UltraFast Design
Methodology Guide for the
Vivado Design Suite

& XILINX

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG949

& XILINX

Revision History

The following table shows the revision history for this document.

Section

Revision Summary

12/06/2019 Version 2019.2

Thermal Solution Considerations

Added new section.

Performance/Power Trade-Off for Block RAMs

Updated examples.

Using the CLOCK_LOW_FANOUT Constraint

Updated examples.

Using Incremental Implementation Flows

Added information about automatic incremental
implementation mode.

Incremental Directives and Target WNS

Added new section.

Compile Time Considerations

Added new section.

Assessing the Maximum Frequency of the Design

Added new section.

Reducing Clock Delay in UltraScale and UltraScale+ Devices

Added new section.

Disable LUT Combining

Updated example.

ML Strategies

Added new section.

Using Incremental Implementation

Added information about automatic incremental
implementation mode.

Using VIO Cores

Added new section.

06/26/2019 Version 2019.1

About the UltraFast Design Methodology

Added reference to UltraFast Design Methodology Timing
Closure Quick Reference Guide (UG1292).

SLR Utilization Considerations

Updated example.

Auto-Pipelining Considerations

Added new section.

Using Auto-Pipelining on Custom Interfaces

Updated to show the hierarchy recommendation and
USER_SLR_ASSIGNMENT constraints.

Synchronous CDC

Added note about safe timing between BUFGCE_DIV clocks.

Incremental Synthesis Flows

Added new section.

Using Incremental Implementation Flows

Added information on automatic incremental
implementation.

Optimization Analysis

Added -debug_log option.

Methodology DRCs with Impact on Timing Closure

Added Severity column and TIMING-44 and TIMING-45
checks.

Methodology DRCs with Impact on Signoff Quality

Added Severity column and TIMING-46 check.

Optimizing Paths with Dedicated Blocks and Macro
Primitives

Added optimization options.

Interconnect Congestion Level in the Device Window

Added enhanced reporting information.

Choose a High Quality Reference Checkpoint

Added information on selecting different timing closed
checkpoints and using incremental synthesis.

Considering Floorplan

Added tip about IS_SOFT property.

Using Hard SLR Floorplan Constraints

Added tip about IS_SOFT property.

UG949 (v2019.2) December 6, 2019
UltraFast Design Methodology Guide

l Send Feedback l

www.Xilinx.com

2

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1292-ultrafast-timing-closure-quick-reference.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=2

iv Xl I_l NX Revision History
A ®

Section Revision Summary
Using Soft SLR Floorplan Constraints Updated XDC constraint example for optimal placement.
Using SLR Crossing Registers Added USER_SLL_REG property.
Using Auto-Pipelining for SLR Crossings Added new section.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide l—./—l 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=3

& XILINX

Table of Contents

REVISION HISTOKY ...ttt sess s sssssssssesssssssssssssssssssssasens 2
Chapter 1: INtrodUCtIiON............ st ssssssssssseans 6
About the UltraFast Design MethodolOogy........ccoeeveriirieniniineeeeeeeee et 6
Understanding UltraFast Design Methodology CONCEPLS........ccceeverreereenierieeneeseneeneeeenee 9
Using the Vivado DeSIgN SUILE......c.cciiviiriinieieeiesteseetese e sie e s e saeesaestesaaesaesnessnenne 12
Accessing Additional Documentation and TraiNiNg.......cccocevievieniieneenenieneeesee e 13
Chapter 2: Board and Device Planning............nnnnensensensessesensenne 14
PCB Layout ReCOMMENAALIONS. ..ottt sttt sr sttt et s sne e 14
Clock Resource Planning and ASSIGNMENT........ccccoviirierienieneeieneeseeie et 19
I/O Planning DESIGN FIOWS.......ccoveieieiereeiirisieteiseisiesesesssssssesesssessssesesessssssesesesssssssesessssssseses 20
DeSigNiNg With SST DEVICES......civviiiierriirieritesieest sttt seessreestessreesaressbaesasesssaesssesssnesas 26
Designing With HBM DEVICES.......cccuiveriiriirieeientesieetestese et saesste st sresssesaesieessesssesssesseens 32
Device Power Aspects and System Dependencies........ccoeveveeereenienieneneneneneeeeseesnennens 36
CONFIGUIALION ..ttt ettt s b s e st a e be st e sae e b e s e e saeenne 39
Chapter 3: Design Creation..........ninenereresesessessssessessessessessessenses a4
Design Creation WIth RTL.......coeiierieieeeeeseesee ettt ettt sr e st se e saeesae e 41
WOrking With CONSEraiNTS.eeieeieeeeee et s sne s 144
Chapter 4: Implementation............nnneneseesssessssssssssssssens 183
RUNNING SYNTN@SIS ...ttt ettt s r e e s s se e e e sneas 183
MOVING PaSt SYNTNESIS.....uiiiiriiiiiiirierecertere sttt sttt sbe et e s saesbeesbaeseas 187
IMmplementing the DeSIgN......uiiiiieeece ettt sttt et sesaeesbe e 191
Chapter 5: Design ClOSUNE..........ereresesesesesesesesessssssssssssssssssssssns 200
TIMING CLOSUI ...ttt sttt ettt b e s b s b bt eae e et e b essene 200
Power Analysis and OptimizatioN........coceoeeveeieneenieeiereeseee ettt st 281
Configuration and DeDUQG.....c.coieieeee e e 284
Appendix A: Additional Resources and Legal Notices.............ccou..... 295
XIlINX RESOUICES. ...ttt ettt et s it s bt et st e bt e b e st e sseesbeeasesaeesseesesneens 295

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=4

& XILINX

SOIULION CONEETS.....eeeetee ettt ettt et b e b st s bt e be s e e s it e b e e b e saeesseebe s e esneenns 295
Documentation Navigator and Design HUDS.........cooiviiiirieniiinienenieeecsecee e 295
RETEIEINCES. ..ttt ettt sb b s b s b e e bt e se et sne b ns 296
TraINING RESOUICTES...ccuiiiiiiiieeiteeieete ettt ettt sttt e st e s bt e st sbe e st e s bt e sabessnaesaseens 298
Please Read: Important Legal NOLICES.......coceeierieieeiereeeee sttt 299

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 5

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=5

& XILINX

Chapter 1

Introduction

About the UltraFast Design Methodology

The Xilinx® UltraFast™ design methodology is a set of best practices intended to help streamline
the design process for today's devices. The size and complexity of these designs require specific
steps and design tasks to ensure success at each stage of the design. Following these steps and
adhering to the best practices will help you achieve your desired design goals as quickly and
efficiently as possible.

Xilinx provides the following resources to help you take advantage of the UltraFast design
methodology:

e This guide, which describes the various design tasks, analysis and reporting features, and best
practices for design creation and closure.

e UltraFast Design Methodology Quick Reference Guide (UG1231), which highlights key design
methodology steps in an easy-to-use, double-sided card format.

e UltraFast Design Methodology Timing Closure Quick Reference Guide (UG1292), which covers
recommendations for closing timing, including running initial design checks, baselining the
design, and resolving timing violations.

e UltraFast Design Methodology Checklist (XTP301), which is available in the Xilinx
Documentation Navigator and as a standalone spreadsheet. You can use this checklist to
identify common mistakes and decision points throughout the design process.

e UltraFast Design Methodology System-Level Design Flow diagram representing the entire
Vivado® Design Suite design flow, which is available in the Xilinx Documentation Navigator.
You can click a design step in the diagram to open related documentation, collateral, and FAQs
to help get you started.

O RECOMMENDED: In addition to these resources, Xilinx recommends the UltraFast Embedded Design
Methodology Guide (UG1046) when working with embedded designs and the UltraFast High-Level Productivity
Design Methodology Guide (UG1197) when developing complex systems using Vivado IP integrator with C-
based IP.

o TIP: Xilinx also provides methodology-related design rule checks (DRCs) for each design stage, which are
available using the report_methodology Tcl command in the Vivado Design Suite.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 6

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1231-ultrafast-design-methodology-quick-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1292-ultrafast-timing-closure-quick-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=xtp301-design-methodology-checklist.zip
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1197-vivado-high-level-productivity.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=6

iv Xl Ll NX Chapter 1: Introduction
A 0

Using This Guide

This guide provides a set of best practices that maximize productivity for both system integration
and design implementation. It includes high-level information, design guidelines, and design
decision trade-offs for the following topics:

¢ Board and Device Planning: Covers decisions and design tasks that Xilinx recommends
accomplishing prior to design creation. These include 1/O and clock planning, PCB layout
considerations, device capacity and throughput assessment, alternate device definition, power
estimation, and debugging.

e Design Creation: Covers the best practices for RTL definition, IP configuration and
management, and constraints assignment.

¢ Implementation: Covers the options available and best practices for synthesizing and
implementing the design.

e Design Closure: Covers the various design analysis and implementation techniques used to
close timing on the design or to reduce power consumption. It also includes considerations for
adding debug logic to the design for hardware verification purposes.

This guide includes references to other documents such as the Vivado Design Suite User Guides,

Vivado Design Suite Tutorials, and Quick-Take Video Tutorials. This guide is not a replacement for
those documents. Xilinx still recommends referring to those documents for detailed information,

including descriptions of tool use and design methodology.

This information is designed for use with the Vivado Design Suite, but you can use most of the
conceptual information with the ISE® Design Suite as well.

Related Information
Additional Resources and Legal Notices

Using the UltraFast Design Methodology Checklist

To take full advantage of the UltraFast design methodology, use this guide with the UltraFast
Design Methodology Checklist (XTP301). The checklist is available from the Xilinx Documentation
Navigator or as a standalone spreadsheet.

The questions in the UltraFast Design Methodology Checklist highlight typical areas in which
design decisions are likely to have downstream impact and draw attention to issues that are
often overlooked or ignored. Each tab in the checklist:

e Targets a specific role within a typical design team.

¢ Includes common questions and recommended actions to take during each design flow step,
including project planning, board and device planning, IP and submodule design, and top-level
design closure.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 7

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=xtp301-design-methodology-checklist.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=7

iv Xl Ll NX Chapter 1: Introduction
A 0

¢ Includes a Documentation and Training section that lists resources related to the design flow
step.

e Provides links to content in this guide or other Xilinx documentation, which offer guidance on
addressing the design concerns raised by the questions.

VIDEO: For a demonstration of the checklist, see the Vivado Design Suite QuickTake Video: Introducing the
UltraFast Design Methodology Checklist.

Using the UltraFast Design Methodology DRCs

The Vivado Design Suite contains a set of methodology-related DRCs you can run using the
report_methodology Tcl command. This command has rules for each of the following design
stages:

e Before synthesis in the elaborated RTL design to validate RTL constructs
o After synthesis to validate the netlist and constraints

e After implementation to validate constraints and timing related concerns.

RECOMMENDED: For maximum effect, run the methodology DRCs at each design stage and address any
issues prior to moving to the next stage.

For more information on the design methodology DRCs, see the report_methodology Tcl
command in the Vivado Design Suite Tcl Command Reference Guide (UG835).

Related Information
Running Report Methodology

Using the UltraFast Design Methodology System-
Level Design Flow Diagram
The following figure shows the various design steps and features included in the Vivado Design

Suite. From the Xilinx Documentation Navigator Design Hub View, you can access an interactive
version of this graphic in which you can click each step for links to related resources.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 8

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/introducing-ultrafast-design-methodology.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/introducing-ultrafast-design-methodology.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_methodology
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=8

iv Xl Ll NX Chapter 1: Introduction
A 0

Figure 1: UltraFast Design Methodology System-Level Design Flow

System Design Entry Software Development

Model-Based Design with

C-Based Design MATLAB® and Simulink® Software
with High-Level
Synthesis Systefrgr%esnperator Model Composer
\ \i
Configuring Xilinx and > IP Packager - IP Integrator Development Software
Third-Party IP and Processor 0S
Configuring IP

Embedded Processor Design

Subsystems
RTL
Development |
Implementation Y y
| Logic Simulation 3 |

Dynamic Function <—>| Assign Logical and Physical Constraints] |<7
eXchange *
| Logic Synthesis |

—>| Implementation |

| Timing Closure and Design Analysis vy |

Y
—>| Generate Bitstream, Programming, and Debug |<7

A Y

Export to Vitis™ Software
Development Platform

A

Processor Boot and Debug |«

Hardware Bring-Up and Validation

X15150-120319

Understanding UltraFast Design Methodology
Concepts

It is important to take the correct approach from the start of your design and to pay attention to
design goals from the early stages, including RTL, clock, pin, and PCB planning. Properly defining
and validating the design at each design stage helps alleviate timing closure, routing closure, and
power usage issues during subsequent stages of implementation.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 9

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=9

iv Xl Ll NX Chapter 1: Introduction
A 0

Maximizing Impact Early in the Development Cycle

As shown in the following figure, early stages in the design flow (C, C++, and RTL synthesis) have
a much higher impact on design performance, density, and power than the later implementation
stages. Therefore, if the design does not meet timing goals, Xilinx recommends that you revisit
the synthesis stage, including HDL and constraints, rather than iterating for a solution in the
implementation stages only.

Figure 2: Impact of Design Changes Throughout the Flow

Impact of change on
performance

HLS
(C, C++) 1000x

RTL 10x
Synthesis

opt 1.2x
Place

physopt

Y

Route

1.1x

X13423-
072419

Validating at Each Design Stage

The UltraFast design methodology emphasizes the importance of monitoring design budgets,
such as area, power, latency, and timing, and correcting the design from early stages as follows:

e Create optimal RTL constructs with Xilinx templates, and validate your RTL with methodology
DRCs prior to synthesis, after elaboration.

Because the Vivado tools use timing-driven algorithms throughout, the design must be
properly constrained from the beginning of the design flow.

e Perform timing analysis after synthesis.

To specify correct timing, you must analyze the relationship between each master clock and
related generated clocks in the design. In the Vivado tools, each clock interaction is timed
unless explicitly declared as an asynchronous or false path.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 10

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=10

iv Xl Ll NX Chapter 1: Introduction
A 0

e Meet timing using the right constraints before proceeding to the next design stage.

You can accelerate overall timing and implementation convergence by following this
recommendation and by using the interactive analysis environment of the Vivado Design
Suite.

O TIP: You can achieve further acceleration by combining these recommendations with the HDL design guidelines
in this guide.

The following figure shows this recommended design methodology.

Figure 3: RTL Design Methodology for Rapid Convergence

Run Synthesis
Review options & HDL code

report_clock_networks
-> create_clock / create_generated_clock
report_clock_interaction

Cross-probe

-> set_clock_groups / set_false_path Define & Refine Instances in critical path
check_timing Constraints In Netlist view and
-> 1/0 delays Elaborated view schematics

report_timing_summary
-> Timing exceptions

Timing Acceptable?

Place & Route

X13422

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 11

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=11

iv Xl Ll NX Chapter 1: Introduction
A 0

Synthesis is considered complete when the design goals are met with a positive margin or a
relatively small negative timing margin. For example, if post-synthesis timing is not met,
placement and routing results are not likely to meet timing. However, you can still go ahead with
the rest of the flow even if timing is not met. Implementation tools might be able to close timing
if they can allocate the best resources to the failing paths. In addition, proceeding with the flow
provides a more accurate understanding of the negative slack magnitude, which helps you
determine how much you need to improve the post-synthesis worst negative slack (WNS). You
can use this information when you return to the synthesis stage with improvements to HDL and
constraints.

Taking Advantage of Rapid Validation

This guide also introduces the concept of rapid validation of specific aspects of the system
architecture and micro-architecture as follows:

¢ In the context of system design, the I/O bandwidth is validated in-system, before
implementing the entire design. Validating I/0 bandwidth can highlight the need to revise
system architecture and interface choices before finalizing on 1/Os.

e As part of design implementation, baselining is used to write the simplest set of constraints,
which can identify internal device timing challenges. Baselining is a process used to identify
the need to revise RTL micro-architecture choices before moving to the implementation
phase.

Related Information
Interface Bandwidth Validation
Baselining the Design

Using the Vivado Design Suite

The Vivado Design Suite has a flexible use model to accommodate various development flows
and different types of designs. For detailed information on how to use the features within the
Vivado Design Suite, see the Vivado Design Suite User Guide: Design Flows Overview (UG892) and
other Vivado Design Suite documentation.

Managing Vivado Design Suite Sources with a
Revision Control System

Most design teams manage their design sources and results with a commercially available
revision control system. The Vivado Design Suite allows various use models for managing design
and IP data. For more information on using the Vivado tools with a revision control system, see
this link in the Vivado Design Suite User Guide: Design Flows Overview (UG892).

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 12

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug892-vivado-design-flows-overview.pdf;a=xUsingSourceControlSystemsWithTheVivadoTool
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=12

iv Xl Ll NX Chapter 1: Introduction
A 0

Upgrading to New Vivado Design Suite Releases

New releases of the Vivado Design Suite often contain updates to Xilinx IP. Carefully consider
whether you want to upgrade your IP, because upgrading can result in design changes. In
addition, you must follow specific rules when using IP configured with previous releases going
forward. For more information, see this link in the Vivado Design Suite User Guide: Designing with
IP (UG896).

Accessing Additional Documentation and
Training

Q

This guide supplements the information in the Vivado Design Suite documentation, including
user guides, reference guides, tutorials, and QuickTake videos. The Xilinx Documentation
Navigator provides access to the Vivado Design Suite documentation and support resources,
which you can filter and search to find information. To open the Xilinx Documentation Navigator
(DocNav):

¢ From the Vivado IDE, select Help = Documentation and Tutorials.
o On Windows, select Start = All Programs = Xilinx Design Tools = DocNav.

e At the Linux command prompt, enter: docnav

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

¢ In the Xilinx Documentation Navigator, click the Design Hubs View tab.

¢ On the Xilinx website, see the Design Hubs page.

TIP: For quick access to information on different parts of the Vivado IDE, click the Quick Help button in the
window or dialog box. For detailed information on Tcl commands, enter the command followed by - he1p in the
Tcl Console.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 13

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug896-vivado-ip.pdf;a=xUpgradingIP
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=13

& XILINX

Chapter 2

Board and Device Planning

Properly planning the device orientation on the board and assigning signals to specific pins can
lead to dramatic improvements in overall system performance, power consumption, thermal
performance, and design cycle times. Visualizing how the device interacts physically and logically
with the printed circuit board (PCB) enables you to streamline the data flow through the device.

Failing to properly plan the I/O configuration can lead to decreased system performance and
longer design closure times. Xilinx highly recommends that you consider I/O planning in
conjunction with board planning.

For more information, see the following resources:

e Vivado Design Suite User Guide: /O and Clock Planning (UG899)
e Vivado Design Suite QuickTake Video: I/0O Planning Overview

PCB Layout Recommendations

The layout of the device on the board relative to other components with which it interacts can
significantly impact the 1/0O planning.

Aligning with Physical Components on the PCB

The orientation of the device on the PCB should first be established. Consider the location of
fixed PCB components, as well as internal device resources. For example, aligning the GT
interfaces on the device package to be as close to the components with which they interface on
the PCB will lead to shorter PCB trace lengths and fewer PCB vias.

A sketch of the PCB including the critical interfaces can often help determine the best
orientation for the device on the PCB, as well as placement of the PCB components. After
completion, the rest of the device I/O interface can be planned.

High-speed interfaces such as memory can benefit from having very short and direct connections
with the PCB components with which they interface. These PCB traces often have to be
matched length and not use PCB vias, if possible. In these cases, the package pins closest to the
edge of the device are preferred in order to keep the connections short and to avoid routing out
of the large matrix of BGA pins.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 14

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/i-and-o-planning-overview.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=14

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

The 1/0 Planning View Layout in the Vivado® IDE is useful in this stage for visualizing I/O
connectivity relative to the physical device dimensions, showing both top-side and bottom-side
views.

@ THERMAL TIP: For thermally-challenged designs, be aware of device placement in relation to other high-power
components to minimize thermal coupling and maximize airflow. Avoid placement where the device is
positioned in the exhaust of another high power component or where board heating might negatively impact
the operating temperature. Xilinx recommends thermal simulation to understand how the placement and
environmental conditions can affect the junction temperature of the device.

The following figure shows the I/O Planning view layout.

Figure 4: 1/O Planning View Layout

¢ project_pinout - [C:/Tutorials/Vivado_Tutorial/tutorial_created_data/project_pinout/project_pinoutxpr] E@
File Edit Flow Tools Window Layout Wiew Help
= a o X Default Layout v
A EUGE G /0 DE SIGN - xc7k70tbg676-2
v PROJECT MANAGER
Device Constraints Package Device
£} Settings
a x 2 = b
~ U0 PLANNING * Internal VREF
~ Open IO Design 0.6Y -
Import 'O Ports 06787
0.75v
Create /0 Ports ooy
Report DRC N NONE (G
Report Noise & M0 Bank 13
10 Bank 14 ~

Export /0 Ports
Drop 0 banks on voltages or the "NONE folder to setunset

Wigrate to RTL Internal VREF.
Properties
-
Package Pins

Q = &[4 o
Mame Available Prohibit Pors [WOStd Dir Vcco Bank Bank Type Byte Group Type DiffPair Clock Vo
w = AIPIns (576 &

> s i Bank 0 (22 0 Dedicated

> mm |iD Bank 12 (7 0 Dedicated

» s |iQBank 13 (56 50 High Range

> mm |iD Bank 14 (50 50 High Range

> mm |i0Bank 15 (56 50 High Range

% om UM Rank 1R (F7 AN Hinh Ranna ~
< >

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 15

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=15

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

Power Distribution System

Board designers are faced with a unique task when designing a power distribution system (PDS)
for a Xilinx® device. Most other large, dense integrated circuits (such as large microprocessors)
come with very specific bypass capacitor requirements. Because these devices are designed only
to implement specific tasks in their hard silicon, their power supply demands are fixed and
fluctuate only within a certain range.

Xilinx devices do not share this property. Devices can implement an almost infinite number of
applications at undetermined frequencies, and in multiple clock domains. For this reason, it is
critical that you refer to the PCB Design Guide for your device to fully understand the PDS.

Key factors to consider during PDS design include:

e Selecting the right voltage regulators to meet the noise and current requirements based on
power estimation.

e Consolidating power. For supported consolidation options in UltraScale™ devices, see this link
in the UltraScale Architecture PCB Design User Guide (UG583).

@ POWER TIP: Xilinx recommends adding a shunt resistor to allow the power on each rail to be monitored.
Alternatively, you can use a PMBus-enabled regulator or current monitoring integrated circuit (IC).

e Setting up the XADC power supply (Vrefp and Vrefn pins).
e Running power distribution network (PDN) simulation.

For UltraScale devices, use the recommended number of decoupling capacitors listed in the
UltraScale Architecture PCB Design User Guide (UG583), which are based on the assumptions
listed in the guide. If the assumptions differ for your design, simulate your design to determine
whether more or less decoupling is required. Running PDN simulations can help to confirm the
exact amount of decoupling capacitors required to guarantee power supplies that are within
the recommended operating range.

Note: See the 7 Series FPGAs PCB Design Guide (UG483), UltraScale Architecture PCB Design User Guide
(UG583), or Zyng-7000 SoC PCB Design Guide (UG933) to find the details for your device.

For more information on PDN simulation, see Simulating FPGA Power Integrity Using S-Parameter
Models (WP411).

@ POWER TIP: Xilinx recommends simulating your power supply design using the SIMPLIS simulator in SIMetrix/
SIMPLIS to ensure your design is within the Xilinx recommended operating conditions. The majority of power
vendors provide a limited version of SIMPLIS and supply the models to allow you to run this simulation. SIMPLIS
is a third-party software used for transient and AC analysis of voltage regulators.

Related Information
Power Analysis and Optimization

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 16

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf;a=xPowerDistributionSysteminUltraScaleDevices
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug483_7Series_PCB.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug933-Zynq-7000-PCB.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp411_Sim_Power_Integrity.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=16

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

Thermal Solution Considerations

When considering the power estimation of a design, understanding the efficiency of the thermal
solution is crucial. The lower the junction temperature, the lower the static power of a design.

Xilinx recommends using lidless packaging if it is available for your device. Lidless packaging
offers a more efficient thermal solution and allows direct contact with the heat source, removing
a thermal interface material (TIM) layer. Xilinx lidded and lidless parts have the same handling and

manufacturing requirements. The following figure compares the heat sink application for a lidded
and lidless device.

@ THERMAL TIP: Xilinx recommends between 20 and 50 pound-force per square inch (PSl) for the heat sink,
which ensures the smallest bond line thickness (BLT), and recommends using 4-hole mounting to ensure even
pressure for both lidded and lidless devices. For more information on lidless techniques, see Mechanical and
Thermal Design Guidelines for Lidless Flip-Chip Packages (XAPP1301).

Figure 5: Heat Sink Example

Heat Sink
TIM2 TIM1.5
LID Stiffener Ring
TIM 1
- DIE

Xilinx also recommends thermal simulation to ensure that there is adequate margin and accurate
power estimation. In the Xilinx Power Estimator (XPE), you have control over the following
thermal settings:

X23524-112719

¢ Junction Temperature Tj: You can override this setting to a desired junction temperature to
match your thermal simulation. If you are not running a thermal simulation, set the junction
temperature to the worst case.

e Effective ©®JA: Describes the thermal efficiency of a thermal solution, the units are measured
in degrees Celsius per watt (C/W). For example, an ©@JA of 2.1 C/W means that for every watt
dissipated in the device, the junction temperature increases by 2.1°C. For a 10W design, the
increase is 21°C above the ambient temperature.

Note: You can obtain the ©JA through thermal simulation using the following formula:
©Ja = (Tjunction - Tambient)/ PowerDissipated

The following figure shows the recommended flow for thermal validation. During thermal
validation, be aware of the following:

¢ Initial estimation must assume worst-case Tj, which you can refine based on thermal
simulation.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide l—./—| 17

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1301-mechanical-thermal-design-guidelines.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=17

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

¢ |If the junction temperature is within specification, you can update the estimation as needed
and iterate until estimation and thermal simulation results converge.

Note: Convergence is not required if enough margin already exists.

Figure 6: Recommended Thermal Validation Flow

Power
Estimation

Re-Evaluate Design or
Thermal Solution

A

i
Y

Thermal Simulation
Tj < Tj max

X23525-111319

After the junction temperature is within specification and sufficient margin is considered, the
thermal solution is considered effective.

@ THERMAL TIP: Add the results of the power estimation and thermal simulation to the Vivado design
constraints. You can use the following XDC constraints, which you can export from XPE using the Export option,
as described in the Xilinx Power Estimator User Guide (UG440) :

Standard Constraints:

set_operating_conditions -process Maximum
set_operating_conditions -design_power_budget <value>
#If thermal simulation completed
set_operating_conditions -ambient_temp <value>
set_operating_conditions -thetaja <value>

#Else if no thermal simulation completed
set_operating_conditions -junction_temp <value>

PCB Design Considerations

The PCB should be designed considering the fastest signal interfacing with the device. These
high-speed signals are extremely sensitive to trace geometry, vias, loss, and crosstalk. These
aspects become even more prominent for multi-layer PCBs. For high-speed interfaces perform a
signal integrity simulation. A board redesign with improved PCB material or altered trace
geometries may be necessary to obtain the desired performance.

Xilinx recommends following these steps when designing your PCB:

1. Review the following device documentation:

e PCB Design Guide for your device.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 18

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug440-xilinx-power-estimator.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=18

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

e Board design guidelines in the Transceiver User Guide for your device.
2. Review memory IP and PCle® design guidelines in the IP product guides.
3. Use the Vivado tools to validate your /O planning:
e Run simultaneous switching noise (SSN) analysis.
¢ Run built-in DRCs.
e Export I/0 buffer information specification (IBIS) models.
4. Run signal integrity analysis as follows:
e For gigabit transceivers (GTs), run Spice or IBIS-AMI simulations using channel parameters.

e For lower performance interfaces, run IBIS simulation to check for issues with overshoot
or undershoot.

5. Use the XPE with Process set to Maximum to generate an early estimate of the power
consumption for the design.

6. Complete and adhere to the schematic checklist for your device.

Note: See the 7 Series Schematic Review Recommendations (XMP277, Kintex UltraScale and Virtex
UltraScale FPGAs Schematic Review Checklist (XTP344), or UltraScale+ FPGA and ZynqUItraScale+ Devices
Schematic Review Checklist (XTP427).

7. Use the XPE to generate a Xilinx design constraints (XDC) file, and import this file into the
corresponding Vivado project. The XPE environment settings are translated to XDC
constraints. The estimated total on-chip power becomes the design power budget for Vivado
power analysis. For more information, see the Vivado Design Suite User Guide: Power Analysis
and Optimization (UG907).

Related Information
Other Xilinx Documentation

Clock Resource Planning and Assignment

Xilinx recommends that you select clocking resources as one of the first steps of your design,
well before pinout selection. Your clocking selections can dictate a particular pinout and can also
direct logic placement for that logic, especially for stacked silicon interconnect (SSI) technology
devices. Proper clocking selections can yield superior results. Consider the following:

e Constraint creation, particularly in large devices with high utilization in conjunction with clock
planning.

e Manual placement of clocking resources if needed for design closure.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 19

https://www.xilinx.com/member/forms/download/design-license.html?cid=198776&filename=xmp277-7series-schematic-review-recommendations.zip
https://www.xilinx.com/member/forms/download/design-license.html?cid=359174&filename=xtp344-ultrascale-schematic-review-checklist.zip
https://www.xilinx.com/member/forms/download/design-license.html?cid=423500&filename=xtp427-ultrascale-plus-schematic-review-checklist.zip
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=19

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

e Device-specific functionality that might require up-front planning to avoid issues and take
advantage of device features. For information on 7 series features, see this link and this link in
the 7 Series FPGAs Clocking Resources User Guide (UG472). For information on UltraScale
device features, see this link in the UltraScale Architecture Clocking Resources User Guide
(UG572).

Related Information

Clocking Guidelines
Auto-Pipelining Considerations
SLR Crossing for Wide Buses

I/0 Planning Design Flows

The Vivado IDE allows you to interactively explore, visualize, assign, and validate the 1/O ports
and clock logic in your design. The environment ensures correct-by-construction I/O assignment.
It also provides visualization of the external package pins in correlation with the internal die pads.

You can visualize the data flow through the device and properly plan I/Os from both an external
and internal perspective. After the I/Os are assigned and configured through the Vivado IDE,
constraints are then automatically created for the implementation tools.

For more information on Vivado Design Suite I/O and clock planning capabilities, see the
following resources:

¢ Vivado Design Suite User Guide: /O and Clock Planning (UG899)
e Vivado Design Suite QuickTake Video: 1/0 Planning Overview

Types of Vivado Design Suite Projects for I1/O
Planning

You can perform |I/O planning with either of the following types of projects:

e |/O planning project

An I/0O planning project is an easy entry point that allows you to specify select I/O constraints
and generate a top-level RTL file from the defined pins.

e RTL project

An RTL project allows synthesis and implementation, which enables more comprehensive
design rule checks (DRCs). An RTL project also allows generation of IP cores, which is
important for memory interface pinout planning and any cores using GTs.

O TIP: You can also start by using an 1/0 planning project and migrate to an RTL project later.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 20

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug472_7Series_Clocking.pdf;a=xClockCapableInputPinPlacementRules
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug472_7Series_Clocking.pdf;a=xMultiRegionClocking
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug472_7Series_Clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug572-ultrascale-clocking.pdf;a=xClockingResources
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug572-ultrascale-clocking.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/i-and-o-planning-overview.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=20

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

You can run more comprehensive DRCs on a post-synthesis netlist. The same is true after
implementation and bitstream generation. Therefore, Xilinx recommends using a skeleton design
that includes clocking components and some basic logic to exercise the DRCs. This builds
confidence that the pin definition for the board will not have issues later.

The recommended sign-off process is to run the RTL project through to bitstream generation to
exercise all the DRCs. However, not all design cycles allow enough time for this process. Often
the 1/0O configuration must be defined before you have synthesizable RTL. Although the Vivado
tools enable pre-RTL I/0 planning, the level of DRCs performed are fairly basic. Alternatively,
you can use a dummy top-level design with 1/O standards and pin assignments to help perform
DRCs related to banking rules.

Pre-RTL 1I/0 Planning

If your design cycle forces you to define the I/O configuration before you have a synthesized
netlist, take great care to ensure adherence to all relevant rules. The Vivado tools include a Pin
Planning Project environment that allows you to import I/O definitions using a CSV or XDC
format file. You can also create a dummy RTL with just the port directions defined. Availability of
port direction makes SSN analysis more accurate as input and output signals have different
contributions to SSN.

I/O ports can also be created and configured interactively. Basic I/O bank DRC rules are
provided.

See the 7 Series FPGAs PCB Design Guide (UG483), UltraScale Architecture PCB Design User Guide
(UG583), or Zyng-7000 SoC PCB Design Guide (UG933) to ensure proper I/O configuration for
your device. For more information, see this link in the Vivado Design Suite User Guide: I/O and
Clock Planning (UG899).

Netlist-Based I/0 Planning

The recommended time in the design cycle to assign 1/Os and clock logic constraints is after the
design has been synthesized. The clock logic paths are established in the netlist for constraint
assignment purposes. The I/O and clock logic DRCs are also more comprehensive.

See the 7 Series FPGAs PCB Design Guide (UG483), UltraScale Architecture PCB Design User Guide
(UG583), or Zyng-7000 SoC PCB Design Guide (UG933) to ensure proper I/O configuration for
your device. For more information, see this link in the Vivado Design Suite User Guide: /0O and
Clock Planning (UG899).

Defining Alternate Devices

It is often difficult to predict the final device size for any given design during initial planning. Logic
can be added or removed during the course of the design cycle, which can result in the need to
change the device size.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 21

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug483_7Series_PCB.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug933-Zynq-7000-PCB.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf;a=xPreRTLIOPlanning
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug483_7Series_PCB.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug933-Zynq-7000-PCB.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf;a=xNetlistIOPlanning
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=21

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

The Vivado tools enable you to define alternate devices to ensure that the I/O pin configuration
defined is compatible across all selected devices, as long as the package is the same.

i} IMPORTANT! The device must be in the same package.

To migrate your design with reduced risk, carefully plan the following at the beginning of the
design process: device selection, pinout selection, and design criteria. Take the following into
account when migrating to a larger or smaller device in the same package: pinout, clocking, and
resource management. For more information, see this link in the Vivado Design Suite User Guide:
I/0 and Clock Planning (UG899).

Pin Assignment

Good pinout selection leads to good design logic placement, shorter routes, reduced power
consumption, and improved performance. Good pinout selection is especially important for large
devices, because a pinout that is spread out can cause related signals to span longer distances.
For more information, see this link in the Vivado Design Suite User Guide: I/O and Clock Planning
(UG899).

Using Xilinx Tools in Pinout Selection

Xilinx tools assist in interactive design planning and pin selection. These tools are only as
effective as the information you provide them. Tools such as the Vivado design analysis tool can
assist pinout efforts. These tools can graphically display the 1/O placement, show relationships
among clocks and 1/O components, and provide DRCs to analyze pin selection.

If a design version is available, a quick top-level floorplan can be created to analyze the data flow
through the device. For more information, see the Vivado Design Suite User Guide: Design Analysis
and Closure Techniques (UG906).

Required Information

For the tools to work effectively, you must provide as much information about the I/O
characteristics and topologies as possible. You must specify the electrical characteristics,
including the 1/0 standard, drive, slew, and direction of the I/O.

You must also take into account all other relevant information, including clock topology and
timing constraints. Clocking choices in particular can have a significant influence on pinout
selection, and vice versa.

For IP that have 1/0 requirements, such as transceivers, PCle, and memory interfaces, you must
configure the IP prior to completing I/O pin assignment. For more information on specifying the
electrical characteristics for an 1/0O, see this link in the Vivado Design Suite User Guide: /0 and
Clock Planning (UG899).

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 22

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf;a=xDefiningAlternateCompatibleParts
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf;a=xIOPinPlanning
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf;a=xDefiningAndConfiguringIOPorts
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=22

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

@

Related Information
Clocking Guidelines

Pinout Selection

Xilinx recommends careful pinout selection for some specific signals as discussed below.

Interface Data, Address, and Control Pins

Group the same interface data, address, and control pins into the same bank. If you cannot group
these components into the same bank, group them into adjacent banks.

Note: For SSI technology devices, adjacent banks must also be located within the same super logic region

(SLR).

Interface Control Signals

Place the following interface control signals in the middle of the data buses they control
(clocking, enables, resets, and strobes).

Very High Fanout, Design-Wide Control Signals
Place very high fanout, design-wide control signals towards the center of the device.

For SSI technology devices, place the signals in the SLR located in the middle of the SLR
components they drive.

Configuration Pins

To design an efficient system, you must choose the device configuration mode that best matches
the system requirements. Factors to consider include:

e Using dedicated vs. dual purpose configuration pins.

Each configuration mode dedicates certain device pins and can temporarily use other multi-
function pins during configuration only. These multi-function pins are then released for
general use when configuration is completed.

¢ Using configuration mode to place voltage restrictions on some device I/0O banks.
e Choosing suitable terminations for different configuration pins.

e Using the recommended values of pull-up or pull-down resistors for configuration pins.

RECOMMENDED: Even though configuration clocks are slow speed, perform signal integrity analysis on the
board to ensure clean signals.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 23

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=23

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

There are several configuration options. Although the options are flexible, there is often an
optimal solution for each system. Consider the following when choosing the best configuration
option:

e Setup

e Speed

e Cost

e Complexity

For more information on device configuration options, see Vivado Design Suite User Guide:
Programming and Debugging (UG908).

Related Information
Configuration

Memory Interfaces

Additional 1/O pin planning steps are required when using Xilinx Memory IP. After the IP is
customized, you then assign the top-level IP ports to physical package pins in either the
elaborated or synthesized design in the Vivado IDE. All of the ports associated with each
Memory IP are grouped together into an I/O Port Interface for easier identification and
assignment. A Memory Bank/Byte Planner is provided to assist you with assigning Memory 1/0O
pin groups to byte lanes on the physical device pins. For more information, see this link in the
Vivado Design Suite User Guide: /0 and Clock Planning (UG899).

Take care when assigning memory interfaces and try to limit congestion as much as possible,
especially with devices that have a center I/O column. Bunching memory interfaces together can
create routing bottlenecks across the device. The Zyng-7000 SoC and 7 series Devices Memory
Interface Solutions (UG586) and the UltraScale Architecture-Based FPGAs Memory IP LogiCORE IP
Product Guide (PG150) contain design and pinout guidelines. Be sure that you follow the trace
length match recommendations in these guides, verify that the correct termination is used, and
validate the pinout in by running the DRCs after memory IP 1/O assignment.

Gigabit Transceivers (GTs)

Gigabit transceivers (GTs) have specific pinout requirements, and you must consider the
following:

e Sharing of reference clocks
e Sharing of PLLs within a quad
e Placement of hard blocks, such as PCle, and their proximity to transceivers

¢ In SSI technology devices, crossing of SLR boundaries

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 24

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf;a=xIOPlanningForUltraScaleMemoryIP
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mig_7series;v=v4_2;d=ug586_7Series_MIS.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ultrascale_memory_ip;v=latest;d=pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=24

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

Q

Xilinx recommends that you use the GT wizard to generate the core. Alternatively, you can use
the Xilinx IP core for the protocol. For pinout recommendations, see the related product guide.

For clock resource balancing, the Vivado placer attempts to constrain loads clocked by GT output
clocks (TXOUTCLK or RXOUTCLK) next to the GTs sourcing the clocks. For SSI technology
devices, if the GTs are located in the clock regions adjacent to another SLR, the routing resources
required for signals entering or exiting SLLs have to compete with the routing resources required
by the GT output clock loads. Therefore, GTs located in clock regions next to SLR crossings might
reduce the available routing connections to and from the SLL crossings available in those clock
regions.

High Speed 170

HP (high-performance) and HR (high-range) banks have difference in the speed with which they
can transmit and receive signals. Depending upon the I/O speed you need, choose between HP
or HR banks.

Internal VREF and DCI Cascade Constraints

Based on the settings for DCI Cascade and Internal VREF, you can free up pins to be used for
regular I/Os. These settings also ensure that related DRC checks are run to validate the legality
of the constraints. For more information, see either the 7 Series FPGAs SelectlO Resources User
Guide (UG471) or the UltraScale Architecture SelectlO Resources User Guide (UG571), depending on
your device.

Interface Bandwidth Validation

Create small connectivity designs to validate each interface on the device. These small designs
exercise only the specific hardware interface, which enables the following:

e Full DRC checks on pinout, clocking, and timing
e Hardware test design when the board is returned

e Rapid implementation through the Vivado tools, providing the fastest way to debug the
interface

There are multiple options to assist in generating test data for these interfaces. For some of the
interface IP cores, the Vivado tools can provide the test designs:

e |BERT for SerDes

e Example design within IP cores

TIP: If a test design does not exist, consider using AXI traffic generators.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 25

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug471_7Series_SelectIO.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug571-ultrascale-selectio.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=25

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

You might need to create a separate design for a system-level test in a production environment.
Usually, this is a single design that includes tested interfaces and optionally includes processors.
You can construct this design using the small connectivity designs to take advantage of design
reuse. Although this design is not required early in the flow, it can enable better DRC checks and
early software development, and you can quickly create it using the Vivado IP integrator.

Designing with SSI Devices

SSI Pinout Considerations

When planning pinouts for components that are located in a particular SLR, place the pins into
the same SLR. For example, when using the device DNA information as a part of an external
interface, place the pins for that interface in the master SLR in which the DNA_PORT exists.
Additional considerations include the following:

e Group all pins of a particular interface into the same SLR.
e For signals driving components in multiple SLRs, place those signals in the middle SLR.
e Balance CCIO or CMT components across SLRs.

e Reduce SLR crossings.

Super Logic Region (SLR)

A super logic region (SLR) is a single device die slice contained in an SSI technology device. Each
SLR contains a subset of device resources, such as CLBs, block RAMs, DSP tiles, and GTs, with a
similar structure to non-SSI devices.

Multiple SLR components are stacked vertically and connected through an interposer to create
an SSI technology device. The bottom SLR is SLRO, and subsequent SLR components are named
incrementally as they ascend vertically. For example, the XC7V2000T device includes four SLR
components. The bottom SLR is SLRO, the SLR directly above SLRO is SLR1, the SLR directly
above SLR1 is SLR2, and the top SLR is SLR3.

Note: The Xilinx tools clearly identify SLR components in the graphical user interface (GUI) and in reports.

SLR Nomenclature

Understanding SLR nomenclature for your target device is important in:

¢ Pin selection

e Floorplanning

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 26

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=26

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

Q

e Analyzing timing and other reports

¢ Identifying where logic exists and where that logic is sourced or destined

You can use the Vivado Tcl command get _s1rs to get specific information about SLRs for a
particular device. For example, use the following commands:

o llength [get_slrs] toobtainthe number of SLRs in the device

o get_slrs -of_objects [get_cells my_cell] togetthe SLRin whichmy_cel1is
placed

Master Super Logic Region

Every SSI technology device has a single master SLR. The master SLR contains the primary
configuration logic that initiates configuration of the device and all other SLR components. The
master SLR contains the circuitry that is used for configuration, DNA_PORT, and EFUSE_USER.
When using these components, the place and route tools can assign associated pins and logic to
the appropriate SLR. In general, no additional intervention is required.

TIP: To query which SLR is the master SLR in the Vivado Design Suite, you can enter the get_slrs -filter
I5_MASTER Tcl command.

Silicon Interposer

The silicon interposer is a passive layer in the SSI technology device, which routes the following
between SLR components:

e Configuration
e Global clocking

e General interconnect

Super Long Line (SLL) Routes

Super Long Line (SLL) routes connect signals from one SLR to another inside the device.

TIP: To determine the number of available SLLs between SLRs, use SLR properties. For example:

get_property NUM_TOP_SLLS [get_slrs SLRO]
get_property NUM_BOT_SLLS [get_slrs SLR1]

Propagation Limitations

TIP: For high-speed propagation across SLRs, be sure to register signals that cross SLR boundaries.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 27

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=27

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

SLL signals are the only data connections between SLR components.
The following do not propagate across SLR components:

e Carry chains
e DSP cascades
¢ Block RAM address cascades

e Other dedicated connections, such as DCI cascades and block RAM cascades

The tools normally take this limit on propagation into account. To ensure that designs route
properly and meet your design goals, you must also take this limit into account when you:

e Build a very long DSP cascade and manually place such logic near SLR boundaries

e Specify a pinout for the design

SLR Utilization Considerations

The Vivado implementation tools use a special algorithm to partition logic into multiple SLRs. For
challenging designs, you can improve timing closure for designs that target SSI technology
devices using the following guidelines.

To improve timing closure and compile times, you can use Pblocks to assign logic to each SLR and
validate that individual SLRs do not have excessive utilization across all fabric resource types. For
example, a design with block RAM utilization of 70% might cause issues with timing closure if the
block RAM resources are not balanced across SLRs and one SLR is using over 85% block RAM.

O TIP: You can define SLR Pblocks by specifying a complete SLR (e.g., resize_pblock pblock_SLRO -add
SLE0). To make the SLR Pblocks soft, you can set the IS_SOFT property to TRUE. Soft Pblocks are treated as
hard Pblocks during the placer floorplanning phase (also known as SLR partitioning) and during the first half of
the global placement phase. Soft Pblocks are ignored during the physical synthesis in placer phase through the
end of the implementation flow. Soft Pblocks allow a limited amount of logic to move across SLR boundaries to
improve timing QoR.

The following example utilization report for a vu160 shows that the overall block RAM utilization
is 56% with 59% in SLRO, 40% in SLR1, and 58% in SLR2. The block RAM utilization is evenly
distributed across SLRs with reasonable utilization in each SLR, which allows the Vivado
implementation commands more flexibility to meet timing.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 28

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=28

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

Figure 7: Block RAM Section in Utilization Report

3. BLOCEKRAM

e tm—m e Fmmm o o +
| Site Type | Used | Fixed | Awvailable | Util% |
e tm—m e Fmmm o

| Block RAM Tile | 1843 | 0| 3276
| RAMB3&/FIFO* | 1820 | 2 | 3276 | 55.56 |
| FIFO36EZ2 only | 88 | | | |
| REMB36E2 only | 1732 | | [[
| RAME1S | 46 | g8 | 6552 | 0.70 |
| RAMB1SEZ only | 46 | | | |
e tm—m e Fmmm o o +

Figure 8: SLR Section in Utilization Report

14. SLR CLBE Logic and Dedicated Block Utilization

e e L Fo—m— - Fommm Fom - Fommm - Fo—m— - Fommm +
| Site Type | SLRO | SLR1 | SLR2 | SLRO % | SLR1 % | SLrRZ % |
e e L Fo—m— - Fommm Fom - Fommm - Fo—m— - Fommm +
CLB	22361	40858	42493	€1.70	91.28	94.%4
CLBL	17061	31%36	33311	€0.76	90.%9	94.%0
CLBM	5300	8922	9182	6€4.95	92.36	95.05
CLB LUTs	104506	196677	236523	36.05	54.5%3	6€6.05
LUT as Legic	104482	194364	235584	36.04	54.28	&5.79
using 05 output only	268	913	789	0.09	0.25	0.22
using 0& output only	101383	180318	219746	34.97	50.3¢	€1.37
using 05 and 06	2831	13133	15049	0.98	3.67	4.20
LUT as Memory	24	2313	939	0.04	2.59	1.22
LUT as Distributed RAM	24	1316	136	0.04	1.70	0.18
using 05 output only	o	0	0	0.00	0.00	0.00
using 06 output only	g	48	cd	0.01	0.06	0.08
using 05 and 06	1l	1268	T2	0.02	1.64	0.09
LUT as Shift Register	0	$97	803	0.00	1.29	1.04
CLE Registers	191575	330568	473777	33.04	4e6.le	e6.l1l6
CRARRYS	901	1715	3816	2.49	3.83	8.53
F7 Muxes	1725	10631	4762	1.19	5.54	2.66
F8 Muxes	2le	2891	366	0.30	3.23	0.41
FS Muxes	0	0	0	0. 00 0. 00 0. 00		
Block REM Tile	589	512	732 I 59.42 " 40.63 " 58.10 I			
RAME36/FIFO	598	501	721	59.33	3%.7e	57.22
RAME36EZ only	558	472	662	59.33	37.46	52.54
RAMB18	2	22	22	0.10	0.87	0.87
REME18EZ only	2	22	22	0.10	0.87	0.87
URAM	0	0	0	0.00	0.00	0.00
DSPs	1] 2 1z	0.21	0.33	2.00		
PLL	0	0	0	0.00	0.00	0.00
MMCM	0	0	0	0.00	0.00	0.00
Unigque Control Sets	1125	3482	8567	1.55	3.89	9.57
e e L Fo—m— - Fommm Fom - Fommm - Fo—m— - Fommm +

Xilinx recommends assigning block RAM and DSP groups to SLR Pblocks to minimize SLR
crossings of shared signals. For example, an address bus that fans out to a group of block RAMs
that are spread out over multiple SLRs can make timing closure more difficult to achieve, because
the SLR crossing incurs additional delay for the timing critical signals.

Device resource location or user 1/0O selection anchors IP to SLRs, for example, GT, ILKN, PCle,
and CMAC dedicated block or memory interface controllers. Xilinx recommends the following:

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide l—./—l 29

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=29

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

e Pay special attention to dedicated block location and pinout selection to avoid data flow
crossing SLR boundaries multiple times.

o Keep tightly interconnected modules and IPs within the same SLR. If that is not possible, you
can add pipeline registers to allow the placer more flexibility to find a good solution despite
the SLR crossing between logic groups.

o Keep critical logic within the same SLR. By ensuring that main modules are properly pipelined
at their interfaces, the placer is more likely to find SLR partitions with flip-flop to flip-flop SLR
crossings.

In the following figure, a memory interface that is constrained to SLRO needs to drive user logic
in SLR1. An AXI4-Lite slave interface connects to the memory IP backend, and the well-defined
boundary between the memory IP and the AXI4-Lite slave interface provides a good transition
from SLRO to SLR1.

Figure 9: Memory Interface in SLRO Driving User Logic in SLR1

AXI4_slave

[

SLR1

y
MIG_DDR3

SLRO

X15238-110515

SLR Crossing for Wide Buses

When data flow requirements require that wide buses cross SLRs, use pipelining strategies to
improve timing closure and alleviate routing congestion of long resources. For wide buses
operating above 250 MHz, Xilinx recommends using at least three pipeline stages to cross an
SLR: one at the top, one at the bottom, and one in the middle of the SLR. Additional pipeline
stages might be required for very high performance buses or when traversing horizontal as well
as vertical distances.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide l—./—l 30

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=30

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

The following figure illustrates a worst case crossing for a vu190-2 device. This example starts at
an Interlaken dedicated block in the bottom left of SLRO to a packet monitor block assigned to
the top right of SLR2. Without pipeline registers for the data bus to and from the packet monitor,
the design misses the 300 MHz timing requirement by a wide margin.

Figure 10: Data Path Crossing SLR without Pipeline Flip-Flop

..........

X15240-110415

However, adding seven pipeline stages to aid in the traversal from SLRO to SLR2 allows the
design to meet timing. It also reduces the use of vertical and horizontal long routing resources, as
shown in the following figure.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 31

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=31

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

Figure 11: Data Path Crossing SLR with Pipeline Flip-Flop Added

X15239-110415

O TIP: Use the AXI Register Slice IP or your custom auto-pipelining IP to close timing on wide buses across SLRs.

Related Information
Auto-Pipelining Considerations

Designing with HBM Devices

Virtex® UltraScale+™ HBM devices incorporate 4 GB high-bandwidth memory (HBM) stacks
adjacent to the device die. Using SSI technology, the device communicates to the HBM stacks
through memory controllers that connect through the silicon interposer at the bottom of the
device. Each Virtex UltraScale+ HBM device contains one or two 4 GB HBM stacks, resulting in
up to 8 GB of HBM per device. The device includes 32 HBM AXIl interfaces used to communicate
with the HBM. The flexible addressing feature that is provided by a built-in switch allows for any
of the 32 HBM AXI interface to access any memory address on either one or both of the HBM
stacks. This flexible connection between the device and the HBM stacks is helpful for
floorplanning and timing closure.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 32

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=32

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

The following figure shows the Virtex UltraScale+ HBM vu37p device adjacent to a Virtex
UltraScale+ vu13p device. In the vu37p device, the bottom two SLRs of the vu13p device are
replaced by the HBM stacks (SLRO in the vu13p device) and an SLR that contains the 32 HBM
AXl interfaces (SLR1 in the vu13p device). The top two SLRs of the vu13p and vu37p device are
identical.

Figure 12: Device View of the vu13p and vu37p

vu37p

X21195-051419

In the vu37p device, the SLRO contains 4 PCIE4C sites, 2 ILKNE4 sites, and the 32 HBM AXI
interfaces. The 4 PCIE4C sites in the Virtex UltraScale+ HBM SLRO are unique because they
allow for the Cache Coherent Interconnect for Accelerators (CCIX) protocol using PCle Gen3 x
16 when VCClNT isat 0.72V.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 33

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=33

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

Figure 13: SLRO of a Virtex UltraScale+ HBM vu37p Device

X1Y1

@ rciEsc

0 HBM AXI

X21207-072018

Placement Considerations When Using HBM Devices

Pipelining Considerations for Crossing SLRs

The pipeline considerations for crossing SLRs in Virtex UltraScale+ HBM devices are the same as
for other UltraScale and Virtex UltraScale+ SSI technology devices.

Paths from fabric logic in SLR2 to the HBM AXI Interfaces in SLRO often require five or more
pipeline stages to meet timing. Thoughtful design planning of Virtex UltraScale+ HBM devices
can reduce the need for additional pipeline stages and reduce routing congestion. The following
figure shows an example of SLR crossings to the HBM AXI Interfaces from SLR2.

O RECOMMENDED: Xilinx recommends keeping the paths from SLR2 and SLR1 vertically aligned to their
respective HBM AXI interfaces to avoid crossing the device diagonally.

O TIP: Use auto-pipelining (e.g., AXI Register Slice IP) to ensure timing closure between the HBM interfaces and
any SLR at 450 MHz.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 34

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=34

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

Figure 14: HBM Sub-Optimal Design Planning (left) versus Optimal Design Planning
(right)

X21196-071618

Related Information
Auto-Pipelining Considerations
SLR Crossing for Wide Buses

Resource Planning within SLRO

Proper management of the HBM AXI Interfaces and other logic within the SLRO can provide
optimal quality of results (QoR) and minimize routing congestion. Following are some common
design planning considerations for the SLRO in HBM devices:

e For designs that heavily utilize the HBM AXIl interfaces, budget for lower overall fabric
utilization of non-HBM logic in SLRO to better accommodate the resources required for the
HBM AXI interfaces.

e Using MIG IP in the SLRO might result in timing closure challenges for HBM AXI interfaces
located near the I/O columns of the device. When using MIG IP, consider using the 1/0O
columns located in SLR2 or SLR1.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 35

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=35

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

e Be aware of address ranges and the physical location of the HBM AXI interfaces that can
impact the latency and bandwidth of the design. To optimize the performance of the HBM,
utilize the physical HBM AXI interfaces on the same device side as the addressed HBM stack.

PCIE4C to HBM AXI paths within SLRO

To achieve optimal timing QoR and minimize routing congestion when designing with HBM and
PCIE4C, Xilinx recommends using the PCIE4C sites that are farthest away from the 32 HBM AXI
interface in SLRO. In the following figure, these sites are PCIE4CE4_X0Y1 and PCIE4CE4_X1Y1

indicated by the green arrows.

Figure 15: Recommended PCIE4C Sites in SLRO of a Virtex UltraScale+ HBM vu37p
Device

x2Y1

Device Power Aspects and System
Dependencies

When planning the PCB, you must take power into consideration:

e The device and the user design create system power supply and heat dissipation
requirements.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 36

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=36

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

e Power supplies must be able to meet maximum power requirements and the device must
remain within the recommended voltage and temperature operating conditions during
operation. Power estimation and thermal modeling are required to ensure that the device
stays within these limits.

o Plan for the consolidation of power rails and their impact on power domain switching.

e Although consolidation is possible, Xilinx recommends using full power management to give
maximum flexibility where possible.

For these reasons, you must understand the power and cooling requirements of the device.
These must be designed on the board.

@ POWER TIP: See the Power page on the Xilinx website for a list of Xilinx partners and Xilinx-approved power
delivery reference designs.

Power Supply Paths on Devices

Multiple power supplies are required to power a device. Some of this power must be provided in
a specific sequence. Consider the use of power monitoring or sequencing circuitry to provide the
correct power-on sequence to the device and GTs as well as any additional active components on
the board. More complex environments might benefit from the use of a microcontroller or system
and power management bus such as SMBUS or PMBUS to control the power and reset process.
Specific details regarding on/off sequencing can be found in the device data sheet.

For more information on supply consolidation and topologies, see the 7 Series FPGAs PCB Design
Guide (UG483), UltraScale Architecture PCB Design User Guide (UG583), or Zyng-7000 SoC PCB
Design Guide (UG933) depending on your device.

The separate sources provide the required power for the different device resources. This allows
different resources to work at different voltage levels for increased performance or signal
strength, while preserving a high immunity to noise and parasitic effects.

Power Modes

A device goes through several power phases from power up to power down with varying power
requirements.

Power-On

Power-on power is the transient spike current that occurs when power is first applied to the
device. This current varies for each voltage supply and depends on the device construction, the
ability of the power supply source to ramp up to the nominal voltage, and the device operating
conditions, such as temperature and sequencing between the different supplies.

Spike currents are not a concern in modern device architectures when the proper power-on
sequencing guidelines are followed.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 37

https://www.xilinx.com/cgi-bin/docs/ndoc?t=power+central
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug483_7Series_PCB.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug933-Zynq-7000-PCB.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=37

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

Startup Power

Startup power is the power required during the initial bring-up and configuration of the device.
This power generally occurs over a very short period of time and thus is not a concern for
thermal dissipation. However, current requirements must still be met. In most cases, the active
current of an operating design will be higher and thus no changes are necessary. However, for
lower-power designs where active current can be low, a higher current requirement during this
time may be necessary. XPE can be used to understand this requirement. When Process is set to
Maximum, the current requirement for each voltage rail will be specified to either the operating
current or the startup current, whichever is higher. XPE will display the current value in blue if
the startup current is the higher value.

Standby Power

Standby power (also called design static power) is the power supplied when the device is
configured with your design and no activity is applied externally or generated internally.

Standby power represents the minimum continuous power that the supplies must provide while
the design operates.

Active Power

Active power (also called design dynamic power) is the power required while the device is running
your application. Active power includes standby power (all static power), plus power generated
from the design activity (design dynamic power). Active power is instantaneous and varies at
each clock cycle depending on the input data pattern and the design internal activity.

Environmental Factors Impacting Power

In addition to the design itself, environmental factors affect power. These factors influence the
voltage and the junction temperature of the device, which impacts the power dissipation. For
details, see this link in the Vivado Design Suite User Guide: Power Analysis and Optimization
(UG907).

Power Rail Consolidation Impacting Power

To take advantage of the power management switching of power domains, your design must
keep some discrete power rails. This allows individual rails to be powered off with the power
domain switching logic. For more information, see this link in the UltraScale Architecture PCB
Design User Guide (UG583).

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 38

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug907-vivado-power-analysis-optimization.pdf;a=xSystemLevelPowerReduction
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf;a=xPCBPowerDistributionSystemAndMigrationInUltraScalePlusFPGAs
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=38

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

Power Models Accuracy

The accuracy of the characterization data embedded in the tools evolves over time to reflect the
device availability or manufacturing process maturity. For details, see this link in the Vivado
Design Suite User Guide: Power Analysis and Optimization (UG907).

@ POWER TIP: Power estimation is only as accurate as the data entered. Xilinx recommends conducting a
thorough estimation and using the results of this estimation as well as the thermal evaluation as a design
constraint.

Device Power and the Overall System Design Process

From project conception to completion, various aspects of the design process affect power. For
details, see this link in the Vivado Design Suite User Guide: Power Analysis and Optimization
(UG207).

@ POWER TIP: During the design process, you can compare the total power of the design to the power budget
usingthe set_operating_conditions -design_power_budget <Power in Watts>Tcl
command. If the power budget is exceeded, early intervention is the easiest way to correct design power.

Worst Case Power Analysis Using Xilinx Power
Estimator (XPE)

Xilinx recommends designing the board for worst-case power. For details, see this link in the
Vivado Design Suite User Guide: Power Analysis and Optimization (UG907).

Configuration

Configuration is the process of loading application-specific data into the internal memory of the
device. Because Xilinx device configuration data is stored in CMOS configuration latches (CCLs),
the configuration data is volatile and must be reloaded each time the device is powered up.

Xilinx devices can load themselves through configuration pins from an external, non-volatile
memory device. Devices can also be configured by an external smart source, such as the
following:

e Microprocessor
e Microcontroller
e DSP processor

e Personal computer (PC)

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 39

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug907-vivado-power-analysis-optimization.pdf;a=xDeviceCharacterization
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug907-vivado-power-analysis-optimization.pdf;a=xFPGAPowerAndTheOverallDesignProcess
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug907-vivado-power-analysis-optimization.pdf;a=xEstimatingPowerInTheXilinxPowerEstimator
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=39

iv Xl I_l NX Chapter 2: Board and Device Planning
A ®

e Board tester

When board planning, consider configuration aspects up front, which makes it easier to configure
as well as debug. Each device family has a Configuration User Guide that is the primary resource
for detailed information about each of the supported configuration modes and their trade-offs on
pin count, performance, and cost.

Related Information
Other Xilinx Documentation

Board Design Tips

When designing a board, it is important to consider which interfaces and pins will assist with
debug capability beyond configuration. For example, Xilinx recommends that you ensure the
JTAG interface is accessible even when the interface is not the primary configuration mode. The
JTAG interface allows you to check the device ID and device DNA information, and you can use
the interface to enable indirect flash programming solutions during prototyping.

In addition, signals such as the INIT_B and DONE are critical for device configuration debug. The
INIT_B signal has multiple functions. It indicates completion of initialization at power-up and can
indicate when a CRC error is encountered. Xilinx recommends that you connect the INIT_B and
DONE signals to light-emitting diodes (LEDs) using LED drivers and pull-ups.

For recommended pull-up values, see the configuration user guide for your device:

e 7 Series FPGAs Configuration User Guide (UG470)

e UltraScale Architecture Configuration User Guide (UG570)

To identify and check recommended board-level pin connections, see the schematic checklists:

e 7 Series Schematic Review Recommendations (XMP277
e Kintex UltraScale and Virtex UltraScale FPGAs Schematic Review Checklist (XTP344)
e UltraScale+ FPGA and ZynqUItraScale+ Devices Schematic Review Checklist (XTP427)

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 40

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com/member/forms/download/design-license.html?cid=198776&filename=xmp277-7series-schematic-review-recommendations.zip
https://www.xilinx.com/member/forms/download/design-license.html?cid=359174&filename=xtp344-ultrascale-schematic-review-checklist.zip
https://www.xilinx.com/member/forms/download/design-license.html?cid=423500&filename=xtp427-ultrascale-plus-schematic-review-checklist.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=40

& XILINX

Chapter 3

Design Creation

After planning your device 1/0, planning how to lay out your PCB, and deciding on your use
model for the Vivado® Design Suite, you can begin creating your design. Design creation
includes:

¢ Planning the hierarchy of your design
¢ |dentifying the IP cores to use and customize in your design

e Creating the custom RTL for interconnect logic and functionality for which a suitable IP is not
available

¢ Creating timing, power, and physical constraints

e Specifying additional constraints, attributes, and other elements used during synthesis and
implementation

When creating your design, the main points to consider include:

e Achieving the desired functionality
e Operating at the desired frequency
e Operating with the desired degree of reliability

e Fitting within the silicon resource and power budget

Decisions made at this stage affect the end product. A wrong decision at this point can result in
problems at a later stage, causing issues throughout the entire design cycle. Spending time early
in the process to carefully plan your design helps to ensure that you meet your design goals and
minimize debug time in lab.

Design Creation with RTL

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 41

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=41

iv Xl I_l NX Chapter 3: Design Creation
A ®

Defining a Good Design Hierarchy

The first step in design creation is to decide how to partition the design logically. The main factor
when considering hierarchy is to partition a part of the design that contains a specific function.
This allows a specific designer to design a piece of IP in isolation as well as isolating a piece of
code for reuse.

However, defining a hierarchy based on functionality only does not take into account how to
optimize for timing closure, runtime, and debugging. The following additional considerations
made during hierarchy planning also help in timing closure.

Add I/0 Components Near the Top Level

Where possible, add 1/0 components near the top level for design readability. When you infer a
component, you provide a description of the function you want to accomplish. The synthesis tool
then interprets the HDL code to determine which hardware components to use to perform the
function. Components that can be inferred are simple single-ended 1/0 (IBUF, OBUF, OBUFT and
IOBUF) and single data rate registers in the 1/0.

When using the tool to infer IOBUF or OBUFT components, make sure that the enable logic and
the input/output logic are all in the same hierarchy. If the logic is in different hierarchies and
there are KEEP_HIERARCHY or DONT_TOUCH attributes between the hierarchies, the tool will
not be able to infer these buffers.

I/O components that need to be instantiated, such as differential 1/0 (IBUFDS, OBUFDS) and
double data-rate registers (IDDR, ODDR, ISERDES, OSERDES), should also be instantiated near
the top level. When you instantiate a component, you add an instance of that component to your
HDL file. Instantiation gives you full control over how the component is used. Therefore, you
know exactly how the logic will be used.

Insert Clocking Elements Near the Top Level

Inserting the clocking elements towards the top level allows for easier clock sharing between
modules. This sharing may result in fewer clocking resources needed, which helps in resource
utilization, improved performance, and power.

Aside from the module the clocks are created in, clock paths should only drive down into
modules. Any paths that go through (down from top and then back to top) can create a delta
cycle problem in VHDL simulation that is difficult and time consuming to debug.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 42

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=42

iv Xl I_l NX Chapter 3: Design Creation
A ®

Register Data Paths at Logical Boundaries

Register the outputs of hierarchical boundaries to contain critical paths within a single module or
boundary. Consider registering the inputs also at the hierarchical boundaries. It is always easier
to analyze and repair timing paths which lie within a module, rather than a path spanning
multiple modules. Any paths that are not registered at hierarchy boundaries should be
synthesized with hierarchy rebuilt or flat to allow cross hierarchy optimization. Registering the
datapaths at logical boundaries helps to retain traceability (for debug) through the design process
because cross hierarchical optimizations are kept to a minimum and logic does not move across
modules.

Address Floorplanning Considerations

A floorplan ensures that cells belonging to a specific portion in the design netlist are placed at
particular locations on the device. You can use manual floorplanning to accomplish the following:

e Partition logic to a particular SLR when using SSI technology devices.

e Close timing on a design when timing is not met using standard flows.

If the cells are not contained within a level of hierarchy, all objects must be included individually
in the floorplan constraint. If synthesis changes the names of these objects, you must update the
constraints. A good floorplan is contained at the hierarchy level, because this requires only a one
line constraint.

Floorplanning is not always required. Floorplan only when necessary.

For more information on floorplanning, see this link in the Vivado Design Suite User Guide: Design
Analysis and Closure Techniques (UG906).

O RECOMMENDED: Although the Vivado tools allow cross hierarchy floorplans, these require more
maintenance. Avoid cross hierarchy floorplans where possible.

Optimize Hierarchy for Functional and Timing Debug

As discussed earlier in this section, keeping the critical path within the same hierarchical
boundary is helpful in debugging and meeting timing requirements. Similarly, for functional
debug (and modification) purposes, signals that are related should be kept in the same hierarchy.
This allows the related signals to be probed and modified with relative ease, as signal names
optimized by synthesis are easier to trace when contained in a single level of hierarchy.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 43

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug906-vivado-design-analysis.pdf;a=xFloorplanning
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=43

iv Xl I_l NX Chapter 3: Design Creation
A ®

Apply Attributes at the Module Level

Applying attributes at the module level can keep code tidier and more scalable. Instead of having
to apply an attribute at the signal level, you can apply the attribute at the module level and have
the attribute propagated to all signals declared in the current hierarchy. Applying attributes at the
module level also allows you to override global synthesis options.

Q CAUTION! Unlike other attributes, the DONT_TOUCH attribute does not propagate from a module to all the
signals inside the module.

Optimize Hierarchy for Advanced Design Techniques

Advanced design techniques such as bottom-up synthesis, Dynamic Function eXchange (DFX),
and out-of-context design require planning at the hierarchical level. The designer must choose
the appropriate level of hierarchy for the technique being used. These techniques are not
covered in this document. For more information, see this link in the Vivado Design Suite User
Guide: Hierarchical Design (UG905).

Example of Upfront Hierarchical Planning for High Speed DSP
Designs

The following example is not applicable to all designs, but demonstrates what can be done with
hierarchy. DSP designs generally allow latency to be added to the design. This allows registers to
be added to them to be optimized for performance. In addition, registers can be used to increase
placement flexibility. This is important because at high clock frequency, signals cannot traverse
the die in one clock cycle. Adding registers can allow hard-to-reach areas to be used. The
following figure shows how effective hierarchy planning results in faster timing closure.

Figure 16: Effective Hierarchy Planning Example

placement_flexibility_wrapper_i

floorplanning_wrapper_i

DSP_i

DATALIN DATA_OUT

DSP
VALID_IN

VALID_OUT

attribute KEEP_HIERARCHY = “yes”

attribute SHREG_EXRACT = “no”
X13500

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide l_‘/_l 44

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug905-vivado-hierarchical-design.pdf;a=xDesignConsiderations
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=44

iv Xl I_l NX Chapter 3: Design Creation
A ®

There are three levels of hierarchy in this part of the design:

e DSP_1i

In the DSP_i algorithm block, both the inputs and outputs are registered. Because registers are
plentiful in a device, it is preferable to use this method to improve the timing budget.

e floorplanning_wrapper_i

In floorplanning_wrapper_i, thereis a CE signal. CE signals are typically heavily-loaded
and can present a timing challenge. They should be included in a floorplan. By creating a
floorplanning wrapper, this module can be manually floorplanned later if needed.

In addition, KEEP_HIERARCHY has been added at the module level to ensure that hierarchy is
preserved for floorplanning regardless of any other global synthesis options.

® placement_flexibility_wrapper_i

Inplacement_flexibility_wrapper_i,the DATA_IN, VALID_IN, DATA_OUT and
VALID_OUT signals are registered. Because these signals are not intended to be part of the
floorplan, they are outside floorplanning_wrapper_i. If they were in the floorplan, they
would not be able to fulfill the requirement for placement flexibility.

In addition, more registers can be added later as long as both DATA_IN + VALID_IN or
DATA_OUT and VALID_OUT are treated as pairs. If more registers are added, the synthesis
tool might infer shift register LUTs (SRLs), which will force all registers into one component
and not help placement flexibility. To prevent this, SHREG_EXTRACT has been added at the
module level and set to NO.

RTL Coding Guidelines

You can create custom RTL to implement glue logic functions as well as functions without
suitable IP. For optimal results, follow the coding guidelines in this section. For additional
guidelines, see this link in the Vivado Design Suite User Guide: Synthesis (UG901).

Using Vivado Design Suite HDL Templates

Use the Vivado Design Suite Language Templates when creating RTL or instantiating Xilinx®
primitives. The Language Templates include recommended coding constructs for proper
inference to the Xilinx device architecture. Using the Language Templates can ease the design
process and lead to improved results. To open the Language Templates from the Vivado IDE,
select the Language Templates option in the Flow Navigator, and select the desired template.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 45

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf;a=xHDLCodingTechniques
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=45

iv Xl I_l NX Chapter 3: Design Creation
A ®

Control Signals and Control Sets

A control set is the grouping of control signals (set/reset, clock enable and clock) that drives any
given SRL, LUTRAM, or register. For any unique combination of control signals, a unique control
set is formed. This is important, because registers within a 7 series slice all share common control
signals, and thus, only registers with a common control set can be packed into the same slice. For
example, if a register with a given control set has just one register as a load, the other seven
registers in the slice it occupies will be unusable.

Designs with too many unique control sets might have many wasted resources as well as fewer
options for placement, resulting in higher power and lower performance. Designs with fewer
control sets have more options and flexibility in terms of placement, generally resulting in
improved results.

In UltraScale™ devices, there is more flexibility in control set mapping within a CLB. Resets that
are undriven do not form part of the control set, because the tie off is generated locally within
the slice. However, it is good practice to limit unique control sets to give maximum flexibility in
placement of a group of logic.

Resets

Resets are one of the more common and important control signals to take into account and limit
in your design. Resets can significantly impact your design's performance, area, and power.

Inferred synchronous code might result in resources such as:

e LUTs

e Registers

e SRLs

e Block or LUT memory

o DSP48 registers

The choice and use of resets can affect the selection of these components, resulting in less
optimal resources for a given design. A misplaced reset on an array can mean the difference
between inferring one block RAM, or inferring several thousand registers.

Asynchronous resets described at the input or output of a multiplier might result in registers
placed in the slices rather than the DSP block. In such situations, additional logic resources are
used, which negatively impacts the power consumption and design performance.

When and Where to Use a Reset

Xilinx devices have a dedicated global set/reset signal (GSR). This signal sets the initial value of all
sequential cells in hardware at the end of device configuration.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 46

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=46

iv Xl I_l NX Chapter 3: Design Creation
A ®

If an initial state is not specified, sequential primitives are assigned a default value. In most cases,
the default value is zero. Exceptions are the FDSE and FDPE primitives that default to a logic
one. Every register will be at a known state at the end of configuration. Therefore, it is not
necessary to code a global reset for the sole purpose of initializing a device on power up.

Xilinx highly recommends that you take special care in deciding when the design requires a reset,
and when it does not. In many situations, resets might be required on the control path logic for
proper operation. However, resets are generally less necessary on the data path logic. Limiting
the use of resets:

e Limits the overall fanout of the reset net.
e Reduces the amount of interconnect necessary to route the reset.
¢ Simplifies the timing of the reset paths.

e Results in many cases in overall improvement in performance, area, and power.

O RECOMMENDED: Evaluate each synchronous block, and attempt to determine whether a reset is required for
proper operation. Do not code the reset by default without ascertaining its real need.

Functional simulation should easily identify whether a reset is needed or not.

For logic in which no reset is coded, there is much greater flexibility in selecting the device
resources to map the logic.

The synthesis tool can then pick the best resource for that code in order to arrive at a potentially
superior result by considering, for example:

e Requested functionality
e Performance requirements
e Available device resources

e Power

Synchronous Reset vs. Asynchronous Reset

If a reset is needed, Xilinx recommends using synchronous resets. Synchronous resets have many
advantages over asynchronous resets.

¢ Synchronous resets can directly map to more resource elements in the device architecture.

e Asynchronous resets also impact the performance of the general logic structures. Because all
Xilinx device general-purpose registers can program the set/reset as either asynchronous or
synchronous, it can be perceived that there is no penalty in using asynchronous resets. That
assumption is often wrong. If a global asynchronous reset is used, it does not increase the
control sets. However, the need to route this reset signal to all register elements increases
routing complexity.

e [f using asynchronous reset, remember to synchronize the deassertion of the asynchronous
reset.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 47

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=47

iv Xl I_l NX Chapter 3: Design Creation
A ®

¢ Synchronous resets give more flexibility for control set remapping when higher density or fine
tuned placement is needed. A synchronous reset may be remapped to the data path of the
register if an incompatible reset is found in the more optimally placed slice. This can reduce
routing resource utilization and increase placement density where needed to allow proper
fitting and improved performance.

e Asynchronous resets might require multicycle assertion to ensure a circuit is properly reset
and stable. When properly timed, synchronous resets do not have this requirement.

e Use synchronous resets because asynchronous signals, such as resets, have a greater
probability of corrupting memory contents of block RAMs, LUTRAMSs, and SRLs during reset
assertion.

e Some resources such as the DSP48 and block RAM have only synchronous resets for the
register elements within the block. When asynchronous resets are used on register elements
associated with these elements, those registers may not be inferred directly into those blocks
without impacting functionality.

Reset Coding Example One: Multiplier with Asynchronous Reset

The following example illustrates the importance of using registers with synchronous resets for
the logic targeting the dedicated DSP resources. The following figure shows a 16x16 bits DSP48-
based multiplier using pipeline registers with asynchronous reset. Synthesis must use regular
fabric registers for the input stages, as well as an external register and 32 LUT2s (red markers) to
emulate the asynchronous reset on the DSP output (DSP48 P registers are enabled but not
connected to reset). This costs an extra 65 registers and 32 LUTs, and the DSP48 ends up with
the configuration (AREG/BREG=0, MREG=0, PREG=1).

Figure 17: Multiplier with Pipeline Registers Using Asynchronous Resets

din0_dly1_reg[0] din0_dly2_reg[0]
e
clk[—> e .
—{cE 9 - Q dout0
ret [R +]
din0[15:01 > — | P A29:0) dout[0]_INST_0
FOCE B[17:0] P70l o a ol & - dout{31:0]
FOCE P "
I]
din1_dly2_reg[0] DSP48E2 ! T
—_]
din1_dlyl_reg[0] C dout[31]_INST_0_i_1 i
: don c |
—ce n —cE !
_ 1
@ o RE
din1[15:0][====== ¥ FDCE b
FDCE FDCE

By simply changing the reset definition as shown in the following figure, such that the multiplier
pipeline registers use a synchronous reset, synthesis can take advantage of the DSP48 internal
registers (AREG/BREG=1, MREG=1, PREG=1).

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 48

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=48

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 18: Changing Asynchronous Reset into Synchronous Reset on Multiplier

always @ (posedge clk or posedge rst) begin $ always @ (posedge clk) begin

if {rst) begin if (rst) begin

din0 dlyl <= 1&'h0; din0_dlyl <= 16'h0;
din0_dly2 <= 16'h0; din0_dly2 <= l&'hi:
dinl_dlvl <= 16'h0; dinl_dlyl <= l&'hi:
dinl dly2 <= 1&'h0; dinl_dly2 <= 16'h0;
dout <= 32'h0; dout <= 32'h0;

end else begin end else begin
din0_dlyl <= din0; din0 dlyl <= din0;:
din0_dly2 <= din0 dlyl; din0_dly2 <= din0_dlyl;
dinl_dlyl <= dinl;: dinl dlyl <= dinl;
dinl_dly2 <= dinl_dlvl; dinl dly2 <= dinl dlyl:
dout <= din0_dly2 * dinl_dlyz: dout <= din0_dly2 * dinl_dly2;

end end

end end

Due to saving fabric resources and taking advantage of all DSP48 internal registers, the design
performance and power efficiency are optimal.

Reset Coding Example Two: Multiplier with Synchronous Reset

To take advantage of the existing DSP primitive features, the preceding example can be rewritten
with a change from asynchronous reset to synchronous reset as follows.

Figure 19: Multiplier with Pipeline Registers (Synchronous Reset)

rst[LN /A, FO-96
L=N/A, FO=96 din0_dly2_reg[15:0
din0_dlyl_reg[15:0] 53 y2-real1>:01
~ - ST SL=N/A, FO=56] st =/, FO=1
dk [SL=N/AFO=985c Qtfstonia Foo1 SL=NJA FO=1] Q
dino[15:01[C> Ao l;\.—nm FO=96
— RTL_REG SYNC dout reg[31:0]
RTL_REG_SYNC sL-nya, Fo-os| _RST

e dout[31:0]

= - Q
SLehja FO= 1l

dout0_i
0[31:0] sL-n/A FO-1

L=N/A, FO=96
dinl_dlyl_reg[15:0]
ST

SL=N/A FO-110[15:0
SL=N/A, FO=111[15:0]

L—_th. FO=596
dinl_dly2_reg[15:0] RTL_REG_SYNC
T o

SL=N/A, FO=96

QHSLNA FO-1 SL=NJA, FO=56|

) S o1 st npa ro-1
din1[15:01]>> L D] T -

RTL_MULT

RTL_REG_SYNC
B B RTL_REG_SYNC

In this circuit, the DSP48 primitive is inferred with all pipeline registers packed within the DSP
primitive (AREG/BREG=1, MREG=1, PREG=1).

The implementation of the second coding example has the following advantages over the first
coding example:

e Optimal resource usage
e Better performance and lower power

e Lower number of endpoints

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 49

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=49

iv Xl I_l NX Chapter 3: Design Creation
A ®

Issues When Trying to Eliminate Reset in HDL Code

When optimizing the code to eliminate reset, commenting out the conditions within the reset
declaration does not create the desired structures and instead creates issues. For example, the
following figure shows three pipeline stages with asynchronous reset used for each. If you
attempt to eliminate the reset condition for two of the pipeline stages by commenting out the
code with the reset condition, the asynchronous reset becomes enabled (inverted logic of rst).

Figure 20: Commenting Out Code with Reset Conditions

always@(posedge clk or posedge rst
begin

if(rst)
begin
//din_dlyl <= 16'b0; D Q D Q D Q
//din_dly2 <= 16'b0;
dout <= 16'hb0; CE O CE CLR
end clk clk clk
else
begin
din dlyl == din;
din_dly2 == din_dlyl; rst
dout <= din_dly2;

end

X17086-052016

The optimal way to remove the resets is to create separate sequential logic procedures with one
for reset conditions and the other for non-reset conditions, as shown in the following figure.

Figure 21: Separate Procedural Statements for Registers With and Without Reset

always@(posedge clk)

begin
din_dlyl == din;
din_dly2 == din_dlyl;
end

always@(posedge clk or posedge rst)

begin
if(rst)
dout == 16'dO;
else
dout == din_dly2;
end
O TIP: When using a reset, make sure that all registers in the procedural statement are reset.

Clock Enables

When used properly, clock enables can significantly reduce design power with little impact on
area or performance. However, when clock enables are used improperly, they can lead to:

e Increased resource utilization

e Decreased placement density

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 50

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=50

iv Xl I_l NX Chapter 3: Design Creation
A ®

e Increased power

e Reduced performance

In most cases, low fanout clock enables are the main contributor to the high number of control
sets.

Creating Clock Enables

Clock enables are created when an incomplete conditional statement is coded into a
synchronous block. A clock enable is inferred to retain the last value when the prior conditions
are not met. When this is the desired functionality, it is valid to code in this manner. However, in
some cases when the prior conditional values are not met, the output is a don't care. In that case,
Xilinx recommends closing off the conditional (that is, use an e1se clause), with a defined
constant (that is, assign the signal to a one or a zero).

In most implementations, this does not result in added logic, and avoids the need for a clock
enable. The exception to this rule is in the case of a large bus when inferring a clock enable in
which the value is held can help in power reduction. The basic premise is that when small
numbers of registers are inferred, a clock enable can be detrimental because it increases control
set count. However, in larger groups, it can become more beneficial and is recommended.

Reset and Clock Enable Precedence

In Xilinx devices, all registers are built to have set/reset take precedence over clock enable,
whether an asynchronous or synchronous set/reset is described. In order to obtain the most
optimal result, Xilinx recommends that you always code the set/reset before the enable (if
deemed necessary) in the if/else constructs within a synchronous block. Coding a clock
enable first forces the reset into the data path and creates additional logic.

Related Information
Clocking Guidelines

Controlling Enable/Reset Extraction with Synthesis Attributes

You can force control set mapping by applying the DIRECT_RESET / DIRECT_ENABLE /
EXTRACT_RESET / EXTRACT_ENABLE attributes as needed to handle the mapping of control
sets for a given structure.

When the design includes a synchronous reset/enable, synthesis creates a logic cone mapped
through the CE/R/S pins when the load is equal to or above the threshold set by the -
control_set_opt_threshold synthesis switch, or creates a logic cone that maps through
the D pin if below the threshold. The default thresholds are:

e 7 series devices: 4

e UltraScale devices: 2

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 51

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=51

iv Xl I_l NX Chapter 3: Design Creation
A ®

Using DIRECT_ENABLE and DIRECT_RESET

To use control set mapping you can apply attributes to the nets connected to enable/reset
signals, which will force synthesis to use the CE/R pin.

In the following figure, the enable signal (en) is only connected to one flip-flop. Therefore, the
synthesis engine connected the en signal to the FDRE/D pin cone of logic. Note that the CE pin
is tied to logic 1.

Figure 22: Clock Enable Implementation Using Datapath Logic

module test

input clk,

input en, T
input din, ||{\IE|EUFJ"SI W‘\'E:'EUF-EUEJ"“ dout.reg
utput dout , 0=l fo=1 FO=1 F0=1 -1 o
el dkD l@ N 0l dout_OBUF _inst
' —] Fo=2 FO=2 I 0 F0=1
din_JBUF_inst dout i1 . B S { dout
always@(posedge clk)) 01~ 0 F01 Kl P 0BUF
) din[C) 0 R
. L 01 f0e1
if(en) IBUF it 0
: : 102 FDRE
begin en_IBUF_inst Al =
dout == din; e FO=1 I~ 0 F0-1 T3
- BUF
end
endmodule

To override this default behavior, you can use the DIRECT_ENABLE attribute. For example, the
following figure shows how to connect the enable signal (en) to the CE pin of the register by
adding the DIRECT_ENABLE attribute to the port/signal.

Figure 23: Dedicated Clock Enable Implementation Using direct_enable

module test
(

input clk,

(* direct_enable = "true” *) input en, dk.'EUF.i!"SI i|UBU'FI.EIUFG.iﬂSl
input din, > FO=1 1M 0 F0-1 FO=1 P> 0 £0-1)
output reg dout B TG dout_reg
< en_IBUE inst Rl o 08
Fo=1 1> 0 f0=1 FOs1 QULUBUF_in§
always@ (posedge clk) ‘:> e D t Fo=1 £0=11_0F0-1 "
. t0m1 Q- -{ — > dout
begin IBUF — OulF
:f hen) din_BUF_nst Pl
egin . FO=1 I[~ O F0w1
dout == din; din[5 = FORE
end IBUF -
end
endmodule

The following figure shows RTL code in which either global_rst or int_rst can reset the
register. By default, both are mapped to the reset pin cone of logic.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide l—./—l 52

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=52

& XILINX

Chapter 3: Design Creation

Figure 24: Multiple Reset Conditions Mapped Through Datapath Logic

module test

input clk,

inPUt global_rst, el JBUF inst £ JBUF BUFC Jnst

input [1:0] conf, \D—D‘) '-‘I{”'

input din, " Bt i
P Dt

output reg dout P

1.
) 1B

reg [1:0] conf_reg;

assign int_rst = &conf_reg; |:>

always@(posedge clk)

cond JIRUF1]_inst
il L

begin .
conf_reg <= conf; "D~
if(global_rst || int_rst) e

dout == 1'b0;
else
dout == din;
end

endmodule

You can use the DIRECT_RESET attribute to specify which reset signal to connect to the register
reset pin. For example, the following figure shows how to use the DIRECT_RESET attribute to
connect only the global_rst signal to the register FDRE/R pin and connect the int_rst

signal to the FDRE/D cone of logic.

Figure 25: Dedicated Reset Pin Usage Using DIRECT_RESET Attribute

nodule test
input clk,
* direct_reset = "true” *) input global_rst,
input [1:0] conf
input din,

output reg dout G ___,_.l:“-'.it.i:_':"" [!,:“"-'.?_f:'.‘“"‘-”‘
] |BUF G
conl_BURDLinst
A o H-i D
o

reg [1:0] conf_reg;

conmg. gl

assign int_rst = Gconf_reg
- _g'_-o‘?‘."”'"“

always (posedge clk) i

begin
conf_reg <= conf;
if(global_rst || int_rst) dnC>
dout <= 1°D0; gl
else
dout <= din;
end
enduodule

out, OBUF_inst
P ety Codeut
OiF

BUF

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide l—./—l 53

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=53

iv Xl I_l NX Chapter 3: Design Creation
A ®

Pushing the Logic from the Control Pin to the Data Pin

During analysis of critical paths, you might find multiple paths ending at control pins. You must
analyze these paths to determine if there is a way to push the logic into the datapath without
incurring penalties, such as extra logic levels. There is less delay in a path to the D pin than
CE/R/S pins given the same levels of logic because there is a direct connection from the output
of the last LUT to the D input of the FF. The following coding examples show how to push the
logic from the control pin to the data pin of a register.

In the following example, the enable pin of dout_reg[0] has 2 logic levels, and the data pin has O
logic levels. In this situation, you can improve timing by moving the enable logic to the D pin by
setting the EXTRACT_ENABLE attribute to "no" on the dout register definition in the RTL file.

Figure 26: Critical Path Ending at Control Pin (Enable) of a Register

module test H™H
.- Critical Path
input clk,
i 9: Q0
%HPUt l-—J.'le enl doud7} 1.1 dout_reg[0]
€ - ut_
input [7:0] (jln. e i realal Fo=1fy g
output reg [7:0] dout romas] Fo=1} f0=26|
& FO=18 dout{7].i_2 o lp pF=R e R ap Fo=1
CE qQffe=t o=15 Fo=1) 4 Fo=1/, Q=
z FO=1 |
wire en_tmp; 5 26D Fo=1f) Fo=1f, F0=26/p
reg [7:0] din_reg; R Fo=1}5 offo=1 Fo=1)
g: ¢ A FDRE
reg [9:0] en_req; FDRE Fo=1},5 LUTE
FO=1

; 21 :

assign en_tmp = &en_reg; e din.reg.reg(0]
FO=26
25C

always@ (posedge clk) Fo=l8ce Fo=1 |
begin Fo=1 qfo=r

en_reg == en; FO=26|,

din_reg == din;

if(en_tmp) FDRE

dout == din_req;

end
endmodule

The following example shows how to separate the combinational and sequential logic and map
the complete logic in to the datapath. This pushes the logic into the D pin, which still has 2 logic
levels.

You can achieve the same structure by setting the EXTRACT_ENABLE attribute to “no.” For more
information on the EXTRACT_ENABLE attribute, see the Vivado Design Suite User Guide: Synthesis
(UG901).

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 54

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=54

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 27: Critical Path Ending at Data Pin of a Register (Disabling Enable Extraction)

module test

input clk,
input [9:0] en
input [7:0] din,

output reg [7:0] dout
. Critical Path

wire en_tmp;

reg [7:0] din_reg;
reg [9:0] en_reg; en_reg_reg[8)
(* KEEP “true” %) reg [7:0] dout_nxt; FO=26 T

C dout_reg[0
FO=26/ dout_nxt_inferred_i_9 u.regl0)

i en_tmp = &en_reg; CE - - FOn26
R = £0=1 o -ty dout_nxt_inferred_i_8 —+C
- Fo=1) FO22 F0=26
always@+ FO=26lo | s ol
FO~1 i i X

begin D
dout_nxt = dout; FDRE Fo-l R
if(en_tmp) =l

dout_nxt = din_req; mi;m

FO=26

FDRE

end

LUTE
always@ (posedge clk)
begin
en_reg == en
din_reg <= din;
dout == dout_nxt;
end

endmodule

Tips for Control Signals

e Check whether a global reset is really needed.

e Avoid asynchronous control signals.

e Keep clock, enable, and reset polarities consistent.

¢ Do not code a set and reset into the same register element.

e If an asynchronous reset is absolutely needed, remember to synchronize its deassertion.

Know What You Infer

Your code finally has to map onto the resources present on the device. Make an effort to
understand the key arithmetic, storage, and logic elements in the architecture you are targeting.
Then, as you code the functionality of the design, anticipate the hardware resources to which the
code will map. Understanding this mapping gives you an early insight into any potential problem.

The following examples demonstrate how understanding the hardware resources and mapping
can help make certain design decisions:

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 55

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=55

iv Xl I_l NX Chapter 3: Design Creation
A ®

*

e For larger than 4-bit addition, subtraction, and add-sub, a carry chain is generally used and

one LUT per 2-bit addition is used (that is, an 8-bit by 8-bit adder uses 8 LUTs and the
associated carry chain). For ternary addition or in the case where the result of an adder is
added to another value without the use of a register in between, one LUT per 3-bit addition is
used (that is, an 8-bit by 8-bit by 8-bit addition also uses 8 LUTs and the associated carry
chain).

If more than one addition is needed, it may be advantageous to specify registers after every
two levels of addition to cut device utilization in half by allowing a ternary implementation to
be generated.

In general, multiplication is targeted to DSP blocks. Signed bit widths less than 18x25 (18x27
in UltraScale devices) map into a single DSP Block. Multiplication requiring larger products
might map into more than one DSP block. DSP blocks have pipelining resources inside them.

Pipelining properly for logic inferred into the DSP block can greatly improve performance and
power. When a multiplication is described, three levels of pipelining around it generates best
setup, clock-to-out, and power characteristics. Extremely light pipelining (one-level or none)
might lead to timing issues and increased power for those blocks, while the pipelining
registers within the DSP lie unused.

Two SRLs with depths of 16 bits or less can be mapped into a single LUT, and single SRLs up
to 32 bits can also be mapped into a single LUT.

For conditional code resulting in standard MUX components:

A 4-to-1 MUX can be implemented into a single LUT, resulting in one logic level.

An 8-to-1 MUX can be implemented into two LUTs and a MUXF7 component, still resulting
in effectively one logic (LUT) level.

A 16-to-1 MUX can be implemented into four LUTs and a combination of MUXF7 and
MUXF8 resources, still resulting in effectively one logic (LUT) level.

A combination of LUTs, MUXF7, and MUXF8 within the same CLB/slice structure results in a
very small combinational delay. Hence, these combinations are considered as equivalent to
only one logic level. Understanding this code can lead to better resource management, and
can help in better appreciating and controlling logic levels for the data paths.

For general logic, take into account the number of unique inputs for a given register. From that
number, an estimation of LUTs and logic levels can be achieved. In general, 6 inputs or fewer
always results in a single logic level. Theoretically, two levels of logic can manage up to 36 inputs.
However, for all practical purposes, you should assume that approximately 20 inputs is the
maximum that can be managed with two levels of logic. In general, the larger the number of
inputs and the more complex the logic equation, the more LUTs and logic levels are required.

IMPORTANT! Check the availability of hardware resources and how efficiently they are being utilized early in
the design cycle to enable easier modifications. This approach vyields better results than waiting until late in the
design cycle during timing closure.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 56

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=56

iv Xl I_l NX Chapter 3: Design Creation
A ®

Inferring RAM and ROM
RAM and ROM may be specified in multiple ways. Each has advantages and disadvantages.

¢ Inference
Advantages:
Highly portable
Easy to read and understand
Self-documenting

Fast simulation

Disadvantages:

Might not have access to all RAM configurations available
Might produce less optimal results

Because inference usually gives good results, it is the recommended method, unless a given
use is not supported, or it is not producing adequate results in performance, area, or power. In
that case, explore other methods.

When inferring RAM, Xilinx recommends that you use the HDL Templates provided in the
Vivado tools. As mentioned earlier, using asynchronous reset impacts RAM inference, and
should be avoided.

e Xilinx Parameterizable Macros (XPMs)
Advantages:
Portable between Xilinx device families
Fast simulation
Support for asymmetric width

Predictable QoR

Disadvantages:

Limited to supported XPM options

XPMs are built on inference using fixed templates that you cannot modify. Therefore, they can
guarantee QoR and can support features that standard inference does not. When standard
inference does not support the features required, Xilinx recommends you use XPMs instead.

Note: When you compile simulation libraries using compile_simlib, XPMs are automatically
compiled. For more information, see the Vivado Design Suite User Guide: Logic Simulation (UG900).

e Direct Instantiation of RAM Primitives

Advantages:

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 57

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=57

iv Xl I_l NX Chapter 3: Design Creation
A ®

Highest level control over implementation
Access to all capabilities of the block

Disadvantages:

Less portable code
Wordier and more difficult to understand functionality and intent

e Core from IP Catalog
Advantages:

Generally more optimized result when using multiple components
Simple to specify and configure

Disadvantages:

Less portable code

Core management

Related Information
Using Vivado Design Suite HDL Templates

Performance Considerations When Implementing RAM

To efficiently infer memory elements, consider these factors affecting performance:

e Using Dedicated Blocks or Distributed RAMs

RAMs can be implemented in either the dedicated block RAM or within LUTs using distributed
RAM. The choice not only impacts resource selection, but can also significantly impact
performance and power.

In general, the required depth of the RAM is the first criterion. Memory arrays described up to
64 bits deep are generally implemented in LUTRAMSs, where depths of 32 bits and less are
mapped 2 bits per LUT and depths up to 64-bits can be mapped one bit per LUT. Deeper
RAMs can also be implemented in LUTRAM depending on available resources and synthesis
tool assignment.

Memory arrays deeper than 256 bits are generally implemented in block memory. Xilinx
devices have the flexibility to map such structures in different width and depth combinations.
You should be familiar with these configurations in order to understand the number and
structure of block RAMs used for larger memory array declarations in the code.

e Using the Output Pipeline Register

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 58

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=58

iv Xl I_l NX Chapter 3: Design Creation
A ®

Using an output register is required for high performance designs, and is recommended for all
designs. This improves the clock to output timing of the block RAM. Additionally, a second
output register is beneficial, as slice output registers have faster clock to out timing than a
block RAM register. Having both registers has a total read latency of 3. When inferring these
registers, they should be in the same level of hierarchy as the RAM array. This allows the tools
to merge the block RAM output register into the primitive.

e Using the Input Pipeline Register

When RAM arrays are large and mapped across many primitives, they can span a considerable
area of the die. This can lead to performance issues on address and control lines. Consider
adding an extra register after the generation of these signals and before the RAMs. To further
improve timing, use phys_opt_design later in the flow to replicate this register. Registers
without logic on the input will replicate more easily.

Scenarios Preventing Block RAM Output Register Inference

Xilinx recommends that the memory and the output registers are all inferred in a single level of
hierarchy, because this is the easiest method to ensure inference is as intended. There are two
scenarios that will infer a block RAM output register. The first one is when an extra register exists
on the output, and the second is when the read address register is retimed across the memory
array. This can only happen using single port RAM. This is illustrated below:

Figure 28: RAM with Extra Read Register for Block RAM Output Register Inference

clk > . dout_reg_reg[ls:_o_]
= C
fem.reg Q : » dout_reg[15:0]
. D
L WCLK read_reg_reg[ls._o_]
we [>———we2 L.c p——
Q RTL_REG
rd_addr[9:0] [_y———=ira1[9:0] RO1[15:0] D
wr_addr{9:0] D—WAZ[B:O]
din 15:0] [_————gw2[15:0] RTL_REG
RTL_RAM

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 59

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=59

& XILINX

ck[>
addra[9:0] D—I

C

WGBD

D

addra_r_reg[9:0]

Q

)

RTL_REG

Chapter 3: Design Creation

Figure 29: View of RAM Before Address Register Retiming

RAM_reg

dina[lS:O]I)2

WCLK
WE2

RA1[9:0]

WA2[9:0)

WD2[15:0]

RO1[15:0]

RTL_RAM

ram_data_reg[15:0]

: >doutb[15:0]

Certain deviations from these examples can prevent the inference of the output register.

Checking for Multi-Fanout on the Output of Read Data Registers

The fanout of the data output bits from the memory array must be 1 for the second register to

be absorbed by the RAM primitive. This is illustrated in the following figure.

Figure 30: Multiple Fanout Preventing Block RAM Output Register Inference

addr_reg_reg[9:0)
dk [S o=t
addr[%:0] [—
RTL_REG RAM.reg
- R doutd_reg[31:0]
- o0 dout[31:0]_OBUF_inst
D 4k e Jo i
Leaiis:0l RO1{31 0 dout_reg[3 1:0] e =)
o2 o1a01 o] 01 cauE I—D.Juulln o
dinf31:0 5 b 0zl dout0[31:0]_OBUF_inst
T RTLREG 1l _ 0 FO-)
- RTL_REG doutoo_i L doutof31:0]
- 8 ! - dout1_reg[31:0) OBUF
dino[15:0] > 0=1) ‘“_i"j\o;l:- ot dautl_reg[31:0]
din1[15:0] [R roni _ dout1[31:0]_OBUF_inst
RTLMULT Gy o ool 0 70n > dout1[31:0]
din2[31:0 [01

Checking for Reset Signals on the Address/Read Data Registers

dout 10|
0 F-32

_REDUCTION_AND

RTL_REGC

OBUF

Memory arrays should not be reset. Only the output of the RAM can tolerate a reset. The reset
must be synchronous in order for inference of the output register into the RAM primitive. An
asynchronous reset will cause the register to not be inferred into the RAM primitive. Additionally,
the output signal can only be reset to 0.

The following figure highlights an example of what to avoid in order to ensure correct inference
of RAMs and output registers.

UG949 (v2019.2) December 6, 2019
UltraFast Design Methodology Guide

l Send Feedback l

www.Xilinx.com
60

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=60

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 31: Checking for Reset On Address/Read Data Registers

addr_reg_reg(9:0]

clke[» :"j)-‘_.; FO=1
addr[9:0] > 2
— I—
. RTL_REG | RAM_reg s
FO-23] ek dout_reg[31:0]
F0m1 fo-43| CLR dout[31:0]_0BUF_inst
we [- WE2 i C Fidl=1 F0=1 [~ OFo-1 .
:0-1 RAL[G:0] ROL[31:0 E2L Fo=1| 0 [y dout[31:0]
Zhwaz[e:0] OBUF
din[31.01> 2l wo2[31:0] RTLREC_ASYNC
RTL_RAM

Checking for Feedback Structures in Registers

Make sure that registers do not have feedback logic, in the example below, since the adder
requires the current value of register, this logic cannot be retimed and packed in to a block RAM.

The resultant circuit is a block RAM without output registers (DOA_REG and DOB_REG set to
'0").

Figure 32: Check the Presence of Feedback on Registers Around the RAM Block

addr_reg_reg[9:0]
ck [FO=43
addr_en[1 Fo=10 dout_reg[31:0]
o addr_rago_i FO=1] o3 oot o Ir{j\cin[BDl;Fgl_IOBUF_insl
FO=310[9:0 ROl RTL_REG RAM_reg o N é Ddoutnol
RTL_ADD = etk omur

el T RTL_REG
Stpalfe:0] RO1310)E=
Etwan(0:0)

din[31:01> Llwoi(31:0)

RTL_RAM

Mapping Memories to UltraRAM Blocks

UltraRAM is a 4Kx72 memory block with two ports using a single clock. This primitive is only
available in certain UltraScale+™ devices. In these devices, UltraRAM is included in addition to
block RAM resources.

UltraRAM can be used in your design using one of the following methods:

e Rely on synthesis to infer UltraRAMs by setting the ram_style = "ultra" attributeona
memory declaration in HDL.

¢ [nstantiate Xilinx XPM_MEMORY primitives.
e [nstantiate UltraRAM UNISIM primitives.
The following code example shows the instantiation of XPM memory and is available in the HDL

Language templates. Highlighted parameters MEMORY_PRIMITIVE and READ_LATENCY are the
key parameters to infer memory as UltraRAM for high performance.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 61

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=61

iv Xl I_l NX Chapter 3: Design Creation
A ®

e MEMORY_PRIMITIVE = "ultra" specifies the memory is to be inferred as UltraRAM.

e READ_LATENCY defines the number of pipeline registers present on the output of the
memory.

Larger memories are mapped to an UltraRAM matrix consisting of multiple UltraRAM cells
configured as row x column structures.

A matrix can be created with single or multiple columns based on the depth. The current default
threshold for URAM column height is 8 and it can be controlled with the attribute
CASCADE_HEIGHT.

The difference between single column and multiple column UltraRAM matrix is as follows:

¢ Single column UltraRAM matrix uses the built-in hardware cascade without fabric logic.

e Multiple column UltraRAM matrix uses built-in hardware cascade within each column, plus
some fabric logic for connecting the columns. Extra pipelining may be required to maintain
performance. This is inferred by increasing the read latency. The Vivado tools automatically
pack these registers into UltraRAM as required.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 62

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=62

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 33: Specifying UltraRAM in RTL Code (via XPM)

Kpm_memnary_spram #

S Comman module parameters

MEMORY_SIZE (B*(4096*%F230, Srpesitive integer

. MEMOEY_PRIMITIWE "ultra™y, Sletring, "awtet, “distributedt, "hlock®™ or "W1tra®;
m AAstringy "hohe" or "oFilonames. mom "
MEMORY_INIT_FARAM (™" T, SOsEring;

LUSE_MEM_INIT oo, Slinteger; 0,1

nAakEUP_TIME ("disable_sleep™), /string; "diszble slecp™ or "use slesp pin®
MESSACE_CONTROL oo, Slinteger; 0,1

SO Port A module parameters

JWRITE_DATA WIDTH_A (723, sSpoasitive integer

LREAD_DATA_WIDTH_A (72], SAnasitive integer

CEYTE_WRITE_WIDTH_A (727, SAlinreger; 8, 9, or WRITE_DATA_WIDTH_A value
LADDR_WIDTH_ A 187, Srpesitive integer

LREAD_RESET_WALUE_A (™D™7, SAstring

 READ LATENCY& Egh SeOnan-Regative integer
. _ read_first™) Slstringy "weite_Tirstt, "read Tirstt, "mo_change”

T oKpm_memnary_spram_inst

S0 Comman module ports

.s1eep (1'h07y,
SO Port A module ports
LClka (clkal,
.rsta (rstaj,
LEna (enal,

. regcea (regceal,
Lnea (eal,
.addra (addra},
.dina (dinaj,

Jinjectshiterra (1'h0d, Sdo net change
Jdnjectdbiterra (1'h0Y, Sodo not change

Ldouta (doutal,
.shiterra 0, Sodn not change
dhiterra 0 soda et change

h

The preceding example uses a 32 K x 72 memory configuration, which uses eight URAMSs. To
increase performance of the UltraRAM, more pipelining registers should be added to the cascade
chain. This is achieved by increasing the read latency integer.

For more information on inferring UltraRAM in Vivado synthesis, see this link in the Vivado
Design Suite User Guide: Synthesis (UG901).

Coding for Optimal DSP and Arithmetic Inference

The DSP blocks within the Xilinx devices can perform many different functions, including:
e Multiplication

¢ Addition and subtraction

e Comparators

e Counters

e General logic

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 63

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf;a=xInferringUltraRAMInVivadoSynthesis
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=63

iv Xl I_l NX Chapter 3: Design Creation
A ®

The DSP blocks are highly pipelined blocks with multiple register stages allowing for high-speed
operation while reducing the overall power footprint of the resource. Xilinx recommends that
you fully pipeline the code intended to map into the DSP48, so that all pipeline stages are
utilized. To allow the flexibility of use of this additional resource, a set condition cannot exist in
the function for it to properly map to this resource.

DSP48 slice registers within Xilinx devices contain only resets, and not sets. Accordingly, unless
necessary, do not code a set (value equals logic 1 upon an applied signal) around multipliers,
adders, counters, or other logic that can be implemented within a DSP48 slice. Additionally, avoid
asynchronous resets, since the DSP slice only supports synchronous reset operations. Code
resulting in sets or asynchronous resets may produce sub-optimal results in terms of area,
performance, or power.

Many DSP designs are well-suited for the Xilinx architecture. To obtain best use of the
architecture, you must be familiar with the underlying features and capabilities so that design
entry code can take advantage of these resources.

The DSP48 blocks use a signed arithmetic implementation. Xilinx recommends code using signed
values in the HDL source to best match the resource capabilities and, in general, obtain the most
efficient mapping. If unsigned bus values are used in the code, the synthesis tools may still be
able to use this resource, but might not obtain the full bit precision of the component due to the
unsigned-to-signed conversion.

If the target design is expected to contain a large number of adders, Xilinx recommends that you
evaluate the design to make greater use of the DSP48 slice pre-adders and post-adders. For
example, with FIR filters, the adder cascade can be used to build a systolic filter rather than using
multiple successive add functions (adder trees). If the filter is symmetric, you can evaluate using
the dedicated pre-adder to further consolidate the function into both fewer LUTs and flip-flops
and also fewer DSP slices as well (in most cases, half the resources).

If adder trees are necessary, the 6-input LUT architecture can efficiently create ternary addition
(A + B + C = D) using the same amount of resources as a simple 2-input addition. This can help
save and conserve carry logic resources. In many cases, there is no need to use these techniques.

By knowing these capabilities, the proper trade-offs can be acknowledged up front and
accounted for in the RTL code to allow for a smoother and more efficient implementation from
the start. In most cases, Xilinx recommends inferring DSP resources

For more information about the features and capabilities of the DSP48 slice, and how to best
leverage this resource for your design needs, see the 7 Series DSP48E1 Slice User Guide (UG479)
and UltraScale Architecture DSP Slice User Guide (UG579).

Coding Shift Registers and Delay Lines
In general, a shift register is characterized by some or all of the following control and data signals:

e Clock

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 64

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug579-ultrascale-dsp.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=64

iv Xl I_l NX Chapter 3: Design Creation
A ®

e Serial input

e Asynchronous set/reset

e Synchronous set/reset

¢ Synchronous/asynchronous parallel load
e Clock enable

e Serial or parallel output

Xilinx devices contain dedicated SRL16 and SRL32 resources (integrated in LUTs). These allow
efficiently implemented shift registers without using flip-flop resources. However, these elements
support only LEFT shift operations, and have a limited number of 1/0 signals:

e Clock
e Clock Enable
e Serial DataIn

e Serial Data Out

In addition, SRLs have address inputs (A3, A2, A1, AO inputs for SRL16) determining the length of
the shift register. The shift register may be of a fixed static length, or it may be dynamically
adjusted.

In dynamic mode each time a new address is applied to the address pins, the new bit position
value is available on the Q output after the time delay to access the LUT. Synchronous and
asynchronous set/reset control signals are not available in the SRL primitives. However, if your
RTL code includes a reset, the Xilinx synthesis tool infers additional logic around the SRL to
provide the reset functionality.

To obtain the best performance when using SRLs, Xilinx recommends that you implement the last
stage of the shift register in the dedicated Slice register. The Slice registers have a better clock-
to-out time than SRLs. This allows some additional slack for the paths sourced by the shift
register logic. Synthesis tools will automatically infer this register unless this resource is
instantiated or the synthesis tool is prevented from inferring such a register because of attributes
or cross hierarchy boundary optimization restrictions.

Xilinx recommends that you use the HDL coding styles represented in the Vivado Design Suite

HDL Templates.
When using registers to obtain placement flexibility in the chip, turn off SRL inference using the
attribute:

SHREG_EXTRACT = "no'

For more information about synthesis attributes and how to specify those attributes in the HDL
code, see the Vivado Design Suite User Guide: Synthesis (UG901).

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 65

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=65

iv Xl I_l NX Chapter 3: Design Creation
A ®

Initialization of All Inferred Registers, SRLs, and Memories

The GSR net initializes all registers to the specified initial value in the HDL code. If no initial value
is supplied, the synthesis tool is at liberty to assign the initial state to either zero or one. Vivado
synthesis generally defaults to zero with a few exceptions such as one-hot state machine
encodings.

Any inferred SRL, memory, or other synchronous element may also have an initial state defined
that will be programmed into the associated element upon configuration.

Xilinx highly recommends that you initialize all synchronous elements accordingly. Initialization of
registers is completely inferable by all major device synthesis tools. This lessens the need to add
a reset for the sole purpose of initialization, and makes the RTL code more closely match the
implemented design in functional simulation, as all synchronous element start with a known
value in the device after configuration.

Initial state of the registers and latches VHDL coding example one:

signal regl : std_logic := '0'; -- specifying registerl to start as a zero
signal reg2 : std_logic := ‘1’; -- specifying register2 to start as a one
signal reg3 : std_logic_vector(3 downto 0):="1011"; -- specifying INIT

value for
4-bit register

Initial state of the registers and latches Verilog coding example two:

reg registerl 1’b0; // specifying regsiterl to start as a zero
reg register? 1’bl; // specifying register2 to start as a one
reg [3:0] register3 = 4°b1011; //specifying INIT value for 4-bit register

Another possibility in Verilog is to use an initial statement:

reg [3:0] register3;
initial begin

register3= 4’b1011;
end

Deciding When to Instantiate or Infer

Xilinx recommends that you have an RTL description of your design; and that you let the
synthesis tool do the mapping of the code into the resources available in the device. In addition
to making the code more portable, all inferred logic is visible to the synthesis tool, allowing the
tool to perform optimizations between functions. These optimizations include logic replications;
restructuring and merging; and retiming to balance logic delay between registers.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 66

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=66

iv Xl I_l NX Chapter 3: Design Creation
A ®

Synthesis Tool Optimization

When device library cells are instantiated, synthesis tools do not optimize them by default. Even
when instructed to optimize the device library cells, synthesis tools generally cannot perform the
same level of optimization as with the RTL. Therefore, synthesis tools typically only perform
optimizations on the paths to and from these cells but not through the cells.

For example, if an SRL is instantiated and is part of a long path, this path might become a
bottleneck. The SRL has a longer clock-to-out delay than a regular register. To preserve the area
reduction provided by the SRL while improving its clock-to-out performance, an SRL of one delay
less than the actual desired delay is created, with the last stage implemented in a regular flip-flop.

When Instantiation Is Desirable

Instantiation might be desirable when the synthesis tool mapping does not meet the timing,
power, or area constraints; or when a particular feature within a device cannot be inferred.

With instantiation, you have total control over the synthesis tool. For example, to achieve better
performance, you can implement a comparator using only LUTs, instead of the combination of
LUT and carry chain elements usually chosen by the synthesis tool.

Sometimes instantiation may be the only way to make use of the complex resources available in
the device. This can be due to:

e HDL Language Restrictions

For example, it is not possible to describe double data rate (DDR) outputs in VHDL because it
requires two separate processes to drive the same signal.

e Hardware Complexity
It is easier to instantiate the I/O SerDes elements than to create synthesizable description.
e Synthesis Tools Inference Limitations

For example, synthesis tools currently do not have the capability to infer the hard FIFOs from
RTL descriptions. Therefore, you must instantiate them.

If you decide to instantiate a Xilinx primitive, see the appropriate User Guide and Libraries
Guide for the target architecture to fully understand the component functionality,
configuration, and connectivity.

In case of both inference as well as instantiation, Xilinx recommends that you use the
instantiation and language templates from the Vivado Design Suite language templates.

Following are tips:

e Infer functionality whenever possible.

e When synthesized RTL code does not meet requirements, review the requirements before
replacing the code with device library component instantiations.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 67

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=67

iv Xl I_l NX Chapter 3: Design Creation
A ®

Q

e Consider the Vivado Design Suite language templates when writing common Verilog and
VHDL behavioral constructs or if necessary instantiating the desired primitives.

Coding Styles to Improve Performance

For high performance designs, the coding techniques discussed in this section can mitigate
possible timing hazards.

High Fanouts in Critical Paths

High fanout nets are much easier to deal with early in the design process. What constitutes too
high of a fanout is often dictated by performance requirements and the construction of the
paths. You can use the following techniques to address issues with high fanout nets.

RECOMMENDED: Identify high fanout nets using the report_high_fanout_nets Tcl command after
synthesis. Monitor the impact of these nets on design performance as you progress through the implementation
process.

Reduce Loads in Portions of the Design That Do Not Require It

For high fanout control signals, evaluate whether all coded portions of the design require that
net. Reducing the number of loads can greatly reduce timing problems.

Replicate High Fanout Net Drivers

Register replication can increase the speed of critical paths by making copies of registers to
reduce the fanout of a given signal. This gives the implementation tools more flexibility in placing
and routing the different loads and associated logic. Synthesis tools use this technique
extensively.

Most synthesis tools use a fanout threshold limit to automatically determine whether to
duplicate a register. Lowering this global threshold allows automatic duplication of high fanout
nets. However, it does not allow control over which registers are duplicated or how their loads
are grouped. In addition, the global replication mechanism does not assess timing slack
accurately, which can lead to unnecessary replicated cells, logic utilization increase, and
potentially higher power consumption.

Often, a better approach to reducing fanout is to use a balanced tree for the high fanout signals.
Consider manually replicating registers based on the design hierarchy, because the cells included
in a hierarchy are often placed together. For example, in the balanced reset tree shown in the
following figure, the high fanout reset FF RST2 is replicated in RTL to balance the fanout across
the different modules. If required, physical synthesis can perform further replication to improve
WNS based on placement information.

TIP: To preserve the duplicate registers in synthesis, use a KEEP attribute instead of DONT_TOUCH. A
DONT_TOUCH attribute prevents further optimization during physical optimization later in the implementation
flow.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 68

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=68

iv Xl I_l NX Chapter 3: Design Creation
A ®

Note: If a LUT1 rather than a register is replicated, it indicates that an attribute or constraint is applied

incorrectly.
Figure 34: High Fanout Reset Transformed to Balanced Reset Tree
block_A block_A
rst_gen_inst > rst_gen_inst RS1T2 /
10000 10000
RST1 | RST2 i »|RST1
1 1 20000 1
block_B block_B
> > RSZTZ ,
3000 | 3000
block_C block_C
block_D block_D
> RSSTZ ,
7000 6000 6000
block_E block_E
> RS4T2 ,
1000 1000

X20034-110617

O RECOMMENDED: Using MAX_FANOUT attributes on global high fanout signals leads to sub-optimal
replication similar to when the global fanout limit is lowered in synthesis. For this reason, Xilinx recommends
only using MAX_FANOUT inside the hierarchies on local signals with medium to low fanout.

Do not replicate registers used for synchronizing signals that cross clock domains. The presence
of the ASYNC_REG attribute on these registers prevents the tool from replicating these registers.
If the synchronizing chain has a very high fanout and replication must meet timing, add an extra
register after the synchronization chain that does not have the ASYNC_REG constraint.

The following table provides guidelines on the number of fanouts that might be acceptable for
your design.

Table 1: Fanout Guidelines for Medium Performance 7 series Devices

Condition Fanout > 5000 Fanout > 200 Fanout > 100
Low Frequency 1 to 125 | Few logic levels between N/A N/A
MHZ synchronous logic <13 levels
of logic at maximum
frequency

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 69

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=69

iv Xl I_l NX Chapter 3: Design Creation
A ®

Table 1: Fanout Guidelines for Medium Performance 7 series Devices (cont'd)

Condition Fanout > 5000 Fanout > 200 Fanout > 100
Medium Frequency 125 | If the design does not meet <6 levels of logic at maximum | N/A
to 250 MHz timing, you might need to frequency. (Driver and load
reduce fanout and/or logic types impact performance.)
levels.
High Frequency > 250 Not recommended for most Small number of logic levels is | Advance pipelining methods
MHz designs. typically necessary for higher | required. Careful logic
speeds. replication. Compact
functions. Low logic levels
required. (Driver and load
types impact performance.)

O TIP: If the timing reports indicate that high-fanout signals are limiting the design performance, consider
replicating the signals using the implementation tool options, such as opt_design -
hier_fanout_limit, place_design,and phys_opt_design.

O TIP: When replicating registers, consider using a naming convention for the registers, such as
<original_name>_a, <original_name>_b,etc., to make it easier to understand intent of the
replication and easier to maintain the RTL code.

Pipelining Considerations

Another way to increase performance is to restructure long datapaths with several levels of logic
and distribute them over multiple clock cycles. This method allows for a faster clock cycle and
increased data throughput at the expense of latency and pipeline overhead logic management.

Because devices contain many registers, the additional registers and overhead logic are usually
not an issue. However, the datapath spans multiple cycles, and you must make special
considerations for the rest of the design to account for the added path latency.

Consider Pipelining for SSI Devices

When designing high performance register-to-register connections for SLR boundary crossings,
the appropriate pipelining must be described in the HDL code and controlled at synthesis. This
ensures that the shift register LUT (SRL) inference and other optimizations do not occur in the
logic path that must cross an SLR boundary. Modifying the code in this manner along with
appropriate use of Pblocks defines where the SLR boundary crossing occurs.

Consider Pipelining Up Front

Considering pipelining up front rather than later on can improve timing closure. Adding pipelining
at a later stage to certain paths often propagates latency differences across the circuit. This can
make one seemingly small change require a major redesign of portions of the code.

Identifying pipelining opportunities early in the design can often significantly improve timing
closure, implementation runtime (due to easier-to-solve timing problems), and device power (due
to reduced switching of logic).

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 70

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=70

iv Xl I_l NX Chapter 3: Design Creation
A ®

Check Inferred Logic

As you code your design, be aware of the logic being inferred. Monitor the following conditions
for additional pipelining considerations:

e Cones of logic with large fanin

For example, code that requires large buses or several combinational signals to compute an
output.

e Blocks with restricted placement or slow clock-to-out or large setup requirements

For example, block RAMs without output registers or arithmetic code that is not appropriately
pipelined.

e Forced placement that causes long routes

For example, a pinout that forces a route across the chip might require pipelining to allow for
high-speed operation.

e Logic comprised of large XOR functions

Large XOR functions often have high switch rates that can generate large dynamic power
dissipation. Pipelining these functions can reduce switching, which positively impacts power
consumption of the described circuit.

In the following figure the clock speed is limited by:

Clock-to out-time of the source flip-flop

Logic delay through four levels of logic

Routing associated with the four function generators

Setup time of the destination register

Figure 35: Before Pipelining Diagram

—»ID Q > —> —» —
> > >
—™ wr > LT LT > LT P Q
—» — —» —
’— —» — —» —
Slow_Clock

X13429

The following figure is an example of the same data path shown in the Before Pipelining diagram.
Because the flip-flop is contained in the same slice as the function generator, the clock speed is
limited by the clock-to-out time of the source flip-flop, the logic delay through one level of logic,
one routing delay, and the setup time of the destination register. In this example, the system
clock runs faster after pipelining than before pipelining.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 71

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=71

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 36: After Pipelining Diagram

—> —» —» —»
—»{ D > »D Q »> » 0 @ > »D Q »> D ol—»
q LUT LUT LUT LUT
—» — —» —
—» —» —» —»

@

Fast_Clock
X13430

Determine Whether Pipelining is Needed

A commonly used pipelining technique is to identify a large combinatorial logic path, break it into
smaller paths, and introduce a register stage between these paths, ideally balancing each pipeline
stage.

To determine whether a design requires pipelining, identify the frequency of the clocks and the
amount of logic distributed across each of the clock groups. You can use the
report_design_analysis Tcl command with the -1ogic_level_distribution option
to determine the logic-level distribution for each of the clock groups.

TIP: The design analysis report also highlights the number of paths with zero logic levels, which you can use to
determine where to make modifications in your code.

Balance Latency

To balance the latency by adding pipeline stages, add the stage to the control path and not the
data path. The data path includes wider buses, which increases the number of flip-flop and
register resources used.

For example, if you have a 128-bit data path, 2 stages of registers, and a requirement of 5 cycles
of latency, inserting 3 register stages results in an extra 3 x 128 = 384 flip-flops. Alternatively,
you can use registers to control logic to enable the data path. Use 5 stages of single-bit registers
to control the enable signal of datapath flip-flops and multicycle path timing exceptions
accordingly.

Note: This example is only possible for certain designs. For example, in cases where there is a fanout from
the intermediate data path flip-flops, having only 2 stages does not work.

RECOMMENDED: The optimal LUT:FF ratio in a device is 1:1. Designs with significantly more FFs will increase
unrelated logic packing into slices, which will increase routing complexity and can degrade QoR.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 72

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=72

iv Xl I_l NX Chapter 3: Design Creation
A ®

Balance Pipeline Depth and SRL Usage

When there are deep register pipelines, map as many registers as possible into the SRLs to avoid
significant increases in register utilization. For example, a 9-deep pipeline for a data width of 32
results in 9 registers for each bit, which uses 32 x 9 = 288 registers. Mapping the same structure
to SRLs uses 32 SRLs. Each SRL has address pins A4 through AO connected to 5'b01000 to
implement a depth of 9 stages.

There are multiple ways to infer SRLs during synthesis, including the following:

e SRL

REG -> SRL

SRL -> REG

REG -> SRL -> REG

You can create these structures using the sr1_style attribute in the RTL code as follows:

o (* srl_style = "srl" =*)

e (* srl_style = “reg_srl” *)

e (* srl_style = “srl_reg” *)

e (* srl_style = “reg_srl_reg” *)

A common mistake is to use different enable/reset control signals in deeper pipeline stages.
Following is an example of a reset used in a 9-deep pipeline stage with the reset connected to
the third, fifth, and eighth pipeline stages. With this structure, the tools map the pipeline stages
to registers only, because there is a reset pin on the SRL primitive.

FF->FF->FF(reset) -> FF->FF(reset)->FF->FF->FF(reset)->FF
To take advantage of SRL inference:

e Ensure there are no resets for the pipeline stages.
e Analyze whether the reset is really required.

e Use the reset on one flip-flop (for example, on the first or last stage of the pipeline).

Avoid Unnecessary Pipelining

For highly utilized designs, too much pipelining can lead to sub-optimal results. For example,
unnecessary pipeline stages increase the number of flip-flops and routing resources, which might
limit the place and route algorithms if the utilization is high.

Note: If there are many paths with 0/1 levels of logic, check to make sure this is intentional.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 73

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=73

iv Xl I_l NX Chapter 3: Design Creation
A ®

Consider Pipelining Macro Primitives

Based on the target architecture, dedicated primitives such as block RAMs and DSPs can work at
over 500 MHz if enough pipelining is used. For high frequency designs, Xilinx recommends using
all of the pipelines within these blocks.

Auto-Pipelining Considerations

You can optionally insert additional pipeline registers during placement to address timing closure
challenges on specific buses and interfaces.

Using the AXI Register Slice in Auto-Pipelining Mode

The AXI Register Slice IP core is typically used for adding pipeline registers between memory
mapped or streaming AXI interfaces to help close timing. For larger devices, adding the right
amount of pipelining without overly increasing the register utilization and the application latency
is a common challenge. To simplify the pipeline insertion task and allow the Vivado placer more
flexibility, you can use the auto-pipeline optimization feature for the AXI Register Slice IP core.
When this feature is enabled, a special physical synthesis phase (between the floorplanning and
global placer phases) inserts and places the additional pipeline stages based on setup timing slack
and SLR distance. The AXI Register Slice IP core remains compliant with the AXI handshake
protocol despite the increased latency due to the use of small FIFOs.

You can enable this feature in the IP Configuration Wizard. Set the Register Slice Options (REG_*)
to Multi SLR Crossing. In addition, set the Use timing-driven pipeline insertion for all Multi-SLR
channels option to 1 to enable auto-pipelining. The following figure shows an example.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 74

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=74

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 37: Example AXI Register Slice IP Settings to Enable Auto-Pipelining Feature

Customize IP o &3
AXI Register Slice (2.1) /
© Documentation IF Location C Switch to Defaults
| Show disabled ports Settings SLR Crossings | Advanced Settings

Component Name |axi_register_slice_0|

FROTOCOL A4 v
READ_WRITE Mode = READ WRITE v
Address Width 32 [1-864]
Data Wwidth 32 v
1D width 0 v

User signal widths

AWUSER width 0 [0-1024]
::,+ 5 AX | ARUSER Width 0 0-1024]
aclk WUSER Width 0 [0-1024]

M_AX o f

RUSER Width 0 [0 -1024]
aresetn

BUSER Width 0 [0 -1024)

Register Slice Options

REG_AW/ Multi SLR Crossing +
REG_AR Multi SLR. Crossing
REG_W Multi SLR Crossing
REG_R Multi SLR Crossing +
REG_B Multi SLR Crossing +
Use timing-driven pipeline insertion for all Multi-SLR channels | 1 1.
<
0K ‘ [Cancel

Using Auto-Pipelining on Custom Interfaces

Auto-pipelining is not limited to the AXI Register Slice IP. You can also control auto-pipelining on
custom interfaces using the properties shown in the following table, which are specified in the
RTL.

Table 2: Datapath and Control Path Properties

Property Name Object Format/Range Description
AUTOPIPELINE_MODULE hierarchical Boolean Establishes a separate name-space for all
cell group names defined throughout sub-

hierarchies. This property must be used
when a module with auto-pipelining
properties is instantiated several times in
the design.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 75

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=75

iv Xl I_l NX Chapter 3: Design Creation
A ®

Table 2: Datapath and Control Path Properties (cont'd)

Property Name Object Format/Range Description

AUTOPIPELINE_GROUP net String (case-insensitive) Establishes the auto-pipeline group name

of signals that must receive an equal
number of auto-inserted pipeline flip-flops.

AUTOPIPELINE_INCLUDE String (case-insensitive) Specifies the name of another

AUTOPIPELINE_GROUP to include when
applying the AUTOPIPELINE_LIMIT

AUTOPIPELINE_LIMIT 0 <integer <= 24 Defines the maximum number of auto-

inserted pipeline flip-flops for associated
groups

All nets that belong to the same AUTOPIPELINE_GROUP must have an equal number of pipeline
registers inserted on each tagged signal. Following are additional considerations:

If an AUTOPIPELINE_GROUP does not reference an AUTOPIPELINE_INCLUDE group, the
number of pipeline stages inserted into the AUTOPIPELINE_GROUP must be between 0 and
the AUTOPIPELINE_LIMIT.

If an AUTOPIPELINE_GROUP references an AUTOPIPELINE_INCLUDE group, the sum of the
pipeline stages inserted into the AUTOPIPELINE_GROUP and the AUTOPIPELINE_INCLUDE
group must be between 0 and the AUTOPIPELINE_LIMIT.

When you specify the AUTOPIPELINE_GROUP, AUTOPIPELINE_LIMIT, and
AUTOPIPELINE_INCLUDE properties on a register in RTL, the Vivado tools automatically
propagate the properties to the net directly connected to the output of the register.

For best QoR, Xilinx recommends the following:

Only apply the AUTOPIPELINE_* properties to registers with no clock enable and no reset
control signals.

Create distinct hierarchies for both sides of the interface, and apply a different
USER_SLR_ASSIGNMENT with a different string to each side. The strings must not be
SLR<n>. The soft floorplanning constraints guide the Vivado placer to move the two groups
of registers to different SLRs as needed to improve QoR. For example, if hierarchy hierA
includes the source registers, and hierB includes the destination registers, you must add the
following constraints:

set_property USER_SLR_ASSIGNMENT apSrcGrpA [get_cells hierA]
set_property USER_SLR_ASSIGNMENT apDstGrpB [get_cells hierB]

IMPORTANT! The auto-pipelining feature changes the latency of the design. Therefore, you must ensure the
functionality remains correct for the specified AUTOPIPELINE_LIMIT range. If the handshake circuitry is
required, you must add appropriate logic, such as a FIFO, with enough depth to support backpressure without
losing data. The Vivado tools do not verify the correctness of the design logic.

Note: For the best timing QoR results, the auto-pipeline properties must be set on registers without
clock enable or reset logic.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 76

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=76

iv Xl I_l NX Chapter 3: Design Creation
A ®

The following figure shows how the auto-pipeline properties are used in the AXI Register Slice
RTL.

Figure 38: Example of Auto-Pipelining RTL Property Usage

(* autopipeline group="fwd",autopipeline_limit=24,autopipeline_include="resp" *) reg s_handshake_pipe
reg m_handshake_q

(* autopipeline group="resp" *) reg m_ready pipe
reg s_ready_i

(* autopipeline group="fwd",autopipeline_limit=24,autopipeline_include="resp" *) reg [C_DATA WIDTH-1:8] s_payload_pipe;
reg [C_DATA_WIDTH-1:8] m_payload_q;
wire m_valid_i;
wire pop;

The following logic diagram shows one AXI channel of the AXI Register Slice with nets tagged
with auto-pipeline properties.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 77

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=77

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 39: Auto-Pipelining Logic Diagram

AXI Master

READY VALID PAYLOAD

AXI Register Slice IP
(one AXI channel shown)

r Y
s_ready s_handshake | | s_payload
A

[O T T T TR T RO RO - e -1
)) |
: : : AUTOPIPELINE_GROUP="fwd" 1
1 AUTOPIPELINE_GROUP="resp") ' AUTOPIPELINE_LIMIT=24 1
1 1 |} AUTOPIPELINE_INCLUDE="resp" "
1 1
P PP L PP -
Y A
m_ready m_handshake | | m_payload
Y A
PUSH
FIFO
32-deep (fixed)
POP EMPTY
A |
READY VALID PAYLOAD
4 A
AXI Slave

X22928-061419

Reviewing the Auto-Pipelining Implementation Results

The following tables are printed in the Vivado log file during the floorplanning phase of

place_design:

e Summary of Latency Increase due to Auto-Pipeline Insertion: This table details the number of
pipeline stages inserted for each group.

e Summary of Physical Synthesis Optimizations: This table shows the total number of inserted
pipeline registers and the number of auto-pipeline groups optimized (Optimized Cells/Nets).

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 78

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=78

iv Xl I_l NX Chapter 3: Design Creation
A ®

The following figure shows an example of the Summary of Latency Increase Due to Auto-Pipeline
Insertion table.

Figure 40: Example of Summary of Latency Increase Due to Auto-Pipeline Insertion
Table

Phase 2.1 Floorplanning

Summary of Latency Increase due to Auto-Pipeline Insertion

Module	Group	Limit	Actual	Include Group
design_l_i/group@/axi_register_slice_O0/instsarlG.ar_auto	fwd	24	9	resp
design_l_ifgroup@/axi_register_slice O/inst/arlG.ar_auto	resp	-] 9		
design_l_i/group@/axi_register_slice_0/inst/awl6.aw_auto	fwd	24	9	resp
design_1_i/groupG/axi_register_slice 0/inst/awl6.aw_auto	resp	- 9		
design_l_i/group@/axi_register_slice_0/inst/bl6.b_auto	fwd	24	9	resp
design_l_i/group@/axi_register_slice_0/inst/bl6.b_auto	resp	- 9		
design_ 1 i/groupl/axi_register slice 0/inst/rl6.r_auto	fwd	24	S	resp
design_1_ifgroupQ/axi_register_slice 0/inst/rl6.r_auto	resp	- 9		
design_1_i/group@/axi_register_slice_0/inst/wl6.w_auto	fwd	24	9	resp

The following figure shows an example of the Summary of Physical Synthesis Optimizations
table.

Figure 41: Summary of Physical Synthesis Options for Auto Pipeline Table

summary of Physical Synthesis Optimizations

Optimization	Added Cells	FRemoved Cells	Optimized Cells/Nets	Dont Touch	Iterations	Elapsed
Auto Pipeline	1582	o	0 63	1	00:00:01	
Total I 1582	o	10	68	1	00:00:01	

The inserted pipeline registers can be retrieved based on their names as follows:
<origCellName>_psap and <origCellName>_psap_<N>

The following figure shows the path from SLR2 to SLRO where nine pipeline stages were
automatically inserted during place_design.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide l—./—l 79

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=79

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 42: Schematic View of Auto-Pipeline Inserted Registers

The following figure shows the same example in the Device view.

Figure 43: Device View of Auto-Pipeline Inserted Registers

Coding Styles to Improve Power

Gate Clock or Data Paths

Gating the clock or data paths is a common technique to stop transition when the results of
these paths are not used. Gating a clock stops all driven synchronous loads and prevents data
path signal switching and glitches from continuing to propagate.

Power optimization (power _opt_design) can automatically generate signal gating logic to
reduce switching activity. However, you have information about the application, data flow, and
dependencies that is not available to the tool, which only you can specify.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 80

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=80

iv Xl I_l NX Chapter 3: Design Creation
A ®

Maximize Gating Elements

Maximize the number of elements affected by the gating signal. For example, it is more power
efficient to gate a clock domain at its driving source than to gate each load with a clock enable
signal.

Use Clock Enable Pins of Dedicated Clock Buffers

When gating or multiplexing clocks to minimize activity or clock tree usage, use the clock enable
ports of dedicated clock buffers. Inserting LUTs or using other methods to gate-off clock signals
is not efficient for power and timing.

Use Case Block When Priority Encoder Not Needed

When a priority encoding is not needed, use a case block instead of an if-then-else block or
ternary operator.

Inefficient coding example:

if (regl)
val = reg_inl;
else if (reg2)
val = reg_in2;
else if (reg3)
val = reg_in3;
else val = reg_in4;

Correct coding example:

(* parallel_case *) casex ({regl, reg2, reg3})
1xx: val = reg_inl ;

0lx: val = reg_in2

001: val = reg_in3

default: val = reg_in4

endcase

Performance/Power Trade-Off for Block RAMs

There are multiple ways of breaking a memory configuration to serve a particular requirement.
The requirement for a particular design can be performance, power, or a mixture of both.

The following example highlights the different structures that can be generated to achieve your
requirements. Synthesis can limit the cascading of the block RAM for the performance/power
trade-off using the CASCADE_HEIGHT attribute. The usage and arguments for the attribute are
described in the Vivado Design Suite User Guide: Synthesis (UG901).

The following figure shows an example of 8Kx32 memory configuration for higher performance
(timing).

Note: This example applies to UltraScale and UltraScale+ devices only.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 81

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=81

& XILINX

Chapter 3: Design Creation

Figure 44: RTL Representation of 4Kx32 Using 4Kx8 and CASCADE_HEIGHT=1

4Kx8 8
I
4Kx8
32
4x e
4Kx8
W=8 D=12

module test(

input clk,

input we,

input [31:0] din,
input [11:0] addr,
output reg [31:0] dout
| H

(* ram_style = "block",cascade height = 1 *|
reg [31:0] mem [(2**12)-1:0];

reg [11:0] addr _reg;

always @(posedge clk)
begin
addr_reg == addr;
dout == mem[addr reg];
if (we)
mem[addr_reg] == din;
end

endmodule

In this implementation, all block RAMs are always enabled (for each read or write) and consume

more power.

The following figure shows an example of cascading all the block RAMs for low power.

Figure 45: RTL Representation of 4Kx32 Using 1Kx32 and CASCADE_HEIGHT=4

1Kx32

1Kx32

4x

1Kx32

W=32 D=10

UG949 (v2019.2) December 6, 2019
UltraFast Design Methodology Guide

module test(

input clk,

input we,

input [31:0] din,
input [11:@] addr,
output reg [31:0] dout
);

(* ram style = "block”,cascade height = 4 *)
reg [31:0] mem [(2**12)-1:0];
reg [11:0] addr reg;

always @(posedge clk)
begin
addr_reg == addr;
dout <= mem[addr reg];
if (we)
mem[addr _reg] <= din;
end

endmodule

I Send Feedback l WWW.Xi|inX.C08n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=82

& XILINX

Chapter 3: Design Creation

In this implementation, because one block RAM at a time is selected (from each unit), the
dynamic power contribution is almost half. Block RAMs have a dedicated cascade MUX and
routing structure that allows the construction of wide, deep memories requiring more than one
block RAM primitive to be built in a very power efficient configuration.

The following figure shows an example of how to limit the cascading and gain both power and
performance at the same time, often with no trade-off in performance.

Note: This example applies to UltraScale and UltraScale+ devices only.

Figure 46: RTL Representation of 4Kx32 Using 2Kx16 and CASCADE_HEIGHT=2

16

N |

T 2Kx16
|
|
|
|

2Kx16

W=16 D=11

module test(

input clk,

input we,

input [31:8] din,
input [11:@] addr,
output reg [31:0] dout
H

(* ram style = "block",cascade height = 2 *)
reg [31:0] mem [(2**12)-1:0];
reg [11:0] addr_reg;

always @(posedge clk)
begin
addr_reg <= addr;
dout <= mem[addr reg];
if (we)
mem[addr reg] <= din;
end -

endmodule

Because two block RAMs are selected at a time in this implementation, the dynamic power
contribution is better than for the high performance structure, but not as good as for the low
power structure. The advantage with this structure compared to a low power structure is that it
uses only two block RAMs in the cascaded path, which has impact on the target frequency when
compared to four block RAMs in the critical path for the low power structure.

Decomposing Deeper Memory Configurations for Balanced Power

and Performance

When working with deeper memory configurations, you can use the RAM_DECOMP synthesis
attribute in the RTL to reduce power by improving memory composition. When the
RAM_DECOMP attribute is applied to a memory array, the memory logic is mapped to a wider
array of block RAM primitives. To balance power and performance, you can control cascading
using the CASCADE_HEIGHT attribute along with the RAM_DECOMP attribute. This approach
requires more address decoding logic but helps to reduce the number of block RAMs that are
enabled for each read operation, which helps to reduce power.

UG949 (v2019.2) December 6, 2019
UltraFast Design Methodology Guide

[Send Feedback] WWW.ininx.cogn;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=83

& XILINX

addr13:0) —

din[31:0] 33—

UG949 (v2019.2) December 6, 2019
UltraFast Design Methodology Guide

For example, the following figure shows a 32x16K memory configuration.

Figure 47: 32x16K Memory Configuration

addr_reg_reg[13:0]
dk O StenrasOm180
s r0-1

c

Chapter 3: Design Creation

dout_tmp0_reg([31:0]

dout_tmp1 _reg[31:0]

SoMARS P o3

S-nja F0-1

”
270 wD2[31:0] RTL_REG
RTL_RAM

ram_decomp = "power
cascade_height = 4

16 RAMB36E2 is inferred and the memory is decomposed as follows:

e The base primitive is 32x1K.
e 4 block RAMs are cascaded to create a 32x4K configuration.
e 4 parallel structures create a 16K deep memory.

e The outputs are multiplexed to generate the output data.

Figure 48: Generated Structure for 32x16K Memory Configuration Example Using

CASCADE_HEIGHT and RAM_DECOMP Attributes

32
32x1K » 32x1K » 32x1K » 32x1K \
32
32x1K » 32x1K » 32x1K » 32x1K
32
——p
32
32x1K » 32x1K » 32x1K » 32x1K
32x1K 32x1K 32x1K 32x1K 2
X > X > X > X /

4:1 MUX

X19283-050517

The following RTL code example shows the use of the CASCADE_HEIGHT and RAM_DECOMP

attributes.

[Send Feedback] Www.xilinx.cognzlr

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=84

& XILINX

Chapter 3: Design Creation

Figure 49: RTL Code for 32x16K Memory Configuration Using the CASCADE_HEIGHT and

If you apply only the ram_decomp =

RAM_DECOMP Attributes

module test

s

input clk,

input we,

input [13:0] addr,
input [31:0] din,
output reg [31:0] dout
iH

(% ram_stwvle = "hlock",
reg [13:0] addr_reg;

ran_decomp = "power", cascade_height = 4 %) reg [31:0] mem [{16%1024%-1:0];

reg [31:0]
reg [31:0]
reg [31:0]

dout_tmpd;
dout_tmpl;
din_reg;

reg We_reg;
always @fposedge clk)
hegin

addr_reg <= addr;

din_reg <= din;

We_reg <= wej

dout_tmpd <= mem[addr_reqg];

dout_tmpl <= dout_tmpd;

dout <= dout_tmpl;

it (we_reg)

mem [addr_reg] <= din_reg;

end

endmodule

"power " attribute, 16 RAMB36E2 are inferred and the

memory is decomposed as follows:

e The base primitive is 32x1K.

e 8 block RAMs are cascaded to create a 32x8K configuration.

e 2 parallel structures create a 16K deep memory.

e The outputs are multiplexed into a 2:1 MUX to generate the output data.

Figure 50: Generated Structure for 32x16K Memory Configuration Using the

RAM_DECOMP Attribute

0 1 6 /
32
32x1K > 32K | 32x1K > 321K
32
32
32x1K > 32x1IK —» 32x1K > 32x1K
2:1 MUX

X19284-050517

The following RTL code example shows the use of the RAM_DECOMP attribute.

UG949 (v2019.2) December 6, 2019
UltraFast Design Methodology Guide

www.Xilinx.com
85

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=85

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 51: RTL Code for 32x16K Memory Configuration Using the RAM_DECOMP
Attribute

module test
input clk,
input we,
input [13:0] addr,
input [31:0] din,
output reg [31:0] dout
bH
(* ram_style = "block™, ram_deconp = “power™*) reg [31:0] mem [{16%10243-1:0];
reg [13:0] addr_reg;
reg [31:0] dout_tmpd;
reg [31:0] dout_tmpl;
reg [31:0] din_reo;
reg we_reg;
always @{posedge clk)
hegin

addr_reg <= addr;

din_reg <= din;

we_reg <= we;

dout_tmpd <= mem[addr_req];

dout_tmpl <= dout_tmpd;

dout <= dout_tmpl;

it (we_reg)

mem [addr_reg] <= din_reg;

end

endmodule

If you use only the RAM_DECOMP attribute, the overall power savings is similar to using both
the RAM_DECOMP and CASCADE_HEIGHT attributes together, because only one block RAM is
active at a time. Creating a 4-deep cascaded block RAM chain is better for performance when
compared to an 8-deep cascaded block RAM chain.

For more information, see this link in the Vivado Design Suite User Guide: Synthesis (UG901).

Running RTL DRCs

A set of RTL DRC rules identify potential coding issues with your HDL. You can perform these
checks on the elaborated views, which you can open by clicking Open Elaborated Design in the
Flow Navigator. You can run these DRC checks by selecting RTL Analysis = Report Methodology
in the Flow Navigator or by executing report_methodology at the Tcl command prompt.

Clocking Guidelines

Each device architecture has some dedicated resources for clocking. Understanding the clocking
resources for your device architecture can allow you to plan your clocking to best utilize those
resources. Most designs might not need you to be aware of these details. However, if you can
control the placement and have a good idea of the fanout on each of the clocking domains, you
can explore alternatives based on the following clocking details. If you decide to exploit any of
these clocking resources, you need to explicitly instantiate the corresponding clocking element.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 86

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf;a=xSupportedAttributes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=86

iv XI LI NX Chapter 3: Design Creation
A ®

UltraScale Device Clocking

UltraScale devices have a different clocking structure from previous device architectures, which
blurs the line between global versus regional clocking. UltraScale devices do not have regional
clock buffers like 7 series devices and instead use a common buffer and clock routing structure
whether the loads are local/regional or global.

UltraScale devices feature smaller clock regions of a fixed size across devices, and the clock
regions no longer span half of the device width in the horizontal direction. The number of clock
regions per row varies per UltraScale device. Each clock region contains a clock network routing
that is divided into 24 vertical and horizontal routing tracks and 24 vertical and horizontal
distribution tracks. The following figure shows a device with 36 clock regions (6 columns x 6
rows). The equivalent 7 series device has 12 clock regions (2 columns x 6 rows).

Figure 52: UltraScale Device Clock Region Tiles

——— Clock Routing and Distribution Tracks
- — — —Clock Region Boundary

1/0

X15241-110415

UG949 (v2019.2) December 6, 2019 Send Feodback www.xilinx.com
UltraFast Design Methodology Guide I—\/—i 87

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=87

iv Xl I_l NX Chapter 3: Design Creation
A ®

The clocking architecture is designed so that only the clock resources necessary to connect clock
buffers and loads for a given placement are used, and no resource is wasted in clock regions with
no loads. The efficient clock resource utilization enables support for more design clocks in the
architecture while improving clock characteristics for performance and power. Following are the
main categories of clock types and associated clock structures grouped by their driver and use:

e High-Speed I/O Clocks

These clocks are associated with the high-speed SelectlO™ interface bit slice logic, generated
by the PLL, and routed via dedicated, low-jitter resources to the bit slice logic for high-speed
I/0O interfaces. In general, this clocking structure is created and controlled by Xilinx IP, such as
memory IP or the High Speed SelectlO Wizard, and is not user specified.

e General Clocks

These clocks are used in most clock tree structures and can be sourced by a GCIO package
pin, an MMCM/PLL, or fabric logic cells (not generally suggested). The general clocking
network must be driven by BUFGCE/BUFGCE_DIV/BUFGCTRL buffers, which are available in
any clock region that contains an 1/O column. Any given clock region can support up to 24
unique clocks, and most UltraScale devices can support over 100 clock trees depending on
their topology, fanout, and load placement.

¢ Gigabit Transceiver (GT) Clocks

Transmit, receive, and reference clocks of gigabit transceivers (GTH or GTY) use dedicated
clocking in the clock regions that include the GTs. You can use GT clocks to achieve the
following:

Drive the general clocking network using the BUFG_GT buffers to connect any loads in the
fabric

Share clocks across several transceivers in the same or different Quad

Clock Primitives

Most clocks enter the device through a global clock-capable 1/0 (GCIO) pin. These clocks directly
drive the clock network via a clock buffer or are transformed by a PLL or MMCM located in the
clock management tile (CMT) adjacent to the I/O column.

The CMT contains the following clocking resources:

e Clock generation blocks
2 PLLs
1 MMCM

e Global clock buffers
24 BUFGCEs

8 BUFGCTRLs

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 88

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=88

iv Xl I_l NX Chapter 3: Design Creation
A ®

4 BUFGCE_DIVs

Note: Clocking resources in CMTs that are adjacent to 1/O columns with unbonded I/Os are available for
use.

The GT user clocks drive the global clock network via BUFG_GT buffers. There are 24 BUFG_GT
buffers per clock region adjacent to the GTH/GTY columns.

Following is summary information for each of the UltraScale device clock buffers:

BUFGCE

The most commonly used buffer is the BUFGCE. This is a general clock buffer with a clock
enable/disable feature equivalent to the 7 series BUFHCE.

BUFGCE_DIV

The BUFGCE_DIV is useful when a simple division of the clock is required. It is considered
easier to use and more power efficient than using an MMCM or PLL for simple clock division.
When used properly, it can also show less skew between clock domains as compared to an
MMCM or PLL when crossing clock domains. The BUFGCE_DIV is often used as replacement
for the BUFR function in 7 series devices. However, because the BUFGCE_DIV can drive the
global clock network, it is considered more capable than the BUFR component.

BUFGCTRL (also BUFGMUX)

The BUFGCTRL can be instantiated as a BUFGMUX and is generally used when multiplexing
two or more clock sources to a single clock network. As with the BUFGCE and BUFGCE_DIV,
it can drive the clock network for either regional or global clocking.

BUFG_GT

When using clocks generated by GTs, the BUFG_GT clock buffer allows connectivity to the
global clock network. In most cases, the BUFG_GT is used as a regional buffer with its loads
placed in one or two adjacent clock regions. The BUFG_GT has built-in dynamic clock division
capability that you can use in place of an MMCM for clock rate changes.

You can use the Clock Utilization Report in the Vivado IDE to visually analyze clocking resource
utilization and clock routing. The following figure shows the clock resource utilization per clock
region overlaid in the Device window. For more information on this report, see the Vivado Design
Suite User Guide: Design Analysis and Closure Techniques (UG906).

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 89

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=89

iv Xl LI NX Chapter 3: Design Creation
A ®

Figure 53: Clock Utilization Report

Device 00 X
- @ a2 m o 3R B o o

@ Showing Clock Primitives metrics Hide *

ELFGCE ELFGCE

BUFG_GT

Global Clock : o Global Clock Clabnal Clack: 8424

BUFG_GT
< > K
Clock Utilization - 0O0o X
qQalz|2|¢ Q &, ©, @ ClokPrimitives o
General ~ Clock Global Clock BUFGCE BUFCCE_DIV BUFGCTRL BUFC_GT MMCM 1L
Clock Primitive Utilization Region Used Awail Used Awail Used Awail Used Awail Used Awail Used Awail Used Awail
Global Clock Resources XaYo 11 24 4] 4] 4] 0 0 4] 8 24 4] 4] 0 0 -~
Clobal Clock Source Details X1Y0 10 24 o] 4] 4] 4] 4] 4] 0 0 0 0 0 0
~ Clock Regions K2Y0 10 24 Q 24 Q 4 Q 8 Q 0 Q 1 Q 2
Clock Primitives m X3Y0 9 24 0 0 0 0 0 0 0 0 0 0 0 o
Load Primitives = X470 13 24 4 24 0 4 0 g 0 0 1 1 0 2
 C—— T mxsvo 1224 0.0 0.0 0.0 324 0.0 a0 v

dock_utilization_1

For more information on the BUFGCE, BUFGCE_DIV, and BUFGCTRL buffers, see the UltraScale
Architecture Clocking Resources User Guide (UG572). For details on connectivity and use of the
BUFG_GT buffer, see the appropriate UltraScale Architecture Transceiver User Guide:

e UltraScale Architecture GTH Transceivers User Guide (UG576)
e UltraScale Architecture GTY Transceivers User Guide (UG578)

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide l—./—| 90

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug572-ultrascale-clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=90

iv Xl I_l NX Chapter 3: Design Creation
A ®

Global Clock Buffer Connectivity and Routing Tracks

Each of the 24 BUFGCE buffers in a clock region can only drive a specific clock routing track.
However, the BUFGCTRL and BUFGCE_DIV outputs can use any of the 24 tracks by going
through a MUX structure. Each BUFGCE_DIV shares the input connectivity with a specific
BUFGCE site, and each BUFGCTRL shares input connectivity with two specific BUFGCE sites.
Consequently, when BUFGCE_DIV or BUFGCTRL buffers are used in the clock region, use of the
BUFGCE buffers is limited. The following figure shows the bottom 6 BUFGCE in a clock region,
which are replicated 4 times within a clock region.

Note: A global clock net is assigned to a specific track ID in the device for all the vertical, horizontal routing,

and distribution resources the clock uses. A clock cannot change track IDs unless the clock goes through
another clock buffer.

Figure 54: BUFGCE, BUFGCE_DIV, and BUFGCTRL Shared Inputs and Output

Multiplexing
R —
:I » To Track 5 Track 23
BUFGCE_X0Y5
o
° O
| BUFGCE_DIV_X0YO
=I » To Track 4 O
BUFGCE_X0Y4 O
| BUFGCTRL_X0Y1
> » To Track 3
BUFGCE_X0Y3
Track 7——»
MUX
———Track b——»
|:>— » To Track 2
BUFGCE_X0Y2 Track 5 >
Track 4——»
=| » To Track 1 —————Track 3——»
BUFGCE_X0Y1 Track 2
Track 1——»
I BUFGCTRL_X0YO
=I » To Track 0 Track 0 »
BUFGCE_X0YO
X15231-110315

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 91

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=91

iv Xl I_l NX Chapter 3: Design Creation
A ®

Clock Routing, Root, and Distribution

To properly understand the clocking capacity of an UltraScale device and the clocking utilization
of a design, it is important to know how the clock routes use the dedicated routing resources:

From the clock buffer to the clock root, the clock signal goes through one or several segments
of vertical and horizontal routing. Each segment must use the same track ID (between 0 and
23).

At the clock root, the clock signal transitions from the routing track to the distribution track
with the same track ID. To reduce skew, the clock root is usually in the clock region located in
the center of the clock window. The clock window is the rectangular area that includes all the
clock regions where the clock net loads are placed. For skew optimization reasons, the Vivado
IDE might move the clock root to off center.

From the clock root to the CLB columns where the loads are located, the clock signal travels
on the vertical distribution (both up and down the device as needed) and then onto the
horizontal distribution (both to the left and right as needed).

The CLB columns are split into two halves, which are located above and below the horizontal
distribution resources. Each half of the CLB column contains several leaf clock routing
resources that can be reached by any of the horizontal distribution tracks.

In some cases, a clock buffer can directly drive onto the clock distribution track. This usually
happens when the clock root is located in the same clock region as the clock buffer or when the
clock buffer only drives non-clock pins (for example, high fanout nets).

Because clock routing resources are segmented, only the routing and distribution segments used
to traverse a clock region or to reach a load in a clock region are consumed.

The following figure shows how a clock buffer located in clock region X2Y1 reaches its loads
placed inside the clock window, which is formed by a rectangle of clock regions from X1Y3 to
X5Y5.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 92

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=92

iv XI LI NX Chapter 3: Design Creation
A ®

Figure 55: UltraScale Device Clock Routing from Driver to Loads

l/l// 1%
\7 4%
///[//
mz L

Design Implementation: UltraScale Architecture:
Clock Buffer (X2Y1) — Clock Routing and Distribution Tracks
@ Clock Root (X3Y4) ————Clock Region Boundary
s Clock Window (X1Y3->X5Y5)
Clock Regions with Loads

X15389-120619

In the following figure, a routed device view shows an example of a global clock that spans most
of the device. The clock buffer driving the network is highlighted in blue in clock region X2YO0
and drives onto the horizontal routing in that clock region. The net then transitions from the
horizontal routing onto the vertical routing in clock region X2YO reaching the clock root in clock
region X2Y5. All clock routing is highlighted in blue. The clock root is highlighted in red in the
clock region X2Y5. From the clock root in X2Y5, the net transitions onto the vertical distribution
and then the horizontal distribution to the clock leaf pins. The distribution layer and the leaf
clock routing resources in the CLB columns are highlighted in red.

UG949 (v2019.2) December 6, 2019 Send Feodback www.xilinx.com
UltraFast Design Methodology Guide I—\/—i 93

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=93

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 56: Routed Device View of a Routed Clock Network

Device

Q v © IR @S &

Clock Tree Placement and Routing

During the following phases, the Vivado placer determines the placement of MMCM/PLLs, global
clock buffers, and the clock root while honoring the physical XDC constraints:

1. 1/0 and clock placement

The placer places 1/0O buffers and MMCM/PLLs based on connectivity rules and user
constraints. The placer assigns clock buffers to clock regions but not to individual sites unless
constrained using the LOC property. Only the clock buffers that only drive non-clock loads
can move to a different clock region later in the flow based on the placement of their driver
and loads.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 94

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=94

iv Xl I_l NX Chapter 3: Design Creation
A ®

Any placer error at this phase is due to conflicting connectivity rules, user constraints, or
both. The log file shows extensive information about the possible root cause of the error,
which you must review in detail to make the appropriate design or constraint change.

SLR partitioning (SSI technology devices only) and global placement

The placer performs the initial clock tree implementation based on early driver and load
placements. Each clock net is associated with a clock window. The excessive overlap of clock
windows can lead to placer errors due to anticipated clock routing contention.

When a clock partitioning error occurs, the log file shows the last clock budgeting solution
for each clock net as well as the number of unique clock nets present in each clock region.
Review the log file in detail to determine which clocks to remove from the overutilized clock
regions. You can remove clocks using the following methods:

e Reduce the number of clocks in the design by combining identical synchronous clocks,
removing unnecessary MMCM feedback clocks, or consolidating lower fanout clocks with
high fanout clocks.

e Move clock primitives to different clock regions, especially those without connectivity-
based placement rules.

e Add floorplanning constraints on clock loads to keep clocks with smaller fanout closer to
their driver or away from the highly utilized clock regions.

The placer refines the clock tree implementation several times to help improve timing QoR.
For example, during the later placement optimization phases, the placer analyzes each
challenging clock to determine a better clock root location.

Clock tree pre-routing

The placer guides the subsequent implementation steps and provides accurate delay
estimates for post-place timing analysis.

After placement, the Vivado tools can modify the clock tree implementation as follows:

The Vivado physical optimizer can replicate and move cells to clock regions without
associated clocks.

The Vivado router can make adjustments to improve timing QoR and legalize the clock
routing. The Vivado router can also modify the clock root location to improve timing QoR
when you use the Explore routing directive.

The following table summarizes the placement rules for the main clock topologies and how
constraints affect these rules.

Table 3: Topologies with and without Placement Rules

Constrained Source Unconstrained Destination Behavior
GCIO BUFGCE, BUFGCTRL, BUFGCE_DIV, PLL/ Automatically placed in same clock region.
MMCM
PLL/MMCM BUFGCE, BUFGCTRL, BUFGCE_DIV Automatically placed in same clock region.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 95

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=95

iv Xl I_l NX Chapter 3: Design Creation
A ®

Table 3: Topologies with and without Placement Rules (cont'd)

Constrained Source Unconstrained Destination Behavior
GT*_CHANNEL BUFG_GT Automatically placed in same clock region.
BUFGCTRL BUFGCTRL Automatically placed in same clock region.

Note: You can override placement within
same clock region using the
CLOCK_REGION constraint.

BUFG* BUFG* Unpredictable placement of unconstrained
destination BUFG.

Recommend constraining destination
BUFG* using the CLOCK_REGION
constraint.

Note: This excludes BUFGCTRL ->
BUFGCTRL.

BUFG* MMCM/PLL Unpredictable placement of unconstrained
destination MMCM/PLL.

Recommend constraining MMCM/PLL
using a LOC constraint.

Recommend CLOCK_DEDICATED_ROUTE
constraint when the route spans adjacent
or multiple clock regions.

Clocking Capability

Clock planning must be based on the total number of high fanout clocks and low fanout clocks in
the target device.

High Fanout Clocks

A high fanout clock spans almost an entire SLR of an SSI technology device or almost all clock
regions of a monolithic device. The following figure shows a high fanout clock that spans almost
an entire SLR with the BUFGCE driver shown in red.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 96

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=96

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 57: High Fanout Clock Spanning an SLR

Note: Using more than 24 clocks in a design might cause issues that require special design considerations
or other up-front planning.

7:} IMPORTANT! In ZHOLD and BUF_IN compensation modes, the MMCM feedback clock path matches the
CLKOUTO clock path in terms of routing track, clock root location, and distribution tracks. Therefore, the
feedback clock can be considered a high fanout clock when the clock buffer and clock root are far apart.

Related Information
I/0O Timing with MMCM ZHOLD/BUF_IN Compensation

Low Fanout Clocks

In most cases, a low fanout clock is a clock net that is connected to less than 5,000 clock pins,
which are placed in 3 or fewer horizontally adjacent clock regions. The clock routing, clock root,
and clock distribution are all contained within the localized area.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide l—./—l 97

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=97

iv Xl I_l NX Chapter 3: Design Creation
A ®

In some cases, the placer is expected to identify a low fanout clock but fails. This can be caused
by design size, device size, or physical XDC constraints, such as a LOC constraint or Pblock,
which prevent the placer from placing the loads in a local area. To address this issue, you might
need to guide the tool by manually creating a Pblock or modifying the existing physical
constraints.

Clocks driven by BUFG_GTs are an example of a low fanout clock. The Vivado placer
automatically identifies these clock nets and contains the loads to the clock regions adjacent to
the GT interface. The following figure shows a low fanout clock contained in two clock regions
with the BUFG_GT driver shown in red.

O TIP: To contain a low fanout clock to a single clock region, you can use the CLOCK_LOW_FANOUT XDC
constraint.

Figure 58: Low Fanout Clock Contained in Two Clock Regions

Device

Related Information
Using the CLOCK_LOW_FANOUT Constraint

Balanced Utilization of High and Low Fanout Clocks

UltraScale devices support more clocks than previous Xilinx device families. This enables a wide
range of clocking utilization scenarios, such as the following:

e 24 clocks or less

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 98

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=98

iv Xl I_l NX Chapter 3: Design Creation
A ®

Unless conflicting user constraints exist, all clocks can be treated as high fanout clocks
without risking placement or routing contention.

e Almost 300 clocks

For a design that targets a device with 6 clock region rows and includes only low fanout clocks
with each clock included in 3 clock regions at most, the following clocks are required: 6 rows x
2 clock windows per row x 24 clocks per region = 288 clocks.

Low fanout clock windows do not have a fixed size but are usually between 1 and 3 clock
regions. High fanout clocks rarely span the entire device or an entire SLR.

The following method shows how to balance high fanout clocks and low fanout clocks, assuming
that a few low fanout clocks come from I/O interfaces and most from GT interfaces. You can
apply the same method for each SSI technology device SLR.

¢ High fanout clocks

Up to 12 for monolithic devices

. Up to 24 for SSI technology devices (assuming some high fanout clocks are only present in
1SLR)

e Low fanout clocks

Up to 12 plus 8 per GT utilized Quad

Alternatively, up to 12 plus 6 per GT interface (group of GT channels that share the
RXUSRCLK and TXUSRCLK)

Clock Constraints

Physical XDC constraints drive the implementation of clock trees and control the use of high
fanout clocking resources. Because UltraScale device clocking is more flexible than clocking with
previous architectures and includes additional architectural constraints, it is important to
understand how to properly constrain your clocks for implementation.

Using LOC Constraints for IO/MMCM/PLL/GT

To constrain clocks, you can assign placement constraints as follows:

e On aclock input at the I/0O port

Assigning a PACKAGE_PIN constraint for a clock on a GCIO or assigning a LOC to an I0B
affects the clock network. The MMCMY/PLL and clock buffers directly connected to the input
port must be placed in the same clock region.

¢ Onan MMCM or PLL

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 99

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=99

iv Xl I_l NX Chapter 3: Design Creation
A ®

The clock buffers directly connected to the MMCM or PLL outputs and the input clock ports
connected to the MMCM or PLL inputs are automatically placed in the same clock region. If
an input clock port and an MMCM or PLL are directly connected and constrained to different
clock regions, you must manually insert a clock buffer and set a CLOCK_DEDICATED_ROUTE
constraint on the net connected to the MMCM or PLL.

e Ona GT*_CHANNEL or IBUFDS_GTES cell
The BUFG_GTs driven by the cell are placed in the same clock region.

Q CAUTION! Xilinx does not recommended using LOC constraints on the clock buffer cells. This method forces
the clock onto a specific track ID, which can result in placement that cannot be legally routed. Only use LOC
constraints to place high fanout clock buffers in UltraScale devices when you understand the entire clock tree of
the design and when placement is consistent in the design. Even after taking these precautions, collisions might
occur during implementation due to design or constraint changes.

Using the CLOCK_REGION Property on Clock Buffers

You can use the CLOCK_REGION constraint to assign a clock buffer to a clock region without
specifying a site. This gives the placer more flexibility when optimizing all the clock trees and
when determining the appropriate buffer sites to successfully route all clocks.

You can also use a CLOCK_REGION constraint to provide guidance on the placement of
cascaded clock buffers or clock buffers driven by non-clocking primitives, such as fabric logic.

In the following example, the XDC constraint assigns the c1kgen/clkout2_buf clock buffer to
the CLOCK_REGION X2Y2.

set_property CLOCK_REGION X2Y2 [get_cells clkgen/clkout2_buf]

Note: In most cases, the clock buffers are directly driven by input clock ports, MMCMs, PLLs, or
GT*_CHANNELs that are already constrained to a clock region. If this is the case, the clock buffers are
automatically placed in the same clock region, and you do not need to use the CLOCK_REGION constraint.

Using a Pblock to Restrict Clock Buffer Placement

When a clock buffer does not need to be placed in a specific clock region, you can use a Pblock
to specify a range of clock regions. For example, use a Pblock when a BUFGCTRL is needed to
multiplex two clocks that are located in different areas. You can assign the BUFGTRL to a Pblock
that includes the clock regions between the two clock drivers and let the placer identify a valid
placement.

Note: Xilinx does not recommend using a Pblock for a single clock region.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L/—] 100

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=100

iv Xl I_l NX Chapter 3: Design Creation
A ®

Using the USER_CLOCK_ROOT Property on a Clock Net

You can use the USER_CLOCK_ROOT property to force the clock root location of a clock driven
by a clock buffer. Specifying the USER_CLOCK_ROOT property influences the design placement,
because it impacts both insertion delay and skew by modifying the clock routing. The
USER_CLOCK_ROQT value corresponds to a clock region, and you must set the property on the
net segment directly driven by the high fanout clock buffer. Following is an example:

set_property USER_CLOCK_ROOT X2Y3 [get_nets clkgen/wbClk_o]

Figure 59: USER_CLOCK_ROOT Applied on the Net Segment Driven by the Clock Buffer

clkgen

mmaem_adv_inst
CDDCDONE[Y!

CLKFBOUT

CDDCREQ CLKFBOUTE
—CLKFBIN CLKFESTOPPED
CLKINSEL CLKINSTOPPED—

—|CLKING CLKOUTO|—

—lcLkinNz CLKOUTOBIY® CE| clkout2_buf
—|DADDR[6:0] CLKOUTL|— iljo—fhc"‘"’
—DCLK CLKOUT1B[Y® BUFGCE
—|DEN CLKOUT2|—

—{DI[15:0] CLKOUT2B[Y¢

—|DwE CLKOUT3|—

—{PSCLK CLKOUT3B[Y®

—PSEN CLKOUT4—

—|PSINCDEC CLKOUTS

—PWRDWN CLKOUT6[™

—rsT DO[15:0]1~¢

"

DRDY
LOCKED

PSDONE
MMCME3_ADV

|IENENL EREN!

"

3

(=

clock_generator

After placement, you can use the CLOCK_ROOT property to query the actual clock root as
shown in the following example. The CLOCK_ROOT reports the assigned root whether it was
user assigned or automatically assigned by the Vivado tools.

get_property CLOCK_ROOT [get_nets clkgen/wbClk_o]
=> X2Y3

Another way to review the clock root assignments of your implemented design is to use the
report_clock_utilization Tcl command. For example:

report_clock_utilization [-clock_roots_only]

The following figure shows this report.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 101

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=101

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 60: report_clock_utilization Clock Root Assignments

| Index | Clock Net | Root Clock Region
+o—m———- e e e e e e P e L et
| 1 | clkgen/clkfbout_buf | X4Y1

| 2 | clkgen/cpuClk_o | X4Y1

| 3 | clkgen/fftClk_o | X3Y2

| 4 | clkgen/phyClkO_o | X3Y3

| 5 | clkgen/phyClkl_o | X3Y2

| 6 | clkgen/ushClk_o | X3Y3

Using the CLOCK_DELAY_GROUP Constraint on Several Clock Nets

You can use the CLOCK_DELAY_GROUP constraint to match the insertion delay of multiple,
related clock networks driven by different clock buffers. This constraint is commonly used to
minimize skew on synchronous CDC timing paths between clocks originating from the same
MMCM or PLL source. You must set the CLOCK_DELAY_GROUP constraint on the net segment
directly connected to the clock buffer. The following example shows the c1k1_net and
clk2_net clock nets, which are directly driven by the clock buffers:

set_property CLOCK_DELAY_GROUP grpl2 [get_nets {clkl_net clk2_net}]

Related Information
Synchronous CDC

Using the CLOCK_DEDICATED_ROUTE Constraint

The CLOCK_DEDICATED_ROUTE constraint is typically used when driving from a clock buffer in
one clock region to an MMCM or PLL in another clock region. By default, the
CLOCK_DEDICATED_ROUTE constraint is set to TRUE, and the buffer/MMCM or PLL pair must
be placed in the same clock region.

The following table summarizes the different CLOCK_DEDICATED_ROUTE constraint values,
use, and behavior.

Table 4: UltraScale Device CLOCK_DEDICATED_ROUTE Constraint Summary

Value Use Behavior

TRUE Default value on clock nets Global clock buffer and
MMCM/PLLs must be
placed in the same clock
region.

This value ensures the net
is routed using only global
clock resources.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 102

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=102

& XILINX

Chapter 3: Design Creation

Table 4: UltraScale Device CLOCK_DEDICATED_ROUTE Constraint Summary (cont'd)

Value

Use

Behavior

SAME_CMT_COLUMN

Net driven by a global clock buffer or the output of an IBUF
Examples:

set_property CLOCK_DEDICATED_ROUTE SAME_CMT_COLUMN \
[get_nets -of [get_pins BUFGCE_inst/O0]]

set_property CLOCK_DEDICATED_ROUTE SAME_CMT_COLUMN \
[get_nets -of [get_pins IBUF_inst/O]]

MMCM/PLLs must be
placed in a clock region in
the same vertical column.

This value ensures the net
is routed using only global
clock resources.

For optimal results, Xilinx
recommends using a LOC
constraint on the
MMCM/PLL to control
placement of the
MMCM/PLL within in the
same vertical column.

ANY_CMT_COLUMN

Net driven by a global clock buffer

Examples:

set_property CLOCK_DEDICATED_ROUTE ANY_CMT_COLUMN \
[get_nets -of [get_pins BUFGCE_inst/O]]
set_property CLOCK_DEDICATED_ROUTE ANY_CMT_COLUMN \
[get_nets -of [get_pins BUFGCE_DIV_inst/0]]
set_property CLOCK_DEDICATED_ROUTE ANY_CMT_COLUMN \
[get_nets -of [get_pins BUFGCTRL_inst/O]]

MMCM/PLLs can be placed
in any clock region with
available resources.

This value ensures the net
is routed using only global
clock resources.

For optimal results, Xilinx
recommends using a LOC
constraint on the
MMCM/PLL to control
placement of the
MMCM/PLL within the
device.

FALSE

Clock net not driven by a global clock buffer but part of the clock
network (for example, nets driven by the output of an IBUF or nets
directly connected to output clock pins of an MMCM)

Examples:

set_property CLOCK_DEDICATED_ROUTE FALSE \
[get_nets -of [get_pins MMCME4_ADV_inst/CLKOUTO]]
set_property CLOCK_DEDICATED_ROUTE FALSE \
[get_nets -of [get_pins IBUF_inst/O]]

Net is routed using fabric
and global clock resources.

This can adversely affect
the timing and
performance of the clock
network.

IMPORTANT! For
UltraScale devices,
the FALSE value must
only be used when a
clock normally
routed with global
clock resources
needs to be routed
with fabric resources
for special design
reasons.

Note: When working with UltraScale devices, do not apply the CLOCK_DEDICATED_ROUTE property to
the net driven directly by a port. Instead, apply the CLOCK_DEDICATED_ROUTE property to the output

of the IBUF.

www.Xilinx.com

UG949 (v2019.2) December 6, 2019

UltraFast Design Methodology Guide 103

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=103

iv Xl I_l NX Chapter 3: Design Creation
A ®

Constraint Example for Vertically Adjacent Clock Regions

When driving from a clock buffer in one clock region to a MMCM or PLL in a vertically adjacent
clock region, you must set the CLOCK_DEDICATED_ROUTE to BACKBONE for 7 series devices
or to SAME_CMT_COLUMN for UltraScale devices. This prevents implementation errors and
ensures that the clock is routed with global clock resources only. The following example and
figure show a clock buffer driving two PLLs in vertically adjacent clock regions.

set_property CLOCK_DEDICATED_ROUTE SAME_CMT_COLUMN [get_nets -of [get_pins BUFG_inst_0/0]]

set_property LOC PLLE3_ADV_XO0YO [get_cells PLLE3_ADV_dinst_0]
set_property LOC PLLE3_ADV_X0Y4 [get_cells PLLE3_ADV_inst_1]

Figure 61: CLOCK_DEDICATED_ROUTE Constraint Set to SAME_CMT_COLUMN

Device

Q@ a2 B0 T h E & &

Schematic

e] HoE O C &

PLLE3_ADV_inst_0
6 80r6 o0 e _'_"m_ﬁ«muff:
| b o ——{cuan CLKOUTPHY
e (CLKOUTPHYEN CLKOUTD o
—DADDRI6:0) CLKOUTOB
—{pax cuoumy ¢
—foen ot
={DI[15:0] pofIs0l ="
ipwE prov |
—PWRDWN Locken(X®
—rsT
FLLES_ADV
PLLE3_ADV_inst_1
Jewkram curaout] ¥
LKIN cLkouTPHY[
—{CLKOUTPHYEN CLKOUTO|
—DADDR[6:0] curouTos(
iDaLK cuouT €
—{oen cwoutisft®
—oi{15:0] |m||5r:]iEL
(DWE pRoY [
[PWRDWN u)cx&[:!”
—RsT

FLLES_ADV

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 104

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=104

iv Xl I_l NX Chapter 3: Design Creation
A ®

Constraint Example for Non-Vertically Adjacent Clock Regions

When driving from a clock buffer to other clock regions that are not vertically adjacent, you must
set the CLOCK_DEDICATED_ROUTE to FALSE for 7 series devices or to ANY_CMT_COLUMN
for UltraScale devices. This prevents implementation errors and ensures that the clock is routed
with global clock resources only. The following example and figure show a BUFGCE driving two
PLLs that are not located on the same clock region column as the input buffer.

set_property CLOCK_DEDICATED_ROUTE ANY_CMT_COLUMN [get_nets -of [get_pins BUFG_inst_0/0]]

set_property LOC PLLE3_ADV_X1Y0 [get_cells PLLE3_ADV_inst_0]
set_property LOC PLLE3_ADV_X1Y4 [get_cells PLLE3_ADV_inst_1]

Figure 62: CLOCK_DEDICATED_ROUTE Set to ANY_CMT_COLUMN

Device

Schematic

PLLEJ_ADV_inst 0
i

CE| BUFG_inst_0 - e
1 -b [[r——— CLKIN CLKOUTPHY =

CLKOUTPHYEN CLKOUTD)

DADDRE:0) cLrouTos|X*
oAk cxouT €
DEN cLrouTIBf
oi{15:0] po15:0)~°
-owe oroy
—PWRDWN rockep (™
—rsT
FLLES_ADV

PULEI_ADY_inst_1
—Jewkran curaouT]™®

LKIN cLkouTeHY| "

—{CLEQUTPHYEN CLKQUTO—
—DADDR[6:0] cLrouToa
baK cuouTL "
—Dpen cLkouTIBE
~=\Di{ 15:0] Do[15:0]1=°
OWE oRDY (¢
PWROWN LOCKED X

FLLES_ADV

Using the CLOCK_LOW_FANOUT Constraint

You can use the CLOCK_LOW_FANOUT constraint to contain the loads of a clock buffer in a
single clock region. You can set the CLOCK_LOW_FANOUT constraint on a clock net segment
directly driven by a global clock buffer or on a list of flip-flops.

Note: The CLOCK_LOW_FANOUT constraint takes lower precedence when used in conjunction with other
clocking constraints. If CLOCK_LOW_FANOUT is in conflict with other clock constraints, such as
USER_CLOCK_ROOT, CLOCK_DELAY_GROUP, or CLOCK_DEDICATED_ROUTE, CLOCK_LOW_FANOUT
is not obeyed.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 105

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=105

iv Xl I_l NX Chapter 3: Design Creation
A ®

Constraint Example for Flip-Flops

Setting the CLOCK_LOW_FANOUT constraint on a list of flip-flops driven by a global clock
buffer causes opt _design to create a new parallel global clock buffer to isolate the flip-flops.
During place_design, the isolated flip-flops that are driven by the newly created parallel
global clock buffer are contained to a single clock region.

The following example shows the CLOCK_LOW_FANOUT constraint applied to a list of flip-flops
that are used as part of a clock gating synchronization circuit to control the clock enable of a
global clock buffer.

set_property CLOCK_LOW_FANOUT TRUE [get_cells safeClockStartup_regl[*]]

In the design, an always-on clock network initially drives more than 2000 loads, including the
flip-flops that are part of the clock gating synchronization circuit used to clock gate other logic.
The following schematics show the clock gating synchronization circuit and additional logic
connected to the always-on block network before and after opt _design creates a new parallel
global clock buffer to isolate the clock gating synchronization circuit.

Figure 63: opt_design Transform with CLOCK_LOW_FANOUT Applied to Flip-Flops

The Device view of the fully implemented design shows the clock gating synchronization circuit
with green markers along with the always-on logic and clock-gated logic. The clock gating
synchronization circuit is placed in the same CLOCK_REGION as the MMCM, close to the global
clock buffers.

UG949 (v2019.2) December 6, 2019 send Feedback www.xilinx.com
UltraFast Design Methodology Guide L\/—] 106

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=%20UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.2&docPage=106

iv Xl I_l NX Chapter 3: Design Creation
A ®

Figure 64: Fully Implemented Design with Placement of Clock Gating Synchronization
Circuit

Constraint Example for Clock Nets

If you set the CLOCK_LOW_FANOUT property on a clock net segment directly driven by a global
clock buffer and the fanout of the global clock buffer is less than 2000 loads, the placement of

the loads is contained to a single clock region.

UG949 (v2019.