
XAPP745 (v1.0) September 4, 2012 www.xilinx.com 1

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

Summary This application note describes how IP blocks generated with the Vivado™ High-Level
Synthesis tool can be controlled from a processor within the Zynq™-7000 All Programmable
SoC. The techniques described in this application note are also applicable to MicroBlaze™
processor-based systems.

Introduction Vivado synthesis provides a tool and methodology for migrating algorithms from a processor
onto the programmable logic. In the context of the Zynq-7000 All Programmable SoC, this
means moving code from the ARM® dual-core Cortex™-A9 processor to the programmable
logic for acceleration. The code implemented with Vivado synthesis in hardware represents the
computational bottleneck of the algorithm. This bottleneck can be discovered through code
profiling. See EDK Concepts, Tools, and Techniques: A Hands-On Guide to Effective
Embedded System Design (UG683) for instructions on how to profile processor code.

The focus of this application note is the effective processor control of IP blocks generated with
the Vivado High-Level Synthesis (HLS) tool. Aspects to be discussed regarding the use of IP
blocks generated with the Vivado HLS tool in a program for the Zynq-7000 All Programmable
SoC are:

• Vivado HLS tool signal level protocols and automatically generated IP-specific application
program interfaces (API)

• Interrupt generation and a basic interrupt service routine (ISR) for the Zynq-7000 All
Programmable SoC

• Basic program structure for accessing Vivado HLS tool IP blocks from the processor

Programming
Environment
Specifics

This application note assumes that the user has some general knowledge of the Vivado HLS
and XPS tools. For more information on these tools see Vivado Design Suite User Guide:
High-Level Synthesis (UG902) and EDK Concepts, Tools, and Techniques: A Hands-On Guide
to Effective Embedded System Design (UG683).

Signal Level
Protocols

The Vivado HLS tool supports three general categories of signals: streaming interfaces, BRAM
interfaces, and scalar I/O interfaces. From these categories, only the scalar I/O interfaces are
accessible from the processor over the AXI4-Lite interface. Therefore, the automatically
generated IP block APIs from the Vivado HLS tool are only available for IP block status signals
and user-specified scalar I/O ports. A complete description of available scalar I/O protocols can
be found in Vivado Design Suite User Guide: High-Level Synthesis (UG902). Table 1 shows the
mapping between user C/C++ level scalar I/O, the Vivado HLS tool I/O protocols and the
AXI4-Lite interface.

Application Note: Vivado™ Design Suite

XAPP745 (v1.0) September 4, 2012

Processor Control of Vivado HLS Designs
Author: Fernando Martinez Vallina

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/edk_ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/edk_ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/edk_ctt.pdf

Vivado HLS Tool IP-Specific API

XAPP745 (v1.0) September 4, 2012 www.xilinx.com 2

From the protocols shown in Table 1, the ap_ctrl_hs protocol is for IP block start/stop and status
monitoring. In terms of mapping to the AXI4-Lite bus, the start (ap_start), idle (ap_idle), and
done (ap_done) signals of the IP block are mapped into registers of the interface. These signals
exist by default for all designs generated by the Vivado HLS tool.

For any Vivado HLS tool design with scalar I/O ports, the design can have as many
independent AXI4-Lite interfaces as I/O ports. It is also possible to group all scalar and IP block
control ports into a single AXI4-Lite interface. It is recommended for the user to create a single
AXI4-Lite interface per Vivado HLS tool design. This simplifies the physical connection in the
XPS tool as well as the memory space allocation in the processor memory map. Instructions on
how to create AXI interfaces with the Vivado HLS tool are available in Vivado Design Suite User
Guide: High-Level Synthesis (UG902).

The Vivado HLS tool port protocols, which can be mapped to the AXI4-Lite bus, can be
categorized as either raw or qualified I/O protocols. Table 2 shows how the Vivado HLS tool
protocols for scalar I/O interfaces are categorized.

The categorization of Table 2 has a direct impact on how the processor software is written.

Vivado HLS
Tool IP-Specific
API

For every IP block generated by the Vivado HLS tool, a complimentary API is automatically
created to enable software development for the processor. The files describing the API are
stored in the include directory of the PCore for use by the XPS tool. Detailed information on
how to generate a PCore with the Vivado HLS tool can be found in Vivado Design Suite User
Guide: High-Level Synthesis (UG902).

Table 1: Vivado HLS Tool I/O Protocol Mapping to AXI4-Lite

Processor
Interface Argument

Type
Variable Pointer Variable Array Reference Variable

AXI4-Lite Pass-by-Value Pass-by-Reference Pass-by-Reference Pass-by-Reference

Slave Interface Type I I/O O I I/O O I I/O O I I/O O

ap_none D D D

ap_stable

ap_ack

ap_vld D D

ap_hs

ap_ctrl_hs D

= Unsupported interface = Supported interface

Table 2: Vivado HLS Tool I/O Protocol Classification

Raw I/O Protocol Qualified I/O Protocol

ap_none ap_hs

ap_stable ap_ack

ap_vld

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf

Vivado HLS Tool IP-Specific API

XAPP745 (v1.0) September 4, 2012 www.xilinx.com 3

Example Function in the Vivado HLS Tool

The following C function is used in the explanation of the generated API:

int example (int A, int B)
{
 int result;
 result = A * A + B;
 return result;
}

The API files generated by the Vivado HLS tool have this naming convention:

X{top level function name}_{AXI4-Lite interface name}.h

X{top level function name}.h

The first file defines the address map of the IP block. All ports mapped to the AXI4-Lite interface
are treated as registers. The addresses of these registers are automatically assigned and are
not under user control. In regards to system integration, the generated address map is a list of
register offsets from the base address determined by the system architect. In the case of
systems without an operating system, also referred to as bare metal systems, this file can be
ignored. The Vivado HLS tool provides a header file with all of the necessary driver functions for
bare metal software development. Linux drivers are currently not generated by the Vivado HLS
tool. If a Linux driver is required, development of such a driver can be started from the address
map file.

As previously mentioned, the second file contains all the driver functions needed for bare metal
software development. The functions provided in this file assist with these operations:

• IP Block Initialization and Status Monitoring

• I/O Read and Write Function

• Interrupt Handling

The API functions provided by the Vivado HLS tool have this naming convention:

X{top level function name}_{operation}

IP Block Initialization and Status Monitoring

There are four standard functions for every Vivado HLS tool IP block:

• X{top level function name}_Initialize()

• X{top level function name}_Start()

• X{top level function name}_IsDone()

• X{top level function name}_IsIdle()

Using the code example from the Example Function in the Vivado HLS Tool, the required
functions in any processor program are:

XExample_Initialize()

XExample_Start()

The initialization function XExample_Initialize has no effect on the IP block at the
hardware level. The purpose of this function is to store identifier information for a specific
instance of the example function in hardware. This identifier information is required by all other
driver functions to ensure communication with the correct hardware module. The designer can
use the same API to communicate with as many fabric instantiations of a hardware accelerator
as needed by the application.

The start function, XExample_Start, pulses the ap_start signal on the target Vivado HLS
tool hardware accelerator. This is a 1 clock cycle pulse that initiates the operation of the IP
block. Depending on the Vivado HLS tool protocols selected for the function I/O, the location of

http://www.xilinx.com

Vivado HLS Tool IP-Specific API

XAPP745 (v1.0) September 4, 2012 www.xilinx.com 4

XExample_Start in the processor code must be changed to guarantee proper execution of
the accelerator. Ports with a raw I/O protocol such as ap_none and ap_stable must be written
before the start signal is received by the accelerator. Ports with qualified I/O protocols can be
written before or after the XExample_Start function as long as the sequencing of the protocol
is respected.

The other two functions generated for the example IP block are:

XExample_IsDone()

XExample_IsIdle()

Both of these functions are optional and allow the processor to monitor the status of the IP
block.

XExample_IsDone can be used by the processor to check when the IP block started by
XExample_Start has finished execution. This enables poling the IP block for task completion.

XExample_IsIdle tells the processor if the core is running or not. It is not a deadlock
checking function. This function returns false from the time the start function is executed by the
processor until the ap_done signal is asserted by the IP block. If the system causes the Vivado
HLS tool IP block to deadlock, the *_IsIdle function also returns false.

I/O Read and Write Function

The number of I/O read and write functions directly corresponds to the number of I/O ports in
the IP block. From the Example Function in the Vivado HLS Tool, page 3, the function signature
of the IP block generated with the Vivado HLS tool is:

int example(int A, int B)

This function signature states that there are 2 input ports A and B and 1 output port for the
function return value. Also, assume that port A has I/O protocol ap_none and port B has I/O
protocol ap_hs. In this case, port A is associated with these driver functions:

XExample_SetA()

XExample_GetA()

The function XExample_SetA writes a value from the processor to port A of the IP block. As a
result of using the ap_none protocol on port A, this function must be executed by the processor
before the XExample_Start function. All ports utilizing the ap_none protocol are sampled
and registered by the IP block at the time ap_start signal is received. Ports using the ap_stable
protocol must also be set before the start signal is issued. Furthermore, the value of these ports
must remain constant during the execution of the IP block. Ports with the ap_stable I/O protocol
are never registered by the Vivado HLS tool IP block.

The purpose of the get function, XExample_GetA, is to verify the value written from the
processor to the IP block.

As a result of using a qualified I/O protocol, port B is associated with these driver functions:

XExample_GetB()

XExample_SetB()

XExample_SetB_Vld()

http://www.xilinx.com

Interrupt Handling

XAPP745 (v1.0) September 4, 2012 www.xilinx.com 5

The function XExample_SetB() behaves in the same manner as in the case of port A. This is
a data transfer function. The difference is in the requirement to also use the
XExample_SetB_Vld function. This function, which is a direct result of the I/O protocol of port
B, tells the IP block when the value of port B is valid and can be registered into the core. The
evaluation of the valid signal on port B does not occur until the IP block receives the start signal
from the processor. The processor can write the value of B at any time within its program
execution. The Vivado HLS tool IP block stalls and waits for the valid signal in port B before
continuing operation.

The read functions return the value of a register in the Vivado HLS tool IP block to the
processor. In the case of input ports A and B, the read functions are

XExample_GetA()

XExample_GetB()

The purpose of these functions is to read the contents of a register in the Vivado HLS tool IP
block. All user defined I/O ports have a read function associated with them. In the case of the
function return value, the read function is of the form:

XExample_GetReturn()

The value of XExample_GetReturn is only valid after the done signal has been received from
the IP block. Depending on how the processor software is written, the done signal from the IP
block can be captured by polling or with an Interrupt Service Routine (ISR).

Interrupt
Handling

IP blocks created with the Vivado HLS tool can generate two kinds of interrupts:

1. Task completion

2. Task pipelining

The task completion interrupt occurs at the end of a function call synthesized into hardware.
This is the done signal (ap_done) asserted by the IP block.

Task pipelining allows the processor to launch multiple calls to the same hardware accelerator
before the previous call is finished. This reduces computation latency and reduces the number
of accelerators required to achieve a system performance specification. In addition to
supporting multiple simultaneous calls from the processor, IP blocks with task pipelining
enabled can handle different configuration parameters for each call. From the perspective of
the processor, the difference between having or not having task pipelining is shown in Figure 1.

X-Ref Target - Figure 1

Figure 1: Task Pipelining vs No Task Pipelining

IP Call 0

No Task Pipelining
Time

IP Call 1 IP Call 2 IP Call 3

Time

IP Call 0

Task Pipelining

IP Call 1

IP Call 2

IP Call 3

XAPP745_02_082712

http://www.xilinx.com

Basic Processor Program

XAPP745 (v1.0) September 4, 2012 www.xilinx.com 6

The interrupt APIs for Vivado HLS tool IP blocks provide support for both done signal and task
pipelining interrupt sources. In addition, the APIs have been designed with support for up to 32
interrupt sources per IP block.This capability will be used in future versions of the Vivado HLS
tool.

As far as the processor is concerned, each Vivado HLS tool IP block acts as a single interrupt
source. Once the interrupt is received, the interrupt service routine (ISR) must access the
interrupt logic in the IP block to determine the cause. Issuing an interrupt to the processor is
controlled by two functions:

XExample_InterruptGlobalEnable()

XExample_InterruptGlobalDisable()

Along with these two functions, there are APIs to control the behavior of individual interrupt
sources within the IP block. Interrupt sources are 1-hot encoded onto a 32-bit control word
inside the generated IP block. Bit 0 is the least significant bit of the word and encodes the status
of the done signal interrupt.

Enabling and disabling interrupt sources in the IP block is carried out by:

XExample_InterruptEnable(…)

XExample_InterruptDisable(…)

In cases where the IP block has more than one interrupt source, the processor must determine
the cause of the interrupt. The cause can be determined by using these functions:

XExample_InterruptGetEnabled()

XExample_InterruptGetStatus()

The function XExample_InterruptGetEnabled returns a list of which sources in the IP
block are allowed to issue an interrupt to the processor. This is used in conjunction with the
status function, XExample_InterruptGetStatus(), to determine which source caused the
processor interrupt. The status function returns the list of sources trying to issue an interrupt.
One thing to keep in mind is that a Vivado HLS tool IP block does not have the concept of
interrupt priority. Therefore, multiple internal sources can be active at the same time. Interrupt
priority and handling is determined by the ISR.

Once the processor has determined the interrupt source, it must clear the source in the IP
block. Clearing an interrupt is achieved using the clear function:

XExample_InterruptClear(…)

Additional information on the API syntax generated by the Vivado HLS tool can be found in
Vivado Design Suite User Guide: High-Level Synthesis UG902.

Basic
Processor
Program

Any program making use of IP blocks generated by the Vivado HLS tool must execute these
tasks:

1. Initialize the IP Block in the Processor Program Space

2. Have a Basic Interrupt Service Routine for the IP block

3. Initialize the Processor Exception Table and register the IP block ISR

4. Write Data to the IP Block

5. Start the IP Block

6. Process the IP Block Return Value

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf

Basic Processor Program

XAPP745 (v1.0) September 4, 2012 www.xilinx.com 7

Initialize the IP Block in the Processor Program Space

Initializing the IP block in the processor program space requires the use of two structures
provided by the Vivado HLS tool. These structures are IP-specific. In the context of the
Example Function in the Vivado HLS Tool, page 3, the structures are XExample and
XExample_Config.

XExample declares a pointer to a specific instance of the accelerator in the programmable
logic. XExample_Config declares a struct which holds an instance ID number and the base
address of the IP block from the processor memory map. Initialization is completed using the
following code:

XExample ex;
XExample_Config ex_config = {0,XPAR_EXAMPLE_TOP_0_S_AXI_EXAMPLE_BASEADDR};

XExample_Initialize(&ex,&ex_config);

Basic Interrupt Service Routine

An ISR for a Vivado HLS tool generated IP block must have these elements:

• Disable IP block global interrupt

• Fetch IP block interrupt enable list

• Fetch IP block interrupt status

• Clear the interrupt

The following code shows how to create an ISR for the example function:

void ExampleISR(void *InstancePtr){
int enabled_list;
int status_list;
XExample *pEx = (XExample *) InstancePtr;
//Disable Global Interrupt
XExample_InterruptGlobalDisable(pEx);
//Get list of enabled interrupts
enabled_list = XExample_InterruptGetEnabled(pEx);
//Get interrupt status list
status_list = XExample_InterruptGetStatus(pEx);
//Check ap_done created the interrupt
if((enabled_list & 1) && (status_list & 1)){

//Clear the ap_done interrupt
XExample_InterruptClear(pEx,1);
//Set a result status flag
NewResult = 1;

}
}

http://www.xilinx.com

Basic Processor Program

XAPP745 (v1.0) September 4, 2012 www.xilinx.com 8

Initialize the Processor Exception Table

Detailed information on how to initialize the processor exception table can be found in EDK
Concepts, Tools, and Techniques: A Hands-On Guide to Effective Embedded System Design
(UG683). The following code shows one method of initializing the processor exception table
and registering the example ISR:

void SetupInterrupt(){
int result;
// Find the interrupt configuration table
XScuGic_Config *pCfg =

XScuGic_LookupConfig(XPAR_SCUGIC_SINGLE_DEVICE_ID);
// Initialize the Interrupt Controller
Result = XScuGic_CfgInitialize(&ScuGic, pCfg, pCfg->CpuBaseAddress);
//Initialize the exception handler
Xil_ExceptionInit();
//Register the exception handler
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,

(Xil_ExceptionHandler) XScuGic_InterruptHandler,&ScuGic);
//Enable the exception handler
Xil_ExceptionEnable();
//Connect the Example ISR to the exception table
result = XScuGic_Connect(&ScuGic,

XPAR_EXAMPLE_INTERRUPT_INTR,
(Xil_InterruptHandler)ExampleISR,&ex);

//Enable the Example ISR
XScuGic_Enable(&ScuGic,XPAR_EXAMPLE_INTERRUPT_INTR);
return result;

}

Write Data to the IP Block

For the example function, writing a value of 5 to port A and 10 to port B can be accomplished
using the following code:

XExample_SetA(&ex,5);
XExample_SetB(&ex, 10);
XExample_SetB_Vld(&ex);

Start the IP Block

Starting an IP block instance from the processor involves three steps:

1. Enable interrupt sources

2. Enable global IP block interrupt

3. Issue the start signal to the IP block

The following code shows a start function for the example IP block:

void ExampleStart(void *InstanePtr){
XExample *pEx = (XExample *)InstancePtr;
//Enable ap_done as an interrupt source
XExample_InterruptEnable(pEx,1);
//Enable the Global IP Interrupt
XExample_InterruptGlobalEnable(pEx);
//Start the IP
XExample_Start(pEx);

}

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/edk_ctt.pdf

Conclusion

XAPP745 (v1.0) September 4, 2012 www.xilinx.com 9

Process the IP Block Return Value

The IP block return value is available to the processor as shown in the following code example:

ip_result = XExample_GetReturn(&ex);

Processor Main Function

The functions described so far are necessary elements of a standalone software application for
the Zynq-7000 All Programmable SoC, which makes use of one or more Vivado HLS tool
generated IP blocks. The processor main function can be written as follows:

int main(){
int result;
//Initialize the IP

XExample_Initialize(&ex,&ex_config);

//Setup the Interrupt for the System
SetupInterrupt();

//Write the values for port A and B
XExample_SetA(&ex,5);
XExample_SetB(&ex, 10);
XExample_SetB_Vld(&ex);

//Start the IP
ExampleStart(&ex);

//Wait for the core interrupt
while(!NewResult);

//Get the return value of the IP
result = XExample_GetReturn(&ex);
printf("IP result = %d\n\r",result;

return 0;
}

Conclusion The Vivado HLS tool provides a standalone driver API for every IP block generated with the
tool. This application note provides a description of how to use the generated API within a
Zynq-7000 platform processor program. The fundamental programming techniques described
in this document apply to all Vivado HLS tool IP blocks which communicate with a processor.

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS
IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the

Date Version Description of Revisions

09/04/12 1.0 Initial draft.

http://www.xilinx.com

Notice of Disclaimer

XAPP745 (v1.0) September 4, 2012 www.xilinx.com 10

Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

	Processor Control of Vivado HLS Designs
	Summary
	Introduction
	Programming Environment Specifics
	Signal Level Protocols
	Vivado HLS Tool IP-Specific API
	IP Block Initialization and Status Monitoring
	I/O Read and Write Function

	Interrupt Handling
	Basic Processor Program
	Initialize the IP Block in the Processor Program Space
	Basic Interrupt Service Routine
	Initialize the Processor Exception Table
	Write Data to the IP Block
	Start the IP Block
	Process the IP Block Return Value
	Processor Main Function

	Conclusion
	Revision History
	Notice of Disclaimer

