
Vivado Design Suite
User Guide

Dynamic Function eXchange

UG909 (v2019.2) January 15, 2020

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG909

Dynamic Function eXchange 2
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
01/15/2020 Version 2019.2

General Updated terminology to reflect new Dynamic Function
eXchange (DFX) solution name where applicable.

Configuration Time Added Maximum Bandwidths for Configuration Ports
tables for UltraScale and UltraScale+ device families.

06/05/2019 Version 2019.1
UltraRAM Behavior Updated information for UltraRAM memory.
Tandem Configuration and Dynamic Function
eXchange

New section on ICAP/MCAP ports.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=2

Table of Contents
Revision History . 2

Chapter 1: Introduction
Overview . 6
Introduction to Dynamic Function eXchange. 7
Terminology . 8
Design Considerations . 11
Dynamic Function eXchange Licensing. 16

Chapter 2: Common Applications
Overview . 17
Networked Multiport Interface . 17
Configuration by Means of Standard Bus Interface. 19
Dynamically Reconfigurable Packet Processor . 21
Asymmetric Key Encryption . 22
Summary. 23

Chapter 3: Vivado Software Flow
Overview . 24
Dynamic Function eXchange Commands . 25
Dynamic Function eXchange Constraints and Properties . 32
Apply Reset After Reconfiguration . 41
Software Flow . 44
Tcl Scripts . 49

Chapter 4: Vivado Project Flow
Overview . 50
Flow Summary . 50
Steps for Creating and Using a Dynamic Function eXchange Project. 51
Supported/Unsupported Features . 67

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Overview . 68
Dynamic Function eXchange 3
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=3

Partial Reconfiguration IP . 68
Design Hierarchy . 69
Partition Pin Placement. 73
Active-Low Resets and Clock Enables . 73
Decoupling Functionality. 74
Black Boxes. 75
Effective Approaches for Implementation . 76
Configuration Analysis Report . 78
Managing Constraints for a DFX Design . 80
Defining Reconfigurable Partition Boundaries . 83
Avoiding Deadlock . 83
Design Revision Checks . 84
Simulation and Verification. 85

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
Overview . 86
Design Elements Inside Reconfigurable Modules . 86
Global Clocking Rules. 87
Creating Pblocks for 7 Series Devices . 89
Using High Speed Transceivers . 98
Dynamic Function eXchange Design Checklist (7 Series) . 98

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices
Overview . 102
Design Elements Inside Reconfigurable Modules . 102
Creating Pblocks for UltraScale and UltraScale+ Devices . 103
Global Clocking Rules. 111
I/O Rules . 112
Using High Speed Transceivers . 114
Dynamic Function eXchange Checklist for UltraScale and UltraScale+ Device Designs 114

Chapter 8: Configuring the Device
Overview . 120
Configuration Modes . 120
Bitstream Type Definitions . 122
Dynamic Function eXchange through ICAP for Zynq Devices . 127
Tandem Configuration and Dynamic Function eXchange . 127
Formatting BIN Files for Delivery to Internal Configuration Ports . 131
Summary of BIT Files for UltraScale Devices . 132
Dynamic Function eXchange 4
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=4

System Design for Configuring an FPGA. 134
Partial BIT File Integrity . 135
Configuration Frames . 137
Configuration Time . 137
Configuration Debugging. 139
Using Vivado Debug Cores. 141

Chapter 9: Known Issues and Limitations
Known Issues . 145
Known Limitations . 146

Appendix A: Hierarchical Design Flows
Overview . 148

Appendix B: Additional Resources and Legal Notices
Xilinx Resources . 149
Solution Centers. 149
Documentation Navigator and Design Hubs . 149
References . 150
Training Resources. 151
Please Read: Important Legal Notices . 151
Dynamic Function eXchange 5
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=5

Chapter 1

Introduction

Overview
Dynamic Function eXchange (DFX) allows for the reconfiguration of modules within an
active design. This flow requires the implementation of multiple configurations, which
ultimately results in full bitstreams for each configuration and partial bitstreams for each
Reconfigurable Module. The number of configurations required varies by the number of
modules that need to be implemented. However, all configurations use the same top-level,
or static, placement and routing results. These static results are exported from the initial
configuration and imported by all subsequent configurations using checkpoints.

DFX is a comprehensive solution that is comprised of many parts. These elements include the
Xilinx® silicon ability to be dynamically reconfigured, the Vivado®software flow for compiling
designs from RTL to bitstream, and the complementary features such as IP. In this release, you will
see a mix of DFX and Partial Reconfiguration (PR) terminology, with DFX representing the overall
solution and PR representing a component technology piece of that solution.

Complementary documentation, such as application notes, white papers, and videos, will
not be recaptured with DFX terminology, but all new documentation will show the DFX
terms.

The content of this guide includes the following:

• Description of Dynamic Function eXchange as implemented in the Vivado Design
Suite®

• Assumption of familiarity with FPGA design software, particularly Vivado Design Suite
• Updates specific to the Vivado Design Suite Release 2019.2. This release supports

Partial Reconfiguration for the products listed below:

° 7 Series Devices
- Nearly all Virtex®-7, Kintex®-7, Artix®-7, and Zynq®-7000 SoC devices

Note: Spartan®-7 devices, as well as Artix-7 7A12T and 7A25T, are not supported.

° UltraScale™ Devices
- Place and route, as well as bitstream generation is enabled for all production

devices.
Dynamic Function eXchange 6
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=6

Chapter 1: Introduction
Note: Access to the VU440 is not restricted in this release. However, expect memory
usage to be higher for this device than all others (potentially exceeding 64 MB).

- Bitstream generation is disabled by default for ES2 devices, but place and route
can still be performed.

° UltraScale+™ Devices
- Place and route, as well as bitstream generation, is enabled for all production

devices, including all Zynq UltraScale+ RFSoC devices.
- Place and route is enabled for all Virtex UltraScale+ 58G PAM4 devices, but

bitstreams are gated by a parameter as device support is still beta.
- Place and route is enabled for many engineering silicon (ES1, ES2) versions of

UltraScale+ devices. Bitstream generation is disabled by default for these
devices.

VIDEO: For an overview of the Vivado Partial Reconfiguration solution in 7 series devices, see the
Vivado Design Suite QuickTake Video: Partial Reconfiguration in Vivado.
For an overview of the Vivado Partial Reconfiguration solution in UltraScale devices, see the
Vivado Design Suite QuickTake Video: Partial Reconfiguration for UltraScale.

Introduction to Dynamic Function eXchange
FPGA technology provides the flexibility of on-site programming and re-programming
without going through re-fabrication with a modified design. Dynamic Function eXchange
(DFX) takes this flexibility one step further, allowing the modification of an operating FPGA
design by loading a dynamic configuration file, usually a partial BIT file. After a full BIT file
configures the FPGA, partial BIT files can be downloaded to modify reconfigurable regions
in the FPGA without compromising the integrity of the applications running on those parts
of the device that are not being reconfigured.

Figure 1-1 illustrates the premise behind Dynamic Function eXchange.

X-Ref Target - Figure 1-1

Figure 1-1: Basic Premise of Dynamic Function eXchange

FPGA

Reconfig
Block “A”

A4.bit
A3.bit

A2.bit
A1.bit

X12001
Dynamic Function eXchange 7
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=partial-reconfiguration-for-ultrascale.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=partial-reconfiguration-in-vivado.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=7

Chapter 1: Introduction
As shown, the function implemented in Reconfig Block A is modified by downloading one
of several partial BIT files, A1.bit, A2.bit, A3.bit, or A4.bit. The logic in the FPGA
design is divided into two different types, reconfigurable logic and static logic. The gray
area of the FPGA block represents static logic and the block portion labeled Reconfig Block
“A” represents reconfigurable logic. The static logic remains functioning and is unaffected
by the loading of a partial BIT file. The reconfigurable logic is replaced by the contents of
the partial BIT file.

There are many reasons why the ability to time multiplex hardware dynamically on a single
FPGA is advantageous. These include:

• Reducing the size of the FPGA required to implement a given function, with consequent
reductions in cost and power consumption

• Providing flexibility in the choices of algorithms or protocols available to an application
• Enabling new techniques in design security
• Improving FPGA fault tolerance
• Accelerating configurable computing
• Delivering updates (fixes and new features) to deployed systems

In addition to reducing size, weight, power and cost, Dynamic Function eXchange enables
new types of FPGA designs that would be otherwise impossible to implement.

Terminology
The following terminology is specific to the Dynamic Function eXchange feature and is used
throughout this document.

Bottom-Up Synthesis
Bottom-Up Synthesis is synthesis of the design by modules, whether in one project or
multiple projects. In Vivado, bottom-up synthesis is referred to as out-of-context (OOC)
synthesis. OOC synthesis generates a separate netlist (or DCP) per OOC module, and is
required for Dynamic Function eXchange to ensure no optimization occurs across the
module boundary. In OOC synthesis, the top-level (or static) logic is synthesized with
black_box module definitions for each OOC module.

Configuration
A configuration is a complete design that has one Reconfigurable Module for each
Reconfigurable Partition. There might be many configurations in a Dynamic Function
eXchange FPGA project. Each configuration generates one full BIT file as well as one partial
BIT file for each Reconfigurable Module (RM).
Dynamic Function eXchange 8
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=8

Chapter 1: Introduction
Configuration Frame
Configuration frames are the smallest addressable segments of the FPGA configuration
memory space. Reconfigurable frames are built from discrete numbers of these lowest-level
elements. In Xilinx devices, the base reconfigurable frames are one element (CLB, block
RAM, DSP) wide by one clock region high. The number of resources in these frames vary by
device family.

Internal Configuration Access Port (ICAP)
The internal configuration access port (ICAP) is essentially an internal version of the
SelectMAP interface. For more information, see the 7 Series FPGAs Configuration User Guide
(UG470) [Ref 9] or the UltraScale Architecture Configuration User Guide (UG570) [Ref 10].

Media Configuration Access Port (MCAP)
The MCAP is dedicated link to the configuration engine from one specific PCIe® block per
UltraScale device. This entry point can be enabled when configuring the Xilinx PCIe IP.

Partition
A Partition is a logical section of the design, user-defined at a hierarchical boundary, to be
considered for design reuse. A Partition is either implemented as new or preserved from a
previous implementation. A Partition that is preserved maintains not only identical
functionality but also identical implementation.

Partition Definition (PD)
This is a term used within the project flow only. A Partition Definition defines a set of
Reconfigurable Modules that are associated with the module instance (or Reconfigurable
Partition). A PD is applied to all instances of the module, and cannot be associated with a
subset of module instances.

Partition Pin
Partition pins are the logical and physical connection between static logic and
reconfigurable logic. The tools automatically create, place, and manage Partition Pins.

Partial Reconfiguration (PR)
Partial Reconfiguration is the Xilinx silicon technology that enables users to modify a subset
of logic in an operating FPGA design by downloading a partial bitstream.
Dynamic Function eXchange 9
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=9

Chapter 1: Introduction
Processor Configuration Access Port (PCAP)
The processor configuration access port (PCAP) is similar to the internal configuration
access port (ICAP) and is the primary port used for configuring a Zynq-7000 SoC device. For
more information, see the Zynq-7000 All Programmable SoC Technical Reference Manual
(UG585) [Ref 11].

Programmable Unit (PU)
In the UltraScale architecture, this is the minimum required resources for reconfiguration.
The size of a PU varies by resource type. Because adjacent sites share a routing resource (or
Interconnect tile) in the UltraScale architecture, a PU is defined in terms of pairs.

Reconfigurable Frame
Reconfigurable frames (in all references other than “configuration frames” in this guide)
represent the smallest reconfigurable region within an FPGA. Bitstream sizes of
reconfigurable frames vary depending on the types of logic contained within the frame.

Reconfigurable Logic
Reconfigurable logic is any logical element that is part of a reconfigurable module. These
logical elements are modified when a partial BIT file is loaded. Many types of logical
components can be reconfigured such as LUTs, flip-flops, block RAM, and DSP blocks.

Reconfigurable Module (RM)
A Reconfigurable Module (RM) is the netlist or HDL description that is implemented within
a reconfigurable partition. Multiple RMs exist for a reconfigurable partition.

Reconfigurable Partition (RP)
Reconfigurable Partition (RP) is an attribute set on an instantiation that defines the instance
as reconfigurable. The Reconfigurable Partition is the level of hierarchy within which
different Reconfigurable Modules are implemented. Tcl commands such as opt_design,
place_design and route_design detect the HD.RECONFIGURABLE property on the
instance and process it correctly.

Static Logic
Static logic is any logical element that is not part of an RP. The logical element is never
partially reconfigured and is always active when RPs are being reconfigured. Static logic is
also known as top-level logic.
Dynamic Function eXchange 10
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=10

Chapter 1: Introduction
Static Design
The static design is the part of the design that does not change during partial
reconfiguration. The static design includes the top-level and all modules not defined as
reconfigurable. The static design is built with static logic and static routing.

Design Considerations
Dynamic Function eXchange is an expert flow within the Vivado Design Suite. The following
requirements and expectations need to be understood before embarking on a DFX project.

Design Requirements and Guidelines
• Dynamic Function eXchange requires the use of Vivado 2013.3 or newer.

° Partial Reconfiguration is supported in the ISE Design Suite as well. Use the ISE
Design Suite for PR only with Virtex-6, Virtex-5 and Virtex-4 devices. See the Partial
Reconfiguration User Guide (UG702) [Ref 12] for more information.

• Floorplanning is required to define reconfigurable regions, per element type.

° For 7 series, vertically align Pblocks with frame/clock region boundaries. This
produces the best QoR and allows RESET_AFTER_RECONFIG to be enabled.

° For UltraScale, the floorplanning is more flexible. Xilinx recommends stopping the
Pblock short of frame/clock region boundaries to allow for expanded routing, which
can greatly improve routability and QoR.

° Horizontal alignment rules also apply. See Create a Floorplan for the Reconfigurable
Region in Chapter 3 for more information.

• Bottom-up/OOC synthesis (to create multiple netlist/DCP files) and management of
Reconfigurable Module netlist files is the responsibility of the user.

° For third party synthesis tools, I/O insertion must be disabled.

° For Vivado OOC synthesis, I/O insertion is automatically disabled in the
out_of_context mode.

• Standard timing constraints are supported, and additional timing budgeting
capabilities are available if needed.

• A unique set of design rule checks (DRCs) has been established to help ensure
successful design completion.

• A DFX design must consider the initiation of partial reconfiguration as well as the
delivery of partial BIT files, either within the FPGA or as part of the system design.

• The Vivado Design Suite includes support for the Partial Reconfiguration Controller IP.
This customizable IP manages the core tasks for partial reconfiguration in any Xilinx
Dynamic Function eXchange 11
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=11

Chapter 1: Introduction
device. The core receives triggers from hardware or software, manages handshaking
and decoupling tasks, fetches partial bitstreams from memory locations, and delivers
them to the ICAP. More information on the PR Controller IP is available on the Xilinx
website.

• A Reconfigurable Partition must contain a super set of all pins to be used by the
varying Reconfigurable Modules implemented for the partition. If an RM uses different
inputs or outputs from another RM, the resulting RM inputs or outputs might not
connect inside of the RM. The tools handle this by inserting a LUT1 buffer within the
RM for all unused inputs and outputs. The output LUT1 is tied to a constant value and
the value of the constant can be controlled by HD.PARTPIN_TIEOFF property on the
unused output pin. For more information on this property refer to Black Boxes in
Chapter 5

• Black boxes are supported for bitstream generation. See Black Boxes in Chapter 5 for
details about how to tie off ports with constant values.

• For user reset signals, determine if the logic inside the RM is level or edge sensitive. If
the reset circuit is edge sensitive (as it may be in some IP such as FIFOs), then the RM
reset should not be applied until after reconfiguration is complete.

Design Performance
Performance metrics vary from design to design, and the best results are achieved if you
follow the Hierarchical Design techniques suggested in Appendix A, Hierarchical Design
Flows. This documents was created for the ISE Design Suite, but the methodologies
contained therein apply for the Vivado Design Suite. You can find additional design
recommendations in the UltraFast Design Methodology Guide for the Vivado Design Suite
(UG949) [Ref 13].

However, the additional restrictions that are required for silicon isolation are expected to
have an impact on most designs. The application of partial reconfiguration rules, such as
routing containment, exclusive placement, and no optimization across reconfigurable
module boundaries, means that the overall density and performance is lower for a DFX
design than for the equivalent flat design. The overall design performance for DFX designs
varies from design to design, based on factors such as the number of reconfigurable
partitions, the number of interface pins to these partitions, and the size and shape of
Pblocks.

Any potential Dynamic Function eXchange design must have extra timing slack and
resource overhead before considering this solution. See the Building Up Implementation
Requirements, page 76 section for more information on evaluating a design for DFX.

Design Criteria
• Some component types can be reconfigured and some cannot.

For 7 series devices, the component rules are as follows:
Dynamic Function eXchange 12
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/products/intellectual-property/prc.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=12

Chapter 1: Introduction
° Reconfigurable resources include CLB, block RAM, and DSP component types as
well as routing resources.

° Clocks and clock modifying logic cannot be reconfigured, and therefore must reside
in the static region.
- Includes BUFG, BUFR, MMCM, PLL, and similar components

° The following components cannot be reconfigured, and therefore must reside in the
static region:
- I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL)
- Serial transceivers (MGTs) and related components
- Individual architecture feature components (such as BSCAN, STARTUP, ICAP,

XADC.)

For UltraScale and UltraScale+ devices, the list of reconfigurable component types is
more extensive:

° CLB, block RAM, and DSP component types as well as routing resources

° Clocks and clock modifying logic, including BUFG, MMCM, PLL, and similar
components

° I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL)
Note: The types of changes for I/O components is limited. See I/O Rules in Chapter 7 for
more information.

° Serial transceivers (MGTs) and related components

° PCIe, CMAC, Interlaken, and SYSMON blocks

° Bitstream granularity of these new components require that certain rules are
followed. For example, partial reconfiguration of I/O require that the entire bank,
plus all clocking resources in that frame are reconfigured together.

° Only the configuration components (such as BSCAN, STARTUP, ICAP, and
FRAME_ECC) must remain in the static portion of the design.

• Global clocking resources to Reconfigurable Partitions are limited, depending on the
device and on the clock regions occupied by these Reconfigurable Partitions.

• IP restrictions may occur due to components used to implement the IP or due to
connections required by the IP. Examples include:

° Vivado Debug Cores (See Using Vivado Debug Cores for more information on using
debug cores inside of RMs)

° IP modules with embedded global buffers or I/O (7 series only)

° Memory IP controller (MMCM and BSCAN)
Dynamic Function eXchange 13
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=13

Chapter 1: Introduction
• Reconfigurable Modules must be initialized to ensure a predictable starting condition
after reconfiguration. For all devices other than 7 series, GSR is automatically applied
after DFX completes. For 7 series devices, GSR can be turned on, after meeting Pblock
requirements, with the RESET_AFTER_RECONFIG Pblock property.

• Decoupling logic is highly recommended to disconnect the reconfigurable region from
the static portion of the design during the act of partial reconfiguration.

° GSR events hold all logic inside the RM in reset until configuration completes.
However, RM outputs can be random and all downstream logic should be
decoupled. For 7 series, if RESET_AFTER_RECONFIG is not used, additional
decoupling of clocks and inputs can be required to prevent unintended capture of
erroneous data of during reconfiguration (e.g. spurious write to memory).

° The Vivado Design Suite includes the Partial Reconfiguration Decoupler IP. This IP
allows users to easily insert MUXes to efficiently decouple AXI4-Lite, AXI4-Stream,
and custom interfaces. More information on the PR Decoupler IP is available on the
Xilinx website.

• A Reconfigurable Partition must be floorplanned with a Pblock, so the module must be
a block that can be physically isolated and meet timing. If the module is complete, it is
recommended to run this design through a non-DFX flow to get an initial evaluation of
placement, routing, and timing results. If the design has issues in a non-DFX flow, these
should be resolved before moving on to the DFX flow.

• Optimize an RP’s interface as much as possible. An excessive number of interface pins
on an RP can cause timing and routing issues. This is especially true if the Partition Pins
are densely placed. This can happen for two reasons:
a. RP Pblock is relatively small compared to the number of Partition Pins
b. All the Partition Pins are placed in a small area due to Static connections.

Consider the RP interface when designing and floorplanning for DFX.

• Virtex-7 SSI devices (7V2000T, 7VX1140T, 7VH870T, 7VH580T) have two fundamental
requirements. These requirements are:

° Reconfigurable regions must be fully contained within a single SLR. This ensures
that the global reset events are properly synchronized across all elements in the
Reconfigurable Module, and that all super long lines (SLL) are contained within the
static portion of the design. SLL are not partially reconfigurable.

° If the initial configuration of a 7 series SSI device is done through an SPIx1
interface, partial bitstreams must be delivered to the ICAP located on the SLR where
the Reconfigurable Partition exists, or to an external port, such as JTAG. If the initial
configuration is done through any other configuration port, the master ICAP can be
used as the delivery port for partial bitstreams.
Dynamic Function eXchange 14
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/products/intellectual-property/pr-decoupler.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=14

Chapter 1: Introduction
• UltraScale devices have a new requirement related to partial reconfiguration events.
Before a partial bitstream for a new Reconfigurable Module is loaded, the current
Reconfigurable Module must be “cleared” to prepare for reconfiguration. UltraScale+
devices do not have this limitation. For more information, see Summary of BIT Files for
UltraScale Devices in Chapter 8.

• Dedicated encryption support for partial bitstreams is available natively. See Known
Limitations, page 146 for specific unsupported use cases for UltraScale devices.

• Devices can use a per-frame CRC checking mechanism, enabled by
write_bitstream, to ensure each frame is valid before loading.

• Optimization across the DFX boundary is prohibited by the implementation tools. Often
the WNS paths in a DFX design are high fanout control/reset signals that cross the RP
boundary. Avoid high fanout signals crossing the RP boundary because the drivers
cannot be replicated. To allow the tools maximum flexibility of optimization/replication,
consider the following:

° For inputs to the RP, make the signal crossing the RP boundary a single fanout net,
and register the signal inside the RM before the fanout. This can be replicated as
necessary inside the RM (or put on global resources).

° For outputs, again make the signal crossing the DFX boundary a single fanout net.
Register the signal in static before the fanout for replication/optimization.

• For design with multiple RPs, Xilinx recommends not having direct connections
between two RPs. This includes connections that go through asynchronous static logic
(not registered in static). If direct connections exist between two RPs, all possible
configurations must be verified in static timing analysis to ensure timing is met across
these interfaces. This can be done for closed systems that are fully owned and
maintained by a single user, but can be impossible to verify for designs where different
RMs are developed by multiple users. Adding a synchronous endpoint in static ensures
timing is always met on any configuration, as long as the configuration where the RM
was implemented met timing.

Dynamic Function eXchange is a powerful capability within Xilinx devices, and
understanding the capabilities of the silicon and software is instrumental to success. While
trade-offs must be recognized and considered during the development process, the overall
result is a more flexible implementation of your FPGA design.
Dynamic Function eXchange 15
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=15

Chapter 1: Introduction
Dynamic Function eXchange Licensing
Dynamic Function eXchange is available as a feature within the Vivado Design Suite.
Starting with Vivado 2019.1, no specific license code is necessary to use this feature for any
edition of Vivado.

For older versions of Vivado, a Partial Reconfiguration license is included with every System
Edition and Design Edition seat, and is available for purchase for WebPACK Edition seats.
Dynamic Function eXchange 16
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=16

Chapter 2

Common Applications

Overview
The basic premise of Dynamic Function eXchange (DFX) is that the device hardware
resources can be time-multiplexed similar to the ability of a microprocessor to switch tasks.
Because the device is switching tasks in hardware, it has the benefit of both flexibility of a
software implementation and the performance of a hardware implementation. Several
different scenarios are presented here to illustrate the power of this technology.

Networked Multiport Interface
Dynamic Function eXchange optimizes traditional FPGA applications by reducing size,
weight, power, and cost. Time-independent functions can be identified, isolated, and
implemented as Reconfigurable Modules and swapped in and out of a single device as
needed. A typical example is a 40G OTN muxponder application. The ports of the client side
of the muxponder can support multiple interface protocols. However, it is not possible for
the system to predict which protocol will be used before the FPGA is configured. To ensure
that the FPGA does not have to be reconfigured and thus disable all ports, every possible
interface protocol is implemented for every port, as illustrated in Figure 2-1, page 18.
Dynamic Function eXchange 17
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=17

Chapter 2: Common Applications

This is an inefficient design because only one of the standards for each port is in use at any
point in time. Dynamic Function eXchange enables a more efficient design by making each
of the port interfaces a Reconfigurable Module, as shown in Figure 2-2. This also eliminates
the MUX elements required to connect multiple protocol engines to one port.

A wide variety of designs can benefit from this basic premise. Software defined radio (SDR),
for example, is one of many applications that has mutually exclusive functionality, and
which sees a dramatic improvement in flexibility and resource usage when this functionality
is multiplexed.

X-Ref Target - Figure 2-1

Figure 2-1: Network Switch Without Partial Reconfiguration

X-Ref Target - Figure 2-2

Figure 2-2: Network Switch With Partial Reconfiguration

FPGA

Config Memory
Storage

10GigE tx/rx

OC192 tx/rx

OTU2 tx/rx

Switch
Fabric

10GigE tx/rx

OC192 tx/rx

OTU2 tx/rx

OC192 tx/rx

Port 1

Port 2

Port 3

Port 4

X12003
Dynamic Function eXchange 18
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=18

Chapter 2: Common Applications
There are additional advantages with a dynamically reconfigurable design other than
efficiency. In the Figure 2-2, page 18 example, a new protocol can be supported at any time
without affecting the static logic, the switch fabric in this example. When a new standard is
loaded for any port, the other existing ports are not affected in any way. Additional
standards can be created and added to the configuration memory library without requiring
a complete redesign. This allows greater flexibility and reliability with less down time for the
switch fabric and the ports. A debug module could be created so that if a port was
experiencing errors, an unused port could be loaded with analysis/correction logic to
handle the problem real-time.

In the Figure 2-2, page 18 example, a unique partial BIT file must be generated for each
unique physical location that could be targeted by each protocol. Partial BIT files are
associated with an explicit region on the device. In this example, sixteen unique partial BIT
files to accommodate four protocols for four locations.

Configuration by Means of Standard Bus Interface
Dynamic Function eXchange can create a new configuration port using an interface
standard more compatible with the system architecture. For example, the FPGA could be a
peripheral on a PCIe® bus and the system host could configure the FPGA through the PCIe
connection. After power-on reset the FPGA must be configured with a full BIT file. However,
the full BIT file might only contain the PCIe interface and connection to the internal
configuration access port (ICAP).

Bitstream compression can be used to reduce the size and therefore configuration time of
this initial device load, helping the FPGA configuration meet PCIe enumeration
specifications.

The system host could then configure the majority of the FPGA functionality with a partial
BIT file downloaded through the PCIe port as shown in Figure 2-3. An example of fast
configuration over PCIe is shown in XAPP1338, with an example targeting UltraScale+
included.
Dynamic Function eXchange 19
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=19

Chapter 2: Common Applications

The PCIe standard requires the peripheral (the FPGA in this case) to acknowledge any
requests even if it cannot service the request. Reconfiguring the entire FPGA would violate
this requirement. Because the PCIe interface is part of the static logic, it is always active
during the dynamic reconfiguration process, thus ensuring that the FPGA can respond to
PCIe commands even during reconfiguration.

Tandem Configuration is a related solution that at first glance appears to be the same as is
shown here. However, the solution using Dynamic Function eXchange differs from Tandem
Configuration in two regards:

• The configuration process with DFX is a full device configuration, made smaller and
faster through compression, followed by a partial bitstream that overwrites the black
box region to complete the overall configuration. Tandem Configuration is a two-stage
configuration where each configuration frame is programmed exactly once.

• Tandem Configuration for 7 series devices does not permit dynamic reconfiguration of
the user application. Using DFX, the dynamic region can be reloaded with different user
applications or field updates. Tandem Configuration for UltraScale devices does permit
Field Updates and compatibility with DFX in general. The overall flow is Tandem
Configuration for a two-stage initial load, followed by partial reconfiguration to
dynamically modify the user application.

Tandem Configuration is designed to be a specific solution for a specific goal: fast
configuration of a PCIe endpoint to meet enumeration requirements. For more information,
see the following manuals:

• 7 Series FPGAs Integrated Block for PCI Express Product Guide (PG054) [Ref 14]
• Virtex-7 FPGA Gen3 PCIe Integrated Block for PCI Express Product Guide (PG023) [Ref 15]
• LogiCORE IP UltraScale FPGAs Gen3 Integrated Block for PCI Express Product Guide

(PG156) [Ref 16]
• UltraScale+ Devices Integrated Block for PCI Express Product Guide (PG213) [Ref 31]

X-Ref Target - Figure 2-3

Figure 2-3: Configuration by Means of PCIe Interface

ICAP

PCle

Static

Full
 Bit File

Partial
Bit File

• • • • • • •
Dynamic Function eXchange 20
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=20

Chapter 2: Common Applications
Dynamically Reconfigurable Packet Processor
A packet processor can use Dynamic Function eXchange to change its processing functions
quickly, based on the packet types received. In Figure 2-4, a packet has a header that
contains the partial BIT file, or a special packet contains the partial BIT file. After the partial
BIT file is processed, it is used to reconfigure a co-processor in the FPGA. This is an example
of the FPGA reconfiguring itself based on the data packet received instead of relying on a
predefined library of partial BIT files.

X-Ref Target - Figure 2-4

Figure 2-4: Dynamically Reconfigurable Packet Processor
Dynamic Function eXchange 21
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=21

Chapter 2: Common Applications
Asymmetric Key Encryption
There are some new applications that are not possible without Dynamic Function eXchange.
A very secure method for protecting the FPGA configuration file can be architected when
Dynamic Function eXchange and asymmetric cryptography are combined. (See Public-key
cryptography for asymmetric cryptography details.)

In Figure 2-5, the group of functions in the shaded box can be implemented within the
physical package of the FPGA. The cleartext information and the private key never leave a
well-protected container.

In a real implementation of this design, the initial BIT file is an unencrypted design that
does not contain any proprietary information. The initial design only contains the algorithm
to generate the public-private key pair and the interface connections between the host,
FPGA and ICAP.

After the initial BIT file is loaded, the FPGA generates the public-private key pair. The public
key is sent to the host which uses it to encrypt a partial BIT file. The encrypted partial BIT
file is downloaded to the FPGA where it is decrypted and sent to the ICAP to partially
reconfigure the FPGA, as shown in Figure 2-6, page 23.

X-Ref Target - Figure 2-5

Figure 2-5: Asymmetric Key Encryption
Dynamic Function eXchange 22
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Public-key_cryptography
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=22

Chapter 2: Common Applications

The partial BIT file could be the vast majority of the FPGA design with the logic in the static
design consuming a very small percentage of the overall FPGA resources.

This scheme has several advantages:

• The public-private key pair can be regenerated at any time. If a new configuration is
downloaded from the host it can be encrypted with a different public key. If the FPGA is
configured with the same partial BIT file, such as after a power-on reset, a different
public key pair is used even though it is the same BIT file.

• The private key is stored in SRAM. If the FPGA ever loses power the private key no
longer exists.

• Even if the system is stolen and the FPGA remains powered, it is extremely difficult to
find the private key because it is stored in the general purpose FPGA programmable
logic. It is not stored in a special register. You could manually locate each register bit
that stores the private key in physically remote and unrelated regions.

Summary
In addition to reducing size, weight, power and cost, Dynamic Function eXchange enables
new types of FPGA designs that would otherwise be impossible to implement.

X-Ref Target - Figure 2-6

Figure 2-6: Loading an Encrypted Partial Bit File

Host

Bit File
Library

Config 1

Config 2

Config 3

Encrypt
Algorithm

Public

FPGA

Generate Key Pair

Public Private

External
Interface

Decrypt
Algorithm ICAP

X12023
Dynamic Function eXchange 23
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=23

Chapter 3

Vivado Software Flow

Overview
The Vivado® Dynamic Function eXchange (DFX) design flow is similar to a standard design
flow, with some notable differences. The implementation software automatically manages
the low-level details to meet silicon requirements. You must provide guidance to define the
design structure and floorplan. The following steps summarize processing a DFX design:

1. Synthesize the static and Reconfigurable Modules separately.
2. Create physical constraints (Pblocks) to define the reconfigurable regions.
3. Set the HD.RECONFIGURABLE property on each Reconfigurable Partition.
4. Implement a complete design (static and one Reconfigurable Module per

Reconfigurable Partition) in context.
5. Save a design checkpoint for the full routed design.
6. Remove Reconfigurable Modules from this design and save a static-only design

checkpoint.
7. Lock the static placement and routing.
8. Add new Reconfigurable Modules to the static design and implement this new

configuration, saving a checkpoint for the full routed design.
9. Repeat Step 8 until all Reconfigurable Modules are implemented.
10. Run a verification utility (pr_verify) on all configurations.
11. Create bitstreams for each configuration.
Dynamic Function eXchange 24
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=24

Chapter 3: Vivado Software Flow
Dynamic Function eXchange Commands
The DFX flows are supported through the non-project batch/Tcl interface (no project based
commands), as well as within an RTL-based project flow. Example scripts for the non-project
flow are provided in the Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947)
[Ref 1], along with step-by-step instructions for setting up the flows. See that Tutorial for
more information.

Even with the introduction of the Dynamic Function eXchange terminology, the underlying
design flow remains unchanged. Fundamental Tcl commands remain unchanged so that
existing projects and scripts will safely migrate forward. Designs and scripts created prior to
Vivado 2019.2 require no modification when updating to this release.

The following sections describe a few specialized commands and options needed for the
DFX flows. Examples of how to use these commands to run a DFX flow are given. For more
information on individual commands, see the Vivado Design Suite Tcl Command Reference
Guide (UG835) [Ref 17].

Synthesis
Synthesizing a partially reconfigurable design does not require any special commands, but
does require bottom-up synthesis. There are currently no unsupported commands for
synthesis, optimization, or implementation.

These synthesis tools are supported:

• XST (supported for 7 series only)
• Synplify
• Vivado Synthesis

IMPORTANT: Bottom-up synthesis refers to a synthesis flow in which each module has its own
synthesis project. This generally involves turning off automatic I/O buffer insertion for the lower level
modules.

This document only covers the Vivado synthesis flow.

Synthesizing the Top Level

You must have a top-level netlist with a black box for each Reconfigurable Partition (RP).
This requires the top-level synthesis to have module or entity declarations for the
partitioned instances, but no logic; the module is empty.
Dynamic Function eXchange 25
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=25

Chapter 3: Vivado Software Flow
The top-level synthesis infers or instantiates I/O buffers on all top level ports. For more
information on controlling buffer insertion, see this link in the Vivado Design Suite User
Guide: Synthesis (UG901) [Ref 18].

synth_design -flatten_hierarchy rebuilt -top <top_module_name> -part <part>

Synthesizing Reconfigurable Modules

Because each Reconfigurable Module must be instantiated in the same black box in the
static design, the different versions must have identical interfaces. The name of the block
must be the same in each instance, and all the properties of the interfaces (names, widths,
direction) must also be identical. Each configuration of the design is assembled like a flat
design.

To synthesize a Reconfigurable Module, turn off all buffer insertions. You can do so in
Vivado Synthesis using the synth_design command in conjunction with the -mode
out_of_context switch:

synth_design -mode out_of_context -flatten_hierarchy rebuilt -top
<reconfig_module_name> -part <part>

The synth_design command synthesizes the design and stores the results in memory. In
order to write the results out to a file, use:

write_checkpoint <file_name>.dcp

It is recommended to close the design in memory after synthesis, and run implementation
separately from synthesis.

Reading Design Modules

If there is currently no design in memory, you must load a design. This can be done in a
variety of ways, for either the static design or for Reconfigurable Modules. After the
configurations are implemented, checkpoints are exclusively used to read in placed and
routed module databases.

Table 3-1: synth_design Options
Command Option Description

-mode out_of_context Prevents I/O insertion for synthesis and downstream tools. The
out_of_context mode is saved in the checkpoint if
write_checkpoint is issued.

-flatten_hierarchy rebuilt There are several values allowed for -flatten_hierarchy,
but rebuilt is the recommended setting for DFX flows.

-top This is the module/entity name of the module being
synthesized.

-part This is the Xilinx® part being targeted (for example,
xc7k325tffg900-3)
Dynamic Function eXchange 26
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf;a=xSettingABottomUpFlowUsingTheOutOfContextFlow
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=26

Chapter 3: Vivado Software Flow
Method 1: Add and Link Files

This is the recommended method to load and link all design sources in the most explicit and
thorough manner. The following steps pull in all necessary design sources and define the
Reconfigurable Partition boundaries.

1. Create a new project in memory. While this allows you to select a target device, the
project is not saved.
create_project -part <part> -in_memory

2. Add all the design sources. This can include multiple checkpoints for static or
reconfigurable logic, including lower-level RM sources.
add_files <top>.dcp
add_files <rp1_rmA_top>.dcp
add_files <rp1_rmA_lower>.dcp
add_files <rp2_rmA_top>.dcp

3. Use the SCOPED_TO_CELLS property to define relationships between levels of
hierarchy.

set_property SCOPED_TO_CELLS {<RP1_module_instance>} [get_files <rp1_rmA_top>.dcp]
set_property SCOPED_TO_CELLS {<RP1_lower_module_instance>} [get_files <rp1_rmA_lower>.dcp]
set_property SCOPED_TO_CELLS {<RP2_module_instance>} [get_files <rp2_rmA_top>.dcp]

4. Link the design together, defining all Reconfigurable Partitions.
link_design -top <top> -part <part> -reconfig_partitions {<RP1_module_instance> <RP2_module_instance>}

Table 3-2: link_design Options
Command Option Description

-part This is the Xilinx part being targeted (for example,
xc7k325tffg900-3)

-top This is the module/entity name of the module being
implemented. This switch can be omitted if set_property
top <top_module_name> [current_fileset] is issued
prior to link_design.

-reconfig_partitions <args> Specify a list of reconfigurable partitions to load while opening
the design. The specified reconfigurable partitions are then
marked with the HD.RECONFIGURABLE property for proper
handling in the design.

-pr_config <arg> For the project-based design flow only. This option specifies the
PR Configuration to apply while opening the design.
Dynamic Function eXchange 27
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=27

Chapter 3: Vivado Software Flow
Method 2: Read Netlist Design

This approach should be used when modules have been synthesized by tools other than
Vivado synthesis.

read_edif <top>.edf/edn/ngc

read_edif <rp1_a>.edf/edn/ngc

read_edif <rp2_a>.edf/edn/ngc

link_design -top <top_module_name> -part <part>

Method 3: Open/Read Checkpoint

If the static (top-level) design has synthesis or implementation results stored as a
checkpoint, then it can be loaded using the open_checkpoint command. This command
reads in the static design checkpoint and opens it in active memory:

open_checkpoint <file>

If the checkpoint is for the complete netlist of a reconfigurable module (that is, not for
static), then the instance name can be specified using read_checkpoint -cell. If the
checkpoint is a post-implementation checkpoint, then the additional -strict option must
be used as well. This option can also be used with a post-synthesis checkpoint to ensure
exact port matching has been achieved. To read in a checkpoint in a Reconfigurable
Module, the top-level design must already be opened, and must have a black box for the
specified cell. Then the following command can be specified:

read_checkpoint -cell <cellname> <file> [-strict]

CAUTION! Do not use this method if the synthesized checkpoint has underlying modules that are not
included. The read_checkpoint -cell approach does not support nesting. Use the link_design
approach instead in Method 1: Add and Link Files.

Table 3-3: read_checkpoint Switches
Switch Name Description

-cell Specifies the full hierarchical name of the Reconfigurable
Module.

-strict Requires exact ports match for replacing cell, and checks that
part, package, and speed grade values are identical. Should be
used when restoring implementation data.

<file> Specifies the full or relative path to the checkpoint (DCP) to be
read in.
Dynamic Function eXchange 28
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=28

Chapter 3: Vivado Software Flow
Method 4: Open Checkpoint/Update Design

This is useful when the synthesis results are in the form of a netlist (EDF or EDN), but static
has already been implemented. The following example shows the commands for the second
configuration in which this is true.

open_checkpoint <top>.dcp
lock_design -level routing
update_design -cells <rp1> -from_file <rp1_b>.{edf/edn}
update_design -cells <rp2> -from_file <rp2_b>.{edf/edn}

Adding Reconfigurable Modules with Sub-Module Netlists

If a Reconfigurable Module has sub-module netlists, it can be difficult for the Vivado tools
to process the sub-module netlists. This is because in the DFX flow the RM netlists are
added to a design that is already open in memory. This means the update_design
-cells command must be used, which requires the cell name for every EDIF file, which can
be troublesome to get.

There are two ways to make loading RM sub-module netlists easier in the Vivado Design
Suite.

Method 1: Create a Single RM Checkpoint (DCP)

Create an RM checkpoint (DCP) that includes all netlists. Use add_files to add all of the
EDIF (or NGC) files, and use link_design to resolve the EDIF files to their respective cells.
Here is an example of the commands used in this process:

add_files [list rm.edf ip_1.edf … ip_n.edf]
Run if RM XDC exists
add_files rm.xdc
link_design -top <rm_module> -part <part>
write_checkpoint rm_v#.dcp
close_project

IMPORTANT: Using this methodology to combine/convert a netlist into a DCP is the recommended way
to handle an RM that has one or more NGC source files as well.

Then this newly-created RM checkpoint can be used in the DFX flow. In the commands
below, the single read_checkpoint -cell command replaces what could be many
update_design -cell commands.

add_files static.dcp
link_design -top <top> part <part>
lock_design -level routing
read_checkpoint -cell <rm_inst> rm_v#.dcp
Dynamic Function eXchange 29
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=29

Chapter 3: Vivado Software Flow
Method 2: Place the Sub-Module Netlists in the Same Directory as the RM’s Top-Level Netlist

When the top-level RM netlist is read into the DFX design using update_design -cell,
make sure that all sub-module netlists are in the same directory as the RM top-level netlist.
In this case, the lower-level netlists do not need to be specified, but they are picked up
automatically by the update_design -cells command. This is less explicit than Method
1, but requires fewer steps. In this case the commands to load the RM netlist would look like
the following:

add_files static.dcp
link_design -top <top> part <part>
lock_design -level routing
update_design -cells <rm_inst> -from_file rm_v#.edf

In the last (update_design) command above, the lower-level netlists are picked up
automatically if they are in the same directory as rm_v#.edf.

Reading Design Constraints
New constraints can be applied for each configuration at various points in the flow. If an RM
is read in as a DCP, then any constraints stored in the DCP are automatically applied.
Additionally, the read_xdc command can be used to apply constraints scoped to the
top-level, or to the specific cell (using -cell switch). If constraint are expected to directly
or indirectly affect the RM, then the RM must be resolved (not a black box) prior to reading
in the new constraints. Otherwise, the constraints may be dropped or not correctly
propagated in the constraint system. Because Static is only placed and routed in the initial
configuration, all constraints for subsequent configurations (where Static is locked) should
be focused strictly on the RP regions being implemented.

Implementation
Because the DFX flow allows for various configurations in hardware, multiple
implementation runs are required. Each implementation of a DFX design is referred to as a
configuration. Each module of the design (static or Reconfigurable Module) can be
implemented or imported (if previously implemented). Implementation results for the static
design must be consistent for each configuration, so that the design is implemented in one
configuration, and then imported in subsequent configurations. Additional configurations
can be constructed by importing static, and implementing or importing each
Reconfigurable Module.
Dynamic Function eXchange 30
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=30

Chapter 3: Vivado Software Flow
There are no restrictions to the support of implementation commands or options for DFX,
but certain optimizations and sub-routines are not done if they oppose the fundamental
requirements of partial reconfiguration. The following list of commands can be run after the
logical design is loaded (using link_design or open_checkpoint):

Run if all constraints are not already loaded
read_xdc

Optional command
opt_design

place_design

Optional command
phys_opt_design

route_design

Preserving Implementation Data

In the DFX flow, it is a requirement to lock down the placement and routing results of the
static logic from the first configuration for all subsequent configurations. The static
implementation of the first configuration must be saved as a checkpoint. When the
checkpoint is read for subsequent configurations, the placement and routing must be
locked, to ensure that the static design remains completely identical from configuration to
configuration. To lock the placement and routing of an imported checkpoint (static or
reconfigurable), the lock_design command is used.

lock_design -level [logical|placement|routing] [cell_name]

When locking down the static logic with the above command, the optional [cell_name]
can be omitted.

lock_design -level routing

To lock the results of an imported RM, the full hierarchical name should be specified within
the post-implementation checkpoint:

lock_design -level routing u0_RM_instance

For Dynamic Function eXchange, the only supported preservation level is routing. Other
preservation levels are available for this command, but they must only be used for other
Hierarchical Design flows.
Dynamic Function eXchange 31
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=31

Chapter 3: Vivado Software Flow
Dynamic Function eXchange Constraints and
Properties
There are properties and constraints unique to the Dynamic Function eXchange flow. These
initiate DFX-specific implementation processing and apply specific characteristics in the
partial bitstreams. The four areas for constraints and properties for DFX are:

Define a Module as Reconfigurable
In order to implement a DFX design, it is required to specify each Reconfigurable Module as
such. To do this you must set a property on the top level of each hierarchical cell that is
going to be reconfigurable. For example, take a design where one Reconfigurable Partition
named inst_count exists, and it has two Reconfigurable Modules, count_up and
count_down. The following command must be issued prior to implementation of the first
configuration.

set_property HD.RECONFIGURABLE TRUE [get_cells inst_count]

This initiates the Dynamic Function eXchange features in the software that are required to
successfully implement a DFX design. The HD.RECONFIGURABLE property implies a
number of underlying constraints and tasks:

• Sets DONT_TOUCH on the specified cell and its interface nets. This prevents
optimization across the boundary of the module.

• Sets EXCLUDE_PLACEMENT on the cell's Pblock. This prevents static logic from being
placed in the reconfigurable region.

• Sets CONTAIN_ROUTING on the cell's Pblock. This keeps all the routing for the
Reconfigurable Module within the bounding box.

• Enables special code for DRCs, clock routing, etc.

Table 3-4: Constraints and Properties
Constraints and Properties Necessity

Defining a module as reconfigurable Required
Creating a floorplan for the reconfigurable region Required
Applying reset after reconfiguration Optional, but highly recommended
Turn on visualization scripts Optional
Dynamic Function eXchange 32
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=32

Chapter 3: Vivado Software Flow
Create a Floorplan for the Reconfigurable Region
Each Reconfigurable Partition is required to have a Pblock to define the physical resources
available for the Reconfigurable Module. Because this Pblock is set on a Reconfigurable
Partition, these restrictions and requirements apply:

• The Pblock must contain only valid reconfigurable element types. The region may
overlap other site types, but these other sites must not be included in the
resize_pblock commands.

• Multiple Pblock rectangles for each component type may be used to create the
Reconfigurable Partition region, but for the greatest routability, they should be
contiguous. Gaps to account for non-reconfigurable resources are permitted, but in
general, the simpler the overall shape, the easier the design will be to place and route.

• If using the RESET_AFTER_RECONFIG property for 7 series devices, the Pblock height
must align to clock region boundaries. See Apply Reset After Reconfiguration for more
detail.

• The width and composition of the Pblock must not split interconnect columns for
7 series devices. See Creating Pblocks for 7 Series Devices in Chapter 6 for more detail.

• The resource usage of the largest RM needs to be taken into consideration when
defining the Pblock in certain parts. If the largest RM exceeds the documented
maximum resource counts of the target device, write_bitstream will generate an
error.

• The Pblock must not overlap any other Pblock in the design.
• Nesting of Reconfigurable Partitions (a Reconfigurable Partition within another

Reconfigurable Partition) is currently not supported. Standard Pblocks for
floorplanning logic within a Reconfigurable Partition are supported, as are nested
Pblocks.
Dynamic Function eXchange 33
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=33

Chapter 3: Vivado Software Flow
The following is an example of a set of constraints for a Reconfigurable Partition:

#define a new pblock
create_pblock pblock_count

#add a hierarchical module to the pblock
add_cells_to_pblock [get_pblocks pblock_count] [get_cells [list inst_count]]

#define the size and components within the pblock
resize_pblock [get_pblocks pblock_count] -add {SLICE_X136Y50:SLICE_X145Y99}
resize_pblock [get_pblocks pblock_count] -add {RAMB18_X6Y20:RAMB18_X6Y39}
resize_pblock [get_pblocks pblock_count] -add {RAMB36_X6Y10:RAMB36_X6Y19}

Floorplan in the Vivado IDE
The Vivado IDE can be used for planning and visualization tasks. The best example of this is
using the Device view to create and modify Pblock constraints for floorplanning.

Table 3-5: Pblock Commands and Properties
Command/Property Name Description

create_pblock Command used to create the initial Pblock for each
Reconfigurable Partition instance.

add_cells_to_pblock Command used to specify the instances that belong to the
Pblock. This is typically a level of hierarchy as defined by the
bottom-up synthesis processing.

resize_pblock Command used to define the site types (such as SLICE or
RAMB36) and site locations that are owned by the Pblock.

RESET_AFTER_RECONFIG Pblock property used to control the use of the dedicated GSR
event on the reconfigurable region. Use of this property is
highly recommended and, for 7 series and Zynq devices,
requires clock region alignment in the vertical direction.

CONTAIN_ROUTING Pblock property used to control the routing to prevent usage of
routing resources not owned by the Pblock. This property is
mandatory for PR and is set to True automatically for
Reconfigurable Partitions. Static routing is still allowed to use
resources inside of the Pblock.

EXCLUDE_PLACEMENT Pblock Property used to prevent the placement of any logic, not
belonging to the Pblock, inside the defined Pblock RANGE. This
property is mandatory for PR and set to true automatically for
Reconfigurable Partitions. Static logic can be placed inside of
the Reconfigurable Partition with a specific LOC property if
RESET_AFTER_RECONFIG is not used.

PARTPIN_SPREADING Used to control the maximum number of PartPins per INT tile.
Default is 5.
Setting a lower value (i.e. 3) increases the spreading between
partition pin placements. This typically eases routing
congestion in areas with dense PartPin placement, but can
negatively affect RP interface timing.
Dynamic Function eXchange 34
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=34

Chapter 3: Vivado Software Flow
1. Open the synthesized static design and the largest of each Reconfigurable Module.
Here are the commands, using the tutorial design (found in the Vivado Design Suite
Tutorial: Dynamic Function eXchange (UG947) [Ref 1]) as an example:
open_checkpoint synth/Static/top_synth.dcp
set_property HD.RECONFIGURABLE true [get_cells inst_count]
read_checkpoint -cell [get_cells inst_count] synth/count_up/count_synth.dcp
set_property HD.RECONFIGURABLE true [get_cells inst_shift]
read_checkpoint -cell [get_cells inst_shift] synth/shift_right/shift_synth.dcp

At this point, a full configuration has been loaded into memory, and the Reconfigurable
Partitions have been defined.

2. To create Pblock constraints for the Reconfigurable Partitions, right-click on an instance
in the Netlist window (in this case, inst_count or inst_shift) and select Draw Pblock.
Create a rectangle in the Device view to select resources for this Reconfigurable
Partition.

3. With this Pblock selected, note that the Pblock Properties pane shows the number of
available and required resources. The number required is based on the currently loaded
Reconfigurable Module, so keep in mind that other modules may have different
requirements. If additional rectangles are required to build the appropriate shape (an
“L”, for example), right-click the Pblock in the Device view and select Add Pblock
Rectangle.

4. Design rule checks (DRCs) can be issued to validate the floorplan and other design
considerations for the in-memory configuration. To run, select Reports > Report DRC
and ensure the Partial Reconfiguration checks are present (see Figure 3-1, page 36).
Note that if HD.RECONFIGURABLE has not been set on a Pblock, only a single DRC is
available, instead of the full complement shown below.

Dynamic Function eXchange 35
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=35

Chapter 3: Vivado Software Flow
X-Ref Target - Figure 3-1

Figure 3-1: Partial Reconfiguration DRCs in the Vivado IDE
Dynamic Function eXchange 36
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=36

Chapter 3: Vivado Software Flow
This set of DRCs can be run from the Tcl Console or within a script, by using the
report_drc command. To limit the checks to the ones shown here for Partial
Reconfiguration, use this syntax:

report_drc -checks [get_drc_checks HDPR*]

To extend the DRCs to those checked during specific phases of design processing the
-ruledeck option can be used. For example, the following command can be issued on a
placed and routed design:

report_drc -ruledeck bitstream_checks

To save these floorplanning constraints, enter the following command in the Tcl Console:

write_xdc top_fplan.xdc

The Pblock constraints stored in this constraints file can be used directly or can be copied
to another top-level design constraints file. This XDC file contains all the constraints in the
current design in memory not just the constraints recently added.

CAUTION! Do NOT save the overall design from the Vivado IDE using File > Checkpoint > Save or the
equivalent button. If you save the currently loaded design in this way, you will overwrite your
synthesized static design checkpoint with a new version that includes Reconfigurable Modules and
additional constraints.

Using Visualization Scripts
For each Reconfigurable Partition, scripts are automatically created to confirm the site
ownership for each part of a DFX design. The visualization scripts generated can vary based
on architecture and need.

Scripts are automatically created for all RP Pblock in an hd_visual directory, which is
created in the directory where the run script is launched. To use these scripts, read a routed
design checkpoint into the Vivado IDE, then source one of the scripts. These design-specific
scripts highlight configuration tiles as you have defined them, show configuration frames
used to create the partial bit file, or show sites excluded by the DFX floorplan. Additional
scripts are created for other flows, such as Module Analysis or Tandem Configuration, and
are not used for DFX.

For 7 series devices, the main script is named <rp_pblock>_AllTiles.tcl and shows
all the sites owned by the Reconfigurable Partition, for both placement and routing of any
implemented Reconfigurable Modules. Other scripts are created for very specific goals and
are not needed in most cases.
Dynamic Function eXchange 37
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=37

Chapter 3: Vivado Software Flow
For UltraScale and UltraScale+, unique scripts named <rp_pblock>_Placement_
AllTiles.tcl and <rp_pblock>_Routing_AllTiles.tcl show the boundaries for
the placement and expanded routing for the reconfigurable region. The placement script
shows the range available for logic placement after snapping is finished. The routing script
shows the expanded routing region and represents the contents of the partial bitstream
created for that RP.

For all devices, three additional scripts might be created per design when necessary:
blockedBelsRouteThrus.tcl, blockedPins.tcl, and blockedSitesInputs.tcl.
When designs encounter higher levels of congestion, these scripts are created to show
restricted sites. This information can be used to adjust the size and shape of the RP pblock,
and can also be shared with support for troubleshooting purposes.

Timing Constraints
Timing constraints for a partially reconfigurable design are similar to timing constraints for
a traditional flat design. The primary clocks and I/Os must be constrained with the
corresponding constraints. For more information on these constraints, see this link (for
defining clocks) and this link (for constraining I/O delays) in the Vivado Design Suite User
Guide: Using Constraints (UG903) [Ref 19].

After the correct constraints are applied to the design, run static timing analysis to verify
the performance of the design. This verification must be run for each reconfigurable
module in the overall static design. For more information on how to analyze the design, see
the Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
[Ref 20].

The Vivado Design Suite includes the capability to run cell level timing reports. Use the
-cell option for report_timing or report_timing_summary to focus timing analysis
on a specific Reconfigurable Module. This is especially useful on configurations where the
static design has been imported and locked from a prior configuration.

There is a Partition column added to the timing reports generated by report_timing
and report_timing_summary. It helps identify if failing paths are within static, an RM, or
crosses an RP boundary. Both of these commands have a new -no_pr_attribute switch
to turn this new functionality off. This can be useful if, for example, scripts are being used to
parse the timing reports and are negatively affected by this new column.
Dynamic Function eXchange 38
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug903-vivado-using-constraints.pdf;a=xDefiningClocks
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug903-vivado-using-constraints.pdf;a=xConstrainingIODelay
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=38

Chapter 3: Vivado Software Flow
Partition Pins
Interface points called partition pins are automatically created within the Pblock ranges
defined for the Reconfigurable Partition. These virtual I/O are established within
interconnect tiles as the anchor points that remain consistent from one module to the next.
No physical resources such as LUTs or flip-flops are required to establish these anchor
points, and no additional delay is incurred at these points.

The placer chooses locations based on source and loads and timing requirements, but you
can specify these locations as well. The following constraints can be applied to influence
partition pin placement.

Note: The PARTPIN_SPREADING property in Table 3-5, can also be used to affect Partition Pins, but
is applied at the Pblock level.

Context Property Examples:

• set_property HD.PARTPIN_LOCS INT_R_X4Y153 [get_ports <port_name>]
• set_property HD.PARTPIN_RANGE SLICE_X4Y153:SLICE_X5Y157

[get_ports <port_name>]

Instance names for interconnect tile sites can be seen in the Device View with the Routing
Resources enabled.

Note: The HD.PARTPIN_RANGE is automatically set during place_design if no user-defined
value is found. Once the value is set, it will not be reset during interactive place and route, such as
making experimental changes to the RP Pblocks and running place_design -unplace. In this
case, the HD.PARTPIN_RANGE and HD.PARTPIN_LOCS need to be reset manually if Pblock
adjustments are made. The properties can be reset like most properties.

Table 3-6: Context Properties
Command/Property Name Description

HD.PARTPIN_LOCS Used to define a specific interconnect tile (INT) for the specified
port to be routed. Overrides an HD.PARTPIN_RANGE value.
Affects placement and routing of logic on both sides of the
Reconfigurable Partition boundary.
Do not use this property on clock ports, as this assumes local
routing for the clock.
Do not use this property on dedicated connections.

HD.PARTPIN_RANGE Used to define a range of component sites (SLICE, DSP, block RAM)
or interconnect tiles (INT) that can be used to route the specified
port(s).
The value is automatically calculated based on Pblock range if no
user-defined HD.PARTPIN_RANGE value exists.
Dynamic Function eXchange 39
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=39

Chapter 3: Vivado Software Flow
The following Tcl proc can be useful when doing this kind of interactive floorplanning on
DFX designs:

Proc to unroute, uplace, and reset HD.PARTPIN_*
###
proc pr_unplace {} {
route_design -unroute
place_design -unplace
set cells [get_cells -quiet -hier -filter HD.RECONFIGURABLE]
foreach cell $cells {
reset_property HD.PARTPIN_LOCS [get_pins $cell/*]
reset_property HD.PARTPIN_RANGE [get_pins $cell/*]

}
}

Partition pin information can be obtained from placed or routed designs by using the
get_pplocs command. Use either the -nets or -pins option to focus the response to a
particular Reconfigurable Partition or interface pin.

get_pplocs -nets <args> -pins <args> [-count] [-unlocked] [-locked] [-level <arg>]
 [-quiet] [-verbose]

Example:

get_pplocs -pins [get_pins u_count/*]

Table 3-7: get_pplocs Options
Name Description

-nets List of nets to report its PPLOCs.
-pins List of pins to report its PPLOCs.
[-count] Count number of PPLOCs; Do not report PPLOC or node names.
[-unlocked] Report unlocked/unfixed PPLOCs only.
[-locked] Report locked/fixed PPLOCs only; use -level to specify locked

level.
[-level] Specify locked level.
[-quiet] Ignore command errors.
[-verbose] Suspend message limits during command execution.
Dynamic Function eXchange 40
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=40

Chapter 3: Vivado Software Flow
In UltraScale or UltraScale+ designs, not all interface ports receive a partition pin. With the
routing expansion feature, as explained in Expansion of CONTAIN_ROUTING Area, some
interface nets are completely contained within the expanded region. When this happens, no
partition pin is inserted; the entire net, including the source and all loads, is contained
within the area captured by the partial bit file. Rather than pick an unnecessary
intermediate point for the route, the entire net is rerouted, giving the Vivado tools the
flexibility to pick an optimal solution.

Apply Reset After Reconfiguration
With the Reset After Reconfiguration feature, the reconfiguring region is held in a steady
state during partial reconfiguration, and then all logic in the new Reconfigurable Module is
initialized to its starting values. Static routes can still freely pass unaffected through the
region, and static logic (and all other dynamic regions) elsewhere in the device continue to
operate normally during Partial Reconfiguration. Dynamic Function eXchange with this
feature behaves in the same manner as the initial configuration of the FPGA, with
synchronous elements being released in a known, initialized state.

IMPORTANT: Release of global signals such as GSR (Global Set Reset) and GWE (Global Write Enable)
are not guaranteed to be synchronized chip-wide. If functionality within a Reconfigurable Module relies
on synchronized startup of initialized sequential elements, the clock(s) driving the logic in that module
or Clock Enables on these elements can be disabled during reconfiguration, then re-enabled after
reconfiguration has been completed. For more details, see the “Design Advisory for techniques on
properly synchronizing flip-flops and SRLs” answer record (AR#44174) [Ref 36].

This is the RESET_AFTER_RECONFIG property syntax:

set_property RESET_AFTER_RECONFIG true [get_pblocks <reconfig_pblock_name>]

If the design uses the DRP interface of the 7 series XADC component, the interface will be
blocked (held in reset) during partial reconfiguration when RESET_AFTER_RECONFIG is
enabled. The interface will be non-responsive (busy), and there will be no access during the
length of the reconfiguration period. The interface will become accessible again after
partial reconfiguration is complete.
Dynamic Function eXchange 41
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=41

Chapter 3: Vivado Software Flow
To apply the Reset After Reconfiguration methodology for 7 series and Zynq-7000 SoC
devices, Pblock constraints must align to reconfigurable frames. Because the GSR affects
every synchronous element within the region, exclusive use of reconfiguration frames is
required; static logic is not permitted within these reconfigurable frames (static routing is
permitted). Pblocks must align vertically to clock regions, since that matches the base
region for a reconfigurable frame. The width of a Pblock does not matter when using
RESET_AFTER_RECONFIG.

UltraScale™ and UltraScale+™devices do not have this clock region alignment requirement,
and GSR can be applied at a fine granularity. Because of this, RESET_AFTER_RECONFIG is
automatically applied for all Reconfigurable Partitions in the UltraScale and UltraScale+
architecture. This capability cannot be disabled.

In Figure 3-2, the Pblock on the left (pblock_shift) is frame-aligned because the top and
bottom of the Pblock align to the height of clock region X1Y3. The Pblock on the right
(pblock_count) is not frame-aligned.

° For 7 series devices: Pblocks that are not frame-aligned (such as pblock_count in
the figure below) cannot have RESET_AFTER_RECONFIG set because any static
logic placed between it and the clock region boundary above it would be affected
by GSR after that module was partially reconfigured.

° For UltraScale and UltraScale+ devices: because of the improved GSR controls, both
Pblocks automatically use RESET_AFTER_RECONFIG.

Using the SNAPPING_MODE constraint automatically creates legal, reconfigurable Pblocks.
See Automatic Adjustments for Reconfigurable Partition Pblocks in Chapter 6 (for 7 series
devices) or Automatic Adjustments for PU on Pblocks in Chapter 7 (for UltraScale and
UltraScale+ devices) for more information.
Dynamic Function eXchange 42
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=42

Chapter 3: Vivado Software Flow

The GSR capabilities are embedded within the partial bitstreams, so nothing extra must be
done to include this feature during reconfiguration. However, because this process utilizes
the SHUTDOWN sequence (masked to the reconfiguring region only), the external DONE pin
are pulled LOW when reconfiguration starts, then pull HIGH when it successfully completes.
This behavior must be considered when setting up the board. Using the STARTUP block
DONEO is not an option to prevent the DONE pin from changing state, since this block is
disabled during shutdown. Nor can STARTUP be used for other purposes, such as
generating a configuration clock for partial reconfiguration if RESET_AFTER_RECONFIG is
used.

Moreover, in order to open the GSR mask for only the dynamic region when reconfiguration
occurs, the mask for the entire design begins as closed after the initial configuration. Each
partial bitstream opens the mask for the target region, loads new configuration data, issues
a GSR event for this region, then closes the mask. For UltraScale only, this process is split
between two bitstreams -- see the Clearing Bitstreams section in Chapter 8 for more
information. Because the mask is closed when reconfiguration is not occurring, full-device
access to GSR is not permitted.

X-Ref Target - Figure 3-2

Figure 3-2: RESET_AFTER_RECONFIG Compatible (Left) and Incompatible (Right) Pblocks
Dynamic Function eXchange 43
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=43

Chapter 3: Vivado Software Flow
For 7 Series only, an alternative approach would be to forego this property and apply a local
reset to any reconfigured logic that requires initialization to function properly. This
approach does not require vertical alignment to clock region boundaries. Without GSR or a
local reset, the initial starting value of a synchronous element within a reconfigured module
cannot be guaranteed.

Software Flow
This section describes the basic flow, and gives sample commands to execute this flow.

Synthesis
Each module (including Static) needs to be synthesized bottom-up so that a netlist or
checkpoint exists for static and each Reconfigurable Module.

1. Synthesize the top level:

read_verilog top.v (and other HDL associated with the static design, including
black box module definitions for Reconfigurable Modules)

then:
read_xdc top_synth.xdc
synth_design -top top -part xc7k70tfbg676-2
write_checkpoint top_synth.dcp

2. Synthesize a Reconfigurable Module:
read_verilog rp1_a.v
synth_design -top rp1 -part xc7k70tfbg676-2 -mode out_of_context
write_checkpoint rp1_a_synth.dcp

3. Repeat for each remaining Reconfigurable Module
read_verilog rp1_b.v
synth_design -top rp1 -part xc7k70tfbg676-2 -mode out_of_context
write_checkpoint rp1_b_synth.dcp

Implementation
Create as many configurations as necessary to implement all Reconfigurable Modules at
least once. The first configuration loads in synthesis results for top and the first
Reconfigurable Module. You must then mark the module as being reconfigurable, then run
implementation. Write out a checkpoint for the complete routed configuration, and
optionally for the Reconfigurable Module so it can be reused later if desired. Finally, remove
the Reconfigurable Module from the design (update_design -cell -black_box) and
write out a checkpoint for the locked static design alone.
Dynamic Function eXchange 44
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=44

Chapter 3: Vivado Software Flow
Configuration 1:

open_checkpoint top_synth.dcp
read_xdc top_impl.xdc
set_property HD.RECONFIGURABLE true [get_cells rp1]
read_checkpoint -cell rp1 rp1_a_synth.dcp
opt_design
place_design
route_design
write_checkpoint config1_routed.dcp
write_checkpoint -cell rp1 rp1_a_route_design.dcp
update_design -cell rp1 -black_box
lock_design -level routing
write_checkpoint static_routed.dcp

For the second configuration, load the placed and routed checkpoint for static (if it was
closed), which currently has a black box for the Reconfigurable Module. Then load in the
synthesis results for the second Reconfigurable Module and implement the design. Finally
write out an implementation checkpoint for the second version of the Reconfigurable
Module.

Configuration 2:

open_checkpoint static_routed.dcp
read_checkpoint -cell rp1 rp1_b_synth.dcp
opt_design
place_design
route_design
write_checkpoint config2_routed.dcp
write_checkpoint -cell rp1 rp1_b_route_design.dcp

TIP: Keep each configuration in a separate folder so that all intermediate checkpoints, log and report
files, bit files, and other design outputs are kept unique.

If multiple Reconfigurable Partitions exist, then other configurations may be required.
Additional configurations can also be created by importing previously implemented
Reconfigurable Modules to create full designs that exist in hardware. This can be useful for
creating full bitstreams with a desired combination for power-up, or for performing static
timing analysis, power analysis, or simulation.

Full place and route results for each Reconfigurable Module checkpoint is preserved
completely, so creating new configurations is easily done by loading a collection of routed
checkpoints. However, there are limitations to be aware of when using the flow. Using
write_checkpoint -cell to save the RM implementation results does not preserve
constraints local to this module. For RMs with internal clock constraints or timing
exceptions starting and/or ending within the RM, these constraints need to be reapplied for
timing analysis after creating the new configuration. RMs with Xilinx or 3rd party IP are
good examples of modules that might be exposed to this limitation.
Dynamic Function eXchange 45
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=45

Chapter 3: Vivado Software Flow
Incremental Compile
Dynamic Function eXchange designs can use the Vivado Incremental Compilation feature
for any configuration run. The flow is documented here in Vivado Design Suite User Guide:
Implementation (UG904), and best results are seen when 95% of design instances match.

For any Incremental Compile usage, be sure to select a prior checkpoint for that specific
configuration to match as much of the design as possible. Note that for the second
configuration and beyond, all static logic and routing is locked, so the Incremental Compile
effort will be focused within Reconfigurable Modules.

Reporting
Each step of the implementation flow performs design rule checks (DRCs) unique to partial
reconfiguration. Keep a close eye on the messages given by the implementation steps to
ensure no critical warnings are issued. These messages provide guidance to optimize
module interfaces, floorplans, and other key aspects of DFX designs.

Most reports that can be generated do not have DFX-specific sections, but useful
information can be extracted nonetheless. For example, utilization information can be
obtained by using the -pblocks switch for the report_utilization command. This
shows the used and available resources within a given reconfigurable module. Here is an
example using the design from the Vivado Design Suite Tutorial: Dynamic Function
eXchange (UG947) [Ref 1]:

report_utilization -pblocks [get_pblocks pblock_count]

For clock reporting, however, report_clock_utilization shows the clocks reserved
for partial reconfiguration implementation.

The Dynamic Function eXchange flow can be used in conjunction with the IEEE-1735 v2
encryption capability available within Vivado. Static design checkpoints can be encrypted
and shared with other users without exposing details of the design. Rights management
can be set such that details such as LUT contents and schematic details can be hidden, and
netlist export and design modification can be disabled. Developers of dynamic regions can
still insert their reconfigurable logic and implement within this locked static context. If
permission is given, these developers can generate partial bitstreams from within this
encrypted context for their dynamic function.

Note that a license is required to use this feature, and any licensed IP within the static
region will still require a valid license to open that checkpoint even if it is encrypted.

For more information on creating encrypted design checkpoints and the options available,
please consult Chapter 6 of UG1118.
Dynamic Function eXchange 46
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug904-vivado-implementation.pdf;a=xIncrementalCompile
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=46

Chapter 3: Vivado Software Flow
Verifying Configurations
Once all configurations have been completely placed and routed, a final verification check
can be done to validate consistency between these configurations using pr_verify. This
command takes in multiple routed checkpoints (DCPs) as arguments, and outputs a log of
any differences found in the static implementation and Partition Pin placement between
them. Placement and routing within any RMs is ignored during the comparison.

When just two configurations are to be compared, list the two routed checkpoints as
<file1> and <file2>. The pr_verify command loads both in memory and makes the
comparison.

When more than two configurations are to be compared, provide a master configuration
using the -initial switch, then list the remaining configurations by using the
-additional switch, listing configurations in braces ({ and }). The initial configuration is
kept in memory and the remaining configurations are compared against the initial one.
Bitstreams should not be generated for any configurations if any pair of configurations do
not pass the PR Verify check.

pr_verify [-full_check] [-file <arg>] [-initial <arg>] [-additional <arg>]
 [-quiet] [-verbose] [<file1>] [<file2>]

The following is a sample command line comparing two configurations:

pr_verify -full_check config1_routed.dcp config2_routed.dcp -file pr_verify_c1_c2.log

The following is a second example verifying three configurations:

pr_verify -full_check -initial config1.dcp -additional {config2.dcp config3.dcp} -file
three_config.log

Table 3-8: pr_verify Options
Command Option Description

-full_check Default behavior is to report the first difference only; if this
option is selected, pr_verify reports all differences in
placement or routing.

-file Filename to output results to. Send output to console if -file
is not used.

-initial Select one routed design checkpoint against which all others
will be compared.

-additional Select one or more routed design checkpoints to compare
against the initial one. List multiple checkpoints within braces,
separated by a space, as in this example:
{config2.dcp config3.dcp config4.dcp}

-quiet Ignore command errors.
-verbose Suspend message limits during command execution.
Dynamic Function eXchange 47
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=47

Chapter 3: Vivado Software Flow
The scripts provided with the Vivado Design Suite Tutorial: Dynamic Function eXchange
(UG947) [Ref 1] have a Tcl Proc called verify_configs that automatically runs all existing
configurations through pr_verify, and reports if the DCPs are compatible or not.

Bitstream Generation
As in a flat flow, bitstreams are created with the write_bitstream command. For each
design configuration, simply issue write_bitstream to create a full standard
configuration file plus one partial bit file for each Reconfigurable Module within that
configuration.

Xilinx recommends providing the configuration name and Reconfigurable Module names in
the -file option specified with write_bitstream. Only the base bit file name can be
modified, so it is important to record which Reconfigurable Modules were selected for each
configuration.

Using the previous design, the following is an example of reading routed checkpoints
(configurations) and creating bitstreams for all implemented Reconfigurable Modules.

open_checkpoint config1_routed.dcp
write_bitstream config1

This command generates all possible bitstreams for this particular configuration. It creates
a full design bitstream called config1.bit. This bitstream should be used to program the
device from power-up and includes the functionality of any Reconfigurable Modules
contained within. It also creates partial bit files config1_pblock_rp1_partial.bit
and config1_pblock_rp2_partial.bit that can be used to reconfigure these
modules while the FPGA continues to operate. For UltraScale devices, it creates clearing
bitstreams that pair with each partial bitstream, allowing you to prepare the partition for
the next partial image. Repeat these steps for each configuration.

TIP: Rename each partial bit file to match the Reconfigurable Module instance from which it was built
to uniquely identify these modules. The current solution names partial bit files only on the
configuration base name and Pblock name: <base_name>_<pblock_name>_partial.bit

The size of each partial bitstream is reported in the output from write_bitstream. As
this command is run, these messages will be reported for each partial and clearing bit file.

Creating bitmap...
Creating bitstream...
Partial bitstream contains 3441952 bits.
Writing bitstream ./Bitstreams/right_up_pblock_inst_shift_partial.bit...

Bitstream compression, encryption, and other advanced features can be used. See Known
Limitations, page 146 for specific unsupported use cases for UltraScale devices.
Dynamic Function eXchange 48
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=48

Chapter 3: Vivado Software Flow
Generating Partial Bitstreams Only

If the full design configuration file is not required, then a single partial bitstream can be
created on its own. With a full design configuration checkpoint loaded in memory, use the
-cell option to identify the instance for which a partial bitstream is needed. The name of
this partial bitstream can be given, as it is not automatically derived from the Pblock name.

write_bitstream -cell rp1 RM_count_down_partial.bit

This creates only a partial bitstream for the Reconfigurable Partition identified.

CAUTION! Do not run write_bitstream directly on Reconfigurable Module checkpoints; only use
full design checkpoints. Reconfigurable module checkpoints, while they are placed and routed
submodules, have no information regarding the top level design implementation, and therefore would
create unsuitable partial bit files.

Generating Full Configuration Bitstreams Only

If only power-on design bitstream is desired, the -no_partial_bitfile option can be
used to bypass creation of partial bitstreams.

write_bitstream -no_partial_bitfile config3

Using this option skips the stage that creates partial and clearing bitstreams. It saves
write_bitstream runtime for scenarios where either you are looking to test only the full
design without DFX, or if the partial bitstreams already exist.

Generating Static-only Bitstreams

If a power-on configuration of the static design only is desired, run write_bitstream on
the checkpoint that has empty Reconfigurable Partitions (after update_design
-black_box and update_design -buffer_ports have run). This “grey box
configuration” can be compressed to reduce the bit file size and configuration time.

Tcl Scripts
Scripts are provided to run this flow in the Vivado Design Suite Tutorial: Dynamic Function
eXchange (UG947) [Ref 1]. The details of these sample scripts are documented in the tutorial
itself and in the readme.txt contained in the sample design archive.
Dynamic Function eXchange 49
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=49

Chapter 4

Vivado Project Flow

Overview
Dynamic Function eXchange (DFX) in Xilinx® FPGAs and SoCs introduces new design
requirements compared to traditional solutions. These requirements include unique
approaches to source and runs management, as both bottom-up synthesis and multi-pass
implementation are needed. These needs are met with the Vivado® Design Suite DFX
Project Flow.

Flow Summary
The Dynamic Function eXchange Project Flow inserts the key requirements of Dynamic
Function eXchange into the existing Vivado project solution, accessible within the Vivado
IDE as well as via Tcl commands. These key requirements include:

• Defining Reconfigurable Partitions within the design hierarchy
• Populating a set of Reconfigurable Modules for each Reconfigurable Partition
• Creating a set of top-level and module-level synthesis runs
• Creating a set of related implementation runs
• Managing dependencies as sources, constraints or options are modified
• Checking rules and results
• Verifying configurations
• Generating compatible sets of full and partial bitstreams

These fundamental aspects are implemented for this release, featuring support for a
front-to-back implementation for RTL-based designs including IP. Partial Reconfiguration
(PR) terminology remain for this release but will be transitioned to DFX in a future release.
Underlying Tcl commands will remain unchanged so that existing projects and scripts will
safely migrate forward.

One expectation of this flow is that all sources (at least the top level RTL and post-synthesis
netlists for sub-modules) are managed within a single DFX-enabled project. A project
Dynamic Function eXchange 50
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=50

Chapter 4: Vivado Project Flow
cannot be broken up or exported as Vivado would no longer be able to track dependencies
between runs and sources.

Tcl Commands
Like with most everything within the Vivado IDE, the features and tasks for Dynamic
Function eXchange you see are driven behind the scenes by Tcl commands. One of the key
goals for DFX project support is to be able to work seamlessly between GUI and script and
command line on the same project. You can examine the specific Tcl commands called by
examining the Vivado journal file for this project. This can be seen by selecting File >
Project > Open Journal File. These Tcl commands are not currently documented in this
user guide. The full set of commands used to create the entire project up to its current state
can be generated by selecting File > Project > Write Tcl. Additional information for each
command can be found using the -help option of each command.

Steps for Creating and Using a Dynamic Function
eXchange Project
This section describes the general flow as well as the unique features and capabilities within
the Vivado IDE for Dynamic Function eXchange design flows. For a front-to-back tutorial
using a specific design that targets a Xilinx Evaluation Platform, please see Lab 3 in the
Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947) [Ref 1].

Creating a Dynamic Function eXchange Project
The initial creation of a DFX project is no different than for a standard design flow. Step
through the New Project wizard to select the target device, design sources and constraints,
and set all the main project details. When creating a new project, all source files and
constraints for the static portion of the design should be added. You have the option of
including the RTL and IP design sources for the first Reconfigurable Module for each
Reconfigurable Partition, or you can leave these as black boxes for now.

Note: Only add sources for one RM during the initial project creation. The Partial Reconfiguration
wizard is used to add additional RMs to the project. This is discussed in more detail later in this
chapter.

Once the project has been created, define it to be a Dynamic Function eXchange project.
This is done by selecting Tools > Enable Partial Reconfiguration. This prepares the
project for the DFX design flow. Once this is set it cannot be undone, so Xilinx recommends
archiving your project prior to selecting this option.
Dynamic Function eXchange 51
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug947-vivado-partial-reconfiguration-tutorial.pdf;a=xPartialReconfigurationProjectFlow
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=51

Chapter 4: Vivado Project Flow
A subsequent dialog box will ask you to confirm this one-way project transition. When this
is done, the project will show a few DFX-specific menu options and window tabs. These
include:

• A link to the Partial Reconfiguration Wizard in the Flow Navigator
• The Partition Definitions view in the Sources window
• The Configurations window

Defining Reconfigurable Partitions
Once the project has been turned into a DFX project, Reconfigurable Partitions can be
defined within the RTL source hierarchy. Suitable instances within the design hierarchy are
those that:

• Are defined by RTL, DCP or EDIF sources
• Do not pass parameter and generic values to that level of hierarchy from above.

Parameters and generics can exist on the Reconfigurable Partition boundary but must
be evaluated locally prior to partition creation.

• Do not contain out-of-context (other than IP) or EDIF modules in the underlying RTL
• Do not have IP as the top level
• Do not contain block diagram (.bd) sources

X-Ref Target - Figure 4-1

Figure 4-1: Enabling Dynamic Function eXchange
Dynamic Function eXchange 52
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=52

Chapter 4: Vivado Project Flow
1. Right-click on the desired module and select Create Partition Definition to begin the
process of Reconfigurable Partition creation. This module can be a black box if design
sources do not yet exist.

2. In the subsequent dialog that appears, give this Partition Definition a unique name. Also
define a name for the first Reconfigurable Module (RM). This RM is created from the RTL
or netlist sources currently residing in this level of hierarchy; more RM are added or
created later in the flow.

IMPORTANT: Every instance of the selected module will be turned into a Reconfigurable Partition. In
order for one instance to be defined as reconfigurable and another instance to remain static, the two
instances must be given unique module names.

X-Ref Target - Figure 4-2

Figure 4-2: Creating a Reconfigurable Partition
Dynamic Function eXchange 53
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=53

Chapter 4: Vivado Project Flow
3. After selecting OK, this module displays differently in the Vivado IDE. Each instance of
the module is shown in the Hierarchy view with a diamond, indicating that it is a
Reconfigurable Partition. The design sources are moved to the Partition Definitions view
to be managed separately. Repeat this step for all unique Reconfigurable Partitions
required within the design.

Completing the Dynamic Function eXchange Project Structure
After defining the Reconfigurable Partitions, enter the full details of the project. This
consists of adding more Reconfigurable Modules for each of the Reconfigurable Partitions,
defining a full set of Configurations that combine RMs with the static design, and declaring
the set of runs that will be used to implement all the Configurations. All of these additions
are done within the Partial Reconfiguration Wizard. Any further modifications or additions
can be made by returning to the wizard.

TIP: No actions requested in the Partial Reconfiguration Wizard will take effect until the Finish button
is clicked. You may step forward and back within the wizard until everything is completed to your
liking, and you may cancel and throw away all edits at any time.

X-Ref Target - Figure 4-3

Figure 4-3: Defining the Reconfigurable Partition and the first Reconfigurable Module

X-Ref Target - Figure 4-4

Figure 4-4: Partition Definitions as seen in the Sources Window
Dynamic Function eXchange 54
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=54

Chapter 4: Vivado Project Flow
Open the Partial Reconfiguration Wizard by selecting the step in the Flow Navigator or
from the Tools menu.

When the PR Wizard opens, step through each stage of DFX project management.

Editing Reconfigurable Modules

1. After selecting Next to progress past the introduction, the first content page allows you
to define new Reconfigurable Modules for any Partition Definitions defined. The first
RM for each PD has already been included here, if the RTL/netlist source was present
when the PD was created. Click on the blue + to create a new RM and give it a unique
name. Be sure to select the correct Partition Definition if more than one exists in the
design. If netlist sources are selected, select the Sources are already synthesized check
box and declare the Top Module within the netlist.

X-Ref Target - Figure 4-5

Figure 4-5: The Partial Reconfiguration Wizard in the Flow Navigator

X-Ref Target - Figure 4-6

Figure 4-6: Creating a new Reconfigurable Module
Dynamic Function eXchange 55
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=55

Chapter 4: Vivado Project Flow
2. Repeat this process for all existing RMs for every Partition Definition. If a greybox
module is desired, no action is required. Note that RMs may be edited by clicking on the
pencil icon or removed by clicking the red - icon. When all RM are accounted for click
Next.

Editing Configurations

With a set of Reconfigurable Modules defined, Configurations can be declared. Each
Configuration is a combination of the static logic plus one RM per RP; each Configuration
is a full design image.

While each Configuration can be created manually, the simplest path is to let Vivado create
the minimum set of Configurations automatically. This is done by selecting the
automatically create configurations link in the middle of this screen. This will create as
many Configurations as necessary to ensure that all RMs are included at least once. This
option is only available if no Configurations have been defined yet.

X-Ref Target - Figure 4-7

Figure 4-7: Set of Reconfigurable Modules defined
Dynamic Function eXchange 56
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=56

Chapter 4: Vivado Project Flow
If one Partition Definition has more RMs than another, a greybox RM will automatically be
used for any RP that has all its RMs covered by prior Configurations. These default
Configurations can be modified or renamed, and additional Configurations may be created
if desired.

TIP: Greybox modules are different than black box modules, as they are not truly empty. Greybox RMs
have tie-off LUTs inserted to complete legal design connectivity in the absence of an RM and they
ensure outputs do not float during operation. Vivado creates these by calling update_design
-buffer_ports on selected modules.

X-Ref Target - Figure 4-8

Figure 4-8: Edit Configurations before creating any Configurations
Dynamic Function eXchange 57
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=57

Chapter 4: Vivado Project Flow
Note that if one RM is used in more than one Configuration, the implementation results
may be different, as place and route is performed each time, but only if the RM was initially
implemented in a child run. RM implementation results will be reused if they were originally
done in the parent configuration. This allows the Vivado project to track dependencies
between parent and child.

Editing Configuration Runs

With all the Configurations defined, move to the final screen to manage the Configuration
Runs associated with them. Just like the Configurations themselves, Vivado can
automatically create a set of Configuration Runs. The first Configuration in the list are
defined as the parent, and all remaining Configurations are set as children to that parent.

X-Ref Target - Figure 4-9

Figure 4-9: Edit Configurations after automatic generation of Configurations
Dynamic Function eXchange 58
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=58

Chapter 4: Vivado Project Flow
This structure assumes that the first configuration is the most critical or challenging. Users
are free to change the parent-child relationship by setting that value in the Parent column.
A Parent of a synthesis run (synth_1 here) indicates the Configuration (most notably the
static part) will be implemented from the synthesized netlist, and a Parent of an
implementation run (impl_1 here) indicates the parent's locked static implementation result
will be used as the starting point.

As you explore place and route options, timing closure techniques, and otherwise elaborate
on the DFX design, multiple independent parent runs can be used for exploration. Multiple
parent runs can be launched in parallel, then child runs can be launched after parent runs
complete. Vivado project management handles all the DFX-specific details for creating and
storing intermediate checkpoints, including a “static-only” checkpoint for a routed parent
run. Ultimately, a single parent run must be selected to establish a golden static
implementation result on which all Configurations will be based.

IMPORTANT: To ensure a safe working environment in silicon, a locked static image must remain
consistent across all Configurations so bitstream generation will create compatible full and partial
bitstreams. This is managed in the Vivado DFX Project flow by establishing a parent-child relationship
for related Configurations

Add new Configuration Runs by selecting the green + icon. When all Configuration Runs
have been created, click Next. On the final screen, the number of new elements are listed.
Clicking Finish will actually perform all the requested changes in the project.

X-Ref Target - Figure 4-10

Figure 4-10: Automatically generated Configuration Runs
Dynamic Function eXchange 59
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=59

Chapter 4: Vivado Project Flow
In the Design Runs window, out-of-context synthesis runs are created for each
Reconfigurable Module, and all Configuration Runs are generated. Relationships between
parent and child runs are shown by the levels of indentation.

In addition, the Configurations window now shows the composition details of each
Configuration available in the project.

Adding or Modifying Reconfigurable Modules or Configurations
The Partial Reconfiguration Wizard is the central mechanism for making any changes to
Reconfigurable Modules or Configurations. This includes adding new RMs, modifying
source lists for any RM, creating new Configurations or Runs, or removing any of the above.
When working within the wizard, nothing is saved or executed until the Finish button is
clicked, so you can move forward or back through the screens, making adjustments as
needed.

When changes to the RTL sources themselves are needed, they can be seen and opened
from the Partition Definitions view in the Source window. This shows each Reconfigurable
Module in the same way as the full design is shown in the Hierarchy tab, but scoped to that
level of hierarchy and below. This includes all sources and constraints that have been
declared for each RM.

X-Ref Target - Figure 4-11

Figure 4-11: Design Runs for synthesis and implementation

X-Ref Target - Figure 4-12

Figure 4-12: Configurations available in the project
Dynamic Function eXchange 60
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=60

Chapter 4: Vivado Project Flow
Adding or Creating IP Sources
IP are permitted within Reconfigurable Modules. They cannot be the top level of an RM, but
they can exist within any level below the top. Include existing .xci or .xcix files along
with RTL when adding sources to a Reconfigurable Module.

IP that exist within Reconfigurable Modules can be synthesized either globally or
out-of-context. Either value for the Synthesis Options shown below can be selected.

X-Ref Target - Figure 4-13

Figure 4-13: Sources shown in Partition Definitions view

X-Ref Target - Figure 4-14

Figure 4-14: Specifying Global when Generating Output Products
Dynamic Function eXchange 61
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=61

Chapter 4: Vivado Project Flow
IP can be created from the IP Catalog within a DFX project. After the IP has been created, it
is added to the primary blockset of the design, as the IP generation flow does not know
which RM the IP is for. To assign a new IP to a specific RM, right-click on the IP in the
Sources window and select Move to Reconfigurable Module. Select the appropriate RM
and click OK.

One final requirement is that IP must be unique per Reconfigurable Module. If two different
RMs each contain the same IP function, two unique instances must be created. The best way
to do this is to replicate one IP to create a new identical IP. Right-click on an existing IP and
select Copy IP. Once created, this new IP must be moved to the target Reconfigurable
Module as described above.

X-Ref Target - Figure 4-15

Figure 4-15: Specifying Out of Context per IP when Generating Output Products

X-Ref Target - Figure 4-16

Figure 4-16: Moving IP to a Reconfigurable Module
Dynamic Function eXchange 62
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=62

Chapter 4: Vivado Project Flow
Implementing the DFX Design
With all the necessary Configuration Runs defined, the design can be synthesized and
implemented. The Flow Navigator can be used to pull through any steps of synthesis, place
and route, and even bitstream generation. The Flow Navigator works on the active run just
like a standard flow, but it will launch all child runs in addition to the active parent.

One detail that is required for Dynamic Function eXchange designs is a Pblock for each
Reconfigurable Partition. Without a Pblock defined, the following error will be issued in
place_design:

ERROR: [DRC 23-20] Rule violation (HDPR-30) Missing PBLOCK On Reconfigurable Cell

If this necessary floorplan is present in a top-level design constraints file, you can pull all
the way from synthesis to bitstream generation. If not, the easiest way to create one is to
stop and open the design after top-level synthesis. In the Netlist hierarchy view, right-click
on the module that corresponds to the Reconfigurable Partition and select Floorplanning
> Draw Pblock.

After you draw the Pblock for a Reconfigurable Partition, its properties can be seen in the
Pblock Properties window under the Properties view. Available here are two options unique
to Reconfigurable Partitions: RESET_AFTER_RECONFIG (7 series only) and
SNAPPING_MODE. The Statistics view reports the resources available and used for the
currently loaded Reconfigurable Module, so it is important to consider the needs for the
other RMs as well.

X-Ref Target - Figure 4-17

Figure 4-17: Copying IP
Dynamic Function eXchange 63
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=63

Chapter 4: Vivado Project Flow
Once a Pblock has been created for each Reconfigurable Partition, each Configuration can
be implemented. The Run Implementation button in the Flow Navigator launches place
and route on the active parent run first. Upon completion, all child runs will be launched in
parallel, using the static design results of the parent as a starting point.

The Vivado project takes care of the underlying details of the DFX solution. Database
management is one of these details. Upon completion of the parent run, the routed
database for the entire design is saved, as well as a cell-level checkpoint for each
Reconfigurable Module. Then Vivado calls update_design -black_box to carve out
each RM, resulting in a static-only design checkpoint, which is the basis for all of its child
runs. When child implementations runs are launched, Vivado assembles the configuration
from the static-only routed parent checkpoint and post-synthesis checkpoints for each
Reconfigurable Module. At this time, only routed module checkpoints from the parent run
can be reused in child Configurations; if the same RM is selected for one RP in multiple child
runs, the results will be different.

X-Ref Target - Figure 4-18

Figure 4-18: Dynamic Function eXchange properties on a Pblock (7 series)

X-Ref Target - Figure 4-19

Figure 4-19: Implementing multiple Configurations in parallel
Dynamic Function eXchange 64
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=64

Chapter 4: Vivado Project Flow
Just as with a standard project, Vivado tracks dependencies between runs. When design
sources, constraints, options or settings are modified, any synthesis or implementation run
that depends on them are marked out-of-date. One example: if an RTL design source for
one RM is updated, that out-of-context module run will be marked out-of-date, and any
Configuration Runs that include that RM will also be marked out-of-date. Another example:
if any implementation option for a parent Configuration Run is changed, it and all child runs
will be marked out-of-date.

Only parent Configuration Runs can be set as active. The Flow Navigator acts upon the
active run, but in the DFX flow, all child runs are also included in whatever action is
requested. Pop-up messages (completed run, error, etc.) can relate to multiple runs but
default to the parent run. Use the pull down selection to choose the desired
implementation run.

Everything shown in the different windows, as shown in Figure 4-19, relate to the active
parent run. In order to see details about a child implementation run, select that run and look
at the Implementation Run Properties window to see all the inputs (properties, options) and
outputs (log, reports, messages) for that specific run.

X-Ref Target - Figure 4-20

Figure 4-20: Implementation Completed dialog box
Dynamic Function eXchange 65
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=65

Chapter 4: Vivado Project Flow
Generating Bitstreams
Once all desired Configurations have been placed and routed, bitstreams may be
generated. Just as with Implementation, the Generate Bitstream button in the Flow
Navigator may be utilized. This will launch write_bitstream for all child runs as well as
the active parent. A local right-click call to write_bitstream on any Configuration is also
available.

The pr_verify utility is automatically called prior to write_bitstream on each child
Configuration run. This routed database is compared to the parent database to ensure all
DFX rules have been met. The results of this check are stored in the run directory under the
name <impl_name>_pr_verify.log.

By default, a full design bitstream and all partial (and for UltraScale, clearing) bitstreams are
generated for all routed configurations. You can request specific bitstreams only by
utilizing the write_bitstreams options available. Under the Write Bitstream options
category in the Options pane for the Implementation Run Properties, use the More
Options field to select one of these options:

• -no_partial_bitfile generates only the full configuration file and no partial
bitstreams.

• -cell <cell> generates only the partial bitstream for the requested cell.

X-Ref Target - Figure 4-21

Figure 4-21: Implementation Run Properties window for a child run
Dynamic Function eXchange 66
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=66

Chapter 4: Vivado Project Flow
Supported/Unsupported Features
This section lists the current lists of supported and unsupported features for DFX Projects.

Supported Features
• Device support: All 7 series, Zynq, UltraScale and UltraScale+ devices supported by the

Dynamic Function eXchange flow.
• Source types for Reconfigurable Modules: RTL, DCP, EDIF, XDC, XCI, XCIX.

° XCI or XCIX (Xilinx IP) cannot be the top level.

° EDIF cannot be a sub-module.
• Module-level constraints must be scoped to the hierarchical instance.
• Greybox (black box module with LUT tie-off) implementation can be done
• An extensive set of Design Rule Checks can be issued from within the project

environment.
• All synthesis and implementation design switches can be used.
• PR Verify is automatically called prior to bitstream generation for any child

configuration.

Unsupported Features
The following features are not currently implemented:

• IP Integrator support is not in place. Block Diagrams cannot be included as RMs or
within RMs. Modules within Block Diagrams cannot be set as RMs.

• Simulation is not supported from within the project.

Known Limitations
• Once Partitions are defined, they cannot be undone. The only way to return to a flat

non-PR project is to create a new one.
• Reuse of implemented Reconfigurable Modules from a child run is not supported. Only

implementation results from RMs from the parent run can be reused in a child run.
• Child implementation runs cannot be set active. Flow Navigator actions work on just

the parent run, or the parent and all child runs, depending on the action.
Dynamic Function eXchange 67
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=67

Chapter 5

Design Considerations and Guidelines for
All Xilinx Devices

Overview
This chapter explains design requirements that are unique to Dynamic Function eXchange
(DFX), and covers specific DFX features within the Xilinx® design software tools.

To take advantage of the dynamic reconfiguration capability of Xilinx FPGAs, you must
analyze the design specification thoroughly, and consider the requirements, characteristics,
and limitations associated with PR designs. This simplifies both the design and debug
processes, and avoids potential future risks of malfunction in the design.

This chapter describes the design requirements that apply to all Xilinx 7 series and
UltraScale™ devices. For design requirements specific to the individual FPGA and SoC
architectures, see the following chapters in this manual:

• Chapter 6, Design Considerations and Guidelines for 7 Series and Zynq Devices
• Chapter 7, Design Considerations and Guidelines for UltraScale and UltraScale+

Devices

Partial Reconfiguration IP
Xilinx has created four pieces of intellectual property specifically for the use within Partial
Reconfiguration designs. There is no charge for any of these IP, and DFX designs do not
require them. They are available to assist users in quickly and easily implementing key
aspects of a reconfigurable design. The IP are all found under the Partial Reconfiguration
heading within the IP Catalog, and each have their own landing page on Xilinx.com with a
detailed product guide.

These four IP for Dynamic Function eXchange are currently available in Vivado® and can be
used for any Xilinx device that supports Dynamic Function eXchange in Vivado. DFX
terminology will be introduced in a future Vivado release, and users will be given
instructions on how to migrate these IP to use the new names.
Dynamic Function eXchange 68
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=68

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
• Partial Reconfiguration Controller. The PR Controller core provides management
functions for self-controlling partially reconfigurable designs. It is intended for
enclosed systems where all of the Reconfigurable Modules (RM) are known to the
controller. The optional AXI4-Lite register interface allows the core to be reconfigured
at run time, so it can also be used in systems where the RMs can change in the field.
The core can be customized for many Virtual Sockets, RMs per Virtual Socket,
operations and interfaces. Labs 5, 6, and 7 in Vivado Design Suite Tutorial: Dynamic
Function eXchange (UG947) [Ref 1] show examples of the PR Controller IP in a sample
design.

• Partial Reconfiguration Decoupler. The PR Decoupler can be used to provide a safe
and managed boundary between the static logic and a Reconfigurable Partition during
reconfiguration. The core can be customized for the number of interfaces, type of
interfaces, decoupling functionality, status and control.

• Partial Reconfiguration AXI Shutdown Manager. One or more PR AXI Shutdown
Managers can be used to make the AXI interfaces between a Reconfigurable Partition
and the static logic safe during reconfiguration. When active, AXI transactions sent to
the RM, and AXI transactions emanating from the RM, are terminated because the RM
might not be able to complete them. Failure to complete could cause system deadlock.
When inactive, transactions pass unaltered.

• Partial Reconfiguration Bitstream Monitor. The PR Bitstream Monitor can be used to
identify partial bitstreams as they flow through the design. This information can be
used for debugging or system applications such as blocking bitstream loads. Identifiers
embedded at key places in partial bitstreams are extracted and reported by the core.
This information can be passed to Vivado HW Debugger using an ILA core to work out
what partial bitstream was fetched, if it was fetched in its entirety, and how far through
the datapath it went.

Design Hierarchy
Good hierarchical design practices resolve many complexities and difficulties when
implementing a partially reconfigurable FPGA design. A clear design instance hierarchy
simplifies physical and timing constraints. Registering signals at the boundary between
static and reconfigurable logic eases timing closure. Grouping logic that is packed together
in the same hierarchical level is necessary.

These are all well known design practices that are often not followed in general FPGA
designs. Following these design rules is not strictly required in a partially reconfigurable
design, but the potential negative effects of not following them are more pronounced. The
benefits of Dynamic Function eXchange are great, but the extra complexity in design could
be more challenging to debug, especially in hardware.
Dynamic Function eXchange 69
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=69

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
For additional information about design hierarchy, see Appendix A, Hierarchical Design
Flows.

Dynamic Reconfiguration Using the DRP
Logic that is in the static region, and therefore is never partially reconfigured, can still be
reconfigured dynamically through the Dynamic Reconfiguration Port (DRP). The DRP can be
used to configure logic elements such as MMCMs, PLLs, and serial transceivers (MGTs).

Information about the DRP and dynamic reconfiguration, including how to use the DRP for
specific design resources, can be found in these documents:

• 7 Series FPGAs Configuration User Guide (UG470) [Ref 9]
• 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 21]
• 7 Series FPGAs GTP Transceivers User Guide (UG482) [Ref 22]
• MMCM and PLL Dynamic Reconfiguration (7 Series) (XAPP888) [Ref 23]
• UltraScale Architecture Configuration User Guide (UG570) [Ref 10]
• UltraScale Architecture Clocking Resources User Guide (UG572) [Ref 24]
• UltraScale Architecture GTH Transceivers User Guide (UG576) [Ref 25]
• UltraScale Architecture GTY Transceivers User Guide (UG578) [Ref 26]

Packing Logic
Any logic that must be packed together must be placed in the same group, whether it is
static or reconfigurable. For example, if a LUT and a flip-flop are expected to be placed
within the same slice, they must be within the same partition. Partition boundaries are
barriers to optimization.

For Reconfigurable Partitions that include I/O, Clocking, and GT resources, it might be
necessary to instantiate any I/O buffers that are automatically inferred by the tools inside
that RP level. For example, if GT_COMMON is in an RP, the IBUFDS_GTE needs to be
instantiated. If the associated I/O buffer is in the top-level/static portion, it cannot be
packed.

Design Instance Hierarchy
The most simple method is to instantiate the Reconfigurable Partitions in the top-level
module, but this is not required because a Reconfigurable Partition may be located in any
level of hierarchy. Each Reconfigurable Partition must correspond to exactly one instance—
an RP must not have more than one top. The instantiation has multiple modules with which
it is associated.
Dynamic Function eXchange 70
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=70

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Changes in design hierarchy can be used to merge and/or separate modules and leaf cells
into and out of an RP level of hierarchy. There are several reasons to do this:

• To balance device resources between the dynamic region and static region, making the
design more efficient. For example, if the target RP takes up most of the device, and
there is a module in the static region that requires a high number of Block RAMs
unavailable to Static, you can move that module into the dynamic region.

• If you need cells to reside in the same physical area of the device, but they are in a
different design hierarchy. For example, if you need GT_CHANNELS to be placed in the
same UltraScale Clock Region, but the design has GTs in both the Static and RP regions.

• To ensure that dedicated connections, for example from IBUFDS_GT to GT_COMMON,
reside in the same region.

Reconfigurable Partition Interfaces
One of the fundamental requirements of a partially reconfigurable design is consistency
between Reconfigurable Modules (RMs). As one module is swapped for another, the
connections between the static design and the Reconfigurable Module must be identical,
both logically and physically. To achieve this consistency, optimizations across the partition
boundary or of the boundary itself are prohibited.

RECOMMENDED: Keep interface logic connecting to and from RM ports consistent across all RMs. Do
not change the levels of logic between RMs, such as using one level of logic in the initial design and five
levels of logic in next RM. Also, do not change the driver type, such as using flip-flops in the initial RM
and block RAM in next RM. Since the static side of the interface is locked after the initial configuration,
the tools are unable to adjust for these changes in later configurations. Xilinx recommends registering
all inputs and outputs of the RMs.

For optimal efficiency, all ports of a Reconfigurable Partition should be actively used on the
static design side. For example, if static drivers of the Reconfigurable Partition are driven by
constants (0 or 1), they are implemented through the creation of a LUT instance and local
tie-off to a constant driver and cannot be trimmed away. Likewise, unconnected outputs
remain on Reconfigurable Partition outputs, creating unnecessary waste in the overall
design. These measures must be taken by the implementation tools to ensure that all
Reconfigurable Modules have the same port map during design assembly.

RECOMMENDED: Examine the interface of all Reconfigurable Partitions after synthesis to ensure that
as few constants or unconnected ports as possible remain. By clearing out dead logic, resource
utilization is reduced, and congestion and timing closure challenges easier to address.
Dynamic Function eXchange 71
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=71

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Six different cases are possible for partition interface usage:

1. Both Static and Reconfigurable Module sides have active logic. (Applies to partition
inputs or outputs)

This is the optimal situation. A partition pin is inserted.

RECOMMENDED: If partition inputs are driven by VCC or GND, push these constants into the
Reconfigurable Modules. This reduces LUT usage and allow the implementation tools to optimize these
constants with the RM logic.

2. The Static side has an active driver but the Reconfigurable Module does not have
active loads. (Applies to partition inputs)

This is acceptable because it accommodates the situation in which not every
Reconfigurable Module has the same I/O requirements. A partition pin is inserted, and
the unused input ports are left unconnected.

For example, one module might require CLK_A, while a second might require CLK_B.
Clock spines are pre-routed to the Reconfigurable Partition clock regions, but the
module only taps into the clock source that is needed. However, if a partition input is
not used by any Reconfigurable Module, it should be removed from the partition
instantiation.

3. The Static side has active loads but the Reconfigurable Module does not have an
active driver. (Applies to partition outputs)

This is acceptable and similar to the case above. A partition pin is inserted, and it is
driven by ground (logic 0) within the Reconfigurable Module.

4. The Static side does not have an active driver, but the Reconfigurable Module has
active loads. (Applies to partition inputs)

This results in an error that must be resolved by modifying the partition interface.

The following is an example of an error that may be seen for this scenario:

ERROR: [Opt 31-65] LUT input is undriven either due to a missing connection from
a design error, or a connection removed during opt_design.

This error message would be followed by a LUT instance that is within the
Reconfigurable Module.

5. Reconfigurable Module has an active driver, but the Static side has no active loads.
(Applies to partition outputs)

This does not result in an error, but is far from optimal because the RM logic remains. No
partition pin is inserted. These partition outputs should be removed.
Dynamic Function eXchange 72
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=72

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
6. Neither Static nor Reconfigurable Module sides have driver or loads for a partition
port. (Applies to partition inputs or outputs.)

Nothing is inserted or used, so there is no implementation inefficiency, but it is
unnecessary in terms of the instantiation port list.

Partition Pin Placement
Each pin of an RP has a partition pin (PartPin). By default the tools automatically place these
PartPins inside of the RP Pblock range (which is required). For many cases, this automatic
placement can be sufficient for the design. However, for timing-critical interface signals or
designs with high congestion, it might be necessary to help guide the placement of the
PartPins. The following is an example of how to achieve this:

• Define user HD.PARTPIN_RANGE constraints for some or all of the pins.
set_property HD.PARTPIN_RANGE {SLICE_Xx0Yx0:SLICE_Xx1Yy1
SLICE_XxNYyN:SLICE_XxMYyM} [get_pins <rp_cell_name>/*]

By default the HD.PARTPIN_RANGE is set to the entire Pblock range. Defining a user
range allows the tools to place PartPins in the specified areas, improving timing and/or
reducing congestion.

IMPORTANT: When examining the placement of PartPins, there are limited routing resources available
along the edges, and especially in the corners, of the Pblock. The PartPin placer attempts to spread the
partition pins, minimizing the number of partition pins per interconnect along the edges, and
increasing the PartPin density towards the middle of the Pblock. When defining a custom
HD.PARTPIN_RANGE constraint, be sure to make the range wide enough to allow for spreading, or you
are likely to see congestion around the PartPins.

Active-Low Resets and Clock Enables
In Xilinx 7 series FPGAs, there are no local inverters on control signals (resets or clock
enables). The following description uses a reset as the example, but the same applies for
clock enables.

If a design uses an active-Low reset, a LUT must be used to invert the signal. In non-DFX
designs that use all active-Low resets multiple LUTs are inferred but can be combined into
a single LUT and pushed into the I/O elements (the LUT goes away). In non-DFX designs
that use a mix of High and Low, the LUT inverters can be combined into one LUT that
remains in the design, but that has minimal effect on routing and the timing of the reset net
(output of LUT can still be put on global resources). However, for a design that uses
active-Low resets on a partition, it is possible to have inverters inferred inside the partition
Dynamic Function eXchange 73
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=73

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
that cannot be pulled out and combined. This makes it impossible to put the reset on global
resources, and can lead to poor reset timing and to routing issues if the design is already
congested.

The best way to avoid this is to avoid using active-Low control signals. However, there are
cases where this is not possible (for example, when using an IP core with an Advanced
eXtensible Interface (AXI) interface). In these cases the design should assign the active-Low
reset to a signal at the top level, and use that new signal everywhere in the design.

As an example:

reset_n <= !reset;

Use the reset_n signal for all cases, and do not use the !reset assignments on signals or
ports.

This ensures that a LUT is inferred only for the reset net for the whole design and has a
minimal effect on design performance.

Decoupling Functionality
Because the reconfigurable logic is modified while the device is operating, the static logic
connected to outputs of Reconfigurable Modules must ignore data from Reconfigurable
Modules during partial reconfiguration. The Reconfigurable Modules do not output valid
data until partial reconfiguration is complete and the reconfigured logic is reset. There is no
way to predict or simulate the functionality of the reconfiguring module.

You must decide how the decoupling strategy is solved. A common design practice to
mitigate this issue is to register all output signals (on the static side of the interface) from
the Reconfigurable Module. An enable signal can be used to isolate the logic until it is
completely reconfigured. Other approaches range from a simple 2-to-1 MUX on each
output port, to higher level bus controller functions.

The static design should include the logic required for the data and interface management.
It can implement mechanisms such as handshaking or disabling interfaces (which might be
required for bus structures to avoid invalid transactions). It is also useful to consider the
down-time performance effect of a PR module (that is, the unavailability of any shared
resources included in a PR module during or after reconfiguration).

A Partial Reconfiguration Decoupler IP is available, allowing users to insert MUXes to
efficiently decouple AXI4-Lite, AXI4-Stream, and custom interfaces. More information
about the PR Decoupler IP is available on the Xilinx website.
Dynamic Function eXchange 74
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/products/intellectual-property/pr-decoupler.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=74

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Black Boxes
You can implement an RP as a pseudo black box, referred to in Vivado as a greybox. To do
this, the RP must be a black box in the static design (either from bottom-up synthesis
results or from running update_design -black_box). Then the black box can have LUT1
buffers placed on all inputs and outputs using the command update_design
-buffer_ports on the black box RP cell:

update_design -cell <rp_cellName> -buffer_ports

Now you can run this design through implementation to place and route the LUT1 buffers
(and static logic, if not already placed and routed).

All the inserted LUT1 output buffers are tied to a logic 0 (ground). If it is necessary to drive
a logic 1 (VCC) from the RP outputs, this can be controlled using an RP pin property called
HD.PARTPIN_TIEOFF. This property can be set at any time (all the way up to
pre-write_bitstream), and it controls the LUT equation of the LUT1 buffer connected to the
specified port. The default value is '0', which configures the LUT as a route-thru (output is
0). Setting this property to '1' configures the LUT as an inverter (output is 1). You might
have to change the output value in some design situations.

set_property HD.PARTPIN_TIEOFF 1 [get_pins <RP_cellName>/<output_pinName>]

The greybox has no user logic (just the tool-inserted LUT1 buffers). The greybox bitstream
contains information for these LUTs, as well as any static logic/routes that use resources
inside the RP frames. Static routes that pass through the region, including interface nets up
to the partition pin nodes, exist within this region. Programming information for these
signals is included in the black box programming bitstream.

Use of greyboxes is an effective way to reduce the size of a full configuration BIT file, and
therefore reduce the initial configuration time. The compression feature might also be
enabled to reduce the size of BIT files. This option looks for repeated configuration frame
structures to reduce the amount of configuration data that must be stored in the BIT file.
The compression results in reduced configuration and reconfiguration time. When the
compression option is applied to a routed DFX design, all of the BIT files (full and partial)
are created as compressed BIT files. To enable compression, set this property prior to
running write_bitstream:

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
Dynamic Function eXchange 75
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=75

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Effective Approaches for Implementation
There are trade-offs associated with optimizing any FPGA design. Dynamic Function
eXchange is no different. Partitions are barriers to optimization, and reconfigurable frames
require specific layout constraints. These are the additional costs to building a
reconfigurable design. The additional overhead for timing and area needs vary from design
to design. To minimize the impact, follow the design considerations stated in this guide.

When building Configurations of a reconfigurable design, the first Configuration to be
chosen for implementation should be the most challenging one. Be sure that the physical
region selected has adequate resources (especially elements such as block RAM and DSP48)
for each Reconfigurable Module in each Reconfigurable Partition, then select the most
demanding (in terms of either timing or area) RM for each RP. If all of the RMs in the
subsequent Configurations are smaller or slower, it is easier to meet their demands. Timing
budgets should be established to meet the needs of all Reconfigurable Modules.

If it is not clear which reconfigurable module is the most challenging, each can be
implemented in parallel in context with static, allowing static to be placed and routed for
each. Examine resource utilization statistics and timing reports to see which configuration
met design criteria most easily and which had the tightest tolerances, or which missed by
the widest margins.

IMPORTANT: Focus attention on the configuration that is the furthest from meeting its goals, iterating
on design sources, constraints, and strategies until needs are met. At some point, one configuration
must be established as the golden result for the static design, and that implementation of the static
logic will be used for all other configurations.

Building Up Implementation Requirements
Implementation of Dynamic Function eXchange designs requires that certain fundamental
rules are followed. These rules have been established to ensure that a partial bitstream can
be accurately created and safely delivered to an active device. As noted throughout this
document, these rules include these basic premises:

• The logical and physical interface of a Reconfigurable Partition remains consistent as
each Reconfigurable Module is implemented.

• The logic and routing of a Reconfigurable Module is fully contained within a physical
region which is then translated into a partial bitstream.

• The logic of the static design must be kept out of the reconfigurable region if the
dedicated initialization feature is used.
Dynamic Function eXchange 76
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=76

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
These requirements necessitate specific implementation rules for optimization, placement
and routing. Application of these rules might make it more difficult to meet design goals,
including timing closure. A recommended strategy is to build up this set of requirements
one at a time, allowing you to analyze the results at each step. Starting with the most
challenging configuration and the full set of timing constraints, implement the design
through place and route and examine the results, making sure you have sufficient timing
slack and resources available to continue to the next step.

1. Implement the design with no Pblocks. Use bottom-up synthesis and follow general
Hierarchical Design recommendations, such as registered boundaries, to achieve a
baseline result.

2. Add Pblocks for the design partitions that will later be marked reconfigurable. This
floorplan can be based on the results established in the bottom-up synthesis run from
Step 1. Logic from the Reconfigurable Modules must be placed in the Pblocks, but static
logic may be included there as well.

While creating these Pblocks, the HD.RECONFIGURABLE property (and optionally, the
RESET_AFTER_RECONFIG property) can be added temporarily to run PR-specific
Design Rule Checks. This ensures that the floorplan created meets PR size and alignment
requirements.

3. With the floorplan established, separate the placement of static design resources from
those to be reconfigurable by adding the EXCLUDE_PLACEMENT property to the
Pblocks. This keeps static logic placed outside the defined Pblocks.

4. Keep the routing for Reconfigurable Modules bound within the Pblocks by applying the
CONTAIN_ROUTING property to the Pblocks. With the properties from this and the
previous step, the only remaining rules relate to boundary optimization procedures as
well as PR-specific Design Rule Checks.

5. Finally, mark the Reconfigurable Partition Pblocks as HD.RECONFIGURABLE. The
EXCLUDE_PLACEMENT and CONTAIN_ROUTING properties are now redundant and can
be removed.

If design requirements are not met at any of these steps, you have to opportunity to review
the design structure and constraints in light of the newly applied implementation condition.
Dynamic Function eXchange 77
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=77

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Configuration Analysis Report
The Dynamic Function eXchange design flow uses multiple versions of the design that must
be implemented through place and route. These different configurations have common
static design results, but differing modules within each Reconfigurable Partition. Designers
must set up timing constraints and floorplans that account for these different modules that
will be swapped on the fly.

The DFX Configuration Analysis report compares each Reconfigurable Module that you
select to give you information on your DFX design. It examines resource usage,
floorplanning, clocking, and timing metrics to help you manage the overall PR design.

The DFX Configuration Analysis report is currently run in the Tcl Console or within a Tcl
script. The top level design must be open before issuing this command:

report_pr_configuration_analysis -cells <RP_name> -dcps {<list_of_RM_checkpoints>}

Either select a single cell (RP) and multiple DCPs (each representing an RM) that can be
inserted into that cell for a comprehensive analysis of that RP, or select multiple cells with
no subsequent DCPs for a top-level analysis of the static design and interfaces into each RP.

By default, three aspects of the PR design are analyzed. You can select one or more of these
switches to narrow the focus of the report.

• The -complexity switch focuses the report on resource usage, including the
maximum number of each resource type required for the RP.

• The -clocking switch focuses the report on clock usage and loads for each RM,
helping you plan the overall clocking distribution of the design.

• The -timing switch focuses the report on boundary interface timing details, allowing
you analyze bottlenecks in and out of RMs.

Additionally, the -rent switch adds Rent metrics to the report. The Rent exponent
calculates the routing complexity and can be an indication of how much congestion is likely
to be seen. For more information on Rent, see this link in Vivado Design Suite User Guide:
Design Analysis and Closure Techniques (UG906) [Ref 20]. Note that this option can take a
long time to run on large designs.

When this analysis is done, each RM is examined based on information in the checkpoints
provided. While post-synthesis checkpoints can be supplied, if the RM contains IP that have
been synthesized out-of-context, or if debug cores are to be inserted, information will be
missing from these checkpoints. The most complete information is not available until after
opt_design when all the linking and expansion has been done. We advise you to create
fully assembled RM checkpoints after opt_design by calling write_checkpoint -cell
for each configuration, then run the configuration analysis report using these files.
Dynamic Function eXchange 78
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug906-vivado-design-analysis.pdf;a=xComplexityReport
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=78

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Here are some example sections from a report for a design with a single Reconfigurable
Partition that has three Reconfigurable Modules.

Complexity
First is the resource usage table for the -complexity switch:

+------------------------+---------+------------+------------+------------+------------+------------+
| Categories |Grid Type| Current | RM1 | RM2 | RM3 | Max |
+------------------------+---------+------------+------------+------------+------------+------------+
Slice Logic						
Slice LUTs	SLICE	936(23.40%)	936(23.40%)	927(23.17%)	1091(27.28%)	1091(27.28%)
LUT as Logic	SLICE	836(20.90%)	836(20.90%)	827(20.67%)	977(24.43%)	977(24.43%)
LUT as Memory	SLICE	100(5.00%)	100(5.00%)	100(5.00%)	114(5.70%)	114(5.70%)
LUT as Distributed RAM	SLICE	32(1.60%)	32(1.60%)	32(1.60%)	42(2.10%)	42(2.10%)
LUT as Shift Register	SLICE	68(3.40%)	68(3.40%)	68(3.40%)	72(3.60%)	72(3.60%)
Slice Registers	SLICE	1775(22.19%)	1775(22.19%)	1613(20.16%)	1654(20.68%)	1775(22.19%)
Register as Flip Flop	SLICE	1775(22.19%)	1775(22.19%)	1613(20.16%)	1654(20.68%)	1775(22.19%)
CARRY8	SLICE	14(2.80%)	14(2.80%)	16(3.20%)	16(3.20%)	16(3.20%)
F7 Muxes	SLICE	6(0.30%)	6(0.30%)	6(0.30%)	6(0.30%)	6(0.30%)
Unique Control Sets	SLICE	105(21.00%)	105(21.00%)	100(20.00%)	102(20.40%)	105(21.00%)
Memory						
RAMB18	RAMB18	1(5.00%)	1(5.00%)	3(15.00%)	2(10.00%)	3(15.00%)
PPLOCs (INT Tile Ratio)	-	28(0.09)	28(0.09)	28(0.09)	28(0.09)	28(0.09)
+------------------------+---------+------------+------------+------------+------------+------------+

Notice that RM1 requires the most resources for Slice Registers, RM2 requires the most
BlockRAM, and RM3 requires the most Slice LUTs. These maximum values for each resource
type are summarized in the Max column—this column should be used to plan Pblock
resource sizes. Remember that additional overhead is advised—packing densities for a
given Reconfigurable Partition is similar to a complete design.

Clocking
The -clocking switch summarizes the full set of clocks in the design, then breaks down
the clock loads in each Reconfigurable Module. It also reports the number of RM clock
loads in each clock region (not shown here).

Static Clock Summary
+--+------------+-------------+
| Clock Name |Static Loads|RP1 Max Loads|
+--+------------+-------------+
mb_prc_wrapper/mb_prc_i/ddr4/inst/u_ddr4_infrastructure/dbg_clk	2889	0
mb_prc_wrapper/mb_prc_i/ddr4/inst/u_ddr4_infrastructure/CLK	1639	0
dbg_hub/inst/BSCANID.u_xsdbm_id/itck_i	496	365
mb_prc_wrapper/mb_prc_i/ddr4/inst/u_ddr4_infrastructure/addn_clkout1	8534	1403
mb_prc_wrapper/mb_prc_i/ddr4/inst/u_ddr4_infrastructure/c0_ddr4_ui_clk	15098	0
mb_prc_wrapper/mb_prc_i/ddr4/inst/u_ddr4_infrastructure/addn_ui_clkout2	11791	0
+--+------------+-------------+		
Reconfigurable Module Clocking RP1		
+---+-------+---------+---------+---------+---------+		
Clock Name	Current	RM1 Loads
+---+-------+---------+---------+---------+---------+		
Static Clocks		
dbg_hub/inst/BSCANID.u_xsdbm_id/itck_i	365	365
mb_prc_wrapper/mb_prc_i/ddr4/inst/		
u_ddr4_infrastructure/addn_clkout1	1403	1403
+---+-------+---------+---------+---------+---------+
Dynamic Function eXchange 79
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=79

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Timing
The -timing switch analyzes the worst interface paths on the RP boundary based on logic
levels. The default is to examine the 10 worst paths but this can be changed using the
-nworst option. The Logic Path field shows the levels of logic and defines if each level is
in the static (S) or reconfigurable (RM) partition. Here is a sample of a single boundary path:

Reconfigurable Module Boundary Timing RP1
+-----------------------+---+
| Characteristics | Paths |
+-----------------------+---+
Path #1	-------
RP Boundary Pin	S_BSCAN_shift
RM With Worst Path	RP1 1st Configuration
Static Logic Levels	3
RM Logic Levels	2
Logic Path	FDRE(S) LUT3(S) LUT6(S) LUT3(S) LUT4(RM) LUT6(RM) FDRE(RM)
Start Point Clock	itck_i
End Point Clock	itck_i
High Fanout	45
Boundary Fanout	1
+-----------------------+---+

This information can help you optimize boundary paths. Insertion of pipeline registers can
break up these timing challenges and even create a decoupling point between
reconfigurable and static logic.

Summary
Run the report_pr_configuration_analysis command early in your design flow,
after you have established the logic in each Reconfigurable Module but before you finalize
the floorplan of the design. This report will help you optimize each Pblock for the
Reconfigurable Partitions in your design, give you guidance on the clocking usage
throughout the design, and provide insight as you close timing on each configuration in the
overall project.

Managing Constraints for a DFX Design
Dynamic Function eXchange requires all the same constraints as any other design, and
requires additional physical constraints (Pblocks) and may require various sets of
constraints that define the various configurations defined by a set of RMs. Constraints be
defined as either global or scoped.

• Global - These are constraints that are applied to the entire design, and all object
references (cell/pin/net/port) are with respect to the full design hierarchy.

• Scoped - These are constraints that are written with respect to a module other than the
top module and are scoped to a single or all instances of that module. For the following
discussion on Dynamic Function eXchange, it is assumed scoped constraints are scoped
to one or more instances of a reconfigurable module. For more information on XDC
Dynamic Function eXchange 80
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=80

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
scoping, see this link in Vivado Design Suite User Guide: Using Constraints (UG903)
[Ref 19].

Constraint Creation
Constraints should be broken up into multiple files based on the type of constraint. For
Dynamic Function eXchange, Xilinx recommends breaking up the design constraints into
the three following types:

• Static - Constraints (physical or timing) that reference only static objects
(cell/pins/nets/ports), and do not reference any objects within an RP. These are global
constraints and are applied to static synthesis, or at implementation of the initial
configuration. It is not recommended to reapply these constraints for subsequent
configurations where static is imported, as these constraints should already exist within
the static DCP and reapplying them can cause unintended constraint interactions.

• Boundary - These are timing constraints (such as set_false_path) that reference
objects in both static and the RP. Write these constraints referencing the RP pin object,
and not objects internal to the RM. For example, take the following two constraints:
set_false_path -from [get_pins static_reset/C] -through [get_pins rp_inst/rst]
set_false_path -from [get_pins static_reset/C] -to [get_pins rp_inst/*foo*/D]

The first constraint is preferred, as this constraint will not be lost when the RMs are
converted to a black box after the initial configuration. Even when the RMs are carved
out, the RP interface still exists in the static design, and the rp_inst/rst pin
referenced in the constraint still exists in the design. If a constraint is defined using
objects inside the RM, as shown in the second constraint, the constraint becomes invalid
and is dropped from the design after carving. These constraints would have to be
reapplied for every configuration if written using this syntax.

• RM - Constraints (physical or timing) that reference only RM logic. While these
constraints should all be scoped to the RM, how they get applied will depend on what
type of constraints they are:

° General RM constraints - These constraints apply to every instance of the RM. An
example is a timing constraint, like a false path, multi-cycle exception, or a
create_clock for a local RM clock. These apply to the RM regardless of the
physical location.

° RP specific RM constraints - These constraints are specific to the location (Pblock)
in which the RM is being implemented. An example is physical constraints like
specific block RAM placement, or PACKAGE_PIN constraints for embedded IO.

IMPORTANT: If an RP has embedded IO, the IO (PACKAGE_PIN, IOSTANDARD, direction) must be
reapplied for every configuration, even if the IO pins are identical between every RM. In the Vivado
database, a port is a top-level object. However, the IO constraint information associated with that port
is intentionally cleared out during caving of the RM if the associated IO buffer is part of an RP.
Dynamic Function eXchange 81
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug903-vivado-using-constraints.pdf;a=xConstraintsScoping
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=81

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
In addition to this, it is also recommended to separate physical (Pblock, LOC, PACKAGE_PIN,
etc) and timing constraints into separate XDC files. This allows for better control of when
constraints are applied (synthesis vs implementation), and easier management of constraint
files if constraints need to be modified.

Constraint Application
Once all of the constraint have been broken up, then the method of how and when to apply
these constraints become much easier.

• Static Timing Constraints - Apply these at static synthesis and mark them for use in
synthesis as well as implementation so that they are passed into the static synthesis
DCP. As long as these constraints are properly applied, and exist in the post synthesis
DCP, there is no need to reapply them at implementation time.

• Static Physical Constraints - Apply these at implementation of the initial configuration.
There is no need to reapply these for subsequent configurations, as the routed static
DCP contains all of these, as well as the static timing constraints.

• Boundary Timing Constraints - Apply these at implementation of the initial
configuration. If the constraints were written without referencing any objects internal
to the RM, then these constraints do not need to be reapplied for subsequent
configurations.

• General RM Constraints - Apply these at RM synthesis time and mark them for use in
synthesis and implementation. These constraints exist in the RM DCP and are applied
when the DCP is linked into the full design.

IMPORTANT: If there are additional OOC specific timing constraints that are used for OOC synthesis
only (such as a create_clock for a module port), mark these for use in out_of_context so that
they do not get applied to the full design. Failure to do this can result in unwanted constraint
interaction when the top-level constraints are applied and conflict with these lower level OOC
constraints.

• RP Specific RM Constraints - Apply these at implementation of any configuration
involving the specific RM at the specific RP location. All physical constraints within the
RM (including IOB) are cleared out during carving, and must be reapplied.

If a post-route_design RM DCP is being reused, the physical information (block RAM, IOB,
etc) is all included within the RM DCP and there is no need to reapply these constraints.
However, the RM DCP (created with write_checkpoint -cell) does not contain any RM
specific timing constraints, and all general RM constraints need to be applied as well as any
boundary timing constraint that reference RM objects.
Dynamic Function eXchange 82
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=82

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Defining Reconfigurable Partition Boundaries
Partial reconfiguration is done on a frame-by-frame basis. As such, when partial BIT files are
created, they are built with a discrete number of configuration frames. The size of a partial
bit file depends on the number and type of frames included. You can see this size in the
header of a raw bit file (.rbt) created by write_bitstream -rawbitfile.

Partition boundaries do not have to align to reconfigurable frame boundaries, but the most
efficient place and route results are achieved when this is done. Static logic is permitted to
exist in a frame that will be reconfigured, as long as:

• It is outside the area group defined by the Pblock
• It does not contain dynamic elements such as Block RAM, Distributed (LUT) RAM, or

SRLs (7 series only).

When static logic is placed in a reconfigured frame, the exact functionality of the static logic
is rewritten, and is guaranteed not to glitch.

Irregular shaped Partitions (such as a T or L shapes) are permitted but discouraged.
Placement and routing in such regions can become challenging, because routing resources
must be entirely contained within these regions. Boundaries of Partitions can touch, but this
is not recommended, as some separation helps mitigate potential routing restriction issues
as these partitions connect to the static design. Nested or overlapping Reconfigurable
Partitions (partitions within partitions) are not permitted. Design rule checks (Reports >
Report DRC) validate the Partitions and settings in a PR design.

Only one Reconfigurable Partition can exist per physical Reconfigurable Frame.

A Reconfigurable Frame is the smallest size physical region that can be reconfigured, and
its height aligns with clock region or I/O bank boundaries. A Reconfigurable Frame cannot
contain logic from more than one Reconfigurable Partition. If it were to contain logic from
more than one Reconfigurable Partition, it would be very easy to reconfigure the region
with information from an incorrect Reconfigurable Module, thus creating contention. The
software tools are designed to avoid that potentially dangerous occurrence.

Avoiding Deadlock
Some transactions across an RM boundary can take multiple cycles to complete. Removing
an RM after a transaction has started but before it completes causes the system to deadlock
(for example, the master, which initiated the transaction, waits for a response from a slave
which no longer exists).
Dynamic Function eXchange 83
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=83

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Additionally, the RM itself can cause deadlock. For example, assume some software is
polling an RM register for a particular value. If the RM is removed, the software might stall
as it continues to wait. It could also stall while waiting on a large block transfer to complete.

Any Dynamic Function eXchange design should be built with some sort of handshaking,
ensuring that the removal of a Reconfigurable Module occurs when it is safe to do so. This
request or acknowledgment pairing is part of the user design and can be built in any
fashion you deem appropriate.

Design Revision Checks
A partial bitstream contains programming information and little else, as described in
Chapter 8, Configuring the Device. While you do not need to identify the target location of
the bitstream (the die location is determined by the addressing that is part of the BIT file),
there are no checks in the hardware to ensure the partial bitstream is compatible with the
currently operating design. Loading a partial bitstream into a static design that was not
implemented with that Reconfigurable Module revision can lead to unpredictable behavior.

Xilinx suggests that you prefix a partial bitstream with a unique identifier indicating the
particular design, revision and module that follows. This identifier can be interpreted by
your configuration controller to verify that the partial bitstream is compatible with the
resident design. A mismatch can be detected, and the incompatible bitstream can be
rejected, before being loaded into configuration memory. This functionality must be part of
your design, and would be similar to or in conjunction with decryption and/or CRC checks,
as described in PRC/EPRC: Data Integrity and Security Controller for Partial Reconfiguration
(XAPP887) [Ref 33].

A bitstream feature provides a simple mechanism for tagging a design revision. The
BITSTREAM.CONFIG.USR_ACCESS property allows you to enter a revision ID directly into
the bitstream. This ID is placed in the USR_ACCESS register, accessible from the FPGA
programmable logic through a library primitive of the same name. Partial Reconfiguration
designs can read this value and compare it to information a user can add to a header of a
partial bitstream to confirm the revisions of the design match. More information on this
switch can be found in the application note Bitstream Identification with USR_ACCESS using
the Vivado Design Suite (XAPP1232) [Ref 34].

CAUTION! Do not use the TIMESTAMP feature because this value is not consistent for each call to
write_bitstream. Only select a consistent, explicit ID to be used for all write_bitstream runs.
Dynamic Function eXchange 84
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=84

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices
Simulation and Verification
Configurations of Dynamic Function eXchange designs are complete designs in and of
themselves. All standard simulation, timing analysis, and verification techniques are
supported for DFX designs. Partial reconfiguration itself cannot be simulated. Specifically,
the delivery of a partial bitstream to a configuration port like the ICAP to see the resulting
change (including intermediate states) in a Reconfigurable Partition.
Dynamic Function eXchange 85
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=85

Chapter 6

Design Considerations and Guidelines for
7 Series and Zynq Devices

Overview
This chapter explains design requirements that are unique to Dynamic Function eXchange
(DFX), and are specific to 7 series and Zynq®-7000 SoC devices.

To take advantage of the Dynamic Function eXchange capability of Xilinx® devices, you
must analyze the design specification thoroughly, and consider the requirements,
characteristics, and limitations associated with DFX designs. This simplifies both the design
and debug processes, and avoids potential future risks of malfunction in the design.

Design Elements Inside Reconfigurable Modules
Not all logic is permitted to be actively reconfigured. Global logic and clocking resources
must be placed in the static region to not only remain operational during reconfiguration,
but to benefit from the initialization sequence that occurs at the end of a full device
configuration.

Logic that can be placed in a Reconfigurable Module includes:

• All logic components that are mapped to a CLB slice in the device. This includes LUTs
(look-up tables), FFs (flip-flops), SRLs (shift registers), RAMs, and ROMs.

• Block RAM and FIFO:

° RAMB18E1, RAMB36E1, BRAM_SDP_MACRO, BRAM_SINGLE_MACRO,
BRAM_TDP_MACRO

° FIFO18E1, FIFO36E1, FIFO_DUALCLOCK_MACRO, FIFO_SYNC_MACRO
Note: The IN_FIFO and OUT_FIFO design elements cannot be placed in an RM. These design
elements must remain in static logic.

• DSP blocks: DSP48E1
• PCIe® (PCI Express): Entered using PCIe IP
Dynamic Function eXchange 86
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=86

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
All other logic must remain in static logic and must not be placed in an RM, including:

• Clocks and Clock Modifying Logic - Includes BUFG, BUFR, MMCM, PLL, and similar
components

• I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL, etc.)
• Serial transceivers (MGTs) and related components
• Individual architecture feature components (such as BSCAN, STARTUP, XADC, etc.)

Global Clocking Rules
Because the clocking information for every Reconfigurable Module for a particular
Reconfigurable Partition is not known at the time of the first implementation, the DFX tools
pre-route each BUFG output driving a partition pin on that RP to all clock regions that the
Pblock encompasses. This means that clock spines in those clock regions might not be
available for static logic to use, regardless of whether the RP has loads in that region.

In 7 series devices, up to 12 clock spines can be pre-routed into each clock region. This limit
must account for both static and reconfigurable logic. For example, if 3 global clocks route
to a clock region for static needs, any RP that covers that clock region can use the 9 global
clocks available, collectively, in addition to those three top-level clocks.

In the example shown in Figure 6-1, page 88, icap_clk is routed to clock regions X0Y1,
X0Y2, and X0Y3 prior to placement, and static logic is able to use the other clock spines in
that region.
Dynamic Function eXchange 87
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=87

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

RECOMMENDED: If there are a large number of global clocks driving an RP, create area groups that
encompass complete clock regions to ease placement and routing of static logic. Global clocks can be
downgraded to regional clocks (for example, BUFR, BUFH) for clocks with fewer loads or less
demanding requirements. Shifting clocks from global to local resources allows for more flexibility in
floorplanning when the RP requires many unique clocks.

X-Ref Target - Figure 6-1

Figure 6-1: Pre-routing Global Clock to Reconfigurable Partition
Dynamic Function eXchange 88
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=88

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
Creating Pblocks for 7 Series Devices
As noted in Apply Reset After Reconfiguration in Chapter 3, the height of the
Reconfigurable Partition must align to clock region boundaries if
RESET_AFTER_RECONFIG is to be used. Otherwise, any height can be selected for the
Reconfigurable Partition.

The width of the Reconfigurable Partition must be set appropriately to make most efficient
usage of interconnect and clocking resources. The left and right edges of Pblock rectangles
should be placed between two resource columns (for example, CLB-CLB, CLB-block RAM or
CLB-DSP) and not between two interconnect columns (INT-INT). This allows the placer and
router tools the full use of all resources for both static and reconfigurable logic.
Implementation tool DRCs provide guidance if this approach is not followed.

Automatic Adjustments for Reconfigurable Partition Pblocks
The Pblock SNAPPING_MODE property automatically resizes Pblocks to ensure no
back-to-back violations occur for 7 series designs. When SNAPPING_MODE is set to a value
of ON or ROUTING, it creates a new set of derived Pblock ranges that are used for
implementation. The new ranges are stored in memory, and are not written out to the XDC.
Only the SNAPPING_MODE property is written out, in addition to the normal Pblock
constraints.

In 7 series devices the structure is such that the routing resources, called interconnect tiles,
are placed adjacent, or back-to-back. When floorplanning for partial reconfiguration, it is
important to understand where these back-to-back boundaries exist. If a Pblock splits these
paired interconnect tiles, it is called a back-to-back violation. For more information on
back-to-back interconnect please refer to Creating Reconfigurable Partition Pblocks
Manually, page 92.

The original Pblock rectangle(s) are not modified when using SNAPPING_MODE and can still
be resized, moved, or extended with additional rectangles. Whenever the original Pblock
rectangle is modified, the derived ranges are automatically recalculated. The
SNAPPING_MODE property is supported in batch mode, so there is no requirement to open
the current Pblock in the Vivado® IDE to set the SNAPPING_MODE value, although this
option is available when performing interactive floorplanning, as shown in Figure 6-2,
page 90.
Dynamic Function eXchange 89
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=89

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
When you set the SNAPPING_MODE property using the following syntax (or by selecting the
Pblock Property as shown above), the implementation tools automatically see the corrected
Pblock ranges.

set_property SNAPPING_MODE ON [get_pblocks <pblock_name>]

The table below shows SNAPPING_MODE property values for 7 series devices.

The SNAPPING_MODE property also works in conjunction with RESET_AFTER_RECONFIG.
Using RESET_AFTER_RECONFIG requires Pblocks to be vertically frame (or clock region)
aligned. When SNAPPING_MODE is set to ON or to ROUTING and RESET_AFTER_RECONFIG
is set to TRUE, the derived ranges automatically include all sites necessary to meet this
requirement.

X-Ref Target - Figure 6-2

Figure 6-2: Enabling the SNAPPING_MODE Property in the Vivado IDE

Table 6-1: SNAPPING_MODE Property Values for 7 Series Devices
Property Value Description

SNAPPING_
MODE

OFF Default for 7 series. No adjustments are made and
DERIVED_RANGES == GRID_RANGES

ON Fixes all back-to-back violations.
ROUTING Same behavior as ON, except for the following exceptions:

• Does not fix back-to-back violations across the center
clock column to improve routing.

• Grabs unbonded I/O and GT sites that are within or
adjacent to the RP Pblock to improve routing. It can only
use these resources for PR routing if the sites are
unbonded and if the entire column (Clock Region in
height) is included in the Pblock rectangle.

This is the recommended value for 7 series and Zynq designs.
Dynamic Function eXchange 90
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=90

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
Figure 6-3 shows the original user-created Pblock in purple. RESET_AFTER_RECONFIG has
been enabled, and both left and right edges split interconnect columns. By applying
SNAPPING_MODE, the resulting derived Pblock (shown in yellow) is narrower to avoid
INT-INT boundaries, and taller to snap to the height of a clock region.
X-Ref Target - Figure 6-3

Figure 6-3: Original and Derived Pblocks using SNAPPING_MODE
Dynamic Function eXchange 91
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=91

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
Creating Reconfigurable Partition Pblocks Manually
If automatic modification to the Reconfigurable Partition Pblock is not desired to fix
back-to-back issues, you can create Pblock ranges manually to meet your needs. This is
most useful when explicit control is needed for Pblocks that must span non-reconfigurable
sites, such as configuration blocks or the center column, which contains clock buffer
resources.

In Figure 6-4, note that the left and right edges are drawn between CLB columns for the
Pblock highlighted in white. Visualization of the interconnect tiles as shown in this image
requires that the routing resources are turned on, using this symbol in the Device View :

The Reconfigurable Partition Pblock must include all reconfigurable element types within
the shape drawn. In other words, if the rectangle selected encompasses CLB (Slice), block
RAM, and DSP elements, all three types must be included in the Pblock constraints. If one
of these is omitted, a DRC is triggered with an alert that a split interconnect situation has
been detected.

X-Ref Target - Figure 6-4

Figure 6-4: Optimal - Reconfigurable Partition Pblock Splitting CLB-CLB on Both Left and Right Edges
Dynamic Function eXchange 92
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=92

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
Other considerations must be taken if the Reconfigurable Partition spans
non-reconfigurable sites, such as the center-column clocking resources or configuration
components (ICAP, BSCAN, etc.), or abuts non-reconfigurable components such as I/O. If a
Pblock edge splits interconnect columns for different resource types, implementation tools
accept this layout, but restrict placement in the columns on each side of the boundary. If
this prohibits sites that are needed for the design (such as the ICAP or BSCAN, for example),
the Pblock must be broken into multiple rectangles to clearly define reconfigurable logic
usage, or SNAPPING_MODE must be used.

The implementation tools automatically prevent placement on both sides of the
back-to-back interconnect by creating PROHIBIT constraints. If the sites that are
prohibited due to a back-to-back violation are not needed in the design, it is acceptable to
leave the back-to-back violation in the design. Doing so allows an extra column of routing
tiles to be included in the dynamic region, and can reduce congestion in a dynamic region
that spans non-reconfigurable sites. In this case, a Critical Warning is issued by DRCs, but
the warning can be safely ignored if you understand the trade-offs of placement versus
routing resources.

The one exception to this behavior is around the clock column. If a violation occurs at the
clock column boundary, PROHIBIT constraints are generated for the RM side of the
violation (typically SLICE prohibits), but the clocking resources do not get prohibit
constraints and are still available to the static logic. The SNAPPING_MODE property has a
value of ROUTING, which takes advantage of this special exception. For example, the initial
floorplan shown in Figure 6-5 spans the center column, which contains clock buffer
resources (BUFHCE/BUFGCTRL). These resources have not been included in the Pblock, as
they are not highlighted in Figure 6-5. There is violation caused by spanning this clock
column but the resources can still be used by the static logic.
Dynamic Function eXchange 93
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=93

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

Prohibited sites appear in placed or routed checkpoints as sites with a red circle with a slash,
as shown in Figure 6-6. With this automatic prohibit feature, the routing interconnect
associated with reconfigurable sites (CLBs) can still be used for the reconfigurable module
even though the CLBs themselves are not used. In Figure 6-6, the column of INT on the left
is available for the RM, but the column of INT on the right is only available for static logic
because these are part of the clock tile, which is not reconfigurable for 7 series devices.

X-Ref Target - Figure 6-5

Figure 6-5: Pblock Spanning Non-Reconfigurable Sites
Dynamic Function eXchange 94
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=94

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

If a back-to-back violation prohibits sites that are needed for the design (that is, ICAP or
BSCAN sites), a placement error is issued, stating that not enough sites are available in the
device.

ERROR: [Common 17-69] Command failed: Placer could not place
all instances

To avoid this restriction, create multiple Pblock rectangles that avoid splitting interconnect
columns, as shown in Figure 6-7, or use the Pblock SNAPPING_MODE property.

RECOMMENDED: In general, spanning non-reconfigurable site types (such as IOB, configuration, or
clocking columns) should be avoided whenever possible. If the Pblock must span one of these, the
clocking column is the least risky choice, owing to its special nature (described previously). Use
SNAPPING_MODE ROUTING to cross this boundary as efficiently as possible.

X-Ref Target - Figure 6-6

Figure 6-6: Prohibited Sites in a Checkpoint
Dynamic Function eXchange 95
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=95

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
X-Ref Target - Figure 6-7

Figure 6-7: Multiple Pblock Rectangles that Avoid Non-Reconfigurable Resources
Dynamic Function eXchange 96
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=96

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
Figure 6-8 is a close-up of this split, showing Slice (CLB) and Interconnect (INT) resource
types. The gap between the two Pblock rectangles gives full access to the BUFHCE
components to route completely using static resources. This also leaves one column of CLBs
available for the static design to use. Although routing resources exist that can cross these
gaps, the overall routability of such structures is notably reduced. This approach is more
challenging and should be avoided if possible. When spanning other static boundaries,
such as IOB or configuration tiles, the routing gap for the dynamic region becomes two INT
resources, and routing becomes difficult.

Irregular shaped Partitions (such as a T or L shapes) are permitted, but you are encouraged
to keep overall shapes a simple as possible. Placement and routing in such regions can
become challenging because routing resources must be entirely contained within these
regions. Boundaries of Partitions can touch, but this is not recommended, as some
separation helps mitigate potential routing restriction issues. Nested or overlapping
Reconfigurable Partitions (partitions within partitions) are not permitted.

Finally, only one Reconfigurable Partition can exist per physical Reconfigurable Frame. A
Reconfigurable Frame is the smallest size physical region that can be reconfigured, and
aligns with clock region boundaries. A Reconfigurable Frame cannot contain logic from
more than one Reconfigurable Partition. If it were to contain logic from more than one
Reconfigurable Partition, it would be very easy to reconfigure the region with information
from an incorrect Reconfigurable Module, thus creating contention. The Vivado tools are
designed to avoid that potentially dangerous occurrence.

X-Ref Target - Figure 6-8

Figure 6-8: Close-up Showing Columns Reserved for Clock Routing Usage
Dynamic Function eXchange 97
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=97

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
Using High Speed Transceivers
Xilinx high speed transceivers (GTP, GTX, GTH,GTZ) are not reconfigurable in 7 series
devices, and must remain in static logic. However, settings for the transceivers can be
updated during operation using the DRP ports. For more information on the transceiver
settings and DRP access, see 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)
[Ref 21], or 7 Series FPGAs GTP Transceivers User Guide (UG482) [Ref 22].

Dynamic Function eXchange Design Checklist (7
Series)
Xilinx highly encourages the following items for a 7 series FPGA design using Dynamic
Function eXchange:

Recommended Clocking Networks

Are you using Global Clock Buffers, Regional Clock Buffers, or Clock Modifying Blocks
(MMCM, PLL)?

These blocks must be in static logic.

See Design Elements Inside Reconfigurable Modules for more information, and Global
Clocking Rules for complete details on global clock implementation.

Configuration Feature Blocks

Are you using device feature blocks (BSCAN, CAPTURE, DCIRESET, FRAME_ECC, ICAP,
STARTUP, USR_ACCESS)?

These featured blocks must be in static logic.

See Design Elements Inside Reconfigurable Modules for more information.

High Speed Transceiver Blocks

Do you have high speed transceivers in your design?

High speed transceivers must remain in the static partition.

See Using High Speed Transceivers for specific requirements.
Dynamic Function eXchange 98
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=98

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
System Generator DSP Cores, HLS cores, or IP Integrator Block Diagrams

Are you using System Generator DSP cores, HLS cores, or IP Integrator block diagrams in your
Dynamic Function eXchange design?

Any type of source can be used as long as it follows the fundamental requirements for
Dynamic Function eXchange. Any code processed by SysGen, HLS, or Vivado IP
Integrator (or other tools) is eventually synthesized. The resulting design checkpoint or
netlist must be made up entirely of reconfigurable elements (CLB, block RAM, DSP) for
it to be legally included in an RP.

Packing I/Os into Reconfigurable Partitions

Do you have I/Os in reconfigurable modules?

All I/Os must reside in static logic.

See Design Elements Inside Reconfigurable Modules for more information.

Packing Logic into Reconfigurable Partitions

Is all logic that must be packed together in the same Reconfigurable Partition?

Any logic that must be packed together must be in the same RP and RM.

See Packing Logic for more information.

Packing Critical Paths into Reconfigurable Partitions

Are critical paths contained within the same partition?

Reconfigurable partition boundaries limit some optimization and packing, so critical
paths should be contained within the same partition.

See Packing Logic for more information.

Floorplanning

Can your Reconfigurable Partitions be floorplanned efficiently?

See Creating Pblocks for 7 Series Devices for more information.

Recommended Decoupling Logic

Have you created decoupling logic on the outputs of your RMs?

During reconfiguration the outputs of RPs are in an indeterminate state, so decoupling
logic must be used to prevent static data corruption.

See Decoupling Functionality for more information.
Dynamic Function eXchange 99
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=99

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
Recommended Reset after Reconfiguration

Are you resetting the logic in an RM after reconfiguration?

After reconfiguration, new logic might not start at its initial value. If the Reset After
Reconfiguration property is not used, a local reset must be used to ensure it comes up
as expected when decoupling is released. Clock and other inputs to the reconfigurable
partition can also be disabled during reconfiguration to prevent initialization issues.
Alternatively, the Reset After Reconfiguration property can be applied. This option holds
internal signals steady during reconfiguration, then issues a masked global reset to the
reconfigured logic.

See Apply Reset After Reconfiguration for more information.

Debugging with Logic Analyzer Blocks

Are you using the Vivado Logic Analyzer with your Dynamic Function eXchange design?

Vivado Logic Analyzer (ILA/VIO debug cores) can be used in your Dynamic Function
eXchange design, but care must be taken when connecting these cores to debug hubs.
Use the automatic inference solution shown in Using Vivado Debug Cores.

Efficient Reconfigurable Partition Pblocks

Have you created efficient Reconfigurable Partition Pblock(s) for your design?

The height of the Reconfigurable Partition Pblock must align with the top and bottom of
a clock region boundary, if the RESET_AFTER_RECONFIG property is to be used.
Otherwise, any height can be selected for the Reconfigurable Partition Pblock.

See Creating Pblocks for 7 Series Devices for more information.

Validating Configurations

How do you validate consistency between configurations?

The pr_verify command is used to make sure all configurations have matching
imported resources.

See Verifying Configurations for more information.

Configuration Requirements

Are you aware of the particular configuration requirements for Dynamic Function eXchange
for your design and device?

Each device family has specific configuration requirements and considerations.

See Configuring the Device for more information.
Dynamic Function eXchange 100
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=100

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
Effective Pblock recommendations

Does an RP Pblock extend over the center clock column or the configuration column in the
device?

Due to the back-to-back INT tile requirement for 7 series devices, coupled with the
CONTAIN_ROUTING requirement, extending a Pblock over these specialized blocks in
the device can make routing very difficult or impossible. Avoid extending an RP Pblock
across these areas whenever possible.

See Automatic Adjustments for Reconfigurable Partition Pblocks and Creating
Reconfigurable Partition Pblocks Manually for more information on back-to-back
requirements.
Dynamic Function eXchange 101
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=101

Chapter 7

Design Considerations and Guidelines for
UltraScale and UltraScale+ Devices

Overview
This chapter explains design requirements that are unique to Dynamic Function eXchange
(DFX), and are specific to UltraScale™ and UltraScale+™ devices.

To take advantage of the Dynamic Function eXchange capability of Xilinx® devices, you
must analyze the design specification thoroughly, and consider the requirements,
characteristics, and limitations associated with DFX designs. This simplifies both the design
and debug processes, and avoids potential future risks of malfunction in the design.

Design Elements Inside Reconfigurable Modules
In UltraScale and UltraScale+ devices, nearly all component types may be partially
reconfigured.

Logic that can be placed in a Reconfigurable Module includes:

• All logic components that are mapped to a CLB slice in the FPGA. This includes LUTs
(look-up tables), FFs (flip-flops), SRLs (shift registers), RAMs, and ROMs.

• Block RAM and FIFO: RAMB18E2, RAMB36E2, FIFO18E2, FIFO36E2
• DSP blocks: DSP48E2
• PCIe® (PCI Express), CMAC (100G MAC), and ILKN (Interlaken MAC) blocks
• UltraRAM blocks: URAM288
• SYSMON (XADC and System Monitor)
• Clocks and Clock Modifying Logic: Includes BUFG, BUFGCE, BUFGMUX, MMCM, PLL,

and similar components
• I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL, etc.)
• Serial transceivers (MGTs) and related components
Dynamic Function eXchange 102
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=102

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
Note: DNA_PORT -- the Device DNA Access Port (DNA_PORTE2) is the only configuration element in
the CONFIG_SITE that is reconfigurable. Any other usage of CONFIG_SITE elements is not permitted.

Only configuration components must remain in the static part of the design. These
components are:

• BSCAN
• CFG_IO_ACCESS
• DCIRESET
• EFUSE_USR
• FRAME_ECC
• ICAP
• MASTER_JTAG
• STARTUP
• USR_ACCESS

Creating Pblocks for UltraScale and UltraScale+
Devices
As part of improvements to the UltraScale architecture, the smallest unit that can be
reconfigured is much smaller than in previous architectures. The minimum required
resources for reconfiguration varies based on the resource type, and are referred to as a
Programmable Unit (PU). Because adjacent sites share a routing resource (or Interconnect
Tile) in UltraScale, a PU is defined in terms of pairs.

Examples of some of the minimum PU that can be reconfigured based on the site types:

• CLB PU: 2 adjacent CLBs, and the shared interconnect
• Block RAM PU: 1 block RAM/FIFO, the 5 adjacent CLBs, and the shared interconnect
• DSP PU: 1 DSP, the 5 adjacent CLBs, and the shared interconnect
• IOB PU: The IO of the full height of the clock_region and includes BITSLICE_CONTROL,

BITSLICE_RX_TX, BITSLICE_TX, BUFGCE, BUFGCE_DIV, BUFGCTRL, IOB, MMCME3_ADV,
PLLE3_ADV, PLL_SELECT_SITE, RIU_OR, etc. The adjacent 60 CLBs and the shared
interconnect.
Dynamic Function eXchange 103
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=103

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
Automatic Adjustments for PU on Pblocks
In UltraScale and UltraScale+ devices, there is no RESET_AFTER_RECONFIG option.
Instead, GSR is always issued at the end of a partial reconfiguration, and there are no Pblock
size/shape requirements to enable this like there are in 7 series devices. However, to ensure
that the Pblock does not violate any rules for minimum PU sizes, the SNAPPING_MODE
property is also always on by default, and automatically adjusts the Pblock to make sure it
is valid for PR.

Figure 7-1 and Figure 7-2 below give an example of how SNAPPING_MODE adjusts the
Pblock for PU alignment. In Figure 7-1, despite the larger outer rectangle, only the selected
tiles belong to the RP Pblock. The upper block RAM and DSP sites are not included because
they are not fully contained in the Pblock, and the associated CLB sites are not included
either, based on the PU rules. There are also CLB sites on both the left and right edge that
are not included in the Pblock because the adjacent CLBs are not owned by the original
rectangle.

X-Ref Target - Figure 7-1

Figure 7-1: SNAPPING_MODE Example - UltraScale
Dynamic Function eXchange 104
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=104

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
While SNAPPING_MODE made the above Pblock legal for the RP, it is possible that the intent
was to include all of these sites. By making a small adjustment to the original Pblock
rectangle, you can prevent SNAPPING_MODE from removing sites that are intended for the
dynamic region. In Figure 7-2 the Pblock has been expanded by one CLB on the left, right,
and top edges. The shaded tiles that are owned by the RP Pblock now match the outer
rectangle.

While shading shows what is included in a Reconfigurable Partition, you can best visualize
the sites owned by a RP by using highlighting scripts that the Vivado Design Suite tools
create automatically for Pblocks of Reconfigurable Partitions. The following steps can be
used for debugging/verifying Pblocks:

1. Create or make an adjustment to an RP. The cell assigned to the Pblock must have the
HD.RECONFIGURABLE property set.

2. Source the highlighting script that was generated by the Vivado tools.
source ./hd_visual/<pblock_name>_AllTiles.tcl

Note: The scripts in the hd_visual directory are updated any time the Pblock constraints are
processed. This includes opening a design that contains Pblocks and creating or modifying Pblocks
in an open design.

X-Ref Target - Figure 7-2

Figure 7-2: PU Aligned Pblock
Dynamic Function eXchange 105
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=105

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
Sharing Configuration Frames between RP and Static Logic
Even though UltraScale and UltraScale+ devices Pblocks are not required to be frame
aligned (that is, the height of the clock region), Dynamic Function eXchange still programs
the entire configuration frame. This means that logic outside of the RP is overwritten. This
does not cause any issues in DFX, but in previous architectures there were some limitations
about what kind of static logic could be in the same frame as reconfigurable logic.

For UltraScale and UltraScale+ devices, any static logic can be placed in the same
configuration frame as the RM, in any sites not owned by the RP Pblock. This includes block
RAM, DSP, and LUT RAM. There is still a restriction however, that there can be only one RP
per configuration frame. That means you cannot vertically stack two RPs in the same clock
region.

Expansion of CONTAIN_ROUTING Area
The contained routing requirement of RP Pblocks for UltraScale and UltraScale+ devices has
been relaxed to allow for improved routing and timing results. Instead of routing being
confined strictly to the resources owned by the Pblock, the routing footprint is expanded.
This includes resources that are within the Pblock boundary, but not necessarily owned by
the Pblock, as well as resources beyond the Pblock rectangle. This means there might be RM
nets and Partition Pins outside of the Pblock boundary. However, any partition pin or
contained net will still be within the expanded routing footprint.

The expanded routing footprint can be visualized by sourcing one of the hd_visual Tcl
scripts. These are scripts that are generated automatically during the Dynamic Function
eXchange flow, and can be found in the ./hd_visual subdirectory within the current
working directory. The visualization script that shows the expanded routing footprint is
named ./hd_visual/<pblock_name>_Routing_AllTiles.tcl. The expanded
routing footprint is actually determined during routing, so this file is not be available until
route_design completes. To see the expanded routing footprint, source this file from the Tcl
Console after opening a routed design. This selects all tiles available to the router, and then
selected tiles can be highlighted or marked as desired. In the figure below, the user-defined
Pblock that bounds placement is shown in blue, and the expanded routing zone is shown in
yellow.

source ./hd_visual/pblock_inst_shift_low_Routing_AllTiles.tcl
Dynamic Function eXchange 106
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=106

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
r

Obviously any frames that are used by the RM must be contained with the partial bit files,
so one effect of expanding the routing footprint will be larger partial bit files. The increase
in size depends on the original Pblock size and shape. Pblocks that are already rectangular
can still expand. However, the expansion cannot go beyond a clock region boundary in the
vertical direction; it can extend into a new clock region to the left or right. It may help the
routability of the RP if the Pblock boundaries stop short of internal clock region edges,
especially in the vertical direction. Pblock edges that align to the device edges, such as left
or bottom edges, should not be pulled in just to allow for expanded routing. This causes
placement issues if the static region now has access to small pockets of resources along the
edges. Xilinx recommends keeping this routing expansion enabled, but if the partial
bitstream size is more critical than the performance of the design, then this feature can be
disabled by setting the following parameter:

set_param hd.routingContainmentAreaExpansion false

I IMPORTANT: The expanded routing footprint is not supported for 7 series devices.

UltraRAM Behavior
Just as with a full device configuration, UltraRAM memory is initialized to all 0's during
partial reconfiguration. There is no user defined INIT attribute and therefore the content of
the SRAM array cannot be initialized to user defined values.

X-Ref Target - Figure 7-3

Figure 7-3: Highlighted Pblock and expanded routing footprint
Dynamic Function eXchange 107
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=107

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
Floorplanning Rules for Clocks inside an RP
UltraScale and UltraScale+ devices support clocking resources within the RP such as
BUFG_*, PLL, and MMCM. Designs incorporating this feature should follow the general
design restrictions described in Global Clocking Rules as well as the additional
floorplanning rules below. These rules are required to ensure that the clocks internal to the
RP can reach the necessary routing resources within the frames owned by the RP Pblock.

1. Create rectangular Pblocks whenever possible. If the Pblock is made up of multiple
rectangles, the tallest column of the Pblock must be clock_region aligned.

2. The CLOCK_ROOT property of the internal RM clock should be set as one of the tallest
columns in the Pblock. The tools attempt to pick the correct columns for the
CLOCK_ROOT automatically, but in some cases this cannot be done.
a. If a USER_CLOCK_ROOT property exists on the clock net, then the tools will not

automatically select the CLOCK_ROOT. If the USER_CLOCK_ROOT property is set to a
column that is not the full height of the Pblock, unroutable connections might occur.

b. Certain configurations of BUFG_GT require that the CLOCK_ROOT be in the same
region as the BUFG_GT. If this is not the tallest column of the Pblock, unroutable
connection might occur. To resolve this, consider splitting the clock net into two
BUFG_GT (one for user logic, and the other for the direct GT connections). This way
each clock can have its own CLOCK_ROOT.

As shown in Figure 7-4, a CLOCK_ROOT defined in region X2Y2 (top-left of the Pblock)
would prevent routing to any loads in region X3Y1 (bottom-right of the Pblock),
because the region X2Y1 is not available to the clock. Conversely, if the CLOCK_ROOT
were defined in either X3Y2 or X3Y1, no clock routing restrictions would apply.
Dynamic Function eXchange 108
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=108

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
X-Ref Target - Figure 7-4

Figure 7-4: CLOCK_ROOT Restrictions on L-Shaped Pblocks
Dynamic Function eXchange 109
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=109

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
3. If a CLOCK_ROOT cannot be set to the tallest column, the loads of the clock can be
contained to regions accessible by the clock using nested Pblocks within the RP region.
The nested Pblock will prevent the placer from putting a load in a region that is not
accessible by the clock due to irregularly shaped Pblocks.

4. Do not create U or H shaped Pblocks with large gaps that span an entire
clock_region, as shown in Figure 7-5 below.

As shown in Figure 7-6 below, small static gaps, such as an IOB column, are permitted in
the row of an RP Pblock. However, Xilinx recommends avoiding these gaps when
possible, as they are a potential source of routing congestion because RM routes need
to route over these gaps.

X-Ref Target - Figure 7-5

Figure 7-5: Unsupported Pblock with clock_region Gap

X-Ref Target - Figure 7-6

Figure 7-6: Supported Pblock with Small Static Gap
Dynamic Function eXchange 110
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=110

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
Small stair-step shaped Pblocks, as shown in Figure 7-7, are sometimes necessary. While
they are supported, they can also lead to routing congestion around the corners.

5. RP Pblocks with clocking resources cannot share any part of a clock region with any
other RP. It can share a clock region with static logic. This is true regardless of where the
logic driven by these clock resources exist—inside or outside of the given RP.

Global Clocking Rules
As with architectures previous to UltraScale, all unique clocks driving the Reconfigurable
Partition are pre-routed to every clock region in which the RP owns sites. Effectively, this
means that the total number of global clocks driving the Reconfigurable Partition
(regardless of size) is a maximum of 24. Higher clock utilization is possible when the clock
source is in the RM, since these do not need to be pre-routed to every clock region. For this
reason it is always important to carefully consider the RP Pblock size and shape. However,
one difference in the UltraScale architecture is that there are now 24 global clocks available
per clock region instead of the 12 available in 7 series devices.

Note: For BUFGCTRL components, the PRESELECT_I0 and PRESELECT_I1 properties are ignored
during partial reconfiguration, even with RESET_AFTER_RECONFIG enabled. The clock source
selected depends only on the select and clock enable inputs of the BUFGCTRL instance.

Clock sources that exist within Reconfigurable Modules can drive logic to the static design
or other Reconfigurable Modules. Vivado handles many of the low-level details, such as

X-Ref Target - Figure 7-7

Figure 7-7: Supported Stair-Step Shaped Pblock
Dynamic Function eXchange 111
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=111

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
consistent clock spine usage. Design rule checks ensure that fundamental rules are applied.
There are, however, a few considerations to be aware of:

• Clock resource must be consistent from one RM to the next for a given RP. While you
may change characteristics of the clock such as MMCM parameters, the clock driver
type (BUFG, etc.) must remain fixed so routing resources can remain consistent in the
locked static design.

• Clock behavior is indeterminate during reconfiguration, so consider decoupling.
Because clocks will be using high-fanout routing resources, a basic 2-to-1 MUX or
register will not be appropriate like it would be for standard interfaces. Instead, a
BUFGMUX can be used to block the clock source during reconfiguration. Alternately,
synchronous elements in static or other RMs can be disabled or held in reset while the
clock source is reconfigured.

I/O Rules
In UltraScale and UltraScale+ devices, I/O logic and buffers can be included in an RP. While
the I/O can be modified from one RM to another, there are some rules that must be
followed.

The following checks are done between all configurations that use the I/O sites. If an I/O
site changes from being used to unused, or vice versa, then these checks are not done for
those configurations. If an I/O is unused in a particular configuration, make sure the
appropriate property for the design is set on these ports via the PULLTYPE attribute. For
more information on setting PULLTYPE, see this link in Vivado Design Suite Properties
Reference Guide (UG912) [Ref 31].

• The I/O direction and I/O standard must be the same between all RMs whenever the
I/O is used.

• For DCI_CASCADE, the member bank assignments between RMs cannot overlap.

° Legal example: In Configuration 1, DCI_CASCADE has banks 12, 13. In
Configuration 2, DCI_CASCADE has banks 14, 15 and 16. They do not have
overlapped banks.

° Illegal example: In Configuration 1, DCI_CASCADE has banks 12 and 13. In
Configuration 2, DCI_CASCADE has banks 13, 14, 15 and 16. In this case bank 13
overlaps.

• For DCI_CASCADE, member banks must be fully contained within the reconfigurable
region. All of the member banks for the same DCI_CASCADE must be in either the
same RP Pblock, or completely in static. DCI_CASCADE usage must remain consistent
between different Reconfigurable Modules.
Dynamic Function eXchange 112
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug912-vivado-properties.pdf;a=xPULLTYPE
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=112

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
Changes to the IOB from one configuration to another are limited by the rules above. This
means that the following I/O characteristics may be modified through Dynamic Function
eXchange:

• Usage (used vs. unused, per I/O)
• Drive Strength (12mA, 8mA, etc.)
• Driver Output Impedance (40Ω, 48Ω, etc.)
• Driver Input Impedance (40Ω, 48Ω, etc.)
• Driver Slew Rate (slow, fast, etc.)
• ODT Termination (40, 60, etc.)

Adding the I/O sites into the RP requires that the entire PU (encompassing the I/O bank,
BITSLICE, MMCM, PLL, and one column of CLBs plus shared interconnect) be added. All
components in this fundamental region are reconfigured and reinitialized, and adding these
other site types to the reconfigurable region can be beneficial in some cases for these
reasons:

• Adding I/O sites allows use of the routing resources of the I/O, which reduces
congestion (instead of increasing congestion, as it could if the I/O sites were in Static,
and caused a gap in the reconfigurable region).

• Allows reconfiguration of other clocking resources like the MMCM and PLL.
• Allows reconfiguration of other I/O logic sites such as BITSLICE and

BITSLICE_CONTROL.

Regardless of whether or not the I/O usage or characteristics change during
reconfiguration, the entire bank is reconfigured. During reconfiguration, all I/O in the banks
defined by the RP Pblock is held with the dedicated global tri-state (GTS) signal, which is
released at the end of reconfiguration.

If the Reconfigurable Module contains an MMCM or PLL component, the size of the partial
bitstream will be at its smallest when the lock cycle of these components are set to “no
wait”. Similarly, IO with DCI matching requirements will have minimal bitstream sizes when
the lock cycle is set to “no wait”. Set these options using this commands:

set_property BITSTREAM.STARTUP.LCK_CYCLE NoWait [current_design]
set_property BITSTREAM.STARTUP.MATCH_CYCLE NoWait [current_design]

During the Dynamic Function eXchange flow, RMs are carved out using update_design
-black_box. During this command any embedded IO buffers, and the associated
constraints, such as PACKAGE_PIN and IOSTANDARD, are removed. When the black box RP
is filled in with a new RM, these IOB constraints need to be reapplied to the design.
Dynamic Function eXchange 113
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=113

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
Using High Speed Transceivers
Xilinx high speed transceivers (GTH, GTY) are supported within a Reconfigurable Partition.
As with other reconfigurable site types, the entire PU must be included. For the UltraScale
GT transceivers, the PU includes

• 4 GT_CHANNEL sites (GT Quad)
• Associated GT_COMMON site
• Associated BUFG_GT_SYNC sites
• Associated BUFG_GT sites
• Associated Interconnect and CLB sites

The required GT PU is the entire height of a clock region. As with previous architectures, it
is also possible to leave the GT components in static logic and change the functionality
through the DRP. For more information on using UltraScale and UltraScale+ transceivers,
see the UltraScale Architecture GTH Transceivers User Guide (UG576) [Ref 25] or the
UltraScale Architecture GTY Transceivers User Guide (UG578) [Ref 26].

Virtex UltraScale+ High Bandwidth Memory (HBM) devices support Dynamic Function
eXchange just like any other UltraScale+ device. Users have the choice of where the HBM
Controllers are placed: in the static region or in the dynamic region. If the AXI High
Bandwidth Memory Controller IP is kept in the static region with an active HBM reference
clock, the memory interface will remain active and all memory contents are retained.
Self-refresh mode can be used for power savings during reconfiguration or when the
memory is not need; memory contents will be maintained in this case as well. If this IP is
placed in a Reconfigurable Module, it will be reconfigured and memory contents will be
reinitialized per its Vivado customization. For more information on the HBM Controller IP,
consult the documentation here:
https://www.xilinx.com/products/intellectual-property/hbm.html

Dynamic Function eXchange Checklist for
UltraScale and UltraScale+ Device Designs
Xilinx highly encourages the following for an UltraScale and UltraScale+ device design
using Dynamic Function eXchange:

Recommended Clocking Networks

Are you using Global Clock Buffers or Clock Modifying Blocks (MMCM, PLL)?
Dynamic Function eXchange 114
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=114

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
These blocks can be reconfigured, but all elements in this frame type must be
reconfigured. This includes an entire I/O bank and all clocking elements in that shared
region, plus one column of CLBs that share the interconnect.

See Design Elements Inside Reconfigurable Modules for more information, and Global
Clocking Rules for complete details on global clock implementation.

In addition, the following restrictions are currently enforced by Vivado Design Suite DRC
rules. The use of clocking resources BUFGCTRL, BUFG_CE and BUFG_GT is supported
with the following restrictions:

° Xilinx recommends using rectangular Pblock shapes. Non-rectangular shapes are
also supported for RPs with clocking logic, as long as the tallest column of the
Pblock is aligned vertically and horizontally with the clock region. The tallest
column of the RP Pblock must also range the IOB, and this range must cover the full
height of all the rectangles that define the RP Pblock, as shown in Figure 7-8. In
other words, this vertical column of IOB ranges must be able to access all rows of
the Pblock. Pblock shapes like a sideways “L” are not supported unless the vertical
section of the shaped includes the IOB range.

° A gap is defined as an unranged site type with ranged sites on both sides of it. The
following gaps are not allowed:
- Gaps in the IOB/XIPHY ranges, such as the gap in the IOB column shown in

Figure 7-9 below.

X-Ref Target - Figure 7-8

Figure 7-8: Tallest Column of Pblock Clock Region Aligned
Dynamic Function eXchange 115
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=115

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
- Gaps in the DSP ranges.

° A clock region cannot be shared by two RP Pblocks if:
- At least one of them has a global clock source.
- The other has ranged a global clock source.

Configuration Feature Blocks

Are you using device feature blocks (BSCAN, DCIRESET, FRAME_ECC, ICAP, STARTUP,
USR_ACCESS)?

These featured blocks must be in static logic.

See Design Elements Inside Reconfigurable Modules for more information.

Pblock Boundaries

Have you set the Pblock boundaries?

For UltraScale and UltraScale+ devices, the X-axis boundary of a dynamic region can be
set by a PU, including CLB, Block RAM, DSP, and others. The tool adjusts the Pblock
automatically for a valid placement. The Y-axis boundary of a PR region can be a clock
region and IO bank. However, if BUFGCTRL/BUFG_CE/BUFG_GT are used in the RP, a full
clock region must be used.

SSI Technology

Does the Pblock span an SLR of an SSI device?

If using an SSI device it is recommended to keep a dynamic region within a single SLR.
However, for UltraScale and UltraScale+ devices, if a RP Pblock must span an SLR, the

X-Ref Target - Figure 7-9

Figure 7-9: Unsupported Gap in the IOB Column
Dynamic Function eXchange 116
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=116

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
necessary Laguna sites must be included to allow for routing across this boundary. This
requires that at least one full clock region belongs to the dynamic region on both sides
of the SLR boundary.

For more information on SSI Technology devices and Laguna, see Devices using Stacked
Silicon Interconnect (SSI) Technology in the UltraScale Architecture Configurable Logic
Block User Guide (UG574) [Ref 28].

High Speed Transceiver Blocks

Do you have high speed transceivers in your design?

High speed transceivers can be reconfigured. An entire quad, including all component
types (GT_CHANNEL, GT_COMMON, BUFG_GT) must be reconfigured together.

See Using High Speed Transceivers for specific requirements.

System Generator DSP Cores, HLS cores, or IP Integrator Block Diagrams

Are you using System Generator DSP cores, HLS cores, or IP Integrator block diagrams in your
Dynamic Function eXchange design?

Any type of source can be used as long as it follows the fundamental requirements for
Dynamic Function eXchange. Any code processed by SysGen, HLS, or IP Integrator (or
other tools) is eventually synthesized. The resulting design checkpoint or netlist must be
comprised entirely of reconfigurable elements in order for it to be legally included in an
RP.

Packing I/Os into Reconfigurable Partitions

Do you have I/Os in reconfigurable modules?

I/Os can be partially reconfigured. An entire I/O bank, along with all I/O logic (XiPhy)
and clocking resources, must be reconfigured at once. IOSTANDARD and direction
cannot change and DCI Cascade rules must be followed. But other I/O characteristics
may change from one RM to the next.

See Design Elements Inside Reconfigurable Modules for more information.

Packing Logic into Reconfigurable Partitions

Is all logic that must be packed together in the same Reconfigurable Partition?

Any logic that must be packed together must be in the same RP and RM.

See Packing Logic for more information.
Dynamic Function eXchange 117
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=117

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
Packing Critical Paths into Reconfigurable Partitions

Are critical paths contained within the same partition?

Reconfigurable partition boundaries limit some optimization and packing, so critical
paths should be contained within the same partition.

See Packing Logic for more information.

Floorplanning

Can your Reconfigurable Partitions be floorplanned efficiently?

See Creating Pblocks for UltraScale and UltraScale+ Devices for more information.

Recommended Decoupling Logic

Have you created decoupling logic on the outputs of your RMs?

During reconfiguration the outputs of RPs are in an indeterminate state, so decoupling
logic must be used to prevent static data corruption.

See Decoupling Functionality for more information.

Recommended Reset After Reconfiguration

Are you resetting the logic in an RM after reconfiguration?

Reset After Reconfiguration is always enabled for UltraScale and UltraScale+ devices.
This capability cannot be disabled.

See Apply Reset After Reconfiguration for more information.

Debugging with Logic Analyzer Blocks

Are you using the Vivado Logic Analyzer with your Dynamic Function eXchange design?

Vivado logic analyzer (ILA/VIO debug cores) can be used in your Dynamic Function
eXchange design, but care must be taken when connecting these cores to debug hubs.
Use the automatic inference solution shown in Using Vivado Debug Cores.

Efficient Reconfigurable Partition Pblocks

Have you created efficient Reconfigurable Partition Pblock(s) for your design?

A Reconfigurable Partition Pblock can be any height, but multiple Reconfigurable
Partitions cannot be stacked vertically within a single clock region.

See Creating Pblocks for UltraScale and UltraScale+ Devices for more information.
Dynamic Function eXchange 118
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=118

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
Validating Configurations

How do you validate consistency between configurations?

The pr_verify command is used to make sure all configurations have matching
imported resources.

See Verifying Configurations for more information.

Configuration Requirements

Are you aware of the particular configuration requirements for Dynamic Function eXchange
for your design and device?

Each device family has specific configuration requirements and considerations.

See Configuring the Device for more information.
Dynamic Function eXchange 119
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=119

Chapter 8

Configuring the Device

Overview
This chapter describes the system design considerations when configuring your device with
a partial BIT file, as well as architectural features in the FPGA that facilitate Dynamic
Function eXchange (DFX). Because most aspects of Dynamic Function eXchange are no
different than standard full configuration, this section concentrates on the details that are
unique to DFX.

Configuration Modes
Dynamic Function eXchange is supported using the following configuration modes:

• ICAP: A good choice for user configuration solutions. Requires the creation of an ICAP
controller as well as logic to drive the ICAP interface.

• MCAP: (UltraScale™ and UltraScale+™ devices only) Provides a dedicated connection
to the configuration engine from one specific PCIe® block per device.

• PCAP: The primary configuration mechanism for Zynq-7000 SoC and Zynq UltraScale+
designs.

• JTAG: A good interface for quick testing or debug. Can be driven with the Vivado Logic
Analyzer.

• Slave SelectMAP or Slave Serial: A good choice to perform full configuration and
dynamic reconfiguration over the same interface.

Master modes are not directly supported because IPROG housecleaning clears the
configuration memory.
Dynamic Function eXchange 120
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=120

Chapter 8: Configuring the Device
To use external configuration modes (other than JTAG) for loading a partial BIT file, these
pins must be reserved for use after the initial device configuration. This is achieved by using
the BITSTREAM.CONFIG.PERSIST property to keep the dual-purpose I/O for
configuration usage and to set the configuration width. Refer to this link in the Vivado
Design Suite User Guide: Programming and Debugging (UG908) [Ref 27]. The Tcl command
syntax to set this property is:

set_property BITSTREAM.CONFIG.PERSIST <value> [current_design]

where <value> is either No or Yes.

Note: When configuration pins are persisted, the ICAP is disabled; the two features are mutually
exclusive. For more information on the ICAP, see 7 Series FPGAs Configuration User Guide (UG470)
[Ref 9] or UltraScale Architecture Configuration User Guide (UG570) [Ref 10], depending on your
device.

Partial bitstreams contain all the configuration commands and data necessary for Dynamic
Function eXchange. The task of loading a partial bitstream into an FPGA does not require
knowledge of the physical location of the RM because configuration frame addressing
information is included in the partial bitstream. A valid partial bitstream cannot be sent to
the wrong part of the FPGA.

A DFX controller retrieves the partial bitstream from memory, then delivers it to a
configuration port. The DFX control logic can either reside in an external device (for
example, a processor) or in the programmable logic of the FPGA to be reconfigured. A
user-designed internal DFX controller loads partial bitstreams through the ICAP interface.
As with any other logic in the static design, the internal DFX control circuitry operates
without interruption throughout the reconfiguration process.

Table 8-1: Supported Configuration Ports

Configuration Mode 7 Series Zynq UltraScale UltraScale+ Zynq UltraScale+
MPSoC

JTAG Yes Yes Yes Yes Yes
ICAP Yes Yes Yes Yes Yes
PCAP N/A Yes N/A N/A Yes
MCAP N/A N/A Yes Yes Yes

Slave Serial Yes N/A Yes Yes N/A
Slave SelectMap Yes N/A Yes Yes N/A
SPI (any width)*

*. SPI and BPI flash can be used to store partial bitstreams, but the STARTUP primitive cannot be used to deliver
partial bitstreams to the configuration engine for devices prior to UltraScale+. The static design would need to
be connected to the flash via user IO, and a controller would be used to fetch bitstreams for delivery to the ICAP.

No N/A No Yes N/A
BPI sync mode* No N/A No Yes N/A
BPI async mode Yes N/A Yes Yes N/A
Master modes No N/A No No N/A
Dynamic Function eXchange 121
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug908-vivado-programming-debugging.pdf;a=xDeviceConfigurationBitstreamSettings
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=121

Chapter 8: Configuring the Device
Internal configuration can consist of either a custom state machine, or an embedded
processor such as MicroBlaze™. For a Zynq-7000 SoC and MPSoC, the Processor Subsystem
(PS) can be used to manage partial reconfiguration events.

Note: For Zynq-7000 SoC devices, the Programmable Logic (PL) can be partially reconfigured, but
the Processing System cannot.

As an aid in debugging Dynamic Function eXchange designs and DFX control logic, the
Vivado® Logic Analyzer can be used to load full and partial bitstreams into an FPGA by
means of the JTAG port.

For more information on loading a bitstream into the configuration ports, see the
Configuration Interfaces chapter in these documents:

• 7 Series FPGAs Configuration User Guide (UG470) [Ref 9]
• UltraScale Architecture Configuration User Guide (UG570) [Ref 10]
• Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 11]

Bitstream Type Definitions
When designs are compiled for Dynamic Function eXchange in Xilinx devices, different
types of bitstreams are created. This section defines terminology and explains the details
for each type of bitstream for 7 series and UltraScale devices. The types of bitstreams are:

• Full Configuration Bitstreams
• Partial Bitstreams
• Blanking Bitstreams
• Clearing Bitstreams

Full Configuration Bitstreams
All DFX designs start with standard configuration of the full device using a full
configuration bitstream. The format and structure is no different than for a flat design
solution (with one exception), and there is no difference in how this bitstream can be used
to initially program the FPGA. The one exception is that the global signal mask for a DFX
design is closed; it is opened with each partial (or clearing) bitstream to affect only the
reconfigurable region. Because of this exception, chip-wide GSR events (after the initial
configuration) cannot be issued. However, note that the design itself has been processed in
preparation for partial reconfiguration of the device after the full programming has been
done. Standard features, such as encryption and compression, are supported.
Dynamic Function eXchange 122
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=122

Chapter 8: Configuring the Device
Reconfigurable Partitions (RP) set as black boxes are supported, so Reconfigurable Modules
(RM) with no functionality can be delivered as part of the initial configuration, to be
replaced later with a desired Reconfigurable Module. Bitstream compression can be
effective in this case, reducing bitstream size and initial configuration time.

Downloading a Full BIT File

The FPGA in a digital system is configured after power on reset by downloading a full BIT
file, either directly from a PROM or from a general purpose memory space by a
microprocessor. A full BIT file contains all the information necessary to reset the FPGA,
configure it with a complete design, and verify that the BIT file is not corrupt. The figure
below illustrates this process.

After the initial configuration is completed and verified, the FPGA enters user mode, and
the downloaded design begins functioning. If a corrupt BIT file is detected, the DONE signal
is never asserted, the FPGA never enters user mode, and the corrupt design never starts
functioning.

Partial Bitstreams
Partial bitstreams are delivered during normal device operation to replace functionality in a
pre-defined device region. These bitstreams have the same structure as full bitstreams but
are limited to specific address sets to program a specific portion of the device. Dedicated
DFX features such as per-frame CRC checks (to ensure bitstream integrity) and automatic
initialization (so the region starts in a known state) are available, as well as full bitstream
features such as encryption and compression.

The size of a partial bitstream is directly proportional to the size of the region it is
reconfiguring. For example, if the Reconfigurable Partition is composed of 20% of the
device resources, the partial bitstream is roughly 20% the size of the full design bitstream.

X-Ref Target - Figure 8-1

Figure 8-1: Configuring with a Full BIT File
Dynamic Function eXchange 123
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=123

Chapter 8: Configuring the Device
Partial bitstreams are fully self-contained, so they are delivered to an appropriate
configuration port. All addressing, header, and footer details are contained within these
bitstreams, just as they would be for full configuration bitstreams. You deliver partial
bitstreams to the FPGA through any external non-master configuration mode, such as JTAG,
Slave Serial, or Slave SelectMap. Internal configuration access includes the ICAP (all
devices), PCAP (Zynq-7000 SoC devices), and MCAP (UltraScale and UltraScale+ devices
through PCIe).

Partial bitstreams are automatically created when write_bitstream is run on a DFX
configuration. Each partial bitstream file name references your top-level design name, plus
the pblock name for the Reconfigurable Partition, plus _partial. For example, for a full
design bit file top_first.bit, a partial bit file could be named
top_first_pblock_red_partial.bit.

RECOMMENDED: The pblock instance is always the same, regardless of the RM contained within, so it
is recommended that you use a descriptive base configuration name or rename the partial bit files to
clarify which module it represents.

Downloading a Partial BIT File

A partially reconfigured FPGA is in user mode while the partial BIT file is loaded. This allows
the portion of the FPGA logic not being reconfigured to continue functioning while the
reconfigurable portion is modified. Figure 8-2 illustrates this process.

The partial BIT file has a simplified header, and there is no startup sequence that brings the
FPGA into user mode. The BIT file contains (essentially, and with default settings) only frame
address and configuration data, plus a final checksum value. Additional CRC checks can be
inserted, if desired, to perform bitstream integrity checking.

X-Ref Target - Figure 8-2

Figure 8-2: Configuring with a Partial BIT File
Dynamic Function eXchange 124
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=124

Chapter 8: Configuring the Device
If Reset After Reconfiguration is used, the DONE pin pulls LOW when reconfiguration
begins and pulls HIGH again when partial reconfiguration successfully completes, although
the partial bitstream can still be monitored internally as well.

Note: With UltraScale devices, the DONE pin pulls LOW at the beginning of the clearing bitstream
and remains low until the end of the partial bitstream because the two bitstreams together
constitute a complete partial reconfiguration sequence. The DONE pin does NOT return high at the
end of the clearing bitstream.

If Reset After Reconfiguration is not selected, you must monitor the data being sent to
know when configuration has completed. The end of a partial BIT file has a DESYNCH word
(0000000D) that informs the configuration engine that the BIT file has been completely
delivered. This word is given after a series of padding NO OP commands, ensuring that once
the DESYNCH has been reached, all the configuration data has already been sent to the
target frames throughout the device. As soon as the complete partial BIT file has been sent
to the configuration port, it is safe to release the reconfiguration region for active use.

Blanking Bitstreams
A blanking bitstream is a specific type of partial bitstream, one that represents a logical
black box. In Vivado this is referred to as a greybox, as it is not completely empty. It removes
the functionality of an existing Reconfigurable Module by replacing it with new
functionality, which consists simply of tie-off LUTs on all appropriate module I/O.

To create a greybox Reconfigurable Module, you remove the logical and physical
representation of a fully placed and routed design configuration and replace it with tie-off
LUTs. Starting with a routed configuration (with the static design locked) in active memory,
run these steps:

update_design -cell <foo> -black_box
update_design -cell <foo> -buffer_ports
place_design
route_design

The design must be placed and routed to implement the LUTs that have been inserted into
the design. Outputs of the greybox RM are tied to ground by default, but can be set to Vcc
by setting the HD.PARTPIN_TIEOFF on desired ports.

Compression can be used to greatly reduce the size of blanking bitstreams. Note that these
bitstreams still contain, not only the tie-off LUTs, but also any static routing that happens to
pass through this region of the FPGA. Blanking bitstreams are generated and named in the
same way as standard partial bitstreams, as the greybox variation is saved as another
configuration checkpoint.
Dynamic Function eXchange 125
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=125

Chapter 8: Configuring the Device
Advisories had been given for prior versions of Vivado software recommending the use of
blanking bitstreams for 7 series and Zynq devices to avoid potential glitching conditions.
Starting with Vivado 2016.1, these rare glitching scenarios are automatically avoided by
embedding specific blanking events in each partial bitstream. Blanking bitstreams, while
still available to remove logic from a Reconfigurable Partition, are no longer required to
avoid any potential glitch events. Automatically embedding blanking events results in an
increased size of the partial bit files; compression can be used to reduce these effects.

Clearing Bitstreams
Unlike the bitstream types noted above, this type is for UltraScale devices only (UltraScale+
does not have this requirement). A new requirement for this architecture is to clear an
existing module before loading a new module. This clearing bitstream prepares the device
for the delivery of any subsequent partial bitstream for that Reconfigurable Partition by
establishing the global signal mask for the region to be reconfigured. Although the existing
module is technically not removed (the current logical module remains), it is easiest to think
of it this way. If a clearing bitstream is not delivered, the subsequent reconfigurable module
will not be initialized.

Clearing bitstreams are not partial bitstreams. They comprise less than 10% of the frames
for the target region and are therefore less than 10% the size of the corresponding partial
bitstreams. They do not change the functionality but shut down clocks driving logic in the
region. They must be delivered between partial bitstreams and should always be followed
as soon as possible by the next partial bitstream.

Each clearing bitstream is built for a specific Reconfigurable Module and must be applied
after that module has been used, and must be sent to the configuration engine immediately
before the next partial bitstream is delivered. For example, to transition from module A to
module B, the clearing bitstream for A must be delivered just before the partial bitstream
for B is delivered. To transition from module B back to module A, the clearing bitstream for
B must be delivered just before the partial bitstream for A is delivered. This is the case even
if any partial bitstream in question is a blanking bitstream.

Clearing bitstreams are automatically generated and have the same name as partial
bitstreams with _clear at the end. Looking at the example above, if top_first is an
UltraScale device design, the clearing bit file name would be
top_first_pblock_red_partial_clear.bit.
Dynamic Function eXchange 126
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=126

Chapter 8: Configuring the Device
Dynamic Function eXchange through ICAP for Zynq
Devices
The primary configuration mechanism for the programmable logic (PL) of Zynq-7000 and
Zynq MPSoC devices is through the processing system (PS), which delivers bitstreams to the
PCAP. The most common mechanism for partial reconfiguration is also through this path.
However, to manage partial reconfiguration completely within the PL (either through the PR
Controller IP or through a custom-designed controller module), partial bitstreams can also
be delivered to the ICAP, just as they can be for FPGA devices.

The PCAP and ICAP interfaces are mutually exclusive and cannot be used simultaneously.
Switching between ICAP and PCAP is possible, but you must ensure that no commands or
data are being transmitted or received before changing interfaces. Failure to do this could
lead to unexpected behavior.

To enable the ICAP for Zynq-7000 devices, set bit 27 (PCAP_PR) of the Control Register
(devc.CTRL). This bit selects between ICAP and PCAP for PL reconfiguration. The default is
PCAP (1), but that can be changed to ICAP (0) to enable this configuration port. Note
that bit 28 (PCAP_MODE) must also be set to 1, which is the default. For more details, see the
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 11].

To enable the ICAP for Zynq MPSoC devices, set the PCAP_PR field of the pcap_ctrl (CSU)
register. This bit selects between ICAP (or MCAP) and PCAP for PL reconfiguration. The
default is PCAP (1), but that can be changed to ICAP / MCAP (0) to enable this
configuration port. For more details, see the Zynq UltraScale+ MPSoC Technical Reference
Manual (UG1085) [Ref 32] and the Zynq UltraScale+ MPSoC Register Reference (UG1087)
[Ref 33].

The Zynq UltraScale+ MPSoC Xilfpga library supports the delivery of partial bit files for
Linux and bare-metal applications. In the current release, only non-secure bitstreams
(without encryption or authentication) are supported. For more information and examples,
visit the Xilfpga wiki page (www.wiki.xilinx.com/xilfpga).

Tandem Configuration and Dynamic Function
eXchange
UltraScale devices introduced the MCAP, a dedicated connection from one specific PCIe
block on a device to the configuration engine, providing an efficient mechanism for
delivering partial bitstreams. No explicit routes are required to connect the PCIe block to
the configuration engine, saving considerable resources.
Dynamic Function eXchange 127
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.wiki.xilinx.com/xilfpga
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=127

Chapter 8: Configuring the Device
The MCAP is enabled by customizing a Xilinx PCIe IP with Dynamic Function eXchange or
Tandem Configuration features. These features are available for three IP cores that support
PCI Express:

• UltraScale Architecture Gen3 Integrated Block for PCI Express (PG156) [Ref 16]
• AXI Bridge for PCI Express Gen3 Subsystem (PG194) [Ref 28]
• DMA Subsystem for PCI Express (PG195) [Ref 30]
• UltraScale+ Devices Integrated Block for PCI Express (PG213) [Ref 31]

Tandem Configuration utilizes a two-stage methodology that enables the IP to meet the
configuration time requirements indicated in the PCI Express Specification. The following
use cases are supported with this technology:

• Tandem PROM: Load the single two-stage bitstream from the flash.
• Tandem PCIe: Load the first stage bitstream from flash, and deliver the second stage

bitstream over the PCIe link to the MCAP.
• Tandem with Field Updates: After a Tandem PROM (UltraScale only) or Tandem PCIe

(UltraScale or UltraScale+) initial configuration, update the entire user design while the
PCIe link remains active. The update region (floorplan) and design structure are
pre-defined, and a Tcl scripts are provided.

• Tandem + Dynamic Function eXchange: This is a more general case of Tandem
Configuration followed by Dynamic Function eXchange of any size or number of
dynamic regions.

• DFX over PCIe: This is a standard configuration followed by DFX, using the PCIe /
MCAP as the delivery path of partial bitstreams.

The Tandem and DFX combined solutions has few additional requirements. This approach
requires that the Pblocks for the HD.TANDEM_IP_PBLOCK and HD.RECONFIGURABLE
parts of the design do not overlap. Otherwise, like a standard DFX design, any number or
size Reconfigurable Partitions can be defined.

To enable any of these capabilities, select the appropriate option when customizing the
core. In the Basic tab:

1. Change the Mode to Advanced.
2. Change the Tandem Configuration or Partial Reconfiguration option according to

your desired case in UltraScale:

° Tandem for Tandem PROM, Tandem PCIe or Tandem + Dynamic Function eXchange
use cases

° Tandem with Field Updates ONLY for the pre-defined Field Updates use case

° PR over PCIe to enable the MCAP link for Dynamic Function eXchange, without
enabling Tandem Configuration
Dynamic Function eXchange 128
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=128

Chapter 8: Configuring the Device
3. Change the Tandem Configuration or Partial Reconfiguration option according to
your desired case in UltraScale+:

° Tandem PROM for Tandem PROM or Tandem + Dynamic Function eXchange use
cases

° Tandem PCIe for Tandem PCIe or Tandem + Dynamic Function eXchange use cases

° Tandem PCIe with Field Updates ONLY for the pre-defined Field Updates use case;
Tandem PROM does not support Field Updates in UltraScale+

° PR over PCIe to enable the MCAP link for Dynamic Function eXchange, without
enabling Tandem Configuration

X-Ref Target - Figure 8-3

The PCIe block that must be selected in most cases is the lowest instance in the device,
except for SSI devices with three super logic regions (SLRs), in which case it is the lowest
PCIe instance in the center SLR. A complete listing of the specific supported blocks is shown
below in Table 8-2. All other PCIe blocks do not have the dedicated MCAP feature.

For complete information about Tandem Configuration, including required PCIe block
locations, design flow examples, requirements, restrictions and other considerations, see
this link in UltraScale Architecture Gen3 Integrated Block for PCI Express (PG156) [Ref 16] for
UltraScale devices. For UltraScale+ devices, see UltraScale+ Devices Integrated Block for PCI
Express (PG213) [Ref 31].
.

X-Ref Target - Figure 8-4

Figure 8-4: Customizing the Core in the Basic tab

Table 8-2: UltraScale: PCIe Block and Reset Locations Supporting DFX, by Device

Device Package PCIe Block PCIe Reset
Location Status

Kintex® UltraScale
XCKU025 PCIE_3_1_X0Y0 IOB_X1Y103 Production
XCKU035 PCIE_3_1_X0Y0 IOB_X1Y103 Production
XCKU040 PCIE_3_1_X0Y0 IOB_X1Y103 Production
XCKU060 PCIE_3_1_X0Y0 IOB_X2Y103 Production
XCKU085 PCIE_3_1_X0Y0 IOB_X2Y103 Production
XCKU095 PCIE_3_1_X0Y0 IOB_X1Y103 Production
Dynamic Function eXchange 129
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf;a=xTandemConfiguration
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=129

Chapter 8: Configuring the Device
XCKU115 PCIE_3_1_X0Y0 IOB_X2Y103 Production
Virtex® UltraScale

XCVU065 PCIE_3_1_X0Y0 IOB_X1Y103 Production
XCVU080 PCIE_3_1_X0Y0 IOB_X1Y103 Production
XCVU095 PCIE_3_1_X0Y0 IOB_X1Y103 Production
XCVU125 PCIE_3_1_X0Y0 IOB_X1Y103 Production
XCVU160 PCIE_3_1_X0Y1 IOB_X1Y363 Production
XCVU190 PCIE_3_1_X0Y2 IOB_X1Y363 Production
XCVU440 PCIE_3_1_X0Y2 IOB_X1Y363 Production

Table 8-3: UltraScale+: PCIe Block Locations Supporting DFX, by Device
Device Package PCIe Block Status*

Kintex® UltraScale+
KU3P PCIE40E4_X0Y0 Production
KU5P PCIE40E4_X0Y0 Production

KU11P PCIE40E4_X1Y0 Production
KU15P PCIE40E4_X1Y0 Production

Virtex® UltraScale+
VU3P PCIE40E4_X1Y0 Production
VU5P PCIE40E4_X1Y0 Production
VU7P PCIE40E4_X1Y0 Production
VU9P PCIE40E4_X1Y2 Production

VU11P PCIE40E4_X0Y0 Production
VU13P PCIE40E4_X0Y1 Production
VU27P PCIE40E4_X0Y0 Production
VU29P PCIE40E4_X0Y0 Production
VU31P PCIE4CE4_X1Y0 Production
VU33P PCIE4CE4_X1Y0 Production
VU35P PCIE4CE4_X1Y0 Production
VU37P PCIE4CE4_X1Y0 Production

Zynq MPSoC
ZU4EV/EG/CC PCIE40E4_X0Y1 Production
ZU5EV/EG/CC PCIE40E4_X0Y1 Production
ZU7EV/EG/CC PCIE40E4_X0Y1 Production

Table 8-2: UltraScale: PCIe Block and Reset Locations Supporting DFX, by Device (Cont’d)

Device Package PCIe Block PCIe Reset
Location Status
Dynamic Function eXchange 130
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=130

Chapter 8: Configuring the Device
Note: Any device not listed in this table does not have a PCIe site in the programmable logic portion
of the device, or, like Zynq RFSoC devices, does not have an MCAP-enabled PCIe site in the
programmable logic. Unlike UltraScale, UltraScale+ does not have a dedicated connection to a PCIe
Reset pin, but Xilinx recommends using a pin in Bank 65.

The MCAP is capable of operating at 200 MHz with a 32-bit data path. Traditionally
bitstreams are loaded into the MCAP from a host PC through PCI Express configuration
packets. In these systems the host PC and host PC software are the main factors which limit
MCAP performance and bitstream throughput. Because PCIe performance of specific host
PC and host PC software can vary widely, overall MCAP performance throughput might vary.

For more information and sample drivers, see the answer record, Bitstream Loading across
the PCI Express Link in UltraScale Devices for Tandem PCIe and Partial Reconfiguration (AR#
64761) [Ref 7].

If the performance of partial bitstream delivery via the MCAP port is insufficient, the ICAP
can be used instead. While this approach does require additional logic to funnel
configuration data from the PCIe end point to this internal configuration port, the ICAP can
be saturated with 32-bit configuration data at the maximum clock rate (200MHz for
monolithic devices, 125MHz for SSI devices). See XAPP1338 Fast Partial Reconfiguration
over PCI Express for more information and an example design [Ref 38].

Formatting BIN Files for Delivery to Internal
Configuration Ports
Partial bit files have the same basic format as full bit files, but they are reduced to the set
of configuration frames for the target region and restricted to the set of events that make
sense for active devices. Partial bit files can be:

• Delivered to external interfaces, such as JTAG or slave configuration ports.
• Reformatted as BIN files to be delivered to the internal configuration ports: ICAP (7

series or UltraScale devices), PCAP (Zynq devices only) or MCAP (UltraScale devices
only).

Generate BIN files using the write_cfgmem utility. Three options are critical:

ZU11EG PCIE40E4_X1Y0 Production
ZU17EG PCIE40E4_X1Y0 Production
ZU19EG PCIE40E4_X1Y0 Production

*. For the AXI streaming core without Field Updates. For the most up-to-date information on core and device support
status, consult the product guide for the specific version of the IP you wish to use.

Table 8-3: UltraScale+: PCIe Block Locations Supporting DFX, by Device
Device Package PCIe Block Status*
Dynamic Function eXchange 131
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=131

Chapter 8: Configuring the Device
• Set -format as BIN to generate that file type.
• Use -interface to select the SelectMap width, and use SMAPx32 for PCAP or MCAP

for UltraScale ICAP.

° SMAPx16 and SMAPx8 (default) can also be used for the 7 series ICAP.

° SMAPx8 is required for 7 series encrypted partial bitstreams.
• You must use -disablebitswap to target the PCAP or MCAP.

Examples
ICAP (for 7 series devices)

write_cfgmem -format BIN -interface SMAPx8 -loadbit "up 0x0 <partial_bitfile>”

ICAP (for UltraScale devices)

write_cfgmem -format BIN -interface SMAPx32 -loadbit "up 0x0 <partial_bitfile>”

PCAP (for Zynq-7000 SoC devices) or MCAP (for one specific PCIe block per UltraScale device)

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap -loadbit "up 0x0
<partial_bitfile>”

Summary of BIT Files for UltraScale Devices
This section applies specifically to UltraScale devices and does not apply to 7 series,
UltraScale+, Zynq or Zynq MPSoC devices. With the finer granularity of global signals (that
is, GSR) and the ability to reconfigure new element types, a new configuration process is
necessary. Prior to loading in a partial bitstream for a new Reconfigurable Module, the
existing Reconfigurable Module must be cleared. This clearing bitstream prepares the
device for delivery of any subsequent partial bitstream for that Reconfigurable Partition by
establishing the global signal mask for the region to be reconfigured. Although the existing
module technically is not removed, it is easiest to think of it this way.

When running write_bitstream on a design configuration with Reconfigurable
Partitions, a clearing BIT file per RP is created. For example, take a design in which two
Reconfigurable Partitions (RP1 and RP2), with two Reconfigurable Modules each, A1 and B1
into RP1, and A2 and B2 into RP2, have been implemented. Two configurations (configA
and configB) have been run through place and route, and pr_verify has passed. When
bitstreams are generated, each configuration produces five bitstreams. For configA, these
could be named:

• configA.bit - This is the full design bitstream that is used to configure the device
from power-up. This contains the static design plus functions A1 and A2.
Dynamic Function eXchange 132
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=132

Chapter 8: Configuring the Device
• configA_RP1_A1_partial.bit - This is the partial BIT file for function A1. This is
loaded after another RM has been cleared from this Reconfigurable Partition.

• configA_RP1_A1_partial_clear.bit - This is the clearing BIT file for function
A1. Before loading in any other partial BIT file into RP1 after function A1, this file must
be loaded.

• configA_RP2_A2_partial.bit - This is the partial BIT file for function A2. This is
loaded after another RM has been cleared from this Reconfigurable Partition.

• configA_RP2_A2_partial_clear.bit - This is the clearing BIT file for function
A2. Before loading in any other partial BIT file into RP2 after function A2, this file must
be loaded.

Likewise, configB produces five similar bitstreams:

• configB.bit - This is the full design bitstream that is used to configure the device
from power-up. This contains the static design plus functions B1 and B2.

• configB_RP1_B1_partial.bit - This is the partial BIT file for function B1. This is
loaded after another RM has been cleared from this Reconfigurable Partition.

• configB_RP1_B1_partial_clear.bit - This is the clearing BIT file for function B1.
Before loading in any other partial BIT file into RP1 after function B1, this file must be
loaded.

• configB_RP2_B2_partial.bit - This is the partial BIT file for function B2. This is
loaded after another RM has been cleared from this Reconfigurable Partition.

• configB_RP2_B2_partial_clear.bit - This is the clearing BIT file for function B2.
Before loading in any other partial BIT file into RP2 after function B2, this file must be
loaded.

The sequence for any reconfiguration is to first load a clearing BIT file for a current
Reconfigurable Module, immediately followed by a new Reconfigurable Module. For
example, to transition Reconfigurable Partition RP1 from function A1 to function B1, first
load the BIT file configA_RP1_A1_partial_clear.bit, then load
configB_RP1_B1_partial.bit. The first bitstream prepares the region by opening the
mask, and the second bitstream loads the new function, initializes only that region, then
closes the mask.

If a clearing bit file is not loaded, initialization routines (GSR) have no effect. If a clearing file
for a different Reconfigurable Partition is loaded, then that RP is initialized instead of the
one that has been just reconfigured. If the incorrect clearing file for the proper RP is used,
the current RM or possibly even the static design could be disrupted until the following
partial bit file has been loaded.
Dynamic Function eXchange 133
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=133

Chapter 8: Configuring the Device
System Design for Configuring an FPGA
A partial BIT file can be downloaded to the FPGA in the same manner as a full BIT file. An
external microprocessor determines which partial BIT file should be downloaded, where it
exists in an external memory space, and directs the partial BIT file to a standard FPGA
configuration port such as JTAG, Select MAP or serial interface. The FPGA processes the
partial BIT file correctly without any special instruction that it is receiving a partial BIT file.

It is common to assert the INIT or PROG signals on the FPGA configuration interface before
downloading a full BIT file. This must not be done before downloading a partial BIT file, as
that would indicate the delivery of a full BIT file, not a partial one.

Any indication to the working design that a partial BIT file will be sent (such as holding
enable signals and disabling clocks) must be done in the design—and not by means of
dedicated FPGA configuration pins. Figure 8-5 shows the process of configuring through a
microprocessor.

In addition to the standard configuration interfaces, Dynamic Function eXchange supports
configuration by means of the Internal Configuration Access Port (ICAP). The ICAP protocol
is identical to SelectMAP and is described in the Configuration User Guide for the target
device. The ICAP library primitive can be instantiated in the HDL description of the FPGA
design, thus enabling analysis and control of the partial BIT file before it is sent to the
configuration port. The partial BIT file can be downloaded to the FPGA through general

X-Ref Target - Figure 8-5

Figure 8-5: Configuring Through a Microprocessor

X12033

Self-reconfiguring
FPGA

ICAP uP

uP

RP A

JTAG
port

RP A

FPGA

full
configuration

RM A1
config.

RM A2
config.

RM A3
config.

Off-chip memory or System ACE
Dynamic Function eXchange 134
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=134

Chapter 8: Configuring the Device
purpose I/O or gigabit transceivers and then routed to the ICAP in the FPGA programmable
logic.

Rules for DFX ports and formats:

• Encrypted partial bitstreams can be delivered to any port, but only when the initial
configuration was also encrypted. The same key must be used for all bitstreams.

• If the initial configuration of a device is encrypted, unencrypted partial bitstreams can
be used only if they are delivered to the ICAP.

• Bitstream authentication for partial bitstreams is not supported for Virtex or Kintex
devices, only for Zynq devices.

• The ICAP must be used with an 8-bit bus only for Dynamic Function eXchange for
encrypted 7 series BIT files.

• Reconfiguration through external configuration ports is permitted only when bitstream
readback security is not set to Level 2.

Partial BIT File Integrity
Error detection and recovery of partial BIT files have unique requirements compared to
loading a full BIT file. If an error is detected in a full BIT file when it is being loaded into an
FPGA, the FPGA never enters user mode. The error is detected after the corrupt design has
been loaded into configuration memory, and specific signals are asserted to indicate an
error condition. Because the FPGA never enters user mode, the corrupt design never
becomes active. You must determine the system behavior for recovering from a
configuration error such as downloading a different BIT file if the error condition is
detected.

When you download partial BIT files, you cannot use this methodology for error detection
and recovery. The FPGA is by definition already in user mode when the partial BIT file is
loaded. Because the configuration circuitry supports error detection only after a BIT file has
been loaded, a corrupt partial BIT file can become active, potentially damaging the FPGA if
left operating for an extended period of time.

If a CRC error is detected during a partial reconfiguration, it asserts the INIT_B pin of the
FPGA (INIT_B goes Low to indicate a CRC error). In UltraScale devices, this behavior is
echoed on the PRERROR output pin of the ICAP. It is important to note that if a system
monitors INIT_B for CRC errors during the initial configuration, a CRC error during a partial
reconfiguration might trigger the same response. To detect the presence of a CRC error
from within the FPGA, the CRC status can be monitored through the ICAP block. The Status
Register (STAT) indicates that the partial BIT file has a CRC error, by asserting the
CRC_ERROR flag (bit 0).
Dynamic Function eXchange 135
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=135

Chapter 8: Configuring the Device
There are two types of partial BIT file errors to consider: data errors and address errors (the
partial BIT file is essentially address and data information). Given that static routes are free
to pass through reconfigurable regions, both types of errors can corrupt the static design,
although the likelihood is very small. The only method for completely safe recovery is to
download a new full BIT file to ensure the state of the static logic, which requires the entire
FPGA to be reset.

Many systems do not need a complex recovery mechanism because resetting the entire
FPGA is not critical, or the partial BIT file is stored locally. In that case, the chance of BIT file
corruption is not appreciable. Systems in which the BIT files are at risk of becoming
corrupted (such as sending the partial BIT file over a radio link) should use a dedicated
silicon feature that avoids the problem.

The configuration engines of 7 series, UltraScale, and UltraScale+ FPGAs, as well as
Zynq-7000 SoC devices, have the ability to perform a frame-by-frame CRC check and do not
load a frame into the configuration memory if that CRC check fails. A failure is reported on
the INIT_B pin (it is pulled Low) and gives you the opportunity to take the next steps: retry
the partial bit file, fall back to a golden partial bit file, etc. The partially loaded
reconfiguration region does not have valid programming in it, but the CRC check ensures
the remainder of the device (static region and any other reconfigurable modules) stays
operational while the system recovers from the error.

To enable this feature for these devices, set the PerFrameCRC property prior to running
write_bitstream. The default is No, and Yes inserts the extra CRC checks. The size of an
uncompressed bit file increases four to five percent with this option enabled. Note that this
feature is not compatible with bitstream compression. No other specific design
considerations are necessary to select this option, but your partial reconfiguration
controller solution should be designed to choose the course of action should the INIT_B pin
indicate a failure has occurred.

The syntax for setting the PerFrameCRC property is:

set_property bitstream.general.perFrameCRC yes [current_design]

This property inserts per-frame CRC checks in all bitstreams created from the current
checkpoint, not just partial bitstreams. Full device bitstreams for the initial configuration of
the device would also contain the extra CRC checks.

After a partial bit file has been loaded (with or without the per-frame CRC checks), the
overall configuration of the device has changed. If the POST_CRC feature for SEU mitigation
is enabled, the SEU mitigation engine automatically recalculates the embedded SEU CRC
value after the partial bitstream has been loaded and after you have de-synced the
configuration interface. Upon completion of the CRC recalibration, the FRAME_ECCE2
FRAME_VALID output toggles again to indicate that SEU detection has resumed.
Dynamic Function eXchange 136
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=136

Chapter 8: Configuring the Device
Configuration Frames
All user-programmable features inside Xilinx FPGA and SoC devices are controlled by
volatile memory cells that must be configured at power-up. These memory cells are
collectively known as configuration memory. They define the LUT equations, signal routing,
IOB voltage standards, and all other aspects of the design.

Xilinx FPGA and SoC architectures have configuration memory arranged in frames that are
tiled about the device. These frames are the smallest addressable segments of the device
configuration memory space, and all operations must therefore act upon whole
configuration frames.

Reconfigurable Frames are built upon these configuration frames, and these are the
minimum building blocks for performing dynamic reconfiguration.

• Base Regions in 7 series FPGAs are:

° CLB: 50 high by 1 wide

° DSP48: 10 high by 1 wide

° Block RAM: 10 high by 1 wide
• Base Regions in UltraScale and UltraScale+ FPGAs are:

° CLB: 60 high by 1 wide

° DSP48: 24 high by 1 wide

° Block RAM: 12 high by 1 wide

° I/O and Clocking: 52 I/O (one bank), plus related XiPhy, MMCM, and PLL resources

° Gigabit Transceivers: 4 high (one quad, plus related clocking resources)

Configuration Time
The speed of configuration is directly related to the size of the partial BIT file and the
bandwidth of the configuration port. The different configuration ports in each device family
have the maximum bandwidths shown in Table 8-4,Table 8-7, and Table 8-8.

Table 8-4: Maximum Bandwidths for Configuration Ports in 7 Series Devices
Configuration Mode Max Clock Rate Data Width Maximum Bandwidth

ICAP 100 MHz 32 bit 3.2 Gb/s
SelectMAP 100 MHz 32 bit 3.2 Gb/s
Dynamic Function eXchange 137
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=137

Chapter 8: Configuring the Device
In addition to being reported by write_bitstream, The exact bitstream length is
available in the created.rbt file by using the -raw_bitfile option for
write_bitstream. Use this number along with the bandwidth to calculate the total
configuration time. Here is an example of the header in a raw bit file:

Xilinx ASCII Bitstream
Created by Bitstream 2019.2
Design name: led_shift_count;UserID=0XFFFFFFFF
Architecture:kintex7
Part: 7k325tffg900

Serial Mode 100 MHz 1 bit 100 Mb/s
JTAG 66 MHz 1 bit 66 Mb/s

Table 8-5: Maximum Bandwidths for Configuration Ports in UltraScale Devices
Configuration Mode Max Clock Rate Data Width Maximum Bandwidth

ICAP/MCAP 200 MHz 32 bit 6.4 Gb/s
ICAP/MCAP (SSI)*

*. When delivered to the master SLR to program any SLR; when programming to the same SLR as the ICAP, the faster
rate can be used. Note that configuration clock frequency maximums may be less than these values depending on
speed grade or operating voltage. Consult the Data Sheet for your target device for more information.

125 MHz 32 bit 4.0 Gb/s
SelectMAP 125 MHz 32 bit 4.0 Gb/s

Serial Mode 150 MHz 1 bit 150 Mb/s
Serial (SSI Devices) 100 MHz 1 bit 100 Mb/s

JTAG 50 MHz 1 bit 50 Mb/s
JTAG (SSI Devices) 20 MHz 1 bit 20 Mb/s

Table 8-6: Maximum Bandwidths for Configuration Ports in UltraScale+ Devices
Configuration Mode Max Clock Rate Data Width Maximum Bandwidth

ICAP/MCAP 200 MHz 32 bit 6.4 Gb/s
ICAP/MCAP (SSI*)

*. When delivered to the master SLR to program any SLR; when programming to the same SLR as the ICAP, the faster
rate can be used. Note that configuration clock frequency maximums may be less than these values depending on
speed grade or operating voltage. Consult the Data Sheet for your target device for more information.

125 MHz 32 bit 4.0 Gb/s
BPI 125 MHz 16 bit 2.0 Gb/s

QSPI 125 MHz 4 bit 500 Mb/s
SelectMAP 125 MHz 32 bit 4.0 Gb/s

Serial Mode 125 MHz 1 bit 125 Mb/s
JTAG 66 MHz 1 bit 66 Mb/s

JTAG (SSI Devices) 20 MHz 1 bit 20 Mb/s

Table 8-4: Maximum Bandwidths for Configuration Ports in 7 Series Devices
Configuration Mode Max Clock Rate Data Width Maximum Bandwidth
Dynamic Function eXchange 138
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=138

Chapter 8: Configuring the Device
Date: Mon Mar 16 16:42:05 2015
Bits: 1211072
11111111111111111111111111111111

Configuration Debugging
The ICAP interface can be use used to monitor the configuration process when it is used as
the port for delivering bitstreams. The “O” port of the ICAP block is a 32-bit bus, but only
the lowest byte is used. The mapping of the lower byte is as follows:

The most significant nibble of this byte reports the status. These Status bits indicate
whether the Sync word been received and whether a configuration error has occurred. The
following table displays the values for these conditions.

Note: In the above table, the entries in the first column are different depending on the board. For 7
series devices, they end with “F”, so 9F, DF, etc. For UltraScale+ devices, they end with “B”, so 9B, DB,
etc.

Table 8-7: ICAP “O” Port Bits
ICAP “O” Port Bits Status Bit Meaning

O[7] CFGERR_B Configuration error (active-Low)
0 = A configuration error has occurred.
1 = No configuration error.

O[6] DALIGN Sync word received (active-High)
0 = No sync word received.
1 = Sync word received by interface logic.

O[5] RIP Readback in progress (active-High)
0 = No readback in progress.
1 = A readback is in progress.

O[4] IN_ABORT_B ABORT in progress (active-Low)
0 = Abort is in progress.
1 = No abort in progress.

O[3:0] 1 Reserved

Table 8-8: ICAP Sync Bits
O[7:4] Sync Word? CFGERR?

9 No Sync No CFGERR
D Sync No CFGERR
5 Sync CFGERR
1 No Sync CFGERR
Dynamic Function eXchange 139
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=139

Chapter 8: Configuring the Device
Figure 8-6 shows a completed full configuration, followed by a partial reconfiguration with
a CRC error, and finally a successful partial reconfiguration. Using the table above, and the
description below, you can see how the “O” port of the ICAP can be used to monitor the
configuration process. If a CRC error occurs, these signals can be used by a configuration
state machine to recover from the error. These signals can also be used by Vivado Logic
Analyzer to capture a configuration failure for debug purposes. With this information
Vivado Logic Analyzer can also be used to capture the various points of a partial
reconfiguration.

The markers in the Vivado Logic Analyzer display indicate the following:

• 1st_done

This marker indicates the completion of the initial full bitstream configuration. The
DONE pin (done_pad in this waveform) goes HIGH.

• cfgerr

This marker indicates a CRC error is detected while loading partial bitstream. The status
can be observed through O[31:0] (icap_o_top[31:0] in the waveform).

° Icap_o_top[31:0] starts at 0x9F

° After seen SYNC word, Icap_o_top[31:0] change to 0xDF

X-Ref Target - Figure 8-6

Figure 8-6: Vivado Logic Analyzer Display for Dynamic Function eXchange
Dynamic Function eXchange 140
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=140

Chapter 8: Configuring the Device
° After detect CRC error, Icap_o_top[31:0] change to 0x5F for one cycle, and then
switches to 0x1F

° INIT_B pin is pulled Low (init_pad in the waveform)
• RCRC

This marker indicates when the partial bitstream is loaded again. The RCRC command
resets the cfgerr status, and removes the pull-down on the INIT_B pin (init_pad in
this waveform).

° Icap_o_top[31:0] change from 0x1F to 0x5F when the SYNC word is seen

° Icap_o_top[31:0] change from 0x5F to 0xDF when RCRC command is received
• pr_done

This marker indicates a successful partial reconfiguration.

° Icap_o_top[31:0] change from 0xDF to 0x9F when the DESYNC command is
received and no configuration error is detected.

In addition to the techniques described above, the UltraScale architecture introduced two
new dedicated ports on the ICAP to aid in Dynamic Function eXchange:

• The PRDONE pin is intended to echo the external DONE pin. However, it should only be
used for the following:

° Monolithic devices

° SSI devices when the RP is on the master SLR

° When the ICAP used is on the same SLR as the RP.

Any partial bitstream that configures a slave SLR from the master ICAP will see multiple
PRDONE events due to the construction of these partial bitstreams. Instead, use the EOS
pin on the STARTUP block on the master SLR as a reliable indication of the completion
of partial reconfiguration.

• The PRERROR pin echoes the external INIT_B pin. It drops LOW when a CRC error
occurs, either with the standard full CRC value at the end of the bit file, or with any
per-frame CRC value.

Using Vivado Debug Cores
Vivado debug cores (ILA, VIO, etc.) can be placed in any part of a Dynamic Function
eXchange design, including within Reconfigurable Modules. A specific design methodology
is necessary to connect these cores to a central Debug Hub for communication throughout
the device.
Dynamic Function eXchange 141
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=141

Chapter 8: Configuring the Device
The connectivity between the central Debug Hub in static can be set up automatically, and
this is triggered by a specific naming convention for the port names on the Reconfigurable
Partition. These twelve pins are required, and the hub will be inferred if these exact names
are used. Examples in Verilog and VHDL are below.

Verilog instantiation in the static design:

my_count counter_inst (
.clk(my_clk),
.dout(dout),
.S_BSCAN_drck(),
.S_BSCAN_shift(),
.S_BSCAN_tdi(),
.S_BSCAN_update(),
.S_BSCAN_sel(),
.S_BSCAN_tdo(),
.S_BSCAN_tms(),
.S_BSCAN_tck(),
.S_BSCAN_runtest(),
.S_BSCAN_reset(),
.S_BSCAN_capture(),
.S_BSCAN_bscanid_en()

);

VHDL component declaration and instantiation in the static design:

component my_count is
Port (clk : in STD_LOGIC;
dout : out STD_LOGIC;
S_BSCAN_drck: IN std_logic := '0';
S_BSCAN_shift: IN std_logic := '0';
S_BSCAN_tdi: IN std_logic := '0';
S_BSCAN_update: IN std_logic := '0';
S_BSCAN_sel: IN std_logic := '0';
S_BSCAN_tdo: OUT std_logic;
S_BSCAN_tms: IN std_logic := '0';
S_BSCAN_tck: IN std_logic := '0';
S_BSCAN_runtest: IN std_logic := '0';
S_BSCAN_reset: IN std_logic := '0';
S_BSCAN_capture: IN std_logic := '0';
S_BSCAN_bscanid_en: IN std_logic := '0'

);
end component;
…
counter_inst: my_count
port map (clk => my_clk,
dout => dout,
S_BSCAN_drck => open,
S_BSCAN_shift => open,
S_BSCAN_tdi => open,
S_BSCAN_update => open,
S_BSCAN_sel => open,
S_BSCAN_tdo => open,
S_BSCAN_tms => open,
S_BSCAN_tck => open,
S_BSCAN_runtest => open,
S_BSCAN_reset => open,
Dynamic Function eXchange 142
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=142

Chapter 8: Configuring the Device
S_BSCAN_capture => open,
S_BSCAN_bscanid_en => open

);

Note: These input ports must receive an initial value to use the open keyword, and that initial value
must be 0. Ports tied to 1 will not connect to the local debug hub.

Within the Reconfigurable Module top-level RTL, leave these twelve ports unconnected.
Debug Hubs are inserted as black boxes, one in static and one in each Reconfigurable
Module during synthesis. These inserted IP are then expanded during opt_design. This is
done for each RM, even if there are no debug cores within that RM (including greybox RMs).

If these exact port names cannot be used for any reason, such as the need to explicitly
connect to multiple BSCAN instances, attributes can be used to drive the Debug Hub
insertion. This approach must also be used if the first configuration processed does not
have any debug cores present; inference of Debug Hubs is not done if no debug cores
within the RM can be found by Vivado implementation tools.

In the syntax shown below, do not change anything other than the port names in order to
assign Debug ports. These attributes are to be used in all RM top level source files.

Verilog attributes in the RM top level:

(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN drck" *) (* DEBUG="true" *)
input my_drck;
(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN shift" *) (* DEBUG="true" *)
input my_shift;
(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN tdi" *) (* DEBUG="true" *)
input my_tdi;
(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN update" *) (* DEBUG="true" *)
input my_update;

(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN sel" *) (* DEBUG="true" *)
input my_sel;

(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN tdo" *) (* DEBUG="true" *)
output my_tdo;

(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN tms" *) (* DEBUG="true" *)
input my_tms;

(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN tck" *) (* DEBUG="true" *)
input my_tck;

(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN runtest" *) (* DEBUG="true" *)
input my_runtest;
(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN reset" *) (* DEBUG="true" *)
input my_reset;
(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN capture" *) (* DEBUG="true" *)
input my_capture;

(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0 S_BSCAN bscanid_en" *)
(* DEBUG="true" *) input my_bscanid_en;
Dynamic Function eXchange 143
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=143

Chapter 8: Configuring the Device
VHDL attributes in the RM top level:

attribute X_INTERFACE_INFO : string;
attribute DEBUG : string;
attribute X_INTERFACE_INFO of my_drck: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
drck";
attribute DEBUG of my_drck: signal is "true";
attribute X_INTERFACE_INFO of my_shift: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
shift";
attribute DEBUG of my_shift: signal is "true";
attribute X_INTERFACE_INFO of my_tdi: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
tdi";
attribute DEBUG of my_tdi: signal is "true";
attribute X_INTERFACE_INFO of my_update: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
update";
attribute DEBUG of my_update: signal is "true";
attribute X_INTERFACE_INFO of my_sel: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
sel";
attribute DEBUG of my_sel: signal is "true";
attribute X_INTERFACE_INFO of my_tdo: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
tdo";
attribute DEBUG of my_tdo: signal is "true";
attribute X_INTERFACE_INFO of my_tms: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
tms";
attribute DEBUG of my_tms: signal is "true";
attribute X_INTERFACE_INFO of my_tck: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
tck";
attribute DEBUG of my_tck: signal is "true";
attribute X_INTERFACE_INFO of my_runtest: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
runtest";

attribute DEBUG of my_runtest: signal is "true";
attribute X_INTERFACE_INFO of my_reset: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
reset";
attribute DEBUG of my_reset: signal is "true";
attribute X_INTERFACE_INFO of my_capture: signal is "xilinx.com:interface:bscan:1.0 S_BSCAN
capture";

attribute DEBUG of my_capture: signal is "true";
attribute X_INTERFACE_INFO of my_bscanid_en: signal is "xilinx.com:interface:bscan:1.0
S_BSCAN bscanid_en";
attribute DEBUG of my_bscanid_en: signal is "true";

There are currently two limitations to this solution:

1. All debug cores within Reconfigurable Modules must be instantiated. The MARK_DEBUG
insertion flow is not yet supported.

2. A greybox configuration cannot be the first one processed. The debug bridge must be
established within a Reconfigurable Module with debug cores to establish connectivity
with the debug hub before moving to versions that do not contain debug cores.

For an example of this core insertion as well as functionality within the Vivado Hardware
Manager, see this link in Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947)
[Ref 1].
Dynamic Function eXchange 144
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug947-vivado-partial-reconfiguration-tutorial.pdf;a=xVivadoDebugAndThePRProjectFlow
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=144

Chapter 9

Known Issues and Limitations

Known Issues
This is a list of issues that might be encountered when using Dynamic Function eXchange
(DFX) in the current Vivado® Design Suite release. If you encounter any of these issues, or
discover any others, contact Xilinx® Support and send an example design that shows the
issue. These test cases are very helpful to improve the overall solution.

Report to Xilinx all cases of fatal or internal errors, incomplete routing (partial antennas), or
other rule violations that prevent place and route, pr_verify, and write_bitstream
from succeeding. Including a design showing the failure is critical for proper analysis and
implementation of fixes.

• If the initial configuration of a 7 series SSI device (7V2000T, 7VX1140T) is done through
an SPI interface, partial bitstreams cannot be delivered to the master (or any) ICAP;
they must be delivered to an external port, such as JTAG. If the initial configuration is
done through any other configuration port, the master ICAP can be used as the
delivery port for partial bitstreams. Contact Xilinx Support for a workaround.

• Do not drive multiple outputs of a single reconfigurable module with the same source.
Each output of an RM must have a unique driver.

• When using Virtex UltraScale+ VU29P devices, connections between the IBUFDS_GTM
and GTM_DUAL sites might be unroutable if the placer does not place them on the
same SLR and the same side of the device. You might encounter route_design Route
35-7 in this case. If this occurs, you must LOC both the IBUFDS_GTM and GTM_DUAL
instances to appropriate locations in the same SLR on the same side of the device.

• Engineering Silicon (ES) for UltraScale or UltraScale+ devices does not officially
support Dynamic Function eXchange. To investigate the capabilities of DFX on ES
devices, contact Xilinx Support for advice.
Dynamic Function eXchange 145
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=145

Chapter 9: Known Issues and Limitations
Known Limitations
Certain features are not yet developed or supported in the current release. These include:

• When selecting Pblock ranges to define the size and shape of the Reconfigurable
Partition, do not use the CLOCKREGION resource type for 7 series or Zynq-7000
designs. Pblock ranges must only include types SLICE, RAMB18, RAMB36, and DSP48
resource types.

• Do not use Vivado Debug core insertion features within Reconfigurable Partitions. This
flow inserts the debug hub, which includes BSCAN primitive, which is not permitted
inside reconfigurable bitstreams. Vivado Debug cores must be instantiated or included
within IP, then the Debug Hub can be inferred as described in Using Vivado Debug
Cores.

• UpdateMEM does not support partial or Tandem bitstreams. To associate memory files
with DFX designs, the ELF Association flow must be applied. See this link in the Vivado
Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994) [Ref 29]
for details.

• The Soft Error Mitigation (SEM) IP core is supported in conjunction with DFX in
monolithic devices. For UltraScale devices, the SEM IP core is not supported when
using Dynamic Function eXchange on SSI devices. For UltraScale+ devices, the SEM IP
core is supported when using DFX on SSI devices. For more information on using the
SEM IP in DFX designs, see Demonstration of Soft Error Mitigation IP and Partial
Reconfiguration Capability on Monolothic Devices (XAPP1261) [Ref 6].

• The STARTUP primitive does not support loading of partial bitstreams for 7 series and
UltraScale devices, as its clock will stop once a partial bitstream enters the configuration
engine. IP, such as the AXI SPI IP or the AXI EMC IP, should not be configured to use the
STARTUP primitive to clock or deliver partial bitstreams from external flash. For these
architectures, partial bitstreams may be stored in BPI or SPI flash, but they must be
moved to DDR or another location before being shifted into the ICAP.

• Two use cases regarding encryption will not be supported when using new features
within UltraScale and UltraScale+ devices:
a. If RSA authentication is selected for the initial configuration, then encrypted partial

reconfiguration is not supported. RSA authentication is not supported on FPGAs for
partial bitstreams.

b. If the initial configuration bitstream uses an obfuscated AES-256 key stored in either
the eFUSE or BBRAM, then any encrypted partial bitstreams must use the same
obfuscated key. Encrypted partial bitstreams using a different key than the initial
bitstream is not supported.

In either of these two cases, an unencrypted partial bitstream may be delivered to the
ICAP to partially reconfigure the device.
Dynamic Function eXchange 146
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug994-vivado-ip-subsystems.pdf;a=xAddingAndAssociatingAnElfFileToAnEmbeddedDesign
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=146

Chapter 9: Known Issues and Limitations
• Bitstream compression and per-frame CRC checks cannot be enabled at the same time
for a partial bitstream.

• The update_design command in general permits multiple targets for the -cells
switch. However, when using this command for PR designs (for use with -black_box
or -buffer_ports), specify one cell (Reconfigurable Partition) at a time. Performing
these actions on more than RP requires multiple calls to update_design.

• Cascaded global clocking buffers across RM boundary is not a supported use case and
is not guaranteed to be successfully routed. If cascaded BUFS are unavoidable in the
design, it is recommended to keep them both, either in static or reconfigurable
partition.
Dynamic Function eXchange 147
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=147

Dynamic Function eXchange 148
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Appendix A

Hierarchical Design Flows

Overview
The Dynamic Function eXchange (DFX) flow is an ideal hierarchal design tool for a
top-down in-context use case. The ability to implement the static portion of the design,
meet timing, and then reuse those results meets the needs of other hierarchical design (HD)
flows.

Platform Reuse takes advantage of the tool’s ability to separate out the top-level (Platform)
from the lower level partitions. Platform Reuse can be used for a number of use cases
including:

• Reduced design cycle and timing closure. By closing timing on the top-level, interface
logic that changes once (such as memory controllers, networking IP, high speed
interconnect) and then locking down and reusing the placed/routed result for the
Platform which partition logic is being developed.

• Platform delivery to end users. In this case a Platform can be developed by one user,
and then fully placed, routed, and locked DCP (with black boxes for partitions) and be
delivered to another user for development of customer partition logic.

Both of these flows use the Dynamic Function eXchange flow, to implement the initial
design, carve out the partitions, and lock down the Static/Platform logic. All features of DFX
(like greybox support) can be used, and all requirements of the DFX flow must be followed.
From the tool's perspective, there is no difference between the flows, and all DFX DRCs will
be applied.

Since partial bit files are not required for this flow, Xilinx recommends using the
-no_partial_bitfile switch of the write_bitstream command to avoid producing
partial bitstreams.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=148

Appendix B

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
Dynamic Function eXchange 149
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=149

Appendix B: Additional Resources and Legal Notices
References
1. Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947)
2. Partial Reconfiguration Controller LogiCORE IP Product Guide (PG193)
3. Partial Reconfiguration Decoupler LogiCORE IP Product Guide (PG227)
4. Partial Reconfiguration Bitstream Monitor Product Guide (PG304)
5. Partial Reconfiguration AXI Shutdown Manager (PG305)
6. Demonstration of Soft Error Mitigation IP and Partial Reconfiguration Capability on

Monolothic Devices (XAPP1261)
7. Bitstream Loading across the PCI Express Link in UltraScale Devices for Tandem PCIe and

Partial Reconfiguration (AR# 64761)
8. Partial Reconfiguration of a Hardware Accelerator with Vivado Design Suite for Zynq-7000

SoC Processor (XAPP1231)
9. 7 Series FPGAs Configuration User Guide (UG470)
10. UltraScale Architecture Configuration User Guide (UG570)
11. Zynq-7000 SoC Technical Reference Manual (UG585)
12. Partial Reconfiguration User Guide (UG702) - For ISE Design Tools
13. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)
14. 7 Series FPGAs Integrated Block for PCI Express LogiCORE IP Product Guide (PG054)
15. Virtex-7 FPGA Gen3 Integrated Block for PCI Express Product Guide (PG023)
16. UltraScale FPGAs Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide

(PG156)
17. Vivado Design Suite Tcl Command Reference Guide (UG835)
18. Vivado Design Suite User Guide: Synthesis (UG901)
19. Vivado Design Suite User Guide: Using Constraints (UG903)
20. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
21. 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)
22. 7 Series FPGAs GTP Transceivers User Guide (UG482)
23. MMCM and PLL Dynamic Reconfiguration (7 Series) (XAPP888)
24. UltraScale Architecture Clocking Resources User Guide (UG572)
25. UltraScale Architecture GTH Transceivers User Guide (UG576)
26. UltraScale Architecture GTY Transceivers User Guide (UG578)
Dynamic Function eXchange 150
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=prc;v=latest;d=pg193-partial-reconfiguration-controller.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_decoupler;v=latest;d=pg227-pr-decoupler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pr_bitstream_monitor/v1_0/pg304-pr-bitstream-monitor.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=64761.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1231-partial-reconfig-hw-accelerator-vivado.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=14.7;d=ug702.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_7x;v=latest;d=pg054-7series-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_7x;v=latest;d=pg023_v7_pcie_gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=2019.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug476_7Series_Transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug482_7Series_GTP_Transceivers.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp888_7Series_DynamicRecon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug572-ultrascale-clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pr_bitstream_monitor/v1_0/pg304-pr-bitstream-monitor.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pr_bitstream_monitor/v1_0/pg304-pr-bitstream-monitor.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pr_bitstream_monitor/v1_0/pg304-pr-bitstream-monitor.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1261-demo-sem-pr.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pr_axi_shutdown_manager/v1_0/pg305-pr-axi-shutdown-manager.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=150

Appendix B: Additional Resources and Legal Notices
27. Vivado Design Suite User Guide: Programming and Debugging (UG908)
28. AXI Bridge for PCI Express Gen3 Subsystem Product Guide (PG194)
29. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
30. DMA/Bridge Subsystem for PCI Express Product Guide (PG195)
31. UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide (PG213)
32. Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)
33. Zynq UltraScale+ MPSoC Register Reference (UG1087)
34. Bitstream Identification with USR_ACCESS using the Vivado Design Suite (XAPP1232)
35. Local Partial Reconfiguration Using Embedded Processing for 3D ICs (XAPP1099)
36. Design Advisory for Techniques on Properly Synchronizing Flip-Flops and SRLs (AR#

44174)
37. Vivado Design Suite Documentation
38. Fast Partial Reconfiguration PCl Express (XAPP1338)

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. Vivado Design Suite QuickTake Video Tutorials
2. Vivado Design Suite QuickTake Video: Partial Reconfiguration in Vivado
3. Vivado Design Suite QuickTake Video: Partial Reconfiguration for UltraScale
4. Vivado Design Suite QuickTake Video: Partial Reconfiguration for UltraScale+
5. Partial Reconfiguration Flow on Zynq using Vivado
6. Xilinx Partial Reconfiguration Tools and Techniques

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx
products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all
faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY,
INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR
ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in
connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
Dynamic Function eXchange 151
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_pcie3;v=latest;d=pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1338-fast-partial-reconfiguration-pci-express.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xdma;v=latest;d=pg195-pcie-dma.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/html_docs/registers/ug1087/ug1087-zynq-ultrascale-registers.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1232-bitstream-id-with-usr_access.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1099-7series-partial-reconfiguration-ssi-embedded.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=44174.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=44174.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=partial-reconfiguration-in-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=partial-reconfiguration-for-ultrascale.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/partial-reconfiguration-for-ultrascale-plus.html
https://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-partial-reconfiguration-flow-zynq.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=partial-reconfiguration-tools-and-techniques.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=151

Appendix B: Additional Resources and Legal Notices
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable
or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors
contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not
reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are
subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be
viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such
critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at
https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE
DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY
APPLICATION”) UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO
26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR
DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY
PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF
CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2012–2020 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe and
PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property of their
respective owners.
Dynamic Function eXchange 152
UG909 (v2019.2) January 15, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Partial%20Reconfiguration&releaseVersion=2019.2&docPage=152

	Vivado Design Suite User Guide: Partial Reconfiguration
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Overview
	Introduction to Dynamic Function eXchange
	Terminology
	Bottom-Up Synthesis
	Configuration
	Configuration Frame
	Internal Configuration Access Port (ICAP)
	Media Configuration Access Port (MCAP)
	Partition
	Partition Definition (PD)
	Partition Pin
	Partial Reconfiguration (PR)
	Processor Configuration Access Port (PCAP)
	Programmable Unit (PU)
	Reconfigurable Frame
	Reconfigurable Logic
	Reconfigurable Module (RM)
	Reconfigurable Partition (RP)
	Static Logic
	Static Design

	Design Considerations
	Design Requirements and Guidelines
	Design Performance
	Design Criteria

	Dynamic Function eXchange Licensing

	Ch. 2: Common Applications
	Overview
	Networked Multiport Interface
	Configuration by Means of Standard Bus Interface
	Dynamically Reconfigurable Packet Processor
	Asymmetric Key Encryption
	Summary

	Ch. 3: Vivado Software Flow
	Overview
	Dynamic Function eXchange Commands
	Synthesis
	Synthesizing the Top Level
	Synthesizing Reconfigurable Modules
	Reading Design Modules
	Method 1: Add and Link Files
	Method 2: Read Netlist Design
	Method 3: Open/Read Checkpoint
	Method 4: Open Checkpoint/Update Design

	Adding Reconfigurable Modules with Sub-Module Netlists
	Method 1: Create a Single RM Checkpoint (DCP)
	Method 2: Place the Sub-Module Netlists in the Same Directory as the RM’s Top-Level Netlist

	Reading Design Constraints
	Implementation
	Preserving Implementation Data

	Dynamic Function eXchange Constraints and Properties
	Define a Module as Reconfigurable
	Create a Floorplan for the Reconfigurable Region
	Floorplan in the Vivado IDE
	Using Visualization Scripts
	Timing Constraints
	Partition Pins
	Context Property Examples:

	Apply Reset After Reconfiguration
	Software Flow
	Synthesis
	Implementation
	Incremental Compile
	Reporting
	Verifying Configurations
	Bitstream Generation
	Generating Partial Bitstreams Only
	Generating Full Configuration Bitstreams Only
	Generating Static-only Bitstreams

	Tcl Scripts

	Ch. 4: Vivado Project Flow
	Overview
	Flow Summary
	Tcl Commands

	Steps for Creating and Using a Dynamic Function eXchange Project
	Creating a Dynamic Function eXchange Project
	Defining Reconfigurable Partitions
	Completing the Dynamic Function eXchange Project Structure
	Editing Reconfigurable Modules
	Editing Configurations
	Editing Configuration Runs

	Adding or Modifying Reconfigurable Modules or Configurations
	Adding or Creating IP Sources
	Implementing the DFX Design
	Generating Bitstreams

	Supported/Unsupported Features
	Supported Features
	Unsupported Features
	Known Limitations

	Ch. 5: Design Considerations and Guidelines for All Xilinx Devices
	Overview
	Partial Reconfiguration IP
	Design Hierarchy
	Dynamic Reconfiguration Using the DRP
	Packing Logic
	Design Instance Hierarchy
	Reconfigurable Partition Interfaces

	Partition Pin Placement
	Active-Low Resets and Clock Enables
	Decoupling Functionality
	Black Boxes
	Effective Approaches for Implementation
	Building Up Implementation Requirements

	Configuration Analysis Report
	Complexity
	Clocking
	Timing
	Summary

	Managing Constraints for a DFX Design
	Constraint Creation
	Constraint Application

	Defining Reconfigurable Partition Boundaries
	Avoiding Deadlock
	Design Revision Checks
	Simulation and Verification

	Ch. 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
	Overview
	Design Elements Inside Reconfigurable Modules
	Global Clocking Rules
	Creating Pblocks for 7 Series Devices
	Automatic Adjustments for Reconfigurable Partition Pblocks
	Creating Reconfigurable Partition Pblocks Manually

	Using High Speed Transceivers
	Dynamic Function eXchange Design Checklist (7 Series)
	Recommended Clocking Networks
	Configuration Feature Blocks
	High Speed Transceiver Blocks
	System Generator DSP Cores, HLS cores, or IP Integrator Block Diagrams
	Packing I/Os into Reconfigurable Partitions
	Packing Logic into Reconfigurable Partitions
	Packing Critical Paths into Reconfigurable Partitions
	Floorplanning
	Recommended Decoupling Logic
	Recommended Reset after Reconfiguration
	Debugging with Logic Analyzer Blocks
	Efficient Reconfigurable Partition Pblocks
	Validating Configurations
	Configuration Requirements
	Effective Pblock recommendations

	Ch. 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
	Overview
	Design Elements Inside Reconfigurable Modules
	Creating Pblocks for UltraScale and UltraScale+ Devices
	Automatic Adjustments for PU on Pblocks
	Sharing Configuration Frames between RP and Static Logic
	Expansion of CONTAIN_ROUTING Area
	UltraRAM Behavior
	Floorplanning Rules for Clocks inside an RP

	Global Clocking Rules
	I/O Rules
	Using High Speed Transceivers
	Dynamic Function eXchange Checklist for UltraScale and UltraScale+ Device Designs
	Recommended Clocking Networks
	Configuration Feature Blocks
	Pblock Boundaries
	SSI Technology
	High Speed Transceiver Blocks
	System Generator DSP Cores, HLS cores, or IP Integrator Block Diagrams
	Packing I/Os into Reconfigurable Partitions
	Packing Logic into Reconfigurable Partitions
	Packing Critical Paths into Reconfigurable Partitions
	Floorplanning
	Recommended Decoupling Logic
	Recommended Reset After Reconfiguration
	Debugging with Logic Analyzer Blocks
	Efficient Reconfigurable Partition Pblocks
	Validating Configurations
	Configuration Requirements

	Ch. 8: Configuring the Device
	Overview
	Configuration Modes
	Bitstream Type Definitions
	Full Configuration Bitstreams
	Downloading a Full BIT File

	Partial Bitstreams
	Downloading a Partial BIT File

	Blanking Bitstreams
	Clearing Bitstreams

	Dynamic Function eXchange through ICAP for Zynq Devices
	Tandem Configuration and Dynamic Function eXchange
	Formatting BIN Files for Delivery to Internal Configuration Ports
	Examples
	ICAP (for 7 series devices)
	ICAP (for UltraScale devices)
	PCAP (for Zynq-7000 SoC devices) or MCAP (for one specific PCIe block per UltraScale device)

	Summary of BIT Files for UltraScale Devices
	System Design for Configuring an FPGA
	Partial BIT File Integrity
	Configuration Frames
	Configuration Time
	Configuration Debugging
	Using Vivado Debug Cores

	Ch. 9: Known Issues and Limitations
	Known Issues
	Known Limitations

	Appx. A: Hierarchical Design Flows
	Overview

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

