
Versal ACAP Integrated
Block for PCI Express v1.0

LogiCORE IP Product Guide
Vivado Design Suite

PG343 (v1.0) April 15, 2021

https://www.xilinx.com

Table of Contents
Chapter 1: Introduction.. 4

Introduction to the Core...4
PL PCIE4 Features..4
IP Facts..6

Chapter 2: Overview..7
Navigating Content by Design Process.. 7
Core Overview..8
Applications..10
Unsupported Features..10
Limitations..10
Licensing and Ordering.. 11

Chapter 3: Product Specification... 12
Standards for the Integrated Block IP ... 12
Performance and Resource Use..12
Port Descriptions for PL PCIE4...12
Configuration Space... 76

Chapter 4: Designing with the Core... 84
Clocking.. 84
Resets..87
AXI4-Stream Interface Description... 88
Power Management... 230
Generating Interrupt Requests... 233
Receive Message Interface.. 238
Configuration Management Interface... 241
Link Training: 2-Lane, 4-Lane, 8-Lane, and 16-Lane Components.................................... 244
Lane Reversal...245

Chapter 5: Design Flow Steps...247
Customizing and Generating the Core...247

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=2

Constraining the Core...266
Simulation.. 267
Synthesis and Implementation... 268

Chapter 6: Example Design... 269
Overview of the Example Design.. 269
Generating the Core... 286
Opening the Example Design.. 288
Simulating the Example Design.. 290
Synthesizing and Implementing the Example Design..291

Chapter 7: Test Bench...292
Root Port Model Test Bench for Endpoint..292
Endpoint Model Test Bench for Root Port..306

Appendix A: Migrating and Upgrading.. 309
Migrating from Other Device Cores..309
Upgrading.. 315

Appendix B: GT Selection and Pin Planning...316
PL PCIe GT Selection... 317
CPM4 Additional Considerations...318
GT Locations.. 318

Appendix C: PCIe Link Debug Enablement...322
Enabling PCIe Link Debug..322
Connecting to PCIe Link Debug in Vivado..326

Appendix D: Debugging.. 328
Finding Help on Xilinx.com.. 328

Appendix E: Additional Resources and Legal Notices............................330
Xilinx Resources...330
Documentation Navigator and Design Hubs.. 330
References..331
Revision History...331
Please Read: Important Legal Notices... 332

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=3

Chapter 1

Introduction

Introduction to the Core
The Xilinx® Versal ACAP Integrated Block for PCI Express® core is a high-bandwidth, scalable,
and reliable serial interconnect solution for use with the Versal™ adaptive compute acceleration
platform (ACAP). Based on the specific Versal ACAP used for a design, the programmable logic
integrated block for PCI Express (PL PCIe) can represent a specific implementation of the PCI
Express Base Specification 4.0 (PL PCIE4).

PL PCIE4 Features
• Designed to the PCI Express Base Specification 4.0, and Errata updates

• PCI Express Endpoint, Switch Port Upstream, Switch Port Downstream, Legacy Endpoint, and
Root Port Modes

• x1, x2, x4, x8, or x16 link widths (x16 configuration supported only for Gen1, Gen2, and Gen3
speeds)

• Gen1, Gen2, Gen3, or Gen4 link speeds

• AXI4-Stream interface to customer logic

○ Configurable 64-bit/128-bit/256-bit/512-bit data path widths

○ Four Independent Initiator/Target, Request/Completion streams

• Parity protection on internal logic data paths and data interfaces

• Advanced Error Reporting (AER) and End-to-End CRC (ECRC)

• UltraRAM used for Transaction Layer Packet buffering

○ 32 KB – Replay Buffer

○ Configurable 16 KB, or 32 KB – Received Posted Transaction FIFO

○ Configurable 32 KB, or 64 KB – Received Completion Transaction FIFO

○ UltraRAM ECC protection enabled

Chapter 1: Introduction

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=4

• One Virtual Channel, eight Traffic Classes

• Supports multiple functions and single-root I/O virtualization (SR-IOV)

○ Up to four Physical Functions

○ Up to 252 Virtual Functions

• Built-in lane reversal and receiver lane to lane de-skew

• 3 x 64-bit, or 6 x 32-bit Base Address Registers (BARs) that are fully configurable

○ Expansion ROM BAR supported

• All Interrupt types are supported

○ INTx

○ 32 multi-vector MSI capability

○ MSI-X capability with up to 2048 vectors with optional to use, built-in vector tables

• Built-in Initiator Read Request/Completion Tag Manager

○ Up to 256 or 768 outstanding Initiator Read Request Transactions supported

• Advanced Peripheral Bus (APB3) interface is available to perform DRP operations.

• Features that enable high performance applications

○ AXI4-Stream TLP Straddle on Requester Completion Interface

○ Up to 1024 RX Completion Header Credits, and 64 KB RX Completion Payload Space

○ Relaxed Transaction Ordering in the Receive Data Path

○ Address Translation Services (ATS) Messaging

○ Atomic Operation Transactions Support

○ Transaction Tag Scaling as Completer

○ Flow Control Scaling

○ Low latency PIPE interface operation 32b at 500 MHz

• Several ease of use and configurability features are supported

○ BAR and ID based filtering of Received Transactions

○ ASPM Optionality

○ Configuration Extend Interface

○ AXI4-Stream Interfaces Address Align Mode

○ Debug and Diagnostics Interface

Chapter 1: Introduction

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=5

○ Self Train over Loopback on PCI Express link

IP Facts
LogiCORE™ IP Facts Table

Core Specifics

Supported Device Family1 Versal™ ACAP

Supported User Interfaces AXI4-Stream

Resources Performance and Resource Use web page

Provided with Core

Design Files Verilog

Example Design Verilog

Test Bench Verilog

Constraints File Xilinx Constraints file (XDC)

Simulation Model Verilog

Supported S/W Driver N/A

Tested Design Flows2

Design Entry Vivado® Design Suite

Simulation For supported simulators, see the Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado synthesis

Support

Release Notes and Known Issues Master Answer Record: 73083

All Vivado IP Change Logs Master Vivado IP Change Logs: 72775

Xilinx Support web page

Notes:
1. For a complete list of supported devices, see the Vivado® IP catalog.
2. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.

Chapter 1: Introduction

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 6Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=pcie-versal.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+release+notes
https://www.xilinx.com/support/answers/73083.html
https://www.xilinx.com/support/answers/72775.html
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=6

Chapter 2

Overview

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal™ ACAP design process Design
Hubs can be found on the Xilinx.com website. This document covers the following design
processes:

• System and Solution Planning: Identifying the components, performance, I/O, and data
transfer requirements at a system level. Includes application mapping for the solution to PS,
PL, and AI Engine. Topics in this document that apply to this design process include:

• PL PCIE4 Features

• AXI4-Stream Interface Description

• Embedded Software Development: Creating the software platform from the hardware
platform and developing the application code using the embedded CPU. Also covers XRT and
Graph APIs. Topics in this document that apply to this design process include:

• Configuration Space

• Configuration Management Interface

• Host Software Development: Developing the application code, accelerator development,
including library, XRT, and Graph API use. Topics in this document that apply to this design
process include:

• Configuration Space

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the Vivado®

timing, resource use, and power closure. Also involves developing the hardware platform for
system integration. Topics in this document that apply to this design process include:

• Chapter 4: Designing with the Core

• Chapter 5: Design Flow Steps

• Chapter 6: Example Design

• Chapter 7: Test Bench

Chapter 2: Overview

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 7Send Feedback

https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=7

• Appendix B: GT Selection and Pin Planning

• Appendix C: PCIe Link Debug Enablement

Core Overview
The Versal™ ACAP Integrated Block for PCI Express® (PCIe®) core is a reliable, high-bandwidth,
scalable serial interconnection for use with Versal devices. The core instantiates one of the
available programmable logic integrated blocks for PCIe found in the Versal devices.

The following figure shows the block diagram of the core.

Figure 1: Block Diagram for Programmable Logic Integrated Block for PCIe

Ph
ys

ic
al

 L
ay

er

Da
ta

 L
in

k
La

ye
r

Tr
an

sa
ct

io
n

La
ye

r

Vi
rt

ua
l C

ha
nn

el
 #

0

AX
I S

tr
ea

m
in

g
La

ye
r

Co
nf

ig
ur

at
io

n
M

an
ag

em
en

t
M

od
ul

e
Re

gi
st

er
s

Clock
&

Reset

Debug
Module

APB3
Controller

Memory
Cells

AXI Completion Request (M_AXIS_CQ) I/F (512b)

PIPE Data I/F

PIPE EQ I/F

PIPE Rx
Margin I/F

Clock & Reset I/F
Scan I/F

FPGA Events I/F

AXI Completer Completion (S_AXIS_CC) I/F (512b)

AXI Requester Completion (M_AXIS_RC) I/F (512b)

AXI Requester Request (S_AXIS_RQ) I/F (512b)

Physical Layer I/F
Configuration Management I/F
Configuration Status I/F
Configuration Control I/F
Configuration Interrupt I/F
Configuration Extend I/F

Device Configuration I/F

Debug I/F APB3 I/F

UltraRAM w/ECC
Replay
(32 KB)

UltraRAM w/ECC
Completion

(64 KB)

UltraRAM w/ECC
Request
(32 KB)

Replay
RAM I/F

VC0 Receive
Completion

RAM I/F

VC0 Receive
Request
RAM I/F

X22812-120620

The following figure shows the interfaces for the core.

Chapter 2: Overview

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=8

Figure 2: Core Interfaces

Integrated Block for PCI Express User Application

AX
I4

-S
tr

ea
m

 E
nh

an
ce

d
In

te
rf

ac
e

Completer
Completion

Interface

Completer
reQuester
Interface

Requester
Completion

Interface

Requester
reQuester
Interface

PCIe
Completer
Interface

m_axis_cq_*

s_axis_cc_*

s_axis_rq_*

pcie_tag_av[1:0]

m_axis_rc_*

Configuration Management
Interface

cfg_mgmt_*

cfg_mgmt_read_data
cfg_mgmt_read_write_done

Configuration Status Interface

cfg_msg_received*

cfg_msg_transmit_done

cfg_msg_transmit_*

Configuration FC interface
cfg_fc_*

cfg_fc_sel

cfg_*

Configuration Control Interface cfg_*

cfg_interrupt_*

cfg_interrupt_msi_*

cfg_interrupt_msix_*

Configuration Extended Interface cfg_ext_read_data
cfg_ext_read_data_valid

cfg_ext_*

Clock and Reset Interface
user_clk

user_reset
sys_reset

PCI Expresspci_exp

sys_clk

PCIe
Requester
Interface

Configuration Received
Message Interface

Configuration Transmit Message
Interface

Configuration Interrupt
Controller Interface

AXI4-
Stream
Slave

AXI4-
Stream
Master

AXI4-
Stream
Slave

AXI4-
Stream
Slave

AXI4-
Stream
Master

AXI4-
Stream
Master

AXI4-
Stream
Slave

AXI4-
Stream
Master

Tag
Avaiability

Status

X16318-030217

Chapter 2: Overview

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=9

Applications
The core architecture enables a broad range of computing and communications target
applications, emphasizing performance, cost, scalability, feature extensibility and mission-critical
reliability. Typical applications include:

• Data communications networks

• Telecommunications networks

• Broadband wired and wireless applications

• Network interface cards

• Chip-to-chip and backplane interface cards

• Server add-in cards for various applications

Unsupported Features
The PCI Express Base Specification 4.0 has many optional features. The following features are
not supported in the core:

• Resizable BAR extended capability

• ID-based TLP ordering

• TPH Capability

• Fast PCI Express Endpoint Enumeration using Tandem Configuration.

Related Information

Features Not Available, or Limited Usage Features

Limitations
Speed Change Related Issue

• Description: Repeated speed changes can result in the link not coming up to the intended
targeted speed.

• Workaround: A follow-on attempt should bring the link back.

Chapter 2: Overview

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=10

Link Autonomous Bandwidth Status (LABS) Bit

• Description: While performing the link width changes as a Root Complex, the link width
change works as expected. However, the PCIe protocol requires a LABS bit which is not
getting set after the link width change.

Note: This is an informational bit and does not impact actual functionality.

• Workaround: None available.

Licensing and Ordering
This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado®

Design Suite under the terms of the Xilinx End User License.

Information about other Xilinx® LogiCORE™ IP modules is available at the Xilinx Intellectual
Property page. For information about pricing and availability of other Xilinx LogiCORE IP modules
and tools, contact your local Xilinx sales representative.

Chapter 2: Overview

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=11

Chapter 3

Product Specification

Standards for the Integrated Block IP
Using PL PCIE4

This core adheres to the following standards:

• PCI Express Base Specification 4.0

• Legacy PCI Local Bus Specification 3.0

For more information about PCI/PCIe specifications, see PCI-SIG Specifications (https://
www.pcisig.com/specifications).

Performance and Resource Use
For full details about performance and resource use, visit the Performance and Resource Use web
page.

Port Descriptions for PL PCIE4
This section provides detailed port descriptions for the following interfaces:

• AXI4-Stream Core Interfaces

• Other Core Interfaces

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 12Send Feedback

https://www.pcisig.com/specifications
https://www.pcisig.com/specifications
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=pcie-versal.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=pcie-versal.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=12

AXI4-Stream Core Interfaces

64/128/256-Bit Interfaces

In addition to status and control interfaces, the core has four required AXI4-Stream interfaces
used to transfer and receive transactions, which are described in this section.

Related Information

512-bit Interfaces

Completer Request Interface

The Completer Request (CQ) interface are the ports through which all received requests from the
link are delivered to the user application. The following table defines the ports in the CQ
interface of the core. In the Width column, DW denotes the configured data bus width (64, 128,
or 256 bits).

Table 1: Completer Request Interface Port Descriptions

Port I/O Width Description

m_axis_cq_tdata O DW

Transmit Data from the CQ Interface.
Only the lower 128 bits are used when the interface width is
128 bits, and only the lower 64 bits are used when the
interface width is 64 bits.
Bits [255:128] are set permanently to 0 by the core when the
interface width is configured as 128 bits, and bits [255:64]
are set permanently to 0 when the interface width is
configured as 64 bits.

m_axis_cq_tuser O 108

CQ User Data.
This set of signals contains sideband information for the
transaction layer packets (TLP) being transferred. These
signals are valid when m_axis_cq_tvalid is High.
Table 2: Sideband Signal Descriptions in m_axis_cq_tuser
describes the individual signals in this set.

m_axis_cq_tlast O 1

TLAST indication for CQ Data.
The core asserts this signal in the last beat of a packet to
indicate the end of the packet. When a TLP is transferred in
a single beat, the core sets this signal in the first beat of the
transfer.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=13

Table 1: Completer Request Interface Port Descriptions (cont'd)

Port I/O Width Description

m_axis_cq_tkeep O DW/32

TKEEP indication for CQ Data.
The assertion of bit i of this bus during a transfer indicates
to the user application that Dword i of the m_axis_cq_tdata
bus contains valid data. The core sets this bit to 1
contiguously for all Dwords starting from the first Dword of
the descriptor to the last Dword of the payload. Thus,
m_axis_cq_tdata is set to all 1s in all beats of a packet, except
in the final beat when the total size of the packet is not a
multiple of the width of the data bus (in both Dwords). This
is true for both Dword-aligned and address-aligned modes
of payload transfer.
Bits [7:4] of this bus are set permanently to 0 by the core
when the interface width is configured as 128 bits, and bits
[7:2] are set permanently to 0 when the interface width is
configured as 64 bits.

m_axis_cq_tvalid O 1

CQ Data Valid.
The core asserts this output whenever it is driving valid data
on the m_axis_cq_tdata bus. The core keeps the valid signal
asserted during the transfer of a packet. The user
application can pace the data transfer using the
m_axis_cq_tready signal.

m_axis_cq_tready I 1

CQ Data Ready.
Activation of this signal by the user logic indicates to the
core that the user application is ready to accept data. Data is
transferred across the interface when both m_axis_cq_tvalid
and m_axis_cq_tready are asserted in the same cycle.
If the user application deasserts the ready signal when
m_axis_cq_tvalid is High, the core maintains the data on the
bus and keeps the valid signal asserted until the user
application has asserted the ready signal.

pcie_cq_np_req I 2

This input is used by the user application to request the
delivery of a Non-Posted request. The core implements a
credit-based flow control mechanism to control the delivery
of Non-Posted requests across the interface, without
blocking Posted TLPs.
This input to the core controls an internal credit count. The
credit count is updated in each clock cycle based on the
setting of pcie_cq_np_req[1:0] as follows:
• 00: No change
• 01: Increment by 1
• 10 or 11: Reserved (bit [1] only applicable in 512-bit

interface)
The credit count is decremented on the delivery of each
Non-Posted request across the interface. The core
temporarily stops delivering Non-Posted requests to the
user logic when the credit count is zero. It continues to
deliver any Posted TLPs received from the link even when
the delivery of Non-Posted requests has been paused.
The user application can either set pcie_cq_np_req[1:0] in
each cycle based on the status of its Non-Posted request
receive buffer, or can set it to 11 permanently if it does not
need to exercise selective backpressure on Non-Posted
requests.
The setting of pcie_cq_np_req[1:0] does not need to be
aligned with the packet transfers on the completer request
interface.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=14

Table 1: Completer Request Interface Port Descriptions (cont'd)

Port I/O Width Description

pcie_cq_np_req_count O 6

This output provides the current value of the credit count
maintained by the core for delivery of Non-Posted requests
to the user logic. The core delivers a Non-Posted request
across the completer request interface only when this credit
count is non-zero. This counter saturates at a maximum
limit of 32.
Because of internal pipeline delays, there can be several
cycles of delay between the user application providing credit
on the pcie_cq_np_req[1:0] inputs and the PCIe core
updating the pcie_cq_np_req_count output in response.
This count resets on user_reset and de-assertion of
user_lnk_up.

When PASID_CAP_ON is enabled then m_axis_cq_tuser[107:85] pins are specific to
passing PASID field information. In all other cases those fields are reserved. The following table
provides more information.

Table 2: Sideband Signal Descriptions in m_axis_cq_tuser

Bit Index Name Width Description

3:0 first_be[3:0] 4

Byte enables for the first Dword of the payload.
This field reflects the setting of the First_BE bits in the
Transaction-Layer header of the TLP. For Memory Reads and
I/O Reads, these four bits indicate the valid bytes to be read
in the first Dword. For Memory Writes and I/O Writes, these
bits indicate the valid bytes in the first Dword of the
payload. For Atomic Operations and Messages with a
payload, these bits are set to all 1s.
This field is valid in the first beat of a packet, that is, when
sop and m_axis_cq_tvalid are both High.

7:4 last_be[3:0] 4

Byte enables for the last Dword.
This field reflects the setting of the Last_BE bits in the
Transaction-Layer header of the TLP. For Memory Reads,
these four bits indicate the valid bytes to be read in the last
Dword of the block of data. For Memory Writes, these bits
indicate the valid bytes in the ending Dword of the payload.
For Atomic Operations and Messages with a payload, these
bits are set to all 1s. For Memory Reads and Writes of one
DW transfers and zero length transfers, these bits should be
0s.
This field is valid in the first beat of a packet, that is, when
sop and m_axis_cq_tvalid are both High.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=15

Table 2: Sideband Signal Descriptions in m_axis_cq_tuser (cont'd)

Bit Index Name Width Description

39:8 byte_en[31:0] 32

The user logic can optionally use these byte enable bits to
determine the valid bytes in the payload of a packet being
transferred. The assertion of bit i of this bus during a
transfer indicates that byte i of the m_axis_cq_tdata bus
contains a valid payload byte. This bit is not asserted for
descriptor bytes.
Although the byte enables can be generated by user logic
from information in the request descriptor (address and
length) as well as the settings of the first_be and last_be
signals, you can use these signals directly instead of
generating them from other interface signals.
When the payload size is more than two Dwords (eight
bytes), the one bit on this bus for the payload is always
contiguous. When the payload size is two Dwords or less,
the one bit can be non-contiguous.
For the special case of a zero-length memory write
transaction defined by the PCI Express specifications, the
byte_en bits are all 0s when the associated one-DW payload
is being transferred.
Bits [31:16] of this bus are set permanently to 0 by the core
when the interface width is configured as 128 bits, and bits
[31:8] are set permanently to 0 when the interface width is
configured as 64 bits.

40 sop 1

Start of packet.
This signal is asserted by the core in the first beat of a
packet to indicate the start of the packet. Using this signal is
optional.

41 discontinue 1

This signal is asserted by the core in the last beat of a TLP, if
it has detected an uncorrectable error while reading the TLP
payload from its internal FIFO memory. The user application
must discard the entire TLP when such an error is signaled
by the core.
This signal is never asserted when the TLP has no payload.
It is asserted only in a cycle when m_axis_cq_tlast is High.
When the core is configured as an Endpoint, the error is also
reported by the core to the Root Complex to which it is
attached, using Advanced Error Reporting (AER).

84:53 parity 32

Bit i provides the odd parity computed for byte i of
m_axis_cq_tdata. Only the lower 16 bits are used when the
interface width is 128 bits, and only the lower 8 bits are used
when the interface width is 64 bits. Bits [31:16] are set
permanently to 0 by the core when the interface width is
configured as 128 bits, and bits [31:8] are set permanently
to 0 when the interface width is configured as 64 bits.

85 PASID TLP Valid 1 Indicates PASID TLP is valid.

105:86 PASID 20 Indicates PASID TLP prefix.

106 Execute Requested 1 Indicates Execute Requested to the user design.

107 Privileged Mode Requested 1 Indicates Privileged Mode Requested to the user design.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=16

Completer Completion Interface

The Completer Completion (CC) interface are the ports through which completions generated by
the user application responses to the completer requests are transmitted. You can process all
Non-Posted transactions as split transactions. That is, the CC interface can continue to accept
new requests on the requester completion interface while sending a completion for a request.
The following table defines the ports in the CC interface of the core. In the Width column, DW
denotes the configured data bus width (64, 128, or 256 bits).

Table 3: Completer Completion Interface Port Descriptions

Port I/O Width Description

s_axis_cc_tdata I DW

Completer Completion Data bus.
Completion data from the user application to the core. Only
the lower 128 bits are used when the interface width is 128
bits, and only the lower 64 bits are used when the interface
width is 64 bits.

s_axis_cc_tuser I 33

Completer Completion User Data.
This set of signals contain sideband information for the TLP
being transferred. These signals are valid when
s_axis_cc_tvalid is High.
The following tables describe the individual signals in this
set.

s_axis_cc_tlast I 1

TLAST indication for Completer Completion Data.
The user application must assert this signal in the last cycle
of a packet to indicate the end of the packet. When the TLP
is transferred in a single beat, the user application must set
this bit in the first cycle of the transfer.

s_axis_cc_tkeep I DW/32

TKEEP indication for Completer Completion Data.
The assertion of bit i of this bus during a transfer indicates
to the core that Dword i of the s_axis_cc_tdata bus contains
valid data. Set this bit to 1 contiguously for all Dwords
starting from the first Dword of the descriptor to the last
Dword of the payload. Thus, s_axis_cc_tdata must be set to
all 1s in all beats of a packet, except in the final beat when
the total size of the packet is not a multiple of the width of
the data bus (both in Dwords). This is true for both Dword-
aligned and address-aligned modes of payload transfer.
Bits [7:4] of this bus are not used by the core when the
interface width is configured as 128 bits, and bits [7:2] are
not used when the interface width is configured as 64 bits.

s_axis_cc_tvalid I 1

Completer Completion Data Valid.
The user application must assert this output whenever it is
driving valid data on the s_axis_cc_tdata bus. The user
application must keep the valid signal asserted during the
transfer of a packet. The core paces the data transfer using
the s_axis_cc_tready signal.

s_axis_cc_tready O 4

Completer Completion Data Ready.
Activation of this signal by the core indicates that it is ready
to accept data. Data is transferred across the interface when
both s_axis_cc_tvalid and s_axis_cc_tready are asserted in the
same cycle.
If the core deasserts the ready signal when the valid signal
is High, the user application must maintain the data on the
bus and keep the valid signal asserted until the core has
asserted the ready signal.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=17

Table 4: Sideband Signal Descriptions in s_axis_cc_tuser

Bit Index Name Width Description

0 discontinue 1

This signal can be asserted by the user application during a
transfer if it has detected an error (such as an uncorrectable
ECC error while reading the payload from memory) in the
data being transferred and needs to abort the packet. The
core nullifies the corresponding TLP on the link to avoid
data corruption.
The user application can assert this signal during any cycle
during the transfer. It can either choose to terminate the
packet prematurely in the cycle where the error was
signaled, or can continue until all bytes of the payload are
delivered to the core. In the latter case, the core treats the
error as sticky for the following beats of the packet, even if
the user application deasserts the discontinue signal before
the end of the packet.
The discontinue signal can be asserted only when
s_axis_cc_tvalid is High. The core samples this signal only
when s_axis_cc_tready is High. Thus, when asserted, it
should not be deasserted until s_axis_cc_tready is High.
When the core is configured as an Endpoint, this error is
also reported by the core to the Root Complex to which it is
attached, using AER.

32:1 Parity 32

Odd parity for the 256-bit data.
When parity checking is enabled in the core, user logic must
set bit i of this bus to the odd parity computed for byte i of
s_axis_cc_tdata. Only the lower 16 bits are used when the
interface width is 128 bits, and only the lower 8 bits are used
when the interface width is 64 bits.
When an interface parity error is detected, it is recorded as
an uncorrectable internal error and the packet is discarded.
According to the Base Spec 6.2.9, an uncorrectable internal
error is an error that occurs within a component that results
in improper operation of the component. The only method
of recovering from an uncorrectable internal error is a reset
or hardware replacement.
The parity bits can be permanently tied to 0 if parity check is
not enabled in the core.

Requester Request Interface

The Requester Request (RQ) interface consists of the ports through which the user application
generates requests to remote PCIe® devices. The following table defines the ports in the RQ
interface of the core. In the Width column, DW denotes the configured data bus width (64, 128,
or 256 bits).

Table 5: Requester Request Interface Port Descriptions

Port I/O Width Description

s_axis_rq_tdata I DW

Requester reQuest Data bus.
This input contains the requester-side request data
from the user application to the core. Only the lower
128 bits are used when the interface width is 128 bits,
and only the lower 64 bits are used when the
interface width is 64 bits.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=18

Table 5: Requester Request Interface Port Descriptions (cont'd)

Port I/O Width Description

s_axis_rq_tuser I 62

Requester reQuest User Data.
This set of signals contains sideband information for
the TLP being transferred. These signals are valid
when s_axis_rq_tvalid is High.
The following tables describes the individual signals
in this set.

s_axis_rq_tlast I 1

TLAST Indication for Requester reQuest Data.
The user application must assert this signal in the
last cycle of a TLP to indicate the end of the packet.
When the TLP is transferred in a single beat, the user
application must set this bit in the first cycle of the
transfer.

s_axis_rq_tkeep I DW/32

TKEEP Indication for Requester reQuest Data.
The assertion of bit i of this bus during a transfer
indicates to the core that Dword i of the
s_axis_rq_tdata bus contains valid data. The user
application must set this bit to 1 contiguously for all
Dwords, starting from the first Dword of the
descriptor to the last Dword of the payload. Thus,
s_axis_rq_tkeep must be set to all 1s in all beats of a
packet, except in the final beat when the total size of
the packet is not a multiple of the width of the data
bus (in both Dwords). This is true for both Dword-
aligned and address-aligned modes of payload
transfer.
Bits [7:4] of this bus are not used by the core when
the interface width is configured as 128 bits, and bits
[7:2] are not used when the interface width is
configured as 64 bits.

s_axis_rq_tvalid I 1

Requester reQuest Data Valid.
The user application must assert this output
whenever it is driving valid data on the
s_axis_rq_tdata bus. The user application must keep
the valid signal asserted during the transfer of a
packet. The core paces the data transfer using the
s_axis_rq_tready signal.

s_axis_rq_tready O 4

Requester reQuest Data Ready.
Activation of this signal by the core indicates that it is
ready to accept data. Data is transferred across the
interface when both s_axis_rq_tvalid and
s_axis_rq_tready are asserted in the same cycle.
If the core deasserts the ready signal when the valid
signal is High, the user application must maintain the
data on the bus and keep the valid signal asserted
until the core has asserted the ready signal.
You can assign all 4 bits to 1 or 0.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=19

Table 5: Requester Request Interface Port Descriptions (cont'd)

Port I/O Width Description

pcie_rq_seq_num0 O 6

Requester reQuest TLP transmit sequence number.
You can optionally use this output to track the
progress of the request in the core transmit pipeline.
To use this feature, provide a sequence number for
each request on the seq_num[3:0] bus. The core
outputs this sequence number on the
pcie_rq_seq_num0[3:0] output when the request TLP
has reached a point in the pipeline where a
Completion TLP from the user application cannot
pass it. This mechanism enables you to maintain
ordering between Completions sent to the CC
interface of the core and Posted requests sent to the
requester request interface. Data on the
pcie_rq_seq_num0[3:0] output is valid when
pcie_rq_seq_num_vld0 is High.

pcie_rq_seq_num_vld0 O 1

Requester reQuest TLP transmit sequence number
valid.
This output is asserted by the core for one cycle
when it has placed valid data on
pcie_rq_seq_num0[3:0].

pcie_rq_tag0
pcie_rq_tag1 O 10

Requester reQuest Non-Posted tag.
When tag management for Non-Posted requests is
performed by the core
(AXISTEN_IF_ENABLE_CLIENT_TAG is 0), this output is
used by the core to communicate the allocated tag
for each Non-Posted request received.
The tag value on this bus is valid for one cycle when
pcie_rq_tag_vld0 is High. You must copy this tag and
use it to associate the completion data with the
pending request.
There can be a delay of several cycles between the
transfer of the request on the s_axis_rq_tdata bus
and the assertion of pcie_rq_tag_vld0 by the core to
provide the allocated tag for the request. Meanwhile,
the user application can continue to send new
requests. The tags for requests are communicated
on this bus in FIFO order, so the user application can
easily associate the tag value with the request it
transferred.

pcie_rq_tag_vld0
pcie_rq_tag_vld1 O 1

Requester reQuest Non-Posted tag valid.
The core asserts this output for one cycle when it has
allocated a tag to an incoming Non-Posted request
from the requester request interface and placed it on
the pcie_rq_tag0 output.

When PASID_CAP_ON is enabled then s_axis_rq_tuser[84:62] pins are shared with cfg*
ports. The following table provides more information.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=20

Table 6: Sideband Signal Descriptions in s_axis_rq_tuser

Bit Index Name Width Description

3:0 first_be[3:0] 4

Byte enables for the first Dword.
This field must be set based on the desired value of the
First_BE bits in the Transaction-Layer header of the request
TLP. For Memory Reads,
I/O Reads, and Configuration Reads, these four bits indicate
the valid bytes to be read in the first Dword. For Memory
Writes, I/O Writes, and Configuration Writes, these bits
indicate the valid bytes in the first Dword of the payload.
The core samples this field in the first beat of a packet,
when s_axis_rq_tvalid and s_axis_rq_tready are both High.

7:4 last_be[3:0] 4

Byte enables for the last Dword.
This field must be set based on the desired value of the
Last_BE bits in the Transaction-Layer header of the TLP. For
Memory Reads of two Dwords or more, these four bits
indicate the valid bytes to be read in the last Dword of the
block of data. For Memory Reads and Writes of one DW
transfers and zero length transfers, these bits should be 0s.
For Memory Writes of two Dwords or more, these bits
indicate the valid bytes in the last Dword of the payload.
The core samples this field in the first beat of a packet,
when s_axis_rq_tvalid and s_axis_rq_tready are both High.

10:8 addr_offset[2:0] 3

When the address-aligned mode is in use on this interface,
the user application must provide the byte lane number
where the payload data begins on the data bus, modulo 4,
on this sideband bus. This enables the core to determine
the alignment of the data block being transferred.
The core samples this field in the first beat of a packet,
when s_axis_rq_tvalid and s_axis_rq_tready are both High.
When the requester request interface is configured in the
Dword-alignment mode, this field must always be set to 0.
In Root Port configuration, Configuration Packets must
always be aligned to DW0, and therefore for this type of
packets, this field must be set to 0 in both alignment modes.

11 discontinue 1

This signal can be asserted by the user application during a
transfer if it has detected an error in the data being
transferred and needs to abort the packet. The core nullifies
the corresponding TLP on the link to avoid data corruption.
You can assert this signal in any cycle during the transfer.
You can either choose to terminate the packet prematurely
in the cycle where the error was signaled, or continue until
all bytes of the payload are delivered to the core. In the
latter case, the core treats the error as sticky for the
following beats of the packet, even if the user application
deasserts the discontinue signal before the end of the
packet.
The discontinue signal can be asserted only when
s_axis_rq_tvalid is High. The core samples this signal only
when s_axis_rq_tready is High. Thus, when asserted, it
should not be deasserted until s_axis_rq_tready is High.
Discontinue is not supported for Non-Posted TLPs. The user
logic can assert this signal in any cycle except the first cycle
during the transfer.
When the core is configured as an Endpoint, this error is
also reported by the core to the Root Complex to which it is
attached, using Advanced Error Reporting (AER).

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=21

Table 6: Sideband Signal Descriptions in s_axis_rq_tuser (cont'd)

Bit Index Name Width Description

27:24 seq_num[3:0] 4

You can optionally supply a 4-bit sequence number in this
field to keep track of the progress of the request in the core
transmit pipeline. The core outputs this sequence number
on its pcie_rq_seq_num[3:0] output when the request TLP
has progressed to a point in the pipeline where a
Completion TLP is not able to pass it.
The core samples this field in the first beat of a packet,
when s_axis_rq_tvalid and s_axis_rq_tready are both High.
This input can be hardwired to 0 when the user application
is not monitoring the pcie_rq_seq_num[3:0] output of the
core.

59:28 parity 32

Odd parity for the 256-bit data.
When parity checking is enabled in the core, the user logic
must set bit i of this bus to the odd parity computed for byte
i of s_axis_rq_tdata. Only the lower 16 bits are used when
the interface width is 128 bits, and only the lower 8 bits are
used when the interface width is 64 bits.
When an interface parity error is detected, it is recorded as
an uncorrectable internal error and the packet is discarded.
According to the Base Spec 6.2.9 (PCI-SIG Specifications
(https://www.pcisig.com/specifications)), an uncorrectable
internal error is an error that occurs within a component
that results in improper operation of the component. The
only method of recovering from an uncorrectable internal
error is a reset or hardware replacement.
The parity bits can be permanently tied to 0 if parity check is
not enabled in the core.

61:60 seq_num[5:4] 2 Extension of seq_num as in [27:24].

62 PASID TLP Valid 1 Indicates PASID TLP is valid.

82:63 PASID 20 Indicates PASID TLP prefix.

83 Execute Requested 1 Indicates Execute Requested.

84 Privileged Mode Requested 1 Indicates Privileged Mode Requested.

Requester Completion Interface

The Requester Completion (RC) interface are the ports through which the completions received
from the link in response to your requests are presented to the user application. The following
table defines the ports in the RC interface of the core. In the Width column, DW denotes the
configured data bus width (64, 128, or 256 bits).

Table 7: Requester Completion Interface Port Descriptions

Port I/O Width Description

m_axis_rc_tdata O DW

Requester Completion Data bus.
Transmit data from the core requester completion interface
to the user application. Only the lower 128 bits are used
when the interface width is 128 bits, and only the lower 64
bits are used when the interface width is 64 bits.
Bits [255:128] are set permanently to 0 by the core when the
interface width is configured as 128 bits, and bits [255:64]
are set permanently to 0 when the interface width is
configured as 64 bits.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 22Send Feedback

https://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=22

Table 7: Requester Completion Interface Port Descriptions (cont'd)

Port I/O Width Description

m_axis_rc_tuser O 75

Requester Completion User Data.
This set of signals contains sideband information for the TLP
being transferred. These signals are valid when
m_axis_rc_tvalid is High.
The following table describes the individual signals in this
set.

m_axis_rc_tlast O 1

TLAST indication for Requester Completion Data.
The core asserts this signal in the last beat of a packet to
indicate the end of the packet. When a TLP is transferred in
a single beat, the core sets this bit in the first beat of the
transfer. This output is used only when the straddle option
is disabled. When the straddle option is enabled (for the
256-bit interface), the core sets this output permanently to
0.

m_axis_rc_tkeep O DW/32

TKEEP indication for Requester Completion Data.
The assertion of bit i of this bus during a transfer indicates
that Dword i of the m_axis_rc_tdata bus contains valid data.
The core sets this bit to 1 contiguously for all Dwords
starting from the first Dword of the descriptor to the last
Dword of the payload. Thus, m_axis_rc_tkeep sets to 1s in all
beats of a packet, except in the final beat when the total size
of the packet is not a multiple of the width of the data bus
(both in Dwords). This is true for both Dword-aligned and
address-aligned modes of payload transfer.
Bits [7:4] of this bus are set permanently to 0 by the core
when the interface width is configured as 128 bits, and bits
[7:2] are set permanently to 0 when the interface width is
configured as 64 bits.
These outputs are permanently set to all 1s when the
interface width is 256 bits and the straddle option is
enabled. The user logic must use the signals in
m_axis_rc_tuser in that case to determine the start and
end of Completion TLPs transferred over the interface.

m_axis_rc_tvalid O 1

Requester Completion Data Valid.
The core asserts this output whenever it is driving valid data
on the m_axis_rc_tdata bus. The core keeps the valid signal
asserted during the transfer of a packet. The user
application can pace the data transfer using the
m_axis_rc_tready signal.

m_axis_rc_tready I 1

Requester Completion Data Ready.
Activation of this signal by the user logic indicates to the
core that the user application is ready to accept data. Data is
transferred across the interface when both m_axis_rc_tvalid
and m_axis_rc_tready are asserted in the same cycle.
If the user application deasserts the ready signal when the
valid signal is High, the core maintains the data on the bus
and keeps the valid signal asserted until the user application
has asserted the ready signal.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=23

Table 8: Sideband Signal Descriptions in m_axis_rc_tuser

Bit Index Name Width Description

31:0 byte_en 32

The user logic can optionally use these byte enable bits to
determine the valid bytes in the payload of a packet being
transferred. The assertion of bit i of this bus during a
transfer indicates that byte i of the m_axis_rc_tdata bus
contains a valid payload byte. This bit is not asserted for
descriptor bytes.
Although the byte enables can be generated by user logic
from information in the request descriptor (address and
length), the logic has the option to use these signals directly
instead of generating them from other interface signals.
The 1 bit in this bus for the payload of a TLP is always
contiguous.
Bits [31:16] of this bus are set permanently to 0 by the core
when the interface width is configured as 128 bits, and bits
[31:8] are set permanently to 0 when the interface width is
configured as 64 bits. The byte enable bit is also set on
completions received in response to zero length memory
read requests.

32 is_sof_0 1

Start of a first Completion TLP.
For 64-bit and 128-bit interfaces, and for the 256-bit
interface with no straddling, is_sof_0 is asserted by the core
in the first beat of a packet to indicate the start of the TLP.
On these interfaces, only a single TLP can be started in a
data beat, and is_sof_1 is permanently set to 0. Use of this
signal is optional when the straddle option is not enabled.
When the interface width is 256 bits and the straddle option
is enabled, the core can straddle two Completion TLPs in the
same beat. In this case, the Completion TLPs are not
formatted as AXI4-Stream packets. The assertion of is_sof_0
indicates a Completion TLP starting in the beat. The first
byte of this Completion TLP is in byte lane 0 if the previous
TLP ended before this beat, or in byte lane 16 if the previous
TLP continues in this beat.

33 is_sof_1 1

This signal is used when the interface width is 256 bits and
the straddle option is enabled, when the core can straddle
two Completion TLPs in the same beat. The output is
permanently set to 0 in all other cases.
The assertion of is_sof_1 indicates a second Completion TLP
starting in the beat, with its first bye in byte lane 16. The
core starts a second TLP at byte position 16 only if the
previous TLP ended in one of the byte positions 0-15 in the
same beat; that is, only if is_eof_0[0] is also set in the same
beat.

37:34 is_eof_0[3:0] 4

End of a first Completion TLP and the offset of its last
Dword.
These outputs are used only when the interface width is 256
bits and the straddle option is enabled.
The assertion of the bit is_eof_0[0] indicates the end of a
first Completion TLP in the current beat. When this bit is set,
the bits is_eof_0[3:1] provide the offset of the last Dword of
this TLP.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=24

Table 8: Sideband Signal Descriptions in m_axis_rc_tuser (cont'd)

Bit Index Name Width Description

41:38 is_eof_1[3:0] 4

End of a second Completion TLP and the offset of its last
Dword.
These outputs are used only when the interface width is 256
bits and the straddle option is enabled. The core can then
straddle two Completion TLPs in the same beat. These
outputs are reserved in all other cases.
The assertion of is_eof_1[0] indicates a second TLP ending in
the same beat. When bit 0 of is_eof_1 is set, bits [3:1]
provide the offset of the last Dword of the TLP ending in this
beat. Because the second TLP can only end at a byte
position in the range 27–31, is_eof_1[3:1] can only take one
of two values (6 or 7).
The offset for the last byte of the second TLP can be
determined from the starting address and length of the TLP,
or from the byte enable signals byte_en[31:0].
If is_eof_1[0] is High, the signals is_eof_0[0] and is_sof_1
are also High in the same beat.

42 discontinue 1

This signal is asserted by the core in the last beat of a TLP, if
it has detected an uncorrectable error while reading the TLP
payload from its internal FIFO memory. The user application
must discard the entire TLP when such an error is signaled
by the core.
This signal is never asserted when the TLP has no payload.
It is asserted only in the last beat of the payload transfer;
that is, when is_eof_0[0] is High.
When the straddle option is enabled, the core does not start
a second TLP if it has asserted discontinue in a beat.
When the core is configured as an Endpoint, the error is also
reported by the core to the Root Complex to which it is
attached, using Advanced Error Reporting (AER).

74:43 parity 32

Odd parity for the 256-bit transmit data.
Bit i provides the odd parity computed for byte i of
m_axis_rc_tdata. Only the lower 16 bits are used when the
interface width is 128 bits, and only the lower 8 bits are used
when the interface width is 64 bits. Bits [31:16] are set
permanently to 0 by the core when the interface width is
configured as 128 bits, and bits [31:8] are set permanently
to 0 when the interface width is configured as 64 bits.

512-bit Interfaces

This section provides the description for ports associated with the user interfaces of the core.

Related Information

64/128/256-Bit Interfaces

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=25

Completer Request Interface

Table 9: Completer Request Interface Port Descriptions (512-bit Interface)

Name I/O Width Description

m_axis_cq_tdata O 512 Transmit data from the PCIe completer request interface to
the user application.

m_axis_cq_tuser O 229
This is a set of signals containing sideband information for
the TLP being transferred. These signals are valid when
m_axis_cq_tvalid is High. The individual signals in this set are
described in the following table.

m_axis_cq_tlast O 1

The core asserts this signal in the last beat of a packet to
indicate the end of the packet. When a TLP is transferred in
a single beat, the core sets this bit in the first beat of the
transfer. This output is used only when the straddle option
is disabled. When the straddle option is enabled, the core
sets this output permanently to 0.

m_axis_cq_tkeep O 16

The assertion of bit i of this bus during a transfer indicates
to the user logic that Dword i of the m_axis_cq_tdata bus
contains valid data. The core sets this bit to 1 contiguously
for all Dwords starting from the first Dword of the
descriptor to the last Dword of the payload. Thus,
m_axis_cq_tdata is set to all 1s in all beats of a packet, except
in the final beat when the total size of the packet is not a
multiple of the width of the data bus (both in Dwords). This
is true for both Dword-aligned and 128b address-aligned
modes of payload transfer.
The tkeep bits are valid only when straddle is not enabled
on the CQ interface. When straddle is enabled, the tkeep
bits are permanently set to all 1s in all beats. The user logic
must use the is_sop/is_eop signals in the m_axis_cq_tuser
bus in that case to determine the start and end of TLPs
transferred over the interface.

m_axis_cq_tvalid O 1

The core asserts this output whenever it is driving valid data
on the m_axis_cq_tdata bus. The core keeps the valid signal
asserted during the transfer of a packet. The user
application can pace the data transfer using the
m_axis_cq_tready signal.

m_axis_cq_tready I 1

Activation of this signal by the user logic indicates to the
PCIe core that the user logic is ready to accept data. Data is
transferred across the interface when both m_axis_cq_tvalid
and m_axis_cq_tready are asserted in the same cycle.
If the user logic deasserts the ready signal when
m_axis_cq_tvalid is High, the core maintains the data on the
bus and keeps the valid signal asserted until the user logic
has asserted the ready signal.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=26

Table 9: Completer Request Interface Port Descriptions (512-bit Interface) (cont'd)

Name I/O Width Description

pcie_cq_np_req I 2

This input is used by the user application to request the
delivery of a Non-Posted request. The core implements a
credit-based flow control mechanism to control the delivery
of Non-Posted requests across the interface, without
blocking Posted TLPs.
This input to the core controls an internal credit count. The
credit count is updated in each clock cycle based on the
setting of pcie_cq_np_req[1:0] as follows:
• 00: No change
• 01: Increment by 1
• 10 or 11: Increment by 2
The credit count is decremented on the delivery of each
Non-Posted request across the interface. The core
temporarily stops delivering Non-Posted requests to the
user logic when the credit count is zero. It continues to
deliver any Posted TLPs received from the link even when
the delivery of Non-Posted requests has been paused.
The user application can either set pcie_cq_np_req[1:0] in
each cycle based on the status of its Non-Posted request
receive buffer, or can set it to 11 permanently if it does not
need to exercise selective backpressure on Non-Posted
requests.
The setting of pcie_cq_np_req[1:0] does not need to be
aligned with the packet transfers on the completer request
interface.

pcie_cq_np_req_count O 6

This output provides the current value of the credit count
maintained by the core for delivery of Non-Posted requests
to the user logic. The core delivers a Non-Posted request
across the completer request interface only when this credit
count is non-zero. This counter saturates at a maximum
limit of 32.
Because of internal pipeline delays, there can be several
cycles of delay between the user application providing credit
on the pcie_cq_np_req[1:0] inputs and the PCIe core
updating the pcie_cq_np_req_count output in response.
This count resets on user_reset and de-assertion of
user_lnk_up.

When PASID_CAP_ON is enabled then m_axis_cq_tuser[228:183] pins are specific to
passing PASID field information. In all other cases those fields are reserved. The following table
provides more information.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=27

Table 10: Sideband Signals in m_axis_cq_tuser (512-bit Interface)

Bit Index Name Width Description

7:0 first_be[7:0] 8

Byte enables for the first Dword of the payload. first_be[3:0]
reflects the setting of the First Byte Enable bits in the
Transaction-Layer header of the first TLP in this beat; and
first_be[7:4] reflects the setting of the First Byte Enable bits
in the Transaction-Layer header of the second TLP in this
beat. For Memory Reads and I/O Reads, the 4 bits indicate
the valid bytes to be read in the first Dword. For Memory
Writes and I/O Writes, these bits indicate the valid bytes in
the first Dword of the payload. For Atomic Operations and
Messages with a payload, these bits are set to all 1s.
Bits [7:4] of first_be are valid only when straddle is enabled
on the CQ interface. When straddle is disabled, these bits
are permanently set to 0s.
This field is valid in the first beat of a packet. first_be[3:0] is
valid when m_axis_cq_tvalid and is_sop[0] are both asserted
High. first_be[7:4] is valid when m_axis_cq_tvalid and
is_sop[1] are both asserted High.

15:8 last_be[7:0] 8

Byte enables for the last Dword of the payload. last_be[3:0]
reflects the setting of the Last Byte Enable bits in the
Transaction-Layer header of the first TLP in this beat; and
last_be[7:4] reflects the setting of the Last Byte Enable bits
in the Transaction-Layer header of the second TLP in this
beat. For Memory Reads, the 4 bits indicate the valid bytes
to be read in the last Dword of the block of data. For
Memory Writes, these bits indicate the valid bytes in the
ending Dword of the payload. For Memory Reads and Writes
of one DW transfers and zero length transfers, these bits
should be 0s. For Atomic Operations and Messages with a
payload, these bits are set to all 1s.
Bits [7:4] of last_be are valid only when straddle is enabled
on the CQ interface. When straddle is disabled, these bits
are permanently set to 0s.
This field is valid in the first beat of a packet. last_be[3:0] is
valid when m_axis_cq_tvalid and is_eop[0] are both asserted
High. last_be[7:4] is valid when m_axis_cq_tvalid and
is_eop[1] are both asserted High.

79:16 byte_en[63:0] 64

The user logic can optionally use these byte enable bits to
determine the valid bytes in the payload of a packet being
transferred The assertion of bit i of this bus during a
transfer indicates to the user logic that byte i of the
m_axis_cq_tdata bus contains a valid payload byte. This bit is
not asserted for descriptor bytes.
Although the byte enables can be generated by user logic
from information in the request descriptor (address and
length), as well as the settings of the first_be and last_be
signals, the user logic has the option of using these signals
directly instead of generating them from other interface
signals.
When the payload size is more than 2 Dwords (8 bytes), the
first bits on this bus for the payload are always contiguous.
When the payload size is 2 Dwords or less, the first bits
might be non-contiguous.
For the special case of a zero-length memory write
transaction defined by the PCI ExpressSpecifications, the
byte_en bits are all 0 when the associated 1 Dword payload
is being transferred.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=28

Table 10: Sideband Signals in m_axis_cq_tuser (512-bit Interface) (cont'd)

Bit Index Name Width Description

81:80 is_sop[1:0] 2

Signals the start of a new TLP in this beat. These outputs are
set in the first beat of a TLP. When straddle is disabled, only
is_sop[0] is valid and is_sop[1] is permanently set to 0. When
straddle is enabled, the settings are as follows:
• 00: No new TLP starting in this beat.
• 01: A single new TLP starts in this beat. Its start position

is indicated by is_sop0_ptr[1:0].
• 11: Two new TLPs are starting in this beat.

is_sop0_ptr[1:0] provides the start position of the first
TLP and is_sop1_ptr[1:0] provides the start position of
the second TLP.

• 10: Reserved.
Use of this signal is optional for the user logic when the
straddle option is disabled, because a new TLP always starts
in the beat following tlast assertion.

83:82 is_sop0_ptr[1:0] 2

Indicates the position of the first byte of the first TLP
starting in this beat:
• 00: Byte lane 0
• 10: Byte lane 32
• 01, 11: Reserved
This field is valid only when the straddle option is enabled
on the CQ interface. Otherwise, it is set to 0 permanently, as
a TLP can only start in bye lane 0.

85:84 is_sop1_ptr[1:0] 2

Indicates the position of the first byte of the second TLP
starting in this beat:
• 10: Byte lane 32
• 00, 01, 11: Reserved.
This output is used only when the straddle option is enabled
on the CQ interface. The core can then straddle two TLPs in
the same beat. The output is permanently set to 0 when
straddle is disabled.

87:86 is_eop[1:0] 2

Indicates that a TLP is ending in this beat. These outputs are
set in the final beat of a TLP. When straddle is disabled, only
is_eop[0] is valid and is_eop[1] is permanently set to 0.
When straddle is enabled, the settings are as follows:
• 00: No TLPs ending in this beat.
• 01: A single TLP is ending in this beat. is_eop0_ptr[3:0]

provides the offset of the last Dword of this TLP.
• 11: Two TLPs are ending in this beat. is_eop0_ptr[3:0]

provides the offset of the last Dword of the first TLP and
is_eop1_ptr[3:0]provides the offset of the last Dword of
the second TLP.

• 10: Reserved.
The use of this signal is optional for the user logic when the
straddle option is not enabled, because tlast Is asserted in
the final beat of a TLP.

91:88 is_eop0_ptr[3:0] 4 Offset of the last Dword of the first TLP ending in this beat.
This output is valid when is_eop[0] is asserted.

95:92 is_eop1_ptr[3:0] 4

Offset of the last Dword of the second TLP ending in this
beat. This output is valid when is_eop[1] is asserted.
The output is permanently set to 0 when straddle is
disabled.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=29

Table 10: Sideband Signals in m_axis_cq_tuser (512-bit Interface) (cont'd)

Bit Index Name Width Description

96 discontinue 1

This signal is asserted by the core in the last beat of a TLP, if
it has detected an uncorrectable error while reading the TLP
payload from its internal FIFO memory. The user application
must discard the entire TLP when such an error is signaled
by the core.
This signal is never asserted when the TLP has no payload.
It is asserted only in the last beat of the payload transfer,
that is when is_eop[0] is High.
When the straddle option is enabled, the core does not start
a second TLP if it has asserted discontinue in a beat.
When the core is configured as an Endpoint, the error is also
reported by the core to the Root Complex it is attached to,
using Advanced Error Reporting (AER).

182:119 parity 64 Odd parity for the 512-bit transmit data. Bit i provides the
odd parity computed for byte i of m_axis_cq_tdata.

183 PASID TLP Valid 0 1 Indicates PASID TLP 0 is valid.

184 PASID TLP Valid 1 1 Indicates PASID TLP 1 is valid.

204:185 PASID 0 20 Indicates PASID TLP Prefix for packet0 to the user design.

224:205 PASID 1 20 Indicates PASID TLP Prefix for packet1 to the user design.

225 Execute Requested 0 1 Indicates Execute Requested for packet0

226 Execute Requested 1 1 Indicates Execute Requested for packet1

227 Privileged Mode Requested 0 1 Indicates Privileged Mode Requested for packet0 to the user
design.

228 Privileged Mode Requested 1 1 Indicates Privileged Mode Requested for packet 1 to the
user design.

Completer Completion Interface

Table 11: Completer Completion Interface Port Descriptions (512-bit Interface)

Name I/O Width Description
s_axis_cc_tdata I 512 Completion data from the user application to the PCIe core.

s_axis_cc_tuser I 183

This is a set of signals containing sideband information for
the TLP being transferred. These signals are valid when
s_axis_cc_tvalid is High.
The individual signals in this set are described in the
following table.

s_axis_cc_tlast I 1

The user application must assert this signal in the last cycle
of a packet to indicate the end of the packet. When the TLP
is transferred in a single beat, the user application must set
this bit in the first cycle of the transfer.
This input is used by the core only when the straddle option
is disabled. When the straddle option is enabled, the core
ignores the setting of this input, using instead the is_sop/
is_eop signals in the s_axis_cc_tuser bus to determine the
start and end of TLPs.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=30

Table 11: Completer Completion Interface Port Descriptions (512-bit Interface) (cont'd)

Name I/O Width Description

s_axis_cc_tkeep I 16

The assertion of bit i of this bus during a transfer indicates
to the core that Dword i of the s_axis_cc_tdata bus contains
valid data. The user logic must set this bit to 1 contiguously
for all Dwords starting from the first Dword of the
descriptor to the last Dword of the payload. Thus,
s_axis_cc_tdata must be set to all 1s in all beats of a packet,
except in the final beat when the total size of the packet is
not a multiple of the width of the data bus (both in Dwords).
This is true for both Dword-aligned and 128b address-
aligned modes of payload transfer.
The tkeep bits are valid only when straddle is not enabled
on the CC interface. When straddle is enabled, the core
ignores the setting of these bits when receiving data across
the interface. The user logic must set the is_sop/is_eop
signals in the s_axis_cc_tuser bus in that case to signal the
start and end of TLPs transferred over the interface.

s_axis_cc_tvalid I 1

The user application must assert this output whenever it is
driving valid data on the s_axis_cc_tdata bus. The user
application must keep the valid signal asserted during the
transfer of a packet. The core paces the data transfer using
the s_axis_cc_tready signal.

s_axis_cc_tready O 4

Activation of this signal by the PCIe core indicates that it is
ready to accept data. Data is transferred across the interface
when both s_axis_cc_tvalid and s_axis_cc_tready are asserted
in the same cycle.
If the core deasserts the ready signal when the valid signal
is High, the user logic must maintain the data on the bus
and keep the valid signal asserted until the core has
asserted the ready signal.
With this output port, each bit indicates the same value, so
the user logic can use any of the bit.

Table 12: Sideband Signals in s_axis_cc_tuser

Bit Index Name Width Description

1:0 is_sop[1:0] 2

Signals the start of a new TLP in this beat. These outputs are
set in the first beat of a TLP. When straddle is disabled, only
is_sop[0] is valid. When straddle is enabled, the settings are
as follows:
• 00: No new TLP starting in this beat.
• 01: A single new TLP starts in this beat. Its start position

is indicated by is_sop0_ptr[1:0].
• 11: Two new TLPs are starting in this beat.

is_sop0_ptr[1:0] provides the start position of the first
TLP and is_sop1_ptr[1:0] provides the start position of
the second TLP.

• 10: Reserved.
This field is used by the core only when the straddle option
is enabled. When straddle is disabled, the core uses tlast to
determine the first beat of an incoming TLP.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=31

Table 12: Sideband Signals in s_axis_cc_tuser (cont'd)

Bit Index Name Width Description

3:2 is_sop0_ptr[1:0] 2

Indicates the position of the first byte of the first TLP
starting in this beat:
• 00: Byte lane 0
• 10: Byte lane 32
• 01, 11: Reserved
This field is used by the core only when the straddle option
is enabled. When straddle is disabled, the user logic must
always start a TLP in byte lane 0.

5:4 is_sop1_ptr[1:0] 2

Indicates the position of the first byte of the second TLP
starting in this beat:
• 10: Byte lane 32
• 00, 01, 11: Reserved.
This input is used only when the straddle option is enabled
on the CC interface. The user can then straddle two TLPs in
the same beat.

7:6 is_eop[1:0] 2

Signals that a TLP is ending in this beat. These outputs are
set in the final beat of a TLP. When straddle is disabled, only
is_eop[0] is valid. When straddle is enabled, the settings are
as follows:
• 00: No TLPs ending in this beat.
• 01: A single TLP is ending in this beat. is_eop0_ptr[3:0]

provides the offset of the last Dword of this TLP.
• 11: Two TLPs are ending in this beat. is_eop0_ptr[3:0]

provides the offset of the last Dword of the first TLP and
is_eop1_ptr[3:0] provides the offset of the last Dword of
the second TLP.

• 10: Reserved.
This field is used by the core only when the straddle option
is enabled. When straddle is disabled, the core uses tlast
and tkeep to determine the ending beat and position of
EOP.

11:8 is_eop0_ptr[3:0] 4

Offset of the last Dword of the first TLP ending in this beat.
This output is valid when is_eop[0] is asserted.
This field is used by the core only when the straddle option
is enabled.

15:12 is_eop1_ptr[3:0] 4

Offset of the last Dword of the second TLP ending in this
beat. This output is valid when is_eop[1] is asserted.
This field is used by the core only when the straddle option
is enabled.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=32

Table 12: Sideband Signals in s_axis_cc_tuser (cont'd)

Bit Index Name Width Description

16 discontinue 1

This signal can be asserted by the user application during a
transfer if it has detected an error (such as an uncorrectable
ECC error while reading the payload from memory) in the
data being transferred and needs to abort the packet. The
core nullifies the corresponding TLP on the link to avoid
data corruption.
The user logic can assert this signal in any beat during the
transfer except the first beat of the TLP. It can either choose
to terminate the packet prematurely in the cycle where the
error was signaled, or continue until all bytes of the payload
are delivered to the core. In the latter case, the core treats
the error as sticky for the following beats of the packet, even
if the user logic deasserts the discontinue signal before the
end of the packet.
The discontinue signal can be asserted only when
s_axis_cc_tvalid is High. The core samples this signal only
when s_axis_cc_tready is High. Thus, once asserted, it should
not be deasserted until s_axis_cc_tready is High.
When the straddle option is enabled on the CC interface, the
user should not start a new TLP in the same beat when a
TLP is ending with discontinue asserted.
When the core is configured as an Endpoint, this error is
also reported by the core to the Root Complex it is attached
to, using Advanced Error Reporting (AER).

80:17 parity 64

Odd parity for the 256-bit data. When parity checking is
enabled in the core, user logic must set bit i of this bus to
the odd parity computed for byte i of s_axis_cc_tdata.
On detection of a parity error, the core nullifies the
corresponding TLP on the link and reports it as an
Uncorrectable Internal Error.
The parity bits can be permanently tied to 0 if parity check is
not enabled in the core.

Requester Request Interface

Table 13: Requester Request Interface Port Descriptions (512-bit Interface)

Name I/O Width Description

s_axis_rq_tdata I 512 Requester-side request data from the user application to
the PCIe core.

s_axis_rq_tuser I 137
This is a set of signals containing sideband information for
the TLP being transferred. These signals are valid when
s_axis_rq_tvalid is High. The individual signals in this set are
described in the following table.

s_axis_rq_tlast I 1

The user application must assert this signal in the last cycle
of a TLP to indicate the end of the packet. When the TLP is
transferred in a single beat, the user logic must set this bit
in the first cycle of the transfer.
This input is used by the core only when the straddle option
is disabled. When the straddle option is enabled, the core
ignores the setting of this input, using instead the is_sop/
is_eop signals in the s_axis_rq_tuser bus to determine the
start and end of TLPs.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=33

Table 13: Requester Request Interface Port Descriptions (512-bit Interface) (cont'd)

Name I/O Width Description

s_axis_rq_tkeep I 16

The assertion of bit i of this bus during a transfer indicates
to the core that Dword i of the s_axis_rq_tdata bus contains
valid data. The user logic must set this bit to 1 contiguously
for all Dwords starting from the first Dword of the
descriptor to the last Dword of the payload. Thus,
s_axis_rq_tdata must be set to all 1s in all beats of a packet,
except in the final beat when the total size of the packet is
not a multiple of the width of the data bus (both in Dwords).
This is true for both Dword-aligned and 128b address-
aligned modes of payload transfer.
The tkeep bits are valid only when straddle is not enabled
on the RQ interface. When straddle is enabled, the core
ignores the setting of these bits when receiving data across
the interface. The user logic must set the is_sop/is_eop
signals in the s_axis_rq_tuser bus in that case to signal the
start and end of TLPs transferred over the interface.

s_axis_rq_tvalid I 1

The user application must assert this output whenever it is
driving valid data on the s_axis_rq_tdata bus. The user
application must keep the valid signal asserted during the
transfer of a packet. The core paces the data transfer using
the s_axis_rq_tready signal.

s_axis_rq_tready O 4

Activation of this signal by the PCIe core indicates that it is
ready to accept data. Data is transferred across the interface
when both s_axis_rq_tvalid and s_axis_rq_tready are
asserted in the same cycle.
If the core deasserts the ready signal when the valid signal
is High, the user logic must maintain the data on the bus
and keep the valid signal asserted until the core has
asserted the ready signal.
With this output port, each bit indicates the same value, so
the user logic can use any of the bit.

pcie_rq_tag_vld0 O 1

The core asserts this output for one cycle when it has
allocated a tag to an incoming Non-Posted request from the
requester request interface and placed it on the
pcie_rq_tag0 output. The bit is encoded as follows:
• 0: No tags being provided in this cycle.
• 1: A tag is presented on pcie_rq_tag0.

pcie_rq_tag_vld1 O 1

The core asserts this output for one cycle when it has
allocated a tag to an incoming Non-Posted request from the
requester request interface and placed it on the
pcie_rq_tag1 output. The bit is encoded as follows:
• 0: No tag is provided on pcie_rq_tag1 in this cycle.
• 1: A tag is presented on pcie_rq_tag1.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=34

Table 13: Requester Request Interface Port Descriptions (512-bit Interface) (cont'd)

Name I/O Width Description

pcie_rq_tag0 O 10

When tag management for Non-Posted requests is
performed by the core (Enable Client Tag is unchecked in
the IP customization GUI), this output is used by the core to
communicate the allocated tag for each Non-Posted request
received from the client. The tag value on pcie_rq_tag0 is
valid for one cycle when pcie_rq_tag_vld0 is High. The client
must copy this tag and use it to associate the completion
data with the pending request.
There can be a delay of several cycles between the transfer
of the request on the s_axis_rq_tdata bus and the assertion
of pcie_rq_tag_vld0 by the core to provide the allocated tag
for the request. The client can, meanwhile, continue to send
new requests. The tags for requests are communicated on
this bus in FIFO order. Therefore, the user application must
associate the allocated tags with the requests in the order in
which the requests were transferred over the interface.
When pcie_rq_tag0 and pcie_rq_tag1 are both valid in the
same cycle, the value on pcie_rq_tag0 corresponds to the
earlier of the two requests transferred over the interface.

pcie_rq_tag1 O 10
The description of this signal is the same as pcie_rq_tag0,
except the tag value on pcie_rq_tag1 is valid for one cycle
when pcie_rq_tag_vld1 is asserted.

pcie_rq_seq_num0 O 6

The user may optionally use this output to keep track of the
progress of the request in the core's transmit pipeline. To
use this feature, the user application must provide a
sequence number for each request on the
s_axis_rq_seq_num0[5:0] bus. The core outputs this
sequence number on the pcie_rq_seq_num0[5:0] output
when the request TLP has progressed to a point in the
pipeline where a Completion TLP from the client will not be
able to pass it. This mechanism enables the client to
maintain ordering between Completions sent to the
completer completion interface of the core and Posted
requests sent to the requester request interface.
Data on the pcie_rq_seq_num0[5:0] output is valid when
pcie_rq_seq_num_ vld0 is High.

pcie_rq_seq_num1 O 6

This output is identical in function to that of
pcie_rq_seq_num0. It is used to provide a second sequence
number in the same cycle when a first sequence number is
being presented on pcie_rq_seq_num0.
Data on the pcie_rq_seq_num1[5:0] output is valid when
pcie_rq_seq_num_ vld1 is High.

pcie_rq_seq_num_vld0 O 1 This output is asserted by the core for one cycle when it has
placed valid data on pcie_rq_seq_num0[5:0].

pcie_rq_seq_num_vld1 O 1 This output is asserted by the core for one cycle when it has
placed valid data on pcie_rq_seq_num1[5:0].

When PASID_CAP_ON is enabled then s_axis_rq_tuser [182:137] pins are shared with cfg* ports.
Look in the table below for more info.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=35

Table 14: Sideband Signals in s_axis_rq_tuser (512-bit Interface)

Bit Index Name Width Description

7:0 first_be[7:0] 8

Byte enables for the first Dword. This field must be set
based on the desired value of the First_BE bits in the
Transaction-Layer header of the request TLP. first_be[3:0]
corresponds to the byte enables for the first TLP starting in
this beat, and first_be[7:4] corresponds to the byte enables
for the second TLP starting in this beat (if present).
For Memory Reads, I/O Reads and Configuration Reads,
these 4 bits indicate the valid bytes to be read in the first
Dword. For Memory Writes, I/O Writes and Configuration
Writes, these bits indicate the valid bytes in the first Dword
of the payload.
The core samples this field in the first beat of a packet,
when s_axis_rq_tvalid and s_axis_rq_tready are both High.

15:8 last_be[7:0] 8

Byte enables for the last Dword.
This field must be set based on the desired value of the
Last_BE bits in the Transaction-Layer header of the TLP.
last_be[3:0] corresponds to the byte enables for the first TLP
starting in this beat, and last_be[7:4] corresponds to the
byte enables for the second TLP starting in this beat (if
present).
For Memory Reads and Writes of one DW transfers and zero
length transfers, these bits should be 0s.
For Memory Reads of 2 Dwords or more, these 4 bits
indicate the valid bytes to be read in the last Dword of the
block of data. For Memory Writes of 2 Dwords or more,
these bits indicate the valid bytes in the last Dword of the
payload.
The core samples this field in the first beat of a packet,
when s_axis_rq_tvalid and s_axis_rq_tready are both High.

19:16 addr_offset[3:0] 4

When 128b the address-aligned mode is in use on this
interface, the user application must provide the offset
where the payload data begins (in multiples of 4 bytes) on
the data bus on this sideband bus. This enables the core to
determine the alignment of the data block being
transferred.
addr_offset[1:0] corresponds to the offset for the first TLP
starting in this beat, and addr_offset[3:2] is reserved for
future use.
The core samples this field in the first beat of a packet,
when s_axis_rq_tvalid and s_axis_rq_tready are both High.
When the requester request interface is configured in the
Dword-alignment mode, these bits must always be set to 0.

21:20 is_sop[1:0] 2

Signals the start of a new TLP in this beat. These outputs are
set in the first beat of a TLP. When straddle is disabled, only
is_sop[0] is valid. When straddle is enabled, the settings are
as follows:
• 00: No new TLP starting in this beat.
• 01: A single new TLP starts in this beat. Its start position

is indicated by is_sop0_ptr[1:0].
• 11: Two new TLPs are starting in this beat.

is_sop0_ptr[1:0] provides the start position of the first
TLP and is_sop1_ptr[1:0] provides the start position of
the second TLP.

• 10: Reserved.
Use of this signal is optional for the user logic when the
straddle option is not enabled, because a new TLP always
starts in the beat following tlast assertion.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=36

Table 14: Sideband Signals in s_axis_rq_tuser (512-bit Interface) (cont'd)

Bit Index Name Width Description

23:22 is_sop0_ptr[1:0] 2

Indicates the position of the first byte of the first TLP
starting in this beat:
• 00: Byte lane 0
• 10: Byte lane 32
• 01, 11: Reserved

25:24 is_sop1_ptr[1:0] 2

Indicates the position of the first byte of the second TLP
starting in this beat:
• 10: Byte lane 32
• 00, 01, 11: Reserved.
This output is used only when the straddle option is enabled
on the interface.

27:26 is_eop[1:0] 2

Signals that a TLP is ending in this beat. These outputs are
set in the final beat of a TLP. When straddle is disabled, only
is_eop[0] is valid. When straddle is enabled, the settings are
as follows:
• 00: No TLPs ending in this beat.
• 01: A single TLP is ending in this beat. is_eop0_ptr[3:0]

provides the offset of the last Dword of this TLP.
• 11: Two TLPs are ending in this beat. is_eop0_ptr[3:0]

provides the offset of the last Dword of the first TLP and
is_eop1_ptr[3:0] provides the offset of the last Dword of
the second TLP.

• 10: Reserved.
Use of this signal is optional for the user logic when the
straddle option is not enabled, because tlast Is asserted in
the final beat of a TLP.

31:28 is_eop0_ptr[3:0] 4 Offset of the last Dword of the first TLP ending in this beat.
This output is valid when is_eop[0] is asserted.

35:32 is_eop1_ptr[3:0] 4 Offset of the last Dword of the second TLP ending in this
beat. This output is valid when is_eop[1] is asserted.

36 discontinue 1

This signal can be asserted by the user application during a
transfer if it has detected an error in the data being
transferred and needs to abort the packet. The core nullifies
the corresponding TLP on the link to avoid data corruption.
The user logic can assert this signal in any beat of a TLP
except the first beat during its transfer. It can either choose
to terminate the packet prematurely in the cycle where the
error was signaled, or continue until all bytes of the payload
are delivered to the core. In the latter case, the core treats
the error as sticky for the following beats of the packet, even
if the user logic deasserts the discontinue signal before the
end of the packet.
The discontinue signal can be asserted only when
s_axis_rq_tvalid is High. The core samples this signal only
when s_axis_rq_tready is High. Thus, once asserted, it should
not be deasserted until s_axis_rq_tready is High.
When the straddle option is enabled on the RQ interface,
the user should not start a new TLP in the same beat when a
TLP is ending with discontinue asserted.
When the core is configured as an Endpoint, this error is
also reported by the core to the Root Complex it is attached
to, using Advanced Error Reporting (AER).

60:37 reserved TPH ports are reserved.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=37

Table 14: Sideband Signals in s_axis_rq_tuser (512-bit Interface) (cont'd)

Bit Index Name Width Description

66:61 seq_num0[5:0] 6

The user logic can optionally supply a 6-bit sequence
number in this field to keep track of the progress of the
request in the core’s transmit pipeline. The core outputs this
sequence number on its pcie_rq_seq_num0 or
pcie_rq_seq_num1 output when the request TLP has
progressed to a point in the pipeline where a Completion
TLP from the user logic is not able to pass it.
The core samples this field in the first beat of a packet,
when s_axis_rq_tvalid and s_axis_rq_tready are both High.
This input can be hardwired to 0 when the user logic is not
monitoring the pcie_rq_seq_num* outputs of the core.

72:67 seq_num1[5:0] 6

If there is a second TLP starting in the same beat, the user
logic can optionally provide a 6-bit sequence number for
this TLP on this input. This sequence number is used in the
same manner as seq_num0.
The core samples this field in the first beat of a packet,
when s_axis_rq_tvalid and s_axis_rq_tready are both High.
This input can be hardwired to 0 when the user logic is not
monitoring the pcie_rq_seq_num* outputs of the core.

136:73 parity 64

Odd parity for the 512-bit data. When parity checking is
enabled in the core, user logic must set bit i of this bus to
the odd parity computed for byte i of s_axis_rq_tdata.
On detection of a parity error, the core nullifies the
corresponding TLP on the link and reports it as an
Uncorrectable Internal Error.
These bits can be set to 0 if parity checking is disabled in the
core.

137 PASID TLP Valid 0 1 Indicates PASID TLP is valid for packet 0.
pcie_posted_req_delivered is repurposed to pass PASID TLP
VALID0 information from the user design.

138 PASID TLP Valid 1 1 Indicates PASID TLP is valid for packet 1.
pcie_cq_pipeline_empty is repurposed to pass PASID TLP
VALID1 information from the user design.

158:139 PASID 0 20 Indicates PASID TLP Prefix for packet 0.
Repurpose the following signals to pass PASID 0
information from the user design.
[139]: pcie_cq_np_user_credit_rcvd.
[141:140]: pcie_compl_delivered.
[149:142]: pcie_compl_delivered_tag0.
[157:150]: pcie_compl_delivered_tag1.
user_spare_in[0]: tl_rx_posted_credit_released.

178:159 PASID 1 20 Indicates PASID TLP Prefix for packet 1.
Repurpose the following list of signals to pass PASID 1
information from the user design.
user_spare_in[20:1] indexed as below:
[165:159]: tl_rx_posted_payload_credit_released_value.
[166]: tl_rx_nonposted_credit_released.
[168:167]: tl_rx_nonposted_payload_credit_released_value.
[169]: tl_rx_compl_credit_released.
[171:170]: tl_rx_compl_header_credit_released_value.
[178:172]: tl_rx_compl_payload_credit_released_value.

179 Execute Requested 0 1 Indicates Execute Requested for packet 0.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=38

Table 14: Sideband Signals in s_axis_rq_tuser (512-bit Interface) (cont'd)

Bit Index Name Width Description
180 Execute Requested 1 1 Indicates Execute Requested for packet 1.

181 Privileged Mode Requested 0 1 Indicates Privileged Mode Requested for packet 0.

182 Privileged Mode Requested 1 1 Indicates Privileged Mode Requested for packet 1.

Requester Completion Interface

Table 15: Requester Completion Interface Port Descriptions (512-bit Interface)

Name I/O Width Description

m_axis_rc_tdata O 512 Transmit data from the PCIe requester completion interface
to the user application.

m_axis_rc_tuser O 161
This is a set of signals containing sideband information for
the TLP being transferred. These signals are valid when
m_axis_rc_tvalid is High. The individual signals in this set are
described in the following table.

m_axis_rc_tlast O 1

The core asserts this signal in the last beat of a packet to
indicate the end of the packet. When a TLP is transferred in
a single beat, the core sets this bit in the first beat of the
transfer. This output is used only when the straddle option
is disabled. When the straddle option is enabled, the core
sets this output permanently to 0.

m_axis_rc_tkeep O 16

The assertion of bit i of this bus during a transfer indicates
to the user logic that Dword i of the m_axis_rc_tdata bus
contains valid data. The core sets this bit to 1 contiguously
for all Dwords starting from the first Dword of the
descriptor to the last Dword of the payload. Thus,
m_axis_rc_tkeep is set to all 1s in all beats of a packet, except
in the final beat when the total size of the packet is not a
multiple of the width of the data bus (both in Dwords). This
is true for both Dword-aligned and address-aligned modes
of payload transfer.
These outputs are permanently set to all 1s when the
straddle option is enabled. The user logic must use the
signals in m_axis_rc_tuser in that case to determine the start
and end of Completion TLPs transferred over the interface.

m_axis_rc_tvalid O 1

The core asserts this output whenever it is driving valid data
on the m_axis_rc_tdata bus. The core keeps the valid signal
asserted during the transfer of a packet. The user
application can pace the data transfer using the
m_axis_rc_tready signal.

m_axis_rc_tready I 1

Activation of this signal by the user logic indicates to the
PCIe core that the user logic is ready to accept data. Data is
transferred across the interface when both m_axis_rc_tvalid
and m_axis_rc_tready are asserted in the same cycle.
If the user logic deasserts the ready signal when the valid
signal is High, the core maintains the data on the bus and
keep the valid signal asserted until the user logic has
asserted the ready signal.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=39

Table 16: Sideband Signals in m_axis_rc_tuser (512-bit Interface)

Bit Index Name Width Description

63:0 byte_en 64

The client logic may optionally use these byte enable bits to
determine the valid bytes in the payload of a packet being
transferred. The assertion of bit i of this bus during a
transfer indicates to the client that byte i of the
m_axis_cq_tdatabuscontains a valid payload byte. This bit is
not asserted for descriptor bytes.
Although the byte enables can be generated by client logic
from information in the request descriptor (address and
length), the client has the option of using these signals
directly instead of generating them from other interface
signals. The 1 bits in this bus for the payload of a TLP are
always contiguous.

67:64 is_sop[3:0] 4

Signals the start of a new TLP in this beat. These outputs are
set in the first beat of a TLP. When straddle is disabled, only
is_sop[0] is valid and is_sop[3:1] are permanently set to 0.
When straddle is enabled, the settings are as follows:
• 0000: No new TLP starting in this beat.
• 0001: A single new TLP starts in this beat. ts start

position is indicated by is_sop0_ptr[1:0].
• 0011: Two new TLPs are starting in this beat.

is_sop0_ptr[1:0] provides the start position of the first
TLP and is_sop1_ptr[1:0] provides the start position of
the second TLP.

• 0111: Three new TLPs are starting in this beat.
is_sop0_ptr[1:0] provides the start position of the first
TLP, is_sop1_ptr[1:0] provides the start position of the
second TLP, and is_sop2_ptr[1:0] provides the start
position of the third TLP.

• 1111: Four new TLPs are starting in this beat.
is_sop0_ptr[1:0] provides the start position of the first
TLP, is_sop1_ptr[1:0] provides the start position of the
second TLP, is_sop2_ptr[1:0] provides the start position
of the third TLP, and is_sop3_ptr[1:0] provides the start
position of the fourth TLP.

• All other settings are reserved.
Use of this signal is optional for the client when the straddle
option is not enabled, because a new TLP always starts in
the beat following m_axis_rc_tlast assertion.

69:68 is_sop0_ptr[1:0] 2

Indicates the position of the first byte of the first TLP
starting in this beat:
• 00: Byte lane 0
• 01: Byte lane 16
• 10: Byte lane 32
• 11: Byte lane 48
This field is valid only when the straddle option is enabled
on the RC interface. Otherwise, it is set to 0 permanently, as
a TLP can only start in bye lane 0.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=40

Table 16: Sideband Signals in m_axis_rc_tuser (512-bit Interface) (cont'd)

Bit Index Name Width Description

71:70 is_sop1_ptr[1:0] 2

Indicates the position of the first byte of the second TLP
starting in this beat:
• 00: Reserved
• 01: Byte lane 16
• 10: Byte lane 32
• 11: Byte lane 48
This output is used only when the straddle option is enabled
on the RC interface. The output is permanently set to 0
when straddle is disabled.

73:72 is_sop2_ptr[1:0] 2

Indicates the position of the first byte of the third TLP
starting in this beat:
• 00: Reserved
• 01: Reserved
• 10: Byte lane 32
• 11: Byte lane 48
This output is used only when the straddle option is enabled
on the RC interface. The output is permanently set to 0
when straddle is disabled.

75:74 is_sop3_ptr[1:0] 2

Indicates the position of the first byte of the fourth TLP
starting in this beat:
• 00, 01, 10: Reserved
• 11: Byte lane 48
This output is used only when the straddle option is enabled
on the RC interface. The output is permanently set to 0
when straddle is disabled.

79:76 is_eop[3:0] 4

Signals that one or more TLPs are ending in this beat only
when straddle is enabled. These outputs are set in the final
beat of a TLP. The settings are as follows:
• 0000: No TLPs ending in this beat.
• 0001: A single TLP is ending in this beat. is_eop0_ptr[3:0]

provides the offset of the last Dword of this TLP.
• 0011: Two TLPs are ending in this beat. is_eop0_ptr[3:0]

provides the offset of the last Dword of the first TLP and
is_eop1_ptr[3:0] provides the offset of the last Dword of
the second TLP.

• 0111: Three TLPs are ending in this beat.
is_eop0_ptr[3:0] provides the offset of the last Dword of
the first TLP, is_eop1_ptr[3:0] provides the offset of the
last Dword of the second TLP, and is_eop2_ptr[3:0]
provides the offset of the last Dword of the third TLP.

• 1111: Four TLPs are ending in this beat. is_eop0_ptr[3:0]
provides the offset of the last Dword of the first TLP,
is_eop1_ptr[3:0] provides the offset of the last Dword of
the second TLP, is_eop2_ptr[3:0] provides the offset of
the last Dword of the third TLP, and is_eop3_ptr[3:0]
provides the offset of the last Dword of the fourth TLP.

• All other settings are reserved.
When the straddle option is disabled, m_axis_rc_tlast
indicates the final beat of a TLP.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=41

Table 16: Sideband Signals in m_axis_rc_tuser (512-bit Interface) (cont'd)

Bit Index Name Width Description

83:80 is_eop0_ptr[3:0] 4

Offset of the last Dword of the first TLP ending in this beat.
This output is valid when is_eop[0] is asserted.
This output is used only when the straddle option is enabled
on the RC interface. The output is permanently set to 0
when straddle is disabled.

87:84 is_eop1_ptr[3:0] 4

Offset of the last Dword of the second TLP ending in this
beat. This output is valid when is_eop[1] is asserted.
This output is used only when the straddle option is enabled
on the RC interface. The output is permanently set to 0
when straddle is disabled.

91:88 is_eop2_ptr[3:0] 4

Offset of the last Dword of the third TLP ending in this beat.
This output is valid when is_eop[2] is asserted.
This output is used only when the straddle option is enabled
on the RC interface. The output is permanently set to 0
when straddle is disabled.

95:92 is_eop3_ptr[3:0] 4

Offset of the last Dword of the fourth TLP ending in this
beat. This output is valid when is_eop[3] is asserted.
This output is used only when the straddle option is enabled
on the RC interface. The output is permanently set to 0
when straddle is disabled.

96 discontinue 1

This signal is asserted by the core in the last beat of a TLP, if
it has detected an uncorrectable error while reading the TLP
payload from its internal FIFO memory. The client
application must discard the entire TLP when such an error
is signaled by the core.
This signal is never asserted when the TLP has no payload.
It is asserted only in the last beat of the payload transfer,
that is when is_eop[0] is High.
When the straddle option is enabled, the core does not start
a new TLP if it has asserted discontinue in a beat.
When the core is configured as an Endpoint, the error is also
reported by the core to the Root Complex it is attached to,
using Advanced Error Reporting (AER).

160:97 parity 64 Odd parity for the 512-bit transmit data. Bit i provides the
odd parity computed for byte i of m_axis_cq_tdata.

Other Core Interfaces
The core also provides the interfaces described in this section.

Power Management Interface

The following table defines the ports in the Power Management interface of the core.

Table 17: Power Management Interface Ports

Port I/O Width Description

cfg_pm_aspm_l1_entry_reject I 1
Configuration Power Management ASPM L1
Entry Reject: When driven to 1b,
Downstream Port rejects transition requests
to L1 state.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=42

Table 17: Power Management Interface Ports (cont'd)

Port I/O Width Description

cfg_pm_aspm_tx_l0s_entry_disable I 1
Configuration Power Management ASPM L0s
Entry Disable: When driven to 1b, prevents
the Port from entering TX L0s.

Configuration Management Interface

The Configuration Management interface is used to read and write to the Configuration Space
Registers. The following table defines the ports in the Configuration Management interface of
the core.

Table 18: Configuration Management Interface Port Descriptions

Port I/O Width Description

cfg_mgmt_addr I 10 Read/Write Address
Configuration Space Dword-aligned address.

cfg_mgmt_function_number I 8
PCI Function Number
Selects the PCI function number for the
configuration register read/write.

cfg_mgmt_write I 1 Write Enable
Asserted for a write operation. Active-High.

cfg_mgmt_write_data I 32
Write data
Write data is used to configure the
Configuration and Management registers.

cfg_mgmt_byte_enable I 4

Byte Enable
Byte enable for write data, where
cfg_mgmt_byte_enable[0] corresponds to
cfg_mgmt_write_data[7:0], and so on.

cfg_mgmt_read I 1 Read Enable
Asserted for a read operation. Active-High.

cfg_mgmt_read_data O 32
Read data out
Read data provides the configuration of the
Configuration and Management registers.

cfg_mgmt_read_write_done O 1
Read/Write operation complete
Asserted for 1 cycle when operation is
complete. Active-High.

cfg_mgmt_debug_access I 1

Type 1 RO, Write
When the core is configured in the Root Port
mode, asserting this input during a write to
a Type-1 configuration space register forces
a write into certain read-only fields of the
register (see description of RC-mode Config
registers). This input has no effect when the
core is in the Endpoint mode, or when
writing to any register other than a Type-1
configuration space register.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=43

Configuration Status Interface

The Configuration Status interface provides information on how the core is configured, such as
the negotiated link width and speed, the power state of the core, and configuration errors. The
following table defines the ports in the Configuration Status interface of the core.

Table 19: Configuration Status Interface Port Descriptions

Port I/O Width Description

cfg_phy_link_down O 1

Configuration Link Down
Status of the PCI Express link based on the Physical Layer
LTSSM.
• 1b: Link is Down (LinkUp state variable is 0b)
• 0b: Link is Up (LinkUp state variable is 1b)

Note: Per the PCI Express Base Specification, rev. 3.0, LinkUp
is 1b in the Recovery, L0, L0s, L1, and L2 cfg_ltssm states. In
the Configuration state, LinkUp can be 0b or 1b. It is always
0b when the Configuration state is reached using Detect >
Polling > Configuration. LinkUp is 1b if the configuration
state is reached through any other state transition.

Note: While reset is asserted, the output of this signal are 0b
until reset is released.

cfg_phy_link_status O 2

Configuration Link Status
Status of the PCI Express link.
• 00b: No receivers detected
• 01b: Link training in progress
• 10b: Link up, DL initialization in progress
• 11b: Link up, DL initialization completed

cfg_negotiated_width O 3

Negotiated Link Width
This output indicates the negotiated width of the given PCI
Express Link and is valid when cfg_phy_link_status[1:0] ==
11b (DL Initialization is complete).
Negotiated Link Width values:
• 000b = x1
• 001b = x2
• 010b = x4
• 011b = x8
• 100b = x16
• Other values are reserved.

cfg_current_speed O 2

Current Link Speed
This signal outputs the current link speed of the given PCI
Express Link.
• 00b: 2.5 GT/s PCI Express Link Speed
• 01b: 5.0 GT/s PCI Express Link Speed
• 10b: 8.0 GT/s PCI Express Link Speed
• 11b: 16.0 GT/s PCI Express Link Speed

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=44

Table 19: Configuration Status Interface Port Descriptions (cont'd)

Port I/O Width Description

cfg_max_payload O 2

Max_Payload_Size
This signal outputs the maximum payload size from Device
Control register bits 7 down to 5. This field sets the
maximum TLP payload size. As a Receiver, the logic must
handle TLPs as large as the set value. As a Transmitter, the
logic must not generate TLPs exceeding the set value.
• 00b: 128 bytes maximum payload size
• 01b: 256 bytes maximum payload size
• 10b: 512 bytes maximum payload size
• 11b: 1024 bytes maximum payload size

cfg_max_read_req O 3

Max_Read_Request_Size
This signal outputs the maximum read request size from
Device Control register bits 14 down to 12. This field sets the
maximum Read Request size for the logic as a Requester.
The logic must not generate Read Requests with size
exceeding the set value.
• 000b: 128 bytes maximum Read Request size
• 001b: 256 bytes maximum Read Request size
• 010b: 512 bytes maximum Read Request size
• 011b: 1024 bytes maximum Read Request size
• 100b: 2048 bytes maximum Read Request size
• 101b: 4096 bytes maximum Read Request size
• Other values are reserved

cfg_function_status O 16

Configuration Function Status
These outputs indicate the states of the Command register
bits in the PCI configuration space of each function. These
outputs are used to enable requests and completions from
the host logic. The assignment of bits is as follows:
• Bit 0: Function 0 I/O Space Enable
• Bit 1: Function 0 Memory Space Enable
• Bit 2: Function 0 Bus Master Enable
• Bit 3: Function 0 INTx Disable
• Bit 4: Function 1 I/O Space Enable
• Bit 5: Function 1 Memory Space Enable
• Bit 6: Function 1 Bus Master Enable
• Bit 7: Function 1 INTx Disable
• Bit 8: Function 2 I/O Space Enable
• Bit 9: Function 2 Memory Space Enable
• Bit 10: Function 2 Bus Master Enable
• Bit 11: Function 2 INTx Disable
• Bit 12: Function 3 I/O Space Enable
• Bit 13: Function 3 Memory Space Enable
• Bit 14: Function 3 Bus Master Enable
• Bit 15: Function 3 INTx Disable

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=45

Table 19: Configuration Status Interface Port Descriptions (cont'd)

Port I/O Width Description

cfg_vf_status O 504

Configuration Virtual Function Status
• Bit 0: Virtual function 0: Configured/Enabled by the

software.
• Bit 1: Virtual function 0: PCI Command register, Bus

Master Enable.
• Bit 2: Virtual function 1: Configured/Enabled by

software.
• Bit 3: Virtual function 1: PCI Command register, Bus

Master Enable.

cfg_function_power_state O 12

Configuration Function Power State
These outputs indicate the current power state of the
physical functions. Bits [2:0] capture the power state of
function 0, and bits [5:3] capture that of function 1, and so
on. The possible power states are:
• 000: D0_uninitialized
• 001: D0_active
• 010: D1
• 100: D3_hot
• Other values are reserved.

cfg_vf_power_state O 756

Configuration Virtual Function Power State
These outputs indicate the current power state of the virtual
functions. Bits [2:0] capture the power state of virtual
function 0, and bits [5:3] capture that of virtual function 1,
and so on. The possible power states are:
• 000: D0_uninitialized
• 001: D0_active
• 010: D1
• 100: D3_hot
• Other values are reserved.

cfg_link_power_state O 2

Current power state of the PCI Express link, and is valid
when cfg_phy_link_status[1:0] == 11b (DL Initialization is
complete).
• 00: L0
• 01: TX L0s
• 10: L1
• 11: L2/3 Ready

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=46

Table 19: Configuration Status Interface Port Descriptions (cont'd)

Port I/O Width Description

cfg_local_error_out O 5

Local Error Conditions: Error priority is noted and Priority 0
has the highest priority.
• 00000b - Reserved
• 00001b - Physical Layer Error Detected (Priority 16)
• 00010b - Link Replay Timeout (Priority 12)
• 00011b - Link Replay Rollover (Priority 13)
• 00100b - Link Bad TLP Received (Priority 10)
• 00101b - Link Bad DLLP Received (Priority 11)
• 00110b - Link Protocol Error (Priority 9)
• 00111b - Replay Buffer RAM Correctable ECC Error

(Priority 22)
• 01000b - Replay Buffer RAM Uncorrectable ECC Error

(Priority 3)
• 01001b - Receive Posted Request RAM Correctable ECC

Error (Priority 20)
• 01010b - Receive Posted Request RAM Uncorrectable

ECC Error (Priority 1)
• 01011b - Receive Completion RAM Correctable ECC Error

(Priority 21)
• 01100b - Receive Completion RAM Uncorrectable ECC

Error (Priority 2)
• 01101b - Receive Posted Buffer Overflow Error (Priority

5)
• 01110b - Receive Non Posted Buffer Overflow Error

(Priority 6)
• 01111b - Receive Completion Buffer Overflow Error

(Priority 7)
• 10000b - Flow Control Protocol Error (Priority 8)
• 10001b - Transmit Parity Error Detected (Priority 4)
• 10010b - Unexpected Completion Received (Priority 15)
• 10011b - Completion Timeout Detected (Priority 14)
• 10100b - AXI4ST RQ INTFC Packet Drop (Priority 17)
• 10101b - AXI4ST CC INTFC Packet Drop (Priority 18)
• 10110b - AXI4ST CQ Poisoned Drop (Priority 19)
• 10111b - User Signaled Internal Correctable Error

(Priority 23)
• 11000b - User Signaled Internal Uncorrectable Error

(Priority 0)
• 11001b - 11111b - Reserved

cfg_local_error_valid O 1

Local Error Conditions Valid: Block activates this output for
one cycle when any of the errors in cfg_local_error_out[4:0]
are encountered. When driven 1b cfg_local_error_out[4:0]
indicates local error type. Priority of error reporting (for the
case of concurrent errors) is noted.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=47

Table 19: Configuration Status Interface Port Descriptions (cont'd)

Port I/O Width Description

cfg_rx_pm_state O 2

Current RX Active State Power Management L0s State:
Encoding is listed below and valid when cfg_ltssm_state is
indicating L0:
• RX_NOT_IN_L0s = 0
• RX_L0s_ENTRY = 1
• RX_L0s_IDLE = 2
• RX_L0s_FTS = 3

cfg_tx_pm_state O 2

Current TX Active State Power Management L0s State:
Encoding is listed below and valid when cfg_ltssm_state is
indicating L0:
• TX_NOT_IN_L0s = 0
• TX_L0s_ENTRY = 1
• TX_L0s_IDLE = 2
• TX_L0s_FTS = 3

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=48

Table 19: Configuration Status Interface Port Descriptions (cont'd)

Port I/O Width Description

cfg_ltssm_state O 6

LTSSM State. Shows the current LTSSM state:
• 00: Detect.Quiet
• 01: Detect.Active
• 02: Polling.Active
• 03: Polling.Compliance
• 04: Polling.Configuration
• 05: Configuration.Linkwidth.Start
• 06: Configuration.Linkwidth.Accept
• 07: Configuration.Lanenum.Accept
• 08: Configuration.Lanenum.Wait
• 09: Configuration.Complete
• 0A: Configuration.Idle
• 0B: Recovery.RcvrLock
• 0C: Recovery.Speed
• 0D: Recovery.RcvrCfg
• 0E: Recovery.Idle
• 10: L0
• 11-16: Reserved
• 17: L1.Entry
• 18: L1.Idle
• 19-1A: Reserved
• 20: Disabled
• 21: Loopback_Entry_Master
• 22: Loopback_Active_Master
• 23: Loopback_Exit_Master
• 24: Loopback_Entry_Slave
• 25: Loopback_Active_Slave
• 26: Loopback_Exit_Slave
• 27: Hot_Reset
• 28: Recovery_Equalization_Phase0
• 29: Recovery_Equalization_Phase1
• 2a: Recovery_Equalization_Phase2
• 2b: Recovery_Equalization_Phase3

cfg_rcb_status O 4

RCB Status.
Provides the setting of the Read Completion Boundary
(RCB) bit in the Link Control register of each physical
function. In Endpoint mode, bit 0 indicates the RCB for
Physical Function 0 (PF 0), bit 1 indicates the RCB for PF 1,
and so on. In RC mode, bit 0 indicates the RCB setting of the
Link Control register of the RP, bit 1 is reserved.
For each bit, a value of 0 indicates an RCB of 64 bytes and a
value of 1 indicates 128 bytes.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=49

Table 19: Configuration Status Interface Port Descriptions (cont'd)

Port I/O Width Description

cfg_dpa_substate_change O 4

Dynamic Power Allocation Substate Change.
In Endpoint mode, the core generates a one-cycle pulse on
one of these outputs when a Configuration Write
transaction writes into the Dynamic Power Allocation
Control register to modify the DPA power state of the
device. A pulse on bit 0 indicates such a DPA event for PF0
and a pulse on bit 1 indicates the same for PF1. The other 2
bits are reserved.These outputs are not active in Root Port
mode.

cfg_obff_enable O 2

Optimized Buffer Flush Fill Enable.
This output reflects the setting of the OBFF Enable field in
the Device Control 2 register.
• 00: OBFF disabled.
• 01: OBFF enabled using message signaling, Variation A.
• 10: OBFF enabled using message signaling, Variation B.
• 11: OBFF enabled using WAKE# signaling.

cfg_pl_status_change O 1

This output is used by the core in Root Port mode to signal
one of the following link training-related events:
• The link bandwidth changed as a result of the change in

the link width or operating speed and the change was
initiated locally (not by the link partner), without the link
going down. This interrupt is enabled by the Link
Bandwidth Management Interrupt Enable bit in the Link
Control register. The status of this interrupt can be read
from the Link Bandwidth Management Status bit of the
Link Status register; or

• The link bandwidth changed autonomously as a result
of the change in the link width or operating speed and
the change was initiated by the remote node. This
interrupt is enabled by the Link Autonomous Bandwidth
Interrupt Enable bit in the Link Control register. The
status of this interrupt can be read from the Link
Autonomous Bandwidth Status bit of the Link Status
register; or

• The Link Equalization Request bit in the Link Status 2
register was set by the hardware because it received a
link equalization request from the remote node. This
interrupt is enabled by the Link Equalization Interrupt
Enable bit in the Link Control 3 register. The status of
this interrupt can be read from the Link Equalization
Request bit of the Link Status 2 register.

The pl_interrupt output is not active when the core is
configured as an Endpoint.

cfg_ext_tag_enable O 1 Extended Tag Enable:Per function state of Device Control
Register Ext Tag (8-Bit) Enable bit.

cfg_atomic_requester_enable O 4 Atomic Operation Requester Enable: Per function state of
Device Control2 Register AtomicOp Requester Enable bit.

cfg_10b_tag_requester_enabl
e

O 4 10b Tag Requester Enable: Per function state of Device
Control2 Register 10-Bit Tag Requester Enable bit.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=50

Table 19: Configuration Status Interface Port Descriptions (cont'd)

Port I/O Width Description

pcie_tfc_nph_av O 4

This output provides an indication of the currently available
header credit for Non-Posted TLPs on the transmit side of
the core. The user logic can check this output before
transmitting a Non-Posted request on the requester request
interface, to avoid blocking the interface when no credit is
available. The encodings are:
• 0000: No credit available
• 0001: 1 credit available
• 0010: 2 credits available
• ...
• 1110: 14 credits available
• 1111: 15 or more credits available
Because of pipeline delays, the value on this output can not
include the credit consumed by the Non-Posted requests in
the last eight cycles or less. The user logic must adjust the
value on this output by the credit consumed by the Non-
Posted requests it sent in the previous clock cycles, if any.

pcie_tfc_npd_av O 4

This output provides an indication of the currently available
payload credit for Non-Posted TLPs on the transmit side of
the core. The user logic checks this output before
transmitting a Non-Posted request on the requester request
interface, to avoid blocking the interface when no credit is
available. The encodings are:
• 0000: No credit available
• 0001: 1 credit available
• 0010: 2 credits available
• ...
• 1110: 14 or more credits available
• 1111: 15 or more credits available
Because of pipeline delays, the value on this output does
not include the credit consumed by the Non-Posted
requests sent by the user logic in the last eight clock cycles
or less. The user logic must adjust the value on this output
by the credit consumed by the Non-Posted requests it sent
in the previous clock cycles, if any.

pcie_rq_tag_av O 4

This output provides an indication of the number of free
tags available for allocation to Non-Posted requests on the
PCIe master side of the core. The user logic checks this
output before transmitting a Non-Posted request on the
requester request interface, to avoid blocking the interface
when no tags are available. The encodings are:
• 0000: No tags available
• 0001: 1 tag available
• 0010: 2 tags available
• ...
• 1110: 14 tags available
• 1111: 15 or more tags available
Because of pipeline delays, the value on this output does
not include the tags consumed by the Non-Posted requests
sent by the user logic in the last 8 clock cycles or less. The
user logic must adjust the value on this output by the
number of Non-Posted requests it sent in the previous clock
cycles, if any.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=51

Configuration Received Message Interface

The Configuration Received Message interface indicates to the logic that a decodable message
from the link, the parameters associated with the data, and the type of message have been
received. The following table defines the ports in the Configuration Received Message interface
of the core.

Table 20: Configuration Received Message Interface

Port I/O Width Description

cfg_msg_received O 1

Configuration Received a Decodable Message.
The core asserts this output for one or more consecutive
clock cycles when it has received a decodable message from
the link. The duration of its assertion is determined by the
type of message. The core transfers any parameters
associated with the message on the
cfg_msg_data[7:0]output in one or more cycles when
cfg_msg_received is High. The following table lists the
number of cycles of cfg_msg_received assertion, and the
parameters transferred on cfg_msg_data[7:0] in each cycle,
for each type of message.
The core inserts at least a one-cycle gap between two
consecutive messages delivered on this interface when the
cfg_msg_received interface is enabled.
The Configuration Received Message interface must be
enabled during core configuration in the Vivado IDE.

cfg_msg_received_data O 8
This bus is used to transfer any parameters associated with
the Received Message. The information it carries in each
cycle for various message types is listed in the previous
table.

cfg_msg_received_type O 5

Received message type.
When cfg_msg_received is High, these five bits indicate the
type of message being signaled by the core. The various
message types are listed in the previous table.

Table 21: Message Type Encoding on Receive Message Interface

cfg_msg_received_type[4:0] Message Type
0 ERR_COR

1 ERR_NONFATAL

2 ERR_FATAL

3 Assert_INTA

4 Deassert_ INTA

5 Assert_INTB

6 Deassert_ INTB

7 Assert_INTC

8 Deassert_ INTC

9 Assert_INTD

10 Deassert_ INTD

11 PM_PME

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=52

Table 21: Message Type Encoding on Receive Message Interface (cont'd)

cfg_msg_received_type[4:0] Message Type
12 PME_TO_Ack

13 PME_Turn_Off

14 PM_Active_State_Nak

15 Set_Slot_Power_Limit

16 Latency Tolerance Reporting (LTR)

17 Reserved

18 Unlock

19 Vendor_Defined Type 0

20 Vendor_Defined Type 1

25 – 31 Reserved

Table 22: Message Parameters on Receive Message Interface

Message Type Number of cycles of
cfg_msg_received assertion

Parameter transferred on
cfg_msg_received_data[7:0]

ERR_COR, ERR_NONFATAL, ERR_FATAL 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function
Number

Assert_INTx, Deassert_INTx 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function
Number

PM_PME, PME_TO_Ack, PME_Turn_off,
PM_Active_State_Nak 2

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function
Number

Set_Slot_Power_Limit 6

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function
Number
Cycle 3: bits [7:0] of payload
Cycle 4: bits [15:8] of payload
Cycle 5: bits [23:16] of payload
Cycle 6: bits [31:24] of payload

Latency Tolerance Reporting (LTR) 6

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function
Number
Cycle 3: bits [7:0] of Snoop Latency
Cycle 4: bits [15:8] of Snoop Latency
Cycle 5: bits [7:0] of No-Snoop Latency
Cycle 6: bits [15:8] of No-Snoop Latency

Unlock 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function
Number

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=53

Table 22: Message Parameters on Receive Message Interface (cont'd)

Message Type Number of cycles of
cfg_msg_received assertion

Parameter transferred on
cfg_msg_received_data[7:0]

Vendor_Defined Type 0 4 cycles when no data present, 8 cycles
when data present.

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function
Number
Cycle 3: Vendor ID[7:0]
Cycle 4: Vendor ID[15:8]
Cycle 5: bits [7:0] of payload
Cycle 6: bits [15:8] of payload
Cycle 7: bits [23:16] of payload
Cycle 8: bits [31:24] of payload

Vendor_Defined Type 1 4 cycles when no data present, 8 cycles
when data present.

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function
Number
Cycle 3: Vendor ID[7:0]
Cycle 4: Vendor ID[15:8]
Cycle 5: bits [7:0] of payload
Cycle 6: bits [15:8] of payload
Cycle 7: bits [23:16] of payload
Cycle 8: bits [31:24] of payload

Configuration Transmit Message Interface

The Configuration Transmit Message interface is used by the user application to transmit
messages to the core. The user application supplies the transmit message type and data
information to the core, which responds with the done signal. The following table defines the
ports in the Configuration Transmit Message interface of the core.

Table 23: Configuration Transmit Message Interface

Port I/O Width Description

cfg_msg_transmit I 1

Configuration Transmit Encoded Message.
This signal is asserted together with cfg_msg_transmit_type,
which supplies the encoded message type and
cfg_msg_transmit_data, which supplies optional data
associated with the message, until cfg_msg_transmit_done
is asserted in response.

Note: When PASID_CAP_ON = TRUE, this port is not available
for use.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=54

Table 23: Configuration Transmit Message Interface (cont'd)

Port I/O Width Description

cfg_msg_transmit_type I 3

Configuration Transmit Encoded Message Type.
Indicates the type of PCI Express message to be
transmitted. Encodings supported are:
• 000b: Latency Tolerance Reporting (LTR)
• 001b: Optimized Buffer Flush/Fill (OBFF)
• 010b: Set Slot Power Limit (SSPL)
• 011b: Power Management (PM PME)
• 100b -111b: Reserved

Note: When PASID_CAP_ON = TRUE, this port is not available
for use.

cfg_msg_transmit_data I 32

Configuration Transmit Encoded Message Data.
Indicates message data associated with particular message
type.
000b: LTR -
• cfg_msg_transmit_data[31] < Snoop Latency Req
• cfg_msg_transmit_data[30:29] <= Repurposing to pass

PASID information. assigned to s_axis_rq_tuser[182:181]
inside the IP.

• cfg_msg_transmit_data[28:26] < Snoop Latency Scale
• cfg_msg_transmit_data[25:16] < Snoop Latency Value
• cfg_msg_transmit_data[15] < No-Snoop Latency

Requirement
• cfg_msg_transmit_data[14:13] <= Repurposing to pass

PASID information. assigned to s_axis_rq_tuser[180:179]
inside the IP.

• cfg_msg_transmit_data[12:10] < No-Snoop Latency Scale
• cfg_msg_transmit_data[9:0] < No-Snoop Latency Value
001b: Reserved.
010b: SSPL -
• cfg_msg_transmit_data[9:0] < {Slot Power Limit Scale,

Slot Power Limit Value}
011b: PM_PME -

• cfg_msg_transmit_data[7:0] <= 8'h00-8'hFF
PF0-3 - 8'h00-8'h03 Other encodings are reserved

100b - 111b: Reserved

Note: When PASID_CAP_ON = TRUE, this port is not available
for use.

cfg_msg_transmit_done O 1
Configuration Transmit Encoded Message Done.
Asserted in response to cfg_mg_transmit assertion, for 1
cycle after the request is complete.

Configuration Flow Control Interface

The following table defines the ports in the Configuration Flow Control interface of the core.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=55

Table 24: Configuration Flow Control Interface

Port I/O Width Description

cfg_fc_ph O 8

Posted Header Flow Control Credits.
This output provides the number of Posted Header Flow
Control Credits. This multiplexed output can be used to
bring out various flow control parameters and variables
related to Posted Header Credit maintained by the core. The
flow control information to bring out on this core is selected
by the cfg_fc_sel[2:0] input.

cfg_fc_ph_scale O 2

Posted Header Flow Control Credits Scale
This output provides the scale of Posted Header Flow
Control Credit number (cfg_fc_ph). The flow control
information to bring out on this core is selected by the
cfg_fc_sel[2:0] input.

cfg_fc_pd O 12

Posted Data Flow Control Credits.
This output provides the number of Posted Data Flow
Control Credits. This multiplexed output can be used to
bring out various flow control parameters and variables
related to Posted Data Credit maintained by the core. The
flow control information to bring out on this core is selected
by the cfg_fc_sel[2:0] input.

cfg_fc_pd_scale O 2

Posted Data Flow Control Credits Scale
This output provides the scale of Posted Data Flow Control
Credit number (cfg_fc_pd). The flow control information to
bring out on this core is selected by the cfg_fc_sel[2:0] input

cfg_fc_nph O 8

Non-Posted Header Flow Control Credits.
This output provides the number of Non-Posted Header
Flow Control Credits. This multiplexed output can be used to
bring out various flow control parameters and variables
related to Non-Posted Header Credit maintained by the
core. The flow control information to bring out on this core
is selected by the cfg_fc_sel[2:0] input.

cfg_fc_nph_scale O 2

Non-Posted Header Flow Control Credits Scale
This output provides the scale of Non-Posted Header Flow
Control Credit number (cfg_fc_nph). The flow control
information to bring out on this core is selected by the
cfg_fc_sel[2:0] input

cfg_fc_npd O 12

Non-Posted Data Flow Control Credits.
This output provides the number of Non-Posted Data Flow
Control Credits. This multiplexed output can be used to
bring out various flow control parameters and variables
related to Non-Posted Data Credit maintained by the core.
The flow control information to bring out on this core is
selected by the cfg_fc_sel[2:0] input.

cfg_fc_npd_scale O 2

Non-Posted Data Flow Control Credits Scale
This output provides the scale of Non-Posted Data Flow
Control Credit number (cfg_fc_npd). The flow control
information to bring out on this core is selected by the
cfg_fc_sel[2:0] input

cfg_fc_cplh O 8

Completion Header Flow Control Credits.
This output provides the number of Completion Header
Flow Control Credits. This multiplexed output can be used to
bring out various flow control parameters and variables
related to Completion Header Credit maintained by the
core. The flow control information to bring out on this core
is selected by the cfg_fc_sel[2:0] input.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=56

Table 24: Configuration Flow Control Interface (cont'd)

Port I/O Width Description

cfg_fc_cplh_scale O 2

Completion Header Flow Control Credit Scale
This output provides the scale of Completion Header Flow
Control Credit number (cfg_fc_cplh). The flow control
information to bring out on this core is selected by the
cfg_fc_sel[2:0] input

cfg_fc_cpld O 12

Completion Data Flow Control Credits.
This output provides the number of Completion Data Flow
Control Credits. This multiplexed output can be used to
bring out various flow control parameters and variables
related to Completion Data Credit maintained by the core.
The flow control information to bring out on this core is
selected by the cfg_fc_sel[2:0].

cfg_fc_cpld_scale O 2

Completion Data Flow Control Credit Scale
This output provides the scale of Completion Data Flow
Control Credit number (cfg_fc_cpld). The flow control
information to bring out on this core is selected by the
cfg_fc_sel[2:0] input

cfg_fc_sel I 3

Flow Control Informational Select.
These inputs select the type of flow control to bring out on
the cfg_fc_* outputs of the core. The various flow control
parameters and variables that can be accessed for the
different settings of these inputs are:
• 000: Receive credit limit to link partner (rlimit)
• 001: Transmit credits consumed (tconsumed) & wide

posted and completion
• 010: Receive credits consumed by link partner

(rconsumed)
• 011: Transmit credits consumed (tconsumed) wide

nonposted and completion
• 100: Transmit user credits available (tlimit - tconsumed)
• 101: Transmit credit limit (tlimit)
• 110: Transmit credits consumed (tconsumed)
• 111: Receive free 32B word count
This value represents the actual unused credits in the
receiver FIFO, and the recommendation is to use it only as
an approximate indication of receiver FIFO fullness, relative
to the initial credit limit value advertized, such as, ¼ full, ½
full, ¾ full, full.
Infinite credit for transmit credits available (cfg_fc_sel ==
3'b100) is signaled as 8'h80, 12'h800 for header and data
credits, respectively. For all other cfg_fc_sel selections,
infinite credit is signaled as 8'h00, 12'h000, respectively, for
header and data categories.

Configuration Control Interface

The Configuration Control interface signals allow a broad range of information exchange
between the user application and the core. The user application uses this interface to do the
following:

• Set the configuration space.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=57

• Indicate if a correctable or uncorrectable error has occurred.

• Set the device serial number.

• Set the downstream bus, device, and function number.

• Receive per function configuration information.

This interface also provides handshaking between the user application and the core when a
Power State change or function level reset occurs.

Table 25: Configuration Control Interface Port Descriptions

Port I/O Width Description
cfg_hot_reset_in I 1 Configuration Hot Reset In

In RP mode, assertion transitions LTSSM to hot reset
state, active-High.

cfg_hot_reset_out O 1 Configuration Hot Reset Out
In EP mode, assertion indicates that EP has transitioned
to the hot reset state, active-High.

cfg_config_space_enable I 1 Configuration Configuration Space Enable
When this input is set to 0 in the Endpoint mode, the
core generates a CRS Completion in response to
Configuration Requests. This port should be held
deasserted when the core configuration registers are
loaded from the DRP due to a change in attributes. This
prevents the core from responding to Configuration
Requests before all the registers are loaded. This input
can be High when the power-on default values of the
Configuration registers do not need to be modified
before Configuration space enumeration. This input is
not applicable for Root Port mode.

cfg_dsn I 64 Configuration Device Serial Number
Indicates the value that should be transferred to the
Device Serial Number Capability on PF0. Bits [31:0] are
transferred to the first (Lower) Dword (byte offset 0x4h
of the Capability), and bits [63:32] are transferred to the
second (Upper) Dword (byte offset 0x8h of the
Capability). If this value is not statically assigned, the
user application must pulse user_cfg_input_update after
it is stable.

cfg_ds_bus_number I 8 Configuration Downstream Bus Number
Downstream Port: Provides the bus number portion of
the Requester ID (RID) of the Downstream Port. This is
used in TLPs generated inside the core, such as UR
Completions and Power-management messages; it does
not affect TLPs presented on the AXI interface.
Upstream Port: No role.

cfg_ds_device_number I 5 Configuration Downstream Device Number
Downstream Port: Provides the device number portion
of the RID of the Downstream Port. This is used in TLPs
generated inside the core, such as UR Completions and
Power-management messages; it does not affect TLPs
presented on the TRN interface.
Upstream Port: No role.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=58

Table 25: Configuration Control Interface Port Descriptions (cont'd)

Port I/O Width Description
cfg_ds_function_number I 3 Configuration Downstream Function Number

Downstream Port: Provides the function number
portion of the RID of the Downstream Port. This is used
in TLPs generated inside the core, such as UR
Completions and power-management messages; it does
not affect TLPs presented on the TRN interface.
Upstream Port: No role.

cfg_power_state_change_
ack

I 1 Configuration Power State Ack
You must assert this input to the core for one cycle in
response to the assertion of
cfg_power_state_change_interrupt, when it is ready to
transition to the low-power state requested by the
configuration write request. The user application can
permanently hold this input High if it does not need to
delay the return of the completions for the
configuration write transactions, causing power-state
changes.

cfg_power_state_change_
interrupt

O 1 Power State Change Interrupt
The core asserts this output when the power state of a
physical or virtual function is being changed to the D1
or D3 states by a write into its Power Management
Control register. The core holds this output High until
the user application asserts the
cfg_power_state_change_ack input to the core. While
cfg_power_state_change_interrupt remains High, the
core does not return completions for any pending
configuration read or write transaction received by the
core. The purpose is to delay the completion for the
configuration write transaction that caused the state
change until the user application is ready to transition
to the low-power state. When
cfg_power_state_change_interrupt is asserted, the
function number associated with the configuration write
transaction is provided on the
cfg_ext_function_number[7:0] output. When the user
application asserts cfg_power_state_change_ack, the
new state of the function that underwent the state
change is reflected on cfg_function_power_state (for
PFs) or the cfg_vf_power_state (for VFs) outputs of the
core.

cfg_ds_port_number I 8 Configuration Downstream Port Number
Provides the port number field in the Link Capabilities
register.

cfg_err_cor_in I 1 Correctable Error Detected
The user application activates this input for one cycle to
indicate a correctable error detected within the user
logic that needs to be reported as an internal error
through the PCI Express Advanced Error Reporting
(AER) mechanism. In response, the core sets the
Corrected Internal Error Status bit in the AER
Correctable Error Status register of all enabled
functions, and also sends an error message if enabled
to do so. This error is not considered function-specific.

Note: When PASID_CAP_ON = TRUE, this pin is not
available for use.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=59

Table 25: Configuration Control Interface Port Descriptions (cont'd)

Port I/O Width Description
cfg_err_cor_out O 1 Correctable Error Detected

In the Endpoint mode, the Block activates this output for
one cycle when it has detected a correctable error and
its reporting is not masked. When multiple functions are
enabled, this is the logical OR of the correctable error
status bits in the Device Status Registers of all functions.

cfg_err_fatal_out O 1 Fatal Error Detected
In the Endpoint mode, the block activates this output for
one cycle when it has detected a fatal error and its
reporting is not masked. When multiple functions are
enabled, this output is the logical OR of the fatal error
status bits in the Device Status Registers of all functions.
In the Root Port mode, this output is activated on
detection of a local fatal error, when its reporting is not
masked. This output does not respond to any errors
signaled by remote devices using PCI Express error
messages. These error messages are delivered to the
user through the message interface.

cfg_err_nonfatal_out O 1 Non Fatal Error Detected
In the Endpoint mode, the block activates this output for
one cycle when it has detected a non fatal error and its
reporting is not masked. When multiple functions are
enabled, this output is the logical OR of the non fatal
error status bits in the Device Status Registers of all
functions.
In the Root Port mode, this output is activated on
detection of a local non fatal error, when its reporting is
not masked. This output does not respond to any errors
signaled by remote devices using PCI Express error
messages. These error messages are delivered through
the message interface.

cfg_err_uncor_in I 1 Uncorrectable Error Detected
The user application activates this input for one cycle to
indicate a uncorrectable error detected within the user
logic that needs to be reported as an internal error
through the PCI Express Advanced Error Reporting
mechanism. In response, the core sets the uncorrected
Internal Error Status bit in the AER Uncorrectable Error
Status register of all enabled functions, and also sends
an error message if enabled to do so. This error is not
considered function-specific.

Note: When PASID_CAP_ON = TRUE, this pin is not
available for use.

cfg_flr_done I 4 Function Level Reset Complete
The user application must assert this input when it has
completed the reset operation of the Virtual Function.
This causes the core to deassert cfg_flr_in_process for
physical function i and to re-enable configuration
accesses to the physical function. The core will issue CRS
to configurations requests to a particular Physical
Function till cfg_flr_done is not asserted when
cfg_flr_in_process =1 for that Physical Function.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=60

Table 25: Configuration Control Interface Port Descriptions (cont'd)

Port I/O Width Description
cfg_vf_flr_done I 1 Function Level Reset for Virtual Function is Complete

The user application must assert this input when it has
completed the reset operation of the Virtual Function.
This causes the core to deassert cfg_vf_flr_in_process for
function i and to re-enable configuration accesses to the
virtual function. The core will issue CRS to configuration
requests to a particular Virtual Function till
cfg_vf_flr_done is not asserted when
cfg_vf_flr_in_process = 1 for that Virtual Function.

cfg_vf_flr_func_num I 8 Function Level Reset for Virtual Function i is Complete.
The user application drives a valid Virtual Function
number on this input along with asserting
cfg_vf_flr_done when the reset operation of Virtual
Function i completes.
Valid entries are 8'h04-8'hFF for VF0-VF251. Values
8'h00-8'h03 are reserved.

cfg_flr_in_process O 4 Function Level Reset In Process
The core asserts bit i of this bus when the host initiates
a reset of physical function i through its FLR bit in the
configuration space. The core continues to hold the
output High until the user sets the corresponding
cfg_flr_done input for the corresponding physical
function to indicate the completion of the reset
operation.

cfg_vf_flr_in_process O 252 Function Level Reset In Process for Virtual Function
The core asserts bit i of this bus when the host initiates
a reset of virtual function i though its FLR bit in the
configuration space. The core continues to hold the
output High until the user sets the cfg_vf_flr_done input
and drives cfg_vf_flr_func_num with the corresponding
function to indicate the completion of the reset
operation.

cfg_req_pm_transition_l2
3_ready

I 1 When the core is configured as an Endpoint, the user
application asserts this input to transition the power
management state of the core to L23_READY (see
Chapter 5 of the PCI Express Specification (see PCI-SIG
Specifications (https://www.pcisig.com/specifications)
for a detailed description of power management). This
is done after the PCI functions in the core are placed in
the D3 state and after the user application
acknowledges the PME_Turn_Off message from the Root
Complex. Asserting this input causes the link to
transition to the L3 state, and requires a hard reset to
resume operation. This input can be hardwired to 0 if
the link is not required to transition to L3. This input is
not used in Root Complex mode.

cfg_link_training_enable I 1 This input must be set to 1 to enable the Link Training
Status State Machine (LTSSM) to bring up the link.
Setting it to 0 forces the LTSSM to stay in the
Detect.Quiet state.

cfg_bus_number O 8 Bus Number Captured from received CfgWr Type0 is
presented. Active only in the Endpoint Configuration.

cfg_vend_id I 16 Configuration Vendor ID:
Indicates the value that should be transferred to the PCI
Capability Structure Vendor ID field on all PFs.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 61Send Feedback

https://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=61

Table 25: Configuration Control Interface Port Descriptions (cont'd)

Port I/O Width Description
cfg_subsys_vend_id I 16 Configuration Subsystem Vendor ID:

Indicates the value that should be transferred to the
Type 0 PCI Capability Structure Subsystem Vendor ID
field on all PFs.

cfg_dev_id_pf0 I 16 Configuration Device ID PF0:
Indicates the value that should be transferred to the PCI
Capability Structure Device ID field on PF0.

cfg_dev_id_pf1 I 16 Configuration Device ID PF1:
Indicates the value that should be transferred to the PCI
Capability Structure Device ID field on PF1.

cfg_dev_id_pf2 I 16 Configuration Device ID PF2:
Indicates the value that should be transferred to the PCI
Capability Structure Device ID field on PF2.

cfg_dev_id_pf3 I 16 Configuration Device ID PF3:
Indicates the value that should be transferred to the PCI
Capability Structure Device ID field on PF3.

cfg_rev_id_pf0 I 8 Configuration Revision ID PF0:
Indicates the value that should be transferred to the PCI
Capability Structure Revision ID field on PF0.

cfg_rev_id_pf1 I 8 Configuration Revision ID PF1:
Indicates the value that should be transferred to the PCI
Capability Structure Revision ID field on PF1.

cfg_rev_id_pf2 I 8 Configuration Revision ID PF2:
Indicates the value that should be transferred to the PCI
Capability Structure Revision ID field on PF2.

cfg_rev_id_pf3 I 8 Configuration Revision ID PF3:
Indicates the value that should be transferred to the PCI
Capability Structure Revision ID field on PF3.

cfg_subsys_id_pf0 I 16 Configuration Subsystem ID PF0:
Indicates the value that should be transferred to the
Type 0 PCI Capability Structure Subsystem ID field on
PF0.

cfg_subsys_id_pf1 I 16 Configuration Subsystem ID PF1:
Indicates the value that should be transferred to the
Type 0 PCI Capability Structure Subsystem ID field on
PF1.

cfg_subsys_id_pf2 I 16 Configuration Subsystem ID PF2:
Indicates the value that should be transferred to the
Type 0 PCI Capability Structure Subsystem ID field on
PF2.

cfg_subsys_id_pf3 I 16 Configuration Subsystem ID PF3:
Indicates the value that should be transferred to the
Type 0 PCI Capability Structure Subsystem ID field on
PF3.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=62

Configuration Interrupt Controller Interface

The Configuration Interrupt Controller interface allows the user application to set Legacy PCIe
interrupts, MSI interrupts, or MSI-X interrupts. The core provides the interrupt status on the
configuration interrupt sent and fail signals. The following tables define the interface ports
associated with the Configuration Interrupt Controller interface of the core.

Legacy Interrupt Interface

Table 26: Legacy Interrupt Interface Port Descriptions

Name I/O Width Description

cfg_interrupt_int I 4

Configuration INTx Vector: When the core is configured as
EP, these four inputs are used by the user application to
signal an interrupt from any of its PCI Functions to the RC
using the Legacy PCI Express Interrupt Delivery mechanism
of PCI Express. These four inputs correspond to INTA, INTB,
INTC, and INTD of the PCI bus, respectively. Asserting one of
these signals causes the core to send out an Assert_INTx
message, and deasserting the signal causes the core to
transmit a Deassert_INTx message.

Note: When PASID_CAP_ON = TRUE, this pin is not available
for use.

cfg_interrupt_sent O 1
Configuration INTx Sent: A pulse on this output indicates
that the core has sent an INTx Assert or Deassert message in
response to a change in the state of one of the
cfg_interrupt_int inputs.

cfg_interrupt_pending I 4

Configuration INTx Interrupt Pending: Per Function
indication of a pending interrupt from the user.
cfg_interrupt_pending[0] corresponds to Function #0. Each
of these inputs is connected to the Interrupt Pending bits of
the PCI Status Register of the corresponding Function.

Note: When PASID_CAP_ON = TRUE, this pin is not available
for use.

MSI Interrupt Interface

Table 27: MSI Interrupt Interface Port Descriptions

Name I/O Width Description

cfg_interrupt_msi_enable O 4

Configuration Interrupt MSI Function Enabled
Indicates that the Message Signaling Interrupt (MSI)
messaging is enabled, per Function. These outputs reflect
the setting of the MSI Enable bits in the MSI Control
Register of Physical Functions 0 – 3.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=63

Table 27: MSI Interrupt Interface Port Descriptions (cont'd)

Name I/O Width Description

cfg_interrupt_msi_int I 32

Configuration Interrupt MSI Vector
When configured in the Endpoint mode to support MSI
interrupts, these inputs are used to signal the 32 distinct
interrupt conditions associated with a PCI Function
(Physical or Virtual) from the user logic to the core. The
Function number must be specified on the input
cfg_interrupt_msi_function_number. After placing the
Function number on the input
cfg_interrupt_msi_function_number, the user logic must
activate one of these signals for one cycle to transmit an
interrupt. The user logic must not activate more than one
of the 32 interrupt inputs in the same cycle. The core
internally registers the interrupt condition on the 0-to-1
transition of any bit in cfg_interrupt_msi_int. After
asserting an interrupt, the user logic must wait for the
cfg_interrupt_msi_sent or cfg_interrupt_msi_fail indication
from the core before asserting a new interrupt.

cfg_interrupt_msi_function_number I 8

Configuration MSI Initiating Function
Indicates the Endpoint Function # initiating the MSI
interrupt.
• 8'h00 – 8'h03: PF 0 – PF 3
• 8’h04 – 8’hFF: VF 0 – VF 252
• Other encodings are reserved.

cfg_interrupt_msi_sent O 1

Configuration Interrupt MSI Interrupt Sent
The core generates a one-cycle pulse on this output to
signal that an MSI or MSI-X interrupt message has been
transmitted on the link. The user logic must wait for this
pulse before signaling another interrupt condition to the
core.

cfg_interrupt_msi_fail O 1

Configuration Interrupt MSI Interrupt Operation Failed
A one-cycle pulse on this output indicates that an MSI
interrupt message was aborted before transmission on the
link. The user logic must retransmit the MSI interrupt in
this case.

cfg_interrupt_msi_mmenable O 12

Configuration Interrupt MSI Function Multiple Message
Enable
When the core is configured in the Endpoint mode to
support MSI interrupts, these outputs are driven by the
'Multiple Message Enable' bits of the MSI Control Register
associated with Physical Functions. These bits encode the
number of allocated MSI interrupt vectors for the
corresponding Function. Bits [2:0] correspond to Physical
Function 0, bits [5:3] correspond to PF 1, and so on. The
valid encodings of the 3 bits are:
• 000b: 1 vector
• 001b: 2 vectors
• 010b: 4 vectors
• 011b: 8 vectors
• 100b: 16 vectors
• 101b: 32 vectors

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=64

Table 27: MSI Interrupt Interface Port Descriptions (cont'd)

Name I/O Width Description

cfg_interrupt_msi_pending_status I 32

Configuration MSI Interrupt Pending Status
These inputs are provided for the user to indicate the
interrupt pending status of the MSI interrupts associated
with the Physical Functions. When the status of a MSI
interrupt associated with a PF changes, the user must
place the new interrupt status on these inputs, along with
the corresponding Function number on the
cfg_interrupt_msi_pending_status_function_num input, and
activate the cfg_interrupt_msi_pending_status_data_enable
input for one cycle. The core then latches the new status in
its MSI Pending Bits Register of the corresponding Physical
Function.

cfg_interrupt_msi_pending_status_f
unction_num I 2

Configuration Interrupt MSI Pending Target Function
Number
• 00 = PF 0
• 01 = PF 1
• 10 = PF 2
• 11 = PF 3
This input is used to identify the Function number when
the user places interrupt status on the
cfg_interrupt_msi_pending_status inputs.

cfg_interrupt_msi_pending_status_d
ata_enable I 1

Configuration Interrupt MSI Pending Data Valid
The user application asserts this signal together with
cfg_interrupt_msi_pending_status and
cfg_interrupt_msi_pending_status_function_num values to
update the MSI Pending Bits in the corresponding
function.

cfg_interrupt_msi_mask_update O 1

Configuration Interrupt MSI Function Mask Updated
The SR-IOV core asserts this for 1 cycle when the MSI Mask
Register of any enabled PFs has changed its value. The
user can then read the new mask settings from the
cfg_interrupt_msi_data outputs.

cfg_interrupt_msi_select I 2

Configuration Interrupt MSI Select
These inputs are used to select the Function number for
reading the MSI Mask Register setting from the core.
Values 0 – 3 correspond to Physical Functions 0 – 3,
respectively. The mask MSI Mask Register contents of the
selected PF appear on the output cfg_interrupt_msi_data
after one cycle.

cfg_interrupt_msi_data O 32

Configuration Interrupt MSI Data
These output reflect the MSI Mask Register setting of the
Physical Function selected by the cfg_interrupt_msi_select
input.

cfg_interrupt_msi_attr I 3

Configuration Interrupt MSI TLP Attribute
These bits enable you to set the Attribute bits that are used
for both MSI and MSI-X interrupt requests.
• Bit 0 is the No Snoop bit.
• Bit 1 is the Relaxed Ordering bit.
• Bit 2 is the ID-Based Ordering bit.
The core samples these bits on a 0-to-1 transition on
cfg_interrupt_msi_int bits (when using MSI) or
cfg_interrupt_msix_int (when using MSI-X).

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=65

MSI-X Interrupt External Interface

Table 28: MSI-X Interrupt External Interface Port Descriptions

Name I/O Width Description

cfg_interrupt_msix_enable O 4
Configuration Interrupt MSI-X Function Enabled
These outputs reflect the setting of the MSI-X Enable bits of
the MSI-X Control Register of Physical Functions 0 – 3.

cfg_interrupt_msix_mask O 4
Configuration Interrupt MSI-X Function Mask
These outputs reflect the setting of the MSI-X Function Mask
bits of the MSI-X Control Register of Physical Functions 0 – 3.

cfg_interrupt_msix_vf_enable O 252
Configuration Interrupt MSI-X Enable from VFs
These outputs reflect the setting of the MSI-X Enable bits of
the MSI-X Control Register of Virtual Functions 0 – 251.

cfg_interrupt_msix_vf_mask O 252

Configuration Interrupt MSI-X VF Mask
These outputs reflect the setting of the MSI-X Function Mask
bits of the MSI-X Control Register of Virtual Functions 0 –
251.

cfg_interrupt_msix_address I 64

Configuration Interrupt MSI-X Address
When the core is configured to support MSI-X interrupts and
when the MSI-X Table is implemented in user memory, this
bus is used by the user logic to communicate the address to
be used to generate an MSI-X interrupt.

cfg_interrupt_msix_data I 32

Configuration Interrupt MSI-X Data
When the core is configured to support MSI-X interrupts and
when the MSI-X Table is implemented in user memory, this
bus is used by the user logic to communicate the data to be
used to generate an MSI-X interrupt.

cfg_interrupt_msix_int I 1

Configuration Interrupt MSI-X Data Valid
The assertion of this signal by the user indicates a request
from the user to send an MSI-X interrupt. The user must
place the identifying information on the designated inputs
before asserting this interrupt.
When the MSI-X Table and Pending Bit Array are
implemented in user memory, the identifying information
consists of the memory address, data, and the originating
Function number for the interrupt.
These must be placed on the
cfg_interrupt_msix_address[63:0],
cfg_interrupt_msix_data[31:0], and
cfg_interrupt_msi_function_number[7:0], respectively. The
core internally registers these parameters on the 0-to-1
transition of cfg_interrupt_msix_int.
When the MSI-X Table and Pending Bit Array are
implemented by the core, the identifying information
consists o the originating Function number for the interrupt
and the interrupt vector.
These must be placed on
cfg_interrupt_msi_function_number[7:0] and
cfg_interrupt_msi_int[31:0], respectively.
Bit i of cfg_interrupt_msi_int[31:0] represents interrupt
vector i, and only one of the bits of this bus can be set to 1
when asserting cfg_interrupt_msix_int.
After asserting an interrupt, the user logic must wait for the
cfg_interrupt_msi_sent or cfg_interrupt_msi_fail indication
from the core before asserting a new interrupt.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=66

Table 28: MSI-X Interrupt External Interface Port Descriptions (cont'd)

Name I/O Width Description

cfg_interrupt_msix_vec_pending I 2

Configuration Interrupt MSI-X Pending Bit Query/Clear
These mode bits are used only when the core is configured
to include the MSI-X Table and Pending Bit Array. These two
bits are set when asserting cfg_interrupt_msix_int to send an
MSI-X interrupt, to perform certain actions on the MSI-X
Pending Bit associated with the selected Function and
interrupt vector. The various modes are:
• 00b: Normal interrupt generation. If the Mask bit

associated with the vector was 0 when
cfg_interrupt_msix_int was asserted, the core transmits
the MSI-X request TLP on the link. If the Mask bit was 1,
the core does not immediately send the interrupt, but
instead sets the Pending Bit associated with the interrupt
vector in its MSI-X Pending Bit Array (and subsequently
transmits the MSI-X request TLP when the Mask clears).
In both cases, the core asserts cfg_interrupt_msi_sent for
one cycle to indicate that the interrupt request was
accepted. The user can distinguish these two cases by
sampling the cfg_interrupt_msix_vec_pending_status
output, which reflects the current setting of the MSI-X
Pending Bit corresponding to the interrupt vector.

• 01b: Pending Bit Query. In this mode, the core treats the
assertion of one of the bits of cfg_interrupt_msix_int as a
query for the status of its Pending Bit. The user must
also place the Function number of the Pending Bit being
queried on the cfg_interrupt_msi_function_number input.
The core does not transmit a MSI-X request in response,
but asserts cfg_interrupt_msi_sent for one cycle, along
with the status of the MSI-X Pending Bit on the
cfg_interrupt_msix_vec_pending_status output.

• 10b: Pending Bit Clear. In this mode, the core treats the
assertion of one of the bits of cfg_interrupt_msix_int as a
request to clear its Pending Bit. The user must also place
the Function number of the Pending Bit being queried
on the cfg_interrupt_msi_function_number input. The
core does not transmit a MSI-X request in response, but
clears he MSI-X Pending Bit of the vector (if it is set), and
activates cfg_interrupt_msi_sent for one cycle as the
acknowledgment. The core also provides the previous
state of the MSI-X Pending Bit on the
cfg_interrupt_msix_vec_pending_status output, which can
be sampled by the user to determine if the Pending Bit
was cleared by the core before the user request (because
the pending interrupt was actually transmitted). This
mode can be used to implement a “polling mode” for
MSI-X interrupts, where the interrupt is permanently
masked and the software polls the Pending Bit to detect
and service the interrupt. After each interrupt is serviced,
the Pending Bit can be cleared through this interface.

cfg_interrupt_msix_vec_pending_
status O 1

Configuration Interrupt MSI-X Pending Bit Status
This output provides the status of the Pending Bit associated
with an MSI-X interrupt, in response to query using the
cfg_interrupt_msix_vec_pending input.
It is active only when the core is configured to include the
MSI-X Table and Pending Bit Array.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=67

MSI-X Interrupt Internal Interface

Table 29: MSI-X Interrupt Internal Interface Port Descriptions

Name I/O Width Description

cfg_interrupt_msi_int I 8
The core supports eight vectors per function and it is one-
hot encoding, so each bit corresponds to one vector. See the
description found in MSI Interrupt Interface.

cfg_interrupt_msi_function_numb
er I 8 See the description found in MSI Interrupt Interface.

cfg_interrupt_msi_attr I 3 See the description found in MSI Interrupt Interface.

cfg_interrupt_msi_sent O 1 See the description found in MSI Interrupt Interface.

cfg_interrupt_msi_fail O 1 See the description found in MSI Interrupt Interface.

cfg_interrupt_msix_int I 1 See the description found in MSI Interrupt Interface.

cfg_interrupt_msix_vec_pending I 2 See the description found in MSI Interrupt Interface.

cfg_interrupt_msix_vec_pending_
status O 1 See the description found in MSI Interrupt Interface.

cfg_interrupt_msix_enable O 4 See the description found in MSI Interrupt Interface.

cfg_interrupt_msix_mask O 4 See the description found in MSI Interrupt Interface.

cfg_interrupt_msix_vf_enable O 252 See the description found in MSI Interrupt Interface.

cfg_interrupt_msix_vf_mask O 252 See the description found in MSI Interrupt Interface.

Configuration Extend Interface

The Configuration Extend interface allows the core to transfer configuration information with the
user application when externally implemented configuration registers are implemented. The
following table defines the ports in the Configuration Extend interface of the core.

Table 30: Configuration Extend Interface Port Descriptions

Port I/O Width Description

cfg_ext_read_received O 1

Configuration Extend Read Received.
The Block asserts this output when it has received a
configuration read request from the link.
Set when PCI Express Extended Configuration Space
Enable is selected in User Defined Configuration
Capabilities in core configuration in the Vivado IDE.
All received configuration reads with
cfg_ext_register_number in the following ranges is
considered to be the PCIe Extended Configuration
Space.
• Versal™ PCIe core: 0xE80-0xFFF
All received configuration reads regardless of its
address will be indicated by 1 cycle assertion of
cfg_ext_read_received and valid data is driven on
cfg_ext_register_number and cfg_ext_function_number.
Only received configuration reads within the
aforementioned ranges need to be responded by User
Application outside of the IP.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=68

Table 30: Configuration Extend Interface Port Descriptions (cont'd)

Port I/O Width Description

cfg_ext_write_received O 1

Configuration Extend Write Received.
The Block asserts this output when it has received a
configuration write request from the link.
Set when PCI Express Extended Configuration Space
Enable is selected in User Defined Configuration
Capabilities in the core configuration in the Vivado IDE.
Data corresponding to all received configuration writes
with cfg_ext_register_number in the range 0xb0-0xbf is
presented on cfg_ext_register_number,
cfg_ext_function_number, cfg_ext_write_data and
cfg_ext_write_byte_enable.
All received configuration writes with
cfg_ext_register_number in the following ranges are
presented on cfg_ext_register_number,
cfg_ext_function_number, cfg_ext_wrte_data and
cfg_ext_write_byte_enable.
• Versal PCIe core: 0xE80-0xFFF

cfg_ext_register_number O 10

Configuration Extend Register Number
The 10-bit address of the configuration register being
read or written. The data is valid when
cfg_ext_read_received or cfg_ext_write_received is High.

cfg_ext_function_number O 8

Configuration Extend Function Number
The 8-bit function number corresponding to the
configuration read or write request. The data is valid
when cfg_ext_read_received or cfg_ext_write_received is
High.

cfg_ext_write_data O 32
Configuration Extend Write Data
Data being written into a configuration register. This
output is valid when cfg_ext_write_received is High.

cfg_ext_write_byte_enable O 4 Configuration Extend Write Byte Enable
Byte enables for a configuration write transaction.

cfg_ext_read_data I 32

Configuration Extend Read Data
You can provide data from an externally implemented
configuration register to the core through this bus. The
core samples this data on the next positive edge of the
clock after it sets cfg_ext_read_received High, if you
have set cfg_ext_read_data_valid.

cfg_ext_read_data_valid I 1

Configuration Extend Read Data Valid
The user application asserts this input to the core to
supply data from an externally implemented
configuration register. The core samples this input data
on the next positive edge of the clock after it sets
cfg_ext_read_received High. The core expects the
assertions of this signal within 262144 ('h4_0000) clock
cycles of user clock after receiving the read request on
cfg_ext_read_received signal. If no response is received
by this time, the core will send auto-response with 'h0
payload, and the user application must discard the
response and terminate that particular request
immediately.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=69

Configuration VC1 Status Interface

The Configuration VC1 Status interface is used to determine the VC1 enablement or disablement
by the software, and determine the VC1 resource status.

Table 31: Configuration VC1 Status Interface Port Descriptions

Port I/O Width Description
cfg_vc1_enable

O 1

Configuration VC1 Enable: VC1 Resource Control
Register:VC Enable bit.
When 1b, indicates software has enabled VC1
operation.
When 0b, indicates that VC1 is disabled by software.

cfg_vc1_negotiation_pendi
ng O 1

Configuation VC1 Negotiation Pending: VC1 Resource
Status Register:VC Negotiation Pending bit.
When 1b, indicates VC1 negotiation (initialization or
disabling) is in pending state.

Configuration PASID Interface

The Configuration PASID interface is used to determine the enablement of the PASID per
function status by the software.

Table 32: Configuration PASID Interface Port Descriptions

Port I/O Width Description
cfg_pasid_enable O 4 Configuation PASID Enable: Per Function PASID Enable.

cfg_pasid_exec_permission
_enable

O 4 Configuation PASID Exec Permission Enable: Per
Function PASID Exec Permission Enable.

cfg_pasid_privil_mode_ena
ble

O 4 Configuation PASID Privil Mode Enable: Per Function
PASID Privil Mode Enable.

APB3 Interface

The APB3 (Advanced Peripheral Bus) interface is similar to the DRP interface in previous
generations of the programmable logic integrated block for PCIe in earlier architectures.

Note: The APB3 interface is not supported for simulation.

Table 33: APB3 Interface Port Descriptions

Port I/O Width Description
apb3_clk I 1 APB3 Clock. The rising edge of PCLK times all transfers

on the APB.

apb3_paddr I 9 APB3 Address. This is the APB address bus (DWORD
(32-bit) addresses). It is 9-bits wide and is driven by the
peripheral bus bridge unit.

apb3_penable I 1 APB3 Enable. This signal indicates the second and
subsequent cycles of an APB transfer.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=70

Table 33: APB3 Interface Port Descriptions (cont'd)

Port I/O Width Description
apb3_pwdata I 32 APB3 Write Data. This bus is driven by the peripheral

bus bridge unit during write cycles when PWRITE is
HIGH. This bus can be up to 32 bits wide.

apb3_pwrite I 1 APB3 Direction. This signal indicates an APB write
access when HIGH and an APB read access when LOW.

apb3_psel I 1 APB3 Select. The APB bridge unit generates this signal
to each peripheral bus slave. It indicates that the slave
device is selected and that a data transfer is required.

apb3_prdata O 32 APB3 Read Data. The selected slave drives this bus
during read cycles when
PWRITE is LOW. This bus can be up to 32-bits wide.

apb3_pready O 1 APB3 Ready. The slave uses this signal to extend an
APB transfer.

apb3_pslverr O 1 APB3 Slave Error. This signal indicates a transfer failure.

apb3_presetn I 1 APB3 Reset This signal indicates an APB reset

Clock and Reset Interface

Fundamental to the operation of the core, the Clock and Reset interface provides the system-
level clock and reset to the core as well as the user application clock and reset signal. The table
below defines the ports in the Clock and Reset interface of the core.

The user_clk signal is the derived clock from the TXOUTCLK pin which is the output from the
GT Wizard IP. TXOUTCLK is dependent on the pmareset, progdivreset, and txpisopd
signals, and also on sys_clk or refclk which is connected to GT Wizard IP. So, user_clk is
not expected to run continuously. For more details about TXOUTCLK, refer the corresponding
GT Wizard documents.

Table 34: Clock and Reset Interface Port Descriptions

Port I/O Width Description

user_clk O 1
User clock output (62.5, 125, or 250 MHz)
This clock has a fixed frequency and is configured in
the Vivado® Integrated Design Environment (IDE).

user_reset O 1
This signal is deasserted synchronously with respect to
user_clk. It is deasserted and asserted asynchronously
with sys_reset assertion.

sys_clk I 1
Reference clock
This clock has a selectable frequency of 100 MHz,125
MHz and 250 MHz.

sys_clk_gt I 1

PCIe reference clock for GT. This clock must be driven
directly from IBUFDS (same definition and frequency as
sys_clk). This clock has a selectable frequency of
100 MHz, 125 MHz and 250 MHz, which is the same as
in sys_clk.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=71

Table 34: Clock and Reset Interface Port Descriptions (cont'd)

Port I/O Width Description

sys_reset I 1
Fundamental reset input to the core (asynchronous)
This input is active-Low by default to match the PCIe
edge connector reset polarity.

phy_rdy_out O 1
The phy ready signal indicates that the GT Wizard is
ready. This signal is driven by phy_rst FSM on receiving
the phy status from the GT Wizard core.

The PL PCIE4 does not have dedicated reset pin routing.

PCIe PHY IP Interface

The signals described in this section are based on a single-lane application. Signals can be per
lane or per design; if not indicated in the description, the default is per design. Per design
indicates that one signal controls all lanes (0 to N-1 lane). A per-lane signal on the PCIe PHY IP is
in the form of {LaneN-1[Width-1:0], …Lane1 [Width-1:0], Lane0[Width-1:0]}.

Clock and Reset Signals

Table 35: Clock and Reset Signals

Name I/O Width Clock
Domain Description

phy_coreclk I 1 coreclk

Core clock options:

• 250 MHz

• 500 MHz

phy_userclk I 1 userclk

User clock options:

• 62.5 MHz

• 125 MHz

• 250 MHz

phy_userclk is edge aligned and phase
aligned to phy_coreclk.

phy_mcapclk I 1 mcapclk

Additional clock options:

• 62.5 MHz

• 125 MHz

phy_mcapclk is edge aligned and phase
aligned to phy_coreclk.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=72

Table 35: Clock and Reset Signals (cont'd)

Name I/O Width Clock
Domain Description

phy_pclk I 1 pclk

PIPE interface clock options:

• 125 MHz: Gen1 operating speed

• 250 MHz: Gen2, Gen3, Gen4 operating
speed

• 500 MHz: Gen4 operating speed

phy_pclk is edge aligned, but not phase
aligned, to phy_coreclk and phy_userclk.

TX Data Signals

Table 36: TX Data Signals

Name I/O Width Description

phy_txdata[63:0] O 64
Parallel data output. Bits [63:32] are used for Gen4 only and
must be ignored in Gen1, Gen2, and Gen3. Bits [31:16] are
used for Gen3 only and must be ignored in Gen1 and Gen2.
Per lane.

phy_txdatak[1:0] O 2

Indicates whether TXDATA is control or data for Gen1 and
Gen2 only. Per lane.
• 0b: Data
• 1b: Control

phy_txdata_valid O 1

This signal allows the MAC to instruct the PHY to ignore
TXDATA for one PCLK cycle. When High, this indicates that
the PHY is to use TXDATA. When Low, this indicates the PHY
is notto use TXDATA for one PCLK cycle. Gen3 and Gen4
only. Per lane.

phy_txstart_block O 1
This signal allows the MAC to tell the PHY the starting byte
for a 128b block. The starting byte for a 128b block must
always start at bit [0] of TXDATA. Gen3 and Gen4 only. Per
lane.

phy_txsync_header[1:0] O 2
Provide the sync header for the PHY to use the next 130b
block. The PHY reads this value when the txsync_block is
asserted. Gen3 and Gen4 only. Per lane.

RX Data Signals

Table 37: RX Data Signals

Name I/O Width Description

phy_rxdata[63:0] I 64
PIPE data output from receiver. Bits[63:32] are used for
Gen4 only and must be ignored in Gen1, Gen2, and Gen3.
Bits[31:16] are used for Gen3 only and must be ignored in
Gen1 and Gen2. Per lane.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=73

Table 37: RX Data Signals (cont'd)

Name I/O Width Description

phy_rxdatak[1:0] I 2

Indicates whether RXDATA is control or data. Gen1 and
Gen2 only. Per-lane.
• 0b: Data
• 1b: Control

phy_rxdata_valid I 1

This signal allows the PHY to instruct the MAC to ignore
RXDATA for one pclk cycle. When High, this indicates that
RXDATA should be used. When Low, this indicates the
RXDATA should be ignored for one pclk cycle. Gen3 and
Gen4 only. Per lane.

phy_rxstart_block[1:0] I 2

This signal allows the PHY to tell the MAC the starting byte
for a 128b block.
• 00b: Data with no start
• 01b: A block starts at lower 32 bits
• 10b: A block starts at upper 32 bits, inactive when

operating at Gen3 speed
• 11b: Lower 32 bits has valid data and upper 32 bits are

invalid, inactive when operating at Gen3 speed.
Gen3 and Gen4 only per lane.

phy_rxsync_header[1:0] I 2
Provides the sync header for the MAC to use the next 128b
block. The MAC reads this value when the RXSYNC_BLOCK is
asserted. Gen3 and Gen4 only. Per lane.

Command Signals

Table 38: Command Signals

Name I/O Width Description

phy_txdetectrx O 1

Tells the PHY to perform receiver detection when this signal
is High and POWERDOWN is in P1 low power state. Receiver
detection is complete when phystatus asserts for one pclk
cycle. The status of receiver detection is indicated in rxstatus
when phystatus is High for one pclk cycle.
• rxstatus = 000b: Receiver not present
• rxstatus = 001b: Receiver present

phy_txelecidle O 1
Forces the tx[p/n] to electrical idle when this signal is High.
During electrical idle, tx[p/n] are driven to the DC common
mode voltage. Per lane.

phy_txcompliance O 1
Sets the running disparity to negative when this signal is
logic High. Used when transmitting the PCIe compliance
pattern. Per lane.

phy_rxpolarity O 1 Requests the PHY to perform polarity inversion on the
received data when this signal is High. Per lane.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=74

Table 38: Command Signals (cont'd)

Name I/O Width Description

phy_powerdown[1:0] O 2

Requests PHY to enter power saving state or return to
normal power state. Power management is complete when
PHYSTATUS asserts for one PCLK cycle.
• 00b: P0, normal operation.
• 01b: P0s, power saving state with low recovery time

latency.
• 10b: P1, power saving state with longer recovery time

latency.
• 11b: P2, lowest power state.
P2 is not supported.

phy_rate[1:0] O 2

Requests the PHY to perform a dynamic rate change. Rate
change is complete when PHYSTATUS asserts for one PCLK
cycle. rxvalid, rxdata, and rxstatus must be ignored while
the PHY is in rate change.
• 00b: Gen1
• 01b: Gen2
• 10b: Gen3
In the simulation mode (PHY_SIM_EN = TRUE), PHY status
assertion takes about 45 μs for Gen3 speed change.

Status Signals

Table 39: Status Signals

Name I/O Width Description

phy_rxvalid I 1
Indicates symbol lock and valid data on rxdata when High.
This signal must be ignored during reset and rate change.
Per lane. Gen1 and Gen2 only.

phy_phystatus I 1

Used to communicate completion of several PIPE operations
including reset, receiver detection, power management, and
rate change. Except for reset, this signal indicates done
when asserted for one pclk cycle. This signal is held High
and asynchronous during reset. In error situations, such as
PHY not responding with PHYSTATUS, the MAC should
perform the necessary error recovery. Per lane.

phy_phystatus_rst I 1
Similar to phystatus, except this port is used to
communicate completion of reset only. This signal is High
immediately upon reset. After the PHY and GT resets are
complete, this signal transitions from High to Low.

phy_rxelecidle I 1 RXELECIDLE = High indicates RX electrical idle detected.
Gen1 and Gen2 only. Per lane.

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=75

Table 39: Status Signals (cont'd)

Name I/O Width Description

phy_rxstatus[2:0] I 3

Encodes RX status and error codes for the RX data. Per lane.
• 000b: Received data OK
• 001b: 1 SKP added
• 010b: 1 SKP removed
• 011b: Receiver detected
• 100b: 8b/10b (Gen1/Gen2) or 128b/130b (Gen3) decode

error
• 101b: Elastic buffer overflow
• 110b: Elastic buffer underflow
• 111b: Receive disparity error (Gen1/Gen2)

phy_ready I 1 Indicates Master Lane PHY GT is ready.

TX Driver Signals for Gen1 and Gen2

Table 40: TX Driver Signals for Gen1 and Gen2

Name I/O Width Description

phy_txmargin[2:0] O 3

Selects TX voltage levels. The recommendation is to set this
port to 000b for the normal operating voltage range.
• 000b: Programmable (default)
• 001b: Programmable
• 010b: Programmable
• 011b: Programmable
• 100b: Programmable
• 101b: Programmable
• 110b: Programmable
• 111b: Programmable

phy_txswing O 1
Controls TX voltage swing level. Gen1 and Gen2 only.
• 0b: Full swing (default)
• 1b: Low swing

phy_txdeemph O 1
Selects TX de-emphasis. Gen1 and Gen2 only.
• 0b: -6.0 dB de-emphasis
• 1b: -3.5 dB de-emphasis (default)

Configuration Space
The PCI configuration space consists of the following primary parts, illustrated in the following
tables. They include:

• Legacy PCI v3.0 Type 0/1 Configuration Space Header:

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=76

• Type 0 Configuration Space Header used by Endpoint applications (see Table 41: PCI
Config Space Header (Type 0 and 1))

• Type 1 Configuration Space Header used by Root Port applications (see Table 41: PCI
Config Space Header (Type 0 and 1))

• Legacy Extended Capability Items:

• PCIe Capability Item

• Power Management Capability Item

• Message Signaled Interrupt (MSI) Capability Item

• MSI-X Capability Item (optional)

The core implements up to four legacy extended capability items.

For more information about enabling this feature, see Customizing and Generating the Core.

The core can implement up to ten PCI Express Extended Capabilities. The remaining PCI Express
Extended Capability Space is available for users to implement. The starting address of the space
available to users begins at 600h when extended large is selected, and E00h when extended
small is selected. If you choose to implement registers in this space, you can select the starting
location of this space, and this space must be implemented in the user application.

Table 41: PCI Config Space Header (Type 0 and 1)

Byte
Offset Register (Type 0: Endpoint) Register Type 1: Root/DS Port)

00h Device ID Vendor ID

same as Endpoint

04h Status Command

08h Class Code Rev ID

0Ch BIST Header Lat Tim CacheL

10h BAR0

14h BAR1

18h BAR2 SecLTim SubBus# SecBus# PrimBus#

1Ch BAR3 Secondary Status I/O Lim I/O Base

20h BAR4 Memory Limit Memory Base

24h BAR5 PrefetchMemLimit PrefetchMemBase

28h Cardbus CIS Pointer Prefetchable Base Upper 32 Bits

2Ch Subsystem ID Subsystem Vendor ID Prefetchable Limit Upper 32 Bits

30h Expansion ROM BAR I/O Limit Upper 16 I/O Base Upper 16

34h Reserved CapPtr Reserved CapPtr

38h Reserved Expansion ROM BAR

3Ch Max_Lat Min_Gnt IntrPin IntrLine Bridge Control IntrPin IntrLine

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=77

Table 42: PCI Express Config Space

Byte Offset
(DW Offset) Register (Endpoint) Register (Root/DS Port)

40h (10h) PM Capability NxtCap PM Cap ID

same as Endpoint

44h (11h) Data BSE PMCSR

48h (12h) MSI Control NxtCap MSI Cap ID

4Ch (13h) Message Address (Lower)

50h (14h) Message Address (Upper)

54h (15h) Reserved Message Data

58h (16h) Mask Bits

5Ch (17h) Pending Bits

60h (18h) MSIX Control NxtCap MSIX Cap ID Reserved

64h (19h) Table Offset Table BIR Reserved

68h (1Ah) PBA Offset PBA BIR Reserved

6Ch (1Bh) Reserved Reserved

70h (1Ch) PCIE Capability NxtCap PCIE Cap ID

same as Endpoint

74h (1Dh) Device Capabilities

78h (1Eh) Device Status Device Control

7Ch (1Fh) Link Capabilities

80h (20h) Link Status Link Control

84h (21h) Reserved Slot Capabilities

88h (22h) Reserved Slot Status Slot Control

8Ch (23h) Reserved Root
Capabilities1 Root Control1

90h (24h) Reserved Root Status1

94h (25h) Device Capabilities 2

same as Endpoint
98h (26h) Device Status 2 Device Control 2

9Ch (27h) Link Capabilities 2

A0h (28h) Link Status 2 Link Control 2

A4-FCh
Unimplemented Configuration Space

(Returns 00000000h)

Notes:
1. Root Port only; Reserved in Switch DS Ports.

Table 43: PCIe Capability Order with PCIE4 Capabilities

PF0 PF1-3 VF Start Address PF0 Next Pointer
Legacy PCI CSH Legacy PCI CSH Legacy PCI CSH 0x00 0x40

PM PM - 0x40 0x48

MSI MSI - 0x48 0x60

MSI-X MSI-X MSI-X 0x60 0x70

PCIE PCIE PCIE 0x70 0x0

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=78

Table 43: PCIe Capability Order with PCIE4 Capabilities (cont'd)

PF0 PF1-3 VF Start Address PF0 Next Pointer
Extend Extend 0xB0

Table 44: PCI Express Extended Configuration Space: Byte Offset 100h (40h) to 32Ch

Byte Offset
(DW Offset) Register (Endpoint) Register (Root Port)

100h (40h) Nxt Cap Cap Ver AER Ext Cap

same as Endpoint

104h (41h) Uncorrectable Error Status Register

108h (42h) Uncorrectable Error Mask Register

10Ch (43h) Uncorrectable Error Severity Register

110h (44h) Correctable Error Status Register

114h (45h) Correctable Error Mask Register

118h (46h) Advanced Error Cap. & Control Register

11Ch (47h) Header Log Register 1

120h (48h) Header Log Register 2

124h (49h) Header Log Register 3

128h (4Ah) Header Log Register 4

12Ch (4Bh) Reserved Root Error Command Register

130h (4Ch) Reserved Root Error Status Register

134h (4Dh) Reserved Error Source ID Register

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=79

Table 44: PCI Express Extended Configuration Space: Byte Offset 100h (40h) to 32Ch
(cont'd)

Byte Offset
(DW Offset) Register (Endpoint) Register (Root Port)

140h (50h) Nxt Cap Cap Ver SR-IOV Ext Cap

Reserved

144h (51h) Capability Register

148h (52h) SR-IOV Status Control

14Ch (53h) Total VFs Initial VFs

150h (54h) Func Dep Link Number VFs

154h (55h) VF Stride First VF Offset

158h (56h) VF Device ID Reserved

15Ch (57h) Supported Page Sizes

160h (58h) System Page Size

164h (59h) VF Base Address Register 0

168h (5Ah) VF Base Address Register 1

16Ch (5Bh) VF Base Address Register 2

170h (5Ch) VF Base Address Register 3

174h (5Dh) VF Base Address Register 4

178h (5Eh) VF Base Address Register 5

180h (60h) Nxt Cap Cap Ver ARI Ext Cap

184h (61h) Control NxtFn FnGrp

188h - 19Ch Reserved

1A0h (68h) Nxt Cap Cap Ver DSN Ext Cap

1A4h (69h) Device Serial Number (1st)

1A8h (6Ah) Device Serial Number (2nd)

1ACh - 1BCh Reserved

1C0h (70h) Nxt Cap Cap Ver 2nd PCIE Ext Cap

same as Endpoint

1C4h (71h) Lane Control

1C8h (72h) Reserved Lane Error Status

1CCh (73h) Lane 1 Eq Ctrl Reg Lane 0 Eq Ctrl Reg

1D0h (74h) Lane 3 Eq Ctrl Reg Lane 2 Eq Ctrl Reg

1D4h (75h) Lane 5 Eq Ctrl Reg Lane 4 Eq Ctrl Reg

1D8h (76h) Lane 7 Eq Ctrl Reg Lane 6 Eq Ctrl Reg

1DCh (77h) Lane 9 Eq Ctrl Reg Lane 8 Eq Ctrl Reg

1E0h (78h) Lane 11 Eq Ctrl Reg Lane 10 Eq Ctrl Reg

1E4h (79h) Lane 13 Eq Ctrl Reg Lane 12 Eq Ctrl Reg

1E8h (7Ah) Lane 15 Eq Ctrl Reg Lane 14 Eq Ctrl Reg

1ECh (7Bh) Reserved

1F0h (7Ch) Nxt Cap Cap Ver VC Ext Cap

1F4h (7Dh) Port VC Capability Register 1

1F8h (7Eh) Port VC Capability Register 2

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=80

Table 44: PCI Express Extended Configuration Space: Byte Offset 100h (40h) to 32Ch
(cont'd)

Byte Offset
(DW Offset) Register (Endpoint) Register (Root Port)

1FCh (7Fh) Port VC Status

Reserved

200h(80h) VC Resource Capability Register 0

204h(81h) VC Resource Control Register 0

208h(82h) VC Resource Stat 0

20Ch(83h) VC Resource Capability Register 1

210h (84h) VC Resource Control Register 1

214h (85h) VC Resource Stat 1

218h (86h)
Reserved

21Ch (87h)

Table 45: PCI Express Extended Configuration Space: Byte Offset 330h (CCh) to FFCh

Byte Offset
(DW Offset) Register (Endpoint) Register (Root Port)

330h (CCh)

Reserved

Nxt Cap Cap Ver Loopback VSEC

334h (CDh) Loopback Header

338h (CEh) Loopback Control

33Ch (CFh) Loopback Status

340h (D0h) Error Count 1

344h (D1h) Error Count 2

348h (D2h) Error Count 3

34Ch (D3h) Error Count 4

380h (E0h) Nxt Cap Cap Ver ATS Ext Cap

Reserved

384h (E1h) Control Reg Capability Reg

388-38Ch Reserved

390h (E4h) Nxt Cap Cap Ver PRI Ext Cap

394h (E5h) Status Reg Control Reg

398h (E6h) Outstanding Page Request Capacity

39Ch (E7h) Outstanding Page Request Allocation

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=81

Table 45: PCI Express Extended Configuration Space: Byte Offset 330h (CCh) to FFCh
(cont'd)

Byte Offset
(DW Offset) Register (Endpoint) Register (Root Port)

3A0h (E8h) Nxt Cap Cap Ver DL Feature Ext Cap

same as Endpoint

3A4h (E9h) Capabilities Register

3A8h (EAh) Status Register

3ACh (EBh) 1 DW Reserved

3B0h (ECh) Nxt Cap Cap Ver 16 GT/s Capability

3B4h (EDh) Capabilities Register

3B8h (EEh) Control Register

3BCh (EFh) Status Register

3C0h (F0h) Local Data Parity Mismatch Register

3C4h (F1h) First Retimer Data Parity Mismatch Status Register

3C8h (F2h) Second Retimer Data Parity Mismatch Status
Register

3CCh (F3h) Lane 3-0 Eq Control Register

3D0h (F4h) Lane 7-4 Eq Control Register

3D4h (F5h) Lane 11-8 Eq Control Register

3D8h (F6h) Lane 15-12 Eq Control Register

3DCh- 3FCh 5 DW Reserved

400h (100h) Nxt Cap Cap Ver Margining Ext Cap

404h (101h) Port Status Port Capabilities

408h (102h) Lane 0 Status Lane 0 Control

40Ch (103h) Lane 1 Status Lane 1 Control

410h (104h) Lane 2 Status Lane 2 Control

414h (105h) Lane 3 Status Lane 3 Control

418h (106h) Lane 4 Status Lane 4 Control

41Ch (107h) Lane 5 Status Lane 5 Control

420h (108h) Lane 6 Status Lane 6 Control

424h (109h) Lane 7 Status Lane 7 Control

428h (10Ah) Lane 8 Status Lane 8 Control

42Ch (10Bh) Lane 9 Status Lane 9 Control

430h (10Ch) Lane 10 Status Lane 10 Control

434h (10Dh) Lane 11 Status Lane 11 Control

438h (10Eh) Lane 12 Status Lane 12 Control

43Ch (10Fh) Lane 13 Status Lane 13 Control

440h (110h) Lane 14 Status Lane 14 Control

444h (111h) Lane 15 Status Lane 15 Control

448h-44Ch 2 DW Reserved

450h (114h) Nxt Cap Cap Ver ACS Ext Cap

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=82

Table 45: PCI Express Extended Configuration Space: Byte Offset 330h (CCh) to FFCh
(cont'd)

Byte Offset
(DW Offset) Register (Endpoint) Register (Root Port)

454h (115h) ACS Control ACS Capabilties

same as Endpoint

458h (116h) Egress Control Vector

45Ch 1 DW Reserved

460h – 4BCh PL 32 GT/s / Reserved

4C0h – 500h 17 DW Reserved

504h (141h) VC Arb Table

544h -5ECh 44 DW Reserved

5F0h (17Ch) PASID

600h-DE0h Extend-Large T& PDVSEC

DE4h-DFCh PER Msg

E00h-FFCh Extend-Small

Chapter 3: Product Specification

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=83

Chapter 4

Designing with the Core
This section includes guidelines and additional information to facilitate designing with the core.

Clocking
The core requires a 100, 125, or 250 MHz reference clock input.

The following applies:

• The reference clock can be synchronous or asynchronous with up to ±300 PPM or 600 PPM
worst case. (If spread spectrum clock (SSC) is enabled, the link must be synchronous.)

• The PCLK is the primary clock for the PIPE interface.

• In addition to PCLK, two other clocks (CORECLK and USERCLK) are required to support the
core.

• BUFG_GTs are used to generate the core clocks. These clocks are all driven from the
TXOUTCLK pin which is a derived clock from GTREFCLK0 through a RPLL. LCPLL is only
provided to the GT PCS/PMA block while TXOUTCLK continues to be derived from a RPLL.

• The source of the Versal™ GTY reference clock must come directly from IBUFDS_GTE5.

• To use the reference clock for ACAP general interconnect, another BUFG_GT must be used.

• The PIPE clock module is not part of the core. It is visible in the Versal PCI Express PHY IP
generated as part of this subsystem, and is available in the PCI Express PHY example design.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=84

Figure 4: Clocking Architecture

PL PCIE4

BUFG_GT

BUFG_GT

BUFG_GT

CORE_CLK
CORE_CLK_MI*

Versal
GTY QUAD TXOUTCLK

EN Generation
Soft Logic

IBUFDS
GTE

CLKP

CLKN

REFCLK

USER_CLKTo User Logic
To BRAMs

To GTYs
To PIPE I/F Pipelines

PIPE_CLK

CORE_CLK

To URAMs

Dynamic Speed Switch
Gen1/2/3/4

USER_CLK_EN

PIPE_CLK_EN

APB3_CLK

X22802-072120

All PCIe clocks (pipe_clk, core_clk, user_clk, and mcap_clk) are all driven by BUFG_GT
sourced from the TXOUTCLK pin. These clocks are derived clock from GTREFCLK0 through a
RPLL. All user interface signals of the core are timed with respect to the same clock (user_clk)
which can have a frequency of 62.5, 125, or 250 MHz depending on the link speed and width
configured (see the previous figure).

In a typical PCI Express® solution, the PCI Express reference clock is a spread spectrum clock
(SSC), provided at 100 MHz. In most commercial PCI Express systems, SSC cannot be disabled.
For more information regarding SSC and PCI Express, see PCI Express Base Specification 4.0
(https://www.pcisig.com/specifications).

IMPORTANT! All add-in card designs must use synchronous clocking due to SSC on the reference clock of
most host systems. For devices using the Slot clock, the Slot Clock Configuration setting in the Link Status
register must be enabled in the Vivado® IP catalog.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 85Send Feedback

https://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=85

Each link partner device shares the same clock source. The following figures show a system using
a 100 MHz reference clock. Even if the device is part of an embedded system, if the system uses
commercial PCI Express root complexes or switches along with typical motherboard clocking
schemes, synchronous clocking should still be used.

Note: The clocking diagrams show high-level representations of the board layout. Ensure that coupling,
termination, and details are correct when laying out a board.

Figure 5: Embedded System Using 100 MHz Reference Clock

Device
Endpoint

X12208-072120

PCI Express
Switch or Root

Complex Device

PCI Express Clock
Oscillator

100 MHz

Transceivers

100 MHz

Embedded System Board

PCIe Link

PCIe Link

Figure 6: Open System Add-In Card Using 100 MHz Reference Clock

P
C

Ie
 L

in
k

PCI Express Connector

Device Endpoint

Transceivers

100 MHz with SSC
PCI Express Clock

PCI Express Add-In Card

+ _

P
C

Ie
 L

in
k

P
C

Ie
 L

in
k

P
C

Ie
 L

in
k

X16615-072120

The PCIe core checks for GT power to be stable before the clock is enabled.

• This results in a logic driven CE (rather than VCC) for the BUFG_GT that is driven by
IBUFDS_GTE5 (PCIe ref clock).

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=86

• Before this change in CE, if you had another (parallel) BUFG_GT connected to the
IBUFDS_GTE5 with CE driven by VCC, the BUFG_GT_SYNC inserted by opt_design/MLO
could drive both BUFG_GTs.

• If there is a parallel BUFG_GT that does not share the same CE as the PCIe BUFG_GT clock,
then two BUFG_GT_SYNC are inserted by opt_design/MLO.

• Because you can only have one BUFG_GT_SYNC for IBUFDS_GTE5 drivenBUFG_GTs, the
router does not know how to handle the second BUFG_GT_SYNC and does not route the
IBUFDS_GTE5/ODIV2 driven clock net.

• You must ensure that the BUFG_GTs driven by the IBUFDS_GTE5 have the same CE/CLR
pins.

Resets
The core resets the system using sys_reset, an asynchronous, active-Low reset signal asserted
during the PCI Express® Fundamental Reset. Asserting this signal causes a hard reset of the
entire core, including the transceivers. After the reset is released, the core attempts to link train
and resume normal operation. In a typical Endpoint application, for example an add-in card, a
sideband reset signal is normally present and should be connected to sys_reset. For Endpoint
applications that do not have a sideband system reset signal, the initial hardware reset should be
generated locally.

RECOMMENDED: Recommendation for reset use:

• If your board is designed to have the same PCIe edge connectors to operate with CPM and PL
PCIe, Xilinx recommends using PS reset using CIPS. Please refer to Versal ACAP CPM mode for
PCIe PG for more information.

• If your board design is specifically planned to just use PL-PCIE in the PCIe edge connectors, then
any PL reset pin can be used.

Four reset events can occur in PCI Express:

• Cold Reset: A Fundamental Reset that occurs at the application of power. The sys_reset
signal is asserted to cause the cold reset of the core.

• Warm Reset: A Fundamental Reset triggered by hardware without the removal and
reapplication of power. The sys_reset signal is asserted to cause the warm reset to the
core.

• Hot Reset: In-band propagation of a reset across the PCI Express Link through the protocol,
resetting the entire Endpoint device. In this case, sys_reset is not used. In the case of Hot
Reset, the cfg_hot_reset_out signal is asserted to indicate the source of the reset.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=87

• Function-Level Reset: In-band propagation of a reset across the PCI Express Link through the
protocol, resetting only a specific function. In this case, the core asserts the bit of either
cfg_flr_in_process and/or cfg_vf_flr_in_process that corresponds to the
function being reset. Logic associated with the function being reset must assert the
corresponding bit of cfg_flr_done or cfg_vf_flr_done to indicate it has completed
the reset process.

After an FLR has been initiated by writing a 1b to the Initiate Function Level Reset bit, the
function must complete the FLR and any function-specific initialization within 100 ms.

The User Application interface of the core has an output signal, user_reset. This signal is
deasserted synchronously with respect to user_clk. The user_reset signal is asserted as
a result of any of these conditions:

• Fundamental Reset: Occurs (cold or warm) due to assertion of sys_reset.

• PLL within the Core Wrapper: Loses lock, indicating an issue with the stability of the clock
input.

• Loss of Transceiver PLL Lock: Any transceiver loses lock, indicating an issue with the PCI
Express Link.

The user_reset signal is deasserted synchronously with user_clk after all of the listed
conditions are resolved, allowing the core to attempt to train and resume normal operation.

AXI4-Stream Interface Description
This section provides a detailed description of the features, parameters, and signals associated
with the user interfaces of the core.

Feature Overview
The following figure illustrates the user interface of the core.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=88

Figure 7: Block Diagram of Integrated Block User Interfaces

PCIe
Requester
Interface

Completer Request
Interface

User Application

Completer
Interface

PCIe Requester
Interface

PCIe Completer
Interface

AXI4
Master

Completer Completion
Interface

AXI4
Slave

Requester Request
Interface

Requester Completion
Interface

RX Message
Interface

Tag Availability
Status

Flow Control
Status

m_axis_cq_*

cfg_msg_*

s_axis_cc_*

s_axis_rq_*

pcie_tag_av[1:0]

m_axis_rc_*

X12207-072120

Integrated Block for PCIe

AXI4
Slave

AXI4
Master

AXI4
Slave

AXI4
Master

pcie_tfc_*,
cfg_fc_*

AXI4
Master

AXI4
Slave

The interface is organized as four separate interfaces through which data can be transferred
between the PCIe link and the user application:

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=89

• A PCIe Completer Request (CQ) interface through which requests arriving from the link are
delivered to the user application.

• A PCIe Completer Completion (CC) interface through which the user application can send
back responses to the completer requests. The user application can process all Non-Posted
transactions as split transactions. That is, it can continue to accept new requests on the
completer request interface while sending a completion for a request.

• A PCIe Requester Request (RQ) interface through which the user application can generate
requests to remote PCIe devices attached to the link.

• A PCIe Requester Completion (RC) interface through which the user application receives
completions from the link (in response to the user application requests as PCIe requester).

Each of the four interfaces is based on the AMBA® AXI4-Stream Protocol Specification. The
width of these interfaces can be configured as 64, 128, 256, or 512 bits, and the user clock
frequencies can be selected as 62.5, 125, or 250 MHz, depending on the number of lanes and
data rate you choose.

The following table lists the valid combinations of interface width and user clock frequency for
the different link widths and link speeds supported by the integrated block. All four AXI4-Stream
interfaces are configured with the same width in all cases.

In addition, the integrated block contains the following interfaces through which status
information is communicated to the PCIe master side of the user application:

• A flow control status interface attached to the requester request (RQ) interface that provides
information on currently available transmit credit. This enables the user application to
schedule requests based on available credit, avoiding blocking in the internal pipeline of the
controller due to lack of credit from its link partner.

• A tag availability status interface attached to the requester request (RQ) interface that
provides information on the number of tags available to assign to Non-Posted requests. This
allows the client to schedule requests without the risk of being blocked when the tag
management unit in the PCIe IP has exhausted all the tags available for outgoing Non-Posted
requests.

• A receive message interface attached to the completer request (CQ) interface for delivery of
message TLPs received from the link. It can optionally provide indications to the user logic
when a message is received from the link (instead of transferring the entire message to the
user application over the AXI4 interface).

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=90

Table 46: Clock Frequencies and Interface Widths Supported For Various Configurations

PCIe Link
Speed

Capability

PCIe Link
Width

Capability

PIPE
Interface

Data
Widths
(bits)

AXI4
Streaming
Interface

Data Width
(bits)

pipe_clk
Frequency

(MHz)

core_clk
Frequency

(MHz)

user_clk2
Frequency

(MHz)
(axi4st)

user_clk
Frequency
(MHz) (cfg,

axi4st)

mcap_clk
Frequency

(MHz)

GT
TxOutClk

(MHz)

Gen1

X1

16 64 125 250 62.5 62.5 62.5/125 250

16 64 125 250 125 125 125 250

16 64 125 250 250 250 125 250

X2

16 64 125 250 62.5 62.5 62.5/125 250

16 64 125 250 125 125 125 250

16 64 125 250 250 250 125 250

X4
16 64 125 250 125 125 125 250

16 64 125 250 250 250 125 250

X8
16 64 125 250 250 250 125 250

16 128 125 250 125 125 125 250

X16 16 128 125 250 250 250 125 250

Gen2

X1

16/16 64 125/250 250 62.5 62.5 62.5/125 250

16/16 64 125/250 250 125 125 125 250

16/16 64 125/250 250 250 250 125 250

X2
16/16 64 125/250 250 125 125 125 250

16/16 64 125/250 250 250 250 125 250

X4
16/16 64 125/250 250 250 250 125 250

16/16 128 125/250 250 125 125 125 250

X8
16/16 128 125/250 250 250 250 125 250

16/16 256 125/250 250 125 125 125 250

X16 16/16 256 125/250 250 250 250 125 250

Gen3

X1
16/16/32 64 125/250/

250 500 125 125 125 500

16/16/32 64 125/250/
250 500 250 250 125 500

X2
16/16/32 64 125/250/

250 500 250 250 125 500

16/16/32 128 125/250/
250 500 125 125 125 500

X4
16/16/32 128 125/250/

250 500 250 250 125 500

16/16/32 256 125/250/
250 500 125 125 125 500

X8 16/16/32 256 125/250/
250 500 250 250 125 500

X16 16/16/32 512 125/250/
250 500 500 250 125 500

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=91

Table 46: Clock Frequencies and Interface Widths Supported For Various Configurations
(cont'd)

PCIe Link
Speed

Capability

PCIe Link
Width

Capability

PIPE
Interface

Data
Widths
(bits)

AXI4
Streaming
Interface

Data Width
(bits)

pipe_clk
Frequency

(MHz)

core_clk
Frequency

(MHz)

user_clk2
Frequency

(MHz)
(axi4st)

user_clk
Frequency
(MHz) (cfg,

axi4st)

mcap_clk
Frequency

(MHz)

GT
TxOutClk

(MHz)

Gen4

X1

16/16/
32/32 64 125/250/

250/500 500 250 250 125 500

16/16/
32/32 128 125/250/

250/500 500 125 125 125 500

X2

16/16/
32/32 128 125/250/

250/500 500 250 250 125 500

16/16/
32/32 256 125/250/

250/500 500 125 125 125 500

X4 16/16/
32/32 256 125/250/

250/500 500 250 250 125 500

X8 16/16/
32/32 512 125/250/

250/500 500 500 250 125 500

Data Alignment Options

A transaction layer packet (TLP) is transferred on each of the AXI4-Stream interfaces as a
descriptor followed by payload data (when the TLP has a payload). The descriptor has a fixed size
of 16 bytes on the request interfaces and 12 bytes on the completion interfaces. On its transmit
side (towards the link), the integrated block assembles the TLP header from the parameters
supplied by the user application in the descriptor. On its receive side (towards the user interface),
the integrated block extracts parameters from the headers of received TLP and constructs the
descriptors for delivering to the user application. Each TLP is transferred as a packet, as defined
in the AXI4-Stream Interface protocol.

64/128/256-bit interface:

When a payload is present, there are two options for aligning the first byte of the payload with
respect to the datapath.

1. Dword-aligned mode: In this mode, the descriptor bytes are followed immediately by the
payload bytes in the next Dword position, whenever a payload is present.

2. Address-Aligned Mode: In this mode, the payload can begin at any byte position on the
datapath. For data transferred from the integrated block to the user application, the position
of the first byte is determined as

n = A mod w

where A is the memory or I/O address specified in the descriptor (for message and
configuration requests, the address is taken as 0), and w is the configured width of the data
bus in bytes. Any gap between the end of the descriptor and the start of the first byte of the
payload is filled with null bytes.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=92

For data transferred from the integrated block to the user application, the data alignment is
determined based on the starting address where the data block is destined to in user memory.
For data transferred from the user application to the integrated block, the user application must
explicitly communicate the position of the first byte to the integrated block using the tuser
sideband signals when the address-aligned mode is in use.

In the address-aligned mode, the payload and descriptor are not allowed to overlap. That is, the
transmitter begins a new beat to start the transfer of the payload after it has transmitted the
descriptor. The transmitter fills any gaps between the last byte of the descriptor and the first
byte of the payload with null bytes.

512-bit interface:

When a payload is present, there are two options for aligning the first byte of the payload with
respect to the data path.

1. Dword-aligned Mode: In this mode, the descriptor bytes are followed immediately by the
payload bytes in the next Dword position, whenever a payload is present. If D is the size of
the descriptor in bytes, the lane number corresponding to the first byte of the payload is
determined as:

n = (S + D + (A mod 4)) mod 64

where S is the lane number where the first byte of the descriptor appears (which can be 0,
16, 32 or 48), D is the width of the descriptor (which can be 12 or 16 bytes), and A is the
address of the first byte of the data block in user memory (for message and configuration
requests, the address is taken as 0).

2. 128b Address-aligned Mode: In this mode, the start of the payload on the 512-bit bus is
aligned on a 128-bit boundary. The lane number corresponding to the first byte of the
payload is determined as:

n = (S + 16 + (A mod 16)) mod 64

where S is the lane number where the first byte of the descriptor appears (which can be 0,
16, 32 or 48) and A is the memory or I/O address corresponding to the first byte of the
payload (for message and configuration requests, the address is taken as 0). Any gap between
the end of the descriptor and the start of the first byte of the payload is filled with null bytes.

The source of address A used for alignment of the data varies among the four user interfaces,
as described below:

• CQ Interface: For data transferred from the core to the user application over the CQ
interface, the address bits used for alignment are the lower address specified in the
descriptor, which is the starting address of the data block in user memory.

• CC Interface: For Completion data transferred from the user application to the core over
the CC interface, the alignment is based on address bits supplied by the user in the
descriptor.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=93

• RQ Interface: For memory requests transferred from the user application to the core over
the RQ interface, the alignment is based on address bits supplied by the user alongside the
request using sideband signals. The user may specify any value for A, independent of the
setting of the address field in the descriptor.

• RC Interface: For Completion data transferred from the core to the user application over
the RC interface, the alignment is based on address bits supplied by the user along with
the request using sideband signals when it was issued on the RQ interface. The core saves
the alignment information from the request and uses it to align the payload of the
corresponding Completion when delivering the Completion payload over the RC interface.

The 128b address-aligned mode divides the 512-bit AXI beat into four sub-beats of 128 bits
each. The payload can begin only in the sub-beat following the descriptor. The payload and
the descriptor are not allowed to overlap in the same sub-beat. The transmitter fills any gaps
between the last byte of the descriptor and the first byte of the payload with null bytes.

The alignment mode can be selected independently for requester (RQ, RC) and completer (CQ,
CC) interfaces by setting the IP customization GUI.

Note: If performance is a critical factor in the design, dword aligned mode should be used instead of
address aligned mode.

The Vivado® IP catalog applies the data alignment option globally to all four interfaces. However,
advanced users can select the alignment mode independently for each of the four AXI4-Stream
interfaces. This is done by setting the corresponding alignment mode parameter. See
64/128/256-Bit Completer Interface and 512-Bit Completer Interface for more details on
address alignment and example diagrams.

Straddle Option on CQ, CC, and RQ Interfaces

The CQ, CC and RQ interfaces have a straddle option that allows up to two TLPs to be
transferred over the interface in the same beat. This improves the throughput for small TLPs, as
well as when TLPs end in the first half a beat. Straddle can be enabled independently for each of
these interfaces during core configuration in the Vivado® IDE. The straddle option can be used
with the Dword-aligned mode only.

Straddle Option on RC Interface

The RC interface supports a straddle option that allows up to four TLPs to be transferred over
the interface in the same beat. This option can be enabled during core configuration in the
Vivado® IDE. When enabled, the core may start a new Completion TLP on byte lanes 0, 16, 32,
or 48. Thus, with this option enabled, it is possible for the core to send four Completion TLPs
entirely in the same beat on the AXI bus, if each of them has a payload of size one Dword or less.
The straddle option can only be used when the RC interface is configured in the Dword-aligned
mode.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=94

When the Requester Completion (RC) interface is configured for a width of 256 or 512 bits,
depending on the type of TLP and Payload size, there can be significant interface utilization
inefficiencies, if a maximum of 1 TLP for 256 bits or 2 TLPs for 512 bits is allowed to start or end
per interface beat. This inefficient use of RC interface can lead to overflow of the completion
FIFO when Infinite Receiver Credits are advertized. You must either:

• Restrict the number of outstanding Non Posted requests, so as to keep the total number of
completions received less than 64 and within the completion of the FIFO size selected, or

• Use the RC interface straddle option. See the waveform figures for 256 bits (Figure
60: Transfer of Completion TLPs on the Requester Completion Interface with the Straddle
Option Enabled) and 512 bits (Figure 91: Transfer of Completion TLPs on the Requester
Completion Interface with the Straddle Option Enabled), respectively showing this option.

The straddle option, available only on the 256-bit or 512-bit wide RC interface, is enabled
through the Vivado IP catalog. See Chapter 5: Design Flow Steps for instructions on enabling the
option in the IP catalog. When this option is enabled, the integrated block can start a new
Completion TLP on byte lane 16/32/48 when the previous TLP has ended at or before byte lane
15/31/47 in the same beat. Thus, with this option enabled, it is possible for the integrated block
to send multiple Completion TLPs entirely in the same beat on the RC interface, if neither of
them has more than one Dword of payload.

The straddle setting is only available when the interface width is set to 256 bits or 512 bits, and
the RC interface is set to Dword-aligned mode.

The following table lists the valid combinations of interface width, addressing mode, and the
straddle option.

Table 47: Valid Combinations of Interface Width, Alignment Mode, and Straddle

Interface Width Alignment Mode Straddle Option Description
64 bits Dword-aligned Not applicable 64-bit, Dword-aligned

64 bits Address-aligned Not applicable 64-bit, Address-aligned

128 bits Dword-aligned Not applicable 128-bit, Dword-aligned

128 bits Address-aligned Not applicable 128-bit, Address-aligned

256 bits Dword-aligned Disabled 256-bit, Dword-aligned, straddle disabled

256 bits Dword-aligned Enabled
256-bit, Dword-aligned, straddle enabled (only
allowed for the Requester Completion
interface)

256 bits Address-aligned Not applicable 256-bit, Address-aligned

512 bits Dword-aligned Disabled 512-bit, Dword-aligned, straddle disabled

512 bits Dword-aligned Enabled
512-bit, Dword-aligned, straddle enabled (2-TLP
straddle allowed for all interfaces, 4-TLP
straddle only allowed for the Requester
Completion interface)

512 bits Address-aligned Not applicable 512-bit, 128-bit Address-aligned

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=95

Receive Transaction Ordering

The core contains logic on its receive side to ensure that TLPs received from the link and
delivered on its completer request interface and requester completion interface do not violate
the PCI Express® transaction ordering constraints. The ordering actions performed by the
integrated block are based on the following key rules:

• Posted requests must be able to pass Non-Posted requests on the Completer reQuest (CQ)
interface. To enable this capability, the integrated block implements a flow control mechanism
on the CQ interface through which user logic can control the flow of Non-Posted requests
without affecting Posted requests. The user logic signals the availability of a buffer to receive
a Non-Posted request by asserting the pcie_cq_np_req[0] signal.

The integrated block delivers a Non-Posted request to the user application only when the
available credit is non-zero. The integrated block continues to deliver Posted requests while
the delivery of Non-Posted requests has been paused for lack of credit. When no back
pressure is applied by the credit mechanism for the delivery of Non-Posted requests, the
integrated block delivers Posted and Non-Posted requests in the same order as received from
the link. For more information on controlling the flow of Non-Posted requests, see Selective
Flow Control for Non-Posted Requests.

• PCIe ordering requires that a completion TLP not be allowed to pass a Posted request, except
in the following cases:

○ Completions with the Relaxed Ordering attribute bit set can pass Posted requests.

○ Completions with the ID-based ordering bit set can pass a Posted request if the Completer
ID is different from the Posted Requester ID.

The integrated block does not start the transfer of a Completion TLP received from the link on
the Requester Completion (RC) interface until it has completely transferred all Posted TLPs that
arrived before it, unless one of the two rules applies.

After a TLP has been transferred completely to the user interface, it is the responsibility of the
user application to enforce ordering constraints whenever needed.

Table 48: Receive Ordering Rules

Row Pass Posted Non-Posted Completion
Posted No Yes Yes

Non-Posted No No Yes

Completion
a) No
b) Yes (Relaxing Ordering)
c) Yes (ID Based Ordering)

Yes No

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=96

Transmit Transaction Ordering

On the transmit side, the integrated block receives TLPs on two different interfaces: the
Requester reQuest (RQ) interface and the Completer Completion (CC) interface. The integrated
block does not reorder transactions received from each of these interfaces. It is difficult to
predict how the requester-side requests and completer-side completions are ordered in the
transmit pipeline of the integrated block, after these have been multiplexed into a single traffic
stream. In cases where completion TLPs must maintain ordering with respect to requests, user
logic can supply a 4-bit sequence number with any request that needs to maintain strict ordering
with respect to a Completion transmitted from the CC interface, on the seq_num[3:0] inputs
within the s_axis_rq_tuser bus. The integrated block places this sequence number on its
pcie_rq_seq_num[3:0] output and asserts pcie_rq_seq_num_vld when the request TLP
has reached a point in the transmit pipeline at which no new completion TLP from the user
application can pass it. This mechanism can be used in the following situations to maintain TLP
order:

• The user logic requires ordering to be maintained between a request TLP and a completion
TLP that follows it. In this case, user logic must wait for the sequence number of the requester
request to appear on the pcie_rq_seq_num[3:0] output before starting the transfer of
the completion TLP on the target completion interface.

• The user logic requires ordering to be maintained between a request TLP and MSI/MSI-X TLP
signaled through the MSI Message interface. In this case, the user logic must wait for the
sequence number of the requester request to appear on the pcie_rq_seq_num[3:0]
output before signaling MSI or MSI-X on the MSI Message interface.

64/128/256-Bit Completer Interface
This section describes the operation of the user interfaces of the core for 64/128/256-bit
interfaces.

This interface maps the transactions (memory, I/O read/write, messages, Atomic Operations)
received from the PCIe link into transactions on the Completer reQuest (CQ) interface based on
the AXI4-Stream protocol. The completer interface consists of two separate interfaces, one for
data transfers in each direction. Each interface is based on the AXI4-Stream protocol, and its
width can be configured as 64, 128, or 256 bits. The CQ interface is for transfer of requests (with
any associated payload data) to the user application, and the Completer Completion (CC)
interface is for transferring the Completion data (for a Non-Posted request) from the user
application for forwarding on the link. The two interfaces operate independently. That is, the
integrated block can transfer new requests over the CQ interface while receiving a Completion
for a previous request.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=97

Completer Request Interface Operation

The following figure illustrates the signals associated with the completer request interface of the
core. The core delivers each TLP on this interface as an AXI4-Stream packet. The packet starts
with a 128-bit descriptor, followed by data in the case of TLPs with a payload.

Figure 8: Completer Request Interface Signals

Integrated Block for PCIe
User

Application

PCIe Completer
Request Interface

AXI4-Stream
Slave

PCIe
Completer-Side

Interface

m_axis_cq_tdata[255:0]

m_axis_cq_valid

m_axis_cq_tready

m_axis_cq_tkeep[7:0]

m_axis_cq_tlast

pcie_cq_np_req[0]

pcie_cq_np_req_count[5:0]

AXI4-Stream
Master

sop

first_be[3:0]

last_be[3:0]

byte_en[31:0]

discontinue

m_axis_cq_tuser[87:0]

parity[31:0]

X19416-120620

The completer request interface supports two distinct data alignment modes. In the Dword-
aligned mode, the first byte of valid data appears in lane n = (16 + A mod 4) mod w, where A
is the byte-level starting address of the data block being transferred, and w is the width of the
interface in bytes.

In the address-aligned mode, the data always starts in a new beat after the descriptor has ended,
and its first valid byte is on lane n = A mod w, where w is the width of the interface in bytes.
For memory, I/O, and Atomic Operation requests, address A is the address contained in the
request. For messages, the address is always taken as 0 for the purpose of determining the
alignment of its payload.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=98

Completer Request Descriptor Formats

The integrated block transfers each request TLP received from the link over the CQ interface as
an independent AXI4-Stream packet. Each packet starts with a descriptor and can have payload
data following the descriptor. The descriptor is always 16 bytes long, and is sent in the first 16
bytes of the request packet. The descriptor is transferred during the first two beats on a 64-bit
interface, and in the first beat on a 128-bit or 256-bit interface. The formats of the descriptor for
different request types are illustrated in the following figures.

The format of the following figure applies when the request TLP being transferred is a memory
read/write request, an I/O read/write request, or an Atomic Operation request.

Figure 9: Completer Request Descriptor Format for Memory, I/O, and Atomic Op
Requests

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

Address [63:2]

Address Type (AT)

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

Dword Count
01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

TagTC
01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3

Attr

Req Type

96 64

32

BAR Aperture

Bus Device/Function

Requester ID
Target Function

127

63 0

X12217

R R

BAR ID

The format of the following figure is used for Vendor-Defined Messages (Type 0 or Type 1) only.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=99

Figure 10: Completer Request Descriptor Format for Vendor-Defined Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3
96 64

Msg Code

Vendor - Defined Header Bytes
Destination ID

Bus Device/FunctionVendor ID

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type

Bus Device/Function
Requester ID

03263

127

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

X12219

R R

The format of the following figure is used for all ATS messages (Invalid Request, Invalid
Completion, Page Request, PRG Response).

Figure 11: Completer Request Descriptor Format for ATS Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3

96 64

32

Msg Code

TL Header Bytes 8-15

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type

Bus Device/Function
Requester ID

127

63 0

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

TL Header
Byte 11

TL Header
Byte 10

TL Header
Byte 9

TL Header
Byte 8

X12216

RR

For all other messages, the descriptor takes the format of the following figure.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=100

Figure 12: Completer Request Descriptor Format for All Other Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

01234567

+4

01234567

+5

01234567

+6

01234567

+7

Dword Count
01234567

+8

01234567

+9

01234567

+10

01234567

+11

Tag
01234567

+12

01234567

+13

01234567

+14

01234567

+15

Req Type

96 64

32

RMsg Code
Message
Routing

TCAttr R

OBFF Code
(for OBFF message);
Reserved (for others)

No-Snoop Latency
(for LTR message);

Reserved (for others)

Snoop Latency
(for LTR message);

Reserved (for others)

R

R Bus Device/Function
Requester ID

0

127

63

DW + 0DW + 1

DW + 2DW + 3

X12218

The following table describes the individual fields of the completer request descriptor.

Table 49: Completer Request Descriptor Fields

Bit Index Field Name Description

1:0 Address Type

This field is defined for memory transactions and Atomic Operations
only. It contains the AT bits extracted from the TL header of the request.
• 00: Address in the request is untranslated
• 01: Transaction is a Translation Request
• 10: Address in the request is a translated address
• 11: Reserved

63:2 Address

This field applies to memory, I/O, and Atomic Op requests. It provides
the address from the TLP header. This is the address of the first Dword
referenced by the request. The First_BE bits from m_axis_cq_tuser must
be used to determine the byte-level address.
When the transaction specifies a 32-bit address, bits [63:32] of this field
are 0.

74:64 Dword Count

These 11 bits indicate the size of the block (in Dwords) to be read or
written (for messages, size of the message payload). Its range is 0 - 256
Dwords. For I/O accesses, the Dword count is always 1.
For a zero length memory read/write request, the Dword count is 1, with
the First_BE bits set to all 0s.

78:75 Request Type Identifies the transaction type. The transaction types and their
encodings are listed in Table 50: Transaction Types.

95:80 Requester ID

PCI Requester ID associated with the request. With legacy interpretation
of RIDs, these 16 bits are divided into an 8-bit bus number [95:88], 5-bit
device number [87:83], and 3-bit Function number [82:80]. When ARI is
enabled, bits [95:88] carry the 8-bit bus number and [87:80] provide the
Function number.
When the request is a Non-Posted transaction, the user completer
application must store this field and supply it back to the integrated
block with the completion data.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=101

Table 49: Completer Request Descriptor Fields (cont'd)

Bit Index Field Name Description

103:96 Tag
PCIe Tag associated with the request. When the request is a Non-Posted
transaction, the user logic must store this field and supply it back to the
integrated block with the completion data. This field can be ignored for
memory writes and messages.

111:104 Target Function

This field is defined for memory, I/O, and Atomic Op requests only. It
provides the Function number the request is targeted at, determined by
the BAR check. When ARI is in use, all 8 bits of this field are valid.
Otherwise, only bits [106:104] are valid.
Following are Target Function Value to PF/VF map mappings:
• 0: PF0
• 1: PF1
• 2: PF2
• 3: PF3
• 4: VF0
• 5: VF1
• 6: VF2
• 7: VF3

114:112 BAR ID

This field is defined for memory, I/O, and Atomic Op requests only. It
provides the matching BAR number for the address in the request.
In RP mode, BAR ID is always 000.
• 001: BAR 1 (VF-BAR 1 for VFs)
• 010: BAR 2 (VF-BAR 2 for VFs)
• 011: BAR 3 (VF-BAR 3 for VFs)
• 100: BAR 4 (VF-BAR 4 for VFs)
• 101: BAR 5 (VF-BAR 5 for VFs)
• 110: Expansion ROM Access
For 64-bit transactions, the BAR number is given as the lower address of
the matching pair of BARs (that is, 0, 2, or 4).

120:115 BAR Aperture

This 6-bit field is defined for memory, I/O, and Atomic Op requests only.
It provides the aperture setting of the BAR matching the request. This
information is useful in determining the bits to be used in addressing its
memory or I/O space. For example, a value of 12 indicates that the
aperture of the matching BAR is 4K, and the user application can
therefore ignore bits [63:12] of the address.
For VF BARs, the value provided on this output is based on the memory
space consumed by a single VF covered by the BAR.

123:121 Transaction Class (TC)
PCIe Transaction Class (TC) associated with the request. When the
request is a Non-Posted transaction, the user completer application
must store this field and supply it back to the integrated block with the
completion data.

126:124 Attributes

These bits provide the setting of the Attribute bits associated with the
request. Bit 124 is the No Snoop bit and bit 125 is the Relaxed Ordering
bit. Bit 126 is the ID-Based Ordering bit, and can be set only for memory
requests and messages.
When the request is a Non-Posted transaction, the user completer
application must store this field and supply it back to the integrated
block with the completion data.

15:0 Snoop Latency This field is defined for LTR messages only. It provides the value of the
16-bit Snoop Latency field in the TLP header of the message.

31:16 No-Snoop Latency This field is defined for LTR messages only. It provides the value of the
16-bit No-Snoop Latency field in the TLP header of the message.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=102

Table 49: Completer Request Descriptor Fields (cont'd)

Bit Index Field Name Description

35:32 OBFF Code

This field is defined for OBFF messages only. The OBFF Code field is used
to distinguish between various OBFF cases:
• 1111b: CPU Active – System fully active for all device actions

including bus mastering and interrupts.
• 0001b: OBFF – System memory path available for device memory

read/write bus master activities.
• 0000b: Idle – System in an idle, low power state.
• All other codes are reserved.

111:104 Message Code

This field is defined for all messages. It contains the 8-bit Message Code
extracted from the TLP header.
Appendix F of the PCI Express Base Specification, rev. 3.0 provides a
complete list of the supported Message Codes.
Users should treat a descriptor with unsupported Message Code as UR,
and toggle the signal cfg_err_uncor_in to indicate that Non-fatal error is
detected.

114:112 Message Routing This field is defined for all messages. These bits provide the 3-bit Routing
field r[2:0] from the TLP header.

15:0 Destination ID
This field applies to Vendor-Defined Messages only. When the message
is routed by ID (that is, when the Message Routing field is 010 binary),
this field provides the Destination ID of the message.

63:32 Vendor-Defined
Header

This field applies to Vendor-Defined Messages only. It contains the bytes
extracted from Dword 3 of the TLP header.

63:0 ATS Header This field is applicable to ATS messages only. It contains the bytes
extracted from Dwords 2 and 3 of the TLP header.

Table 50: Transaction Types

Request Type (binary) Description
0000 Memory Read Request

0001 Memory Write Request

0010 I/O Read Request

0011 I/O Write Request

0100 Memory Fetch and Add Request

0101 Memory Unconditional Swap Request

0110 Memory Compare and Swap Request

0111 Locked Read Request (allowed only in Legacy Devices)

1000 Type 0 Configuration Read Request (on Requester side only)

1001 Type 1 Configuration Read Request (on Requester side only)

1010 Type 0 Configuration Write Request (on Requester side only)

1011 Type 1 Configuration Write Request (on Requester side only)

1100 Any message, except ATS and Vendor-Defined Messages

1101 Vendor-Defined Message

1110 ATS Message

1111 Reserved

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=103

Completer Memory Write Operation

The following timing diagrams illustrate the Dword-aligned transfer of a memory write TLP
received from the link across the Completer reQuest (CQ) interface, when the interface width is
configured as 64, 128, and 256 bits, respectively. For illustration purposes, the starting Dword
address of the data block being written into memory is assumed to be (m × 32 + 1), for an integer
m > 0. Its size is assumed to be n Dwords, for some n = k × 32 + 29, k > 0.

In both Dword-aligned and address-aligned modes, the transfer starts with the 16 descriptor
bytes, followed immediately by the payload bytes. The m_axis_cq_tvalid signal remains
asserted over the duration of the packet. You can prolong a beat at any time by deasserting
m_axis_cq_tready. The AXI4-Stream interface signals m_axis_cq_tkeep (one per Dword
position) indicate the valid Dwords in the packet including the descriptor and any null bytes
inserted between the descriptor and the payload. That is, the tkeep bits are set to 1
contiguously from the first Dword of the descriptor until the last Dword of the payload. During
the transfer of a packet, the tkeep bits can be 0 only in the last beat of the packet, when the
packet does not fill the entire width of the interface. The m_axis_cq_tlast signal is always
asserted in the last beat of the packet.

The CQ interface also includes the First Byte Enable and the Last Enable bits in the
m_axis_cq_tuser bus. These are valid in the first beat of the packet, and specify the valid
bytes of the first and last Dwords of payload.

The m_axi_cq_tuser bus also provides several informational signals that can be used to
simplify the logic associated with the user interface, or to support additional features. The sop
signal is asserted in the first beat of every packet, when its descriptor is on the bus. The byte
enable outputs byte_en[31:0] (one per byte lane) indicate the valid bytes in the payload. The
bits of byte_en are asserted only when a valid payload byte is in the corresponding lane (that is,
not asserted for descriptor or padding bytes between the descriptor and payload). The asserted
byte enable bits are always contiguous from the start of the payload, except when the payload
size is two Dwords or less. For cases of one-Dword and two-Dword writes, the byte enables can
be non-contiguous. Another special case is that of a zero-length memory write, when the
integrated block transfers a one-Dword payload with all byte_en bits set to 0. Thus, in all cases
the user logic can use the byte_en signals directly to enable the writing of the associated bytes
into memory.

In the Dword-aligned mode, there can be a gap of zero, one, two, or three byte positions
between the end of the descriptor and the first payload byte, based on the address of the first
valid byte of the payload. The actual position of the first valid byte in the payload can be
determined either from first_be[3:0] or byte_en[31:0] in the m_axis_cq_tuser bus.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=104

Figure 13: Memory Write Transaction on the Completer Request Interface (Dword-
Aligned Mode, 64-Bit Interface)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[1:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DESC 2 DW 0 DW 0 DW 2 DW n-1

DESC 1 DESC 3 DW 1 DW 1 DW 3

0x3 0x3 0x3 0x1

FIRST BE

LAST BE

0 FIRST_BE FIRST_BE 0xF 0xF LAST_BE

0 0xF 0xF 0xF

X12358

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=105

Figure 14: Memory Write Transaction on the Completer Request Interface (Dword-
Aligned Mode, 128-Bit Interface)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[3:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(byte_en[11:8]) m_axis_cq_tuser[19:16]

(byte_en[15:12]) m_axis_cq_tuser[23:20]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DW 0 DW 0 DW n-1

DESC 1 DW 1 DW 1

DESC 2 DW 2 DW 2

DESC 3 DW 3 DW 3

0xF 0xF 0xF 0x1

FIRST BE

LAST BE

0 FIRST_BE 0xF 0xF LAST_BE

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

X12359

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=106

Figure 15: Memory Write Transaction on the Completer Request Interface (Dword-
Aligned Mode, 256-Bit Interface)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tdata[159:128]

m_axis_cq_tdata[191:160]

m_axis_cq_tdata[223:192]

m_axis_cq_tdata[255:224]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[7:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(byte_en[11:8]) m_axis_cq_tuser[19:16]

(byte_en[15:12]) m_axis_cq_tuser[23:20]

(byte_en[19:16]) m_axis_cq_tuser[27:24]

(byte_en[23:20) m_axis_cq_tuser[31:28]

(byte_en[27:24]) m_axis_cq_tuser[35:32]

(byte_en[31:28]) m_axis_cq_tuser[39:36]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DW 4 DW 4 DW n-1

DESC 1 DW 5 DW 5

DESC 2 DW 6 DW 6

DESC 3 DW 7 DW 7

DW 0 DW 8 DW 8

DW 1 DW 9 DW 9

DW 2 DW 10 DW 10

DW 3 DW 11 DW 11

0xFF 0xFF 0xFF 0x01

FIRST BE

LAST BE

0 0xF 0xF 0xF LAST_BE

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

FIRST BE 0xF 0xF 0xF 0

0xF 0xF 0xF 0xF 0

0xF 0xF 0xF 0xF 0

0xF 0xF 0xF 0xF 0

X12360

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=107

The following timing diagrams illustrate the address-aligned transfer of a memory write TLP
received from the link across the CQ interface, when the interface width is configured as 64, 128
and 256 bits, respectively. For the purpose of illustration, the starting Dword address of the data
block being written into memory is assumed to be (m × 32 + 1), for an integer m > 0. Its size is
assumed to be n Dwords, for some n = k × 32 + 29, k > 0.

In the address-aligned mode, the delivery of the payload always starts in the beat following the
last byte of the descriptor. The first byte of the payload can appear on any byte lane, based on
the address of the first valid byte of the payload. The keep outputs m_axis_cq_tkeep remain
active-High in the gap between the descriptor and the payload. The actual position of the first
valid byte in the payload can be determined either from the least significant bits of the address in
the descriptor or from the byte enable bits byte_en[31:0] in the m_axis_cq_tuser bus.

For writes of two Dwords or less, the 1s on byte_en cannot be contiguous from the start of the
payload. In the case of a zero-length memory write, the integrated block transfers a one-Dword
payload with the byte_en bits all set to 0 for the payload bytes.

Figure 16: Memory Write Transaction on the Completer Request Interface (Address-
Aligned Mode, 64-Bit Interface)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[1:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DESC 2 DW 1 DW n-2

DESC 1 DESC 3 DW 0 DW 0 DW 2 DW n-1

0x3

FIRST BE

LAST BE

0xF 0xF

0 FIRST_BE FIRST_BE 0xF 0xF LAST_BE

0 0

X12355

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=108

Figure 17: Memory Write Transaction on the Completer Request Interface (Address-
Aligned Mode, 128-Bit Interface)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[3:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(byte_en[11:8]) m_axis_cq_tuser[19:16]

(byte_en[15:12]) m_axis_cq_tuser[23:20]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DW 3 DW n-2

DESC 1 DW 0 DW 0 DW 4 DW n-1

DESC 2 DW 1 DW 1 DW 5

DESC 3 DW 2 DW 2 DW 6

0xF 0xF 0xF 0x3

FIRST BE

LAST BE

0xF 0xF

0 FIRST_BE FIRST_BE 0xF 0xF LAST_BE

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0

X12356

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=109

Figure 18: Memory Write Transaction on the Completer Request Interface (Address-
Aligned Mode, 256-Bit Interface)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tdata[159:128]

m_axis_cq_tdata[191:160]

m_axis_cq_tdata[223:192]

m_axis_cq_tdata[255:224]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[7:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(byte_en[11:8]) m_axis_cq_tuser[19:16]

(byte_en[15:12]) m_axis_cq_tuser[23:20]

(byte_en[19:16]) m_axis_cq_tuser[27:24]

(byte_en[23:20) m_axis_cq_tuser[31:28]

(byte_en[27:24]) m_axis_cq_tuser[35:32]

(byte_en[31:28]) m_axis_cq_tuser[39:36]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DW 7 DW 7 DW n-6

DESC 1 DW 0 DW 8 DW 8 DW n-5

DESC 2 DW 1 DW 9 DW 9 DW n-4

DESC 3 DW 2 DW 10 DW 10 DW n-3

DW 3 DW 11 DW 11 DW n-2

DW 4 DW 12 DW 12 DW n-1

DW 5 DW 13 DW 13

DW 6 DW 14 DW 14

0xFF 0xFF 0xFF 0x3F

FIRST BE

LAST BE

0xF 0xF 0xF

0 FIRST BE 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF LAST BE

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0

X12357

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=110

Completer Memory Read Operation

A memory read request is transferred across the completer request interface in the same manner
as a memory write request, except that the AXI4-Stream packet contains only the 16-byte
descriptor. The following timing diagrams illustrate the transfer of a memory read TLP received
from the link across the completer request interface, when the interface width is configured as
64, 128, and 256 bits, respectively. The packet occupies two consecutive beats on the 64-bit
interface, while it is transferred in a single beat on the 128- and 256-bit interfaces. The
m_axis_cq_tvalid signal remains asserted over the duration of the packet. You can prolong a
beat at any time by deasserting m_axis_cq_tready. The sop signal in the m_axis_cq_tuser
bus is asserted when the first descriptor byte is on the bus.

Figure 19: Memory Read Transaction on the Completer Request Interface (64-Bit
Interface)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[1:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[7:0]) m_axis_cq_tuser[15:8]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DESC 0 DESC 2

DESC 1 DESC 1 DESC 3

0x3 0x3

FIRST BE FIRST BE

LAST BE LAST BE

00

X12352

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=111

Figure 20: Memory Read Transaction on the Completer Request Interface (128-Bit
Interface)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[3:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[15:0]) m_axis_cq_tuser[23:8]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

DESC 3 DESC 3

0xF 0xF

FIRST BE FIRST BE

LAST BE LAST BE

0

X12353

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=112

Figure 21: Memory Read Transaction on the Completer Request Interface (256-Bit
Interface)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tdata[255:128]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[7:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[31:0]) m_axis_cq_tuser[39:8]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

DESC 3 DESC 3

0x0F 0x0F

FIRST BE FIRST BE

LAST BE LAST BE

0 0

X12354

The byte enable bits associated with the read request for the first and last Dwords are supplied
by the integrated block on the m_axis_cq_tuser sideband bus. These bits are valid when the
first descriptor byte is being transferred, and must be used to determine the byte-level starting
address and the byte count associated with the request. For the special cases of one-Dword and
two-Dword reads, the byte enables can be non-contiguous. The byte enables are contiguous in
all other cases. A zero-length memory read is sent on the CQ interface with the Dword count
field in the descriptor set to 1 and the first and last byte enables set to 0.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=113

The user application must respond to each memory read request with a Completion. The data
requested by the read can be sent as a single Completion or multiple Split Completions. These
Completions must be sent through the Completer Completion (CC) interface of the integrated
block. The Completions for two distinct requests can be sent in any order, but the Split
Completions for the same request must be in order. The operation of the CC interface is
described in Completer Completion Interface Operation.

I/O Write Operation

The transfer of an I/O write request on the CQ interface is similar to that of a memory write
request with a one-Dword payload. The transfer starts with the 128-bit descriptor, followed by
the one-Dword payload. When the Dword-aligned mode is in use, the payload Dword
immediately follows the descriptor. When the address-alignment mode is in use, the payload
Dword is supplied in a new beat after the descriptor, and its alignment in the datapath is based
on the address in the descriptor. The First Byte Enable bits in the m_axis_cq_tuser indicate
the valid bytes in the payload. The byte enable bits byte_en also provide this information.

Because an I/O write is a Non-Posted transaction, the user logic must respond to it with a
Completion containing no data payload. The Completions for I/O requests can be sent in any
order. Errors associated with the I/O write transaction can be signaled to the requester by setting
the Completion Status field in the completion descriptor to CA (Completer Abort) or UR
(Unsupported Request), as is appropriate. The operation of the Completer Completion interface
is described in Completer Completion Interface Operation.

I/O Read Operation

The transfer of an I/O read request on the CQ interface is similar to that of a memory read
request, and involves only the descriptor. The length of the requested data is always one Dword,
and the First Byte Enable bits in m_axis_cq_tuser indicate the valid bytes to be read.

The user logic must respond to an I/O read request with a one-Dword Completion (or a
Completion with no data in the case of an error). The Completions for two distinct I/O read
requests can be sent in any order. Errors associated with an I/O read transaction can be signaled
to the requester by setting the Completion Status field in the completion descriptor to CA
(Completer Abort) or UR (Unsupported Request), as is appropriate. The operation of the
Completer Completion interface is described in Completer Completion Interface Operation.

Atomic Operations on the Completer Request Interface

The transfer of an Atomic Op request on the completer request interface is similar to that of a
memory write request. The payload for an Atomic Op can range from one Dword to eight
Dwords, and its starting address is always aligned on a Dword boundary. The transfer starts with
the 128-bit descriptor, followed by the payload. When the Dword-aligned mode is in use, the
first payload Dword immediately follows the descriptor. When the address-alignment mode is in

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=114

use, the payload starts in a new beat after the descriptor, and its alignment is based on the
address in the descriptor. The m_axis_cq_tkeep output indicates the end of the payload. The
byte_en signals in m_axis_cq_tuser also indicate the valid bytes in the payload. The First
Byte Enable and Last Byte Enable bits in m_axis_cq_tuser should not be used for Atomic
Operations.

Because an Atomic Operation is a Non-Posted transaction, the user logic must respond to it with
a Completion containing the result of the operation. Errors associated with the operation can be
signaled to the requester by setting the Completion Status field in the completion descriptor to
Completer Abort (CA) or Unsupported Request (UR), as is appropriate. The operation of the
Completer Completion interface is described in Completer Completion Interface Operation.

Message Requests on the Completer Request Interface

The transfer of a message on the CQ interface is similar to that of a memory write request,
except that a payload might not always be present. The transfer starts with the 128-bit
descriptor, followed by the payload, if present. When the Dword-aligned mode is in use, the
payload immediately follows the descriptor. When the address-alignment mode is in use, the first
Dword of the payload is supplied in a new beat after the descriptor, and always starts in byte
lane 0. You can determine the end of the payload from the states of the m_axis_cq_tlast and
m_axis_cq_tkeep signals. The byte_en signals in m_axis_cq_tuser also indicate the valid
bytes in the payload. The First Byte Enable and Last Byte Enable bits in m_axis_cq_tuser
should not be used for Message transactions.

Aborting a Transfer

For any request that includes an associated payload, the integrated block can signal an error in
the transferred payload by asserting the discontinue signal in the m_axis_cq_tuser bus in the
last beat of the packet (along with m_axis_cq_tlast). This occurs when the integrated block
has detected an uncorrectable error while reading data from its internal memories. The user
application must discard the entire packet when it has detected discontinue asserted in the last
beat of a packet. This condition is considered a fatal error in the integrated block.

Selective Flow Control for Non-Posted Requests

The PCI Express® Base Specification requires that the Completer Request interface continue to
deliver Posted transactions even when the user application is unable to accept Non-Posted
transactions. To enable this capability, the integrated block implements a credit-based flow
control mechanism on the CQ interface through which user logic can control the flow of Non-
Posted requests without affecting Posted requests. The user logic signals the availability of
buffers for receive Non-Posted requests using the pcie_cq_np_req[0] signal. The core
delivers a Non-Posted request only when the available credit is non-zero. The integrated block
continues to deliver Posted requests while the delivery of Non-Posted requests has been paused
for lack of credit. When no back pressure is applied by the credit mechanism for the delivery of
Non-Posted requests, the integrated block delivers Posted and Non-Posted requests in the same
order as received from the link.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=115

The integrated block maintains an internal credit counter to track the credit available for Non-
Posted requests on the completer request interface. The following algorithm is used to keep
track of the available credit:

• On reset, the counter is set to 0.

• After the integrated block comes out of reset, in every clock cycle:

○ If pcie_cq_np_req[0] is active-High and no Non-Posted request is being delivered this
cycle, the credit count is incremented by 1, unless it has already reached its saturation limit
of 32.

○ If pcie_cq_np_req[0] is Low and a Non-Posted request is being delivered this cycle,
the credit count is decremented by 1, unless it is already 0.

○ Otherwise, the credit count remains unchanged.

• The integrated block starts delivery of a Non-Posted TLP only if the credit count is greater
than 0.

The user application can either provide a one-cycle pulse on pcie_cq_np_req[0] each time it
is ready to receive a Non-Posted request, or keep it permanently asserted if it does not need to
exercise selective back pressure of Non-Posted requests. If the credit count is always non-zero,
the integrated block delivers Posted and Non-Posted requests in the same order as received from
the link. If it remains 0 for some time, Non-Posted requests can accumulate in the integrated
block FIFO. When the credit count becomes non-zero later, the integrated block first delivers the
accumulated Non-Posted requests that arrived before Posted requests already delivered, and
then reverts to delivering the requests in the order received from the link.

The assertion and deassertion of the pcie_cq_np_req[0] signal does not need to be aligned
with the packet transfers on the completer request interface.

You can monitor the current value of the credit count on the output
pcie_cq_np_req_count[5:0]. The counter saturates at 32. Because of internal pipeline
delays, there can be several cycles of delay between the integrated block receiving a pulse on the
pcie_cq_np_req[0] input and updating the pcie_cq_np_req_count[5:0] output in
response. Thus, when the user application has adequate buffer space available, it should provide
the credit in advance so that Non-Posted requests are not held up by the core for lack of credit.

Completer Completion Interface Operation

The following figure illustrates the signals associated with the completer completion interface of
the core. The core delivers each TLP on this interface as an AXI4-Stream packet.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=116

Figure 22: Completer Completion Interface Signals

Integrated Block for PCIe Client
Application

PCIe Completer
Completion Interface AXI4-Stream

Master

s_axis_cc_tdata[255:0]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tlast

parity[31:0]

s_axis_cc_tuser

AXI4-Stream
Slave

PCIe
Completer-Side

Interface

discontinue

X19417-061417

The CC interface supports two distinct data alignment modes. In the Dword-aligned mode, the
first byte of valid data must be presented in lane n = (12 + A mod 4) mod w, where A is the
byte-level starting address of the data block being transferred (as conveyed in the Lower Address
field of the descriptor) and w the width of the interface in bytes (8, 16, or 32). In the address-
aligned mode, the data always starts in a new beat after the descriptor has ended. When
transferring the Completion payload for a memory or I/O read request, its first valid byte is on
lane n = A mod w. For all other Completions, the payload is aligned with byte lane 0.

Completer Completion Descriptor Format

The user application sends completion data for a completer request to the CC interface of the
integrated block as an independent AXI4-Stream packet. Each packet starts with a descriptor and
can have payload data following the descriptor. The descriptor is always 12 bytes long, and is
sent in the first 12 bytes of the completion packet. The descriptor is transferred during the first
two beats on a 64-bit interface, and in the first beat on a 128- or 256-bit interface. When the
user application splits the completion data for a request into multiple Split Completions, it must
send each Split Completion as a separate AXI4-Stream packet, with its own descriptor.

The format of the completer completion descriptor is illustrated in the following figure. The
individual fields of the completer request descriptor are described in the following table.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=117

Figure 23: Completer Completion Descriptor Format

R
01234567

+0
01234567

+1
01234567

+2
01234567

+3

DW + 0

Byte CountDword Count
01234567

+4
01234567

+5
01234567

+6
01234567

+7

DW + 1

TagTC
01234567

+8
01234567

+9
01234567

+10
01234567

+11

DW + 2

Device/FunctionAttr

Poisoned Completion

64

32

Address [6:0]

Completion Status

Bus

Completer ID

Completer ID EnableForce ECRC

RBus Device/Function
Requester ID

95

63 0

Locked Read
Completion

R RAT

X12215-041619

Table 51: Completer Completion Descriptor Fields

Bit Index Field Name Description

6:0 Lower Address

For memory read Completions, this field must be set to the least significant
7 bits of the starting byte-level address of the memory block being
transferred. For the first (or only) Completion, the Completer can generate
this field from the least significant 5 bits of the address of the Request
concatenated with 2 bits of byte-level address formed by the byte enables
for the first Dword of the Request as shown below.

first_be[3:0] Lower Address[1:0]

4'b0000 2'b00

4'bxxx1 2'b00

4'bxx10 2'b01

4'bx100 2'b10

4'b1000 2'b11

For any subsequent Completions, the Lower Address field is always zero
except for Completions generated by a Root Complex with a Read
Completion Boundary (RCB) value of 64 bytes. In this case the least
significant 6 bits of the Lower Address field is always zero and the most
significant bit of the Lower Address field toggles according to the alignment
of the 64-byte data payload.
For all other Completions, the Lower Address must be set to all zeros.

9:8 Address Type
This field is defined for Completions of memory transactions and Atomic
Operations only. For these Completions, the user logic must copy the AT
bits from the corresponding request descriptor into this field. This field
must be set to 0 for all other Completions.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=118

Table 51: Completer Completion Descriptor Fields (cont'd)

Bit Index Field Name Description

28:16 Byte Count

These 13 bits can have values in the range of 0 – 4,096 bytes. If a Memory
Read Request is completed using a single Completion, the Byte Count value
indicates Payload size in bytes. This field must be set to 4 for I/O read
Completions and I/O write Completions. The byte count must be set to 1
while sending a Completion for a zero-length memory read, and a dummy
payload of 1 Dword must follow the descriptor.
For each Memory Read Completion, the Byte Count field must indicate the
remaining number of bytes required to complete the Request, including the
number of bytes returned with the Completion.
If a Memory Read Request is completed using multiple Completions, the
Byte Count value for each successive Completion is the value indicated by
the preceding Completion minus the number of bytes returned with the
preceding Completion. The total number of bytes required to complete a
Memory Read Request is calculated as shown in the following table.
MSB of the Byte Count field is reserved.

29 Locked Read Completion This bit must be set when the Completion is in response to a Locked Read
request. It must be set to 0 for all other Completions.

42:32 Dword Count

These 11 bits indicate the size of the payload of the current packet in
Dwords. Its range is 0 - 1K Dwords. This field must be set to 1 for I/O read
Completions and 0 for I/O write Completions. The Dword count must be set
to 1 while sending a Completion for a zero-length memory read. The Dword
count must be set to 0 when sending a UR or CA Completion. In all other
cases, the Dword count must correspond to the actual number of Dwords in
the payload of the current packet.

45:43 Completion Status

These bits must be set based on the type of Completion being sent. The
only valid settings are:
• 000: Successful Completion
• 001: Unsupported Request (UR)
• 100: Completer Abort (CA)

46 Completion Status

This bit can be used to poison the Completion TLP being sent. This bit must
be set to 0 for all Completions, except when the user application detects an
error in the block of data following the descriptor and wants to
communicate this information using the Data Poisoning feature of PCI
Express.

63:48 Requester ID PCI Requester ID associated with the request (copied from the request).

71:64 Tag PCI Express Tag associated with the request (copied from the request).

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=119

Table 51: Completer Completion Descriptor Fields (cont'd)

Bit Index Field Name Description

79:72
Target Function/
Device Number

Device and/or Function number of the Completer Function.
Endpoint mode:
ARI enabled:

• Bits [79:72] must be set to the Completer Function number.

ARI disabled:
• Bits [74:72] must be set to the Completer Function number.
• Bits [79:75] are not used
Upstream Port for Switch use case (Endpoint mode is selected within the
IP):
ARI enabled:

• Bits [79:72] must be set to the Completer Function number.

ARI disabled:
• Bits [74:72] must be set to the Completer Function number.
• Bits [79:75] are not used if the Completion is originating from the switch

itself. These bits must be set to the Completer Device number where the
Completion was originated if the switch is relaying the Completion
(Completer is external to the switch). This is used in conjunction with
Completer ID Enable bit in the descriptor.

Root Port mode (Downstream Port):
ARI enabled:

• Bits [79:72] must be set to the Completer Function number.

ARI disabled:
• Bits [74:72] must be set to the Completer Function number.
• Bits [79:75] must be set to the Completer Device number. This is used in

conjunction with Completer ID Enable bit in the descriptor.

87:80 Completer Bus Number

Bus number associated with the Completer Function.
Endpoint mode:

• Not Used

Upstream Port for Switch use case (Endpoint mode is selected within the
IP):

• Not used if the Completion is originating from the switch itself. These
bits must be set to the Completer Bus number where the Completion
was originated if the switch is relaying the Completion (Completer is
external to the switch). This is used in conjunction with Completer ID
Enable bit in the descriptor.

Root Port mode (Downstream Port):

• Must be set to the Completer Bus number. This is used in conjunction
with Completer ID Enable bit in the descriptor.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=120

Table 51: Completer Completion Descriptor Fields (cont'd)

Bit Index Field Name Description
88 Completer ID Enable Values are:

• 1’b1: The client supplies Bus, Device, and Function numbers in the
descriptor to be populated as the Completer ID field in the TLP header.

• 1’b0: IP uses Bus and Device numbers captured from received
Configuration requests and the client supplies Function numbers in the
descriptor to be populated as the Completer ID field in the TLP header.

Endpoint mode:

• Must be set to 1’b0.

Upstream Port for Switch use case (Endpoint mode is selected within the
IP):
• Set to 1’b0 when the Completion is originating from the switch itself.
• Set to 1’b1 when the switch is relaying the Completion (Completer is

external to the switch). This is used in conjunction with Completer Bus
Number bits [95:88] and Completer Function/Device Number bits
[87:83] when ARI is not enabled.

Root Port mode:

• Must be set to 1’b1. This is used in conjunction with Completer Bus
Number bits [95:88] and Completer Function/Device Number bits
[87:83] when ARI is not enabled.

91:89 Transaction Class (TC)
PCIe Transaction Class (TC) associated with the request. The user
application must copy this value from the TC field of the associated request
descriptor.

94:92 Attributes
PCIe attributes associated with the request (copied from the request). Bit 92
is the No Snoop bit, bit 93 is the Relaxed Ordering bit, and bit 94 is the ID-
Based Ordering bit.

95 Force ECRC
Force ECRC insertion. Setting this bit to 1 forces the integrated block to
append a TLP Digest containing ECRC to the Completion TLP, even when
ECRC is not enabled for the Function sending the Completion.

Table 52: Calculating Byte Count from Completer Request first_be[3:0], last_be[3:0],
Dword Count[10:0]

first_be[3:0] last_be[3:0] Total Byte Count
1xx1 0000 4

01x1 0000 3

1x10 0000 3

0011 0000 2

0110 0000 2

1100 0000 2

0001 0000 1

0010 0000 1

0100 0000 1

1000 0000 1

0000 0000 1

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=121

Table 52: Calculating Byte Count from Completer Request first_be[3:0], last_be[3:0],
Dword Count[10:0] (cont'd)

first_be[3:0] last_be[3:0] Total Byte Count
xxx1 1xxx Dword_count × 4

xxx1 01xx (Dword_count × 4)-1

xxx1 001x (Dword_count × 4)-2

xxx1 0001 (Dword_count × 4)-3

xx10 1xxx (Dword_count × 4)-1

xx10 01xx (Dword_count × 4)-2

xx10 001x (Dword_count × 4)-3

xx10 0001 (Dword_count × 4)-4

x100 1xxx (Dword_count × 4)-2

x100 01xx (Dword_count × 4)-3

x100 001x (Dword_count × 4)-4

x100 0001 (Dword_count × 4)-5

1000 1xxx (Dword_count × 4)-3

1000 01xx (Dword_count × 4)-4

1000 001x (Dword_count × 4)-5

1000 0001 (Dword_count × 4)-6

Completions with Successful Completion Status

The user application must return a Completion to the CC interface of the core for every Non-
Posted request it receives from the completer request interface. When the request completes
with no errors, the user application must return a Completion with Successful Completion (SC)
status. Such a Completion might or might not contain a payload, depending on the type of
request. Furthermore, the data associated with the request can be broken up into multiple Split
Completions when the size of the data block exceeds the maximum payload size configured. The
user logic is responsible for splitting the data block into multiple Split Completions when needed.
The user application must transfer each Split Completion over the completer completion
interface as a separate AXI4-Stream packet, with its own 12-byte descriptor.

In the example timing diagrams of this section, the starting Dword address of the data block
being transferred (as conveyed in bits [6:2] of the Lower Address field of the descriptor) is
assumed to be (m × 8 + 1), for an integer m. The size of the data block is assumed to be n
Dwords, for some n = k × 32 + 28, k > 0.

The CC interface supports two data alignment modes: Dword-aligned and address-aligned. The
following timing diagrams illustrate the Dword-aligned transfer of a Completion from the user
application across the CC interface, when the interface width is configured as 64, 128, and 256
bits, respectively. In this case, the first Dword of the payload starts immediately after the
descriptor. When the data block is not a multiple of four bytes, or when the start of the payload
is not aligned on a Dword address boundary, the user application must add null bytes to align the

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=122

start of the payload on a Dword boundary and make the payload a multiple of Dwords. For
example, when the data block starts at byte address 7 and has a size of 3 bytes, the user
application must add three null bytes before the first byte and two null bytes at the end of the
block to make it two Dwords long. Also, in the case of non-contiguous reads, not all bytes in the
data block returned are valid. In that case, the user application must return the valid bytes in the
proper positions, with null bytes added in gaps between valid bytes, when needed. The interface
does not have any signals to indicate the valid bytes in the payload. This is not required, as the
requester is responsible for keeping track of the byte enables in the request and discarding
invalid bytes from the Completion.

In the Dword-aligned mode, the transfer starts with the 12 descriptor bytes, followed
immediately by the payload bytes. The user application must keep the s_axis_cc_tvalid
signal asserted over the duration of the packet. The integrated block treats the deassertion of
s_axis_cc_tvalid during the packet transfer as an error, and nullifies the corresponding
Completion TLP transmitted on the link to avoid data corruption.

The user application must also assert the s_axis_cc_tlast signal in the last beat of the
packet. The integrated block can deassert s_axis_cc_tready in any cycle if it is not ready to
accept data. The user application must not change the values on the CC interface during a clock
cycle that the integrated block has deasserted s_axis_cc_tready.

Figure 24: Transfer of a Normal Completion on the Completer Completion Interface
(Dword-Aligned Mode, 64-Bit Interface)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[1:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DESC 2 DW 1 DW 1 DW n-1

DESC 1 DW 0 DW 2 DW 2

0x3 0x3 0x3 0x1

X12349

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=123

Figure 25: Transfer of a Normal Completion on the Completer Completion Interface
(Dword-Aligned Mode, 128-Bit Interface)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tdata[95:64]

s_axis_cc_tdata[127:96]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[3:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DW 1 DW 5 DW 5 DW n-3

DESC 1 DW 2 DW 6 DW 6 DW n-2

DESC 2 DW 3 DW 7 DW 7 DW n-1

DW 0 DW 4 DW 8 DW 8

0xF 0xF 0xF 0x7

X12350

Figure 26: Transfer of a Normal Completion on the Completer Completion Interface
(Dword-Aligned Mode, 256-Bit Interface)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tdata[95:64]

s_axis_cc_tdata[127:96]

s_axis_cc_tdata[159:128]

s_axis_cc_tdata[191:160]

s_axis_cc_tdata[223:192]

s_axis_cc_tdata[255:224]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[7:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DW 5 DW 5 DW n-7

DESC 1 DW 6 DW 6 DW n-6

DESC 2 DW 7 DW 7 DW n-5

DW 0 DW 8 DW 8 DW n-4

DW 1 DW 9 DW 9 DW n-3

DW 2 DW 10 DW 10 DW n-2

DW 3 DW 11 DW 11 DW n-1

DW 4 DW 12 DW 12

0xFF 0xFF 0xFF 0x7F

X12351

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=124

In the address-aligned mode, the delivery of the payload always starts in the beat following the
last byte of the descriptor. For memory read Completions, the first byte of the payload can
appear on any byte lane, based on the address of the first valid byte of the payload. For all other
Completions, the payload must start in byte lane 0.

The following timing diagrams illustrate the address-aligned transfer of a memory read
Completion across the completer completion interface, when the interface width is configured as
64, 128, and 256 bits, respectively. For the purpose of illustration, the starting Dword address of
the data block being transferred (as conveyed in bits [6:2] of the Lower Address field of the
descriptor) is assumed to be (m × 8 +1), for some integer m. The size of the data block is
assumed to be n Dwords, for some n = k × 32 + 28, k > 0.

Figure 27: Transfer of a Normal Completion on the Completer Completion Interface
(Address-Aligned Mode, 64-Bit Interface)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[7:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DESC 2 DW 1 DW n-1

DESC 1 DW 0 DW 0 DW 2

0x3 0x3 0x3 0x1

X12346

Figure 28: Transfer of a Normal Completion on the Completer Completion Interface
(Address-Aligned Mode, 128-Bit Interface)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tdata[95:64]

s_axis_cc_tdata[127:96]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[7:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DW 3 DW 3 DW n-1

DESC 1 DW 0 DW 4 DW 4

DESC 2 DW 1 DW 5 DW 5

DW 2 DW 6 DW 6

0xF 0xF 0xF 0x1

X12347

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=125

Figure 29: Transfer of a Normal Completion on the Completer Completion Interface
(Address-Aligned Mode, 256-Bit Interface)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tdata[95:64]

s_axis_cc_tdata[127:96]

s_axis_cc_tdata[159:128]

s_axis_cc_tdata[191:160]

s_axis_cc_tdata[223:192]

s_axis_cc_tdata[255:224]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[7:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DW 7 DW 7 DW n-5

DESC 1 DW 0 DW 8 DW 8 DW n-4

DESC 2 DW 1 DW 9 DW 9 DW n-3

DW 2 DW 10 DW 10 DW n-2

DW 3 DW 11 DW 11 DW n-1

DW 4 DW 12 DW 12

DW 5 DW 13 DW 13

DW 6 DW 14 DW 14

0xFF 0xFF 0xFF 0x1F

X12348

Aborting a Completion Transfer

The user application can abort the transfer of a completion transaction on the completer
completion interface at any time during the transfer of the payload by asserting the
discontinue signal in the s_axis_cc_tuser bus. The integrated block nullifies the
corresponding TLP on the link to avoid data corruption.

The user application can assert this signal in any cycle during the transfer, when the Completion
being transferred has an associated payload. The user application can either choose to terminate
the packet prematurely in the cycle where the error was signaled (by asserting
s_axis_cc_tlast), or can continue until all bytes of the payload are delivered to the
integrated block. In the latter case, the integrated block treats the error as sticky for the
following beats of the packet, even if the user application deasserts the discontinue signal before
reaching the end of the packet.

The discontinue signal can be asserted only when s_axis_cc_tvalid is active-High. The
integrated block samples this signal when s_axis_cc_tvalid and s_axis_cc_tready are
both asserted. Thus, after assertion, the discontinue signal should not be deasserted until
s_axis_cc_tready is asserted.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=126

When the integrated block is configured as an Endpoint, this error is reported by the integrated
block to the Root Complex to which it is attached, as an Uncorrectable Internal Error using the
Advanced Error Reporting (AER) mechanisms.

Completions with Error Status (UR and CA)

When responding to a request received on the completer request interface with an Unsupported
Request (UR) or Completion Abort (CA) status, the user application must send a three-Dword
completion descriptor in the format of the Completer Completion Descriptor Format figure in
Completer Completion Descriptor Format, followed by five additional Dwords containing
information on the request that generated the Completion. These five Dwords are necessary for
the integrated block to log information about the request in its AER header log registers.

The following figure shows the sequence of information transferred when sending a Completion
with UR or CA status. The information is formatted as an AXI4-Stream packet with a total of 8
Dwords, which are organized as follows:

• The first three Dwords contain the completion descriptor in the format of the Completer
Completion Descriptor Format figure in Completer Completion Descriptor Format.

• The fourth Dword contains the state of the following signals in m_axis_cq_tuser, copied
from the request:

○ The First Byte Enable bits first_be[3:0] in m_axis_cq_tuser.

○ The Last Byte Enable bits last_be[3:0] in m_axis_cq_tuser.

Figure 30: Composition of the AXI4-Stream Packet for UR and CA Completions

701234567
+4

01234567
+5

01234567
+6

01234567
+7

DW 3
32

first_be

63

R

DW 0 DW 1

Completion Descriptor DW 1 Completion Descriptor DW 0

DW 2

Completion Descriptor DW 2

DW 4 DW 5

DW DW 7

last_ beR

Request Descriptor, DW 3 Request Descriptor, DW 2

Request Descriptor, DW 1 Request Descriptor, DW 0

X24889-120620

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=127

The entire packet takes four beats on the 64-bit interface, two beats on the 128-bit interface,
and a single beat on the 256-bit interface. The packet is transferred in an identical manner in
both the Dword-aligned mode and the address-aligned mode, with the Dwords packed together.
The user application must keep the s_axis_cc_tvalid signal asserted over the duration of
the packet. It must also assert the s_axis_cc_tlast signal in the last beat of the packet. The
integrated block can deassert s_axis_cc_tready in any cycle if it is not ready to accept. The
user application must not change the values on the CC interface in any cycle that the integrated
block has deasserted s_axis_cc_tready.

64/128/256-Bit Requester Interface
The requester interface enables a user Endpoint application to initiate PCIe transactions as a bus
master across the PCIe link to the host memory. For Root Complexes, this interface is also used
to initiate I/O and configuration requests. This interface can also be used by both Endpoints and
Root Complexes to send messages on the PCIe® link. The transactions on this interface are
similar to those on the completer interface, except that the roles of the core and the user
application are reversed. Posted transactions are performed as single indivisible operations and
Non-Posted transactions as split transactions.

The requester interface consists of two separate interfaces, one for data transfer in each
direction. Each interface is based on the AXI4-Stream protocol, and its width can be configured
as 64, 128, or 256 bits. The Requester reQuest (RQ) interface is for transfer of requests (with any
associated payload data) from the user application to the integrated block, and the Requester
Completion (RC) interface is used by the integrated block to deliver Completions received from
the link (for Non-Posted requests) to the user application. The two interfaces operate
independently. That is, the user application can transfer new requests over the RQ interface
while receiving a completion for a previous request.

Requester Request Interface Operation

On the RQ interface, the user application delivers each TLP as an AXI4-Stream packet. The
packet starts with a 128-bit descriptor, followed by data in the case of TLPs with a payload. The
following figure shows the signals associated with the requester request interface.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=128

Figure 31: Requester Request Interface

Integrated Block for PCI Express User
Application

PCIe Requester
Request Interface

AXI4-Stream
Master

PCIe
Requester
 Interface

s_axis_rq_tdata[255:0]

s_axis_rq_valid

s_axis_rq_tready

s_axis_rq_tlast

s_axis_rq_tkeep[7:0]

first_be[3:0]

last_be[3:0]

addr_offset[2:0]

discontinue

seq_num[3:0]

s_axis_rq_tuser[61:0]

pcie_rq_tag[9:0]

pcie_rq_tag_vld

pcie_tfc_nph[1:0]

pcie_tfc_npd[1:0]

pcie_rq_seq_num[3:0]

pcie_rq_seq_num_vld

AXI4-Stream
Slave

parity[31:0]

X19418-121320

The RQ interface supports two distinct data alignment modes for transferring payloads. In the
Dword-aligned mode, the user logic must provide the first Dword of the payload immediately
after the last Dword of the descriptor. It must also set the bits in first_be[3:0] to indicate
the valid bytes in the first Dword and the bits in last_be[3:0] (both part of the bus
s_axis_rq_tuser) to indicate the valid bytes in the last Dword of the payload. In the address-
aligned mode, the user application must start the payload transfer in the beat following the last
Dword of the descriptor, and its first Dword can be in any of the possible Dword positions on the

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=129

datapath. The user application communicates the offset of the first Dword on the datapath using
the addr_offset[2:0] signals in s_axis_rq_tuser. As in the case of the Dword-aligned
mode, the user application must also set the bits in first_be[3:0] to indicate the valid bytes
in the first Dword and the bits in last_be[3:0] to indicate the valid bytes in the last Dword of
the payload.

Requester Request Descriptor Formats

The user application must transfer each request to be transmitted on the link to the RQ interface
of the integrated block as an independent AXI4-Stream packet. Each packet must start with a
descriptor and can have payload data following the descriptor. The descriptor is always 16 bytes
long, and must be sent in the first 16 bytes of the request packet. The descriptor is transferred
during the first two beats on a 64-bit interface, and in the first beat on a 128-bit or 256-bit
interface. The formats of the descriptor for different request types are illustrated in the following
figures.

The format of the following figure applies when the request TLP being transferred is a memory
read/write request, an I/O read/write request, or an Atomic Operation request.

Figure 32: Requester Request Descriptor Format for Memory, I/O, and Atomic
Operation Requests

01234567
+0

01234567
+1

01234567
+2

01234567
+3

DW + 0

Address [63:2]

Address Type (AT)

01234567
+4

01234567
+5

01234567
+6

01234567
+7

DW + 1

Dword Count
01234567

+8
01234567

+9
01234567

+10
01234567

+11

DW + 2

TagTC
01234567

+12
01234567

+13
01234567

+14
01234567

+15

DW + 3

Attr

Req Type

96 64

32

Poisoned Request

Bus
Completer ID

Requester ID EnableForce ECRC

Bus Device/Function

Requester ID
Device/Function

127

63 0

X12212

The format in the following figure is used for Configuration Requests.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=130

Figure 33: Requester Request Descriptor Format for Configuration Requests

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

Reserved
01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

Dword count
01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

TagTC
01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3

Attr

Req Type

96 64

32

Poisoned Request

Bus

Completer ID

Requester ID Enable
Force ECRC

Bus Device/Function
Requester ID

Device/Function

127

63 0

Reserved

Reg NumberExt. Reg
Number

{Bus Number[7:0],
Device Number[4:0],

Function Number[2:0]}
X12631

The format in the following figure is used for Vendor-Defined Messages (Type 0 or Type 1) only.

Figure 34: Requester Request Descriptor Format for Vendor-Defined Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3
96 64

Msg Code

Vendor - Defined Header Bytes
Destination ID

Bus Device/FunctionVendor ID

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type
Poisoned Request

Bus Device/Function
Requester ID

Requester ID Enable
Force ECRC

03263

127

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

X12214

The format in the following figure is used for all ATS messages (Invalid Request, Invalid
Completion, Page Request, PRG Response).

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=131

Figure 35: Requester Request Descriptor Format for ATS Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3
96 64

32

Msg Code

TL Header Bytes 8-15

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type

Poisoned Request

Bus Device/Function

Requester ID

Requester ID Enable
Force ECRC

127

63 0

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

TL Header
Byte 11

TL Header
Byte 10

TL Header
Byte 9

TL Header
Byte 8

X12211

For all other messages, the descriptor takes the format shown in the following figure.

Figure 36: Requester Request Descriptor Format for all other Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

01234567

+4

01234567

+5

01234567

+6

01234567

+7

Dword Count
01234567

+8

01234567

+9

01234567

+10

01234567

+11

Tag
01234567

+12
01234567

+13

01234567

+14

01234567

+15

Req Type

96 64

32

Msg Code
Message
Routing

TCAttr R

OBFF Code
(for OBFF message);
Reserved (for others)

No-Snoop Latency
(for LTR message);

Reserved (for others)

Snoop Latency
(for LTR message);

Reserved (for others)

R

Bus Device/Function

Requester ID

0

127

63

DW + 0DW + 1

DW + 2DW + 3

X12213

Poisoned Request
Force ECRC

Requester ID Enable

Table 53: Requester Request Descriptor Fields

Bit Index Field Name Description

1:0 Address Type

This field is defined for memory transactions and Atomic Operations only.
The integrated block copies this field into the AT of the TL header of the
request TLP.
• 00: Address in the request is untranslated
• 01: Transaction is a Translation Request
• 10: Address in the request is a translated address
• 11: Reserved

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=132

Table 53: Requester Request Descriptor Fields (cont'd)

Bit Index Field Name Description

63:2 Address

This field applies to memory, I/O, and Atomic Op requests. This is the
address of the first Dword referenced by the request. The user application
must also set the First_BE and Last_BE bits in s_axis_rq_tuser to indicate the
valid bytes in the first and last Dwords, respectively.
When the transaction specifies a 32-bit address, bits [63:32] of this field
must be set to 0.

74:64 Dword Count

These 11 bits indicate the size of the block (in Dwords) to be read or written
(for messages, size of the message payload). The valid range for Memory
Write Requests is 0-256 Dwords. Memory Read Requests have a valid range
of 1-1024 Dwords. For I/O accesses, the Dword count is always 1.
For a zero length memory read/write request, the Dword count must be 1,
with the First_BE bits set to all zeros.
The integrated block does not check the setting of this field against the
actual length of the payload supplied (for requests with payload), nor
against the maximum payload size or read request size settings of the
integrated block.

78:75 Request Type Identifies the transaction type. The transactions types and their encodings
are listed in Table 50: Transaction Types.

79 Poisoned Request

This bit can be used to poison the request TLP being sent. This feature is
supported on all request types except Type 0 and Type 1 Configuration
Write Requests. This bit must be set to 0 for all requests, except when the
user application detects an error in the block of data following the
descriptor and wants to communicate this information using the Data
Poisoning feature of PCI Express.
This feature is supported on all request types except Type 0 and Type 1
Configuration Write Requests.

87:80 Requester Function/Device
Number

Device and/or Function number of the Requester Function.
Endpoint mode:
• ARI enabled:

○ Bits [87:80] must be set to the Requester Function number.

• ARI disabled:
○ Bits [82:80] must be set to the Requester Function number.
○ Bits [87:83] are not used

Upstream Port for Switch use case (Endpoint mode is selected within the
IP):
• ARI enabled:

○ Bits [87:80] must be set to the Requester Function number.

• ARI disabled:
○ Bits [82:80] must be set to the Requester Function number.
○ Bits [87:83] are not used if the request is originating from the switch

itself. These bits must be set to the Requester Device number where
the request was originated if the switch is relaying the request
(Requester is external to the switch). This is used in conjunction with
Requester ID Enable bit in the descriptor.

Root Port mode (Downstream Port):
• ARI enabled:

○ Bits [87:80] must be set to the Requester Function number.

• ARI disabled:
○ Bits [87:80] must be set to the Requester Function number.
○ Bits [87:83] must be set to the Requester Device number. This is

used in conjunction with Requester ID Enable bit in the descriptor.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=133

Table 53: Requester Request Descriptor Fields (cont'd)

Bit Index Field Name Description

95:88 Requester Bus Number

Bus number associated with the Requester Function.
Endpoint mode:
• Not Used
Upstream Port for Switch use case (Endpoint mode is selected within the
IP):
• Not used if the request is originating from the switch itself. These bits

must be set to the Requester Bus number where the request was
originated if the switch is relaying the request (Requester is external to
the switch). This is used in conjunction with Requester ID Enable bit in
the descriptor.

Root Port mode (Downstream Port):
• Must be set to the Requester Bus number. This is used in conjunction

with Requester ID Enable bit in the descriptor.

103:96 Tag

PCIe Tag associated with the request.
For Non-Posted transactions, the integrated block uses the value from this
field if the AXISTEN_IF_ENABLE_CLIENT_TAG parameter is set (that is, when
tag management is performed by the user application). Bits [101:96] are
used as the tag. Bits [103:102] are reserved. If this parameter is not set, tag
management logic in the integrated block generates the tag to be used,
and the value in the tag field of the descriptor is not used.

119:104 Completer ID

This field is applicable only to Configuration requests and messages routed
by ID. For these requests, this field specifies the PCI Completer ID
associated with the request (these 16 bits are divided into an 8-bit bus
number, 5-bit device number, and 3-bit function number in the legacy
interpretation mode. In the ARI mode, these 16 bits are treated as an 8-bit
bus number + 8-bit Function number).

120 Requester ID Enable

1’b1: The client supplies Bus, Device, and Function numbers in the
descriptor to be populated as the Requester ID field in the TLP header.
1’b0: IP uses Bus and Device numbers captured from received
Configuration requests and the client supplies Function numbers in the
descriptor to be populated as the Requester ID field in the TLP header.
When Requester ID enable is 0 the device number fields in descriptor
should also be 0.
Endpoint mode:
• Must be set to 1’b0.
Upstream Port for Switch use case (Endpoint mode is selected within the
IP):
• Set to 1’b0 when the request is originating from the switch itself.
• Set to 1’b1 when the switch is relaying the request (Requester is

external to the switch). This is used in conjunction with Requester Bus
Number bits [95:88] and Requester Function/Device Number bits
[87:83] when ARI is not enabled.

Root Port mode:
• Must be set to 1’b1. This is used in conjunction with Requester Bus

Number bits [95:88] and Requester Function/Device Number bits
[87:83] when ARI is not enabled.

123:121 Transaction Class (TC) PCIe Transaction Class (TC) associated with the request.

126:124 Attributes

These bits provide the setting of the Attribute bits associated with the
request. Bit 124 is the No Snoop bit and bit 125 is the Relaxed Ordering bit.
Bit 126 is the ID-Based Ordering bit, and can be set only for memory
requests and messages.
The integrated block forces the attribute bits to 0 in the request sent on the
link if the corresponding attribute is not enabled in the Function's PCI
Express Device Control register.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=134

Table 53: Requester Request Descriptor Fields (cont'd)

Bit Index Field Name Description

127 Force ECRC
Force ECRC insertion. Setting this bit to 1 forces the integrated block to
append a TLP Digest containing ECRC to the Request TLP, even when ECRC
is not enabled for the Function sending request.

15:0 Snoop Latency This field is defined for LTR messages only. It provides the value of the 16-
bit Snoop Latency field in the TLP header of the message.

31:16 No-Snoop Latency This field is defined for LTR messages only. It provides the value of the 16-
bit No-Snoop Latency field in the TLP header of the message.

35:32 OBFF Code

The OBFF Code field is used to distinguish between various OBFF cases:
• 1111b: CPU Active – System fully active for all device actions including

bus mastering and interrupts.
• 0001b: OBFF – System memory path available for device memory read/

write bus master activities.
• 0000b: Idle – System in an idle, low power state.
• All other codes are reserved.

111:104 Message Code

This field is defined for all messages. It contains the 8-bit Message Code to
be set in the TL header.
Appendix F of the PCI Express® Base Specification, rev. 3.0 (PCI-SIG
Specifications (https://www.pcisig.com/specifications)) provides a complete
list of the supported Message Codes.

114:112 Message Routing This field is defined for all messages. The integrated block copies these bits
into the 3-bit Routing field r[2:0] of the TLP header of the Request TLP.

15:0 Destination ID
This field applies to Vendor-Defined Messages only. When the message is
routed by ID (that is, when the Message Routing field is 010 binary), this
field must be set to the Destination ID of the message.

63:32 Vendor-Defined Header This field applies to Vendor-Defined Messages only. It is copied into Dword
3 of the TLP header.

63:0 ATS Header This field is applicable to ATS messages only. It contains the bytes that the
integrated block copies into Dwords 2 and 3 of the TLP header.

Requester Memory Write Operation

In both Dword-aligned, the transfer starts with the sixteen descriptor bytes, followed
immediately by the payload bytes. The user application must keep the s_axis_rq_tvalid
signal asserted over the duration of the packet. The integrated block treats the deassertion of
s_axis_rq_tvalid during the packet transfer as an error, and nullifies the corresponding
Request TLP transmitted on the link to avoid data corruption.

The user application must also assert the s_axis_rq_tlast signal in the last beat of the
packet. The integrated block can deassert s_axis_rq_tready in any cycle if it is not ready to accept
data. The user application must not change the values on the RQ interface during cycles when
the integrated block has deasserted s_axis_rq_tready. The AXI4-Stream interface signals
m_axis_rq_tkeep (one per Dword position) must be set to indicate the valid Dwords in the

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 135Send Feedback

https://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=135

packet including the descriptor and any null bytes inserted between the descriptor and the
payload. That is, the tkeep bits must be set to 1 contiguously from the first Dword of the
descriptor until the last Dword of the payload. During the transfer of a packet, the tkeep bits
can be 0 only in the last beat of the packet, when the packet does not fill the entire width of the
interface.

The requester request interface also includes the First Byte Enable and the Last Enable bits in the
s_axis_rq_tuser bus. These must be set in the first beat of the packet, and provide
information of the valid bytes in the first and last Dwords of the payload.

The user application must limit the size of the payload transferred in a single request to the
maximum payload size configured in the integrated block, and must ensure that the payload does
not cross a 4 Kbyte boundary. For memory writes of two Dwords or less, the 1s in first_be
and last_be can be non-contiguous. For the special case of a zero-length memory write
request, the user application must provide a dummy one-Dword payload with first_be and
last_be both set to all 0s. For one DW transfers, last_be[3:0] should be 0 and
first_be[3:0] indicates the valid bytes. In all other cases, the 1 bits in first_be and
last_be must be contiguous.

The following timing diagrams illustrate the Dword-aligned transfer of a memory write request
from the user application across the requester request interface, when the interface width is
configured as 64, 128, and 256 bits, respectively. For illustration purposes, the size of the data
block being written into user application memory is assumed to be n Dwords, for some n = k ×
32 + 29, k > 0.

Figure 37: Memory Write Transaction on the Requester Request Interface (Dword-
Aligned Mode, 64-Bit Interface)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[1:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DESC 2 DW 0 DW 0 DW 2 DW n-1

DESC 1 DESC 3 DW 1 DW 1 DW 3

0x3 0x3 0x3 0x1

FIRST BE

LAST BE

X12336

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=136

Figure 38: Memory Write Transaction on the Requester Request Interface (Dword-
Aligned Mode, 128-Bit Interface)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[3:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DW 0 DW 0 DW n-1

DESC 1 DW 1 DW 1

DESC 2 DW 2 DW 2

DESC 3 DW 3 DW 3

0xF 0xF 0xF 0x1

FIRST BE

LAST BE

X12337

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=137

Figure 39: Memory Write Transaction on the Requester Request Interface (Dword-
Aligned Mode, 256-Bit Interface)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tdata[159:128]

s_axis_rq_tdata[191:160]

s_axis_rq_tdata[223:192]

s_axis_rq_tdata[255:224]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[7:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) m_axis_cq_tuser[11]

DESC 0 DW 4 DW 4 DW n-1

DESC 1 DW 5 DW 5

DESC 2 DW 6 DW 6

DESC 3 DW 7 DW 7

DW 0 DW 8 DW 8

DW 1 DW 9 DW 9

DW 2 DW 10 DW 10

DW 3 DW 11 DW 11

0xFF 0xFF 0xFF 0x01

FIRST BE

LAST BE

X12338

The following timing diagrams illustrate the address-aligned transfer of a memory write request
from the user application across the RQ interface, when the interface width is configured as 64,
128, and 256 bits, respectively. For illustration purposes, the starting Dword offset of the data
block being written into user application memory is assumed to be (m × 32 + 1), for some integer
m > 0. Its size is assumed to be n Dwords, for some n = k × 32 + 29, k > 0.

In the address-aligned mode, the delivery of the payload always starts in the beat following the
last byte of the descriptor. The first Dword of the payload can appear at any Dword position. The
user application must communicate the offset of the first Dword of the payload on the datapath
using the addr_offset[2:0] signal in s_axis_rq_tuser. The user application must also set
the bits in first_be[3:0] to indicate the valid bytes in the first Dword and the bits in
last_be[3:0] to indicate the valid bytes in the last Dword of the payload.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=138

Figure 40: Memory Write Transaction on the Requester Request Interface (Address-
Aligned Mode, 64-Bit Interface)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[1:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(add_offset[2:0])
s_axis_rq_tuser[10:8]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DESC 2 DW 1 DW n-2

DESC 1 DESC 3 DW 0 DW 0 DW 2 DW n-1

0x3

FIRST BE

LAST BE

1

X12333-052119

Figure 41: Memory Write Transaction on the Requester Request Interface (Address-
Aligned Mode, 128-Bit Interface)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[3:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(add_offset[2:0]) s_axis_rq_tuser[10:8]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DW 3 DW n-2

DESC 1 DW 0 DW 0 DW 4 DW n-1

DESC 2 DW 1 DW 1 DW 5

DESC 3 DW 2 DW 2 DW 6

0xF 0xF 0xF 0x3

FIRST BE

LAST BE

1

X12334

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=139

Figure 42: Memory Write Transaction on the Requester Request Interface (Address-
Aligned Mode, 256-Bit Interface)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tdata[159:128]

s_axis_rq_tdata[191:160]

s_axis_rq_tdata[223:192]

s_axis_rq_tdata[255:224]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[7:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(add_offset[2:0]) s_axis_rq_tuser[10:8]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DW 7 DW 7 DW n-6

DESC 1 DW 0 DW 8 DW 8 DW n-5

DESC 2 DW 1 DW 9 DW 9 DW n-4

DESC 3 DW 2 DW 10 DW 10 DW n-3

DW 3 DW 11 DW 11 DW n-2

DW 4 DW 12 DW 12 DW n-1

DW 5 DW 13 DW 13

DW 6 DW 14 DW 14

0xFF 0xFF 0xFF 0x3F

FIRST BE

LAST BE

1

X12335

Non-Posted Transactions with No Payload

Non-Posted transactions with no payload (memory read requests, I/O read requests,
Configuration read requests) are transferred across the RQ interface in the same manner as a
memory write request, except that the AXI4-Stream packet contains only the 16-byte descriptor.
The following timing diagrams illustrate the transfer of a memory read request across the RQ
interface, when the interface width is configured as 64, 128, and 256 bits, respectively. The
packet occupies two consecutive beats on the 64-bit interface, while it is transferred in a single
beat on the 128- and 256-bit interfaces. The s_axis_rq_tvalid signal must remain asserted
over the duration of the packet. The integrated block can deassert s_axis_rq_tready to
prolong the beat. The s_axis_rq_tlast signal must be set in the last beat of the packet, and
the bits in s_axis_rq_tkeep[7:0] must be set in all Dword positions where a descriptor is
present.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=140

The valid bytes in the first and last Dwords of the data block to be read must be indicated using
first_be[3:0] and last_be[3:0], respectively. For the special case of a zero-length
memory read, the length of the request must be set to one Dword, with both first_be[3:0]
and last_be[3:0] set to all 0s. Additionally when in address-aligned mode,
addr_offset[2:0] in s_axis_rq_tuser specifies the desired starting alignment of data
returned on the Requester Completion interface. The alignment is not required to be correlated
to the address of the request.

Figure 43: Memory Read Transaction on the Requester Request Interface (64-Bit
Interface)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[1:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DESC 0 DESC 2

DESC 1 DESC 1 DESC 3

0x3 0x3

FIRST BE FIRST BE

LAST BE LAST BE

X12230-052119

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=141

Figure 44: Memory Read Transaction on the Requester Request Interface (128-Bit
Interface)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[3:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

DESC 3 DESC 3

0xF 0xF

FIRST BE FIRST BE

LAST BE LAST BE

X12231

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=142

Figure 45: Memory Read Transaction on the Requester Request Interface (256-Bit
Interface)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tdata[255:128]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[7:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

DESC 3 DESC 3

0x0F 0x0F

FIRST BE FIRST BE

LAST BE LAST BE

X12332-052119

Non-Posted Transactions with a Payload

The transfer of a Non-Posted request with payload (an I/O write request, Configuration write
request, or Atomic Operation request) is similar to the transfer of a memory request, with the
following changes in how the payload is aligned on the datapath:

• In the Dword-aligned mode, the first Dword of the payload follows the last Dword of the
descriptor, with no gaps between them.

• In the address-aligned mode, the payload must start in the beat following the last Dword of
the descriptor. The payload can start at any Dword position on the datapath. The offset of its
first Dword must be specified using the addr_offset[2:0] signal.

For I/O and Configuration write requests, the valid bytes in the one-Dword payload must be
indicated using first_be[3:0]. For Atomic Operation requests, all bytes in the first and last
Dwords are assumed valid.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=143

Message Requests on the Requester Interface

The transfer of a message on the RQ interface is similar to that of a memory write request,
except that a payload might not always be present. The transfer starts with the 128-bit
descriptor, followed by the payload, if present. When the Dword-aligned mode is in use, the first
Dword of the payload must immediately follow the descriptor. When the address-alignment
mode is in use, the payload must start in the beat following the descriptor, and must be aligned
to byte lane 0. The addr_offset input to the integrated block must be set to 0 for messages
when the address-aligned mode is in use. The integrated block determines the end of the
payload from s_axis_rq_tlast and s_axis_rq_tkeep signals. The First Byte Enable and
Last Byte Enable bits (first_be and last_be) are not used for message requests.

Aborting a Transfer

For any request that includes an associated payload, the user application can abort the request at
any time during the transfer of the payload by asserting the discontinue signal in the
s_axis_rq_tuser bus. The integrated block nullifies the corresponding TLP on the link to
avoid data corruption.

The user application can assert this signal in any cycle during the transfer, when the request
being transferred has an associated payload. The user application can either choose to terminate
the packet prematurely in the cycle where the error was signaled (by asserting
s_axis_rq_tlast), or can continue until all bytes of the payload are delivered to the
integrated block. In the latter case, the integrated block treats the error as sticky for the
following beats of the packet, even if the user application deasserts the discontinue signal before
reaching the end of the packet.

The discontinue signal can be asserted only when s_axis_rq_tvalid is active-High. The
integrated block samples this signal when s_axis_rq_tvalid and s_axis_rq_tready are
both active-High. Thus, after assertion, the discontinue signal should not be deasserted until
s_axis_rq_tready is active-High.

When the integrated block is configured as an Endpoint, this error is reported by the integrated
block to the Root Complex it is attached to, as an Uncorrectable Internal Error using the
Advanced Error Reporting (AER) mechanisms.

Tag Management for Non-Posted Transactions

The requester side of the integrated block maintains the state of all pending Non-Posted
transactions (memory reads, I/O reads and writes, configuration reads and writes, Atomic
Operations) initiated by the user application, so that the completions returned by the targets can
be matched against the corresponding requests. The state of each outstanding transaction is held
in a Split Completion Table in the requester side of the interface, which has a capacity of up to
768 Non-Posted transactions. The returning Completions are matched with the pending requests
using an 5-/8-/10-bit tag. There are two options for management of these tags.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=144

• Internal Tag Management: This mode of operation is selected by setting the Enable Client Tag
checkbox is deselected (not set) the Vivado® IDE, which is the default setting for the core. In
this mode, logic within the integrated block is responsible for allocating the tag for each Non-
Posted request initiated from the requester side. The integrated block maintains a list of free
tags and assigns one of them to each request when the user application initiates a Non-
Posted transaction, and communicates the assigned tag value to the user application through
the output pcie_rq_tag0[9:0]. The value on this bus is valid when the integrated block
asserts pcie_rq_tag_vld0. The user logic must copy this tag so that any Completions
delivered by the integrated block in response to the request can be matched to the request.

In this mode, logic within the integrated block checks for the Split Completion Table full
condition, and back pressures a Non-Posted request from the user application (using
s_axis_rq_tready) if the total number of Non-Posted requests currently outstanding has
reached its limit.

• External Tag Management: In this mode, the user logic is responsible for allocating the tag for
each Non-Posted request initiated from the requester side. The user logic must choose the tag
value without conflicting with the tags of all other Non-Posted transactions outstanding at
that time, and must communicate this chosen tag value to the integrated block through the
request descriptor. The integrated block still maintains the outstanding requests in its Split
Completion Table and matches the incoming Completions to the requests, but does not
perform any checks for the uniqueness of the tags, or for the Split Completion Table full
condition.

When internal tag management is in use, the integrated block asserts pcie_rq_tag_vld0 for
one cycle for each Non-Posted request, after it has placed its allocated tag on
pcie_rq_tag[9:0]. There can be a delay of several cycles between the transfer of the request
on the RQ interface and the assertion of pcie_rq_tag_vld0 by the integrated block to
provide the allocated tag for the request. The user application can, meanwhile, continue to send
new requests. The tags for requests are communicated on the pcie_rq_tag0 bus in FIFO
order, so it is easy to associate the tag value with the request it transferred. A tag is reused when
the end-of-frame (EOF) of the last completion of a split completion is accepted by the user
application.

Avoiding Head-of-Line Blocking for Posted Requests

The integrated block can hold a Non-Posted request received on its RQ interface for lack of
transmit credit or lack of available tags. This could potentially result in head-of-line (HOL)
blocking for Posted transactions. The integrated block provides a mechanism for the user logic to
avoid this situation through these signals:

• pcie_tfc_nph_av[1:0]: These outputs indicate the Header Credit currently available for
Non-Posted requests, where:

00 = no credit available
01 = 1 credit
10 = 2 credits
11 = 3 or more credits

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=145

• pcie_tfc_npd_av[1:0]: These outputs indicate the Data Credit currently available for Non-
Posted requests, where:

00 = no credit available
01 = 1 credit
10 = 2 credits
11 = 3 or more credits

The user logic can optionally check these outputs before transmitting Non-Posted requests.
Because of internal pipeline delays, the information on these outputs is delayed by two user
clock cycles from the cycle in which the last byte of the descriptor is transferred on the RQ
interface. Thus, the user logic must adjust these values, taking into account any Non-Posted
requests transmitted in the two previous clock cycles. The following figure illustrates the
operation of these signals for the 256-bit interface. In this example, the integrated block initially
had three Non-Posted Header Credits and two Non-Posted Data Credits, and had three free tags
available for allocation. Request 1 from the user application had a one-Dword payload, and
therefore consumed one header and data credit each, and also one tag. Request 2 in the next
clock cycle consumed one header credit, but no data credit. When the user application presents
Request 3 in the following clock cycle, it must adjust the available credit and available tag count
by taking into account requests 1 and 2. If Request 3 consumes one header credit and one data
credit, both available credits are 0 two cycles later, as also the number of available tags.

Figure 46: Credit and Tag Availability Signals on the Requester Request Interface (256-
Bit Interface)

user_clk

s_axis_rq_data[255:0]

s_axis_rq_data_tvalid

s_axis_rq_data_ready

s_axis_rq_data_tlast

pcie_tfc_nph[1:0]

pcie_tfc_npd[1:0]

pcie_rq_tag_av[3:0]

NP Req 1 NP Req 2 NP Req 3

0x3 0x2 0x1 0x0

0x2 0x1 0x0

0x3 0x2 0x1 0x0

X24945-121320

The following figures illustrate the timing of the credit and tag available signals for the same
example, for interface widths of 128 bits and 64 bits, respectively.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=146

Figure 47: Credit and Tag Availability Signals on the Requester Request Interface (128-
Bit Interface)

user_clk

s_axis_rq_data[127:0]

s_axis_rq_data_tvalid

s_axis_rq_data_ready

s_axis_rq_data_tlast

pcie_tfc_nph[1:0]

pcie_tfc_npd[1:0]

pcie_rq_tag_av[3:0]

NP Req 1 NP Req 2 NP Req 3

0x3 0x2 0x1 0x0

0x2 0x1 0x0

0x3 0x2 0x1 0x0

X24946-121320

Figure 48: Credit and Tag Availability Signals on the Requester Request Interface (64-
Bit Interface)

user_clk

s_axis_rq_data[63:0]

s_axis_rq_data_tvalid

s_axis_rq_data_ready

s_axis_rq_data_tlast

pcie_tfc_nph[1:0]

pcie_tfc_npd[1:0]

pcie_rq_tag_av[3:0]

NP Req 1 NP Req 2 NP Req 3

0x3 0x2 0x1 0x0

0x2 0x1 0x0

0x3 0x2 0x1 0x0

X24947-121320

Note: If the user logic opts in to use the pcie_tfc_* interface to monitor transmit credit availability,
ensure that no more non-posted packets go into the RQ interface after pcie_tfc_npd_av or
pcie_tfc_nph_av reaches 0. The integrated block will not lose the non-posted packets issued beyond
this point; however, the pcie_tfc_* interface no longer provides an accurate credit accounting.

Similar transmit credit information is also provided in the cfg_fc_npd and cfg_fc_nph
interface when cfg_fc_sel is set to the Transmit credits available mode.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=147

Maintaining Transaction Order

The integrated block does not change the order of requests received from the user application on
its requester interface when it transmits them on the link. In cases where the user application
would like to have precise control of the order of transactions sent on the RQ interface and the
CC interface (typically to avoid Completions from passing Posted requests when using strict
ordering), the integrated block provides a mechanism for the user application to monitor the
progress of a Posted transaction through its pipeline, so that it can determine when to schedule a
Completion on the completer completion interface without the risk of passing a specific Posted
request transmitted from the requester request interface.

When transferring a Posted request (memory write transactions or messages) across the
requester request interface, the user application can provide an optional 4-bit sequence number
to the integrated block on its seq_num[3:0] input within s_axis_rq_tuser. The sequence
number must be valid in the first beat of the packet. The user application can then monitor the
pcie_rq_seq_num[3:0] output of the core for this sequence number to appear. When the
transaction has reached a stage in the internal transmit pipeline of the integrated block where a
Completion cannot pass it, the integrated block asserts pcie_rq_seq_num_valid for one
cycle and provides the sequence number of the Posted request on the
pcie_rq_seq_num[3:0] output. Any Completions transmitted by the integrated block after
the sequence number has appeared on pcie_rq_seq_num[3:0] cannot pass the Posted
request in the internal transmit pipeline.

Requester Completion Interface Operation

Completions for requests generated by the user logic are presented on the integrated block
Request Completion (RC) interface. See the following figure for an illustration of signals
associated with the requester completion interface. When straddle is not enabled, the integrated
block delivers each TLP on this interface as an AXI4-Stream packet. The packet starts with a 96-
bit descriptor, followed by data in the case of Completions with a payload.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=148

Figure 49: Requester Completion Interface

Integrated Block for PCI Express User Application

PCIe Requester
Completion

Interface

AXI4-Stream
Slave

PCIe Requester
Interface

m_axis_rc_tdata[255:0]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[7:0]

m_axis_rc_tlast

byte_en[31:0]

is_sof_0

is_sof_1

is_eof_0[3:0]

is_eof_1[3:0]

m_asix_rc_tuser[74:0]

AXI4-Stream
Master

discontinue

parity[31:0]

X19419-072520

The RC interface supports two distinct data alignment modes for transferring payloads. In the
Dword-aligned mode, the integrated block transfers the first Dword of the Completion payload
immediately after the last Dword of the descriptor. In the address-aligned mode, the integrated
block starts the payload transfer in the beat following the last Dword of the descriptor, and its
first Dword can be in any of the possible Dword positions on the datapath. The alignment of the
first Dword of the payload is determined by an address offset provided by the user application
when it sent the request to the integrated block (that is, the setting of the addr_offset[2:0]
input of the RQ interface). Thus, the address-aligned mode can be used on the RC interface only
if the RQ interface is also configured to use the address-aligned mode.

Requester Completion Descriptor Format

The RC interface of the integrated block sends completion data received from the link to the user
application as AXI4-Stream packets. Each packet starts with a descriptor and can have payload
data following the descriptor. The descriptor is always 12 bytes long, and is sent in the first 12
bytes of the completion packet. The descriptor is transferred during the first two beats on a 64-
bit interface, and in the first beat on a 128- or 256-bit interface. When the completion data is
split into multiple Split Completions, the integrated block sends each Split Completion as a
separate AXI4-Stream packet, with its own descriptor.

The format of the Requester Completion descriptor is illustrated in the following figure. The
individual fields of the RC descriptor are described in the following table.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=149

Figure 50: Requester Completion Descriptor Format

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

Byte CountDword count
01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

TagTC
01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

Device /FunctionAttr

Poisoned Completion

63 32

Address [11:0]

Completion Status

Bus

Completer ID

Locked Read
Completion

R R

Error CodeRequest Completed

Bus Device /Function

Requester ID
R

0

6495

X12210

Table 54: Requester Completion Descriptor Fields

Bit Index Field Name Description

11:0 Lower Address

This field provides the 12 least significant bits of the first byte
referenced by the request. The integrated block returns this address
from its Split Completion Table, where it stores the address and
other parameters of all pending Non-Posted requests on the
requester side.
When the Completion delivered has an error, only bits [6:0] of the
address should be considered valid.
This is a byte-level address.
For ATS translation requests, this field is reserved and implied to be
zero.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=150

Table 54: Requester Completion Descriptor Fields (cont'd)

Bit Index Field Name Description

15:12 Error Code

Completion error code.
These three bits encode error conditions detected from error
checking performed by the integrated block on received
Completions. Its encodings are:
• 0000: Normal termination (all data received).
• 0001: The Completion TLP is Poisoned.
• 0010: Request terminated by a Completion with UR, CA or CRS

status.
• 0011: Request terminated by a Completion with no data, or the

byte count in the Completion was higher than the total number
of bytes expected for the request.

• 0100: The current Completion being delivered has the same tag
of an outstanding request, but its Requester ID, TC, or Attr fields
did not match with the parameters of the outstanding request.

• 0101: Error in starting address. The low address bits in the
Completion TLP header did not match with the starting address
of the next expected byte for the request.

• 0110: Invalid tag. This Completion does not match the tags of any
outstanding request.

• 1001: Request terminated by a Completion timeout. The other
fields in the descriptor, except bit [30], the requester Function
[55:48], and the tag field [71:64], are invalid in this case, because
the descriptor does not correspond to a Completion TLP.

• 1000: Request terminated by a Function-Level Reset (FLR)
targeted at the Function that generated the request. The other
fields in the descriptor, except bit [30], the requester Function
[55:48], and the tag field [71:64], are invalid in this case, because
the descriptor does not correspond to a Completion TLP.

28:16 Byte Count

These 13 bits can have values in the range of 0 – 4,096 bytes. If a
Memory Read Request is completed using a single Completion, the
Byte Count value indicates Payload size in bytes. This field must be
set to 4 for I/O read Completions and I/O write Completions. The
byte count must be set to 1 while sending a Completion for a zero-
length memory read, and a dummy payload of 1 Dword must follow
the descriptor.
For each Memory Read Completion, the Byte Count field must
indicate the remaining number of bytes required to complete the
Request, including the number of bytes returned with the
Completion.
If a Memory Read Request is completed using multiple Completions,
the Byte Count value for each successive Completion is the value
indicated by the preceding Completion minus the number of bytes
returned with the preceding Completion.

29 Locked Read Completion This bit is set to 1 when the Completion is in response to a Locked
Read request. It is set to 0 for all other Completions.

30 Request Completed

The integrated block asserts this bit in the descriptor of the last
Completion of a request. The assertion of the bit can indicate normal
termination of the request (because all data has been received) or
abnormal termination because of an error condition. The user logic
can use this indication to clear its outstanding request status.
When tags are assigned, the user logic should not reassign a tag
allocated to a request until it has received a Completion Descriptor
from the integrated block with a matching tag field and the Request
Completed bit set to 1.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=151

Table 54: Requester Completion Descriptor Fields (cont'd)

Bit Index Field Name Description

42:32 Dword Count

These 11 bits indicate the size of the payload of the current packet in
Dwords. Its range is 0 - 1K Dwords. This field is set to 1 for I/O read
Completions and 0 for I/O write Completions. The Dword count is
also set to 1 while transferring a Completion for a zero-length
memory read. In all other cases, the Dword count corresponds to the
actual number of Dwords in the payload of the current packet.

45:43 Completion Status

These bits reflect the setting of the Completion Status field of the
received Completion TLP. The valid settings are:
• 000: Successful Completion
• 001: Unsupported Request (UR)
• 010: Configuration Request Retry Status (CRS)
• 100: Completer Abort (CA)

46 Poisoned Completion This bit is set to indicate that the Poison bit in the Completion TLP
was set. Data in the packet should then be considered corrupted.

63:48 Requester ID PCI Requester ID associated with the Completion.

71:64 Tag PCIe Tag associated with the Completion.

87:72 Completer ID

Completer ID received in the Completion TLP. (These 16 bits are
divided into an 8-bit bus number, 5-bit device number, and 3-bit
function number in the legacy interpretation mode. In the ARI mode,
these 16 bits must be treated as an 8-bit bus number + 8-bit Function
number.).

91:89 Transaction Class (TC) PCIe Transaction Class (TC) associated with the Completion.

94:92 Attributes
PCIe attributes associated with the Completion. Bit 92 is the No
Snoop bit, bit 93 is the Relaxed Ordering bit, and bit 94 is the ID-
Based Ordering bit.

Transfer of Completions with No Data

The following timing diagrams illustrate the transfer of a Completion TLP received from the link
with no associated payload across the RC interface, when the interface width is configured as 64,
128, and 256 bits, respectively. The timing diagrams in this section assume that the Completions
are not straddled on the 256-bit interface. The straddle feature is described in Straddle Option
for 256-Bit Interface.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=152

Figure 51: Transfer of a Completion with no Data on the Requester Completion
Interface (64-Bit Interface)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[1:0]

m_axis_rc_tlast

(byte_en[7:0]) m_axis_rc_tuser[7:0]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DESC 2 DESC 2

DESC 1

0x3 0x1 0x1

0 0

X19420-061317

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=153

Figure 52: Transfer of a Completion with no Data on the Requester Completion
Interface (128-Bit Interface)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[3:0]

m_axis_rc_tlast

(byte_en[15:0]) m_axis_rc_tuser[15:0]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

0x7 0x7

0 0

X19421-061317

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=154

Figure 53: Transfer of a Completion with no Data on the Requester Completion
Interface (256-Bit Interface)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tdata[255:128]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[7:0]

m_axis_rc_tlast

(byte_en[31:0]) m_axis_rc_tuser[31:0]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

0x07

0 0

0x07

X19422-061317

The entire transfer of the Completion TLP takes only a single beat on the 256- and 128-bit
interfaces, and two beats on the 64-bit interface. The integrated block keeps the
m_axis_rc_tvalid signal asserted over the duration of the packet. The user application can
prolong a beat at any time by deasserting m_axis_rc_tready. The AXI4-Stream interface
signals m_axis_rc_tkeep (one per Dword position) indicate the valid descriptor Dwords in the
packet. That is, the tkeep bits are set to 1 contiguously from the first Dword of the descriptor
until its last Dword. During the transfer of a packet, the tkeep bits can be 0 only in the last beat
of the packet. The m_axis_rc_tlast signal is always asserted in the last beat of the packet.

The m_axi_rc_tuser bus also includes an is_sof_0 signal, which is asserted in the first beat
of every packet. The user application can optionally use this signal to qualify the start of the
descriptor on the interface. No other signals within m_axi_rc_tuser are relevant to the
transfer of Completions with no data, when the straddle option is not in use.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=155

Transfer of Completions with Data

The following timing diagrams illustrate the Dword-aligned transfer of a Completion TLP
received from the link with an associated payload across the RC interface, when the interface
width is configured as 64, 128, and 256 bits, respectively. For illustration purposes, the size of
the data block being written into user application memory is assumed to be n Dwords, for some
n = k × 32 + 28, k > 0. The timing diagrams in this section assume that the Completions are not
straddled on the 256-bit interface. The straddle feature is described in Straddle Option for 256-
Bit Interface.

In the Dword-aligned mode, the transfer starts with the three descriptor Dwords, followed
immediately by the payload Dwords. The entire TLP, consisting of the descriptor and payload, is
transferred as a single AXI4-Stream packet. Data within the payload is always a contiguous
stream of bytes when the length of the payload exceeds two Dwords. The positions of the first
valid byte within the first Dword of the payload and the last valid byte in the last Dword can then
be determined from the Lower Address and Byte Count fields of the Request Completion
Descriptor. When the payload size is two Dwords or less, the valid bytes in the payload cannot
be contiguous. In these cases, the user application must store the First Byte Enable and the Last
Byte Enable fields associated with each request sent out on the RQ interface and use them to
determine the valid bytes in the completion payload. The user application can optionally use the
byte enable outputs byte_en[31:0] within the m_axi_rc_tuser bus to determine the valid
bytes in the payload, in the cases of contiguous as well as non-contiguous payloads.

The integrated block keeps the m_axis_rc_tvalid signal asserted over the entire duration of the
packet. The user application can prolong a beat at any time by deasserting m_axis_rc_tready. The
AXI4-Stream interface signals m_axis_rc_tkeep (one per Dword position) indicate the valid
Dwords in the packet including the descriptor and any null bytes inserted between the descriptor
and the payload. That is, the tkeep bits are set to 1 contiguously from the first Dword of the
descriptor until the last Dword of the payload. During the transfer of a packet, the tkeep bits
can be 0 only in the last beat of the packet, when the packet does not fill the entire width of the
interface. The m_axis_rc_tlast signal is always asserted in the last beat of the packet.

The m_axi_rc_tuser bus provides several informational signals that can be used to simplify
the logic associated with the user application side of the interface, or to support additional
features. The is_sof_0 signal is asserted in the first beat of every packet, when its descriptor is
on the bus. The byte enable outputs byte_en[31:0] (one per byte lane) indicate the valid
bytes in the payload. These signals are asserted only when a valid payload byte is in the
corresponding lane (it is not asserted for descriptor or null bytes). The asserted byte enable bits
are always contiguous from the start of the payload, except when payload size is 2 Dwords or
less. For Completion payloads of two Dwords or less, the 1s on byte_en might not be
contiguous. Another special case is that of a zero-length memory read, when the integrated block
transfers a one-Dword payload with the byte_en bits all set to 0. Thus, the user logic can, in all
cases, use the byte_en signals directly to enable the writing of the associated bytes into
memory.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=156

The is_sof_1, is_eof_0[3:0], and is_eof_1[3:0] signals within the
m_axis_rc_tuser bus are not to be used for 64-bit and 128-bit interfaces, and for 256-bit
interfaces when the straddle option is not enabled.

Figure 54: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, 64-Bit Interface)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[1:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DESC 2 DW 1 DW 1 DW n-1

DESC 1 DW 0 DW 2 DW 2

0x3 0x3 0x3 0x1

0xF 0xF 0xF LAST BE

0 FIRST BE 0xF 0xF 0xF 0

0 0

X12223

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=157

Figure 55: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, 128-Bit Interface)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[3:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(byte_en[11:8]) m_axis_rc_tuser[11:8]

(byte_en[15:12]) m_axis_rc_tuser[15:12]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DW 1 DW 5 DW 5 DW n-3

DESC 1 DW 2 DW 6 DW 6 DW n-2

DESC 2 DW 3 DW 7 DW 7 DW n-1

DW 0 DW 4 DW 8 DW 8

0xF 0xF 0xF 0x7

0 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF LAST BE

FIRST BE 0xF 0xF 0xF 0

X12224

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=158

Figure 56: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, 256-Bit Interface)

user_cl

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tdata[159:128]

m_axis_rc_tdata[191:160]

m_axis_rc_tdata[223:192]

m_axis_rc_tdata[255:224]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[7:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(byte_en[11:8]) m_axis_rc_tuser[11:8]

(byte_en[15:12]) m_axis_rc_tuser[15:12]

(byte_en[19:16]) m_axis_rc_tuser[19:16]

(byte_en[23:20]) m_axis_rc_tuser[23:20]

(byte_en[27:24]) m_axis_rc_tuser[27:24]

(byte_en[31:28]) m_axis_rc_tuser[31:28]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DW 5 DW 5 DW n-7

DESC 1 DW 6 DW 6 DW n-6

DESC 2 DW 7 DW 7 DW n-5

DW 0 DW 8 DW 8 DW n-4

DW 1 DW 9 DW 9 DW n-3

DW 2 DW 10 DW 10 DW n-2

DW 3 DW 11 DW 11 DW n-1

DW 4 DW 12 DW 12

0xFF 0xFF 0xFF 0x7F

0 0xFF 0xFF 0xFF

0 0xFF 0xFF 0xFF

0 0xFF 0xFF 0xFF

FIRST BE 0xFF 0xFF 0xFF

0xFF 0xFF 0xFF

0xFF 0xFF 0xFF

0xFF 0xFF 0xFF LAST BE

0xFF 0xFF 0xFF 0

X12225

The following timing diagrams illustrate the address-aligned transfer of a Completion TLP
received from the link with an associated payload across the RC interface, when the interface
width is configured as 64, 128, and 256 bits, respectively. In the example timing diagrams, the
starting Dword address of the data block being transferred (as conveyed in bits [6:2] of the Lower
Address field of the descriptor) is assumed to be (m × 8 + 1), for an integer m. The size of the data
block is assumed to be n Dwords, for some n = k × 32 + 28, k > 0. The straddle option is not
valid for address-aligned transfers, so the timing diagrams assume that the Completions are not
straddled on the 256-bit interface.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=159

In the address-aligned mode, the delivery of the payload always starts in the beat following the
last byte of the descriptor. The first byte of the payload can appear on any byte lane, based on
the address of the first valid byte of the payload. The tkeep bits are set to 1 contiguously from
the first Dword of the descriptor until the last Dword of the payload. The alignment of the first
Dword on the data bus is determined by the setting of the addr_offset[2:0] input of the
requester request interface when the user application sent the request to the integrated block.
The user application can optionally use the byte enable outputs byte_en[31:0] to determine
the valid bytes in the payload.

Figure 57: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, 64-Bit Interface)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[1:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DESC 2 DW 1 DW n-1

DESC 1 DW 0 DW 0 DW 2

0x3 0x3 0x3 0x1

0
0 0xF 0xF 0xF LAST BE

0 FIRST BE FIRST BE 0xF 0xF 0

X12220

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=160

Figure 58: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, 128-Bit Interface)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[3:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(byte_en[11:8]) m_axis_rc_tuser[11:8]

(byte_en[15:12]) m_axis_rc_tuser[15:12]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DW 3 DW 3 DW n-1

DESC 1 DW 0 DW 4 DW 4

DESC 2 DW 1 DW 5 DW 5

DW 2 DW 6 DW 6

0xF 0xF 0xF 0x1

0 0xF 0xF 0xF LAST BE

0 FIRST BE 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

X12221-061317

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=161

Figure 59: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, 256-Bit Interface)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tdata[159:128]

m_axis_rc_tdata[191:160]

m_axis_rc_tdata[223:192]

m_axis_rc_tdata[255:224]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[7:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(byte_en[11:8]) m_axis_rc_tuser[11:8]

(byte_en[15:12]) m_axis_rc_tuser[15:12]

(byte_en[19:16]) m_axis_rc_tuser[19:16]

(byte_en[23:20]) m_axis_rc_tuser[23:20]

(byte_en[27:24]) m_axis_rc_tuser[27:24]

(byte_en[31:28]) m_axis_rc_tuser[31:28]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DW 7 DW 7 DW n-5

DESC 1 DW 0 DW 8 DW 8 DW n-4

DESC 2 DW 1 DW 9 DW 9 DW n-3

DW 2 DW 10 DW 10 DW n-2

DW 3 DW 11 DW 11 DW n-1

DW 4 DW 12 DW 12

DW 5 DW 13 DW 13

DW 6 DW 14 DW 14

0xFF 0xFF 0xFF 0x1F

0 0xF 0xF 0xF

0 FIRST BE 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF LAST BE

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

X12222

Straddle Option for 256-Bit Interface

When the interface width is configured as 256 bits, the integrated block can start a new
Completion transfer on the RC interface in the same beat when the previous Completion has
ended on or before Dword position 3 on the data bus. The straddle option can be used only with
the Dword-aligned mode.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=162

When the straddle option is enabled, Completion TLPs are transferred on the RC interface as a
continuous stream, with no packet boundaries (from an AXI4-Stream perspective). Thus, the
m_axis_rc_tkeep and m_axis_rc_tlast signals are not useful in determining the
boundaries of Completion TLPs delivered on the interface (the integrated block sets
m_axis_rc_tkeep to all 1s and m_axis_rc_tlast to 0 permanently when the straddle
option is in use). Instead, delineation of TLPs is performed using the following signals provided
within the m_axis_rc_tuser bus:

• is_sof_0: The integrated block drives this output active-High in a beat when there is at least
one Completion TLP starting in the beat. The position of the first byte of this Completion TLP
is determined as follows:

○ If the previous Completion TLP ended before this beat, the first byte of this Completion
TLP is in byte lane 0.

○ If a previous TLP is continuing in this beat, the first byte of this Completion TLP is in byte
lane 16. This is possible only when the previous TLP ends in the current beat, that is when
is_eof_0[0] is also set.

• is_sof_1: The integrated block asserts this output in a beat when there are two Completion
TLPs starting in the beat. The first TLP always starts at byte position 0 and the second TLP at
byte position 16. The integrated block starts a second TLP at byte position 16 only if the
previous TLP ended before byte position 16 in the same beat, that is only if is_eof_0[0] is
also set in the same beat.

• is_eof_0[3:0]: These outputs are used to indicate the end of a Completion TLP and the
position of its last Dword on the data bus. The assertion of the bit is_eof_0[0] indicates
that there is at least one Completion TLP ending in this beat. When bit 0 of is_eof_0 is set,
bits [3:1] provide the offset of the last Dword of the TLP ending in this beat. The offset for the
last byte can be determined from the starting address and length of the TLP, or from the byte
enable signals byte_en[31:0]. When there are two Completion TLPs ending in a beat, the
setting of is_eof_0[3:1] is the offset of the last Dword of the first Completion TLP (in that
case, its range is 0 through 3).

• is_eof_1[3:0]: The assertion of is_eof_1[0] indicates a second TLP ending in the same
beat. When bit 0 of is_eof_1 is set, bits [3:1] provide the offset of the last Dword of the
second TLP ending in this beat. Because the second TLP can start only on byte lane 16, it can
only end at a byte lane in the range 27–31. Thus the offset is_eof_1[3:1] can only take
one of two values: 6 or 7. If is_sof_1[0] is active-High, the signals is_eof_0[0] and is_sof_0
are also active-High in the same beat. If is_sof_1 is active-High, is_sof_0 is active-High.
If is_eof_1 is active-High, is_eof_0 is active-High.

The following figure illustrates the transfer of four Completion TLPs on the 256-bit RC interface
when the straddle option is enabled. The first Completion TLP (COMPL 1) starts at Dword
position 0 of Beat 1 and ends in Dword position 0 of Beat 3. The second TLP (COMPL 2) starts in
Dword position 4 of the same beat. This second TLP has only a one-Dword payload, so it also
ends in the same beat. The third and fourth Completion TLPs are transferred completely in Beat
4, because Completion 3 has only a one-Dword payload and Completion 4 has no payload.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=163

Figure 60: Transfer of Completion TLPs on the Requester Completion Interface with
the Straddle Option Enabled

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tdata[159:128]

m_axis_rc_tdata[191:160]

m_axis_rc_tdata[223:192]

m_axis_rc_tdata[255:224]

m_axis_rc_tvalid

m_axis_rc_tready

(is_sof_0) m_axis_rc_tuser[32]

(is_sof_1) m_axis_rc_tuser[33]

(is_eof_0[3:0]) m_axis_rc_tuser[37:34]

(is_eof_1[3:0]) m_axis_rc_tuser[41:38]

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(byte_en[11:8]) m_axis_rc_tuser[11:8]

(byte_en[15:12]) m_axis_rc_tuser[15:12]

(byte_en[19:16]) m_axis_rc_tuser[19:16]

(byte_en[23:20]) m_axis_rc_tuser[23:20]

(byte_en[27:24]) m_axis_rc_tuser[27:24]

(byte_en[31:28]) m_axis_rc_tuser[31:28]

(discontinue) m_axis_rc_tuser[42]

COMPL 1 COMPL 1 COMPL 1 COMPL 1 COMPL 3

COMPL 1 COMPL 1 COMPL 1 COMPL 3

COMPL 1 COMPL 1 COMPL 1 COMPL 3

COMPL 1 COMPL 1 COMPL 1 COMPL 3

COMPL 1 COMPL 1 COMPL 1 COMPL 2 COMPL 4

COMPL 1 COMPL 1 COMPL 1 COMPL 2 COMPL 4

COMPL 1 COMPL 1 COMPL 1 COMPL 2 COMPL 4

COMPL 1 COMPL 1 COMPL 1 COMPL 2

0
0 0x1 0x7

0
0 0xF 0xD

0 0xF 0xF LAST BE 0

0 0xF 0xF 0

0 0xF 0xF 0

FIRST BE 0xF 0xF FIRST BE

0xF 0xF

0xF 0xF

0xF 0xF

0xF 0xF FIRST BE 0

00

00

00

BEAT 1 BEAT 2 BEAT 3 BEAT 4

X12229

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=164

Aborting a Completion Transfer

For any Completion that includes an associated payload, the integrated block can signal an error
in the transferred payload by asserting the discontinue signal in the m_axis_rc_tuser bus in
the last beat of the packet. This occurs when the integrated block has detected an uncorrectable
error while reading data from its internal memories. The user application must discard the entire
packet when it has detected the discontinue signal asserted in the last beat of a packet. This is
also considered a fatal error in the integrated block.

When the straddle option is in use, the integrated block does not start a second Completion TLP
in the same beat when it has asserted discontinue, aborting the Completion TLP ending in the
beat.

Handling of Completion Errors

When a Completion TLP is received from the link, the integrated block matches it against the
outstanding requests in the Split Completion Table to determine the corresponding request, and
compares the fields in its header against the expected values to detect any error conditions. The
integrated block then signals the error conditions in a 4-bit error code sent to the user
application as part of the completion descriptor. The integrated block also indicates the last
completion for a request by setting the Request Completed bit (bit 30) in the descriptor. The
following table defines the error conditions signaled by the various error codes.

Table 55: Encoding of Error Codes

Error Code Description
0000 No errors detected.

0001

The Completion TLP received from the link was poisoned. The user application should
discard any data that follows the descriptor. In addition, if the Request Completed bit in the
descriptor is not set, the user application should continue to discard the data subsequent
completions for this tag until it receives a completion descriptor with the Request
Completed bit set. On receiving a completion descriptor with the Request Completed bit
set, the user application can remove all state for the corresponding request.

0010
Request terminated by a Completion TLP with UR, CA, or CRS status. In this case, there is no
data associated with the completion, and the Request Completed bit in the completion
descriptor is set. On receiving such a Completion from the integrated block, the user
application can discard the corresponding request.

0011

Read Request terminated by a Completion TLP with incorrect byte count. This condition
occurs when a Completion TLP is received with a byte count not matching the expected
count. The Request Completed bit in the completion descriptor is set. On receiving such a
completion from the integrated block, the user application can discard the corresponding
request.

0100

This code indicates the case when the current Completion being delivered has the same tag
of an outstanding request, but its Requester ID, TC, or Attr fields did not match with the
parameters of the outstanding request. The user application should discard any data that
follows the descriptor. In addition, if the Request Completed bit in the descriptor is not set,
the user application should continue to discard the data subsequent completions for this
tag until it receives a completion descriptor with the Request Completed bit set. On
receiving a completion descriptor with the Request Completed bit set, the user application
can remove all state associated with the request.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=165

Table 55: Encoding of Error Codes (cont'd)

Error Code Description

0101

Error in starting address. The low address bits in the Completion TLP header did not match
with the starting address of the next expected byte for the request. The user application
should discard any data that follows the descriptor. In addition, if the Request Completed
bit in the descriptor is not set, the user application should continue to discard the data
subsequent Completions for this tag until it receives a completion descriptor with the
Request Completed bit set. On receiving a completion descriptor with the Request
Completed bit set, the user application can discard the corresponding request.

0110
Invalid tag. This error code indicates that the tag in the Completion TLP did not match with
the tags of any outstanding request. The user application should discard any data following
the descriptor.

0111
Invalid byte count. The byte count in the Completion was higher than the total number of
bytes expected for the request. In this case, the Request Completed bit in the completion
descriptor is also set. On receiving such a completion from the integrated block, the user
application can discard the corresponding request.

1001

Request terminated by a Completion timeout. This error code is used when an outstanding
request times out without receiving a Completion from the link. The integrated block
maintains a completion timer for each outstanding request, and responds to a completion
timeout by transmitting a dummy completion descriptor on the requester completion
interface to the user application, so that the user application can terminate the pending
request, or retry the request. Because this descriptor does not correspond to a Completion
TLP received from the link, only the Request Completed bit (bit 30), the tag field (bits [71:
64]) and the requester Function field (bits [55: 48]) are valid in this descriptor.

1000

Request terminated by a Function-Level Reset (FLR) targeting the Function that generated
the request. In this case, the integrated block transmits a dummy completion descriptor on
the requester completion interface to the user application, so that the user application can
terminate the pending request. Because this descriptor does not correspond to a
Completion TLP received from the link, only the Request Completed bit (bit 30), the tag field
(bits [71:64]) and the requester Function field (bits [55:48]) are valid in this descriptor.

When the tags are managed internally by the integrated block, logic within the integrated block
ensures that a tag allocated to a pending request is not reused until either all the Completions for
the request were received or the request was timed out.

When tags are managed by the user application, however, the user application must ensure that
a tag assigned to a request is not reused until the integrated block has signaled the termination
of the request by setting the Request Completed bit in the completion descriptor. The user
application can close out a pending request on receiving a completion with a non-zero error
code, but should not free the associated tag if the Request Completed bit in the completion
descriptor is not set. Such a situation might occur when a request receives multiple split
completions, one of which has an error. In this case, the integrated block can continue to receive
Completion TLPs for the pending request even after the error was detected, and these
Completions are incorrectly matched to a different request if its tag is reassigned too soon. In
some cases, the integrated block might have to wait for the request to time out even when a split
completion is received with an error, before it can allow the tag to be reused.

512-Bit Completer Interface
This section describes the operation of the completer interface in the user-side interfaces
associated with the 512-bit AXI4-Stream Interface.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=166

The completer interface maps the transactions (memory, I/O read/write, messages, Atomic
Operations) received from the PCIe link into transactions on the completer request interface
based on the AXI4-Stream protocol. The completer interface is required to be connected to the
user application in all PCIe Endpoint implementations, but is optional for Root Complexes. The
completer interface consists of two separate interfaces, one for data transfer in each direction.
Each interface is based on the AXI4-Stream protocol, with a data width of 512 bits. The
completer request interface is for transfer of requests (with any associated payload data) to the
user application, and the completer completion interface is for receiving the Completion data (for
a Non-Posted request) from the user application for forwarding on the link. The two interfaces
operate independently. That is, the core can transfer new requests over the completer request
interface while receiving a Completion for a previous request.

Completer Request Interface Operation (512-bits)

The following figure illustrates the signals associated with the completer request interface of the
core. The core delivers each TLP on this interface as an AXI4-Stream packet. The packet starts
with a 128-bit descriptor, followed by data in the case of TLPs with a payload.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=167

Figure 61: Completer Request Interface Signals

Integrated Block for PCI Express User Application

X16184-072520

PCIe Completer
Request Interface

PCIe
Completer
Interface

AXI4-Stream
Master

AXI4-Stream
Slave

pcie_cq_np_req_count[5:0]

pcie_cq_np_req[1:0]

m_axis_cq_tuser[182:0]

m_axis_cq_tlast

m_axis_cq_tkeep[15:0]

m_axis_cq_tready

m_axis_cq_tvalid

m_axis_cq_tdata[511:0]

The completer request interface supports two distinct data alignment modes, selected during
core customization in the Vivado® IDE. In the Dword-aligned mode, the first byte of valid data
appears in lane n = S + 16 + (A mod 4) mod 64, where A is the byte-level starting address of
the data block being transferred and S is the lane number where the first byte of the descriptor
appears. For messages and Configuration Requests, the address A is taken as 0. The starting lane
number S is always 0 when the straddle option is not used, but can be 0 or 32 when straddle is
enabled.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=168

In the 128-bit address-aligned mode, the start of the payload on the 512-bit bus is always
aligned on a 128-bit boundary. However the start of the descriptor on the 512-bit bus is always
aligned to byte 0 or byte 32 only. The byte offset corresponding to the first byte of the payload is
determined as n = (S + 16 + (A mod 16)) mod 64, where S is the byte offset where the first
byte of the descriptor appears (which can be 0 or 32) and A is the memory or I/O address
corresponding to the first byte of the payload. This means that the payload can start at one of
four byte lanes: 16, 20, 24 and 28 if the descriptor starts at byte 0, or payload at one of four byte
lanes: 48, 52, 56, and 60 if the descriptor starts at byte 32.

Any gap between the end of the descriptor and the start of the first byte of the payload is filled
with null bytes.

The interface also supports a straddle option that allows the transfer of up to two TLPs in the
same beat across the interface. The straddle option can be used only with the Dword-aligned
mode, and is not supported when using the 128-bit address aligned mode. The descriptions in
the next sections assume a single TLP per beat. The operation of the interface with the straddle
option enabled is described in Straddle Option on CQ Interface.

Completer Request Descriptor Formats

The core transfers each request TLP received from the link over the completer request interface
as an independent AXI4-Stream packet. Each packet starts with a descriptor, and can have
payload data following the descriptor. The descriptor is always 16 bytes long, and is sent in the
first 16 bytes of the request packet. The descriptor is always transferred during the first beat on
the 512-bit interface. The formats of the descriptor for different request types are illustrated in
the following figures.

The format of the following figure applies when the request TLP being transferred is a memory
read/write request, an I/O read/write request, or an Atomic Operation request.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=169

Figure 62: Completer Request Descriptor Format for Memory, I/O, and Atomic Op
Requests

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

Address [63:2]

Address Type (AT)

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

Dword Count
01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

TagTC
01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3

Attr

Req Type

96 64

32

BAR Aperture

Bus Device/Function

Requester ID
Target Function

127

63 0

X12217

R R

BAR ID

The format of the following figure is used for Vendor-Defined Messages (Type 0 or Type 1) only.

Figure 63: Completer Request Descriptor Format for Vendor-Defined Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3
96 64

Msg Code

Vendor - Defined Header Bytes
Destination ID

Bus Device/FunctionVendor ID

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type

Bus Device/Function
Requester ID

03263

127

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

X12219

R R

The format of the following figure is used for all ATS messages (Invalid Request, Invalid
Completion, Page Request, PRG Response).

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=170

Figure 64: Completer Request Descriptor Format for ATS Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3

96 64

32

Msg Code

TL Header Bytes 8-15

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type

Bus Device/Function
Requester ID

127

63 0

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

TL Header
Byte 11

TL Header
Byte 10

TL Header
Byte 9

TL Header
Byte 8

X12216

RR

For all other messages, the descriptor takes the format of the following figure.

Figure 65: Completer Request Descriptor Format for All Other Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

01234567

+4

01234567

+5

01234567

+6

01234567

+7

Dword Count
01234567

+8

01234567

+9

01234567

+10

01234567

+11

Tag
01234567

+12

01234567

+13

01234567

+14

01234567

+15

Req Type

96 64

32

Msg Code
Message
Routing

TCAttr R

OBFF Code
(for OBFF message);
Reserved (for others)

No-Snoop Latency
(for LTR message);

Reserved (for others)

Snoop Latency
(for LTR message);

Reserved (for others)

R

Bus Device /Function

Requester ID

0

127

63

DW + 0DW + 1

DW + 2DW + 3

Requester ID Enable

R R

X16757-030217

Table 56: Completer Request Descriptor Fields

Bit Index Field Name Description

1:0 Address Type

This field is defined for memory transactions and Atomic Operations
only. It contains the AT bits extracted from the TL header of the
request.
• 00: Address in the request is un-translated
• 01: Transaction is a Translation Request
• 10: Address in the request is a translated address
• 11: Reserved

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=171

Table 56: Completer Request Descriptor Fields (cont'd)

Bit Index Field Name Description

63:2 Address

This field applies to memory, I/O and Atomic Op requests. It provides
the address from the TL header. This is the address of the first Dword
referenced by the request. The First_BE bits from
m_axis_cq_tuser must be used to determine the byte-level
address.
When the transaction specifies a 32-bit address, bits [63:32] of this
field is 0.

74:64 Dword Count

These 11 bits indicate the size of the block (in Dwords) to be read or
written (for messages, size of the message payload). Its range is 0 –
256 Dwords. For I/O accesses, the Dword count is always 1.
For a zero length memory read/write request, the Dword count is 1,
with the First_BE bits set to all zeroes.

78:75 Request Type Identifies the transaction type. The transaction types and their
encodings are listed in Table 57: Transaction Types.

95:80 Requester ID

PCI Requester ID associated with the request. With the legacy
interpretation of RIDs, these 16 bits are divided into an 8-bit bus
number [95:88], 5-bit device number [87:83], and 3-bit function
number [82:80]. When ARI is enabled, bits [95:88] carry the 8-bit bus
number and [87:80] provide the function number.
When the request is a Non-Posted transaction, the user completer
application must store this field and supply it back to the core with
the completion data.

103:96 Tag
PCIe Tag associated with the request. When the request is a Non-
Posted transaction, the user completer application must store this
field and supply it back to the core with the completion data. This
field can be ignored for memory writes and messages.

111:104 Target Function
This field is defined for memory, I/O and Atomic Op requests only. It
provides the function number the request is targeted at, determined
by the BAR check. When ARI is in use, all 8 bits of this field are valid.
Otherwise, only bits [106:104] are valid.

114:112 BAR ID

This field is defined for memory, I/O and Atomic Op requests only. It
provides the matching BAR number for the address in the request.
• 000 = BAR 0 (VF-BAR 0 for VFs)
• 001 = BAR 1 (VF-BAR 1 for VFs)
• 010 = BAR 2 (VF-BAR 2 for VFs)
• 011 = BAR 3 (VF-BAR 3 for VFs)
• 100 = BAR 4 (VF-BAR 4 for VFs)
• 101 = BAR 5 (VF-BAR 5 for VFs)
• 110 = Expansion ROM Access

Note: In Root Port (RP) mode, BAR ID is always 000.

For 64-bit transactions, the BAR number is given as the lower address
of the matching pair of BARs (that is, 0, 2 or 4).

120:115 BAR Aperture

This 6-bit field is defined for memory, I/O and Atomic Op requests
only. It provides the aperture setting of the BAR matching the
request. This information is useful in determining the bits to be used
by the user in addressing its memory or I/O space. For example, a
value of 12 indicates that the aperture of the matching BAR is 4K, and
the user can therefore ignore bits [63:12] of the address.
For VF BARs, the value provided on this output is based on the
memory space consumed by a single VF covered by the BAR.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=172

Table 56: Completer Request Descriptor Fields (cont'd)

Bit Index Field Name Description

123:121 Transaction Class (TC)
PCIe Transaction Class (TC) associated with the request. When the
request is a Non-Posted transaction, the user completer application
must store this field and supply it back to the core with the
completion data.

126:124 Attributes

These bits provide the setting of the Attribute bits associated with
the request. Bit 124 is the No Snoop bit and bit 125 is the Relaxed
Ordering bit. Bit 126 is the ID-Based Ordering bit, and can be set only
for memory requests and messages.
When the request is a Non-Posted transaction, the user completer
application must store this field and supply it back to the core with
the completion data.

114:112 Message Routing This field is defined for all messages. These bits provide the 3-bit
Routing field r[2:0] from the TL header.

15:0 Destination ID
This field applies to Vendor-Defined Messages only. When the
message is routed by ID (that is, when the Message Routing field is
010 binary), this field provides the Destination ID of the message.

63:32 Vendor-Defined Header This field applies to Vendor-Defined Messages only. It contains the
bytes extracted from Dword 3 of the TL header.

63:0 ATS Header This field is applicable to ATS messages only. It contains the bytes
extracted from Dwords 2 and 3 of the TL header.

Table 57: Transaction Types

Request Type (binary) Description
0000 Memory Read Request

0001 Memory Write Request

0010 I/O Read Request

0011 I/O Write Request

0100 Memory Fetch and Add Request

0101 Memory Unconditional Swap Request

0110 Memory Compare and Swap Request

0111 Locked Read Request (allowed only in Legacy Devices)

1000 Type 0 Configuration Read Request (on Requester side only)

1001 Type 1 Configuration Read Request (on Requester side only)

1010 Type 0 Configuration Write Request (on Requester side only)

1011 Type 1 Configuration Write Request (on Requester side only)

1100 Any message, except ATS and Vendor-Defined Messages

1101 Vendor-Defined Message

1110 ATS Message

1111 Reserved

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=173

Completer Memory Write Operation

The following figure illustrates the Dword-aligned transfer of a memory write TLP received from
the link across the completer request interface. For the purpose of illustration, the starting
Dword address of the data block being written into user memory is assumed to be (m*16 +3), for
some integer m > 0. Its size is assumed to be n Dwords, for some n = k*16 - 1, where k > 1.

The transfer starts with the sixteen descriptor bytes, followed immediately by the payload bytes.
The signal m_axis_cq_tvalid remains asserted over the duration of the packet. The user logic
can prolong a beat at any time by pulling down m_axis_cq_tready. The AXI4-Stream
interface signals m_axis_cq_tkeep (one bit per Dword position) indicate the valid Dwords in the
packet including the descriptor and any null bytes inserted between the descriptor and the
payload. That is, the m_axis_cq_tkeep bits are set to 1 contiguously from the first Dword of
the descriptor until the last Dword of the payload. During the transfer of a packet, the tkeep bits
can be 0 only in the last beat of the packet, when the packet does not fill the entire width of the
interface. The signal m_axis_cq_tlast is always asserted in the last beat of the packet.

The completer request interface also includes the First Byte Enable and the Last Enable bits in
the m_axis_cq_tuser bus. These are activated in the first beat of the packet, and provides
information of the valid bytes in the first and last Dwords of the payload.

The m_axi_cq_tuser bus also provides several optional signals that can be used to simplify
the logic associated with the user side of the interface, or to support additional features. The
signal is_sop is asserted in the first beat of every packet, when its descriptor is on the bus.
When the straddle option is not in use, none of the other sop and eop indications within
m_axi_cq_tuser are relevant to the transfer of Requests. The byte enable outputs
byte_en[63:0] (one per byte lane) indicate the valid bytes in the payload. These signals are
asserted only when a valid payload byte is in the corresponding lane (it is not asserted for
descriptor or null bytes). The asserted byte enable bits are always contiguous from the start of
the payload, except when payload size is two Dwords or less. For writes of two Dwords or less,
the 1s on byte_en are not be contiguous.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=174

Figure 66: Memory Write Transaction on the Completer Request Interface (Dword-
Aligned Mode)

Another special case is that of a zero-length memory write, when the core transfers a one-Dword
payload with the byte_en bits all set to 0. Thus, the user logic can, in all cases, use the
byte_en signals directly to enable the writing of the associated bytes into memory.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=175

In the Dword-aligned mode, there can be a gap of zero, one, two, or three byte positions
between the end of the descriptor and the first payload byte, based on the address of the first
valid byte of the payload. The actual position of the first valid byte in the payload can be
determined either from first_be[3:0] or byte_en[63:0] in the m_axis_cq_tuser bus.

The timing diagram in the following figure illustrates the 128-bit address aligned transfer of a
memory write TLP received from the link across the completer request interface. For the purpose
of illustration, the starting Dword address of the data block being written into user memory is
assumed to be (m*16 +3), for some integer m > 0. Its size is assumed to be n Dwords, for some
n = k*16 - 1, k > 1.

In the address-aligned mode, the delivery of the payload always starts in the second quarter (bits
255:128) of the first beat, following the descriptor in the first quarter. The first Dword the
payload can appear on any of the four Dword positions in the second quarter, based on the
address of the first valid Dword of the payload. The keep outputs m_axis_cq_tkeep remain
High in the gap between the descriptor and the payload. The actual position of the first valid
byte in the payload can be determined either from the least significant bits of the address in the
descriptor or from the byte enable bits byte_en[63:0] in the m_axis_cq_tuser bus.

For writes of two Dwords or less, the 1s on byte_en are not contiguous from the start of the
payload. In the case of a zero-length memory write, the core transfers a one-Dword payload with
the byte_en bits all set to 0 for the payload bytes.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=176

Figure 67: Memory Write Transaction on the Completer Request Interface (128-bit
Address Aligned Mode)

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=177

Completer Memory Read Operation

A memory read request is transferred across the completer request interface in the same manner
as a memory write request, except that the AXI4-Stream packet contains only the 16-byte
descriptor. The following figure illustrates the transfer of a memory read TLP received from the
link across the completer request interface. The packet is transferred in a single beat on the
interface. The signal m_axis_cq_tvalid remains asserted over the duration of the packet. The
user logic can prolong a beat by pulling down m_axis_cq_tready. The signal is_sop in the
m_axis_cq_tuser bus is asserted when the first descriptor byte is on the bus.

Figure 68: Memory Read Transaction on the Completer Request Interface

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=178

The byte enable bits associated with the read request for the first and last Dwords are supplied
by the core on the sideband bus m_axis_cq_tuser. These bits are valid when the descriptor is
being transferred, and must be used by the user logic to determine the byte-level starting
address and the byte count associated with the request. For the special cases of one-Dword and
two-Dword reads, the byte enables can be non-contiguous. The bye enables are contiguous in all
other cases. A zero-length memory read is sent on the completer request interface with the
Dword count field in the descriptor set to 1 and the first and last byte enables set to 0.

The user logic must respond to each memory read request with a Completion. The data
requested by the read are be sent as a single Completion or multiple Split Completions. These
Completions must be sent to the completer completion interface of the core. The Completions
for two distinct requests are be sent in any order, but the Split Completions for the same request
must be in order. The operation of the completer completion interface is described in
64/128/256-Bit Completer Interface and 512-Bit Completer Interface.

I/O Write Operation

The transfer of an I/O write request on the completer request interface is similar to that of a
memory write request with a one-Dword payload. The transfer starts with the 128-bit descriptor,
followed by the one-Dword payload. When the Dword-aligned mode is in use, the payload
Dword immediately follows the descriptor. When the 128-bit address aligned mode is in use, the
payload Dword is supplied in bits 255:128, and its alignment is based on the address in the
descriptor. The First Byte Enable bits in the m_axis_cq_tuser indicate the valid bytes in the
payload. The byte enable bits byte_en also provide this information.

Because an I/O write is a Non-Posted transaction, the user logic must respond to it with a
Completion containing no data payload. The Completions for I/O requests are be sent in any
order. Errors associated with the I/O write transaction can be signaled to the requester by setting
the Completion Status field in the completion descriptor to CA (Completer Abort) or UR
(Unsupported Request), as is appropriate. The operation of the completer completion interface is
described in 64/128/256-Bit Completer Interface and 512-Bit Completer Interface.

I/O Read Operation

The transfer of an I/O read request on the completer request interface is similar to that of a
memory read request, and involves only the descriptor. The length of the requested data is
always one Dword, and the First Byte Enable bits in m_axis_cq_tuser indicate the valid bytes
to be read.

The user logic must respond to an I/O read request with a one-Dword Completion (or a
Completion with no data in the case of an error). The Completions for two distinct I/O read
requests are be sent in any order. Errors associated with an I/O read transaction can be signaled
to the requester by setting the Completion Status field in the completion descriptor to CA
(Completer Abort) or UR (Unsupported Request), as is appropriate. The operation of the
completer completion interface is described in 64/128/256-Bit Completer Interface and 512-Bit
Completer Interface.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=179

Atomic Operations on the Completer Request Interface

The transfer of an Atomic Op request on the completer request interface is similar to that of a
memory write request. The payload for an Atomic Op can range from one to eight Dwords, and
its starting address is always aligned on a Dword boundary. The transfer starts with the 128-bit
descriptor, followed by the payload. When the Dword-aligned mode is in use, the first payload
Dword immediately follows the descriptor. When the 128-bit address aligned mode is in use, the
payload starts on bits 255:128, and its alignment is based on the address in the descriptor. The
keep outputs m_axis_cq_tkeepm_axis_cq_tuser also indicate the valid bytes in the
payload. The First Byte Enable and Last Byte Enable bits indicate the end of the payload. The
byte_en signals in m_axis_cq_tuser should not be used.

Because an Atomic Operation is a Non-Posted transaction, the user logic must respond to it with
a Completion containing the result of the operation. Errors associated with the operation can be
signaled to the requester by setting the Completion Status field in the completion descriptor to
CA (Completer Abort) or UR (Unsupported Request), as is appropriate. The operation of the
completer completion interface is described in 64/128/256-Bit Completer Interface and 512-Bit
Completer Interface.

Message Requests on the Completer Request Interface

The transfer of a message on the completer request interface is similar to that of a memory write
request, except that a payload are not always be present. The transfer starts with the 128-bit
descriptor, followed immediately by the payload, if present. The payload always starts in byte
lane 16, regardless of the addressing mode in use. The user logic can determine the end of the
payload from the states of the signals m_axis_cq_tlast and m_axis_cq_tkeep. The
byte_en signals in m_axis_cq_tuser also indicate the valid bytes in the payload. The First
Byte Enable and Last Byte Enable bits in m_axis_cq_tuser should not be used.

The attribute ATTR_AXISTEN_IF_ENABLE_RX_MSG_INTFC must be set to 0 to enable the
delivery of messages through the completer request interface. When this attribute is set to 0, the
attribute ATTR_AXISTEN_IF_ENABLE_MSG_ROUTE can be used to select the specific message
types that the user wants delivered over the completer request interface. Setting an attribute bit
to 1 enables the delivery of the corresponding type of messages on the interface, and setting it
to 0 results in the core filtering the message.

Table 58: AXISTEN_IF_ENABLE_MSG_ROUTE Attribute Bit Descriptions

Bit Index Message Type
0 ERR_COR

1 ERR_NONFATAL

2 ERR_FATAL

3 Assert_INTA and Deassert_INTA

4 Assert_INTB and Deassert_INTB

5 Assert_INTC and Deassert_INTC

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=180

Table 58: AXISTEN_IF_ENABLE_MSG_ROUTE Attribute Bit Descriptions (cont'd)

Bit Index Message Type
6 Assert_INTD and Deassert_INTD

7 PM_PME

8 PME_TO_Ack

9 PME_Turn_Off

10 PM_Active_State_Nak

11 Set_Slot_Power_Limit

12 Latency Tolerance Reporting (LTR)

13 Reserved

14 Unlock

15 Vendor_Defined Type 0

16 Vendor_Defined Type 1

17 Invalid Request, Invalid Completion, Page Request, PRG Response

When ATTR_AXISTEN_IF_ENABLE_RX_MSG_INTFC is set to 1, no messages are delivered on
the completer request interface. Indications of received message are instead sent through a
dedicated receive message interface (see Receive Message Interface).

Aborting a Transfer

For any request that includes an associated payload, the interface are signal an error in the
transferred payload by asserting the discontinue signal in the m_axis_cq_tuser bus in the
final beat of the packet (along with m_axis_cq_tlast). This occurs when the core has
detected an uncorrectable error while reading data from its internal memories. The user
application must discard the entire packet when it has detected discontinue asserted in the
final beat of a packet. The interface does not start the transfer of a new packet in the beat in
which discontinue is asserted, even when the straddle option is enabled.

Selective Flow Control for Non-Posted Requests

The PCI Express® Specifications require that the completer request interface continue to deliver
Posted transactions even when the user logic is unable to accept Non-Posted transactions the
interface. To enable this capability, the core implements a credit-based flow control mechanism
on the completer interface through which user logic can control the flow of Non-Posted requests
across the interface, without affecting Posted requests. The user logic signals the availability of
buffers to receive Non-Posted requests to the core using the pcie_cq_np_req[1:0] signal.
The core delivers a Non-Posted request to the user logic only when the available credit is non-
zero. The core continues to deliver Posted requests while the delivery of Non-Posted requests
has been paused for lack of credit. When no backpressure is applied by the credit mechanism for
the delivery of Non-Posted requests, the core delivers Posted and Non-Posted requests in the
same order as received from the link.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=181

The core maintains an internal credit counter to track the credit available for Non-Posted
requests on the completer request interface. The following algorithm is used to keep track of the
available credit:

• On reset, the counter is set to 0.

• After the interface comes out of reset, in every clock cycle:

○ If pcie_cq_np_req is non-zero and no Non-Posted request is being delivered this cycle,
the credit count is incremented by 1, unless it has already reached its saturation limit of 32.
The increment amount is 1 when pcie_cq_np_req = 2'b01 and 2 when
pcie_cq_np_req = 2'b10 or 2'b11.

○ If pcie_cq_np_req = 2'b00 and a single Non-Posted request is being delivered this
cycle, the credit count is decremented by 1, unless it is already 0.

○ If pcie_cq_np_req = 2'b00 and two Non-Posted requests are being delivered this cycle,
the credit count is decremented twice, unless it has already reached 0.

○ Otherwise, the credit count remains unchanged.

• The core starts delivery of a Non-Posted TLP to the user logic only if the credit count is
greater than 0.

The user application can either provide one or two credits on pcie_cq_np_req each time it is
ready to receive Non-Posted requests, or can keep it permanently set to 2'b11 if it does not
need to exercise selective backpressure on Non-Posted requests. If the credit count is always
non-zero, the core delivers Posted and Non-Posted requests in the same order as received from
the link. If it remains 0 for some time, Non-Posted requests can accumulate in the core's FIFO.
When the credit count becomes non-zero later, the core first delivers the accumulated Non-
Posted requests that arrived before Posted requests already delivered to the user application,
and then reverts to delivering the requests in the order received from the link.

The setting of pcie_cq_np_req does not need to be aligned with the packet transfers on the
completer request interface.

The user application can monitor the current value of the credit count on the output
pcie_cq_np_req_ count[5:0]. The counter saturates at 32. Because of internal pipeline
delays, there can be several cycles of delay between the core receiving a pulse on the
pcie_cq_np_req input and updating the pcie_cq_np_req_count output in response. Thus,
when the user logic has adequate buffer space available, it should provide the credit in advance
so that Non-Posted requests are not held up by the core for lack of credit.

Straddle Option on CQ Interface

The core has the capability to start the transfer of a new request on the requester completion
interface in the same beat when the previous request has ended on or before Dword position 7
on the data bus. This straddle option is enabled during core customization in the Vivado® IDE.
The straddle option can be used only with the Dword-aligned mode.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=182

When the straddle option is enabled, request TLPs are transferred on the AXI4-Stream interface
as a continuous stream, with no packet boundaries. Thus, the signals m_axis_rc_tkeep and
m_axis_rc_tlast are not useful in determining the boundaries of TLPs delivered on the
interface (the core sets m_axis_rc_tkeep to all 1s and m_axis_rc_tlast to 0 permanently
when the straddle option is in use.). Instead, delineation of TLPs is performed using the following
signals provided within the m_axis_rc_tuser bus.

• is_sop[0]: The core sets this output to active-High in a beat when there is at least one
request TLP starting in the beat. The position of the first byte of the descriptor of this TLP is
determined as follows:

○ If the previous TLP ended before this beat, the first byte of the descriptor is in byte lane 0.

○ If a previous TLP is continuing in this beat, the first byte of this descriptor is in byte lane
32. This is possible only when the previous TLP ends in the current beat, that is when
is_eop[0] is also set.

• is_sop[1]: The core asserts this output in a beat when there are two request TLPs starting
in the same beat. The first TLP always starts at byte position 0 and the second TLP at byte
position 32. The core starts a second TLP at byte position 32 only if the previous TLP ended
before byte position 32 in the same beat, that is only if is_eop[0] is also set in the same
beat.

• is_eop[0]: This output is used to indicate the end of a request TLP. Its assertion signals that
there is at least one TLP ending in this beat.

• is_eop0_ptr[3:0]: When is_eop[0] is asserted, is_eop0_ptr[3:0] provides the
offset of the last Dword of the corresponding TLP ending in this beat. For TLPs with a
payload, the offset for the last byte can be also be determined from the starting address and
length of the TLP, or from the byte enable signals byte_en[63:0].

• is_eop[1]: This output is used to indicate that there are two TLPs ending in a beat. Its
assertion signals that there is at least one TLP ending in this beat. is_eop[1] can be set
only when is_eop[0] is also set.

• is_eop1_ptr[3:0]: When is_eop[1] is asserted, is_eop1_ptr[3:0] provides the
offset of the last Dword of the second TLP ending in this beat. For TLPs with a payload, the
offset for the last byte can be also be determined from the starting address and length of the
TLP, or from the byte enable signals byte_en[63:0]. Because the second TLP can start only
on byte lane 32, it can only end at a byte lane in the range 47-63. Thus the offset
is_eop1_ptr[3:0] can only take a value in the range 11-15.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=183

Figure 69: Transfer of Request TLPs on the Completer Request Interface with the
Straddle Option Enabled

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=184

The previous figure illustrates the transfer of four request TLPs on the completer request
interface when the straddle option is enabled. For all TLPs, the first Dword of the payload always
follows the descriptor without any gaps. The first request TLP (REQ 1) starts at Dword position 0
of Beat 1 and ends in Dword position 5 of Beat 3. The second TLP (REQ 2) starts in Dword
position 8 of the same beat. This second TLP has only a four-Dword payload, so it also ends in
the same beat. The third and fourth request TLPs are transferred completely in Beat 4, as REQ 3
has only a one-Dword payload and REQ 4 has no payload.

Completer Completion Interface Operation (512-bits)

The following figure illustrates the signals associated with the completer completion interface of
the core. The core delivers each TLP on this interface as an AXI4-Stream packet. The packet
starts with a 96-bit descriptor, followed by data in the case of Completions with a payload.

Figure 70: Completer Completion Interface Signals

Integrated Block for
PCI Express

User
Application

PCIe Completer
Completion Interface AXI4-Stream

Master

s_axis_cc_tdata[511:0]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tlast

s_axis_cc_tuser[80:0]

AXI4-Stream
Slave

PCIe
Completer-Side

Interface

X24264-072420

The completer request interface supports two distinct data alignment modes, selected during
core customization in the Vivado® IDE. In the Dword-aligned mode, the first byte of valid data
must be presented on lane n = (S + 12 + (A mod 4)) mod 64, where A is the byte-level starting
address of the data block being transferred and S is the lane number where the first byte of the
descriptor appears. The address A is taken as the value in the Lower Address field of the
descriptor. The starting lane number S is always 0 when the straddle option is not used, but can
be 0 or 32 when straddle is enabled.

In the 128-bit address-aligned mode, the lane number corresponding to the first byte of the
payload is determined as n = (S + 16 + (A mod 16)) mod 64, where S is the lane number
where the first byte of the descriptor appears (which can be 0 or 32) and A is the address
corresponding to the first byte of the payload. Any gap between the end of the descriptor and
the start of the first byte of the payload is filled with null bytes.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=185

The interface also supports a straddle option that allows the transfer of up to two TLPs in the
same beat across the interface. The straddle option can be used only with the Dword-aligned
mode, and is not supported when using the 128-bit address aligned mode. The descriptions in
the sections below assume a single TLP per beat. The operation of the interface with the straddle
option enabled is described in Straddle Option on CC Interface.

Completer Completion Descriptor Format

The user application sends completion data for a completer request to the completer completion
interface of the core as an independent AXI4-Stream packet. Each packet starts with a descriptor,
and can have payload data following the descriptor. The descriptor is always 12 bytes long, and is
sent in the first 12 bytes of the completion packet. The descriptor is always transferred in the
first beat of a Completion TLP. When the user application splits the completion data for a request
into multiple Split Completions, it must send each Split Completion as a separate AXI4-Stream
packet, with its own descriptor.

The format of the completer completion descriptor is illustrated in the following figure. The
individual fields of the completer request descriptor are described in the following table.

Figure 71: Completer Completion Descriptor Format

R
01234567

+0
01234567

+1
01234567

+2
01234567

+3

DW + 0

Byte CountDword Count
01234567

+4
01234567

+5
01234567

+6
01234567

+7

DW + 1

TagTC
01234567

+8
01234567

+9
01234567

+10
01234567

+11

DW + 2

Device/FunctionAttr

Poisoned Completion

64

32

Address [6:0]

Completion Status

Bus

Completer ID

Completer ID EnableForce ECRC

RBus Device/Function
Requester ID

95

63 0

Locked Read
Completion

R RAT

X12215-041619

Table 59: Completer Completion Descriptor Fields

Bit Index Field Name Description

6:0 Lower Address
For memory read Completions, this field must be set to the least
significant 7 bits of the starting byte-level address of the memory
block being transferred. For all other Completions, the Lower
Address must be set to all zeroes.

9:8 Address Type
This field is defined for Completions of memory transactions and
Atomic Operations only. For these Completions, the user logic must
copy the AT bits from the corresponding request descriptor into this
field. This field must be set to 0 for all other Completions.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=186

Table 59: Completer Completion Descriptor Fields (cont'd)

Bit Index Field Name Description

28:16 Byte Count

These 13 bits can have values in the range of 0 – 4,096 bytes. If a
Memory Read Request is completed using a single Completion, the
Byte Count value indicates Payload size in bytes. This field must be
set to 4 for I/O read Completions and I/O write Completions. The
byte count must be set to 1 while sending a Completion for a zero-
length memory read, and a dummy payload of 1 Dword must follow
the descriptor.
For each Memory Read Completion, the Byte Count field must
indicate the remaining number of bytes required to complete the
Request, including the number of bytes returned with the
Completion. If a Memory Read Request is completed using multiple
Completions, the Byte Count value for each successive Completion is
the value indicated by the preceding Completion minus the number
of bytes returned with the preceding Completion

29 Locked Read Completion This bit must be set when the Completion is in response to a Locked
Read request. It must be set to 0 for all other Completions.

42:32 Dword Count

These 11 bits indicate the size of the payload of the current packet in
Dwords. Its range is 0 – 1K Dwords. This field must be set to 1 for I/O
read Completions and 0 for I/O write Completions. The Dword count
must be set to 1 while sending a Completion for a zero-length
memory read. The Dword count must be set to 0 when sending a UR
or CA Completion. In all other cases, the Dword count must
correspond to the actual number of Dwords in the payload of the
current packet.

45:43 Completion Status

These bits must be set based on the type of Completion being sent.
The only valid settings are:
• 000: Successful Completion
• 001: Unsupported Request (UR)
• 100: Completer Abort (CA)

46 Poisoned Completion

This bit can be used by the user logic to poison the Completion TLP
being sent. This bit must be set to 0 for all Completions, except when
the user logic has detected an error in the block of data following the
descriptor and wants to communicate this information using the
Data Poisoning feature of PCI Express.

63:48 Requester ID PCI Requester ID associated with the request (copied by the user
logic from the request).

71:64 Tag PCIe Tag associated with the request (copied by the user logic from
the request).

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=187

Table 59: Completer Completion Descriptor Fields (cont'd)

Bit Index Field Name Description

79:72 Target Function/Device Number

Device and/or Function number of the Completer Function.
Endpoint mode:
ARI enabled:
• Bits [79:72] must be set to the Completer Function number.
ARI disabled:
• Bits [74:72] must be set to the Completer Function number.
• Bits [79:75] are not used
Upstream Port for Switch use case (Endpoint mode is selected within
the IP):
ARI enabled:
• Bits [79:72] must be set to the Completer Function number.
ARI disabled:
• Bits [74:72] must be set to the Completer Function number.
• Bits [79:75] are not used if the Completion is originating from the

switch itself. These bits must be set to the Completer Device
number where the Completion was originated if the switch is
relaying the Completion (Completer is external to the switch).
This is used with Completer ID Enable bit in the descriptor.

Root Port mode (Downstream Port):
ARI enabled:

Bits [79:72] must be set to the Completer Function number.
ARI disabled:
• Bits [74:72] must be set to the Completer Function number.
• Bits [79:75] must be set to the Completer Device number. This is

used with Completer ID Enable bit in the descriptor.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=188

Table 59: Completer Completion Descriptor Fields (cont'd)

Bit Index Field Name Description

87:80 Completer Bus Number

Device and/or Function number of the Requester Function.
Endpoint mode:
ARI enabled:

• Bits [87:80] must be set to the Requester Function number.

ARI disabled:
• Bits [82:80] must be set to the Requester Function number.
• Bits [87:83] are not used
Upstream Port for Switch use case (Endpoint mode is selected within
the IP):
ARI enabled:

• Bits [87:80] must be set to the Requester Function number.

ARI disabled:
• Bits [82:80] must be set to the Requester Function number.
• Bits [87:83] are not used if the request is originating from the

switch itself. These bits must be set to the Requester Device
number where the request was originated if the switch is
relaying the request (Requester is external to the switch). This is
used with Requester ID Enable bit in the descriptor.

Root Port mode (Downstream Port):
ARI enabled:

• Bits [87:80] must be set to the Requester Function number.

ARI disabled:
• Bits [87:80] must be set to the Requester Function number.
• Bits [87:83] must be set to the Requester Device number. This is

used with Requester ID Enable bit in the descriptor.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=189

Table 59: Completer Completion Descriptor Fields (cont'd)

Bit Index Field Name Description

88 Completer ID Enable

1’b1: The client supplies Bus, Device, and Function numbers in the
descriptor to be populated as the Completer ID field in the TLP
header.
1’b0: IP uses Bus and Device numbers captured from received
Configuration requests and the client supplies Function numbers in
the descriptor to be populated as the Completer ID field in the TLP
header.
Endpoint mode:

• Must be set to 1’b0.

Upstream Port for Switch use case (Endpoint mode is selected within
the IP):
• Set to 1’b0 when the Completion is originating from the switch

itself.
• Set to 1’b1 when the switch is relaying the Completion

(Completer is external to the switch). This is used with Completer
Bus Number bits [95:88] and Completer Function/Device Number
bits [87:83] when ARI is not enabled.

Root Port mode:

• Must be set to 1’b1. This is used with Completer Bus Number bits
[95:88] and Completer Function/Device Number bits [87:83]
when ARI is not enabled.

91:89 Transaction Class (TC)
PCIe Transaction Class (TC) associated with the request. The user
logic must copy this value from the TC field of the associated request
descriptor.

94:92 Attributes
PCIe attributes associated with the request (copied from the
request). Bit 92 is the No Snoop bit, bit 93 is the Relaxed Ordering bit,
and bit 94 is the ID-Based Ordering bit.

95 Reserved Reserved for future use.

Completions with Successful Completion (SC) Status

The user logic must return a Completion to the completer completion interface of the core for
every Non-Posted request it receives from the completer request interface. When the request
completes with no errors, the user logic must return a Completion with Successful Completion
(SC) status. Such a Completion might contain a payload, depending on the type of request.
Furthermore, the data associated with the request can be broken up into multiple Split
Completions when the size of the data block exceeds the maximum payload size configured. User
logic is responsible for splitting the data block into multiple Split Completions when needed. The
user logic must transfer each Split Completion over the completer completion interface as a
separate AXI4-Stream packet, with its own 12-byte descriptor.

In the following example timing diagrams, the starting Dword address of the data block being
transferred (as conveyed in bits [6:2] of the Lower Address field of the descriptor) is assumed to
be (m*8+1), for some integer m. The size of the data block is assumed to be n Dwords, for some
n = k*32+28, k > 0.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=190

Figure 72: Transfer of a Normal Completion on the Completer Completion Interface
(512-bit Interface, Dword-Aligned Mode)

The previous figure illustrates the Dword-aligned transfer of a Completion from the user logic
across the completer completion interface. In this case, the first Dword of the payload starts
immediately after the descriptor. When the data block is not a multiple of 4 bytes, or when the
start of the payload is not aligned on a Dword address boundary, the user application must add
null bytes to align the start of the payload on a Dword boundary and make the payload a multiple
of Dwords. For example, when the data block starts at byte address 7 and has a size of 3 bytes,
the user logic must add 3 null bytes before the first byte and two null bytes at the end of the
block to make it 2 Dwords long. Also, in the case of non-contiguous reads, not all bytes in the
data block returned are be valid. In that case, the user application must return the valid bytes in
the proper positions, with null bytes added in gaps between valid bytes, when needed. The
interface does not have any signals to indicate the valid bytes in the payload. This is not required,
as the requester is responsible for keeping track of the byte enables in the request and discarding
invalid bytes from the Completion.

In the Dword-aligned mode, the transfer starts with the 12 descriptor bytes, followed
immediately by the payload bytes. The user application must keep the signal
s_axis_cc_tvalid asserted over the duration of the packet. The core treats the deassertion
of s_axis_cc_tvalid during the packet transfer as an error, and nullifies the corresponding
Completion TLP transmitted on the link to avoid data corruption.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=191

The user application must also assert the signal s_axis_cc_tlast in the last beat of the
packet. The core are by pull down s_axis_cc_tready in any cycle if it is not ready to accept
data. The user application must not change the values on s_axis_cc_tdata and
s_axis_cc_tlast during the transfer when the core has deasserted s_axis_cc_tready.

In the 128-bit address aligned mode, the delivery of the payload must always start in the
second128-bit quarter of the 512-bit word, following the descriptor in the first quarter. That is, if
the first byte of the descriptor is on byte lane 0, the payload must start on one of the byte lanes
16 – 31. Within its 128-bit quarter, the offset of the first payload byte must correspond to the
least significant bits of the Lower Address field setting in the corresponding descriptor.

The following timing diagram illustrates the 128-bit address-aligned transfer of a memory read
Completion across the completer completion interface. For the purpose of illustration, the
starting Dword address of the data block being transferred (as conveyed in bits [6:2] of the Lower
Address field of the descriptor) is assumed to be (m*16+1), for some integer m. The size of the
data block is assumed to be n Dwords, for some n = k*16 - 1, for some k > 1.

Figure 73: Transfer of a Normal Completion on the Completer Completion Interface
(128-bit Address Aligned Mode)

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=192

Aborting a Completion Transfer

The user logic can abort the transfer of a Completion on the completer completion interface at
any time during the transfer of the payload by asserting the discontinue signal in the
s_axis_cc_tuser bus. The core nullifies the corresponding TLP on the link to avoid data
corruption.

The user logic can assert this signal in any cycle during the transfer, when the Completion being
transferred has an associated payload. The user logic can either choose to terminate the packet
prematurely in the cycle where the error was signaled (by asserting s_axis_cc_tlast), or can
continue until all bytes of the payload are delivered to the core. In the latter case, the core treats
the error as sticky for the following beats of the packet, even if the user logic deasserts the
discontinue signal before reaching the end of the packet.

The discontinue signal can be asserted only when s_axis_cc_tvalid is active-High. The core
samples this signal when s_axis_cc_tvalid and s_axis_cc_tready are both active-High.
Thus, once asserted, it should not be deasserted until s_axis_cc_tready is active-High.

When the core is configured as an Endpoint, this error is reported by the core to the Root
Complex it is attached to, as an Uncorrectable Internal Error using the Advanced Error Reporting
(AER) mechanisms.

Completions with Error Status (UR and CA)

When responding to a request received on the completer request interface with an Unsupported
Request (UR) or Completion Abort (CA) status, the user logic must send a 3-Dword completion
descriptor in the format of the Completer Completion Descriptor Format figure in Completer
Completion Descriptor Format, followed by five additional Dwords containing information on the
request that generated the Completion. These five Dwords are necessary for the core to log
information about the request in its AER header log registers.

The following figure shows the sequence of information transferred when sending a Completion
with UR or SC status. The information is formatted as an AXI4-Stream packet with a total of 8
Dwords, which are organized as follows:

• The first three Dwords contain the completion descriptor in the format of the Completer
Completion Descriptor Format figure in Completer Completion Descriptor Format.

• The fourth Dword contains the state of the following signals in m_axis_cq_tuser, copied
from the request:

○ The First Byte Enable bits first_be[3:0] in m_axis_cq_tuser.

○ The Last Byte Enable bits last_be[3:0] in m_axis_cq_tuser.

○ The four Dwords of the request descriptor received from the core with the request.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=193

Figure 74: Composition of the AXI4-Stream Packet for UR and CA Completions

701234567
+4

01234567
+5

01234567
+6

01234567
+7

DW 3
32

first_be

63

R

DW 0 DW 1

Completion Descriptor DW 1 Completion Descriptor DW 0

DW 2

Completion Descriptor DW 2

DW 4 DW 5

DW DW 7

last_ beR

Request Descriptor, DW 3 Request Descriptor, DW 2

Request Descriptor, DW 1 Request Descriptor, DW 0

X24889-120620

Straddle Option on CC Interface

The core has the capability to start the transfer of a new Completion packet on the completer
completion interface in the same beat when the previous request has ended on or before Dword
position 7 on the data bus. This straddle option is enabled during core customization in the
Vivado® IDE. The straddle option can be used only with the Dword-aligned mode.

When the straddle option is enabled, Completion TLPs are transferred on the AXI4-Stream
interface as a continuous stream, with no packet boundaries. Thus, the signals
m_axis_cc_tkeep and m_axis_cc_tlast are not useful in determining the boundaries of
TLPs delivered on the interface. Instead, delineation of TLPs is performed using the following
signals provided within the m_axis_cc_tuser bus.

• is_sop[0]: This input must be set High in a beat when there is at least one Completion TLP
starting in the beat. The position of the first byte of the descriptor of this TLP is determined as
follows:

○ If the previous TLP ended before this beat, the first byte of the descriptor is in byte lane 0.

○ If a previous TLP is continuing in this beat, the first byte of this descriptor is in byte lane
32. This is possible only when the previous TLP ends in the current beat, that is when
is_eop[0] is also set.

• is_sop0_ptr[1:0]: When is_sop[0] is set, this field must indicate the offset of the first
Completion TLP starting in the current beat. Valid settings are 2'b00 (TLP starting at Dword
0) and 2'b10 (TLP starting at Dword 8).

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=194

• is_sop[1]: This input must be set High in a beat when there are two Completion TLPs
starting in the same beat. The first TLP must always start at byte position 0 and the second
TLP at byte position 32. The user application are start a second TLP at byte position 32 only if
the previous TLP ended before byte position 32 in the same beat, that is only if is_eop[0] is
also set in the same beat.

• is_sop1_ptr[1:0]: When is_sop[1] is set, this field must provide the offset of the
second TLP starting in the current beat. Its only valid setting is 2'b10 (TLP starting at Dword
8).

• is_eop[0]: This input is used to indicate the end of a Completion TLP. Its assertion signals
that there is at least one TLP ending in this beat.

• is_eop0_ptr[3:0]: When is_eop[0] is asserted, is_eop0_ptr[3:0] must provide
the offset of the last Dword of the corresponding TLP ending in this beat.

• is_eop[1]: This input is set High when there are two TLPs ending in the current beat.
is_eop[1] can be set only when the signals is_eop[0] and is_sop[0] are also be High in
the same beat.

• is_eop1_ptr[3:0]: When is_eop[1] is asserted, is_eop1_ptr[3:0] must provide
the offset of the last Dword of the second TLP ending in this beat. Because the second TLP
can start only on byte lane 32, it can only end at a byte lane in the range 43-63. Thus the
offset is_eop1_ptr[3:0] can only take a value in the range 10-15.

The following figure illustrates the transfer of four Completion TLPs on the completer completion
interface when the straddle option is enabled. For all TLPs, the first Dword of the payload always
follows the descriptor without any gaps. The first Completion TLP (COMPL 1) starts at Dword
position 0 of Beat 1 and ends in Dword position 5 of Beat 3. The second TLP (COMPL 2) starts in
Dword position 8 of the same beat. This second TLP has only a four-Dword payload, so it also
ends in the same beat. The third and fourth Completion TLPs are transferred completely in Beat
4, as COMPL 3 has only a one-Dword payload and COMPL 4 has no payload.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=195

Figure 75: Transfer of Completion TLPs on the Completer Completion Interface with
the Straddle Option Enabled (512-bit Interface)

512-Bit Requester Interface
This section describes the operation of the user-side Requester interface associated with the
512-bit AXI4-Stream Interface. The block diagram in 512-Bit Completer Interface illustrates the
introduction of a soft bridge within the core between the controller and the user application.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=196

The Requester interface enables a user Endpoint application to initiate PCI transactions as a bus
master across the PCIe link to the host memory. For Root Complexes, this interface is also used
to initiate I/O and configuration requests. This interface can also be used by both Endpoints and
Root Complexes to send messages on the PCIe link. The transactions on this interface are similar
to those on the completer interface, except that the roles of the core and the user application are
reversed. Posted transactions are performed as single indivisible operations and Non-Posted
transactions as split transactions.

The requester interface consists of two separate interfaces, one for data transfer in each
direction. Each interface is based on the AXI4-Stream protocol, and its width can be configured
as 64, 128 or 256 bits. The requester request interface is used for transfer of requests (with any
associated payload data) from the user application to the core, and the requester completion
interface is used by the core to deliver Completions received from the link (for Non-Posted
requests) to the user application. The two interfaces operate independently, that is, the user
application can transfer new requests over the requester request interface while receiving a
completion for a previous request.

Requester Request Interface Operation (512-bits)

The following figure illustrates the signals associated with the requester request interface of the
core. The core delivers each TLP on this interface as an AXI4-Stream packet. The packet starts
with a 128-bit descriptor, followed by data in the case of TLPs with a payload.

The requester request interface supports two distinct data alignment modes for transferring
payloads, which are set during core customization in the Vivado® IDE. In the Dword-aligned
mode, the user logic must provide the first Dword of the payload immediately after the last
Dword of the descriptor. It must also set the bits in first_be[7:0] to indicate the valid bytes
in the first Dword and the bits in last_be[7:0] (both part of the s_axis_rq_tuser bus) to
indicate the valid bytes in the last Dword of the payload. In the address-aligned mode, the user
logic must start the payload transfer in the beat following the last Dword of the descriptor, and
its first Dword can be in any of the possible Dword positions on the data path. The user
application communicates the offset of the first Dword on the data path using the signals
addr_offset[3:0] in s_axis_rq_tuser. As in the case of the Dword-aligned mode, the
user application must also set the bits in first_be[7:0] to indicate the valid bytes in the first
Dword and the bits in last_be[7:0] to indicate the valid bytes in the last Dword of the
payload. In Straddled case, addr_offset[3:2], first_be[7:4], and last_be[7:4] are
used to indicate second TLP information while addr_offset[1:0], first_be[3:0], and
last_be[3:0] are used to indicate the first TLP information on that data beat.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=197

Figure 76: Requester Request Interface Signals

Integrated Block for PCIe User Application

PCIe Requester
Request Interface

AXI4-Stream
Master

PCIe
Requester
 Interface

s_axis_rq_tdata[511:0]

s_axis_rq_valid

s_axis_rq_tready

s_axis_rq_tlast

s_axis_rq_tkeep[15:0]

first_be[7:0]

last_be[7:0]

addr_offset[3:0]

discontinue

seq_num0

s_axis_rq_tuser[136:0]

pcie_rq_tag[9:0]

pcie_rq_tag_vld

pcie_tfc_nph[1:0]

pcie_tfc_npd[1:0]

pcie_rq_seq_num[3:0]

pcie_rq_seq_num_vld

AXI4-Stream
Slave

is_sop[1:0]

is_sop0_ptr[1:0]

is_sop1_ptr[1:0]

is_eop0_ptr[3:0]

is_eop1_ptr[3:0]

is_eop[1:0]

seq_num1[5:0]

parity[63:0]

X16185-121320

The interface also supports a straddle option that allows the transfer of up to two TLPs in the
same beat across the interface. The straddle option can be used only with the Dword-aligned
mode, and is not supported when using the 128-bit address aligned mode. The descriptions in
the sections below assume a single TLP per beat. The operation of the interface with the straddle
option enabled is described in Straddle Option on RQ Interface.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=198

Requester Request Descriptor Formats

The user application must transfer each request to be transmitted on the link to the requester
request interface of the core as an independent AXI4-Stream packet. Each packet must start with
a descriptor, and can have payload data following the descriptor. The descriptor is always 16
bytes long, and must be sent in the first 16 bytes of the request packet. The descriptor is
transferred during the first two beats on a 64-bit interface, and in the first beat on a 128-bit or
256-bit interface. The formats of the descriptor for different request types are illustrated in the
following figures.

The format of the following figure applies when the request TLP being transferred is a memory
read/write request, an I/O read/write request, or an Atomic Operation request.

Figure 77: Requester Request Descriptor Format for Memory, I/O, and Atomic Op
Requests

01234567
+0

01234567
+1

01234567
+2

01234567
+3

DW + 0

Address [63:2]

Address Type (AT)

01234567
+4

01234567
+5

01234567
+6

01234567
+7

DW + 1

Dword Count
01234567

+8
01234567

+9
01234567

+10
01234567

+11

DW + 2

TagTC
01234567

+12
01234567

+13
01234567

+14
01234567

+15

DW + 3

Attr

Req Type

96 64

32

Poisoned Request

Bus
Completer ID

Requester ID EnableForce ECRC

Bus Device/Function

Requester ID
Device/Function

127

63 0

X12212

The format of the following figure is used for Vendor-Defined Messages (Type 0 or Type 1) only.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=199

Figure 78: Requester Request Descriptor Format for Vendor-Defined Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3
96 64

Msg Code

Vendor - Defined Header Bytes
Destination ID

Bus Device/FunctionVendor ID

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type
Poisoned Request

Bus Device/Function
Requester ID

Requester ID Enable
Force ECRC

03263

127

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

X12214

The format of the following figure is used for all ATS messages (Invalid Request, Invalid
Completion, Page Request, PRG Response).

Figure 79: Requester Request Descriptor Format for ATS Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3
96 64

32

Msg Code

TL Header Bytes 8-15

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type

Poisoned Request

Bus Device/Function

Requester ID

Requester ID Enable
Force ECRC

127

63 0

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

TL Header
Byte 11

TL Header
Byte 10

TL Header
Byte 9

TL Header
Byte 8

X12211

For all other messages, the descriptor takes the format of the following figure.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=200

Figure 80: Requester Request Descriptor Format for all other Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

01234567

+4

01234567

+5

01234567

+6

01234567

+7

Dword Count
01234567

+8

01234567

+9

01234567

+10

01234567

+11

Tag
01234567

+12

01234567

+13

01234567

+14

01234567

+15

Req Type

96 64

32

Msg Code
Message
Routing

TCAttr R

OBFF Code
(for OBFF message);
Reserved (for others)

No-Snoop Latency
(for LTR message);

Reserved (for others)

Snoop Latency
(for LTR message);

Reserved (for others)

R

Bus Device /Function

Requester ID

0

127

63

DW + 0DW + 1

DW + 2DW + 3

Poisoned
RequestRequester ID Enable

Force ECRC

X16186-030217

Table 60: Requester Request Descriptor Fields

Bit Index Field Name Description

1:0 Address Type

This field is defined for memory transactions and Atomic Operations
only. The core copies this field into the AT of the TL header of the
request TLP.
• 00: Address in the request is un-translated
• 01: Transaction is a Translation Request
• 10: Address in the request is a translated address
• 11: Reserved

63:2 Address

This field applies to memory, I/O and Atomic Op requests. This is the
address of the first Dword referenced by the request. The user logic
must also set the First_BE and Last_BE bits in s_axis_rq_tuser to
indicate the valid bytes in the first and last Dwords, respectively.
When the transaction specifies a 32-bit address, bits [63:32] of this
field must be set to 0.

74:64 Dword Count

These 11 bits indicate the size of the block (in Dwords) to be read or
written (for messages, size of the message payload). Its range is 0 –
256 Dwords. For I/O accesses, the Dword count is always 1.
For a zero length memory read/write request, the Dword count must
be 1, with the First_BE bits set to all zeroes.
The core does not check the setting of this field against the actual
length of the payload supplied (for requests with payload), nor
against the maximum payload size or read request size settings of
the core.

78:75 Request Type Identifies the transaction type. The transaction types and their
encodings are listed in the following table.

79 Poisoned Request

This bit can be used by the user logic to poison the request TLP being
sent. This bit must be set to 0 for all requests, except when the user
logic has detected an error in the block of data following the
descriptor and wants to communicate this information using the
Data Poisoning feature of PCI Express.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=201

Table 60: Requester Request Descriptor Fields (cont'd)

Bit Index Field Name Description

87:80 Requester Function/ Device
Number

Device and/or Function number of the Requester Function.
Endpoint mode:
• ARI enabled:

○ Bits [87:80] must be set to the Requester Function number.

• ARI disabled:
○ Bits [82:80] must be set to the Requester Function number.
○ Bits [87:83] are not used

Upstream Port for Switch use case (Endpoint mode is selected within
the IP):
• ARI enabled:

○ Bits [87:80] must be set to the Requester Function number.

• ARI disabled:
○ Bits [82:80] must be set to the Requester Function number.
○ Bits [87:83] are not used if the request is originating from the

switch itself. These bits must be set to the Requester Device
number where the request was originated if the switch is
relaying the request (Requester is external to the switch).
This is used in conjunction with Requester ID Enable bit in the
descriptor.

Root Port mode (Downstream Port):
• ARI enabled:

○ Bits [87:80] must be set to the Requester Function number.

• ARI disabled:
○ Bits [87:80] must be set to the Requester Function number.
○ Bits [87:83] must be set to the Requester Device number. This

is used in conjunction with Requester ID Enable bit in the
descriptor.

95:88 Requester Bus Number

Bus number associated with the Requester Function.
Endpoint mode:
• Not used
Upstream Port for Switch use case (Endpoint mode is selected within
the IP):
• Not used if the request is originating from the switch itself. These

bits must be set to the Requester Bus number where the request
was originated if the switch is relaying the request (Requester is
external to the switch). This is used in conjunction with Requester
ID Enable bit in the descriptor.

Root Port mode (Downstream Port):
• Must be set to the Requester Bus number. This is used in

conjunction with Requester ID Enable bit in the descriptor.

103:96 Tag

PCIe Tag associated with the request. For Posted transactions, the
core always uses the value from this field as the tag for the request.
For Non-Posted transactions, the core uses the value from this field if
the Enable Client Tag is set during core configuration in the Vivado
IDE (that is, when tag management is performed by the user logic). If
this attribute is not set, tag management logic in the core is
responsible for generating the tag to be used, and the value in the
tag field of the descriptor is not used.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=202

Table 60: Requester Request Descriptor Fields (cont'd)

Bit Index Field Name Description

119:104 Completer ID

This field is applicable only to Configuration requests and messages
routed by ID. For these requests, this field specifies the PCI
Completer ID associated with the request (these 16 bits are divided
into an 8-bit bus number, 5-bit device number, and 3-bit function
number in the legacy interpretation mode. In the ARI mode, these 16
bits are treated as an 8-bit bus number + 8-bit Function number.).

120 Requester ID Enable

1’b1: The client supplies Bus, Device, and Function numbers in the
descriptor to be populated as the Requester ID field in the TLP
header.
1’b0: IP uses Bus and Device numbers captured from received
Configuration requests and the client supplies Function numbers in
the descriptor to be populated as the Requester ID field in the TLP
header. When Requester ID enable is 0 the device number fields in
descriptor should also be 0.
Endpoint mode:
• Must be set to 1’b0.
Upstream Port for Switch use case (Endpoint mode is selected within
the IP):
• Set to 1’b0 when the request is originating from the switch itself.

• Set to 1’b1 when the switch is relaying the request (Requester is
external to the switch). This is used in conjunction with Requester
Bus Number bits [95:88] and Requester Function/Device Number
bits [87:83] when ARI is not enabled.

Root Port mode:
• Must be set to 1’b1. This is used in conjunction with Requester

Bus Number bits [95:88] and Requester Function/Device Number
bits [87:83] when ARI is not enabled.

123:121 Transaction Class (TC) PCIe Transaction Class (TC) associated with the request.

126:124 Attributes

These bits provide the setting of the Attribute bits associated with
the request. Bit 124 is the No Snoop bit, and bit 125 is the Relaxed
Ordering bit. Bit 126 is the ID-Based Ordering bit, and can be set only
for memory requests and messages.
The core forces the attribute bits to 0 in the request sent on the link if
the corresponding attribute is not enabled in the Function’s PCI
Express Device Control Register.

111:104 Message Code

This field is defined for all messages. It contains the 8-bit Message
Code to be set in the TL header.
Appendix F of the PCI Express 3.0 Specifications (available at http://
www.pcisig.com/specifications) provides a complete list of the
supported Message Codes.

114:112 Message Routing This field is defined for all messages. The core copies these bits into
the 3-bit Routing field r[2:0] of the TL header of the Request TLP.

15:0 Destination ID
This field applies to Vendor-Defined Messages only. When the
message is routed by ID (that is, when the Message Routing field is
010 binary), this field must be set to the Destination ID of the
message.

63:32 Vendor-Defined Header This field applies to Vendor-Defined Messages only. It is copied into
Dword 3 of the TL header.

63:0 ATS Header This field is applicable to ATS messages only. It contains the bytes
that the core copies into Dwords 2 and 3 of the TL header.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 203Send Feedback

http://www.pcisig.com/specifications
http://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=203

Requester Memory Write Operation

In both Dword-aligned and 128-bit address aligned modes, the transfer starts with the sixteen
descriptor bytes, followed by the payload bytes. The user application must keep the signal
s_axis_rq_tvalid asserted over the duration of the packet. The core treats the deassertion
of s_axis_rq_tvalid during the packet transfer as an error, and nullifies the corresponding
request TLP transmitted on the link to avoid data corruption.

The user application must also assert the signal s_axis_rq_tlast in the last beat of the packet. The
core are by pull down s_axis_rq_tready in any cycle if it is not ready to accept data. The user
application must not change the values on s_axis_rq_tdata and s_axis_rq_tlast during
the transfer when the core has deasserted s_axis_rq_tready. The AXI4-Stream interface
signals m_axis_rq_tkeep (one per Dword position) must be set to indicate the valid Dwords in
the packet including the descriptor and any null bytes inserted between the descriptor and the
payload. That is, the m_axis_rq_tkeep bits must be set to 1 contiguously from the first Dword
of the descriptor until the last Dword of the payload. During the transfer of a packet, the
m_axis_rq_tkeep bits can be 0 only in the last beat of the packet, when the packet does not
fill the entire width of the interface.

The requester request interface also includes the First Byte Enable and the Last Enable bits in the
s_axis_rq_tuser bus. These must be set in the first beat of the packet, and provides
information of the valid bytes in the first and last Dwords of the payload.

The user application must limit the size of the payload transferred in a single request to the
maximum payload size configured in the core, and must ensure that the payload does not cross a
4 Kbyte boundary. For memory writes of two Dwords or less, the 1s in first_be[7:0] and
last_be[7:0] are not be contiguous. For the special case of a zero-length memory write
request, the user application must provide a dummy one_dword payload with first_be[7:0]
and last_be[7:0] both set to all 0s. In all other cases, the 1 bits in first_be[7:0] and
last_be[7:0] must be contiguous. In Straddled case, addr_offset[3:2],
first_be[7:4], and last_be[7:4] are used to indicate second TLP information while
addr_offset[1:0], first_be[3:0], and last_be[3:0] are used to indicate the first TLP
information on that data beat.

The following figure illustrates the Dword-aligned transfer of a memory write request from the
user logic across the requester request interface. For the purpose of illustration, the size of the
data block being written into user memory is assumed to be n Dwords, for some n = k*16 - 1,
where k > 1.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=204

Figure 81: Memory Write Transaction on the Requester Request Interface (Dword-
Aligned Mode)

The following figure illustrates the 128-bit address aligned transfer of a memory write request
from the user application across the requester request interface. For the purpose of illustration,
the starting Dword offset of the data block is assumed to be (m*16 +3), for some integer m > 0.
Its size is assumed to be n Dwords, for some n = k*16 -1, k > 1. In the 128-bit address-aligned
mode, the delivery of the payload always starts in the second 128-bit quarter of the 512-bit
word, following the descriptor in the first quarter. The user application must communicate the
offset of the first Dword of the payload in the addr_offset[3:0] field of the
s_axis_rq_tuser bus. The user application must also set the bits in first_be[7:0] to
indicate the valid bytes in the first Dword and the bits in last_be[7:0] to indicate the valid
bytes in the last Dword of the payload.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=205

Figure 82: Memory Write Transaction on the Requester Request Interface (128-bit
Address Aligned Mode)

Non-Posted Transactions with No Payload

Non-Posted transactions with no payload (memory read requests, I/O read requests,
Configuration read requests) are transferred across the requester request interface in the same
manner as a memory write request, except that the AXI4-Stream packet contains only the 16-
byte descriptor. The following figure illustrates the transfer of a memory read request across the
requester request interface. The signal s_axis_rq_tvalid must remain asserted over the
duration of the packet. The core are pull down s_axis_rq_tready to prolong the beat. The
signal s_axis_rq_tlast must be set in the last beat of the packet, and the bits in
s_axis_rq_tkeep[15:0] must be set in all Dword positions where a descriptor is present.

The user application must indicate the valid bytes in the first and last Dwords of the data block
using the fields first_be[7:0] and last_be[7:0], respectively, in the s_axis_rq_tuser
bus. For the special case of a zero-length memory read, the length of the request must be set to
one Dword, with both first_be[7:0] and last_be[7:0] set to all 0s. The user application
must also communicate the offset of the first Dword of the payload of the resulting Completion,

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=206

when delivered over the requester completion interface, in the addr_offset[3:0] field of the
s_axis_rq_tuser bus. In Straddled case, addr_offset[3:2], first_be[7:4], and
last_be[7:4] are used to indicate second TLP information while addr_offset[1:0],
first_be[3:0], and last_be[3:0] are used to indicate the first TLP information on that
data beat.

Figure 83: Memory Read Transaction on the Requester Request Interface

Non-Posted Transactions with a Payload

The transfer of a Non-Posted request with a payload (an I/O write request, Configuration write
request, or Atomic Operation request) is similar to the transfer of a memory write request, with
the following changes in how the payload is aligned on the data path:

• In the Dword-aligned mode, the first Dword of the payload follows the last Dword of the
descriptor, with no gaps between them.

• In the 128-bit address aligned mode, the payload must start in the second 128-bit quarter of
the first beat, following the descriptor. The payload are start at any of four Dword positions in
this quarter. The offset of its first Dword must be specified in the field addr_offset[3:0]
of the s_axis_rq_tuser bus.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=207

In the case of I/O and Configuration write requests, the valid bytes in the one-Dword payload
must be indicated using first_be[7:0]. For Atomic Operation requests, all bytes in the first
and last Dwords are assumed valid.

Message Requests on the Requester Interface

The transfer of a message on the requester request interface is similar to that of a memory write
request, except that a payload are not always be present. The transfer starts with the 128-bit
descriptor, followed by the payload, if present. The first Dword of the payload must immediately
follow the descriptor, regardless of the address alignment mode in use. The
addr_offset[3:0] field in the s_axis_rq_tuser bus must be set to 0 for messages when
the address-aligned mode is in use. The core determines the end of the payload from
s_axis_rq_tlast and s_axis_rq_tkeep signals. The First Byte Enable and Last Byte
Enable bits (first_be[7:0] and last_be[7:0]) are not used for message requests.

Aborting a Transfer

For any request that includes an associated payload, The user application are abort the request at
any time during the transfer of the payload by asserting the discontinue signal in the
s_axis_rq_tuser bus. The core nullifies the corresponding TLP on the link to avoid data
corruption.

The user application are assert this signal in any cycle during the transfer, when the request being
transferred has an associated payload. The user application are either choose to terminate the
packet prematurely in the cycle where the error was signaled (by asserting s_axis_rq_tlast),
or are continue until all bytes of the payload are delivered to the core. In the latter case, the core
treats the error as sticky for the following beats of the packet, even if the user logic deasserts the
discontinue signal before reaching the end of the packet.

The discontinue signal can be asserted only when s_axis_rq_tvalid is High. The core
samples this signal when s_axis_rq_tvalid and s_axis_rq_tready are both High. Thus,
once asserted, it should not be deasserted until s_axis_rq_tready is High. The user
application must not start a new packet in the same beat when a previous packet is aborted by
asserting the discontinue input.

When the core is configured as an Endpoint, this error is reported by the core to the Root
Complex it is attached to, as an Uncorrectable Internal Error using the Advanced Error Reporting
(AER) mechanisms.

Straddle Option on RQ Interface

The PCIe® core has the capability to start the transfer of a new request packet on the requester
request interface in the same beat when the previous request has ended on or before Dword
position 7 on the data bus. This straddle option is enabled during core customization in the
Vivado® IDE. The straddle option can be used only with the Dword-aligned mode.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=208

When the straddle option is enabled, request TLPs are transferred on the AXI4-Stream interface
as a continuous stream, with no packet boundaries. Thus, the signals m_axis_rq_tkeep and
m_axis_rq_tlast are not useful in determining the boundaries of TLPs delivered on the
interface. Instead, delineation of TLPs is performed using the following signals provided within
the m_axis_rq_tuser bus.

• is_sop[0]: This input must be set High in a beat when there is at least one request TLP
starting in the beat. The position of the first byte of the descriptor of this TLP is determined as
follows:

○ If the previous TLP ended before this beat, the first byte of the descriptor is in byte lane 0.

○ If a previous TLP is continuing in this beat, the first byte of this descriptor is in byte lane
32. This is possible only when the previous TLP ends in the current beat, that is when
is_eop[0] is also set.

• is_sop0_ptr[1:0]: When is_sop[0] is set, this field must indicate the offset of the first
request TLP starting in the current beat. Valid settings are 2'b00 (TLP starting at Dword 0)
and 2'b10 (TLP starting at Dword 8).

• is_sop[1]: This input must be set High in a beat when there are two request TLPs starting
in the same beat. The first TLP must always start at byte position 0 and the second TLP at
byte position 32. The user application are start a second TLP at byte position 32 only if the
previous TLP ended before byte position 32 in the same beat, that is only if is_eop[0] is
also set in the same beat.

• is_sop1_ptr[1:0]: When is_sop[1] is set, this field must provide the offset of the
second TLP starting in the current beat. Its only valid setting is 2'b10 (TLP starting at Dword
8).

• is_eop[0]: This input is used to indicate the end of a request TLP. Its assertion signals that
there is at least one TLP ending in this beat.

• is_eop0_ptr[3:0]: When is_eop[0] is asserted, is_eop0_ptr[3:0] must provide
the offset of the last Dword of the corresponding TLP ending in this beat.

• is_eop[1]: This input is set High when there are two TLPs ending in the current beat.
is_eop[1] can be set only when the signals is_eop[0] and is_sop[0] are also be High
in the same beat.

• is_eop1_ptr[3:0]: When is_eop[1] is asserted, is_eop1_ptr[3:0] must provide
the offset of the last Dword of the second TLP ending in this beat. Because the second TLP
can start only on byte lane 32, it can only end at a byte lane in the range 43-63. Thus the
offset is_eop1_ptr[3:0] can only take a value in the range 10-15.

When a second TLP starts in the same beat, the First Byte Enable and Last Byte Enable bits of
the second TLP are specified by the bit fields first_be[7:4] and last_be[7:4],
respectively, in the tuser bus.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=209

The following figure illustrates the transfer of four request TLPs on the requester request
interface when the straddle option is enabled. For all TLPs, the first Dword of the payload always
follows the descriptor without any gaps. The first request TLP (REQ 1) starts at Dword position 0
of Beat 1 and ends in Dword position 3 of Beat 3. The second TLP (REQ 2) starts in Dword
position 8 of the same beat. This second TLP has only a four-Dword payload, so it also ends in
the same beat. The third and fourth Completion TLPs are transferred completely in Beat 4, as
REQ 3 has only a one-Dword payload and REQ 4 has no payload.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=210

Figure 84: Transfer of Request TLPs on the Requester Request Interface with the
Straddle Option Enabled

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=211

Tag Management for Non-Posted Transactions

The requester side of the core maintains the state of all pending Non-Posted transactions
(memory reads, I/O reads and writes, configuration reads and writes, Atomic Operations)
initiated by the user application, so that the completions returned by the targets can be matched
against the corresponding requests. The state of each outstanding transaction is held in a Split
Completion Table in the requester side of the interface, which has a capacity of up to 768 Non-
Posted transactions. The returning Completions are matched with the pending requests using an
5-/8-/10-bit tag. There are two options for management of these tags:

• Internal Tag Management: This mode of operation is selected during core customization in the
Vivado® IDE. In this mode, logic within the core is responsible for allocating the tag for each
Non-Posted request initiated from the requester side. The core maintains a list of free tags
and assigns one of them to each request when the user logic initiates a Non-Posted
transaction, and communicates the assigned tag value to the user logic through the output
pcie_rq_tag0[9:0] and pcie_rq_tag1[9:0]. The value on this bus is valid when the
core asserts pcie_rq_tag_vld0 and pcie_rq_tag_vld1. Use of pcie_rq_tag_vld0
and pcie_rq_tag_vld1 are orthogonal to whether the Straddle option is enabled. The
integrated block can use either the pcie_rq_tag_vld0 or pcie_rq_tag_vld1 port to
showcase the valid tags. The user logic must copy the tag so that any Completions delivered
by the core in response to the request can be matched to the request.

In this mode, logic within the core checks for the Split Completion Table full condition, and
backpressures a Non-Posted request from the user logic (using s_axis_rq_tready) if the
total number of Non-Posted requests currently outstanding has reached its limit.

• External Tag Management: This mode of operation is selected during core customization in
the Vivado IDE. In this mode, the user logic is responsible for allocating the tag for each Non-
Posted request initiated from the requester side. The user logic must choose the tag value
without conflicting with the tags of all other Non-Posted transactions outstanding at that
time, and must communicate this chosen tag value to the core within the request descriptor.
The core still maintains the outstanding requests in its Split Completion Table and matches the
incoming Completions to the requests, but does not perform any checks for the uniqueness of
the tags, or for the Split Completion Table full condition.

When internal tag management is in use, the core asserts pcie_rq_tag_vld for one cycle for
each Non-Posted request, after it has placed its allocated tag on pcie_rq_tag. When straddle
option is enabled, the core are provide up to two allocated tags in the same cycle on this
interface. The states of the signals pcie_rq_tag_vld and pcie_rq_tag must be interpreted
as follows:

• Assertion of pcie_rq_tag_vld0 in any cycle indicates that the core has placed an allocated
tag on pcie_rq_tag0[9:0].

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=212

• Simultaneous assertion of pcie_rq_tag_vld0 and pcie_rq_tag_vld1 in the same cycle
indicates that the core has placed two allocated tags, the first on pcie_rq_tag0[9:0] and
the second on pcie_rq_tag1[9:0]. The tag on pcie_rq_tag0[9:0] corresponds to an
earlier request sent by the user logic and the tag on pcie_rq_tag1[9:0] corresponds to a
later request.

• pcie_rq_tag_vld1 is never asserted when pcie_rq_tag_vld0 is not asserted. That is,
when there is only one tag to communicate in any cycle, it is always communicated on
pcie_rq_tag0[9:0].

• When straddle is not in use, only a single tag can be communicated in any cycle, and
pcie_rq_tag_vld1 is never asserted.

There can be a delay of several cycles between the transfer of the request on the
s_axis_rq_tdata bus and the assertion of pcie_rq_tag_vld by the core to provide the
allocated tag for the request. The user logic are, meanwhile, continue to send new requests. The
tags for requests are communicated on the pcie_rq_tag bus in FIFO order, so it is easy for the
user logic to associate the tag value with the request it transferred.

Avoiding Head-of-Line Blocking for Posted Requests

The core holds a Non-Posted request received on its requester request interface for lack of
transmit credit or lack of available tags. This could potentially result in HOL blocking for Posted
transactions. Such a condition can be prevented if the user logic has the ability to check the
availability of transmit credit and tags for Non-Posted transactions. The core provides the
following signals for this purpose:

• pcie_tfc_nph_av[3:0]: These outputs indicate the Header Credit currently available for
Non-Posted requests (0000 = no credit available, 0001 = 1 credit available, 0010 = 2 credits,
…, 1111 = 15 or more credits available).

• pcie_tfc_npd_av[3:0]: These outputs indicate the Data Credit currently available for
Non-Posted requests (0000= no credit available, 0001 = 1 credit available, 0010 = 2 credits,
…, 1111 = 15 or more credits available).

• pcie_rq_tag_av[3:0]: These outputs indicate the number of free tags currently available
for allocation to Non-Posted requests (0000 = no tags available, 0001 = 1 tag available, 0010
= 2 tags available, …, 1111 = 15 or more tags available).

The user logic are optionally check these outputs before transmitting Non-Posted requests.
Because of internal pipeline delays, the information on these outputs is delayed by two user
clock cycles from the cycle in which the last byte of the descriptor is transferred on the requester
request interface, so the user logic must adjust these values taking into account any Non-Posted
requests transmitted in the two previous clock cycles. The following figure illustrates the
operation of these signals. In this example, the core initially had 7 Non-Posted Header Credits
and 3 Non-Posted Data Credits, and had 5 free tags available for allocation. Request 1 from the
user logic had a one-Dword payload, and therefore consumed 1 header and data credit each, and
also one tag. Requests 2 and 3 (straddled) in the next clock cycle 3 consumed 1 header credit
each, but no data credit. When the user logic presents Request 4 in clock cycle 4, it must adjust

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=213

the available credit and available tag count by taking into account Requests 1, 2 and 3, presented
in the two previous cycles. Request 4 consumes 1 header credit and one data credit. When the
user logic presents Request 5 in clock cycle 5, it must adjust the available credit and available tag
count by taking into account Requests 2, 3 and 4. If Request 5 consumes one header credit and
one data credit the available data credit is two cycles later, as also the number of available tags.
Thus, Request 6 must wait for the availability of new credit.

Figure 85: Operation of credit and tag availability signals on the Requester Request
Interface

Note: If the user logic opts in to use the pcie_tfc_* interface to monitor transmit credit availability,
ensure that no more non-posted packets go into the RQ interface after pcie_tfc_npd_av or
pcie_tfc_nph_av reaches 0. The integrated block will not lose the non-posted packets issued beyond
this point; however, the pcie_tfc_* interface will no longer provide an accurate credit accounting.

Similar transmit credit information is also provided in the cfg_fc_npd and cfg_fc_nph
interface when cfg_fc_sel is set to the Transmit credits available mode.

Maintaining Transaction Order

The core does not change the order of requests received from the user on its requester interface
when it transmits them on the link. In cases where the user logic would like to have precise
control of the order of transactions sent on the requester request interface and the completer
completion interface (typically to avoid Completions from passing Posted requests when using
strict ordering), the core provides a mechanism for the user logic to monitor the progress of a
Posted transaction through its pipeline, so that it can determine when to schedule a Completion
on the completer completion interface without the risk of passing a specific Posted request
transmitted from the requester request interface.

When transferring a Posted request (memory write transactions or messages) across the
requester request interface, the user logic are provide an optional 6-bit sequence number to the
PCIe® core in its first beat. The sequence number field seq_num0[5:0] within
s_axis_rq_tuser is used to send the sequence number for the first TLP starting in the beat,
and the field seq_num1[5:0] is used to send the sequence number for the second TLP

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=214

starting in the beat (if present). The user logic can then monitor the pcie_rq_seq_num0[5:0]
and pcie_rq_seq_num1[5:0] outputs of the core for these sequence numbers to appear.
When the transaction has reached a stage in the internal transmit pipeline of the core where a
Completion is unable to pass it, the core asserts pcie_rq_seq_num_vld0 for one cycle and
provides the sequence number of the Posted request on the pcie_rq_seq_num0[5:0]
output. If there is a second Posted request in the pipeline in the same cycle, the core also asserts
pcie_rq_seq_num_vld1 in the same cycle and provides the sequence number of the second
Posted request on the pcie_rq_seq_num1[5:0] output. The user logic must therefore
monitor both sets of the sequence number outputs to check if a specific TLP has reached the
pipeline stage. Any Completions transmitted by the core after the sequence number has
appeared on pcie_rq_seq_num0[5:0] or pcie_rq_seq_num1[5:0] is guaranteed not to
pass the corresponding Posted request in the internal transmit pipeline of the core.

Requester Completion Interface Operation (512-bits)

Figure 86: Requester Completion Interface Signals

Integrated Block for PCI Express User Application

PCIe Requester
Completion

Interface

AX14-Stream
Slave

PCIe Requester
Interface

m_axis_rc_tdata[511:0]

m_axis_rc_tready

m_axis_rc_tkeep[7:0]

m_axis_rc_tlast

byte_en[63:0]

is_sop0_ptr[1:0]

is_eop[3:0]

m_asix_rc_tuser[160:0]

AX14-Stream
Master

discontinue

m_axis_rc_tvalid

is_sop[3:0]

is_sop1_ptr[1:0]

is_sop2_ptr[1:0]
is_sop3_ptr[1:0]

is_eop0_ptr[3:0]

is_eop1_ptr[3:0]

is_eop2_ptr[3:0]

is_eop3_ptr[3:0]

parity[63:0]

X16714-072420

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=215

The previous figure illustrates the signals associated with the requester completion interface of
the core. When straddle is not enabled, the core delivers each TLP on this interface as an AXI4-
Stream packet. The packet starts with a 96-bit descriptor, followed by data in the case of
Completions with a payload.

The requester completion interface supports two distinct data alignment modes for transferring
payloads, which are during core customization in the Vivado® IDE. In the Dword-aligned mode,
the core transfers the first Dword of the Completion payload immediately after the last Dword of
the descriptor. In the 128-bit address aligned mode, the core starts the payload transfer in the
second 128-bit quarter of the 512-bit word, following the descriptor in the first quarter. The first
Dword of the payload can be in any of the four possible Dword positions in the second quarter,
and its offset f the is determined by address offset provided by the user logic when it sent the
request to the core (that is, the setting of the addr_offset input of the requester request
interface). Thus, the 128-bit address aligned mode can be used on the requester completion
interface only if the requester request interface is also configured to use the 128-bit address
aligned mode.

Requester Completion Descriptor Format

The requester completion interface of the core sends completion data received from the link to
the user application as AXI4-Stream packets. Each packet starts with a descriptor, and can have
payload data following the descriptor. The descriptor is always 12 bytes long, and is sent in the
first 12 bytes of the completion packet. When the completion data is split into multiple Split
Completions, the core sends each Split Completion as a separate AXI4-Stream packet, with its
own descriptor.

The format of the requester completion descriptor is illustrated in the following figure. The
individual fields of the requester completion descriptor are described in the following table.

Figure 87: Requester Completion Descriptor Format

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

Byte CountDword count
01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

TagTC
01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

Device /FunctionAttr

Poisoned Completion

63 32

Address [11:0]

Completion Status

Bus

Completer ID

Locked Read Completion

R R

Error CodeRequest Completed

Bus Device /Function

Requester ID
R

0

6495

R

X16715-030217

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=216

Table 61: Requester Completion Descriptor Fields

Bit Index Field Name Description

11:0 Lower Address

This field provides the 12 least significant bits of the first byte
referenced by the request. The core returns this address from its
Split Completion Table, where it stores the address and other
parameters of all pending Non-Posted requests on the requester
side.
When the Completion delivered has an error, only bits [6:0] of the
address should be considered valid.
This is a byte-level address.
For ATS translation requests, this field is reserved and implied to be
zero.

15:12 Error Code

Completion error code. These three bits encode error conditions
detected from error checking performed by the core on received
Completions. Its encodings are:
• 0000: Normal termination (all data received).
• 0001: The Completion TLP is Poisoned.
• 0010: Request terminated by a Completion with UR, CA or CRS

status.
• 0011: Request terminated by a Completion with no data.
• 0100: The current Completion being delivered has the same tag

of an outstanding request, but its Requester ID, TC, or Attr field
does not match with the parameters of the outstanding request.

• 0101: Error in starting address. The low address bits in the
Completion TLP header did not match with the starting address
of the next expected byte for the request.

• 0110: Invalid tag. This Completion does not match the tags of any
outstanding request.

• 0111: Invalid byte count. The byte count in the Completion was
higher than the total number of bytes expected for the request.

• 1000: Request terminated by a Completion timeout. The other
fields in the descriptor, except bit [30], the requester Function
[55:48], and the tag field [71:64], are invalid in this case, because
the descriptor does not correspond to a Completion TLP.

• 1001: Request terminated by a Function-Level Reset (FLR)
targeted at the Function that generated the request. The other
fields in the descriptor, except bit [30], the requester Function
[55:48], and the tag field [71:64], are invalid in this case, because
the descriptor does not correspond to a Completion TLP.

28:16 Byte Count

These 13 bits can have values in the range of 0 – 4,096 bytes. If a
Memory Read Request is completed using a single Completion, the
Byte Count value indicates Payload size in bytes. This field must be
set to 4 for I/O read Completions and I/O write Completions. The
byte count must be set to 1 while sending a Completion for a zero-
length memory read, and a dummy payload of 1 Dword must follow
the descriptor.
For each Memory Read Completion, the Byte Count field must
indicate the remaining number of bytes required to complete the
Request, including the number of bytes returned with the
Completion.
If a Memory Read Request is completed using multiple Completions,
the Byte Count value for each successive Completion is the value
indicated by the preceding Completion minus the number of bytes
returned with the preceding Completion.

29 Locked Read Completion This bit is set to 1 when the Completion is in response to a Locked
Read request. It is set to 0 for all other Completions.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=217

Table 61: Requester Completion Descriptor Fields (cont'd)

Bit Index Field Name Description

30 Request Completed

The core asserts this bit in the descriptor of the last Completion of a
request. The assertion of the bit indicates normal termination of the
request (because all data has been received), or abnormal
termination because of an error condition. The user logic can use
this indication to clear its outstanding request.
When tags are assigned by the user logic, the user logic should not
reassign a tag allocated to a request until it has received a
Completion Descriptor from the core with a matching tag field and
the Request Completed bit set to 1.

42:32 Dword Count

These 11 bits indicate the size of the payload of the current packet in
Dwords. Its range is 0 – 1K Dwords. This field is set to 1 for I/O read
Completions and 0 for I/O write Completions. The Dword count is
also set to 1 while transferring a Completion for a zero-length
memory read. In all other cases, the Dword count corresponds to the
actual number of Dwords in the payload of the current packet.

45:43 Completion Status

These bits reflect the setting of the Completion Status field of the
received Completion TLP. The valid settings are:
• 000: Successful Completion.
• 001: Unsupported Request (UR).
• 010: Configuration Request Retry Status (CRS).
• 100: Completer Abort (CA).

46 Poisoned Completion This bit is set to indicate that the Poison bit in the Completion TLP
was set. Data in the packet should then be considered corrupted.

63:48 Requester ID PCI Requester ID associated with the Completion.

71:64 Tag PCIe Tag associated with the Completion.

87:72 Completer ID

Completer ID received in the Completion TLP. (These 16 bits are
divided into an 8-bit bus number, 5-bit device number, and 3-bit
function number in the legacy interpretation mode. In ARI mode,
these 16 bits must be treated as an 8-bit bus number + 8-bit Function
number.)

91:89 Transaction Class (TC) PCIe Transaction Class (TC) associated with the Completion.

94:92 Attributes PCIe attributes associated with the Completion. Bit 92 is the No
Snoop bit, bit 93 is the Relaxed Ordering bit, and bit 94 is reserved.

Transfer of Completions with No Data

The following figure illustrates the transfer of a Completion TLP received from the link with no
associated payload across the requester completion interface. The timing diagrams in this section
assume that the Completions are not straddled on the interface. The straddle feature is described
in Straddle Option for RC Interface.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=218

Figure 88: Transfer of a Completion with no Data on the Requester Completion
Interface

The entire transfer of the Completion TLP takes only a single beat on the interface. The core
keeps the signal m_axis_rc_tvalid asserted over the duration of the packet. The user logic
can prolong a beat at any time by pulling down m_axis_rc_tready. The AXI4-Stream
interface signals m_axis_rc_tkeep (one per Dword position) indicate the valid descriptor
Dwords in the packet. That is, the m_axis_rc_tkeep bits are set to 1 contiguously from the
first Dword of the descriptor until its last Dword. The signal m_axis_rc_tlast is always
asserted, indicating that the packet ends in its current beat.

The m_axi_rc_tuser bus also includes a signal is_sop[0], which is asserted in the first beat
of every packet. The user logic are optionally use this signal to qualify the start of the descriptor
on the interface. When the straddle option is not in use, none of the other sop and eop
indications within m_axi_rc_tuser are relevant to the transfer of Completions.

Transfer of Completions with Data

In the Dword-aligned mode, the transfer starts with the three descriptor Dwords, followed
immediately by the payload Dwords. The entire TLP, consisting of the descriptor and payload, is
transferred as a single AXI4-Stream packet. Data within the payload is always a contiguous
stream of bytes when the length of the payload exceeds two Dwords. The positions of the first
valid byte within the first Dword of the payload and the last valid byte in the last Dword can then
be determined from the Lower Address and Byte Count fields of the Request Completion
Descriptor. When the payload size is 2 Dwords or less, the valid bytes in the payload are not be
contiguous. In these cases, the user logic must store the First Byte Enable and the Last Byte
Enable fields associated with each request sent out on the requester request interface and use
them to determine the valid bytes in the completion payload. The user logic are optionally use
the byte enable outputs byte_en[63:0] within the m_axi_rc_tuser bus to determine the
valid bytes in the payload, in the cases of both contiguous and non-contiguous payloads.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=219

The core keeps the signal m_axis_rc_tvalid asserted over the entire duration of the packet.
The user logic can prolong a beat at any time by pulling down m_axis_rc_tready. The AXI4-
Stream interface signals m_axis_rc_tkeep (one per Dword position) indicate the valid Dwords
in the packet including the descriptor and any null bytes inserted between the descriptor and the
payload. That is, the tkeep bits are set to 1 contiguously from the first Dword of the descriptor
until the last Dword of the payload. During the transfer of a packet, the m_axis_rc_tkeep bits
can be 0 only in the last beat of the packet, when the packet does not fill the entire width of the
interface. The signal m_axis_rc_tlast is always asserted in the last beat of the packet.

The m_axi_rc_tuser bus provides several optional signals that can be used to simplify the
logic associated with the user side of the interface, or to support additional features. The signal
is_sop[0] is asserted in the first beat of every packet, when its descriptor is on the bus. When
the straddle option is not in use, none of the other sop and eop indications within
m_axi_rc_tuser are relevant to the transfer of Completions. The byte enable outputs
byte_en[63:0] (one per byte lane) indicate the valid bytes in the payload. These signals are
asserted only when a valid payload byte is in the corresponding lane (it is not asserted for
descriptor or null bytes). The asserted byte enable bits are always contiguous from the start of
the payload, except when payload size is 2 Dwords or less. For Completion payloads of two
Dwords or less, the 1s on byte_en are not be contiguous. Another special case is that of a zero-
length memory read, when the core transfers a one-Dword payload with the byte_en bits all set
to 0. Thus, the user logic can, in all cases, use the byte_en signals directly to enable the writing
of the associated bytes into memory.

The following figure illustrates the Dword-aligned transfer of a Completion TLP received from
the link with an associated payload across the requester completion interface. For the purpose of
illustration, the size of the data block being written into user memory is assumed to be n Dwords,
where n = k*16 + 4, for some k > 1. The timing diagrams in this section assume that the
Completions are not straddled on the interface. The straddle feature is described in Straddle
Option for RC Interface.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=220

Figure 89: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode)

The following figure illustrates the address-aligned transfer of a Completion TLP received from
the link with an associated payload across the requester completion interface. In the example
timing diagrams, the starting Dword address of the data block being transferred (as conveyed in
the Lower Address field of the descriptor) is assumed to be (m*16 +1), for some integer m. The
size of the data block is assumed to be n Dwords, where n = k * 16 +4, for some k > 0. The
straddle option is not valid for 128-bit address aligned transfers, so the timing diagrams assume
that the Completions are not straddled on the interface.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 221Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=221

In the 128-bit address aligned mode, the delivery of the payload always starts in the beat
following the last byte of the descriptor. The first byte of the payload can appear on any of the
bytes lanes 16 - 32, based on the address of the first valid byte of the payload. The
m_axis_rc_tkeep bits are set to 1 contiguously from the first Dword of the descriptor until
the last Dword of the payload. The alignment of the first Dword on the data bus within its 128-
bit field is determined by the setting of the addr_offset[1:0] input of the requester request
interface when the user application sent the request to the core. The user application are
optionally use the byte enable outputs byte_en[63:0] to determine the valid bytes in the
payload.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 222Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=222

Figure 90: Transfer of a Completion with Data on the Requester Completion Interface
(128-bit Interface, Address Aligned Mode)

Straddle Option for RC Interface

The RC interface of the PCIe® core has the capability to start up to four Completions in the same
beat on the requester completion interface. This straddle option is enabled during core
customization in the Vivado® IDE. The straddle option can be used only with the Dword-aligned
mode.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=223

When the straddle option is enabled, Completion TLPs are transferred on the AXI4-Stream
interface as a continuous stream, with no packet boundaries. Thus, the signals
m_axis_rc_tkeep and m_axis_rc_tlast are not useful in determining the boundaries of
Completion TLPs delivered on the interface (the core sets m_axis_rc_tkeep to all 1s and
m_axis_rc_tlast to 0 permanently when the straddle option is in use.). Instead, delineation
of TLPs is performed using the following signals provided within the m_axis_rc_tuser bus.

• is_sop[3:0]: The core sets this output to a non-zero value in a beat when there is at least
one Completion TLP starting in the beat. When straddle is disabled, only is_sop[0] is valid
and is_sop[3:1] are permanently set to 0. When straddle is enabled, the settings are as
follows:

○ 0000: No new TLP starting in this beat

○ 0001: A single new TLP starts in this beat. Its start position is indicated by
is_sop0_ptr[1:0].

○ 0011: Two new TLPs are starting in this beat. is_sop0_ptr[1:0] provides the starting
position of the first TLP and is_sop1_ptr[1:0] provides the starting position of the
second TLP.

○ 0111: Three new TLPs are starting in this beat. is_sop0_ptr[1:0] provides the starting
position of the first TLP, is_sop1_ptr[1:0] provides the starting position of the second
TLP, and is_sop2_ptr[1:0] provides the starting position of the third TLP.

○ 1111: Four new TLPs are starting in this beat. is_sop0_ptr[1:0] provides the starting
position of the first TLP, is_sop1_ptr[1:0] provides the starting position of the second
TLP, is_sop2_ptr[1:0] provides the starting position of the third TLP, and
is_sop3_ptr[1:0] provides the starting position of the fourth TLP.

○ All other settings are reserved.

• is_sop0_ptr[1:0]: When is_sop[0] is set, this field indicates the offset of the first
Completion TLP starting in the current beat. Valid settings are 2'b00 (TLP starting at Dword
0), and 2'b01 (TLP starting at Dword 4), 2'b10 (TLP starting at Dword 8), and 2'b11 (TLP
starting at Dword 12).

• is_sop1_ptr[1:0]: When is_sop[1] is set, this field indicates the offset of the second
Completion TLP starting in the current beat. Valid settings are 2'b01 (TLP starting at Dword
4), 2'b10 (TLP starting at Dword 8), and 2'b11 (TLP starting at Dword 12).

• is_sop2_ptr[1:0]: When is_sop[2] is set, this field indicates the offset of the third
Completion TLP starting in the current beat. Valid settings are 2'b10 (TLP starting at Dword
8), and 2'b11 (TLP starting at Dword 12).

• is_sop3_ptr[1:0]: When is_sop[3] is set, this field indicates the offset of the fourth
Completion TLP starting in the current beat. Its only valid setting is 2'b11 (TLP starting at
Dword 12).

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=224

• is_eop[3:0]: These outputs signals that one or more TLPs are ending in this beat. These
outputs are set in the final beat of a TLP. When straddle is disabled, only is_eop[0] is valid
and is_eop[3:1] are permanently set to 0. When straddle is enabled, the settings are as
follows:

○ 0000: No TLPs are ending in this beat.

○ 0001: A single TLP is ending in this beat. The setting of is_eop0_ptr[3:0] provides the
offset of the last Dword of this TLP.

○ 0011: Two TLPs are ending in this beat. is_eop0_ptr[3:0] provides the offset of the
last Dword of the first TLP and is_eop1_ptr[3:0] provides the offset of the last Dword
of the second TLP.

○ 0111: Three TLPs are ending in this beat. is_eop0_ptr[3:0] provides the offset of the
last Dword of the first TLP, is_eop1_ptr[3:0] provides the offset of the last Dword of
the second TLP, and is_eop2_ptr[3:0] provides the offset of the last Dword of the
third TLP.

○ 1111: Four TLPs are ending in this beat. is_eop0_ptr[3:0] provides the offset of the
last Dword of the first TLP, is_eop1_ptr[3:0] provides the offset of the last Dword of
the second TLP, is_eop2_ptr[3:0] provides the offset of the last Dword of the third
TLP, and is_eop3_ptr[3:0] provides the offset of the last Dword of the fourth TLP.

○ All other settings are reserved.

• is_eop0_ptr[3:0]: When is_eop[0] is set, this field provides the offset of the last
Dword of the first TLP ending in this beat. It can take any value from 0 through 15. The offset
for the last byte can be determined from the starting address and length of the TLP, or from
the byte enable signals byte_en[63:0].

• is_eop1_ptr[3:0]: When is_eop[1] is set, this field provides the offset of the last
Dword of the second TLP ending in this beat. It can take any value from 6 through 15.

• is_eop2_ptr[3:0]: When is_eop[2] is set, this field provides the offset of the last
Dword of the third TLP ending in this beat. It can take any value from 10 through 15.

• is_eop3_ptr[3:0]: When is_eop[3] is set, this field provides the offset of the last
Dword of the fourth TLP ending in this beat. It can take values of 14 or 15.

The following figure illustrates the transfer of 11 Completion TLPs on the requester completion
interface when the straddle option is enabled. The first Completion TLP (COMPL 1) starts at
Dword position 0 of Beat 1 and ends in Dword position 2 of Beat 2. The second TLP (COMPL 2)
starts in Dword position 8 of the same beat and ends in Dword position 14. Thus, there is one
TLP starting in Beat 1, whose starting position is indicated by is_sop0_ptr, and two TLPs ending,
whose ending Dword positions are indicated by is_eop0_ptr and is_eop1_ptr, respectively.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=225

Beat 3 has COMPL 3 starting at Dword offset 8, ending at Dword offset10. There is also a
second TLP (CMPL 4) in the same beat, starting at Dword offset 12 and continuing to the next
beat. In this beat, is_sop0_ptr points to the starting Dword offset of COMPL 3 and
is_sop1_ptr points to the starting Dword offset of COMPL 4. is_eop0_ptr points to the
offset of the last Dword offset of COMPL 4.

Beat 4 has COMPL 4 ending with Dword offset 0, and has three new complete TLPs in it
(COMPL 5, 6 and 7). The starting Dword offsets of the new Completions 5, 6 and 7 are provided
by is_sop0_ptr, is_sop1_ptr, and is_sop2_ptr, respectively. The ending offsets of
Completions 4, 5, 6 and 7 are indicated by is_eop0_ptr, is_eop1_ptr, is_eop2_ptr and
is_eop3_ptr, respectively.

Finally, Beat 5 contains four complete TLPs (COMPL 8 – 11). Their starting Dword offsets are
signaled by is_sop0_ptr, is_sop1_ptr, is_sop2_ptr and is_sop3_ptr, respectively.
The ending offsets are indicated by is_eop0_ptr, is_eop1_ptr, is_eop2_ptr and
is_eop3_ptr, respectively. Thus, all the four SOP and EOP pointers provide valid information
in this beat.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=226

Figure 91: Transfer of Completion TLPs on the Requester Completion Interface with
the Straddle Option Enabled

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=227

Aborting a Completion Transfer

For any Completion that includes an associated payload, the core signals an error in the
transferred payload by asserting the discontinue signal in the m_axis_rc_tuser bus in the last
beat of the packet. This occurs when the core has detected an uncorrectable error while reading
data from its internal memories. The user application must discard the entire packet when it has
detected the signal discontinue asserted in the last beat of a packet.

When the straddle option is in use, the core does not start a new Completion TLP in the same
beat when it has asserted discontinue to abort the Completion TLP ending in the beat.

Handling of Completion Errors

When a Completion TLP is received from the link, the core matches it against the outstanding
requests in the Split Completion Table to determine the corresponding request, and compares
the fields in its header against the expected values to detect any error conditions. The core then
signals the error conditions in a 4-bit error code sent to the user logic as part of the completion
descriptor. The core also indicates the last completion for a request by setting the Request
Completed bit (bit 30) in the descriptor. The error conditions signaled by the various error codes
are described below:

• 0010: Request terminated by a Completion TLP with UR, CA or CRS status. In this case, there
is no data associated with the completion, and the Request Completed bit in the completion
descriptor is set. On receiving such a Completion from the core, the user logic can discard the
corresponding request.

• 0011: Read Request terminated by a Completion TLP with incorrect byte count. This
condition occurs when a Completion TLP is received with a byte count not matching the
expected count. The Request Completed bit in the completion descriptor is set. On receiving
such a completion from the core, the user logic can discard the corresponding request.

• 0100: This code indicates the case when the current Completion being delivered has the
same tag of an outstanding request, but its Requester ID, TC, or Attr fields did not match with
the parameters of the outstanding request. The user logic should discard any data that follows
the descriptor. In addition, if the Request Completed bit in the descriptor is not set, the user
logic should continue to discard the data subsequent completions for this tag until it receives
a completion descriptor with the Request Completed bit set. On receiving a completion
descriptor with the Request Completed bit set, the user logic can remove all state associated
with the request.

• 0101: Error in starting address. The low address bits in the Completion TLP header did not
match with the starting address of the next expected byte for the request. The user logic
should discard any data that follows the descriptor. In addition, if the Request Completed bit
in the descriptor is not set, the user logic should continue to discard the data subsequent
Completions for this tag until it receives a completion descriptor with the Request Completed
bit set. On receiving a completion descriptor with the Request Completed bit set, the user
logic can discard the corresponding request.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=228

• 0110: Invalid tag. This error code indicates that the tag in the Completion TLP did not match
with the tags of any outstanding request. The user logic should discard any data following the
descriptor.

• 0111: Invalid byte count. The byte count in the Completion was higher than the total number
of bytes expected for the request. In this case, the Request Completed bit in the completion
descriptor is also set. On receiving such a completion from the core, the user logic can discard
the corresponding request.

• 1000: Request terminated by a Completion timeout. This error code is used when an
outstanding request times out without receiving a Completion from the link. The core
maintains a completion timer for each outstanding request, and responds to a completion
timeout by transmitting a dummy completion descriptor on the requester completion
interface to the user logic, so that the user logic can terminate the pending request, or retry
the request. Because this descriptor does not correspond to a Completion TLP received from
the link, only the Request Completed bit (bit 30), the tag field (bits 71:64) and the requester
Function field (bits [55:48]) are valid in this descriptor.

• 1000: Request terminated by a Function-Level Reset (FLR) targeting the Function that
generated the request. In this case, the core transmits a dummy completion descriptor on the
requester completion interface to the user logic, so that the user logic can terminate the
pending request. Because this descriptor does not correspond to a Completion TLP received
from the link, only the Request Completed bit (bit 30), the tag field (bits 71:64) and the
requester Function field (bits [55:48]) are valid in this descriptor.

When the tags are managed internally by the core, logic within the core ensures that a tag
allocated to a pending request is not reused until either all the Completions for the request were
received or the request was timed out. When tags are managed by the user logic, however, the
user logic must ensure that a tag assigned to a request is not reused until the core has signaled
the termination of the request by setting the Request Completed bit in the completion
descriptor. The user logic can close out a pending request on receiving a completion with a non-
zero error code, but should not free the associated tag if the Request Completed bit in the
completion descriptor is not set. Such a situation might occur when a request receives multiple
split completions, one of which has an error. In this case the core can continue to receive
Completion TLPs for the pending request even after the error was detected, and these
Completions would be incorrectly matched to a different request if its tag was reassigned too
soon. Note that, in some cases, the core might need to wait for the request to time out even
when a split completion was received with an error, before it can allow the tag to be reused.

Note: Each parity bit corresponds to parity of one byte in AXIS tdata. There are 64 bit parity bits
corresponding to the 512 bit AXI tdata (and 32 bit parity bits corresponding to 256 bit AXI tdata). The
received parity bits, on m_axis_cq_tuser and m_axis_rc_tuser signals, are valid for the following::

• Descriptor bytes in AXIS tdata.

• The valid payload byte in AXIS tdata indicated by the byte_en field in the AXIS tuser. For example,
if byte_en[63:0]=0x0000_0000_0000_FFFF, then only lower 16 parity bits are valid. If
byte_en[63:0] = 0xFFFF_FFFF_FFFF_FFFF, then all 64 parity bits are enabled.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=229

Power Management
The core supports these power management modes:

• Active State Power Management (ASPM)

• Programmed Power Management (PPM)

Implementing these power management functions as part of the PCI Express design enables the
PCI Express® hierarchy to seamlessly exchange power-management messages to save system
power. All power management message identification functions are implemented. The
subsections in this section describe the user logic definition to support the above modes of
power management.

For additional information on ASPM and PPM implementation, see the PCI Express Base
Specification.

Active State Power Management
The core advertises an N_FTS value of 255 to ensure proper alignment when exiting L0s. If the
N_FTS value is modified, you must ensure enough FTS sequences are received to properly align
and avoid transition into the Recovery state.

The Active State Power Management (ASPM) functionality is autonomous and transparent from
a user-logic function perspective. The core supports the conditions required for ASPM. The
integrated block supports ASPM L0s and ASPM L1. L0s and L1 should not be enabled in parallel.

Note: ASPM is not supported in non-synchronous clocking mode.

Note: L0s is not supported for Gen3 capable designs. It is supported only on designs generated for Gen1
and Gen2.

Programmed Power Management
To achieve considerable power savings on the PCI Express® hierarchy tree, the core supports
these link states of Programmed Power Management (PPM):

• L0: Active State (data exchange state)

• L1: Higher Latency, lower power standby state

• L3: Link Off State

The Programmed Power Management Protocol is initiated by the Downstream Component/
Upstream Port.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 230Send Feedback

http://www.pcisig.com/specifications
http://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=230

PPM L0 State

The L0 state represents normal operation and is transparent to the user logic. The core reaches
the L0 (active state) after a successful initialization and training of the PCI Express® Link(s) as per
the protocol.

PPM L1 State

These steps outline the transition of the core to the PPM L1 state:

1. The transition to a lower power PPM L1 state is always initiated by an upstream device, by
programming the PCI Express® device power state to D3-hot (or to D1 or D2, if they are
supported).

2. The device power state is communicated to the user logic through the
cfg_function_power_state output.

3. The core then throttles/stalls the user logic from initiating any new transactions on the user
interface by deasserting s_axis_rq_tready. Any pending transactions on the user
interface are, however, accepted fully and can be completed later.

• The core is configured as an Endpoint and the User Configuration Space is enabled. In this
situation, the user application must refrain from sending new Request TLPs if
cfg_function_power_state indicates non-D0, but the user application can return
Completions to Configuration transactions targeting User Configuration space.

• The core is configured as a Root Port. To be compliant in this situation, the user application
should refrain from sending new Requests if cfg_function_power_state indicates
non-D0.

4. The core exchanges appropriate power management DLLPs with its link partner to
successfully transition the link to a lower power PPM L1 state. This action is transparent to
the user logic.

5. All user transactions are stalled for the duration of time when the device power state is non-
D0, with the exceptions indicated in step 3.

PPM L3 State

These steps outline the transition of the Endpoint for PCI Express® to the PPM L3 state:

1. The core negotiates a transition to the L23 Ready Link State upon receiving a PME_Turn_Off
message from the upstream link partner.

2. Upon receiving a PME_Turn_Off message, the core initiates a handshake with the user logic
through cfg_power_state_change_interrupt (as shown in the following table) and expects a
cfg_power_state_change_ack back from the user logic.

3. A successful handshake results in a transmission of the Power Management Turn-off
Acknowledge (PME-turnoff_ack) Message by the core to its upstream link partner.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 231Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=231

4. The core closes all its interfaces, disables the Physical/Data-Link/Transaction layers and is
ready for removal of power to the core.

There are two exceptions to this rule:

• The core is configured as an Endpoint and the User Configuration Space is enabled. In this
situation, the user application must refrain from sending new Request TLPs if
cfg_function_power_state indicates non-D0, but the user application can return
Completions to Configuration transactions targeting User Configuration space.

• The core is configured as a Root Port. To be compliant in this situation, the user application
should refrain from sending new Requests if cfg_function_power_state indicates
non-D0.

Table 62: Power Management Handshaking Signals

Port Name Direction Description

cfg_power_state_change_interrupt Output

Asserted if a power-down request TLP
is received from the upstream device.
After assertion,
cfg_power_state_change_interru
pt remains asserted until the user
application asserts
cfg_power_state_change_ack.

cfg_power_state_change_ack Input Asserted by the user application when
it is safe to power down.

Power-down negotiation follows these steps:

1. Before power and clock are turned off, the Root Complex or the Hot-Plug controller in a
downstream switch issues a PME_Turn_Off broadcast message.

2. When the core receives this TLP, it asserts cfg_power_state_change_interrupt to
the user application and starts polling the cfg_power_state_change_ack input.

3. When the user application detects the assertion of cfg_to_turnoff, it must complete any
packet in progress and stop generating any new packets. After the user application is ready to
be turned off, it asserts cfg_power_state_change_ack to the core. After assertion of
cfg_power_state_change_ack, the user application is committed to being turned off.

4. The core sends a PME_TO_Ack message when it detects assertion of
cfg_power_state_change_ack.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 232Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=232

Figure 92: Power Management Handshaking: 64-Bit

user_clk_out

rx_data[63:0]*

cfg_to_turnoff

cfg_turnoff_ok

tx_data[63:0]*

PME_Turn_Off

PME_TO_ACK

* Internal signal not appearing on User Interface

X12465

Generating Interrupt Requests
See the cfg_interrupt_msi* and cfg_interrupt_msix_* descriptions in the tables in
Configuration Interrupt Controller Interface.

Note: This section only applies to the Endpoint Configuration of the Versal ACAP Integrated Block for
PCIe® core.

The core supports sending interrupt requests as either legacy, Message MSI, or MSI-X interrupts.
The mode is programmed using the MSI Enable bit in the Message Control register of the MSI
Capability Structure and the MSI-X Enable bit in the MSI-X Message Control register of the MSI-
X Capability Structure.

The state of the MSI Enable and MSI-X Enabled bits is reflected by the
cfg_interrupt_msi_enable and cfg_interrupt_msix_enable outputs, respectively.
The following table describes the Interrupt Mode to which the device has been programmed,
based on the cfg_interrupt_msi_enable and cfg_interrupt_msix_enable outputs of
the core.

Table 63: Interrupt Modes

cfg_interrupt_msixenable=0 cfg_interrupt_msixenable=1

cfg_interrupt_msi_enable = 0
Legacy Interrupt (INTx) mode.
The cfg_interrupt interface only sends
INTx messages.

MSI-X mode.
MSI-X interrupts can be generated
using the cfg_interrupt interface.

cfg_interrupt_msi_enable = 1 MSI mode. The cfg_interrupt interface
only sends MSI interrupts (MWr TLPs).

Undefined.
System software is not supposed to
permit this. However, the cfg_interrupt
interface is active and sends MSI
interrupts (MWr TLPs) if you choose to
do so.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=233

The MSI Enable bit in the MSI control register, the MSI-X Enable bit in the MSI-X Control register,
and the Interrupt Disable bit in the PCI Command register are programmed by the Root Complex.
The user application has no direct control over these bits.

The Internal Interrupt Controller in the core only generates Legacy Interrupts and MSI Interrupts.
MSI-X Interrupts need to be generated by the user application and presented on the transmit
AXI4-Stream interface. The status of cfg_interrupt_msi_enable determines the type of
interrupt generated by the internal Interrupt Controller:

If the MSI Enable bit is set to a 1, then the core generates MSI requests by sending Memory
Write TLPs. If the MSI Enable bit is set to 0, the core generates legacy interrupt messages as long
as the Interrupt Disable bit in the PCI Command register is set to 0.

• cfg_interrupt_msi_enable = 0: Legacy interrupt

• cfg_interrupt_msi_enable = 1: MSI

• Command register bit 10 = 0: INTx interrupts enabled

• Command register bit 10 = 1: INTx interrupts disabled (requests are blocked by the core)

The user application can monitor cfg_function_status to check whether INTx interrupts
are enabled or disabled. For more information, see Configuration Status Interface.

The core can be configured to advertise multiple interrupt modes support, however at run time,
only one interrupt mode can be enabled at a time across all functions. Xilinx does not
recommend enabling multiple interrupt modes at once, however in the event that MSI and MSI-X
interrupts simultaneous enablement cannot be avoided, MSI-X interrupt must be implemented
externally of the core and interrupt packet is formed and sent through the Requester Request
Interface Port (s_axis_rq).

The user application requests interrupt service in one of two ways, each of which is described in
the following section.

Legacy Interrupt Mode
• The user application first asserts cfg_interrupt_int and cfg_interrupt_pending to

assert the interrupt.

• The core then asserts cfg_interrupt_sent to indicate the interrupt is accepted. If the Interrupt
Disable bit in the PCI Command register is set to 0, the core sends an assert interrupt message
(Assert_INTA). After the interrupt has been serviced, the user application deasserts
cfg_interrupt_int.

• After the user application deasserts cfg_interrupt_int, the core sends a deassert
interrupt message (Deassert_INTA). This is indicated by the assertion of
cfg_interrupt_sent a second time.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=234

cfg_interrupt_int must be asserted until the user application receives confirmation of the
assert interrupt message (Assert_INTA), which is indicated by the assertion of
cfg_interrupt_sent, and the interrupt has been serviced/cleared by the Root's Interrupt
Service Routine (ISR). Deasserting cfg_interrupt_int causes the core to send the deassert
interrupt message (Deassert_INTA). cfg_interrupt_pending must be asserted along with
the assertion of cfg_interrupt_int until the interrupt has been serviced, otherwise, the
interrupt status bit in the status register is not updated correctly. cfg_interrupt_pending
can be deasserted along with the deassertion of cfg_interrupt_int after the first assertion
of cfg_interrupt_sent. When the software/Root's ISR receives an assert interrupt message,
it reads this interrupt status bit to determine whether there is an interrupt pending for this
function.

Note: For PCIE4C block, INTx interrupts are not blocked by the core when the interrupt disable bit is set in
command register, i.e.,Command Register bit 10 = 1. The user application must monitor
cfg_function_status to check whether INTx interrupts are enabled or disabled, and assert
cfg_interrupt_int only if interrupts are enabled in the command register.

Figure 93: Legacy Interrupt Signaling

MSI Mode
The user application first asserts a value on cfg_interrupt_msi_int, as shown in the
previous figure. The core asserts cfg_interrupt_msi_sent to indicate that the interrupt is
accepted and the core sends an MSI Memory Write TLP.

Figure 94: MSI Mode

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=235

The MSI request is either a 32-bit addressable Memory Write TLP or a 64-bit addressable
Memory Write TLP. The address is taken from the Message Address and Message Upper Address
fields of the MSI Capability Structure, while the payload is taken from the Message Data field.
These values are programmed by system software through configuration writes to the MSI
Capability structure. When the core is configured for Multi-Vector MSI, system software can
permit Multi-Vector MSI messages by programming a non-zero value to the Multiple Message
Enable field.

The type of MSI TLP sent (32-bit addressable or 64-bit addressable) depends on the value of the
Upper Address field in the MSI capability structure. By default, MSI messages are sent as 32-bit
addressable Memory Write TLPs. MSI messages use 64-bit addressable Memory Write TLPs only
if the system software programs a non-zero value into the Upper Address register.

When Multi-Vector MSI messages are enabled, the user application can override one or more of
the lower-order bits in the Message Data field of each transmitted MSI TLP to differentiate
between the various MSI messages sent upstream. The number of lower-order bits in the
Message Data field available to the user application is determined by the lesser of the value of
the Multiple Message Capable field, as set in the IP catalog, and the Multiple Message Enable
field, as set by system software and available as the cfg_interrupt_msi_mmenable[2:0]
core output. The core masks any bits in cfg_interrupt_msi_select which are not
configured by system software through Multiple Message Enable.

This pseudo code shows the processing required:

// Value MSI_Vector_Num must be in range: 0 £ MSI_Vector_Num £
(2^cfg_interrupt_mmenable)-1

if (cfg_interrupt_msienable) { // MSI Enabled
 if (cfg_interrupt_mmenable > 0) { // Multi-Vector MSI Enabled
 cfg_interrupt_msi_int[MSI_Vector_Num] = 1;
 } else { // Single-Vector MSI Enabled
 cfg_interrupt_msi_int[MSI_Vector_Num] = 0;
 }
} else {
 // Legacy Interrupts Enabled
}

For example:

1. If cfg_interrupt_mmenable[2:0] == 000b, that is, 1 MSI Vector Enabled, then
cfg_interrupt_msi_int = 01h;

2. If cfg_interrupt_mmenable[2:0] == 101b, that is, 32 MSI Vectors Enabled, then
cfg_interrupt_msi_int = {32'b1 << {MSI_Vector#}};

where MSI_Vector# is a 5-bit value and is allowed to be 00000b ≤ MSI_Vector# ≤
11111b.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=236

If Per-Vector Masking is enabled, first verify that the vector being signaled is not masked in the
Mask register. This is done by reading this register on the Configuration interface (the core does
not look at the Mask register).

MSI-X Mode
The core supports the MSI-X interrupt and its signaling, which is shown in the following figure.
The MSI-X vector table and the MSI-X Pending Bit Array need to be implemented as part of the
user logic, by claiming a BAR aperture if the built-in MSI-X vector tables are not used.

Figure 95: MSI-X Mode

MSI-X Mode with Built-in MSI-X Vector Tables

The core optionally supports built-in MSI-X vector tables including the Pending Bit Array.

• As shown in the following figure, the user application first asserts
cfg_interrupt_msix_int with the vector number set in cfg_interrupt_msi_int.

• The core asserts cfg_interrupt_msi_sent to signal that the interrupt is accepted. If
cfg_interrupt_msix_vec_pending_status is clear, the core sends a MSI-X Memory
Write TLP. Otherwise, the core waits to send a MSI-X Memory Write TLP until the function
mask is cleared.

Figure 96: MSI-X Signaling with Built-In MSI-X Vector Tables

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=237

• Instead of generating an interrupt, the user application can query or clear the Pending Bit
Array by additionally setting cfg_interrupt_msix_vec_pending to 2'b01 or 2'b10
respectively, as shown in the following figure.

• In the query and clear cases, cfg_interrupt_msix_vec_pending_status reflects the
pending status before the query or clear.

• cfg_interrupt_msi_int[31:0] is a shared signal between MSI [31:0] and MSI-X [7:0].

Figure 97: MSI-X Pending Bit Array Query and Clear

Note: Applications that need to generate MSI/MSI-X interrupts with traffic class bits not equal to 0 or
address translation bits not equal to 0 must use the RQ interface to generate the interrupt (memory write
descriptor).

Receive Message Interface
The core provides a separate receive-message interface which the user application can use to
receive indications of messages received from the link. When the receive message interface is
enabled, the integrated block signals the arrival of a message from the link by setting the
cfg_msg_received_type[4:0] output to indicate the type of message (see the following
table) and pulsing the cfg_msg_received signal for one or more cycles. The duration of
assertion of cfg_msg_received is determined by the type of message received (see Table
64: Message Type Encoding on Receive Message Interface). When cfg_msg_received is
active-High, the integrated block transfers any parameters associated with the message on the
bus 8 bits at a time on the bus cfg_msg_received_data. The parameters transferred on this
bus in each cycle of cfg_msg_received assertion for various message types are listed in the
Table 65: Message Parameters on Receive Message Interface table. For Vendor-Defined
Messages, the integrated block transfers only the first Dword of any associated payload across
this interface. When larger payloads are in use, the completer request interface should be used
for the delivery of messages.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=238

Table 64: Message Type Encoding on Receive Message Interface

cfg_msg_received_type[4:0] Message Type
0 ERR_COR

1 ERR_NONFATAL

2 ERR_FATAL

3 Assert_INTA

4 Deassert_ INTA

5 Assert_INTB

6 Deassert_ INTB

7 Assert_INTC

8 Deassert_ INTC

9 Assert_INTD

10 Deassert_ INTD

11 PM_PME

12 PME_TO_Ack

13 PME_Turn_Off

14 PM_Active_State_Nak

15 Set_Slot_Power_Limit

16 Latency Tolerance Reporting (LTR)

17 Optimized Buffer Flush/Fill (OBFF)

18 Unlock

19 Vendor_Defined Type 0

20 Vendor_Defined Type 1

21 ATS Invalid Request

22 ATS Invalid Completion

23 ATS Page Request

24 ATS PRG Response

25 – 31 Reserved

Table 65: Message Parameters on Receive Message Interface

Message Type
Number of Cycles of

cfg_msg_received
Assertion

Parameter Transferred on
cfg_msg_received_data[7:0]

ERR_COR, ERR_NONFATAL,
ERR_FATAL 2

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Assert_INTx, Deassert_INTx 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

PM_PME, PME_TO_Ack,
PME_Turn_off,
PM_Active_State_Nak

2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 239Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=239

Table 65: Message Parameters on Receive Message Interface (cont'd)

Message Type
Number of Cycles of

cfg_msg_received
Assertion

Parameter Transferred on
cfg_msg_received_data[7:0]

Set_Slot_Power_Limit 6

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: bits [7:0] of payload
Cycle 4: bits [15:8] of payload
Cycle 5: bits [23:16] of payload
Cycle 6: bits [31:24] of payload

Latency Tolerance Reporting
(LTR) 6

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: bits [7:0] of Snoop Latency
Cycle 4: bits [15:8] of Snoop Latency
Cycle 5: bits [7:0] of No-Snoop Latency
Cycle 6: bits [15:8] of No-Snoop Latency

Optimized Buffer Flush/Fill
(OBFF) 3

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: OBFF Code

Unlock 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Vendor_Defined Type 0
4 cycles when no data

present, 8 cycles when data
present.

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: Vendor ID[7:0]
Cycle 4: Vendor ID[15:8]
Cycle 5: bits [7:0] of payload
Cycle 6: bits [15:8] of payload
Cycle 7: bits [23:16] of payload
Cycle 8: bits [31:24] of payload

Vendor_Defined Type 1
4 cycles when no data

present, 8 cycles when data
present.

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: Vendor ID[7:0]
Cycle 4: Vendor ID[15:8]
Cycle 5: bits [7:0] of payload
Cycle 6: bits [15:8] of payload
Cycle 7: bits [23:16] of payload
Cycle 8: bits [31:24] of payload

ATS Invalid Request 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

ATS Invalid Completion 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

ATS Page Request 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

ATS PRG Response 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=240

The following timing diagram showing the example of a Set_Slot_Power_Limit message on
the receive message interface. This message has an associated one-Dword payload. For this
message, the parameters are transferred over six consecutive cycles. The following information
appears on the cfg_msg_received_data bus in each cycle:

• Cycle 1: Bus number of Requester ID

• Cycle 2: Device/Function Number of Requester ID

• Cycle 3: Bits [7:0] of the payload Dword

• Cycle 4: Bits [15:8] of the payload Dword

• Cycle 5: Bits [23:16] of the payload Dword

• Cycle 6: Bits [31:24] of the payload Dword

Figure 98: Receive Message Interface

user_clk

cfg_msg_received

cfg_msg_received_type[4:0]

cfg_msg_received_data[7:0]

0xF

Bus Dev/Fn PL[7:0] PL[15:8] PL[31:24]PL[23:16]

X12344

The integrated block inserts a gap of at least one clock cycle between successive pulses on the
cfg_msg_received output. There is no mechanism to apply back pressure on the message
indications delivered through the receive message interface. When using this interface, the user
logic must always be ready to receive message indications.

Configuration Management Interface
The ports used by Configuration Management Interface is described in Configuration
Management Interface. Root Ports must use the Configuration Management Interface to set up
the Configuration Space. Endpoints can also use the Configuration Management Interface to read
and write; however, care must be taken to avoid adverse system side effects.

The user application must supply the address as a Dword address, not a byte address.

TIP: To calculate the Dword address for a register, divide the byte address by four.

For example:

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 241Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=241

For the Command/Status register in the PCI Configuration Space Header:

• The Dword address of is 01h.

Note: The byte address is 04h.

For BAR0:

• The Dword address is 04h.

Note: The byte address is 10h.

To read any register in configuration space, the user application drives the register Dword
address onto cfg_mgmt_addr[9:0]. cfg_mgmt_function_number[7:0] selects the PCI
Function associated with the configuration register. The core drives the content of the addressed
register onto cfg_mgmt_read_data[31:0]. The value on cfg_mgmt_read_data[31:0] is
qualified by signal assertion on cfg_mgmt_read_write_done. The following figure illustrates
an example with read from the Configuration Space.

Figure 99: cfg_mgmt_read_type0_type1

user_clk

cfg_mgmt_addr

cfg_mgmt_write

cfg_mgmt_write_data

cfg_mgmt_byte_enable

cfg_mgmt_read_write_done

cfg_mgmt_read

cfg_mgmt_read_data

cfg_mgmt_type1_cfg_reg_access

X14333

To write any register in configuration space, the user logic places the address on the
cfg_mgmt_addr[9:0], the function number on cfg_mgmt_function_number[7:0], write
data on cfg_mgmt_write_data, byte-valid on cfg_mgmt_byte_enable [3:0], and
asserts the cfg_mgmt_write signal. In response, the core asserts the
cfg_mgmt_read_write_done signal when the write is complete (which can take several
cycles). The user logic must keep cfg_mgmt_addr, cfg_mgmt_function_number,
cfg_mgmt_write_data, cfg_mgmt_byte_enable and cfg_mgmt_write stable until
cfg_mgmt_read_write_done is asserted. The user logic must also deassert
cfg_mgmt_write in the cycle following the cfg_mgmt_read_write_done from the core.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=242

Figure 100: cfg_mgmt_write_type0

user_clk

cfg_mgmt_addr

cfg_mgmt_write

cfg_mgmt_write_data

cfg_mgmt_byte_enable

cfg_mgmt_read_write_done

cfg_mgmt_read

cfg_mgmt_read_data

cfg_mgmt_type1_cfg_reg_access

X14334

When the core is configured in the Root Port mode, when you assert
cfg_mgmt_debug_access input during a write to a Type-1 PCI™ Configuration register forces
a write into certain read-only fields of the register.

Figure 101: cfg_mgmt_debug_access

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 243Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=243

Link Training: 2-Lane, 4-Lane, 8-Lane, and 16-
Lane Components

The 2-lane, 4-lane, and 8-lane cores can operate at less than the maximum lane width as required
by the PCI Express® Base Specification. Two cases cause the core to operate at less than its
specified maximum lane width, as defined in these subsections.

Link Partner Supports Fewer Lanes
When the 2-lane core is connected to a device that implements only 1 lane, the 2-lane core
trains and operates as a 1-lane device using lane 0.

When the 4-lane core is connected to a device that implements 1 lane, the 4-lane core trains and
operates as a 1-lane device using lane 0, as shown in the following figure. Similarly, if the 4-lane
core is connected to a 2-lane device, the core trains and operates as a 2-lane device using lanes 0
and 1.

When the 8-lane core is connected to a device that only implements 4 lanes, it trains and
operates as a 4-lane device using lanes 0-3. Additionally, if the connected device only
implements 1 or 2 lanes, the 8-lane core trains and operates as a 1- or 2-lane device.

Figure 102: Scaling of 4-Lane Endpoint Block from 4-Lane to 1-Lane Operation

Lane 0 Lane 3Lane 2Lane 1

4-lane Downstream Port

Lane 0 Lane 3Lane 2Lane 1

Lane 0 Lane 3Lane 2Lane 1

1-lane Downstream Port

Lane 0 Lane 3Lane 2Lane 1

4-lane Integrated Block 4-lane Integrated Block

Upstream DeviceUpstream Device

X12470

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 244Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=244

Lane Becomes Faulty
If a link becomes faulty after training to the maximum lane width supported by the core and the
link partner device, the core attempts to recover and train to a lower lane width, if available. If
lane 0 becomes faulty, the link is irrecoverably lost. If any or all of lanes 1–7 become faulty, the
link goes into recovery and attempts to recover the largest viable link with whichever lanes are
still operational.

For example, when using the 8-lane core, loss of lane 1 yields a recovery to 1-lane operation on
lane 0, whereas the loss of lane 6 yields a recovery to 4-lane operation on lanes 0-3. After
recovery occurs, if the failed lane(s) becomes alive again, the core does not attempt to recover to
a wider link width. The only way a wider link width can occur is if the link actually goes down and
it attempts to retrain from scratch.

The user_clk clock output is a fixed frequency configured in IP catalog. user_clk does not
shift frequencies in case of link recovery or training down.

Lane Reversal
The integrated block supports limited lane reversal capabilities and therefore provides flexibility
in the design of the board for the link partner. The link partner can choose to lay out the board
with reversed lane numbers and the integrated block continues to link train successfully and
operate normally. The configurations that have lane reversal support are 16x, x8 and x4
(excluding downshift modes). Downshift refers to the link width negotiation process that occurs
when link partners have different lane width capabilities advertised. As a result of lane width
negotiation, the link partners negotiate down to the smaller of the advertised lane widths. The
following table describes the several possible combinations including downshift modes and
availability of lane reversal support.

Table 66: Lane Reversal Support

Integrated Block
Advertised Lane

Width
Negotiated Lane

Width

Lane Number Mapping (Endpoint Link
Partner) Lane Reversal

Supported
Endpoint Link Partner

x16 x16 Lane 0... Lane15 Lane15... Lane 0 Yes

x16 x8 Lane 0... Lane7 Lane7... Lane 0 No

x16 x4 Lane 0... Lane3 Lane3... Lane 0 No

x16 x2 Lane 0... Lane1 Lane1... Lane 0 No

x8 x8 Lane 0... Lane 7 Lane 7... Lane 0 Yes

x8 x4 Lane 0... Lane 3 Lane 7... Lane 4 No1

x8 x2 Lane 0... Lane 3 Lane 7... Lane 6 No1

x4 x4 Lane 0... Lane 3 Lane 3... Lane 0 Yes

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 245Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=245

Table 66: Lane Reversal Support (cont'd)

Integrated Block
Advertised Lane

Width
Negotiated Lane

Width

Lane Number Mapping (Endpoint Link
Partner) Lane Reversal

Supported
Endpoint Link Partner

x4 x2 Lane 0... Lane 1 Lane 3... Lane 2 No1

x2 x2 Lane 0... Lane 1 Lane 1... Lane 0 Yes

x2 x1 Lane 0... Lane 1 Lane 1 No1

Notes:
1. When the lanes are reversed in the board layout and a downshift adapter card is inserted between the Endpoint and

link partner, Lane 0 of the link partner remains unconnected (as shown by the lane mapping in this table) and
therefore does not link train.

Chapter 4: Designing with the Core

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 246Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=246

Chapter 5

Design Flow Steps
This section describes customizing and generating the core, constraining the core, and the
simulation, synthesis, and implementation steps that are specific to this IP core. More detailed
information about the standard Vivado® design flows and the IP integrator can be found in the
following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

• Vivado Design Suite User Guide: Designing with IP (UG896)

• Vivado Design Suite User Guide: Getting Started (UG910)

• Vivado Design Suite User Guide: Logic Simulation (UG900)

Customizing and Generating the Core
This section includes information about using Xilinx® tools to customize and generate the core in
the Vivado® Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado Design
Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) for detailed information. IP
integrator might auto-compute certain configuration values when validating or generating the
design. To check whether the values do change, see the description of the parameter in this
chapter. To view the parameter value, run the validate_bd_design command in the Tcl
console.

You can customize the IP for use in your design by specifying values for the various parameters
associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or right-
click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) and the Vivado
Design Suite User Guide: Getting Started (UG910).

Figures in this chapter are illustrations of the Vivado IDE. The layout depicted here might vary
from the current version.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 247Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=247

The Customize IP dialog box for the Versal ACAP Integrated Block for PCI Express® core consists
of two modes: Basic Mode Parameters and Advanced Mode Parameters. To select a mode, use
the Mode drop-down list on the first page of the Customize IP dialog box. The following sections
explain the parameters available in each of these modes.

Basic Mode Parameters
The Basic mode parameters are explained in this section.

Basic Tab

The following figure shows the initial customization page, used to set the Basic mode
parameters.

Figure 103: Basic Tab

• Component Name: Base name of the output files generated for the core. The name must
begin with a letter and can be composed of these characters: a to z, 0 to 9, and “_.”

• Mode: Allows you to select the Basic or Advanced mode configuration of the core.

• Device/Port Type: Indicates the PCI Express logical device type.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 248Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=248

• Maximum Link Speed: The core allows you to select the Maximum Link Speed supported by
the device. Higher link speed cores are capable of training to a lower link speed if connected
to a lower link speed capable device.

• Maximum Link Width: The core requires the selection of the initial lane width. See Clock
Frequencies and Interface Widths Supported For Various Configurations for the supported
link width configuration. Wider lane width cores can train down to smaller lane widths if
attached to a smaller lane-width device. For more information, see Link Training: 2-Lane, 4-
Lane, 8-Lane, and 16-Lane Components.

• AXI-ST Interface Frequency: Enables you to specify the AXI-ST Interface frequency.

• AXI-ST Interface Width: The core allows you to select the Interface Width. The default
interface width set in the Customize IP dialog box is the lowest possible interface width.

• AXI-ST Alignment Mode: When a payload is present, there are two options for aligning the
first byte of the payload with respect to the datapath. The options are provided to select the
CQ/CC and RQ/RC interfaces.

• AXI-ST CQ/CC Frame Straddle and AXI-ST RQ/RC Frame Straddle: When 512-bit AXI-ST
interface width is selected AXI-ST frame Straddle is supported for CQ, CC, RQ and RC AXI-ST
interfaces. Option to select CQ and CC AXI-ST frame straddle together and for RQ and RC
interfaces.

• Enable Client Tag: Enables you to use the client tag.

• Reference Clock Frequency: Selects the frequency of the reference clock provided on
sys_clk.

• Enable External PIPE Interface: When selected, this option enables an external third-party
bus functional model (BFM) to connect to the PIPE interface of integrated block for PCIe. For
details, see PIPE Mode Simulation Using Integrated Endpoint PCI Express Block in Gen3 x8 and
Gen2 x8 Configurations (XAPP1184). Refer to these designs to connect the External PIPE
Interface ports of the UltraScale™ device core to third-party BFMs.

Capabilities Tab

The Capabilites settings are explained in this section as shown in the following figure.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 249Send Feedback

https://www.xilinx.com/support/documentation/application_notes/xapp1184-PIPE-mode-PCIe.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=249

Figure 104: Capabilities Tab

• Total Physical Functions: Enables you to select the number of physical functions. The number
of physical functions supported is 4.

• PFs Max Payload Size: This field indicates the maximum payload size that the device or
function can support for TLPs. This is the value advertised to the system in the Device
Capabilities Register.

• Extended Tag Field: This field indicates the maximum supported size of the Tag field. The
options are:

• When selected, 8-bit Tag field support (256 tags)

• When deselected, 5-bit Tag field support (32 tags)

• 10-bit Tag Field: This field indicates the maximum supported size of the Tag field as a
Requester. The options are:

• When selected, 10-bit Tag field support (768 tags)

• When deselected, 8-/5-bit Tag supported, depending on Extended Tag Field selection

• Enable Slot Clock Configuration:

Enables the Slot Clock Configuration bit in the Link Status register.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 250Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=250

• When this option is selected, the link is synchronously clocked.

• When this option is deselected, asynchronous clock in SRNS mode is supported. SRNS
refers to a separate reference clock with No SSC (an asynchronous clock without SRIS
support).

PF IDs Tab

The following figure shows the Identity Settings parameters.

Figure 105: PF IDs Tab

• Enable PCIe-ID Interface: If this parameter is selected the PCIe ID ports cfg_vend_id,
cfg_subsys_vend_id, cfg_dev_id_pf*, cfg_rev_id_pf*, and
cfg_subsys_id_pf* appears at the boundary of core top depending on the number of PFx
that are selected and available to be driven by user logic. If unselected they do not appear at
the top level and are driven with the values set at the time of customization.

• PF0 ID Initial Values:

• Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers are
assigned by the PCI Special Interest Group to guarantee that each identifier is unique. The
default value, 10EEh, is the Vendor ID for Xilinx. Enter a vendor identification number
here. FFFFh is reserved.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 251Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=251

• Device ID: A unique identifier for the application; the default value depends on the
configuration selected. The default value is B0<link speed><link width>h. This field can be
any value; change this value for the application. The default Device ID parameter is based
on:

• The device family: B for Versal ACAP.

• EP or RP mode.

• Link width: 1 for x1, 2 for x2, 4 for x4, 8 for x8, and F for x16.

• Link speed: 1 for Gen1, 2 for Gen2, 3 for Gen3, and 4 for Gen4.

If any of the above values are changed, the Device ID value will be re-evaluated, replacing
the previous set value.

RECOMMENDED: It is always recommended that the link width, speed, and Device Port type be
changed first and then the Device ID value. Make sure the Device ID value is set correctly before
generating the IP.

• Revision ID: Indicates the revision of the device or application; an extension of the Device
ID. The default value is 00h; enter a value appropriate for the application.

• Subsystem Vendor ID: Further qualifies the manufacturer of the device or application.
Enter a Subsystem Vendor ID here; the default value is 10EEh. Typically, this value is the
same as Vendor ID. Setting the value to 0000h can cause compliance testing issues.

• Subsystem ID: Further qualifies the manufacturer of the device or application. This value is
typically the same as the Device ID; the default value depends on the lane width and link
speed selected. Setting the value to 0000h can cause compliance testing issues.

• Class Code: The Class Code identifies the general function of a device, and is divided into
three byte-size fields:

• Base Class: Broadly identifies the type of function performed by the device.

• Sub-Class: More specifically identifies the device function.

• Interface: Defines a specific register-level programming interface, if any, allowing device-
independent software to interface with the device.

Class code encoding can be found at the PCI-SIG website.

• Class Code Look-up Assistant: The Class Code Look-up Assistant provides the Base Class,
Sub-Class and Interface values for a selected general function of a device. This Look-up
Assistant tool only displays the three values for a selected function. You must enter the values
in Class Code for these values to be translated into device settings.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 252Send Feedback

http://pcisig.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=252

PF BARs Tab

The PF BARs tab, shown in the following figure, sets the base address register space for the
Endpoint configuration. Each BAR (0 through 5) configures the BAR Aperture Size and Control
attributes of the physical function.

Figure 106: PF BARs Tab Showing PF0 and PF1 Only

• Base Address Register Overview: In Endpoint configuration, the core supports up to six 32-bit
BARs or three 64-bit BARs, and the Expansion read-only memory (ROM) BAR. In Root Port
configuration, the core supports up to two 32-bit BARs or one 64-bit BAR, and the Expansion
ROM BAR. BARs can be one of two sizes:

• 32-bit BARs: The address space can be as small as 128 bytes or as large as 2 gigabytes.
Used for Memory or I/O.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 Exabytes.
Used for Memory only.

All BAR registers share these options:

• Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

• Type: Bars can either be I/O or Memory.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 253Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=253

• I/O: I/O BARs can only be 32-bit; the Prefetchable option does not apply to I/O BARs.
I/O BARs are only enabled for a Legacy PCI Express Endpoint.

• Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable. When a
BAR is set as 64 bits, it uses the next BAR for the extended address space and makes
the next BAR inaccessible.

• Size: The available Size range depends on the PCIe Device/Port Type and the Type of BAR
selected. The following table lists the available BAR size ranges.

Table 67: BAR Size Ranges for Device Configuration

PCIe Device / Port Type BAR Type BAR Size Range
PCI Express Endpoint 32-bit Memory 128 bytes (B) – 2 gigabytes (GB)

64-bit Memory 128 B – 8 Exabytes

Legacy PCI Express Endpoint 32-bit Memory 128 B – 2 GB

64-bit Memory 128 B – 8 Exabytes

I/O 16 B – 2 GB

• Prefetchable: Identifies the ability of the memory space to be prefetched.

• Value: The value assigned to the BAR based on the current selections.

• Expansion ROM Base Address Register: If selected, the Expansion ROM is activated and can
be sized from 2 KB to 4 GB. According to the PCI Local Bus Specification Revision 3.0 on the
PCI-SIG website, the maximum size for the Expansion ROM BAR should be no larger than 16
MB. Selecting an address space larger than 16 MB can cause compliance testing issues.

• Managing Base Address Register Settings: Memory, I/O, Type, and Prefetchable settings are
handled by setting the appropriate settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or I/O. The
base address register only responds to commands that access the specified address space.
Generally, memory spaces less than 4 KB in size should be avoided. The minimum I/O space
allowed is 16 bytes; use of I/O space should be avoided in all new designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading, as
from a RAM). Byte-write operations can be merged into a single double word write, when
applicable.

When configuring the core as an Endpoint for PCIe (non-Legacy), 64-bit addressing must be
supported for all BARs (except BAR5) that have the prefetchable bit set. 32-bit addressing is
permitted for all BARs that do not have the prefetchable bit set. The prefetchable bit-related
requirement does not apply to a Legacy Endpoint. The minimum memory address range
supported by a BAR is 128 bytes for a PCI Express Endpoint and 16 bytes for a Legacy PCI
Express Endpoint.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 254Send Feedback

http://pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=254

• Disabling Unused Resources: For best results, disable unused base address registers to
conserve system resources. A base address register is disabled by deselecting unused BARs in
the Customize IP dialog box.

Legacy/MSI Cap Tab

On this page, you set the Legacy Interrupt Settings and MSI Capabilities for all applicable physical
and virtual functions. This page is not visible when the SRIOV Capability parameter is selected
on the Capabilities page.

Figure 107: Legacy/MSI Cap Tab

• Legacy Interrupt Settings:

• PF0/PF1/PF2/PF3 Interrupt PIN: Indicates the mapping for Legacy Interrupt messages. A
setting of None indicates that no Legacy Interrupts are used.

Note: When PASID is enabled, legacy interrupts cannot be used and are disabled.

• MSI Capabilities:

• PF0/PF1/PF2/PF3 Enable MSI Capability Structure: Indicates that the MSI Capability
structure exists.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=255

Note: Although it is possible to not enable MSI or MSI-X, the result would be a non-compliant core.
The PCI Express Base Specification requires that MSI, MSI-X, or both be enabled. No MSI
capabilities are supported when MSI-X Internal is enabled in the MSI-X Capabilities Tab (Advanced
mode), because MSI-X Internal uses some of the MSI interface signals.

• PF0/PF1/PF2/PF3 Multiple Message Capable: Selects the number of MSI vectors to
request from the Root Complex.

• Enable MSI Per Vector Masking: Enables MSI Per Vector Masking Capability of all the
Physical functions enabled.

Note: Enabling this option for individual physical functions is not supported.

Advanced Mode Parameters
The following parameters appear on different pages of the IP catalog when Advanced mode is
selected for Mode on the Basic page.

Basic Tab

The Basic page with Advanced mode selected (shown in the following figure) includes additional
settings. The following parameters are visible on the Basic page when the Advanced mode is
selected.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=256

Figure 108: Basic Tab, Advanced Mode

• Core Clock Frequency:

For Gen1 and Gen2 it is 250 MHz always.

For Gen3 and Gen4 it is 500 MHz always.

• Enable Parity: Enables Parity on TX/RX interfaces including MSI-X.

• PCIe APB3 Ports: When checked, enables the PCIe APB3 interface.

• PCIe Link Debug: This enables the link debug option to be activated.

• Enable Lane Reversal: This enables the lane reversal feature.

Capabilities Tab

The Capabilities settings for Advanced mode (as shown in the following figure) contains two
additional parameters to those for Basic mode and are described below.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 257Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=257

Figure 109: Capabilities Tab, Advanced Mode

• Function Level Reset: Enable Function Level Reset (FLR). FLR is supported when the PCIe IP is
configured as Endpoint.

• SRIOV Capabilities: Enables Single Root Port I/O Virtualization (SR-IOV) capabilities. The
integrated block implements extended Single Root Port I/O Virtualization PCIe. When this is
enabled, SR-IOV is implemented on all the selected physical functions. When SR-IOV
capabilities are enabled MSI support is disabled and you can use MSI-X support as shown in
the above figure.

Note: When SR-IOV capabilities are enabled, MSI support is disabled and you can use MSI-X support.

• MSI-X Options: To enable MSI-X capabilities, select Advanced mode and then select the
required options on the Capabilities tab. There are four options to choose from:

• MSI-X External: In this mode you need to implement MSI-X External interface driving logic,
MSI-X Table and PBA buffers outside the PCIe core. You can configure the MSI-X BARs.

• MSI-X Internal: In this mode you need to implement the MSI-X Internal interface driving
logic only. MSI-X Table and PBA buffers are built into the PCIe core. You can configure the
MSI-X BARs.

• MSI-X AXI4-Stream: In this mode user is expected to drive MSI-X interrupts on the AXI4-
Stream interface. You can configure the MSI-X BARs.

• None: No MSI-X is supported.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=258

The same MSI-X options are applicable when SRIOV capability is selected.

SRIOV Config Tab

The SRIOV Configuration Advanced parameters, as shown in the following figure, are described
in this section.

Figure 110: SRIOV Configuration Tab

• General SRIOV Config: This value specifies the offset of the first PF with at least one enabled
VF. The total number of VF in all PFs plus this field must not be greater than 256.

• Number of PFx VFs: Indicates the number of virtual functions associated to the physical
function. A total of 252 virtual functions are available that can be flexibly used across the four
physical functions.

• First VF Offset: Indicates the offset of the first virtual function (VF) for the physical function
(PF). PFx offset is always fixed. PF0 resides at offset 0, PF1 resides at offset 1, PF2 resides at
offset 2, and PF3 resides at offset 3.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 259Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=259

A total of 252 virtual functions are available. They reside at the function number range 4 to
255.

First VF offset always start from 4.

Virtual functions are mapped sequentially with VFs with PFs taking precedence. For example,
if PF0 has two virtual functions and PF1 has three, the following mapping occurs:

The PFx_FIRST_VF_OFFSET is calculated by taking the first offset of the virtual function and
subtracting that from the offset of the physical function.

PFx_FIRST_VF_OFFSET = (PFx first VF offset - PFx offset)

In the example above, the following offsets are used:

PF0_FIRST_VF_OFFSET = (4 - 0) = 4
PF1_FIRST_VF_OFFSET = (6 - 1) = 5

The initial offset for PF1 is a function of how many VFs are attached to PF0 and is defined in
the following pseudo code:

PF1_FIRST_VF_OFFSET = FIRST_VF_OFFSET + NUM_PF0_VFs - 1

Similarly, for other PFs:

PF2_FIRST_VF_OFFSET = FIRST_VF_OFFSET + NUM_PF0_VFs + NUM_PF1_VFs - 2
PF3_FIRST_VF_OFFSET =
 FIRST_VF_OFFSET + NUM_PF0_VFs + NUM_PF1_VFs + NUM_PF2_VFs - 3

• VF Device ID: Indicates the 16-bit Device ID for all virtual functions associated with the
physical function.

SRIOV PF BARs Tab

The SRIOV Base Address Registers (BARs) set the base address register space for the Endpoint
configuration. Each BAR (0 through 5) configures the SR-IOV BAR aperture size and SR-IOV
control attributes.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 260Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=260

Figure 111: SRIOV BARs Tab, Advanced Mode

Table 68: Example Virtual Function Mappings

Physical Function Virtual Function Function Number Range
PF0 VF0 64

PF0 VF1 65

PF1 VF0 68

PF1 VF1 69

PF1 VF1 70

• SRIOV Base Address Register Overview: In Endpoint configuration, the core supports up to
six 32-bit BARs or three 64-bit BARs. In Root Port configuration, the core supports up to two
32-bit BARs or one 64-bit BAR. SR-IOV BARs can be one of two sizes:

• 32-bit BARs: The address space can be as small as 16 bytes or as large as 3 gigabytes. Used
for memory to I/O.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as 256 gigabytes.
Used for memory only.

All SR-IOV BAR registers have these options:

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 261Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=261

• Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

• Type: SR-IOV BARs can be either I/O or Memory.

• I/O: I/O BARs can only be 32-bit; the Prefetchable option does not apply to I/O BARs.
I/O BARs are only enabled for a Legacy PCI Express Endpoint.

• Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable. When a
BAR is set to 64-bits, it uses the next BAR for the extended address space and makes
the next BAR inaccessible.

• Size: The available size range depends on the PCIe device/port type and the type of BAR
selected. The following table lists the available BAR size ranges.

Table 69: SRIOV BAR Size Ranges for Device Configuration

PCIe Device / Port Type BAR Type BAR Size Range
PCI Express Endpoint 32-bit Memory 128 bytes – 2 gigabytes

64-bit Memory 128 bytes – 8 exabytes

Legacy PCI Express Endpoint 32-bit Memory 16 bytes – 2 gigabytes

64-bit Memory 16 bytes – 8 exabytes

I/O 16 bytes – 2 gigabytes

• Prefetchable: Identifies the ability of the memory space to be prefetched.

• Value: The value assigned to the BAR based on the current selections.

• Managing SRIOV Base Address Register Settings: Memory, I/O, Type, and Prefetchable
settings are handled by setting the appropriate Customize IP dialog box settings for the
desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or I/O. The
base address register only responds to commands that access the specified address space.
Generally, memory spaces less than 4 KB in size should be avoided. The minimum I/O space
allowed is 16 bytes. I/O space should be avoided in all new designs.

A memory space is prefetchable if there are no side effects on reads (that is, data is not
destroyed by reading, as from RAM). Byte-write operations can be merged into a single
double-word write, when applicable.

When configuring the core as an Endpoint for PCIe (non-Legacy), 64-bit addressing must be
supported for all SR-IOV BARs (except BAR5) that have the prefetchable bit set. 32-bit
addressing is permitted for all SR-IOV BARs that do not have the prefetchable bit set. The
prefetchable bit related requirement does not apply to a Legacy Endpoint. The minimum
memory address range supported by a BAR is 128 bytes for a PCI Express Endpoint and 16
bytes for a Legacy PCI Express Endpoint.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 262Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=262

• Disabling Unused Resources: For best results, disable unused base address registers to
conserve system resources. Disable base address register by deselecting unused BARs in the
Customize IP dialog box.

MSI-X Capabilities Tab

The MSI-X Capabilities parameters, shown in the following figure, are available in Advanced
mode only. To enable MSI-X capabilities, select Advanced mode and then select the required
options on the Capabilities page. There are four options to choose from.

• MSI-X External: In this mode you need to implement MSI-X External interface driving logic,
MSI-X Table and PBA buffers outside the core. You can configure the MSI-X BARs.

• MSI-X Internal: In this mode you need to implement the MSI-X Internal interface driving logic
only. MSI-X Table and PBA buffers are built into the core. You can configure the MSI-X BARs.

• MSI-X AXI4-Stream: In this mode user is expected to drive MSI-X interrupts on the AXI4-
Stream interface. You can configure the MSI-X BARs.

• None: No MSI-X is supported.

The same MSI-X options are applicable when SRIOV capability is selected.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 263Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=263

Figure 112: MSI-X Cap Tab, Advanced Mode

• Enable MSI-X Capability Structure: Indicates that the MSI-X Capabilities structure exists.

Note: The Capability Structure needs at least one Memory BAR to be configured. You must maintain the
MSI-X Table and Pending Bit Array in the application.

• MSI-X Table Settings: Defines the MSI-X Table structure.

• Table Size: Specifies the MSI-X Table size. Table Size field is expecting N-1 interrupts (0x0F
will configure a table count of 16).

• Table Offset: Specifies the offset from the Base Address Register that points to the base of
the MSI-X Table.

• BAR Indicator: Indicates the Base Address Register in the Configuration Space used to map
the function in the MSI-X Table onto memory space. For a 64-bit Base Address Register,
this indicates the lower DWORD.

• MSIx Pending Bit Array (PBA) Settings: Defines the MSI-X Pending Bit Array (PBA) structure.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 264Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=264

• PBA Offset: Specifies the offset from the Base Address Register that points to the base of
the MSI-X PBA.

• PBA BAR Indicator: Indicates the Base Address Register in the Configuration Space used to
map the function in the MSI-X PBA onto Memory Space.

Related Information

Clocking

Advanced Options Tab

• Power Management and ASPM Support: The section allows you to enable Power
Management Registers and ASPM. L0s is only supported when the link speed is 2.5 Gb/s and
5.0 Gb/s. L1 is not supported in Root Port configuration.

• Additional Capabilities 1: The section enables you to choose AER, ECRC, ATS,/PRI , ARI, and
DSN capabilities for the core.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=265

• Additional Capabilities 2: The section enables you to choose VC, PASID, and user-defined
capabilities (PCIe Extended Configuration Space and PCIe Legacy Extended Configuration
Space) for the core.

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896).

Constraining the Core
Required Constraints

The Versal ACAP Integrated Block for PCI Express® solution requires the specification of timing
and other physical implementation constraints to meet specified performance requirements for
PCI Express®. These constraints are provided with the Endpoint and Root Port solutions in a
Xilinx Design Constraints (XDC) file. Pinouts and hierarchy names in the generated XDC
correspond to the provided example design.

IMPORTANT! If the example design top file is not used, copy the IBUFDS instance for the reference clock,
IBUF Instance for sys_rst and also the location and timing constraints associated with them into your local
design top. In addition, the GT location constraints need to be added in top-level xdc. For more information
look at GT Locations in GT Selection and Pin Planning.

To achieve consistent implementation results, an XDC containing these original, unmodified
constraints must be used when a design is run through the Xilinx tools. For additional details on
the definition and use of an XDC or specific constraints, see Vivado Design Suite User Guide: Using
Constraints (UG903).

Constraints provided with the integrated block solution have been tested in hardware and
provide consistent results. Constraints can be modified, but modifications should only be made
with a thorough understanding of the effect of each constraint. Additionally, support is not
provided for designs that deviate from the provided constraints.

Clock Frequencies

See Chapter 4: Designing with the Core, for detailed information about clock requirements.

Clock Management

See Chapter 4: Designing with the Core, for detailed information about clock requirements.

Clock Placement

See Chapter 4: Designing with the Core, for detailed information about clock requirements.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 266Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=266

Banking

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

Relocating the Integrated Block Core
By default, the IP core-level constraints lock block RAMs, UltraRAMs, transceivers, and the
integrated block to the recommended location. To relocate these blocks, you must override the
constraints for these blocks in the XDC constraint file. To do so:

1. Copy the constraints for the block that needs to be overwritten from the core-level XDC
constraint file.

2. Place the constraints in the user XDC constraint file.

3. Update the constraints with the new location.

The user XDC constraints are usually scoped to the top-level of the design; therefore, ensure that
the cells referred by the constraints are still valid after copying and pasting them. Typically, you
need to update the module path with the full hierarchy name.

Note: If there are locations that need to be swapped (that is, the new location is currently being occupied
by another module), there are two ways to do this.

• If there is a temporary location available, move the first module out of the way to a new temporary
location first. Then, move the second module to the location that was occupied by the first module.
Next, move the first module to the location of the second module. These steps can be done in XDC
constraint file.

• If there is no other location available to be used as a temporary location, use the reset_property
command from Tcl command window on the first module before relocating the second module to this
location. The reset_property command cannot be done in XDC constraint file and must be called
from the Tcl command file or typed directly into the Tcl Console.

Simulation
For comprehensive information about Vivado® simulation components, as well as information
about using supported third-party tools, see the Vivado Design Suite User Guide: Logic Simulation
(UG900).

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 267Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=267

For more information regarding simulating the example design, see Simulating the Example
Design.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide: Designing
with IP (UG896).

For information regarding synthesizing and implementing the example design, see Synthesizing
and Implementing the Example Design.

Chapter 5: Design Flow Steps

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 268Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=268

Chapter 6

Example Design
This chapter contains information about the example design provided in the Vivado® Design
Suite.

Overview of the Example Design
This section provides an overview of the Versal ACAP Integrated Block for PCI Express® core
example design.

Integrated Block Endpoint Configuration Overview
This IP can support two example designs in Endpoint configuration. One is Programmed Input/
Output (PIO) example design and other one is Bus Master DMA (BMD) example design.

The example simulation design for the Endpoint configuration of the integrated block consists of
two discrete parts:

• The Root Port Model, a test bench that generates, consumes, and checks PCI Express® bus
traffic.

• The Programmed Input/Output (PIO) example design, a completer application for PCI Express.
The PIO example design responds to Read and Write requests to its memory space and can be
synthesized for testing in hardware.

Note: Not all modes have example design support, for example, Straddle, Address aligned mode, SRIOV,
MSI-X, and MSI.

Note: Currently, the BMD design is the default example design. For details about the BMD design, see the
Bus Master Performance Demonstration Reference Design for the Xilinx Endpoint PCI Express Solutions
(XAPP1052). To use the PIO design, enter the command below at the Vivado Tcl Console prompt after the
Versal ACAP Integrated Block for PCIe® IP is generated.

CONFIG.bmd_pio_mode {false}

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 269Send Feedback

https://www.xilinx.com/support/documentation/application_notes/xapp1052.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=269

Simulation Design Overview

For the simulation design, transactions are sent from the Root Port Model to the core (configured
as an Endpoint) and processed by the PIO example design. The following figure illustrates the
simulation design provided with the core. For more information about the Root Port Model, see
Root Port Model Test Bench for Endpoint.

Figure 113: Simulation Example Design Block Diagram

Test
Program

Endpoint DUT for PCI Express

PCI Express Fabric

Endpoint Core for
PCI Express

PIO Design

dsport

usrapp_tx

usrapp_com

usrapp_rx

Output
Logs

Root Port
Model TPI for

Express

X12471

Implementation Design Overview

The implementation design consists of a simple PIO example that can accept read and write
transactions and respond to requests, as illustrated in the figure below. Source code for the
example is provided with the core. For more information about the PIO example design, see
Programmed Input/Output: Endpoint Example Design.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 270Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=270

Figure 114: Implementation Example Design Block Diagram

Versal ACAP Integrated Block for PCI Express (Configured as an Endpoint)

EP_TX EP_RX

PIO_TO_CTRLep_io_mem

ep_mem32

ep_mem64

ep_mem_erom

EP_MEM

PIO_EP

PIO

PIO_INTR_CTRL

X22917-030120

Example Design Elements

The PIO example design elements include:

• Core wrapper

• An example Verilog HDL wrapper (instantiates the cores and example design)

• A customizable demonstration test bench to simulate the example design

The example design has been tested and verified with Vivado Design Suite and these simulators:

• Vivado simulator

• Questa Advanced Simulator

• Synopsys Verilog Compiler Simulator (VCS)

For the supported versions of these tools, see the Xilinx Design Tools: Release Notes Guide.

Programmed Input/Output: Endpoint Example
Design
Programmed Input/Output (PIO) transactions are generally used by a PCI Express® system host
CPU to access Memory Mapped Input/Output (MMIO) and Configuration Mapped Input/Output
(CMIO) locations in the PCI Express logic. Endpoints for PCI Express accept Memory and I/O
Write transactions and respond to Memory and I/O Read transactions with Completion with
Data transactions.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 271Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=271

The PIO example design (PIO design) is included with the core in Endpoint configuration
generated by the Vivado® IP catalog, which allows you to bring up your system board with a
known established working design to verify the link and functionality of the board.

This section generically represents all solutions using the name Endpoint for PCI Express (or
Endpoint for PCIe®).

System Overview

The PIO design is a simple target-only application that interfaces with the Endpoint for the PCIe
core Transaction (AXI4-Stream) interface and is provided as a starting point for you to build your
own designs. These features are included:

• In Address Align Mode, four transaction-specific 2 KB target regions using the internal ACAP
block RAMs, providing a total target space of 8,192 bytes.

• In Address Align Mode, supports single Dword payload Read and Write PCI Express
transactions to 32-/64-bit address memory spaces and I/O space with support for completion
TLPs.

• In the case of Dword Align Mode, the PIO Design supports multiple Dword payload (Up to
256 DW) read and write PCI Express transactions to 32-bit Address Memory Spaces with
support for completion TLPs. Utilizes the BAR ID[2:0] and Completer Request
Descriptor[114:112] of the core to differentiate between TLP destination Base Address
Registers.

• Provides separate implementations optimized for 64-bit, 128-bit, 256-bit, and 512-bit AXI4-
Stream interfaces.

The following figure illustrates the PCI Express system architecture components, consisting of a
Root Complex, a PCI Express switch device, and an Endpoint for PCIe. PIO operations move data
downstream from the Root Complex (CPU register) to the Endpoint, and/or upstream from the
Endpoint to the Root Complex (CPU register). In either case, the PCI Express protocol request to
move the data is initiated by the host CPU.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 272Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=272

Figure 115: System Overview

PCIe Root
Complex

Memory
Controller

Device

Main
Memory

CPU

PCI
 Port

PCIe
Endpoint

PCIe
Switch

PCI_BUS_X

PCI_BUS_1

PCI_BUS_0

X12472

Data is moved downstream when the CPU issues a store register to a MMIO address command.
The Root Complex typically generates a Memory Write TLP with the appropriate MMIO location
address, byte enables, and the register contents. The transaction terminates when the Endpoint
receives the Memory Write TLP and updates the corresponding local register.

Data is moved upstream when the CPU issues a load register from a MMIO address command.
The Root Complex typically generates a Memory Read TLP with the appropriate MMIO location
address and byte enables. The Endpoint generates a Completion with Data TLP after it receives
the Memory Read TLP. The Completion is steered to the Root Complex and payload is loaded
into the target register, completing the transaction.

PIO Hardware

For Address Align Mode, the PIO design implements an 8,192 byte target space in ACAP block
RAM, behind the Endpoint for PCIe. This 32-bit target space is accessible through single Dword
I/O Read, I/O Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write
32 TLPs.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 273Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=273

The PIO design generates a completion with one Dword of payload in response to a valid
Memory Read 32 TLP, Memory Read 64 TLP, or I/O Read TLP request presented to it by the
core. In addition, the PIO design returns a completion without data with successful status for I/O
Write TLP request. For Dword Align Mode, the PIO design implements 2048-byte target space in
ACAP block RAM. This target space, and data width varies based on the AXI4-Stream interface
and is equal to the width of the AXI4-Stream interface. This target space is accessible through
Memory Write 32 and Memory Read 32 TLPs.

The PIO generates a completion with the payload size in response to a valid Memory Read 32
TLP request from the core.

The PIO design can initiate the following:

• a Memory Read transaction when the received write address is 11'hEA8 and the write data is
32'hAAAA_BBBB, and targeting the BAR0.

• a Legacy Interrupt when the received write address is 11'hEEC and the write data is
32'hCCCC_DDDD, and targeting the BAR0.

• an MSI when the received write address is 11'hEEC and the write data is 32'hEEEE_FFFF,
and targeting the BAR0.

• an MSIX when the received write address is 11'hEEC and the write data is 32'hDEAD_BEEF,
and targeting the BAR0.

The PIO design processes a Memory or I/O Write TLP with one Dword payload in case of
address align mode and multi-Dword in case of Dword Align Mode by updating the payload into
the target address in the ACAP block RAM space.

Base Address Register Support

In case of Address Align Mode, the PIO design supports four discrete target spaces, each
consisting of a 2 KB block of memory represented by a separate Base Address Register (BAR).
Using the default parameters, the Vivado® IP catalog produces a core configured to work with
the PIO design defined in this section, consisting of:

• One 64-bit addressable Memory Space BAR

• One 32-bit Addressable Memory Space BAR

You can change the default parameters used by the PIO design; however, in some cases you
might need to change the user application depending on your system. See Changing IP Catalog
Tool Default BAR Settings for information about changing the default Vivado Design Suite IP
parameters and the effect on the PIO design.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 274Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=274

Each of the four 2 KB address spaces represented by the BARs corresponds to one of four 2 KB
address regions in the PIO design. Each 2 KB region is implemented using a 2 KB dual-port block
RAM. As transactions are received by the core, the core decodes the address and determines
which of the four regions is being targeted. The core presents the TLP to the PIO design and
asserts the appropriate bits of (BAR ID[2:0]), Completer Request Descriptor[114:112], as defined
in the table below.

Table 70: TLP Traffic Types

Block RAM TLP Transaction Type Default BAR BAR ID[2:0]
ep_io_mem I/O TLP transactions Disabled Disabled

ep_mem32 32-bit address Memory TLP transactions 2 000b

ep_mem64 64-bit address Memory TLP transactions 0-1 001b

ep_mem_erom 32-bit address Memory TLP transactions
destined for EROM

Expansion ROM 110b

For Dword Align Mode, the PIO design supports one target space, consisting of 2048 Bytes of
memory. The memory is implemented using SDRAM. As transaction are received by the core, the
core presents the TLP to the PIO design and asserts the bits of BAR ID[2:0],and completer
request descriptor [114:112] as 001b.

Changing IP Catalog Tool Default BAR Settings

You can change the Vivado® IP catalog parameters and continue to use the PIO design to create
customized Verilog source to match the selected BAR settings. However, because the PIO design
parameters are more limited than the core parameters, consider the following example design
limitations when changing the default IP catalog parameters:

• The example design supports one I/O space BAR, one 32-bit Memory space (that cannot be
the Expansion ROM space), and one 64-bit Memory space. If these limits are exceeded, only
the first space of a given type is active—accesses to the other spaces do not result in
completions.

• Each space is implemented with a 2 KB memory. If the corresponding BAR is configured to a
wider aperture, accesses beyond the 2 KB limit wrap around and overlap the 2 KB memory
space.

• The PIO design supports one I/O space BAR, which by default is disabled, but can be changed
if desired.

Although there are limitations to the PIO design, Verilog source code is provided so you can tailor
the example design to your specific needs.

TLP Data Flow

This section defines the data flow of a TLP successfully processed by the PIO design.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 275Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=275

The PIO design successfully processes single Dword payload Memory Read and Write TLPs for
Address Align Mode and multi-Dword payload in case of Dword Align Mode and I/O Read and
Write TLPs supported only for Address Align Mode. Memory Read or Memory Write TLPs of
lengths larger than one Dword are not processed correctly by the PIO design. In case of Address
Align Mode, however, the core does accept these TLPs and passes them along to the PIO design.
If the PIO design receives a TLP with a length of greater than one Dword, the TLP is received
completely from the core and discarded. No corresponding completion is generated. For Dword
Align Mode, payload containing multiple Dword for Memory Read and Memory Write TLPs are
supported and are processed correctly by the PIO design. The TLP is received completely from
the core and then corresponding completion is generated.

Memory and I/O Write TLP Processing

When the Endpoint for PCIe® receives a Memory or I/O Write TLP, the TLP destination address
and transaction type are compared with the values in the core BARs. If the TLP passes this
comparison check, the core passes the TLP to the Receive AXI4-Stream interface of the PIO
design. The PIO design handles Memory writes and I/O TLP writes in different ways: the PIO
design responds to I/O writes by generating a Completion Without Data (cpl), a requirement of
the PCI Express specification.

Along with the start of packet, end of packet, and ready handshaking signals, the Completer
Requester AXI4-Stream interface also asserts the appropriate (BAR ID[2:0]), Completer Request
Descriptor[114:112] signal to indicate to the PIO design the specific destination BAR that
matched the incoming TLP. On reception, the PIO design RX State Machine processes the
incoming Write TLP and extracts the TLPs data and relevant address fields so that it can pass this
along to the PIO design internal block RAM write request controller.

In case of Address align mode, based on the specific BAR ID[2:0] signals asserted, the RX state
machine indicates to the internal write controller the appropriate 2 KB block RAM to use prior to
asserting the write enable request. For example, if an I/O Write Request is received by the core
targeting BAR0, the core passes the TLP to the PIO design and sets BAR ID[2:0] to 000b. The RX
state machine extracts the lower address bits and the data field from the I/O Write TLP and
instructs the internal Memory Write controller to begin a write to the block RAM.

While in case of Dword Align mode, when the BAR ID[2:0] = 01b, the RX state machine asserts
the write enable request. The RX state machine extracts the lower address bits and the data from
the Memory 32 Write TLP and instructs the internal memory write controller to begin a write to
the block RAM.

In this example, the assertion of setting BAR ID[2:0] to 000b instructed the PIO memory write
controller to access ep_mem0 (which by default represents 2 KB of I/O space). While the write is
being carried out to the ACAP block RAM, the PIO design RX state machine deasserts
m_axis_cq_tready, causing the Receive AXI4-Stream interface to stall receiving any further
TLPs until the internal Memory Write controller completes the write to the block RAM.
Deasserting m_axis_cq_tready in this way is not required for all designs using the core; the
PIO design uses this method to simplify the control logic of the RX state machine.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 276Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=276

Memory and I/O Read TLP Processing

When the Endpoint for PCIe® receives a Memory or I/O Read TLP, the TLP destination address
and transaction type are compared with the values programmed in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface of
the PIO design.

Along with the start of packet, end of packet, and ready handshaking signals, the Completer
Requester AXI4-Stream interface also asserts the appropriate BAR ID[2:0] signal to indicate to
the PIO design the specific destination BAR that matched the incoming TLP. On reception, the
PIO design state machine processes the incoming Read TLP and extracts the relevant TLP
information and passes it along to the internal block RAM read request controller of the PIO
design.

In case of Address Align Mode, based on the specific BAR ID[2:0] signal asserted, the RX state
machine indicates to the internal read request controller the appropriate 2 KB block RAM to use
before asserting the read enable request. While for Dword Align Mode, the RX state machine
checks if the request is for Memory Read 32 TLP based on the BAR ID [2:0] to enable the read
request and discard all the other request. For example, if a Memory Read 32 Request TLP is
received by the core targeting the default Mem32 BAR2, the core passes the TLP to the PIO
design and sets BAR ID[2:0] to 010b. The RX state machine extracts the lower address bits from
the Memory 32 Read TLP and instructs the internal Memory Read Request controller to start a
read operation.

In this example, the setting BAR ID[2:0] to 010b instructs the PIO memory read controller to
access the Mem32 space, which by default represents 2 KB of memory space. A notable
difference in handling of memory write and read TLPs is the requirement of the receiving device
to return a Completion with Data TLP in the case of memory or I/O read request.

While the read is being processed, the PIO design RX state machine deasserts
m_axis_cq_tready, causing the Receive AXI4-Stream interface to stall receiving any further
TLPs until the internal Memory Read controller completes the read access from the block RAM
and generates the completion. Deasserting m_axis_cq_tready in this way is not required for
all designs using the core. The PIO design uses this method to simplify the control logic of the RX
state machine.

PIO File Structure

The table below defines the PIO design file structure. Based on the specific core targeted, not all
files delivered by the Vivado® IP catalog are necessary, and some files might not be delivered.
The major difference is that some of the Endpoint for PCIe® solutions use a 32-bit user datapath,
others use a 64-bit datapath, and the PIO design works with both. The width of the datapath
depends on the specific core being targeted.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 277Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=277

Table 71: PIO Design File Structure

File Description
PIO.v Top-level design wrapper

PIO_INTR_CTRL.v PIO interrupt controller

PIO_EP.v PIO application module

PIO_TO_CTRL.v PIO turn-off controller module

PIO_RX_ENGINE.v 32-bit Receive engine

PIO_TX_ENGINE.v 32-bit Transmit engine

PIO_EP_MEM_ACCESS.v Endpoint memory access module

PIO_EP_MEM.v Endpoint memory

PIO_EP_XPM_SDRAM_WRAP.v Endpoint Memory in case of dword align mode

Four configurations of the PIO design are provided: PIO_64, PIO_128, and PIO_256 with 64-,
128-, 256-bit, and 512-bit AXI4-Stream interfaces, respectively. The PIO configuration that is
generated depends on the selected Endpoint type, the number of PCI Express lanes, and the
interface width selected. The following table identifies the PIO configuration generated based on
your selection.

Table 72: PIO Configuration

Core x1 x2 x4 x8
Integrated Block for
PCIe

PIO_64 PIO_64, PIO_128 PIO_64, PIO_128,
PIO_256

PIO_64, PIO_1281,
PIO_256

Notes:
1. The core does not support 128-bit x8 8.0 Gb/s configuration and 500 MHz user clock frequency.

The following figure shows the various components of the PIO design, which is separated into
four main parts: the TX Engine, RX Engine, Memory Access Controller, and Power Management
Turn-Off Controller.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 278Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=278

Figure 116: PIO Design Components

Versal ACAP Integrated Block for PCI Express (Configured as an Endpoint)

EP_TX EP_RX

PIO_TO_CTRLep_io_mem

ep_mem32

ep_mem64

ep_mem_erom

EP_MEM

PIO_EP

PIO

PIO_INTR_CTRL

X22918-030120

PIO Operation

PIO Read Transaction

The figure below depicts a Back-to-Back Memory Read request to the PIO design. The receive
engine deasserts m_axis_rx_tready as soon as the first TLP is completely received. The next
Read transaction is accepted only after compl_done_o is asserted by the transmit engine,
indicating that Completion for the first request was successfully transmitted.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 279Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=279

Figure 117: Back-to-Back Read Transactions
user_clk

m_axis_cq_tdata[63:0]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[1:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[15:8]

(sop) m_axis_cq_tuser[40]

compl_done

m_axis_cc_tdata[63:0]

m_axis_cc_tvalid

m_axis_cc_tready

m_axis_cc_tkeep[1:0]

m_axis_cc_tlast

DS1DS0 DS3DS2 DS1DS0 DS3DS2

0x3

FIRST_BE FIRST_BE

LAST_BE LAST_BE

0

DS1DS0 DW0 DS2 - - DW1

0x3 0x1

X12523-052119

PIO Write Transaction

The figure below depicts a back-to-back Memory Write to the PIO design. The next Write
transaction is accepted only after wr_busy_o is deasserted by the memory access unit,
indicating that data associated with the first request was successfully written to the memory
aperture.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 280Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=280

Figure 118: Back-to-Back Write Transactions

user_clk

m_axis_cq_tdata[63:0]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[1:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

wr_busy

compl_done

DS1DS0 DS3DS2 DW1DW0 DS1DS0 DS3DS2 DW1DW0

0x3

FIRST_BE FIRST_BE

LAST_BE LAST_BE

FIRST_BE FIRST_BE

0

0

0xF 0xF

X12522

Configurator: Rootport Example Design
The following figure shows how the blocks are connected in an overall system view.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 281Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=281

Figure 119: Configurator Example Design

Configurator Example Design

Integrated Root Port

Configurator Wrapper

Configurator
Block

Configurator
ROM

AXI4-Stream Interface

AXI4-Stream Interface
Pass-Through

PIO Master

Integrated
Endpoint Model

PIO Slave
Endpoint Design

Root Port
DUT for
PCI Express

PCI Express Fabric

X14684

Configurator File Structure

The following table defines the Configurator example design file structure.

Table 73: Example Design File Structure

File Description
xilinx_pcie4_uscale_rp.v Top-level wrapper file for Configurator example design

cgator_wrapper.v Wrapper for Configurator and Root Port

cgator.v Wrapper for Configurator sub-blocks

cgator_cpl_decoder.v Completion decoder

cgator_pkt_generator.v Configuration TLP generator

cgator_tx_mux.v Transmit AXI4-Stream muxing logic

cgator_gen2_enabler.v 5.0 Gb/s directed speed change module

cgator_controller.v Configurator transmit engine

cgator_cfg_rom.data Configurator ROM file

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 282Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=282

Table 73: Example Design File Structure (cont'd)

File Description
pio_master.v Wrapper for PIO Master

pio_master_controller.v TX and RX Engine for PIO Master

pio_master_checker.v Checks incoming User-Application Completion TLPs

pio_master_pkt_generator.v Generates User-Application TLPs

The hierarchy of the Configurator example design is:

xilinx_pcie_uscale_rp.v

• cgator_wrapper

○ pcie_uscale_core_top(in the source directory): This directory contains all the source
files for the core in Root Port Configuration.

○ cgator

- cgator_cpl_decoder

- cgator_pkt_generator

- cgator_tx_mux

- cgator_gen2_enabler

- cgator_controller: This directory contains <cgator_cfg_rom.data> (specified
by ROM_FILE).

• pio_master

○ pio_master_controller

○ pio_master_checker

○ pio_master_pkt_generator

Note: cgator_cfg_rom.data is the default name of the ROM data file. You can override this by
changing the value of the ROM_FILE parameter.

Bus Master DMA: Endpoint Example Design
A Bus Master DMA (BMD) implementation is the most common type of DMA found in systems
based on PCI Express. BMD implementations reside within the Endpoint device and are called
Bus Masters because they initiate the movement of data to (Memory Writes) and from (Memory
Reads) system memory.

The BMD architecture, shown in the figure below, consists of initiator logic, target logic, status/
control registers, interface logic, and the endpoint core for PCI Express.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 283Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=283

Figure 120: Bus Master DMA Design Architecture

Initiator Logic

Endpoint for PCIe

Interface

Target

Control/Status Registers
RX TX

CO
M

PL
ET

IO
N

 T
LP

s

RE
AD

/W
RI

TE
 T

LP
s

W
RI

TE
 T

LP
s

RE
AD

 T
LP

s

READ TLPs
CO

M
PL

ET
IO

N
 T

LP
s

PC
Ie

X23872-072420

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 284Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=284

Target Logic

Target logic is responsible for capturing single Dword memory write (MWr) and memory read
(MRd) transaction layer packets (TLPs) presented on the interface. MWr and MRd TLPs are sent
to the endpoint through Programmed Input/Output (PIO) transactions, and are used to monitor
and control the DMA hardware. The function of the target logic is to update the status and
control registers during MWr transactions and return Completions with Data for all incoming
MRd transactions. All incoming MWr packets are 32-bit and contain a one Dword (32-bits)
payload. Incoming MRd packets should only request 1 Dword of data at a time resulting in
Completions with Data of a single Dword.

Control and Status Registers

The control and status registers contain operational information for the DMA controller. It is
important to note that the example BMD design provided is primarily used to measure
performance of data transfers and, consequently, contains status registers that may not be
needed in typical designs. You can choose to remove these and their associated logic if needed.

Initiator Logic

The function of the initiator block is to generate memory write or memory read TLPs depending
on whether an upstream or downstream transfer is selected. The Bus Master DMA design only
supports generating one type of a data flow at a single time. The Bus Master enable bit (Bit 2 of
PCI Command Register) must be set to initiate TLP traffic upstream. No transactions are allowed
to cross the 4K boundary.

The initiator logic generates memory write TLPs when transferring data from the endpoint to
system memory. The Write DMA control and status registers specify the address, size, payload
content, and number of TLPs to be sent.

All registers are defined in "Appendix A: Design Descriptor Registers” of Bus Master Performance
Demonstration Reference Design for the Xilinx Endpoint PCI Express Solutions (XAPP1052).

The table below shows BMD design file structure for 64/128/256-bit configuration.

Table 74: BMD 64/128/256-bit Design File Structure

File Description
BMD_AXIST.v Top-level design wrapper

BMD_AXIST_EP.v Top-level module

BMD_AXIST_EP_MEM_ACCESS.v Memory access module

BMD_AXIST_EP_MEM.v Memory module

BMD_AXIST_TX_ENGINE.v BMD Transmit engine

BMD_AXIST_RX_ENGINE.v BMD Receive engine

BMD_AXIST_INTR_CTRL.v Interrupt controller

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 285Send Feedback

https://www.xilinx.com/support/documentation/application_notes/xapp1052.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=285

Table 74: BMD 64/128/256-bit Design File Structure (cont'd)

File Description
BMD_AXIST_TO_CTRL.v Turn-off controller module

The table below shows BMD design file structure for 512-bit configuration.

Table 75: BMD 512-bit Design File Structure

File Description
BMD_AXIST_512.v Top-level design wrapper

BMD_AXIST_EP_512.v Top-level module

BMD_AXIST_EP_MEM_ACCESS.v Memory access module

BMD_AXIST_EP_MEM.v Memory module

BMD_AXIST_RC_512.v BMD Requester Completion module

BMD_AXIST_CQ_512.v BMD Completer Request module

BMD_AXIST_RQ_512.v BMD Requester Request module

BMD_AXIST_RQ_WRITE_512.v BMD Requester Request write module

BMD_AXIST_RQ_READ_512.v BMD Requester Request read module

BMD_AXIST_RQ_MUX_512.v BMD Requester Write/Read MUX module

BMD_AXIST_CC_512.v BMD Completer Completion module

BMD_AXIST_INTR_CTRL.v Interrupt controller

BMD_AXIST_TO_CTRL.v Turn-off controller module

Generating the Core
To generate a core using the default values in the Vivado® IDE, follow these steps:

1. Start the Vivado IP catalog.

2. Select File →  Project →  New.

3. Enter a project name and location, then click Next. This example uses project_name.xpr
and project_dir.

4. In the New Project wizard pages, do not add sources, existing IP, or constraints.

5. From the Part tab (below), select these filter options:

• Family: Versal™

• Device: xcvc1902

• Package: vsvd1760

• Speed Grade: -2MP

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 286Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=286

Note: If an unsupported silicon device is selected, the core is grayed out (unavailable) in the list of
cores.

6. Select xcvc1902-vsvd1760-2MP-e-S from the list.

7. In the final project summary page, click OK.

8. In the Vivado IP catalog, expand Standard Bus Interfaces → PCI Express, and double-click
Versal ACAP Integrated Block for PCIe to display the Customize IP dialog box.

9. In the Component Name field, enter a name for the core.

Note: <component_name> is used in this example.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 287Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=287

10. From the Device/Port Type drop-down menu, select the appropriate device/port type of the
core (Endpoint or Root Port).

TIP: The PCIe reset pin for PL PCIe designs can be connected to any compatible single ended PL I/O
pin location. If your board is compatible for either CPM4 or PL PCIe usage, you can use the CPM4 pin
MIO38 to route the sys_rst_n. When this is done, the PL PCIe can use the reset as routed to the
PL.

Before opening the example design, set the following Tcl property to use the reset on the
MIO38 pin:

set_property CONFIG.insert_cips {true} [get_ips pcie_versal_0]

11. Click OK to generate the core using the default parameters.

Opening the Example Design
1. To open IP example design, right-click on the generated IP core, and select Open IP Example

Design.

Note: For core generation, see the Generating the Core section above.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 288Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=288

2. In the open window, click OK. Vivado creates a directory named <core name>_ex in the
Example project directory. Adjust the path if needed, and click OK.

The generated example design consists of two block designs:

• endpoint (design_ep)

• root port (design_rp)

The block design for a Gen4x4 PCIe endpoint example design is shown below:

• The pcie_versal_0 block is the PCIe IP Core with the configuration set before opening
example design.

• The pcie_phy and gt_quad_0 blocks are the PHY IP and GT Wizard for the PCIe core.
Unlike in UltraScale+™ devices, where the PHY IP and GT Wizard are within PCIe IP in Versal,
in Versal ACAP, the two blocks are external to PCIe IP core.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 289Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=289

• The refclk_ibuf, bufg_gt_sysclk, and const_1b1 blocks are used for the sys_clk
buffer. The refclk_ibuf block is taking input clock pins sys_clk_n and sys_clk_p. The
output of the bufg_gt_sysclk is the system reference clock, which is input for PCIe IP.
Similar to UltraScale+, sys_rst_n is also an input, and all three inputs are constrained in the
top XDC file.

• The Root Port block design is similar to Endpoint, and has an PCIe core with the required
blocks generated. Root Port block design is used in simulation.

Simulating the Example Design
The example design provides a quick way to simulate and observe the behavior of the core for
PCI Express® Endpoint and Root port Example design projects generated using the Vivado
Design Suite.

The currently supported simulators are:

• Vivado simulator (default)

• Questa Advanced Simulator

• Cadence Incisive Enterprise Simulator (IES)

• Synopsys Verilog Compiler Simulator (VCS)

You can generate an example design project and run simulation on the example project. The
simulator uses the example design test bench and test cases provided along with the example
design for both the design configurations.

A simulation, using the default Vivado simulator, is run as follows:

1. In the Sources Window, right-click the example project file (.xci), and select Open IP
Example Design.

The example project is created.

2. In the Flow Navigator (left-hand pane), under Simulation, right-click Run Simulation and
select Run Behavioral Simulation.

IMPORTANT! The post-synthesis and post-implementation simulation options are not supported for
the PCI Express block.

After the Run Behavioral Simulation Option is running, you can observe the compilation and
elaboration phase through the activity in the Tcl Console, and in the Simulation tab of the Log
Window.

3. In Tcl Console, type the run all command and press Enter. This runs the complete
simulation as per the test case provided in example design test bench.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 290Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=290

After the simulation is complete, the result can be viewed in the Tcl Console.

Endpoint Configuration
The simulation environment provided with the Versal ACAP Integrated Block for PCI Express®

core in Endpoint configuration performs simple memory access tests on the PIO example design.
Transactions are generated by the Root Port Model and responded to by the PIO example design.

• PCI Express Transaction Layer Packets (TLPs) are generated by the test bench transmit user
application (pci_exp_usrapp_tx). As it transmits TLPs, it also generates a log file,
tx.dat.

• PCI Express TLPs are received by the test bench receive user application
(pci_exp_usrapp_rx). As the user application receives the TLPs, it generates a log file,
rx.dat.

For more information about the test bench, see Root Port Model Test Bench for Endpoint in
the next chapter.

Synthesizing and Implementing the Example
Design

To run synthesis and implementation on the example design in the Vivado Design Suite
environment:

1. Go to the XCI file, right-click, and select Open IP Example Design.

A new Vivado tool window opens with the project name “example_project” within the project
directory.

2. In the Flow Navigator, click Run Synthesis and Run Implementation.

TIP: Click Run Implementation first to run both synthesis and implementation. Click Generate
Bitstream to run synthesis, implementation, and then bitstream.

Chapter 6: Example Design

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 291Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=291

Chapter 7

Test Bench

Root Port Model Test Bench for Endpoint
The PCI Express Root Port Model is a robust test bench environment that provides a test
program interface that can be used with the provided Programmed Input/Output (PIO) design or
with your design. The purpose of the Root Port Model is to provide a source mechanism for
generating downstream PCI Express TLP traffic to stimulate the customer design, and a
destination mechanism for receiving upstream PCI Express TLP traffic from the customer design
in a simulation environment.

Source code for the Root Port Model is included to provide the model for a starting point for
your test bench. All the significant work for initializing the core configuration space, creating TLP
transactions, generating TLP logs, and providing an interface for creating and verifying tests is
complete. This allows you to focus on verifying the functionality of the design rather than
spending time developing an Endpoint core test bench infrastructure.

The Root Port Model consists of:

• Test Programming Interface (TPI), which allows you to stimulate the Endpoint device for the
PCI Express.

• Example tests that illustrate how to use the test program TPI.

• Verilog source code for all Root Port Model components, which allow you to customize the
test bench.

The following figure illustrates the Root Port Model coupled with the PIO design.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 292Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=292

Figure 121: Root Port Model and Top-Level Endpoint

Test
Program

Endpoint DUT for PCI Express

PCI Express Fabric

Endpoint Core for
PCI Express

PIO Design

dsport

usrapp_tx

usrapp_com

usrapp_rx

Output
Logs

Root Port
Model TPI for

Express

X12468

Architecture
The Root Port Model consists of these blocks:

• dsport (Root Port)

• usrapp_tx

• usrapp_rx

• usrapp_com (Verilog only)

The usrapp_tx and usrapp_rx blocks interface with the dsport block for transmission and
reception of TLPs to/from the Endpoint Design Under Test (DUT). The Endpoint DUT consists of
the Endpoint for PCIe and the PIO design (displayed) or customer design.

The usrapp_tx block sends TLPs to the dsport block for transmission across the PCI Express
Link to the Endpoint DUT. In turn, the Endpoint DUT device transmits TLPs across the PCI
Express Link to the dsport block, which are subsequently passed to the usrapp_rx block. The
dsport and core are responsible for the data link layer and physical link layer processing when
communicating across the PCI Express logic. Both usrapp_tx and usrapp_rx use the
usrapp_com block for shared functions, for example, TLP processing and log file outputting.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 293Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=293

Transaction sequences or test programs are initiated by the usrapp_tx block to stimulate the
Endpoint device fabric interface. TLP responses from the Endpoint device are received by the
usrapp_rx block. Communication between the usrapp_tx and usrapp_rx blocks allow the
usrapp_tx block to verify correct behavior and act accordingly when the usrapp_rx block
has received TLPs from the Endpoint device.

Scaled Simulation Timeouts
The simulation model of the core uses scaled-down times during link training to allow for the link
to train in a reasonable amount of time during simulation. According to the PCI Express
Specification, rev. 3.0 (http://www.pcisig.com/specifications) , there are various timeouts
associated with the link training and status state machine (LTSSM) states. The core scales these
timeouts by a factor of 256 during simulation, except in the Recovery Speed_1 LTSSM state,
where the timeouts are not scaled.

Test Selection

Available Tests

The following table describes the tests provided with the Root Port Model.

Table 76: Root Port Model Provided Tests

Test Name Language Description
sample_smoke_test0 Verilog Issues a PCI Type 0 Configuration Read TLP and waits for the

completion TLP; then compares the value returned with the expected
Device/Vendor ID value.

sample_smoke_test1 Verilog Performs the same operation as sample_smoke_test0 but makes use
of expectation tasks. This test uses two separate test program
threads: one thread issues the PCI Type 0 Configuration Read TLP
and the second thread issues the Completion with Data TLP
expectation task. This test illustrates the form for a parallel test that
uses expectation tasks. This test form allows for confirming reception
of any TLPs from your design. Additionally, this method can be used
to confirm reception of TLPs when ordering is unimportant.

Verilog Test Selection

The Verilog test model used for the Root Port Model lets you specify the name of the test to be
run as a command line parameter to the simulator.

To change the test to be run, change the TESTNAME value, which is defined in the test files
sample_tests1.v and pio_tests.v. This mechanism is used for Mentor Graphics Advanced
Simulator. The Vivado simulator uses the -testplusarg option to specify TESTNAME. For
example:

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 294Send Feedback

http://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=294

demo_tb.exe-gui -view wave.wcfg -wdb wave_isim -tclbatch isim_cmd.tcl
-testplusarg TESTNAME=sample_smoke_test0

Waveform Dumping
For information on simulator waveform dumping, see the Vivado Design Suite User Guide: Logic
Simulation (UG900).

Verilog Flow

The Root Port Model provides a mechanism for outputting the simulation waveform to a file
using the +dump_all command line parameter.

Output Logging
When a test fails on the example or customer design, the test programmer debugs the offending
test case. Typically, the test programmer inspects the wave file for the simulation and cross-
reference this to the messages displayed on the standard output. Because this approach can be
very time consuming, the Root Port Model offers an output loggingmechanism to assist the
tester with debugging failing test cases to speed the process.

The Root Port Model creates three output log files during each simulation run. They are tx.dat,
rx.dat, and error.dat. The rx.dat and tx.dat files each contain a detailed record of every
TLP that was received and transmitted, respectively, by the Root Port Model.

TIP: With an understanding of the expected TLP transmission during a specific test case, you can isolate
the failure.

The error.dat file is used in conjunction with the expectation tasks. Test programs that use
the expectation tasks generate a general error message to standard output. Detailed information
about the specific comparison failures that have occurred due to the expectation error is found in
error.dat.

Parallel Test Programs
There are two classes of tests are supported by the Root Port Model.

• Sequential tests: Tests that exist within one process and behave similarly to sequential
programs. The test depicted in Test Program: pio_writeReadBack_test0 (later in this chapter) is
an example of a sequential test. Sequential tests are very useful when verifying behavior that
have events with a known order.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 295Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=295

• Parallel tests: Tests involving more than one process thread. The test sample_smoke_test1
is an example of a parallel test with two process threads. Parallel tests are very useful when
verifying that a specific set of events have occurred, however the order of these events are
not known.

A typical parallel test uses the form of one command thread and one or more expectation
threads. These threads work together to verify the device functionality. The role of the command
thread is to create the necessary TLP transactions that cause the device to receive and generate
TLPs. The role of the expectation threads is to verify the reception of an expected TLP. The Root
Port Model TPI has a complete set of expectation tasks to be used in conjunction with parallel
tests.

Because the example design is a target-only device, only Completion TLPs can be expected by
parallel test programs while using the PIO design. However, the full library of expectation tasks
can be used for expecting any TLP type when used in conjunction with the customer design
(which can include bus-mastering functionality).

Completer Model
The Completer Model is enabled through the Vivado Tcl Console by executing the following
command after a core has been configured:

set_property-dict [list CONFIG.completer_model {true} [get_ips <PCIE
IP Core Name>]

When the core is configured with the 512-bit AXI Interface, you can opt in for this Completer
Model test bench which can be used in conjunction with your design to exercise bus-mastering
functionality (upstream direction traffic from the Endpoint DUT to the Root Port Model).

The Completer Model provides a Root Port side memory array (DATA_STORE_2) that can be
written through a Memory Write transaction and be read through a Memory Read transaction
from the Endpoint DUT. This memory can be configured through two different parameters
available at the top level of the Root Port Model module (xilinx_pcie_uscale_rp.v).

• RP_BAR[63:0]: Provides the address of the first byte of the DATA_STORE_2 array.

• RP_BAR_SIZE[5:0] : Provides the number of byte address bits -1 of the DATA_STORE_2 array.
For example, a value of 11 provides 2^(11+1) bytes or 4 KB of available memory.

Each memory transaction is checked against the memory array location based on the two
aforementioned parameters, byte enables, 4K boundaries, Max Payload Size, and Max Read
Request Size rules set at the Root Port model. Each Memory Read Completion returned is split
according to Max Payload Size and Read Completion Boundary rules. The Completer Model also
supports a Zero Length Write packet which intercepts the packet but does not store its payload
data, and a Zero Length Read packet which returns a one DW payload data.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 296Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=296

Test Description
The Root Port Model provides a Test Program Interface (TPI). The TPI provides the means to
create tests by invoking a series of Verilog tasks. All Root Port Model tests should follow the
same six steps:

1. Perform conditional comparison of a unique test name.

2. Set up master timeout in case simulation hangs.

3. Wait for reset and link-up.

4. Initialize the configuration space of the Endpoint.

5. Transmit and receive TLPs between the Root Port Model and the Endpoint DUT.

6. Verify that the test succeeded.

Test Program: pio_writeReadBack_test0

1. else if(testname == "pio_writeReadBack_test1"
2. begin
3. // This test performs a 32 bit write to a 32 bit Memory space and
performs a read back
4. TSK_SIMULATION_TIMEOUT(10050);
5. TSK_SYSTEM_INITIALIZATION;
6. TSK_BAR_INIT;
7. for (ii = 0; ii <= 6; ii = ii + 1) begin
8. if (BAR_INIT_P_BAR_ENABLED[ii] > 2'b00) // bar is enabled
9. case(BAR_INIT_P_BAR_ENABLED[ii])
10. 2'b01 : // IO SPACE
11. begin
12. $display("[%t] : NOTHING: to IO 32 Space BAR %x", $realtime, ii);
13. end
14. 2'b10 : // MEM 32 SPACE
15. begin
16. $display("[%t] : Transmitting TLPs to Memory 32 Space BAR %x",
17. $realtime, ii);
18. //---

19. // Event : Memory Write 32 bit TLP
20. //---

21. DATA_STORE[0] = 8'h04;
22. DATA_STORE[1] = 8'h03;
23. DATA_STORE[2] = 8'h02;
24. DATA_STORE[3] = 8'h01;
25. P_READ_DATA = 32'hffff_ffff; // make sure P_READ_DATA has known
initial value
26. TSK_TX_MEMORY_WRITE_32(DEFAULT_TAG, DEFAULT_TC, 10'd1,
BAR_INIT_P_BAR[ii][31:0] , 4'hF, 4'hF, 1'b0);
27. TSK_TX_CLK_EAT(10);
28. DEFAULT_TAG = DEFAULT_TAG + 1;
29. //---

30. // Event : Memory Read 32 bit TLP
31. //---

32. TSK_TX_MEMORY_READ_32(DEFAULT_TAG, DEFAULT_TC, 10'd1,

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 297Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=297

BAR_INIT_P_BAR[ii][31:0], 4'hF, 4'hF);
33. TSK_WAIT_FOR_READ_DATA;
34. if (P_READ_DATA != {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1],
DATA_STORE[0] })
35. begin
36. $display("[%t] : Test FAILED --- Data Error Mismatch, Write Data %x !
= Read Data %x",
$realtime,{DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0]},
P_READ_DATA);
37. end
38. else
39. begin
40. $display("[%t] : Test PASSED --- Write Data: %x successfully
received", $realtime, P_READ_DATA);
41. end

Expanding the Root Port Model
The Root Port Model was created to work with the PIO design, and for this reason is tailored to
make specific checks and warnings based on the limitations of the PIO design. These checks and
warnings are enabled by default when the Root Port Model is generated by the Vivado IP
catalog. However, these limitations can be disabled so that they do not affect the customer
design.

Because the PIO design was created to support at most one I/O BAR, one Mem64 BAR, and two
Mem32 BARs (one of which must be the EROM space), the Root Port Model by default makes a
check during device configuration that verifies that the core has been configured to meet this
requirement. A violation of this check causes a warning message to be displayed as well as for
the offending BAR to be gracefully disabled in the test bench. This check can be disabled by
setting the pio_check_design variable to zero in the pci_exp_usrapp_tx.v file.

Root Port Model TPI Task List
The Root Port Model TPI tasks include the following tasks.

Test Setup Tasks

Table 77: Test Setup Tasks

Name Input(s) Description
TSK_SYSTEM_INITIALIZATION None Waits for transaction interface reset

and link-up between the Root Port
Model and the Endpoint DUT.
This task must be invoked prior to the
Endpoint core initialization.

TSK_USR_DATA_SETUP_SEQ None Initializes global 4096 byte DATA_STORE
array and resizable DATA_STORE_2
array entries to sequential values from
zero to 4095.

TSK_TX_CLK_EAT clock count 31:30 Waits clock_count transaction interface
clocks.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 298Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=298

Table 77: Test Setup Tasks (cont'd)

Name Input(s) Description
TSK_SIMULATION_TIMEOUT timeout 31:0 Sets master simulation timeout value in

units of transaction interface clocks.
This task should be used to ensure that
all DUT tests complete.

TLP Tasks

Table 78: TLP Tasks

Name Input(s) Description
TSK_TX_TYPE0_CONFIGURATION_READ tag_

reg_addr_
first_dw_be_

7:0
11:0
3:0

Sends a Type 0 PCI Express Config
Read TLP from Root Port Model to
reg_addr of Endpoint DUT with tag_
and first_dw_be_ inputs.
Cpld returned from the Endpoint DUT
uses the contents of global
EP_BUS_DEV_FNS as the completer ID.

TSK_TX_TYPE1_CONFIGURATION_READ tag_
reg_addr_
first_dw_be_

7:0
11:0
3:0

Sends a Type 1 PCI Express Config
Read TLP from Root Port Model to
reg_addr_ of Endpoint DUT with tag_
and first_dw_be_ inputs.
CplD returned from the Endpoint DUT
uses the contents of global
EP_BUS_DEV_FNS as the completer ID.

TSK_TX_TYPE0_CONFIGURATION_WRITE tag_
reg_addr_
reg_data_
first_dw_be_

7:0
11:0
31:0
3:0

Sends a Type 0 PCI Express Config
Write TLP from Root Port Model to
reg_addr_ of Endpoint DUT with tag_
and first_dw_be_ inputs.
Cpl returned from the Endpoint DUT
uses the contents of global
EP_BUS_DEV_FNS as the completer ID.

TSK_TX_TYPE1_CONFIGURATION_WRITE tag_
reg_addr_
reg_data_
first_dw_be_

7:0
11:0
31:0
3:0

Sends a Type 1 PCI Express Config
Write TLP from Root Port Model to
reg_addr_ of Endpoint DUT with tag_
and first_dw_be_ inputs.
Cpl returned from the Endpoint DUT
uses the contents of global
EP_BUS_DEV_FNS as the completer ID.

TSK_TX_MEMORY_READ_32 tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_

7:0
2:0
10:0
31:0
3:0
3:0

Sends a PCI Express Memory Read TLP
from Root Port to 32-bit memory
address addr_ of Endpoint DUT.
The request uses the contents of global
RP_BUS_DEV_FNS as the Requester ID.

TSK_TX_MEMORY_READ_64 tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_

7:0
2:0
10:0
63:0
3:0
3:0

Sends a PCI Express Memory Read TLP
from Root Port Model to 64-bit memory
address addr_ of Endpoint DUT.
The request uses the contents of global
RP_BUS_DEV_FNS as the Requester ID.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 299Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=299

Table 78: TLP Tasks (cont'd)

Name Input(s) Description
TSK_TX_MEMORY_WRITE_32 tag_

tc_
len_
addr_
last_dw_be_
first_dw_be_
ep_

7:0
2:0
10:0
31:0
3:0
3:0
–

Sends a PCI Express Memory Write TLP
from Root Port Model to 32-bit memory
address addr_ of Endpoint DUT.
The request uses the contents of global
RP_BUS_DEV_FNS as the Requester ID.
The global DATA_STORE byte array is
used to pass write data to task.

TSK_TX_MEMORY_WRITE_64 tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_
ep_

7:0
2:0
10:0
63:0
3:0
3:0
–

Sends a PCI Express Memory Write TLP
from Root Port Model to 64-bit memory
address addr_ of Endpoint DUT.
The request uses the contents of global
RP_BUS_DEV_FNS as the Requester ID.
The global DATA_STORE byte array is
used to pass write data to task.

TSK_TX_COMPLETION req_id_
tag_
tc_
len_
byte_count_
lower_addr_
comp_status_
ep_

15:0
7:0
2:0
10:0
2:0
11:0
6:0
-

Sends a PCI Express Completion TLP
from Root Port Model to the Endpoint
DUT using global RP_BUS_DEV_FNS as
the completer ID, req_id_ input as the
requester ID.
comp_status_ input can be set to one of
the following:
3'b000 = Successful Completion
3'b001 = Unsupported Request
3'b010 = Configuration Request Retry
Status
3'b100 = Completer Abort

TSK_TX_COMPLETION_DATA req_id_
tag_
tc_
len_
byte_count_
lower_addr_
ram_ptr
comp_status_
ep_

15:0
7:0
2:0
10:0
11:0
6:0
RP_BAR_ SIZE:0
2:0
–

Sends a PCI Express Completion with
Data TLP from Root Port Model to the
Endpoint DUT using global
RP_BUS_DEV_FNS as the completer ID,
req_id_ input as the requester ID.
The global DATA_STORE_2 byte array is
used to pass completion data to task
and the ram_ptr input is used to offset
the starting byte within this array.

TSK_TX_MESSAGE tag_
tc_
len_
data_
message_rtg_
message_code_

7:0
2:0
10:0
63:0
2:0
7:0

Sends a PCI Express Message TLP from
Root Port Model to Endpoint DUT.
The request uses the contents of global
RP_BUS_DEV_FNS as the Requester ID.

TSK_TX_MESSAGE_DATA tag_
tc_
len_
data_
message_rtg_
message_code_

7:0
2:0
10:0
63:0
2:0
7:0

Sends a PCI Express Message with Data
TLP from Root Port Model to Endpoint
DUT.
The global DATA_STORE byte array is
used to pass message data to task.
The request uses the contents of global
RP_BUS_DEV_FNS as the Requester ID.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 300Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=300

Table 78: TLP Tasks (cont'd)

Name Input(s) Description
TSK_TX_IO_READ tag_

addr_
first_dw_be_

7:0
31:0
3:0

Sends a PCI Express I/O Read TLP from
Root Port Model to I/O address
addr_[31:2] of the Endpoint DUT.
The request uses the contents of global
RP_BUS_DEV_FNS as the Requester ID.

TSK_TX_IO_WRITE tag_
addr_
first_dw_be_
data

7:0
31:0
3:0
31:0

Sends a PCI Express I/O Write TLP from
Root Port Model to I/O address
addr_[31:2] of the Endpoint DUT.
The request uses the contents of global
RP_BUS_DEV_FNS as the Requester ID.

TSK_TX_BAR_READ bar_index
byte_offset
tag_
tc_

2:0
31:0
7:0
2:0

Sends a PCI Express one Dword
Memory 32, Memory 64, or I/O Read
TLP from the Root Port Model to the
target address corresponding to offset
byte_offset from BAR bar_index of the
Endpoint DUT. This task sends the
appropriate Read TLP based on how
BAR bar_index has been configured
during initialization. This task can only
be called after TSK_BAR_INIT has
successfully completed.
The request uses the contents of global
RP_BUS_DEV_FNS as the Requester ID.

TSK_TX_BAR_WRITE bar_index
byte_offset
tag_
tc_
data_

2:0
31:0
7:0
2:0
31:0

Sends a PCI Express one Dword
Memory 32, Memory 64, or I/O Write
TLP from the Root Port to the target
address corresponding to offset
byte_offset from BAR bar_index of the
Endpoint DUT.
This task sends the appropriate Write
TLP based on how BAR bar_index has
been configured during initialization.
This task can only be called after
TSK_BAR_INIT has successfully
completed.

TSK_WAIT_FOR_READ_DATA None Waits for the next completion with data
TLP that was sent by the Endpoint DUT.
On successful completion, the first
Dword of data from the CplD is stored
in the global P_READ_DATA. This task
should be called immediately following
any of the read tasks in the TPI that
request Completion with Data TLPs to
avoid any race conditions.
By default this task locally times out
and terminate the simulation after
1000 transaction interface clocks. The
global cpld_to_finish can be set to zero
so that local timeout returns execution
to the calling test and does not result in
simulation timeout. For this case test
programs should check the global
cpld_to, which when set to one
indicates that this task has timed out
and that the contents of P_READ_DATA
are invalid.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 301Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=301

Table 78: TLP Tasks (cont'd)

Name Input(s) Description
TSK_TX_SYNCHRONIZE first_

active_
last_call_
tready_sw_

-
-
-
-

Waits for assertion of AXI4-Stream
Requester Request or Completer
Completion Interface Ready signal and
synchronizes the output in the log file
to each transaction currently active.
first_ input indicates start of packet.
active_ input indicates a transaction is
currently in progress
last_call_ input indicates end of packet
tready_sw input selects Requester
Request or Completer Completion
Interface Ready signal

TSK_BUILD_RC_TO_PCIE_PKT rc_data_QW0
rc_data_QW1
m_axis_rc_tkeep
m_axis_rc_tlast

63:0
63:0
KEEP_ WIDTH-1:0
-

Converts AXI4-Stream packet at
Requester Completion Interface from a
Descriptor packet format to PCIe TLP
packet format for logging purposes.

TSK_BUILD_CQ_TO_PCIE_PKT cq_data
cq_be
m_axis_cq_tdata

63:0
7:0
63:0

Converts AXI4-Stream packet at
Completer Request Interface from a
Descriptor packet format to PCIe TLP
packet format for logging purposes.

TSK_BUILD_CPLD_PKT cq_addr
cq_be
m_axis_cq_tdata

63:0
15:0
63:0

Returns Completion or Completion
with Data for Memory Read received
from the Endpoint DUT. When the
Completer Model is used, the
completion produced is split according
to Max Payload Size and Read
Completion Boundary rules set at the
Root Port Model. Completion with Data
uses data stored in the global
DATA_STORE_2 array.

BAR Initialization Tasks

Table 79: BAR Initialization Tasks

Name Input(s) Description
TSK_BAR_INIT None Performs a standard sequence of Base Address Register

initialization tasks to the Endpoint device using the PCI
Express fabric. Performs a scan of the Endpoint PCI BAR
range requirements, performs the necessary memory and
I/O space mapping calculations, and finally programs the
Endpoint so that it is ready to be accessed.
On completion, the user test program can begin memory
and I/O transactions to the device. This function displays to
standard output a memory and I/O table that details how
the Endpoint has been initialized. This task also initializes
global variables within the Root Port Model that are
available for test program usage. This task should only be
called after TSK_SYSTEM_INITIALIZATION.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 302Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=302

Table 79: BAR Initialization Tasks (cont'd)

Name Input(s) Description
TSK_BAR_SCAN None Performs a sequence of PCI Type 0 Configuration Writes and

Configuration Reads using the PCI Express logic to
determine the memory and I/O requirements for the
Endpoint.
The task stores this information in the global array
BAR_INIT_P_BAR_RANGE[]. This task should only be called
after TSK_SYSTEM_INITIALIZATION.

TSK_BUILD_PCIE_MAP None Performs memory and I/O mapping algorithm and allocates
Memory 32, Memory 64, and I/O space based on the
Endpoint requirements.
This task has been customized to work in conjunction with
the limitations of the PIO design and should only be called
after completion of TSK_BAR_SCAN.

TSK_DISPLAY_PCIE_MAP None Displays the memory mapping information of the Endpoint
core PCI Base Address Registers. For each BAR, the BAR
value, the BAR range, and BAR type is given. This task
should only be called after completion of
TSK_BUILD_PCIE_MAP.

Example PIO Design Tasks

Table 80: Example PIO Design Tasks

Name Input(s) Description
TSK_TX_READBACK_CONFIG None Performs a sequence of PCI Type 0

Configuration Reads to the Endpoint
device Base Address Registers, PCI
Command register, and PCIe Device
Control register using the PCI Express
logic.
This task should only be called after
TSK_SYSTEM_INITIALIZATION.

TSK_MEM_TEST_DATA_BUS bar_index 2:0 Tests whether the PIO design ACAP
block RAM data bus interface is
correctly connected by performing a
32-bit walking ones data test to the I/O
or memory address pointed to by the
input bar_index.
For an exhaustive test, this task should
be called four times, once for each
block RAM used in the PIO design.

TSK_MEM_TEST_ADDR_BUS bar_index
nBytes

2:0
31:0

Tests whether the PIO design ACAP
block RAM address bus interface is
accurately connected by performing a
walking ones address test starting at
the I/O or memory address pointed to
by the input bar_index.
For an exhaustive test, this task should
be called four times, once for each
block RAM used in the PIO design.
Additionally, the nBytes input should
specify the entire size of the individual
block RAM.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 303Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=303

Table 80: Example PIO Design Tasks (cont'd)

Name Input(s) Description
TSK_MEM_TEST_DEVICE bar_index

nBytes
2:0
31:0

Tests the integrity of each bit of the PIO
design ACAP block RAM by performing
an increment/decrement test on all bits
starting at the block RAM pointed to by
the input bar_index with the range
specified by input nBytes.
For an exhaustive test, this task should
be called four times, once for each
block RAM used in the PIO design.
Additionally, the nBytes input should
specify the entire size of the individual
block RAM.

TSK_RESET Reset 0 Initiates sys_rst_n signal in board.v file.
Forces the sys_rst_n signal to assert the
reset. Use TSK_RESET (1’b1) to assert
the reset and TSK_RESET (1’b0) to
release the reset signal.

TSK_MALFORMED malformed_bits 7:0 Control bits for creating malformed
TLPs:
0001: Generate Malformed TLP for I/O
Requests and Configuration Requests
called immediately after this task
0010: Generate Malformed Completion
TLPs for Memory Read requests
received at the Root Port

Expectation Tasks

Table 81: Expectation Tasks

Name Input(s) Output Description
TSK_EXPECT_CPLD traffic_class

td
ep
attr
length
completer_id
completer_status
bcm
byte_count
requester_id
tag
address_low

2:0
-
-
1:0
10:0
15:0
2:0
-
11:0
15:0
7:0
6:0

Expect status Waits for a Completion with
Data TLP that matches
traffic_class, td, ep, attr,
length, and payload.
Returns a 1 on successful
completion; 0 otherwise.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 304Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=304

Table 81: Expectation Tasks (cont'd)

Name Input(s) Output Description
TSK_EXPECT_CPL traffic_class

td
ep
attr
completer_id
completer_status
bcm
byte_count
requester_id
tag
address_low

2:0
-
-
1:0
15:0
2:0
-
11:0
15:0
7:0
6:0

Expect status Waits for a Completion
without Data TLP that
matches traffic_class, td, ep,
attr, and length.
Returns a 1 on successful
completion; 0 otherwise.

TSK_EXPECT_MEMRD traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-
1:0
10:0
15:0
7:0
3:0
3:0
29:0

Expect status Waits for a 32-bit Address
Memory Read TLP with
matching header fields.
Returns a 1 on successful
completion; 0 otherwise.
This task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_MEMRD64 traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-
1:0
10:0
15:0
7:0
3:0
3:0
61:0

Expect status Waits for a 64-bit Address
Memory Read TLP with
matching header fields.
Returns a 1 on successful
completion; 0 otherwise.
This task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_MEMWR traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-
1:0
10:0
15:0
7:0
3:0
3:0
29:0

Expect status Waits for a 32-bit Address
Memory Write TLP with
matching header fields.
Returns a 1 on successful
completion; 0 otherwise.
This task can only be used in
conjunction with Bus Master
designs.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 305Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=305

Table 81: Expectation Tasks (cont'd)

Name Input(s) Output Description
TSK_EXPECT_MEMWR64 traffic_class

td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-
1:0
10:0
15:0
7:0
3:0
3:0
61:0

Expect status Waits for a 64-bit Address
Memory Write TLP with
matching header fields.
Returns a 1 on successful
completion; 0 otherwise.
This task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_IOWR td
ep
requester_id
tag
first_dw_be
address
data

-
-
15:0
7:0
3:0
31:0
31:0

Expect status Waits for an I/O Write TLP
with matching header fields.
Returns a 1 on successful
completion; 0 otherwise.
This task can only be used in
conjunction with Bus Master
designs.

Endpoint Model Test Bench for Root Port
The Endpoint model test bench for the core in Root Port configuration is a simple example test
bench that connects the Configurator example design and the PCI Express Endpoint model
allowing the two to operate like two devices in a physical system. Because the Configurator
example design consists of logic that initializes itself and generates and consumes bus traffic, the
example test bench only implements logic to monitor the operation of the system and terminate
the simulation.

The Endpoint model test bench consists of:

• Verilog or VHDL source code for all Endpoint model components.

• PIO slave design.

The figure earlier in this chapter illustrates the Endpoint model coupled with the Configurator
example design.

Architecture
The Endpoint model consists of these blocks:

• PCI Express Endpoint (the core in Endpoint configuration) model.

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 306Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=306

• PIO slave design, consisting of:

○ PIO_RX_ENGINE

○ PIO_TX_ENGINE

○ PIO_EP_MEM

○ PIO_TO_CTRL

The PIO_RX_ENGINE and PIO_TX_ENGINE blocks interface with the Endpoint block for
reception and transmission of TLPs from/to the Root Port Design Under Test (DUT). The Root
Port DUT consists of the core configured as a Root Port and the Configurator Example Design,
which consists of a Configurator block and a PIO Master design, or customer design.

The PIO slave design is described in detail in Programmed Input/Output: Endpoint Example
Design.

Simulating the Design
The simulate_mti.do simulation script file is provided with the model to facilitate simulation
with the Mentor Graphics Advanced simulator.

The example simulation script files are located in this directory:

<project_dir>/<component_name>/simulation/functional

Instructions for simulating the Configurator example design with the Endpoint model are
provided in "Simulation" in the Design Flow Steps chapter.

Note: For Cadence IES users, the work construct must be manually inserted into the cds.lib file:

DEFINE WORK WORK

Scaled Simulation Timeouts
The simulation model of the core uses scaled-down times during link training to allow for the link
to train in a reasonable amount of time during simulation. According to the PCI Express
Specification, rev. 3.0 (http://www.pcisig.com/specifications) , there are various timeouts
associated with the link training and status state machine (LTSSM) states. The core scales these
timeouts by a factor of 256 during simulation, except in the Recovery Speed_1 LTSSM state,
where the timeouts are not scaled.

Waveform Dumping
For information on simulator waveform dumping, see the Vivado Design Suite User Guide: Logic
Simulation (UG900).

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 307Send Feedback

http://www.pcisig.com/specifications
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=307

Output Logging
The test bench outputs messages, captured in the simulation log, indicate the time at which
these occur:

• user_reset deasserted

• user_lnk_up asserted

• cfg_done asserted by the Configurator

• pio_test_finished asserted by the PIO Master

• Simulation Timeout (if pio_test_finished or pio_test_failed never asserted)

Chapter 7: Test Bench

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 308Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=308

Appendix A

Migrating and Upgrading

Migrating from Other Device Cores
This section provides information for migrating from the UltraScale+™ device PCIe core to the
core.

Ports

New Ports

Table 82: New Ports in the Versal PL PCIe Core

Name I/O Notes
cfg_ext_tag_enable O

For details, see Table 19: Configuration Status Interface Port
Descriptions.cfg_atomic_requester_enable O

cfg_10b_tag_requester_enable O

cfg_fc_ph_scale O

For details, see Table 24: Configuration Flow Control
Interface.

cfg_fc_pd_scale O

cfg_fc_nph_scale O

cfg_fc_npd_scale O

cfg_fc_cplh_scale O

cfg_fc_cpld_scale O

cfg_pasid_enable O
For details, see Table 32: Configuration PASID Interface Port
Descriptions.cfg_pasid_exec_permission_enable O

cfg_pasid_privil_mode_enable O

apb3_* For details, see Table 33: APB3 Interface Port Descriptions.

Appendix A: Migrating and Upgrading

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 309Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=309

Port Updates

Table 83: Port Width Changes between UltraScale Integrated Block and Versal
Integrated Block Cores

Name I/O UltraScale+
Width

Versal PCIe
Width Notes

pcie_rq_tag0 O 8 10
For details, see Table 14: Sideband Signals
in s_axis_rq_tuser (512-bit Interface)pcie_rq_tag1 O 8 10

pcie0_s_axis_cq_tuser O 183 229

pcie0_s_axis_rq_tuser O 137 183 For details, see Table 10: Sideband Signals
in m_axis_cq_tuser (512-bit Interface).

Ports Not Available

The following ports from the UltraScale+ Integrated Block for PCIe IP that are not available the
Versal ACAP Integrated Block for PCIe IP.

Table 84: Ports Not Available in Versal ACAP Integrated Block IP

Name I/O Width Notes
drp_di I 16

PCIe DRP ports are replaced with APB3 ports in
Versal ACAP. For port details, see Table
33: APB3 Interface Port Descriptions.

drp_do O 16

drp_rdy O 1

drp_we I 1

Generating GT and PHY IP

GT Wizards and PHY IP are outside of PCIe core instead of under PCIe hierarchy like in
UltraScale+ devices. There are two ways to generate the two cores according to your PCIe core
configuration:

• Open the example design – refer to Opening the Example Design.

• Run block automation.

Run Block Automation in IP Integrator

To run block automation:

1. In the Flow Navigator, select Create Block Design.

Appendix A: Migrating and Upgrading

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 310Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=310

2. Add the pcie_versal IP to your block design.

3. Configure the pcie_versal core by double-clicking on pcie_versal block in your block
design (BD).

4. Click Run Block Automation, and click OK.

The PHY IP and GT quads are found in the generated Vivado IP integrator design,
pcie_versal_0_support, along with the helper blocks for reset and clock, as seen in the
following figure. For more details, see Chapter 6: Example Design.

Appendix A: Migrating and Upgrading

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 311Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=311

GT Quad locations can only be set using user constraints in the Xilinx Design Constraints (XDC)
file. For more information, see GT Locations.

Clocking
The Versal ACAP Integrated Block for PCIe® core clock topology is similar to the UltraScale+
Device Integrated Block for PCIe. You will find the phy_clk module in pcie_phy after you
generate the PHY IP through the example design or through block automation.

Reset
This core uses the same reset routing as the UltraScale+ devices integrated block, and reset is
connected to the input pin. Alternatively, sys_rst can be connected from CIPS MIO 38. To use
CIPS MIO 38 as a reset source, use either of these methods:

• Enter the following command to enable CIPS before opening the example design:

set_property config.insert_cips {true} [get_ips pcie_versal_0]

• Set the property in your block design before running block automation:

set_property config.insert_cips {true} [get_bd_cells pcie_versal_0]

The connection will be like the following diagram, mio_pl_38 is connected to sys_reset of
pcie_versal, phy_rst_n of pcie_phy, and as an output for user application to use:

Appendix A: Migrating and Upgrading

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 312Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=312

Related Information

CPM4 Additional Considerations

Features

New Features

PASID

PASID Extended Capability structure has been added with which the core supports sending and
receiving TLPs containing a PASID TLP Prefix.

10 Bit Tag

The CPM4 PCIe controller supports 10-bit Tag feature, when enabled management of up to 768
tags is possible.

Appendix A: Migrating and Upgrading

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 313Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=313

Feature DLLP

Data Link Feature Extended Capability structure has been added for link speed of 16.0 GT/s. It
contains programmable control/status information about the local and peer support of the “Data
Link Feature Support”.

Lane Margining

Lane Margining at the Receiver Extended Capability structure has been added for link speed of
16.0 GT/s

Physical Layer 16.0GT/s Extended Capability

Physical Layer 16.0 GT/s Extended Capability structure has been added for link speed of 16.0
GT/s with which Gen4 equalization status can be read.

Retimers Supported

Link Extension devices (retimers) is supported to interoperate with CPM4 PCIe block for link
speed of 16.0 GT/s.

Flow Control Informational Select

More combinations of cfg_fc_sel values are supported relative to UltraScale+. See the port
description for more details.

MSIX – Additional Vectors

When configured as internal, can support up to 32 vectors per physical function, as compared to
8 vectors per function for VF in UltraScale+. The total number of vectors (2048) remains the
same.

Features Not Available, or Limited Usage Features

• TPH capability is not supported.

• CCIX is not supported in Versal PL PCIE4. CCIX is only supported in Versal CPM4.

• Fast PCI Express Endpoint Enumeration using Tandem Configuration not support. This use
case addresses the ability to initially load a fully configurable PCI Express protocol solution
from a small external ROM, so as to meet the 100 ms enumeration requirement. Support for
Tandem Configuration for the PL PCIE block in Versal devices is not currently planned.

Note: Any user requiring fast PCIe enumeration should use the PCIe controllers in the CPM, noting that
not all Versal devices contain this particular resource. For details, see Versal ACAP CPM Mode for PCI
Express Product Guide (PG346).

Appendix A: Migrating and Upgrading

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 314Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=314

Upgrading
This section is not applicable for this release of the core.

Appendix A: Migrating and Upgrading

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 315Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=315

Appendix B

GT Selection and Pin Planning
This appendix provides guidance on gigabit transceiver (GT) selection for Versal™ devices and
some key recommendations that should be considered when selecting the GT locations. The GT
locations for Versal devices can be customized through the IP customization wizard. This
appendix provides guidance for CPM, PL PCIe and PHY IP based solutions. In this guide, the PL
PCIe related guidance is of primary importance, while the other related guidance might be
relevant and is provided for informational purposes.

A GT Quad is comprised of four GT lanes. When selecting GT Quads for the PL PCIe-based
solution , Xilinx® recommends that you use the GT Quad most adjacent to the integrated block.
While this is not required, it will improve place, route, and timing for the design.

• Link widths of x1, x2, and x4 require one bonded GT Quad and should not split lanes between
two GT Quads.

• A link width of x8 requires two adjacent GT Quads that are bonded and are in the same SLR.

• A link width of x16 requires four adjacent GT Quads that are bonded and are in the same SLR.

• PL PCIe blocks should use GTs adjacent to the PCIe block where possible.

• CPM has a fixed connectivity to GTs based on the CPM configuration.

For GTs on the left side of the device, PCIe lane 0 is placed in the bottom-most GT of the
bottom-most GT Quad. Subsequent lanes use the next available GTs moving vertically up the
device as the lane number increments. This means that the highest PCIe lane number uses the
top-most GT in the top-most GT Quad that is used for PCIe.

For GTs on the right side of the device, PCIe lane 0 is placed in the top-most GT of the top-most
GT Quad. Subsequent lanes use the next available GTs moving vertically down the device as the
lane number increments. This means that the highest PCIe lane number uses the bottom-most
GT in the bottom-most GT Quad that is used for PCIe.

The PCIe reference clock uses GTREFCLK0 in the PCIe lane 0 GT Quad for x1, x2, x4, and x8
configurations. For x16 configurations the PCIe reference clock should use GTREFCLK0 on a GT
Quad associated with lanes 8-11. This allows the clock to be forwarded to all 16 PCIe lanes.

The PCIe reset pins for CPM designs must connect to one of specified pins for each of the two
PCIe controllers. The PCIe reset pin for PL PCIe and PHY IP designs can be connected to any
compatible PL pin location, or the CPM PCIe reset pins when the corresponding CPM PCIe
controller is not in use. This is summarized in the table below.

Appendix B: GT Selection and Pin Planning

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 316Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=316

Table 85: PCIe Controller Reset Pin Locations

Versal PCIe Controller Versal Reset Pin Location
CPM PCIe Controller 0 PS MIO 18

PMC MIO 24

PMC MIO 38

CPM PCIe Controller 1 PS MIO 19

PMC MIO 25

PMC MIO 39

PL PCIe Controllers Any compatible single-ended PL I/O pin.

Versal ACAP PHY IP Any compatible single-ended PL I/O pin.

PL PCIe GT Selection
For PL PCIe blocks the most adjacent GTs should be used and connected to the PCIe solution IP
where possible. The PL PCIe block supports x1, x2, x4, x8, and x16 link widths. This will provide
the best place, route and timing result for the PCIe solution.

For GTs on the left side of the device, PCIe lane 0 is placed in the bottom-most GT of the
bottom-most GT Quad. Subsequent lanes use the next available GTs moving vertically up the
device as the lane number increments. This means that the highest PCIe lane number uses the
top-most GT in the top-most GT Quad that is used for PCIe.

For GTs on the right side of the device, PCIe lane 0 is placed in the top-most GT of the top-most
GT Quad. Subsequent lanes use the next available GTs moving vertically down the device as the
lane number increments. This means that the highest PCIe lane number uses the bottom-most
GT in the bottom-most GT Quad that is used for PCIe.

For Versal implementations the GTs are external to the PCIe IP and can be customized as needed
beyond the default settings generated with the PCIe example and design automation.

Appendix B: GT Selection and Pin Planning

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 317Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=317

CPM4 Additional Considerations
To facilitate migration from UltraScale™ or UltraScale+™ designs, boards may be designed to use
either CPM4 or PL PCIe integrated blocks to implement PCIe solutions. When designing a board
to use either CPM4 or the PL PCIe hardblock, the CPM4 pin selection and planning guidelines
should be followed because they are more restrictive. By doing this a board can be designed that
will work for either a CPM4 or PL PCIe implementation. To route the PCIe reset from the CPM4
to the PL for use with a PL PCIe implementation the following parameter must be set in Vivado
prior to customizing the CIPS IP.

set_param pcw.enplpciereset 1

When this parameter is enabled the PCIe reset for each disabled CPM4 PCIe controller will be
routed to the PL. The same CPM4 pin selection limitations will apply and the additional PCIe
reset output pins will be exposed at the boundary of the CIPS IP. If the CPM4 PCIe controller is
enabled, the PCIe reset will be used internal to the CPM4 and will not be routed to the PL for
connectivity to PL PCIe controllers.

Related Information

Reset

GT Locations
Assigning GT Locations
Unlike in UltraScale+ and previous devices where direct assignment of GTs are not possible in the
user constraints, in Versal the GT locations assignment can be done in the user constraints, while
changing GT locations in GT customization IP is not available. Below is an example of assigning
GT locations in a user constraint file.

Note: The gt_quad instances should be assigned contiguously.

set_property LOC GTY_QUAD_X0Y6 [get_cells $gt_quads -filter NAME=~*/
gt_quad_3/*]
set_property LOC GTY_QUAD_X0Y5 [get_cells $gt_quads -filter NAME=~*/
gt_quad_2/*]
set_property LOC GTY_QUAD_X0Y4 [get_cells $gt_quads -filter NAME=~*/
gt_quad_1/*]
set_property LOC GTY_QUAD_X0Y3 [get_cells $gt_quads -filter NAME=~*/
gt_quad_0/*]

Appendix B: GT Selection and Pin Planning

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 318Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=318

GT Quad Locations
The following table identifies the PCIe lane0 GT Quad(s) that can be used for each PCIe
controller location. The Quad shown in bold is the most adjacent or suggested GT Quad for each
PCIe lane0 location.

Table 86: GT Locations

Device Package PCIe
Blocks GT QUAD (X16) GT QUAD (X8) GT QUAD (X4

and Below)

XCVC1902 VIVA1596

CPM
Controller 0

GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 GTY_QUAD_X1Y5
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3
GTY_QUAD_X1Y2

X1Y0 GTY_QUAD_X1Y5
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3
GTY_QUAD_X1Y2

XCVC1902 VSVA2197

CPM
Controller 0 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3 GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 GTY_QUAD_X1Y6
GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4

GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

X1Y0 GTY_QUAD_X1Y3
GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1

GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1
GTY_QUAD_X1Y0

Appendix B: GT Selection and Pin Planning

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 319Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=319

Table 86: GT Locations (cont'd)

Device Package PCIe
Blocks GT QUAD (X16) GT QUAD (X8) GT QUAD (X4

and Below)

XCVC1902 VSVD1760

CPM
Controller 0 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3 GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 N/A GTY_QUAD_X1Y4 GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

X1Y0 N/A GTY_QUAD_X1Y4 GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

XCVM1802 VFVC1760

CPM
Controller 0 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3 GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 GTY_QUAD_X1Y6
GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4

GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

X1Y0 GTY_QUAD_X1Y3
GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1

GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1
GTY_QUAD_X1Y0

Appendix B: GT Selection and Pin Planning

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 320Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=320

Table 86: GT Locations (cont'd)

Device Package PCIe
Blocks GT QUAD (X16) GT QUAD (X8) GT QUAD (X4

and Below)

XCVM1802 VSVA2197

CPM
Controller 0 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3 GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 GTY_QUAD_X1Y6
GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4

GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

X1Y0 GTY_QUAD_X1Y3
GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1

GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1
GTY_QUAD_X1Y0

XCVM1802 VSVD1760

CPM
Controller 0 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3 GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 N/A GTY_QUAD_X1Y4 GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

X1Y0 N/A GTY_QUAD_X1Y4 GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

Appendix B: GT Selection and Pin Planning

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 321Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=321

Appendix C

PCIe Link Debug Enablement
The Versal ACAP Integrated Block for PCI Express® customization provides an option to enable
PCIe® Link Debug. Enabling this option will insert a debug core inside the IP core that will be
recognized by the Vivado® Hardware Manager and provide PCIe specific debug information and
view. The debug view provides information relating to the current link speed, current link width,
and LTSSM state transitions, which can facilitate debug of PCIe link related issues.

Note: This appendix provides guidance for both CPM and PL PCIe based solutions. For this core, the PL
PCIe related guidance is of primary importance, while the CPM related guidance might be relevant and is
provided for informational purposes.

Enabling PCIe Link Debug
Use this guide to enable and connect PCIe Link Debug in a Vivado IP integrator design. This
section only describes the additional connections that should be added to enable PCIe Link
Debug in a design. It does not discuss how to properly connect the PCIe enabled IPs to create a
working design. Block automation can be used, or the connectivity and connections described
below should be added to an existing design and IP configuration

1. Enable this option in the core customization wizard, and select the options in the
customization GUI, as shown below. The CPM PCIe cores are customized through the CIPS IP
and for PL PCIe cores are customized through the Versal ACAP Integrated Block for PCIe IP.

This adds the PCIe debug core to the PCIe IP and exposes the debug AXI4-Stream interfaces
and ports. The debug AXI4-Stream and interface ports should be connected to a Debug Hub
IP within the Versal design to enable debug for the design. The PCIe example design provides
one implementation of how the Debug Hub IP can be connected in Versal designs. This is
also detailed in the description below.

2. Add the Debug Hub IP to the design and use the following configuration options to enable
the Debug Hub AXI Memory Mapped interface along with one set of AXI4-Stream interfaces.
Additional AXI4-Stream interfaces can be enabled and connected in your design as desired.

Appendix C: PCIe Link Debug Enablement

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 322Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=322

3. Add the CIPS IP to the design or configure the existing CIPS IP and include the following
configuration options. These options will enable an AXI Master, clock, and reset that can be
connected to the Debug Hub IP. To do so:

a. Select PS-PMC →  Clock Configuration → Output Clocks → PMC Domain Clocks → PL
Fabric Clocks selection enable a 100 MHz or similar output clock.

Appendix C: PCIe Link Debug Enablement

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 323Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=323

b. Select PS-PMC → PL-PS Interfaces, and enable at least one PL reset in Number of PL
Resets, and the M_AXI_LPD AXI master.

4. Add and configure the Processor System Reset IP.

Appendix C: PCIe Link Debug Enablement

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 324Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=324

5. Connect the IPs as shown in the following figures. This may need to be customized to fit with
existing design connectivity.

Appendix C: PCIe Link Debug Enablement

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 325Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=325

After the debug connections have been added to an Vivado IP integrator design, as shown
above, PCIe Link debug is enabled in the generated .pdi image. The connections shown above
should be added to a full design and are not sufficient to create a working design alone. The PCIe
IP ports and the remainder of the design must be created and configured as per the desired
operation of the PCIe-enabled IP.

Connecting to PCIe Link Debug in Vivado
Use the following steps to connect Viviado Hardware Manager to the FPGA device and
associated PCIe Link Debug enabled design.

1. Open the Hardware Manager.

2. Select the device from the Tools → Program Device… drop-down menu.

3. Select the .pdi and .ltx files for programming the device, and select Program.

Note: You should not load the .ltx file and refresh the target until after the .pdi file has been
programmed.

4. Select the PCIe Debug core in the Hardware window. You will see three main views that
include the PCIe Debug Core Properties, PCIe Link LTSSM State Trace, and the PCIe Link
LTSSM State Diagram with transitions.

Appendix C: PCIe Link Debug Enablement

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 326Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=326

Using this view, you can observe the active PCIe link status and state transitions. In the PCIe
Debug Core Properties window, you can see the name of the PCIe debug core (PCIe_0), the
current link status (Gen3x8), and the connected GTs (Quads 103 and 104). The PCIe LTSSM State
Trace view shows a hierarchical view of the PCIe LTSSM state machine transitions. The PCIe
LTSSM State Diagram provides a graphical display of the PCIe LTSSM states transitions that were
traversed during the PCIe link up process. Visited LTSSM states are shown in green, the final or
current LTSSM state is shown in yellow and the number of times each transition was traversed is
identified on the arcs between states.

In addition to the graphical display, the report_hw_pcie command can be used to generate a
console text report that contains the PCIe debug information. This information can be shared
with others to aid in debugging PCIe Link issues. For this example, the name of the debug core is
PCIe_0, and is inserted into the command.

report_hw_pcie PCIe_0

This information helps determine where in the PCIe link-up process an issue occurred and can
guide further debug of link related issues.

Appendix C: PCIe Link Debug Enablement

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 327Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=327

Appendix D

Debugging
This appendix includes details about resources available on the Xilinx® Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the core, the Xilinx Support web page
contains key resources such as product documentation, release notes, answer records,
information about known issues, and links for obtaining further product support. The Xilinx
Community Forums are also available where members can learn, participate, share, and ask
questions about Xilinx solutions.

Documentation
This product guide is the main document associated with the core. This guide, along with
documentation related to all products that aid in the design process, can be found on the Xilinx
Support web page or by using the Xilinx® Documentation Navigator. Download the Xilinx
Documentation Navigator from the Downloads page. For more information about this tool and
the features available, open the online help after installation.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

The Solution Center specific to the Versal ACAP Integrated Block for PCIe® is listed below.

• Xilinx Solution Center for PCI Express

Appendix D: Debugging

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 328Send Feedback

https://www.xilinx.com/support.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support/answers/34536.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=328

Answer Records
Answer Records include information about commonly encountered problems, helpful information
on how to resolve these problems, and any known issues with a Xilinx product. Answer Records
are created and maintained daily ensuring that users have access to the most accurate
information available.

Answer Records for this core can be located by using the Search Support box on the main Xilinx
support web page. To maximize your search results, use keywords such as:

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Core

AR 73083.

Technical Support
Xilinx provides technical support on the Xilinx Community Forums for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To ask questions, navigate to the Xilinx Community Forums.

Appendix D: Debugging

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 329Send Feedback

https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/answers/73083.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=329

Appendix E

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Appendix E: Additional Resources and Legal Notices

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 330Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=330

References
These documents provide supplemental material useful with this guide:

1. PCI-SIG Specifications (https://www.pcisig.com/specifications)

2. Versal ACAP DMA and Bridge Subsystem for PCI Express Product Guide (PG344)

3. Versal ACAP GTY and GTYP Transceivers Architecture Manual (AM002)

4. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

5. Vivado Design Suite User Guide: Designing with IP (UG896)

6. Vivado Design Suite User Guide: Getting Started (UG910)

7. Vivado Design Suite User Guide: Logic Simulation (UG900)

8. In-System IBERT LogiCORE IP Product Guide (PG246)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
04/15/2021 Version 1.0

Limitations Added topic to report known issues in the release.

Generating the Core Add note regarding connecting the PCIe reset pin to the
MIO38 pin location using a Tcl command.

01/20/2021 Version 1.0

Customizing and Generating the Core Updated GUI figures, and descriptions throughout.

Performance and Resource Use Added section with link to resource use data.

Appendix A: Migrating and Upgrading New appendix. Added detailed migration information.

11/03/2020 Version 1.0

General Update Updated document with correct version 1.0.

07/27/2020 Version 1.0

Initial Xilinx release. N/A

Appendix E: Additional Resources and Legal Notices

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 331Send Feedback

https://www.pcisig.com/specifications
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_dma_versal;v=latest;d=pg344-pcie-dma-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=in_system_ibert;v=latest;d=pg246-in-system-ibert.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=331

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix E: Additional Resources and Legal Notices

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 332Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=332

Copyright

© Copyright 2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under
license. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and
MPCore are trademarks of Arm Limited in the EU and other countries. All other trademarks are
the property of their respective owners.

Appendix E: Additional Resources and Legal Notices

PG343 (v1.0) April 15, 2021 www.xilinx.com
Versal ACAP Block for PCIe 333Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG343&Title=Versal%20ACAP%20Integrated%20Block%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=333

	Versal ACAP Integrated Block for PCI Express v1.0
	Table of Contents
	Ch. 1: Introduction
	Introduction to the Core
	PL PCIE4 Features
	IP Facts

	Ch. 2: Overview
	Navigating Content by Design Process
	Core Overview
	Applications
	Unsupported Features
	Limitations
	Licensing and Ordering

	Ch. 3: Product Specification
	Standards for the Integrated Block IP
	Performance and Resource Use
	Port Descriptions for PL PCIE4
	AXI4-Stream Core Interfaces
	64/128/256-Bit Interfaces
	Completer Request Interface
	Completer Completion Interface
	Requester Request Interface
	Requester Completion Interface

	512-bit Interfaces
	Completer Request Interface
	Completer Completion Interface
	Requester Request Interface
	Requester Completion Interface

	Other Core Interfaces
	Power Management Interface
	Configuration Management Interface
	Configuration Status Interface
	Configuration Received Message Interface
	Configuration Transmit Message Interface
	Configuration Flow Control Interface
	Configuration Control Interface
	Configuration Interrupt Controller Interface
	Legacy Interrupt Interface
	MSI Interrupt Interface
	MSI-X Interrupt External Interface
	MSI-X Interrupt Internal Interface

	Configuration Extend Interface
	Configuration VC1 Status Interface
	Configuration PASID Interface
	APB3 Interface
	Clock and Reset Interface
	PCIe PHY IP Interface
	Clock and Reset Signals
	TX Data Signals
	RX Data Signals
	Command Signals
	Status Signals
	TX Driver Signals for Gen1 and Gen2

	Configuration Space

	Ch. 4: Designing with the Core
	Clocking
	Resets
	AXI4-Stream Interface Description
	Feature Overview
	Data Alignment Options
	Straddle Option on CQ, CC, and RQ Interfaces
	Straddle Option on RC Interface
	Receive Transaction Ordering
	Transmit Transaction Ordering

	64/128/256-Bit Completer Interface
	Completer Request Interface Operation
	Completer Request Descriptor Formats
	Completer Memory Write Operation
	Completer Memory Read Operation
	I/O Write Operation
	I/O Read Operation
	Atomic Operations on the Completer Request Interface
	Message Requests on the Completer Request Interface
	Aborting a Transfer
	Selective Flow Control for Non-Posted Requests

	Completer Completion Interface Operation
	Completer Completion Descriptor Format
	Completions with Successful Completion Status
	Aborting a Completion Transfer
	Completions with Error Status (UR and CA)

	64/128/256-Bit Requester Interface
	Requester Request Interface Operation
	Requester Request Descriptor Formats
	Requester Memory Write Operation
	Non-Posted Transactions with No Payload
	Non-Posted Transactions with a Payload
	Message Requests on the Requester Interface
	Aborting a Transfer
	Tag Management for Non-Posted Transactions
	Avoiding Head-of-Line Blocking for Posted Requests
	Maintaining Transaction Order

	Requester Completion Interface Operation
	Requester Completion Descriptor Format
	Transfer of Completions with No Data
	Transfer of Completions with Data
	Straddle Option for 256-Bit Interface
	Aborting a Completion Transfer
	Handling of Completion Errors

	512-Bit Completer Interface
	Completer Request Interface Operation (512-bits)
	Completer Request Descriptor Formats
	Completer Memory Write Operation
	Completer Memory Read Operation
	I/O Write Operation
	I/O Read Operation
	Atomic Operations on the Completer Request Interface
	Message Requests on the Completer Request Interface
	Aborting a Transfer
	Selective Flow Control for Non-Posted Requests
	Straddle Option on CQ Interface

	Completer Completion Interface Operation (512-bits)
	Completer Completion Descriptor Format
	Completions with Successful Completion (SC) Status
	Aborting a Completion Transfer
	Completions with Error Status (UR and CA)
	Straddle Option on CC Interface

	512-Bit Requester Interface
	Requester Request Interface Operation (512-bits)
	Requester Request Descriptor Formats
	Requester Memory Write Operation
	Non-Posted Transactions with No Payload
	Non-Posted Transactions with a Payload
	Message Requests on the Requester Interface
	Aborting a Transfer
	Straddle Option on RQ Interface
	Tag Management for Non-Posted Transactions
	Avoiding Head-of-Line Blocking for Posted Requests
	Maintaining Transaction Order

	Requester Completion Interface Operation (512-bits)
	Requester Completion Descriptor Format
	Transfer of Completions with No Data
	Transfer of Completions with Data
	Straddle Option for RC Interface
	Aborting a Completion Transfer
	Handling of Completion Errors

	Power Management
	Active State Power Management
	Programmed Power Management
	PPM L0 State
	PPM L1 State
	PPM L3 State

	Generating Interrupt Requests
	Legacy Interrupt Mode
	MSI Mode
	MSI-X Mode
	MSI-X Mode with Built-in MSI-X Vector Tables

	Receive Message Interface
	Configuration Management Interface
	Link Training: 2-Lane, 4-Lane, 8-Lane, and 16-Lane Components
	Link Partner Supports Fewer Lanes
	Lane Becomes Faulty

	Lane Reversal

	Ch. 5: Design Flow Steps
	Customizing and Generating the Core
	Basic Mode Parameters
	Basic Tab
	Capabilities Tab
	PF IDs Tab
	PF BARs Tab
	Legacy/MSI Cap Tab

	Advanced Mode Parameters
	Basic Tab
	Capabilities Tab
	SRIOV Config Tab
	SRIOV PF BARs Tab
	MSI-X Capabilities Tab
	Advanced Options Tab

	Output Generation

	Constraining the Core
	Relocating the Integrated Block Core

	Simulation
	Synthesis and Implementation

	Ch. 6: Example Design
	Overview of the Example Design
	Integrated Block Endpoint Configuration Overview
	Simulation Design Overview
	Implementation Design Overview
	Example Design Elements

	Programmed Input/Output: Endpoint Example Design
	System Overview
	PIO Hardware
	Base Address Register Support
	Changing IP Catalog Tool Default BAR Settings
	TLP Data Flow
	Memory and I/O Write TLP Processing
	Memory and I/O Read TLP Processing
	PIO File Structure

	PIO Operation
	PIO Read Transaction
	PIO Write Transaction

	Configurator: Rootport Example Design
	Configurator File Structure

	Bus Master DMA: Endpoint Example Design
	Target Logic
	Control and Status Registers
	Initiator Logic

	Generating the Core
	Opening the Example Design
	Simulating the Example Design
	Endpoint Configuration

	Synthesizing and Implementing the Example Design

	Ch. 7: Test Bench
	Root Port Model Test Bench for Endpoint
	Architecture
	Scaled Simulation Timeouts
	Test Selection
	Available Tests
	Verilog Test Selection

	Waveform Dumping
	Verilog Flow

	Output Logging
	Parallel Test Programs
	Completer Model
	Test Description
	Test Program: pio_writeReadBack_test0

	Expanding the Root Port Model
	Root Port Model TPI Task List
	Test Setup Tasks
	TLP Tasks
	BAR Initialization Tasks
	Example PIO Design Tasks
	Expectation Tasks

	Endpoint Model Test Bench for Root Port
	Architecture
	Simulating the Design
	Scaled Simulation Timeouts
	Waveform Dumping
	Output Logging

	Appx. A: Migrating and Upgrading
	Migrating from Other Device Cores
	Ports
	New Ports
	Port Updates
	Ports Not Available

	Generating GT and PHY IP
	Clocking
	Reset
	Features
	New Features
	Features Not Available, or Limited Usage Features

	Upgrading

	Appx. B: GT Selection and Pin Planning
	PL PCIe GT Selection
	CPM4 Additional Considerations
	GT Locations
	Assigning GT Locations
	GT Quad Locations

	Appx. C: PCIe Link Debug Enablement
	Enabling PCIe Link Debug
	Connecting to PCIe Link Debug in Vivado

	Appx. D: Debugging
	Finding Help on Xilinx.com
	Documentation
	Solution Centers
	Answer Records
	Master Answer Record for the Core

	Technical Support

	Appx. E: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

