
Fast Fourier
Transform v9.1

LogiCORE IP Product Guide

Vivado Design Suite
PG109 August 6, 2021

Fast Fourier Transform v9.1 2
PG109 August 6, 2021 www.xilinx.com

Table of Contents
IP Facts

Chapter 1: Overview
Navigating Content by Design Process . 5
Core Overview . 5
Licensing and Ordering . 7

Chapter 2: Product Specification
Resource Utilization. 8
Port Descriptions . 8

Chapter 3: Designing with the Core
Clocking. 11
Resets . 11
Event Signals. 12
AXI4-Stream Considerations . 14
Theory of Operation . 29

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 60
System Generator for DSP Graphical User Interface . 67
Constraining the Core . 68
Simulation . 69
Synthesis and Implementation . 69

Chapter 5: C Model
Features . 70
Overview . 70
Unpacking and Model Contents . 71
Installation . 71
FFT C Model Interface . 71
C Model Example Code . 78
Compiling with the FFT C Model . 78

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=2

Fast Fourier Transform v9.1 3
PG109 August 6, 2021 www.xilinx.com

FFT MATLAB Software MEX Function . 79
MEX Function Example Code. 84
Modeling Multichannel FFTs . 84
Dependent Libraries . 84

Chapter 6: Test Bench
Demonstration Test Bench . 86

Appendix A: Upgrading
Migrating to the Vivado Design Suite. 89
Upgrading in the Vivado Design Suite . 89

Appendix B: Debugging
Finding Help on Xilinx.com . 91
Debug Tools . 92
Simulation Debug. 93
AXI4-Stream Interface Debug . 94

Appendix C: Additional Resources and Legal Notices
Xilinx Resources . 95
Documentation Navigator and Design Hubs . 95
References . 96
Revision History . 97
Please Read: Important Legal Notices . 98

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=3

Fast Fourier Transform v9.1 4
PG109 August 6, 2021 www.xilinx.com Product Specification

Introduction
The Xilinx® LogiCORE ™ IP Fast Fourier
Transform (FFT) core implements the
Cooley-Tukey FFT algorithm, a computationally
efficient method for calculating the Discrete
Fourier Transform (DFT).

Features
• Forward and inverse complex FFT, run time

configurable
• Transform sizes N = 2m, m = 3 – 16
• Data sample precision bx = 8 – 34
• Phase factor precision bw = 8 – 34
• Arithmetic types:

° Unscaled (full-precision) fixed-point
° Scaled fixed-point
° Block floating-point

• Fixed-point or floating-point interface
• Rounding or truncation after the butterfly
• Block RAM or Distributed RAM for data and

phase-factor storage
• Optional run time configurable transform

point size
• Run time configurable scaling schedule for

scaled fixed-point cores
• Bit/digit reversed or natural output order
• Optional cyclic prefix insertion for digital

communications systems
• Four architectures offer a trade-off between

core size and transform time
• Bit accurate C model and MEX function for

system modeling available for download

IP Facts

LogiCORE IP Facts Table
Core Specifics

Supported
Device Family(1)

Versal™ ACAP
UltraScale+™

UltraScale™
Zynq®-7000 SoC

7 Series
Supported User
Interfaces AXI4-Stream

Resources Performance and Resource Utilization web
page

Provided with Core
Design Files Encrypted RTL
Example Design Not Provided
Test Bench VHDL
Constraints File Not Provided
Simulation
Model

 Encrypted VHDL
C Model

Supported
S/W Driver N/A

Tested Design Flows(2)

Design Entry Vivado® Design Suite
System Generator for DSP

Simulation For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis

Support
Release Notes
and Known
Issues

Master Answer Record: 54501

All Vivado IP
Change Logs Master Vivado IP Change Logs: 72775

 Xilinx Support web page

Notes:
1. For a complete listing of supported devices, see the Vivado IP

catalog.
2. For the supported versions of the tools, see the

Xilinx Design Tools: Release Notes Guide.

Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=xfft.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=xfft.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;t=vivado+release+notes
https://www.xilinx.com/support/answers/54501.html
https://www.xilinx.com/support/answers/72775.html
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=4

Fast Fourier Transform v9.1 5
PG109 August 6, 2021 www.xilinx.com

Chapter 1

Overview

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you
find relevant content for your current development task. This document covers the
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the
Vivado timing, resource and power closure. Also involves developing the hardware
platform for system integration. Topics in this document that apply to this design
process include:

° Port Descriptions in Chapter 2

° Clocking in Chapter 3

° Resets in Chapter 3

° Customizing and Generating the Core in Chapter 4

Core Overview
The FFT core computes an N-point forward DFT or inverse DFT (IDFT) where N can be 2m,
m = 3–16.

For fixed-point inputs, the input data is a vector of N complex values represented as dual
bx-bit twos-complement numbers, that is, bx bits for each of the real and imaginary
components of the data sample, where bx is in the range 8 to 34 bits inclusive. Similarly, the
phase factors bw can be 8 to 34 bits wide.

For single-precision floating-point inputs, the input data is a vector of N complex values
represented as dual 32-bit floating-point numbers with the phase factors represented as
24- or 25-bit fixed-point numbers.

All memory is on-chip using either block RAM or distributed RAM. The N element output
vector is represented using by bits for each of the real and imaginary components of the

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=5

Fast Fourier Transform v9.1 6
PG109 August 6, 2021 www.xilinx.com

Chapter 1: Overview

output data. Input data is presented in natural order and the output data can be in either
natural or bit/digit reversed order. The complex nature of data input and output is intrinsic
to the FFT algorithm, not the implementation.

Three arithmetic options are available for computing the FFT:

• Full-precision unscaled arithmetic
• Scaled fixed-point, where you provide the scaling schedule
• Block floating-point (run time adjusted scaling)

The point size N, the choice of forward or inverse transform, the scaling schedule and the
cyclic prefix length are run time configurable. Transform type (forward or inverse), scaling
schedule and cyclic prefix length can be changed on a frame-by-frame basis. Changing the
point size resets the core.

Four architecture options are available: Pipelined Streaming I/O, Radix-4 Burst I/O, Radix-2
Burst I/O, and Radix-2 Lite Burst I/O. For detailed information about each architecture, see
Architecture Options.

The FFT is a computationally efficient algorithm for computing a Discrete Fourier Transform
(DFT) of sample sizes that are a positive integer power of 2. The DFT of a
sequence is defined as

Equation 1-1

where N is the transform size and . The inverse DFT (IDFT) is given by

Equation 1-2

Algorithm
The FFT core uses the Radix-4 and Radix-2 decompositions for computing the DFT. For Burst
I/O architectures, the decimation-in-time (DIT) method is used, while the
decimation-in-frequency (DIF) method is used for the Pipelined Streaming I/O architecture.
When using Radix-4 decomposition, the N-point FFT consists of log4 (N) stages, with each
stage containing N/4 Radix-4 butterflies. Point sizes that are not a power of 4 need an extra
Radix-2 stage for combining data. An N-point FFT using Radix-2 decomposition has log2 (N)
stages, with each stage containing N/2 Radix-2 butterflies.

The inverse FFT (IFFT) is computed by conjugating the phase factors of the corresponding
forward FFT. The FFT core does not implement the 1/N scaling for inverse FFT. The scaling is
therefore as per forward FFT, simply with conjugated phase factors (twiddle factors).

(), 0, , 1X k k N= −

(), 0, , 1x n n N= −

1
2 /

0
() () 0, , 1

N
jnk N

n
X k x n e k Nπ

−
−

=

= = −

1j = −

1
2 /

0

1() () 0, , 1
N

jnk N

k
x n X k e n N

N
π

−

=

= = −

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=6

Fast Fourier Transform v9.1 7
PG109 August 6, 2021 www.xilinx.com

Chapter 1: Overview

Licensing and Ordering
This Xilinx® LogiCORE IP module is provided at no additional cost with the Xilinx Vivado®
Design Suite under the terms of the Xilinx End User License.

Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx
Intellectual Property page. For information about pricing and availability of other Xilinx
LogiCORE IP modules and tools, contact your local Xilinx sales representative.

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=7

Fast Fourier Transform v9.1 8
PG109 August 6, 2021 www.xilinx.com

Chapter 2

Product Specification

Resource Utilization
For details about resource utilization, visit Performance and Resource Utilization.

Port Descriptions
This section describes the core ports as shown in Figure 2-1 and described in Table 2-1.

X-Ref Target - Figure 2-1

Figure 2-1: Core Schematic Symbol

s_axis_config_tdata

s_axis_config_tvalid

s_axis_config_tready

s_axis_data_tdata

s_axis_data_tvalid

s_axis_data_tready

s_axis_data_tlast

aclk

aresetn

aclken

m_axis_data_tdata

m_axis_data_tvalid

m_axis_data_tready

m_axis_data_tuser

m_axis_data_tlast

m_axis_status_tdata

m_axis_status_tvalid

m_axis_status_tready

event_frame_started

event_tlast_unexpected

event_tlast_missing

event_fft_overflow

event_data_in_channel_halt

event_data_out_channel_halt

event_status_channel_halt

DS808_01_080910

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=xfft.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=8

Fast Fourier Transform v9.1 9
PG109 August 6, 2021 www.xilinx.com

Chapter 2: Product Specification

Table 2-1: Core Signal Pinout
Name I/O Optional Description

aclk I No Rising-edge clock.
aclken I Yes Active-High clock enable (optional).

aresetn I Yes
Active-Low synchronous clear (optional, always take priority over
aclken).
A minimum aresetn active pulse of two cycles is required.

s_axis_config_tvalid I No
TVALID for the Configuration channel.
Asserted by the external master to signal that it is able to provide
data.

s_axis_config_tready O No TREADY for the Configuration channel.
Asserted by the core to signal that it is ready to accept data.

s_axis_config_tdata I No
TDATA for the Configuration channel.
Carries the configuration information: CP_LEN, FWD/INV, NFFT
and SCALE_SCH.
See Run Time Transform Configuration.

s_axis_data_tvalid I No
TVALID for the Data Input channel.
Used by the external master to signal that it is able to provide
data.

s_axis_data_tready O No TREADY for the Data Input channel.
Used by the core to signal that it is ready to accept data.

s_axis_data_tdata I No
TDATA for the Data Input channel.
Carries the unprocessed sample data: XN_RE and XN_IM.
See Data Input Channel.

s_axis_data_tlast I No
TLAST for the Data Input channel.
Asserted by the external master on the last sample of the frame.
This is not used by the core except to generate the events
event_tlast_unexpected and event_tlast_missing events

m_axis_data_tvalid O No
TVALID for the Data Output channel.
Asserted by the core to signal that it is able to provide sample
data.

m_axis_data_tready I No
TREADY for the Data Output channel.
Asserted by the external slave to signal that it is ready to accept
data. Only present in Non-Realtime mode.

m_axis_data_tdata O No
TDATA for the Data Output channel.
Carries the processed sample data XK_RE and XK_IM.
See Data Output Channel.

m_axis_data_tuser O No
TUSER for the Data Output channel.
Carries additional per-sample information, such as XK_INDEX,
OVFLO and BLK_EXP.
See Data Output Channel.

m_axis_data_tlast O No TLAST for the Data Output channel.
Asserted by the core on the last sample of the frame.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=9

Fast Fourier Transform v9.1 10
PG109 August 6, 2021 www.xilinx.com

Chapter 2: Product Specification

m_axis_status_tvalid O No
TVALID for the Status channel.
Asserted by the core to signal that it is able to provide status
data.

m_axis_status_tready I No
TREADY for the Status channel.
Asserted by the external slave to signal that it is ready to accept
data. Only present in Non-Realtime mode

m_axis_status_tdata O No
TDATA for the Status channel.
Carries the status data: BLK_EXP or OVFLO.
See Status Channel.

event_frame_started O No Asserted when the core starts to process a new frame.
See event_frame_started.

event_tlast_unexpected O No
Asserted when the core sees s_axis_data_tlast High on a data
sample that is not the last one in a frame.
See event_tlast_unexpected.

event_tlast_missing O No
Asserted when s_axis_data_tlast is Low on the last data sample of
a frame.
See event_tlast_missing.

event_fft_overflow O Yes
Asserted when an overflow is seen in the data samples being
unloaded from the Data Output channel. Only present when
overflow is a valid option.
See event_fft_overflow.

event_data_in_channel_halt O No
Asserted when the core requests data from the Data Input
channel and none is available.
See event_data_in_channel_halt.

event_data_out_channel_halt O No
Asserted when the core tries to write data to the Data Output
channel and it is unable to do so. Only present in Non-Realtime
mode.
See event_data_out_channel_halt.

event_status_channel_halt O No
Asserted when the core tries to write data to the Status channel
and it is unable to do so. Only present in Non-Realtime mode.
See event_status_channel_halt.

Notes:
1. All AXI4-Stream port names are lowercase, but for ease of visualization, uppercase is used in this document when referring

to port name suffixes, such as TDATA or TLAST.

Table 2-1: Core Signal Pinout (Cont’d)

Name I/O Optional Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=10

Fast Fourier Transform v9.1 11
PG109 August 6, 2021 www.xilinx.com

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

Clocking
The core uses a single clock, called aclk. All input and output interfaces and internal state
are subject to this single clock.

aclken (Clock Enable)
If the clock enable (aclken) pin is present on the core, driving the pin Low pauses the core
in its current state. All logic within the core is paused. Driving the aclken pin High allows
the core to continue processing. Note that aclken can reduce the maximum frequency at
which the core runs.

Resets
aresetn (Synchronous Clear)
If the aresetn pin is present on the core, driving the pin Low causes all output pins,
internal counters, and state variables to be reset to their initial values. The initial values
described in Table 3-1 are also the default values that the circuit adopts on power-on,
regardless of whether the core is configured for aresetn or not. All pending load
processes, transform calculations, and unload processes stop and are re-initialized. NFFT is
set to the largest FFT point size permitted (the Transform Length value set in the Vivado®
Integrated Design Environment (IDE)). The scaling schedule is set to 1/N. For the Radix-4
Burst I/O and Pipelined Streaming I/O architectures with a non-power-of-four point size,
the last stage has a scaling of 1, and the rest have a scaling of 2. See Table 3-1.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=11

Fast Fourier Transform v9.1 12
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The aresetn pin takes priority over aclken. If aresetn is asserted, reset occurs
regardless of the value of aclken. A minimum aresetn active pulse of two cycles is
required, because the signal is internally registered for performance. A pulse of one cycle
resets the core, but the response to the pulse is not in the cycle immediately following.

Event Signals
The core provides some real-time non-AXI signals to report information about the core
status. These event signals are updated on a clock cycle by clock cycle basis, and are
intended for use by reactive components such as interrupt controllers. These signals are not
optionally configurable from the IDE, but are removed by synthesis tools if left
unconnected.

event_frame_started
This event signal is asserted for a single clock cycle when the core starts to process a new
frame. This signal is provided to allow you to count frames and to synchronize the
configuration of the core to a particular frame if required.

event_tlast_missing
This event signal is asserted for a single clock cycle when s_axis_data_tlast is Low on
a last incoming data sample of a frame. This shows a configuration mismatch between the
core and the upstream data source with regard to the frame size, and indicates that the
upstream data source is configured to a larger point size than the core.

This is only calculated when the core starts processing a frame, so the event can lag the
missing s_axis_data_tlast by a large number of clock cycles.

Table 3-1: Synchronous Clear Reset Values for Configuration Information
Signal Initial/Reset Value

NFFT maximum point size = N
FWD_INV Forward = 1

SCALE_SCH

1/N
[10 10... 10] for Radix-4 Burst I/O or Pipelined Streaming I/O architectures when N is a
power of 4.
[01 10... 10] for Radix-4 Burst I/O or Pipelined Streaming I/O architectures when N is not
a power of 4.
[01 01... 01] for Radix-2 Burst I/O or Radix-2 Lite Burst I/O architectures

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=12

Fast Fourier Transform v9.1 13
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

event_tlast_unexpected
This event signal is asserted for a single clock cycle when the core sees
s_axis_data_tlast High on any incoming data sample that is not the last one in a
frame. This shows a configuration mismatch between the core and the upstream data
source with regard to the frame size, and indicates that the upstream data source is
configured to a smaller point size than the core. This is only calculated when the core starts
processing a frame, so the event can lag the unexpected High on s_axis_data_tlast by
a large number of clock cycles.

If there are multiple unexpected highs on s_axis_data_tlast for a frame, then this is
asserted for each of them.

event_fft_overflow
This event signal is asserted on every clock cycle when an overflow is seen in the data
samples being transferred on m_axis_data_tdata.

It is only possible to get FFT overflows when scaled arithmetic or single-precision
floating-point I/O is used. In all other configurations the pin is removed from the core.

event_data_in_channel_halt
This event is asserted on every cycle where the core needs data from the Data Input channel
and no data is available.

• In Realtime Mode the core continues processing the frame even though it is
unrecoverably corrupted.

• In Non-Realtime Mode, core processing halts and only continues when data is written
to the Data Input channel. The frame is not corrupted.

In both modes the event remains asserted until data is available in the Data Input channel.

event_data_out_channel_halt
This event is asserted on every cycle where the core needs to write data to the Data Output
channel but cannot because the buffers in the channel are full. When this occurs, the core
processing is halted and all activity stops until space is available in the channel buffers. The
frame is not corrupted.

The event pin is only available in Non-Realtime mode.

event_status_channel_halt
This event is asserted on every cycle where the core needs to write data to the Status
channel but cannot because the buffers on the channel are full. When this occurs, the core

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=13

Fast Fourier Transform v9.1 14
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

processing is halted, and all activity stops until space is available in the channel buffers. The
frame is not corrupted. The event pin is only available in Non-Realtime mode.

AXI4-Stream Considerations
The conversion to AXI4-Stream interfaces brings standardization and enhances interoperability
of Xilinx® IP LogiCORE solutions. Other than general control signals such as aclk, aclken
and aresetn, and event signals, all inputs and outputs to the core are conveyed on
AXI4-Stream channels. A channel always consists of TVALID and TDATA plus additional ports
(such as TREADY, TUSER and TLAST) when required and optional fields. Together, TVALID
and TREADY perform a handshake to transfer a message, where the payload is TDATA,
TUSER and TLAST. The core operates on the operands contained in the TDATA fields and
outputs the result in the TDATA field of the output channel.

For further details on AXI4-Stream Interfaces see the AMBA® AXI4-Stream Protocol
Specification (ARM IHI 0051A) [Ref 1] and the Xilinx Vivado AXI Reference Guide (UG1037)
[Ref 2].

Basic Handshake
Figure 3-1 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the
source (master) side of the channel and TREADY is driven by the receiver (slave). TVALID
indicates that the value in the payload fields (TDATA, TUSER and TLAST) is valid. TREADY
indicates that the slave is ready to receive data. When both TVALID and TREADY are TRUE in
a cycle, a transfer occurs. The master and slave set TVALID and TREADY respectively for the
next transfer appropriately.
X-Ref Target - Figure 3-1

Figure 3-1: Data Transfer in an AXI-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=14

Fast Fourier Transform v9.1 15
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

AXI Channel Rules
Note that all of the AXI channels follow the same rules:

• All TDATA and TUSER fields are packed in little endian format. That is, bit 0 of a
sub-field is aligned to the same side as bit 0 of TDATA or TUSER.

• Fields are not included in TDATA or TUSER unless the core is configured in such a way
that it needs the fields to be present. For example, if the core is configured to have a
fixed-point size, no bits are allocated to the NFFT field that specifies the point size.

• All TDATA and TUSER vectors are multiples of 8 bits. When all fields in a TDATA or
TUSER vector have been concatenated, the overall vector is padded to bring it up to an
8-bit boundary.

Configuration Channel
Table 3-2 shows the Configuration channel pinout.

TDATA Fields

The Configuration channel (s_axis_config) is an AXI channel that carries the fields in
Table 3-3 in its TDATA vector.

Table 3-2: Configuration Channel Pinout
Port Name Port Width I/O Description

s_axis_config_tdata
Variable.

See the Vivado® IDE
when configuring the

core.
I

Carries the configuration information,
CP_LEN, FWD/INV, NFFT and SCALE_SCH.
See Run Time Transform Configuration for
more information

s_axis_config_tvalid 1 I Asserted by the external master to signal that
it is able to provide data.

s_axis_config_tready 1 O Asserted by the core to signal that it is able to
accept data.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=15

Fast Fourier Transform v9.1 16
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

All fields with padding should be extended to the next 8-bit boundary if they do not
already finish on an 8-bit boundary. The core ignores the value of the padding bits, so they

Table 3-3: Configuration Channel TDATA Fields
Field Name Width Padded Description

NFFT 5 Yes

Point size of the transform: NFFT can be the size of
the maximum transform or any smaller point size.
For example, a 1024-point FFT can compute point
sizes 1024, 512, 256, and so on. The value of NFFT
is log2 (point size). This field is only present with
run time configurable transform point size.
For more information, see Transform Size.

CP_LEN
log2

(maximum point
size)

Yes

Cyclic prefix length: The number of samples from
the end of the transform that are initially output as
a cyclic prefix, before the whole transform is
output. CP_LEN can be any number from zero to
one less than the point size. This field is only
present with cyclic prefix insertion.
For more information, see Cyclic Prefix Insertion.

FWD_INV 1 bit per FFT data
channel No

Indicates if a forward FFT transform or an inverse
FFT transform is performed. When FWD_INV = 1, a
forward transform is computed. If FWD_INV = 0, an
inverse transform is computed.
The field contains 1 bit per FFT data channel, bit 0
(LSB) representing channel 0, bit 1 representing
channel 1, etc.
For more information, see Forward/Inverse and
Scaling Schedule.

SCALE_SCH

for Pipelined
Streaming I/O and
Radix-4 Burst I/O
architectures or

2 x NFFT
for Radix-2, Burst
I/O and Radix-2

Lite Burst I/O
architectures

where NFFT is log2
(maximum point

size) or the
number of stages

No padding per
channel, but

the whole field
is padded.

Scaling schedule: For Burst I/O architectures, the
scaling schedule is specified with two bits for each
stage, with the scaling for the first stage given by
the two LSBs. The scaling can be specified as 3, 2,
1, or 0, which represents the number of bits to be
shifted. An example scaling schedule for N =1024,
Radix-4 Burst I/O is [1 0 2 3 2] (ordered from last to
first stage). For N =128, Radix-2 Burst I/O or
Radix-2 Lite Burst I/O, one possible scaling
schedule is [1 1 1 1 0 1 2] (ordered from last to first
stage).
For Pipelined Streaming I/O architecture, the
scaling schedule is specified with two bits for every
pair of Radix-2 stages, starting at the two LSBs. For
example, a scaling schedule for N = 256 could be
[2 2 2 3]. When N is not a power of 4, the maximum
bit growth for the last stage is one bit. For example,
[0 2 2 2 2] or [1 2 2 2 2] are valid scaling schedules
for N = 512, but [2 2 2 2 2] is invalid. For this
transform length the two MSBs of SCALE_SCH can
only be 00 or 01. This field is only available with
scaled arithmetic (not unscaled, block
floating-point or single precision floating-point).
For more information, see Transform Size.

2
2

NFFTceil ×

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=16

Fast Fourier Transform v9.1 17
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

can be driven to any value. Connecting them to constant values might help reduce device
resource usage.

TDATA Format

The configuration fields are packed into the s_axis_config_tdata vector in the
following order (starting from the LSB):

1. (optional) NFFT plus padding
2. (optional) CP_LEN plus padding
3. FWD/INV
4. (optional) SCALE_SCH

Optional fields are shown as dotted. Note that the bus width of s_axis_config_tdata
might exceed the width necessary to accommodate all fields, including SCALE_SCH, even
when SCALE_SCH field is padded to ensure the width is a multiple of 8 bits. The additional
bits are unused, and therefore they will be optimized away during synthesis.

TDATA Example

A core has a configurable transform size with a maximum size of 128 points, cyclic prefix
insertion and 3 FFT channels. The core needs to be configured to do an 8 point transform,
with an inverse transform performed on channels 0 and 1, and a forward transform
performed on channel 2. A 4 point cyclic prefix is required. The fields take on the values in
Table 3-4.

X-Ref Target - Figure 3-2

Figure 3-2: Configuration Channel TDATA (s_axis_config_tdata) Format

Table 3-4: Configuration Channel TDATA Example
Field

Name Padding Value Notes

NFFT 000 00011 3 gives an 8-point FFT

CP_LEN NFFT

s_axis_config_tdata[MSB downto 0]

SCALE_SCH PADPAD PADFWD/INV

DS808_02_080410

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=17

Fast Fourier Transform v9.1 18
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

This gives a vector length of 19 bits. As all AXI channels must be aligned to byte boundaries,
5 padding bits are required, giving an s_axis_config_tdata length of 24 bits.

Data Input Channel
The Data Input channel contains the real and imaginary sample data to be transformed.

Pinout

CP_LEN 0 1000000
The core selects the top NFFT bits of the CP_LEN field (not
including the padding) to determine the cyclic prefix length. To
get a Cyclic Prefix length of 4, and NFFT is 3, the field has to be
set to 64

FWD_INV N/A 100
Channel 2: Forward
Channel 1: Inverse
Channel 0: Inverse

X-Ref Target - Figure 3-3

Figure 3-3: Configuration Channel TDATA Example

Table 3-5: Data Input Channel Pinout
Port Name Port Width I/O Description

s_axis_data_tdata
Variable.

See the Vivado IDE when
configuring the core.

I Carries the sample data: XN_RE and XN_IM

s_axis_data_tvalid 1 I Asserted by the upstream master to signal that
it is able to provide data

s_axis_data_tlast 1 I

Asserted by the upstream master on the last
sample of the frame. This is not used by the core
except to generate the events:
event_tlast_unexpected
event_tlast_missing events

s_axis_data_tready 1 O Used by the core to signal that it is ready to
accept data

Table 3-4: Configuration Channel TDATA Example
Field

Name Padding Value Notes

CP_LEN
1000000

NFFT
00011

s_axis_config_tdata[23 downto 0]

FWD/INV
100

PAD
000

PAD
00000

PAD
0

DS808_03_080410

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=18

Fast Fourier Transform v9.1 19
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

TDATA Fields

The Data Input channel (s_axis_data) is an AXI channel that carries the fields in Table 3-6
in its TDATA vector.

All fields with padding should be extended to the next 8-bit boundary if they do not already
finish on an 8-bit boundary. The core ignores the value of the padding bits, so they can be
driven to any value. Connecting them to constant values can help reduce device resource
usage.

These fields are then repeated for each channel in the design.

TDATA Format

The data fields are packed into the s_axis_data_tdata vector in the following order
(starting from the LSB):

1. XN_RE plus padding for channel 0
2. XN_IM plus padding for channel 0
3. (optional) XN_RE plus padding for channel 1
4. (optional) XN_IM plus padding for channel 1
5. (optional) XN_RE plus padding for channel 2
6. (optional) XN_IM plus padding for channel 2
7. etc., up to channel 11

Optional fields are shown as dotted.

Table 3-6: Data Input Channel TDATA Fields
Field

Name Width Padded Description

XN_RE bxn Yes Real component (bxn = 8 - 34) in twos complement or single precision
floating-point format.

XN_IM bxn Yes Imaginary component (bxn = 8 - 34) in twos complement or single
precision floating-point format.

X-Ref Target - Figure 3-4

Figure 3-4: Data Input Channel TDATA (s_axis_data_tdata) Format

s_axis_data_tdata[MSB downto 0]

PADPAD
Channel 1

RE
PAD

Channel 1
IM

PAD

Only fields for channel 0
are mandatory

Channel 11
RE

PAD
Channel 11

IM
PAD

Fields for remaining channels continue here if required

Channel 0
RE

Channel 0
IM

DS808_04_080410

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=19

Fast Fourier Transform v9.1 20
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

TDATA Example

The core has been configured to have two FFT data channels with 12-bit data. Channel 0 has
the following sample value:

• Re = 0010 1101 1001
• IM = 0011 1110 0110

Channel 1 has the following sample value:

• Re = 0111 0000 0000
• IM = 0000 0000 0000

The fields take on the values in Table 3-7.

This gives a vector length of 64 bits.

Data Output Channel
The Data Output channel contains the real and imaginary results of the transform, which are
carried on TDATA. In addition, TUSER carries per-sample status information relating to the
sample data on TDATA. This status information is intended for use by downstream slaves
that directly process data samples. It cannot get out of synchronization with the data as it
is transferred in the same channel. The following information is classed as per-sample
status:

1. XK_INDEX

Table 3-7: Data Input Channel TDATA Example
Field Name Padding Value

XN_RE (channel 0) 0000 0010 1101 1001
XN_IM (channel 0) 0000 0011 1110 0110
XN_RE (channel 1) 0000 0111 0000 0000
XN_IM (channel 1) 0000 0000 0000 0000

X-Ref Target - Figure 3-5

Figure 3-5: Data Input Channel TDATA Example

0010 1101 1001

s_axis_data_tdata[63 downto 0]

00000011 1110 011000000111 0000 000000000000 0000 00000000

Channel 0 Channel 1
DS808_05_080410

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=20

Fast Fourier Transform v9.1 21
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

2. Block Exponent (BLK_EXP) for each FFT channel
3. Overflow (OVFLO) for each FFT channel

Pinout
.

TDATA Fields

The Data Output channel (m_axis_data) is an AXI channel that carries the fields in
Table 3-9 in its TDATA vector.

All fields are sign extended to the next 8-bit boundary if they do not already finish on an
8-bit boundary.

These fields are then repeated for each FFT channel in the design.

Table 3-8: Data Output Channel Pinout
Port Name Port Width I/O Description

m_axis_data_tdata
Variable.

See the Vivado IDE when
configuring the core.

O Carries the sample data: XK_RE and
XK_IM.

m_axis_data_tuser
Variable.

See the Vivado IDE when
configuring the core.

O Carries additional per-sample: XK_RE and
XK_IM.

m_axis_data_tvalid 1 O Asserted by the core to signal that it is able
to provide sample data

m_axis_data_tlast 1 O Asserted by the core on the last sample of
the frame

m_axis_data_tready 1 I Asserted by the external slave to signal that
it is ready to accept data

Table 3-9: Data Output Channel TDATA Fields
Field

Name Width Padded Description

XK_RE bxk
Yes - sign
extended

Output data: Real component in twos complement or floating-point
format. (For scaled arithmetic and block floating-point arithmetic, bxk
= bxn. For unscaled arithmetic, bxk = bxn+ log2 (maximum point size)
+1. For single precision floating-point bxk = 32).

XK_IM bxk
Yes - sign
extended

Output data: Imaginary component in twos complement or single
precision floating-point format. (For scaled arithmetic and block
floating-point arithmetic, bxk = bxn. For unscaled arithmetic, bxk = bxn+
log2 (maximum point size) +1. For single precision floating-point bxk =
32)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=21

Fast Fourier Transform v9.1 22
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

TDATA Format

The data fields are packed into the s_axis_data_tdata vector in the following order
(starting from the LSB):

1. XK_RE plus padding for channel 0
2. XK_IM plus padding for channel 0
3. (optional) XK_RE plus padding for channel 1
4. (optional) XK_IM plus padding for channel 1
5. (optional) XK_RE plus padding for channel 2
6. (optional) XK_IM plus padding for channel 2
7. etc., up to channel 11

Optional fields are shown as dotted.

TDATA Example

The core has been configured to have two FFT data channels with 12-bit output data. The
FFT produces the following sample result for channel 0:

• Re = 0010 1101 1001
• IM = 1011 1110 0110

The FFT produces the following sample result for channel 1:

• Re = 0111 0000 0000
• IM = 1000 0000 0000

X-Ref Target - Figure 3-6

Figure 3-6: Data Output Channel TDATA (m_axis_data_tdata) Format

m_axis_data_tdata[MSB downto 0]

PADPAD
Channel 1

RE
PAD

Channel 1
IM

PAD

Only fields for channel 0
are mandatory

Channel 11
RE

PAD
Channel 11

IM
PAD

Fields for remaining channels continue here if required

Channel 0
RE

Channel 0
IM

DS808_06_080410

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=22

Fast Fourier Transform v9.1 23
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The fields take on the values in Table 3-10.

This gives a vector length of 64 bits.

TUSER Fields

The Data Output channel carries the fields in Table 3-11 in its TUSER vector.

Table 3-10: Data Output Channel TDATA Example
Field Name Padding Value

XK_RE (channel 0) 0000 0010 1101 1001
XK_IM (channel 0) 1111 1011 1110 0110
XK_RE (channel 1) 0000 0111 0000 0000
XK_IM (channel 1) 1111 1000 0000 0000

X-Ref Target - Figure 3-7

Figure 3-7: Data Output Channel TDATA Example

Table 3-11: Data Output Channel TUSER Fields
Field

Name Width Padded Description

XK_INDEX log2 (maximum
point size)

Yes - zero
extended

Index of output data (unsigned 2's complement). This field
is optional, and only included when XK_INDEX is enabled in
the IDE.

0010 1101 1001

m_axis_data_tdata[63 downto 0]

00001011 1110 011011110111 0000 000000001000 0000 00001111

Channel 0 Channel 1
DS808_07_080410

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=23

Fast Fourier Transform v9.1 24
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

All fields with padding should be 0 extended to the next 8-bit boundary if they do not
already finish on an 8-bit boundary.

TUSER Format

The data fields are packed into the m_axis_data_tuser vector in the following order
(starting from the LSB):

1. (optional) XK_INDEX plus padding
2. (optional) BLK_EXP plus padding for channel 0
3. (optional) BLK_EXP plus padding for channel 1 etc.
4. (optional) OVFLO for channel 0
5. (optional) OVFLO for channel 1 etc.
6. Padding to make TUSER 8-bit aligned. Only needed when OVFLO is present

Note that the core cannot be configured to have both BLK_EXP and OVFLO.

BLK_EXP 8 Yes - zero
extended

Block exponent (unsigned 2's complement): The amount of
scaling applied (i.e., the number of bits by which the
otherwise unscaled output value has been shifted down). A
separate BLK_EXP field is included for each FFT channel that
the core has.
Available only when block floating-point is used.
For more information on BLK_EXP, see Block Exponent.

OVFLO 1 No

Arithmetic overflow indicator (single bit, active-High):
OVFLO is High during result unloading if any value in the
data frame overflowed. The OVFLO signal is reset at the
beginning of a new frame of data.
A separate OVFLO field is included for each FFT channel
that the core has.
This port is optional and only available with scaled
arithmetic or single precision floating-point I/O.
For more information on OVFLO, see Overflow.

X-Ref Target - Figure 3-8

Figure 3-8: Data Output Channel TUSER (m_axis_data_tuser) Format

Table 3-11: Data Output Channel TUSER Fields (Cont’d)
Field

Name Width Padded Description

m_axis_data_tuser[MSB downto 0]

Channel
0

BLK_EXP

P
A
D

P
A
D

XK_INDEX
Channel

1
BLK_EXP

P
A
D

Channel
11

BLK_EXP

P
A
D

Channel
0

OVFLO

Channel
1

OVFLO

Channel
11

OVFLO

P
A
D

DS808_08_080410

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=24

Fast Fourier Transform v9.1 25
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Optional fields are shown as dotted. As all fields are optional, it is possible to configure the
core such that TUSER would have no fields. In this case it is automatically removed from the
core interface.

TUSER Examples

Example 1

The core has been configured to have two FFT data channels, a 128 point transform size,
overflow, and XK_INDEX. The third sample (XK_INDEX = 3) has an overflow on channel 0
but not on channel 1. XK_INDEX is 7 bits long.

The fields take on the values in Table 3-12.

This gives a vector length of 10 bits. As all AXI channels must be aligned to byte boundaries,
6 padding bits are required, giving an m_axis_data_tuser length of 16 bits.

Example 2

The core has been configured to have two FFT data channels, block exponent, but no
XK_INDEX. The output sample for channel 0 has a block exponent of 4, and the output
sample for channel 1 has a block exponent of 31.

The fields take on the values in Table 3-13.

Table 3-12: Data Output Channel TUSER Example 1
Field Name Padding Value

XK_INDEX 0 000 0011
OVFLO (channel 0) None 1
OVFLO (channel 1) None 0

X-Ref Target - Figure 3-9

Figure 3-9: Data Output Channel TUSER Example 1

m_axis_data_tuser[15 downto 0]

0 000 001110

XK_INDEXOVFLO
Channel 0

OVFLO
Channel 1

00 0000

Padding

DS808_09_080410

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=25

Fast Fourier Transform v9.1 26
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

This gives a vector length of 16 bits, so no more padding is required.

Status Channel
The Status channel contains per-frame status information, that is, information that relates
to an entire frame of data. This is intended for downstream slaves that do not operate on
the data directly but might need to know the information to control another part of the
system. The exact position in the frame where the status is sent depends on the nature of
the status information. The following information is classed as per-frame status:

1. BLK_EXP for each channel
2. OVFLO for each channel

Note that the core cannot be configured to have both BLK_EXP and OVFLO.

BLK_EXP status information is sent at the start of the frame and OVFLO status information
is sent at the end of the frame.

Pinout

Table 3-13: Data Output Channel TUSER Example 2
Field Name Padding Value

BLK_EXP (channel 0) 000 0 0100
BLK_EXP (channel 1) 000 1 1111

X-Ref Target - Figure 3-10

Figure 3-10: Data Output Channel TUSER Example 2

Table 3-14: Status Channel Pinout
Port Name Port Width I/O Description

m_axis_status_tdata
Variable.

See the Vivado IDE when
configuring the core.

O Carries the status data: BLK_EXP or OVFLO

m_axis_data_tuser[15 downto 0]

000 0 0100

BLK_EXP
Channel 0

000 1 1111

BLK_EXP
Channel 1

DS808_10_080410

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=26

Fast Fourier Transform v9.1 27
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

TDATA Fields

The Status channel carries the fields in Table 3-15 in its TDATA vector.

All fields with padding should be 0 extended to the next 8-bit boundary if they do not
already finish on an 8-bit boundary.

TDATA Format

The data fields are packed into the m_axis_status_tdata vector in the following order
(starting from the LSB):
1. (optional) BLK_EXP plus padding for channel 0
2. (optional) BLK_EXP plus padding for channel 1 etc.
3. (optional) OVFLO for channel 0
4. (optional) OVFLO for channel 1 etc.
5. Padding to make TDATA 8-bit aligned. Only needed when OVFLO is present

Note that the core cannot be configured to have both BLK_EXP and OVFLO.

m_axis_status_tvalid 1 O Asserted by the core to signal that it is able to
provide status data

m_axis_status_tready 1 I Asserted by the external slave to signal that it
is ready to accept data

Table 3-15: Status Channel TDATA Fields
Field

Name Width Padded Description

BLK_EXP 5 Yes - zero
extended

Block exponent: The amount of scaling applied. A separate BLK_EXP
field is included for each FFT channel that the core has.
Available only when block floating-point is used.
For more information on BLK_EXP, see Block Exponent.

OVFLO 1 No

Arithmetic overflow indicator (active-High): OVFLO is High during
result unloading if any value in the data frame overflowed. The OVFLO
signal is reset at the beginning of a new frame of data.
A separate OVFLO field is included for each FFT channel that the core
has.
This port is optional and only available with scaled arithmetic or single
precision floating-point I/O.
For more information on OVFLO, see Overflow.

Table 3-14: Status Channel Pinout
Port Name Port Width I/O Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=27

Fast Fourier Transform v9.1 28
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Optional fields are shown as dotted. As all fields are optional, it is possible to configure the
core such that TDATA would have no fields. In this case the entire Status channel is
automatically removed from the core interface.

TDATA Example

Example 1

The core has been configured to have four FFT data channels and overflow. The current
frame contains an overflow in channels 2 and 3.
.

This gives a vector length of 4 bits. As all AXI channels must be aligned to byte boundaries,
4 padding bits are required, giving an m_axis_status_tdata length of 8 bits.

X-Ref Target - Figure 3-11

Figure 3-11: Status channel TDATA (m_axis_status_tdata) Format

Table 3-16: Status Channel TDATA Example 1
Field Name Padding Value

OVFLO (channel 0) None 0
OVFLO (channel 1) None 0
OVFLO (channel 2) None 1
OVFLO (channel 3) None 1

X-Ref Target - Figure 3-12

Figure 3-12: Status Channel TDATA Example 1

DS808_11_080410

m_axis_status_tdata[MSB downto 0]

Channel
0

BLK_EXP

P
A
D

Channel
1

BLK_EXP

P
A
D

Channel
11

BLK_EXP

P
A
D

Channel
0

OVFLO

Channel
1

OVFLO

Channel
11

OVFLO

P
A
D

m_axis_status_tdata[7 downto 0]

11

OVFLO
Channel 2

OVFLO
Channel 3

0000

Padding

00

OVFLO
Channel 0

OVFLO
Channel 1

DS808_12_080410

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=28

Fast Fourier Transform v9.1 29
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Example 2

The core has been configured to have one FFT data channel and overflow. The current frame
contains no overflow.

This gives a vector length of 1 bit. As all AXI channels must be aligned to byte boundaries,
7 padding bits are required, giving an m_axis_status_tdata length of 8 bits.

Theory of Operation
Finite Word Length Considerations
The Burst I/O architectures process an array of data by successive passes over the input data
array. On each pass, the algorithm performs Radix-4 or Radix-2 butterflies, where each
butterfly picks up four or two complex numbers, respectively, and returns four or two complex
numbers to the same memory. The numbers returned to memory by the core are potentially
larger than the numbers picked up from memory. A strategy must be employed to
accommodate this dynamic range expansion. A full explanation of scaling strategies and
their implications is beyond the scope of this document; for more information about this
topic; see A Simple Fixed-Point Error Bound for the Fast Fourier Transform [Ref 3] and Theory
and Application of Digital Signal Processing [Ref 4].

For a Radix-4 DIT FFT, the values computed in a butterfly stage can experience growth by a
factor of up to . This implies a bit growth of up to 3 bits.

For Radix-2, the growth is by a factor of up to . This implies a bit growth of up
to 2 bits. This bit growth can be handled in three ways:

Table 3-17: Status Channel TDATA Example 2
Field Name Padding Value

OVFLO (channel 0) None 0

X-Ref Target - Figure 3-13

Figure 3-13: Status Channel TDATA Example 2

m_axis_status_tdata[7 downto 0]

000 0000

Padding

0

OVFLO Channel 0
DS808_13_080410

1 3 2 5.242≈+

1 2 2.414+ ≈

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=29

Fast Fourier Transform v9.1 30
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

• Performing the calculations with no scaling and carrying all significant integer bits to
the end of the computation

• Scaling at each stage using a fixed-scaling schedule
• Scaling automatically using block floating-point

All significant integer bits are retained when using full-precision unscaled arithmetic. The
width of the datapath increases to accommodate the bit growth through the butterfly. The
growth of the fractional bits created from the multiplication are truncated (or rounded)
after the multiplication. The width of the output is (input width + log2(transform length) + 1).
This accommodates the worst case scenario for bit growth.

Consider an unscaled Radix-2 DIT FFT: the datapath in each stage must grow by 1 bit as the
adder and subtracter in the butterfly might add/subtract two full-scale values and produce
a sample which has grown in width by 1 bit. This yields the log2(transform length) part of
the increase in the output width relative to the input width. The complex multiplier
preserves the magnitude of an input (as it applies a rotation on the complex plane), but can
theoretically produce bit-growth when the magnitude of the input is greater than 1 (for
example, 1+j has a magnitude of 1.414). This means that the complex multiplier bit growth
must only be considered once in the entire FFT process, yielding the additional +1 increase
in the output width relative to the input width. For example, a 1024-point transform with an
input of 16 bits consisting of 1 integer bit and 15 fractional bits has an output of 27 bits with
12 integer bits and 15 fractional bits. Note that the core does not have a specific location
for the binary point. The output maintains the same binary point location as the input. For
the preceding example, a 16-bit input with 3 integer bits and 13 fractional bits would have
an unscaled output of 27 bits with 14 integer bits and 13 fractional bits.

When using scaling, a scaling schedule is used to divide by a factor of 1, 2, 4, or 8 in each
stage. If scaling is insufficient, a butterfly output might grow beyond the dynamic range
and cause an overflow. As a result of the scaling applied in the FFT implementation, the
transform computed is a scaled transform. The scale factor s is defined as

Equation 3-1

where bi is the scaling (specified in bits) applied in stage i.

The scaling results in the final output sequence being modified by the factor 1/s. For the
forward FFT, the output sequence X’ (k), k = 0,...,N - 1 computed by the core is defined as

Equation 3-2

s 2
bi

i 0=

N 1–()log

=

1
' 2 /

0

1 1() () () 0, , 1
N

jnk N

n
X k X k x n e k N

s s
π

−
−

=

= = = −

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=30

Fast Fourier Transform v9.1 31
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

For the inverse FFT, the output sequence is

Equation 3-3

If a Radix-4 algorithm scales by a factor of 4 in each stage, the factor of 1/s is equal to the
factor of 1/N in the inverse FFT equation (Equation 1-2). For Radix-2, scaling by a factor of
2 in each stage provides the factor of 1/N.
With block floating-point, each stage applies sufficient scaling to keep numbers in range,
and the scaling is tracked by a block exponent.
As with unscaled arithmetic, for scaled and block floating-point arithmetic, the core does
not have a specific location for the binary point. The location of the binary point in the
output data is inherited from the input data and then shifted by the scaling applied.

Floating-Point Considerations
The FFT core optionally accepts data in IEEE-754 single-precision format with 32-bit words
consisting of a 1-bit sign, 8-bit exponent, and 23-bit fraction. The construction of the word
matches that of the Xilinx Floating-Point Operator core.

Implementing full floating-point on an FPGA can be expensive in terms of the resources
required. The floating-point option in the FFT core uses a higher precision fixed-point FFT
internally to achieve similar noise performance to a full floating-point FFT, with significantly
fewer resources. Figure 3-14 illustrates the two levels of noise performance possible by
selecting either 24 bits or 25 bits for the phase factor width. By increasing the phase factor
width to 25 bits, more resources might be required, depending on the target device.

1
2 /

0

1() () 0, , 1
N

jnk N

k
x n X k e n N

s
π

−

=

= = −

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=31

Fast Fourier Transform v9.1 32
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Figure 3-14 shows the ratio of the RMS difference between various models and the
double-precision MATLAB® FFT to the data set peak amplitude. The models shown are the
single-precision MATLAB FFT function (calculated by casting the input data to
single-precision floating-point type), the FFT core using a 24-bit phase factor width, and the
FFT core using a 25-bit phase factor width. To calculate the error signal, a randomized
impulse (in magnitude and time) was used as the input signal, with the RMS error averaged
over five simulation runs.

When comparing results against third party models, for example, MATLAB, it should be
noted that a scaling factor is usually required to ensure that the results match. The scaling
factor is data-dependent because the input data dictates the level of normalization required
prior to the internal fixed-point core. Because the core does not provide this scaling factor
in floating-point mode, you can apply scaling after the output of the core, if necessary.

RECOMMENDED: Xilinx recommends using the FFT C model and MEX function when
evaluating floating-point datasets.

All optimization options (memory types and DSP slice optimization) remain available when
floating-point input data is selected, allowing you to trade off resources with transform
time.

X-Ref Target - Figure 3-14

Figure 3-14: Comparison of Two Levels of Noise Performance

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=32

Fast Fourier Transform v9.1 33
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Transform time for Burst I/O architectures is increased by approximately N, the number of
points in the transform, due to the input normalization requirements. For the Pipelined
Streaming I/O architecture, the initial latency to fill the pipeline is increased, but data still
streams through the core with no gaps.

Denormalized Numbers

The floating-point interface to the FFT core does not support denormalized numbers. To
match the behavior of the Xilinx Floating-Point Operator core, the core treats denormalized
operands as zero, with a sign taken from the denormalized number.

NaNs and ± Infinity

If the core detects a NaN or ± Infinity value on the input, all output samples associated with
the current input frame are set to NaN. The sign bit is set to zero and all exponent and
fraction bits are set to 1.

Real-Valued Input Data
The FFT core accepts complex data samples, but can perform a transform on real-valued
data by setting all imaginary input samples to zero.

Due to the finite wordlength effects described previously, noise is introduced during the
transform, resulting in the output data not being perfectly symmetric. The DIT and DIF FFT
algorithms have different noise effects due to the different calculation order.

For a thorough treatment of this topic, see Limited Dynamic Range of Spectrum Analysis Due
To Round off Errors Of The FFT [Ref 5] and Influence of Digital Signal Processing on Precision
of Power Quality Parameters Measurement [Ref 6].

The asymmetry between the two halves of the result is more noticeable at larger point sizes.
In addition, the noise is more prominent in the lower frequency bins. Therefore, Xilinx
recommends that the upper half (N/2+1 to N points) of the output data is used when
performing a real-valued FFT.

Rounding Implementation
An option is available, in all architectures, to apply convergent rounding to the data after
the butterfly stage. However, selecting this option does not apply convergent rounding to
all points in the datapath where wordlength reduction occurs.

In particular, the outputs of all complex multipliers in the FFT datapath are truncated to
reduce datapath width (while still maintaining adequate precision) and a simple rounding
constant added to the fractional bits. This constant implements non-symmetric,
round-towards-minus-infinity rounding, and can introduce a small bias to the FFT results
over a large number of samples.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=33

Fast Fourier Transform v9.1 34
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Dynamic Range Characteristics
The dynamic range characteristics are shown by performing slot noise tests. First, a frame of
complex Gaussian noise data samples is created. An FFT is taken to acquire the spectrum of
the data. To create the slot, a range of frequencies in the spectra is set to zero. To create the
input slot noise data frame, the inverse FFT is taken, then the data is quantized to use the
full input dynamic range. Because of the quantization, if a perfect FFT is done on the frame,
the noise floor on the bottom of the slot is non-zero. The input data figures, which basically
represent the dynamic range of the input format, display this.

This slot noise input data frame is fed to the FFT core to see how shallow the slot becomes
due to the finite precision arithmetic. The depth of the slot shows the dynamic range of the
FFT.

Figure 3-15 through Figure 3-24 show the effect of input data width on the dynamic range.
All FFTs have the same bit width for both data and phase factors. Block floating-point
arithmetic is used with rounding after the butterfly. The figures show the input data slot and
the output data slot for bit widths of 24, 20, 16, 12, and 8.
X-Ref Target - Figure 3-15

Figure 3-15: Input Data: 24 Bits

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT BinNumber

dB

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=34

Fast Fourier Transform v9.1 35
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-16

Figure 3-16: FFT Core Results: 24 Bits
X-Ref Target - Figure 3-17

Figure 3-17: Input Data: 20 Bits
X-Ref Target - Figure 3-18

Figure 3-18: FFT Core Results: 20 Bits

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT BinNumber

dB

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=35

Fast Fourier Transform v9.1 36
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-19

Figure 3-19: Input Data: 16 Bits
X-Ref Target - Figure 3-20

Figure 3-20: FFT Core Results: 16 Bits
X-Ref Target - Figure 3-21

Figure 3-21: Input Data: 12 Bits

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT BinNumber

dB

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT BinNumber

dB

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=36

Fast Fourier Transform v9.1 37
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

There are several options available that also affect the dynamic range. Consider the
arithmetic type used.

X-Ref Target - Figure 3-22

Figure 3-22: FFT Core Results: 12 Bits
X-Ref Target - Figure 3-23

Figure 3-23: Input Data: 8 Bits
X-Ref Target - Figure 3-24

Figure 3-24: FFT Core Results: 8 Bits

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT BinNumber

dB

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=37

Fast Fourier Transform v9.1 38
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Figure 3-25, Figure 3-26, and Figure 3-27 display the results of using unscaled, scaled
(scaling of 1/1024), and block floating-point. All three FFTs are 1024 point, Radix-4 Burst
I/O transforms with 16-bit input, 16-bit phase factors, and convergent rounding.
X-Ref Target - Figure 3-25

Figure 3-25: Full-Precision Unscaled Arithmetic
X-Ref Target - Figure 3-26

Figure 3-26: Scaled (scaling of 1/N) Arithmetic
X-Ref Target - Figure 3-27

Figure 3-27: Block Floating-Point Arithmetic

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=38

Fast Fourier Transform v9.1 39
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

After the butterfly computation, the LSBs of the datapath can be truncated or rounded. The
effects of these options are shown in Figure 3-28 and Figure 3-29. Both transforms are 1024
points with 16-bit data and phase factors using block floating-point arithmetic.
X-Ref Target - Figure 3-28

Figure 3-28: Convergent Rounding
X-Ref Target - Figure 3-29

Figure 3-29: Truncation

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=39

Fast Fourier Transform v9.1 40
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

For illustration purposes, the effect of point size on dynamic range is displayed Figure 3-30
through Figure 3-32. The FFTs in these figures use 16-bit input and phase factors along with
convergent rounding and block floating-point arithmetic.
X-Ref Target - Figure 3-30

Figure 3-30: 64-point Transform
X-Ref Target - Figure 3-31

Figure 3-31: 2048-point Transform
X-Ref Target - Figure 3-32

Figure 3-32: 8192-point Transform

10 20 30 40 50 60

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

200 400 600 800 1000 1200 1400 1600 1800 2000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

1000 2000 3000 4000 5000 6000 7000 8000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=40

Fast Fourier Transform v9.1 41
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

All of the preceding dynamic range plots show the results for the Radix-4 Burst I/O
architecture. Figure 3-33 and Figure 3-34 show two plots for the Radix-2 Burst I/O
architecture. Both use 16-bit input and phase factors along with convergent rounding and
block floating-point.

Architecture Options
The FFT core provides four architecture options to offer a trade-off between core size and
transform time.

• Pipelined Streaming I/O – Allows continuous data processing.
• Radix-4 Burst I/O – Loads and processes data separately, using an iterative approach. It

is smaller in size than the pipelined solution, but has a longer transform time.
• Radix-2 Burst I/O – Uses the same iterative approach as Radix-4, but the butterfly is

smaller. This means it is smaller in size than the Radix-4 solution, but the transform
time is longer.

X-Ref Target - Figure 3-33

Figure 3-33: 64-point Radix-2 Transform
X-Ref Target - Figure 3-34

Figure 3-34: 1024-point Radix-2 Transform

10 20 30 40 50 60

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140
-130
-120
-110
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

FFT Bin Number

dB

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=41

Fast Fourier Transform v9.1 42
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

• Radix-2 Lite Burst I/O – Based on the Radix-2 architecture, this variant uses a
time-multiplexed approach to the butterfly for an even smaller core, at the cost of
longer transform time.

Figure 3-35 illustrates the trade-off of throughput versus resource use for the four
architectures. As a rule of thumb, each architecture offers a factor of 2 difference in resource
from the next architecture. The example is for an even power of 2 point size. This does not
require the Radix-4 architecture to have an additional Radix-2 stage.

All four architectures can be configured to use a fixed-point interface with one of three
fixed-point arithmetic methods (unscaled, scaled or block floating-point) or might instead
use a floating-point interface.

Bit and Digit Reversal

Each architecture offers the option of natural or reversed ordering of output data, with data
being input in natural order. The FFT algorithm reorders the samples during processing
such that data input in natural order is output in reversed order. The core can optionally
output the data in natural order. However, this imposes a cost on each architecture. For the
Burst I/O architectures, this imposes a time penalty, because unloading the data cannot take
place at the same time as loading input data for the next frame, so separate unload and load
phases are required. In the pipelined architecture, it requires additional RAM storage to
perform the reordering.

In the Radix-2 Burst I/O, Radix-2 Lite Burst I/O, and Pipelined Streaming I/O architectures,
the Bit Reverse order is simple to calculate by taking the index of the data point, written in
binary, and reversing the order of the digits. Hence, 0000, 0001, 0010, 0011, 0100,...(0, 1, 2,
3, 4,...) becomes 0000, 1000, 0100, 1100, 0010,...(0, 8, 4, 12, 2,...).

X-Ref Target - Figure 3-35

Figure 3-35: Resource versus Throughput for Architecture Options

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=42

Fast Fourier Transform v9.1 43
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

In the case of the Radix-4 Burst I/O architecture, the reversal applies to digits and, therefore,
is called Digit Reversal. A digit in Radix-4 is two bits. Hence, 0000, 0001, 0010, 0011,
0100,...(0, 1, 2, 3, 4,...) becomes 0000, 0100, 1000, 1100, 0001,...(0, 4, 8, 12, 1,...), as the pairs
of digits are reversed. Where the transform size requires an odd number of index bits, the
odd digit in the least significant place is moved to the most significant place, so 00000,
00001, 00010, 00011, 00100,... (0, 1, 2, 3, 4,...) becomes 00000, 10000, 00100, 10100,
01000,...(0, 16, 4, 20, 8,...)

Note: The core can optionally output a data point index along with the data. See XK Index for more
information.

Pipelined Streaming I/O

The Pipelined Streaming I/O solution pipelines several Radix-2 butterfly processing engines
to offer continuous data processing. Each processing engine has its own memory banks to
store the input and intermediate data (Figure 3-36). The core has the ability to
simultaneously perform transform calculations on the current frame of data, load input data
for the next frame of data, and unload the results of the previous frame of data. You can
continuously stream in data and, after the calculation latency, can continuously unload the
results. If preferred, this design can also calculate one frame by itself or frames with gaps in
between.

IMPORTANT: Continually streaming data does not imply that AXI4-Stream waitstates from the FFT
core can be ignored. There are situations where the FFT core might have to insert waitstates to pause
the incoming sample data.

In the scaled fixed-point mode, the data is scaled after every pair of Radix-2 stages. The
block floating-point mode might use significantly more resources than the scaled mode, as
it must maintain extra bits of precision to allow dynamic scaling without impacting
performance. Therefore, if the input data is well understood and is unlikely to exhibit large
amplitude fluctuation, using scaled arithmetic (with a suitable scaling schedule to avoid
overflow in the known worst case) is sufficient, and resources might be saved.

The input data is presented in natural order. The unloaded output data can either be in bit
reversed order or in natural order. When natural order output data is selected, additional
memory resource is utilized.

This architecture covers point sizes from 8 to 65536. You have the flexibility to select the
number of stages to use block RAM for data and phase factor storage. The remaining stages
use distributed memory.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=43

Fast Fourier Transform v9.1 44
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Radix-4 Burst I/O

With the Radix-4 Burst I/O solution, the FFT core uses one Radix-4 butterfly processing
engine (Figure 3-37). It loads and/or unloads data separately from calculating the
transform. Data I/O and processing are not simultaneous. When the FFT is started, the data
is loaded. After a full frame has been loaded, the core computes the transform. When the
computation has finished, the data can be unloaded, but cannot be loaded or unloaded
during the calculation process. The data loading and unloading processes can be
overlapped if the data is unloaded in digit reversed order.

This architecture has lower resource usage than the Pipelined Streaming I/O architecture,
but a longer transform time, and supports point sizes from 64 to 65536. Data and phase
factors can be stored in block RAM or in distributed RAM (the latter for point sizes less than
or equal to 1024).

X-Ref Target - Figure 3-36

Figure 3-36: Pipelined Streaming I/O

Memory

Memory Memory

Memory Memory Memory

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Group 0 Group 1

Stage 0 Stage 1 Stage 2 Stage 3

Output
Shuffling

Output Data

Input Data

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=44

Fast Fourier Transform v9.1 45
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Radix-2 Burst I/O

The Radix-2 Burst I/O architecture uses one Radix-2 butterfly processing engine
(Figure 3-38). After a frame of data is loaded, the input data stream must halt until the
transform calculation is completed. Then, the data can be unloaded. As with the Radix-4
Burst I/O architecture, data can be simultaneously loaded and unloaded when the output
samples are in bit reversed order. This solution supports point sizes from 8 to 65536. Both
the data memories and phase factor memories can be in either block RAM or distributed
RAM (the latter for point sizes less than or equal to 1024).

X-Ref Target - Figure 3-37

Figure 3-37: Radix-4 Burst I/O

 -

 -

 -

 - -j

ROM for
Twiddles

RADIX-4
DRAGONFLY

Data
RAM 0

Data
RAM 1

Data
RAM 2

Data
RAM 3

sw
itc

h

sw
itc

h

Input Data

Output Data

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=45

Fast Fourier Transform v9.1 46
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Radix-2 Lite Burst I/O

This architecture differs from the Radix-2 Burst I/O in that the butterfly processing engine
uses one shared adder/subtractor, hence reducing resources at the expense of an additional
delay per butterfly calculation. Again, as with the Radix-4 and Radix-2 Burst I/O
architectures, data can be simultaneously loaded and unloaded only if the output samples
are in bit reversed order. This solution supports point sizes from 8 to 65536. See
Figure 3-39.

X-Ref Target - Figure 3-38

Figure 3-38: Radix-2 Burst I/O

X-Ref Target - Figure 3-39

Figure 3-39: Radix-2 Lite Burst I/O

 -

ROM for
Twiddles

Data
RAM 0

Data
RAM 1

sw
itc

h

sw
itc

h

Input Data

Output Data

RADIX-2
BUTTERFLY

Generate one
output each cycle

Sine one cycle,
cosine the next

Multiply real one cycle,
imaginary the next

Store data in
single RAM

ds260_05_102306

Input Data

Output Data

ROM for
Twiddles

Data
DPM 0

Data
DPM 1

RADIX-2
BUTTERFLY

-

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=46

Fast Fourier Transform v9.1 47
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Run Time Transform Configuration
All run time configuration options discussed in this section are programed using the
Configuration channel. See Configuration Channel for more information.

Transform Size

The transform point size can be set through the NFFT field in the Configuration channel if
the run time configurable transform length option is selected. Valid settings and the
corresponding transform sizes are provided in Table 3-18. If the NFFT value entered is too
large, the core sets itself to the largest available point size (selected in the IDE). If the value
is too small, the core sets itself to the smallest available point size: 64 for the Radix-4 Burst
I/O architecture and 8 for the other architectures.

Forward/Inverse and Scaling Schedule

The transform type (forward or inverse) and the scaling schedule can be set frame-by-frame
without interrupting frame processing. Both the transform type and the scaling schedule
can be set independently for each FFT channel in a multichannel core. Each FFT data
channel has an assigned FWD_INV field and SCALE_SCH field in the Configuration channel.
Setting the FWD_INV field to 0 produces an inverse FFT, and setting the FWD_INV field to
1 creates the forward transform.

A scaling schedule is not required (SCALE_SCH is ignored) when the FFT core is configured to
process floating-point data. Normalization and scaling are handled internally for
floating-point data.

Table 3-18: Valid NFFT Settings
NFFT[4:0] Transform size (N)

00011 8
00100 16
00101 32
00110 64
00111 128
01000 256
01001 512
01010 1024
01011 2048
01100 4096
01101 8192
01110 16384
01111 32768
10000 65536

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=47

Fast Fourier Transform v9.1 48
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Burst I/O Architectures

The scaling performed during successive stages can be set using the appropriate
SCALE_SCH field in the Configuration channel. For the Radix-4, Burst I/O and Radix-2
architectures, the value of the SCALE_SCH field is used as pairs of bits [... N4, N3, N2, N1,
N0], each pair representing the scaling value for the corresponding stage. Stages are
computed starting with stage 0 as the two LSBs. There are log4(point size) stages for
Radix-4 and log2(point size) stages for Radix-2. In each stage, the data can be shifted by 0,
1, 2, or 3 bits, which corresponds to SCALE_SCH values of 00, 01, 10, and 11. For example,
for Radix-4, when N = 1024, [01 10 00 11 10] translates to a right shift by 2 for stage 0, shift
by 3 for stage 1, no shift for stage 2, a shift of 2 for stage 3, and a shift of 1 for stage 4 (there
are log4(1024) = 5 Radix-4 stages). This scaling schedule scales by a total of 8 bits which
gives a scaling factor of 1/256. The conservative schedule SCALE_SCH = [10 10 10 10 11]
completely avoids overflows in the Radix-4, Burst I/O architecture. For the Radix-2, Burst I/
O and Radix-2 Lite, Burst I/O architectures, the conservative scaling schedule of [01 01 01 01
01 01 01 01 01 10] prevents overflow for N = 1024 (there are log2(1024) = 10 Radix-2
stages).

Pipelined Streaming I/O Architecture

For the Pipelined Streaming I/O architecture, consider every pair of adjacent Radix-2 stages
as a group. That is, group 0 contains stage 0 and 1, group 1 contains stage 2 and 3, and so
on. The value of the SCALE_SCH field is also used as pairs of bits [... N4, N3, N2, N1, N0].
Each pair represents the scaling value for the corresponding group of two stages. Groups
are computed starting with group 0 as the two LSBs. In each group, the data can be shifted
by 0, 1, 2, or 3 bits which corresponds to SCALE_SCH values of 00, 01, 10, and 11. For
example, when N = 1024, [10 10 00 01 11] translates to a right shift by 3 for group 0 (stages
0 and 1), shift by 1 for group 1 (stages 2 and 3), no shift for group 3 (stages 4 and 5), a shift
of 2 in group 3 (stages 6 and 7), and a shift of 2 for group 4 (stages 8 and 9). The
conservative schedule SCALE_SCH = [10 10 10 10 11] completely avoids overflows in the
Pipelined Streaming I/O architecture. When the point size is not a power of 4, the last group
only contains one stage, and the maximum bit growth for the last group is one bit.
Therefore, the two MSBs of the scaling schedule can only be 00 or 01. A conservative scaling
schedule for N = 512 is SCALE_SCH = [01 10 10 10 11].

The initial value and reset value of the FWD_INV field is forward = 1. The scaling schedule
is set to 1/N. That translates to [10 10 10 10... 10] for the Radix-4, Burst I/O and Pipelined
Streaming I/O architectures, and [01 01... 01] for the Radix-2 architectures. The core uses
the (2*number of stages) LSBs for the scaling schedule. So, when the point size decreases,
the leftover MSBs are ignored. However, all bits are programmed into the core and are used
in later transforms if the point size increases.

Cyclic Prefix Insertion

Cyclic prefix insertion takes a section of the output of the FFT and prefixes it to the
beginning of the transform. The resultant output data consists of the cyclic prefix (a copy of

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=48

Fast Fourier Transform v9.1 49
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

the end of the output data) followed by the complete output data, all in natural order. Cyclic
prefix insertion is only available when output ordering is Natural Order.

When cyclic prefix insertion is used, the length of the cyclic prefix can be set
frame-by-frame without interrupting frame processing. The cyclic prefix length can be any
number of samples from zero to one less than the point size. The cyclic prefix length is set
by the CP_LEN field in the Configuration channel. For example, when N = 1024, the cyclic
prefix length can be from 0 to 1023 samples, and a CP_LEN value of 0010010110 produces
a cyclic prefix consisting of the last 150 samples of the output data.

The initial value and reset value of CP_LEN is 0 (no cyclic prefix). The core uses the
log2(point size) MSBs of CP_LEN for the cyclic prefix length. So, when the point size
decreases, the leftover LSBs are ignored. This effectively scales the cyclic prefix length with
the point size, keeping them in approximately constant proportion. However, all bits of
CP_LEN are programmed into the core and are used in later transforms if the point size
increases.

Transform Status

Overflow

Fixed-Point Data

The Overflow (OVFLO) field in the Data Output and Status channels is only available when
the Scaled arithmetic is used. OVFLO is driven High during unloading if any point in the data
frame overflowed. For a multichannel core, there is a separate OVFLO field for each channel.

When an overflow occurs in the core, the data is wrapped rather than saturated, resulting in
the transformed data becoming unusable for most applications.

Floating-Point Data

The Overflow field is used to indicate an exponent overflow when the FFT is processing
floating-point data. The output sample which overflowed is set to ± , depending on the
sign of the internal result. The Overflow field is not asserted when a NaN value is present on
the output. NaN values can only occur at the FFT output when the input data frame contains
NaN or ± samples.

Block Exponent

The Block Exponent (BLK_EXP) field in the Data Output and the Status channels (used only
with the block floating-point option) contains the block exponent. For a multichannel core,
there is a separate BLK_EXP field for each channel. The value present in the field represents
the total number of bits the data was scaled during the transform. For example, if BLK_EXP
has a value of 00101 = 5, this means the associated output data (XK_RE, XK_IM) was scaled
by 5 bits (shifted right by 5 bits), or in other words, was divided by 32, to fully use the
available dynamic range of the output datapath without overflowing. Because block scaling

∞

∞

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=49

Fast Fourier Transform v9.1 50
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

is performed based on the maximum value at each stage of processing, the BLK_EXP value
may differ from one architecture to another, even with identical input data, due to the
different inherent scaling performed per stage of processing in each architecture.

XK Index

The XK_INDEX field (if present in the Data Output channel) gives the sample number of the
XK_RE/XK_IM data being presented at the same time. In the case of natural order outputs,
XK_INDEX increments from 0 to (point size) -1. When bit reversed outputs are used,
XK_INDEX covers the same range of numbers, but in a bit (or digit) reversed manner.

For example, when you have an 8 point FFT, XK_INDEX takes on the values in Table 3-19.

If cyclic prefix insertion is used, the cyclic prefix is unloaded first and XK_INDEX counts
from (point_size) - (cyclic prefix length) up to (point size) -1. After the cyclic prefix has been
unloaded, or if the cyclic prefix length is zero, the whole frame of output data is unloaded.
XK_INDEX counts from 0 up to (point size) -1 as before. Cyclic Prefix Insertion is only
possible with natural order outputs.

Controlling the FFT Core
Symbol data to be processed is loaded into the core using the Data Input channel.
Processed symbol data is unloaded using the Data Output channel. Both of these use the
AXI4-Stream protocol. Figure 3-40 shows the basics of this protocol.

TVALID is driven by the Master component to show that it has data to transfer, and TREADY
is driven by the Slave component to show that it is ready to accept data. When both TVALID
and TREADY are High, a transfer takes place. Points A in the diagram show clock cycles
where no data is transferred because neither the Master or the Slave is ready. Point B shows
two clock cycles where data is not transferred because the Master does not have any data
to transfer. This is known as a Master Waitstate. Point C shows a clock cycle where no data
is transferred because the Slave is not ready to accept data. This is known as a Slave
Waitstate. Master and Slave waitstates can extend for any number of clock cycles.

Table 3-19: XK _INDEX values for 8 point FFT
XK_INDEX with Natural Outputs XK_INDEX with Bit Reversed Outputs

0 (‘b000) 0 (‘b000)
1 (‘b001) 4 (‘b100)
2 (‘b010) 2 (‘b010)
3 (‘b011) 6 (‘b110)
4 (‘b100) 1 (‘b001)
5 (‘b101) 5 (‘b101)
6 (‘b110) 3 (‘b011)
7 (‘b111) 7 (‘b111)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=50

Fast Fourier Transform v9.1 51
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

After the master asserts TVALID High, it must remain asserted (and the associated data
remain stable) until the slave asserts TREADY High.

To load a frame into the core, the upstream master supplying the XN_RE and XN_IM data
has to send it when it is ready. If the core can accept it (which is when
s_axis_data_tready = 1) then it is buffered by the core until it can be processed. If the
core cannot accept it (which is when s_axis_data_tready = 0), a slave waitstate exists in
the AXI channel and the master is stalled. Figure 3-40 shows the loading of the sample data
for an 8 point FFT. The upstream master drives TVALID and the core drives TREADY. In this
case, both the master and the core insert waitstates.

Unloading a frame works in a similar manner, except that the core is the master in this case.
When it has XK_RE and XK_IM data to unload, it asserts its TVALID signal
(m_axis_data_tvalid = 1). The downstream slave that consumes the processed sample
data can then accept the data (m_axis_data_tready = 1) or not
(m_axis_data_tready = 0). Figure 3-40 also shows the unloading of the sample data for
an 8 point FFT (with no cyclic prefix). The core drives TVALID and the downstream slave
drives TREADY. In this case, both the core and the slave insert waitstates.

The previous description only applies when the core is configured to use Non-Realtime
mode. The situation is different in Realtime mode, which is used to create a smaller and
faster design at the expense of flexibility in loading and unloading data. When the core is
configured to use Realtime mode, the following occurs:

1. The TREADY signal on the Data Output channel (m_axis_data_tready) is removed
2. The TREADY signal on the Status channel (m_axis_status_tready) is removed
3. The TVALID signal on the Data Input channel is ignored when the loading of a frame has

begun

The first two points mean that neither the downstream slave that consumes processed data,
or the downstream slave that consumes status information, can insert waitstates using
TREADY (m_axis_data_tready and m_axis_status_tready, respectively) as the pins
are not present on the core. Both slaves must be able to respond immediately on every
clock cycle where the core is producing data (m_axis_data_tvalid asserted High or
m_axis_status_tvalid asserted High). If the slave cannot respond immediately, then
data is lost.

X-Ref Target - Figure 3-40

Figure 3-40: AXI Transfers and Terminology

ACLK

TVALID

TREADY

TDATA

A B A

C

D1 D2 D3 D4 D5 D6 D7 D8

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=51

Fast Fourier Transform v9.1 52
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The third point is slightly more complex as TVALID (s_axis_data_tvalid) cannot be
removed. The upstream master still controls the start of a frame with TVALID. The core does
not try to load a frame until the upstream master has asserted TVALID to provide the first
symbol and there is no requirement for the master to supply the first sample of a frame at
any particular time. However, when this has occurred, TVALID is then ignored by the core
and it assumes that the master provides symbol data immediately on every clock cycle
where TREADY is High. If the master does not provide data when requested, the data from
the last provided symbol is reused and the event_data_in_channel_halt is asserted
to show that the timing requirements have been violated. Note that the core can still insert
waitstates when in Realtime mode. It is only the response to externally induced waitstates
that changes.

Figure 3-41 shows the upstream master inserting waitstates while loading an 8 point frame
in Realtime mode. At point A, the master has sent one sample to the Data Input channel.
The core then inserts a waitstate while it waits for the FFT processing core to start the
transform. This is shown as one cycle here, but it could be longer in certain cases. At point
B, the master inserts two waitstates using TVALID. However, the core ignores them and uses
the previous data (D3) for the missing data. It is likely that the processed frame will be
corrupted.

At point C, the master starts supplying the last samples of the frame (D7 and later D8) but
the core has already started processing the frame and inserts a waitstate. The Master and
the core are now out of synchronisation. When the core finishes processing the frame and
is ready for a new frame, it sees D7 as the first symbol of the new frame and starts to
consume another 8 samples.

IMPORTANT: It is important that Realtime mode is only selected when the appropriate external
masters and slaves can meet the timing requirements on supplying and consuming data.

Transform Timing
The core starts to process a frame as soon as a) the upstream master asks it to by supplying
data to process, and b) when it is able to. The chosen architecture and cyclic prefix insertion
are the major configuration options that affect when the core is able to process a new
frame.

X-Ref Target - Figure 3-41

Figure 3-41: Incorrect Transfer in Realtime mode

ACLK

TVALID

TREADY

TDATA

Data processed by FFT

B

A C

D1 D2 D3 D4 D5 D6 D7

D1 D2 D3 D3 D3 D4 D5 D6

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=52

Fast Fourier Transform v9.1 53
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The following timing diagrams are generalizations of actual behavior used to show the
broad phases the core moves through when processing frames, and how these phases can
(or cannot) overlap. The lengths of the various phases are not to scale, and the processing
time might be much longer than the time required to input or output a frame.

In particular, the behavior of TREADY on the input data channel is not fully accurate because
the Data Input channel buffers the data (16 symbols in Non-Realtime mode and 1 symbol in
Realtime mode). However, this data waits in the buffer until the FFT processing core is ready
for it. The Data Input channel TREADY in these diagrams is used as an indication of when
the FFT processing core wants data rather than when the AXI channel (with its buffer) wants
data.

Pipelined Streaming I/O with no Cyclic Prefix Insertion

When Pipelined Streaming I/O is selected and no cyclic prefix is used, the core can overlap
the loading of a frame with the processing and unloading of earlier frames. If the upstream
master supplies the first symbol for a new frame immediately after the last symbol for the
previous frame, the core starts loading it immediately.

Figure 3-42 shows the general timing for back-to-back frames in the Pipelined Streaming
architecture.

Note that there is a latency between a frame being loaded and the processed data for that
frame being available. This latency depends on the options chosen in the Vivado IDE to
parameterize the core. However, when that latency has passed, processed frames appear
back-to-back.

X-Ref Target - Figure 3-42

Figure 3-42: Transform Timing for Entire Frames in Pipelined Streaming I/O with no Cyclic
Prefix Insertion

Streaming: Continuous processing (no cyclic prefix)

Data In Channel

s_axis_data_tvalid

s_axis_data_tready

FFT stage 1

FFT stage 2

FFT stage X

Data Out Channel

m_axis_data_tvalid

m_axis_data_tready

Data Frame A Data Frame B Data Frame C

Process Frame A Process Frame B Process Frame C

Process Frame A Process Frame B Process Frame C

Process Frame A Process Frame B Process Frame C

Data Frame A Data Frame B Data Frame C

N Cycles N Cycles N Cycles

N Cycles N Cycles N Cycles

N Cycles N Cycles N Cycles

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=53

Fast Fourier Transform v9.1 54
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Pipelined Streaming I/O with Cyclic Prefix Insertion

If cyclic prefix insertion is used, more samples are unloaded from the core than are loaded.
Therefore, the core cannot continuously stream frames, but must insert a gap of cyclic
prefix length clock cycles in between each frame of input data to accommodate the
additional clock cycles required to unload the cyclic prefix (Figure 3-43). This is indicated by
the TREADY signal on the Data Input channel. This goes Low to allow the core time to
unload the cyclic prefix.
.

Burst I/O Architectures

The Burst I/O architectures do not allow frame overlapping to the same degree as the
Pipelined Streaming I/O architecture. When natural ordered outputs are used, a frame has
to be processed and unloaded before the core can start to load the following frame.

Note: This refers to the FFT processing core. As the Data In channel has a 16 element deep buffer on
its input, it can start to pre-buffer a frame while a frame is still being processed. In the case of 8 and
16 point FFTs, it can pre-buffer entire frames. However, this buffered data waits in the buffer until the
FFT engine has finished dealing with the current frame.

When bit-reversed outputs are used, the core only unloads data when a new frame is
loaded. This means that the loading of frame N+1 overlaps with (and actually causes) the
unloading of frame N. However, if the upstream master does not supply data to the core
when it is ready to start unloading a frame, the core will flush the frame out manually. If this
occurs, the loading and unloading phases do not overlap.

Figure 3-44 shows the general transform timing for a Burst I/O architecture with natural
ordered outputs. This requires distinct load, process and unload phases. The upstream
master is constantly attempting to stream data as is the downstream slave. These examples
do not show the effect of a cyclic prefix, which is to extend the unloading phase.

X-Ref Target - Figure 3-43

Figure 3-43: Transform Timing for Entire Frames in Pipelined Streaming I/O with Cyclic Prefix
Insertion

Data In Channel

s_axis_data_tvalid

s_axis_data_tready

FFT stage 1

FFT stage 2

FFT stage X

Data Out Channel

m_axis_data_tvalid

m_axis_data_tready

Data Frame A Data Frame B Data Frame C

Process Frame A Process Frame B Process Frame C

Process Frame A Process Frame B Process Frame C

Process Frame A Process Frame B Process Frame C

Data Frame A Data Frame B Data Frame C

N Cycles N Cycles N Cycles

N + cp_len Cycles N + cp_len Cycles N + cp_len Cycles

N + cp_len Cycles N Cycles N Cycles

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=54

Fast Fourier Transform v9.1 55
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The Upstream Master loads all of the data for Frame A into the Data Input channel of the
FFT. As the FFT is loading this data to process it, the buffer in the channel never fills.
However, the master immediately starts sending data for Frame B. At point A in the
waveform, the buffer in the Data Input channel fills, because the FFT is processing frame A
and no longer draining the buffer. This can be seen externally as s_axis_data_tready
going Low. The Data Input channel remains in a slave waitstate situation, where the FFT
cannot accept data from the upstream Master, until point B. Now the FFT has unloaded
frame A and started loading Frame B into the processing core. This drains the buffer in the
Data Input channel, which unblocks the Upstream Master and allows it to send the
remaining data for Frame B. The situation then repeats itself with Frame C.

The important points here are:

1. Activity on the AXI interface to the Data Input channel does not necessarily correlate to
the activity inside the FFT. For example, just before point A, the channel loads sample
data for frame B yet the FFT is internally processing Frame A.

2. The Upstream Master cannot always stream frame data without reference to
s_axis_data_tready.

3. The FFT unloads a frame before loading the subsequent frame.

Figure 3-45 is similar to Figure 3-44, except that the FFT is configured to have bit reversed
outputs. As the upstream master is always supplying data, the loading and unloading of
frames can overlap.

Figure 3-46 is similar to Figure 3-45, except that the upstream master does not supply data
for Frame B until the core has started flushing out Frame A. As the core has already started
flushing Frame A, it completes this before loading Frame B. The loading and unloading of
frames do not overlap.

In this example, s_axis_data_tready remains High at Point A. Loading Frame A into the
core drained the buffer in the Data Input channel, and because the Upstream Master did not
send any new data, the buffer is empty. The core is ready to accept new frame data at point
A although it is not able to do anything with it at this point. At point B the Upstream Master
starts to send data from Frame B. This fills the buffer in the Data Input channel, but because
the core is committed to flushing Frame A, the buffer fills and the core stalls the Upstream
Master with waitstates. At point C, the core has started loading Frame B to process it, so the
buffer drains and more data can be accepted to finish off Frame B.
The key difference between the situation in Figure 3-45 and Figure 3-46 is that the master
in Figure 3-45 has provided new frame data during the processing phase of the previous
frame. As a result, the core knows there is a new frame coming so when processing finishes,
it starts to load the new frame as this flushes the old frame out. In Figure 3-46, the master
did not provide data (and therefore did not tell the core that there would be a new frame)
during the processing phase, so when the core finishes processing the frame, it moves to a
flushing phase where it is no longer possible to load a new frame. Even if the master
provides a sample for the new frame a cycle after unloading has begun, that sample is not
loaded until the core is finished unloading the old frame.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=55

Chapter 3: Designing with the Core

Fast Fourier Transform v9.1 56
PG109 August 6, 2021 www.xilinx.com

X-Ref Target - Figure 3-44

Figure 3-44: Transform Timing for Entire Frames in Burst I/O Mode with Natural Ordered Outputs
X-Ref Target - Figure 3-45

Figure 3-45: Transform Timing for Entire Frames in Burst I/O Mode with Bit-Reversed Outputs

Data In Channel

s_axis_data_tvalid

s_axis_data_tready

FFT

Data Out Channel

m_axis_data_tvalid

m_axis_data_tready

Frame A Frame B Frame C

A B A

Load Frame A Process Frame A Unload Frame A Load Frame B Process Frame B Unload Frame B

Frame A Frame B

Waiting on FFT to accept more data Waiting on FFT to accept more data

Data In Channel

s_axis_data_tvalid

s_axis_data_tready

FFT

Data Out Channel

m_axis_data_tvalid

m_axis_data_tready

Frame A Frame B Frame C

A B A

Load Frame A Process Frame A Unload A ~ Load B Process Frame B Unload B ~ Load C

Frame A Frame B

Waiting on FFT to accept more data Waiting on FFT to accept more data

https://www.xilinx.com

Chapter 3: Designing with the Core

Fast Fourier Transform v9.1 57
PG109 August 6, 2021 www.xilinx.com

X-Ref Target - Figure 3-46

Figure 3-46: Transform Timing for Entire Frames In Burst I/O Mode with Bit-Reversed Outputs (Core Flushes Frame)

Data In Channel

s_axis_data_tvalid

s_axis_data_tready

FFT

Data Out Channel

m_axis_data_tvalid

m_axis_data_tready

Frame A Frame B

A B C

Load Frame A Process Frame A Flush Frame A Load Frame B Process Frame B Flush Frame B

Frame A Frame B

Stalled until flush finished

https://www.xilinx.com

Fast Fourier Transform v9.1 58
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Configuring the FFT
FFT transforms are configured using the Configuration channel. The configuration
information carried in this channel, and how it is packed, is discussed in more detail in
Configuration Channel. When the core is ready to load a new frame for processing, it checks
to see if a new configuration has been supplied on the Configuration channel. If it has, the
FFT processing core is configured using that information before the frame is loaded. If no
new configuration information has been supplied then the core processes the frame using
the last configuration it had. If no configuration has ever been supplied, then the core
defaults described in Resets are used.

The process of applying configuration data to a particular frame depends on the current
status of the core:

1. To apply a configuration to the very first frame after power on or after an idle period
2. To apply the configuration to the next frame in a sequence of frames

Applying a New Configuration While Idle

If the core is idle (that is, it is not loading, processing or unloading any frames), it waits for
either frame data or configuration data to decide what action to take next. If new frame
data is seen by the core control module without new configuration information being seen,
then the core starts to process a frame using the existing configuration. If configuration
information is seen before frame data, or on the same clock edge as frame data, then the
configuration is applied to that frame.

To ensure that the configuration data is applied before the frame is processed, the
configuration information should be written to the Configuration channel where the write
of configuration data to the Configuration channel must complete at least 1 clock cycle
before the write of the first Data Input channel. Failure to do so can result in the frame
being processed with the previous configuration options in use.

Perhaps the easiest way to satisfy this in a system context is to configure the core before
enabling the upstream data master.

Applying a New Configuration While Streaming Frames

When the upstream master is active and sending frame data to the core, it becomes difficult
to use the previous technique to synchronize configuration with particular frames because
data for a new frame might have already been loaded into the Data Input channel. The
recommended way of synchronizing configuration to frames is to use the
event_frame_started signal.

This signal is asserted High when the core starts to load data for a frame into the FFT
processing core. This is a known safe point to send configuration information for the next
frame. Configuration data sent after this might or might not be applied to the subsequent

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=58

Fast Fourier Transform v9.1 59
PG109 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

frame, depending on the frame size and the latency between event_frame_started
asserting and the configuration write occurring.

How Changing the Configuration Can Change Transform Timing

There are two situations where changing the configuration can temporarily reduce the
throughput of the core:

1. A Pipelined Streaming FFT is processing frames and the transform size (NFFT) is
changed.

2. A Burst I/O core with bit reversed outputs is processing a frame, and the master supplies
frame data in time to avoid the core automatically flushing the frame, and the transform
size (NFFT) is changed.

Both the Pipelined Streaming architecture and the Burst I/O architectures (when bit
reversed outputs are used) implement pipelining to achieve better throughput. In the case
of the Pipelined Streaming architecture, it pipelines the loading, processing and unloading
of entire frames (see Figure 3-42). In Burst I/O architectures when bit reversed outputs are
used, the core implements a partial pipeline to overlap the loading on one frame with the
unloading of another (see Figure 3-45).

However, a change to the transform size can only be applied when the pipeline is empty.
Changing the transform size when the pipeline is not empty would result in data loss, so the
core prevents this. When new configuration information is sent to the Configuration
channel, and that information contains a change in transform size, the core does not load
more frames until all frames already in the pipeline are processed and unloaded.

This is all handled automatically by the core, allowing you to send the configuration
information at any time. However, throughput drops until the pipeline is fully flushed. This
behavior only occurs if the transform size is to change. All other configuration options can
be applied without waiting for the core pipeline to empty.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=59

Fast Fourier Transform v9.1 60
PG109 August 6, 2021 www.xilinx.com

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 7]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 8]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 9]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 10]

Customizing and Generating the Core
This section includes information about using Xilinx® tools to customize and generate the
core in the Vivado® Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 7] for
detailed information. IP integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values do change, see the
description of the parameter in this chapter. To view the parameter value you can run the
validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or

right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 8] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 9].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=60

Fast Fourier Transform v9.1 61
PG109 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

The Vivado Integrated Design Environment (IDE) provides several FFT core customization
screens with fields to set the parameter values for the particular instantiation required. A
description of each field follows:

• Component Name: The name of the core component to be instantiated. The name
must begin with a letter and be composed of the following characters: a to z, A to Z, 0
to 9, and “_”.

Configuration Tab
• Channels: Select the number of channels from 1 to 12. Multichannel operation is

available for the three Burst I/O architectures.
• Transform Length: Select the desired point size. All powers of two from 8 to 65536 are

available.
• Implementation Options: Select an implementation option, as described in

Architecture Options.

° The Pipelined Streaming I/O, Radix-2 Burst I/O, and Radix-2 Lite Burst I/O
architectures support point sizes 8 to 65536.

° The Radix-4 Burst I/O architecture supports point sizes 64 to 65536.

° Check Automatically Select to choose the smallest implementation that meets the
specified Target Data Throughput, provided the specified Target Clock Frequency is
achieved when the FFT core is implemented on an FPGA.

° Target Clock Frequency and Target Data Throughput are only used to automatically
select an implementation and to calculate latency. The core is not guaranteed to run
at the specified target clock frequency or target data throughput.

• Transform Length Options: Select the transform length to be run time configurable or
not. The core uses fewer logic resources and has a faster maximum clock speed when
the transform length is not run time configurable.

Implementation Tab
• Data Format: Select whether the input and output data samples are in Fixed-Point

format, or in IEEE-754 single precision (32-bit) Floating-Point format. Floating-Point
format is not available when the core is in a multichannel configuration.

• Precision Options: Input data and phase factors can be independently configured to
widths from 8 to 34 bits, inclusive. When the Data Format is Floating-Point, the input
data width is fixed at 32 bits and the phase factor width can be set to 24 or 25 bits
depending on the noise performance required and available resources.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=61

Fast Fourier Transform v9.1 62
PG109 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

• Scaling Options: Three options are available, for all architectures:

° Unscaled
- All integer bit growth is carried to the output. This can use more FPGA

resources.

° Scaled
- A user-defined scaling schedule determines how data is scaled between FFT

stages.

° Block Floating-Point
- The core determines how much scaling is necessary to make best use of

available dynamic range, and reports the scaling factor as a block exponent.
• Control Signals: Clock Enable (aclken) and Synchronous Clear (aresetn) are

optional pins. Synchronous Clear overrides Clock Enable if both are selected. If an
option is not selected, some logic resources can be saved and a higher clock frequency
might be attainable.

• Optional Output Fields: XK_INDEX is an optional field in the Data Output Channel.
OVFLO is an optional field in both the Data Output channel and Status Channel.

• Throttle Schemes: Select trade-off between performance and data timing
requirements. Realtime mode typically gives a smaller and faster design, but has strict
constraints on when data must be provided and consumed. Non-Realtime mode has no
such constraints, but the design might be larger and slower. See Controlling the FFT
Core for more details.

• Rounding Modes: At the output of the butterfly, the LSBs in the datapath need to be
trimmed. These bits can be truncated or rounded using convergent rounding, which is
an unbiased rounding scheme. When the fractional part of a number is equal to exactly
one-half, convergent rounding rounds up if the number is odd, and rounds down if the
number is even. Convergent rounding can be used to avoid the DC bias that would
otherwise be introduced by truncation after the butterfly stages. Selecting this option
increases slice usage and yields a small increase in transform time due to additional
latency.

• Output Ordering: Output data selections are either Bit/Digit Reversed Order or Natural
Order. The Radix-2 based architectures (Pipelined Streaming I/O, Radix-2 Burst I/O and
Radix-2 Lite Burst I/O) offer bit-reversed ordering, and the Radix-4 based architecture
(Radix-4 Burst I/O) offers digit-reversed ordering. For the Pipelined Streaming I/O
architecture, selecting natural order output ordering results in an increase in memory
used by the core. For Burst I/O architectures, selecting natural order output increases
the overall transform time because a separate unloading phase is required.

° Cyclic Prefix Insertion can be selected if the output ordering is Natural Order. Cyclic
Prefix Insertion is available for all architectures, and is typically used in OFDM
wireless communications systems.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=62

Fast Fourier Transform v9.1 63
PG109 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Detailed Implementation Tab
• Memory Options:

° Data And Phase Factors (Burst I/O architectures): For Burst I/O architectures,
either block RAM or distributed RAM can be used for data and phase factor storage.
Data and phase factor storage can be in distributed RAM for all point sizes up to
and including 1024 points.

° Data And Phase Factors (Pipelined Streaming I/O): In the Pipelined Streaming I/
O solution, the data can be stored partially in block RAM and partially in distributed
RAM. Each pipeline stage, counting from the input side, uses smaller data and
phase factor memories than preceding stages. You can select the number of
pipeline stages that use block RAM for data and phase factor storage. Later stages
use distributed RAM. The default displayed on the IDE offers a good balance
between both. If output ordering is Natural Order, the memory used for the reorder
buffer can be either block RAM or distributed RAM. The reorder buffer can use
distributed RAM for point sizes less than or equal to 1024.
- When block floating-point is selected for the Pipelined Streaming I/O

architecture, a RAM buffer is required for natural order and bit reversed order
output data. In this case, the reorder buffer options remain available and
distributed RAM can be selected for all point sizes below 2048.

° Hybrid Memories: Where data, phase factor, or reorder buffer memories are stored
in block RAM, if the size of the memory is greater than one block RAM, the memory
can be constructed from a hybrid of block RAMs and distributed RAM, where the
majority of the data is stored in block RAMs and a few bits that are left over are
stored in distributed RAM. This Hybrid Memory is an alternative to constructing the
memory entirely from multiple block RAMs. It provides a reduction in the block
RAM count, at the cost of an increase in the number of slices used. Hybrid
Memories are only available when block RAM is used for one or more memories and
the number of slices required for a Hybrid Memory implementation is below an
internal threshold of 256 LUTs per memory. If these conditions are met, Hybrid
Memories are made available and can be selected.

• Optimize Options:

° Complex Multipliers: Three options are available for customization of the complex
multiplier implementation:
- Use CLB logic: All complex multipliers are constructed using slice logic. This is

appropriate for target applications that have low performance requirements, or
target devices that have few DSP slices.

- Use 3-multiplier structure (resource optimization): All complex multipliers
use a three real multiply, five add/subtract structure, where the multipliers use
DSP slices. This reduces the DSP slice count, but uses some slice logic. This
structure can make use of the DSP slice pre-adder to reduce or remove the need
for extra slice logic, and improve performance.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=63

Fast Fourier Transform v9.1 64
PG109 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

- Use 4-multiplier structure (performance optimization): All complex
multipliers use a four real multiply, two add/subtract structure, utilizing DSP
slices. This structure yields the highest clock performance at the expense of
more dedicated multipliers. In devices with DSP slices, the add/subtract
operations are implemented within the DSP slices.

Note: The core might override the complex multiplier implementation internally to ensure
the fewest number of DSP slices are used, without impacting performance. For this reason,
some core configurations might show no difference in DSP slice usage when toggling
between the 3-multiplier and 4-multiplier options. If Use CLB logic is selected, however, slice
logic is always used.

° Butterfly Arithmetic: Two options are available for customization of the butterfly
implementation:
- Use CLB logic: All butterfly stages are constructed using slice logic.
- Use XtremeDSP Slices: This option forces all butterfly stages to be

implemented using the adder/subtracters in DSP slices.
Information Tabs
• Implementation Details:

° Implementation: This field displays the currently selected architecture. This is
useful to see the result of automatic architecture selection.

° Transform Size: When the transform length is run time configurable, the core has
the ability to reprogram the point size while the core is running; that is, the core can
support the selected point size and any smaller point size. This field displays the
supported point sizes based on the Transform Length, Transform Length Options,
and the Implementation Options selected.

° Output Data Width: The output data width equals the input data width for scaled
arithmetic and block floating-point arithmetic. With unscaled arithmetic, the output
data width equals (input data width + log2(point size) + 1).

° Resource Estimates: Based on the options selected, this field displays the DSP slice
count and 18K block RAM numbers. The resource numbers are just an estimate. For
exact resource usage and slice/LUT-FlipFlop pair information, a
post-implementation utilization report should be consulted.

° AXI4-Stream Port Structure: This section shows how the FFT fields are mapped to
the AXI channels.

• Latency:

° This tab shows the latency of the FFT core in clock cycles and microseconds (μs) for
each point size supported. The latency is from the Upstream Master supplying the
first sample of a frame to the last sample of output data coming out of the core,
assuming that the FFT core was idle and neither the Upstream Master or the
Downstream Slave inserted wait states. This is not the minimum number of cycles

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=64

Fast Fourier Transform v9.1 65
PG109 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

between starting consecutive frames, as frames might overlap in some cases. The
latency in microseconds is based on the target clock frequency.

User Parameters
Table 4-1 shows the relationship between the fields in the Vivado IDE and the User
Parameters (which can be viewed in the Tcl Console).

Table 4-1: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value

Number of Channels channels 1
Transform Length transform_length 1024
Target Clock Frequency (MHz) target_clock_frequency 250
Architecture Choice implementation_options

Automatically Select automatically_select Automatically_Select
Pipelined, Streaming I/O pipelined_streaming_io
Radix-2Lite, Burst I/O radix_2_lite_burst_io
Radix-2, Burst I/O radix_2_burst_io
Radix-4 Burst I/O radix_4_burst_io

Target Data Throughput target_data_throughput 50
Run Time Configurable Transform Length run_time_configurable_transform_length False
Data Format data_format Fixed_point

Fixed-Point fixed_point
Floating-Point floating_point

Input Data Width input_width 16
Phase Factor Width phase_factor_width 16
Scaling Options scaling_options Scaled

Block Floating-Point block_floating_point
Scaled scaled
Unscaled unscaled

Rounding Modes rounding_modes Truncation
Convergent Rounding convergent_rounding
Truncation truncation

ACLKEN aclken False
ARESETn aresetn False
OVFLO ovflo False
XK_INDEX xk_index False

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=65

Fast Fourier Transform v9.1 66
PG109 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 8].

Throttle Scheme throttle_scheme Nonrealtime
Non Real Time nonrealtime
Real Time realtime

Output Ordering output_ordering Bit_reversed_order
Bit/Digit Reversed Order bit_reversed_order
Natural Order natural_order

Cyclic Prefix Insertion cyclic_prefix_insertion False
Memory Options: Data memory_options_data Block_ram

Block RAM block_ram
Distributed RAM distributed_ram

Memory Options: Phase Factors memory_options_phase_factors Block_ram
Block RAM block_ram
Distributed RAM distributed_ram

Reorder Buffer memory_options_reorder Block_ram
Block RAM block_ram
Distributed RAM distributed_ram

Number of stages using
Block RAM for Data and Phase Factors

number_of_stages_using_block_
ram_for_data_and_phase_factors

1

Optimize Block RAM Count
Using Hybrid Memories

memory_options_hybrid False

Complex Multipliers complex_mult_type Use_mult_resources
Use 3-multiplier structure
(resource optimization)

use_mults_resources

Use 4-multiplier structure
(performance optimization)

use_mults_performance

Use CLB Logic use_luts
Butterfly Arithmetic butterfly_type Use_luts
Use CLB Logic use_luts
Use XtremeDsp Slices use_xtremedsp_slices

Notes:
1. Parameter values are listed in the table where the IDE parameter value differs from the user parameter value. Such

values are shown in this table as indented below the associated parameter.

Table 4-1: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=66

Fast Fourier Transform v9.1 67
PG109 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

System Generator for DSP Graphical User Interface
This section describes each tab of the System Generator GUI and details the parameters that
differ from the Vivado IDE. See Customizing and Generating the Core for more detailed
information about all other parameters.

Tab 1: Basic

The Basic tab is used to specify the transform configuration and architecture in a similar
way to page 1 of the Vivado IDE.

Implementation Options: Select an implementation option as described in Architecture
Options.
• The Pipelined Streaming I/O, Radix-2 Burst I/O, and Radix-2 Lite Burst I/O architectures

support point sizes 8 to 65536.
• The Radix-4 Burst I/O architecture supports point sizes 64 to 65536.

System Generator supports only single-channel implementation of the FFT and, hence,
Channels is not available as a GUI option.

Tab 2: Advanced

The Advanced tab is used to specify phase factor precision, scaling, rounding, optional
output fields, throttle scheme, and optional port options in a similar way to page 2 of the
Vivado IDE.

System Generator can optionally shorten the AXI4-Stream signal names on the symbol by
removing the m_axis_ or s_axis_ prefixes.

System Generator automatically sets the Input Data Width parameter based on the signal
properties of the XN_RE and XN_IM ports.

Tab 3: Implementation

The Implementation tab is used to specify memory and optimization options in a similar
way to page 3 of the Vivado IDE.

• Number of stages using block RAM: Specifies the number of stages for the Pipelined
Streaming I/O architecture that uses block RAM for data and phase factor storage. As
dynamic list boxes are not offered with the System Generator GUI, this option displays
the full range (0 to 11) selection, but allows you to select only valid values as visible in
the Vivado IDE.

• FPGA Area Estimation: See the System Generator for DSP User Guide (UG640) [Ref 11]
for detailed information about this option.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=67

Fast Fourier Transform v9.1 68
PG109 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints
This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Clock Management
This section is not applicable for this IP core.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
This section is not applicable for this IP core.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=68

Fast Fourier Transform v9.1 69
PG109 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Simulation
For comprehensive information about Vivado simulation components, as well as
information about using supported third-party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 10].

IMPORTANT: For cores targeting 7 series or Zynq-7000 devices, UNIFAST libraries are not supported.
Xilinx IP is tested and qualified with UNISIM libraries only.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 8].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=69

Fast Fourier Transform v9.1 70
PG109 August 6, 2021 www.xilinx.com

Chapter 5

C Model
The Xilinx® LogiCORE™ IP Fast Fourier Transform (FFT) core has a bit-accurate C model
designed for system modeling. A MATLAB® software MEX function for seamless MATLAB
software integration is also available.

Features
• Bit accurate with FFT core
• Dynamic link library
• Available for 64-bit Linux and 64-bit Windows platforms
• MATLAB software MEX function
• Supports all features of the FFT core that affect numerical results
• Designed for rapid integration into a larger system model
• Example C++ and M code showing how to use the function is provided

Overview
The Xilinx LogiCORE IP FFT has a bit-accurate C model for 64-bit Linux and 64-bit Windows
platforms. The model has an interface consisting of a set of C functions, which resides in a
dynamic link library (shared library). Full details of the interface are given in FFT C Model
Interface. An example piece of C++ code showing how to call the model is provided. The
model is also available as a MATLAB software MEX function for seamless MATLAB software
integration.

The model is bit accurate but not cycle accurate, so it produces exactly the same output
data as the core on a frame-by-frame basis. However, it does not model the core latency or
its interface signals. The C model is an optional output of the Vivado® Design Suite. For
information about generating IP source outputs, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 8].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=70

Fast Fourier Transform v9.1 71
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

Unpacking and Model Contents
Unzip the FFT C model zip file. This produces the directory structure and files shown in
Table 5-1.

Installation
On Linux, ensure that the directory in which the files
libIp_xfft_v9_1_bitacc_cmodel.so and libgmp.so.11 are located is in your
$LD_LIBRARY_PATH environment variable.

On Windows, ensure that the directory in which the files
libIp_xfft_v9_1_bitacc_cmodel.dll and libgmp.dll are located is either in your
%PATH% environment variable, or is the directory in which you runs your executable that
calls the FFT C model.

FFT C Model Interface
Note: An example C++ file, run_bitacc_cmodel.c is included that demonstrates how to call the
FFT C model. See this file for examples of using the interface described below.

The C model is used through three functions, declared in the header file
xfft_v9_1_bitacc_cmodel.h:

Table 5-1: Files for the FFT Bit-Accurate C Model
File Description

xfft_v9_1_bitacc_cmodel.h Model header file
libIp_xfft_v9_1_bitacc_cmodel.so Model shared object library (Linux platforms only)
libIp_xfft_v9_1_bitacc_cmodel.dll Model dynamically linked library (Windows platforms only)
libIp_xfft_v9_1_bitacc_cmodel.lib Model library file for static linking (Windows platforms only)
libgmp.so.11 MPIR library, used by the C model (Linux platforms only)
libgmp.dll MPIR library, used by the C model (Windows platforms only)
libgmp.lib MPIR.lib file for compiling (Windows platforms only)
gmp.h MPIR header file, used by the C model
run_bitacc_cmodel.c Example code calling the C model
xfft_v9_1_bitacc_mex.cpp C++ wrapper for MEX function
make_xfft_v9_1_mex.m MEX function compilation script
run_xfft_v9_1_mex.m Example code calling the MEX function

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=71

Fast Fourier Transform v9.1 72
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

struct xilinx_ip_xfft_v9_1_state* xilinx_ip_xfft_v9_1_create_state
(
 struct xilinx_ip_xfft_v9_1_generics generics
);

int xilinx_ip_xfft_v9_1_bitacc_simulate
(
 struct xilinx_ip_xfft_v9_1_state* state,
 struct xilinx_ip_xfft_v9_1_inputs inputs,
 struct xilinx_ip_xfft_v9_1_outputs* outputs
);

void xilinx_ip_xfft_v9_1_destroy_state
(
 struct xilinx_ip_xfft_v9_1_state* state
);

To use the model, first create a state structure using the first function,
xilinx_ip_xfft_v9_1_create_state. Then run the model using the second function,
xilinx_ip_xfft_v9_1_bitacc_simulate, passing the state structure, an inputs
structure, and an outputs structure to the function. Finally, free up memory allocated for the
state structure using the third function, xilinx_ip_xfft_v9_1_destroy_state. Each
of these functions is described fully in the following sections.

Create a State Structure
The first function, xilinx_ip_xfft_v9_1_create_state, creates a new state structure
for the FFT C model, allocating memory to store the state as required, and returns a pointer
to that state structure. The state structure contains all information required to define the
FFT being modeled. The function is called with a structure containing the core generics;
these are all of the parameters that define the bit-accurate numerical performance of the
core, represented as integers, and are shown in Table 5-2.

Table 5-2: FFT C Model Generics
Generic Description Permitted Values

C_NFFT_MAX log2(maximum transform
length) 3-16

C_ARCH Architecture
1 = Radix-4, Burst I/O
2 = Radix-2, Burst I/O
3 = Pipelined, Streaming I/O
4 = Radix-2 Lite, Burst I/O

C_HAS_NFFT Run time configurable
transform length 0 = no, 1 = yes

C_USE_FLT_PT Core interface 0 = Fixed-Point 1 = Single-Precision
Floating-Point

C_INPUT_WIDTH Input data width
(bits) 8-34 32

C_TWIDDLE_WIDTH Phase factor width (bits) 8-34 24-25

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=72

Fast Fourier Transform v9.1 73
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

Note: C_CHANNELS is not a generic used in the C model. The model is always single channel. To
model multiple channels in a multichannel FFT, see Modeling Multichannel FFTs.

The xilinx_ip_xfft_v9_1_create_state function fails with an error message and
returns a NULL pointer if any generic or combination of generics is invalid.

Simulate the FFT Core
After a state structure has been created, it can be used as many times as required to
simulate the FFT core. A simulation is run using the second function,
xilinx_ip_xfft_v9_1_bitacc_simulate. Call this function with the pointer to the
existing state structure and structures that hold the inputs and outputs of the C model. The
input structure members are shown in Table 5-3.

The notes under the following headings apply to the inputs structure.

• General
• FFTs with Fixed-Point Interface
• FFTs with Floating-Point Interface

General

1. You are responsible for allocating memory for arrays in the inputs structure.

C_HAS_SCALING Scaling option: unscaled or
determined by C_HAS_BFP

0 = unscaled,
1 = see C_HAS_BFP 0

C_HAS_BFP Scaling option: Applicable if
C_HAS_SCALING=1

0 = scaled,
1 = block floating-point 0

C_HAS_ROUNDING Rounding: 0 = truncation,
1 = convergent rounding 0

Table 5-3: Members of the Inputs Structure
Member Type Description

nfft int Transform length
xn_re double* Pointer to array of doubles: real part of input data
xn_re_size int Number of elements in xn_re array
xn_im double* Pointer to array of doubles: imaginary part of input data
xn_im_size int Number of elements in xn_im array
scaling_sch int* Pointer to array of ints containing scaling schedule
scaling_sch_size int Number of elements in scaling_sch array
direction int Transform direction: 1=forward FFT, 0=inverse FFT (IFFT)

Table 5-2: FFT C Model Generics (Cont’d)

Generic Description Permitted Values

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=73

Fast Fourier Transform v9.1 74
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

2. nfft input is only used with run time configurable transform length (that is,
C_HAS_NFFT = 1). If the transform length is fixed (C_HAS_NFFT = 0), C_NFFT_MAX is
used for nfft. In this case, nfft should be equal to C_NFFT_MAX, and a warning is
printed if it is not (but the model continues, using C_NFFT_MAX for nfft and ignoring
the nfft value in the inputs structure).

3. xn_re and xn_im must have 2nfft elements. xn_re_size and xn_im_size must be
set to 2nfft.

4. xn_re and xn_im can be in natural or bit/digit-reversed sample index order. The
C model produces samples in the same ordering format as they were input.

FFTs with Fixed-Point Interface

1. Data in xn_re and xn_im must all be in the range -1.0 ≤ data < +1.0.
2. Data in xn_re and xn_im is of type double, but the model requires data in signed

two's-complement, fixed-point format with precision given by C_INPUT_WIDTH. The
data has a sign bit, then the binary point, and then (C_INPUT_WIDTH - 1) fractional bits.
The model checks the input data to see if it fits within this format and precision. If not,
it prints a warning, and internally rounds it using convergent rounding (halfway values
are rounded to the nearest even number) to the required precision. To accurately model
the FFT core, pre-quantize the input data to this required precision before passing it to
the model.

3. scaling_sch and scaling_sch_size are ignored entirely unless fixed scaling is
used (C_HAS_SCALING = 1 and C_HAS_BFP = 0).

4. scaling_sch is an array of integers, each of which indicates the scaling to be done in
a stage of the FFT processing. scaling_sch[0] is the scaling in the first stage,
scaling_sch[1] the scaling in the second stage, and so on. Note that this is the
reverse of the scaling schedule vector applied to the IP core. The number of elements in
the scaling_sch array and the value of scaling_sch_size must be equal to the
number of stages in the FFT. This is dependent on the architecture, and on nfft, the
point size of the transform:
a. Radix-4, Burst I/O (C_ARCH = 1) or Pipelined, Streaming I/O (C_ARCH = 3):

stages = ceil(nfft/2)
b. Radix-2, Burst I/O (C_ARCH = 2) or Radix-2 Lite, Burst I/O (C_ARCH = 4):

stages = nfft
5. If C_HAS_NFFT = 0, C_NFFT_MAX is used for nfft. The scaling in each stage is an

integer in the range 0-3, which indicates the number of bits the intermediate result is
shifted right. So 0 indicates no scaling, 1 indicates a division by 2, 2 indicates a division
by 4, and 3 indicates a division by 8. Again, scaling_sch[0] is the scaling in the first
stage, scaling_sch[1] the scaling in the second stage, and so on. Insufficiently large
scaling results in overflow, indicated by the overflow output.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=74

Fast Fourier Transform v9.1 75
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

FFTs with Floating-Point Interface

1. Data in xn_re and xn_im must all be representable in IEEE-754 single-precision 32-bit
format.

2. Data in xn_re and xn_im is of type double, but the model requires data in
single-precision format, such that the values can be represented in the 32-bit float
datatype. The double values are explicitly cast to the float datatype internally. No range
checking is performed by the model prior to casting to float.

3. The model checks the input data for denormalized numbers, and if one is found, that
sample is set to zero at the input to the model.

4. If an Infinity or Not A Number (NaN) value is detected in the input data, all outputs in
that frame are invalidated and set to NaN in the output structure.

The outputs structure, a pointer which is passed to the
xilinx_ip_xfft_v9_1_bitacc_simulate function, has the members shown in
Table 5-4.

The notes under the following headings apply to the outputs structure.

• General
• FFTs with Fixed-Point Interface
• FFTs with Floating-Point Interface

General

1. You are responsible for allocating memory for the outputs structure and for arrays in the
outputs structure.

2. xk_re and xk_im must have at least 2nfft elements. You must set xk_re_size and
xk_im_size to indicate the number of elements in xk_re and xk_im before calling
the FFT function. On exit, xk_re_size and xk_im_size are set to the number of
elements that contain valid output data in xk_re and xk_im.

Table 5-4: Members of the Outputs Structure
Member Type Description

xk_re double* Pointer to array of doubles: real part of output data
xk_re_size int Number of elements in xk_re array
xk_im double* Pointer to array of doubles: imaginary part of output data
xk_im_size int Number of elements in xk_im array
blk_exp int Block exponent (if block floating-point is used)

overflow int Overflow occurred (if fixed scaling is used with a fixed-point interface,
or if a floating-point interface is used)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=75

Fast Fourier Transform v9.1 76
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

3. The C model produces data in the same ordering format as the input data. Hence, if
xn_re and xn_im were provided in natural sample index order (0,1,2,3...), xk_re and
xk_im samples will also be in natural sample index order.

FFTs with Fixed-Point Interface

1. Data in xk_re and xk_im has the correct precision to model the FFT:
a. If the FFT is scaled or has block floating-point (C_HAS_SCALING = 1, C_HAS_BFP = 0

or 1, respectively), data in xk_re and xk_im is all in the range
-1.0 ≤ data < +1.0, the precision is C_INPUT_WIDTH bits with C_INPUT_WIDTH-1
fractional bits. For example, if C_INPUT_WIDTH = 8, output data is precise to 2-7 =
0.0078125 and is in the range -1.0 to +0.9921875, and the binary representation of
the output data has the format s.fffffff, where s is the sign bit and f is a fractional bit.

b. If the FFT is unscaled (C_HAS_SCALING = 0), data in xk_re and xk_im grows
beyond ± 1.0, such that the binary point remains in the same place and there are still
(C_INPUT_WIDTH - 1) fractional bits after the binary point. In total, the output
precision is (C_INPUT_WIDTH + C_NFFT_MAX + 1) bits. For example, if
C_INPUT_WIDTH = 8 and C_NFFT_MAX = 3, output data is precise to
2-7 = 0.0078125 and is in the range -16.0 to +15.9921875, and the binary
representation of the output data has the format siiii.fffffff, where s is the sign bit, i
is an integer bit, and f is a fractional bit.

2. blk_exp is the integer block exponent. It is only valid (and non-zero) if block
floating-point is used (C_HAS_SCALING = 1 and C_HAS_BFP = 1). It indicates the total
number of bits that intermediate values were shifted right during the FFT processing.
For example, if blk_exp = 5, the output data has been divided by 32 relative to the
magnitude of the input data.

3. overflow indicates if overflow occurred during the FFT processing. It is only valid (and
non-zero) if fixed scaling is used (C_HAS_SCALING = 1 and C_HAS_BFP = 0). A value of
0 indicates that overflow did not occur; a value of 1 indicates that overflow occurred at
some stage in the FFT processing. To avoid overflow, increase the scaling at one or more
stages in the scaling schedule (scaling_sch input).

4. If overflow occurred with the Pipelined, Streaming I/O architecture (C_ARCH = 3) due to
differences between the FFT core and the model in the order of operations within the
processing stage, the data in xk_re and xk_im might not match the XK_RE and XK_IM
outputs of the FFT core. The xk_re and xk_im data must be ignored if the overflow
output is 1. This is the only case where the model is not entirely bit accurate to the core.

FFTs with Floating-Point Interface

1. Data in xk_re and xk_im has the correct precision to model the FFT. The double-
precision output can be cast to single-precision without introducing error.

2. Overflow indicates if floating-point exponent overflow occurred during the FFT
processing. A value of 0 indicates that overflow did not occur; a value of 1 indicates that
overflow occurred. Overflow is not set when a NaN value is present on the output. NaN

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=76

Fast Fourier Transform v9.1 77
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

values can only occur at the FFT output when the input data frame contains samples
with value NaN or ± Infinity.

3. If overflow occurred, the output sample that overflowed is set to ± Infinity, depending
on the sign of the internal result.

The xilinx_ip_xfft_v9_1_bitacc_simulate function checks the input and output
structures for errors. If the model finds a problem, it prints an error message and returns a
value xilinx_ip_xfft_v9_1_bitacc_simulate function as shown in Table 5-5.

Table 5-5: xilinx_ip_xfft_v9_1_bitacc_simulate Function Return Values
Return Value Meaning

0 Success.
1 state structure is NULL.
2 outputs structure is NULL.
3 state structure is corrupted (Radix-4, Burst I/O architecture).
4 state structure is corrupted (Radix-2 [Lite], Burst I/O architecture).
5 state structure is corrupted (Pipelined, Streaming I/O architecture).
6 nfft in inputs structure out of range (Radix-4, Burst I/O architecture).
7 nfft in inputs structure out of range (other architectures).
8 xn_re in inputs structure is a NULL pointer.
9 xn_re_size in inputs structure is incorrect.

10 data value in xn_re in inputs structure out of range -1.0 to < +1.0 (fixed-point input
data only).

11 xn_im in inputs structure is a NULL pointer.
12 xn_im_size in inputs structure is incorrect.

13 data value in xn_im in inputs structure is out of range -1.0 to < +1.0 (fixed-point input
data only).

14 scaling_sch in inputs structure is a NULL pointer.

15 scaling_sch_size in inputs structure is incorrect (Radix-4, Burst I/O or Pipelined,
Streaming I/O architectures).

16 scaling_sch_size in inputs structure is incorrect (Radix-2, Burst I/O or Radix-2 Lite,
Burst I/O architectures).

17 scaling value in scaling_sch in inputs structure out of range 0-3.

18 scaling value for final stage in scaling_sch in inputs structure out of range 0-1 when
nfft is odd and architecture is Radix-4, Burst I/O or Pipelined, Streaming I/O.

19 direction in inputs structure is out of range 0-1.
20 xk_re in outputs structure is a NULL pointer.
21 xk_im in outputs structure is a NULL pointer.
22 xk_re_size in outputs structure is too small.
23 xk_im_size in outputs structure is too small.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=77

Fast Fourier Transform v9.1 78
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

If the xilinx_ip_xfft_v9_1_bitacc_simulate function returns 0 (zero), it
completed successfully and the outputs of the model are in the outputs structure.

Destroy the State Structure
Finally, the state structure must be destroyed to free up memory used to store the state,
using the third function, xilinx_ip_xfft_v9_1_destroy_state, called with the
pointer to the existing state structure.

If the generics of the core need to be changed, destroy the existing state structure and
create a new state structure using the new generics. There is no way to change the generics
of an existing state structure.

C Model Example Code
An example C++ file, run_bitacc_cmodel.c, is provided. This demonstrates the steps
required to run the model: set up generics, create a state structure, create inputs and
outputs structures, simulate the FFT, use the outputs, and finally destroy the state structure.
The code works for all legal combinations of generics; modify the const int declarations of
generics at the start of function main(). The code also shows how to model a multichannel
FFT; see Modeling Multichannel FFTs.

The example code can be used to test your compilation process. See Compiling with the FFT
C Model.

Compiling with the FFT C Model
Place the header files, xfft_v9_1_bitacc_cmodel.h and gmp.h, with your other
header files.

Compilation varies from platform to platform.

Linux
To compile the example code, run_bitacc_cmodel.c, first ensure that the directory in
which the files libIp_xfft_v9_1_bitacc_cmodel.so and libgmp.so.11 are
located is present on your $LD_LIBRARY_PATH environment variable. These shared libraries
are referenced during the compilation and linking process.

Place the header file and C++ source file in a single directory. Then in that directory,
compile using the GNU C++ Compiler:

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=78

Fast Fourier Transform v9.1 79
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

gcc -x c++ -I. -L. -lIp_xfft_v9_1_bitacc_cmodel -Wl,-rpath,. -o
run_bitacc_cmodel run_bitacc_cmodel.c

Windows
When compiling on Windows, the symbol NT must be defined either by a compiler option
or in user source code before the xfft_v9_1_bitacc_cmodel.h header file is included.

Link to the import libraries libIp_xfft_v9_1_bitacc_cmodel.lib and libgmp.lib.
For example, for Microsoft Visual Studio.NET, in Project Properties, under Linker > Input,
for Additional Dependencies, specify libIp_xfft_v9_1_bitacc_cmodel.lib and
libgmp.lib.

FFT MATLAB Software MEX Function
The FFT model is available as a MATLAB® software MEX function for seamless integration
with MATLAB software. The FFT MEX function provides a MATLAB software interface to the
FFT C model. The FFT MEX function and FFT C model produce identical results, and both are
bit accurate to the FFT core.

Building the MEX Function
A C++ wrapper and compilation script are provided to allow the MEX function to be built
for your MATLAB software version and operating system.

The FFT C model does not support the LCC compiler shipped with MATLAB software.

Xilinx has verified that GCC version 4.1.1 can successfully be used to build the MEX function
on 64-bit Linux.

To build the MEX function:

1. Start the MATLAB software.
2. Change directory to the unzipped FFT C model installation.
3. Use the mex -setup command at the MATLAB software command line to set up the

compiler. For more details on the mex command and the arguments it accepts, type
help mex at the MATLAB software command line

4. Execute the make_xfft_v9_1_mex.m file in the MATLAB software to build the MEX
function.

5. Verify that a file named xfft_v9_1_bitacc_mex.mex<suffix> is now present in
the current directory. The <suffix> portion of the file name depends on the platform
on which the function was compiled.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=79

Fast Fourier Transform v9.1 80
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

Installing and Running the MEX Function
To install the FFT MEX function, place the MEX file in your MATLAB software working
directory, or in the MATLAB software, change directory to the directory containing the MEX
file.

Note: For Windows platforms, the correct libIp_xfft_v9_1_bitacc_cmodel.dll and
libgmp.dll files must be copied to the directory where the FFT MEX function has been installed
before running the MEX function.
Note: For Linux platforms, the libIp_xfft_v9_1_bitacc_cmodel.so and libgmp.so.11
files must be copied to the directory where the FFT MEX function has been installed before running
the MEX function, or be visible using the $LD_LIBRARY_PATH environment variable.
$LD_LIBRARY_PATH must be set correctly before starting MATLAB software.

The FFT MEX function is called xfft_v9_1_bitacc_mex. Enter this function name without
arguments at the MATLAB software command line to see usage information. The FFT MEX
function syntax is:

[output_data, blk_exp, overflow] = xfft_v9_1_bitacc_mex(generics, nfft, input_data,
scaling_sch, direction)

The function inputs are shown in Table 5-6.

Table 5-6: FFT MEX Function Inputs
Input Description Permitted values

generics
Core parameters.
Single-element, 9-field
structure containing all relevant
generics defining the core

generics.C_NFFT_MAX log2(maximum transform
length) 3-16

generics.C_ARCH Architecture 1 = Radix-4, Burst I/O,
2 = Radix-2, Burst I/O,
3 = Pipelined, Streaming I/O,
4 = Radix-2 Lite, Burst I/O

generics.C_HAS_NFFT Run time configurable
transform length 0 = no, 1 = yes

generics.C_USE_FLT_PT Core interface 0 = fixed-point 1 = single-precision
floating-point

generics.C_INPUT_WIDTH Input data width 8-34 bits 32 bits
generics.C_TWIDDLE_WIDTH Phase factor width 8-34 bits 24-25 bits
generics.C_HAS_SCALING Type of scaling 0 = unscaled, 1 = other 0
generics.C_HAS_BFP Type of scaling if

C_HAS_SCALING = 1
0 = scaled,
1 = block
floating-point

0

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=80

Fast Fourier Transform v9.1 81
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

The following notes apply to the MEX function inputs.

1. nfft input is only used for run time configurable transform length (that is,
generics.C_HAS_NFFT = 1). It is ignored otherwise and generics. C_NFFT_MAX is used
instead.

2. For fixed-point input FFTs (that is, generics.C_USE_FLT_PT = 0), to ensure identical
numerical behavior to the hardware, pre-quantize the input_data values to have
precision determined by C_INPUT_WIDTH. This is achieved using the MATLAB software
built-in quantize function.

3. scaling_sch input is only used for a fixed-point input, scaled FFT (that is,
generics.C_USE_FLT_PT = 0, generics.C_HAS_SCALING = 1, and generics.
C_HAS_BFP = 0). It is ignored otherwise.

4. input_data can be in natural or bit/digit-reversed sample index order. The MEX
function produces samples in the same ordering format as they were input.

The function outputs are shown in Table 5-7.

generics.C_HAS_ROUNDING Type of rounding 0 = truncation,
1 = convergent
rounding

0

nfft log2(transform length) for this
transform. Single integer.

Maximum value is
C_NFFT_MAX.
Minimum value is 6 for
Radix-4, Burst I/O
architecture, or 3 for
other architectures.

Maximum value is
C_NFFT_MAX.
Minimum value is 6 for
Radix-4, Burst I/O
architecture, or 3 for
other architectures.

input_data Input data. 1D array of complex
data with 2nfft elements.

All components must
be in the range of
-1.0 ≤ data < +1.0.

All components must
be representable in the
MATLAB software
single datatype
(equivalent to a float in
C++).

scaling_sch

Scaling schedule. 1D array of
integer values size S = number
of stages. For Radix-4 and
Streaming architectures,
S = nfft/2, rounded up to the
next integer. For Radix-2 and
Radix-2 Lite architectures,
S = nfft.

Each value
corresponds to scaling
to be performed by the
corresponding stage
and must be in the
range 0 to 3.
scaling_sch[1] is the
scaling for the first
stage.

N/A

direction Transform direction. Single
integer.

1 = forward FFT,
0 = inverse FFT (IFFT)

1 = forward FFT,
0 = inverse FFT (IFFT)

Table 5-6: FFT MEX Function Inputs (Cont’d)

Input Description Permitted values

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=81

Fast Fourier Transform v9.1 82
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

The notes under the following headings apply to the MEX function outputs.

• General
• FFTs with Fixed-Point Interface
• FFTs with Floating-Point Interface

General

1. There is no need to create and destroy state, as must be done with the C model; this is
handled internally by the FFT MEX function.

2. The FFT MEX function performs extensive checking of its inputs. Any invalid input results
in a message reporting the error and the function terminates.

3. The MEX function produces data in the same order as the input data. Hence, if
input_data was provided in natural sample index order (0,1,2,3...), output_data samples
will also be in natural sample index order.

FFTs with Fixed-Point Interface

1. Input data is an array of complex double-precision floating-point data, but the FFT core
being modeled requires data in signed two's-complement, fixed-point format with
precision given by C_INPUT_WIDTH. The data has a sign bit, then the binary point, then
(C_INPUT_WIDTH - 1) fractional bits. The FFT MEX function checks the input data to see
if it fits within this format and precision. If not, it prints a warning, and internally rounds
it using convergent rounding (halfway values are rounded to the nearest even number)
to the required precision. To accurately model the FFT core, pre-quantize the input data
to this required precision before passing it to the model. This can be done using the
MATLAB software built-in quantize function.

Type help quantizer/quantize or doc quantize on the MATLAB software
command line for more information.

2. Output data has the correct precision to model the FFT:

Table 5-7: FFT MEX Function Outputs
Output Description Validity

output_data Output data. 1D array of complex
data with 2nfft elements. Always valid.

blk_exp Block exponent. Single integer.
Only valid if using block floating-point (if
generics.C_HAS_SCALING = 1 and C_HAS_BFP = 1).
Zero otherwise.

overflow
Overflow. Single integer. 1 indicates
overflow occurred, 0 indicates no
overflow occurred.

Only valid with a scaled FFT (if
generics.C_HAS_SCALING = 1 and
generics.C_HAS_BFP = 0) or an FFT with
floating-point interfaces (that is,
generics.C_USE_FLT_PT = 1). Zero otherwise.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=82

Fast Fourier Transform v9.1 83
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

a. If the FFT is scaled or has block floating-point (that is, C_HAS_SCALING = 1,
C_HAS_BFP = 0 or 1, respectively), output data is all in the range
-1.0 ≤ data < +1.0, the precision is C_INPUT_WIDTH bits, with C_INPUT_WIDTH-1
fractional bits. For example, if C_INPUT_WIDTH = 8, output data is precise to 2-7 =
0.0078125 and is in the range -1.0 to +0.9921875, and the binary representation of
the output data has the format s.fffffff, where s is the sign bit and f is a fractional bit.

b. If the FFT is unscaled (C_HAS_SCALING = 0), output data grows beyond ± 1.0, such
that the binary point remains in the same place and there are still (C_INPUT_WIDTH
- 1) fractional bits after the binary point. In total, the output precision is
(C_INPUT_WIDTH + C_NFFT_MAX + 1) bits. For example, if C_INPUT_WIDTH = 8 and
C_NFFT_MAX = 3, output data is precise to 2-7 = 0.0078125 and is in the range -16.0
to +15.9921875, and the binary representation of the output data has the format
siiii.fffffff, where s is the sign bit, i is an integer bit, and f is a fractional bit.

3. blk_exp is the integer block exponent. It is only valid (and non-zero) if block
floating-point is used (that is, C_HAS_SCALING = 1 and C_HAS_BFP = 1). It indicates the
total number of bits that intermediate values were shifted right during the FFT
processing. For example, if blk_exp = 5, the output data has been divided by 32
relative to the magnitude of the input data.

4. overflow indicates if overflow occurred during the FFT processing. It is only valid (and
non-zero) if fixed scaling is used (that is, C_HAS_SCALING = 1 and C_HAS_BFP = 0). A
value of 0 indicates that overflow did not occur; a value of 1 indicates that overflow
occurred at some stage in the FFT processing. To avoid overflow, increase the scaling at
one or more stages in the scaling schedule (scaling_sch input).

5. If overflow occurred with the Pipelined, Streaming I/O architecture (C_ARCH = 3) due to
differences between the FFT core and the model in the order of operations within the
processing stage, the output data might not match the XK_RE and XK_IM outputs of the
FFT core. The output data must be ignored if the overflow output is 1. This is the only
case where the model is not entirely bit accurate to the core.

FFTs with Floating-Point Interface

1. Input data is an array of complex double-precision floating-point data, but the FFT core
being modeled requires values in single-precision (32-bit) format. The data must
therefore be representable in the MATLAB software ‘single’ datatype, even if it is
represented in the ‘double’ datatype. The value is explicitly cast to the C++ ‘float’
datatype inside the MEX function.

2. Output data has the correct precision to model the FFT. The double-precision output
array contains single-precision values which are representable in the MATLAB software
‘single’ datatype without error.

3. overflow indicates if exponent overflow has occurred during the FFT processing. A
value of 0 indicates that overflow did not occur; a value of 1 indicates that exponent
overflow did occur.

4. If overflow occurred, the output sample that overflowed is set to ± Infinity, depending
on the sign of the internal result.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=83

Fast Fourier Transform v9.1 84
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

MEX Function Example Code
An example M file, run_xfft_v9_1_mex.m, is provided. This demonstrates the steps
required to run the MEX function: set up generics, create input data, simulate the FFT, and
use the outputs. The code works for all legal combinations of generics. Modify the
declarations of generics at the top of the file. The code also shows how to model a
multichannel FFT; see Modeling Multichannel FFTs.

The example code can be used to test your MEX function compilation process. See Building
the MEX Function.

Modeling Multichannel FFTs
The FFT C model and FFT MEX function are single-channel models that do not directly
model multichannel FFTs. However, it is very simple to model multichannel FFTs.

By definition, a multichannel FFT is equivalent to multiple identical single-channel FFTs,
each operating on different input data. Therefore a multichannel FFT can be modeled by
running a single-channel model several times on the input data of each channel.

For the FFT C model, the example C++ code provided, run_bitacc_cmodel.c,
demonstrates how to model a multichannel FFT. This example code creates the FFT state
structure, then uses a loop to run the model on each channel's input data in turn, then
finally destroys the state structure. For the FFT MEX function, call the function on the input
data of each channel in turn.

Dependent Libraries
The C model uses MPIR libraries. Pre-compiled MPIR libraries are provided with the C
model, using the following versions of the libraries:

• MPIR 2.6.0

Because MPIR is a compatible alternative to GMP, the GMP library can be used in place of
MPIR. It is possible to use GMP or MPIR libraries from other sources, for example, compiled
from source code.

GMP and MPIR in particular contain many low level optimizations for specific processors.
The libraries provided are compiled for a generic processor on each platform, not using
optimized processor-specific code. These libraries work on any processor, but run more
slowly than libraries compiled to use optimized processor-specific code. For the fastest
performance, compile libraries from source on the machine on which you run the
executables.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=84

Fast Fourier Transform v9.1 85
PG109 August 6, 2021 www.xilinx.com

Chapter 5: C Model

Source code and compilation scripts are provided for the version of MPIR that were used to
compile the provided libraries. Source code and compilation scripts for any version of the
libraries can be obtained from the GMP [Ref 12] and MPIR [Ref 13] web sites.

Note: If compiling MPIR using its configure script (for example, on Linux platforms), use the
--enable-gmpcompat option when running the configure script. This generates a libgmp.so
library and a gmp.h header file that provide full compatibility with the GMP library.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=85

Fast Fourier Transform v9.1 86
PG109 August 6, 2021 www.xilinx.com

Chapter 6

Test Bench
This chapter contains information about the test bench provided in the Vivado® Design
Suite.

Demonstration Test Bench
When the core is generated using the Vivado Design Suite, a demonstration test bench is
created. This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: demo_tb/
tb_<component_name>.vhd in the Vivado output directory. The source code is
comprehensively commented.

Using the Demonstration Test Bench
The demonstration test bench instantiates the generated Fast Fourier Transform core.
Compile the netlist and the demonstration test bench into the work library (see your
simulator documentation for more information on how to do this). Then simulate the
demonstration test bench. View the test bench signals in your simulator waveform viewer
to see the operations of the test bench.

Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiates the core
• Generates an input data frame consisting of one or the sum of two complex sinusoids
• Generates a clock signal
• Drives the core input signals to demonstrate core features
• Checks that the core output signals obey AXI protocol rules (data values are not

checked to keep the test bench simple)
• Provides signals showing the separate fields of AXI TDATA and TUSER signals

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=86

Fast Fourier Transform v9.1 87
PG109 August 6, 2021 www.xilinx.com

Chapter 6: Test Bench

The demonstration test bench drives the core input signals to demonstrate the features and
modes of operation of the core. This includes performing an FFT on a pre-generated input
data frame. The input data frame consists of a complex sinusoid with a frequency of 2.6
times the frame size. The FFT of this input frame is a peak centred between output samples
2 and 3. For FFTs with a maximum point size of 64 or greater, the input data is modified by
adding a second complex sinusoid with a frequency of 23.2 times the frame size and a
quarter of the magnitude of the first sinusoid. This modifies the FFT by adding a smaller
peak centred between output samples 23 and 24. The test bench captures this output frame
and uses it as the input frame for an inverse transform. The output of this inverse transform
is therefore the same as the original input frame (modified by the scaling and finite
precision effects of the FFT core).

The operations performed by the demonstration test bench are appropriate for the
configuration of the generated core, and are a subset of the following operations:

• Frame 1: drive a frame of pre-generated input data
• Frame 2: configure an inverse transform; drive the output of frame 1 as a frame of input

data
• Configure frame 3: a forward transform while the previous transform is running
• Frame 3: drive the output of frame 2 as a frame of input data; deassert AXI TVALID (and

TREADY if present) signals occasionally to demonstrate AXI handshaking
• If ARESETn present: start another frame but reset the core before it completes
• Frames 4-7: run these back-to-back, as quickly as possible:

° Queue up configurations for a forward transform (frame 4) followed by a reverse
transform (frame 5), both with a smaller point size (if point size is configurable) and
a short cyclic prefix (if available)

° Frame 4: drive a frame of pre-generated input data

° Frame 5: drive the output of frame 1 as a frame of input data; simultaneously
configure frame 6: a forward transform with maximum point size, a longer cyclic
prefix (if available) and a zero scaling schedule (if fixed scaling is used)

° Frame 6: drive a frame of pre-generated input data; simultaneously configure frame
7: an inverse transform with maximum point size, no cyclic prefix and default
scaling schedule (if fixed scaling is used)

° Frame 7: drive the output of frame 1 as a frame of input data
• Wait until all frames are complete

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=87

Fast Fourier Transform v9.1 88
PG109 August 6, 2021 www.xilinx.com

Chapter 6: Test Bench

Customizing the Demonstration Test Bench
It is possible to modify the demonstration test bench to drive the core inputs with different
data or to perform different operations.

Input data is pre-generated in the create_ip_table function and stored in the IP_DATA
constant. New input data frames can be added by defining new functions and constants.
Make sure that each input data frame is of the T_IP_TABLE array type.

All operations performed by the demonstration test bench to drive the core's inputs are
done in the data_stimuli process. This process also contains procedures to simplify
driving a frame of input data. Configuration is requested in this process by setting cfg_*
signals to the desired configuration and setting the do_config shared variable to either
IMMEDIATE or AFTER_START. The configuration signals are actually driven by the
config_stimuli process.

The data_stimuli process is comprehensively commented, to explain clearly what is
being done. New configuration and data operations can be added by copying and
modifying sections of this process.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=88

Fast Fourier Transform v9.1 89
PG109 August 6, 2021 www.xilinx.com

Appendix A

Upgrading
This appendix contains information about migrating a design from the ISE® Design Suite to
the Vivado® Design Suite, and for upgrading to a more recent version of the IP core. For
customers upgrading in the Vivado Design Suite, important details (where applicable)
about any port changes and other impact to user logic are included.

Migrating to the Vivado Design Suite
For information about migrating to the Vivado Design Suite, see the ISE to Vivado Design
Suite Migration Guide (UG911) [Ref 14].

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

Parameter Changes
There are no parameter changes between versions 9.0 and 9.1.

Port Changes
There are no port changes between versions 9.0 and 9.1.

Functionality Changes

Latency Changes

The majority of configurations in version 9.1 have unchanged latency compared to version
9.0.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=89

Fast Fourier Transform v9.1 90
PG109 August 6, 2021 www.xilinx.com

Appendix A: Upgrading

The exception is the Pipelined Streaming I/O architecture when configured in Block
Floating-Point scaling mode. In this case, the latency will increase in version 9.1 by 1 cycle
compared to version 9.0.

See Information Tabs for the definition of latency.

Numerical Behavior Changes

The majority of configurations in version 9.1 have unchanged numerical behavior compared
to version 9.0.

The exception is the Pipelined Streaming I/O architecture when configured in Block
Floating-Point scaling mode. In this case, the output data may no longer be bit accurate
with previous versions due to the introduction of a rounding stage. The IP remains bit
accurate with the C model, however user test vectors generated from earlier versions of the
C model or IP may require updating to match the new behavior.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=90

Fast Fourier Transform v9.1 91
PG109 August 6, 2021 www.xilinx.com

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the Fast Fourier Transform core, the
Xilinx Support web page contains key resources such as product documentation, release
notes, answer records, information about known issues, and links for obtaining further
product support.

Documentation
This product guide is the main document associated with the Fast Fourier Transform core.
This guide, along with documentation related to all products that aid in the design process,
can be found on the Xilinx Support web page or by using the Xilinx® Documentation
Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use keywords such as:

• Product name
• Tool message(s)
• Summary of the issue encountered

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=91

Fast Fourier Transform v9.1 92
PG109 August 6, 2021 www.xilinx.com

Appendix B: Debugging

A filter search is available after results are returned to further target the results.

Master Answer Record for the Fast Fourier Transform

AR: 54501

Technical Support
Xilinx provides technical support at the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.
• Customize the solution beyond that allowed in the product documentation.
• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools
There are tools available to address Fast Fourier Transform design issues. It is important to
know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a
design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

• ILA 2.0 (and later versions)
• VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 15].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/answers/54501.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=92

Fast Fourier Transform v9.1 93
PG109 August 6, 2021 www.xilinx.com

Appendix B: Debugging

Reference Boards
Various Xilinx development boards support the Fast Fourier Transform core. These boards
can be used to prototype designs and establish that the core can communicate with the
system.

C Model Reference
See Chapter 5, C Model in this guide for tips and instructions for using the C Model files
provided to debug your design.

Simulation Debug
The simulation debug flow for Mentor Graphics Questa Advanced Simulator is illustrated in
Figure B-1. A similar approach can be used with other simulators.
X-Ref Target - Figure B-1

Figure B-1: Questa Advanced Simulator Debug Flow Diagram

Questa Advanced
Simulator

Simulation Debug

Does simulating the core
test bench give the expected output?

No

No

The core test bench
 should allow the user to quickly

determine if the simulator is set up
correctly.

Do you get errors referring to
failing to access library?

Yes Need to compile and map the
correct libraries. See the Vivado
Design Suite User Guide - Logic

 Simulation UG900

Yes Examine waveforms to gain
understanding of core behavior.

Check behavior of AXI Interfaces
is as described in this document.
Ensure that the demonstration
test bench has been selected
as the top level of the design.

Yes
If problem is more design specific, open

a case with Xilinx Technical Support
and include a wlf file dump of the simulation.
For the best results, dump the entire design

hierarchy.

Yes

No
Check that the simulator

version matches that of the Vivado
 release. See the Xilinx Design Tools:

Release Notes Guide (link at
foot of IP Facts table)

Update to this version.

Although versions of
simulators more recent
than the Vivado release
might be compatible, no
guarantee can be given.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=93

Fast Fourier Transform v9.1 94
PG109 August 6, 2021 www.xilinx.com

Appendix B: Debugging

AXI4-Stream Interface Debug
If data is not being transmitted or received, check the following conditions:

• If transmit <interface_name>_tready is stuck Low following the
<interface_name>_tvalid input being asserted, the core cannot send data.

• If the receive <interface_name>_tvalid is stuck Low, the core is not receiving
data.

• Check that the ACLK inputs are connected and toggling.
• Check that the AXI4-Stream waveforms are being followed (see Figure 3-1).
• Check core configuration.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=94

Fast Fourier Transform v9.1 95
PG109 August 6, 2021 www.xilinx.com

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see
Xilinx Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=95

Fast Fourier Transform v9.1 96
PG109 August 6, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

References
These documents provide supplemental material useful with this product guide:

1. AMBA® AXI4-Stream Protocol Specification (Arm IHI 0051A)
2. Vivado Design Suite AXI Reference Guide (UG1037)
3. W. R. Knight and R. Kaiser, A Simple Fixed-Point Error Bound for the Fast Fourier

Transform, IEEE Trans. Acoustics, Speech and Signal Proc., Vol. 27, No. 6, pp. 615-620,
December 1979.

4. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1975.

5. Quang Hung Nguyen and Istvan Kollar, Limited Dynamic Range of Spectrum Analysis Due
To Round off Errors Of The FFT, available at: home.mit.bme.hu/~kollar/papers/
IMTC-FFT.pdf

6. I. Szolik, K. Kovac, V. Smiesko, Influence of Digital Signal Processing on Precision of Power
Quality Parameters Measurement, available at: www.measurement.sk/2003/S1/
Szolik.pdf.

7. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
8. Vivado Design Suite User Guide: Designing with IP (UG896)
9. Vivado Design Suite User Guide: Getting Started (UG910)
10. Vivado Design Suite User Guide - Logic Simulation (UG900)
11. System Generator for DSP User Guide (UG640)
12. The GNU Multiple Precision Arithmetic (GMP) Library: gmplib.org/
13. The Multiple Precision Integers and Rationals (MPIR) Library: www.mpir.org/
14. ISE® to Vivado Design Suite Migration Guide (UG911)
15. Vivado Design Suite User Guide: Programming and Debugging (UG908)

Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
http://mpir.org/
home.mit.bme.hu/~kollar/papers/IMTC-FFT.pdf
home.mit.bme.hu/~kollar/papers/IMTC-FFT.pdf
http://www.measurement.sk/2003/S1/Szolik.pdf
http://www.measurement.sk/2003/S1/Szolik.pdf
http://gmplib.org/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=14.7;d=sysgen_user.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=96

Fast Fourier Transform v9.1 97
PG109 August 6, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

Revision History
The following table shows the revision history for this document.

Date Version Revision
08/06/2021 9.1 • Updated SCALE_SCH field name in Table 3-3.

• Updated TDATA Format information in Configuration Channel.
01/21/2021 9.1 Added Versal support.
06/17/2020 9.1 • Updated configuration data paragraph in Applying a New Configuration

While Idle.
• Removed libgmpxx.so.4.

05/22/2019 9.1 Minor changes to Algorithm section; Table 3-11 and Transform Status
section.

04/04/2018 9.1 Version change only.
10/04/2017 9.0 Added scaling factor information.
11/18/2015 9.0 UltraScale+ device support added.
09/30/2015 9.0 • Updated C model chapter to include details of MPIR libraries required by

latest C model enhancements.
06/24/2015 9.0 C Model supported software updated.
04/01/2015 9.0 • Removed 32-bit support for the C model.

• Clarified the compiler support for the C model.
10/01/2014 9.0 • Updated document to correct cross-reference error and clarify Resets

information.
04/02/2014 9.0 • Added link to resource utilization numbers.

• Add User Parameter table (Table 4-1).
12/18/2013 9.0 • Added UltraScale™ architecture support.
10/02/2013 9.0 • Revision number advanced to 9.0 to align with core version number 9.0.

• C Model updates.
03/20/2013 1.0 Initial release as a Product Guide; replaces DS808 and UG459. No other

documentation changes.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=97

Fast Fourier Transform v9.1 98
PG109 August 6, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty,
please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2013–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. All other trademarks are the property of their respective
owners.

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG109&Title=Fast%20Fourier%20Transform%20v9.1&releaseVersion=9.1&docPage=98

	Fast Fourier Transform v9.1
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Navigating Content by Design Process
	Core Overview
	Algorithm

	Licensing and Ordering

	Ch. 2: Product Specification
	Resource Utilization
	Port Descriptions

	Ch. 3: Designing with the Core
	Clocking
	aclken (Clock Enable)

	Resets
	aresetn (Synchronous Clear)

	Event Signals
	event_frame_started
	event_tlast_missing
	event_tlast_unexpected
	event_fft_overflow
	event_data_in_channel_halt
	event_data_out_channel_halt
	event_status_channel_halt

	AXI4-Stream Considerations
	Basic Handshake
	AXI Channel Rules
	Configuration Channel
	TDATA Fields
	TDATA Format
	TDATA Example

	Data Input Channel
	Pinout
	TDATA Fields
	TDATA Format
	TDATA Example

	Data Output Channel
	Pinout
	TDATA Fields
	TDATA Format
	TDATA Example
	TUSER Fields
	TUSER Format
	TUSER Examples

	Status Channel
	Pinout
	TDATA Fields
	TDATA Format
	TDATA Example

	Theory of Operation
	Finite Word Length Considerations
	Floating-Point Considerations
	Denormalized Numbers
	NaNs and ± Infinity

	Real-Valued Input Data
	Rounding Implementation
	Dynamic Range Characteristics
	Architecture Options
	Bit and Digit Reversal
	Pipelined Streaming I/O
	Radix-4 Burst I/O
	Radix-2 Burst I/O
	Radix-2 Lite Burst I/O

	Run Time Transform Configuration
	Transform Size
	Forward/Inverse and Scaling Schedule
	Cyclic Prefix Insertion

	Transform Status
	Overflow
	Block Exponent
	XK Index

	Controlling the FFT Core
	Transform Timing
	Pipelined Streaming I/O with no Cyclic Prefix Insertion
	Pipelined Streaming I/O with Cyclic Prefix Insertion
	Burst I/O Architectures

	Configuring the FFT
	Applying a New Configuration While Idle
	Applying a New Configuration While Streaming Frames
	How Changing the Configuration Can Change Transform Timing

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Configuration Tab
	Implementation Tab
	Detailed Implementation Tab
	Information Tabs
	User Parameters
	Output Generation

	System Generator for DSP Graphical User Interface
	Tab 1: Basic
	Tab 2: Advanced
	Tab 3: Implementation

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Synthesis and Implementation

	Ch. 5: C Model
	Features
	Overview
	Unpacking and Model Contents
	Installation
	FFT C Model Interface
	Create a State Structure
	Simulate the FFT Core
	Destroy the State Structure

	C Model Example Code
	Compiling with the FFT C Model
	Linux
	Windows

	FFT MATLAB Software MEX Function
	Building the MEX Function
	Installing and Running the MEX Function

	MEX Function Example Code
	Modeling Multichannel FFTs
	Dependent Libraries

	Ch. 6: Test Bench
	Demonstration Test Bench
	Using the Demonstration Test Bench
	Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	Appx. A: Upgrading
	Migrating to the Vivado Design Suite
	Upgrading in the Vivado Design Suite
	Parameter Changes
	Port Changes
	Functionality Changes
	Latency Changes
	Numerical Behavior Changes

	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature
	Reference Boards
	C Model Reference

	Simulation Debug
	AXI4-Stream Interface Debug

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

