) unit in the
GTX receiver can receive bit rates that are up to ±1,250 ppm away from the nominal bit rate as
set by the reference clock frequency. This allows the receiver reference clock to be generated
by a local oscillator that has no exact frequency relationship to the incoming SDI signal. The
GTX receiver generates a recovered clock that is frequency-locked to the incoming SDI bit rate.
This clock is output on the rxoutclk port of the GTX transceiver. As is described in more detail
later in this application note, rxoutclk is a true recovered clock when receiving HD-SDI and

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 4

3G-SDI signals, but not when receiving SD-SDI signals. Typically, rxoutclk is buffered by a
global or horizontal clock buffer and then applied to the rxusrclk and rxusrclk2 ports of the GTX
receiver and used as the clock for the SDI receiver datapath.

One additional clock is required for SDI applications. This is a free-running, fixed-frequency
clock that is used as the clock for the dynamic reconfiguration port (DRP) of the GTX
transceiver. This same clock is also usually supplied to the control module in the SDI wrapper
where it is used for timing purposes. Xilinx recommends that the frequency of this clock be at
least 10 MHz. The frequency of this clock does not require any specific relationship relative to
other clocks or data rates of the SDI application. This clock must not change frequencies when
the SDI mode changes. It must always remain running at the same nominal frequency at all
times. It also must never stop while the SDI application is active. This clock can be used for all
SDI interfaces in the device.

GTX Transceiver Reference Clocks

Kintex-7 GTX transceivers are grouped into Quads. Each Quad contains four
GTXE2_CHANNEL transceiver primitives and one GTXE2_COMMON primitive containing a
Quad PLL (QPLL) as shown in Figure 2. The clock generated by the QPLL is distributed to all
four transceivers in the Quad. Each GTXE2_CHANNEL has its own PLL called the channel
PLL (CPLL), which can provide a clock to the RX and TX of that transceiver only. Each RX and
TX unit in the Quad can be individually configured to use either the QPLL or the CPLL as its
clock source. Furthermore, any RX or TX unit can dynamically switch its clock source between
the QPLL and the CPLL. This configuration and the dynamic switching capability are
particularly useful for SDI applications.

Typical SDI applications require the GTX transceivers to support five different bit rates:

• 270 Mb/s for SD-SDI

• 1.485 Gb/s for HD-SDI

• 1.485/1.001 Gb/s (~1.4835 Gb/s) for HD-SDI

• 2.97 Gb/s for 3G-SDI

• 2.97/1.001 Gb/s (~2.967 Gb/s) for 3G-SDI

The clock and data recovery (CDR) unit in the RX section of the GTX transceiver can support
receiving bit rates that are up to +/-1250 ppm from the reference frequency. Because the two bit
rates of HD-SDI differ by exactly 1000 ppm and likewise the two 3G-SDI bit rates differ by
exactly 1000 ppm, it is possible to receive all five SDI bit rates using a single reference clock
frequency while still providing a sufficient amount of ppm offset margin.

The TX section of the GTX transceiver, however, requires two different reference frequencies to
support all five SDI bit rates. This is because the transmitters, in general, can only transmit at
an exact integer multiple of the supplied reference clock frequency (1). Therefore, most SDI
applications provide two separate reference clocks to the GTX Quad. One of those clocks is
used as the RX reference clock and both of them are used as TX reference clocks. Usually, the
supplied reference frequency pair are 148.5 MHz and 148.5/1.001 MHz or 74.25 MHz and
74.25/1.001 MHz.

The source of the GTX transceiver reference clocks for SDI applications is very
application-specific. The receiver reference clock source can be a local oscillator because it
does not need to match the incoming SDI bit rate exactly. However, because the GTX
transmitter line rate is always an integer multiple of the reference clock frequency, the
frequency of the transmitter reference clock must be exactly related to the data rate of the

1.Using a technique called phase interpolator controlled oscillator (PICXO), the bit rate of a GTX TX can
be “pulled” by plus or minus a few hundred ppm from an exact integer multiple of the reference clock
frequency. However, the pull range of the GTX TX using the PICXO technique is not sufficient to span both
HD-SDI bit rates or both 3G-SDI bit rates using a single reference clock frequency.

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 5

transmitted data. Most often, the transmitter reference clocks are generated by genlock PLLs,
thereby deriving the GTX transmitter line rate from the studio video reference signal. In some
cases, such as the SDI pass-through demonstration included with this application note, the
transmitter line rate is derived from the recovered clock of the GTX receiver that is receiving the
SDI signal. In such cases, an external PLL is required to reduce the jitter on the recovered clock
before using it as the transmitter reference clock.

In a typical SDI application, one of these reference clocks is connected to the QPLL and the
other is connected to all the CPLLs in the Quad. It does not matter which one is used for the
QPLL reference clock and which is used for the CPLL reference clock. The RX units of each
transceiver in the Quad are configured to always use the clock from the QPLL. The TX units can
dynamically switch between the QPLL clock and the local CPLL clock, depending on the bit rate
that is required at the moment. The GTX txsysclksel port is used to select the TX unit’s clock
source between the QPLL and the CPLL. This common configuration for SDI applications is
shown in Figure 3. In this figure, MUXes that are not used dynamically in the implementation
have been replaced with wires and the reference clock routing between Quads is not shown.

X-Ref Target - Figure 2

Figure 2: Kintex-7 FPGA GTX Transceiver Quad Configuration

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 6

Additionally, each GTX RX and TX unit has a serial clock divider that divides the selected clock
(QPLL or CPLL) by several selectable integer powers of two. This allows, for example, all of the
RX units in the Quad to use the same clock frequency from the QPLL but operate at different
line rates by using different serial clock divider values. This is very useful for SDI interfaces
because the 3G-SDI bit rates are exactly twice as fast the HD-SDI bit rates. And for 270 Mb/s
SD-SDI, the GTX transceiver runs at the 3G-SDI line rate using 11X oversampling techniques.
Thus, by using two divisors that differ by a value of two locally in each RX unit, reception of all
the SDI bit rates is supported by a single RX clock frequency from the QPLL. The ability of the
TX units to also locally divide the clock source by two divisors that differ by a factor of two is also
important, allowing transmission of all SDI bit rates using just two reference clock frequencies.
The serial clock divider value of each RX and TX unit can be changed dynamically using the
RXRATE and TXRATE ports of each GTX transceiver.

The configuration shown in Figure 3 is an optimal solution for most SDI applications for several
reasons:

• The receivers can receive all SDI bit rates from one fixed reference clock frequency and
the QPLL provides that reference clock to all receivers in the Quad.

• The transmitters have the flexibility to dynamically switch between the QPLL and the CPLL
to get both reference clocks they need to transmit all supported SDI bit rates.

• All four receivers and all four transmitters in the Quad are fully independent and can each
be running at different SDI bit rates and can dynamically switch between bit rates without
disrupting the other RX or TX units.

• For genlocked applications, modern genlock PLLs usually can simultaneously provide
both required reference clock frequencies from the synchronization reference input signal.

X-Ref Target - Figure 3

Figure 3: Typical GTX Reference Clock Implementation for SDI

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 7

The flexibility of the reference clock routing structure in the GTX Quad does allow other PLL
clocking configurations. For example, as shown in Figure 4, it would also be possible to provide
both reference clocks to the clock selection MUX at the input of each CPLL. The CPLL could
then dynamically switch its clock source between the two reference clock frequencies rather
than switching TX between the CPLL and the QPLL. This configuration, however, has the
disadvantage of requiring a reset of the CPLL and the resulting re-lock time of the CPLL each
time the CPLL’s reference clock frequency is switched. Thus, the configuration shown in
Figure 3 has a faster switching time between TX bit rates and is the configuration supported by
the control module supplied with this application note. While the configuration shown in
Figure 4 is not directly supported by the supplied control module, it is a perfectly legal and
viable configuration and can be implemented if desired.

In some applications, it might be necessary for SDI transmitters in the same Quad to be running
at slightly different bit rates even though they are transmitting at the same nominal bit rate. This
is often the case with SDI routers where the bit rate of each TX must exactly match the bit rate
of the SDI signal received by the SDI RX to which the TX is currently connected. In these cases,
two transmitters that are transmitting at the same nominal bit rate, in fact, have bit rates that
differ by a few ppm. Supporting such applications is possible with the Kintex-7 GTX Quad
architecture because each TX unit has exclusive use of its own CPLL. But to accomplish this,
each CPLL must be provided with its own individual reference clock frequency, and the number
of GTX reference clock inputs are limited. There are two reference clock inputs per Quad. A
Quad can use reference clocks from the Quad above and the Quad below. Thus, it is possible
to provide some GTX Quads in the device with five different reference clock frequencies (one
for the RX and four for the four TX units), but overall, there are obviously not enough reference
clock inputs to allow every GTX TX in the device to have its own reference clock. The PICXO
technique can be very useful in these cases because it allows a GTX TX to be pulled by a few
hundred ppm away from the frequency of its reference clock. Thus, applications where the bit
rate of each SDI TX needs to be individually locked to the bit rate of a received SDI signal can
be implemented by using common reference clocks as in Figure 3 and then using the PICXO
technique with each GTX TX to set the exact bit rate of each SDI TX individually. This
application note does not cover the PICXO technique. For further information about using
PICXO, contact Xilinx technical support.

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 8

Resets

The GTX transceiver has very specific reset requirements as described in the 7 Series
GTX/GTX Transceivers User Guide (UG476) [Ref 1]. The GTX transceiver requires careful
coordination of resets of the PLLs, GTX transceiver resets (gttxreset and gtrxreset), dynamic
changes of some GTX transceiver ports such as txrate, and dynamic changes of GTX
transceiver attributes through the DRP. Without proper coordination of all of these events, it is
possible for the GTX to fall into a state in which it does not function properly for SDI, a situation
from which the only possible recovery is to reconfigure the FPGA. The control module supplied
with this application note enforces all of these requirements to ensure proper operation of the
GTX transceiver.

The user application should never directly control the GTX inputs gttxreset and gtrxreset. To
ensure proper operation of the GTX transceiver, these GTX transceiver inputs must only be
controlled by the SDI control module. The user application can request GTX resets using the
various reset inputs of the control module. These reset requests are handled at the next
appropriate time by the control module, coordinating the resets with other GTX transceiver
actions so that they do not interfere.

GTX Transceiver Initialization Sequence

Immediately following FPGA configuration, the SDI control module executes initialization
sequences for the QPLL, the CPLLs, and the RX and TX units of the GTX transceiver. The
control module has separate state machines that execute the following initialization sequence
separately for the RX and the TX portions of the GTX transceiver. The sequence described
here is for the RX. The TX initialization sequence is identical except that the transmitter and
CPLL ports replace the receiver and QPLL ports.

X-Ref Target - Figure 4

Figure 4: Alternative Reference Clock Implementation for SDI

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 9

1. After waiting at least 500 ns following completion of FPGA configuration, assert the
qpllreset and gtrxreset signals.

2. Wait until the rx_refclk_stable input is asserted, then negate the qpllreset.

3. Wait until the qplllock signal is asserted, then negate the gtrxreset signal.

4. Wait until the rxresetdone signal is asserted, then indicate that the initialization sequence is
complete.

Also, the GTX txuserrdy and rxuserrdy inputs must be properly controlled. The SDI wrapper
generates both of these signals. It asserts txuserrdy five txusrclk cycles after gttxreset is
negated. Likewise, it asserts rxuserrdy five rxusrclk cycles after gtrxreset is negated. In step 2,
step 3, and step 4 of the initialization sequence where the sequence is waiting on a condition to
be satisfied, a timeout counter is running. If the timeout counter expires before the wait
condition is satisfied, the state machine moves to a timeout state where it increments a retry
counter and then cycles back in the initialization sequence and resumes the sequence. If the
retry counter reaches its maximum count due to numerous timeouts, the initialization sequence
fails and the state machine moves to a fail state, indicating failure of the initialization sequence.
The maximum number of retries allowed is controlled by a parameter of the SDI wrapper.

PLL Resets

Besides being reset during the initialization sequences that run automatically after FPGA
configuration, a QPLL or CPLL must also be reset whenever there is a change in frequency or
interruption of the reference clock supplied to that PLL. The reset is required to force the PLL to
relock to the reference clock. The qpllreset input of the GTX common wrapper and the cpllreset
input of the GTX wrapper are controlled by the SDI control module to implement the PLL resets.
The user application should not assert the PLL resets directly. The SDI control module, alone,
should control the PLL resets. However, it is up to the user application to determine when PLL
resets are required. When a PLL must be reset, the application must request that the SDI
control module reset the PLL and all of the GTX RX and/or TX units using the serial clock from
that PLL. The SDI wrapper has a rx_pllreset output and a tx_pllreset output. These are used to
control the qpllreset input of the GTX common wrapper and the cpllreset input of the GTX
wrapper. If a PLL is used by only one RX or one TX unit, it is a simple matter to connect the
correct rx_pllreset or tx_pllreset output of the SDI wrapper to the corresponding PLL reset input
port. But, when a PLL provides the serial clock to multiple RX and/or TX units, it is more
complicated. See the GTX PLL Usage Models for SDI Applications, page 11 section for more
details.

The SDI wrapper has two inputs that the application should use to request a full reset of the
GTX RX (rx_gtx_full_reset) and the GTX TX (tx_gtx_full_reset). Asserting either of these inputs
causes the appropriate reset state machine in the control module to execute the full
initialization sequence of the RX or TX section of the GTX, including resetting the associated
PLL. The user application must properly control the rx_gtx_full_reset and tx_gtx_full_reset
inputs so that these initialization sequences are done whenever there is an interruption or
change in the reference clock used by the PLL.

It is up to the user application to properly control the rx_refclk_stable and tx_refclk_stable
inputs to the control module. These must be asserted only when the reference clocks to the
PLLs are stable. As previously described, the initialization sequences wait until these inputs are
asserted before negating the PLL resets. Negating the rx_refclk_stable or tx_refclk_stable
inputs does not initiate a reset of the associated PLL. PLL resets are only initiated by asserting
the rx_gtx_full_reset and tx_gtx_full_reset inputs to the control module. The rx_refclk_stable
and tx_refclk_stable are only effective in delaying completion of the reset sequence after the
initialization sequence has been started by assertion of rx_gtx_full_reset or tx_gtx_full_reset.

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 10

GTX TX Resets

There are three conditions that require the TX portion of the GTX transceiver to be reset:

• Whenever the PLL that supplies the serial clock to the GTX TX is reset, the gttxreset port
must be used to reset the TX section. This is done automatically after FPGA configuration
by the SDI control module and whenever the user application asserts the tx_gtx_full_reset
to the SDI wrapper, causing both the PLL and the GTX TX to be reset.

• The GTX gttxreset input must be asserted during dynamic changes of the txsysclksel port.
The txsysclksel port is used to select between the QPLL or the CPLL as the serial clock
source for the GTX TX. Each GTX transceiver has its own txsysclksel port and can
independently switch its serial clock source between the two PLLs. The txsysclksel port
should not be controlled directly by the application. The SDI control module dynamically
changes the txsysclksel port of a GTX transceiver in response to changes on its tx_m
input. When the control module detects a change on its tx_m input, it first asserts the
gttxreset signal, then changes txsysclksel, and then negates gttxreset. The sequence is
complete after the GTX transceiver asserts its txresetdone output. At that point, the SDI
control module indicates completion of the txsysclksel change by asserting its
tx_change_done output.

• The GTX TX is automatically reset by the GTX transceiver itself whenever its txrate input
port dynamically changes. The txrate port controls the serial clock divider for the GTX TX.
The user application should not change the txrate port directly. The SDI control module
changes the txrate port, when appropriate, in response to changes on its tx_mode input
port.

The SDI wrapper has three reset inputs for the TX section:

GTX RX Resets

As with the TX section, the user application should rely on the SDI control module to carefully
coordinate all of the RX reset and dynamic change activities described here to prevent them
from interfering with each other.

These conditions require resets of the GTX RX section:

• Whenever the PLL that supplies the serial clock to the GTX RX (usually the QPLL) is
reset, the gtrxreset port must be used to reset the RX section. This is done automatically
after FPGA configuration by the SDI control module and whenever the user application
asserts the rx_gtx_full_reset to the SDI wrapper, causing both the PLL and the GTX RX to
be reset.

• Changes in the SDI mode between SD-SDI, HD-SDI, and 3G-SDI require changes to one
or more of the following three things: the rxcdrhold port, the rxrate port, and the
RXCDR_CFG attribute. The RXCDR_CFG attribute is changed through the DRP. The
rxcdrhold port must be asserted High when the RX SDI mode is SD-SDI and Low in other
SDI modes. The RXCDR_CFG attribute is modified when switching into either HD-SDI or
3G-SDI modes to optimize the CDR for the current line rate. The rxrate port controls the
serial clock divider for the GTX RX. The GTX RX must be reset using the gtrxreset port
after dynamic changes are made to any of these three things. If more than one of these

tx_rst When asserted High, this input resets the SDI TX datapath in the SDI core.

tx_gtx_full_reset When asserted High, this input resets both the PLL associated with the TX
and then the TX section of the GTX transceiver (gttxreset). These two resets
are sequenced so that the gttxreset does not complete until after the PLL
reset is complete and the PLL is locked to its reference clock.

tx_gtx_reset When asserted High, this input resets only the TX section of the GTX
transceiver (gttxreset). If the PLL is not locked when the gttxreset sequence
begins, the gttxreset sequence does not complete until after the PLL is
locked

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 11

things changes during the same SDI mode change sequence, only a single gtrxreset is
required after all changes have been made.

The SDI wrapper has three reset inputs for the RX section:

• rx_rst: When asserted High, this input resets the SDI RX datapath in the SDI core.

• rx_gtx_full_reset: When asserted High, this input resets both the PLL associated with the
RX and then the RX section of the GTX transceiver (gtrxreset). These two resets are
sequenced so that the gtrxreset does not complete until after the PLL reset is complete
and the PLL is locked to its reference clock.

• rx_gtx_reset: When asserted High, this input resets only the RX section of the GTX
transceiver (gtrxreset). If the PLL is not locked when the gtrxreset sequence begins, the
gtrxreset sequence does not complete until after the PLL is locked.

GTX PLL Usage Models for SDI Applications

This section describes several typical configurations of PLLs and transceivers used in SDI
applications. Not every possible configuration is described, but the configurations shown here
are sufficient to describe the proper connection of the PLL reset and locked signals. The SDI
wrapper has two parameters that specify which TX serial clock sources come from the QPLL
and which come from the CPLL. These attributes do not control the routing of PLL clocks. They
are only used to determine the value to drive onto the GTX wrapper txsysclksel port based on
the current value of tx_m. These two parameters are integers and must be assigned values as
described here:

• The TX_CLK0_QPLL parameter must be set to 1 if the QPLL is the clock source for the
GTX TX when the tx_m input to the SDI wrapper is Low. This parameter must be set to 0 if
the CPLL is the clock source for the GTX TX when tx_m is Low.

• The TX_CLK1_QPLL parameter must be set to 1 if the QPLL is the clock source for the
GTX TX when the tx_m input to the SDI wrapper is High. This parameter must be set to 0
if the CPLL is the clock source for the GTX TX when tx_m is High.

Both parameters are static. There are two parameters to support dynamic switching of the TX
between the CPLL and the QPLL using the tx_m port of the SDI wrapper. TX_CLK0_QPLL is
used when tx_m is Low and TX_CLK1_QPLL is used when tx_m is High. In applications where
the TX is not dynamically switched between the QPLL and the CPLL, set both TX_CLK0_QPLL
and TX_CLK1_QPLL to 1 if the QPLL is always the TX serial clock source and to 0 if the CPLL
is always the TX serial clock source.

Usage Model 1: A Single Transceiver Is Active in the Quad, RX Clocked by QPLL, TX
Clocked by Both QPLL and CPLL

In this usage model, shown in Figure 5, there is a single transceiver active in the Quad with the
RX serial clock provided by the QPLL and the GTX TX dynamically switched between the QPLL
and the CPLL. In this case, the RX portion of the SDI wrapper controls the QPLL reset and the
TX portion controls the CPLL reset. The TX section must, however, observe the locked status
of both the QPLL and the CPLL because both PLLs must be locked before the gttxreset cycle
completes.

The following connections must be made:

• The gtx_rxpllreset output of the SDI wrapper must be connected to the qpllreset port of the
GTX common wrapper.

• The gtx_txpllreset output of the SDI wrapper must be connected to the cpllreset port of the
GTX wrapper.

• The gtx_rxplllock input of the SDI wrapper must be connected to the qplllock output of the
GTX common wrapper.

• The gtx_txplllock input of the SDI wrapper must be driven by the logical OR of the GTX
common wrapper qplllock output and the GTX wrapper cplllock output.

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 12

• The rx_refclk_stable input of the SDI wrapper must be asserted High only when the
reference clock source to the QPLL is stable.

• The tx_refclk_stable input of the SDI wrapper must be asserted High only when the
reference clock source to the CPLL is stable.

• The tx_m input port of the SDI wrapper controls dynamic switching of the TX serial clock
source by controlling the gtx_txsysclksel output of the SDI wrapper which must be
connected to the txsysclksel port of the GTX wrapper.

• The TX_CLK0_QPLL and TX_CLK1_QPLL parameters of the SDI wrapper must be set
appropriately based on how the tx_m port is used to select between the QPLL and the
CPLL. Typically, TX_CLK0_QPLL is set to 1 and TX_CLK1_QPLL is set to 0. This
configures tx_m to select the QPLL as the TX serial clock source when tx_m is Low and
the CPLL when tx_m is High.

• When the QPLL needs to be reset due to a reference clock change or interruption, assert
the rx_gtx_full_reset input of the SDI wrapper to reset both the QPLL and the GTX RX.
Also assert the tx_gtx_reset input of the SDI wrapper to reset the GTX TX without
resetting the CPLL.

• When the CPLL needs to be reset due to a reference clock change or interruption, assert
the tx_gtx_full_reset input of the SDI wrapper to reset both the CPLL and the GTX TX.

Usage Model 2: A Single Transceiver Is Active in the Quad, RX Clocked by the QPLL, TX
Clocked by the CPLL

In this usage model, shown in Figure 6, there is a single transceiver active in the Quad with the
GTX RX clocked by the QPLL and the GTX TX clocked by the CPLL.

The following connections must be made:

• The gtx_rxpllreset output of the SDI wrapper must be connected to the qpllreset port of the
GTX common wrapper.

X-Ref Target - Figure 5

Figure 5: PLL Usage Model 1

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 13

• The gtx_txpllreset output of the SDI wrapper must be connected to the cpllreset port of the
GTX wrapper.

• The gtx_rxplllock input of the SDI wrapper must be driven by the qplllock output of the
GTX common wrapper.

• The gtx_txplllock input of the SDI wrapper must be driven by the cplllock output of the GTX
wrapper.

• The rx_refclk_stable input of the SDI wrapper must be asserted High only when the
reference clock source to the QPLL is stable.

• The tx_refclk_stable input of the SDI wrapper must be asserted High only when the
reference clock source to the CPLL is stable.

• The txsysclksel input port of each GTX wrapper must be driven with a value of 2'b00 to
permanently select the CPLL as the TX serial clock source. The gtx_txsysclksel output
port of the SDI wrapper is left unconnected.

• The TX_CLK0_QPLL and TX_CLK1_QPLL parameters of the SDI wrapper must be set
to 0.

• The tx_m input port of the SDI wrapper is not used and should be driven Low.

• When the QPLL needs to be reset due to a reference clock change or interruption, assert
the rx_gtx_full_reset input of the SDI wrapper to reset both the QPLL and the GTX RX.

• When the CPLL needs to be reset due to a reference clock change or interruption, assert
the tx_gtx_full_reset input of the SDI wrapper to reset both the CPLL and the GTX TX.

X-Ref Target - Figure 6

Figure 6: PLL Usage Model 2

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 14

Usage Model 3: Multiple Transceivers Are Active in the Quad, All RX Clocked by the
QPLL, Each TX Dynamically Switched between the QPLL and the CPLL

In this usage model, shown in Figure 7, there are multiple transceivers active in the Quad. All
GTX receivers are clocked by the QPLL. All of the GTX transmitters can be independently
switched between the QPLL and their own CPLL. All of the CPLLs use the same reference
clock. This model conforms to the standard usage model shown in Figure 3.

In this usage model, one SDI wrapper is chosen as the QPLL master and controls the
gtx_qpllreset port of the GTX common wrapper. The other SDI wrappers do not control the
QPLL reset, but they do monitor the qplllock output of the GTX common wrapper so that the
reset sequences of the GTX transceiver do not proceed until the QPLL is locked.

The following connections must be made:

• The gtx_rxpllreset output of the SDI wrapper designated as the QPLL master must be
connected to the qpllreset port of the GTX common wrapper. The gtx_rxpllreset outputs of
the other SDI wrappers in the Quad are left unconnected.

• The gtx_txpllreset output of each SDI wrapper must be connected to the associated GTX
wrapper cpllreset port.

• The gtx_rxpllock input of every SDI wrapper must be driven by the qplllock output of the
GTX common wrapper.

• The gtx_txplllock input of each SDI wrapper must be driven by the logical OR of the
qplllock output of the GTX common wrapper and the associated GTX wrapper cplllock
output.

• The rx_refclk_stable input of the QPLL master SDI wrapper must be asserted High only
when the reference clock source to the QPLL is stable. The rx_reflk_stable inputs of the
other SDI wrappers must be permanently wired High.

• The tx_refclk_stable input of each SDI wrapper must be asserted High only when the
CPLL reference clock source is stable.

• The tx_m input port of each SDI wrapper controls dynamic switching of the TX serial clock
source in the associated GTX transceiver by controlling the gtx_txsysclksel output of the
SDI wrapper which must be connected to the txsysclksel port of the associated GTX
wrapper.

• The TX_CLK0_QPLL and TX_CLK1_QPLL parameters of each SDI wrapper must be set
appropriately based on how the tx_m port is used to select between the QPLL and the
CPLL. Typically, TX_CLK0_QPLL is set to 1 and TX_CLK1_QPLL is set to 0. This
configures tx_m to select the QPLL as the TX serial clock source when tx_m is Low and
the CPLL when tx_m is High.

• When the QPLL needs to be reset due to a reference clock change or interruption, assert
the rx_gtx_full_reset input of all SDI wrappers. The QPLL master SDI wrapper resets the
QPLL and all GTX RX units are reset. Also, assert the tx_gtx_reset input of all SDI
wrappers to reset the GTX TX units.

• When the CPLL reference clock source changes or is interrupted, all CPLLs using that
reference clock must be reset by asserting the tx_gtx_full_reset port of all the SDI
wrappers.

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 15

Usage Model 4: Multiple Transceivers Are Active in a Quad, All RX Use the QPLL, All TX
Use Their Own CPLL

In this usage model, shown in Figure 8 , there are multiple transceivers active in the Quad. All
of the receivers are clocked by the QPLL. Each transmitter is clocked only by its associated
CPLL. Each CPLL has its own reference clock source.

This usage model covers a very common case where multiple transceivers are active in the
Quad, all implementing SDI interfaces. All the active GTX RX units in the Quad use the serial
clock from the QPLL. All the GTX TX units use the serial clock from their associated CPLLs. In
this usage model, one SDI wrapper is designated as the QPLL master and controls the
gtx_qpllreset port of the GTX common wrapper. The other SDI wrappers do not control the
QPLL reset, but they do monitor the QPLL locked output of the GTX common wrapper.

X-Ref Target - Figure 7

Figure 7: PLL Usage Model 3

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 16

The following connections must be made:

• The gtx_rxpllreset output of the QPLL master SDI wrapper must be connected to the
qpllreset port of the GTX common wrapper. The gtx_rxpllreset outputs of the other SDI
wrapper are left unconnected.

• The gtx_txpllreset output of each SDI wrapper must be connected to the cpllreset port of
the associated GTX wrapper.

• The gtx_rxplllock input of every SDI wrapper must be driven by the qplllock output of the
GTX common wrapper.

• The gtx_txplllock input of each SDI wrapper must be driven by the cplllock output of the
associated GTX wrapper.

• The rx_refclk_stable input of the QPLL master SDI wrapper must be asserted High only
when the reference clock source to the QPLL is stable. The rx_refclk_stable inputs of the
other SDI wrappers must be wired High.

• The tx_refclk_stable input of each SDI wrapper must be asserted High only when the
reference clock source to the associated transceiver CPLL is stable.

• The txsysclksel port of each GTX wrapper must be wired to 2'b00 to permanently select
the CPLL as the TX serial clock source. The gtx_txsysclksel output port of the SDI
wrapper is left unconnected.

• The TX_CLK0_QPLL and TX_CLK1_QPLL parameters of every SDI wrapper must be set
to 0.

• The tx_m input port of every SDI wrapper is not used and should be wired Low.

• When the QPLL needs to be reset due to a reference clock change or interruption, assert
the rx_gtx_full_reset input of every SDI wrapper to reset both the QPLL and all of the GTX
RX.

• When the CPLL of a particular transceiver needs to be reset due to a reference clock
change or interruption, assert the tx_gtx_full_reset input of the associated SDI wrapper to
reset both the CPLL and the GTX TX.

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 17

SDI Electrical Interface

External SDI cable equalizers and cable drivers are required to convert the serial signals into
and out of the GTX transceivers to SDI electrical standards.

An external SDI cable equalizer must be used to convert the single-ended 75Ω SDI signal to a
50Ω differential signal compatible with the receiver input signal requirements of the GTX
transceiver. Appropriate SDI cable equalizers are available from several manufacturers. The
differential outputs of these cable equalizers usually must be AC-coupled to the GTX receiver

X-Ref Target - Figure 8

Figure 8: PLL Usage Model 4

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 18

input signals. An example of interfacing a typical SDI cable equalizer to a GTX receiver is
shown in Figure 9.

Important: The capacitance values of the AC coupling capacitors between the outputs of the
external SDI cable equalizer and the serial inputs of the GTX RX must be large enough to pass
the SDI pathological signals without significant signal droop. AC coupling capacitors with
values of at least 1.0 μF are required and 4.7 μF capacitors are recommend. Some new
generation SDI cable equalizers default to 600 mV differential swing on their outputs instead of
the traditional 800 mV differential swing. When using an equalizer with 600 mV differential
swing, even larger AC coupling capacitors might be required. With a cable equalizer set for
600 mV differential output swing, 10 μF AC coupling capacitors might be required for reliable
reception of SD-SDI signals. It is recommended that cable equalizers be configured with
800 mV differential swing.

The differential inputs of the GTX RX have built-in differential termination. As described in
7 Series GTX/GTX Transceivers User Guide (UG476) [Ref 1], RX Termination Use Mode 3 is
the recommended termination mode for the GTX RX inputs in SDI applications. The GTX
internal programmable termination voltage should be set to 800 mV for SDI applications.

Notes relevant to Figure 9:

1. Consult the SDI cable EQ manufacturer’s information for the network between the SDI
cable EQ and the BNC connector.

Similarly, the differential serial outputs of the GTX transmitter are connected to the inputs of an
SDI cable driver, usually with AC coupling as shown in Figure 10. The cable driver converts the
differential signal from the GTX transmitter into a single-ended signal with electrical
characteristics meeting the SDI standards. SDI cable drivers typically have a slew rate control
input that sets the slew rate of the cable driver. The slew rate requirements for SD-SDI are
significantly different than the slew rate requirements for HD-SDI and 3G-SDI. The slew rate
control input of the SDI cable driver is typically controlled by the FPGA. The control module
supplied with this application note generates a slew rate control signal for use with the external
SDI cable driver.

Important: The capacitance values of the AC coupling capacitors between the GTX TX serial
outputs and the inputs of the SDI cable driver must be large enough to pass the SDI
pathological signals without significant signal droop. AC coupling capacitors with values of at
least 1.0 μF are required and 4.7 μF capacitors are recommended.

Note: The capacitance values of the AC coupling capacitors between the GTX TX serial outputs
and the inputs of the SDI cable driver must be large enough to pass the SDI pathological signals
without significant signal droop. AC coupling capacitors with values of at least 1.0 μF are required and
4.7 μF capacitors are recommended.

X-Ref Target - Figure 9

Figure 9: Interfacing an SDI Cable Equalizer to the GTX Receiver Inputs

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 19

Caution! The capacitance values of the AC coupling capacitors between the GTX TX serial outputs
and the inputs of the SDI cable driver must be large enough to pass the SDI pathological signals
without significant signal droop. AC coupling capacitors with values of at least 1.0 μF are required and
4.7 μF capacitors are recommended.

Notes relevant to Figure 10:

1. Consult the SDI cable driver manufacturer’s information for the network between the SDI
cable driver and the BNC connector.

SD-SDI Considerations

Receiving SD-SDI

The 270 Mb/s bit rate of SD-SDI is below the minimum line rate supported by the GTX RX. To
receive 270 Mb/s SD-SDI, the GTX RX is used as an asynchronous oversampler to sample the
SD-SDI bit stream at 11 times 270 Mb/s (2.97 gigasamples per second (GSPS)) without regard
to where bit transitions occur. The clock and data recovery (CDR) unit in the GTX RX is locked
to the reference clock by asserting the GTX rxcdrhold input port High. This prevents the CDR
from trying to lock to the slow SD-SDI signal and results in more uniform oversampling of the
SD-SDI signal.

A data recovery unit (DRU), implemented in the programmable logic of the FPGA, examines
the oversampled SD-SDI data from the GTX RX, determines the best sample to use for each
bit, and outputs the recovered data. This DRU is not part of the SDI core, but is provided as part
of this applications note’s control module.

The DRU provided with this application note is a version of the DRU described in the Xilinx
application note Dynamically Programmable DRU for High-Speed Serial I/O (XAPP875) [Ref 2]
that has been optimized for recovering 270 Mb/s SD-SDI bit streams from 11X oversampled
data. The general purpose DRU described in XAPP875 can recover data using many different
oversampling factors and, as a result, is larger and uses more FPGA resources than the
optimized version provided here for use with the SDI core.

SMPTE ST 259 (the SD-SDI standard) [Ref 3] specifies several other bit rates besides
270 Mb/s. The optimized DRU supplied with this application note only supports 270 Mb/s
because the vast majority of SDI interfaces only need to support the 270 Mb/s SD-SDI bit rate.
However, if other SD-SDI bit rates need to be supported by the application, the optimized DRU
can be replaced with the DRU from Dynamically Programmable DRU for High-Speed Serial I/O
(XAPP875) [Ref 2]. Because that DRU supports fractional oversampling factors, it is possible to
receive the other SD-SDI bit rates without requiring any additional RX reference clock
frequencies. Note that the 540 Mb/s SD-SDI bit rate specified by SMPTE ST 344 [Ref 4] is
within the supported line rate range of the GTX transceiver and thus the GTX RX does not need
to use the DRU to receive it. However, receiving the 540 Mb/s bit rate without the DRU requires
a different reference clock frequency than is used for the other SDI bit rates. Thus, it is usually
more convenient to use the XAPP875 DRU to receive the 540 Mb/s ST 344 signal using 5.5X
oversampling so that the standard SDI reference clock frequency can be used.

X-Ref Target - Figure 10

Figure 10: Interfacing an SDI Cable Driver to the GTX Transmitter Outputs

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 20

Receiving the additional SD-SDI bit rates also requires modifications to the SDI RX rate
detector that controls the locking of the SDI RX by searching sequentially through all SDI bit
rates until the receiver locks. The rate detection algorithm is implemented in the
triple_sdi_rx_autorate.v or triple_sdi_rx_autorate.vhd file supplied with the
SMPTE SD/HD/3G-SDI core. Xilinx does not provide an equivalent module that supports the
additional SD-SDI bit rates.

The DRU does not recover a clock and, because the CDR unit in the GTX RX is locked to its
reference clock, the RXOUTCLK is not locked to the incoming bit rate in SD-SDI mode. The
DRU does produce a data strobe indicating when a 10-bit data word is ready on its output. This
data strobe is used by the SDI core to generate a clock enable that is asserted at a 27 MHz
rate, typically with a 5/6/5/6 cadence relative to the rxoutclk clock from the GTX. The rx_ce_sd
output of the SDI wrapper is derived from the DRU data strobe and has the same cadence.
Occasionally the cadence of the DRU data strobe and the rx_ce_sd signal varies from the
typical 5/6/5/6 cadence. This occurs when the DRU needs to make up for the slight difference
between the actual SD-SDI bit rate and the frequency of the local reference clock provided to
the GTX RX.

Figure 11 is a screen capture from an oscilloscope showing the 27 MHz rx_ce_sd signal. The
scope is triggered on the rising edge of rx_ce_sd at the center of the screen. The scope is in
infinite persistence mode and the waveform was allowed to accumulate for several minutes.
The waveform is temperature-coded from red, indicating the most common position of the
signal, to blue, indicating the least common position. The incoming SD-SDI signal that was
used to create this screen capture was asynchronous to the local reference clock used by the
GTX receiver. The rx_ce_sd pulses on either side of the center pulse are always 5 or 6 clock
cycles away from the center pulse because of the 5/6/5/6 cadence of the rx_ce_sd signal.

The two pulses at the far right and far left of the trace are nominally 11 clock cycles from the
center pulse because of the 5/6/5/6 cadence. The nominal position is marked by the yellow and
red pulse. And for the far right pulse, the dashed yellow vertical cursor marks the position that
is 11 clock cycles from the rising edge of the center pulse. The nominal locations of the central
yellow/red pulses are surrounded on either side by blue pulses indicating that, occasionally, the
DRU needs to make the period of the rx_ce_sd cycle either 10 clock cycles or 12 clock cycles
long to compensate for the frequency differences between the local reference clock and the
incoming SD-SDI signal.

The SD-SDI DRU is supplied with this application note as an encrypted, pre-generated file
called dru.ngc. It is not possible to do any simulation of a design using the dru.ngc file
because of its encryption. However, the file dru_sim.v the is included with this application
note, provides a simplified simulation model of the DRU. This file can be used during simulation
to replace the dru.ngc file. However, do not use this simulation model in a design intended for
use in the actual FPGA as this model does not support any variation in frequency between the
GTX RX reference clock and the SD-SDI bit stream.

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 21

Transmitting SD-SDI

As with reception of SD-SDI, transmission of the slow 270 Mb/s SD-SDI bit rate is not directly
supported by the GTX TX. To transmit the SD-SDI signal, the GTX TX is configured for a line
rate of 2.97 Gb/s. The SDI core replicates each bit to be transmitted 11 times so that the data
out of the SDI core and into the txdata port of the GTX TX contains 11 consecutive copies of
each bit. The resulting signal output by the GTX TX is a valid 270 Mb/s SD-SDI signal.

Generating an SD-SDI Recovered Clock

In SD-SDI mode, the rxoutclk of the GTX RX is not really a recovered clock because the CDR
unit is locked to the frequency of the reference clock, not to the SD-SDI bit stream. The only
signal available that actually indicates the data rate of the incoming SD-SDI bit stream is the
27 MHz rx_ce_sd output of the SDI wrapper.

For some video applications, particularly those that do not need to retransmit the recovered
video over an SDI interface, the rx_ce_sd signal might be sufficient as a recovered clock.
Typically, this signal is used as a clock enable to downstream modules that are clocked with the
rxoutclk from the GTX receiver. This is how the SDI datapath in the SDI core works – using the
rx_ce_sd signal as a clock enable.

If the received video data is to be retransmitted as an SD-SDI signal using a GTX TX, then a
low-jitter recovered clock is required. The recovered clock must have low enough jitter that it
can be used as a reference clock for the GTX transmitter PMA PLL. Furthermore, the frequency
of the recovered clock must be 74.25 MHz or 148.5 MHz so that the GTX transmitter can use
11X oversampling to transmit the 270 Mb/s SD-SDI data. This requires the use of an external,
low bandwidth PLL or use of the PICXO technique. (The PICXO technique is not covered in this
application note. Please contact Xilinx technical support for inquiries about the PICXO
technique and SDI.) The bandwidth of the mixed-mode clock manager (MMCM) in the
Kintex-7 FPGA is too high to adequately filter out the large amounts of low frequency jitter
present on the rx_ce_sd signal from the SDI receiver. The Texas Instruments LMH1983 and the
Silicon Labs Si5324 PLLs can both perform this function. Both of these devices can take in the
rx_ce_sd signal as a 27 MHz reference and multiply it up to either 74.25 MHz or 148.5 MHz
while also filtering out the jitter. The resulting clock is suitable for use as a reference clock for
the GTX TX. The pass-through demonstration included with this application note uses a Si5324
to generate a 148.5 MHz reference clock for the GTX TX from the 27 MHz rx_ce_sd signal in
exactly this manner in SD-SDI mode. And, when retransmitting either HD-SDI or 3G-SDI, the

X-Ref Target - Figure 11

Figure 11: Oscilloscope Capture of SD-SDI Clock Enable

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 22

same Si5324 is reprogrammed to filter jitter from the rxoutclk output of the GTX RX, doubling its
frequency in the case of HD-SDI, thereby producing a low-jitter 148.5 MHz reference clock for
the GTX TX.

Another option is to use an external genlock PLL and lock it to the video sync signals from the
recovered video. The output of the genlock PLL is an SD-SDI recovered clock.

Sometimes a recovered clock is required to drive external video application-specific standard
product (ASSP) devices. In SD-SDI mode, such a clock probably needs to have a frequency of
27 MHz and have lower jitter than is present on the rx_ce_sd signal, but does not need to have
very low jitter as is the case when producing a GTX TX reference clock. The techniques
mentioned previously can be used, but it might be preferable to generate such a recovered
clock entirely in the FPGA without requiring external components. Unfortunately, the jitter on
the rx_ce_sd signal is too high to allow it to be used directly as a reference clock input to the
Kintex-7 FPGA MMCM. But, there is a way to generate a recovered SD-SDI clock using a spare
GTX transmitter. (See Figure 12.)

The control module’s recclk_txdata port can connected to the txdata port of a spare GTX
transmitter. The GTX TX must use the same reference clock as the GTX RX that is receiving
the SDI input signal. The txusrclk and txusrclk2 ports of the GTX TX must be connected to the
same clock that is driving the rxusrclk and rxusrclk2 ports of the GTX TX and the rx_usrclk port
of the SDI wrapper. The GTX TX must be configured for a line rate of 2.97 Gb/s with no
encoding and with a 20-bit txdata port.

When configured in this manner, the serial output of the GTX transmitter is a 270 MHz clock
that is frequency-locked to the incoming SD-SDI signal. In other words, it is a true recovered
clock for SD-SDI. The GTX transmitter serial output pins can be connected to a global or
regional clock LVDS input of the Kintex-7 FPGA, with appropriate care to properly terminate the
GTX transceiver TX outputs and translate them to LVDS. Then the 270 MHz clock can be used
in whatever manner is required in the FPGA. For example, it can be divided by 10 to get a
27 MHz recovered clock to drive internal or external video datapaths. The signal has low
enough jitter that it can be used as a reference clock to an MMCM.

The recclk_txdata port of the DRU is not wired from the control module to an output port in the
SDI wrapper supplied with this application note. However, if an application needs to use this
feature, it is a simple matter to edit the SDI wrapper to add this output port.

X-Ref Target - Figure 12

Figure 12: Using a GTX TX to Generate an SD-SDI Recovered Clock

http://www.xilinx.com

Using Kintex-7 GTX Transceivers for SDI Interfaces

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 23

The GTX TX that is used to generate the recovered SD-SDI clock does not have to be
configured for SDI. It just needs to be configured to always run a 2.97 Gb/s with no encoding.
The data supplied to the TXDATA port of the GTX from the recclk_txdata port of the control
module creates a 270 MHz clock on the GTX TX serial output pins. The edges of the generated
clock move around by plus or minus one bit time of the 2.97 Gb/s line rate to modify the
frequency of the output signal so as to exactly match with the bit rate of input SD-SDI signal.
Thus, the cycle-to-cycle jitter on the 270 MHz clock generated by the GTX TX is +/-337 ps plus
whatever jitter is inherent in the GTX TX output signal (1 bit time at 2.97 Gb/s is 337ps). This
can be seen in Figure 13. The top trace is the 270 MHz clock generated by the GTX TX. The
scope was triggered on the rising edge of the recovered clock at the center of the screen.
Looking at the rising edges of the cycles on either side of the trigger point, the +/-337 ps
cycle-to-cycle jitter is clearly seen because these rising edges each have three discrete rising
points. The bottom trace in Figure 13 is the SD-SDI that is being retransmitted by another GTX
TX.

Note that the recclk_txdata port is not output from the SDI wrapper. This is because this port is
not used by most SDI applications. If needed, SDI wrapper can be edited to add a new port and
connect it to the recclk_txdata port of the control module.

RX Bit Rate Detection

The SDI core can automatically determine the SDI mode (SD-SDI, HD-SDI, or 3G-SDI) of the
SDI signal coming into the GTX RX. When it is not locked to the current SDI input signal, the
SDI core sequences the GTX RX through the three different SDI modes until it detects
recognizably good SDI data on the rxdata output port of the GTX. At that point, the SDI core
indicates that it is locked to the SDI signal by asserting its rx_mode_locked output. And, it
indicates which SDI mode the RX is locked to on its sdi_mode output port.

However, when the SDI core is in HD-SDI mode, it has no way of determining if the bit rate of
the input SDI signal is 1.485 Gb/s or 1.485/1.001 Gb/s. Likewise, in 3G-SDI mode, the SDI core
cannot determine whether the bit rate of the input SDI signal is 2.97 Gb/s or 2.97/1.001 Gb/s.
The control module supplied with this application note, however, contains a bit rate detector that
can distinguish between 1.485 Gb/s and 1.485/1.001 Gb/s and between 2.97 Gb/s and
2.97/1.001 Gb/s. The SDI wrapper output port rx_bit_rate is Low when the input SDI signal’s bit

X-Ref Target - Figure 13

Figure 13: Recovered SD-SDI Clock from GTX Transceiver

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 24

rate is either 1.485 Gb/s or 2.97 Gb/s. And rx_bit_rate is High when the input SDI signal’s bit
rate is either 1.485/1.001 Gb/s or 2.97/1.001 Gb/s.

For the bit rate detection feature to work, the SDI wrapper must be supplied with a fixed
frequency clock on its clk input port. It is recommended that the frequency of this clock be at
least 10 MHz. If the frequency is over 150 MHz, it might be difficult to meet timing in the bit rate
detection logic. The SDI wrapper has a parameter/generic called FXDCLK_FREQ that must be
used to specify the frequency of the clock connected to the clk port. The value of
FXDCLK_FREQ must be set equal to the frequency of the fixed frequency clock in Hz.

Note that the SDI wrapper uses the fixed frequency clock for other purposes besides RX bit rate
detection. Thus, even if the bit rate detection feature is not used in a particular application, a
fixed frequency clock must be supplied to the clk port of the SDI wrapper.

Implementing
an SDI Interface
in a
Kintex-7 FPGA

There are several steps required to implement an SDI interface in a Kintex-7 FPGA design.
Those steps are:

1. Generate a GTX wrapper and GTX common wrapper using the 7 Series FPGAs
Transceivers Wizard.

2. Generate the SMPTE SD/HD/3G-SDI LogiCORE IP using the CORE Generator tool or the
Vivado IP catalog.

3. Instance the GTX wrapper and the SDI wrapper from this application note into the
application. With this version of the application note, the top level SDI wrapper includes
instances of a single GTX transceiver wrapper along with the SDI core and the SDI control
module, making it easier to instance a complete SDI interface. The GTX common wrapper
does need to be instantiated separately and connected to all SDI wrappers in the same
Quad.

4. Add the dru.ngc file to the Vivado tools project (see the readme.txt file in
xapp592.zip for more information).

5. Apply proper timing constraints for the SDI interface.

Generating the GTX Wrapper

Use the 7 Series FPGAs Transceivers Wizard to generate a GTX wrapper. Beginning with
version 3.0 of the wizard, the GTXE2_COMMON block is not included in the GTX wrapper, but
is instanced in a separate wrapper called the GTX common wrapper.

The GTX wrapper generated by the wizard is actually a hierarchy of wrapper levels. Beginning
with version 3.0 of the wizard, the upper level wrappers contain additional reset logic that is not
compatible with SDI operation. So, only the lowest level GTX wrapper file is actually useful for
SDI applications. The lowest level GTX wrapper always contains a single GTXE2_CHANNNEL
instance. The easiest way to generate and use the GTX wrapper is to use the wizard to
generate just a single transceiver and then instantiate the lowest level GTX wrapper multiple
times in the application, once for each GTX transceiver that is used for SDI. This version of the
application note has the GTX wrapper instantiated in the SDI wrapper, but you should always
check that this instance matches the GTX wrapper that is generated by the wizard. Ports on the
GTX wrapper tend to differ slightly between versions of the wizard. Also, the GTX common
wrapper must be instantiated as many times as necessary, once for each GTX Quad containing
transceivers implementing SDI interfaces. If only the CPLL is being used for serial clocks to the
GTX transceivers, the GTX common wrapper does not need to be instantiated at all because it
only contains the QPLL. The two SDI demonstration applications supplied with this application
note provide examples of how to instantiate the GTX wrapper and the GTX common wrapper.

The following information details exactly the steps required to generate the GTX wrapper using
the wizard version 3.1 from the Vivado IP catalog.

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 25

Because the top level GTX wrapper is not used in the SDI application, it is best not to generate
the GTX wrapper in the same Vivado project as the SDI application. Run Vivado tools and
create a new project just for the purpose of generating the GTX wrapper for SDI. After the GTX
wrapper is generated, only those GTX wrapper files that are needed for SDI should be added
to the actual SDI Vivado project. Always specify the same Kintex-7 FPGA device in the GTX
wrapper Vivado project and in the SDI Vivado project.

After creating the GTX wrapper Vivado project, open the IP catalog. The 7 Series FPGAs
Transceivers Wizard is found in the I/O Interfaces folder in the top-level FPGA Features and
Design folder of the Vivado IP catalog. Find the wizard in the IP catalog and double-click to
launch the wizard.

The wizard launches with the GT Selection tab open as shown in Figure 14. Above the tabs is
a text field called Component Name. The name entered here is used as the name for the GTX
wrapper file and the name of the GTX component. In this example, the component name is
k7gtx_sdi_wrapper. This matches the GTX wrapper name used in the two demonstrations
applications and is also the name of the GTX wrapper instance in the SDI wrapper. For
compatibility with that SDI wrapper, use k7gtx_sdi_wrapper as the GTW wrapper name,
otherwise the GTX wrapper instance name in the SDI wrapper needs to be edited.

Select the type of transceiver used in the GT Type pull-down menu in the GT Selection tab., the
type of transceiver used must be specified. For Kintex-7 devices, only the GTX transceiver is
available, so only GTX transceivers can be selected and the GT Type selection menu is grayed
out in Figure 14.

X-Ref Target - Figure 14

Figure 14: 7 Series FPGAs Transceivers Wizard - GT Selection Tab

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 26

In the Shared Logic section, select Include Shared Logic in example design. When moving
from tab to tab, click the tabs located under the Component Name field. Do not click OK until all
tabs have been correctly set up. The OK button closes the wizard.

Select the Line Rate, RefClk Selection tab, shown in Figure 15. In the Protocol pull-down
menu, select hd sdi. This sets most options in the wizard to the correct values for operation
with the SDI core. Choose hd sdi even if creating a wrapper to be used with some other SDI
protocol such as 3G-SDI or SD-SDI. The SDI core expects the GTX wrapper to be created
using the hd sdi protocol settings and dynamically changes ports and attributes properly when
other SDI protocols are selected during operation.

As shown in Figure 15, the Line Rate for both the TX and RX should already be set to
1.485 Gb/s after the hd sdi protocol has been selected. These line rates must be used in the
wizard no matter what SDI bit rates will actually be supported in the SDI application. Set the
Reference Clock frequency for both the TX and RX to the desired value, typically 148.5 MHz.
This sets the line rate to 1.485 Gb/s and the reference clock frequency to 148.5 MHz for both
RX and TX. Do not change the line rate to 1.485/1.001 Gb/s or the reference clock frequency
to 148.5/1.001 MHz. The SDI control module takes care of switching to the 1/1.001 rates from
the 1/1 rates. The control module also takes care of dynamically switching to the other line rates
of 2.97 Gb/s for 3G-SDI and 270 Mb/s for SD-SDI. The line rate specified on this tab should
always be 1.485 Gb/s. Alternative reference clock frequencies can be chosen on this tab, but
only choose from those that are available in the Reference Clock pull-down lists.

X-Ref Target - Figure 15

Figure 15: 7 Series FPGAs Transceivers Wizard - Line Rate, RefClk Selection Tab

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 27

The TX off and RX off check boxes allow the creation of GTX wrappers with only transmitters
(by selecting RX off) or only receivers (by selecting TX off). In this example, neither of these
options is selected.

The Quad column does not matter in this case, so just leave it to its default value.

Use Common DRP is usually not selected for SDI applications.

The bottom section of the Line Rate, RefClk Selection tab allows you to choose which GTX
transceivers and Quads are included in the top-level GTX wrapper. It also allows you to choose
the reference clocks used by the PLLs and which PLL supplies the serial clock to each
transceiver. For SDI applications, always generate a GTX wrapper with a single GTX
transceiver. It does not matter which transceiver is selected and using the single transceiver
that is selected by default is the easiest.

In this example, the RX unit is clocked by the QPLL which uses REFCLK0 Q1 as its reference
clock. The TX unit is clocked by the CPLL referenced to REFCLK1 Q1. The wizard does not
explicitly handle the case where TX units are dynamically switched between the QPLL and the
CPLL. The SDI control module takes care of the control for this dynamic switching. But, to build
a GTX wrapper with all the PLLs active and connected properly for dynamic switching of the TX
between the QPLL and the CPLL, assign the QPLL as the RX clock source and the CPLL as
the TX clock source, and assign different reference clocks to the QPLL and the CPLL as shown
in Figure 15. In cases where the QPLL is not being used and only the CPLL is used, use the
CPLL as the reference clock source to both the RX and the TX units.

Enable the Advanced Clocking Option.

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 28

Select the Encoding and Clocking tab, shown in Figure 16.

For both the TX and the RX section, the External Data Width must be 20 and the Internal
Data Width must be 20. The TX Encoding and the RX Decoding must be None.

Use DRP is always selected and cannot be deselected. Set the DRP frequency to the nominal
frequency of the clock connected to the GTX drpclk port.

None of the optional ports in the top section, under the DRP frequency selection, are required
for SDI.

It is highly recommended that the RX and TX buffers be used for SDI applications. Thus, you
should select Enable TX Buffer and Enable RX Buffer. The TXUSRCLK Source is set to
TXOUTCLK and cannot be changed. The RXUSRCLK Source must be set to RXOUTCLK, as
shown in Figure 16.

In the bottom Optional Ports section, the following ports are required for SDI applications:
TXPCSRESET, TXRATE, TXBUFSTATUS, RXRATE, RXBUFSTATUS, RXBUFRESET, and
RXCDRHOLD. If the application requires that the TX units dynamically switch between the
QPLL and the CPLL, then the TXSYSCLKSEL port is also required. It is recommended that the
TXSYSCLSEL port always be selected and, if dynamic switching of the TX is not required, the
TXSYSCLKSEL port can be hardwired to select either the QPLL or the CPLL as the serial clock
source.

X-Ref Target - Figure 16

Figure 16: 7 Series FPGAs Transceivers Wizard - Encoding and Clocking Tab

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 29

Select the Comma Alignment and Equalization tab, shown in Figure 17. In the RXCOMMA
Alignment section of this tab, Use COMMA detection and the RXSLIDE port must not be
selected. Comma detection and the RXSLIDE features are not used for SDI.

The settings in the Termination and Equalization section must be set to the values shown in
Figure 17. The Differential Swing and Emphasis Mode must be set to Custom, RX
Equalization Mode must be set to LPM-Auto, the RX Termination Voltage must be set to
Programmable, and the Trim Value must be set to 800 mV.

In the Optional Ports section, any of these ports can be enabled or disabled depending on the
application requirements. The TXDIFFCTRL port is typically enabled, allowing the application
to set the output swing of the TX to match the input voltage requirements of external SDI cable
driver. The TXPOSTCURSOR and TXPRECURSOR ports can be selected if these ports are
needed to improve the integrity of the signal from the TX to the external SDI cable driver.

Select the PCIE, SATA, PRBS tab, shown in Figure 18. Most of the options on this page are not
relevant to SDI and should be left in their default values. There are a few ports in the Optional
Ports section that can be useful for SDI applications.

The LOOPBACK port is selected by default. This port allows for dynamic selection of various
loopback modes where the data being transmitted by the GTX TX is looped back to the GTX
RX in the same transceiver. The loopback modes can be useful for debugging purposes, but
generally are not used in production applications.

X-Ref Target - Figure 17

Figure 17: 7 Series FPGAs Transceivers Wizard - Comma Alignment and Equalization Tab

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 30

The TXPOWERDOWN and RXPOWERDOWN ports allow the TX and RX to be dynamically
powered down to save power.

On the CB and CC Sequence tab, Use Channel Bonding and Use Clock Correction must
not be selected. The Summary tab provides a summary of the selections made on the other
tabs. To generate the GTX wrapper, click OK and then click Generate when the next menu
opens.

The wizard generates several files, some that are required for an SDI application plus several
other example files that should not be used for SDI. The files that are used all start with the
component name that you assigned to the GTX wrapper in the wizard. The required files are:

If the Vivado project name is gtx_wrapper, Verilog is selected as the default language, and the
component name given to the GTX wrapper is k7gtx_sdi_wrapper, then the paths to the
necessary files would be:

gtx_wrapper/k7gtx_sdi_wrapper_example.srcs/sources_1/ip/k7gtx_sdi_
wrapper/k7gtx_sdi_wrapper.v

gtx_wrapper/k7gtx_sdi_wrapper_example.srcs/sources_1/imports/suppo
rt/k7gtx_sdi_wrapper_common.v

X-Ref Target - Figure 18

Figure 18: 7 Series FPGAs Transceivers Wizard - PCIe, SATA, PRBS Tab

<component_name>_gt.v/vhd lowest level GTX wrapper

<component_name>_common.v/vhd GTX common wrapper

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 31

The support directory and the GTX common wrapper located in the support directory are not
automatically created when you generate the GTX wrapper using the wizard. You must
right-click the SDI wrapper item in the Sources panel and choose Open IP Example Design
as shown in Figure 19.

Generating the SMPTE SD/HD/3G-SDI LogiCORE IP

Use the Vivado IP catalog to generate the SMPTE SD/HD/3G-SDI core. Do not use the older
Triple-Rate SDI core. That core is only for Virtex®-6 FPGAs. The SMPTE SD/HD/3G-SDI core
is the generic SDI core that works with 7 series FPGA devices.

The SMPTE SD/HD/3G-SDI core is a source code core, not a precompiled core. When the
CORE Generator tool generates the SMPTE SD/HD/3G-SDI core, it delivers a set of source
code files in either Verilog or VHDL, depending on project’s preferred language setting.

The only option available when generating the SMPTE SD/HD/3G-SDI core is whether or not to
include the error detection and handling (EDH) processor for the RX section. Note that even if
the RX EDH processor is not included, the SDI core has all RX EDH ports, but they are inactive.

The SMPTE SD/HD/3G-SDI core is instantiated in SDI wrapper. So, if the SDI wrapper is used,
the SMPTE SD/HD/3G-SDI core itself does not need to be directly instantiated in the
application.

X-Ref Target - Figure 19

Figure 19: Generating the Support Directory

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 32

Instancing the GTX and SDI Wrappers

The GTX wrapper and the SDI wrapper need to be instantiated and interconnected in the user
design. It is possible to implement the SDI interface without the SDI wrapper supplied with this
application note, but the wrapper makes things easier because it interconnects the GTX
wrappter, the SDI control module, and the SDI core. If the wrapper is not used, the user must
make all of these connections. The SDI wrapper file is called x7gtx_sdi_wrapper.v. In
addition to the GTX wrapper and the SDI core, it also instances the following files:

• x7gtx_sdi_control.v or .vhd

• x7gtx_reset_control.v or .vhd

• x7gtx_sdi_drp_control.v or .vhd

• sdi_rate_detect.v or .vhd

• dru_bshift10to10.v or .vhd

• dru_maskencoder.v or .vhd

• dru_control.v or .vhd

• dru_rot20.v or .vhd

• dru.v (for Verilog only)

Add the dru.ngc File to the Project

The dru.v file is an empty module which, in Verilog, specifies the ports on the precompiled
dru.ngc file. When using the x7gtx_sdi_wrapper.v file, the dru.v file must be included in
the project.

When using Vivado tools, the dru.ngc file must be added to the project as a source file just
like adding any of the Verilog or VHDL files. The dru.ngc file is the pre-generated and
encrypted DRU module.

Caution! Do not use the dru_sim.v file that is included with this application note in a design
intended to be used in the actual FPGA. This file is for simulation purposes only. Using it in an actual
hardware implementation results in the SDI receiver that is not able to correctly receive SD-SDI
signals. For simulation purposes, the dru_sim.v file can be added to the design instead of the
dru.v file and the dru.ngc file.

IMPORTANT: The SDI wrapper contains an instance of the SMPTE SD/HD/3G-SDI core. The
SDI wrapper must be edited so that the name given to the SDI core (when it is generated using
the Vivado IP catalog) is used where the core is instanced in the SDI wrapper. This can be
avoided by using the component name smpte_sdi when generating the SMPTE SD/HD/3G-SDI
core.

Table 1 describes all of the ports of the SDI Wrapper. This port list is similar to the port list of the
SDI core itself, but there are some differences. Also refer to the example SDI applications
provided with this application note for examples of how to interconnect the GTX common and
SDI wrappers.

Some signals are described as being asserted for some number of video sample periods. A
video sample period lasts for differing numbers of cycles of the appropriate clock (either
tx_usrclk or rx_usrclk) depending on the SDI mode. In HD-SDI and 3G-SDI level A modes, a
sample period lasts one clock cycle. In SD-SDI mode, a sample period is either 5 or 6 clock
cycles long and begins and ends with the rising edge of the clock when the clock enable (either
tx_ce or rx_ce_sd) is asserted. In 3G-SDI level B mode, a sample period is two clock cycles
long as controlled by the assertion of 3G-SDI data ready signal (either tx_din_rdy or
rx_dout_rdy_3G).

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 33

Most of RX and TX ports in this list are wired directly to the ports of the same name on the SDI
core that is instantiated inside the SDI wrapper. Timing diagrams of the video and video timing
signals can be found in Society of Motion Picture and Television Engineers (SMPTE)
SD/HD/3G-SDI Product Guide (PG071) [Ref 5].

Table 1: SDI Wrapper Port List

Port Name I/O Width Description

clk In 1

This input must be connected to a fixed-frequency free
running clock. This clock is used by the SDI wrapper for
various timing purposes. The frequency of this clock must
be specified by the parameter/generic FXDCLK_FREQ. If
the clock frequency does not closely match the frequency
specified by FXDCLK_FREQ, the timing delays generated
by the wrapper is not correct and the RX bit rate detection
circuit might not function.

drpclk In 1

This input must be connected to a fixed-frequency free
running clock. This clock is used to clock the DRP of the
GTX and SDI control logic associated with the DRP. The
period of this clock must be specified by the parameter
DRPCLK_PERIOD. In most cases, the same clock can be
used to drive the drpclk and clk ports.

qpllclk In 1

If the QPLL is being used to clock the GTX transceiver,
connect this port to the QPLLOUTCLK_OUT port of the
GTX common wrapper. If the QPLL is not being used, tie
this port Low.

qpllrefclk In 1

If the QPLL is being used to clock the GTX transceiver,
connect this port to the QPLLOUTREFCLK_OUT port of
the GTX common wrapper. If the QPLL is not being used,
tie this port Low.

qpllreset Out 1

If the QPLL is being used to clock the GTX transceiver,
connect this port to the QPLLRESET_IN port of the GTX
common wrapper. This port can be left unconnected if the
QPLL is not being used. Only one SDI wrapper can drive
the GTX common wrapper's QPLLRESET_IN port. If
multiple transceivers in a Quad are being used for SDI, one
must be selected as the QPLL master and that wrapper
must drive the GTX common wrapper QPLLRESET_IN
port.

qplllock In 1

If the QPLL is being used to clock the GTX, connect this
port to the QPLLLOCKOUT_OUT port of the GTX common
wrapper. If the QPLL is not being used, this port must be
tied High. If multiple transceivers in a Quad are being used
for SDI, connect the GTX common wrapper
QPLLLOCK_OUT port to the qplllock_in port of all SDI
wrappers in that Quad.

cpllrefclk In 1 Connect this port to the O port of the IBUFDS_GTE2 that is
providing the CPLL reference clock for this transceiver.

cplllock Out 1 This output is High when the transceiver CPLL is locked to
the reference clock.

rxp In 1
This port is internally connected directly to the rxp port of
the GTX receiver. It must be connected to an input port at
the top level of the design.

rxn In 1
This port is internally connected directly to the rxn port of
the GTX receiver. It must be connected to an input port at
the top level of the design.

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 34

txp In 1
This port is internally connected directly to the txp port of
the GTX transmitter. It must be connected to an output port
at the top level of the design.

txn In 1
This port is internally connected directly to the txn port of
the GTX transmitter. It must be connected to an output port
at the top level of the design.

Receive Ports

rx_rst In 1

This port resets the RX portion of the SDI core, but does not
reset the GTX RX.
This synchronous reset input can normally be hardwired
Low because a reset is not required. After FPGA
configuration, the SMPTE SD/HD/3G-SDI core is in a fully
operational mode and does not require a reset.
Both rx_ce_sd and rx_din_rdy_3G must be High when
rx_rst is High to completely reset the receiver.
Asserting rx_rst also resets the state machine that controls
the automatic SDI mode lock detector. Do not assert rx_rst
just because the SDI RX is not locked, otherwise the SDI
RX never locks.

rx_usrclk_out In 1

This output is driven internally by a BUFG. The input to the
BUFG is driven by the rxoutclk port of the GTX transceiver.
Unless otherwise indicated, all ports on the wrapper that
are prefixed with rx_ are synchronous with this clock. The
frequency of this clock is 148.5 MHz (or 148.5/1.001 MHz)
for 3G-SDI and SD-SDI modes and 74.25 MHz (or
74.25/1.001 MHz) for SD-SDI mode.

rx_gtx_reset In 1

When this input is asserted High, a full GTX RX reset
sequence is initiated. First, if the qpllreset output of this
module is connected to a GTX PLL reset input, that PLL is
reset. After the PLL locks to the reference clock input, the
GTX RX is reset using the GTX transceiver gtrxreset port.
Completion of this reset sequence is indicated by assertion
of the rx_change_done output.
This signal connected to this input must be synchronous
with the drpclk clock.

rx_gtx_reset In 1

When this input is asserted High, the GTX RX is reset using
the GTX transceiver gtrxreset port. If the PLL providing the
serial clock to the GTX RX is not locked, the gtrxreset
sequence does not complete until that PLL is locked.
Completion of this reset sequence is indicated by assertion
of the rx_change_done output.
This signal connected to this input must be synchronous
with the drpclk clock.

rx_refclk_stable In 1

This input is used by the RX initialization logic to keep the
PLL that is providing the serial clock to the GTX RX in reset
until the PLL reference clock is stable. If this SDI wrapper is
controlling the PLL reset, then the rx_refclk_stable input
must be kept Low until the PLL reference clock is stable.
This input does not initiate a PLL reset. It only delays
completion of the PLL reset sequence initiated by the
rx_gtx_full_reset input until the rx_refclk_stable input is
High.
This input is treated as an asynchronous input.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 35

rx_frame_en In 1

This input enables the SDI framer function. When this input
is High, the framer automatically readjusts the output word
alignment to match the alignment of each timing reference
signal (TRS): end of active video (EAV), or start of active
video (SAV). Normally, this input should always be High.
However, if controlled properly, this input can be used to
implement TRS alignment filtering. For example, if the
rx_nsp output is connected to the rx_frame_en input, the
framer ignores a single misaligned TRS, keeping the
existing word alignment until the new word alignment is
confirmed by a second matching TRS. If a TRS alignment
filtering scheme is employed, it is very important to turn off
any TRS filtering during the synchronous switching lines by
driving the rx_frame_en input High on the synchronous
switching lines.

rx_mode_en In 3

This port has unary bits to enable reception of each of the
three SDI modes:
• Bit 0 enables HD-SDI mode
• Bit 1 enables SD-SDI mode
• Bit 2 enables 3G-SDI mode
When a bit is High, the corresponding SDI mode is included
in the search for the correct SDI mode when the SDI RX is
not locked to the incoming signal. When a bit is Low, the
SDI RX does not attempt to detect incoming SDI signals of
that mode. Disabling unused SDI modes using these bits
decreases the amount of time it takes for the SDI RX to lock
to the incoming signal when it changes modes.

rx_mode Out 2

This output port indicates the current SDI mode of the SDI
RX:
• 00 = HD-SDI
• 01 = SD-SDI
• 10 = 3G-SDI
When the receiver is not locked, the rx_mode port changes
values as the SDI RX searches for the correct SDI mode.
During this time, the rx_mode_locked output is Low. When
the SDI RX detects the correct SDI mode, the
rx_mode_locked output goes High and the mode of the
incoming SDI signal is indicates by the rx_mode port.

rx_mode_hd
rx_mode_sd
rx_mode_3g

Out 1

These three output ports are decoded versions of the
rx_mode port. Unlike the rx_mode port, which changes
continuously as the SDI RX seeks to identify and lock to the
incoming signal, these outputs are all forced Low when the
SDI RX is not locked. The output matching the current SDI
mode of the SDI RX is High when rx_mode_locked is High.

rx_mode_locked Out 1

When this output is Low, the SDI RX is actively searching
for the SDI mode that matches the input data stream.
During this time, the rx_mode output port changes
frequently. When the SDI RX locks to the correct SDI mode,
the rx_mode_locked output goes High.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 36

rx_bit_rate Out 1

This output port indicates which bit rate is being received in
HD-SDI and 3G-SDI modes as shown below. This output is
not valid in SD-SDI mode.
HD-SDI mode:
• rx_bit_rate = 0: Bit rate = 1.485 Gb/s
• rx_bit_rate = 1: Bit rate = 1.485/1.001 Gb/s
• 3G-SDI mode:
• rx_bit_rate = 0: Bit rate = 2.97 Gb/s
• rx_bit_rate = 1: Bit rate = 2.97/1.001 Gb/s

rx_t_locked Out 1
This output is High when the transport detection function in
the SDI RX has identified the transport format of the SDI
signal.

rx_t_family Out 4

This output indicates which family of video signals is being
used as the transport signal on the SDI interface. This
output is only valid when rx_t_locked is High. This port does
not necessarily identify the video format of the picture being
transported. It only identifies the transport characteristics.
See Table 3 for the encoding of this port.

rx_t_rate Out 4

This output indicates the frame rate of the SDI transport
signal. This is not necessarily the same as the frame rate of
the actual picture. See Table 4 for the encoding of this port.
This output is only valid when rx_t_locked is High.

rx_t_scan Out 1

This output indicates whether the SDI transport signal is
interlaced (Low) or progressive (High). This is not
necessarily the same as the scan mode of the actual
picture. This output is only valid when rx_t_locked is High.

rx_level_b_3g Out 1

This output is asserted High when the input 3G-SDI signal
is level B and Low when it is 3G-SDI level A. This output is
only valid when the SDI RX is locked to a 3G-SDI signal
(when rx_mode_3g is High).

rx_ce_sd Out 1

This output is a clock enable for SD-SDI mode. This output
is asserted, on average, one cycle of rx_usclk out of every
5.5 cycles in SD-SDI mode. The SD-SDI data stream output
on the rx_ds1a port and the RX video timing signals (rx_trs,
rx_eav, and rx_sav) are only valid when rx_ce_sd is High in
SD-SDI mode. In other SDI modes, rx_ce_sd is always
High.

rx_nsp Out 1

When this output is High, it indicates that the SDI framer
has detected a TRS (EAV or SAV) at a new word alignment.
If rx_frame_en is High, this output is only asserted for one
video sample period. If rx_frame_en is Low, this output
remains High until the framer is allowed to realign to the
new TRS alignment (by the assertion of rx_frame_en
during the occurrence of a TRS).

rx_line_a Out 11

The current line number captured from the LN words of the
Y data stream of the SDI input signal is output on this port.
This output is valid in HD-SDI and 3G-SDI modes, but not
in SD-SDI mode. In 3G-SDI level B mode, the output value
is the line number from the Y data stream of link A or
HD-SDI signal 1. For any case where the interface line
number is not the same as the picture line number, such as
for 1080p 60 Hz carried on 3G-SDI level B or dual link
HD-SDI, the output value on this port is the interface line
number, not the picture line number.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 37

rx_a_vpid Out 32

All four user data bytes of the SMPTE ST 352 [Ref 6]
payload ID packet from data stream 1 are output on this port
in this format:
MS byte to LS byte: byte4, byte3, byte2, byte1.
This output port is valid only when rx_a_vpid_valid is High.
This port is potentially valid in any SDI mode, but only if
there are ST 352 packets embedded in the SDI signal. In
3G-SDI level A mode, the output data is the ST 352 data
bytes captured from data stream 1 (luma). In 3G-SDI level
B mode, the output data is the ST 352 data bytes captured
from data stream 1 of link A (dual link streams,) or HD-SDI
signal 1 (dual HD-SDI signals).

rx_a_vpid_valid Out 1 This output is High when rx_a_vpid is valid.

rx_b_vpid Out 32

All four user data bytes of the SMPTE ST 352 [Ref 6]
payload ID packet from data stream 2 are output on this
port in this format: MS byte to LS byte: byte4, byte3, byte2,
byte1. This output is valid only in 3G-SDI mode and only
when rx_b_vpid_valid is High. In 3G-SDI level A mode, the
output data is the ST 352 data bytes captured from data
stream 2 (chroma). In 3G-SDI level B mode, the output data
the ST 352 data bytes captured from data stream 1 of link
B (dual link streams,) or HD-SDI signal 2 (dual HD-SDI
signals).

rx_b_vpid_valid Out 1 This output is High when rx_b_vpid is valid.

rx_crc_err_a Out 1

This output is asserted High when a CRC error is detected
on the previous video line. For 3G-SDI level B mode, this
output indicates CRC errors on data stream 1 only. There is
a second output called rx_crc_err_b that indicates CRC
errors on data stream 2 for 3G-SDI level B mode. Neither
CRC error output is valid in SD-SDI mode.
The CRC error outputs are asserted High for one video line
time when a CRC error has been detected on the previous
video line. There is a six or seven video sample period
latency, depending on the SDI mode, from the video sample
in which the rx_eav signal is asserted until the rx_crc_err_a
signal changes values.

rx_ds1a Out 10

The recovered SDI data stream 1 is output on this port. The
contents of this data stream are dependent on the SDI
mode:
• SD-SDI: Multiplexed Y/CB/CR components
• HD-SDI: Y component
• 3G-SDI level A: Data stream 1
• 3G-SDI level B-DL: Data stream 1 of link A
• 3G-SDI level B-DS: Y component of HD-SDI signal 1

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 38

rx_ds2a Out 10

The recovered SDI data stream 2 is output on this port. The
contents of this data stream are dependent on the SDI
mode:
• SD-SDI: Not used
• HD-SDI: Interleaved CB and CR components
• 3G-SDI level A: Data stream 2
• 3G-SDI level B-DL: Data stream 2 of link A
• 3G-SDI level B-DS: Interleaved CB and CR components

of HD-SDI signal 1

rx_eav Out 1
This output is asserted High for one video sample period
when the XYZ word of an EAV is present on the data stream
output ports.

rx_sav Out 1
This output is asserted High for one video sample period
when the XYZ word of an SAV is present on the data stream
output ports.

rx_trs Out 1

This output is asserted High for four consecutive video
sample periods as all four words of an EAV or SAV, starting
with the 3FF word and continuing through the XYZ word,
are output on the data stream ports.

rx_line_b Out 11

This output port is only valid in 3G-SDI level B mode, and
outputs the line number for the Y data stream of link B or
HD-SDI signal 2. For any case where the interface line
number is not the same as the picture line number, the line
number output on this port is the interface line number, not
the picture line number.

rx_dout_rdy_3g Out 1

In 3G-SDI level B mode, the output data rate is 74.25 MHz,
but the rx_usrclk frequency is 148.5 MHz. The
rx_dout_rdy_3G output is asserted every other cycle of
rx_usrclk in 3G-SDI level B mode. When this output is High,
the data stream and video timing outputs are valid. This
output is always High in all other SDI modes, allowing it to
be used as a clock enable to downstream modules.

rx_crc_err_b Out 1

This is the CRC error indicator valid only in 3G-SDI level B
mode. It indicates that a CRC error was detected on link B
for 3G-SDI B-DL signals and HD-SDI signal 2 for 3G-SDI
level B-DS signals.
This output has the same timing as the rx_crc_err_a signal.

rx_ds1b Out 10

This output is only valid in 3G-SDI level B mode. The data
stream output on this port is:
• 3G-SDI level B-DL: Data stream 1 of link B
• 3G-SDI level B-DS: Y component of HD-SDI signal 2

rx_ds2b Out 10

This output is only valid in 3G-SDI level B mode. The data
stream output on this port is:
• 3G-SDI level B-DL: Data stream 2 of link B
• 3G-SDI level B-DS: Interleaved CB and CR components

of HD-SDI signal 2

rx_edh_errcnt_en In 16 This input controls which EDH error conditions increment
the EDH error counter. See Table 5 for more details.

rx_edh_clr_errcnt In 1
When High, this input clears the EDH error counter. The
EDH error counter is cleared on the rising edge of rx_usrclk
only if both rx_edh_clr_errcnt and rx_ce_sd are both High.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 39

rx_edh_ap Out 1
This output is asserted High when the active picture CRC
calculated for the previous field does not match the AP CRC
value in the EDH packet.

rx_edh_ff Out 1
This output is asserted High when the full field CRC
calculated for the previous field does not match the FF CRC
value in the EDH packet.

rx_edh_anc Out 1 This output is asserted High when an ancillary data packet
checksum error is detected.

rx_edh_ap_flags Out 5
The active picture error flag bits from the most recently
received EDH packet are output on this port. See Table 6
for more information.

rx_edh_ff_flags Out 5
The full field error flag bits from the most recently received
EDH packet are output on this port. See Table 6 for more
information.

rx_edh_anc_flags Out 5
The ancillary error flag bits from the most recently received
EDH packet are output on this port. See Table 6 for more
information.

rx_edh_packet_flags Out 4 This port outputs four error flags related to the most recently
received EDH packet. See Table 7 for more information.

rx_edh_errcnt Out 16
This is the SD-SDI EDH error counter. It increments once
each field when any of the error conditions enabled by the
rx_edh_err_en port occur.

rx_change_done Out 1

This output is Low during those periods when the GTX RX
is being initialized, reset, or when it is being dynamically
switched between SDI modes. If the initialization, reset, or
dynamic change sequence completes successfully, the
rx_change_done output is asserted High to indicate
successful completion.
This output is synchronous with the drpclk.

rx_change_fail Out 1

Under normal conditions, this output is always Low. It only
goes High if the control module is unsuccessful in
completing a GTX RX initialization, reset, or SDI mode
change sequence. If such a failure occurs, the
rx_change_fail port is asserted High and the
rx_change_fail_code port indicates the nature of the failure.
If a failure occurs, the GTX RX must be reset using the
rx_gtx_full_reset input.
This output is synchronous with the drpclk.

rx_change_fail_code In 3

When the rx_change_fail port is High, this port indicates the
nature of the sequence failure. See Table 8 for encoding of
this port.
This output is synchronous with the drpclk.

drpbusy Out 1 This status output is High when the GTX DRP is being used
by the SDI control logic.

Transmit Ports

tx_rst In 1
This is a synchronous reset input. It resets the transmit
section when High. To fully reset the transmitter, both tx_ce
and tx_din_rdy must be High when tx_rst is High.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 40

tx_usrclk_out Out 1

This output is driven by a BUFG inside the SDI wrapper.
The input of the BUFG is driven by the txoutclk port of the
GTX wrapper. The frequency of this clock is 148.5 MHz (or
148.5/1.001 MHz) in 3G-SDI and SD-SDI modes and
74.25 MHz (or 74.25/1.001 MHz) in HD-SDI mode.
Unless otherwise noted, all SDI wrapper ports prefixed by
tx_ are synchronous with this clock.

tx_gtx_full_reset In 1

When this input is asserted High, a full GTX TX reset
sequence is initiated. First, the CPLL is reset. After the
CPLL locks to the reference clock input, the GTX RX is
reset using the GTX transceiver gttxreset port. Completion
of this reset sequence is indicated by assertion of the
tx_change_done output.
This signal connected to this input must be synchronous
with the drpclk clock.

tx_gtx_reset In 1

When this input is asserted High, the GTX TX is reset using
the GTX transceiver gttxreset port. If the QPLL and CPLL
providing the serial clocks to the GTX TX are not locked, the
gttxreset sequence does not complete until both PLLs are
locked. Completion of this reset sequence is indicated by
assertion of the tx_change_done output.
This signal connected to this input must be synchronous
with the drpclk clock.

tx_refclk_stable In 1

This input is used by the TX initialization logic to keep the
CPLL that is providing the serial clock to the GTX TX in
reset until the CPLL reference clock is stable. The
tx_refclk_stable input must be kept Low until the CPLL
reference clock is stable. This input does not initiate a CPLL
reset. It only delays completion of the CPLL reset sequence
initiated by the tx_gtx_full_reset input until the
tx_refclk_stable input is High.
This input is treated as an asynchronous input.

tx_ce In 3

The combination of the tx_usrclk frequency and tx_ce must
clock the SDI core’s transmitter datapath at the word rate
(not necessarily the video sample rate) of the current SDI
mode: 148.5 or 148.5/1.001 MHz in 3G-SDI mode, 74.25 or
74.25/1.001 MHz in HD-SDI mode, and 27 MHz in SD-SDI
mode.
tx_ce must always be High in HD-SDI and 3G-SDI modes.
In SD-SDI mode, tx_ce must be asserted at a 27 MHz rate
with a mandatory 5/6/5/6 clock cycle cadence.
Three identical copies of the clock enable signal must be
provided on the three bits of this port. Three input bits are
provided to make it easier to meet timing. If these three
inputs are all driven by the same flip-flop, the loading on the
single clock enable signal might be too high to meet timing.
In those cases, duplicate copies of the clock enable signal
can be created by multiple flip-flops each driving a different
bit of the tx_ce input port.

tx_din_rdy In 1
In SD-SDI, HD-SDI, and level A 3G-SDI modes, this input
must be kept High at all times. In level B 3G-SDI mode, this
input must be asserted every other clock cycle.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 41

tx_mode In 2

This input port is used to select the SDI transmitter’s mode:
• 00 = HD-SDI (including dual link HD-SDI)
• 01 = SD-SDI
• 10 = 3G-SDI
• 11 = Invalid

tx_level_b_3g In 1 In 3G-SDI mode, this input determines whether the module
is configured for level A (Low) or for level B (High).

tx_m In 1

Used to select which PLL clock is used by the GTX TX. This
input causes the SDI wrapper’s gtx_txsysclksel output port
to change in order to change the GTX TX PLL clock select
MUX. By convention, tx_m = Low selects the 1/1.000 bit
rates and tx_m=High selects the 1/1.001 bit rates.

tx_insert_crc In 1

When this input is High, the SDI TX generates and inserts
CRC values on each video line in HD-SDI and 3G-SDI
modes. When this input is Low, CRC values are not
generated and inserted. This input is ignored in SD-SDI
mode. CRC values are required by both the HD-SDI and the
3G-SDI standards. If the data streams entering the SDI TX
input ports do not have CRC values, then this input should
be asserted High. If the data streams entering the SDI TX
input ports already have CRC values, the existing CRC
values are replaced by newly calculated CRC values if
tx_insert_crc is asserted High.

tx_insert_ln In 1

When this input is High, the transmitter inserts line numbers
words after the EAV in each video line. The line number
must be supplied on the tx_line_a and tx_line_b input ports.
This input is ignored in SD-SDI mode. Line numbers are
required by both the HD-SDI and the 3G-SDI standards. If
the data streams entering the SDI TX input ports do not
have line number words already embedded, then this input
should be asserted High and valid line numbers must be
supplied on the tx_line_a and tx_line_b ports. If the data
streams entering the SDI TX input port already have line
numbers embedded, those line numbers are overwritten if
tx_insert_ln is High.

tx_insert_edh In 1

When this input is High, the transmitter generates and
inserts EDH packets in every field in SD-SDI mode. When
this input is Low, EDH packets are not inserted. This input
is ignored in HD-SDI and 3G-SDI modes. EDH packets are
optional but commonly used in SD-SDI mode and are never
used in HD-SDI and 3G-SDI modes. If the SD-SDI data
stream entering the SDI TX already has an EDH packet
embedded, it is overwritten with a new packet if
tx_insert_edh is High.

tx_insert_vpid In 1

When this input is High, SMPTE ST 352 [Ref 6] packets are
inserted into the data streams, otherwise the packets are
not inserted. ST 352 packets are mandatory in 3G-SDI and
dual link HD-SDI modes and optional in HD-SDI and
SD-SDI modes.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 42

tx_overwrite_vpid In 1

If this input is High and the tx_insert_vpid port is High,
SMPTE ST 352 [Ref 6] packets already present in the data
streams are overwritten with new ST 352 packets. If this
input is Low, existing ST 352 packets are not overwritten.
When transporting ST 372 [Ref 7] dual link data streams on
a 3G-SDI level B interface, existing ST 352 packets in the
data streams must be updated to indicate that the interface
is 3G-SDI rather than HD-SDI mode.

tx_video_a_y_in In 10

This is the SDI data stream A Y input to the SDI TX. The
data on this port depends on the SDI mode:
• SD-SDI: Multiplexed Y/C data stream
• HD-SDI: Y component
• 3G-SDI level A: Data stream 1
• Dual link HD-SDI or 3G-SDI level B-DL: Data stream 1 of

link A
• 3G-SDI level B-DS: Y component of HD-SDI signal 1

tx_video_a_c_in In 10

This is the SDI data stream A C input to the SDI TX. The
data on this port depends on the SDI mode:
• SD-SDI: Unused
• HD-SDI: Interleaved CB and CR components
• 3G-SDI level A: Data stream 2
• Dual link HD-SDI or 3G-SDI level B-DL: Data stream 2 of

link A
• 3G-SDI level B-DS: Interleaved CB and CR components

of HD-SDI signal 1

tx_video_ b_y_in In 10

This is the SDI data stream B Y input to the SDI TX. The
data stream on this port depends on the SDI mode:
• Dual link HD-SDI or 3G-SDI level B-DL: Data stream 1 of

link B
• 3G-SDI level B-DS: Y component of HD-SDI signal 2
For other SDI modes, this input port is unused.

tx_video_b_c_in In 10

This is the SDI data stream B C input to the SDI TX. The
data stream on this port depends on the SDI mode:
• Dual link HD-SDI or 3G-SDI level B-DL: Data stream 2 of

link B
• 3G-SDI level B-DS: Interleaved CB and CR components

of HD-SDI signal 2
For other SDI modes, this input port is unused.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 43

tx_line_a In 11

The current line number must be provided to the module
through this port if either ST 352 [Ref 6] VPID packet
insertion is enabled (tx_insert_vpid = High) or if HD-SDI
and 3G-SDI line number insertion is enabled (tx_insert_ln =
High).
SD-SDI only uses 10-bit line numbers, so bit 10 of this port
must be 0 in SD-SDI mode if ST 352 VPID packet insertion
is enabled in SD-SDI mode. Line number insertion is never
done in SD-SDI mode so this input port is only used for
ST 352 VPID packet insertion in SD-SDI mode.
The line number must be valid at least one clock cycle
before the start of the HANC space (by the XYZ word of the
EAV) and must remain valid during the entire HANC
interval.
This input is the only line number input used for SD-SDI,
HD-SDI, and 3G-SDI level A modes. For 3G-SDI level B
mode, a second line number input port, tx_line_b, is also
provided.
For video formats where the picture line number is different
than the transport line number, the value supplied on this
port must be the transport line number.

tx_line_b In 11

This is the second line number input port and is used only
for 3G-SDI level B mode. This additional line number port
allows the two separate HD-SDI signals to be vertically
unsynchronized in level B-DS mode. When using either
3G-SDI level B-DL or B-DS, this port must be given a valid
line number input. In 3G-SDI level B-DL mode, the value on
this input port must be the same as the value on the
tx_line_a port. This input port has the same timing and
other requirements described for tx_line_a.

tx_vpid_byte1 In 8

The value on this port is inserted as the first user data word
of the ST 352 packet [Ref 6]. It must be valid during the
entire HANC interval of the lines that are to contain the
ST 352 packet if ST 352 packets are being inserted or
overwritten.

tx_vpid_byte2 In 8

The value on this port is inserted as the second user data
word of the ST 352 packet [Ref 6]. It must be valid during
the entire HANC interval of the lines that are to contain the
ST 352 packet if ST 352 packets are being inserted or
overwritten.

tx_vpid_byte3 In 8

The value on this port is inserted as the third user data word
of the ST 352 packet [Ref 6]. It must be valid during the
entire HANC interval of the lines that are to contain the
ST 352 packet if ST 352 packets are being inserted or
overwritten.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 44

tx_vpid_byte4a In 8

The value on this port is inserted as the fourth user data
word of the ST 352 packet. [Ref 6]. This word is used for the
ST 352 packets inserted into SD-SDI, HD-SDI, and 3G-SDI
level A data streams. For 3G-SDI level B and dual link
HD-SDI modes, this value is used for the ST 352 packet
inserted into data stream 1 of link A only. This input must be
valid during the entire HANC interval of the lines that are to
contain the ST 352 packet if ST 352 packets are being
inserted or overwritten.
Separate values are allowed for byte 4 for link A and link B
because this byte contains the link ID bits which must be
different on link A than on link B.

tx_vpid_byte4b In 8

This value on this port is inserted as the fourth user data
word of ST 352 packets [Ref 6] inserted in the data stream
1 of link B for 3G-SDI level B and dual link HD-SDI modes
only. This input value is not used for SD-SDI, HD-SDI, or
3G-SDI level A modes. This input must be valid during the
entire HANC interval of the lines that are to contain the
ST 352 packet if ST 352 packets are being inserted or
overwritten.

tx_vpid_line_f1 In 11

The ST 352 packet [Ref 6] is inserted in the HANC space of
the line number specified by this input port. For interlaced
video, this input port specifies a line number in field 1. For
progressive video, this specifies the only line in the frame
where the packet is inserted. The input value must be valid
during the entire HANC interval. If tx_insert_vpid is Low,
this input is ignored.

tx_vpid_line_f2 In 11

For interlaced video, a ST 352 packet [Ref 6] is inserted on
the line number in field 2 indicated by this value. For
progressive video, insertion of ST 352 packets on the line
specified by this input port must be disabled by holding the
tx_vpid_line_f2_en port Low. The input value must be valid
during the entire HANC interval. This input is ignored if
either tx_insert_vpid or tx_vpid_line_f2_en are Low.

tx_vpid_line_f2_en In 1

This input controls whether or not ST 352 packets [Ref 6]
are inserted on the line indicated by tx_vpid_line_f2. For
interlaced video, this input must be High. For progressive
video, this input must be Low. For progressive video
transported on an interlaced transport, such as 1080p
60 Hz transported by either 3G-SDI level B-DL or dual link
HD-SDI, ST 352 packets [Ref 6] must be inserted into both
fields of the interlaced transport, so this input must be High
in these cases. This input must be valid during the entire
HANC interval. This input is ignored if tx_insert_vpid is Low.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 45

tx_ds1a_out Out 10

This is the link A data stream 1 output. The data stream
output on this port comes from the ST 352 packet insertion
module [Ref 6]. If the application needs to insert ancillary
data packets, they should be inserted into the data stream
output on this port so that ST 352 packets have already
been inserted into the data streams. The resulting data
stream after ancillary data insertion by the application
should then be supplied to the tx_ds1a_in port.
The data on this port depends on the SDI mode:
• SD-SDI: Interleaved Y/C data stream
• HD-SDI: Y component
• 3G-SDI level A: Data stream 1
• Dual link HD-SDI or 3G-SDI level B-DL: Data stream 1 of

link A
• 3G-SDI level B-DS: Y component of HD-SDI signal 1

tx_ds2a_out Out 10

This is the link A data stream 2 output. The data stream
output on this port comes from the ST 352 packet insertion
module [Ref 6]. If the application needs to insert ancillary
data packets, they should be inserted into the data stream
output on this port so that ST 352 packets have already
been inserted into the data streams. The resulting data
stream after ancillary data insertion by the application
should then be supplied to the tx_ds2a_in port.
The data on this port depends on the SDI mode:
• HD-SDI: Interleaved CB/CR component
• Dual link HD-SDI or 3G-SDI level B-DL: Data stream 2 of

link A
• 3G-SDI level B-DS: Interleaved CB/CR component data

stream of HD-SDI signal 1

tx_ds1b_out Out 10

This is the link B data stream 1 output. The data stream
output on this port comes from the ST 352 packet insertion
module [Ref 6]. If the application needs to insert ancillary
data packets, they should be inserted into the data stream
output on this port so that ST 352 packets have already
been inserted into the data streams. The resulting data
stream after ancillary data insertion by the application
should then be supplied to the tx_ds1b_in port.
The data on this port depends on the SDI mode:
• Dual link HD-SDI or 3G-SDI level B-DL: Data stream 1 of

link B
• 3G-SDI level B-DS: Y component of HD-SDI signal 2
For other SDI modes, this output port is unused.

tx_ds2b_out Out 10

This is the link B data stream 2 output. The data stream
output on this port comes from the ST 352 packet insertion
module [Ref 6]. If the application needs to insert ancillary
data packets, they should be inserted into the data stream
output on this port so that ST 352 packets have already
been inserted into the data streams. The resulting data
stream after ancillary data insertion by the application
should then be supplied to the tx_ds2b_in port.
• Dual link HD-SDI or 3G-SDI level B carrying dual link

HD-SDI: Data stream 2 of link B
• 3G-SDI level B carrying dual HD-SDI signals:

Interleaved CB/CR component of HD-SDI signal 2
For other SDI modes, this input port is unused.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 46

tx_use_dsin In 1

This input controls the source of the data streams sent by
the SDI TX. When this input is High, the sources of the
transmitted data streams are the tx_ds1a_in, tx_ds2a_in,
tx_ds1b_in, and tx_ds2b_in input ports. When this input is
Low, the source of the transmitted data streams are internal
to the core, coming directly from the ST 352 packet inserter
[Ref 6]. When the application needs to do ancillary data
insertion, the tx_use_dsin port is set High to allow the
application to modify the data streams and provide the
modified data streams to the transmitter on the tx_dsxx_in
ports. When no ancillary data insertion is required, the
tx_use_dsin input is set Low and the tx_dsxx_in ports are
ignored.

tx_ds1a_in In 10

This is the link A data stream 1 input. This port is ignored if
tx_use_dsin is Low. If tx_use_dsin is High, this port must
supply a data stream to be transmitted. The data stream
supplied input to this port depends on the SDI mode:
• SD-SDI: Interleaved Y/C data stream
• HD-SDI: Y component
• 3G-SDI level A: Data stream 1
• Dual link HD-SDI or 3G-SDI level B-DL: Data stream 1 of

link A
• 3G-SDI level B-DS: Y component of HD-SDI signal 1

tx_ds2a_in In 10

This is the link A data stream 2 input. This port is ignored if
tx_use_dsin is Low. If tx_use_dsin is High, this port must
supply a data stream to be transmitted. The data stream
input to this port depends on the SDI mode:
• HD-SDI: Interleaved CB/CR component
• Dual link HD-SDI or 3G-SDI level B-DL: Data stream 2 of

link A
3G-SDI level B-DS: Interleaved CB/CR component data
stream of HD-SDI signal 1

tx_ds1b_in In 10

This is the link B data stream 1 input. This port is ignored if
tx_use_dsin is Low. If tx_use_dsin is High, this port must
supply a data stream to be transmitted. The data stream
input to this port depends on the SDI mode:
• Dual link HD-SDI or 3G-SDI level B-DL: Data stream 1 of

link B
• 3G-SDI level B-DS: Y component of HD-SDI signal 2
For other SDI modes, this input port is unused.

tx_ds2b_in In 10

This is the link B data stream 2 input. This port is ignored if
tx_use_dsin is Low. If tx_use_dsin is High, this port must
supply a data stream to be transmitted. The data stream
input to this port depends on the SDI mode:
• Dual link HD-SDI or 3G-SDI level B carrying dual link

HD-SDI: Data stream 2 of link B
• 3G-SDI level B carrying dual HD-SDI signals:

Interleaved CB/CR component of HD-SDI signal 2
For other SDI modes, this input port is unused.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 47

Table 2 lists the parameters that can be applied to the SDI wrapper.

tx_ce_align_err Out 1

This output indicates problems with the 5/6/5/6 clock cycle
cadence on the tx_ce clock enable inputs in SD-SDI mode.
In SD-SDI mode, the tx_ce signals must follow a regular
5/6/5/6 clock cycle cadence. If they do not, the SD-SDI bit
stream is formed incorrectly. The tx_ce_align_err goes High
if the cadence is incorrect. This port is only valid in SD-SDI
mode.

tx_slew Out 1
This output is designed to control the slew rate signal of the
external SDI cable equalizer. It is High when the TX mode
is SD-SDI. Otherwise it is Low.

tx_change_done Out 1

This output is Low during those periods when the GTX TX
is being initialized, reset, or when it is being dynamically
switched between SDI modes. If the initialization, reset, or
dynamic change sequence completes successfully, the
tx_change_done output is asserted High to indicate
successful completion.
This output is synchronous with the drpclk.

tx_change_fail Out 1

Under normal conditions, this output is always Low. It only
goes High if the control module is unsuccessful in
completing a GTX TX initialization, reset, or SDI mode
change sequence. If such a failure occurs, the
tx_change_fail port is asserted High and the
tx_change_fail_code port indicates the nature of the failure.
If a failure occurs, the GTX TX must be reset using the
tx_gtx_full_reset input.
This output is synchronous with the drpclk.

tx_change_fail_code In 3

When the tx_change_fail port is High, this port indicates the
nature of the sequence failure. See Table 9 for encoding of
this port.
This output is synchronous with the drpclk.

Table 1: SDI Wrapper Port List (Cont’d)

Port Name I/O Width Description

Table 2: SDI Wrapper Parameter List

Name Type Default Description

FXDCLK_FREQ Integer 27000000

This parameter specifies the frequency, in Hz, of the fixed frequency
clock on the clk port of the SDI wrapper. The nominal frequency of
this clock must be correctly specified so that the portions of the
control module that depend on this clock for timing purposes function
correctly.

DRPCLK_PERIOD Integer 37

This parameter specifies the period, (in ns) of the clock that is driving
the SDI wrapper's drpclk port. Round all non-integer values down to
the nearest integer. The nominal period of this clock must be
specified correctly so that the control module can generate delays in
the GTX initialization sequences based on the period of this clock.

PLLLOCK_TIMEOUT_PERIOD Integer 2000000

This parameter specifies the duration of the PLL lock timeout period
in ns. If, after being reset, a PLL does not assert its lock signal within
this period of time, the control module times out and retries the PLL
reset sequence. The default value is equivalent to 2 ms.

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 48

Video Transport Detector Ports

The RX section of the SDI core has an SDI transport format detector. This function examines
the timing of the video transport in the SDI data streams and determines which video format is
being received. The operation of this function is not dependent on the presence of ST 352
payload ID packets [Ref 6]. This function determines the transport format, not the picture
format. Usually these are the same, but not always. For example, when 1080p 50 Hz video is
transported on 3G-SDI level B-DL, the video transport is actually 1080i 50 Hz — the transport
is interlaced, but the picture is progressive.

The rx_t_family output port provides a 4-bit code indicating the video format family of the
transport in the SDI signal. The encoding of this output port is shown in Table 3. The transport
detection unit also determines whether the SDI transport is interlaced or progressive and
reports this on the rx_t_scan output port.

RESET_TIMEOUT_PERIOD Integer 500000

This parameter specifies the duration of the GTX transceiver reset
timeout period in ns. If, after being reset, the GTX transceiver does
not assert its rxresetdone or txresetdone within this period of time,
the control module times out and retries the GTX transceiver reset
sequence. The default value is equivalent to 500 μs.

TIMEOUT_CNTR_BITWIDTH Integer 16

This parameter specifies the width in bits of the timeout counter used
during the PLL and GTX transceiver reset sequences. The width of
this counter must be sufficient to count up to the maximum timeout
periods specified by PLLLOCK_TIMEOUT_PERIOD and
RESET_TIMEOUT_PERIOD based on the period specified by
DRPCLK_PERIOD. For example, the default value of 16 bits is
sufficient for timeout periods of up to about 2.4 ms with the default
DRPCLK_PERIOD of 37 which is larger than the default values of
both PLLOCK_TIMEOUT_PERIOD and
RESET_TIMEOUT_PERIOD.

RETRY_CNTR_BITWIDTH Integer 8

This parameter specifies the width in bits of the retry counter. The
retry counter counts the number of retry cycles attempted to
complete a GTX RX or TX initialization or reset sequence or a
dynamic change of the GTX transceiver txrate or txsysclksel ports. If
the retry counter reaches its maximum value of all ones, the
sequence is considered to have failed. Thus, this parameter specifies
the number of retries that are permitted before the control module
gives up on the sequence. The default value of 8 allows for 255 retry
cycles.

CPLL_REFCLK_PORT String “REFCLK1”
This parameter specifies which reference clock input should be used
by the CPLL. Legal values are: “REFCLK0”, “REFCLK1”,
“GREFCLK”, “NORTH0”, “NORTH1”, SOUTH0”, and “SOUTH1”.

TX_CLK0_QPLL Integer 1

If the QPLL is the serial clock source to the GTX TX when the tx_m
port is Low, this parameter must be assigned a value of 1.
If the CPLL is the serial clock source to the GTX TX when the tx_m
port is Low, this parameter must be assigned a value of 0.

TX_CLK0_QPLL Integer 0

If the QPLL is the serial clock source to the GTX TX when the tx_m
port is High, this parameter must be assigned a value of 1.
If the CPLL is the serial clock source to the GTX TX when the tx_m
port is High, this parameter must be assigned a value of 0.

GT_SIM_GTRESET_SPEEDUP String “FALSE”

This parameter is passed directly to the identically named parameter
of the GTX wrapper. A value of “TRUE” causes a reduction in
simulation time by not simulating the full reset sequences. A value of
“FALSE” causes the full reset sequences to be simulated. This
parameter has no effect on operation in hardware, only in simulation.

Table 2: SDI Wrapper Parameter List (Cont’d)

Name Type Default Description

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 49

The transport detector also determines the frame rate of the transport in the SDI signal. The
rx_t_rate port indicates the frame rate of the transport signal as shown in Table 4. The encoding
of the frame rate matches the encoding used in the picture rate field of SMPTE ST 352 video
payload ID packets [Ref 6]. However, the rx_t_rate shows the transport frame rate, not the
picture rate. Also, the rx_t_rate port value is always the frame rate, even for interlaced
transports.

It can take the transport format detector up to two video frames to identify the transport format
after the SDI RX locks to the SDI signal.

SD-SDI RX EDH Processor

The SDI receiver can, optionally, include an EDH processor for detecting receiver errors in
SD-SDI mode. The EDH processor does not update EDH packets in the SD-SDI data stream.
It just reports any errors found and also captures the error flags from each EDH packet.

The EDH processor has a 16-bit counter that counts the number of fields with errors. The
current error count is output on the rx_edh_errcnt port of the SDI wrapper. The counter is
cleared by asserted rx_edh_clr_errcnt High. The user can specify which types of errors are
counted by this counter using the rx_edh_errcnt_en port. This port has 16 unary bits that
enable and disable 16 different error types. Any bit that is High enables the corresponding error
to be counted by the error counter. Any bit that is Low disables the corresponding error. If

Table 3: rx_t_family Encoding

rx_t_family Transport Video Format Active Pixels

0000 SMPTE ST 274 [Ref 8] 1920 x 1080

0001 SMPTE ST 296 [Ref 9] 1280 x 720

0010 SMPTE 2048-2 [Ref 10] 2048 x 1080

0011 SMPTE 295 [Ref 11] 1920 x 1080

1000 NTSC 720 x 486

1001 PAL 720 x 576

1111 Unknown

Others Reserved

Table 4: rx_t_rate Encoding

rx_t_rate Frame Rate

0000 None

0010 23.98 Hz

0011 24 Hz

0100 47.95 Hz

0101 25 Hz

0110 29.97 Hz

0111 30 Hz

1000 48 Hz

1001 50 Hz

1010 59.94 Hz

1011 60 Hz

Others Reserved

http://www.xilinx.com

Implementing an SDI Interface in a Kintex-7 FPGA

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 50

multiple errors occur in the same field, the EDH error counter only increments by one. Table 5
shows the encoding of the bits on the rx_edh_errcnt_en port.

The ANC error conditions are associated with errors in the ancillary data packets. The FF error
conditions are associated with errors detected by the full field CRC. The AP error conditions are
associated with errors detected by the active picture CRC. The EDH packet checksum error
indicates a checksum error was found within the EDH packet itself.

Each ANC, FF, and AP error condition set has five individual error flags. All flags are asserted
High to indicate an error condition. For a complete description of the EDH, EDA, IDH, IDA, and
UES error flags in the EDH packet, see the SMPTE Error Detection Checkwords and Status
Flags for Use in Bit-Serial Digital Interfaces for Television document (RP 165) [Ref 12].

• EDH error: This error condition occurs when the EDH processor detects a CRC error
(checksum error for ANC packets) in a field. For example, the FF EDH error flag indicates
an error was detected by the full field CRC.

• EDA error: This error condition occurs when the EDA or EDH flags of the received EDH
packet are asserted.

• IDH error: This error condition is not supported by the RX EDH processor.

• IDA error: This error condition occurs when the IDA or IDH flags of the received EDH
packet are asserted.

• UES error: This error condition occurs when the UES flag in the received EDH packet is
asserted.

Table 5: rx_edh_errcnt_en Bits

Bit Number Error

0 ANC EDH error

1 ANC EDA error

2 ANC IDH error

3 ANC IDA error

4 ANC UES error

5 FF EDH error

6 FF EDA error

7 FF IDH error

8 FF IDA error

9 FF UES error

10 AP EDH error

11 AP EDA error

12 AP IDH error

13 AP IDA error

14 AP UES error

15 EDH packet checksum error

http://www.xilinx.com

GTX Initialization and Reset and Change Sequence Failure Codes

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 51

In addition to being counted, if enabled, by the error counter, any detected ANC EDH, AP EDH,
and FF EDH errors are also indicated by assertion of the rx_edh_anc, rx_edh_ap, and
rx_edh_ff ports, respectively. Thus, the rx_edh_anc port is asserted whenever a checksum
error is detected in an ancillary data packet. The rx_edh_ap port is asserted when the
calculated active picture CRC does not match the AP CRC in the EDH packet. And the
rx_edh_ff port is asserted when the calculated full field CRC does not match the FF CRC in the
EDH packet.

The RX EDH processor also outputs the ANC, AP, and FF error flags from the EDH packet on
the rx_edh_anc_flags, rx_edh_ap_flags, and rx_edh_ff_flags ports, respectively. These output
ports are exact copies of the flags found in the last received EDH packet. Thus, they differ from
the detected errors used to increment the error counter and output on the rx_edh_anc,
rx_edh_ap, and rx_edh_ff ports. For example, the EDH flag (bit 0) of the rx_edh_ap_flags port
indicates that the AP EDH flag was set in the last received EDH packet. However, the
rx_edh_ap port indicates that the active picture CRC calculated locally by the EDH processor
does not match the AP CRC value in the EDH packet. The rx_edh_anc_flags,
rx_edh_ap_flags, and rx_edh_ff_flags ports are each five bits wide. The encoding of all three
ports are identical and is shown in Table 6.

The RX EDH processor also produces four error flags related to the format and contents of the
EDH packet itself. These error flags are output on the rx_edh_packet_flags port. The encoding
of this port is shown in Table 7.

GTX
Initialization
and Reset and
Change
Sequence
Failure Codes

If a failure occurs during a GTX RX initialization or reset sequence or during a dynamic change
of the RX SDI mode, the rx_change_fail port will be asserted high and a failure code will be
output on the rx_change_fail_code port. A sequence only ends in failure after it has been
retried the maximum number of times allowed by the retry counter. The maximum number of
retries is controlled by the width of the retry counter as specified by the
RETRY_CNTR_BITWIDTH parameter. The number of retries attempted is:

Retries = 2RETRY_CNTR_BITWIDTH – 1 Equation 1

Table 6: Encoding of rx_edh_anc_flags, rx_edh_ap_flags, and rx_edh_ff_flags Ports

Bit Number Flag

0 EDH

1 EDA

2 IDH

3 IDA

4 UES

Table 7: Encoding of rx_edh_packet_flags Port

Bit Number Flag

0 EDH packet is missing

1 Parity error in user data words of EDH packet

2 Checksum error in EDH packet

3 Format error in EDH packet, such as invalid data count

http://www.xilinx.com

GTX Initialization and Reset and Change Sequence Failure Codes

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 52

The encoding of the rx_change_fail port is shown in Table 8.

Any sequence failure that results in the rx_change_fail port going High causes the GTX RX
control logic in the SDI wrapper to stop in a failure condition. The GTX RX might still receive an
SDI signal, but does not dynamically switch between SDI modes as it normally would. A full
reset of the GTX RX, by asserting rx_gtx_full_reset High, is required to attempt to resolve the
failed condition. Repeated failures most likely indicate an issue with the design of the
application.

If a failure occurs during a GTX TX initialization or reset sequence or during a dynamic change
of the GTX transceiver txrate or txsysclksel ports, the tx_change_fail port is asserted High and
a failure code is output on the rx_change_fail port. As with the RX side, sequences only fail
after the maximum number of retries has been attempted. The encoding of the
tx_change_fail_code port is shown in Table 9.

Table 8: rx_change_fail_code Port Encoding

Code Description

0
This code indicates that the PLL failed to lock to its reference clock within the allowed
time or the GTX transceiver failed to assert rxresetdone within the allowed period of time
following a gtrxreset.

1

This code indicates that the DRP arbiter was not able to grant control of the DRP to the
gtrxreset state machine in the GTX wrapper to do a gtrxreset sequence because the
DRP was constantly busy. Such a failure should only occur if there is an issue with the
x7gtx_sdi_drp_control module which prevents it from giving up the DRP.

2 This failure code is reserved.

3 This failure code is reserved.

4 This failure code is reserved.

5

When a change of the RX SDI mode occurs that requires changing the RXCDR_CFG
attribute in the GTX transceiver, the x7gtx_sdi_drp_control module attempts to do a
series of DRP write cycles to change that attribute. If any of these write cycles is not
acknowledged by the GTX transceiver by asserting the drprdy port within the given
amount of time, the entire sequence is aborted and retried up to the maximum allowed
number of retries. If the RXCDR_CFG attribute cannot be modified correctly after the
maximum number of retires, this failure code is asserted.

6 This failure code is reserved.

7

When the RX SDI mode changes to a mode other than 3G-SDI but rxrate does not need
to change (e.g., a change from SD-SDI mode to 3G-SDI mode), the
x7gtx_sdi_drp_control module requests a gtrxreset to reset the CDR. If the GTX
wrapper does not respond to this gtrxreset request within the allowed amount of time,
including retries, this failure code is asserted.

Table 9: tx_change_fail_code Port Encoding

Code Description

0 This failure code is reserved.

1
During a full reset sequence or the GTX initialization sequence, this failure code
indicates that the PLL providing the serial clock to the GTX TX failed to assert its plllock
signal within the given amount of time, including retries, after being reset.

2

During the GTX initialization sequence, a GTX full reset sequence, or a gttxreset
sequence requested by the application, this failure code indicates that the GTX
transceiver failed to negate its txresetdone signal within the given amount of time,
including retries, after assertion of gttxreset. This indicates a failure of the GTX
transceiver to respond to the assertion of gttxreset.

http://www.xilinx.com

Example SDI Demonstrations

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 53

SDI Timing Constraints

For the SDI wrapper and the SDI core, only the periods of the clocks need to be constrained.
These are the clocks applied to the clk and drpclk ports of the SDI wrapper and the tx_outclk
and rx_outclk signals inside the SDI wrapper.

The tx_outclk and rx_outclk clocks are usually constrained to 148.5 MHz, sometimes rounded
up to 150 MHz.

Vivado tools consider all clocks to be related, unless told otherwise. The various clocks of the
SDI wrapper are generally unrelated, so a constraint is required to specify that these clocks are
not related.

See the timing constraints files of the example SDI demonstration provided with this application
note for examples of setting these constraints.

Example SDI
Demonstrations

Two example SDI demonstration applications are included with this app note. Verilog source
code for both demos is provided. And pre-generated FPGA configuration files are also provided
for both demonstrations that can be loaded onto a Xilinx Kintex-7 FPGA KC705 evaluation
board. These demonstrations require an inrevium TB-FMCH-3GSDI2A FMC, which provides
the SDI cable drivers and SDI cable equalizers connected to the HPC FMC connector of the
KC705 board. The inrevium FMC also provides SDI-specific clock sources which are used as
reference clocks for the GTX transceivers.

Quad SDI Demonstration

This demonstration application includes four SDI RX interfaces and four SDI TX interfaces that
are all independent.

Each SDI TX is driven by a video pattern generator. The SDI mode, video format, and video
pattern of each SDI TX can independently be selected using VIO windows in the
ChipScope™ Pro analyzer tool.

The status of each SDI RX can be monitored using a VIO window in the ChipScope Pro
analyzer. And the video data received by each SDI RX can be captured and viewed using an
ILA window in the ChipScope Pro analyzer.

3

During the GTX initialization sequence, a GTX full reset sequence, or a gttxreset
sequence requested by the application, this failure code indicates that the GTX
transceiver failed to assert its txresetdone signal within the given amount of time,
including retries, after a gttxreset.

4
This failure code indicates that the GTX transceiver failed to indicate successful
completion of a txrate change by asserting its txratedone output within the allowed
amount of time, including retries.

5

When the application requests a dynamic change of txsysclksel by changing the tx_m
input of the SDI wrapper, gttxreset is asserted prior to the change of txsysclksel. If the
GTX transceiver fails to negate its txresetdone output in response to the assertion of
gttxreset within the allowed amount of time, including retries, the txsysclksel change
sequence fails with this failure code.

6

During a dynamic change of txsysclksel, gttxreset is asserted. At the end of the
sequence, gttxreset is negated. If the GTX transceiver fails to assert the txresetdone
output within the allowed amount of time, including retries, after gttxreset is negated, the
txsysclksel change sequence fails with this failure code.

7 This failure code is reserved.

Table 9: tx_change_fail_code Port Encoding (Cont’d)

Code Description

http://www.xilinx.com

Example SDI Demonstrations

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 54

The inrevium SDI FMC has six connectors for the SDI interfaces. The connectors labeled
CH0-RX and CH0-TX are separate connectors for GTX0 in Quad 118 of the Kintex-7 FPGA.
The CH1-RX and CH1-TX connectors are separate connectors for GTX1 in the same Quad.
Because both of these transceivers have separate connectors for their RX and TX sides, they
can both receive and transmit at the same time. The other two transceivers in Quad 118 each
only have a single connector on the inrevium SDI FMC. These two connectors, labeled CH2 (for
GTX2) and CH3 (for GTX3), are bidirectional. They can each be configured to receive or
transmit. The demonstration has a control for each of them, available in a VIO window of the
ChipScope Pro analyzer, to specify whether they are configured for receive or transmit. Thus, it
is possible to run the demonstration with four SDI receivers or four SDI transmitters, but not all
at the same time. You can configure it for four SDI receivers and two SDI transmitters, two SDI
receivers and four SDI transmitters, or three SDI receivers and three SDI transmitters. This
selection can be changed dynamically using ChipScope Pro analyzer.

Figure 20 is a block diagram of the demonstration, showing just one of the SDI channels. All
four SDI channels are identical with the exception noted above that channels 2 and 3 have just
a single SDI connector and a bidirectional SDI physical interface.

The inrevium SDI FMC provides the 148.5 MHz and 148.5/1.001 MHz reference clocks for the
GTX transcievers.

X-Ref Target - Figure 20

Figure 20: Quad SDI Block Diagram

http://www.xilinx.com

Example SDI Demonstrations

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 55

To make it easier to replicate the SDI interface four times in this demonstration, the SDI
wrapper, video pattern generators, TX clock enable generator, ChipScope analyzer VIO and
ILA modules, and other miscellaneous logic are contained in a module called k7_sdi_rxtx. This
module is instanced four times in the top level module of the design.

The following are required to run the Quad SDI demonstration:

• Xilinx Kintex-7 FPGA KC705 Evaluation Kit

• inrevium TB-FMCH-3GSDI2A SDI FPGA mezzanine card (FMC)

• DIN 1.0/2.3 to BNC converter cables (usually supplied with the TB-FMCH-3GSDI2A)

• SDI signal source

• SDI signal sink (waveform monitor or other device to view signal from SDI transmitters)

• PC with ChipScope Pro analyzer installed

The inrevium SDI FMC must be connected to the HPC FMC connector on the KC705 board as
shown in Figure 21.

ChipScope Pro analyzer is required to run this demonstration. It is used to control the SDI
transmitters and to look at the status and received data from the SDI receivers. The KC705
board must be connected to a PC with ChipScope Pro analyzer installed by the USB JTAG
cable provided with the KC705 board.

The file called kc705_sdi_demo.bit provided with this application note must be loaded into
the Kintex-7 FPGA on the KC705 board using ChipScope Pro analyzer. After the BIT file is
loaded into the FPGA, the kc705_sdi_demo.cpj ChipScope analyzer project file must be
opened in ChipScope Pro analyzer. When the project is opened, it looks like Figure 22. There
are eight VIO windows, one for each RX and TX in the application. Not visible in Figure 22 are
four ILA waveform windows, one for each receiver in the demonstration.

X-Ref Target - Figure 21

Figure 21: KC705 Board with TB-FMCH-3GSDI2A Board Connected

http://www.xilinx.com

Example SDI Demonstrations

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 56

To observe the signal being generated by an SDI transmitter, an SDI waveform monitor or other
SDI display device must be connected to the output of the SDI TX. The SDI connectors on the
inrevium SDI FMC are not standard BNC cables, so adapter cables are required to go from
these DIN 1.0/2.3 connectors to regular BNC connectors.

Each of the four transmitters in the demonstration has a VIO control window like the one shown
in Figure 23.

The first three items at the top of the TX VIO window indicate the status of the last GTX TX
initialization or dynamic change sequence. If the last sequence completed normally, the
Change Done indicator is green. If the last sequence failed, the Change Fail indicator is red and
the Change Failure Code indicates the cause of the failure as shown in Table 9.

At the bottom of the TX VIO window are two buttons that reset the GTX TX. The TX GTX Full
Reset button resets both the CPLL and the GTX TX unit. The TX GTX Reset button resets just
the GTX TX unit and not the CPLL.

X-Ref Target - Figure 22

Figure 22: ChipScope Pro Analyzer with Quad SDI Project Opened

http://www.xilinx.com

Example SDI Demonstrations

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 57

The TX Bit Rate toggle button, TX Video Format section field, and the TX SDI Mode selection
field work together to set the format of the SDI signal generated by the SDI transmitter as
shown in Table 10.

The TX Video Pattern value selects the video test pattern generated by the video pattern
generator driving the SDI TX. In HD-SDI and 3G-SDI mode, three test patterns are available:

• 0 = SMPTE RP 219 color bars

• 1 and 3 = SDI pathological checkfield

• 2 = 75% color bars

In SD-SDI mode, two test patterns are available:

• 0 and 2 = SMPTE EG 1 color bars

• 1 and 3 = SDI pathological checkfield

X-Ref Target - Figure 23

Figure 23: Quad SDI Demonstration TX Control Window

Table 10: Quad SDI Demonstration TX Video Format Selection

TX Video
Format

HD-SDI (SDI Mode = 0) 3G-SDI (SDI Mode = 2) SD-SDI
(SDI Mode = 1)TX Bit Rate = 0 TX Bit Rate = 1 TX Bit Rate = 0 TX Bit Rate = 1

0 720p 50 Hz Not Valid Not Valid Not Valid NTSC

1 1080pSF 24 Hz 1080pSF 23.98 Hz Not Valid Not Valid PAL

2 1080i 60 Hz 1080i 59.94 Hz Not Valid Not Valid NTSC

3 1080i 50 Hz Not Valid Not Valid Not Valid PAL

4 1080p 30 Hz 1080p 29.97 Hz 1080p 60 Hz 1080p 59.94 Hz NTSC

5 1080p 25 Hz Not Valid 1080p 50 Hz Not Valid PAL

6 1080p 24 Hz 1080p 23.98 Hz Not Valid Not Valid NTSC

7 720p 60 Hz 720p 59.94 Hz Not Valid Not Valid PAL

http://www.xilinx.com

Example SDI Demonstrations

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 58

TX2 and TX3 are connected to their respective connectors through bidirectional SDI interfaces.
The VIO window for these two transmitters have an extra toggle button labeled TX Enable Out.
When the TX Enable Out button of these transmitters is 0, the transmitter is disabled and the
channel is running in receive mode. When the TX Enable Out button is 1, the transmitter is
enabled. If the transmitter is enabled, the receiver of the same channel is still active and it
receives the SDI signal being transmitted by the transmitter. Note, however, that the SDI cable
driver automatically is powered down if it does not detect a properly terminated cable attached
to the connector. If the SDI cable driver is powered down, the SDI receiver is not able to receive
the signal from the transmitter because this loopback happens at the output of the SDI cable
driver.

TX0 and TX1 have connectors that are separate from the receivers of those two channels.
Thus, the TX VIO control windows for TX0 and TX1 do not have the TX Enable Out buttons.

The SDI receivers each have a VIO window to monitor the status of the receiver and an ILA
window through which the actual video data received by the SDI RX and captured by the
ChipScope Pro analyzer ILA can be viewed. Figure 24 shows the VIO window for one of the
receivers.

The RX Locked Indicator is green when the SDI RX is locked to the incoming SDI signal, grey
when it is not locked.

The RX SDI Signal Type shows the type of SDI signal being received: SD-SDI, HD-SDI, 3G-SDI
level A, or 3G-SDI level B. This field does not distinguish between 3G-SDI levels B-DL and
B-DS.

The RX Bit Rate shows the bit rate of the SDI signal being received.

The SDI Transport Video Format provides information about the video transport that has been
detected in the SDI signal. The SDI Transport Frame Rate is the frame rate of the video
transport that has been detected in the SDI signal. Both of these refer to the transport structure,
not necessarily the picture format. For example, if the signal is 1080p 50 Hz carried on a
3G-SDI level B-DL interface, the transport would be detected and reported as 1080i 25 Hz
(frame rate).

The ST 352 Payload ID Data Bytes are the four data bytes of the ST 352 payload ID packet
[Ref 6]. They are shown with byte 1 on the left and byte 3 on the right. They are only valid when
the ST 352 Payload Packet Valid indicator is green.

The RX Error Indicator is red if any CRC or EDH error has been detected, grey if no errors have
been detected. After an error has been detected, this indicator stays red until it is manually
reset by clicking the RX Error Clear button. The RX Error Count is an integer count of the
number of CRC (HD-SDI and 3G-SDI modes) or EDH errors (SD-SDI mode only) received
since the counter was last cleared. The error counter is manually cleared by clicking the RX
Error Clear button. The error counter is also cleared automatically when the incoming SDI
signal changes bit rates and the SDI RX has to re-lock to the signal. However, the error counter
is automatically cleared early in the process of locking to the new SDI signal, thus once the SDI
RX has fully locked to the new SDI signal, the error count typically is not zero.

The RX Change Done indicator is green under normal operating conditions. It is gray if the RX
is currently doing a dynamic change operation such as a reset or SDI mode change. The RX
Change Fail indicator is gray under normal conditions and is red if an error has occurred during
a dynamic change operation such as a reset or SDI mode change. If the RX Change Fail
indicator is red, the cause of the failure is indicated by the RX Change Fail Code value. See
Table 8 for descriptions of the failure codes.

The RX GTX Reset button resets the RX section of the GTX.

http://www.xilinx.com

Example SDI Demonstrations

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 59

Figure 25 illustrates how to use the ChipScope Pro analyzer ILA to view the data being
received by an SDI receiver. Each receiver has an ILA connected to its outputs. To use one of
these ILAs, its trigger setup and waveform windows must be brought to the foreground in the
ChipScope Pro analyzer window. One way to do that is to click the Trigger Setup and
Waveform items under the appropriate UNIT in the Project panel in the upper left as shown in
Figure 25. UNIT 3 is the ILA for RX0, UNIT 6 is the ILA for RX1, UNIT 9 is the ILA for RX2, and
UNIT 12 is the ILA for RX3.

The Trigger Setup window can be used to change the trigger point and storage qualification.
There are two match units and typically match unit M0 is used to trigger the ILA capture and
match unit M1 is used to qualify the data storage, usually when the clock enable is High so that,
in SD-SDI mode, only valid data words are captured.

With either the Trigger Setup window or the Waveform window for the desired receiver
selected, click the triangular play button as shown in Figure 26 to initiate a capture by the ILA.
The capture buffer is large enough to capture multiple lines of video.

X-Ref Target - Figure 24

Figure 24: Quad SDI Demonstration RX Status Window

http://www.xilinx.com

Example SDI Demonstrations

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 60

SDI Pass-Through Demonstration

The second SDI demonstration has one SDI RX and one SDI TX connected together in a
pass-through configuration such that the TX always retransmits the data received by the RX.
Figure 26 is a block diagram of this demonstration.

The QPLL is locked to a 148.5 MHz reference clock and provides the serial clock to the GTX
RX unit. The data from the GTX RX goes through the SDI RX datapath and then into an
asynchronous FIFO. The FIFO moves the data from RX clock domain (rx_usrclk) to the TX
clock domain (tx_usrclk). In HD-SDI and 3G-SDI modes the recovered clock from the GTX RX
rxoutclk is sent to a Si5324 digital PLL for jitter reduction and then used as the reference clock
to the CPLL. In SD-SDI mode, rxoutclk is not a recovered clock and cannot be used to generate
the TX reference clock. Instead, the 27 MHz SD-SDI RX clock enable (rx_ce_sd) is sent to the
Si5324 which multiplies it to 148.5 MHz while also filtering the jitter. The CPLL is locked to the
clock from the Si5324 and provides the serial clock to the GTX TX. Data is read from the
asynchronous FIFO in the TX clock domain and enters the SDI TX datapath. The resulting SDI
data from the SDI TX datapath goes into the GTX TX for serialization.

X-Ref Target - Figure 25

Figure 25: Using the ChipScope ILA to View RX Data in the Quad SDI Demonstration

http://www.xilinx.com

Example SDI Demonstrations

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 61

The following items are required to run the SDI pass-through demonstration:

• Xilinx Kintex-7 FPGA KC705 Evaluation Kit

• inrevium TB-FMCH-3GSDI2A SDI FPGA mezzanine card (FMC)

• DIN 1.0/2.3 to BNC converter cables

• SDI signal source

• SDI signal sink (waveform monitor or other device to view signal from SDI transmitters)

• (Optional) A PC with ChipScope Pro analyzer installed and connected to the KC705
board’s JTAG USB connector

The inrevium SDI FMC must be connected to the HPC FMC connector on the KC705 board as
shown in Figure 21. The only active SDI connectors on the inrevium board are CH0-RX and
CH0-TX. A SDI signal source must be connected to the CH0-RX connector. The SDI signal is
retransmitted on the CH0-TX connector.

The file called kc705_sdi_pass_demo.bit provided with this application note must be
loaded into the Kintex-7 FPGA on the KC705 board. After the BIT file is loaded into the FPGA,
the kc705_sdi_pass_demo.cpj ChipScope analyzer project file can be opened in
ChipScope Pro analyzer to observe the status of the SDI RX and to capture and observe data
received by the SDI RX as shown in Figure 27.

X-Ref Target - Figure 26

Figure 26: SDI Pass-Through Demonstration

http://www.xilinx.com

FPGA Resource Usage

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 62

The VIO window shows the status of the SDI RX. This window is identical to the RX status VIO
window in the Quad SDI demonstration shown in Figure 24. See the description of the fields
and controls for the window given in that section describing that demonstration. Note, however,
that the SDI pass-through demonstration only has a single RX status VIO window because
there is only one active SDI RX.

Likewise, there is a single ILA used to capture and observe the data from the SDI RX. It, too,
functions just like the SDI RX ILA in the Quad SDI demonstration.

The SDI pass-through demonstration can be run without ChipScope Pro analyzer. The
pass-through SDI interface is fully functional even when ChipScope Pro analyzer is not used to
observe the SDI RX.

FPGA Resource
Usage

Table 11 shows the FPGA resources required by an SDI interface with a Kintex-7 GTX
transceiver. The resource usage includes all the modules required to implement the interface,
including the SMPTE SD/HD/3G-SDI core and the SDI wrapper. Resource usage is shown for
various common configurations.

The results shown were achieved with Vivado Design Suite 2013.4.

The SDI receiver and transmitter interface designs do not use any MMCM clock managers. And
they do not require any block RAMs or DSP48E1 slices.

X-Ref Target - Figure 27

Figure 27: Pass-Through Demonstration ChipScope Analyzer Window

http://www.xilinx.com

Constraints

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 63

Typically, one global or regional clock is required for each SDI TX and for each SDI RX. In
addition, one fixed frequency global clock is required for timing purposes in the SDI wrapper.
This fixed frequency clock is usually also used as the GTX DRP clock. Only one such fixed
frequency global clock is required no matter how many SDI interfaces are implemented in the
FPGA.

Constraints Because of the use of 20-bit RX and TX datapaths to and from the GTX transceiver, the
maximum clock frequency used in these designs is 148.5 MHz. Meeting timing in the slowest
speed grade Kintex-7 devices is typically not a problem.

Example constraint files are supplied with the reference designs and can be used as examples
of the timing and placement constraints required for SDI interfaces. For timing, generally all that
is required are period constrains on the rxoutclk and txoutclk clocks from the GTX. These
constraints should specify the period of these clocks as 148.5 MHz. For placement, all that is
required is to constrain the GTX transceivers to their desired locations by constraining the
RXP/RXN and TXP/TXN pins or using the XY coordinates system to constrain the actual
location of the GTX transceiver itself. All GTX transceivers that are instanced in the same GTX
wrapper must be constrained to be in the same GTX Quad tile.

Glossary Table 12 lists a glossary of terms used in this application note.

Table 11: Kintex-7 GTX SDI Interface FPGA Resource Usage

Reference Design LUTs FFs

SDI RX with EDH processor and TX 3650 2955

SDI RX without EDH processor and TX 3077 2425

SDI RX with EDH processor 2300 1750

SDI RX without EDH processor 1725 1395

SDI TX 1445 1087

Table 12: Glossary

Term Definition

3G-SDI

Common name for SMPTE ST 424, the 3 Gb/s serial digital
interface [Ref 13]. 3G-SDI supports three mapping modes
defined in ST 425-1 called 3G-SDI level A, level B-DL, and level
B-DS. See Source Image Format and Ancillary Data Mapping
for the 3 Gb/s Serial Interface (ST 425-1) [Ref 14] for details
about these mapping modes.

Ancillary (ANC) data

Non-video data embedded in portions of the SDI data stream
not used for active picture data. One very common type of ANC
data is embedded audio. ANC data must be formatted into
ancillary data packets, as specified by SMPTE Television –
Ancillary Data Packet and Space Formatting (ST 291) [Ref 15].

Data stream
The actual data into and out of the SDI interface. The data
stream must be formatted according to the transport data
structure as it enters and exits the SDI interface.

EDH

The error detection and handling protocol for SD-SDI as
defined by SMPTE Error Detection Checkwords and Status
Flags for Use in Bit-Serial Digital Interfaces for Television
(RP 165) [Ref 12].

Embedded audio Generally refers to digital audio that is carried as ancillary data
in an SDI signal.

http://www.xilinx.com

Glossary

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 64

End of active video (EAV)

In SDI compatible data streams, the EAV is a sequence of four
words, unique in the data steam, marking the end of the active
portion of the line and start of the horizontal blanking interval.
Each video line is considered to begin with the first word of the
EAV.

HD-SDI Common name for the SMPTE 1.5 Gb/s Signal/Data Serial
Interface (ST 292-1) [Ref 16].

Interlaced

A video scanning system in which the video frame is divided
into two sequential fields. Field one consists of the odd lines
and field two consist of the even lines that are displayed
between the odd lines of field one. The two fields represent
different pictures displaced in time by one half of the frame time.

Link

If the picture’s bandwidth exceeds the capacity of the serial
digital interface, two or more serial digital interfaces can be
ganged together to increase the bandwidth to transport the
picture. Each separate serial digital interface of a multilink set is
called a link. SMPTE Dual Link 1.5 Gb/s Digital Interface for
1920 x 1080 and 2048 x 1080 Picture Formats (ST 372) [Ref 7]
defines how to transport some higher bandwidth video formats
on two HD-SDI links. Multilink 3G-SDI standards in the ST
425-x family are currently under development by SMPTE
[Ref 14]. The 3G-SDI level B-DL transport carries both links of
a dual link HD-SDI (ST 372) pair on one 3G-SDI interface. Each
of the two HD-SDI signals carried by 3G-SDI level B-DL is still
called a link.

Payload ID

Sometimes called the Video Payload ID (VPID), the payload ID
is an ancillary data packet defined by SMPTE Payload Identifier
Codes for Serial Digital Interfaces (ST 352) [Ref 6]. The four
data words of the ST 352 payload ID packet identify both the
nature of the video picture (video format, frame rate, scanning
structure, color space, and so on) and the type of SDI interface
used to transport that payload. In multilink interfaces, the
payload ID also contains bits that distinguish between the
individual links.

Progressive A non-interlaced video scanning system. All lines of the
progressive frame belong to the same picture.

Serial Digital Interface (SDI)

Originally referred to as SMPTE Television – SDTV Digital
Signal/Data – Serial Digital Interface (ST 259) [Ref 3], the
standard-definition serial digital interface. With the advent of
HD-SDI and 3G-SDI, ST 259 is now often called SD-SDI to
avoid confusion. This document uses the term SDI to
generically refer to SD-SDI, HD-SDI and 3G-SDI. When
referring specifically to ST 259, this document always uses the
term SD-SDI.

SD-SDI
Common name for SMTPE Television – SDTV Digital
Signal/Data – Serial Digital Interface (ST 259) [Ref 3], the
standard-definition serial digital interface.

SMPTE Society of Motion Picture and Television Engineers.

Start of active video (SAV)

In SDI-compatible data streams, the SAV is a sequence of four
words, unique in the data stream, marking the end of the
horizontal blanking interval and the start of the active video
portion of the line. The first active video sample of a line, usually
called sample 0, occurs immediately after the SAV.

Table 12: Glossary (Cont’d)

Term Definition

http://www.xilinx.com

Reference Design

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 65

Reference
Design

The reference design files for this application note can be downloaded from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=192180

Reference Design Matrix

The reference design matrix is shown in Table 13.

Synchronous switching (point,
interval, line)

SMPTE Definition of Vertical Switching Point for Synchronous
Video Switching (RP 168) [Ref 17] defines the point(s) in a
video frame where it is permissible to switch between
synchronous video sources. This is often called the
synchronous switching point, but is actually defined as an
interval, a portion of a line, rather than an exact point on a line.
The line that contains the synchronous switching interval is
sometimes called the synchronous switching line.

Transport
The data structure of an interface data stream or streams. The
transport data structure defines the EAV and SAV sequences
used to carry video timing information.

Timing reference signal (TRS) A generic term referring to both EAV and SAV sequences.

XYZ

The fourth word of each EAV and SAV is called the XYZ word.
This word carries the horizontal (H), vertical (V), and field (F)
bits that indicate the video timing. The XYZ word also contains
some protection bits that allow detection of errors in the XYZ
word.

Table 12: Glossary (Cont’d)

Term Definition

Table 13: Reference Design Matrix

Parameter Description

General

Developer name John Snow

Target devices All Kintex-7 FPGA devices

Source code provided Yes

Source code format Verilog

Design uses code/IP from existing Xilinx application note/reference
designs, the CORE Generator tool, or third party

Yes. IP cores from Vivado IP
catalog

Simulation

Functional simulation performed No

Timing simulation performed No

Test bench used for functional and timing simulations None

Test bench format N/A

Simulator software/version used N/A

SPICE/IBIS simulations N/A

Implementation

Synthesis software tools/version used Vivado synthesis

Implementation software tools/versions used Vivado Design Suite 2013.4

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=192180

Conclusion

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 66

The readme.txt file describes the directory structure of the files that come with the ZIP file.

Conclusion This document describes how to use the SMPTE SD/HD/3G-SDI core and the Kintex-7 GTX
transceivers to implement SDI interfaces compatible with the SMPTE SD-SDI, HD-SDI, and
3G-SDI standards. The Kintex-7 GTX device-specific control logic necessary to use the
transceivers in SDI applications is included with this application note. Also included are two
example SDI demonstration applications providing detailed examples of SDI implementations
in a Kintex-7 FPGA design.

References This section lists the references available from Xilinx (www.xilinx.com) or from the Society of
Motion Picture and Television Engineers (www.smpte.org).

1. 7 Series GTX/GTX Transceivers User Guide (UG476)

2. Dynamically Programmable DRU for High-Speed Serial I/O (XAPP875)

3. Television – SDTV Digital Signal/Data – Serial Digital Interface (SMPTE ST 259)

4. Television – 540 Mb/s Serial Digital Interface (SMPTE ST 344)

5. Society of Motion Picture and Television Engineers (SMPTE) SD/HD/3G-SDI Product
Guide (PG071)

6. Payload Identification Codes for Serial Digital Interfaces (SMPTE ST 352)

7. Dual Link 1.5 Gb/s Digital Interface for 1920 x 1080 and 2048 x 1080 Picture Formats
(ST 372)

8. Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital
Timing Reference Sequences for Multiple Picture Rates (SMPTE ST 274)

9. 1280 x 270 Progressive Image 4:2:2 and 4:4:4 Sample Structure -- Analog and Digital
Representations and Analog Interface (SMPTE ST 296)

10. 2048 x 1080 Digital Cinematography Production Image FS/709 Formatting for Serial Digital
Interface (SMPTE 2048-2)

11. Television –1920 x 1080 50-Hz - Scanning and Interface (SMPTE 295)

12. Error Detection Checkwords and Status Flags for Use in Bit-Serial Digital Interfaces for
Television (RP 165)

13. Television – 3 Gb/s Signal/Data Serial Interface (SMPTE ST 424)

14. Source Image Format and Ancillary Data Mapping for the 3 Gb/s Serial Interface
(ST 425-1)

15. Television – Ancillary Data Packet and Space Formatting (SMPTE ST 291)

16. 1.5 Gb/s Signal/Data Serial Interface (SMPTE ST 292-1)

17. Definition of Vertical Switching Point for Synchronous Video Switching (RP 168)

18. Kintex-7 FPGAs Data Sheet: DC and Switching Characteristics (DS182)

Static timing analysis performed Yes

Hardware Verification

Hardware verified Yes

Hardware platform used for verification KC705 and
TB-FMCH-3GSDI2A

Table 13: Reference Design Matrix (Cont’d)

Parameter Description

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf
www.smpte.org
www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_smpte_sdi;v=latest;d=pg071-v-smpte-sdi.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp875.pdf

Revision History

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 67

Revision
History

The following table shows the revision history for this document.

Date Version Description of Revisions

09/06/2012 1.0 Initial Xilinx release.

02/07/2013 1.1 The document was updated to support ISE® Design Suite 14.4 and
Vivado Design Suite 2012.4. Removed LPM-Manual as a possible GTX
RX EQ mode for SDI. LPM-Manual has been deprecated from the GTX
wizard. TED was changed to inrevium throughout.
In Table 1, the rx_crc_err_a port description changed. Figure 11, 7 Series
FGPAs Transceivers Wizard - Page 1 through Figure 15, 7 Series FPGAs
Transceivers Wizard - Page 5 were replaced. Board TB-FMCH-3GSDI2
changed to TB-FMCH-3GSDI2A. In Table 10 in the TX Video Format 4
row, in the 3G-SDI (SDI Mode = 2) / TX Bit Rate = 1 column, 1080p
59.97 Hz changed to 1080p 59.94 Hz,

07/14/2014 2.0 The document was updated to support Vivado Design Suite 2013.4 and
later. The GTX wrappers generated by the 7 Series FPGAs Transceivers
Wizard changed significantly from earlier versions of Vivado, requiring
extensive changes to the SDI wrapper and the SDI demo applications
supplied with this application note.
Changes to the GTX wrappers generated by the 7 Series FPGAs
Transceivers Wizard resulted in the following changes to the document:
The QPLL must now be instantiated separately from the transceivers. The
QPLL is instantiated in the new GTX common wrapper. References to the
GTX common wrapper were added throughout the document. The GTX
wrapper generated by the transceiver wizard now has all lowercase port
names, rather than all uppercase. GTX wrapper port names have been
changed to all lowercase throughout the document. GTX transceivers are
now instantiated individually rather than in groups and the document has
been modified to explain how this is done. Generating the GTX Wrapper
has been rewritten to be compatible with the extensive changes that have
occurred with the 7 Series FPGAs Transceivers Wizard.
The SDI wrapper now implements all required details of the GTX
initialization sequence including generating resets for the QPLL and
CPLLs. The GTX Transceiver Initialization Sequence, PLL Resets, GTX
TX Resets, and GTX RX Resets sections have been rewritten and a new
GTX PLL Usage Models for SDI Applications section has been added to
describe these changes. A new GTX Initialization and Reset and Change
Sequence Failure Codes section has been added to document the failure
codes that are now output by the SDI wrapper when errors occur during
GTX initialization, resets, and dynamic change sequences. These failure
codes are now visible in the ChipScope Pro analyzer VIO windows of the
demos as described in the Example SDI Demonstrations section.
The SDI Electrical Interface section was modified to add some information
about using GTX transceivers with new generation SDI cable equalizers
that default to 600 mV output swing. Table 1 has been updated with the
changes made to various ports on the SDI wrapper. Table 2 has been
updated due to changes made to the SDI wrapper parameters. Table 11
has been updated with the latest FPGA resource usage numbers for the
SMPTE SD/HD/3G-SDI core.

http://www.xilinx.com

Notice of Disclaimer

XAPP592 (v2.0) July 14, 2014 www.xilinx.com 68

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx
products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all
faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY,
INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR
FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,
including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct,
indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type
of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was
reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications.
You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain
products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale
which can be viewed at www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms
contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in
such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at
www.xilinx.com/legal.htm#tos.

http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos

	Implementing SMPTE SDI Interfaces with Kintex-7 GTX Transceivers
	Summary
	Introduction
	Using Kintex-7 GTX Transceivers for SDI Interfaces
	GTX Transceiver Reference Clocks
	Resets
	GTX Transceiver Initialization Sequence
	PLL Resets
	GTX TX Resets
	GTX RX Resets
	GTX PLL Usage Models for SDI Applications
	Usage Model 1: A Single Transceiver Is Active in the Quad, RX Clocked by QPLL, TX Clocked by Both QPLL and CPLL
	Usage Model 3: Multiple Transceivers Are Active in the Quad, All RX Clocked by the QPLL, Each TX Dynamically Switched between the QPLL and the CPLL
	Usage Model 4: Multiple Transceivers Are Active in a Quad, All RX Use the QPLL, All TX Use Their Own CPLL

	SDI Electrical Interface
	SD-SDI Considerations
	Receiving SD-SDI
	Transmitting SD-SDI
	Generating an SD-SDI Recovered Clock

	RX Bit Rate Detection

	Implementing an SDI Interface in a Kintex-7 FPGA
	Generating the GTX Wrapper
	Generating the SMPTE SD/HD/3G-SDI LogiCORE IP
	Instancing the GTX and SDI Wrappers
	Add the dru.ngc File to the Project
	Video Transport Detector Ports
	SD-SDI RX EDH Processor

	GTX Initialization and Reset and Change Sequence Failure Codes
	SDI Timing Constraints

	Example SDI Demonstrations
	Quad SDI Demonstration
	SDI Pass-Through Demonstration

	FPGA Resource Usage
	Constraints
	Glossary
	Reference Design
	Reference Design Matrix

	Conclusion
	References
	Revision History
	Notice of Disclaimer

