
Introduction
The PLBV46 PCI Full Bridge design provides full
bridge functionality between the Xilinx PLB and a
32-bit Revision 2.2 compliant Peripheral Component
Interconnect (PCI) bus. The bridge is referred to as the
PLBV46 PCI Bridge in this document.

The Xilinx PLB is a 32, 64 or 128-bit bus subset of the
IBM PLB described in the 128-Bit Processor Local Bus
Architecture Specification v4.6.

The LogiCORE PCI32 core provides an interface with
the PCI bus. Details of the LogiCORE PCI32 core
operation is found in the Xilinx LogiCORE PCI32
Interface v3, in the Xilinx LogiCORE PCI32 Interface v4
Product Specification, and in the Xilinx LogiCORE PCI
v3.0 and v4.1 User Guides.

Host bridge functionality (often called North bridge
functionality) is an optional functionality.
Configuration Read and Write PCI commands can be
performed from the PLB-side of the bridge. The
PLBV46 PCI Bridge supports a 32-bit/33 MHz PCI bus
only.

Exceptions to the support of PCI commands supported
by the PCI32 core are outlined in the Features section.

The PLBV46 PCI Bridge design has parameters that
allow customers to configure the bridge to suit their
application. The parameterizable features of the design
are discussed in the Bus Interface Parameters section.

0

PLBV46 PCI Full Bridge
(v1.00a)

DS616 Aug 24, 2007 0 0 Product Specification

LogiCORE™ Facts

Core Specifics

Supported Device
Family

Virtex™-4, Virtex™-5,
Spartan™-3

Version of Core plbv46_pci v1.00a

Resources Used

Virtex-4 Min Max

I/O (PCI)

I/O (PLB-related)

LUTs

FFs

Block RAMs

Provided with Core

Documentation Product Specification

Design File Formats VHDL

Constraints File example UCF-file

Verification N/A

Instantiation Template N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

9.1.1i or later

Verification N/A

Simulation ModelSim SE/EE 6.1d or later

Synthesis XST

Support

Support provided by Xilinx, Inc.
DS616 Aug 24, 2007 www.xilinx.com 1
Product Specification

© 2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective
owners. Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature, application, or standard, Xilinx
makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may require for your implementation. Xilinx expressly
disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or representations that this implementation is free from claims
of infringement and any implied warranties of merchantability or fitness for a particular purpose.

www.xilinx.com
Xilinx LogiCORE PCI Interface v3.0 Product Specification
Xilinx LogiCORE PCI Interface v3.0 Product Specification
Xilinx LogiCORE PCI Interface v3.0 Product Specification

PLBV46 PCI Full Bridge (v1.00a)

2

Features
• Independent SPLB, MPLB and PCI clocks

• 33 MHz, 32-bit PCI bus support

• Utilizes two pairs of FIFOs to exploit the separate master and slave PLBV46 IPIF modules.

• Includes a master IP module for remote PCI initiator transactions, which follows the protocol for
interfacing with the master IPIF module utilizing Xilinx LocalLink protocol. The PLBV46 PCI
Bridge translates the PCI initiator request to PLBV46 IPIF master transactions.

• Includes a slave IP module for remote PLB master transactions, which follows the protocol for
interfacing with the slave IPIF module utilizing Xilinx IPIC protocol. The PLBV46 PCI Bridge
translates the PLB master request to PCI initiator transactions. The SRAM-like interface is utilized
at the IPIC interface for data transfers.

• The PLBV46 IPIF slave attachment has a timer that limits the time for both read and write data
phase operations to complete. When the timer expires, Sl_MErr signal is asserted. See the PLBV46
IPIF Product Specification for details.

• Full bridge functionality

- PLB Master read and write of a remote PCI target (both single and burst)

- PCI Initiator read and write to a remote PLB slave (both single and multiple).

- I/O read and I/O write commands are supported only for PLB master read and writes of PCI
I/O space as designated by its associated memory designator parameter. All memory space on
the PLB-side is designated as memory space in the PCI sense, therefore, I/O commands cannot
be used to access memory on the PLB-side.

- Configuration read and writes are supported (including self-configuration transactions) only
when upper word address lines are utilized for IDSEL lines. The Configuration Read and Write
commands are automatically executed by writing to the Configuration Data Port Register. Data
in the Configuration Address Port Register and the Configuration Bus Number/Subordinate Bus
Number Register are used in execution of the configuration transaction per PCI 2.2 specification.

• PCI Memory Read Line (MRL) command is supported in which the PCI32 core is a target. MRL is
aliased to a Memory Read command which has a single data phase on the PCI.

• PCI Memory Write Invalidate (MWI) command is supported in which the PCI32 core is a target.
The PCI32 core does not support this command when it is an initiator. MWI is aliased to a Memory
Write command which has a single data phase on the PCI.

• Supports up to 6 PLB devices, in the sense defined by independent parameters and unique PLB
memory space for each device

- Each device has the following parameters: PLB BAR, high (upper) address, memory designator,
and translation for mapping PLB address space to PCI address space. Byte addressing integrity is
maintained by default in all transfers. Address translation is performed by high-order bit
substitution. High-order bit definition can be done with parameters or dynamically via registers.

• Supports up to 3 PCI devices (or BARs in PCI context) with unique memory PCI memory space.
The PCI32 core supports up to 3 PCI BAR.

- Each device has the following parameters: PCI BAR, length, memory designator, and translation
for mapping PCI address space to PLB address space. Byte addressing integrity is maintained by
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
default in all transfers. Address translation is performed by high-order bit substitution.
High-order bit definition is defined only by parameters

• Registers include

- Interrupt and interrupt enable registers at different hierarchal levels

- Reset

- Configuration Address Port, Configuration Data Port and Bus Number/Subordinate Bus
Number

- High-order bits for PLB to PCI address translation

- Bridge Device number on PCI bus

• PLB-side Interrupts include

- PLB Master Read SERR and PERR

- PLB Master Read Target Abort

- PLB Master Write SERR and PERR

- PLB Master Write Target Abort

- PLB Master Write Master Abort

- PLB Master Burst Write Retry and Retry Disconnect

- PLB Master Burst Write Retry Timeout

- PCI Initiator Read and Write SERR

- PLB Master Prefetch Timeout

- PLB Master Write Rearb Timeout

- PLB Master Read Rearb Timeout

• Asynchronous FIFOs with burst transfer support and backup capability for retrying transfers as
needed. The maximum burst size on either the PCI or OPB is limited to the usable FIFO depth
which is the physical depth-3

• Synchronization circuits for signals that cross time-domain boundaries

• Responds to the PCI latency timer

• Completes posted write operations prior to initiating new operations

• Signal set required for integrating a PCI bus arbiter in the FPGA with the PLBV46 PCI Bridge is
available at the top-level of the PLBV46 PCI Bridge module. The signal set includes PCLK, RST_N,
FRAME_I, REQ_N_toArb and IRDY_I

• Supports PCI clock generated in FPGA

• Parameterized control of IO-buffer insertion of INTR_A and REQ_N IO-buffers

• All address translations performed by high-order bit substitution. The number of bits substituted
depends on the address range

- Parameterized selection of IPIF BAR high-order bits defined by programmable registers for
dynamic translation operation or by parameters for reduced resource utilization

• Parameterized selection of device ID number (when configuration functionality is included)
defined by a programmable register for dynamic device number definition or by parameter to
 24, 2007 www.xilinx.com 3
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

4

reduce resource utilization

• The PLBV46 PCI Bridge does not have an integral DMA

• Input signal to provide the means to asynchronous assert INTR_A from a user supplied register.
such as the PLB GPIO register. The signal is Bus2PCI_INTR is an active high signal

• PCI Monitor output port to monitor PCI bus activity

System Reset
When the bridge is reset, both RST_N and PLB_reset must be simultaneously held at reset for at least
twenty clock periods of the slowest clock.

Evaluation Version
The PLBV46 PCI Bridge is delivered with a hardware evaluation license. When programmed into a
Xilinx device, the core will function in hardware for about 8 hours at the typical frequency of operation.
To use the PLBV46 PCI Bridge without this timeout limitation, a full license must be purchased.

Functional Description
The PLBV46 PCI Bridge design is shown in Figure 1 and described in the following sections. As shown,
PLB IPIF PCI Bridge is comprised of three main modules:

• The PLB IPIF (Processor Local Bus Intellectual Property InterFace). It interfaces to the PLB bus.

• The IPIF v3.0 Bridge. It interfaces between the PLBV46 IPIF and the PCI32 core.

• The LogiCORE PCI32 core. It interfaces to the PCI bus.

Figure Top x-ref 1

Figure 1: PLBV46 PCI Full Bridge Block Diagram

P
LB

 B
us

P
C

I B
us

DS616_01_040407

Bridge
Registers

IPIF2PCI
FIFO

PCI2IPIF
FIFO

S
la

ve
 S

M

In
iti

at
or

Master SM

Ta
rg

et

Interrupt
Module

Slave
Attachment

Master
Attachment

IPIF2PCI
FIFO

PCI2IPIF
FIFO

PLB IPIF IPIF/V3 Bridge Xilinx
v3.0 PCI Core
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
LogiCore 32-bit PCI Core Requirements
The PLBV46 PCI Bridge uses the 32-bit Xilinx LogiCore PCI32 core. Before the bridge can perform
transactions on the PCI bus, the PCI32 core must be configured via configuration transactions from
either the PCI-side or if configuration functionality is included in the bridge configuration, from the
PLB-side. Both a design guide and an implementation guide are available for the Xilinx LogiCore
PCI32 IP core. These documents detail the PCI32 core operation, including configuration cycles, and
are available from Xilinx.

As required by the LogiCORE PCI32 core, GNT_N must be asserted for two clock cycles to initiate a
PCI transaction by the PLBV46 PCI Bridge.

Bus Interface Parameters
Because many features in the IPIF PCI Bridge design can be parameterized, the user can realize a
PLBV46 PCI Full Bridge uniquely tailored while using only the resources required for the desired
functionality. This approach also achieves the best possible performance with the lowest resource
usage. Table 1 shown the features that can be parameterized in the PLBV46 PCI Bridge design.

Address Translation

Address space on the PCI side that is accessible from the PLB side must be translated to a 2N contiguous
block on the PLB side. Up to six contiguous blocks are possible. Each block has parameters for base
address (C_IPIFBAR_N), high address, address translation vector, and memory designator (memory or
I/O).

All address space on the PLB side that is accessible from the PCI side must be translated to a maximum
of three 2N contiguous blocks on the PCI side. Up to three blocks are possible because the LogiCore
PCI32 core supports up to 3 BARs. Each block has parameters for length, which must be a 2N range, and
address translation vector. Only PCI memory space is supported.

Address translations in both directions are performed as follows:

• High-order address bits are substituted for the address vector before crossing to the other bus
domain. The number of high-order bits substituted in the PLB address presented to the bridge is
given by the number of bits that are the same between the C_IPIFBAR_N and C_
IPIF_HIGHADDR_N parameters. The number of high-order bits substituted in the PCI address
presented to the bridge for a translation from PCI to PLB domains is given by the bus width minus
the parameter C_PCIBAR_LEN_N.

• The low-order bits are transferred directly between bus domains. The bits substituted in a
translation from PLB to PCI domains can be selected via a parameter
(C_INCLUDE_BAROFFSET_REG) as either a parameter (C_IPIFBAR2PCIBAR_N) or a
programmable register for each BAR. The bits that are substituted for in a translation from PCI to
PLB domains is defined by a parameter (C_PCIBAR2IPIFBAR_M) for each BAR.

Figure 2 shows two sets of base address register (BAR) parameters and how they are used. The two sets
are independent sets: one set for the up to six PLB-side device (IPIFBAR) address ranges and another
set for the up to three PCI-side device (PCIBAR) address ranges.

This document includes three examples of how to use the two sets of base address register (BAR)
parameters:

Example 1, shown in Figure 2, outlines the use of the two sets of BAR parameters.
 24, 2007 www.xilinx.com 5
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

6

Example 2 outlines the use of the IPIFBAR parameters sets for the specific address translations of PLB
addresses within the range of a given IPIFBAR to a remote PCI address space.

Example 3 outlines the use of the PCIBAR parameter sets for the address translation of PCI addresses
within the range of a given PCIBAR to a remote PLB address space.

Example 1

Because address translations are performed only when the PLBV46 PCI Bridge is configured with
FIFOs, the example shown in Figure 2 is for an PLBV46 PCI Bridge configuration with FIFOs only. In this
example, it is assumed that C_INCLUDE_BAROFFSET_REG=0, therefore, the parameters
C_IPIFBAR2PCIBAR_N define the high-order bits for substitution in translating the address on the
PLB bus to the PCI bus.

The PLB parameters are C_IPIFBAR_N, C_IPIF_HIGHADDR_N, and C_IPIFBAR2PCIBAR_N for N=0
to 5.

The PCI parameters are C_PCIBAR_LEN_M and C_PCIBAR2IPIFBAR_M for M=0 to 2.

Figure Top x-ref 2

Figure 2: Translation of Addresses Bus-to-Bus with High-Order Bit Substitution

PLB PCI Full Bridge

PLB Bus

Note 2

BAR_11BAR_10

IPIF
C_IPIFBAR_NUM = 3

IPIFBAR_3 IPIFBAR_4 IPIFBAR_5

IPIF to v3.0 LogiCORE Bridge

v3.0 LogiCORE
C_PCIBAR_NUM = 2

PBAR_21 PBAR_22PBAR_20

PCI Bus

Note 1 (high-order
bit sub)

Addr to PCI

IPIFBAR_0

(high-order
bit sub)

Addr to PCI

IPIFBAR_1

(high-order
bit sub)

Addr to PLB

PCIBAR_0

(high-order
bit sub)

Addr to PLB

PCIBAR_1

(high-order
bit sub)

Addr to PCI

IPIFBAR_2

PCIBAR_2

DS616_02_040407
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
Example 2

Example 2 shows of the settings of the two independent sets of base address register (BAR) parameters
for specifics of address translation of PLB addresses within the range of a given IPIFBAR to a remote
PCI address space. Note that this setting does not depend on the PCIBARs of the PLBV46 PCI Bridge.

As in example 1, it is assumed that the parameter C_INCLUDE_BAROFFSET_REG=0, therefore the
C_IPIFBAR2PCIBAR_N parameters define the address translation.

In this example, where C_IPIFBAR_NUM=4, the following assignments for each range are made:

C_IPIFBAR_0=0x12340000
C_IPIF_HIGHADDR_0=0x1234FFFF
C_IPIFBAR2PCIBAR_0=0x5671XXXX (Bits 16-31 are don’t cares)

C_IPIFBAR_1=0xABCDE000
C_IPIF_HIGHADDR_1=0xABCDFFFF
C_IPIFBAR2PCIBAR_1=0xFEDC0xXX (Bits 19-31 are don’t cares)

C_IPIFBAR_2=0xFE000000
C_IPIF_HIGHADDR_2=0xFFFFFFFF
C_IPIFBAR2PCIBAR_2=0x40xXXXXX (Bits 7-31 are don’t cares)

C_IPIFBAR_3=0x00000000
C_IPIF_HIGHADDR_3=0x0000007F
C_IPIFBAR2PCIBAR_3=8765438X (Bits 25-31 are don’t cares)

Accessing the PLBV46 PCI Bridge IPIFBAR_0 with address 0x12340ABC on the PLB bus yields
0x56710ABC on the PCI bus.

Accessing the PLBV46 PCI Bridge IPIFBAR_1 with address 0xABCDF123 on the PLB bus yields
0xFEDC1123 on the PCI bus.

Accessing the PLBV46 PCI Bridge IPIFBAR_2 with address 0xFFFEDCBA on the PLB bus yields
0x41FEDCBA on the PCI bus.

Accessing the PLBV46 PCI Bridge IPIFBAR_3 with address 0x00000071 on the PLB bus yields
Ox876543F1 on the PCI bus.

Example 3

Example 3 outlines address translation of PCI addresses within the range of a given PCIBAR to PLB
address space. Note that this translation is independent of the PLBV46 PCI Bridge IPIF BARs.

The parameters C_PCIBAR2IPIFBAR_M parameters define the address translation for all
C_PCIBAR_NUM.

In this example, where C_PCIBAR_NUM=2, the following range assignments are made:

BAR 0 is set to 0xABCDE800 by host
C_PCIBAR_LEN_0=11
C_PCIBAR2IPIFBAR_0=0x123450XX (Bits 21-31 are don’t cares)

BAR 1 is set to 0x12000000 by host
C_PCIBAR_LEN_1=25
C_PCIBAR2IPIFBAR_1=0xFEXXXXXX (Bits 7-31 are don’t cares)

Accessing the PLBV46 PCI Bridge PCIBAR_0 with address 0xABCDEFF4 on the PCI bus yields
0x123457F4 on the PLB bus.
 24, 2007 www.xilinx.com 7
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

8

Accessing the PLBV46 PCI Bridge PCIBAR_1 with address 0x1235FEDC on the PCI bus yields
0xFE35FEDC on the PLB bus.

Table 1: PLBV46 PCI Bridge Interface Design Parameters

Generic
Feature /

Description
Parameter

Name
Allowable Values

Default
Value

VHDL
Type

Bridge Features Parameter Group

G1 Number of IPIF devices
C_IPIFBAR
_NUM

1-6; Parameters listed
below corresponding to
unused BARs are
ignored, but must be
valid values. BAR label
0 is the required bar for
all values 1-6 and the
index increments from 0
as BARs are added

6 integer

G2 IPIF device 0 BAR C_IPIFBAR_0 Valid PLB address (1) 0xFFFFFFFF
std_logic_

vector

G3
IPIF BAR high address
0

C_IPIF_
HIGHADDR_0

Valid PLB address (1) 0x00000000
std_logic_

vector

G4

PCI BAR to which IPIF
BAR 0 is mapped
unless
C_INCLUDE_BAROFF
SET_REG = 1

C_IPIFBAR2
PCIBAR_0 1

Vector of length
C_SPLB_AWIDTH

0xFFFFFFFF
std_logic_

vector

G5
IPIF BAR 0 memory
designator

C_IPIF_SPACE
TYPE_0

0 = I/O space
1 = Memory space

1 integer

G6 IPIF device 1 BAR C_IPIFBAR_1 Valid PLB address (1) 0xFFFFFFFF
std_logic_

vector

G7
IPIF BAR high address
1

C_IPIF_
HIGHADDR_1

Valid PLB address (1) 0x00000000
std_logic_

vector

G8

PCI BAR to which IPIF
BAR 1 is mapped
unless
C_INCLUDE_BAROFF
SET_REG = 1

C_IPIFBAR2
PCIBAR_1

Vector of length
C_SPLB_AWIDTH

0xFFFFFFFF
std_logic_

vector

G9
IPIF BAR 1 memory
designator

C_IPIF_SPACE
TYPE_1

0 = I/O space
1 = Memory space

1 integer

G10 IPIF device 2 BAR C_IPIFBAR_2 Valid PLB address (1) 0xFFFFFFFF
std_logic_

vector

G11
IPIF BAR high address
2

C_IPIF_
HIGHADDR_2

Valid PLB address (1) 0x00000000
std_logic_

vector

G12

PCI BAR to which IPIF
BAR 2 is mapped
unless
C_INCLUDE_BAROFF
SET_
REG = 1

C_IPIFBAR2
PCIBAR_2

Vector of length
C_SPLB_AWIDTH

0xFFFFFFFF
std_logic_

vector
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
G13
IPIF BAR 2 memory
designator

C_IPIF_SPACE
TYPE_2

0 = I/O space
1 = Memory space

1 integer

G14 IPIF device 3 BAR C_IPIFBAR_3 Valid PLB address (1), (2) 0xFFFFFFFF
std_logic_

vector

G15
IPIF BAR high
address 3

C_IPIF_
HIGHADDR_3

Valid PLB address (1), (2) 0x00000000
std_logic_

vector

G16

PCI BAR to which IPIF
BAR 3 is mapped
unless
C_INCLUDE_BAROFF
SET_REG = 1.

C_IPIFBAR2
PCIBAR_3

Vector of length
C_SPLB_AWIDTH

0xFFFFFFFF
std_logic_

vector

G17
IPIF BAR 3 memory
designator

C_IPIF_SPACE
TYPE_3

0 = I/O space
1 = Memory space

1 integer

G18 IPIF device 4 BAR C_IPIFBAR_4 Valid PLB address (1), (2) 0xFFFFFFFF
std_logic_

vector

G19
IPIF BAR high
address 4

C_IPIF_
HIGHADDR_4

Valid PLB address (1), (2) 0x00000000
std_logic_

vector

G20

PCI BAR to which IPIF
BAR 4 is mapped
unless
C_INCLUDE_BAROFF
SET_REG = 1

C_IPIFBAR2
PCIBAR_4

Vector of length
C_SPLB_AWIDTH

0xFFFFFFFF
std_logic_

vector

G21
IPIF BAR 4 memory
designator

C_IPIF_SPACE
TYPE_4

0 = I/O space
1 = Memory space

1 integer

G22 IPIF device 5 BAR C_IPIFBAR_5 Valid PLB address (1), (2) 0xFFFFFFFF
std_logic_

vector

G23
IPIF BAR high
address 5

C_IPIF_
HIGHADDR_5

Valid PLB address (1), (2) 0x00000000
std_logic_

vector

G24

PCI BAR to which IPIF
BAR 5 is mapped
unless
C_INCLUDE_BAROFF
SET_
REG = 1

C_IPIFBAR2
PCIBAR_5

Vector of length
C_SPLB_AWIDTH

0xFFFFFFFF
std_logic_

vector

G25
IPIF BAR 5 memory
designator

C_IPIF_SPACE
TYPE_5

0 = I/O space
1 = Memory space

1 integer

G26 Number of PCI devices
C_PCIBAR_
NUM

1-3; Parameters listed
below corresponding to
unused BARs are
ignored, but must be
valid values. BAR label
0 is the required bar for
all values 1-3 and the
index increments from 0
as BARs are added

3 integer

Table 1: PLBV46 PCI Bridge Interface Design Parameters (Contd)

Generic
Feature /

Description
Parameter

Name
Allowable Values

Default
Value

VHDL
Type
 24, 2007 www.xilinx.com 9
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

10
G27
IPIF BAR to which PCI
BAR 0
is mapped

C_PCIBAR2
IPIFBAR_0

Vector of length
C_MPLB_AWIDTH

0x00000000
std_logic_

vector

G28
Power of 2 in the size in
bytes of PCI BAR 0
space

C_PCIBAR_
LEN_0

5 to 29 16 integer

G29
IPIF BAR to which PCI
BAR 1 is mapped

C_PCIBAR2IPI
FBAR_1

Vector of length
C_MPLB_AWIDTH

0x00000000
std_logic_

vector

G30
Power of 2 in the size in
bytes of PCI BAR 1
space

C_PCIBAR_
LEN_1

5 to 29 16 integer

G31
IPIF BAR to which PCI
BAR 2 is mapped

C_PCIBAR2
IPIFBAR_2

Vector of length
C_MPLB_AWIDTH

0x00000000
std_logic_

vector

G32
Power of 2 in the size in
bytes of PCI BAR 2
space

C_PCIBAR_
LEN_2

5 to 29 16 integer

G33 PCI address bus width
C_PCI_ABUS_
WIDTH

32 32 integer

G34 PCI data bus width
C_PCI_DBUS_
WIDTH

32 32 integer

G35

Both PCI2IPIF FIFO
address bus widths.
Usable depth is
2^C_PCI2IPIF_FIFO_A
BUS_WIDTH - 3

C_PCI2IPIF_
FIFO_ABUS_
WIDTH

7-11(3) 9 integer

G36

Both IPIF2PCI FIFO
address bus widths.
Usable depth is
2^C_IPIF2PCI_FIFO_A
BUS_WIDTH - 3

C_IPIF2PCI_
FIFO_ABUS_
WIDTH

7-11(3) 9 integer

G37

Include explicit
instantiation of INTR_A
io-buffer (must be 1 to
include io-buffer)

C_INCLUDE_
INTR_A_BUF

0 = not included
1 = included

1 integer

G38

Include explicit
instantiation of REQ_N
io-buffer (must be 1 to
include io-buffer)

C_INCLUDE_
REQ_N_BUF

0 = not included
1 = included

1 integer

G39

PCI2IPIF FIFO
occupancy level in
double words that
triggers the bridge to
initiate an IPIF burst
write to remote PLB
device

C_TRIG_IPIF_
WRBURST_
OCC_LEVEL

2 to the lesser of 24 or
the PCI2IPIF FIFO
DEPTH-3. PCI2IPIF
FIFO DEPTH given by
2^C_PCI2IPIF_FIFO_A
BUS_WIDTH

8 integer

Table 1: PLBV46 PCI Bridge Interface Design Parameters (Contd)

Generic
Feature /

Description
Parameter

Name
Allowable Values

Default
Value

VHDL
Type
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
G40

IPIF2PCI FIFO
occupancy level that
starts data transfer
(Both as initiator and
target on PCI) to PCI
agent with multiple data
phases per transfer
(must meet 16 PCI
period maximum).

C_TRIG_PCI_
DATA_XFER_
OCC_LEVEL

2 to the lesser of 24 or
the IPIF2PCI FIFO
DEPTH-3. IPIF2PCI
FIFO DEPH given by
2^C_IPIF2PCI_FIFO_
ABUS_WIDTH

8 integer

G41
Number of PCI retry
attempts in IPIF
posted-write operations

C_NUM_PCI_R
ETRIES_IN_
WRITES

Any integer 3 integer

G42

Number of PCI clock
periods between retries
in posted- write
operations

C_NUM_PCI_P
RDS_BETWN_
RETRIES_IN_
WRITES

Any integer 6 integer

G43 Device base address
C_BASE
ADDR

Valid PLB address (1), (2) 0xFFFFFFFF
std_logic_

vector

G44
Device absolute high
address

C_HIGHADDR Valid PLB address (1), (2) 0x00000000
std_logic_

vector

G45

Include the registers for
high-order bits to be
substituted in
translation

C_INCLUDE_
BAROFFSET_
REG

1 = include
0 = exclude

0 integer

G46

Include the register for
local bridge device
number when
configuration
functionality
(C_INCLUDE_PCI_CO
NFIG =1) is included

C_INCLUDE_D
EVNUM_REG

1 = include
0 = exclude

0 integer

G47
Length of PCI Initiated
burst reads (in words)

C_PCI_INIT_R
D_BURST_LEN
GTH

2-128 16 integer

G48

PCI initiated prefetch
Discard Timer value
(power of 2 in PCI
clocks)

C_PCI_DISCA
RD_TIMER

10 or 15 10 integer

G49

PLB initiated prefetch
Discard Timer value
(power of 2 in SPLB
clocks)

C_PLB_DISCA
RD_TIMER

10 or 15 10 integer

G50

Number of IDELAY
controllers instantiated.
Ignored it not Virtex-4 or
Virtex-5

C_NUM_
IDELAYCTRL

2-6
(Virtex-4 or Virtex-5
only)

2 integer

Table 1: PLBV46 PCI Bridge Interface Design Parameters (Contd)

Generic
Feature /

Description
Parameter

Name
Allowable Values

Default
Value

VHDL
Type
 24, 2007 www.xilinx.com 11
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

12
G51

Includes IDELAY
primitive on GNT_N.
Set by tcl-scripts and
ignored if not Virtex-4 or
Virtex-5.

C_INCLUDE_
GNT_DELAY

1=Include IDELAY
primitive
(Virtex-4 or Virtex-5
only)
0=No IDELAY primitive

0 integer

G52

Provides a means for
BSB to pass LOC
coordinates for
IDELAYCTRLs for a
given board to
EDK and is optional for
user to set LOC
constraints. This
parameter has no
impact on bridge
functionality.

C_IDELAY
CTRL_LOC

See Device
Implementation section,
subsection Virtex-4 &
Virtex-5 Support for
allowed values

NOT_SET string

PCI32 Core Parameters Group

G53
PCI Configuration
Space Header Device
ID

C_DEVICE_ID 16-bit vector 0x0000
std_logic_

vector

G54
PCI Configuration
Space Header Vendor
ID

C_VENDOR_
ID

16-bit vector 0x0000
std_logic_

vector

G55
PCI Configuration
Space Header Class
Code

C_CLASS_
CODE

24-bit vector 0x000000
std_logic_

vector

G56
PCI Configuration
Space Header Rev ID

C_REV_ID 8-bit vector 0x00
std_logic_

vector

G57
PCI Configuration
Space Header
Subsystem ID

C_SUB
SYSTEM_ID

16-bit vector 0x0000
std_logic_

vector

G58
PCI Configuration
Space Header
Subsystem Vendor ID

C_SUBSYSTE
M_VENDOR_
ID

16-bit vector 0x0000
std_logic_

vector

G59
PCI Configuration
Space Header
Maximum Latency

C_MAX_LAT 8-bit vector 0x0F
std_logic_

vector

G60
PCI Configuration
Space Header
Minimum Grant

C_MIN_GNT 8-bit vector 0x04
std_logic_

vector

Configuration

G61
Include configuration
functionality via IPIF
transactions

C_INCLUDE_
PCI_CONFIG

0 = Not included
1 = Included

1 integer

Table 1: PLBV46 PCI Bridge Interface Design Parameters (Contd)

Generic
Feature /

Description
Parameter

Name
Allowable Values

Default
Value

VHDL
Type
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
G62
Number of IDSEL
signals supported

C_NUM_
IDSEL

1 to 16 8 integer

G63
PCI address bit that
PCI32 core IDSEL is
connected to

C_BRIDGE_
IDSEL_ADDR_
BIT

31 down to 16
Must be <= 15 +
C_NUM_IDSEL.
AD(31 down to 0) index
labeling

16 integer

IPIF Parameters Group

G64
PLB master ID bus
width (set automatically
by XPS)

C_SPLB_MID_
WIDTH

log2(C_SPLB_NUM_M
ASTERS)

3 integer

G65
Number of masters on
PLB bus (set
automatically by XPS)

C_SPLB_NUM
_
MASTERS

1-16 8 integer

G66
PLB Slave Address
width

C_SPLB_
AWIDTH

32 (only allowed value) 32 integer

G67 PLB Slave Data width
C_SPLB_
DWIDTH

32 - 128 32 integer

G68
PLB Master Address
width

C_MPLB_
AWIDTH

32 (only allowed value) 32 integer

G69 PLB Master Data width
C_MPLB_
DWIDTH

32 - 128 32 integer

G70
The dwidth of the
smallest master that will
access the slave IPIF

C_SPLB_SMAL
LEST_MASTE
R

32 - 128 32 integer

G71
The dwidth of the
smallest slave that will
access the master IPIF

C_MPLB_SMA
LLEST_SLAVE

32 - 128 32 integer

G72
Specifies the target
technology

C_FAMILY
See PLBV46 IPIF data
sheet

virtex4 string

Notes:

1. The range specified must comprise a complete, contiguous power of two range, such that the range = 2n and
the n least significant bits of the Base Address are zero.

2. The minimum address range specified by C_BASEADDR and C_HIGHADDR must be at least 0x1FF.
C_BASEADDR must be a multiple of the range, where the range is C_HIGHADDR - C_BASEADDR + 1.

3. The maximum burst size on either the PCI or PLB is limited to the usable FIFO depth which is the physical
depth -3.

Table 1: PLBV46 PCI Bridge Interface Design Parameters (Contd)

Generic
Feature /

Description
Parameter

Name
Allowable Values

Default
Value

VHDL
Type
 24, 2007 www.xilinx.com 13
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

14
PLBV46 PCI Bus Interface I/O Signals
The I/O signals for the PLBV46 PCI Bridge are listed in Table 2. The interfaces referenced in this table
are shown in Figure 1 in the PLBV46 PCI Bridge block diagram.

Table 2: PLBV46 PCI Bridge I/O Signals

Port Signal Name Interface I/O Description

System Signals

P1 IP2INTC_Irpt Internal O Interrupt from IP to the Interrupt Controller

PLB Signals (Slave)

P2 SPLB_Clk PLB Bus I PLB slave bus clock. See table note 1.

P3 SPLB_Rst PLB Bus I PLB slave bus reset. See table note 1.

P4 PLB_Abort PLB Bus I Note 1 applies from P4 to P43.

P5 PLB_PAValid PLB Bus I

P6 PLB_SAValid PLB Bus I

P7
PLB_ABus(0:C_SPLB_
AWIDTH-1)

PLB Bus I

P8
PLB_UABus(0:C_SPLB_
AWIDTH-1)

PLB Bus I

P9 PLB_RNW PLB Bus I

P10
PLB_BE(0:[C_SPLB_D
WIDTH/8]-1)

PLB Bus I

P11 PLB_Type(0:2) PLB Bus I

P12 PLB_Size(0:3) PLB Bus I

P13
PLB_MasterID(0:C_SPL
B_MID_WIDTH-1)

PLB Bus I

P14 PLB_MSize(0:1) PLB Bus I

P15 PLB_BusLock PLB Bus I

P16 PLB_LockErr PLB Bus

P17 PLB_TAttribute(0:15) PLB Bus

P18 PLB_RdBurst PLB Bus I

P19 PLB_WrBurst PLB Bus I

P20
PLB_WrDBus(0:C_SPLB
_DWIDTH-1)

PLB Bus I

P21 PLB_RdPrim PLB Bus I

P22 PLB_WrPrim PLB Bus I

P23 PLB_RdPendPri(0:1) PLB Bus I

P24 PLB_WrPendPri(0:1) PLB Bus I

P25 PLB_RdPendReq PLB Bus I

P26 PLB_WrPendReq PLB Bus I
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
P27 PLB_ReqPri(0:1) PLB Bus I

P28 Sl_AddAck PLB Bus O

P29 Sl_Wait PLB Bus O

P30 Sl_Rearbitrate PLB Bus O

P31 Sl_SSize(0:1) PLB Bus O

P32 Sl_WrDAck PLB Bus O

P33 Sl_WrComp PLB Bus O

P34 Sl_WrBTerm PLB Bus O

P35
Sl_RdDBus(0:C_SPLB_
DWIDTH-1)

PLB Bus O

P36 Sl_RdDAck PLB Bus O

P37 Sl_RdComp PLB Bus O

P38 Sl_RdBTerm PLB Bus O

P39 Sl_rdWdAddr(0:3) PLB Bus O

P40
Sl_MBusy(0:C_SPLB_N
UM_MASTERS-1)

PLB Bus O

P41
Sl_MRdErr(0:C_SPLB_N
UM_MASTERS-1)

PLB Bus O

P42
Sl_MWrErr(0:C_SPLB_N
UM_MASTERS-1)

PLB Bus O

P43
Sl_MIRQ(0:C_SPLB_NU
M_MASTERS-1)

PLB Bus O Table note 1 applies from P43 to P4.

PLB Signals (Master)

P44 MPLB_Clk PLB Bus I PLB master bus clock. See table note 1.

P45 MPLB_Rst PLB Bus I PLB master bus reset. See table note 1.

P46 PLB_MAddrAck PLB Bus I Table note 1 applies from P46 to P75.

P47 PLB_MSSize(0:1) PLB Bus I

P48 PLB_MRearbitrate PLB Bus I

P49 PLB_MTimeout PLB Bus I

P50 PLB_MWrDAck PLB Bus I

P51 PLB_MWrBTerm PLB Bus I

P52
PLB_MRdDBus(0:C_MP
LB_DWIDTH-1)

PLB Bus I

P53 PLB_MRdWdAddr(0:3) PLB Bus I

P54 PLB_MRdDAck PLB Bus I

P55 PLB_MRdBTerm PLB Bus I

Table 2: PLBV46 PCI Bridge I/O Signals (Contd)

Port Signal Name Interface I/O Description
 24, 2007 www.xilinx.com 15
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

16
P56 PLB_MBusy PLB Bus I

P57 PLB_MRdErr PLB Bus I

P58 PLB_MWrErr PLB Bus I

P59 PLB_MIRQ PLB Bus I

P60 M_Request PLB Bus O

P61 M_Abort PLB Bus O

P62 M_Priority PLB Bus O

P63 M_Buslock PLB Bus O

P64 M_LockErr PLB Bus O

P65 M_TAttribute(0:15) PLB Bus O

P66 M_Type(0:2) PLB Bus O

P67
M_BE(0:[C_MPLB_DWI
DTH/8]-1)

PLB Bus O

P68 M_RNW PLB Bus O

P69
M_UABus(0:C_MPLB_A
WIDTH-1)

PLB Bus O

P70
M_ABus(0:C_MPLB_AW
IDTH-1)

PLB Bus O

P71 M_MSize(0:1) PLB Bus O

P72 M_size(0:3) PLB Bus O

P73 M_RdBurst PLB Bus O

P74 M_WrBurst PLB Bus O

P75
M_WrDBus(0:C_MPLB_
DWIDTH-1)

PLB Bus O Table note 1 applies from P75 to P46.

PCI Address and Data Path Signals

P76
AD[C_PCI_DBUS_WIDT
H-1:0]

PCI Bus I/O Time-multiplexed address and data bus

P77
CBE[(C_PCI_DBUS_WI
DTH/8)-1:0]

PCI Bus I/O Time-multiplexed bus command and byte enable bus

P78 PAR PCI Bus I/O
Generates and checks even parity across AD and
CBE

PCI Transaction Control Signals

P79 FRAME_N PCI Bus I/O Driven by an initiator to indicate a bus transaction

P80 DEVSEL_N PCI Bus I/O
Indicates that a target has decoded the address
presented during the address phase and is claiming
the transaction

P81 TRDY_N PCI Bus I/O
Indicates that the target is ready to complete the
current data phase

Table 2: PLBV46 PCI Bridge I/O Signals (Contd)

Port Signal Name Interface I/O Description
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
P82 IRDY_N PCI Bus I/O
Indicates that the initiator is ready to complete the
current data phase

P83 STOP_N PCI Bus I/O
Indicates that the target has requested to stop the
current transaction

P84 IDSEL PCI Bus I
Indicates that the interface is the target of a
configuration cycle

PCI Interrupt Signals

P85 INTR_A PCI Bus O
Indicates that LogiCORE PCI32 interface requests
an interrupt

PCI Error Signals

P86 PERR_N PCI Bus I/O
Indicates that a parity error was detected while the
LogiCORE PCI32 interface was the target of a write
transfer or the initiator of a read transfer

P87 SERR_N PCI Bus I/O
Indicates that a parity error was detected during an
address cycle, except during special cycles

PCI Arbitration Signals

P88 REQ_N PCI Bus O
Indicates to the arbiter that the LogiCORE PCI32
initiator requests access to the bus

P89 GNT_N PCI Bus I
Indicates that the arbiter has granted the bus to the
LogiCORE PCI32 initiator

PCI System Signals

P90 RST_N PCI Bus I
PCI bus reset signal is used to bring PCI-specific
registers, sequences, and signals to a consistent
state

P91 PCLK PCI Bus I PCI bus clock signal

PCI Bus Internal Arbiter Signals

P92 INTR_A_int Internal O INT_A available to internal arbiter

P93 REQ_N_toArb Internal O
Input from PCI Bus REQ_N available at top-level as
output from bridge

P94 FRAME_I Internal O
Input from PCI Bus FRAME_N availalble at top-level
as output from bridge

P95 IRDY_I Internal O
Input from PCI Bus IRDY_N availalble at top-level as
output from bridge

User Asserted PCI Interrupt Signal

P96 Bus2PCI_INTR Internal I

Active high signal to asynchronously assert INTR_A.
Inverted signal drives INTR_N user application input
of PCI core. See PCI core documents for details on
INTR_N functionality.

Virtex-4 or Virtex-5 Only, IDELAY Clock

Table 2: PLBV46 PCI Bridge I/O Signals (Contd)

Port Signal Name Interface I/O Description
 24, 2007 www.xilinx.com 17
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

18
The REQ_N_toArb facilitates an interface to an internal (in the FPGA) pci arbiter. The PCI input buffer
for GNT_N is removed. This allows an internal connection to GNT_N when using an internal arbiter.
When an external arbiter is used, GNT_N_fromArb is not needed.

REQ_N is a 3-stated I/O. The REQ_N_toArb port is available to maintain a PCI core-like interface. The
REQ_N_toArb port allows the use of the same port list for PCI bus interface and the ucf-file for the
PCI32 core is the standard file.

The PCI32 core requires that GNT_N be asserted for two clock cycles to initiate a transaction upon
receiving grants.

Bus2PCI_INTR is an active High signal. It allows asynchronous assertion of INTR_A on the PCI bus.
The signal is driven by user supplied circuitry, such as a PLB GPIO IP core. If it is not connected in the
mhs-file, then EDK 8.1 tools will tie the signal Low. The signal is inverted in the PLBV46 PCI Bridge and
AND’d with the bridge interrupt signal (active Low) to drive the INTR_N input of the PCI32 core. This
signal then asynchronously drives INTR_A on the PCI bus. See the PCI32 core specifications on
INTR_A behavior relative to PCI input INTR_N. The PCI32 core command register interrupt disable bit
controls the INTR_A operation andPCI32 core status register Interrupt status bit flags if PCI32 core
INTR_A is asserted.

Port and Parameter Dependencies
The dependencies between the IPI v3.0 Bridge design ports, such as the I/O signals, and the
parameters are shown in Table 1.

P97 RCLK Internal I
200 MHz clock input to IDELAY elements of Virtex-4
and Virtex-5 buffers. Ignored if not Virtex-4 or Virtex-5
architecture.

PCI Bus Monitoring Debug Vector Signal

P98 PCI_monitor(0:47) Internal O Output vector to monitor PCI Bus.

Notes:
1. This function and timing of this signal are defined in the IBM 128-Bit Processor Local Bus Architecture

Specification Version 4.6.

Table 2: PLBV46 PCI Bridge I/O Signals (Contd)

Port Signal Name Interface I/O Description
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
Table 3: PLBV46 PCI Bridge Parameters-Port Dependencies

Generic Parameter Affects Depends Description

Bridge Features Parameter Group

G1 C_IPIFBAR_NUM G2-G25

The set of PLB/IPIF BAR-parameters of
N = 0 to C_IPIFBAR_NUM-1 are
meaningful. When C_IPIFBAR_NUM <
6, the parameters of N =
C_IPIFBAR_NUM up to 5 have no effect.
If C_IPIFBAR_NUM = 6, the set of
PLB/IPIF BAR-parameters of N = 0 to 5
are all meaningful (G2-G25 are
meaningful).

G2 C_IPIFBAR_0 G3 G3
G2 to G3 define range in PLB-memory
space that is responded to by this device
(IPIF BAR)

G3 C_IPIFBAR_HIGHADDR_0 G2 G2
G2 to G3 define range in PLB-memory
space that is responded to by this device
(IPIF BAR)

G4 C_IPIFBAR2PCIBAR_0
G2, G3 and

G48

Meaningful only if G48 = 0 and in this
case only high-order bits that are the
same in G2 and G3 are meaningful.

G5 C_IPIF_SPACETYPE_0

G6 C_IPIFBAR_1 G7 G1 and G7

Meaningful only if G1>1, then G6 to G7
define the range in PLB-memory space
that is responded to by this device (IPIF
BAR)

G7 C_IPIFBAR_HIGHADDR_1 G6 G1 and G6

Meaningful only if G1>1, then G6 to G7
define the range in PLB-memory space
that is responded to by this device (IPIF
BAR)

G8 C_IPIFBAR2PCIBAR_1
G1, G6, G7

and G48

Meaningful only if G48 = 0 and G1>1. In
this case only high-order bits that are the
same in G6 and G7 are meaningful.

G9 C_IPIF_SPACETYPE_1 G1 Meaningful only if G1>1

G10 C_IPIFBAR_2 G11
G1 and

G11

Meaningful only if G1>2, then G10 to
G11 define the range in PLB-memory
space that is responded to by this device
(IPIF BAR)

G11 C_IPIFBAR_HIGHADDR_2 G10
G1 and

G10

Meaningful only if G1>2, then G10 to
G11 define the range in PLB-memory
space that is responded to by this device
(IPIF BAR)

G12 C_IPIFBAR2PCIBAR_2
G1, G10,
G11 and

G48

Meaningful only if G48 = 0 and G1>2. In
this case only high-order bits that are the
same in G10 and G11 are meaningful.

G13 C_IPIF_SPACETYPE_2 G1 Meaningful only if G1>2
 24, 2007 www.xilinx.com 19
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

20
G14 C_IPIFBAR_3 G15
G1 and

G15

Meaningful only if G1>3, then G14 to
G15 define the range in PLB-memory
space that is responded to by this device
(IPIF BAR)

G15 C_IPIFBAR_HIGHADDR_3 G14
G1 and

G14

Meaningful only if G1>3, then G14 to
G15 define the range in PLB-memory
space that is responded to by this device
(IPIF BAR)

G16 C_IPIFBAR2PCIBAR_3
G1, G14,
G15 and

G48

Meaningful only if G48 = 0 and G1>3. In
this case only high-order bits that are the
same in G14 and G15 are meaningful.

G17 C_IPIF_SPACETYPE_3 G1 Meaningful only if G1>3

G18 C_IPIFBAR_4 G19
G1 and

G19

Meaningful only if G1>4, then G18 to
G19 define the range in PLB-memory
space that is responded to by this device
(IPIF BAR)

G19 C_IPIFBAR_HIGHADDR_4 G18
G1 and

G18

Meaningful only if G1>4, then G18 to
G19 define the range in PLB-memory
space that is responded to by this device
(IPIF BAR)

G20 C_IPIFBAR2PCIBAR_4
G1, G18,
G19 and

G48

Meaningful only if G48 = 0 and G1>4. In
this case only high-order bits that are the
same in G18 and G19 are meaningful.

G21 C_IPIF_SPACETYPE_4 G1 Meaningful only if G1>4

G22 C_IPIFBAR_5 G23
G1 and

G23

Meaningful only if G1=6, then G22 to
G23 define the range in PLB-memory
space that is responded to by this device
(IPIF BAR)

G23 C_IPIFBAR_HIGHADDR_5 G22
G1 and

G22

Meaningful only if G1=6, then G22 to
G23 define the range in PLB-memory
space that is responded to by this device
(IPIF BAR)

G24 C_IPIFBAR2PCIBAR_5
G1, G22,
G23 and

G48

Meaningful only if G48 = 0 and G1=6. In
this case only high-order bits that are the
same in G22 and G23 are meaningful.

G25 C_IPIF_SPACETYPE_5 G1 Meaningful only if G1=6

G26 C_PCIBAR_NUM G27-G32

The set of PCI BAR-parameters of N = 0
to C_PCIBAR_NUM-1 are meaningful.
When C_PCIBAR_NUM < 3, the
parameters of N = C_PCIBAR_NUM up
to 2 have no effect. If C_PCIBAR_NUM =
3, the set of PCI BAR-parameters of N =
0 to 2 are all meaningful (G27-G32 are
meaningful)

G27 C_PCIBAR2IPIFBAR_0 G28
Only the high-order bits above the length
defined by G28 are meaningful

Table 3: PLBV46 PCI Bridge Parameters-Port Dependencies (Contd)

Generic Parameter Affects Depends Description
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
G28 C_PCIBAR_LEN_0

G29 C_PCIBAR2IPIFBAR_1 G30
Only the high-order bits above the length
defined by G30 are meaningful. Not
meaningful if G26=1

G30 C_PCIBAR_LEN_1 Not meaningful if G26=1

G31 C_PCIBAR2IPIFBAR_2 G32
Only the high-order bits above the length
defined by G30 are meaningful. Not
meaningful if G26=1-2

G32 C_PCIBAR_LEN_2 Not meaningful if G26=1-2

G33 C_PCI_ABUS_WIDTH Only 1 setting

G34 C_PCI_DBUS_WIDTH Only 1 setting

G35
C_PCI2IPIF_FIFO_ABUS_
WIDTH

G36
C_IPIF2PCI_FIFO_ABUS_
WIDTH

G37
C_INCLUDE_INTR_A_
BUF

P63
If G37 = 0, an io-buffer for P63 is not
explicitly instantiated

G38 C_INCLUDE_REQ_N_BUF P66
If G38 = 0, an io-buffer for P66 is not
explicitly instantiated

G39
C_TRIG_IPIF_
WRBURST_OCC_LEVEL

G35

Must be set to 2 to the lesser of 24 or the
PCI2IPIF FIFO DEPTH-1 where the
PCI2IPIF FIFO-1 depth is given by
2^G35

G40
C_TRIG_PCI_DATA_XFER
_OCC_LEVEL

G36
Must be set to 2 to the lesser of 24 or the
IPIF2PCI FIFO DEPTH-3 where
IPIF2PCI FIFO DEPTH given by 2^G36

G41
C_NUM_PCI_RETRIES_IN
_WRITES

G42
C_NUM_PCI_PRDS_BET
WN_RETRIES_IN_
WRITES

G43 C_BASEADDR G44 G44
G43 to G44 define range in PLB-memory
space that is responded to by PLBV46
PCI Bridge register address space

G44 C_HIGHADDR G43 G43
G43 to G44 define range in PLB-memory
space that is responded to by PLBV46
PCI Bridge register address space

G45
C_INCLUDE_BAROFFSET
_REG

G4, G8,
G12, G16,
G20 and

G24

G1
If G45=1, G4, G8, G12, G16, G20 and
G24 have no meaning. The number of
registers included is set by G1

Table 3: PLBV46 PCI Bridge Parameters-Port Dependencies (Contd)

Generic Parameter Affects Depends Description
 24, 2007 www.xilinx.com 21
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

22
G46
C_INCLUDE_DEVNUM_
REG

G63 G61, G62

If G61=0, G46 has no meaning. If G46
and G61=1, G63 has no meaning.
Meaningful bits in the Device Number
register are defined by G62

G47
C_PCI_INIT_RD_BURST_
LENGTH

G48 C_PCI_DISCARD_TIMER

G49 C_PLB_DISCARD_TIMER

G50 C_NUM_IDELAYCTRL G72
If G72 ≠ Virtex-4 or Virtex-5, G50 has no
meaning

G51 C_INCLUDE_GNT_DELAY G72
If G72 ≠ Virtex-4 or Virtex-5, G51 has no
meaning

G52 C_IDELAYCTRL_LOC
G50 and

G72

If G72 ≠ Virtex-4 or Virtex-5, G52 has no
meaning. If G72=Virtex-4 or Virtex-5,
G52 must include the number of LOC
coordinates specified by G50

PCI32 Core Parameters Group

G53 C_DEVICE_ID

G54 C_VENDOR_ID

G55 C_CLASS_CODE

G56 C_REV_ID

G57 C_SUBSYSTEM_ID

G58
C_SUBSYSTEM_VENDOR
_ID

G59 C_MAX_LAT

G60 C_MIN_GNT

Configuration

G61
C_INCLUDE_PCI_
CONFIG

G62, G63,
P84

If G61=1, signal P84 has an internal
connection and the top-level port P84
has no internal connection

G62 C_NUM_IDSEL
G49 and

G63
G61 and

G63

If G61=0, G62 has no meaning. If
G61=1, G62 sets the number of devices
supported in configuration operations.
Must be sufficiently large to include the
address bit defined by G63. If G46=1,
G62 restricts the allowed values that are
meaningful in the Device Number
Register

G63
C_BRIDGE_IDSEL_ADDR
_BIT

G62
G46, G61
and G62

If G61=0 or G46=1, G63 has no
meaning. If G61=1 and G46=0, G63
must be consistent with the setting of
G62

Table 3: PLBV46 PCI Bridge Parameters-Port Dependencies (Contd)

Generic Parameter Affects Depends Description
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
Supported PCI Bus Commands
The list of commands supported by the LogiCORE PCI32 interface is provided in Table 4.

IPIF Parameters Group

G64 C_SPLB_MID_WIDTH

G65 C_SPLB_NUM_MASTERS

G66 C_SPLB_AWIDTH

G67 C_SPLB_DWIDTH

G68 C_MPLB_AWIDTH

G69 C_MPLB_DWIDTH

G70
C_SPLB_SMALLEST_MA
STER

G71
C_MPLB_SMALLEST_SLA
VE

G72 C_FAMILY G50-52
If G72 ≠ Virtex-4 or Virtex-5, G50-52
have no meanings.

Table 4: Supported PCI Bus Commands

Command PLBV46 PCI Bridge

Code Name Target Initiator

0000 Interrupt Acknowledge No No

0001 Special Cycle No No

0010 I/O Read No Yes

0011 I/O Write No Yes

0100 Reserved Ignore Ignore

0101 Reserved Ignore Ignore

0110 Memory Read Yes Yes

0111 Memory Write Yes Yes

1000 Reserved Ignore Ignore

1001 Reserved Ignore Ignore

1010 Configuration Read Yes Optional

1011 Configuration Write Yes Optional

1100 Memory Read Multiple Yes Yes

1101 Dual Address Cycle Ignore No

1110 Memory Read Line Yes No

1111 Memory Write Invalidate Yes No

Table 3: PLBV46 PCI Bridge Parameters-Port Dependencies (Contd)

Generic Parameter Affects Depends Description
 24, 2007 www.xilinx.com 23
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

24
PLBV46 PCI Bridge Register Descriptions
The PLBV46 PCI Bridge contains addressable registers for read/write operations as shown in Table 5.
The base address for these registers is set by the base address parameter (C_BASEADDR). The address
of each register is then calculated by an offset to the base address as shown in Table 5. Registers that
reside in the user area of the PCI configuration header are mirrored in the IPIF register space as
read-only registers; this is included for debug utility. The registers that exist in a given PLBV46 PCI
Bridge depend on the configuration of the bridge.

Register and Parameter Dependencies

The addressable registers in the PLBV46 PCI Bridge depend on the parameter settings shown in
Table 6.

Table 5: PLBV46 PCI Bus Interface Registers

Register Name PLB Address Access

Device Interrupt Status Register (ISR) C_BASEADDR + 0x00 Read/TOW

Device Interrupt Pending Register (IPR) C_BASEADDR + 0x04 Read/Write

Device Interrupt Enable Register (IER) C_BASEADDR + 0x08 Read/Write

Device Interrupt ID (IID) C_BASEADDR + 0x18 Read

Global Interrupt Enable Register (GIE) C_BASEADDR + 0x1C Read/Write

Bridge Interrupt Register C_BASEADDR + 0x20 Read/TOW

Bridge Interrupt Enable Register C_BASEADDR + 0x28 Read/Write

Reset Module C_BASEADDR + 0x80 Read/Write

Configuration Address Port C_BASEADDR + 0x10C Read/Write

Configuration Data Port C_BASEADDR + 0x110 Read/Write

Bus Number/Subordinate Bus Number C_BASEADDR + 0x114 Read/Write

IPIFBAR2PCIBAR_0 high-order bits C_BASEADDR + 0x180 Read/Write

IPIFBAR2PCIBAR_1 high-order bits C_BASEADDR + 0x184 Read/Write

IPIFBAR2PCIBAR_2 high-order bits C_BASEADDR + 0x188 Read/Write

IPIFBAR2PCIBAR_3 high-order bits C_BASEADDR + 0x18C Read/Write

IPIFBAR2PCIBAR_4 high-order bits C_BASEADDR + 0x190 Read/Write

IPIFBAR2PCIBAR_5 high-order bits C_BASEADDR + 0x194 Read/Write

Host Bridge device number C_BASEADDR + 0x198 Read/Write

Table 6: Register and Parameter Dependencies

Register Name Parameter Dependence

Device Interrupt Status Register (ISR) Always present

Device Interrupt Pending Register (IPR) Always present

Device Interrupt Enable Register (IER) Always present

Device Interrupt ID (IID) Always present
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
PLBV46 PCI Bridge Interrupt Registers Descriptions

The interrupt module registers are always included in the bridge.

Interrupt Module Specifications

The interrupt registers are in the interrupt module that is instantiated in the IPIF module of the PLBV46
PCI Bridge.

Device Interrupt Status Register (DISR)

The Device Interrupt Status Register gives the interrupt status for the device (IPIF + Bridge Interrupts).
Each bit within this register represents a major function within the device. The bits are detailed in
Table 7. This register is fixed at 32 bits wide and each utilized bit within the register is set to ’1’
whenever the corresponding interrupt input has met the interrupt capture criteria. Unlike the Bridge
Interrupt Status Register, the interrupt capture mode for this register is fixed. The DPTO and TERR bits
are captured with a ’sample and hold high’ mode. This simply means that if the input interrupt is
sampled to be ’1’ at a rising edge of a PLB Clock pulse, the register bit is set to a ’1’ and ’held’ until the
User Interrupt Service Routine clears it to a ’0’. The remaining bits within the register (IPIR) are pass
through. Once asserted, they are ’held’ by the source of the interrupt (Bridge ISR) and therefore an

Global Interrupt Enable Register (GIE) Always present

Bridge Interrupt Register Always present

Bridge Interrupt Enable Register Always present

Reset Module Always present

Configuration Address Port Present only if G61=1

Configuration Data Port Present only if G61=1

Bus Number/Subordinate Bus Number Present only if G61=1

IPIFBAR2PCIBAR_0 High-Order Bits Present only if G45=1

IPIFBAR2PCIBAR_1 High-Order Bits Present only if G1>1 and G45=1

IPIFBAR2PCIBAR_2 High-Order Bits Present only if G1>2 and G45=1

IPIFBAR2PCIBAR_3 High-Order Bits Present only if G1>3 and G45=1

IPIFBAR2PCIBAR_4 High-Order Bits Present only if G1>4 and G45=1

IPIFBAR2PCIBAR_5 High-Order Bits Present only if G1=6 and G45=1

Host Bridge Device Number Present only if G46=1

Table 6: Register and Parameter Dependencies (Contd)

Register Name Parameter Dependence
 24, 2007 www.xilinx.com 25
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

26
additional sample and hold operation is not necessary in this register. These interrupts must be cleared
at the source function.

Device Interrupt Pending Register (IPR)

The Device Interrupt Pending Register is a read-only value that is the logical AND of the Device
Interrupt Status Register and the Device Interrupt Enable Register (see below) on a bit-by-bit basis. The
bits are detailed in Table 8. Therefore, the Interrupt Pending Register will report only captured
interrupts that are also enabled by the corresponding bit in the Interrupt Enable Register.

Table 7: Device Interrupt Status Register (DISR) Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access
Reset
Value

Description

0-28 I Read 0x0 Unassigned

29 BIR Read/TOW 0x0

Bridge Interrupt Request. This interrupt indicates that
the Bridge interrupt input on the IPIF input has been
captured in the Bridge Interrupt Status Register and is
enabled via the Bridge Interrupt Enable Register.

• ’0’ = No enabled interrupt is captured

• ’1’ = Bridge interrupt is captured and enabled.

30 DPTO Read/TOW 0x0

Data Phase Time-out. This interrupt indicates that a
Data Phase time-out occurred during a Read or Write
transaction request. The time-out value (PLB clocks) is
set to 255 clock periods.

• ’0’ = No Time-out detected.

• ’1’ = Data phase Time-out detected.

31 TERR Read/TOW 0x0

Transaction Error. This interrupt indicates that a function
within the Bridge (not IPIF timeout) responded to a Read
or Write transaction request with the assertion of the
Slv_MErr signal.

• ’0’ = No transaction error detected.

• ’1’ = Transaction Error detected.
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
Device Interrupt Enable Register (IER)

The Device Interrupt Enable Register determines which interrupt sources in the Device Interrupt Status
Register are allowed to generate interrupts to the system. The bits are detailed in Table 9.

Device Interrupt ID (IID)

The Device Interrupt ID Register is an ordinal value output of a priority encoder. The value indicates
which interrupt source, if any, has a pending interrupt. A value of 0x80 indicates that there are no

Table 8: Device Interrupt Pending Register (DIPR) Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access
Reset
Value

Description

0-28 I Read 0x0 Unassigned

29 BIRP Read 0x0

Bridge Interrupt Pending. This bit is the logical ’AND’ of
the Bridge IR bit in the DISR and the corresponding bit in
the DIER.

• ’0’ = No Bridge interrupt pending

• ’1’ = Bridge interrupt is pending.

30 DPTOP Read 0x0

Data Phase Time-out Pending. This bit is the logical
’AND’ of the DPTO bit in the DISR and the corresponding
bit in the DIER

• ’0’ = No Time-out interrupt pending.

• ’1’ = Time-out captured and enabled.

31 TERRP Read 0x0

Transaction Error Pending. This bit is the logical ’AND’
of the TERR bit in the DISR and the corresponding bit in
the DIER

• ’0’ = No transaction error pending.

• ’1’ = Transaction Error captured and enabled.

Table 9: Device Interrupt Enable Register (DIER) Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access
Reset
Value

Description

0-28 I Read 0x0 Unassigned

29 BIRE Read/Write 0x0

Bridge Interrupt Request Enable. This bit is the
interrupt enable for the BIR bit in the DISR.

• ’0’ = Mask Interrupt.

• ’1’ = Enable Interrupt.

30 DPTOE Read/Write 0x0

Data Phase Time-out Enable. This bit is the interrupt
enable for the DPTO bit in the DISR.

• ’0’ = Mask Interrupt.

• ’1’ = Enable Interrupt.

31 TERRE Read/Write 0x0

Transaction Error Enable. This bit is the interrupt enable
for the TERR bit in the DISR.

• ’0’ = Mask Interrupt.

• ’1’ = Enable Interrupt.
 24, 2007 www.xilinx.com 27
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

28
pending interrupts, otherwise, the value gives the bit position in the DIPR of the highest priority
interrupt that is pending.

The priority is highest for the interrupt bit in the LSB position (bit 31), which reports as ID value 0x00,
and decreases in priority (and increases in the reported ID value) for each successively more significant
position, such as going left. The bits are detailed in Table 10.

Global Interrupt Enable Register Description

A global enable is provided to globally enable or disable interrupts from the PCI device. This bit is
AND’d with the output to the interrupt controller. Bit assignment is shown in Table 11. Unlike most
other registers, this bit is the MSB on the PLB. This bit is read/write and cleared upon reset.

Bridge Interrupt Register Description

The PLBV46 PCI Bridge has twelve interrupt conditions. The Bridge Interrupt Enable Register enables
each interrupt independently. Bit assignment in the Interrupt register for a 32-bit data bus is shown in
Table 12. The interrupt register is read-only and bits are cleared by writing a 1 to the bit(s) that are set
(1). However, writing a 1 to any bit(s) that are cleared (0) will toggle them to be set (1). All bits are
cleared upon reset. For more information, see the PLBV46 IPIF Interrupt Product Specification; the
module is labeled PLB Interrupt module, but is used in the PLBV46 IPIF.

Table 10: Device Interrupt ID Register (DIIDR) Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access
Reset
Value

Description

0-23 Read 0x0 Unassigned

24-31 IID Read 0x80

Interrupt ID.

• 0x80 - The DIPR has no pending interrupts.

• Otherwise - The ordinal ID of the
highest-priority pending interrupt in the DIPR.

Table 11: Global Interrupt Enable Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access
Reset
Value

Description

0
Interrupt Global

Enable
Read/Write 0x0

Interrupt Global Enable- PLB bit (0) is the Interrupt
Global Enable bit. Enables all individually enabled
interrupts to be passed to the interrupt controller.

• 0 - Not enabled

• 1 - Enabled

1-31 Read 0x0 Unassigned-
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
Table 12: Bridge Interrupt Register Bit Definitions (Bit Assignment Assumes 32-bit Bus)

Bit(s) Name Access
Reset
Value

Description

0-14 Read 0x0 Unassigned

15
PLB Read
Slave BAR
Overrun

Read/Write
1 to toggle

0x0
PLB Read Slave BAR Overrun- Interrupt(15) indicates the
bridge PLB Slave was requested to burst past the BAR limit
on a read operation.

16
PLB Write
Slave BAR
Overrun

Read/Write
1 to toggle

0x0
PLB Write Slave BAR Overrun- Interrupt(16) indicates the
bridge PLB Slave was requested to burst past the BAR limit
on a write operation.

17
PLB Master
Read Rearb
Timeout

Read/Write
1 to toggle

0x0
PLB Master Read Rearb Timeout- Interrupt(17) indicates
the bridge PLB Master was rearbitrated 2048 times on a
read operation.

18
PLB Master
Write Rearb
Timeout

Read/Write
1 to toggle

0x0
PLB Master Write Rearb Timeout- Interrupt(18) indicates
the bridge PLB Master was rearbitrated 2048 times on a
write operation.

19
PCI Initiator
Write SERR

Read/Write
1 to toggle

0x0
PCI Initiator Write SERR- Interrupt(19) indicates a SERR
error was detected during a PCI initiator write of data to a
PLB slave.

20
PCI Initiator
Read SERR

Read/Write
1 to toggle

0x0
PCI Initiator Read SERR- Interrupt(20) indicates a SERR
error was detected during a PCI initiator read of data from a
PLB slave.

21
PLB Master
Prefetch
Timeout

Read/Write
1 to toggle

0x0

PLB Master Prefetch Timeout- Interrupt(21) indicates the
PLB Discard timer has timed out, which means the
prefetched data was never requested again after the
prefetch operation was complete.

22
PLB Master
Write Retry
Timeout

Read/Write
1 to toggle

0x0

PLB Master Burst Write Retry Timeout- Interrupt(22)
indicates the automatic PCI write retries were not
successful due to a latency timeout on the last retry during
a PLB Master burst write to a PCI target.

23
PLB Master
Write Retry
Disconnect

Read/Write
1 to toggle

0x0

PLB Master Burst Write Retry Disconnect- Interrupt(23)
indicates the automatic PCI write retries were not
successful due to a target disconnect on the last retry during
a PLB Master burst write to a PCI target.

24
PLB Master
Write Retry

Read/Write
1 to toggle

0x0

PLB Master Write Retry- Interrupt(24) indicates the
automatic PCI write retries were not successful due to a PCI
retry on the last retry during a PLB Master burst write to a
PCI target.

25
PLB Master
Write Master
Abort

Read/Write
1 to toggle

0x0
PLB Master Write Master Abort- Interrupt(25) indicates
that the PLBV46 PCI Bridge asserted a PCI master abort
due to no response from a target.

26
PLB Master
Write Target
Abort

Read/Write
1 to toggle

0x0
PLB Master Write Target Abort- Interrupt(26) indicates a
PCI target abort occurred during a PLB Master Write to a
PCI target.

27
PLB Master
Write PERR

Read/Write
1 to toggle

0x0
PLB Master Write PERR- Interrupt(27) indicates a PERR
error is detected on a PLB Master write to a PCI target.
 24, 2007 www.xilinx.com 29
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

30
Bridge Interrupt Enable Register Description

The PLBV46 PCI Bridge has interrupt enable features as described in IPSPEC048 PLB Device Interrupt
Architecture. Bit assignment in the Bridge Interrupt Enable Register is shown in Table 13. The interrupt
enable register is read/write. All bits are cleared upon reset.

28
PLB Master
Write SERR

Read/Write
1 to toggle

0x0
PLB Master Write SERR- Interrupt(28) indicates that a
SERR error was detected by the PCI32 core when
performing as a PCI initiator writing data to a PCI target.

29
PLB Master
Read Target
Abort

Read/Write
1 to toggle

0x0
PLB Master Read Target Abort- Interrupt(29) indicates
that a target abort was detected by the PCI32 core when
performing as a PCI initiator reading data from a PCI target.

30
PLB Master
Read PERR

Read/Write
1 to toggle

0x0
PLB Master Read PERR- Interrupt(30) indicates that a
PERR was detected by thePCI32 core when performing as
a PCI initiator reading data from a PCI target.

31
PLB Master
Read SERR

Read/Write
1 to toggle

0x0
PLB Master Read SERR- Interrupt(31) indicates that a
SERR error was detected by the PCI32 core when
performing as a PCI initiator reading data from a PCI target.

Table 13: Bridge Interrupt Enable Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access
Reset
Value

Description

0-14 Read 0x0 Unassigned

15
PLB Read
Slave BAR
Overrun

Read/Write 0x0

PLB Read Slave BAR Overrun Enable- Enables this
interrupt to be passed to the interrupt controller.
• 0 - Not enabled.

• 1 - Enabled.

16
PLB Write
Slave BAR
Overrun

Read/Write 0x0

PLB Write Slave BAR Overrun Enable- Enables this
interrupt to be passed to the interrupt controller.

• 0 - Not enabled.

• 1 - Enabled.

17
PLB Master
Read Rearb
Timeout

Read/Write 0x0

PLB Master Read Rearb Timeout Enable- Enables this
interrupt to be passed to the interrupt controller.

• 0 - Not enabled.
• 1 - Enabled.

18
PLB Master
Write Rearb
Timeout

Read/Write 0x0

PLB Master Write Rearb Timeout Enable- Enables this
interrupt to be passed to the interrupt controller.
• 0 - Not enabled.

• 1 - Enabled.

19
PCI Initiator
Write SERR

Read/Write 0x0

PCI Initiator Write SERR Enable- Enables this interrupt to
be passed to the interrupt controller.

• 0 - Not enabled.

• 1 - Enabled.

Table 12: Bridge Interrupt Register Bit Definitions (Bit Assignment Assumes 32-bit Bus) (Contd)

Bit(s) Name Access
Reset
Value

Description
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
20
PCI Initiator
Read SERR

Read/Write 0x0

 PCI Initiator Read SERR Enable- Enables this interrupt to
be passed to the interrupt controller.

• 0 - Not enabled.
• 1 - Enabled.

21
PLB Master
Prefetch
Timeout

Read/Write 0x0

PLB Master Prefetch Timeout Enable- Enables this
interrupt to be passed to the interrupt controller.
• 0 - Not enabled.

• 1 - Enabled.

22
PLB Master
Write Retry
Timeout

Read/Write 0x0

PLB Master Burst Write Retry Timeout Enable- Enables
this interrupt to be passed to the interrupt controller.

• 0 - Not enabled.

• 1 - Enabled.

23
PLB Master
Write Retry
Disconnect

Read/Write 0x0

PLB Master Burst Write Retry Disconnect Enable-
Enables this interrupt to be passed to the interrupt controller.

• 0 - Not enabled.
• 1 - Enabled.

24
PLB Master
Write Retry

Read/Write 0x0

PLB Master Write Retry Enable- Enables this interrupt to be
passed to the interrupt controller.
• 0 - Not enabled.

• 1 - Enabled.

25
PLB Master
Write Master
Abort

Read/Write 0x0

PLB Master Write Master Abort Enable- Enables this
interrupt to be passed to the interrupt controller.

• 0 - Not enabled.

• 1 - Enabled.

26
PLB Master
Write Target
Abort

Read/Write 0x0

PLB Master Write Target Abort Enable- Enables this
interrupt to be passed to the interrupt controller.

• 0 - Not enabled.
• 1 - Enabled.

27
PLB Master
Write PERR

Read/Write 0x0

PLB Master Write PERR Enable- Enables this interrupt to be
passed to the interrupt controller.
• 0 - Not enabled.

• 1 - Enabled.

28
PLB Master
Write SERR

Read/Write 0x0

PLB Master Write SERR Enable- Enables this interrupt to be
passed to the interrupt controller.

• 0 - Not enabled.

• 1 - Enabled.

Table 13: Bridge Interrupt Enable Register Bit Definitions (Bit assignment assumes 32-bit bus) (Contd)

Bit(s) Name Access
Reset
Value

Description
 24, 2007 www.xilinx.com 31
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

32
PLBV46 PCI Bridge Reset Register Description

The IP Reset module is always instantiated in the PLBV46 PCI Bridge. Details on the IPIF Reset module
can be found in the Processor IP Reference Guide. The IP Reset module permits the software reset of the
PLBV46 PCI Bridge, independently of other modules in the system. The MIR is not included.

Configuration Address Port Register Description

The Configuration Address Port Register exists only if the bridge is configured with PCI host bridge
configuration functionality, such as C_INCLUDE_PCI_CONFIG=1. This register is read/write with some
bits hardwired as in Table 14. Definition of this register is a subset of the PCI 2.2. All accesses to the
register are 32-bit accesses. Data is latched on a write in all 32-bits except where bits are hard-wired. A
read yields all 32-bits. Reset clears all bits. Eight and sixteen bit accesses are not supported, therefore,
such accesses are not passed on as IO accesses. Byte address integrity is maintained from PCI little
endian word format when writing/reading data to/from the Configuration Address Port Register
which is defined in big endian word format.

Configuration Data Port Register Description

The Configuration Data Port Register exists only if the bridge is configured with PCI host bridge
configuration functionality, such as C_INCLUDE_PCI_CONFIG=1. This register is read/write and

29
PLB Master
Read Target
Abort

Read/Write 0x0

PLB Master Read Target Abort Enable- Enables this
interrupt to be passed to the interrupt controller.

• 0 - Not enabled.
• 1 - Enabled.

30
PLB Master
Read PERR

Read/Write 0x0

PLB Master Read PERR Enable- Enables this interrupt to be
passed to the interrupt controller.
• 0 - Not enabled.

• 1 - Enabled.

31
PLB Master
Read SERR

Read/Write 0x0

PLB Master Read SERR Enable- Enables this interrupt to be
passed to the interrupt controller.

• 0 - Not enabled.

• 1 - Enabled.

Table 14: Configuration Address Port Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access
Reset
Value

Description

0-5 D0-D5 Read/Write 0x0
Identifies the target word address (32bits) within the
function’s configuration space (1-64)

6-7 D6-D7 Read 0x0 Hard-wired to 0, read-only

8-12 D8-D12 Read/Write 0x0 Identifies the target PCI Device (0-31)

13-15 D13-D15 Read/Write 0x0 Identifies the target function (1-8)

16-23 D16-D23 Read/Write 0x0 Identifies the target PCI Bus (1-256)

24 D24 Read/Write 0x0 Active high enable bit

25-31 D25-D31 Read 0x0 Reserved and hardwired to 0.

Table 13: Bridge Interrupt Enable Register Bit Definitions (Bit assignment assumes 32-bit bus) (Contd)

Bit(s) Name Access
Reset
Value

Description
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com
http://www.xilinx.com/ise/embedded/proc_ip_ref_guide.pdf

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
definition of this register follows PCI 2.2. All accesses to the register are 32-bit accesses. A read initiates
a configuration read command and a write initiates a configuration write command. Determination of
whether the command is a type 0 or type 1 depends on the comparison results of the bus number
compare. The fields are defined in Table 15. Reset clears all bits. Byte address integrity is maintained
from PCI little endian word format when writing/reading data to/from the Configuration Data Port
register which is defined in big endian word format.

Bus Number/Subordinate Bus Number Register Description

The Bus Number/Subordinate Bus Number Register exists only if the bridge is configured with PCI
host bridge configuration functionality, such as C_INCLUDE_PCI_CONFIG=1. This register is read/write.
All accesses to the register are 32-bit accesses. The bus number is an 8-bit value defining the primary
bus number. The highest subordinate bus number is also an 8-bit value. The fields are defined in
Table 16. Reset clears all bits.

IPIFBAR2PCIBAR_N High-Order Bits Register Description

When configured to include these registers, such as C_INCLUDE_BAROFFSET_REG=1, the values in the
registers are used to translate addresses on the PLB bus to the PCI. The register values are used instead
of the corresponding parameter C_IPIFBAR2PCIBAR_N for translation by high-order bit substitution.
The parameters C_IPIFBAR2PCIBAR_N have no effect on the bridge operation if the registers for
address translation are included.

The number of registers present is given by the number of IPIF BAR configured in the IPIF
(C_IPIFBAR_NUM). The actual width of the Nth register is given by the number of high-order bits that
define the complete address range corresponding to the Nth IPIF BAR. When the register is read,
32-bits are returned with the low-order bits hard-wired to zero.

The IPIFBAR2PCIBAR_N registers are included in the bridge via the parameter
C_INCLUDE_BAROFFSET_REG.

These read/write registers allow dynamic, run-time changes of the high-order bits for the substitution
in the translation of an address from the PLB bus to the PCI bus. Low-order bits pass directly from the
PLB bus to the PCI bus. When the register is read, 32-bits are read with the low-order bits set to zero.

Table 15: Configuration Data Port Address Register Bit Definitions (Bit Assignment Assumes 32-bit Bus)

Bit(s) Name Access
Reset
Value

Description

0-31 D0 - D31 Read/Write 0x0

Read or write causes automatic execution of Configuration
Read Command or Configuration Write Command using
address/bus information in the Configuration Address Port
register.

Table 16: Bus Number/Subordinate Bus Number Register Bit Definitions (Bit Assignment Assumes 32-bit
Bus)

Bit(s) Name Access
Reset
Value

Description

0-7 D0- D7 Read 0x0 Reserved

8-15 D8 - D15 Read/Write 0x0 Bus number

16-23 D16 - D23 Read 0x0 Reserved

24-31 D24 - D31 Read/Write 0x0 Maximum subordinate bus number
 24, 2007 www.xilinx.com 33
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

34
Table 17 shows the data format. The programmability of these registers allows PLB address
transactions to access any target on the PCI bus which has been arbitrarily assigned a PCI BAR by a
remote or local Host Bridge. Dynamic, run-time changes in the high-order bits for address translation
of PLBV46 PCI Bridge PCI BAR range translation to PLB slaves is not needed because the PLB slave
addresses are defined at build time.

Including these registers makes the parameters, C_IPIFBAR2PCIBAR_N, irrelevant because the value
in the Nth programmable register replaces the values of the corresponding parameter,
C_IPIFBAR2PCIBAR_N, in translating the PLB address to the PCI bus. When the registers are included,
the parameters, C_IPIFBAR2PCIBAR_N, for N=0 to C_IPIFBAR_NUM-1, have no effect.

The example below shows how the IPIFBAR2PCIBAR_N registers assignments define translation of
PLB addresses within the range of a given IPIFBAR to PCI address space.

Setting C_INCLUDE_BAROFFSET_REG=1 includes high-order bit registers for all IPIFBARs defined
by C_IPIFBAR_NUM.

In this example where C_IPIFBAR_NUM=4, the following assignments for each range are made.

 C_IPIFBAR_0=0x12340000
C_IPIF_HIGHADDR_0=0x1234FFFF
C_IPIFBAR2PCIBAR_0=Don’t care
C_IPIF_SPACETYPE_0=1

 C_IPIFBAR_1=0xABCDE000
C_IPIF_HIGHADDR_1=0xABCDFFFF
C_IPIFBAR2PCIBAR_1=Don’t care
C_IPIF_SPACETYPE_1=0

 C_IPIFBAR_2=0xFE000000
C_IPIF_HIGHADDR_2=0xFFFFFFFF
C_IPIFBAR2PCIBAR_2=Don’t care
C_IPIF_SPACETYPE_2=1

 C_IPIFBAR_3=0x00000000
C_IPIF_HIGHADDR_3=0x0000007F
C_IPIFBAR2PCIBAR_3=Don’t care
C_IPIF_SPACETYPE_3=1

Associated with each IPIF BAR for C_IPIFBAR_N for N=0 to 3 are four registers for the high-order bits
to be substituted when making the translation to PCI memory and /IO space. For the previous
example, the following registers are set.

Table 17: IPIFBAR2PCIBAR_N High-Order Bits (Bit assignment assumes 32-bit bus)

Bit(s) Name Access
Reset
Value

Description

0-M D0 - DM Read/Write 0x0
M+1 high-order bits that are substituted in address
translation from Nth IPIFBAR access to PCI address
space

M+1-31 DM+1 - D31 Read Only 0x0 Low-order bits set to zero
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
Register for C_IPIFBAR_0 (IPIFBAR2PCIBAR_0 High-Order Bit Register):
Programmable register for 16 high-order bits. The data in the register is substituted for the 16 msb of
the address that is translated to PCI bus.

Register for C_IPIFBAR_1 (IPIFBAR2PCIBAR_1 High-Order Bit Register):
Programmable register for 19 high-order bits. The data in the register is substituted for the 19 msb of
the address that is translated to PCI bus.

Register for C_IPIFBAR_2 (IPIFBAR2PCIBAR_2 High-Order Bit Register):
Programmable register for 7 high-order bits. The data in the register is substituted for the 7 msb of the
address that is translated to PCI bus.

Register for C_IPIFBAR_3 (IPIFBAR2PCIBAR_3 High-Order Bit Register):
Programmable register for 25 high-order bits. The data in the register is substituted for the 25 msb of
the address that is translated to PCI bus.

The remaining low-order bits are set to zero when a read of these registers is performed.

Writing 0x56710000 to IPIFBAR2PCIBAR_0 High-Order Bit Register and then accessing the PLBV46
PCI Bridge IPIFBAR_0 with address 0x12340ABC on the PLB bus would yield 0x56710ABC on the PCI
bus.

Writing 0xFEDC0000 to IPIFBAR2PCIBAR_1 High-Order Bit Register and then accessing the PLBV46
PCI Bridge IPIFBAR_1 with address 0xABCDF123 on the PLB bus would yield 0xFEDC1123 on the
PCI bus.

Writing 0x40000000 to IPIFBAR2PCIBAR_2 High-Order Bit Register and then accessing the PLBV46
PCI Bridge IPIFBAR_2 with address 0xFFFEDCBA on the PLB bus would yield 0x41FEDCBA on the
PCI bus.

Writing 0x12345680 to IPIFBAR2PCIBAR_3 High-Order Bit Register and then accessing the PLBV46
PCI Bridge IPIFBAR_3 with address 0x0000004A on the PLB bus would yield 0x123456CA on the
PCI bus.

Host Bridge Device Number Register Description

The Host Bridge Device Number register is included by setting C_INCLUDE_DEVNUM_REG=1. The
register can be included only if configuration functionality, such as C_INCLUDE_PCI_CONFIG=1, is
included.

This register is read/write and is four bits wide. Table 18 shows specifics of the data format. The
programmability of this register allows programmable definition of the bridge device number and
corresponding address bit that is internally connected to its IDSEL signal. The maximum value that can
be loaded in this register is given by the value set by parameter C_NUM_IDSEL minus 1 because the
device number must be consistent with the number of devices that are supported in configuration
transactions.

Table 18: Host Bridge Device Number (Bit assignment assumes 32-bit bus)

Bit(s) Name Access
Reset
Value

Description

0-27 D0-D27 Read Only 0x0 Set to zero.

28-31 D28 - D31 Read/Write 0x0
Defines the device number of the PLBV46 PCI Bridge
when configured as a Host Bridge.
 24, 2007 www.xilinx.com 35
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

36
PLB PCI Transactions
The following subsections discuss details of the following types of transactions for the PLBV46 PCI
Bridge to realize data throughputs as high as 132 MB/sec. This assumes the PLB clock is 100 MHz or
higher. Lower data rates will be realized with lower PLB clock rates for some transactions.

• The section, PLB Master Initiates a Read Request of a PCI target, discusses the PLB master read of a
PCI target where the PCI32 core is the PCI initiator.

• The section, PLB Master Initiates a Write Request to a PCI Target, discusses the PLB master write to
a PCI target where the PCI32 core is the PCI initiator.

• The section, PCI Initiator Initiates a Read Request of a PLB Slave, discusses the remote PCI initiator
read of a PLB device where the PCI32 core is the PCI target

• The section, PCI Initiator Initiates a Write Request to a PLB Slave, discusses the remote PCI initiator
write to a PLB device where the PCI32 core is the PCI target.

• The section, Configuration Transactions, discusses PLB master read and write of a PCI target
configuration space where the PCI32 core is the PCI initiator.

PLB transactions that are supported are limited to the subset of PLB transactions that are supported by
the IPIF. This limitation is caused by the time-multiplexed architecture of the PCI bus where addressing
is required to be incremented by 4 bytes per data phase. When operating as a master, the IPIF can either
perform single transactions (1-4 bytes) or bursts of an arbitrary length. In the case of writes, the length
is determined by the PCI initiator supplying the data and/or by how fast the PCI initiator supplies the
data. In the case of reads, the length is determined by either a parameterized number or up to the range
limit of the PCI BAR, whichever is less. When the IPIF is operating as a PLB slave, it performs single
transfers of 1-4 bytes, burst transfers of any number of words, and 4, 8 or 16-word line transactions. The
IPIF always performs line read requests on the IPIC with the address double word aligned,
independent of the target word requested. This is required because the PCI time-multiplexed address
and data bus requires sequential addressing. PCI commands that are supported include I/O read, I/O
write, memory read, memory write, memory read multiple, memory read line, and memory write
invalidate. Table 19 shows the translations of PLB transactions to PCI commands, while in Table 20
shows the translations of PCI commands to PLB transactions.

The PCI transactions that are supported is limited to a subset of all PCI transactions because some
features on the PCI are not supported on the PLB. Specifically, dynamic byte enable during multiple
data phase transfers is not supported in burst transactions on the PLB. The PLB supports only full
words in burst read and write transactions. It is the user’s responsibility to insure that all byte enables
are asserted for remote PCI initiator transactions with multiple data phases..

Table 19: Translation Table for PLB transactions to PCI commands

Remote PLB Master
Transaction

PCI I/O Space
Prefetchable or

Non-prefetchable

PCI Memory Space
Prefetchable

PCI Memory Space
Non-prefetchable

Single Read (<=4 bytes) I/O Read Memory Read Not Supported

Read Burst transfer word I/O Read Memory Read Multiple Not Supported

Sequential Read, 4, 8 and
16-word cacheline read (1) I/O Read Memory Read Multiple Not Supported

Single Write (<=4 bytes) I/O Write Memory Write Not Supported
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
For all the transactions listed above, the following design requirements are specified:

• Both PCI and PLB clocks will be independent global buffers. For Virtex-4 or Virtex-5, RCLK must
also be driven by a global buffer.

• The PLB clock can be slower or faster than the PCI clock. The ratio of (PLB clock) / (PCI clock) is
limited to 100/15 = 6.67, for example, if LB clock = 100 Mhz, the PCI clock must be no less than 15
Mhz. For Virtex-4 or Virtex-5, RCLK must be 200 MHz.

• Address space on the PCI side accessible from the PLB side must be translated to a 2N contiguous
block on the PLB side. Up to six independent blocks are possible. Each block has parameters for

base address (BAR), high address which must define a 2N range, address translation vector, and
memory designator (memory or I/O).

• All address space on the PLB side that is accessible from the PCI side must be translated to a

maximum of three 2N contiguous blocks on the PCI side. Up to three independent blocks are
possible because the LogiCore PCI32 core supports up to 3 BARs. Each block has parameters for

Write Burst transfer word I/O Write
Memory Write (multiple

data phase)
Not Supported

Sequential fill, 4, 8 and
16-word cacheline write (2) I/O Write

Memory Write (multiple
data phase)

Not Supported

Notes:
1. The data is returned sequentially, starting at the first word of the line. This is independent of the target word

presented.
2. On write, the 405 always sources the first word, for example, sequential fill, on the line.

Table 20: Translation Table for PCI commands to PLB transactions

PCI Initiator Command PLB Memory Prefetchable PLB Memory Non-prefetchable

I/O Read Not Supported Not Supported

I/O Write Not Supported Not Supported

Memory Read

(single data phase)
PLB Single Read Not Supported

Memory Read

(multiple data phase)
PLB Burst Read with all BE asserted (1) Not Supported

Memory Read Multiple PLB Burst Read with all BE asserted (1) Not Supported

Memory Read Line PLB Single Read Not Supported

Memory Write
(single data phase)

PLB Single Write Not Supported

Memory Write 2

(multiple data phase)
PLB Burst Write of length defined by

available data in FIFO (2) Not Supported

Memory Write Invalidate PLB Burst Write Not Supported

Notes:
1. The PLB does not support dynamic byte enable (BE) in burst read transactions so when Memory Read

Multiple is translated to a PLB burst read, all BE are asserted during the PLB read operation.
2. The PLB does not support dynamic byte enable (BE) in burst write transactions so when Memory Write

Multiple is translated to a PLB burst write, all BE are asserted during the PLB write operation.

Table 19: Translation Table for PLB transactions to PCI commands (Contd)
 24, 2007 www.xilinx.com 37
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

38
length which must be a 2N range, and address translation vector. Only memory space in the sense
of PCI memory space is supported. Space type is mirrored in the PCI configuration registers.

• Address translations in both directions are performed by high-order address bits substitution in the
address vector before crossing to the other bus domain. Byte addressing integrity is maintained
between buses.

• The user’s system must be designed to accommodate certain restrictions on throttling by the
PLBV46 PCI Bridge. Both PLB and PCI burst transactions may be broken up into multiple
transactions on the target or slave bus due to restrictions on bus protocol and modules in the
PLBV46 PCI Bridge. Additional PLB and PCI transactions are automatically initiated when needed
to complete a transaction. The first restriction is that the PCI32 core does not permit throttling of
data as either the initiator or target except for insertion of wait states prior to the first data transfer.
Another restriction is, that as a master on the PLB, the PLBV46 PCI Bridge is not allowed to throttle,
but the PCI remote initiator can cause the need to throttle on the PLB. This is particularly true when
the PCI clock is significantly slower than the PLB clock. The PLBV46 PCI Bridge circumvents the
throttling limitations by terminating transactions as needed and reinitiating the request to continue
as needed. Parameters allow the user to optimize the burst size for high data throughput and
minimizing the number of transactions needed to complete the desired burst transactions.

• The interrupt status register in the IPIF contains information to identify an error conditions during
the implementation of the PLBV46 PCI Bridge and the troubleshooting of the system. To clear the
interrupt register bits that were set with an error condition, a write of a "1" to the bit position
corresponding to the operation must be performed.

• The PCI32 core does not permit throttling of data at either the initiator or target except for insertion
of wait states prior to the first data transfer. Consequently, if the PLB device requires throttling that
affects the PCI transaction, the PLBV46 PCI Bridge must terminate the transaction. If the PCI32 core
is the initiator, a new PCI transaction must be initiated to continue data transfer. Although PLB
masters are not allowed to throttle data flow, the combined IPIF and PLBV46 PCI Bridge operation
can result in the need for throttling data on the PCI bus, especially when the PLB clock is slower
than the PCI clock. The PLBV46 PCI Bridge handles throttling by terminating initiator transactions
as needed and continuing the PLB master request with a new PCI transaction. Similarly, new PLB
transactions are automatically initiated when needed to complete a PCI initiator transaction.

PLB Master Initiates a Read Request of a PCI target

This section discusses the operation of a PLB master initiating single, burst and cacheline reads of a
remote PCI target. Cacheline reads return the data sequentially, starting at the first word of the line. In
these transactions, the PCI32 core is the PCI initiator.

The operation is similar whether the PCI space is memory or I/O space with the exception of the
command sent to the PCI32 core. A parameter associated with each BAR must be consistent with the
remote PCI device memory type as either I/O or memory. Based on this parameter setting, either I/O
or memory commands are asserted. The PLBV46 IPIF and bridge can accept both fixed length and
arbitrary length burst transactions on the PLB, such as when burst length is determined by the
PLB_rdBurst signal. Only one PLB master read of a PCI target is supported at a time.

Commands supported in PLB master read operations are I/O read, memory read, and memory read
multiple. The command used is based on the address and qualifier decode, which includes the address,
memory type, sucha as I/O or memory type, and if burst is asserted. Table 19 shows translations of PLB
transactions to PCI commands.
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
The address presented on the PLB is translated to the PCI address space by high-order bit substitution
with the 2 lsbs set as follows:

• If the target PCI address space is memory space, the 2 lsbs are set to 00, as in the linear incrementing
mode.

• If the PCI target address space is IO-space, the 2 LSBs are passed unchanged from that presented on
the PLB bus.

When the PLBV46 PCI Bridge decodes a PLB read that is for a remote PCI Target, the transfer is
rearbitrated on the PLB bus until the requested data has been prefetched from the remote PCI Target.

If the PLB transaction is not a burst, as when PLB_rdBurst is not high) a single PCI transaction (I/O or
Memory Read command) is performed. Once this transaction is successfully completed, a subsequent
PLB single read with the same PLB address and qualifiers will then complete on the PLB bus. If the
transaction is a PLB burst transaction, as when PLB_rdBurst is high, and the space type is memory, the
PLBV46 PCI Bridge issues a memory read multiple command on the PCI bus. Once this transaction is
successfully completed, a subsequent PLB burst read with the same PLB address and qualifiers will
then complete on the PLB bus. The number of 32-bit data words read from the remote PCI Target is
determined by the encoded length specified in the PLB fixed-length burst transfer. A Discard Timer is
used to determine how long the PLBV46 PCI Bridge should wait for a subsequent PLB read with the
same PLB address and qualifiers before discarding the prefetched data in the FIFO.

Dynamic byte enable is not supported in Xilinx PLB burst operations and is not supported in the PLB
Master read of a PCI target.All byte enable bits are asserted in PLB master burst read operations.

To comply with the PCI specification, PLB masters are required to re-issue commands when a PCI retry
is asserted. PCI retries are communicated to the PLB master by asserting PLB rearbitrate without an
interrupt.

It is the responsibility of the master to properly read data from non-prefetchable PCI targets. For
example, the master must perform single transaction reads of non-prefetchable PCI targets to avoid
destructive read operations of a PCI target.

Abnormal Terminations

In the context of the PLBV46 PCI Bridge, cacheline transactions are special cases of a burst. Abnormal
terminations during a cacheline read operation have the same response as a burst read transaction.

• If a parity error occurs during the address phase of the prefetch, the PLBV46 PCI Bridge asserts the
PLB Master Read SERR interrupt. If the remote PCI target follows the response recommended by
the PCI specification to not claim the transactions, the PLBV46 PCI Bridge terminates the
transaction with a master abort. If the target does not follow PCI specification recommendation and
transfers data, the received data is discarded and not available to the remote PLB Master.
Sl_MRdErr is asserted at the first opportunity.

• If a SERR occurs during a valid data phase on a single transfer, the PLBV46 PCI Bridge asserts the
PLB Master Read SERR interrupt. The received data is discarded and not available to the remote
PLB Master. Sl_MRdErr is asserted at the first opportunity.

• If a SERR occurs during a valid data phase on a burst transfer, the PLBV46 PCI Bridge asserts the
IPIF Master Read SERR interrupt. SERR error on data phase could occur on the first PCI transaction
or on a subsequent transaction due to an abnormal disconnect that allowed automatic reissue of the
PCI read command. The received data is discarded and not available to the remote PLB Master.
Sl_MRdErr is asserted at the first opportunity.
 24, 2007 www.xilinx.com 39
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

40
• If the PLBV46 PCI Bridge performs a master abort due to no response from a target, the prefetch is
abandoned. Sl_MRdErr is asserted at the first opportunity.

• If on either a single transfer or the first data phase of a burst transfer, a PCI retry from the PCI target
occurs, the PLBV46 PCI Bridge will immediately retry the read request and continue retrying the
request until the transfer completes.

• If during a single transfer the target disconnects with data, the transfer will be completed.

• If on a single transfer, a PERR error is detected, data is transferred and the PLB Master Read PERR
interrupt is asserted.

• If the target disconnects on a burst transfer, either with or without data, the PCI32 core terminates
the PCI transaction. Another PCI transaction is attempted as long as the encoded length specified in
the PLB fixed-length burst transfer has not been prefetched.

• If a PERR error is detected on a burst transfer, the PLBV46 PCI Bridge aborts the PCI transaction.
Any received data is discarded and not available to the remote PLB Master. The PLB Master Read
PERR interrupt is asserted. Sl_MRdErr is asserted at the first opportunity.

• If the initiator latency timer expires on a burst transfer, the PLBV46 PCI Bridge terminates the PCI
transaction. Another PCI transaction is attempted as long as the encoded length specified in the
PLB fixed-length burst transfer has not been prefetched.

• If a target abort occurs, the PLB Target Abort Master Read interrupt is asserted. Any received data
is discarded and not available to the remote PLB Master. Sl_MRdErr is asserted at the first
opportunity. Recall that a target abort indicates that the target cannot proceed with subsequent
transactions; this is expected to be a major failure most likely requiring a reset.

• If a PLB read request indicates a burst length that extends beyond the valid range of the IPIF BAR,
as defined by the C_IPIF_HIGHADDR_X parameter, the PLB Read Slave BAR Overrun interrupt is
asserted. The PLBV46 PCI Bridge does not initiate a read on the PCI bus and responds to the PLB
Master with Sl_MRdErr asserted with Sl_rdDAck.

Table 21 summarizes the abnormal conditions with which a PCI target can respond and how the
response is translated to the PLB master.

Table 21: Response of PLB Master/v3.0 Initiator read of a remote PCI target with abnormal condition on
PCI bus

Abnormal condition Single transfer
Burst

(PLB_rdBurst asserted)

SERR (includes parity error on
address phase)

PLB Master Read SERR interrupt
asserted. Data is discarded.
Sl_MRdErr is asserted.

PLB Master Read SERR interrupt
asserted. Data is discarded.
Sl_MRdErr is asserted.

PLBV46 PCI Bridge Master
abort (no PCI target response)

Prefetch abandoned. Sl_MRdErr is
asserted.

Prefetch abandoned. Sl_MRdErr is
asserted.

Target disconnect without data
(PCI Retry)

Immediate automatic retry Immediate automatic retry
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
PLB Master Initiates a Write Request to a PCI Target

This section discusses the operation of an PLB master initiating single, burst and cache line write
transactions to a remote PCI target. All PLB write transactions are posted-writes. Because both single
PLB writes and burst PLB writes to the bridge are fire-and-forget, any error in completing the write
occurs mostly likely after the PLB transaction is completed. The errors are signaled by an interrupt
when an incomplete PCI transactions occur or when PCI errors occur. Details of the abnormal
terminations are discussed in a later section. In these transactions, the PCI32 core is the PCI initiator.

The operation is essentially the same whether the PCI space is memory or I/O space; the only
difference is the command sent to the PCI32 core by the PLBV46 PCI Bridge. The bridge can accept only
fixed length burst transactions on the PLB. All PLB burst transfers are 32-bits per data phase; dynamic
byte enable is not supported by the PLB protocol. The PLB specification requires all cacheline write
transactions to be sequential fill type, independent of the target word; however, the PLBV46 IPIF
requires the address received during a cacheline write operation to be the first word of the line being
written.

Commands supported in PLB master write operations are I/O write and memory write (both single
and burst). The command used is based on the address/qualifier decode, which includes the address,
memory type, such as I/O or memory type, and if PLB_wrBurst is asserted. Table 19 shows translations
of PLB transactions to PCI commands.

The address presented on the PLB is translated to the PCI address space by high-order bit substitution
with the 2 lsbs set as follows. If the target PCI address space is memory space, the 2 lsbs are set to 00, as
in the linear incrementing mode. If the PCI target address space is IO-space, the 2 LSBs are passed
unchanged from that presented on the PLB bus.

Target disconnect without data
(after one completed data
phase)

N/A
Data is being buffered in PLBV46 PCI
Bridge PCI2IPIF FIFO. The PCI
transaction is terminated by the
disconnect. If the encoded length has
not been prefetched, the PLBV46 PCI
Bridge issues another PCI
transaction at correct address. If a
PCI retry is asserted, the PCI read
automatically retried.

Target disconnect with data Completes

PERR
Data is transferred and the PLB
Master Read PERR interrupt
asserted

PLB Master Read PERR interrupt is
asserted and any data is discarded

Latency timer expiration
N/A because the PCI32 core waits
for one transfer after timeout occurs

Same as target disconnect
with/without data

Target Abort
The PLB Target Abort Master Read
interrupt asserted. Sl_MRdErr is
asserted.

The PLB Target Abort Master Read
interrupt asserted and any data is
discarded. Sl_MRdErr is asserted.

Address increments beyond
valid range

N/A

Stop PCI transaction. Assert PLB
Read Slave BAR Overrun interrupt
and assert Sl_MRdErr with
Sl_rdDAck to PLB master.

Table 21: Response of PLB Master/v3.0 Initiator read of a remote PCI target with abnormal condition on
PCI bus (Contd)
 24, 2007 www.xilinx.com 41
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

42
Both single and burst write transfers are posted so the data is buffered in the IPIF2PCI FIFO, which has
a depth defined by the parameter C_IPIF2PCI_FIFO_ABUS_WIDTH. Due to the FIFO backup
requirement of the PCI32 core, the FIFO usable buffer depth is the actual depth minus 3 words.

Data is loaded in the FIFO on each clock cycle that the write request is asserted and the address decode
is valid. If the transaction is not a burst, as when PLB_wrBurst is not high, and the PLB transfer is a
single word or bytes within a single word, a single PCI transaction (I/O or Memory Write command) is
performed. In PLB burst transfers, as when PLB_wrBurst is asserted, the data is buffered and the PCI
transfer is initiated when the PLB write is completed.

Only one PLB master write to a PCI target is supported at a time. Write transactions are not queued in
the bridge. After the PLB write to the bridge is completed and while a write to PCI is being completed,
the PLBV46 PCI Bridge asserts PLB rearbitrate to terminate subsequent PLB transactions. When a
posted write is complete, another write request from a PLB master can be initiated.

Consistent with the PCI specification, the PLBV46 PCI Bridge re-issues commands when an PCI retry is
asserted. To avoid permanent livelock, the posted write is attempted to be completed up to a
predefined number of retries defined by the parameter C_NUM_PCI_RETRIES_IN_WRITES.
Re-issuing the write operation on the PCI is automatic.

It is the responsibility of the master to properly write data to a PCI target from non-prefetchable PLB
sources. For example, it must perform single transaction reads of non-prefetchable PLB sources to
avoid loss of data in fire-and-forget writes to a PCI target.

The PLBV46 PCI Bridge does not support fast back-to-back PCI transactions.

Abnormal Terminations

In the context of the PLBV46 PCI Bridge, cacheline transactions are special cases of a burst. Abnormal
terminations during a cacheline write operation have the same response as a burst write transaction.
Recall that the PLBV46 IPIF specification requires that the targetword of a cacheline write be the first
word of the line.

• If a SERR error, including a parity error during the address phase, is detected on either a single or
burst transfer, the PLB Master Write SERR interrupt is asserted. If the PLB transfer is in progress,
Sl_MWrErr is asserted with Sl_wrDAck.

• If on either a single or burst write the PLBV46 PCI Bridge asserts a master abort due to no response
from a target, the PLBV46 PCI Bridge asserts a PLB Master Write Master Abort interrupt. The
IPIF2PCI FIFO will be flushed when the Master Abort Write interrupt is asserted. If the PLB
transfer is in progress, Sl_MWrErr is asserted with Sl_wrDAck.

• If on a single transfer or on the first data cycle of a burst transfer a PCI retry from the PCI target
occurs, the PLBV46 PCI Bridge will automatically perform up to a parameterized number of retries.
The number of retries is set by C_NUM_PCI_RETRIES_IN_WRITES. A parameterized wait time
before a retry occurs is set by C_NUM_PCI_PRDS_BETWN_RETRIES_IN_WRITES. Both
parameters are set at build time. During the time retries are possible, subsequent PLB master write
operations to a PCI target will be inhibited by assertion of PLB rearbitrate. If the retries are not
successful, as when disconnects or more PCI retries occur, a PLB Master Write interrupt identifying
the failure mode will be asserted. The IPIF2PCI FIFO will be flushed upon asserting any of the three
PLB Master Write Retry interrupts. Consistent with the PCI Spec, the PLB master is required to
perform the write again if the last of the automatic retries was terminated with a PCI retry.

• If on a single transfer the target disconnects with data, the transfer will be completed.
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
• If the target disconnects, either with or without data after the first data phase of a burst transfer, the
IPIF/PCI core terminates the PCI transaction. If the IPIF2PCI FIFO is not empty, another PCI
transaction is attempted. Due to pipelining in the PCI core, the IPIF2PCI_FIFO must backup 1-3
words, depending on the type of target disconnect. The PLBV46 PCI Bridge performs up to a
parameterized number of retries (C_NUM_PCI_RETRIES_IN_WRITES). A parameterized wait
time (C_NUM_PCI_PRDS_BETWN_RETRIES_IN_WRITES) before a retry occurs is included. Both
parameters are set at build time and are the same as defined for PCI retry situation. During the time
retries are in progress, subsequent PLB master write operations to a PCI target are inhibited. If the
PCI transaction retries are not successful due to any combination of PCI retries, disconnection, or
time out, a PLB Master Write Retry interrupt, PLB Master Write Retry Disconnect interrupt, or PLB
Master Write Retry Timeout interrupt, respectively, will be asserted. The actual interrupt that is
asserted is defined by the type of disconnect that occurred on the last of the prescribed number of
retries. The IPIF2PCI FIFO is flushed upon asserting one of the PLB Master Write interrupts.
Consistent with the PCI Spec, the PLB master is required to perform the write again if the last of the
automatic retries was terminated with a PCI retry.

• If on a single transfer or on a burst transfer a PERR error during data phase is detected, the PLBV46
PCI Bridge aborts the PCI transaction and a PLB Master Write PERR interrupt is asserted. If the
burst transfer is still in progress, an Sl_MWrErr is asserted with Sl_wrDAck. The IPIF2PCI FIFO is
flushed upon asserting the PERR Write interrupt. The Detected Parity Error status register bit is set
as well.

• If on a burst transfer the initiator latency timer expires, the PLBV46 PCI Bridge terminates the PCI
transaction. The PLBV46 PCI Bridge performs retries up to a parameterized number of times as
described earlier for the condition of disconnects with and without data. A time-out cannot occur
during a single transfer because the PCI32 core requires completion of one data transfer after the
latency timer expires.

• If a target abort occurs during either a single or burst write operation, the PLB Master Write Target
Abort interrupt is asserted. If a burst write is in progress, Sl_MWrErr is asserted with Sl_wrDAck.
Recall that a target abort often indicates that the target cannot proceed with subsequent
transactions; this is expected to be a major failure most likely requiring a reset.

• If a PLB write request indicates a burst length that extends beyond the valid range of the IPIF
BAR, as defined by the C_IPIF_HIGHADDR_X parameter, the PLB Write Slave BAR Overrun
interrupt is asserted. The PLBV46 PCI Bridge does not initiate a write on the PCI bus even though
it responds to the PLB Master with Sl_wrDAck.

Table 22 summarizes the abnormal conditions that a PCI target can respond with and how the response
is translated to the PLB master.

Table 22: Response of PLB Master/PCI Initiator write to a remote PCI target with abnormal condition on
PCI bus

Abnormal
condition

Single transfer
Burst

(PLB_wrBurst asserted)

SERR (includes
parity error on
address phase)

PLB Master Write SERR interrupt
asserted

If transfer is in progress, Sl_MWrErr is asserted
with Sl_wrDAck. PLB Master Write SERR interrupt
asserted

PLBV46 PCI
Bridge Master
abort (no PCI
target response)

PLB Master Abort Write interrupt
asserted

If transfer is in progress, Sl_MWrErr is asserted
with Sl_wrDAck. PLB Master Abort Write interrupt
is asserted and the FIFO is flushed.
 24, 2007 www.xilinx.com 43
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

44
PCI Initiator Initiates a Read Request of a PLB Slave

This section discusses the operation of a remote PCI initiator asserting both single and multiple read
commands to read data from a remote PLB slave. For these transactions, the PCI32 core is the PCI
target.

Because all PLB address space must be memory space in the PCI sense, memory read, memory read
multiple and memory read line are the only read commands from a remote PCI initiator that the
PLBV46 PCI Bridge will respond to. The I/O read command will be ignored and the configuration read
command will be responded to by the PCI32 core, but has limited impact on the PLBV46 PCI Bridge.

The PLBV46 PCI Bridge translates a PCI memory read multiple command to a PLB burst read. A PCI
memory read command that is asserted with multiple data phases requested, such as when FRAME#
and IRDY# are asserted on the same clock, is also translated to a PLB burst read. A PCI memory read
command that is asserted with a single data phases requested is translated to a PLB single read, such as
when FRAME# is deasserted prior to IRDY# being asserted. Table 20 shows translations of PCI
commands to PLB transactions.

Target
disconnect
without data
(PCI Retry)

Automatically retried a parameterized
number of times. If the last of the PCI
write command retries fails due to a PCI
Retry, the PLB Master Write Retry
interrupt is asserted.

Automatically retried a parameterized number of
times. If the last of the PCI write command retries
fails due to a PCI Retry, the PLB Master Write
Retry interrupt is asserted.

Target
disconnect
without data
(after one
completed data
phase)

N/A Automatically retried a parameterized number of
times. If the last of the PCI write command retries
fails due to a Disconnect with(out) Data, the PLB
Master Write Retry Disconnect interrupt is
asserted.

Target
disconnect with
data

Completes

PERR
Transaction completes and PLB Master
Write PERR interrupt asserted

PLB Master Write PERR interrupt asserted. If the
burst write is still in progress, Sl_MErr is asserted
with Sl_wrDAck. The FIFO is flushed.

Latency timer
expiration

N/A because PCI32 core waits for one
transfer after timeout occurs

Automatically retried a parameterized number of
times. If the last of the PCI write command retries
fails due to a Latency Timer expiration, the PLB
Master Burst Write Retry Timeout interrupt is
asserted. The PLB master must reissue command
per PCI spec if last termination was a retry.

Target Abort
Assert PLB Master Write Target Abort
interrupt

Assert PLB Master Write Target Abort interrupt. If
the burst write is still in progress, Sl_MWrErr is
asserted with Sl_wrDAck.

Address
increments
beyond valid
range

N/A
Stop PCI transaction. Assert PLB Write Slave
BAR Overrun interrupt.

Table 22: Response of PLB Master/PCI Initiator write to a remote PCI target with abnormal condition on
PCI bus (Contd)
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
For PCI memory read commands that are translated to a PLB single read, the address presented on the
PCI is translated to the PLB address space by high-order bit substitution with the 2 lsbs set as defined
by the byte enable vector for the first data phase. The lsbs are set to the lowest address of the byte lane
asserted in the byte enable vector as required by the Xilinx PLB specification. Byte enables from the PCI
bus are passed correctly to the PLB in single PLB read transactions. For PCI commands that are
translated to a PLB burst read, the address presented on the PLB is word aligned.

Every PCI command that translates to a burst read operation is performed with the full 32 bits on the
PLB independent of the byte enable specified by the PCI initiator. The byte enable bits asserted by the
PCI initiator in memory read multiple operations of a PLB slave are ignored, and all bytes are read
during the PLB burst read operation per PLB protocol. Hence, dynamic byte enable is not supported by
PCI initiator burst read from PLB slaves. The system designer must insure that a burst read with all
byte enables asserted is not destructive. The user must insure that corrupting the fidelity of the PCI
read command with arbitrary byte enables asserted by translating to a PLB burst with all byte enable
asserted is not destructive.

Furthermore, it is the responsibility of the PCI initiator to properly read data from non-prefetchable
PLB slaves. For example, it must perform single transaction reads of non-prefetchable PLB slaves to
avoid destructive read operations of a PLB slave. However, some protection is provided in the
hardware as described in a later subsection.

When the PLBV46 PCI Bridge decodes a PCI read command that is for a remote PLB Slave, the transfer
is retried on the PCI bus until the requested data has been prefetched from the remote PLB Slave. This
is true for both single and burst transactions. Only one PCI initiator read of a PLB slave is supported at
a time. Once this transaction is successfully completed, a subsequent PCI read with the same PCI
command and address will then complete on the PCI bus.

A Discard Timer is used to determine how long the PLBV46 PCI Bridge should wait for a subsequent
PCI read with the same PCI command and address before discarding the prefetched data in the FIFO.

Data throughput can be very high with burst read transactions. The PCI commands that translate to
burst read operations will burst read with a length determined by either a parameterized number or up
to the range limit of the PCI BAR, whichever is less. The prefetch read will not read beyond the
high-address defined by the PCI BAR length parameter. After the remote PCI initiator terminates the
read transaction, the FIFO is flushed of prefetched data that has not been read by the remote PCI
initiator.

Abnormal Terminations

1. If an address parity error is detected, the PCI32 core will either claim the transaction and issue a
Target Abort, or will not claim the transaction and a Master Abort will occur (see PCI32 core
documentation). When a Target Abort is issued, the PCI32 core asserts SERR_N, if enabled.

3. If SERR_N is asserted by a remote agent in a data phase on either a single or a burst transfer, it is left
to the PCI initiator to report the error and initiate any recovery effort that may be needed. The
PLBV46 PCI Bridge disconnects with data as soon as possible and any data left is the internal FIFOs
are discarded.

4. If, on either a single or a burst transfer, a PERR error is detected during a data phase, the PLBV46
PCI Bridge does nothing. Whether the PCI initiator continues or not is initiator dependent.

5. If, during a single or a burst transfer prefetch, a PLB rearbitrate is asserted by the PLB slave, the
PLBV46 PCI Bridge automatically retries the PLB request until it is successful.

6. If a PLB Sl_MRdErr occurs during a single or a burst transfer prefetch, the PCI interrupt is strobed.
Sl_MErr can be asserted due to an address phase timeout or a slave assertion of the error signal.
 24, 2007 www.xilinx.com 45
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

46
7. If, during a burst transfer prefetch, a PLB slave asserts PLB_MRdBTerm which terminates the PLB
burst read, the PLBV46 PCI Bridge automatically retries the PLB request and attempts to prefetch
the parameterized number of data words or up to the range limit.

8. On a burst transfer prefetch, the address will not prefetch beyond the valid range. The IP Master in
the bridge will attempt to prefetch the parameterized number of data words from addresses up to
the limit of the valid range which is defined by the PCIBAR length parameter. All transactions on
the PLB will be burst reads of the PLB slave that are terminated by the slave, terminated by the
bridge receiving the parameterized number of data words, or terminated when the last address of
the defined range is reached. This response is adopted rather than a target abort which is an option
per PCI specification. Recall that the PCI32 core cannot throttle data as a target after the first data
phase. As data is read by the PCI agent, a disconnect will occur when the FIFO is emptied.

Table 23 summarizes most PLB slave abnormal conditions in a memory read command and how the
response is translated to the PCI initiator.

PCI Initiator Initiates a Write Request to a PLB Slave

This section discusses the operation of a remote PCI initiator asserting the memory write command to
write data to a remote PLB slave. For these transactions, the PCI32 core is the PCI target.

Because all PLB address space must be memory space in the PCI sense, the memory write command is
the only write command from a remote PCI initiator to which the PLBV46 PCI Bridge will respond. The
command decode and number words written dictates whether the PLB write operation is a burst or
single. Byte enables are buffered with data on remote PCI initiator writes to a remote PLB slave, but
only transferred for singles because the PLB write protocol does not support dynamic byte enable. All
byte enables must be asserted in multiple data phase burst transactions. The command I/O write will
be ignored and the configuration write command will be responded to by the PCI32 core but has
limited impact on the PLBV46 PCI Bridge.

All memory write commands are posted, with error notification mostly likely occurring after the PCI
transaction with the bridge has completed. The main reason for posted operation is that the PCI32 core

Table 23: Response to PCI initiator doing a read of a remote PLB slave that terminates the transfer with an
abnormal condition on PLB bus

Abnormal condition Memory Read (single)
Memory Read (burst) or
Memory Read Multiple

SERR

Target abort by PCI32 core, but
completes PLB transaction. Flush
FIFOs and assert PLB-side Read
SERR interrupt.

Target abort byPCI32 core, but
terminates PLB transaction. Flush
FIFOs and assert PLB-side PCI
Initiator Read SERR interrupt.

PERR
PLBV46 PCI Bridge ignores the
signal and continues.

PLBV46 PCI Bridge ignores the
signal and continues.

PLB Rearbitrate
Automatically retries PLB read
request.

Automatically retries PLB read
request.

PLB Sl_MRdErr (including
remote slave IPIF timeout)

Assert PCI interrupt Assert PCI interrupt

PLB PLB_MRdBTerm N/A
Automatically retries PLB read
request and attempts to prefetch all
data required.

Address increments beyond valid
range

N/A
Disconnect with data on the last valid
address on the PCI bus.
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
does not permit data throttling by the PLBV46 PCI Bridge to utilize PLB burst write commands without
buffering data. It is desirable to utilize the PLB burst write command when possible to increase data
throughput.

To utilize burst write PLB transactions, data is buffered in the IPIF master PCI2IPIF FIFO until either
the PCI write operation terminates or until the PCI2IPIF FIFO is full. If C, the data are burst written
over the PLB until the FIFO is emptied, which can take multiple transactions if the PLB slave terminates
the transaction. If the PCI write is terminated before the PCI2IPIF FIFO is full, the IPIF master burst
writes starts after the PCI transaction ends. The bridge attempts to burst write all the data to the PLB
slave device.

Although dynamic byte enable is supported on the PCI bus, dynamic byte enable is not supported by
the PLBV46 PCI Bridge because the PLB protocol requires all byte enables to be asserted during burst
writes on the PLB. It is the responsibility of the user to insure that all byte enables be asserted on the PCI
in burst write operations to the PLBV46 PCI Bridge.

A PCI initiator can write any number of words of data in a burst operation to the PLBV46 PCI Bridge
and the bridge will attempt to burst the data to the PLB slave in a burst write operation on the PLB. The
slave may terminate the PLB burst or the FIFO may empty because the FIFO is not filled as fast as the
data is transmitted over the PLB.

The PLBV46 PCI Bridge can accept a PCI initiator write while a read prefetch is in process. However,
only one PCI initiator write to a PLB slave is supported at a time. It is possible for the PLBV46 PCI
Bridge to be completing a posted write operation when another write command is received. When this
happens, the PLBV46 PCI Bridge will force the PCI to disconnect without data until the posted write
operation to a remote PLB slave has completed.

A write to a remote slave that is terminated before the FIFO is emptied is automatically retried by the
PLB/PCI bridge. Address bookkeeping is performed in the IPIF to permit the correct sequence of PLB
transactions as either bursts or single transactions and/or combinations of the two as required to
complete the transfer.

Abnormal Terminations

• If an address parity error is detected, the PCI32 core will either claim the transaction and issue a
target abort, or will not claim the transaction and a master abort will occur (see PCI32 core
documentation). If enabled, the PCI32 core asserts SERR_N when address phase parity errors are
detected.

• If SERR_N is asserted by a remote agent in a data phase, the bridge disconnects without data for
burst transfers and the PLB-side PCI Initiator Write SERR interrupt is asserted. If the SERR occurs
after the IP master device has started a PLB transaction, the PLB transaction is terminated as soon
as possible. The PLBV46 PCI Bridge flushes any data and resets for a subsequent transaction. It is
left to the PCI initiator to report the error on the PCI-side and initiate any recovery effort that may
be needed.

• If a PERR error is detected on a write transfer, the PCI32 core asserts the PERR signal, if enabled,
and sets the Detected PERR error in the status register. The PLBV46 PCI Bridge disconnects without
data for burst transfers. On the PLB-side, the bridge terminates the PLB transfer as soon as possible
if the transaction is in progress. Due to the latency in PERR, the data for which the PERR was
detected most likely has been written to the PLB slave. It is left to the PCI initiator to report the
error and initiate any recovery effort that may be needed.

• If at any time while data from the PCI2PLB_FIFO is being written to a PLB slave, a PLB rearbitrate
 24, 2007 www.xilinx.com 47
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

48
occurs, the PLBV46 PCI Bridge will perform write retries until successful. The PLBV46 PCI Bridge
IP master write state machine is tied up during the retry operation, therefore, PCI initiator writes
are inhibited. Target disconnects without data (PCI retry) will be asserted for subsequent PCI
transactions when the transactions are inhibited.

• If during a write command a PLB slave asserts PLB_MWrBTerm which terminates the PLB burst
write, the PLBV46 PCI Bridge automatically retries the PLB request and attempts to empty the fifo.
The behavior is the same as that described for the PLB rearbitrate above.

• If a PLB Sl_MWrErr occurs while data from the write buffer is being written to a PLB slave, the IP
Master will abort the PLB transaction. When this occurs, the PLBV46 PCI Bridge strobes the PCI
interrupt. Sl_MWrErr can be asserted due to an address phase timeout or a slave assertion of the
error signal. Data in the write buffer is flushed when the PCI interrupt is strobed.

• If on a write command transaction the PCI initiator attempts to go beyond the valid address range,
the PLBV46 PCI Bridge will not accept data beyond the valid range. Only valid data is buffered in
the bridge and all buffered data will be transferred to the PLB slave. This is adopted rather than a
target abort. Due to pipelining in the PCI32 core, disconnect without data can occur if the initiator is
throttling the data when the first address is near the end of the valid range.

Table 24 summarizes most abnormal conditions that a PLB slave can respond with to a memory write
command and how the response is translated to the PCI initiator.

Configuration Transactions
Functionality for host bridge configuration of PCI agents can be implemented in the PLBV46 PCI
Bridge at build time by setting C_INCLUDE_PCI_CONFIG=1. When the bridge is not configured with
host bridge configuration functionality, IDSEL of the PCI32 core is connected to the IDSEL port of the
bridge. When the bridge is configured with host bridge configuration functionality, IDSEL of the PCI32
core is connected internally to the specified address signal (as described below) and the IDSEL port of
the bridge is not used. As with Memory and IO data transactions, byte addressing integrity is
maintained in configuration transfers across the bus.

Table 24: Response to PCI initiator doing a write to a remote PLB slave that terminates the transfer with
an abnormal condition on a bus

Abnormal condition Memory Write

Parity Error on Address phase
PCI32 core dictates response with target abort or not accepting
transaction. SERR_N is asserted if enabled

SERR on data phase
Disconnect with data for burst transfers and assert PLB-side
PCI Initiator Write SERR interrupt

PERR on data phase
Disconnect with data for burst transfers and terminate PLB
transfer

PLB Rearbitrate Automatically retried until successful.

PLB Sl_MWrErr
Disconnect with data if PCI transfer is in progress, flush FIFO, and
strobed the PCI interrupt

PLB_MWrBTerm asserted Automatically retried until successful.

Address increments beyond valid range
Accept data from only valid address on the PCI bus.
Disconnect to terminate the PCI transaction.
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
When host bridge configuration functionality is implemented in the PLBV46 PCI Bridge, the PCI32
core in the PLBV46 PCI Bridge must be configured first. The minimum that must be set is the Bus
master enable bit in the command register and the latency timer register. This requirement is because
the PCI32 core has the capability to configure only itself until the Bus master enable bit is set in the
command register of the PCI32 core and the latency timer register is properly set to avoid timeouts. If
the PCI32 core latency timer is set to 0 value, configuration writes to remote PCI devices will not
complete and configuration reads of remote PCI devices will terminate due to the latency timer
expiration. Configuration reads of remote PCI devices with the latency timer set to 0 will return
0xFFFFFFFF.

Table 25 shows the results of configuring the PCI32 core configuration header in the PLBV46 PCI
Bridge by both PLB-side configuration transactions and by remote PCI host bridge configuration
transactions from the PCI-side. This example assumes all PCI BARs are designated memory space
which is the only allowed PCIBAR memory type. Note that PLB-side configuration of the PCI32 core
enables all functionality in the Command Status Register and sets the latency timer to maximum count
for most any data value written to the registers. This behavior is an artifact of the v3.0 PCI32 core used
in Spartan-3 and Virtex-4 device families. However, the v4.0 PCI32 core used in the Virtex-5 device
family DOES NOT exhibit this behavior.

Configuration Space Header

The LogiCORE PCI32 core used in the PLBV46 PCI Bridge can be configured with functionality to
address a wide range of applications.

Fields of the Configuration Space Header are Device ID, Vendor ID, Class Code, Rev ID, Subsystem ID,
Subsystem Vendor ID, Maximum Latency and Minimum Grant. The parameters for these fields are
C_DEVICE_ID, C_VENDOR_ID, C_CLASS_CODE, C_REV_ID, C_SUBSYSTEM_ID,
C_SUBSYSTEM_VENDOR_ID, C_MAX_LAT, C_MIN_GNT, respectively.

Listed below are details on the remaining configuration registers that are fixed in value.

BIST, Line Size and Expansion ROM Base Address are not implemented in the LogiCORE PCI32
design.

Header Type is a fixed byte of all zeros in the LogiCORE PCI32 design.

Cardbus CIS Pointer is set to all zeros for the LogiCORE PCI32 implementation used in the PLBV46 PCI
Bridge.

Capabilities Pointer is not enabled for the LogiCORE PCI32 implementation used in the PLBV46 PCI
Bridge.

Interrupt Pin register is set to 0x01.

BAR3, BAR4 and BAR5 are not supported by the LogiCORE PCI32 Core. For these registers and
unimplemented PCIBARs (determined by C_PCIBAR_NUM), zeros are returned when read. Writes to
the unimplemented configuration space addresses have no effect.

Latency timer, BAR0, BAR1, and BAR2 are required to be set by the host bridge as necessary. The
number of BARs (0-3) is set by the parameter C_PCIBAR_NUM.

The User Configuration Space is enabled for the LogiCORE PCI32 implementation used in the PLBV46
PCI Bridge.
 24, 2007 www.xilinx.com 49
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

50
Table 25 and Table 26 show examples only and do not show all the possible bit patterns. Note that the
bytes are swapped for maintaining byte addressing integrity.

The PCI32 core is PCI 2.2 compliant core, but it has PCI 2.3 compliant features. The PCI32 core
documentation should be reviewed for details of compliance.

Configuration transactions from the PLB-side of the bridge are supported by the PLBV46 PCI Bridge.
The protocol follows the PCI 2.2 specification but with changes required to adapt to the PLB-side bus
protocol. The primary difference is that all registers (Configuration Address Port, Configuration Data
Port, and Bus Number/Subordinate Bus Number) are on the PLB-side of the bridge and are not
accessible from the PCI-side via I/O transactions on the PCI bus. This approach is adopted so that one
BAR of the PCI32 core is not required for the Configuration Port registers. The registers are mapped

Table 25: Results of PCI32 core Command Register configuration by remote host bridge (PCI-side) and
by self-configuration (PLB-side) Note: Results for Virtex-5 self-configuration is the same as remote host
bridge configuration

Results in Command Register after write
(PLB-side byte swapped format)

Data Written (PLB-side
byte swapped format)

by remote host bridge (Virtex-4,
Virtex-5 and Spartan-3) and by

self-configuration (Virtex-5)

by self-configuration (Virtex-4
and Spartan-3)

0x0000 0x0000 0x4605

0x0100 0x0000 0x4605

0x0200 0x0200 0x4605

0x0300 0x0200 0x4605

0x0400 0x0400 0x4605

0x0500 0x0400 0x4605

0x8600 0x0600 0x4605

0x8700 0x0600 0x4605

0xFFFF 0x4605 0x4605

Note:
1. This assumes that the PCI BARs in the PCI32 core are configured to only Memory type and not IO-type

which is not an allowed configuration. After self-configuration, a remote initiator can reconfigure the PCI32
core to any valid state.

Table 26: Results of PCI32 core Latency Timer Register configuration by remote host bridge (PCI-side)
and by self-configuration (PLB-side) Note: Results for Virtex-5 self-configuration same as remote host
bridge configuration

Results in Latency Timer Register after write
(PLB-side byte swapped format)

Data Written
by remote host bridge (Virtex-4, Virtex-5
and Spartan-3) and by self-configuration

(Virtex-5)

by self-configuration (Virtex-4
and Spartan-3)

0x00 0x00 0xFF

0x01 0x01 0xFF

0xFF 0xFF 0xFF
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
relative to the bridge device base address as shown in Table 5. The registers exist only if the bridge is
configured with PCI host bridge configuration functionality.

Data is loaded in the Configuration Address Port with the Byte format specified in the PCI 2.2.
specification. A PLB-side read of the Configuration Data Port initiates a Configuration Read command
with data returned to the PLB-side upon completion of the PCI-side read command. A PLB-side write
to the Configuration Data Port register initiates a Configuration Write transaction on the PCI bus.
Determination of whether the read or write transfer is type 0 or type 1 is done automatically.

Both type 0 and type 1 configuration transactions are supported. The type of transaction is determined
from the Bus number in the Configuration Address Port register (Bits 8-15) and the bus numbers in the
Bus Number/Subordinate Bus Number register. The local bus number is located at bits 8-15 and the
maximum subordinate bus number is located at bits 24-31 in the Bus Number/Subordinate Bus
Number register. If the Bus number in the Configuration Address Port register is equal to the local bus
number in the Bus Number/Subordinate Bus Number register (bits 8-15), a type 0 transaction is
performed. If the Bus number in the Configuration Address Port register is greater than the bus
number in the Bus Number/Subordinate Bus Number register and less than or equal to the maximum
subordinate Bus number, a type 1 transaction is performed. If a configuration transaction to a Bus
Number not satisfying the inequality relation is attempted, then PLB Sl_MErr is asserted. When a
configuration read from a bus number not in the subordinate bus range is initiated, nothing occurs on
the PCI bus and an IPIF timeout occurs with the IPIF asserting PLB Sl_MErr. When a configuration
write to a bus number not in the subordinate bus range is initiated, nothing occurs on the PCI bus, the
data is discarded and PLB Sl_MErr is asserted. These conditions are equivalent to the situation where
the master enable bit in the configuration command register of the PCI32 core is not set.

If a configuration read to a device number not assigned to a device on the PCI bus is attempted, a
Master Abort occurs on the PCI bus, and all ones are returned on the PLB bus.

IDSEL is asserted for the device to be configured in all type 0 configuration transactions. The most
common implementation method for IDSEL is used in this bridge implementation where address lines
AD[31:16] are required to be mapped to IDSEL for each device.

The mapping is shown below.

• IDSEL of device 0 is connected to AD16

• IDSEL of device 1 is connected to AD17

• IDSEL of device 2 is connected to AD18.

• ...

• IDSEL of device 15 is connected to AD31

A decode of the device number in the Configuration Address Port is used to determine which address
line/IDSEL is asserted.

As noted, when the bridge has host bridge configuration functionality, IDSEL of the PCI32 core is
connected internally to the AD-bit specified by the C_BRIDGE_IDSEL_ADDR_BIT parameter.

C_NUM_IDSEL specifies the number of PCI agents that can be configured on the PCI bus by specifying
the number of IDSEL lines that are decoded and assigned to address lines AD[31:16]. Each device on
the bus must have its IDSEL line properly connected to the PCI AD bus. It can be resistively-coupled to
the associated address bit or direct coupling, if it is not detrimental to performance per PCI 2.2
specification. Because the PCI32 core does not support address stepping, resistive coupling of IDSEL
 24, 2007 www.xilinx.com 51
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

52
with the assigned address bit must be sufficient to ensure proper signal levels at IDSEL without
utilizing address stepping.

Multiple PLBV46 PCI Bridges can be instantiated on a given PLB. Each bridge has a unique base
address with fixed offset to corresponding unique set of configuration registers. The unique set of
configuration registers are used to perform configuration accesses on the unique primary PCI bus and
its’ subordinate buses. Device numbers are independent for each PLBV46 PCI Bridge instantiated, but
bus numbering must be monotonically increasing for all primary buses and their subordinate buses.

Abnormal Terminations

Responses to abnormal terminations of Configuration Reads and Writes follow closely to single reads
and writes by a remote PLB master from or to a remote PCI target. Details of each transaction can be
reviewed in the previous sections; however, some differences exist. Shown in Table 27 is a table
summary of responses to abnormal terminations during configuration transactions. The differences as
compared to PLB master read and writes to remote targets are shown.

Design Implementation

Table 27: Response of PLB Master/v3.0 Initiator Configuration Transactions with abnormal condition on
PCI bus

Abnormal condition Configuration Read Configuration Write

SERR (including address phase
parity error)

Return all ones and set PLB
Master Read SERR
interrupt

PLB Master Write SERR interrupt asserted

PLBV46 PCI Bridge Master abort
(no PCI target response)

All 1s are returned PLB Master Abort Write interrupt asserted

Target disconnect without data
(PCI Retry)

Automatically retried until
the transfer completes

Automatically retried a parameterized
number of times. If the last of the PCI write
command retries fail due to a PCI retry, the
PLB Master Burst Write Retry interrupt is
asserted. The PLB master must reissue
command per PCI specification, if last
termination was a retry.

Target disconnect with data Completes Completes

PERR
Data is transferred and PLB
Master Read PERR
interrupt is asserted

Transaction completes and PLB Master Write
PERR interrupt asserted

Latency timer expiration
Latency timer register must be
set to non-zero value for
accessing remote devices.

N/A because PCI32 core
waits for one transfer after
timeout occurs when
latency timer is non-zero

N/A because PCI32 core waits for one
transfer after timeout occurs when latency
timer is non-zero

Target Abort

Set PLB Master Read
Target Abort interrupt and
terminate PLB transaction
with Slv_MErr assertion

Assert PLB Master Write Target Abort
interrupt.
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
Design Tools

The PLBV46 PCI Bridge design is implemented using the VHDL. All coding standards and
abbreviations specified in IPSPEC001 Virtex-II Pro Coding Standards and IPSPEC002 Virtex-II Pro
Standard Abbreviations have been adhered to.

Xilinx XST and Synplicity Synplify Pro synthesis tools are used for synthesizing the PLBV46 PCI
Bridge. The NGC format from XST and EDIF netlist output from Synplify Pro are then input to the
Xilinx Alliance tool suite for actual device implementation.

Design Debug

The PLBV46 PCI Bridge has a test vector output (PCI_monitor) to facilitate system debug, such as when
adding an ILA to a system. The test vector allows monitoring the PCI bus and is the output of
IO-buffers that are instantiated in the LogiCORE PCI32 core. PCLK, RCLK, and Bus2PCI_INTR are not
included in the test vector because these signals do not have io-buffers instantiated in the core and are
accessible to use directly at the core top-level or above. If the port is not connected in the EDK tool
top-level mhs-file, the wrapper simply leaves this port open. PCI Bus monitoring test vector bit
definition is listed in Table 28.

.

Table 28: PCI Bus Monitoring Signals

Bit Index Signal Name Instantiated IO-Buffer

PCI Transaction Control Signals

0 FRAME_N Yes

1 DEVSEL_N Yes

2 TRDY_N Yes

3 IRDY_N Yes

4 STOP_N Yes

5 IDSEL Yes

PCI Interrupt Signals

6 INTR_A Optional

PCI Error Signals

7 PERR_N Yes

8 SERR_N Yes

PCI Arbitration Signals

9 REQ_N Optional

10 reserved NA

PCI Address, Data Path, and Command Signals

11 PAR Yes

12-43 AD[31:0] Yes

44-47 CBE[3:0] Yes
 24, 2007 www.xilinx.com 53
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

54
Design Verification

The PLBV46 PCI Bridge design will be verified according to IPSPEC000 PLBV46 PCI Bridge
Verification Plan.

Design Contraints

The PLBV46 PCI Bridge uses the LogiCORE PCI32 core that requires specific constraints to meet PCI
specifications. UCF-files with the constraints for the LogiCORE PCI32 core in many different packages
are available from the LogiCORE Lounge. The PCI32 core specific constraints can be included in the
top-level ucf-file by the user.

The constraints are also implemented automatically in the EDK tool flow with any tool option that
invokes bridge synthesis. In this flow, tcl-scripts generate the ucf-file constraints and place them in a
file in the PLBV46 PCI Bridge directory of the project implementation directory. The ucf-file constraints
are then included in the ngc-file generated in the EDK tool flow. The user can check the ucf-file in the
implementation directory of the bridge directory to verify that the constraints are included. As noted
above, the user can include all constraints in the top-level ucf-file. When the constraints are included in
both the top-level ucf-file and the bridge ngc-file (via the bridge directory ucf-file), then the top-level
ucf-file overrides any conflicting constraints in the bridge ngc-file.

To remind the user that the following constraints must be included, PLATGEN will generate the
message:

The PLBV46 PCI Bridge design requires design constraints to guarantee performance.
Please refer to the PLBV46 IPIF/LogiCORE PCI bridge design data sheet for details.

Additional bridge specific constraints are required and an example ucf-file is provided in the EDK
pcores library. To remind the user that the additional bridge related constraints must be included in the
top-level ucf-file, PLATGEN will generate the message:

An example UCF is available for this core and must be modified for use in the
system. Please refer to the EDK Getting Started guide for the location of this
file.

The constraints that the LogiCORE PCI32 core require to meet PCI specifications are shown below.

All io buffers must have IOB=TRUE

IOSTANDARD must explicitly list PCI33_3. Both BYPASS IOBDELAY=BOTH must be included for all
PIC ports, as shown below.

NET "PCI_AD(*)" IOSTANDARD=PCI33_3;
NET "PCI_CBE(*)" IOSTANDARD=PCI33_3;
NET "PCI_PAR" IOSTANDARD=PCI33_3;
NET "PCI_FRAME_N" IOSTANDARD=PCI33_3;
NET "PCI_TRDY_N" IOSTANDARD=PCI33_3;
NET "PCI_IRDY_N" IOSTANDARD=PCI33_3;
NET "PCI_STOP_N" IOSTANDARD=PCI33_3;
NET "PCI_DEVSEL_N" IOSTANDARD=PCI33_3;
NET "PCI_PERR_N" IOSTANDARD=PCI33_3;
NET "PCI_SERR_N" IOSTANDARD=PCI33_3;
#Include next 2 if routed to pins
NET "IDSEL" IOSTANDARD=PCI33_3;
NET "GNT_N" IOSTANDARD=PCI33_3;

NET "PCI_AD(*)" BYPASS;
NET "PCI_CBE(*)" BYPASS;
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
NET "PCI_PAR" BYPASS;
NET "PCI_FRAME_N" BYPASS;
NET "PCI_TRDY_N" BYPASS;
NET "PCI_IRDY_N" BYPASS;
NET "PCI_STOP_N" BYPASS;
NET "PCI_DEVSEL_N" BYPASS;
NET "PCI_PERR_N" BYPASS;
NET "PCI_SERR_N" BYPASS;
#
NET "*/RST_N" IOBDELAY = BOTH ;
NET "*/AD<*>" IOBDELAY = BOTH ;
NET "*/CBE<*>" IOBDELAY = BOTH ;
NET "*/REQ_N" IOBDELAY = BOTH ;
NET "*/GNT_N" IOBDELAY = BOTH ;
NET "*/PAR" IOBDELAY = BOTH ;
NET "*/IDSEL" IOBDELAY = BOTH ;
NET "*/FRAME_N" IOBDELAY = BOTH ;
NET "*/IRDY_N" IOBDELAY = BOTH ;
NET "*/TRDY_N" IOBDELAY = BOTH ;
NET "*/DEVSEL_N" IOBDELAY = BOTH ;
NET "*/STOP_N" IOBDELAY = BOTH ;
NET "*/PERR_N" IOBDELAY = BOTH ;
NET "*/SERR_N" IOBDELAY = BOTH ;
NET "*/PCI_INTA" IOBDELAY = BOTH ;

TNM constraints must be defined as specified in PCI32 Design Guide and PCI32 core ucf-files. These
parameters are automatically set in the normal EDK tool flow, but can be included in the system
top-level ucf-file. For alternative tool flows, the settings are shown below. When the complete set of
constraints is used, the PCI clock must be a PAD input which is the required clock routing for all PCI32
core implementations. The EDK flow checks if the PCI clock is a PAD input and if it is, then the OFFSET
constraints shown below are includes in the bridge ngc-file.

##
Time Specs
##
#
Important Note: The timespecs used in this section cover all possible
paths. Depending on the design options, some of the timespecs might
not contain any paths. Such timespecs are ignored by PAR and TRCE.
#
1) Clock to Output = 11.000 ns
2) Setup = 7.000 ns
3) Grant Setup = 10.000 ns
4) Datapath Tristate = 28.000 ns
5) Period = 30.000 ns
#
Note: Timespecs are derived from the PCI Bus Specification. Use of
offset constraints allows the timing tools to automatically include
the clock delay estimates. These constraints are for 33 MHz operation.
#
The following timespecs are for setup.
#
TIMEGRP "PCI_PADS_D" OFFSET=IN 7.000 VALID 7.000 BEFORE "PCI_CLK" TIMEGRP
"ALL_FFS" ;
TIMEGRP "PCI_PADS_B" OFFSET=IN 7.000 VALID 7.000 BEFORE "PCI_CLK" TIMEGRP
"ALL_FFS" ;
 24, 2007 www.xilinx.com 55
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

56
TIMEGRP "PCI_PADS_P" OFFSET=IN 7.000 VALID 7.000 BEFORE "PCI_CLK" TIMEGRP
"ALL_FFS" ;
TIMEGRP "PCI_PADS_C" OFFSET=IN 7.000 VALID 7.000 BEFORE "PCI_CLK" TIMEGRP
"ALL_FFS" ;
#
The following timespecs are for clock to out where stepping is not used.
#
TIMEGRP "PCI_PADS_D" OFFSET=OUT 11.000 AFTER "PCI_CLK" TIMEGRP "FAST_FFS" ;
TIMEGRP "PCI_PADS_B" OFFSET=OUT 11.000 AFTER "PCI_CLK" TIMEGRP "FAST_FFS" ;
TIMEGRP "PCI_PADS_P" OFFSET=OUT 11.000 AFTER "PCI_CLK" TIMEGRP "FAST_FFS" ;
TIMEGRP "PCI_PADS_C" OFFSET=OUT 11.000 AFTER "PCI_CLK" TIMEGRP "ALL_FFS" ;

#
The following timespecs are for clock to out where stepping is used.
#
TIMEGRP "PCI_PADS_D" OFFSET=OUT 28.000 AFTER "PCI_CLK" TIMEGRP "SLOW_FFS" ;
TIMEGRP "PCI_PADS_B" OFFSET=OUT 28.000 AFTER "PCI_CLK" TIMEGRP "SLOW_FFS" ;
TIMEGRP "PCI_PADS_P" OFFSET=OUT 28.000 AFTER "PCI_CLK" TIMEGRP "SLOW_FFS" ;

Target Technology

The intended target technology is for devices Spartan-3, Virtex-4, and Virtex-5.

Virtex-4 & Virtex-5 Support

To meet PCI specification setup and hold times with the Virtex-4 and Virtex-5 architectures, it is
necessary to insert an IDELAY primitive between the pad and I/O buffer of most PCI signals and to
include additional constraints in the ucf-file. When IDELAY primitives are used in the mode required
by the LogiCORE PCI32 core, IDELAYCTRL (idelay controllers) are required. Also required is a 200
MHz reference clock supplied by the user which is used by both IDELAY and IDELAYCTRL primitives.
Note that these primitives are only required for Virtex-4 and Virtex-5 architectures. The additional
constraints are discussed after the discussion of primitives specific to Virtex-4 and Virtex-5 devices.

The 200 MHz clock is input to port RCLK and must be driven by a global buffer. If the architecture is
not off the Virtex-4 or Virtex-5 platform, the port does not connect to anything in the plbv46_pci bridge,
and it might be omitted from the MHS-file. This allows upgrading to v1.02.a from v1.01.a without
changing ports. Recall that v1.01.a does not support the Virtex-4 architecture. It is required that the 200
MHz clock be stable when PLB_RST is asserted to the PLBV46 PCI Bridge. An unstable clock can result
failure of PLBV46 PCI Bridge operation. The clock source can be an external source or generated with
a DCM in the FPGA. Application Notes and Implementation Guides for the LogiCORE PCI32 core, as
well as reference designs using the PLBV46 PCI Bridge, present options for generating the 200 MHz
clock.

IDELAY primitives are instantiated automatically by the bridge when the C_FAMILY parameter is set
to the Virtex-4 or Virtex-5 architecture. The EDK tools automatically set this parameter and it can not be
changed by the user. There is a special case to consider for instantiation of IDELAY primitives. Port
GNT_N requires the IDELAY primitive only if the port is connected to a package pin. If GNT_N is
connected to an internal signal (an FPGA internal arbiter such as pci_arbiter_v1_00_a) or connected to
ground, then an IDELAY primitive is not needed. EDK tools have the system level information to
determine if GNT_N is connected to a pad or has an internal connection. This accomplished with a
tcl-script in the PLBV46 PCI Bridge pcore library that is called by the EDK tools. EDK tools
automatically sets the parameter C_INCLUDE_GNT_DELAY which controls if an IDELAY primitive is
included in the GNT_N signal path. C_INCLUDE_GNT_DELAY defaults to exclude the IDELAY
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
primitive and must be set by the user if the core is used outside EDK tools with GNT_N connected to a
pin.

IDELAYCTRL primitives are not as automatic in the build procedure. It is required that the user
instantiate the number of IDELAYCTRL primitive needed for their design and to provide LOC
contraints for each IDELAYCTRL. This is required for EDK 8.1 tools because when instantiating only
one IDELAYCTRl without LOC constraints, the tools will replicate the primitive throughout the design.
Replicating the primitive has the undesirable results of higher power consumption, higher power
consumption, utilization of more global clock resources, and greater use of routing resources. To
prevent these undesirable results, a procedure is described in the next paragraph for instantiating the
IDELAYCTRLs. See the Virtex-4 User Guide discussion of IDELAYCTRL usage and design guidance
for more details on IDELAYCTRL and usage. Tools beyond ISE 7.1 might handle IDELAYCTRL
instantiation differently.

It turns out that the number of signals in the PCI protocol requires at least two IDELAYCTRL primitives
when implemented in the Virtex-4 or Virtex-5 architecture. The actual number depends on the pinout
defined by the user. To avoid the undesirable results noted above, the LogiCORE PCI32 core standalone
core is fixed to use two IDELAYCTRL instantiations and prescribes pinouts that require only two
IDELAYCTRL primitives. To provide more flexibility to the user, the PLBV46 PCI Bridge allows
specifying the number of IDELAYCTRL primitives from two to six; this is set at build time by set the
parameter C_NUM_IDELAYCTRL. However, it might be difficult to meet timing when the pinout is
spread out to require four to six IDELAYCTRL primitives and it is recommended to use a PCI pinout
packed together enough to require only two IDELAYCTRL primitives. See the Virtex-4 User Guide
discussion of IDELAYCTRL usage and design guidance or the Virtex -4 Library Guide for
IDELAYCTRL primitives for more details.

When more than one IDELAYCTRL is instantiated, the ISE 8.1 tools require LOC constraints on each
IDELAYCTRL instantiation. A failure in MAP will occur if the LOC constraints are not provided. The
FPGA Editor tool can be helpful to determine IDELAYCTRL LOC coordinates for the user's pinout. The
syntax for the ucf-file LOC constraints is shown in the example below where the instance name in the
PLBV46 PCI Bridge for each IDELAYCTRL is XPCI_IDC0 to XPCI_IDCN where N is the
C_NUM_IDELAYCTRL-1. The user need only include an LOC entry for each instance used in the
system design and not for all possible six IDELAY controllers. For each entry, include the LOC
coordinates for the part and pinout in the design. The example below is for a design that uses 2
IDELAYCTRL primitives.

This approach allows users to use the constraint LOC coordinates directly from the LogiCORE PCI32
core ucf-generator. Note that the ucf-file generator prescribes I/O pin layout that only uses two
IDELAYCTRL primitives. The example below is for a system with two IDELAYCTRL primitives with
example only coordinates. Depending on the user’s pinout, more IDELAYCTRLs might be needed.

INST *XPCI_IDC0 LOC=IDELAYCTRL_X2Y5;
INST *XPCI_IDC1 LOC=IDELAYCTRL_X2Y6;

An optional method for setting of LOC constraints is to use the C_IDELAYCTRL_LOC parameter. This
parameter when properly set will generate constraints in the bridge core ucf-file that is combined with
the plbv46_pci bridge ngc-file during normal EDK tool flow. If the LOC constraints are set in the system
top-level ucf-file, this parameter is has no effect for either case of it being properly set or set to default
(NOT_SET). This is because the system top-level ucf-file overrides all core level ucf constraints.
However, if it is not set, then a warning that it is not set is asserted early in the EDK tool flow for the tool
options, generate netlist, generate bitstream, and other tool options that would invoke synthesis of the
 24, 2007 www.xilinx.com 57
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

58
plbv46_pci bridge. If the system top-level ucf-file does include the LOC constraints, then this warning
can be ignored. With EDK 8.1 tools, MAP will fail if the LOC coordinates are not provided by at least
one of the methods. An example of the syntax for the C_IDELAYCTRL_LOC parameter is shown
below.

The parameter C_IDELAYCTRL_LOC has the syntax of IDELAYCTRL_XNYM where N and M are
coordinates and multiple entries are concatenated by "-" (dash). The order of entries correspond to
IDELAYCNTRL instance names XPCI_IDC0, XPCI_IDC1, ... up to the maximum index of IDELAY
controller instances in the user’s board design. The maximum index is C_NUM_IDELAYCTRL-1. To
use the parameter to set the LOC constraint in the core level ucf-file for the above example, the
parameter should be set in the MHS-file as shown below.

PARAMETER C_IDELAYCTRL_LOC="IDELAYCTRL_X2Y5-IDELAYCTRL_X2Y6"

The quotes are optional. The actual number of IDELAYCTRL primitives and corresponding LOC
constraints depends on the user’s PCI pinout and part used.

Other constraints that are required include the IOBDELAY_TYPE, IOBDELAY_VALUE and IOB. These
parameters are set in the normal EDK tool flow, but can be included in the system top-level ucf-file. For
alternative tool flows, the setting are shown below. The settings shown below are settings at the time
this document was written. The LogiCORE v3 PCI32 core Implementation Guide and v3.0 core ucf
generator tool should be checked for updated values. IOSTANDARD must be explicitly defined in the
ucf-file with the BYPASS constraint for ISE 8.1 tools; this can change in with future versions of the tools.

#---
Virtex-4 Only Constraints
#---
INST "*XPCI_CBD*" IOBDELAY_TYPE=VARIABLE ;
INST "*XPCI_ADD*" IOBDELAY_TYPE=VARIABLE ;
INST "*PCI_CORE/XPCI_PARD" IOBDELAY_TYPE=VARIABLE ;
INST "*PCI_CORE/XPCI_FRAMED" IOBDELAY_TYPE=VARIABLE ;
INST "*PCI_CORE/XPCI_TRDYD" IOBDELAY_TYPE=VARIABLE ;
INST "*PCI_CORE/XPCI_IRDYD" IOBDELAY_TYPE=VARIABLE ;
INST "*PCI_CORE/XPCI_STOPD" IOBDELAY_TYPE=VARIABLE ;
INST "*PCI_CORE/XPCI_DEVSELD" IOBDELAY_TYPE=VARIABLE ;
INST "*PCI_CORE/XPCI_PERRD" IOBDELAY_TYPE=VARIABLE ;
INST "*PCI_CORE/XPCI_SERRD" IOBDELAY_TYPE=VARIABLE ;
#Include next 2 if routed to pins
INST "*XPCI_IDSEL" IOBDELAY_TYPE=VARIABLE ;
INST "*XPCI_GNTD" IOBDELAY_TYPE=VARIABLE ;

INST "*XPCI_CBD*" IOBDELAY_VALUE=55 ;
INST "*XPCI_ADD*" IOBDELAY_VALUE=55 ;
INST "*PCI_CORE/XPCI_PARD" IOBDELAY_VALUE=55 ;
INST "*PCI_CORE/XPCI_FRAMED" IOBDELAY_VALUE=55 ;
INST "*PCI_CORE/XPCI_TRDYD" IOBDELAY_VALUE=55 ;
INST "*PCI_CORE/XPCI_IRDYD" IOBDELAY_VALUE=55 ;
INST "*PCI_CORE/XPCI_STOPD" IOBDELAY_VALUE=55 ;
INST "*PCI_CORE/XPCI_DEVSELD" IOBDELAY_VALUE=55 ;
INST "*PCI_CORE/XPCI_PERRD" IOBDELAY_VALUE=55 ;
INST "*PCI_CORE/XPCI_SERRD" IOBDELAY_VALUE=55 ;
#Include next 2 if routed to pins
INST "*XPCI_IDSEL" IOBDELAY_VALUE=55 ;
INST "*XPCI_GNTD" IOBDELAY_VALUE=55 ;

Some of the Virtex-4 constraints are implemented automatically in the EDK tool flow with any tool
option that invokes bridge synthesis. As described earlier, tcl-scripts generate the ucf-file constraints
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

DS616 Aug
Product Sp
and place them in a file in the PLBV46 PCI Bridge directory of the project implementation directory.
The ucf-file constraints are then included in the ngc-file generated in the EDK tool flow. The user can
check the ucf-file in the implementation directory of the bridge directory to verify that the constraints
are included. Alternatively, the user can include all constraints in the top-level ucf-file. When the
constraints are included in both the top-level ucf-file and the bridge ngc-file (via the bridge directory
ucf-file), then the top-level ucf-file overrides any conflicting constraints in the bridge ngc-file.

Device Utilization and Performance Benchmarks

Because the PLBV46 PCI Bridge is a module that will be used with other design pieces in the FPGA, the
utilization and timing numbers reported in this section are just estimates. As the PLBV46 PCI Bridge is
combined with other pieces of the FPGA design, the utilization of FPGA resources and timing of the
PLBV46 PCI Bridge design will vary from the results reported here.

To analyze the PLBV46 PCI Bridge timing within the FPGA, a design was created that instantiated the
PLBV46 PCI Bridge with the parameters set as outlined in Table 29. The data is shown for a Virtex-II Pro
device; for Virtex-4 devices and an additional GCLK is required for the RCLK 200 MHz signal.

Table 29: PLBV46 PCI Bridge FPGA Performance and Resource Utilization Benchmarks

Parameter Values Device Resources fMAX

Configuration

Description

C
_I

P
IF

B
A

R
_N

U
M

C
_P

C
I_

B
A

R
_N

U
M

C
_I

P
IF

2P
C

I_
F

IF
O

_A
B

U
S

_W
ID

T
H

C
_P

C
I2

IP
IF

_F
IF

O
_A

B
U

S
_W

ID
T

H

C
_I

N
C

LU
D

E
_P

C
I_

C
O

N
F

IG

S
lic

es

S
lic

e
F

lip
-

F
lo

ps

4-
 in

pu
t L

U
T

s

R

A
M

B
16

s

G

C
LK

M
H

z

Total (with BarOffset and
DevNumregs)

6 3 9 1 3188 2753 4015 4 4

Total (with BarOffset and
DevNumregs)

6 3 7 1 3088 2647 3897 4 4

Total (without BarOffset
and DevNum regs)

6 3 9 1 2892 2504 3660 4 4

Total (without BarOffset
and DevNum regs)

6 3 7 1 2801 2398 3544 4 4

Total (with BarOffset and
DevNum regs)

4 2 9 1 3097 2658 3944 4 4

Total (without BarOffset
and DevNum regs)

4 2 9 0 2749 2383 3499 4 4

Note:
1. These benchmark designs contain only the PLBV46 PCI Bridge with registered inputs/outputs with any

additional logic. Benchmark numbers approach the performance ceiling rather that representing performance
under typical user conditions.
 24, 2007 www.xilinx.com 59
ecification

www.xilinx.com

PLBV46 PCI Full Bridge (v1.00a)

60
Reference Documents
The following documents contain reference information important to understanding the PLBV46 PCI
Bridge design:

• Xilinx LogiCORE PCI32 Interface v3 and v4 Product Specification

• Xilinx LogiCORE PCI v3.0 User Guide

• Xilinx LogiCORE PCI v4.1 User Guide

• IBM 128-Bit Processor Local Bus Architecture Specification v4.6

Revision History

Date Version Revision

8/24/07 1.0 Initial Xilinx Release
www.xilinx.com DS616 Aug 24, 2007
Product Specification

www.xilinx.com

	PLBV46 PCI Full Bridge (v1.00a)
	Introduction
	Features
	System Reset
	Evaluation Version
	Functional Description
	LogiCore 32-bit PCI Core Requirements
	Bus Interface Parameters
	Address Translation

	PLBV46 PCI Bus Interface I/O Signals
	Port and Parameter Dependencies
	Supported PCI Bus Commands
	PLBV46 PCI Bridge Register Descriptions
	Register and Parameter Dependencies
	PLBV46 PCI Bridge Interrupt Registers Descriptions
	PLBV46 PCI Bridge Reset Register Description
	Configuration Address Port Register Description
	Configuration Data Port Register Description
	Bus Number/Subordinate Bus Number Register Description
	IPIFBAR2PCIBAR_N High-Order Bits Register Description
	Host Bridge Device Number Register Description

	PLB PCI Transactions
	PLB Master Initiates a Read Request of a PCI target
	PLB Master Initiates a Write Request to a PCI Target
	PCI Initiator Initiates a Read Request of a PLB Slave
	PCI Initiator Initiates a Write Request to a PLB Slave

	Configuration Transactions
	Configuration Space Header

	Design Implementation
	Design Tools
	Design Debug
	Design Verification
	Design Contraints
	Target Technology
	Device Utilization and Performance Benchmarks

	Reference Documents
	Revision History

