
Vivado Design Suite
User Guide

Using Constraints

UG903 (v2020.1) August 17, 2020

See all versions
of this document

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG903

Using Constraints 2
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
08/17/2020 Version 2020.1

General Release Updates N/A

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=2

Using Constraints 3
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Table of Contents
Revision History . 2

Chapter 1: Introduction
Migrating From UCF Constraints to XDC Constraints . 6
About XDC Constraints . 6

Chapter 2: Constraints Methodology
About Constraints Methodology . 8
Organizing Your Constraints . 8
Ordering Your Constraints. 12
Entering Constraints . 18
Creating Synthesis Constraints . 58
Creating Implementation Constraints . 64
Constraints Scoping . 67
Constraints Efficiency . 74

Chapter 3: Defining Clocks
About Clocks. 80
Primary Clocks . 82
Virtual Clocks . 85
Generated Clocks . 86
Clock Groups. 95
Clock Latency, Jitter, and Uncertainty . 98

Chapter 4: Constraining I/O Delay
About Constraining I/O Delay . 101
Input Delay . 101
Output Delay . 104

Chapter 5: Timing Exceptions
About Timing Exceptions. 108
Multicycle Paths. 109
False Paths . 124

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=3

Using Constraints 4
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Min/Max Delays. 128
Case Analysis . 136
Disabling Timing Arcs. 138

Chapter 6: CDC Constraints
About CDC Constraints . 140
Constraining Bus Skew. 140

Chapter 7: XDC Precedence
About XDC Precedence . 146
XDC Constraints Order. 146
Exceptions Priority . 146

Chapter 8: Physical Constraints
About Physical Constraints . 149
Netlist Constraints . 150
I/O Constraints . 152
Placement Constraints. 154
Routing Constraints . 156
Configuration Constraints . 158

Chapter 9: Defining Relatively Placed Macros
About Relatively Placed Macros . 159
Defining Sets of Design Elements . 159
Creating an RPM. 160
Assigning Cells to RPM Sets. 160
Assigning Relative Locations . 163
Assigning a Fixed Location to an RPM . 167
XDC Macros . 168
Converting RPMs to XDC Macros . 181

Appendix A: Supported XDC and SDC Commands
Valid Commands in an XDC File . 183
Supported SDC Commands . 184
Unsupported SDC Commands . 195

Appendix B: Additional Resources and Legal Notices
Xilinx Resources . 196
Solution Centers. 196
Documentation Navigator and Design Hubs . 196

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=4

Using Constraints 5
UG903 (v2020.1) August 17, 2020 www.xilinx.com

References . 197
Training Resources. 197
Please Read: Important Legal Notices . 198

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=5

Using Constraints 6
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 1

Introduction

Migrating From UCF Constraints to XDC Constraints
The Xilinx® Vivado® Integrated Design Environment (IDE) uses Xilinx Design Constraints
(XDC), and does not support the legacy User Constraints File (UCF) format.

There are key differences between Xilinx Design Constraints (XDC) and User Constraints File
(UCF) constraints. XDC constraints are based on the standard Synopsys® Design Constraints
(SDC) format. SDC has been in use and evolving for more than 20 years, making it the most
popular and proven format for describing design constraints.

VIDEO: For training on migrating UCF constraints to XDC, see the Vivado Design Suite QuickTake
Video: Migrating UCF Constraints to XDC.

If you are familiar with UCF but new to XDC, see the "Differences Between XDC and UCF
Constraints" section in the Migrating UCF Constraints to XDC chapter of the ISE to Vivado
Design Suite Migration Guide (UG911) [Ref 1]. That chapter also describes how to convert
existing UCF files to XDC as a starting point for creating XDC constraints.

IMPORTANT: XDC has fundamental differences from UCF that must be understood in order to properly
constrain a design. The UCF to XDC conversion utility is not a replacement for properly understanding
and creating XDC constraints. Each XDC constraint is described in this User Guide.

About XDC Constraints
XDC constraints are a combination of industry standard Synopsys Design Constraints (SDC
version 1.9) and Xilinx proprietary physical constraints.

XDC constraints have the following properties:

• They are not simple strings, but are commands that follow the Tcl semantic.
• They can be interpreted like any other Tcl command by the Vivado Tcl interpreter.
• They are read in and parsed sequentially the same as other Tcl commands.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/migrating-ucf-constraints-to-xdc.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/migrating-ucf-constraints-to-xdc.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug911-vivado-migration.pdf;a=MigratingUCFConstraintsToXDC
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=6

Using Constraints 7
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 1: Introduction

You can enter XDC constraints in several ways, at different points in the flow.

• Store the constraints in one or more XDC files.

To load the XDC file in memory, do one of the following:

° Use the read_xdc command.

° Add it to one of your project constraints sets. XDC files only accept the set, list,
and expr built-in Tcl commands. See Appendix A, Supported XDC and SDC
Commands for a complete list of supported commands.

• Generate the constraints with an unmanaged Tcl script.

To execute the Tcl script, do one of the following:

° Run the source command.

° Use the read_xdc -unmanaged command.

° Add the Tcl script to one of your project constraints sets.

TIP: Unlike XDC files, unmanaged Tcl scripts can include any common Tcl command for selecting
design objects and defining design constraints, including conditional and looping control structures.

IMPORTANT: The Vivado Design Suite allows you to mix XDC files and Tcl scripts in the same
constraints set. Modified constraints are saved back to their original location only if they originally
came from an XDC file, and not from an unmanaged Tcl script. A constraint generated by a Tcl script is
not managed by the Vivado Design Suite and cannot be interactively modified. For more information,
see Chapter 2, Constraints Methodology.

IMPORTANT: For XDC constraints, there is a difference in behavior between the commands source
and read_xdc. The constraints imported with the source command are not saved in the checkpoint
in the same order as they are imported. The constraints imported with read_xdc are saved first and
then those imported with source. To save all the constraints in the same order as they are applied to
the design, use read_xdc -unmanaged instead of source.

To validate the syntax or impact of a particular constraint after loading your design in
memory, use the Tcl console and the Vivado Design Suite reporting features. This is
particularly powerful for analyzing and debugging timing constraints and physical
constraints.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf;a=xread_xdc
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=7

Using Constraints 8
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2

Constraints Methodology

About Constraints Methodology
Design constraints define the requirements that must be met by the compilation flow in
order for the design to be functional on the board. Not all constraints are used by all steps
in the compilation flow. For example, physical constraints are used only during the
implementation steps (that is, by the placer and the router).

Because the Xilinx® Vivado® Integrated Design Environment (IDE) synthesis and
implementation algorithms are timing-driven, you must create proper timing constraints.
Over-constraining or under-constraining your design makes timing closure difficult. You
must use reasonable constraints that correspond to your application requirements.

Organizing Your Constraints
The Vivado IDE allows you to use one or many constraint files. While using a single
constraint file for the entire compilation flow might seem more convenient, it can be a
challenge to maintain all the constraints as the design becomes more complex. This is
usually the case for designs that use several IP cores or large blocks developed by different
teams.

After the timing and physical constraints have been imported, independent of the number
of source files or whether the design is in Project or Non-Project mode, all the constraints
can be exported as a single file with the write_xdc command. The constraints are written
to the specified output file in the same order that they were read into the project or design.
The command line option write_xdc -type can be used to select a subset of constraints
(timing, physical, or waiver) to export.

RECOMMENDED: Xilinx recommends that you separate timing constraints and physical constraints by
saving them into two distinct files. You can also keep the constraints specific to a certain module in a
separate file.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=8

Using Constraints 9
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Project Flows
You can add your Xilinx Design Constraints (XDC) files to a constraints set during the
creation of a new project, or later, from the Vivado IDE menus.

Figure 2-1 shows two constraint sets in a project, which are single- or multi-XDC. The first
constraint set includes two XDC files. The second constraint set uses only one XDC file
containing all the constraints.

IMPORTANT: If your project contains an IP that uses its own constraints, the corresponding constraint
file does not appear in the constraints set. Instead, it is listed along with the IP source files.

You can also add Tcl scripts to your constraints set as unmanaged constraints or
unmanaged Tcl scripts. The Vivado Design Suite does not write modified constraints back
into an unmanaged Tcl script. Tcl scripts and XDC files are loaded in the same sequence as
displayed in the Vivado IDE (if they belong to the same PROCESSING_ORDER group) or as
reported by the command report_compile_order -constraints.

An XDC file or a Tcl script can be used in several constraints sets if needed. For more
information on how to create and add constraint files and constraints sets to your project,
see Working with Constraints in the Vivado Design Suite User Guide: System-Level Design
Entry (UG895) [Ref 2].

X-Ref Target - Figure 2-1

Figure 2-1: Single or Multi XDC

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug895-vivado-system-level-design-entry.pdf;a=xWorkingWithConstraints
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug912-vivado-properties.pdf;a=xPROCESSING_ORDER
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_compile_order
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=9

Using Constraints 10
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Non-Project Flows
In Non-Project Mode, you must read each file individually before executing the compilation
commands.

The example script below shows how to use one or more XDC files for synthesis and
implementation.

Example Script:

read_verilog [glob src/*.v]
read_xdc wave_gen_timing.xdc
read_xdc wave_gen_pins.xdc
synth_design -top wave_gen -part xc7k325tffg900-2
opt_design
place_design
route_design

Out-of-Context Constraints
In designs using Dynamic Function eXchange (DFX), it is common to synthesize parts of the
design in an Out-of-Context (OOC) approach. When such a flow is used, some constraints
can be specified for the OOC synthesis only. For example, clocks that propagate at the input
boundary of the blocks must be defined when the blocks are synthesized OOC. These clocks
are defined inside an OOC XDC file.

In Project Mode:

add_file constraints_ooc.xdc
set_property USED_IN {synthesis out_of_context} [get_files constraints_ooc.xdc]

The Out-of-Context can also be set on the XDC file through the GUI (property on file
constraints_ooc.xdc).

In Non-Project Mode:

read_xdc -mode out_of_context constraints_ooc.xdc

Synthesis and Implementation Constraint Files
By default, all XDC files and Tcl scripts added to a constraint set are used for both synthesis
and implementation. Set the USED_IN_SYNTHESIS and USED_IN_IMPLEMENTATION
properties on the XDC file or the Tcl script to change this behavior. This property can take
the value of either TRUE or FALSE.

IMPORTANT: The DONT_TOUCH attribute does not obey the properties of USED_IN_SYNTHESIS and
USED_IN_IMPLEMENTATION. If you use DONT_TOUCH properties in the synthesis XDC, it is
propagated to implementation regardless of the value of USED_IN_IMPLEMENTATION.
For more information about the DONT_TOUCH attribute, refer to RTL Attributes, page 58.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=10

Using Constraints 11
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

IMPORTANT: If any module (IP/BD/...) is synthesized in Out-Of-Context (OOC) mode, the top-level
synthesis run infers a black box for these modules. Hence, the top-level synthesis constraints will not be
able to reference objects such as pins, nets, cells, etc., that are internal to the OOC module. If some
top-level constraints refer to objects inside any OOC module, you may need to split the constraints into
2 files: one XDC file for Synthesis (USED_IN_SYNTHESIS=TRUE / USED_IN_IMPLEMENTATION=FALSE)
and one XDC file for implementation (USED_IN_SYNTHESIS=FALSE /
USED_IN_IMPLEMENTATION=TRUE). There is no such limitation during implementation since the
netlists from the OOC module DCPs are linked with the netlist produced when synthesizing the
top-level design files, and the Vivado Design Suite resolves the black boxes. The XDC output products
that were generated for use during implementation are applied along with any user constraints.

For example, to use a constraint file for implementation only:

1. Select the constraint file in the Sources window.
2. In the Source File Properties window:

a. Uncheck Synthesis.
b. Check Implementation.

The equivalent Tcl commands are:

set_property USED_IN_SYNTHESIS false [get_files wave_gen_pins.xdc]
set_property USED_IN_IMPLEMENTATION true [get_files wave_gen_pins.xdc]

X-Ref Target - Figure 2-2

Figure 2-2: Source File Properties Window

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=11

Using Constraints 12
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

When running Vivado in Non-Project Mode, you can read in the constraints directly
between any steps of the flow. The properties USED_IN_SYNTHESIS and
USED_IN_IMPLEMENTATION do not matter in this mode.

The following compilation Tcl script shows how to read two XDC files for different steps of
the flow:

read_verilog [glob src/*.v]
read_xdc wave_gen_timing.xdc
synth_design -top wave_gen -part xc7k325tffg900-2
read_xdc wave_gen_pins.xdc
opt_design
place_design
route_design

TIP: The constraints read in after synthesis are applied in addition to the constraints read in before
synthesis.

Ordering Your Constraints
Because XDC constraints are applied sequentially, and are prioritized based on clear
precedence rules, you must review the order of your constraints carefully. For more
information, see Chapter 7, XDC Precedence.

Note: If multiple physical constraints are conflicting, the latest constraint wins. For example, if an
I/O port gets assigned a different location (LOC) through multiple XDC files, the latest location
assigned to the port takes precedence.

The Vivado IDE provides full visibility into your design. To validate your constraints step by
step:

1. Run the appropriate report commands.
2. Review the messages in the Tcl Console or the Messages window.

Table 2-1: Reading XDC Files Before and After Synthesis
File Name File Placement Used For

wave_gen_timing.xdc Before synthesis • Synthesis
• Implementation

wave_gen_pins.xdc After synthesis • Implementation

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=12

Using Constraints 13
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Recommended Constraints Sequence
RECOMMENDED: Whether you use one or several XDC files for your design, organize your constraints
in the following sequence.

Timing Assertions Section
Primary clocks
Virtual clocks
Generated clocks
Clock Groups
Bus Skew constraints
Input and output delay constraints

Timing Exceptions Section
False Paths
Max Delay / Min Delay
Multicycle Paths
Case Analysis
Disable Timing

Physical Constraints Section
located anywhere in the file, preferably before or after the timing constraints
or stored in a separate constraint file

Note: The case analysis constraints that change the clock relationships or clock propagation should
be defined prior to defining the generated clocks. This includes the case analysis defined on clock
buffers that result in the output clock of the buffer to be impacted by the case analysis.

Start with the clock definitions. The clocks must be created before they can be used by any
subsequent constraints. Any reference to a clock before it has been declared results in an
error and the corresponding constraint is ignored. This is true within an individual
constraint file, as well as across all the XDC files (or Tcl scripts) in your design.

The order of the constraint files matters. You must be sure that the constraints in each file
do not rely on the constraints of another file. If this is the case, you must read the file that
contains the constraint dependencies last. If two constraint files have interdependencies,
you must either merge them manually into one file that contains the proper sequence, or
divide the files into several separate files and order them correctly.

Constraints Sequence Editing
The Vivado IDE constraints manager saves any edited constraint back to its original location
in the XDC files, but not in Tcl scripts. Any new constraint is saved at the end of the XDC file
marked as target. In many cases, when your constraints set contains several XDC files, the
target constraint file is not the last file in the list, and will not be loaded last when opening
or reloading your design. As a consequence, the constraints sequence saved to constraint
source files can be different from the one you had previously in memory.

IMPORTANT: You must verify that the final sequence stored in the constraint files still works as
expected. If you must modify the sequence, you must modify it by directly editing the constraint files.
This is especially important for timing constraints.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=13

Using Constraints 14
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Constraint Files Order
In a project flow without any IP, all the constraints are located in a constraints set. By
default, the order of the XDC files (or Tcl scripts) displayed in the Vivado IDE defines the
read sequence used by the tool when loading an elaborated or synthesized design into
memory. The file at the top of the list is read in first, and the bottom one is read in last. You
can change the order by simply selecting the file in the IDE, and moving it to the desired
place in the list.

For example, in Figure 2-3, the file wave_gen_pin.xdc was moved to before the file
wave_gen_timing.xdc by using drag and drop.

The equivalent Tcl command is:

reorder_files -fileset constrs_1 -before [get_files wave_gen_timing.xdc] \
[get_files wave_gen_pins.xdc]

In Non-Project Mode, the sequence of the read_xdc calls determine the order in which the
constraint files are evaluated.

Constraint Files Order with IP Cores

Many IP cores are delivered with one or more XDC files. When such IP cores are generated
within your RTL project, their XDC files are also used during the various design compilation
steps.

For example, Figure 2-4 shows that one of the IP cores in the project comes with an XDC
file.

X-Ref Target - Figure 2-3

Figure 2-3: Changing XDC File Order in the Vivado IDE Example

Table 2-2: File Order Before and After
File Order (Before) Order (After)

wave_gen_timing.xdc 1 2
wave_gen_pins.xdc 2 1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=14

Using Constraints 15
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

By default, IP XDC files are read in before the user XDC files. Processing it in this way allows
an IP to create a clock object that can be referenced in the XDC. It also allows you to
overwrite physical constraints set by an IP core because the user constraints are evaluated
after the IP. There is an exception to this order for the IP cores that have a dependency on
clock objects being created by the user or by another IP (for example, get_clocks
-of_objects [get_ports clka]). In this case, the IP XDC is read after the user files.

This behavior is controlled by the PROCESSING_ORDER property, set for each XDC file:

• EARLY: Files that must be read first
• NORMAL: Default
• LATE: Files that must be read last

An IP XDC will have its PROCESSING_ORDER property set to either EARLY or LATE. No IP
delivers XDC files that belong to the NORMAL constraints group. For user XDC (or Tcl) files
that belong to the same PROCESSING_ORDER group, their relative order displayed in the
Vivado IDE determines their read sequence. The order within the group can be modified by
moving the files in the Vivado IDE constraints set, or by using the reorder_files
command.

For IP XDC files that belong to the same PROCESSING_ORDER group, the order is
determined by import or creation sequence of the IP cores. This order cannot be changed
after the project has been created.

X-Ref Target - Figure 2-4

Figure 2-4: XDC Files in the IP Sources

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=15

Using Constraints 16
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Finally, the relative order between user groups and IP XDC PROCESSING_ORDER groups are
as follows:

1. User Constraints marked as EARLY
2. IP Constraints marked as EARLY (default)
3. User Constraints marked as NORMAL
4. IP Constraints marked as LATE (contain clock dependencies)
5. User Constraints marked as LATE
Note: IP XDC files that have their PROCESSING_ORDER set to LATE (in order to be processed after
the user constraints) are named <IP_NAME>_clocks.xdc.

The following figure shows an example of how to set the PROCESSING_ORDER property:

The equivalent Tcl command is:

set_property PROCESSING_ORDER EARLY [get_files wave_gen_pins.xdc]

RECOMMENDED: Use the report_compile_order -constraints command in the Tcl console to
report the XDC files read sequence determined by the tool based the properties mentioned above,
including IS_ENABLED, USED_IN_SYNTHESIS, and USED_IN_IMPLEMENTATION.

Note: When an IP is synthesized Out of Context, the IP provides, when needed, an _occ.xdc file
which contains the default clock definition. The _ooc.xdc has the USED_IN property set to "synthesis
out_of_context implementation" (order does not matter). During the Out Of Context synthesis, the
_occ file is always processed before all other constraints.

Changing Read Order
To change the read order of an XDC file or unmanaged Tcl script in a constraints set:

1. In the Sources window, select the XDC file or Tcl script you want to move.
2. Drag and drop the file to the desired position in the constraints set.

For the example shown in Figure 2-3, the equivalent Tcl command is:

reorder_files -fileset constrs_1 -before [get_files wave_gen_timing.xdc] \
[get_files wave_gen_pins.xdc]

In Non-Project Mode, the sequence of the read_xdc or source commands determines
the order the constraint files are read.

X-Ref Target - Figure 2-5

Figure 2-5: Setting the XDC File PROCESSING_ORDER Example

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=16

Using Constraints 17
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

If you use an IP core that comes with constraints, two groups of constraints are handled
automatically as follows:

• Constraints that do not depend on clocks are grouped in an XDC file with
PROCESSING_ORDER set to EARLY,

• Constraints that depend on clocks are grouped in an XDC file with
PROCESSING_ORDER set to LATE.

By default, user XDC files belong to the PROCESSING_ORDER NORMAL group. They are
loaded after EARLY XDC files and before LATE XDC files. For each PROCESSING_ORDER
group, IP XDC files are loaded in the same sequence as how the IP cores are listed in the IP
Sources window. For example, the following figure shows one of the project IP cores that
comes with an XDC file.

When you open your design, the log file shows that the IP XDC file was loaded last:

Parsing XDC File [C:/project_wave_gen_hdl.srcs/sources_1/ip/clk_core/clk_core.xdc]
for cell 'clk_gen_i0/clk_core_i0/inst'
Finished Parsing XDC File
[C:/project_wave_gen_hdl.srcs/sources_1/ip/clk_core/clk_core.xdc] for cell
'clk_gen_i0/clk_core_i0/inst'
Parsing XDC File
[C:/project_wave_gen_hdl.srcs/sources_1/ip/char_fifo/char_fifo/char_fifo.xdc] for
cell 'char_fifo_i0/U0'

X-Ref Target - Figure 2-6

Figure 2-6: XDC Files in the IP Sources

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=17

Using Constraints 18
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Finished Parsing XDC File
[C:/project_wave_gen_hdl.srcs/sources_1/ip/char_fifo/char_fifo/char_fifo.xdc] for
cell 'char_fifo_i0/U0'
Parsing XDC File
[C:/project_wave_gen_hdl.srcs/constrs_1/imports/verilog/wave_gen_timing.xdc]
Finished Parsing XDC File
[C:/project_wave_gen_hdl.srcs/constrs_1/imports/verilog/wave_gen_timing.xdc]
Parsing XDC File
[C:/project_wave_gen_hdl.srcs/sources_1/ip/char_fifo/char_fifo/char_fifo_clocks.xdc
] for cell 'char_fifo_i0/U0'
Finished Parsing XDC File
[C:/project_wave_gen_hdl.srcs/sources_1/ip/char_fifo/char_fifo/char_fifo_clocks.xdc
] for cell 'char_fifo_i0/U0'
Completed Processing XDC Constraints

Unlike with the User XDC files, you cannot directly change the read order of the IP XDC files
that belong to the same PROCESSING_ORDER group. If you must modify the order, do the
following:

1. Disable the corresponding IP XDC files (IS_ENABLED set to false).
2. Copy their content.
3. Paste the content into one of the XDC files included in your constraints set.
4. Update the copied IP XDC commands with the full hierarchical netlist object path names

wherever needed. Doing so is required because the IP XDC constraints are written in
such a manner that they can be scoped to the IP instance.

5. Review the get_ports queries that are processed in a special way for scoped
constraints. For more information on XDC scoping, see Constraints Scoping, page 67.

Entering Constraints
The Vivado IDE provides several ways to enter constraints. Unless you directly edit the XDC
file in a text editor, you must open a design database (elaborated, synthesized or
implemented) in order to access the constraints windows in the Vivado IDE.

Saving Constraints in Memory
You must have a design in memory to validate your constraints during editing. When you
edit a constraint using the Vivado IDE user interface, the equivalent XDC command is issued
in the Tcl Console in order to apply it in memory. An edited timing constraint must be
applied in memory before it can be saved to the XDC file.

Before you can run synthesis or implementation, you must save the constraints in memory
back to an XDC file that belongs to the project. The Vivado IDE prompts you to save your
constraints whenever necessary.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=18

Using Constraints 19
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Do one of the following to save your constraints manually:

• Click Save Constraints.
• Select File > Constraints > Save.
Note: When you save the in-memory constraints, a dialog box opens to remind you that this could
cause the synthesis and implementation to go out of date. Select the Remember Preference check
box on this dialog box to disable future instances of this warning.

When you run these commands, Vivado does the following:

• Saves all new constraints to the XDC file marked target in the constraints set
associated with your design.

• Saves all edited constraints back to the XDC file from which they originated.
Note: The constraints management system preserves the original XDC files format as much as
possible.

Constraints Editing Flow Options
Figure 2-7 shows the recommended flow options. Do not use both options at the same
time. Mixing these options might cause you to lose constraints. The recommended flow
options are:

• User Interface Option
• Hand Edit Option

User Interface Option

Because the Vivado IDE manages your constraints, you must not edit your XDC files at the
same time. When the Vivado IDE saves the memory content, the following occurs:

• The modified constraints replace the original constraints in their original file.
• The new constraints are appended to the file marked as target.
• All manual edits in the XDC files are overwritten.

Hand Edit Option

When you use the Hand Edit option, you are in charge of editing and maintaining the XDC
files. While you will probably use the Tcl Console to verify the syntax of some constraints,
you must discard the changes made in memory when closing or reloading your design.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=19

Using Constraints 20
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

In case of a conflict when saving the constraints, you are prompted to choose one of the
following:

• Discarding the changes made in memory
• Saving the changes in a new file
• Overwriting the XDC files

Constraints creation is iterative. You can use IDE editors in some cases, and hand edit the
constraint files in others.

Within each iteration described in Figure 2-7, do not use both options at the same time.

If you switch between the two options, you must first save your constraints or reload your
design, to ensure that the constraints in memory are properly synchronized with the XDC
files.

X-Ref Target - Figure 2-7

Figure 2-7: Constraints Editing Flow

Load your design in memory

Vivado
Database

Analyze your design
schematics/Device/Reports)

Need more
constraints?

Use Vivado IDE editors
(Device/Physical/Timing/
Others...) or Tcl Console

1. Edit XDC files in Text Editor
2. Save your XDC files
3. Reload your design

Close your design / Run compilation:
GUI Option: save changes to XDC file(s) (new or existing)
Hand Edit Option: do nothing (or discard any changes)

NO

YES (GUI Option) YES (Hand Edit Option)

X12983

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=20

Using Constraints 21
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Pin Assignment
To create and edit existing top-level ports placement when using the RTL Analysis,
Synthesis, or Implementation views:

1. Select the I/O Planning pre-configured layout.

2. Open the windows shown in Table 2-3.

For more information on Pin Assignment, see this link in the Vivado Design Suite User Guide:
I/O and Clock Planning (UG899) [Ref 3].

X-Ref Target - Figure 2-8

Figure 2-8: IO Planning Layout

Table 2-3: Creating and Editing Existing Top-Level Ports Placement
Window Function

Device View and edit the location of the ports on the device floorplan.
Package View and edit the location of the ports on the device package.
I/O Ports Select a port, drag and drop it to a location on the Device or Package view, as

well as review current assignment and properties of each port.
Package Pins View the resource utilization in each I/O bank.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug899-vivado-io-clock-planning.pdf;a=xIOPinPlanning
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=21

Using Constraints 22
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Floorplanning
To create and edit Pblocks when using the RTL Analysis, Synthesis, or Implementation views:

1. Select the Floorplanning pre-configured layout.

2. Open the windows shown in Table 2-4.

To create cell placement constraints on a particular BEL or SITE:

1. Select the cell in the Netlist view.
2. Drag and drop the cell to the target location in the Device view.

For more information on Floorplanning, see this link in the Vivado Design Suite User Guide:
Design Analysis and Closure Techniques (UG906) [Ref 4].

X-Ref Target - Figure 2-9

Figure 2-9: Floorplanning Layout

Table 2-4: Creating and Editing Pblocks
Window Function

Netlist Select the cells to be assigned to a Pblock.
Physical Constraints Review the existing Pblocks and their properties.
Device Create or edit the shape and location of your Pblocks in the device.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug906-vivado-design-analysis.pdf;a=Floorplanning
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=22

Using Constraints 23
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Timing Constraints Wizard
The Timing Constraints Wizard identifies missing timing constraints on a synthesized or
implemented design. It analyzes the netlist, the clock nets connectivity, and the existing
timing constraints in order to provide recommendations as per the UltraFast Design
Methodology Guide for the Vivado Design Suite (UG949) [Ref 5]. Three categories of
constraints are covered by the following 11 pages of the wizard, followed by a summary.
The following steps are included:

• Clocks

° Primary clocks

° Generated clocks

° Forwarded clocks

° External feedback delays
• Input and output ports

° Input delays

° Output delays

° Combinatorial delays
• Clock domain crossings

° Physically exclusive clock groups

° Logically exclusive clock groups with no interaction

° Logically exclusive clock groups with interaction

° Asynchronous clock domain crossings
• Constraints Summary

During each step, you can accept the recommended constraints or modify the list by
checking or unchecking each of the proposed constraints. However, unchecking
recommended constraints early in the wizard can prevent the identification of other
missing constraints in subsequent steps. For example, if you decide to skip the creation of
a clock, the wizard will not identify and recommend any constraints that refer to this clock
or its auto-derived clocks.

The final page of the wizard provides a summary of the constraints that will be created. You
can click on each individual hyperlink to see the constraints details, or visualize the new
constraints in the Timing Constraints window after exiting the wizard.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=23

Using Constraints 24
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

You can also choose to generate the following recommended reports upon clicking Finish
to verify that the design is completely and properly constrained:

• Create Timing Summary report: Timing slack is reported with the new constraints, in
addition to a check_timing report. Timing violations will likely display if the period
or I/O delay constraints that you entered are too difficult.

• Create Check Timing report: This report identifies missing or inappropriate
constraints by running the check_timing command.

• Create DRC Report using only Timing Checks: this report runs the Timing DRCs.

IMPORTANT: The newly added constraints are automatically saved to the Target XDC file unless you
click Cancel. You can edit or delete the new constraints in the Timing Constraints window after exiting
the wizard.

The Timing Constraint Wizard does not recommend a constraint if it introduces unsafe
timing analysis. Also, the wizard does not fix inappropriate constraints that already existed
when loading the design in memory. Nevertheless, some invalid constraints might become
valid after creating all the missing clocks when using Vivado Design Suite in project mode;
for more details, see Constraints Processing Order and Invalid Constraints, below. Also, after
using the wizard, if check_timing or report_drc still flag some constraints issues, it is
usually due to a constraint problem that already existed in the source XDC files. You must
address these problems directly instead of using the wizard to resolve them.

VIDEO: For more information on the Vivado Timing Constraints Wizard, see Vivado Design Suite
QuickTake Video: Using the Vivado Timing Constraint Wizard.

Constraints Processing Order and Invalid Constraints

The Timing Constraints Wizard recommends missing constraints that define clocks or refer
to clocks, which will be saved either at the end of the target XDC file in project mode, or at
the end of all constraints in other modes. For this reason, you must understand the
following rules:

• Project mode: You must specify a target XDC file with its processing order set to
NORMAL before launching the Timing Constraints wizard. The target XDC file must
belong to the Constraints Set of the design open in memory and currently selected. The
position of the target XDC file among the other XDC files matters because it specifies
where the recommended constraints will be applied and saved later. Also, the wizard
tries to re-apply any invalid constraint that belongs to XDC files parsed after the target
XDC file in order to provide the most complete and accurate recommendations.

For example, consider the netlist from synth_1 run open in memory with the
Constraints Set constr_1. This Constraints Set contains three XDC files in the sequence
a.xdc, b.xdc, and c.xdc. If you choose b.xdc as the target XDC file and each file
contains an invalid constraint, the Timing Constraints wizard applies the recommended

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/using-vivado-timing-constraint-wizard.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/using-vivado-timing-constraint-wizard.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=24

Using Constraints 25
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

clocks, then re-applies the invalid constraints from c.xdc before proceeding to the next
step and discovering other missing constraints.

• Non-project or Design Check Point (DCP) modes: You cannot specify a target XDC
file in these modes, so the Timing Constraints wizard recommends and applies new
constraints at the last position of the constraints sequence. This is equivalent to
entering new constraints in the Tcl Console or via the Timing Constraints window. In
these modes, the wizard does not attempt to re-apply invalid constraints. If the new
constraints need to be applied earlier in the overall constraints sequence in order to
resolve constraints dependencies or precedence issues, you must edit the constraints
sequence manually.

Here is an example of how to manually edit constraints.

a. Create new constraints using the Vivado Design Suite.
b. Run one of the following commands:

write_xdc -exclude_physical timing_constraints.xdc

write_xdc -type timing timing_constraints.xdc

c. Edit timing_constraints.xdc to move the new constraints higher in the XDC
file.

d. Save the file.
e. Run the following command:

reset_timing

f. Read the edited timing constraints file by typing:

read_xdc timing_constraints.xdc

You can review the updated timing constraints sequence using the Timing Constraints
window. After reviewing the new constraints, you can save the sequence into the DCP.

Reporting Features Available When the Wizard is Open

When the Timing Constraints wizard is open, it prevents most actions in the Vivado IDE,
including using the Tcl Console or running timing analysis, in order to avoid database
discrepancies. The wizard window is always in front of the other Vivado IDE windows. If you
need to access the Vivado IDE menus or windows, you must move the wizard window to the
side.

Only the following features are available while the Timing Constraints wizard is open:

• Reporting and visualizing the clock networks

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=25

Using Constraints 26
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Most pages of the wizard have buttons to generate and access the clock network report
in order to visualize the clock topologies, their source point, and the shared segments
for some of the clocks.

Refer to the Vivado Design Suite User Guide: Design Analysis and Closure Techniques
(UG906) [Ref 4] for more details about the clock network report.

• Searching a name in source files or an object in the design in memory

The Find and Find In Files dialog boxes are available from the Edit menu. You can use
these dialog boxes to retrieve some information about the design while entering the
constraints in the wizard.

• Creating and Viewing schematics

You can select design objects in the main Vivado IDE window and visualize them in
schematics. All schematics features are available. Only the last step of the Timing
Constraints wizard, Asynchronous Clock Domain Crossings, supports convenient
schematics cross-probing when selecting one or several entries in the Timing Paths tab.

Refer to the Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 7] for
more info on using schematics.

• Visualizing constraints in memory with the Timing Constraints window

Each page of the wizard includes a tab that shows the existing constraints of the same
type as recommended by the step. This is convenient for quickly reviewing the details of
constraints already created in the XDC files. For a complete view of all timing constraints
in memory, the Timing Constraints window shows the full sequence of constraints,
organized by XDC file, including scoping information. It also displays the invalid
constraints.

X-Ref Target - Figure 2-10

Figure 2-10: Report Clock Networks and View Clock Network Buttons

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=26

Using Constraints 27
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Constraints Editing within the Wizard

Each step of the wizard can recommend several constraints. Depending on the constraint,
you must take one of the following actions:

• Uncheck the constraints you do not want to create, using one of the following
methods:

° Remove each constraint from the list, one at a time, by unchecking each line.

° Remove all constraints by unchecking the upper left check box of the table.

TIP: Alternatively, you can right-click the constraint, and select Do Not Create Constraint, as shown in
Figure 2-11.

In Figure 2-12, clk1 and ddr_clk_in are unchecked and will be skipped.

• Enter the missing values by clicking on the cells that show undefined (for example, the
Frequency or Period value for clk2 and clk3 in Figure 2-12).

You can edit several constraints at the same time by selecting the corresponding rows
and clicking the Edit Selected Rows button, as shown in Figure 2-13.

X-Ref Target - Figure 2-11

Figure 2-11: Skipping Recommended Constraints Using the Context Menu

X-Ref Target - Figure 2-12

Figure 2-12: Creating and Skipping Recommended Constraints

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=27

Using Constraints 28
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Next, fill out any required fields, such as Frequency and Period as shown in Figure 2-14.

Editing multiple constraints at a time is particularly helpful for input and output delay
constraints.

• Simply review the constraints if no action is required.

When all the checked recommended constraints have been reviewed and completed, click
Next to proceed to the next page. Any entries that you missed prevent the wizard from
moving to the next step.

You can use the Back button to revisit a page. If you edit any constraint on a previous page
and click Next, the wizard re-analyzes the design and recommends new constraints
accordingly. In most cases, the previously recommended constraints not affected by the
change are reinstated. If you only view a previous page without modifying any of its
recommended constraints, the wizard does not re-run any analysis, which usually saves
runtime.

IMPORTANT: You cannot use the Timing Constraints wizard to edit existing timing constraints. Instead,
you must use the Timing Constraints window.

X-Ref Target - Figure 2-13

Figure 2-13: Editing Several Recommended Constraints

X-Ref Target - Figure 2-14

Figure 2-14: Entering Parameters for Several Recommended Constraints

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=28

Using Constraints 29
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Constraints Recommended by the Wizard

Primary Clocks

Two categories of clocks are identified by the wizard, as shown in Figure 2-15.

• The primary clocks needed for computing the timing slack for setup, hold, recovery,
and removal checks appear in the Recommended Constraints table.

• The clocks only needed for performing pulse width checks (min_period,
max_period, max_skew, min_low_pulse_width, and min_high_pulse_width)
appear in the Constraints For Pulse Width Check Only table. By default, these clocks
are unchecked because they are only used for reporting purposes and do not influence
the implementation tools quality of result.

The wizard automatically identifies the proper clock source point for the constraint. In most
cases, the clock source point is an input clock port, and in some special cases it is the
output of a primitive that does not have a timing arc. For example, in 7 series devices, the

X-Ref Target - Figure 2-15

Figure 2-15: Recommended Primary Clocks

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=29

Using Constraints 30
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

wizard identifies missing primary clocks on the output of GT_CHANNEL primitives. For
UltraScale™ devices, the Vivado Design Suite is able to auto-derive the GT_CHANNEL
output clocks based on the incoming clock characteristics and the GT_CHANNEL
configuration and connectivity. Consequently, the wizard recommends primary clocks
located upstream from the GT_CHANNEL cells on the design boundary.

Generated Clocks

The Timing Constraints wizard recommends the creation of a generated clock on the output
of a sequential cell when it drives the clock pins of other sequential cells either directly or
through some interconnect logic. Unlike PLL or MMCM, user logic cannot multiply the
frequency of the master clock, so the wizard only offers the option to specify a division
coefficient, as shown in Figure 2-16.

When several master clocks reach the generated clock source point, the wizard creates all
the corresponding generated clocks, using unique names and clear reference to individual
master clocks. Figure 2-16 illustrates the scenario where two clocks (clk3 and clk4) reach
the sequential cell FDIV_reg. Consequently, two generated clock constraints (FDIV and
FDIV_1) are recommended.

TIP: Some clocking topologies, such as cascaded registers on the clock path, might require that you run
the Timing Constraints wizard multiple times to discover all the missing generated clocks.

X-Ref Target - Figure 2-16

Figure 2-16: Generated Clocks Page of the Timing Constraints Wizard

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=30

Using Constraints 31
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Forwarded Clocks

The Timing Constraints wizard recommends generated clock constraints on output ports
that are driven by double data-rate registers with constant inputs. Based on the input
constant connectivity, the generated clock phase is adjusted to either positive (0 degree
phase shift) or inverted (180 degree phase shift). The master clock used in the constraint is
the clock that reaches the clock pin of the double data-rate register. See the Source Clock
column of the Recommended Constraints table in Figure 2-17.

For the 7 series device family, the topology recognized by the wizard is shown in
Figure 2-18. There is no restriction on the nature of the master clock or the output buffer.

X-Ref Target - Figure 2-17

Figure 2-17: Recommended Forwarded Clocks

X-Ref Target - Figure 2-18

Figure 2-18: 7 Series Forwarded Clock Typical Circuitry

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=31

Using Constraints 32
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

For the UltraScale device family, the ODDR and ODDRE1 primitives are automatically
retargeted to OSERDESE3 with the property ODDR_MODE=TRUE. The wizard recognizes the
topology shown in Figure 2-19, where OSERDESE3/D[0] is connected to 1 and
OSERDESE3/D[4] is connected to 0 (no phase-shift).

External Feedback Delays

The Timing Constraints wizard analyzes the feedback loop connectivity of the MMCM and
PLL cells present in the design. External delay constraints (min and max) are recommended
when the CLKFBIN and CLKFBOUT pins are connected to the design ports through IO
buffers and the MMCM or PLL property COMPENSATION=EXTERNAL. Figure 2-20 illustrates
the recommended External Delay constraints.

X-Ref Target - Figure 2-19

Figure 2-19: UltraScale Forwarded Clock Typical Circuitry

X-Ref Target - Figure 2-20

Figure 2-20: Recommended External Delay Constraints

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=32

Using Constraints 33
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Figure 2-21 illustrates a typical MMCM with external feedback path circuit.

In the current Vivado Design Suite release, the Timing Constraints wizard cannot
recommend external delay constraints when there is a sequential cell in the feedback path,
such as ODDR, which is used for generating a forwarded clock. In this case, you must create
the external delay constraints manually or using the Timing Constraints window after
exiting the wizard.

Input Delays

The Timing Constraints wizard analyzes all paths from input ports to identify their
destination clock inside the design and their active edges. Based on this information, the
wizard recommends basic system synchronous input delay constraints that are based on the
XDC templates available in the Vivado IDE (see XDC Templates, page 55 for templates). The
waveform associated with the selected template is displayed at the bottom of the window
in the Waveform tab when you select a constraint entry in the Recommended Constraints
table.

X-Ref Target - Figure 2-21

Figure 2-21: Typical MMCM External Feedback Path Circuit

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=33

Using Constraints 34
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Figure 2-22 shows an example of several input constraints proposed by the wizard and
partially edited by the user.

For each constraint, you can edit three characteristics in order to specify the appropriate
waveform that corresponds to the actual interface timing on the board:

• Synchronous describes the nature of the clock-data relationship.

° System (for System Synchronous interface): use this setting when the data is
launched and captured by different clock edges that are 1 period or ½ period apart.

° Source (for Source Synchronous interface): use this setting when the data is
launched and captured by the same clock edge.

• Alignment describes the data transition alignment with respect to the active clock
edge.

° For System Synchronous interfaces only:
- Edge: use this setting when the clock and data transition at the same time.

X-Ref Target - Figure 2-22

Figure 2-22: Recommended Input Delay Constraint Templates

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=34

Using Constraints 35
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

° For Source Synchronous interfaces only:
- Center: use this setting when the clock transitions in the middle of the data

valid window.
- Edge Direct: use this setting when the clock transitions at the beginning of the

data valid window.
- Edge MMCM: use this setting when the clock transitions at the end of the data

valid window.
• Data Rate and Edge describes the active clock edges constrained by the template. The

default value recommended by the wizard is based on the active clock edges of the
capturing sequential cell.

° Single Rise: use this setting for cases where only the rising clock edges launch the
data outside the FPGA.

° Single Fall: use this setting for cases where only the falling clock edges launch the
data outside the FPGA.

° Dual: use this setting for cases where both rising and falling clock edges launch the
data outside the FPGA.

The recommended clock is usually the board clock related to the input path sequential cell.
When the input path internal clock is an MMCM or PLL generated clock, the board clock
that drives the MMCM or PLL is used as the input constraint reference clock. The only
exceptions exist when the internal clock waveform and the board clock waveform are not
identical, such as the following scenarios:

• Different period scenario

The input constraint references a virtual clock that has the same waveform as the
internal clock so that the setup analysis is performed with a 1 cycle path requirement.
The virtual clock is automatically created.

• Positive phase-shift clock scenario

The wizard uses a virtual clock as the reference clock. The virtual clock is automatically
created with the same waveform as the board clock. In addition, the wizard also
specifies a multicycle path constraint between the virtual clock and the internal clock to
adjust the default analysis to 1 period + the amount of phase-shift for setup. The
combination of the virtual clock and the multicycle path constraint provides simpler
constraints for the Vivado Design Suite timer to handle and can only affect input ports
that reference to the virtual clock.

Note that for a negative phase-shift, the virtual clock and the multicycle path constraint
are not needed because the default setup path requirement is 1-cycle minus the amount
of phase-shift.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=35

Using Constraints 36
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

The wizard does not allow you to change the reference clock selected for the constraint. To
do so, you must manually edit the XDC files or use the Timing Constraints window after
exiting the wizard.

After you select the proper template, enter the delay parameter values in the Delay
Parameters panel located on the right hand side of the wizard and then click Apply to
validate the entries.

The input delay equations are displayed below the delay parameter fields and on some of
the template waveforms. Figure 2-23 shows the Delay Parameters panel for the DDR System
Synchronous interface template.

To accelerate the delay parameter entry task, you can select and edit several constraints
with same clock and same template at once.

After the constraints have been completed and applied, you can review their corresponding
Tcl syntax in the Tcl Command Preview tab or you can click Next to proceed to the next step.

TIP: The Timing Constraints wizard skips input ports with a false path constraint. This is particularly
useful for skipping asynchronous resets that usually do not have a known phase relationship with any
clock of the design. The false path constraint can only be created outside the wizard.

X-Ref Target - Figure 2-23

Figure 2-23: Input Delay Parameters Panel

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=36

Using Constraints 37
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Output Delays

Similar to the Input delays step, the Timing Constraints wizard analyzes the paths to all
output ports to identify their source clocks inside the design and their active edges. The
template selection rules are the same as described in Input Delays. Figure 2-24 shows
several output constraints proposed by the wizard and partially edited by the user.

X-Ref Target - Figure 2-24

Figure 2-24: Recommended Output Delay Constraint Templates

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=37

Using Constraints 38
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

For each constraint, three characteristics can be edited in order specify the appropriate
waveform that corresponds to the actual interface timing on the board:

• Synchronous describes the nature of the clock-data relationship (see Input Delays,
page 33 for more details).

• Alignment describes the data transition alignment with respect to the active clock
edge.

° Setup/Hold: use this setting when the template delay parameters are specified
based on the data valid window timing characteristics outside the FPGA.

° Skew (Source Synchronous only): use this setting when the template delay
parameters are specified based on the skew requirements on the output pin of the
FPGA.

• Data Rate and Edge describes the active clock edges constrained by the template (see
Input Delays, page 33 for more details).

As with recommended input delay constraints, the reference clock is typically the board
clock, except in the following cases:

• The board clock and the output path internal clock have different clock periods.

The output constraint references a virtual clock that has the same waveform as the
internal clock so that the setup analysis is performed with a 1-cycle path requirement.
The virtual clock is automatically created.

• The output path internal clock has a negative phase-shift compared to the board clock.

The wizard uses a virtual clock as the reference clock. The virtual clock is automatically
created with the same waveform as the board clock. In addition, the wizard also
specifies a multicycle path constraint between the virtual clock and the internal clock to
adjust the default analysis to 1 period + the amount of phase-shift for setup. The
combination of the virtual clock and the multicycle path constraint provides simpler
constraints for the Vivado Design Suite timer to handle and can only affect output ports
that reference to the virtual clock.

Note: For a positive phase-shift, the virtual clock and the multicycle path constraint are not
needed because the default setup path requirement is 1 cycle minus the amount of phase-shift.

• A forwarded clock has been identified for timing the output path based on the shared
clocking connectivity.

The forwarded clock must have been created during the third step of the wizard
"Forwarded Clocks," or else the board clock or a virtual clock will be used as the output
delay constraint reference clock.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=38

Using Constraints 39
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Figure 2-25 shows a basic example of an output source synchronous path along with its
forwarded clock for the 7 series family. Both ODDR/OSERDES instances are connected to
the same clock net (highlighted in blue). The ck_vsf_clk_2 generated clock is already
defined on the vsf_clk_2 output port.

Figure 2-26 shows the corresponding constraints in the wizard.

X-Ref Target - Figure 2-25

Figure 2-25: Example of a Source Synchronous Output Path with its Forwarded Clock

X-Ref Target - Figure 2-26

Figure 2-26: Recommended Source Synchronous Output Path Delay Constraint with a Forwarded Clock

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=39

Using Constraints 40
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

After you select the proper template, you must enter the delay parameters values. To
accelerate the delay parameter entry task, you can select and edit several constraints with
same clock and same template at once. After the constraints have been completed and
applied, you can review their corresponding Tcl syntax in the Tcl Command Preview tab or
you can click Next to proceed to the next step.

TIP: The Timing Constraints wizard skips output ports with a false path constraint. The false path
constraint can only be created outside the wizard.

Combinatorial Delays

Some paths propagate directly from input ports to output ports without being captured
inside the device by a sequential cell. If an input port is connected to both an output port
and a sequential cell, the Timing Constraints wizard does not recommend combinational
constraints between the input/output port pair, because the input port should have been
constrained during the Input Delay step. For the combinational paths, the wizard
recommends to define a virtual clock along with input and output delays on the design
ports as shown in Figure 2-27.

The final combinational path delay constraints are:

• For setup analysis:

virtual clock period - max input delay - max output delay

• For hold analysis:

0 - min output delay - min input delay

X-Ref Target - Figure 2-27

Figure 2-27: Combinational Path Schematics and Delay Constraints

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=40

Using Constraints 41
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

The virtual clock period must be modified so that it is greater than the largest
combinational delay constraint across all constrained combinational paths. Figure 2-28
shows the delay entries needed per input/output ports pair.

None of the input and output delay constraints override existing ones. If a given port has
multiple delay constraints with respect to the same clock, the smallest value of all
constraints is used by the Vivado Timing analysis feature during hold analysis, and the
largest one during setup analysis.

After all delay entries have been filled, you can click Next to proceed to the next step.

TIP: Alternatively, you can constrain combinational paths using the set_max_delay and
set_min_delay commands outside the Timing Constraints wizard.

X-Ref Target - Figure 2-28

Figure 2-28: Recommended Combination Paths Constraints

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=41

Using Constraints 42
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Physically Exclusive Clock Groups

Physically exclusive clocks are clocks that are defined on the same source point and
propagate on the same clock tree. Figure 2-29 shows an example where two primary clocks
are defined on the same input port.

While their overlap is convenient for timing several application modes with one design and
constraint database, these clocks and their children generated clocks should never be timed
together. The Timing Constraints wizard identifies such clocks and recommends a clock
groups constraint to prevent unnecessary timing analysis on the clock domain crossing
paths, as shown in Figure 2-30.

X-Ref Target - Figure 2-29

Figure 2-29: Example of a Design with Physically Exclusive Clocks

X-Ref Target - Figure 2-30

Figure 2-30: Example of a Design with Clock Groups Constraint

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=42

Using Constraints 43
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Logically Exclusive Clock Groups with No Interaction

Logically exclusive clocks are clocks that are defined on different source points but share
part of their clock tree due to a multiplexer or other combinational logic. The Timing
Constraints wizard identifies such clocks and recommends a clock groups constraint
directly on them when they do not have timing paths between each other except for the
logic connected to their shared clock tree. Figure 2-31 shows an example of two clocks,
clkA and clkB, which are defined on different input ports and start overlapping on the
output of a BUFGMUX.

Logically Exclusive Clock Groups with Interaction

The Timing Constraints wizard identifies logically exclusive clocks that have timing paths
between each other elsewhere than just on the logic connected to the shared clock tree.
Figure 2-32 shows an example where clkA and clkB have a shared clock tree portion, and
also have a timing path from the shared clock tree to clkA only.

X-Ref Target - Figure 2-31

Figure 2-31: Example of Logically Exclusive Clocks with No Interaction

X-Ref Target - Figure 2-32

Figure 2-32: Example of a Design with Logically Exclusive Clocks with Interaction

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=43

Using Constraints 44
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Because only the clock domain crossing paths of the shared clock tree must be ignored, the
wizard recommends to create generated clocks that are copies of clkA and clkB but that
only exist on the shared clock tree. The clock groups constraint is applied to the generated
clocks only, so that the paths outside the logic of the shared clock tree can still be normally
timed. Figure 2-33 illustrates the wizard recommended constraints for the example above.

Asynchronous Clock Domain Crossings

The Timing Constraints wizard analyzes the topology of clock domain crossing (CDC) paths
between asynchronous clocks and recommends clock groups or false path constraints
whenever it is safe to do so.

Asynchronous clocks are clocks with no known phase relationship, which typically happens
when they do not share the same primary clock or do not have a common period. For this
reason, slack computation on asynchronous CDC paths is not accurate and cannot be
trusted. Due to potentially large skew between asynchronous clocks, the timing
quality-of-result can be heavily impacted and prevent proper timing closure if any of the
asynchronous CDC paths is timed. You are responsible for adding timing exceptions on
these paths, such as set_clock_groups, set_false_path, or set_max_delay
-datapath_only to either completely ignore timing analysis or just ignore the clock skew
and uncertainty. Also, the design must implement proper CDC circuitry to prevent
metastability.

In the Vivado Design Suite, the wizard only identifies flip-flop-based synchronizers for
synchronous data and asynchronous reset. For an example of such synchronizers, see the
Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906) [Ref 4].

X-Ref Target - Figure 2-33

Figure 2-33: Recommended Constraints for Logically Exclusive Clocks with Interaction

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=44

Using Constraints 45
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Figure 2-34 shows an example of the recommended and non-recommended constraints
tables.

The columns in both tables display the following information:

• Source Clock: this is the clock of the CDC paths start points identified by the wizard.
• Destination Clock: this is the clock of the CDC paths endpoints identified by the

wizard.

X-Ref Target - Figure 2-34

Figure 2-34: Example of Recommended and Non-Recommended Constraints Tables

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=45

Using Constraints 46
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

• Constraint: this column shows either the dominant timing exception or the
characteristics of the clock relationship when there is no exception.

° In the Recommended Constraints table, the wizard anticipates that the constraints
will be created and displays the new constraint:
- asynch (clock groups) for the cases where it is safe to ignore timing in both

directions, in which case a set_clock_groups constraint is created
- asynch (false path) when it is only safe to ignore the paths in one direction, in

which case a set_false_path constraint is created

° In the Non-recommended Constraints table, the Timing Constraints wizard displays
how the CDC paths are timed before eventually applying a clock group or false path
exception:
- Timed - No Common Primary Clock
- Timed - No Common Period
- MaxDelay DataPath for the case where at least 1 path is covered by a

set_max_delay -datapath_only constraint and all other paths are covered
by false path constraints

• Endpoints: the number of CDC path endpoints identified by the wizard.
• Synchronized (with ASYNC_REG): the number of endpoints properly synchronized,

with the ASYNC_REG property set to true on all synchronizer flip-flops.
• Synchronizer without ASYNC_REG: the number of synchronizers where at least one

flip-flop does not have the ASYNC_REG property set to true.
• Unknown: the number of CDC path endpoints where the wizard did not find a

synchronizer.
• Max Delay Datapath Only: the number of CDC path endpoints that are constrained

with a set_max_delay -datapath_only constraint.

The table entries contain cross-probing links whenever applicable. When you click on a
number, the corresponding CDC paths are listed in the Paths tab at the bottom of the
window. You can select one or several CDC paths and click on the Schematic (F4) button to
display the logic of the path(s) in the main Vivado IDE window.

Recommended Asynchronous Clock Groups Constraints

The Timing Constraints wizard recommends a set_clock_groups -asynchronous
constraint between two clocks when the following conditions are present:

• All paths have synchronizers in both directions.
• No path is covered by a set_max_delay -datapath_only in either direction

(set_clock_groups has higher precedence and overrides any existing
set_max_delay).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=46

Using Constraints 47
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Non-Recommended Asynchronous Clock Groups Constraints

The Timing Constraints wizard provides a table with constraints that are not enabled by
default because they are not recommended for one of the following reasons:

• At least one path is missing a synchronizer in either direction.
• At least one path is covered by set_max_delay -datapath_only in either

direction.

You can decide to activate any of these constraints when working on an early version of the
design, and then revisit the CDC paths and their constraints later when finalizing your
design.

CDC Synchronizers and ASYNC_REG Property

Xilinx recommends that all synchronizer flip-flops have their ASYNC_REG property set to
true in order to preserve the synchronizer cells through any logic optimization during
synthesis and implementation, and to optimize their placement for best Mean Time
Between Failures (MTBF) statistics. For any clock group constraints that are enabled in both
tables (either by default or by the user), the wizard sets to true any missing ASYNC_REG
property.

Refer to the Vivado Design Suite Properties Reference Guide (UG912) [Ref 11] for detailed
information about the ASYNC_REG property.

Completing the CDC Analysis and Constraints

The Timing Constraints wizard does not recognize some valid CDC topologies that are not
based on simple synchronizers. The report_cdc command provides a powerful and more
comprehensive view of the CDC paths that need structural correction in order to become
safe. Refer to the Vivado Design Suite User Guide: Design Analysis and Closure Techniques
(UG906) [Ref 4] for detailed information about report_cdc.

For the cases where the wizard does not recommend a constraint due to the presence of
some set_max_delay -datapath_only, the other CDC paths that are normally timed
must be reviewed individually and possibly ignored by additional false path constraints. The
creation of point-to-point false path constraints must be done in the XDC file, in the Tcl
Console, or in the Timing Constraints window after exiting the wizard.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=47

Using Constraints 48
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Constraints Summary

The final page of the Timing Constraints wizard summarizes the new constraints that will be
applied and saved at the end of the Target XDC file when you click Finish. Click each
hyperlink to see the details of the constraints. Figure 2-35 below shows an example of the
Constraints Summary page.
X-Ref Target - Figure 2-35

Figure 2-35: Example of Constraints Summary Page

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=48

Using Constraints 49
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Timing Constraints Window
The Timing Constraints window is available for Synthesized and Implemented designs only.
For elaborated design constraints, you must use and edit XDC files directly. For more
information, see Creating Synthesis Constraints, page 58.

You can open the Timing Constraints window using one of the following three options, as
shown in Figure 2-36:

• Select Window > Timing Constraints.
• In the Synthesis section of the Flow Navigator panel, select Synthesized Design > Edit

Timing Constraints.
• In the Implementation section of the Flow Navigator panel, select Implemented

Design > Edit Timing Constraints.
X-Ref Target - Figure 2-36

Figure 2-36: Multiple Methods for Opening the Timing Constraints Window

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=49

Using Constraints 50
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

The Timing Constraints window displays the timing constraints in memory, in either the
same sequence as in the XDC files and Tcl scripts, or the same sequence in which you
entered them in the Tcl Console.

Some of the constraints cannot be edited from this window. They are marked with the XDC
No Edit icon .

X-Ref Target - Figure 2-37

Figure 2-37: Timing Constraints Window

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=50

Using Constraints 51
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Timing Constraints Spreadsheet

The timing constraints spreadsheet displays the details of all existing constraints of a
specific type. Use the timing constraints spreadsheet to review and edit constraint options.

The two last columns of the panel show:

• Source File: The name of the XDC file or Tcl script the constraint comes from
• Scoped Cell: The name of the current instance when the constraint was applied. This

name usually corresponds to an IP instance which is delivered with dedicated
constraints. For more information, see Constraints Scoping, page 67.

A new constraint of the selected type can be created by double clicking the last line of the
spreadsheet. The corresponding constraint creation dialog opens and lets you fill in the
details of the new constraint. Click OK to apply the constraint in memory and close the
window. A new line in the spreadsheet shows the new constraint information.

You can edit any existing constraint by modifying the values directly in the spreadsheet.
After you have finished editing, click Apply to apply the modified constraints in memory.

IMPORTANT: Applying a new or modified constraint does not save it in the XDC file. You must click
Save Constraints to save it.

IMPORTANT: IP constraints cannot be edited or deleted. In order to modify a constraint delivered with
an IP, you must disable the corresponding IP XDC file, copy the constraint to your XDC file, and edit the
constraint as desired.

X-Ref Target - Figure 2-38

Figure 2-38: Timing Constraints Spreadsheet

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=51

Using Constraints 52
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Constraints Creation, Grouped by Category

When you select a constraint type, the corresponding spreadsheet appears on the right
sub-window panel. This allows you to view all the constraints of the same type that have
already been created.

To create a new constraint, double click the name of the target constraint. A dialog box
allows you to specify the value for each option. When you click OK, the tool does the
following:

1. Validates the syntax.
2. Applies the syntax to the memory.
3. Adds the new constraint at the end of the spreadsheet.
4. Adds the new constraint at the end of your complete list of constraints.

X-Ref Target - Figure 2-39

Figure 2-39: Timing Constraints Categories

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=52

Using Constraints 53
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

All Constraints

The bottom of the window displays the complete list of constraints loaded in memory, in
the same sequence as they were applied. The constraints are grouped in accordance with
the XDC file or the Tcl script from which they originated. When an XDC file is scoped to a
particular hierarchical cell, the cell name is displayed next to the file name.

You can expand and collapse the constraints for each associated source file, or completely
by clicking the two corresponding buttons on the left side of the panel.

TIP: The collapsed view provides a compact overview of which constraints file are loaded in memory,
and where the scoping mechanism is used. The same information is available through the
report_compile_order -constraints command.

X-Ref Target - Figure 2-40

Figure 2-40: Timing Constraints All Constraints List (Example One)

X-Ref Target - Figure 2-41

Figure 2-41: Timing Constraints All Constraints List (Example Two)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=53

Using Constraints 54
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

De-select the Group by Source icon to switch the view to a table in which the source
constraint file and the scoped cell information appears in the two right columns.

• To delete a constraint, select it and click X.
• To edit a constraint that is not read-only, use the spreadsheet view. After your changes

have been registered by the tool, you must click Apply to refresh the constraints in
memory.

• To add new constraints, use the dialog boxes as previously described, or type the
constraints in the Tcl console. The new constraint appears at the end of the list in a
group named <unsaved_constraints>.

When saving the constraints, the new constraints are saved at the end of the XDC file
marked as target. If there is no target XDC file in the constraint set associated with the
design in memory, or if there is only a Tcl script in the constraint set, you are prompted to
specify where to save the constraints.

X-Ref Target - Figure 2-42

Figure 2-42: Timing Constraints All Constraints List (Example Three)

X-Ref Target - Figure 2-43

Figure 2-43: Timing Constraints All Constraints List (Example Four)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=54

Using Constraints 55
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Regularly save your constraints. Click Save, or select File > Constraints > Save.

IMPORTANT: New and modified constraints cannot be saved back to a Tcl script.

CAUTION! Do not enter new constraints in the Tcl Console if any constraints in the Timing Constraints
window have not yet been applied. The final constraints order in the editor can become different from
the constraints order in memory. In order to avoid any confusion, you must re-apply all constraints
each time you edit an existing constraint.

XDC Templates
You can access XDC templates by selecting Tools > Language Templates.
X-Ref Target - Figure 2-44

Figure 2-44: XDC Templates

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=55

Using Constraints 56
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

XDC Template Contents

The XDC templates include:

• The most common timing constraints, such as clock definitions, jitter, input/output
delay, and exceptions

• Physical constraints
• Configuration constraints

Using XDC Templates

To use an XDC template:

1. Select the template you want to use.
2. Copy the text displayed in the Preview window.
3. Paste the text in your XDC file.
4. Replace the generic strings with actual names from your design or with appropriate

values.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=56

Using Constraints 57
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Advanced XDC Templates

Some advanced templates such as System Synchronous and Source Synchronous I/O delay
constraints require you to set some Tcl variables to capture the design requirements. The Tcl
variables are used in the actual set_input_delay and set_output_delay constraints.

You must verify that all necessary values have been filled instead of using the default
values.

X-Ref Target - Figure 2-45

Figure 2-45: I/O Delay Constraint Templates

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=57

Using Constraints 58
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Creating Synthesis Constraints
The Vivado Synthesis transforms the RTL description of your design into a technology
mapped netlist. This process happens in several steps, and includes a number of
timing-driven optimizations.

Xilinx® FPGAs include many logic features that can be used in many different ways. Your
constraints are needed to guide the synthesis engine towards a solution that meets all the
design requirements at the end of implementation.

There are four categories of constraints for the Vivado IDE synthesis:

• RTL Attributes
• Timing Constraints
• Elaborated Design Constraints

RTL Attributes
RTL attributes must be written in the RTL files. They usually choose the mapping style of
certain part of the logic, as well as preserving certain registers and nets, or controlling the
design hierarchy in the final netlist.

For more information, see this link in the Vivado Design Suite User Guide: Synthesis (UG901)
[Ref 8].

IMPORTANT: The DONT_TOUCH attribute does not obey the properties of USED_IN_SYNTHESIS and
USED_IN_IMPLEMENTATION. If you use DONT_TOUCH properties in the synthesis XDC, it is
propagated to implementation regardless of the value of USED_IN_IMPLEMENTATION.

For more information about USED_IN_SYNTHESIS and USED_IN_IMPLEMENTATION, Refer to
Synthesis and Implementation Constraint Files, page 10.

DONT_TOUCH attribute example:

set_property DONT_TOUCH true [get_cells fsm_reg]

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug901-vivado-synthesis.pdf;a=xSynthesisAttributes
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=58

Using Constraints 59
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Timing Constraints
Timing constraints must be passed to the synthesis engine by means of one or more XDC
files. Only the following constraints related to setup analysis have any real impact on
synthesis results:

• create_clock

• create_generated_clock

• set_input_delay

• set_output_delay

• set_clock_groups

• set_false_path

• set_max_delay

• set_multicycle_path

Physical and Configuration Constraints
Physical and configuration constraints are ignored by the synthesis algorithms.

Elaborated Design Constraints
RECOMMENDED: When you create the first version of your synthesis XDC, use simple timing
constraints to describe the high-level design requirements.

At this point in the flow, the net delay modeling is still not very accurate. The main goal is
to obtain a synthesized netlist which meets timing, or fail by a small amount, before starting
implementation. In many cases, you will have to go through several XDC and RTL
modification iterations before you can reach this state.

The RTL-based XDC creation iteration is shown in Figure 2-46. It is based on the utilization
of the Elaborated design to find the object names in your design that you want to constrain
for synthesis.

You must use the Tcl Console to validate the syntax of the XDC commands before saving
them in the XDC files. With the elaborated design, you can create constraints, query clocks,
and query design objects, but you cannot run any timing report command.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=59

Using Constraints 60
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Design objects that are safe to use when writing constraints for synthesis are:

• Top level ports
• Manually instantiated primitives (cells and pins)

Some RTL names are modified or lost during the creation of the elaborated design.
Following are the most common cases:

• Single-Bit Register Names
• Multi-Bit Register Names
• Absorbed Registers and Nets
• Hierarchical Names

X-Ref Target - Figure 2-46

Figure 2-46: Creating Constraints with the Elaborated Design

RTL source files

Vivado
Database

(elaborated)

Query names in your design
Validate XDC syntax in Tcl Console

Syntax Clean?

Copy/paste good XDC commands
from Tcl Console to XDC files

Open (or reload)
Elaborated Design XDC files

YES

NO

X12982

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=60

Using Constraints 61
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Single-Bit Register Names

By default, the register name is based on the signal name in the RTL, plus the _reg suffix.

For example, for a signal defined as follows in VHDL and Verilog, the instance name
generated during the elaboration is wbDataForInputReg_reg:

VHDL: signal wbDataForInputReg : std_logic;
Verilog: reg wbDataForInputReg;

Figure 2-47 shows the schematic of the register, and its pins. It is possible to define a
constraint on the register instance or its pins.

Multi-Bit Register Names

By default, the register name is based on the signal name in the RTL, plus the _reg suffix.
You can only query and constrain individual bits of the multi-bit register in your XDC
commands.

For example, for a signal defined as follows in VHDL and Verilog, the instance names
generated during the elaboration are loadState_reg[0], loadState_reg[1], and
loadState_reg[2]:

VHDL: signal loadState: std_logic_vector(2 downto 0);
Verilog: reg [2:0] loadState;

Figure 2-48 shows the schematic of the register. The multi-bit register appears as a vector
of single-bit registers. The vector is represented in a compact way whenever possible in the
schematics. Each individual bit can also be displayed separately.

X-Ref Target - Figure 2-47

Figure 2-47: Single-Bit Register in Elaborated Design

X-Ref Target - Figure 2-48

Figure 2-48: Multi-Bit Register in Elaborated Design

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=61

Using Constraints 62
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

You can only constrain each register individually or as a group by using the following
patterns:

• Register bit 0 only
loadState_reg[0]

• All register bits
loadState_reg[*]

IMPORTANT: You cannot query the multi-bit register, or more generally any multi-bit instance, by
using the pattern loadState_reg[2:0].

Because the names above also correspond to the names in the post-synthesis netlist, any
constraint based on them will most probably work for implementation as well.

Absorbed Registers and Nets

Some registers or nets in the RTL sources can disappear in the elaborated design (or
synthesized design) for various reasons. For example, memory block, DSP or shift register
inference requires absorbing several design objects into one resource. Instead of using
these objects to define constraints, try to find other connected registers or nets that you
can use.

Hierarchical Names

Unless you plan to force Vivado synthesis to keep the complete hierarchy of your design,
some or all levels of the hierarchy can be flattened during synthesis. For more information,
see the -flatten_hierarchy information at this link in the Vivado Design Suite User
Guide: Synthesis (UG901) [Ref 8].

RECOMMENDED: Use fully resolved hierarchical names in your synthesis constraints where all the
hierarchical levels are explicitly written ("/" character) instead of using implicit matching ("*"
character). They are more likely to be matching the final netlist names regardless of the hierarchy
transformations.

For example, consider the following register located in a sub-level of the design.

Elaborated Design Example:

inst_A/inst_B/control_reg

During synthesis (assuming no special optimization is performed on this register), you can
get either flat or hierarchical name depending on the tool options or the design structure.

Instance name in a flat netlist:

inst_A/inst_B/control_reg (F)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug901-vivado-synthesis.pdf;a=UsingSynthesisSettings
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=62

Using Constraints 63
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Instance name in a hierarchical netlist:

inst_A/inst_B/control_reg (H)

There is no obvious difference because the / character is also used to mark flattened
hierarchy levels. You will notice the difference when querying the object in memory. The
following commands will return the netlist object for F but not H:

% get_cells -hierarchical *inst_B/control_reg
% get_cells inst_A*control_reg

In order to avoid problems related to hierarchical names, Xilinx recommends that you do
the following:

• Use get_* commands without the -hierarchical option.
• Mark explicitly with the forward-slash (/) character all the levels of hierarchy as they

show in the elaborated design view.

Examples Without Hierarchical Option:

• This option works for both flat and hierarchical netlists:
% get_cells inst_A/inst_B/*_reg
% get_cells inst_*/inst_B/control_reg

• Another option is:
% get_cells -hier -filter {NAME =~ inst_A/inst_B/*_reg}
% get_cells -hier -filter {NAME =~ inst_*/inst_B/control_reg}

CAUTION! (1) Do not attach constraints to hierarchical pins during synthesis for the same reason as
explained above for hierarchical cells. (2) Do not attach constraints to nets connecting combinatorial
logic operators. They will likely be merged into a LUT and disappear from the netlist.

RECOMMENDED: Regularly save your XDC files after editing, and reload the Elaborated design in order
to make sure the constraints in memory and the constraints in the XDC files are the same. After
running synthesis, load the synthesized design with the same synthesis XDC in memory, and run timing
analysis by using the timing summary report.

Some pre-synthesis constraints might no longer apply properly because of the
transformations performed by synthesis on the design. To resolve these problems, do the
following:

1. Find the new XDC syntax that applies to the synthesized netlist.
2. Save the constraints in a new XDC file to be used during implementation only.
3. Move the synthesis constraints that can no longer be applied to a separate XDC file that

will be used for synthesis only.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=63

Using Constraints 64
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Creating Implementation Constraints
After you have a synthesized netlist, you can load it into memory together with the XDC
files or Tcl scripts enabled for implementation. You must review the messages issued by the
tool when loading the XDC in order to verify and correct any constraint that cannot be
applied.

In some cases, the object names in the synthesized netlist are different from the names in
the elaborated design. If this is the case, you must recreate some constraints with the
corrected names, and save them in an implementation-only XDC file.

After the tool can properly load all the XDC files, you can run timing analysis in order to:

• Add missing constraints, such as input and output delay.
• Add timing exceptions, such as false paths, multicycle paths, and min/max delay

constraints.
• Identify large violations due to long paths in the design and correct the RTL

description.

You can use the same base constraints as during synthesis, and create a second XDC file to
store all new constraints specific to implementation. You can choose to save physical and
configuration constraints in a separate XDC file.

Note: In project mode, opening a synthesized design results in linking the netlist(s) from the
post-synthesis DCP(s) to build the full top-level hierarchical netlist. All XDC constraints marked for
implementation are also automatically loaded. This enables you to verify the implementation
constraints on the full synthesized design. This means that if the implementation constraints are
modified, the opened synthesized design goes out of date, not the synthesized run. The GUI shows
a small banner and provides the option to reload the design.

The netlist-based XDC iteration is shown in Figure 2-49.

Adjusting Constraints for Synthesis Logic Replication
During synthesis, some registers are replicated to improve the design performance. The
user XDC constraints are not modified by the synthesis engine to include the replicated
cells. If a timing constraint is attached to an object replicated by Vivado Synthesis, the
replicated cells are not always covered by the XDC constraints depending on how the
constraint is written, which can later impact the implementation quality of results.

When using Vivado Synthesis, the get_cells and get_pins commands provide a
mechanism to automatically include the replicated objects.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=64

Using Constraints 65
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

For example, set_false_path –from [get_cells –hierarchical *rx_reg] can
be rewritten as follows to also safely include the replicated objects during implementation:

set_false_path -from [get_cells -hierarchical *rx_reg -include_replicated_objects]

The command line option -include_replicated_objects relies on the property
ORIG_CELL_NAME set on the replicated objects. The following query commands return the
original cells with the replicated cells:

get_cells -include_replicated_objects *rx_reg
get_cells -include_replicated_objects [get_cells -hier -filter {NAME =~ *rx_reg}]
get_cells -hierarchical -filter {NAME =~ *rx_reg || ORIG_CELL_NAME =~ *rx_reg}

The -filter option always applies after the collection of objects is built. It is not
recommended to use -filter with -include_replicated_objects when the
filtering expression refers to the property NAME. In such scenarios, the replicated objects
are not returned when they do not match the pattern specified for NAME. For example, the
syntax below does not return replicated objects matching *reg_replica*:

get_cells -include_replicated_objects -filter {NAME =~ *rx_reg}

Xilinx recommends running the Methodology checks (report_methodology) and
reviewing the XDCV-1 and XDCV-2 check messages to identify constraints that need to be
updated with the get_cells/get_pins -include_replicated_objects option.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=65

Using Constraints 66
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Before proceeding to implementation, you must verify that your design does not include
any major timing violation. The place-and-route tools can fix most reasonable timing
violations, but they cannot fix fundamental design issues that make timing closure
impossible.

RECOMMENDED: Revisit the RTL to reduce the number of logic levels on the violating paths and to
clean up the clock trees in order to use dedicated clock resources and minimize the skew between
related clocks. You can also add synthesis attributes and use different synthesis options.

For more information, see this link in the Vivado Design Suite User Guide: Synthesis (UG901)
[Ref 8], or this link in the Vivado Design Suite User Guide: Implementation (UG904) [Ref 9].

Adjust Constraints for Synthesis with Black-Boxes
When using Out-Of-Context (OOC) synthesis mode, the OOC modules (IP/BD/DFx/…) are
inferred as a black-box inside the top level. This means that the netlist objects inside the

X-Ref Target - Figure 2-49

Figure 2-49: Creating Constraints with the Synthesized Design

Synthesized Netlist

Vivado
Database

Use Vivado IDE editors or the Tcl
Console to enter new constraints

Timing clean?
Fix RTL Design

Add Synthesis Attributes
Use different Synthesis Options

Open (or reload)
Synthesized Design

Implementation
XDC files

YES

NO (missing constraints)

X12981

Save your constraints
Run implementation

NO (clean constraints)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug901-vivado-synthesis.pdf;a=xRunningTimingAnalysis
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug904-vivado-implementation.pdf;a=xGuidingImplementationWithDesignConstraints
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=66

Using Constraints 67
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

OOC modules are not accessible by the top-level constraints. This may require the top-level
constraints for synthesis to be different from the constraints for implementation. In Project
Mode, this can be done by creating a specific XDC file for synthesis and setting the
properties USED_IN_SYNTHESIS=TRUE & USED_IN_IMPLEMENTATION=FALSE on it. The
top-level XDC for implementation should have USED_IN_SYNTHESIS=FALSE.

The only objects accessible from the black-boxes are the input and output ports. This limits
the type of timing constraints that the top-level can specify when referring to a black-box.

Some of the limitations for the top-level constraints from OOC synthesis are:

• Auto-derived clocks generated inside the OOC module cannot be renamed.
• Clock names defined inside the OOC module cannot be referred to. The clock

propagating to the output of the OOC module is named based on the net connected to
the port of the module, not from the name it has inside the module, even if the clock is
renamed inside the module XDC.

• If the top-level constraints need to refer to the clock coming out of an OOC module, it
should use a query such as ‘get_clocks -of_objects [get_pins
<MODULE_OOC_OUTPUT_CLOCK_PORT>]’.

Constraints Scoping
The constraints from a particular XDC file can be optionally scoped to a specific module, to
specific cells of your design, or both, if needed. This is convenient for creating and applying
constraints to a sub-level of your design without having any information about the
top-level. The block-level constraints must be developed independently from the top-level
constraints, and must be as generic as possible so that they can be used in various contexts.
They must also not affect any logic that is beyond the block boundaries. By default, all the
IP cores from the Vivado IP Catalog generated within a Vivado Design Suite project use this
mechanism to load their constraints in memory.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=67

Using Constraints 68
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

XDC File Scoping Properties
The constraints scoping mechanism is activated by specifying the following properties on
the XDC files:

• SCOPED_TO_REF: This property takes the name of a module (or entity). The constraints
are applied to ALL instances of the specified module (or entity) only,

• SCOPED_TO_CELLS: This property takes a list of hierarchical cell names. The constraints
are scoped and applied to each hierarchical cell individually,

• SCOPED_TO_REF + SCOPED_TO_CELLS: If both these properties are specified, the
constraints are applied to each cell of the SCOPED_TO_CELLS list, located inside the
module (or entity) specified by SCOPED_TO_REF.

These properties are automatically set by the Vivado Design Suite for IP cores added to
your RTL project by means of the IP Catalog.

Setting XDC File Scoping Properties Example

Figure 2-50 shows the uart_tx_i0 cell, an instance of the uart_tx module, which
includes two hierarchical cells, uart_tx_ctl_i0 and uart_baud_gen_tx_i0.

The project includes an XDC file uart_tx_ctl.xdc to constrain the uart_tx_ctl
module.
X-Ref Target - Figure 2-50

Figure 2-50: Setting XDC File Scoping Properties Example

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=68

Using Constraints 69
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Following are three equivalent Tcl examples to use the scoping properties on
uart_tx_ctl.xdc. The same values can be set in the Properties windows of the XDC file
in the Vivado IDE.

Using the reference module name only:
set_property SCOPED_TO_REF uart_tx_ctl [get_files uart_tx_ctl.xdc]

Using the cell name only:
set_property SCOPED_TO_CELLS uart_tx_i0/uart_tx_ctl_i0 [get_files uart_tx_ctl.xdc]

Using both the uart_tx reference module and uart_tx_ctl_i0 instance:
set_property SCOPED_TO_REF uart_tx [get_files uart_tx_ctl.xdc]
set_property SCOPED_TO_CELLS uart_tx_ctl_i0 [get_files uart_tx_ctl.xdc]

When using Vivado Design Suite in Non-Project Mode, you can use the read_xdc
command with the -ref and -cells options to achieve the same result:

Using the reference module name only:
read_xdc -ref uart_tx_ctl uart_tx_ctl.xdc
Using the cell name only:
read_xdc -cells uart_tx_i0/uart_tx_ctl_i0 uart_tx_ctl.xdc
Using both the uart_tx reference module and uart_tx_ctl_i0 instance
read_xdc -ref uart_tx -cells uart_tx_ctl_i0 uart_tx_ctl.xdc

When a module is instantiated multiple times in the design, the module is uniquified during
synthesis. After the synthesis, each instance of the RTL module points to a different module
name. To apply some XDC constraints to all the instances of the original RTL module, the
property ORIG_REF_NAME should be used instead of the property REF_NAME. For example:

set_property SCOPED_TO_REF [get_cells -hierarchical -filter {ORIG_REF_NAME ==
uart_tx_ctl}] [get_files uart_tx_ctl.xdc]
read_xdc -ref [get_cells -hierarchical -filter {ORIG_REF_NAME == uart_tx_ctl}]
uart_tx_ctl.xdc

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=69

Using Constraints 70
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

XDC Scoping Mechanism
Except for ports, constraints scoping relies on the current_instance mechanism, which
is part of the Synopsys Design Constraints (SDC) standard. When setting the scope to a
lower level of the design hierarchy with the current_instance command, only the
objects included in that level or below can be returned by the object query commands.

The only exceptions are with timing clock objects and netlist ports:

• Timing clocks are defined by create_clock or create_generated_clock. They
are visible throughout the design regardless of the current instance setting. The
get_clocks command can query clocks that are not present in the current instance,
or that propagate beyond the current instance. Xilinx does not recommend defining
timing exceptions on clocks when creating scoped constraints unless they are fully
contained in the current instance. For a clock to be available for reference in an XDC,
the clock must have already been defined. This might require changing the order of the
XDC files in the project.

• Top-level ports are returned by the get_ports command when the scope is set to a
lower level instance with the current_instance command. But when reading an
XDC file scoped to a lower-level instance with the read_xdc -ref/-cells
command or when loading a design after setting the
SCOPED_TO_REF/SCOPED_TO_CELLS file properties, the get_ports command
behavior is different:

° The port names to be used with get_ports are the port names of the scoped
instance interface, not the top-level port names.

° If a scoped instance port is directly connected to a top-level port through the
hierarchy of the design, the top-level port is returned by the get_ports command
and the constraint is applied to the top-level port.

° If there is any leaf cell, including IO and clock buffers, between the scoped instance
port and the top-level ports, the get_ports command becomes a get_pins
command and returns the hierarchical scoped instance pin.

The XDC scoping mechanism is used for reading all Vivado Design Suite IP constraint files.
Figure 2-51, and Figure 2-52, show the two examples of how the get_ports commands
are treated when reading in the IP-level XDC using this methodology.

In Figure 2-51, the I/O buffer is instantiated inside the IP and the IP interface pin is directly
connected to a top-level port (regardless of the hierarchy). When the XDC for the IP is
applied, the argument of the get_ports command is automatically replaced with the
top-level port.

This enables setting physical properties such as a LOC or IOSTANDARD at the IP level and
having them be placed on the top-level port where they need to be. This is accomplished
without the IP knowing the name of the top-level ports of the design.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=70

Using Constraints 71
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

In Figure 2-52, the IP does not contain an I/O buffer, so the synthesis engine infers one
between the IP interface pin and the top-level port. Consequently, the get_ports is
converted to a get_pins of the IP interface pin (for example, a hierarchical pin) when the
XDC is applied.

This capability is very useful for creating constraints on the interface of an IP or a sub-level
module without knowing the names of the top-level design.

If the scoped XDC file includes constraints that can only be applied to top-level ports but
the IP instance is not directly connected to top-level ports, the Vivado Design Suite XDC
reader will return errors. For example, the following constraints can only be applied to
top-level ports, and not hierarchical pins of your design:

• set_input_delay/set_output_delay
• set_property IOSTANDARD

X-Ref Target - Figure 2-51

Figure 2-51: IP Port Migration to the Corresponding Top-Level Port

X-Ref Target - Figure 2-52

Figure 2-52: IP Port Migration to a Hierarchical Pin

X12586

IP
top

IBUF

IP

IBUF

X12587

IP
top

IP

IBUF

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=71

Using Constraints 72
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

IP and Sub-Module Constraining with XDC
When using Package IP to create IP and use it from the Vivado IP catalog, XDC constraints
can also be packaged for inclusion. Any IP in the Vivado Design Suite is plug-and-play, that
is, the IP does not require a sample project from which you must cut and paste constraints
to complete your top-level design constraints. Instead, the IP can be packaged with an XDC
file that was developed for the IP as if it were a stand alone, top-level design. The Vivado
tools take care of reading the constraints appropriately when the IP is instantiated in the
project using the IP catalog.

Similarly, you can develop constraints for a sub-module of your design, and use the same
scoping mechanism as IP cores by setting the SCOPED_TO_REF/SCOPED_TO_CELLS XDC
file properties appropriately in a project flow, or use the read_xdc -ref/-cells
command in Non-Project Mode.

Scoped Queries Guidelines
For this flow to work smoothly, the XDC constraints must be written so that the effects of
the constraints stay local to the IP or sub-module instance. The Vivado tools can set the
scope of queries to a specific level of the hierarchy as seen previously in Constraints
Scoping, page 67. When developing constraints for an IP or a sub-level module, you must
understand the behavior of the query commands:

• Cell/net/pin objects queries are limited to the scoped instance and its sub-levels:

° get_cells/get_nets/get_pins <name pattern>

° The NAME property of the object shows the full hierarchical path of the object
relative to the top-level and not just the scoped instance. If you use the -filter
option of the get_* commands on the NAME property, you must use the glob string
match operator and provide a pattern which starts with a *. For example:
get_nets -hierarchical -filter {NAME =~ *clk}

• get_ports returns a top-level port if the port of the block/IP is directly connected to
a top-level port. Otherwise, get_ports returns a hierarchical pin

• Netlist helper commands are also scoped:

° all_ffs, all_latches, all_rams, all_registers, all_dsps, all_hsios
return only instances included in the current instance.

• IO helper commands cannot be used at all in a scoped XDC:

° all_inputs, all_outputs
• Clock commands are not scoped and will return all timing clocks of your design.

° get_clocks, all_clocks

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=72

Using Constraints 73
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

• Top-level and local clock objects can be queried by probing the netlist with
get_clocks -of_objects.

° Retrieve a clock entering the current instance by using get_clocks
-of_objects [get_ports <interfacePinName>]

° Retrieve a clock automatically generated inside the current instance by using
get_clocks -of_objects [get_pins <instName/outPin>], where
instName is a clock generator instance.

• Querying any object in the design is possible using the -of_objects option:

° Example: get_pins -leaf -of_objects [get_nets local_net]
• Queries are supported for top-level ports connected to the current instance interface

nets:

° get_ports -of_objects [get_nets <scoped_instance_net>]
• Queries of IP/sub-module interface pins are not allowed:

° “get_pins clk” returns an error.
• Path tracing commands are also scoped:

° all_fanin/all_fanout traverses the scoped design and stops at its boundary.
• Use get_cells/get_pins/get_nets with the most specific pattern instead of

using the all_registers command with the -clock option to query all the cells
connected to a particular clock. The returned list can be very large while only a few
objects need to be constrained. This can impact the runtime negatively.

Scoped Timing Constraints Guidelines
To avoid negatively impacting the top-level design, it is important to make sure that timing
constraints written for the IP or sub-module do not propagate beyond its boundary, except
for clock definition in some cases.

For example, consider the case in which a false path constraint is defined in the IP XDC
between two clocks that come into the IP. The IP includes proper circuitry for asynchronous
clock boundaries, but perhaps not for the rest of the design. This is a problem if the two
clocks are related and must be timed together in the rest of the design in order to have
proper hardware functionality.

Also, as discussed in Chapter 7, XDC Precedence, a timing exception defined in the IP XDC
file can have higher precedence than top-level constraints and can override them, which is
undesired. To avoid this situation, Xilinx recommends that you apply the constraints to
netlist objects local to the IP. In the case of a false path between two global clocks, the false
path must be applied from a group of startpoint cells inside the IP to another group of
endpoint cells inside the IP as well. This technique is referred to as point-to-point
exceptions instead of global exceptions.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=73

Using Constraints 74
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Recommended Constraints Rules of IP/Sub-Module XDC
The block-level constraints must comply with the following rules:

1. Do not define clocks in the block-level constraints if they are expected to be created at
the top level of the design.

Instead they can be queried inside the block using the get_clocks -of_objects
command. This command returns all the clocks that traverse a particular object in the
design.

Example:

set blockClock [get_clocks -of_objects [get_ports clkIn]]

If a clock needs to be defined inside the block, it must be on an input/inout port that is
driving an instantiated input/inout buffer, or on the output of a cell that
creates/transforms a clock (except for MMCM/PLL or special buffers that are
automatically handled by the timing tools).

Examples:

° Input clock with input buffer

° Clock Divider

° GT recovered clock
2. Specify input and output delay only if the port is directly connected to the top-level port

and the I/O buffer is instantiated inside the IP.

Example:

° Input data ports with input buffers

° Output data ports with output buffers
3. Do not define timing exceptions between two clocks that are not bounded to the IP.
4. Do not refer to clocks by name as the name may vary based on the top-level clock

names or if the block is instantiated multiple times.
5. Do not add placement constraints if the block can be instantiated multiple times in a

same top-level design.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=74

Using Constraints 75
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Constraints Efficiency
Reviewing Constraints Coverage
When writing timing constraints, it is important to keep the constraints simple and specify
them on the relevant netlist objects only. Inefficient constraints result in larger runtime and
larger memory consumption. Inefficient constraints can also result in a design improperly
constrained as timing exceptions can unexpectedly cover more paths than expected and
collide with other constraints.

A timing constraint is efficient when the number of objects provided to the constraint is as
small as possible to accurately and safely cover the desired timing paths. Most of the time,
the full efficiency cannot be obtained as the list of objects are typically built from some pins
or cells name patterns. However, the minimum number of objects should always be the
target when building the list of objects for a timing exception.

Vivado provides several ways to get feedback on the timing exceptions:

• The methodology check XDCB-1 (report_methodology) reports the timing
constraints that reference large collections of objects (over 1000).

• The Report Exception command (report_exceptions) provides coverage and
collision information on the timing exceptions that have been defined.

Xilinx recommends that you carefully analyze the following reports:

• report_exceptions –coverage

This report provides a logical path coverage for each timing exception. The number of
objects passed to the timing exception are compared to the number of startpoints and
endpoints effectively covered. You should review constraints that have significant
differences between the number of objects and the number of startpoints/endpoints.

• report_exceptions –ignored

This report provides the list of timing constraints overridden by other timing constraints
(for example, a set_false_path overridden by set_clock_group). You should
review the overridden constraints for correctness or remove the useless constraints.

• report_exceptions –ignored_objects

This report provides the list of startpoints and endpoints that are ignored due to, for
example, inexistent paths from those startpoints or to those endpoints.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=75

Using Constraints 76
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Improving Constraints Runtime

Optimizing Pin Queries

Since there are several times mores pins than cells in the design, using get_pins instead
of get_cells can have a significant impact on the runtime. The runtime degradation can
be experienced when processing XDC constraints (for example, open_checkpoint
runtime) or when executing a Tcl script. Xilinx recommends leveraging the relationship
between pin and cell objects to improve the runtime for large number of pin queries.

Instead of finding a list of pins based on their names among all pins in the design, it is more
efficient to first find the cells of the desired pins, and then refine the query by filtering the
desired pins of the cells returned by the first query, as described below.

Recommended Pin Queries

Original pin query:

get_pins –hier * -filter {NAME=~xx*/yy*}

Recommended efficient pin query:

get_pins –filter {REF_PIN_NAME=~yy*} –of [get_cells –hier xx*]

Alternate recommended pin query:

get_pins –filter {REF_PIN_NAME=~yy*} –of [get_cells –hier * -filter {NAME=~xx*}]

Example

For example, consider the following constraint:

set_max_delay 15 -from [get_pins -hier -filter {NAME=~*/aclk_dpram_reg*/*/CLK}] \
-to [get_cells -hier -filter {NAME=~*/bclk_dout_reg*}] \
-datapath_only

The constraint above can be re-written as follows to significantly improve the query
runtime, especially for larger designs:

set_max_delay 15 -from [get_pins -of [get_cells -hier –filter
 {NAME =~ *aclk_dpram_reg*/*}] -filter {REF_PIN_NAME == CLK}] \

-to [get_cells -hier bclk_dout_reg*] \
 -datapath_only

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=76

Using Constraints 77
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

Replacing all_registers Queries
The following are some additional query recommendations:

• Avoid queries using all_registers whenever possible, as they tend to create large
collections of objects. Such queries should be replaced by cells/pins queries with
appropriate name patterns.

• When all_registers must be used and the query is gathering all the sequential
elements from a clock domain, all_registers -clock can sometimes have
equivalent coverage as directly using a clock object.

For example, the two commands below are equivalent in terms of coverage. However,
the second form using get_clocks is far more efficient because the multicycle path
constraint references a single clock object instead of potentially hundreds of thousands
of sequential elements.

Original:

set_multicycle_path –from [all_inputs] –to [all_registers –clock clk1]

Optimal:

set_multicycle_path –from [all_inputs] –to [get_clocks clk1]

IMPORTANT: Starting with the Vivado Design Suite 2018.3, the all_registers command only
returns primitives that have at least one Setup/Hold/Recovery/Removal timing arc that is enabled and
a CLK->Q timing arc. This means that buffers such as BUFGCE and BUFGCE_DIV are not returned
anymore by the all_registers command.

Ordering Constraints for Better Runtime
When loading the timing constraints in memory, the timing engine validates each new
constraint and prints messages to flag potential problems. Some timing constraints
partially invalidate the timing database (also referred as timing graph) and some other
timing constraints require an up-to-date timing database in order to be properly applied.
Once the timing database is out of date, subsequent timing updates are needed, for
instance, to update auto-derivation clocks or to disable certain timing paths in the design.
The XDC commands which query the clocks or which traverse the design to query netlist
objects require an up-to-date timing database.

Interleaving constraints and commands that impact the timing database state can be
runtime intensive as the timing information gets invalidated and updated multiple times.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=77

Using Constraints 78
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

For runtime optimization, Xilinx recommends that you order the timing constraints and
queries carefully. The table below lists the XDC constraints and commands that have an
impact on the timing graph.

One of the most runtime intensive combinations is set_disable_timing with
all_fanout or all_fanin. Such combinations should be avoided. For example:

set_disable_timing –from <pin> -to [all_fanout …]
set_disable_timing –from [all_fanin …] -to <pin>

Based on Table 2-5 above, the optimal constraints order for runtime optimization is:

1. XDC constraints set_disable_timing, set_case_analysis, and
set_external_delay.

2. Constraints that have an impact on the timing graph.
3. Constraints that do not require timing graph updates.

TIP: When the same query is done in multiple places, it is recommended that you save the result of the
query inside a Tcl variable and refer to that Tcl variable when it is needed.

For example, the following sequence of constraints is not optimal.

create_clock –name clk1
create_generated_clock –name genclk1 –master_clock [get_clocks -of [get_pins ...]]
set_disable_timing ...
create_clock –name clk2
set_false_path -from [get_clocks -of [get_pins ff1/C]]
set_case_analysis ...
create_clock –name clk3
set_max_delay -to [get_clocks -of [get_pins ff2/C]]

Table 2-5: XDC Constraints and Their Impact on the Timing Graph
Constraints with Impact on

Timing Graph
Constraints with No Impact on

Timing Graph
Constraints which Require
Up-to-Date Timing Graph

create_clock set_bus_skew all_fanout
create_generated_clock set_clock_groups all_fanin
set_case_analysis set_clock_latency get_clocks
set_clock_sense set_false_path get_generated_clocks
set_clock_uncertainty set_input_delay all_clocks
set_disable_timing set_input_jitter Any constraint with the –clock option
set_external_delay set_min_delay
set_propagated_clock set_max_delay

set_max_time_borrow
set_multicycle_path
set_system_jitter

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=78

Using Constraints 79
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 2: Constraints Methodology

The following shows a more optimal and runtime efficient sequence.

set_disable_timing ...
set_case_analysis ...
create_clock –name clk1
create_clock –name clk2
create_clock –name clk3
create_generated_clock –name genclk1 –master_clock [get_clocks -of [get_pins ...]]
set_false_path -from [get_clocks -of [get_pins ff1/C]]
set_max_delay -to [get_clocks -of [get_pins ff2/C]]

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=79

Using Constraints 80
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3

Defining Clocks

About Clocks
In digital designs, clocks represent the time reference for reliably transferring data from
register to register. The Xilinx® Vivado® Integrated Design Environment (IDE) timing engine
uses the clock characteristics to compute timing path requirements and report the design
timing margin by means of the slack computation.

For more information, see this link in the Vivado Design Suite User Guide: Design Analysis
and Closure Techniques (UG906) [Ref 4].

Clocks must be properly defined in order to get the maximum timing path coverage with
the best accuracy. The following characteristics define a clock:

• It is defined on the driver pin or port of its tree root, which is called the source point.
• Its edges are described by the combination of the period and the waveform properties.
• The period is specified in nanoseconds. It corresponds to the time over which the

waveform repeats.
• The waveform is the list of rising edge and falling edge absolute times, in nanoseconds,

within the clock period. The list must contain an even number of values. The first value
always corresponds to the first rising edge. Unless specified otherwise, the duty cycle
defaults to 50% and the phase shift to 0ns.

As shown in Figure 3-1, the clock Clk0 has a 10 ns period, a 50% duty cycle and 0 ns phase.
The clock Clk1 has 8 ns period, 75% duty cycle (high time is 6 ns out of 8 ns) and a 2 ns
rising edge phase shift.

Clk0: period = 10, waveform = {0 5}
Clk1: period = 8, waveform = {2 8}

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug906-vivado-design-analysis.pdf;a=xPerformingTimingAnalysis
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=80

Using Constraints 81
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Propagated Clocks
The period and waveform properties represent the ideal characteristics of a clock. When
entering the FPGA and propagating through the clock tree, the clock edges are delayed and
become subject to variations induced by noise and hardware behavior. These characteristics
are called clock network latency and clock uncertainty.

The clock uncertainty includes:

• Clock jitter (see Clock Jitter)
• Phase error
• Any additional uncertainty that you have specified (see Additional Clock Uncertainty)

By default, the Vivado IDE always treats clocks as propagated clocks, that is, non-ideal, in
order to provide an accurate slack value which includes clock tree insertion delay and
uncertainty.

Dedicated Hardware Resources
The dedicated hardware resources of Xilinx FPGAs efficiently support a large number of
design clocks. These clocks are usually generated by an external component on the board.
They usually enter the device through an input port.

They can also be generated by special primitives called Clock Modifying Blocks, such as:

• MMCM
• PLL
• BUFR

They can also be transformed by regular cells such as LUTs and registers.

The following sections describe how to best define clocks based on where they originate.

X-Ref Target - Figure 3-1

Figure 3-1: Clock Waveforms Example

0ns 2ns 8ns 16ns

5ns

10ns

Clk0

Clk1

0ns 10ns 15ns

50% 50%

75%25%

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=81

Using Constraints 82
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Primary Clocks
A primary clock is a board clock that enters the design through an input port or a gigabit
transceiver output pin (for example, a recovered clock).

A primary clock can be defined only by the create_clock command.

Note: Primary clocks must be defined on a gigabit transceiver output only for Xilinx® 7 series
FPGAs. For UltraScale and UltraScale+™ devices, the timer automatically derives clocks on the GT
output ports.

A primary clock must be attached to a netlist object. This netlist object represents the point
in the design from which all the clock edges originate and propagate downstream on the
clock tree. In other words, the source point of a primary clock defines the time zero used by
the Vivado IDE when computing the clock latency and uncertainty used in the slack
equation.

IMPORTANT: The Vivado IDE ignores all clock tree delays coming from cells located upstream from the
point at which the primary clock is defined. If you define a primary clock on a pin in the middle of the
design, only part of its latency is used for timing analysis. This can be a problem if this clock
communicates with other related clocks in the design, because the skew, and consequently the slack,
value between the clocks can be inaccurate.

Primary clocks must be defined first, because other timing constraints often refer to them.

Primary Clocks Examples
As shown in Figure 3-2, the board clock enters the device through the port sysclk, then
propagates through an input buffer and a clock buffer before reaching the path registers.

• Its period is 10 ns.
• Its duty cycle is 50%.
• Its phase is not shifted.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=82

Using Constraints 83
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

RECOMMENDED: Define the board clock on the input port, not on the output of the clock buffer.

Corresponding Xilinx Design Constraints (XDC):

create_clock -period 10 [get_ports sysclk]

Similar to sysclk, a board clock devclk enters the device through the port ClkIn.

• Its period is 10 ns.
• Its duty cycle is 25%.
• It is phase shifted by 90 degrees.

Corresponding XDC:

create_clock -name devclk -period 10 -waveform {2.5 5} [get_ports ClkIn]

Figure 3-3 shows a transceiver gt0, which recovers the clock rxclk from a high speed link
on the board. The clock rxclk has a 3.33 ns period, a 50% duty cycle and is routed to an
MMCM, which generates several compensated clocks for the design.

When defining rxclk on the output driver pin of GT0, all the generated clocks driven by
the MMCM have a common source point, which is gt0/RXOUTCLK. The slack computation
on paths between them uses the proper clock latency and uncertainty values.

create_clock -name rxclk -period 3.33 [get_pins gt0/RXOUTCLK]

X-Ref Target - Figure 3-2

Figure 3-2: Primary Clock Example

5ns

sysclk

0ns 10ns 15ns

50% 50%

REGB

D Q

REGA

D Q

Data Path

sysclk IBUF BUFG

Recommended
primary clock
source point

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=83

Using Constraints 84
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

In Figure 3-4, a differential buffer drives the PLL. In such a scenario, the primary clock must
only be created on the positive input of the differential buffer. Creating a primary clock on
each of the positive/negative inputs of the buffer would result in unrealistic CDC paths. For
example:

create_clock -name sysclk -period 3.33 [get_ports SYS_CLK_clk_p]

X-Ref Target - Figure 3-3

Figure 3-3: GT Primary Clock Example

1.66ns
rxclk

0ns 3.33ns

50% 50%

REGB

D Q

REGA

D Q

Data Path

Recommended
primary clock
source point

gt0

RXOUTCLK

CLKFBOUT

CLKOUT0

CLKOUT1

CLKIN1

CLKFBIN

mmcm0

rxclk

X-Ref Target - Figure 3-4

Figure 3-4: Primary Clock on Differential Buffer Example

X18852-031717

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=84

Using Constraints 85
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Virtual Clocks
A virtual clock is a clock that is not physically attached to any netlist element in the design.

A virtual clock is defined by means of the create_clock command without specifying a
source object.

A virtual clock is commonly used to specify input and output delay constraints in one of the
following situations:

• The external device I/O reference clock is not one of the design clocks.
• The FPGA I/O paths are related to an internally generated clock that cannot be properly

timed against the board clock from which it is derived.
Note: This happens when the ratio between the two periods is not an integer. which leads to a
very tight and unrealistic timing path requirement.

• You want to specify different jitter and latency only for the clock related to the I/O
delay constraints without modifying the internal clocks characteristics.

For example, the clock clk_virt has a period of 10 ns and is not attached to any netlist
object. The [<objects>] argument is not specified. The -name option is mandatory in
such cases.

create_clock -name clk_virt -period 10

The virtual clocks must be defined before being used by the input and output delay
constraints.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=85

Using Constraints 86
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Generated Clocks
This section discusses generated clocks and includes:

• About Generated Clocks
• User Defined Generated Clocks
• Automatically Derived Clocks
• Renaming Auto-Derived Clocks

About Generated Clocks
Generated clocks are driven inside the design by special cells called Clock Modifying Blocks
(for example, an MMCM), or by some user logic.

Generated clocks are associated with a master clock. The create_generated_clock
command considers the start point of the master clock. The master clock can be a primary
clock or another generated clock.

Generated clock properties are directly derived from their master clock. Instead of
specifying their period or waveform, you must describe how the modifying circuitry
transforms the master clock.

The relationship between a master clock and a generated clock can be any of the following:

• A simple frequency division
• A simple frequency multiplication
• A combination of a frequency multiplication and division in order to obtain a

non-integral ratio (usually done by MMCM and PLL)
• A phase shift or a waveform inversion
• A duty cycle transformation
• A combination of all the above

RECOMMENDED: Define all primary clocks first. They are needed for defining the generated clocks.

Note: To compute the latency for the generated clock, the tool traces both sequential and
combinational paths between the source pin of the generated clock and the source pin of the master
clock. In some cases, it might be desirable to only trace through combinational paths to calculate the
generated clock latency. You can do this using the -combinational command line option.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=86

Using Constraints 87
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

User Defined Generated Clocks
A user defined generated clock is:

• Defined by the create_generated_clock command.
• Attached to a netlist object, preferably the clock tree root pin.

Specify the master clock using the -source option. This indicates a pin or port in the
design through which the master clock propagates. It is common to use the master clock
source point or the input clock pin of generated clock source cell.

IMPORTANT: The -source option accepts only a pin or port netlist object. It does not accept clock
objects.

Example One: Simple Division by 2

The primary clock clkin has a period of 10 ns. It is divided by 2 by the register REGA which
drives other registers clock pin. The corresponding generated clock is called clkdiv2.

Two equivalent constraints are provided below:

create_clock -name clkin -period 10 [get_ports clkin]

Option 1: master clock source is the primary clock source point
create_generated_clock -name clkdiv2 -source [get_ports clkin] -divide_by 2 \
[get_pins REGA/Q]

Option 2: master clock source is the REGA clock pin
create_generated_clock -name clkdiv2 -source [get_pins REGA/C] -divide_by 2 \
[get_pins REGA/Q]

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=87

Using Constraints 88
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Example Two: Division by 2 With the -edges Option

Instead of using the -divide_by option, you can use the -edges option to directly
describe the waveform of the generated clock based on the edges of the master clock. The
argument is a list of master clock edge indexes used for defining the position in time of the
generated clock edges, starting with the rising clock edge.

The following example is equivalent to the generated clock defined in Example One: Simple
Division by 2.

waveform specified with -edges instead of -divide_by
create_generated_clock -name clkdiv2 -source [get_pins REGA/C] -edges {1 3 5} \
[get_pins REGA/Q]

X-Ref Target - Figure 3-5

Figure 3-5: Generated Clock Example One

10ns

clkin

0ns 20ns 30ns

REGB

D Q

REGA

Data Path

clkin IBUF BUFG

Primary clock source point

D Q

C Generated clock definition
point

clkdiv2

1 2 3 4 5 6(edge#)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=88

Using Constraints 89
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Example Three: Duty Cycle Change and Phase Shift with -edges and
-edge_shift Options

Each edge of the generated clock waveform can also be individually shifted by a positive or
negative value by using the -edge_shift option. Use this option only if a phase shift is
needed.

The -edge_shift option cannot be used at the same time as any of the following:

• -divide_by

• -multiply_by

• -invert

Consider the master clock clkin with a 10 ns period and a 50% duty cycle. It reaches the
cell mmcm0 which generates a clock with a 25% duty cycle, shifted by 90 degrees. The
generated clock definition refers to the master clock edges 1, 2, and 3. These edges
respectively occur at 0ns, 5ns, and 10ns. To obtain the desired waveform, shift the first and
the third edges by 2.5ns.

create_clock -name clkin -period 10 [get_ports clkin]
create_generated_clock -name clkshift -source [get_pins mmcm0/CLKIN] -edges {1 2 3} \
 -edge_shift {2.5 0 2.5} [get_pins mmcm0/CLKOUT]

First rising edge: 0ns + 2.5ns = 2.5ns
Falling edge: 5ns + 0ns = 5ns
Second rising edge: 10ns + 2.5ns = 12.5ns

Note: The -edge_shift values can be positive or negative.

Example Four: Using Both -divide_by and -multiply_by at the Same Time

The Vivado IDE allows you to specify both -divide_by and -multiply_by at the same
time. This is an extension to standard Synopsys Design Constraints (SDC) support. This is

X-Ref Target - Figure 3-6

Figure 3-6: Generated Clock Example Three

25%

REGB

D Q

REGA

D Q

Data Path

CLKFBOUT

CLKOUTCLKIN

CLKFBIN

mmcm0

clkin IBUF BUFG

BUFG

BUFG

5ns

clkin

0ns 10ns 15ns

clkdiv2

1 2 3 4(edge#)

2.5ns 12.5ns

Primary clock
source point

Generated clock
definition point

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=89

Using Constraints 90
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

particularly convenient for manually defining clocks generated by MMCM or PLL instances,
although Xilinx recommends that you let the engine create these constraints automatically.

For more information, see Automatically Derived Clocks.

Consider the mmcm0 cell as in Example Three: Duty Cycle Change and Phase Shift with
-edges and -edge_shift Options above, and assume that it multiplies the frequency of the
master clock by 4/3. The corresponding generated clock definition is:

create_generated_clock -name clk43 -source [get_pins mmcm0/CLKIN] -multiply_by 4 \
 -divide_by 3 [get_pins mmcm0/CLKOUT]

If you create a generated clock constraint on the output of an MMCM or PLL, it is better to
verify that the waveform definition matches the configuration of the MMCM or PLL.

Example Five: Tracing the Master Clock through Combinational Arcs Only

In this example, assume that the master clock drives both a register-based clock
divided-by-2 and a clock multiplexer that can select the master clock or the divided-by-2
clock from the register clock divider. In this scenario, there are two paths from the master
clock to the generated clock, which are through a sequential arc and through a
combinational arc. We want to create a generated clock on the multiplexer output that
reflects the latency of the combinational path from the master clock through the
multiplexer. This is done by using the -combinational command line option:

create_generated_clock -name clkout -source [get_pins mmcm0/CLKIN] -combinational
[get_pins MUX/O]

Example Six: Forwarded Clock Driven by ODDR

In this example, a forwarded clock is created on the output port driven by an ODDR cell. The
forwarded clock references the master clock driving the ODDR/CLKDIV pin and has the
same period as the master clock (-divide_by 1):

create_generated_clock -name ck_vsf_clk_2 \
 -source [get_pins ODDRE1_vsfclk2_inst/CLKDIV] -divide_by 1 [get_ports vsf_clk_2]

X-Ref Target - Figure 3-7

Figure 3-7: Example of Forwarded Clock

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=90

Using Constraints 91
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Automatically Derived Clocks
Automatically derived clocks are also called auto-generated clocks. The Vivado IDE
automatically creates the constraint for these on the output pins of the Clock Modifying
Blocks (CMBs), provided the associated master clock has already been defined.

In the Xilinx 7 series device family, the CMBs are:

• MMCM*/ PLL*
• BUFR
• PHASER*

In the Xilinx UltraScale™ device family, the CMBs are:

• MMCM* / PLL*
• BUFG_GT / BUFGCE_DIV
• GT*_COMMON / GT*_CHANNEL / IBUFDS_GTE3
• BITSLICE_CONTROL / RX*_BITSLICE
• ISERDESE3

An auto-generated clock is not created if a user-defined clock (primary or generated) is also
defined on the same netlist object, that is, on the same definition point (net or pin). The
auto-derived clock is named with the segment name in the top-most hierarchy of the net
that is connected to the definition point.

Automatically Derived Clock Example

The following automatically derived clock example is a clock generated by an MMCM.

The master clock clkin drives the input CLKIN of the MMCME2 instance clkip/mmcm0.
The name of the auto-generated clock is cpuClk and its definition point is
clkip/mmcm0/CLKOUT.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=91

Using Constraints 92
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

TIP: Use the get_clocks -of_objects <pin/port/net> command to query an auto-generated
clock without knowing its name. This will make your constraint or script independent of the clock name
changes.

Local Net Names

If the CMB instance is located inside the hierarchy of the design, the local net name (that is,
the name without its parent cell name) is used for the generated clock name.

For example, for a hierarchical net called clkip/cpuClk:

• The parent cell name is clkip.
• The generated clock name is cpuClk.

Name Conflicts

In case of name conflict between two auto-generated clocks, the Vivado IDE adds unique
suffixes to differentiate them, such as:

• usrclk

• usrclk_1

• usrclk_2
• ...

To force the name of the generated clocks:

• Choose unique and relevant net names in the RTL, or
• Use create_generated_clock to force the name of the generated clocks.

X-Ref Target - Figure 3-8

Figure 3-8: Auto Generated Clock Example

REGA

D Q

Data Path

CLKFBOUT

CLKOUTCLKIN

CLKFBIN

clkip/mmcm0

clkin IBUF BUFG

BUFG

BUFG

Primary clock source
point Auto-generated clock

definition point

Hierarchical net
name: clkip/cpuClk

clkip

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=92

Using Constraints 93
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Renaming Auto-Derived Clocks
It is possible to rename the generated clocks that are automatically created by the tool. The
renaming process consists in calling the create_generated_clock command with a
limited number of parameters:

create_generated_clock -name new_name [-source master_pin] [-master_clock
master_clk] source_object

The arguments that must be specified are the new generated clock name and the source
object of the generated clock. The source object of the generated clock is the object where
the auto-derived clock is created (CMB output pin, GT output pin for UltraScale, and so on).
The -source and -master parameters must be used only when more than one clock
propagates through the source pin in order to remove any ambiguity.

IMPORTANT: If any of the -edges/-edge_shift/-divide_by/-multiply_by/
-combinational/-duty_cycle/-invert options is passed to the create_generated_clock
command, the generated clock is not renamed. Instead a new generated clock is created with the
specified characteristics.

IMPORTANT: When a module (IP/BD/DFx/...) is synthesized Out-Of-Context, the module is inferred as
a black-box when the top level is synthesized and the module internal pins and clock names are not
anymore accessible. In that scenario, the top level XDC constraints used for synthesis cannot refer to a
clock name or rename an auto-derived clock that is generated inside the module. With OOC synthesis,
the top-level timing constraints must point to the OOC clocks through the module ports that propagate
those clocks. This can be done using some queries such as ‘get_clocks -of_objects [get_pins
<OOC_MODULE_OUTPUT_CLOCK_PORT>]. The XDC constraints used for implementation do not have
this limitation since the entire design is rebuilt before the XDC constraints are applied.

Limitations

• Auto-derived clocks can only be renamed at the pin where they originate, such as at
the output of the Clock Modifying blocks (PLL, MMCM, . . .). For example, an
auto-derived clock cannot be renamed at the output of a BUFG even though it
propagates through it.

• Primary clocks or user-defined generated clocks cannot be renamed. Only auto-derived
clocks can be renamed with this mechanism.

• The source_object must match the object where the auto-derived clock is created.

An error is returned if the tool cannot rename the generated clock. The master clock must
also exist at the time the renaming is done. The auto-derived clocks can be renamed at any
time inside the XDC, even after they have been referenced by some timing constraints.

For example, below is an abstract of report_clocks for the generated clock at the output
pins of an MMCM:

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=93

Using Constraints 94
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

==
Generated Clocks
==

Generated Clock : clkfbout_clk_core
Master Source : clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKIN1
Master Clock : clk_pin_p
Multiply By : 1
Generated Sources : {clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKFBOUT}

Generated Clock : clk_rx_clk_core
Master Source : clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKIN1
Master Clock : clk_pin_p
Multiply By : 1
Generated Sources : {clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUT0}

Generated Clock : clk_tx_clk_core
Master Source : clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKIN1
Master Clock : clk_pin_p
Edges : {1 2 3}
Edge Shifts : {0.000 0.500 1.000}
Generated Sources : {clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUT1}

The three commands below illustrate the command line options that must be specified to
rename the three auto-derived clocks at the output of the MMCM:

create_generated_clock -name clk_rx [get_pins
clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUT0]
create_generated_clock -name clk_tx [get_pins
clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUT1]
create_generated_clock -name clkfbout [get_pins
clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKFBOUT]

After the renaming, below is the abstract from the report_clocks:
==
Generated Clocks
==
Generated Clock : clkfbout
Master Source : clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKIN1
Master Clock : clk_pin_p
Multiply By : 1
Generated Sources : {clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKFBOUT}

Generated Clock : clk_rx
Master Source : clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKIN1
Master Clock : clk_pin_p
Multiply By : 1
Generated Sources : {clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUT0}

Generated Clock : clk_tx
Master Source : clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKIN1
Master Clock : clk_pin_p
Edges : {1 2 3}
Edge Shifts : {0.000 0.500 1.000}
Generated Sources : {clk_gen_i0/clk_core_i0/inst/mmcm_adv_inst/CLKOUT1}

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=94

Using Constraints 95
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Clock Groups
This section discusses Clock Groups and includes:

• About Clock Groups
• Clock Categories
• Asynchronous Clock Groups
• Exclusive Clock Groups

About Clock Groups
The Vivado IDE times the paths between all the clocks in your design by default, unless you
specify otherwise by using clock groups or false path constraints. The set_clock_groups
command disables timing analysis between groups of clocks that you identify, and not
between the clocks within a same group. Unlike with the set_false_path constraint,
timing is ignored on both directions between the clocks.

Multiple groups of clocks can be specified using the -group option multiple times. If none
of the clocks in a group exist in the design, the group becomes empty. The
set_clock_groups constraint stays valid only when at least two groups are valid and not
empty. If only one group remains valid and all the other groups are empty, then the
set_clock_groups constraint is not applied and an error message is generated.

Use the schematic viewer or the Clock Networks Report to visualize the topology of the
clock trees, and determine which clocks must not be timed together. You can also use the
Clock Interactions Report to review the existing constraints between two clocks, and
determine whether they share the same primary clock -- that is, they have a known phase
relationship -- or identify the clocks with no common period (unexpandable).

CAUTION! Ignoring timing analysis between two clocks does not mean that the paths between them
will work properly in hardware. In order to prevent metastability, you must verify that these paths have
proper re-synchronization circuitry, or asynchronous data transfer protocols.

Clock Categories
This section discusses synchronous, asynchronous, and unexpandable clocks.

Synchronous Clocks

Two clocks are synchronous when their relative phase is predictable. This is usually the case
when their tree originates from the same root in the netlist, and when they have a common
period.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=95

Using Constraints 96
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

For example, a generated clock and its master clock that have a period ratio of 2 are
synchronous because they propagate through the same netlist resources up to the
generated clock source point, and have a common period of 2 cycles. They can be safely
timed together.

Asynchronous Clocks

Two clocks are asynchronous when it is impossible to determine their relative phase.

For example, two clocks generated by separate oscillators on the board and entering the
FPGA by means of different input ports have no known phase relationship. They must
therefore be treated as asynchronous. If they were generated by the same oscillator on the
board, this would not be true.

In most cases, primary clocks can be treated as asynchronous. When associated with their
respective generated clocks, they form asynchronous clock groups.

Unexpandable Clocks

Two clocks are not expandable when the timing engine cannot determine their common
period over 1000 cycles. In this case, the worst setup relationship over the 1000 cycles is
used during timing analysis, but the timing engine cannot ensure this is the most
pessimistic case.

This is typically the case between two clocks with an odd fractional period ratio. For
example, consider two clocks, clk0 and clk1, generated by two MMCMs that share the
same primary clock:

• clk0 has a 5.125 ns period.
• clk1 has a 6.666 ns period.

Their rising clock edges do not realign within 1000 cycles. The timing engine uses a setup
path requirement of 0.01 ns on the timing paths between the two clocks. Even if the two
clocks have a known phase relationship at their clock tree root, their waveforms do not
allow safe timing analysis between them.

As with asynchronous clocks, the slack computation appears normally, but the value cannot
be trusted. For this reason, unexpandable clocks are often assimilated to asynchronous
clocks. Both clock categories must be treated the same way for constraining and
clock-domain crossing circuitry.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=96

Using Constraints 97
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Asynchronous Clock Groups
Asynchronous clocks and unexpandable clocks cannot be safely timed. The timing paths
between them can be ignored during analysis by using the set_clock_groups command.

IMPORTANT: The set_clock_groups command has higher priority over the regular timing
exceptions. If you need to constrain and report some paths between asynchronous clocks, you must use
the timing exceptions only, and not set_clock_groups.

Asynchronous Clock Groups Examples

• The primary clock clk0 is defined on an input port and reaches an MMCM which
generates the clocks usrclk and itfclk.

• A second primary clock clk1 is a recovered clock defined on the output of a GTP
instance and reaches a second MMCM which generates the clocks gtclkrx and
gtclktx.

Creating Asynchronous Clock Groups

Use the -asynchronous option to create asynchronous groups.

set_clock_groups -name async_clk0_clk1 -asynchronous -group {clk0 usrclk itfclk} \
-group {clk1 gtclkrx gtclktx}

If the name of the generated clocks cannot be predicted in advance, use get_clocks
-include_generated_clocks to dynamically retrieve them. The
-include_generated_clocks option is an SDC extension.

The previous example can also be written as:

set_clock_groups -name async_clk0_clk1 -asynchronous \
-group [get_clocks -include_generated_clocks clk0] \
-group [get_clocks -include_generated_clocks clk1]

Exclusive Clock Groups
Some designs have several operation modes that require the use of different clocks. The
selection between the clocks is usually done with a clock multiplexer such as BUFGMUX and
BUFGCTRL, or A LUT.

RECOMMENDED: Avoid using LUTs in clock trees as much as possible.

Because these cells are combinatorial cells, the Vivado IDE propagates all incoming clocks
to the output. With the Vivado IDE, several timing clocks can exist on a clock tree at the
same time, which is convenient for reporting on all the operation modes at once, but is not
possible in hardware.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=97

Using Constraints 98
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Such clocks are called exclusive clocks. Constrain them as such by using the options of
set_clock_groups:

• -logically_exclusive

• -physically_exclusive

Exclusive Clock Groups Example

An MMCM instance generates clk0 and clk1 which are connected to the BUFGMUX
instance clkmux. The output of clkmux drives the design clock tree.

By default, the Vivado IDE analyzes paths between clk0 and clk1 even though both clocks
share the same clock tree and cannot exist at the same time.

You must enter the following constraint to disable the analysis between the two clocks:

set_clock_groups -name exclusive_clk0_clk1 -physically_exclusive \
-group clk0 -group clk1

The following options are equivalent in the context of Xilinx FPGAs:

• -physically_exclusive

• -logically_exclusive

The physically and logically labels refer to various signal integrity analysis (crosstalk) modes
in ASIC technologies which is not needed for Xilinx FPGAs.

Clock Latency, Jitter, and Uncertainty
In addition to defining the clock waveforms, you must specify predictable and random
variations related to the operating conditions and environment.

Clock Latency
After propagating on the board and inside the FPGA, the clock edges arrive at their
destination with a certain delay. This delay is typically represented by:

• The source latency (delay before the clock source point, usually, outside the device)
• The network latency

The delay introduced by the network latency (also called insertion delay) is either
automatically estimated (pre-route design) or accurately computed (post-route design).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=98

Using Constraints 99
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Many non-Xilinx timing engines require the SDC command set_propagated_clock to
trigger the computation of propagation delay along the clock trees. The Vivado tool does
not require this command. Instead, it computes the clock propagation delay by default:

• All clocks are considered propagated clocks.
• A generated clock latency includes the insertion delay of its master clock plus its own

network latency.

For Xilinx FPGAs, use the set_clock_latency command primarily to specify the clock
latency outside the device.

set_clock_latency Example

Minimum source latency value for clock sysClk (for both Slow and Fast corners)
set_clock_latency -source -early 0.2 [get_clocks sysClk]
Maximum source latency value for clock sysClk (for both Slow and Fast corners)
set_clock_latency -source -late 0.5 [get_clocks sysClk]

Clock Uncertainty

Clock Jitter

For ASIC devices, clock jitter is usually represented with the clock uncertainty characteristic.
However, for Xilinx FPGAs, the jitter properties are predictable. They can be automatically
computed by the timing analysis engine, or be specified separately.

Input Jitter

Input jitter is the difference between successive clock edges with respect to variation from
the nominal or ideal clock arrival times. The input jitter is an absolute value and represents
variations on each side of the clock edge.

Use the set_input_jitter command to specify input jitter for each primary clock
individually. You cannot specify the input jitter on a generated clock directly. The Vivado IDE
timing engine automatically computes the jitter that a generated clock inherits from its
master clock.

• For the case in which the generated clock is driven by a MMCM or a PLL, the input jitter
is replaced with a computed discrete jitter.

• For the case the generated clock is created by a combinatorial or sequential cell, the
generated clock jitter is the same as its master clock jitter.

System Jitter

System jitter is the overall jitter due to power supply noise, board noise, or any extra jitter
of the system.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=99

Using Constraints 100
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 3: Defining Clocks

Use the set_system_jitter command to set only one value for the whole design, that
is, all the clocks.

The following command sets a +/-100 ps jitter on the primary clock propagating through
input port clkin:

set_input_jitter [get_clocks -of_objects [get_ports clkin]] 0.1

Note: The impact of input jitter and system jitter in the overall calculation of the clock uncertainty
is not trivial and does not follow a single equation. The calculation of the clock uncertainty is
path-dependent and depends on the clocking topology, the clock-pair involved in the path, the
presence or not of an MMCM/PLL on the clock tree, and other considerations. However, the text and
GUI of the Report Timing command expose the breakdown of the clock uncertainty for each timing
path.

Additional Clock Uncertainty

Use the set_clock_uncertainty command to define additional clock uncertainty for
different corner, delay, or particular clock relationships as needed. This is a convenient way
to add extra margin to a portion of the design from a timing perspective.

The inter-clock uncertainty always takes precedence over simple clock uncertainty,
regardless of the order of the constraints. In the following example, although a simple clock
uncertainty of 1.0 ns is defined last on clock clk1, the timing paths from clock clk1 to
clock clk2 are constrained with a 2.0 ns clock uncertainty.

set_clock_uncertainty 2.0 -from [get_clocks clk1] -to [get_clocks clk2]
set_clock_uncertainty 1.0 [get_clocks clk1]

When an inter-clock uncertainty is defined between two clock domains, make sure to
constrain all the possible interactions of clock domains:

• clk1 to clk2
• clk2 to clk1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=100

Using Constraints 101
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 4

Constraining I/O Delay

About Constraining I/O Delay
To accurately model the external timing context in your design, you must give timing
information for the input and output ports. Because the Xilinx® Vivado® Integrated Design
Environment (IDE) recognizes timing only within the boundaries of the FPGA, you must use
the following commands to specify delay values that exist beyond these boundaries:

• set_input_delay

• set_output_delay

Input Delay
The set_input_delay command specifies the input path delay on an input port relative
to a clock edge at the interface of the design.

VIDEO: For training on input delay, see the Vivado Design Suite QuickTake Video: Setting Input Delay.

When considering the application board, the input delay represents the phase difference
between:

a. The data propagating from an external chip through the board to an input package
pin of the FPGA, and

b. The relative reference board clock.

Consequently, the input delay value can be positive or negative, depending on the clock
and data relative phase at the interface of the device.

Note: Input delays can also be set on internal data pins such as, STARTUPE3/DATA_IN[0:3]
(UltraScale+™ devices).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/setting-input-delay.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=101

Using Constraints 102
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 4: Constraining I/O Delay

Using Input Delay Options
Although the -clock option is optional in the Synopsys Design Constraints (SDC)
standard, it is required by the Vivado IDE. The relative clock can be either a design clock or
a virtual clock.

RECOMMENDED: When using a virtual clock, use the same waveform as the design clock related to the
input ports inside the design. This way, the timing path requirement is realistic. Using a virtual clock is
convenient for modeling different jitter or source latency scenarios without modifying the design clock.

The Input Delay command options are:

• Min and Max Input Delay Command Options
• Clock Fall Input Delay Command Option
• Add Delay Input Delay Command Option

Min and Max Input Delay Command Options

The -min and -max options specify different values for:

• Min delay analysis (hold/removal)
• Max delay analysis (setup/recovery).

If neither is used, the input delay value applies to both min and max.

Clock Fall Input Delay Command Option

The -clock_fall option specifies that the input delay constraint applies to timing paths
launched by the falling clock edge of the relative clock. Without this option, the Vivado IDE
assumes only the rising edge of the relative clock.

Do not confuse the -clock_fall option with the -rise and -fall options. These
options refer to the data edge and not to the clock edge.

Add Delay Input Delay Command Option

The -add_delay option must be used if:

• A max (or min) input delay constraint exists, and
• You want to specify a second max (or min) input delay constraint on the same port.

This option is commonly used to constrain an input port relative to more than one clock
edge, as, for example, DDR interfaces.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=102

Using Constraints 103
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 4: Constraining I/O Delay

You can apply an input delay constraint only to input or bi-directional ports, excluding clock
input ports, which are automatically ignored. You cannot apply an input delay constraint to
an internal pin.

Use of set_input_delay Command Options
The following examples present typical uses of the set_input_delay command options.
For additional information about input delay constraint methodology, refer to this link in
the UltraFast Design Methodology Guide for the Vivado Design Suite (UG949) [Ref 5].

Input Delay Example One

This example defines an input delay relative to a previously defined sysClk for both min
and max analysis.

> create_clock -name sysClk -period 10 [get_ports CLK0]
> set_input_delay -clock sysClk 2 [get_ports DIN]

Input Delay Example Two

This example defines an input delay relative to a previously defined virtual clock.

> create_clock -name clk_port_virt -period 10
> set_input_delay -clock clk_port_virt 2 [get_ports DIN]

Input Delay Example Three

This example defines a different input delay value for min analysis and max analysis relative
to sysClk.

> create_clock -name sysClk -period 10 [get_ports CLK0]
> set_input_delay -clock sysClk -max 4 [get_ports DIN]
> set_input_delay -clock sysClk -min 1 [get_ports DIN]

Input Delay Example Four

To constrain pure combinational paths between I/O ports, an input and output delay must
be defined on the I/O ports relative to a previously defined virtual clock.

The example below sets a 5 ns (10 ns - 4 ns - 1 ns) constraint on the combinational path
between ports DIN and DOUT:

> create_clock -name sysClk -period 10 [get_ports CLK0]
> set_input_delay -clock sysClk 4 [get_ports DIN]
> set_output_delay -clock sysClk 1 [get_ports DOUT]

Refer to Combinatorial Delays, page 40 for further information about constraining
combinational paths using the Timing Constraints wizard.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf;a=xConstrainingInputAndOutputPorts
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=103

Using Constraints 104
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 4: Constraining I/O Delay

Input Delay Example Five

This example specifies input delay value relative to a DDR clock.

> create_clock -name clk_ddr -period 6 [get_ports DDR_CLK_IN]
> set_input_delay -clock clk_ddr -max 2.1 [get_ports DDR_IN]
> set_input_delay -clock clk_ddr -max 1.9 [get_ports DDR_IN] -clock_fall -add_delay
> set_input_delay -clock clk_ddr -min 0.9 [get_ports DDR_IN]
> set_input_delay -clock clk_ddr -min 1.1 [get_ports DDR_IN] -clock_fall -add_delay

This example creates constraints from data launched by both rising and falling edges of the
clk_ddr clock outside the device to the data input of the internal flip-flop that is sensitive
to both rising and falling clock edges.

Input Delay Example Six

This example specifies the clock and input delay on the STARTUPE3 internal pins
(UltraScale+ devices) to time the paths from STARTUPE3 to the fabric.

> create_generated_clock -name clk_sck -source [get_pins -hierarchical
*axi_quad_spi_0/ext_spi_clk] [get_pins STARTUP/CCLK] -edges {3 5 7}
> set_input_delay -clock clk_sck -max 7 [get_pins STARTUP/DATA_IN[*]] -clock_fall
> set_input_delay -clock clk_sck -min 1 [get_pins STARTUP/DATA_IN[*]] -clock_fall

For more information on timing constraints for STARTUPE3, refer to the AXI Quad SPI v3.2
LogiCORE IP Product Guide (PG153) [Ref 6].

Output Delay
The set_output_delay command specifies the output path delay of an output port
relative to a clock edge at the interface of the design.

VIDEO: For training on output delay, see the Vivado Design Suite QuickTake Video: Setting Output
Delay.

When considering the application board, this delay represents the phase difference
between:

a. The data propagating from the output package pin of the FPGA, through the board
to another device, and

b. The relative reference board clock.

The output delay value can be positive or negative, depending on the clock and data
relative phase outside the FPGA.

Note: Output delays can also be set on internal data pins such as, STARTUPE3/DATA_OUT[0:3]
(UltraScale+ devices).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/setting-output-delay.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/setting-output-delay.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=104

Using Constraints 105
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 4: Constraining I/O Delay

Using Output Delay Options
Although the -clock option is optional in the SDC standard, it is required by the Vivado
Design Suite tools.

The relative clock can either be a design clock or a virtual clock.

RECOMMENDED: When using a virtual clock, use the same waveform as the design clock related to the
output ports inside the design. This way, the timing path requirement is realistic. Using a virtual clock
is convenient for modeling jitter or source latency scenarios without modifying the design clock.

The Output Delay command options are:

• Min and Max Output Delay Command Options
• Clock Fall Output Delay Command Option
• Add Delay Output Delay Command Option

Min and Max Output Delay Command Options

The -min and -max options specify different values for min delay analysis (hold/removal)
and max delay analysis (setup/recovery). If neither is used, the output delay value applies to
both min and max.

Clock Fall Output Delay Command Option

The -clock_fall option specifies that the output delay constraint applies to timing paths
captured by a falling clock edge of the relative clock. Without this option, the Vivado IDE
assumes only the rising edge of the relative clock (outside the device) by default.

Do not confuse the -clock_fall option with the -rise and -fall options. These
options refer to the data edge not the clock edge.

Add Delay Output Delay Command Option

You must use the -add_delay option if:

• A max output delay constraint already exists, and
• You want to specify a second max output delay constraint on the same port.

The same is true for a min output delay constraint. This option is commonly used to
constrain an output port relative to more than one clock edge, as, for example, rising and
falling edges in DDR interfaces, or when the output port is connected to several devices
that use different clocks.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=105

Using Constraints 106
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 4: Constraining I/O Delay

IMPORTANT: You can apply an output delay constraint only to output or bi-directional ports. You
cannot apply an output delay constraint to an internal pin.

Use of set_output_delay Command Options
The following examples present typical uses of the set_output_delay command
options. For additional information about output delay constraint methodology, refer to
this link in the UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)
[Ref 5].

Output Delay Example One

This example defines an output delay relative to a previously defined sysClk for both min
and max analysis.

> create_clock -name sysClk -period 10 [get_ports CLK0]
> set_output_delay -clock sysClk 6 [get_ports DOUT]

Output Delay Example Two

This example defines an output delay relative to a previously defined virtual clock.

> create_clock -name clk_port_virt -period 10
> set_output_delay -clock clk_port_virt 6 [get_ports DOUT]

Output Delay Example Three

This example specifies output delay value relative to a DDR clock with different values for
min (hold) and max (setup) analysis.

> create_clock -name clk_ddr -period 6 [get_ports DDR_CLK_IN]
> set_output_delay -clock clk_ddr -max 2.1 [get_ports DDR_OUT]
> set_output_delay -clock clk_ddr -max 1.9 [get_ports DDR_OUT] -clock_fall
-add_delay
> set_output_delay -clock clk_ddr -min 0.9 [get_ports DDR_OUT]
> set_output_delay -clock clk_ddr -min 1.1 [get_ports DDR_OUT] -clock_fall
-add_delay

This example creates constraints from data launched by both rising and falling edges of the
clk_ddr clock outside the device to the data output of the internal flip-flop sensitive to
both rising and falling clock edges.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf;a=xConstrainingInputAndOutputPorts
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=106

Using Constraints 107
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 4: Constraining I/O Delay

Output Delay Example Four

This example specifies the clock and output delay on the STARTUPE3 internal pins
(UltraScale+ devices) to time the paths from the fabric to STARTUPE3.

> create_generated_clock -name clk_sck -source [get_pins -hierarchical
*axi_quad_spi_0/ext_spi_clk] [get_pins STARTUP/CCLK] -edges {3 5 7}
> set_output_delay -clock clk_sck -max 6 [get_pins STARTUP/DATA_OUT[*]]
> set_output_delay -clock clk_sck -min 1 [get_pins STARTUP/DATA_OUT[*]]

For more information on timing constraints for STARTUPE3, refer to the AXI Quad SPI v3.2
LogiCORE IP Product Guide (PG153) [Ref 6].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=107

Using Constraints 108
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5

Timing Exceptions

About Timing Exceptions
A timing exception is needed when the logic behaves in a way that is not timed correctly by
default. You must use a timing exception command any time you want the timing handled
differently (for example, for logic that only has the result captured every other clock cycle
by design).

The Xilinx® Vivado® Integrated Design Environment (IDE) supports the timing exceptions
commands shown in Table 5-1.

Note: For runtime consideration, Vivado tools do not provide on-the-fly analysis for conflicting
timing exceptions. Run report_exceptions for full analysis and reporting of the timing
exceptions.
For more information, refer to Vivado Design Suite User Guide: Design Analysis and Closure
Techniques (UG906) [Ref 4].

Table 5-1: Timing Exceptions Commands
Command Function

set_multicycle_path Indicates the number of clock cycles required to propagate
data from the start to the end of a path.

set_false_path Indicates that a logic path in the design should not be
analyzed.

set_max_delay

set_min_delay

Sets the minimum and maximum path delay value. This
overrides the default setup and hold constraints with user
specified maximum and minimum delay values.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=108

Using Constraints 109
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Multicycle Paths
The Multicycle Path constraint allows you to modify the setup and hold relationships
determined by the timer, based on the design clock waveforms. By default, the Vivado IDE
timing engine performs a single-cycle analysis. This analysis can be too restrictive, and can
be inappropriate for certain logic paths.

The most common example is the logical path that requires more than one clock cycle for
the data to stabilize at the endpoint. If the control circuitry of the path startpoint and
endpoint allows it, Xilinx recommends that you use the Multicycle Path constraint to relax
the setup requirement.

The hold requirement might still maintain the original relationship, depending on your
intent. This helps the timing-driven algorithms to focus on other paths that have tighter
requirements and that are challenging. It can also help in reducing runtime.

Setting the Path Multipliers and Clock Edges
The set_multicycle_path command is used to modify the path requirement multipliers
(for setup analysis, hold analysis, or both) with respect to the source clock or the
destination clock.

set_multicycle_path Syntax

The syntax of the set_multicycle_path command with the basic options is:

set_multicycle_path <path_multiplier> [-setup|-hold] [-start|-end]
[-from <startpoints>] [-to <endpoints>] [-through <pins|cells|nets>]

You must specify the <path_multiplier>. The default values used by the timer are:

• 1 for setup analysis (or recovery)
• 0 for hold analysis (or removal)

The hold relationship is tied to the setup relationship. Use the following formula to retrieve
the number of hold cycles for most common cases:

Hold cycles = <setup path multiplier> - 1 - <hold path multiplier>

• By default, the setup path multiplier is defined with respect to the destination clock. To
modify the setup requirement with respect to the source clock, use the -start option.

• Similarly, the hold path multiplier is defined with respect to the source clock. To modify
the hold requirement with respect to the destination clock, use the -end option.

Note: For a definition of the relevant terms, see this link in the Vivado Design Suite User Guide:
Design Analysis and Closure Techniques (UG906) [Ref 4].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug906-vivado-design-analysis.pdf;a=xIntroductionToTimingAnalysis
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=109

Using Constraints 110
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

IMPORTANT: There are two hold relationships for each setup relationship. (1) The first hold
relationship ensures that the setup launch edge is not captured by the edge arriving before the active
capture edge. (2) The second hold relationship ensures that the edge after the active launch edge is not
captured by the active capture edge. The timing analysis tool calculates both hold relationships but
only the most restrictive is kept during analysis and reporting. See Figure 5-1.

IMPORTANT: The -start and -end options have no apparent effect when applying a Multicycle Path
constraint on paths clocked by the same clock or clocked by two identical clocks (that is, when the
clocks have the same waveform with or without a phase shift).

Table 5-2 summarizes how the active launch and capture edges are affected by the -end
and -start options.

IMPORTANT: The -setup option of the set_multicycle_path command does not only modify the
setup relationship. It also affects the hold relationships which are always tied to the setup relationships.
If the hold relationship is to be restored back to its original position, another set_multicycle_path
specification would be needed with -hold.

Note: A Multicycle constraint can be set on a single path, on multiple paths, or even between two
clocks.

X-Ref Target - Figure 5-1

Figure 5-1: Example of Setup and Hold Relationships for a Path

Source Clock

Hold
Relationship 1

Setup
Relationship

Hold
Relationship 2

0ns 2ns 4ns 6ns 8ns 10ns 12ns

Destination Clock

capture edge

launch edge

Table 5-2: Active Launch and Capture Edges
Source Clock (-start)

Moves the launch edge
Destination Clock (-end)
Moves the capture edge

Setup <---- (backward) ----> (forward) (default)

Hold ----> (forward) (default) ----> (forward) (default)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=110

Using Constraints 111
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

The following sections cover the common Multicycle Path constraint scenarios and illustrate
the impact of the setup and hold multipliers and the -start and -end options on the
timing path requirement.

Multicycles in Single Clock Domain
A Multicycle constraint defined within the same clock domain or between two clocks with
the same waveform (no phase-shift) works the same way. See Figure 5-2.

The default Setup and Hold relationships that are resolved by the Static Timing Analysis
(STA) tool are shown in Figure 5-3.

The Setup and Hold timing requirements are:

• Setup check
TDatapath(max) < TCLK(t=Period) - TSetup

• Hold check
TDatapath(min) > TCLK(t=0) + THold

X-Ref Target - Figure 5-2

Figure 5-2: Multicycle Constraint in Single Clock Domain

X-Ref Target - Figure 5-3

Figure 5-3: Default Setup and Hold Relationships

DATAPATH Q

REGISTER

Q

REGISTER

N CyclesCLK CLK

Destination
clock (CLK2)

Source clock
(CLK1)

launch edge

capture edge

SetupHold

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=111

Using Constraints 112
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Relaxing Setup While Maintaining Hold

Figure 5-4 shows a path between two flip-flops that are enabled every two cycles. It is safe
to define a Multicycle Path constraint on this path to indicate that the first edge of the
destination clock is not active, and only the second edge of the destination clock will
capture a new data.

The following constraint establishes a new setup relationship:

set_multicycle_path 2 -setup -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]

This link in the Vivado Design Suite User Guide: Design Analysis and Closure Techniques
(UG906) [Ref 4] describes how the hold relationships are derived from the setup
relationships. When modifying the setup relationship, the hold relationships are also
modified to follow the changes in the setup launch and capture edges.

IMPORTANT: If the new hold requirements become too aggressive, it will likely result in difficult timing
closure. It is the your responsibility to relax the hold requirement assuming it is safe for the design.

In the same example as Figure 5-4, after moving the setup check to the second capture
edge, the hold check is automatically moved to the first capture edge (that is, one clock
period before the setup check).

Figure 5-5 shows how both the setup and hold relationships have changed when only the
setup path multiplier has been defined with the Multicycle Path constraint.

X-Ref Target - Figure 5-4

Figure 5-4: Registers Enabled Every Two Cycles

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug906-vivado-design-analysis.pdf;a=xPerformingTimingAnalysis
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=112

Using Constraints 113
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Holding the data in the data0_reg for one cycle is not needed for this path to be
functional due to the clock enable. In this case, Xilinx recommends changing the hold
relationship back to the original, which is between the same launch and capture edges. To
do so, you must add a second Multicycle Path constraint that modifies the hold check only:

set_multicycle_path 1 -hold -end -from [get_pins data0_reg/C] \
 -to [get_pins data1_reg/D]

The -end option is used with set_multicycle -hold command because the edges of
the capture clock must be moved backward.

Note: Because the launch and capture clocks have the same waveforms, the -end option is
optional. Moving the capture edges backward result in the same hold relationship as moving the
launch edges forward. To simplify the expressions, the -end option has been removed from the next
two examples.

X-Ref Target - Figure 5-5

Figure 5-5: MultiCycle Path: Relaxing Setup Only

Source clock

Destination clock

Clock Enable 0ns

launch edge

capture edge

Hold HoldSetup

Source clock

Destination clock

Clock Enable

0ns 2ns 4ns 6ns 8ns 10ns 12ns

launch edge

capture edge

Hold HoldSetup

AFTER

BEFORE

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=113

Using Constraints 114
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Figure 5-6 shows the updated setup and hold relationships after applying both Multicycle
Path constraints.

To summarize this example, the following constraints are necessary to properly define a
multicycle path of two (2) between data0_reg/C and data1_reg/D:

set_multicycle_path 2 -setup -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]
set_multicycle_path 1 -hold -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]

For a multicycle with a setup multiplier of four (4), the constraints are:

set_multicycle_path 4 -setup -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]
set_multicycle_path 3 -hold -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]

X-Ref Target - Figure 5-6

Figure 5-6: Multicycle Path: Relaxing Setup and Hold

X-Ref Target - Figure 5-7

Figure 5-7: Multicycle Path with Setup Multiplier of Four (4)

Source clock

Destination clock

Clock Enable

0ns 2ns 4ns 6ns 8ns 10ns 12ns

launch edge

capture edge

Hold
Hold

Setup

Source clock

Destination clock

Clock Enable

0ns 2ns 4ns 6ns 8ns 10ns 12ns

launch edge

capture edge

Hold
Hold

Setup

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=114

Using Constraints 115
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Moving the Setup

The following examples show the results of moving the setup:

• Example One: Setup=5 / Hold Moved Accordingly
• Example Two: Setup=5 / Hold=4

Example One: Setup=5 / Hold Moved Accordingly

Let’s assume that the setup path multiplier is set to five (5). Because the hold path multiplier
is not specified, the hold relationship is derived from the setup launch and capture edges:

set_multicycle_path 5 -setup -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]

By default, the setup multiplier is applied against the capture clock. This results in moving
the edge on the capture clock forward. The setup capture edge comes after five clock
periods instead of just one. Because no hold multiplier has been specified, the edge of the
capture clock used for the hold check stays the edge that arrives one cycle before the active
edge used for the setup check.

The edges on the launch clock do not change for the setup and hold relationships.

With a four-cycle hold requirement, the timing-driven implementation tools usually have to
insert a large amount of delay in the datapath in order to meet hold timing in both Slow and
Fast timing corners. This results in unnecessary area and power consumption. For this
reason, it is important to relax the hold requirement when possible.

In this example design, the clock enable signal provides the safety to not have to hold the
data in the data0_reg for four cycles without risking metastability. Example Two: Setup=5
/ Hold=4 describes how the hold requirement can be relaxed.

X-Ref Target - Figure 5-8

Figure 5-8: Setup=5, Hold Moved Accordingly

launch edge

capture edge

SetupHold

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Clock Enable

Destination
clock (CLK2)

Source clock
(CLK1)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=115

Using Constraints 116
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Example Two: Setup=5 / Hold=4

This example assumes that the following are defined:

• A setup multiplier of five (5)
• A hold multiplier of four (4) (that is, 5-1)

This corresponds to a transfer between two sequential cells when a new data is launched
and captured every five (5) cycles.

set_multicycle_path 5 -setup -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]
set_multicycle_path 4 -hold -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]

By default, the setup multiplier is applied against the destination clock, which in this case
results in moving the capture edge forward to the fifth cycle instead of the first cycle.
Accordingly, by default, the hold check follows the setup check.

On specifying the second command, the hold multiplier is applied against the source clock,
which in this case results in moving the launch edge forward to the fourth cycle.

Because both source and destination clocks have the same waveforms, and are
phase-aligned, Figure 5-9 is equivalent to Figure 5-10.

X-Ref Target - Figure 5-9

Figure 5-9: Setup=5, Hold=4

X-Ref Target - Figure 5-10

Figure 5-10: Setup=5, Hold=4

launch edge

capture edge

SetupHold

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Clock Enable

Destination
clock (CLK2)

Source clock
(CLK1)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=116

Using Constraints 117
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

IMPORTANT: In general, within a clock domain or between two clocks with the same waveform, when
a setup multiplier of N is defined, define a hold multiplier of N-1 (most common case) as shown below.

set_multicycle_path N -setup -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]
set_multicycle_path N-1 -hold -from [get_pins data0_reg/C] -to [get_pins data1_reg/D]

Multicycle Paths and Clock Phase-Shift
Sometimes a timing constraint must be defined between two clock domains that havethe
same clock period, but a phase-shift between the two clocks. In those cases, it is critical to
understand the default setup and hold relationships used by the timing engine. If not
carefully adjusted, the phase-shift between two clocks might result in over constraining the
logic between the two clock domains.

For example, assume the following:

• The two clocks CLK1 and CLK2 have the same waveform.
• CLK2 is shifted by +0.3 ns.

The setup relationship is calculated by the timing engine by looking at all the edges on both
waveforms and selecting the two edges on the launch and capture clocks that result in the
stricter constraint.

Because of the clocks phase-shift, the setup and hold relationships used by the timing
engine might not be those expected. See Figure 5-12.

X-Ref Target - Figure 5-11

Figure 5-11: Multicycle Paths and Clock Phase-Shift

X-Ref Target - Figure 5-12

Figure 5-12: Default Scenario of Phase-Shift Without Multicycle Path

DATAPATH Q

REGISTER

Q

REGISTER

CLK1 CLK2

launch edge

capture edge

SetupHold

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns-2ns-4ns-6ns-8ns

Destination
clock (CLK2)

Source clock
(CLK1)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=117

Using Constraints 118
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

In this example, the setup constraint due to the phase-shift is 0.3 ns. This makes it almost
impossible to achieve timing closure. On the other hand, the hold check is -3.7 ns, which is
too lenient.

The setup and hold edges must be adjusted to match your intent. This is done by adding a
Multicycle constraint with a setup multiplier of two (2):

set_multicycle_path 2 -setup -from [get_clocks CLK1] -to [get_clocks CLK2]

This results in moving the capture edge for the setup requirement forward by one cycle. The
default edge for the hold is derived from the setup requirement. It does not need to be
specified.

In the case of negative phase-shift, as shown in Figure 5-14, between the two clock
domains, the launch and capture edges used for the setup and hold checks are similar to
those from the previous section (single clock domain, no phase-shift).

For a negative phase-shift, a Multicycle constraint is typically not needed to
counter-balance the effect of the phase-shift. An exception occurs if the phase-shift is so
large that the clock launch or capture edges must be adjusted to keep realistic setup and
hold requirements.

X-Ref Target - Figure 5-13

Figure 5-13: Default Scenario of Positive Phase-Shift: Setup 2 (-end), Hold Moved Accordingly

X-Ref Target - Figure 5-14

Figure 5-14: Default Scenario of Negative Phase-Shift

launch edge

capture edge

SetupHold

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns-2ns-4ns-6ns-8ns

Destination
clock (CLK2)

Source clock
(CLK1)

launch edge

capture edge

SetupHold

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns-2ns-4ns-6ns-8ns

Destination
clock (CLK2)

Source clock
(CLK1)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=118

Using Constraints 119
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Multicycles Between SLOW-to-FAST Clocks
In this scenario, the launch clock CLK1 is the slow clock; the capture clock CLK2 is the fast
clock. See Figure 5-15.

For example, assume the following:

• CLK2 is three times the frequency of CLK1
• A clock enable signal on the receiving registers allows a Multicycle constraint to be set

between both clocks. See Figure 5-16.

The setup and hold relationships that are resolved by the STA tool when no multicycle is
applied are shown in Figure 5-17.

X-Ref Target - Figure 5-15

Figure 5-15: Multicycles Between SLOW-to-FAST Clocks

X-Ref Target - Figure 5-16

Figure 5-16: Multicycles Between SLOW-to-FAST Clocks

X-Ref Target - Figure 5-17

Figure 5-17: Default Setup and Hold Relationships

DATAPATH Q

REGISTER

Q

REGISTER
CLK1

(SLOW)
CLK2

(FAST)N Cycles

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Destination
clock (CLK2)

Source clock
(CLK1)

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

launch edge

capture edge

SetupHold

Destination
clock (CLK2)

Source clock
(CLK1)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=119

Using Constraints 120
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Example One: Setup=3 / Hold Moved Accordingly

For example, assume that only a setup multiplier of three (3) is defined.

set_multicycle_path 3 -setup -from [get_clocks CLK1] -to [get_clocks CLK2]

The consequence of the setup multiplier is to move the edge of the capture clock used for
setup check forward by two (2) cycles (that is, 3-1 cycles). Because no hold multiplier has
been specified, the hold relationship is derived by the tool from the setup launch and
capture edges. The launch clock active edge is not modified by the Multicycle constraint.

The setup and hold relationships after the multicycle are shown in Figure 5-18.

There is no need to hold the data in the launch registers for one cycle of CLK2 for this path
to be functional. Doing so adds unnecessary logic, which increases area and consumes
power.

Because the receiving registers have a clock enable signal, it is safe to relax the hold
requirement without risks of metastability.

Example Two: Setup=3 / Hold=2 (-end)

To relax the hold requirement for the previous example, the capture clock edge for the hold
relationship must be moved backward by two (2) clock cycles. This is done by specifying the
-end option with the set_multicycle_path -hold command:

set_multicycle_path 3 -setup -from [get_clocks CLK1] -to [get_clocks CLK2]
set_multicycle_path 2 -hold -end -from [get_clocks CLK1] -to [get_clocks CLK2]

TIP: If -end is not specified with set_multicycle_path -hold, then the launch clock edge is
instead moved forward. This does not result in the intended hold requirement.

As in Example One: Setup=3 / Hold Moved Accordingly, the setup multiplier moves the
edge of the capture clock used for setup check forward by two (2) cycles (that is, 3-1 cycles).

X-Ref Target - Figure 5-18

Figure 5-18: Setup=3, Hold Moved Accordingly

Destination
clock (CLK2)

Source clock
(CLK1)

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

launch edge

capture edge

SetupHold

Source clock
(CLK2)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=120

Using Constraints 121
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

The setup and hold relationships after the two Multicycle constraints are shown in
Figure 5-19.

IMPORTANT: For a SLOW-to-FAST clock domain crossing, when a setup multiplier of N is defined,
define a hold multiplier of N-1 against the capture clock (-end) (most common case) as shown in the
following code example.

set_multicycle_path N -setup -from [get_clocks CLK1] -to [get_clocks CLK2]
set_multicycle_path N-1 -hold -end -from [get_clocks CLK1] -to [get_clocks CLK2]

Multicycles Between FAST-to-SLOW Clocks
In the following scenario, the launch clock CLK1 is the fast clock and the capture clock CLK2
is the slow clock. See Figure 5-20.

In the next example, the launch clock CLK1 is the fast clock. The capture clock CLK2 is the
slow clock. Assume that CLK1 is three (3) times the frequency of CLK2. See Figure 5-21.

X-Ref Target - Figure 5-19

Figure 5-19: Setup=3, Hold=2 (-end)

Destination
clock (CLK2)

Source clock
(CLK1)

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

launch edge

capture edge

SetupHold

Source clock
(CLK2)

X-Ref Target - Figure 5-20

Figure 5-20: Multicycles Between FAST-to-SLOW Clocks

DATAPATH Q

REGISTER

Q

REGISTER
CLK1

(FAST)
CLK2

(SLOW)N Cycles

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=121

Using Constraints 122
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

The setup and hold relationships that are resolved by the STA tool when no multicycle is
applied are shown in Figure 5-22.

X-Ref Target - Figure 5-21

Figure 5-21: Multicycles Between FAST-to-SLOW Clocks

X-Ref Target - Figure 5-22

Figure 5-22: Default Setup and Hold Relationships

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Destination
clock (CLK2)

Source clock
(CLK1)

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

launch edge

capture edge

HoldSetup

Destination
clock (CLK2)

Source clock
(CLK1)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=122

Using Constraints 123
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Example: Setup=3 (-start) / Hold=2

This example assumes the following:

• A setup multiplier of three (3) is defined against the launch clock (-start).
• A hold multiplier of one (1) is defined.

Example:

set_multicycle_path 3 -setup -start -from [get_clocks CLK1] -to [get_clocks CLK2]
set_multicycle_path 2 -hold -from [get_clocks CLK1] -to [get_clocks CLK2]

The consequence of defining the setup multiplier against the launch clock (-start) is to
move the edge of the launch clock used for setup check backward by two (2) cycles (that is,
3-1 cycles). However, because a hold multiplier is defined against the launch clock (default
-start option with -hold), the edge of the launch clock that is used for the hold
relationship is moved forward by two (2) cycles.

For both setup and hold checks, the capture clock edge does not change. See the following
figure.

IMPORTANT: For a FAST-to-SLOW clock domain crossing, define a setup multiplier of N against the
launch clock (-start) with a hold multiplier of N-1 (most common case). See the following example:

set_multicycle_path N -setup -start -from [get_clocks CLK1] -to [get_clocks CLK2]
set_multicycle_path N-1 -hold -from [get_clocks CLK1] -to [get_clocks CLK2]

X-Ref Target - Figure 5-23

Figure 5-23: Setup=3 (-start), Hold=2

Destination
clock (CLK2)

Source clock
(CLK1)

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

launch edge

capture edge

HoldSetup

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=123

Using Constraints 124
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Table 5-3 summarizes the previous results.

Note: The get_clocks command has been omitted in Table 5-3 to simplify the expressions.

False Paths
A false path is a path that topologically exists in the design but either: (1) is not functional;
or (2) does not need to be timed. Consequently, the false paths should be ignored during
timing analysis.

VIDEO: For training on the advanced timing exceptions, including false paths, see the Vivado Design
Suite QuickTake Video: Advanced Timing Exceptions - False Path, Min-Max Delay and
Set_Case_Analysis.

Examples of false paths include:

• Clock domain crossings in which double synchronizer logic has been added
• Registers that might be written once at power up
• Reset or test logic
• Ignore paths between the write and asynchronous read clocks of an asynchronous

distributed RAM (when applicable)

Figure 5-24 shows an example of a non-functional path. Because both multiplexers are
driven by the same select signal, the path from Q to D does not exist, and should be defined
as a false path.

Table 5-3: To define a multicycle path with a Setup of N
Scenario Multicycle Constraints

Same clock domain or between
synchronous clock domains with same
period and no phase-shift

set_multicycle_path N -setup -from CLK1 -to CLK2
set_multicycle_path N-1 -hold -from CLK1 -to CLK2

Between SLOW-to FAST synchronous clock
domains

set_multicycle_path N -setup -from CLK1 -to CLK2
set_multicycle_path N-1 -hold -end -from CLK1 -to CLK2

Between FAST-to SLOW synchronous clock
domains

set_multicycle_path N -setup -start -from CLK1 -to CLK2
set_multicycle_path N-1 -hold -from CLK1 -to CLK2

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/false-path-delay-set-case-analysis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/false-path-delay-set-case-analysis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/false-path-delay-set-case-analysis.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=124

Using Constraints 125
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

TIP: Use a Multicycle constraint in place of a False Path constraint when: (1) your intent is only to relax
the timing requirements on a synchronous path; but (2) the path still must be timed, verified and
optimized.

Reasons to remove false paths from the timing analysis include:

• Decrease Runtime

When false paths have been removed from the timing analysis, the tool does not need
to time or optimize those non-functional paths. Having non-functional paths visible to
the timing and optimization engines can result in a large runtime penalty.

• Enhance Quality of Results (QOR)

Removing false paths can greatly enhance the Quality of Results (QOR). The quality of
the synthesized, placed, and optimized design is greatly impacted by the timing issues
that the tool tries to solve.

If some non-functional paths have timing violations, the tool might try to fix those paths
instead of working on the real functional paths. Not only might the design unnecessarily
increase in size (such as logic cloning), but the tool might skip fixing real issues because
non-functional paths have larger violations that overshadow other real violations. The
best results are always achieved with a realistic set of constraints.

False paths are defined inside the tool with the Xilinx Design Constraints (XDC) command
set_false_path:

set_false_path [-setup] [-hold] [-from <node_list>] [-to <node_list>] \
 [-through <node_list>]

X-Ref Target - Figure 5-24

Figure 5-24: Non-Functional Path Example

REGISTER MUX

Q 0

1

MUX

0

1

REGISTER

D

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=125

Using Constraints 126
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

You can use the following additional options to the command to fine tune the path
specification. For detailed information about all supported command line options, see the
Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 10].

• The list of nodes for the -from option should be a list of valid startpoints. A valid
startpoint is a clock object, a clock pin of a sequential element, or an input (or inout)
primary port. Multiple elements can be provided.

• The list of nodes for the -to option should be a list of valid endpoints. A valid endpoint
is a clock object, an output (or inout) primary port, or a sequential element input data
pin. Multiple elements can be provided.

• The list of nodes for the -through option should be a list of valid pins, ports, or nets.
Multiple elements can be provided.

CAUTION! Be careful when using -through option without -from and -to because it removes from
timing analysis any path going through this list of pins or ports. Be especially careful when the timing
constraints are designed for an IP or a sub-block, but then used in a different context or a larger project.
Many more paths than expected could be removed when -through is used alone.

The order of the -through option is important. See the following examples.

For example, the following two commands are different:

set_false_path -through cell1/pin1 -through cell2/pin2
set_false_path -through cell2/pin2 -through cell1/pin1

The following example removes the timing paths from the reset port to all the registers:

set_false_path -from [get_port reset] -to [all_registers]

The following example disables the timing paths between two asynchronous clock domains
(for example, from clock CLKA to clock CLKB):

set_false_path -from [get_clocks CLKA] -to [get_clocks CLKB]

The previous example disables the paths from clock CLKA to clock CLKB. Paths from clock
CLKB to clock CLKA are not disabled. Accordingly, disabling all the paths between the two
clock domains in either direction requires two set_false_path commands:

set_false_path -from [get_clocks CLKA] -to [get_clocks CLKB]
set_false_path -from [get_clocks CLKB] -to [get_clocks CLKA]

IMPORTANT: Although the previous two set_false_path examples perform what is intended, when
two or more clock domains are asynchronous and the paths between those clock domains should be
disabled in either direction, Xilinx recommends using the set_clock_groups command instead:
set_clock_groups -group CLKA -group CLKB

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=126

Using Constraints 127
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

In the non-functional path example shown in Figure 5-24, the false path can be set using
the -through option instead of using the -from or -to option. See Figure 5-25.

This ensures that all the paths going through the path shown above are selected without
needing to find specific patterns for the startpoints and endpoints.

set_false_path -through [get_pins MUX1/a0] -through [get_pins MUX2/a1]

Note: The order of the -through option is important. In the above example, the order ensures that
the false paths go through pin MUX1/a0 first and then pin MUX2/a1.

Another common example is with asynchronous dual-ports distributed RAM. The write
operations are synchronous to the clock RAM but the read operations can be asynchronous
when permitted by the design. In this case, it is safe to false paths the timing paths between
the write and the read clocks.

There are two ways to do this:

• Define a false path from the write registers before the RAM to the registers after the
RAM receiving the read clock:
set_false_path -from [get_cells <write_registers>] -to [get_cells <read_registers>]

On the Vivado Design Suite example project WAVEGen (HDL):

set_false_path -from [get_cells -hier -filter {NAME =~
*gntv_or_sync_fifo.gl0.wr*reg[*]}] -to [get_cells -hier -filter {NAME=~
*gntv_or_sync_fifo.mem*gpr1.dout_i_reg[*]}]

• Define a false path starting from the pin WE of the RAM
set_false_path -from [get_cells -hier -filter {REF_NAME =~ RAM* && IS_SEQUENTIAL &&
NAME =~ <PATTERN_FOR_DISTRIBUTED_RAMS>}]

On the Vivado Design Suite example project WAVEGen (HDL):

set_false_path -from [get_cells -hier -filter {REF_NAME =~ RAM* && IS_SEQUENTIAL &&
NAME =~ *char_fifo*}]

X-Ref Target - Figure 5-25

Figure 5-25: Non-Functional Path Example

REGISTER MUX1

Q

MUX2

a0

a1

REGISTER

Da0

a1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=127

Using Constraints 128
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Figure 5-26 illustrates the way the distributed RAM is driven in the WAVE (HDL) example
project.

Min/Max Delays
You can override a maximum delay or a minimum delay for a path:

• Use the Maximum Delay constraint to override the default setup (or recovery)
requirement on a path.

• Use the Minimum Delay constraint to override the default hold (or removal)
requirement.

VIDEO: For training on the advanced timing exceptions, including min-man delays, see the Vivado
Design Suite QuickTake Video: Advanced Timing Exceptions - False Path, Min-Max Delay and
Set_Case_Analysis.

X-Ref Target - Figure 5-26

Figure 5-26: Distributed RAM Driven in the WAVE Example Project

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/false-path-delay-set-case-analysis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/false-path-delay-set-case-analysis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/false-path-delay-set-case-analysis.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=128

Using Constraints 129
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Setting Maximum Delay and Minimum Delay Constraints
The Maximum Delay constraint and the Minimum Delay constraint are set by two different
XDC commands. These commands accept similar options.

Maximum Delay Constraint Syntax

set_max_delay <delay> [-datapath_only] [-from <node_list>]
 [-to <node_list>] [-through <node_list>]

Minimum Delay Constraint Syntax

set_min_delay <delay> [-from <node_list>]
 [-to <node_list>] [-through <node_list>]

Additional command options are available to fine tune the path specification. For more
information about the supported command line options, see the Vivado Design Suite Tcl
Command Reference Guide (UG835) [Ref 10].

List of Nodes for the -from Option

• The list of nodes for the -from option should preferably be a list of valid startpoints. A
valid startpoint is a clock, an input (or inout) port, or the clock pin of a sequential
element, such as a register or a RAM.Using a node that is not a valid startpoint results
in path segmentation. The path segmentation is covered in the next section.

• Multiple elements can be provided.

List of Nodes for the -to Option

• The list of nodes for the -to option should preferably be a list of valid endpoints. A
valid endpoint is a clock, an output (or inout) port or the data pin of a sequential cell.

• Using a node that is not a valid endpoint results in path segmentation. For more
information, see Path Segmentation, page 131.

• Multiple elements can be provided.

List of Nodes for the -through Option

• The list of nodes for the -through option should be a list of valid pins, ports, or nets.
• Multiple elements can be provided.

By default, the timing engine includes the clock skew inside the slack computation.

The -datapath_only option can be used to remove the clock skew from the slack
computation. The -datapath_only option is supported only by the set_max_delay
command, and requires the -from option.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=129

Using Constraints 130
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Table 5-4 summarizes the impact of -datapath_only in the behavior of set_max_delay
constraint.

The common behavior for the path delay calculation of set_max_delay with or without
-datapath_only is:

• Input delay is included in the path delay calculation when the path starts on an input
port and that a set_input_delay has been specified on the port

• Output delay is included in the path delay calculation when the path ends on an output
port and that a set_output_delay has been specified on the port

• The data pin setup time is included in the path delay calculation when the path ends on
the data pin of a sequential element.

Consequences of Setting Maximum Delay or Minimum Delay Constraints on a
Path

When -datapath_only option is not used, setting a Maximum Delay constraint on a path,
does not modify the minimum requirement on that path. The hold (or removal) check on
that path remains the default one.

Note: Using the -datapath_only option with set_max_delay results in the hold requirement
being ignored on that/those path(s) (some internal set_false_path -hold constraints are
generated).

Similarly, setting a Minimum Delay constraint on a path does not modify the default setup
(or recovery) check.

If a path has only, for example, a max delay requirement, the path can be constrained with
a combination of set_max_delay and set_false_path commands. See the following
example:

set_max_delay 5 -from [get_pins FD1/C] -to [get_pins FD2/D]
set_false_path -hold -from [get_pins FD1/C] -to [get_pins FD2/D]

The above example sets a 5ns setup requirement for the path starting on FD1/C and ending
on FD2/D. There is no minimum requirement due to the set_false_path command.

Table 5-4: Differences Between Max Delay Constraint With and Without -datapath_only
set_max_delay set_max_delay -datapath_only

Path delay calculation Skew included when the constraint starts
on the clock pin of a sequential element
or ends on the data pin of a sequential
element.

Skew never included.

Hold Requirement Untouched False-ed path
-from Option Optional Mandatory

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=130

Using Constraints 131
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Constraining Input or Output Logic

The set_max_delay command and the set_min_delay command are not typically used
to constrain the input or output logic. The input logic between the input ports and the first
level of registers is typically constrained with the set_input_delay command. This
command provides the option to associate a clock with the input ports.

For the same reason, the output logic between the last level of registers and the output
ports is typically constrained with the set_output_delay command. However, the
set_max_delay command and the set_min_delay command are typically used to
constrain pure combinational path between primary input ports and primary output port
(in-to-out I/O paths).

Constraining Asynchronous Signals

The set_max_delay command can also be used to constrain asynchronous signals that do
not have a clock relationship, but which require maximum delay.

For example, timing paths between two asynchronous clock domains can be disabled with
the set_clock_groups command (recommended) or the set_false_path command
(not recommended). This assumes that you have properly designed the inter-clock domains
with, for instance, a double registers synchronizer or a FIFO. However, you must still ensure
that the path delay between the two clock domains is not unnecessarily high.

In some multi-bit CDC scenarios the skew between the bits must be within certain
requirements. Even though the skew can be constrained through the Bus Skew constraint
(set_bus_skew), it must be ensured that the path delay between the two clock domains is
not unnecessarily high. This can be done by replacing the set_false_path or
set_clock_groups constraints inside the source XDC file on the relevant path(s) with
set_max_delay –datapath_only. Refer to Chapter 6, CDC Constraints for further
information on constraining CDC paths.

Note: There is runtime impact between a False Path constraint and a Max Delay constraint because
the paths are timed with Max Delay.

If a maximum delay must be specified for some or for all the paths between two clock
domains, then you must use the command set_max_delay -datapath_only to
constrain those paths. In this case, set_clock_groups cannot be used to define the two
clock domains as asynchronous, as it supersedes the set_max_delay constraint in terms
of constraint priority. Other cross clock domains paths must then be constrained with a
combination of set_false_path or set_max_delay constraints.

See the following example:

set_max_delay <delay> -datapath_only -from <startpoints_source_clock_domain> \
-to <endpoints_destination_clock_domain>

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=131

Using Constraints 132
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Path Segmentation
Unlike other XDC constraints, the set_max_delay command and the set_min_delay
command can accept, in the case of -from and -to options, a list of invalid startpoints or
endpoints respectively.

When an invalid startpoint is specified, the timing engine stops the propagation of the
timing going through the node so that the node becomes a valid startpoint.

In the following example, the only valid startpoint is FD1/C:

set_max_delay 5 -from [get_pins FD1/C]

If the constraint is applied to FD1/Q, the timing engine stops the propagation through the
arc C->Q to make the pin Q a valid startpoint:

set_max_delay 5 -from [get_pins FD1/Q]

The process of stopping the propagation of the timing to create a valid startpoint is called
path segmentation. Path segmentation affects both max and min delay analysis. Path
segmentation also affects any timing constraint going through those nodes (FD1/C and
FD1/Q).

X-Ref Target - Figure 5-27

Figure 5-27: Original Timing Arc

X-Ref Target - Figure 5-28

Figure 5-28: Timing Not Propagating after Path Segmentation

FD1

QD

C

FD1

QD

C

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=132

Using Constraints 133
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Note: Because of Path Segmentation, no clock insertion delay is used for the launch clock for paths
starting from FD1/Q. This can potentially result in large skew because the clock skew of the endpoints
is still taken into account. See Figure 5-29.

CAUTION! Path segmentation can have unexpected consequences. Avoid path segmentation
altogether, or use it very carefully.

After path segmentation, there is no default hold requirement on the path. Assuming the
-datapath_only option has not been specified, use the set_min_delay command to
set a hold requirement on the path if necessary.

Because of the risks, a critical warning is issued when a path segmentation occurs.

If you targeted the output FD1/Q as the startpoint in order to avoid taking the clock skew
into account, Xilinx recommends using the -datapath_only option. Instead, see the
following example:

set_max_delay 5 -from [get_pins FD1/C] -datapath_only

In the same way, when an invalid endpoint is specified, the timing engine stops the
propagation after the node so that the node becomes a valid endpoint.

In the following example, the max delay is specified on LUTA/O, which is not a valid
endpoint:

set_max_delay 5 -from [get_pins LUTA/O]

X-Ref Target - Figure 5-29

Figure 5-29: Path Segmentation Result in Large Skew

Q

FD1

D IO

I1

I2

O

LUTA

IO

I1

I2

O

LUTB

Q

FD2

D

clock insertion delay

BUFG

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=133

Using Constraints 134
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

This is shown in the following figure.

To make LUTA/O a valid endpoint, the timing stops propagating after LUTA/O. As a result,
all timing paths going through LUTA/O are impacted for both setup and hold. For the path
starting on REGA/C and ending on LUTA/O, only the insertion delay of the launch clock is
taken into account. This can result in very large skew.

Because path segmentation stops the propagation through the timing arcs, it can have
unexpected consequences. All the timing paths going through those nodes are impacted.

In the following example, a max delay has been set between LUTA/O and REGB/D:

set_max_delay 6 -from [get_pins LUTA/O] -to [get_pins REGB/D]

X-Ref Target - Figure 5-30

Figure 5-30: Path Segmentation When an Invalid Endpoint is Specified

Q

REGA

D IO

I1

I2

O

LUTA

IO

I1

I2

O

LUTB

Q

REGB

D

BUFG

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=134

Using Constraints 135
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

This is shown in the following figure.

Because the pin LUTA/O is not a valid startpoint, a path segmentation occurs and the
timing arcs from LUTA/I* and LUTA/O are broken. Even though the set_max_delay
constraint was set between LUTA/O and REGB/D only, other paths such as the path
between REGA/C and REGC/D are also broken.

Path Segmentation and Timing Exception

Path segmentation can result in the perception that the priority between the timing
exceptions is altered, which is actually not the case.

There can be a difference on whether a set_max_delay constraint is superseded by a
set_clock_groups constraint. Consider the following two scenarios.

Scenario 1

 set_max_delay <ns> -datapath_only -from <instance> -to <instance>

In this scenario, instance names are provided for -from/-to. The set_max_delay
constraint is always overridden by set_clock_groups -asynchronous, because
Vivado always selects valid startpoints when an instance is provided.

X-Ref Target - Figure 5-31

Figure 5-31: Path Segmentation Breaking Multiple Paths

Q

REGA

D IO

I1

I2

O

LUTA

IO

I1

I2

O

LUTB

Q

REGB

D

BUFG

IO

I1

I2

O

LUTC

Q

REGC

D

Broken Paths

Constrained Paths

Segmentation

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=135

Using Constraints 136
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Scenario 2

set_max_delay <ns> -datapath_only -from <pin> -to <pin | instance>

In this scenario, if the pin name provided with -from results in path segmentation, then
that particular set_max_delay constraint is not overriden by set_clock_groups
-asynchronous. The reason behind is that the path segmentation forces the path starting
on the pin name to no longer being considered launched by the first clock domain. As a
result, this path is no longer covered by the set_clock_groups constraints and the
set_max_delay constraint get applied.

Case Analysis
In some designs, certain signals have a constant value in specific modes. For instance, in
functional modes, the test signals do not toggle and are therefore tied either to VDD or VSS
depending on their active level. This also applies to signals that do not toggle after the
design has been powered up. In the same way, today's designs have multiple functional
modes and some signals that are active in some of the functional modes might be inactive
in other modes.

To help reduce the analysis space, runtime and memory consumption, it is important to let
the Static Timing Engine know about the signals that have a constant value. This is also
critical to ensure that non-functional paths and irrelevant paths are not reported.

A signal is declared as inactive to the timing engine with the set_case_analysis
command. The command applies to pins and/or ports.

Note: After a case analysis is set on a pin, the timing arcs related to that pin are disabled. The timing
engine does not report any path going through disabled timing arcs.

VIDEO: For training on the advanced timing exceptions, including set_case_analysis, see the
Vivado Design Suite QuickTake Video: Advanced Timing Exceptions - False Path, Min-Max Delay and
Set_Case_Analysis.

The syntax of the set_case_analysis command is:

set_case_analysis <value> <pins or ports objects>

The parameter <value> can be any of the following:

0, 1, zero, one, rise, rising, fall, or falling

When the values rise, rising, fall, or falling are specified, this means that the given
pins or ports should only be considered for timing analysis with the specified transition. The
other transition is disabled.

A case value can be set on a port, a pin of a leaf cell, or a pin of a hierarchical module.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/false-path-delay-set-case-analysis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/false-path-delay-set-case-analysis.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=136

Using Constraints 137
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

In the example below, two clocks are created on the input pins of the multiplexer clock_sel
but only clk_2 is propagated through the output pin after setting the constant value on the
selection pin S.

create_clock -name clk_1 -period 10.0 [get_pins clock_sel/I0]
create_clock -name clk_2 -period 15.0 [get_pins clock_sel/I1]
set_case_analysis 1 [get_pins clock_sel/S]

In the example below, the BUFG_GT has a dynamic clock division as its DIV[2:0] pins driven
by some logic instead of being tied to VCC/GND.

In such case, the tool assumes the worst possible scenario for the output clock (divide by 1)
and propagates the incoming clock to the buffer output. This worst-case scenario might be
pessimistic and over-constrain the design if a clock division of 1 is never exercised. It is
possible to control the auto-generated clock on the BUFG_GT output pin by setting the
DIV[2:0] bus with a set_case_analysis constraint.

For example, if the worst-case clock divider is by 3, then the following case analysis should
be applied to the BUFG_GT:

set_case_analysis 0 [get_pins bufg_gt_pclk/DIV[0]]
set_case_analysis 1 [get_pins bufg_gt_pclk/DIV[1]]
set_case_analysis 0 [get_pins bufg_gt_pclk/DIV[2]]

X-Ref Target - Figure 5-32

Figure 5-32: Clock Example

X-Ref Target - Figure 5-33

Figure 5-33: BUFG_GT/DIV Example

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=137

Using Constraints 138
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

Note: For UltraScale™ and UltraScale+™ devices, the GT_CHANNEL has multiple input clocks that
propagate to the output of the GT_CHANNEL (such as TXOUTCLK) through multiple levels of internal
muxes. The case analysis can be used in a similar way on the GT_CHANNEL clock muxing control
signals (such as TXSYSCLKSEL, TXOUTCLKSEL) to select which of the input or internal clocks should
be propagated to the output of the GT_CHANNEL.

Disabling Timing Arcs
You can disable timing arcs inside the cell with the set_disable_timing command. Only
timing arcs going from input to output ports of a cell can be disabled.

Note: The set_disable_timing command can also be used to disable a timing arc from a port or
a wire. In such cases, the command line options -from and -to are not used and only the port
object(s) or timing arc object(s) are specified.

Some timing arcs are automatically disabled by the timer to handle specific cases. For
instance, combinational feedback loops are not recommended and cannot be properly
timed. The timer breaks such loops by disabling one of the timing arcs inside the loop.

Another example is a case analysis set on a MUX. By default, all the data inputs of a MUX are
propagated to the output port but when a case analysis is set on the select signals, only one
data input port gets propagated to the output port. This is done by the timer by breaking
timing arcs from the other data input ports to the output port.

The set_disable_timing command gives you the ability to manually break cell timing
arcs in the design. You can, for example, decide which timing arc(s) of a combinational
feedback loop should be disabled to break the loop instead of letting the tool make this
determination.

Also, suppose that multiple clocks arrive on a LUT input pins but only one clock should be
propagated to the LUT output port. This scenario can be handled by breaking the timing
arcs associated to the clocks that should not propagate.

There is also a scenario involving LUTRAM that can be quite frequent. Inside the LUTRAM,
there is physical path from WCLK pin to the output O pin between the write and read clocks.
However, LUTRAM-base asynchronous FIFO are designed in such way that this CDC path
WCLK->O cannot happen by construction. Nevertheless, this timing arc is enabled and can
result is the timer reporting paths through this WCLK->O timing arc. This arc can also
trigger some TIMING-10 DRC violations. In such case, the user should disable the WCLK->O
arc so that those paths are not timed and reported and that they do not trigger invalid DRC
violations. This timing arc is automatically disabled in the current implementation of the
Xilinx LUTRAM-based FIFO.

Note: After a timing arc is disabled, no timing path will be reported by the timer through this arc.
You should be very careful to not disable any valid timing arc. This might result is masking some
timing violations and/or timing problems that could result in the design failing in hardware.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=138

Using Constraints 139
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 5: Timing Exceptions

The syntax for the set_disable_arc command is:

set_disable_timing [-from <arg>] [-to <arg>] [-quiet] [-verbose] <objects>

Only pin names and not Vivado tools objects can be provided to the -from and -to
command line options. The pin names should also match pin names from the library cell,
not design pin names. For example:

set_disable_timing -from WCLK -to O [get_cells inst_fifo_gen/ gdm.dm/gpr1.dout_i_reg[*]]

The above command disables the WCLK->O timing arcs for all the LUTRAM-based
asynchronous FIFOs inst_fifo_gen/ gdm.dm/gpr1.dout_i_reg[*].

The command line options -from and -to are optional. If -from is not specified, then all
the timing arcs ending on the pin specified with -to are being disabled. In the same way if
-to is not specified, then all the timing arcs starting on the pin specified with -from are
being disabled. If neither -from nor -to are specified, then all the timing arcs of the cells
specified in the command are disabled.

You can use the command report_disable_timing to list all the timing arcs that have
been automatically disabled by the timer as well as manually disabled by the user. Be careful
as the list can be very large. Use the -file command line option to save the result in a file.

Note: report_disable_timing can be scoped to one or more hierarchical module(s) with -cells.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=139

Using Constraints 140
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 6

CDC Constraints

About CDC Constraints
Clock Domain Crossing (CDC) constraints apply to timing paths that have a different launch
and capture clock. There are synchronous CDC and asynchronous CDC depending on the
launch and capture clocks relationship and on the timing exceptions set on the CDC paths.
For example, CDC paths between synchronous clocks but covered by false path constraints
are not timed, and consequently are treated as asynchronous CDCs.

Asynchronous CDC paths can be safe or unsafe. The terminology of safe and unsafe for
asynchronous CDC paths is different from the terminology used for inter-clock timing
analysis (see report_clock_interaction). An asynchronous CDC path is considered
safe when it uses a synchronization circuitry to prevent metastability of the capture
sequential cell.

For more information, refer to this link in the Vivado Design Suite User Guide: Design
Analysis and Closure Techniques (UG906) [Ref 4].

The timing analysis of CDC paths can be fully ignored by using set_false_path or
set_clock_groups constraints, or partially analyzed by using set_max_delay
-datapath_only. In addition, the multi-bit CDC paths capture time spread can be
constrained using the set_bus_skew constraint.

Constraining Bus Skew
About Bus Skew Constraints
The bus skew constraint is used to set a maximum skew requirement between several
asynchronous CDC paths. The bus skew is not the traditional clock skew associated with a
timing path. Instead, it corresponds to the largest capture time difference across all the
paths that are covered by a same set_bus_skew constraint. The bus skew requirement
applies to both Fast and Slow corners, but it is not analyzed across the corners.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug906-vivado-design-analysis.pdf;a=xReportClockDomainCrossings
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=140

Using Constraints 141
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 6: CDC Constraints

The intent of the bus skew constraint is to limit the number of source clock edges that can
launch a data and be captured by a single destination clock edge. The tolerance depends on
the CDC synchronization scheme used for the constrained paths. The bus skew constraint is
typically used for the following CDC topologies:

• Gray-coded bus transfer, such as in asynchronous FIFOs
• Multi-bit CDC implemented with CE, MUX, or MUX Hold circuitry
• Configuration registers

Although the set_bus_skew command does not prevent a bus skew constraint to be set
on a safely timed synchronous CDC, such a constraint is not needed. The setup and hold
checks already ensure a safe transfer between two safely timed synchronous CDC paths.

The CDC scenarios for bus skew constraints are:

• Asynchronous CDC covered with set_clock_groups
• Asynchronous CDC entirely covered with set_false_path and/or set_max_delay

-datapath_only

• Synchronous CDC paths covered with set_false_path and/or set_max_delay
-datapath_only

The bus skew constraint is not a timing exception; rather, it is a timing assertion. Therefore,
it does not interfere with the timing exceptions (set_clock_group, set_false_path,
set_max_delay, set_max_delay -datapath_only, and set_multicycle_path)
and their precedence.

The bus skew constraint is only optimized by the route_design command. To report the
set_bus_skew constraints, use the report_bus_skew command from the command line
or Reports > Timing > Report Bus Skew from the GUI. The bus skew constraints are not
reported inside the Timing Summary report (report_timing_summary).

Syntax of the set_bus_skew Command
The syntax of the set_bus_skew command with the basic options is:

set_bus_skew [-from <args>] [-to <args>] [-through <args>] <value>

The list of objects for the -from option should be a list of valid startpoints. A valid
startpoint for set_bus_skew is a clock, or the clock pin of a sequential element, such as a
register or a RAM. An input (or inout) port is not supported by set_bus_skew.

The list of nodes for the -to option should be a list of valid endpoints. A valid endpoint for
set_bus_skew is a clock, or the data pin of a sequential cell. An output (or inout) port is
not supported by set_bus_skew.

The list of nodes for the -through option should be a list of valid pins, or nets.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=141

Using Constraints 142
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 6: CDC Constraints

Although the -from and -to command line options can refer to clocks, Xilinx recommends
that you be more specific and specify a limited list of startpoints and endpoints per
constraint. This will ensure that not too many paths get covered by each constraint and that
each constraint can be reasonably met.

Note: Both the -from and -to options must be specified when specifying a bus skew constraint.
Note: Xilinx recommends setting a bus skew constraint on paths with no fanout. Also, each bus skew
constraint must cover at least two startpoints and two endpoints.

The bus skew value must be realistic and reasonable. Xilinx recommends to use a value
larger than half the minimum period of the source and destination clocks. The
recommended value for the bus skew also depends on the CDC topology as illustrated by
the following examples.

set_bus_skew Example One

In this example, the CDC is part of a handshake mechanism. The source clock domain
generates a send signal when data is available to be sampled. The destination clock domain
uses a 4-stage synchronizer for the send signal. After the 4-stage synchronizer, the signal
drives the Clock Enable pin of the CDC destination registers. In such Clock-Enabled Control
CDC structure, the bus skew must be adjusted to the number of stages on the CE path since
it represents the number of destination clock cycles for which the data is valid.

If the source clock period is 5 ns and the destination clock period is 2.5 ns, the bus skew on
the CDC path should be set to 10 ns (4×2.5 ns).

set_bus_skew -from [get_cells src_hsdata_ff_reg*] -to [get_cells dest_hsdata_ff_reg*] 10.000

Note: For completeness, the CDC needs an additional set_max_delay constraint to ensure that
the source and destination registers are not placed too far apart:

set_max_delay -datapath_only -from [get_cells src_hsdata_ff_reg*] -to [get_cells
dest_hsdata_ff_reg*] 10.000

X-Ref Target - Figure 6-1

Figure 6-1: set_bus_skew Example One

X18887-031717

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=142

Using Constraints 143
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 6: CDC Constraints

set_bus_skew Example Two

In this example, the CDC is on a gray-coded bus. The system must ensure that only one
transition of the gray-coded bus is captured by the destination clock domain at the same
time.

If the source clock period is 5 ns and the destination clock period is 2.5 ns, the bus skew on
the CDC path should be set to 2.5 ns (destination clock period).

set_bus_skew -from [get_cells src_gray_ff_reg*] -to [get_cells {dest_graysync_ff_reg[0]*}]
2.500

Note: For completeness, the CDC needs an additional set_max_delay constraint to ensure that
the source and destination registers are not placed too far apart. In this case, the max delay is set to
the source clock period as the CDC is between a slower clock to a faster clock and only one transition
of the bus should be captured by the destination clock domain:

set_max_delay -datapath_only -from [get_cells src_gray_ff_reg*] -to [get_cells
{dest_graysync_ff_reg[0]*}] 5.000

Set Bus Skew Dialog Box
In the Vivado IDE, you can set bus skew constraints in multiple ways:

• Through the Timing Constraints Editor. Select Window > Timing Constraint >
Assertion > Set Bus Skew.

From the Timing Constraints Editor, you can add, remove, or modify bus skew
constraints.

Note: Locked IP bus skew constraints cannot be edited.
• Through the Report CDC GUI. Select Reports > Timing > Report CDC.

X-Ref Target - Figure 6-2

Figure 6-2: set_bus_skew Example Two

X18854-031717

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=143

Using Constraints 144
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 6: CDC Constraints

Inside the CDC Details tables, you must select one or more rows to include at least two or
more startpoints and two or more endpoints. When you right-click and select Set Bus Skew,
there are two options:

• Startpoint to Endpoint:

Set a bus skew constraint between the startpoints and endpoints included in the
selected row(s).

• Source Clock to Destination Clock:

Set bus skew constraints between the clock domains of the startpoints and
endpoints.

Note: It is typically not recommended to set a bus skew constraints between clock domains,
because it will apply to more paths than needed. This will result in longer implementation
runtime and impossible timing closure.

Note: Vivado does not verify the validity of setting a bus skew constraint on the selected objects.
You must ensure that a bus skew constraint makes sense with the selected objects.

X-Ref Target - Figure 6-3

Figure 6-3: Setting Bus Skew within Report CDC

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=144

Using Constraints 145
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 6: CDC Constraints

In the Set Bus Skew dialog box, you can set the bus skew value, the startpoints, and
endpoints, as shown in the following figure.
X-Ref Target - Figure 6-4

Figure 6-4: Set Bus Skew Dialog Box

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=145

Using Constraints 146
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 7

XDC Precedence

About XDC Precedence
The precedence rules for Xilinx® Design Constraints (XDC) are inherited from Synopsys
Design Constraints (SDC). This chapter discusses how constraint conflicts or overlaps are
resolved.

XDC Constraints Order
XDC constraints are commands interpreted sequentially. For equivalent constraints, the last
constraint takes precedence.

Constraints Order Example:

> create_clock -name clk1 -period 10 [get_ports clk_in1]
> create_clock -name clk2 -period 11 [get_ports clk_in1]

In this example, the second clock definition overrides the first clock definition because:

• They are both attached to the same input port.
• The create_clock -add option was not used.

Exceptions Priority
If constraints overlap (for example, if several timing exceptions are applied to the same
path), the priority from highest to lowest is:

1. Clock Groups (set_clock_groups)
2. False Path (set_false_path)
3. Maximum Delay Path (set_max_delay) and Minimum Delay Path (set_min_delay)
4. Multicycle Paths (set_multicycle_path)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=146

Using Constraints 147
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 7: XDC Precedence

Note: The set_bus_skew constraint does not affect the above constraints precedence. The
set_bus_skew constraint does not override and is not overridden by clock groups, max delays,
false paths, and multicycle paths. The reason is that the bus skew is not a constraint on a particular
path, but a constraint between paths.

In addition, for the same type of exception, the more specific the constraint, the higher the
precedence. Depending on the filtering options and the type of objects used in the
constraint, you can modify the specificity of a constraint.

The priority rule for the objects is:

1. Ports, pins, and cells

Pins of a cell are used instead of the cell itself.

2. Clocks

Clocks always have lower priority than ports, pins, and cells. A timing exception that
uses clock object(s) always has a lower priority than another timing exception defined
with ports, pins, and cells.

The precedence rule for the filters, from highest to lowest, is:

1. -from -through -to

2. -from -to

3. -from -through

4. -from

5. -through -to

6. -to

7. -through

IMPORTANT: Note that cells used in either the -from or -to, always have a higher precedence than
a clock even if the clock is used in a more specific case of -from -through -to.

Exceptions Priority Example
> set_max_delay 12 -from [get_clocks clk1] -to [get_clocks clk2]
> set_max_delay 15 -from [get_clocks clk1]

In this example, the first constraint overrides the second constraint for the paths from clk1
to clk2.

The number of -through options used in an exception does not affect the precedence. The
timing engine uses the tightest constraint.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=147

Using Constraints 148
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 7: XDC Precedence

> set_max_delay 12 -from [get_cells inst0] -to [get_cells inst1]
> set_max_delay 15 -from [get_clocks clk1] -through [get_pins hier0/p0] -to
[get_cells inst1]

In this example, the first constraint only uses cell objects and the second constraint uses a
clock object. Although inst0 is clocked by clk1, the first constraint overrides the second
constraint for the paths from cell inst0 to cell inst1.

Exceptions Priority with Multiple -through Options Example
> set_max_delay 4 -through [get_pins inst0/I0]
> set_max_delay 5 -through [get_pins inst0/I0] -through [get_pins inst1/I3]

Both exceptions are kept by the timing engine. The more challenging constraint is used for
timing analysis. In this example, the 4 ns max delay constraint will be used even for paths
going through the pin inst1/I3.

RECOMMENDED: You must avoid using several timing exceptions on the same paths, so that the timing
analysis results are not dependent on priority rules, and it is easier to validate the effect of your
constraints.

It is recommended that you validate the timing exceptions with the report_exceptions command.
This command provides insight on which timing exceptions are overriden or ignored. For more
information, refer to Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
[Ref 4].

If a string instead of an object is passed to the constraint, the Tcl interpreter uses the
following sequence to determine which object matches the string:

1. port
2. pin
3. cell
4. net

The search is not exhaustive. As soon as objects of a certain type match the string pattern,
they are returned, even though objects of another type down the list might also match the
same pattern.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=148

Using Constraints 149
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 8

Physical Constraints

About Physical Constraints
The Xilinx® Vivado® Integrated Design Environment (IDE) enables design objects to be
physically constrained by setting values of object properties. Examples include:

• I/O constraints such as location and I/O standard
• Placement constraints such as cell locations
• Routing constraints such as fixed routing
• Configuration constraints such as the configuration mode

Similar to timing constraints, physical constraints must be saved in an Xilinx Design
Constraints (XDC) file or a Tcl script so that they can be loaded with the netlist when you
open a design. After the design is loaded in memory, you can interactively enter new
constraints using the Tcl console, or by using one the Vivado Design Suite IDE editing tools.

Most physical constraints are defined by means of properties on an object:

set_property <property> <value> <object list>

The exception is for area constraints which use Pblock commands.

Critical Warning
Critical Warnings are issued for invalid constraints in XDC files, including those applied to
objects that cannot be found in the design.

For property definition and usage, see the Vivado Design Suite Properties Reference Guide
(UG912) [Ref 11].

RECOMMENDED: Xilinx highly recommends that you review all Critical Warnings to ensure that the
design is properly constrained. Invalid constraints result in errors when applied interactively.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=149

Using Constraints 150
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 8: Physical Constraints

Netlist Constraints
Netlist constraints are set on netlist objects such as ports, pins, nets or cells, to require
synthesis and implementation to handle them in special way.

IMPORTANT: Be sure that you understand the impact of using these constraints. They might result in
increased design area, reduced design performance, or both.

Netlist constraints include:

• CLOCK_DEDICATED_ROUTE
• MARK_DEBUG
• DONT_TOUCH
• LOCK_PINS

CLOCK_DEDICATED_ROUTE
Set CLOCK_DEDICATED_ROUTE on a net to indicate how the clock signal is expected to be
routed.

The CLOCK_DEDICATED_ROUTE property is used on a clock net to override the default
routing. This is an advanced control requiring extreme caution as it might affect timing
predictability and routability.

For example, CLOCK_DEDICATED_ROUTE can be set to FALSE when dedicated clock
routing is not available. A value of FALSE allows the Vivado tools to route the clock from an
input port to a global clocking resource such as a BUFG or MMCM using general routing
resources. This should only be used as a last resort when device package pin assignments
have been locked down, and the clock input cannot be assigned to an appropriate clock
capable input pin (CCIO). The routing will be suboptimal and unpredictable unless used in
conjunction with FIXED_ROUTE.

For more information about this property, see Clock Constraints in the UltraFast Design
Methodology Guide for the Vivado Design Suite (UG949) [Ref 5].

MARK_DEBUG
Set MARK_DEBUG on a net in the RTL to preserve it and make it visible in the netlist. This
allows it to be connected to the logic debug tools at any point in the compilation flow.

For more information, see this link in the Vivado Design Suite User Guide: Programming and
Debugging (UG908) [Ref 12].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf;a=xClockConstraints
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf;a=xMarkingHDLSignalsForDebug
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=150

Using Constraints 151
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 8: Physical Constraints

DONT_TOUCH
Set DONT_TOUCH on a leaf cell, hierarchical cell, or net object to preserve it during netlist
optimizations. DONT_TOUCH is most commonly used to:

• Prevent a net from being optimized away.

A net with DONT_TOUCH cannot be absorbed by synthesis or implementation. This can
be helpful for logic probing or debugging unexpected optimization in designs. To
preserve a net with multiple hierarchical segments, place DONT_TOUCH on the net
PARENT (get_property PARENT $net) which is the net segment closest to its driver.

• Prevent merging of manually replicated logic.

Sometimes it is best to manually replicate logic, such as a high-fanout driver that spans
a wide area. Adding DONT_TOUCH to the manually replicated drivers (as well as the
original) prevents synthesis and implementation from optimizing these cells.

Note: Use reset_property to reset the DONT_TOUCH property. Setting the DONT_TOUCH
property to 0 does not reset the property.

TIP: Avoid using DONT_TOUCH on hierarchical cells for implementation as Vivado IDE
implementation does not flatten logical hierarchy. Use KEEP_HIERARCHY in synthesis to maintain
logical hierarchy for applying XDC constraints.

LOCK_PINS
LOCK_PINS is a cell property used to specify the mapping between logical LUT inputs (I0, I1,
I2, …) and LUT physical input pins (A6, A5, A4, …).

A common use is to force timing-critical LUT inputs to be mapped to the fastest A6 and A5
physical LUT inputs.

LOCK_PINS Constraint Example One

Map I1 to A6 and I0 to A5 (swap the default mapping).

% set myLUT2 [get_cells u0/u1/i_365]
% set_property LOCK_PINS {I0:A5 I1:A6} $myLUT2
Which you can verify by typing the following line in the Tcl Console:
% get_property LOCK_PINS $myLUT2

LOCK_PINS Constraint Example Two

Map I0 to A6 for a LUT6, mapping of I1 through I5 are dont-cares.

% set_property LOCK_PINS I0:A6 [get_cell u0/u1/i_768]

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=151

Using Constraints 152
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 8: Physical Constraints

I/O Constraints
I/O constraints configure:

• Ports
• Cells connected to ports

Typical constraints include:

• I/O standard
• I/O location

The Vivado Design Suite supports many of the same I/O constraints as the Integrated
Software Environment (ISE®) Design Suite. The following list of I/O properties is not
exhaustive.

° For a complete list of I/O properties, more information on I/O port and I/O cell
properties, and coding examples with proper syntax, see the Vivado Design Suite
Properties Reference Guide (UG912) [Ref 11].
Note: All properties are applied to port objects unless otherwise stated.

° For more information on the application and methodology behind these properties,
see the device SelectIO documents, for example 7 Series FPGAs SelectIO Resources
User Guide (UG471) [Ref 13].

• DRIVE

Sets the output buffer drive strength (in mA), available with certain I/O standards only.

• IOSTANDARD

Sets an I/O Standard,

• SLEW

Sets the slew rate (the rate of transition) behavior of a device output.

• IN_TERM

Sets the configuration of the input termination resistance for an input port

• DIFF_TERM

Turns on or off the 100 ohm differential termination for primitives such as
IBUFDS_DIFF_OUT.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=152

Using Constraints 153
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 8: Physical Constraints

• KEEPER

Applies a weak driver on an tri-stateable output or bidirectional port to preserve its
value when not being driven.

• PULLTYPE

Applies a weak logic low or high level on a tri-stateable output or bidirectional port to
prevent it from floating.

• DCI_CASCADE

Defines a set of master and slave banks. The DCI reference voltage is chained from the
master bank to the slaves. DCI_CASACDE is set on IOBANK objects.

• INTERNAL_VREF

Frees the Vref pins of an I/O Bank and uses an internally generated Vref instead.
INTERNAL_VREF is set on IOBANK objects

• IODELAY_GROUP

Groups a set of IDELAY and IODELAY cells with an IDELAYCTRL to enable automatic
replication and placement of IDELAYCTRL in a design.

• IOB

Tells the placer to try to place FFs in I/O Logic instead of the fabric slice. This property
must be assigned to the register and not to the port.

IMPORTANT: There are notable differences between the ISE Design Suite and the Vivado Design Suite
in the handling of IOB. The Vivado tools allow IOB to be set on both ports and on register cells
connected to ports. If conflicting values are set on a port and its register, the value on the register
prevails. The Vivado tools use only the values TRUE and FALSE. The value FORCE is interpreted as TRUE,
and the value AUTO is ignored. Unlike ISE, if a setting of IOB true cannot be honored, the Vivado tools
generate a critical warning, not an error.

• IOB_TRI_REG

For HDIO in UltraScale+ devices. Tells the placer to try to place FFs driving Tristate
signals on HDIO bank IOBs in the I/O Logic instead of the fabric slice. This property must
be assigned to the register and not to the port.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=153

Using Constraints 154
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 8: Physical Constraints

Placement Constraints
Placement constraints are applied to cells to control their locations within the device. The
Vivado Integrated Design Environment (IDE) supports many of the same placement
constraints as the Integrated Software Environment (ISE) Design Suite and the PlanAhead™
tool.

• LUTNM

A unique string name applied to two LUTs to control their placement on a single LUT
site. Unlike HLUTNM, LUTNM can be used to combine LUTs that belong to different
hierarchical cells.

• HLUTNM

A unique string name applied to two LUTs in the same hierarchy to control their
placement on a single LUT site.

Use HLUTNM within a cell that is instantiated multiple times.

• PROHIBIT

Disallows placement to a site.

• PBLOCK

Attached to logical blocks to constrain them to a physical region in the device.

PBLOCK is a read-only cell property that is the name of the Pblock to which the cell is
assigned. Cell Pblock membership can be changed only by using the XDC Tcl commands
add_cells_to_pblock and remove_cells_from_pblock.

• PACKAGE_PIN

Specifies the location of a design port on a pin of the target device package.

• LOC

Places a logical element from the netlist to a site on the device.

• BEL

Places a logical element from the netlist to a specific BEL within a slice on the device.

For more information, see:

• Chapter 7, XDC Precedence
• Chapter 9, Defining Relatively Placed Macros

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=154

Using Constraints 155
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 8: Physical Constraints

Placement Types
There are two types of placement in the tools:

• Fixed Placement
• Unfixed Placement

Fixed Placement

Fixed placement is placement specified by the user through one of the following:

• Hand placement
• An XDC constraint
• Using either IS_LOC_FIXED or IS_BEL_FIXED on a cell object of the design loaded

in memory.

Unfixed Placement

Unfixed placement is a placement performed by the implementation tools. By setting the
placement as fixed, the implementation cannot move the constrained cells during the next
iteration or during an incremental run. A fixed placement is saved in the XDC file, where it
appears as a simple LOC or BEL constraint.

• IS_LOC_FIXED

Promotes a LOC constraint from unfixed to fixed.

• IS_BEL_FIXED

Promotes a BEL constraint from unfixed to fixed.

Placement Constraint Example One

Locate a block RAM at RAMB18_X0Y10 and fix its location.

% set_property LOC RAMB18_X0Y10 [get_cells u_ctrl0/ram0]

Placement Constraint Example Two

Place a LUT in the C5LUT BEL position within a slice and fix its BEL assignment.

% set_property BEL C5LUT [get_cells u_ctrl0/lut0]

Placement Constraint Example Three

Locate input bus registers in ILOGIC cells for shorter input delay.

% set_property IOB TRUE [get_cells mData_reg*]

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=155

Using Constraints 156
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 8: Physical Constraints

Placement Constraint Example Four

Combine two small LUTs into a single LUT6_2 that uses both O5 and O6 outputs.

% set_property LUTNM L0 [get_cells {u_ctrl0/dmux0 u_ctrl0/dmux1}]

Placement Constraint Example Five

Prevent the placer from using the first column of block RAMs.

% set_property PROHIBIT TRUE [get_sites {RAMB18_X0Y* RAMB36_X0Y*}]

Placement Constraint Example Six

Prevent the placer from using the clock region X0Y0.

% set_property PROHIBIT TRUE [get_sites -of [get_clock_regions X0Y0]]

Placement Constraint Example Seven

Prevent the placer from using SLR0.

% set_property PROHIBIT TRUE [get_sites -of [get_slrs SLR0]]

IMPORTANT: When assigning both BEL and LOC properties to a cell, BEL must be assigned before LOC.

Routing Constraints
Routing constraints are applied to net objects to control their routing resources.

Fixed Routing
Fixed Routing is the mechanism for locking down routing, similar to Directed Routing in ISE.
Locking down a net routing resources involves three net properties. See Table 8-1.

To guarantee that a net routing can be fixed, all of its cells must also be fixed in advance.

Following is an example of a fully-fixed route. The example takes the design in Figure 8-1
and creates the constraints to fix the routing of the net netA (selected in blue).

Table 8-1: Net Properties
Property Function

ROUTE Read-only net property
IS_ROUTE_FIXED Flag to mark the whole route as fixed
FIXED_ROUTE The fixed-route portion of a net

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=156

Using Constraints 157
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 8: Physical Constraints

You can query the routing information of any net after loading the implemented design in
memory:

% set net [get_nets netA]
% get_property ROUTE $net
{ CLBLL_LL_CQ CLBLL_LOGIC_OUTS6 FAN_ALT5 FAN_BOUNCE5 { IMUX_L17 CLBLL_LL_B3 }
IMUX_L11 CLBLL_LL_A4 }

The routing is defined as a series of relative routing node names with fanout denoted using
embedded curly braces. The routing is fixed by setting the following property on the net:

% set_property IS_ROUTE_FIXED TRUE $net

To back-annotate the constraints in your XDC file for future runs, the placement of all the
cells connected to the fixed net must also be preserved. You can query this information by
selecting the cells in the schematics or device view, and look at their LOC/BEL property
values in the Properties window. Or, you can query those values directly from the Tcl
console:

% get_property LOC [get_cells {a0 L0 L1}]
SLICE_X0Y47 SLICE_X0Y47 SLICE_X0Y47
% get_property BEL [get_cells {a0 L0 L1}]
SLICEL.CFF SLICEL.A6LUT SLICEL.B6LUT

Because fixed routes are often timing-critical, LUT pins mapping must also be captured in
the LOCK_PINS property of the LUT to prevent the router from swapping pins.

Again, you can query the site pin of each logical pin from the Tcl console:

% get_site_pins -of [get_pins {L0/I1 L0/I0}]
SLICE_X0Y47/A4 SLICE_X0Y47/A2
% get_site_pins -of [get_pins {L1/I1 L1/I0}]
SLICE_X0Y47/B3 SLICE_X0Y47/B2

X-Ref Target - Figure 8-1

Figure 8-1: Simple Design to Illustrate Routing Constraints

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=157

Using Constraints 158
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 8: Physical Constraints

The complete XDC constraints required to fix the routing of net netA are:

set_property BEL CFF [get_cells a0]
set_property BEL A6LUT [get_cells L0]
set_property BEL B6LUT [get_cells L1]
set_property LOC SLICE_X0Y47 [get_cells {a0 L0 L1}]
set_property LOCK_PINS {I1:A4 I0:A2} [get_cells L0]
set_property LOCK_PINS {I1:A3 I0:A2} [get_cells L1]
set_property FIXED_ROUTE { CLBLL_LL_CQ CLBLL_LOGIC_OUTS6 FAN_ALT5 FAN_BOUNCE5 {
IMUX_L17 CLBLL_LL_B3 } IMUX_L11 CLBLL_LL_A4 } [get_nets netA]

If you are using interactive Tcl commands instead of XDC, several placement constraints can
be specified at once with the place_cell command, as shown below:

place_cell a0 SLICE_X0Y47/CFF L0 SLICE_X0Y47/A6LUT L1 SLICE_X0Y47/B6LUT

For more information on place_cell, see the Vivado Design Suite Tcl Command Reference
Guide (UG835) [Ref 10].

Configuration Constraints
Configuration constraints are global constraints for bitstream generation that are applied
to the current design. This includes constraints such as the configuration mode.

Configuration Constraint Example One
Set the CONFIG_MODE to M_SELECTMAP.

% set_property CONFIG_MODE M_SELECTMAP [current_design]

Configuration Constraint Example Two
Turn on the debug bitstream.

% set_property BITSTREAM.GENERAL.DEBUGBITSTREAM Yes [current_design]

Configuration Constraint Example Three
Disable CRC checking.

% set_property BITSTREAM.GENERAL.CRC Disable [current_design]

For a list of bitstream generation properties and definitions, see this link in the Vivado
Design Suite User Guide: Programming and Debugging (UG908) [Ref 12].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf;a=xDeviceConfigurationBitstreamSettings
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=158

Using Constraints 159
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9

Defining Relatively Placed Macros

About Relatively Placed Macros
A Relatively Placed Macro (RPM) is a list of basic logic elements (BELs) grouped into a set.
Examples of logic elements include:

• FF
• LUT
• DSP
• RAM

RPMs are primarily used to place small groups of logic close together in order to improve
resource efficiency and enable faster interconnections.

Defining Sets of Design Elements
Define sets of design elements with U Set (U_SET) or HU Set (HU_SET) constraints.

• Each element of the set is placed in relation to the other elements of the set by Relative
Location (RLOC) constraints.

• Logic elements with RLOC constraints and common set names are associated in an
RPM.

U_SET, HU_SET, and RLOC constraints:

• Must be defined as properties in the HDL design files.
• Are not supported in Xilinx® Design Constraints format (XDC).

TIP: You can use the create_macro and update_macro commands to define macro objects in the
Vivado® Design Suite, that act like RPMs within the design. Refer to XDC Macros, page 167.

For more information on U_SET, HU_SET, and RLOC constraints, see the Vivado Design
Suite Properties Reference Guide (UG912) [Ref 11].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=159

Using Constraints 160
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Creating an RPM
To create an RPM:

1. Group cells into a set.
2. Define relative locations for cells in the RPM set.
3. Specify an RLOC_ORIGIN constraint or a LOC constraint on an RPM cell to fix placement

of the RPM on the target device.
Note: This step is optional.

Assigning Cells to RPM Sets
Design elements in a hierarchical module that are assigned RLOC constraints are
automatically grouped into an RPM set.

The grouping occurs by using an H_SET constraint that is implicitly defined by the
combination of the design hierarchy and the RLOC constraint.

All design elements with RLOC constraints in a single block of the design hierarchy are
considered to be in the same H_SET unless they are tagged with another set constraint,
such as U_SET or HU_SET.

Explicitly Grouping Design Elements
While H_SET is implied based on the design hierarchy and the presence of the RLOC
constraint, you can also explicitly group design elements into RPM sets using the U_SET
and HU_SET constraints.

Explicitly Grouping Design Elements With U_SET

U_SET lets you group cells regardless of hierarchy or where they appear in the design. All
cells with the same set_name are members of the same RPM set.

Design elements tagged with a U_SET constraint can be primitive or non-primitive symbols.

When attached to non-primitive symbols, the U_SET constraint propagates downward
through the hierarchy to all the primitive symbols below it that are assigned RLOC
constraints.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=160

Using Constraints 161
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Explicitly Grouping Design Elements With HU_SET

HU_SET has an explicit user-defined and hierarchically qualified name for the set. This lets
you create hierarchical RPMs in which RLOC constraints can be placed on cells at different
levels of the hierarchy.

All cells with the same hierarchically qualified set_name are members of the same set.

Syntax for Defining RPM Sets in VHDL
The syntax for defining RPM sets as attributes in VHDL is:

attribute U_SET : string;
attribute HU_SET : string;
...
attribute U_SET of my_reg : label is "uset0";
attribute HU_SET of other_reg : label is "huset0";

Syntax for Defining RPM Sets in Verilog
The syntax for defining RPM sets as attributes in Verilog is as follows.

U_SET Example

(* U_SET = "uset0", RLOC = "X0Y0" *) FD my_reg (.C(clk), .D(d0), .Q(q0));

HU_SET Example

(* HU_SET = "huset0", RLOC = "X0Y0" *) FD other_reg (.C(clk), .D(d1), .Q(q1));

RECOMMENDED: When using H_SET and HU_SET RPMs with Vivado Synthesis, preserve the
hierarchical boundary of the module or instance containing the RPMs. This avoids naming collisions
between RPMs at the same hierarchical level as a result of hierarchy being dissolved. For further
information on hierarchy preservation see the Vivado Design Suite User Guide: Synthesis (UG901)
[Ref 8].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=161

Using Constraints 162
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

RPM Definition in the Physical Constraints Window

RPM sets must be embedded as properties in HDL source files. After synthesis, RPM related
properties appear on netlist objects as read only properties for use by the Xilinx Vivado
Integrated Design Environment (IDE) placer.

Viewing RPM Definitions
View RPM definitions in the Physical Constraints window. See Figure 9-1.

To view RPM definitions:

1. Expand the RPM folder to display a list of RPMs.
2. Select an RPM to view its properties or to select related cells.

TIP: RPMs can be placed and locked down by dragging from the Physical Constraints to the Device
window. The RPMs are moved as a single shape instead of cell-by-cell.

Preserving RPM through opt_design
opt_design is free to optimize and remove some LUTs that belong to an RPM despite the
RLOC constraint. To prevent opt_design from optimizing the logic inside an RPM, it is
necessary to set the property DONT_TOUCH to TRUE on all the cells that belong to the RPM.
The DONT_TOUCH property can be set either through RTL or XDC.

X-Ref Target - Figure 9-1

Figure 9-1: RPM Definition in the Physical Constraints Window

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=162

Using Constraints 163
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Assigning Relative Locations
Use the RLOC property to assign relative locations to design objects. The RLOC property
specifies relative X-Y coordinates for each cell in the RPM set.

To specify the RLOC property, use either of two different grid coordinate systems:

• Relative Slice-Based Coordinates
• Absolute RPM Grid-Based Coordinates

Use the following syntax:

RLOC=XmYn

where

• m is an integer representing the relative or absolute X coordinate of the object.
• n is an integer representing the relative or absolute Y coordinate of the object.

Relative Slice-Based Coordinates
The relative grid system:

• Is also known as the standard grid.
• Is sufficient for most RPMs.
• Is used for homogeneous RPMs in which all cells in an RPM belong to the same site

type (such as slice, block RAM, and DSP).
Note: Objects are positioned in relation to other objects in the same RPM set.

The relative grid is a standard rectangular grid in which each grid element is the same size.
For example, the following Verilog code example results in an eight-slice-high column with
an FD cell in each slice:

(* RLOC = "X0Y0" *) FD sr0 (.C(clk), .D(d[0]), .Q(y[0]));
(* RLOC = "X0Y1" *) FD sr1 (.C(clk), .D(d[1]), .Q(y[1]));
(* RLOC = "X0Y2" *) FD sr2 (.C(clk), .D(d[2]), .Q(y[2]));
(* RLOC = "X0Y3" *) FD sr3 (.C(clk), .D(d[3]), .Q(y[3]));
(* RLOC = "X0Y4" *) FD sr4 (.C(clk), .D(d[4]), .Q(y[4]));
(* RLOC = "X0Y5" *) FD sr5 (.C(clk), .D(d[5]), .Q(y[5]));
(* RLOC = "X0Y6" *) FD sr6 (.C(clk), .D(d[6]), .Q(y[6]));
(* RLOC = "X0Y7" *) FD sr7 (.C(clk), .D(d[7]), .Q(y[7]));

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=163

Using Constraints 164
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

BEL/LOC Constraints
For complex structures, the BEL or LOC constraints may need to be specified in addition to
the RLOC. The BEL constraint must be used to align the cells inside the RPM set, for
example, to align the LUTs with the registers. The LOC constraint is uncommon and typically
not used because the RPM set is forced on a specific site in the device and cannot be moved
by the placer. Whenever some BEL or LOC constraints need to be specified, it is important
to not mix the source of those constraints. The BEL/LOC constraints should be entirely
specified either through RTL or through XDC, but not a combination of both. Following is an
example of BEL constraints specified at the RTL.

Verilog file:

(*BEL="H6LUT",RLOC="X0Y0"*) LUT6 S0_LUTH (...);
(*BEL="G6LUT",RLOC="X0Y0"*) LUT6 S0_LUTG (...);
(*BEL="F6LUT",RLOC="X0Y0"*) LUT4 S0_LUTF (...);
(*BEL="E5LUT",RLOC="X0Y0"*) LUT4 S0_LUTE (...);
(*BEL="D6LUT",RLOC="X0Y0"*) LUT6 S0_LUTD (...);
(*BEL="C6LUT",RLOC="X0Y0"*) LUT6 S0_LUTC (...);
(*BEL="B6LUT",RLOC="X0Y0"*) LUT4 S0_LUTB (...);
(*BEL="A5LUT",RLOC="X0Y0"*) LUT4 S0_LUTA (...);

(*BEL="CARRY8",RLOC="X0Y0"*) CARRY8#(.CARRY_TYPE("DUAL_CY4")) S0_CARRY8(...);

(*BEL="HFF2",RLOC="X0Y0"*) FD FD_out5 (...);
(*BEL="GFF2",RLOC="X0Y0"*) FD FD_out4 (...);
(*BEL="FFF2",RLOC="X0Y0"*) FD FD_out3 (...);
(*BEL="DFF2",RLOC="X0Y0"*) FD FD_out2 (...);
(*BEL="CFF2",RLOC="X0Y0"*) FD FD_out1 (...);
(*BEL="BFF2",RLOC="X0Y0"*) FD FD_out0 (...);

Note: The INIT string has been omitted for simplification.

In the following example, the RPM is defined at the RTL but the BEL constraints are
specified through XDC.

Verilog file:

(*RLOC="X0Y0"*) LUT6 S0_LUTH (...);
(*RLOC="X0Y0"*) LUT6 S0_LUTG (...);
(*RLOC="X0Y0"*) LUT4 S0_LUTF (...);
(*RLOC="X0Y0"*) LUT4 S0_LUTE (...);
(*RLOC="X0Y0"*) LUT6 S0_LUTD (...);
(*RLOC="X0Y0"*) LUT6 S0_LUTC (...);
(*RLOC="X0Y0"*) LUT4 S0_LUTB (...);
(*RLOC="X0Y0"*) LUT4 S0_LUTA (...);

(*RLOC="X0Y0"*) CARRY8#(.CARRY_TYPE("DUAL_CY4")) S0_CARRY8(...);

(*RLOC="X0Y0"*) FD FD_out5 (...);
(*RLOC="X0Y0"*) FD FD_out4 (...);
(*RLOC="X0Y0"*) FD FD_out3 (...);
(*RLOC="X0Y0"*) FD FD_out2 (...);
(*RLOC="X0Y0"*) FD FD_out1 (...);
(*RLOC="X0Y0"*) FD FD_out0 (...);

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=164

Using Constraints 165
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Note: The INIT string has been omitted for simplification

XDC file:

set_property BEL CARRY8 [get_cells S0_CARRY8]
set_property BEL HFF2 [get_cells FD_out5]
set_property BEL GFF2 [get_cells FD_out4]
set_property BEL FFF2 [get_cells FD_out3]
set_property BEL DFF2 [get_cells FD_out2]
set_property BEL CFF2 [get_cells FD_out1]
set_property BEL BFF2 [get_cells FD_out0]
set_property BEL A5LUT [get_cells S0_LUTA]
set_property BEL B6LUT [get_cells S0_LUTB]
set_property BEL C6LUT [get_cells S0_LUTC]
set_property BEL D6LUT [get_cells S0_LUTD]
set_property BEL E5LUT [get_cells S0_LUTE]
set_property BEL F6LUT [get_cells S0_LUTF]
set_property BEL G6LUT [get_cells S0_LUTG]
set_property BEL H6LUT [get_cells S0_LUTH]

Absolute RPM Grid-Based Coordinates
The RPM_GRID system is used for heterogeneous RPMs in which cells in an RPM belong to
different site types (such as a combination of slice, block RAM, and DSP). This is an absolute
coordinate system that is mapped to a specific Xilinx device.

Because the cells can occupy sites of various sizes, the RPM_GRID system uses absolute
RPM_GRID coordinates. The RPM_GRID values are visible in the Site Properties window of
the Vivado Integrated Design Environment (IDE) when a specific site is selected. The
coordinates can also be queried with Tcl commands using the RPM_X and RPM_Y site
properties.

RPM_GRID Coordinates VHDL Example

The following VHDL example defines RLOC constraints using RPM_GRID coordinates.

• Two shift registers are placed relative to a block RAM.
• Four stages connect the input.
• Four stages connect the output.

attribute RLOC : string;
attribute RPM_GRID : string;
attribute RLOC of di_reg3 : label is "X25Y0";
attribute RLOC of di_reg2 : label is "X27Y0";
attribute RLOC of di_reg1: label is "X29Y0";
attribute RLOC of di_reg0 : label is "X31Y0";
attribute RLOC of ram0 : label is "X34Y0";
attribute RLOC of out_reg3 : label is "X37Y0";
attribute RLOC of out_reg2 : label is "X39Y0";
attribute RLOC of out_reg1 : label is "X41Y0";
attribute RLOC of out_reg0 : label is "X43Y0";

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=165

Using Constraints 166
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Setting a Property to Invoke the RPM_GRID System

To use the RPM_GRID system, set a property on any cell in the RPM set:

attribute RPM_GRID of ram0 : label is "GRID";

As long as at least one cell has the RPM_GRID property equal to GRID, the RPM_GRID
coordinate system is used.

Although the RPM_GRID coordinates are absolute based on the target device, they define
the relative placement of the elements of an RPM set.

During implementation, the RPM set can be placed at any suitable location on the device.

RPM_GRID Coordinate Values

The RPM_GRID coordinate values differ significantly from the coordinate values of the
SLICEs on the FPGA. These coordinates:

• Are stored as RPM_X and RPM_Y properties on device sites in the Vivado tools.
• Can be queried using get_property.

The following example does the following:

• Gets the RPM coordinates from a selected SLICE.
• Uses join to output both the X and Y coordinates in the required format.

join "X[get_property RPM_X [get_selected_objects]]Y[get_property RPM_Y
[get_selected_objects]]"
X25Y394

Defining RLOC Properties Directly in the RTL Source File

Because the standard grid is simple and relative, you can define the RLOC properties for an
RPM directly in the RTL source file.

Because the RPM_GRID coordinates must be extracted from the target device, you will
probably need to:

• Iterate on the design to find the right RPM_GRID values after synthesis.
• Add the coordinates as properties in the RTL source files.
• Resynthesize the netlist before placement.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=166

Using Constraints 167
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Assigning a Fixed Location to an RPM
Optionally use an RLOC_ORIGIN or LOC constraint to place and fix the location of an RPM
on the device. In the Vivado IDE, these properties fix the RPM origin, or the lower-left
corner of the RPM. Each remaining cell in the RPM set is placed by using the relative
location (RLOC) to offset from the origin.

The following example shows a hierarchical RPM that is fixed using RLOC_ORIGIN. RLOC
constraints are assigned to the RPM register cells to create a two-up-by-three-across
placement pattern.

In Verilog:

(* RLOC = "X0Y0" *) FDC sr0...
(* RLOC = "X1Y0" *) FDC sr1...
(* RLOC = "X2Y0" *) FDC sr2...
(* RLOC = "X0Y1" *) FDC sr3...
(* RLOC = "X1Y1" *) FDC sr4...
(* RLOC = "X2Y1" *) FDC sr5...

The RPM is instantiated into the design three times with an RLOC on each cell:

(* RLOC = "X0Y0" *) ffs u0...
(* RLOC = "X3Y2" *) ffs u1...
(* RLOC = "X6Y4" *) ffs u2...

X-Ref Target - Figure 9-2

Figure 9-2: RPM Placement by RLOC_ORIGIN

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=167

Using Constraints 168
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Finally, an RLOC_ORIGIN of X74Y15 is assigned to cell u0 resulting in the placement
shown in Figure 9-2. The highlighting in the figure is shown in Table 9-1.

TIP: Although RPMs control the relative placement of logic elements, they do not insure that specific
routing resources are used to connect the logic from one implementation to the next.

For more information on controlling the routing used, see Routing Constraints, page 156.

XDC Macros
XDC macros enable assignment of relative placement to cells after synthesis. Macros have
many characteristics similar to RPMs, but are design objects that can be modified
interactively using XDC and Tcl. Macros are created from leaf cells that are grouped
together with relative placement constraints.

While RPMs are managed in HDL code, macros are managed using XDC constraints. RPMs
cannot be automatically converted to macros. Similarly, macros cannot be automatically
annotated to HDL code. Unlike macros, RPMs are not objects, and the XDC macro
commands cannot be used on RPMs.

Table 9-1: Cell Highlighting
Cell Highlight Color

u0 yellow
u1 green
u2 red

Table 9-2: Comparison of RPMs and Macros
RPMs Macros

Definition HDL Attributes XDC constraints
Post-Synthesis Access Read-only Read-write
Hierarchical Yes (H_SET/HU_SET) No
RLOC Targets Non-leaf and leaf cells Leaf cells only
Site Type Mixing
Allowed

Yes, using RPM_GRID attribute Yes, using
update_macro -absolute_grid

Accessible as objects No Yes
Where stored In netlist In XDC or Tcl scripts

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=168

Using Constraints 169
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Specifying Macros
Use the following XDC Tcl commands to specify macros:

• create_macro
• update_macro
• delete_macros
• get_macros

Each command is supported by undo and redo.

Following are descriptions of each command.

create_macro

The create_macro command creates a new macro object.

Macro names must be unique. Attempting to create a macro with the same name as an
existing macro generates an error.

create_macro Syntax

create_macro <name>

create_macro Example

create_macro m0

Creates a macro object called m0.

TIP: To ensure optimal LUT-FF alignment, specify the BEL location when creating your macro. The BEL
location must be set separately as a property on the cell objects. For example:
set_property BEL AFF [get_cell u2/sr0].

update_macro

The update_macro command adds leaf cells and relative placements (RLOCs) to the
macro.

The RLOC has identical syntax and functionality as the RPM RLOC attribute. All cells must be
specified at once. No partial or incremental definition is allowed.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=169

Using Constraints 170
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

update_macro Syntax

update_macro [-absolute_grid] <macro name> <cell-RLOC list>

where

• -absolute_grid: A switch to choose the Absolute Grid for mixing slice and non-slice
sites.

° The X-Y values are the site properties RPM_X and RPM_Y.

° The Absolute Grid values are identical to those of RPM_GRID.
• macro name: The name of the macro to be updated.
• cell-RLOC list: A Tcl list of cells and RLOC pairs:

{cell0 RLOC(cell0) cell1 RLOC(cell1) - cellN RLOC(cellN)}.

° All macro cells and RLOCs must be specified at once. It is not possible to build a
macro in steps.

° If you need to update an existing macro, you must re-create it first.

update_macro Example One

update_macro m1 {u2/sr0 X0Y0 u2/sr1 X0Y1}

° Adds u2/sr0 and u2/sr1 to macro m1

° Assigns u2/sr0 an RLOC of X0Y0

° Assigns u2/sr1 an RLOC of X0Y1

The following (update_macro Example Two) does the same, with slightly different syntax.

update_macro Example Two

set rlocs [list u2/sr0 X0Y0 u2/sr1 X0Y1]
update_macro m1 $rlocs

update_macro Example Three

This example uses the absolute grid:

set rlocs {ireg X2Y38 q1reg X17Y40 q2reg X17Y40}
update_macro -absolute_grid m2 $rlocs

delete_macros

The delete_macros command deletes the specified macros.

delete_macros Syntax

delete_macros <pattern>

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=170

Using Constraints 171
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

delete_macros Example

delete_macros m1

get_macros

The get_macros command returns macro objects in a design.

get_macros Syntax

get_macros [pattern]

With no arguments, the get_macros command returns all macros in the design. When
macro names are specified, the command returns the corresponding macro objects.

get_macros Examples

The get_macros command can be used with other object commands. Examples:

% create_macro m1
% update_macro m1 {u2/sr0 X0Y0 u2/sr1 X0Y1}
% get_cells -of [get_macros m1]
u2/sr0 u2/sr1
% get_macros -of [get_cells u2]
m1

The following command returns all macros that are fully contained within the cells.

get_macros -of [get_cells $cells]

Using get_cells, other indirect combinations are possible such as:

get_macros -of [get_cells -of [get_pblocks pb0]]

This command returns the macros contained within Pblock pb0.

Managing Macros
Macros are stored as XDC constraints. By definition, they are Tcl commands. This allows the
macros to be used in both XDC constraint files and Tcl scripts, and used interactively.

Macros are written using the write_xdc command. Macros are read using the read_xdc
command. The -cell option can be used to limit scope to particular cells.

The -cell option is particularly useful for applying a relative placement from one macro to
similar instances in different hierarchies.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=171

Using Constraints 172
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Managing Macros Example One

Write all XDC constraints in memory, including macros:

% write_xdc constrs.xdc

Managing Macros Example Two

A design contains three instances of a cell:

inst_0, inst_1, and inst_2.

A macro is created inside inst_0:

% create_macro m0
% update_macro m0 {reg0 X0Y0 reg1 X0Y1}
% write_xdc -cell inst_0 inst_0.xdc

Managing Macros Example Three

Write all XDC constraints including macro m0, for the cell inst_0:

% write_xdc -cell inst_0.xdc inst_0.xdc

Managing Macros Example Four

Read the XDC constraints including the macro m0 from cell inst_0, and apply it to inst_1
and inst_2:

% read_xdc inst_0 -cell {inst_1 inst_2}
% get_macros
m0 inst_1_m0 inst_2_m0

TIP: When a macro is read and applied to another cell using the -cell option, the new macro name
must be unique. The cell name is applied as a prefix to the macro name to create a unique macro name.
In Example Four, two new unique macros were created. They are inst_1_m0 and inst_2_m0.

Macro Properties
Macro objects have the following properties:

• ABSOLUTE_GRID

• CLASS

• NAME

• RLOCS

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=172

Using Constraints 173
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Macro Properties Example

% report_property [get_macros m1]
Property Type Read-only Visible Value
ABSOLUTE_GRID bool true true 0
CLASS string true true macro
NAME string true true m1
RLOCS string* true true u2/sr0 X0Y0 u2/sr1 X0Y1

Following are descriptions of the properties.

ABSOLUTE_GRID

Boolean property that reflects whether or not the RLOCs are using the default grid system
or the Absolute Grid system.

The default is false. If update_macro is used with -absolute_grid, then the property is
true.

The Absolute Grid uses coordinates that align with site RPM_X and RPM_Y properties to
allow creating macros from cells placed at different site types.

CLASS

Identifies the object as a macro.

NAME

Name of the macro object, either the name used by create_macro, or the macro name
prefixed by the cell hierarchy when using read_xdc -cell.

RLOCS

String containing the list of macro cells and their RLOC properties in the same format used
by the update_macro command.

Macro cells have these additional properties:

• RLOC: The relative location property (RLOC) value of the cell.
• MACRO_NAME: The name of the macro to which the cell belongs.

Using the previous example for macro properties:

% get_property RLOC [get_cells {u2/sr0 u2/sr1}]
X0Y0 X0Y1
% get_property MACRO_NAME [get_cells {u2/sr0 u2/sr1}]
m1 m1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=173

Using Constraints 174
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Preserving XDC Macros through opt_design
opt_design is free to optimize and remove LUTs that belong to an XDC macro despite the
RLOC constraint. To prevent opt_design from optimizing the logic inside an XDC macro,
it is necessary to set the property DONT_TOUCH to TRUE on all the cells that belong to the
XDC macro. The DONT_TOUCH property can be set either through RTL or XDC.

Advanced XDC Macro Examples
This section gives the following advanced XDC macro examples:

• Relative Grid Macro Examples
• Absolute Grid Macro Examples

Relative Grid Macro Examples

By default, the relative grid is used for macro RLOC coordinates because the most common
macros are made of cells that belong to the same site type.

The following simple example illustrates the relative placement derived from macro RLOCs.
The macro consists of a pair of SRL >FF >FF circuits that are to be arranged in a 2x2
pattern. See Figure 9-3.

To create the desired relative placement, the cells are assigned RLOCs as follows:

srl[0] X0Y0
regs0[0] X0Y0
regs1[0] X1Y0
srl[1] X0Y1
regs0[1] X0Y1
regs1[1] X1Y1

X-Ref Target - Figure 9-3

Figure 9-3: Schematic of Example Circuit

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=174

Using Constraints 175
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

The following commands create this macro with a name m0:

create_macro m0
update_macro m0 {srl[0] X0Y0 regs0[0] X0Y0 regs1[0] X1Y0 srl[1] X0Y1 regs0[1] X0Y1
regs1[1] X1Y1}

The macro can be automatically placed by the placer or manually placed as a set. The macro
placement appears as shown in Figure 9-4.

The macro contains SRLs which are based on LUTRAMs, and which can be placed only in
SLICEM type slices. This places slight restrictions on the possible locations of the macro. The
macro can be located only where a SLICEL column is to the right of a SLICEM column.

CAUTION! Too many densely packed slices in proximity can cause congestion, which reduces routability
and can negatively impact performance.

Absolute Grid Macro Examples

When combining cells of different site types into a macro, you must use the absolute grid.

The absolute grid (also known as the RPM grid) is an absolute coordinate system that
defines the coordinates of a site based on its location within the device. The absolute grid
also considers the sizes of sites. RAM and DSP blocks have wider spacing than slices. The
absolute grid is illustrated in Figure 9-5.

X-Ref Target - Figure 9-4

Figure 9-4: Placement of the Macro Example

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=175

Using Constraints 176
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

In this example, there are cells from three different types to group into a macro using the
absolute grid. The example consists of an input data path from input ports, through two
stages of registers, then block RAMs. This is illustrated in the schematic in Figure 9-5.

The macro creation requires a list of cells and their relative locations (RLOCs) using the
absolute grid. When creating the macro, it might be difficult to visualize the relative
placement of absolute grid macros.

RECOMMENDED: Place the cells temporarily into absolute locations in the device, then derive the
absolute grid RLOC values of each cell.

X-Ref Target - Figure 9-5

Figure 9-5: Example Circuit for Absolute Grid

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=176

Using Constraints 177
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

The cells are first manually placed and arranged in their desired locations as shown in
Figure 9-6.

Although the absolute grid specifies absolute locations, the resulting macro can be placed
at any location within the device that can accommodate the relative placement of the
macro. In this example, the relative locations are specified using the lower-left hand corner
as the point of reference.

However, the absolute grid locations specify only relative placement, not absolute
placement. That allows the macro to be located anywhere in the device that maintains the
relative placement.

Because the example is somewhat complex, consisting of ILOGIC, slices, and block RAM, the
macro locations are somewhat restricted but can be placed at any of the three locations
highlighted in orange in Figure 9-7.

X-Ref Target - Figure 9-6

Figure 9-6: Manually Placed Cells for an Absolute Grid Macro

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=177

Using Constraints 178
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

To determine absolute grid RLOCs, use the site RPM_X and RPM_Y properties. For example,
the lower block RAM is placed at site RAMB36_X0Y0.

X-Ref Target - Figure 9-7

Figure 9-7: Three Possible Locations for the XDC Macro

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=178

Using Constraints 179
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Selecting the site (not the cell) displays the following values of 33 for RPM_X and 0 for
RPM_Y (Figure 9-8). These are the absolute grid coordinates. The corresponding RLOC value
is X33Y0.

The same method is applied to determine the absolute RLOC of a slice (Figure 9-9). The
cells within this slice have an RLOC of X31Y0.

There are two commands used to create the macro, with a name m0:

create_macro m0
update_macro m0 -absolute_grid <cell0 rloc0 cell1 rloc1 cell2 rloc2 … cellN rlocN>

X-Ref Target - Figure 9-8

Figure 9-8: Absolute Grid Coordinates of a Block RAM

X-Ref Target - Figure 9-9

Figure 9-9: Absolute Grid Coordinates of a Slice

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=179

Using Constraints 180
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

If the macro contains many cells as it does in this example, Tcl can be used to simply
building and specifying the cell-rloc list required by update_macro. Given a placed
cell, the absolute grid RLOC can be determined using the following Tcl proc getAbsRLOC:

proc getAbsRLOC {cell} {
 set site [get_sites -of [get_cells $cell]]
 set X [get_property RPM_X $site]
 set Y [get_property RPM_Y $site]
 return "X${X}Y${Y}"
}

Example: Assign the Variable rloc to the String Value of a Block RAM Cell RLOC

% set rloc [getAbsRLOC $ram0]
X33Y0

The Tcl dict command can be used to build a dictionary (associative array) of cells and
absolute grid RLOCs for the update_macro command. A Tcl associative array is a series of
key-value pairs. The cells and RLOCs can be arranged as such as series using the dict
command. The array keys are the macro cell objects. The array values are the cell RLOCs.
This helps to automate the process of creating macros with many cells. The following
example uses the absolute grid, but the method can be applied to the normal grid as well.

Assuming $cells is the list of macro cells, and each cell of $cells has been placed to
form the desired macro pattern, the following Tcl proc creates a list of cell-RLOC pairs for
the update_macro command.

proc buildRLOCList {cells} {
 set rlocs [dict create] ; # initialize dictionary called rlocs
 foreach cell $cells {
 # dictionary key is cell, value is absolute RLOC
 dict set rlocs $cell [getAbsRLOC $cell]
 }
 return $rlocs
}

Example: Build an RLOC List for the Example Circuit

create macro cell list: input register stage and BRAM cells
set cells [get_cells -hier [list ireg0* ireg1* *SIMPLE_PRIM36.ram]]
create_macro m0
update_macro m0 -absolute_grid [buildRLOCList $cells]

To see the dictionary list created by buildRLOCList:

$ puts [buildRLOCList $cells]
{ireg0[6]} X2Y10 {ireg0[5]} X2Y11 {ireg0[4]} X2Y6 {ireg0[3]} X2Y7 . . .

If there are many macro cells and macro cells buried in hierarchy, specifying the explicit list
of cell-RLOC pairs can become complicated and error prone. The creation and management
of XDC macros can be made simpler using Tcl.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=180

Using Constraints 181
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Converting RPMs to XDC Macros
It is recommended to convert RPMs to XDC macros wherever feasible because XDC macros
are the preferred method of implementing relative placement constraints. This process can
be done manually by removing the RPM attributes from the HDL sources and creating
equivalent XDC macros. Conversion can also be done somewhat automatically by using Tcl
to replace RPM attributes with XDC macro constraints.

The automated process consists of the following steps:

1. In all HDL sources, replace each RPM attribute with a similarly named string, for
example:

° Replace hu_set with m_hu_set

° Replace u_set with m_u_set

° Replace rloc with m_rloc

This ensures that the RPMs are not processed however the inactive attributes are passed
through to the synthesized netlist as cell properties.

2. Open the synthesized design or run link_design and create XDC macros based on the
inactive properties. For example, each HU_SET will have a cell property called m_hu_set
that can be used to create the equivalent XDC macro. Each cell within the original
HU_SET will have a property m_rloc that can be converted to an RLOC.

3. Save the constraints which now include the XDC macros definitions.

The conversion is best accomplished using Tcl by building XDC macros cell lists based on
their unique m_hu_set or m_uset values. Following is a simple VHDL conversion example.

The original VHDL source includes a HU_SET RPM called set0 with two cells, one with RLOC
X0Y0 and the other with RLOC X0Y1.

 signal r0 : std_logic;
 signal r1 : std_logic;

 attribute hu_set : string;
 attribute rloc : string;

 attribute hu_set of r0 : signal is "set0";
 attribute hu_set of r1 : signal is "set0";

 attribute rloc of r0 : signal is "X0Y0";
 attribute rloc of r1 : signal is "X0Y1";

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=181

Using Constraints 182
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Chapter 9: Defining Relatively Placed Macros

Next the VHDL source is modified to replace hu_set and RLOC with similarly named but
inactive attributes:

 signal r0 : std_logic;
 signal r1 : std_logic;

 attribute m_hu_set : string;
 attribute m_rloc : string;

 attribute m_hu_set of r0 : signal is "set0";
 attribute m_hu_set of r1 : signal is "set0";

 attribute m_rloc of r0 : signal is "X0Y0";
 attribute m_rloc of r1 : signal is "X0Y1";

After synthesis, the cells can be filtered based on these similarly named properties:

Vivado% get_cells -filter {m_hu_set == "set0"}
r0_reg r1_reg

Vivado% get_property m_rloc [get_cells {r0_reg r1_reg}]
X0Y0 X0Y1

This provides the necessary information to create an XDC macro to replace the RPM:

Vivado% create_macro set0
Vivado% update_macro set0 {r0_reg X0Y0 r1_reg X0Y1}

These two XDC constraints can be saved as part of the design constraints. Large amounts of
RPM conversions are better handled using a Tcl script. Following is an example script to
convert HU_SET RPMs to XDC macros.

create a sorted list of all unique RPMs according to m_hu_set values
set RPMs [lsort -uniq [get_property m_hu_set [get_cells -hier -filter
{primitive_level != INTERNAL}]]]

remove the first element which is empty (no m_hu_set property)
set RPMs [lrange $RPMs 1 end]

iterate over list of RPMs, convert each to an XDC macro
get each RPM cell of the RPM with its RLOC
build a list for the update_macro command
foreach rpm $RPMs {
 create_macro $rpm
 set cells [get_cells -hier -filter "m_hu_set == $rpm"]
 set rlocs [list]
 foreach cell $cells {
 lappend rlocs $cell
 lappend rlocs [get_property m_rloc $cell]
 }
 update_macro $rpm $rlocs
 puts "created XDC macro $rpm, cell list: $rlocs"
}

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=182

Using Constraints 183
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A

Supported XDC and SDC Commands
This Appendix discusses supported Xilinx® Design Constraints (XDC) and Synopsys Design
Constraints (SDC) commands in the Xilinx Vivado® Integrated Design Environment (IDE).

Valid Commands in an XDC File
Table A-1: Valid Commands in an XDC File

Timing Constraint Physical Constraint General Purpose
create_clock

create_generated_clock

group_path

set_clock_groups

set_clock_latency

set_data_check

set_disable_timing

set_false_path

set_input_delay

set_output_delay

set_max_delay

set_min_delay

set_multicycle_path

set_case_analysis

set_clock_sense

set_clock_uncertainty

set_input_jitter

set_max_time_borrow

set_propagated_clock

set_system_jitter

set_external_delay

set_bus_skew

add_cells_to_pblock

create_pblock

delete_pblock

remove_cells_from_pblock

resize_pblock

create_macro

delete_macros

update_macro

set_package_pin_val

set

expr

list

filter

current_instance

get_hierarchy_separator

set_hierarchy_separator

get_property

set_property

set_units

endgroup

startgroup

create_property

current_design

Debug Constraint

create_debug_core

create_debug_port

connect_debug_port

Power Constraint Netlist Constraint
set_power_opt

set_switching_activity

reset_switching_activity

set_operating_conditions

reset_operating_conditions

set_load

set_logic_dc

set_logic_one

set_logic_zero

set_logic_unconnected

make_diff_pair_portsWaiver Constraint

create_waiver

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=183

Using Constraints 184
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

Supported SDC Commands
Note: Because all Xilinx Tcl commands support the -quiet and -verbose options, the following
table does not list them.

Device Object Query Timing Object Query Netlist Object Query
get_iobanks

get_package_pins

get_sites

get_bel_pins

get_bels

get_nodes

get_pips

get_site_pins

get_site_pips

get_slrs

get_tiles

get_wires

get_pkgpin_bytegroups

get_pkgpin_nibbles

all_clocks

get_path_groups

get_clocks

get_generated_clocks

get_timing_arcs

get_speed_models

all_cpus

all_dsps

all_fanin

all_fanout

all_hsios

all_inputs

all_outputs

all_rams

all_registers

all_ffs

all_latches

get_cells

get_nets

get_pins

get_ports

get_debug_cores

get_debug_ports

Floorplan Object Query
get_pblocks

get_macros

Table A-1: Valid Commands in an XDC File (Cont’d)

Table A-2: Supported SDC Commands
SDC 1.9 Xilinx SDC Notes

current_instance

 [instance_name]

current_instance

 [instance_name]

The Vivado IDE handles
get_ports differently when
using read_xdc
-cells/-ref or the
SCOPED_TO_xxx constraint
file property.

expr expr

list list In the Vivado IDE, a Tcl list is
also used as an objects
container.

set set

set_hierarchy_separator

 [separator]

set_hierarchy_separator

 [separator]

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=184

Using Constraints 185
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

set_units

 [-capacitance cap_units]

 [-resistance res_unit]

 [-time time_unit]

 [-voltage voltage_units]

 [-current current_unit]

 [-power power_unit]

set_units

 [-capacitance arg]

 [-resistance arg]

 [-time arg]

 [-voltage arg]

 [-current arg]

 [-power arg]

 [-suffix arg]

 [-digits arg]

The set_units -time
cannot change the timing unit
in the Vivado IDE.

all_clocks all_clocks

all_inputs

 [-level_sensitive]

 [-edge_triggered]

 [-clock clock_name]

all_inputs

all_outputs

 [-level_sensitive]

 [-edge_triggered]

 [-clock clock_name]

all_outputs

all_registers

 [-no_hierarchy]

 [-clock clock_name]

 [-rise_clock clock_name]

 [-fall_clock clock_name]

 [-cells]
 [-data_pins]
 [-clock_pins]
 [-slave_clock_pins]
 [-async_pins]
 [-output_pins]
 [-level_sensitive]
 [-edge_triggered]
 [-master_slave]

all_registers

 [-no_hierarchy]

 [-clock args]

 [-rise_clock args]

 [-fall_clock args]

 [-cells]

 [-data_pins]

 [-clock_pins]

 [-async_pins]

 [-output_pins]

 [-level_sensitive]

 [-edge_triggered]

current_design current_design In the Vivado IDE, the current
design refers to the design
loaded in memory, and cannot
be changed to another module
or entity than the top-level
one.

Table A-2: Supported SDC Commands (Cont’d)

SDC 1.9 Xilinx SDC Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=185

Using Constraints 186
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

get_cells

 [-hierarchical]

 [-hsc separator]

 [-regexp]

 [-nocase]

 -of_objects objects

 patterns

get_cells

 [-hierarchical]

 [-hsc arg]

 [-regexp]

 [-nocase]

 [-of_objects args]

 [patterns]

 [-filter arg]

 [-match_style arg]

get_clocks

 [-regexp]

 [-nocase]

 patterns

get_clocks

 [-regexp]

 [-nocase]

 [patterns]

 [-filter arg]

 [-of_objects args]

 [-match_style arg]

 [-include_generated_clocks]

The Vivado IDE supports the
-of_objects option to
query the clock object on the
clock tree.

get_lib_cells

 [-hsc separator]

 [-regexp]

 [-nocase]

 patterns

get_lib_cells

 [-regexp]

 [-nocase]

 patterns

 [-filter arg]

 [-include_unsupported]

 [-of_objects args]

In the Vivado IDE, because
only one device library can be
loaded for a design, it is not
necessary to specify the library
name when querying the
library cells.

get_lib_pins

 [-hsc separator]

 [-regexp]

 [-nocase]

 patterns

get_lib_pins

[-regexp]

 [-nocase]

 patterns

 [-filter arg]

 [-of_objects args]

get_libs

 [-regexp]

 [-nocase]
 patterns

get_libs

 [-regexp]

 [-nocase]

 [patterns]

 [-filter arg]

Table A-2: Supported SDC Commands (Cont’d)

SDC 1.9 Xilinx SDC Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=186

Using Constraints 187
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

get_nets

 [-hierarchical]

 [-hsc separator]

 [-regexp]

 [-nocase]

 -of_objects objects

 patterns

get_nets

 [-hierarchical]

 [-hsc arg]

 [-regexp]

 [-nocase]

 [-of_objects args]

 [patterns]

 [-filter arg]

 [-match_style arg]

[-top_net_of_hierarchical_grou
p]

 [-segments]

 [-boundary_type arg]

get_pins

 [-hierarchical]

 [-hsc separator]

 [-regexp]

 [-nocase]

 -of_objects objects

 patterns

get_pins

 [-hierarchical]

 [-hsc arg]

 [-regexp]

 [-nocase]

 [-of_objects args]

 [patterns]

 [-leaf]

 [-filter arg]

 [-match_style arg]

get_ports

 [-regexp]

 [-nocase]

 patterns

get_ports

 [-regexp]

 [-nocase]

 [patterns]

 [-filter arg]

 [-of_objects args]

 [-match_style arg]

create_clock

 -period period_value

 [-name clock_name]

 [-waveform edge_list]

 [-add]

 [source_objects]

create_clock

 -period arg

 [-name arg]

 [-waveform args]

 [-add]

 [objects]

Table A-2: Supported SDC Commands (Cont’d)

SDC 1.9 Xilinx SDC Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=187

Using Constraints 188
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

create_generated_clock

 [-name clock_name]

 -source master_pin

 [-edges edge_list]

 [-divide_by factor]

 [-multiply_by factor]

 [-duty_cycle percent]

 [-invert]

 [-edge_shift shift_list]

 [-add]

 [-master_clock clock]

 [-combinational]

 source_objects

create_generated_clock

 [-name arg]

 [-source args]

 [-edges args]

 [-divide_by arg]

 [-multiply_by arg]

 [-duty_cycle arg]

 [-edge_shift args]

 [-add]

 [-master_clock arg]

 [-combinational]

 objects

group_path

 [-name group_name]

 [-default]

 [-weight weight_value]

 [-from from_list]

 [-rise_from from_list]

 [-fall_from from_list]

 [-to to_list]

 [-rise_to to_list]

 [-fall_to to_list]

 [-through through_list]

 [-rise_through
through_list]

 [-fall_through
through_list]

group_path

 [-name arg]

[-weight 1|2]

 [-from args]

 [-to args]

 [-through args]

set_clock_groups

 [-name name]

 [-logically_exclusive]

 [-physically_exclusive]

 [-asynchronous]

 [-allow_paths]

 -group

 clock_list

set_clock_groups

 [-name arg]

 [-logically_exclusive]

 [-physically_exclusive]

 [-asynchronous]

 [-group args]

Table A-2: Supported SDC Commands (Cont’d)

SDC 1.9 Xilinx SDC Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=188

Using Constraints 189
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

set_clock_latency

 [-rise]

 [-fall]

 [-min]

 [-max]

 [-source]

 [-late]

 [-early]

 [-clock clock_list]

 delay

 object_list

set_clock_latency

 [-rise]

 [-fall]

 [-min]

 [-max]

 [-source]

 [-late]

 [-early]

 [-clock args]

 latency

 objects

set_clock_sense

 [-positive]

 [-negative]

 [-pulse pulse]

 [-stop_propagation]

 [-clock clock_list]

 pin_list

set_clock_sense

 [-positive]

 [-negative]

 [-pulse arg]

 [-stop_propagation]

 [-clocks args]

 pins

set_clock_uncertainty

 [-from from_clock]

 [-rise_from
rise_from_clock]

 [-fall_from
fall_from_clock]

 [-to to_clock]

 [-rise_to rise_to_clock]

 [-fall_to fall_to_clock]

 [-rise]

 [-fall]

 [-setup]

 [-hold]

 uncertainty

 [object_list]

set_clock_uncertainty

 [-from args]

 [-rise_from args]

 [-fall_from args]

 [-to args]

 [-rise_to args]

 [-fall_to args]

 [-setup]

 [-hold]

 uncertainty

 [objects]

Table A-2: Supported SDC Commands (Cont’d)

SDC 1.9 Xilinx SDC Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=189

Using Constraints 190
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

set_data_check

 [-from from_object]

 [-to to_object]

 [-rise_from from_object]

 [-fall_from from_object]

 [-rise_to to_object]

 [-fall_to to_object]

 [-setup]

 [-hold]

 [-clock clock_object]

 value

set_data_check

 [-from args]

 [-to args]

 [-rise_from args]

 [-fall_from args]

 [-rise_to args]

 [-fall_to args]

 [-setup]

 [-hold]

 [-clock args]

 value

set_disable_timing

 [-from from_pin_name]

 [-to to_pin_name]

 cell_pin_list

set_disable_timing

 [-from arg]

 [-to arg]

 objects

set_false_path

 [-setup]

 [-hold]

 [-rise]

 [-fall]

 [-from from_list]

 [-to to_list]

 [-through through_list]

 [-rise_from
rise_from_list]

 [-rise_to rise_to_list]

 [-rise_through
rise_through_list]

 [-fall_from
fall_from_list]

 [-fall_to fall_to_list]

 [-fall_through
fall_through_list]

set_false_path

 [-setup]

 [-hold]

 [-rise]

 [-fall]

 [-from args]

 [-to args]

 [-through args]

 [-rise_from args]

 [-rise_to args]

 [-rise_through args]

 [-fall_from args]

 [-fall_to args]

 [-fall_through args]

 [-reset_path]

Table A-2: Supported SDC Commands (Cont’d)

SDC 1.9 Xilinx SDC Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=190

Using Constraints 191
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

set_input_delay

 [-clock clock_name]

 [-clock_fall]

 [-level_sensitive]

 [-rise]

 [-fall]

 [-max]

 [-min]

 [-add_delay]

[-network_latency_included
]

[-source_latency_included]

 delay_value

 port_pin_list

set_input_delay

 [-clock args]

 [-clock_fall]

 [-rise]

 [-fall]

 [-max]

 [-min]

 [-add_delay]

 [-network_latency_included]

 [-source_latency_included]

 delay

 objects

 [-reference_pin args]

In the Vivado IDE, input delays
are not supported on internal
pins.

set_max_delay

 [-rise]

 [-fall]

 [-from from_list]

 [-to to_list]

 [-through through_list]

 [-rise_from
rise_from_list]

 [-rise_to rise_to_list]

 [-rise_through
rise_through_list]

 [-fall_from
fall_from_list]

 [-fall_to fall_to_list]

 [-fall_through
fall_through_list]

 delay_value

set_max_delay

 [-rise]

 [-fall]

 [-from args]

 [-to args]

 [-through args]

 [-rise_from args]

 [-rise_to args]

 [-rise_through args]

 [-fall_from args]

 [-fall_to args]

 [-fall_through args]

 delay

 [-reset_path]

 [-datapath_only]

set_max_time_borrow

 delay_value

 object_list

set_max_time_borrow

 delay

 objects

Table A-2: Supported SDC Commands (Cont’d)

SDC 1.9 Xilinx SDC Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=191

Using Constraints 192
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

set_min_delay

 [-rise]

 [-fall]

 [-from from_list]

 [-to to_list]

 [-through through_list]

 [-rise_from
rise_from_list]

 [-rise_to rise_to_list]

 [-rise_through
rise_through_list]

 [-fall_from
fall_from_list]

 [-fall_to fall_to_list]

 [-fall_through
fall_through_list]

 delay_value

set_min_delay

 [-rise]

 [-fall]

 [-from args]

 [-to args]

 [-through args]

 [-rise_from args]

 [-rise_to args]

[-rise_through args]

 [-fall_to args]

 [-fall_from args]

 [-fall_through args]

 delay

 [-reset_path]

set_multicycle_path

 [-setup]

 [-hold]

 [-rise]

 [-fall]

 [-start]

 [-end]

 [-from from_list]

 [-to to_list]

 [-through through_list]

 [-rise_from
rise_from_list]

 [-rise_to rise_to_list]

 [-rise_through
rise_through_list]

 [-fall_from
fall_from_list]

 [-fall_to fall_to_list]

 [-fall_through
fall_through_list]

 path_multiplier

set_multicycle_path

 [-setup]

 [-hold]

 [-rise]

 [-fall]

 [-start]

 [-end]

 [-from args]

 [-to args]

 [-through args]

 [-rise_from args]

 [-rise_to args]

 [-rise_through args]

 [-fall_from args]

 [-fall_to args]

 [-fall_through args]

 path_multiplier

 [-reset_path]

Table A-2: Supported SDC Commands (Cont’d)

SDC 1.9 Xilinx SDC Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=192

Using Constraints 193
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

set_output_delay

 [-clock clock_name]

 [-clock_fall]

 [-level_sensitive]

 [-rise]

 [-fall]

 [-max]

 [-min]

 [-add_delay]

[-network_latency_included
]

[-source_latency_included]

 delay_value

 port_pin_list

set_output_delay

 [-clock args]

 [-clock_fall]

 [-rise]

 [-fall]

 [-max]

 [-min]

 [-add_delay]

 [-network_latency_included]

 [-source_latency_included]

 delay

 objects

 [-reference_pin args]

In the Vivado IDE, output
delays are not supported on
internal pins.

set_propagated_clock

 object_list

set_propagated_clock

 object

In the Vivado IDE, all clocks are
propagated clocks by default.

set_case_analysis

 value

 port_or_pin_list

set_case_analysis

 value

 objects

set_load

 [-min]

 [-max]

 [-subtract_pin_load]

 [-pin_load]

 [-wire_load]

 value

 objects

set_load

 [-max]

 [-min]

 capacitance

 objects

 [-rise]

 [-fall]

In the Vivado IDE, the
set_load command is
relevant for power analysis
only.

set_logic_dc

 port_list

set_logic_dc

 objects

set_logic_one

 port_list

set_logic_one

 objects

Table A-2: Supported SDC Commands (Cont’d)

SDC 1.9 Xilinx SDC Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=193

Using Constraints 194
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

set_logic_zero

 port_list

set_logic_zero

 objects

set_operating_conditions

 [-library lib_name]

 [-analysis_type
analysis_type]

 [-max max_condition]

 [-min min_condition]

 [-max_library max_lib]

 [-min_library min_lib]

 [-object_list objects]

 [condition]

set_operating_conditions

 [-voltage args]

 [-grade arg]

 [-process arg]

 [-junction_temp arg]

 [-ambient_temp arg]

 [-thetaja arg]

 [-thetasa arg]

 [-airflow arg]

 [-heatsink arg]

 [-thetajb arg]

 [-board arg]

 [-board_temp arg]

 [-board_layers arg]

In the Vivado IDE, the
set_operating_conditio
ns command: (1) sets the
operating conditions for
power analysis only; and (2)
does not influence the timing
reports. The Vivado IDE timing
engine is controlled by the
config_timing_analysis
command. For more
information on
config_timing_analysis
see the Vivado Design Suite Tcl
Command Reference Guide
(UG835) [Ref 10].

Table A-2: Supported SDC Commands (Cont’d)

SDC 1.9 Xilinx SDC Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=194

Using Constraints 195
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix A: Supported XDC and SDC Commands

Unsupported SDC Commands
The following SDC commands are not supported.

• set_clock_gating_check

• set_clock_transition

• set_ideal_latency

• set_ideal_network

• set_ideal_transition

• set_max_fanout

Note: Maximum fanout is controlled by the MAX_FANOUT attribute during synthesis.
• set_drive

• set_driving_cell

• set_fanout_load

• set_input_transition

• set_max_area

• set_max_capacitance

• set_max_transition

• set_min_capacitance

• set_port_fanout_number

• set_resistance

• set_timing_derate

• set_voltage

• set_wire_load_min_block_size

• set_wire_load_mode

• set_wire_load_model

• set_wire_load_selection_group

• create_voltage_area

• set_level_shifter_strategy

• set_level_shifter_threshold

• set_max_dynamic_power

• set_max_leakage_power

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=195

Using Constraints 196
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix B

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=196

Using Constraints 197
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix B: Additional Resources and Legal Notices

References
Vivado Design Suite User and Reference Guides
The following Vivado® Design Suite guides are referenced in this document.

1. ISE to Vivado Design Suite Migration Methodology Guide (UG911)
2. Vivado Design Suite User Guide: System-Level Design Entry (UG895)
3. Vivado Design Suite User Guide: I/O and Clock Planning (UG899)
4. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
5. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)
6. AXI Quad SPI v3.2 LogiCORE IP Product Guide (PG153)
7. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)
8. Vivado Design Suite User Guide: Synthesis (UG901)
9. Vivado Design Suite User Guide: Implementation (UG904)
10. Vivado Design Suite Tcl Command Reference Guide (UG835)
11. Vivado Design Suite Properties Reference Guide (UG912)
12. Vivado Design Suite User Guide: Programming and Debugging (UG908)
13. 7 Series FPGAs SelectIO Resources User Guide (UG471)

Additional Xilinx Resources
The following additional resources are referenced in this document:

14. Xilinx Answer Record 59893

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. Designing FPGAs Using the Vivado Design Suite 1 Training Course
2. Designing FPGAs Using the Vivado Design Suite 2 Training Course
3. Designing FPGAs Using the Vivado Design Suite 3 Training Course

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug912-vivado-properties.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug471_7Series_SelectIO.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_quad_spi;v=latest;d=pg153-axi-quad-spi.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com/support/answers/59893.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=197

Using Constraints 198
UG903 (v2020.1) August 17, 2020 www.xilinx.com

Appendix B: Additional Resources and Legal Notices

4. Designing FPGAs Using the Vivado Design Suite 4 Training Course
5. Vivado Design Suite QuickTake Video Tutorials
6. Vivado Design Suite QuickTake Video: Using the Vivado Timing Constraint Wizard
7. Vivado Design Suite QuickTake Video: Advanced Clock Constraints and Analysis
8. Vivado Design Suite QuickTake Video: Setting Input Delay
9. Vivado Design Suite QuickTake Video: Setting Output Delay
10. Vivado Design Suite QuickTake Video: Migrating UCF Constraints to XDC

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2012-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=setting-output-delay.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=migrating-ucf-constraints-to-xdc.html
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=advanced-clock-constraints-and-analysis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=setting-input-delay.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/using-vivado-timing-constraint-wizard.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-4.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG903&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=198

	Vivado Design Suite User Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Migrating From UCF Constraints to XDC Constraints
	About XDC Constraints

	Ch. 2: Constraints Methodology
	About Constraints Methodology
	Organizing Your Constraints
	Project Flows
	Non-Project Flows
	Out-of-Context Constraints
	Synthesis and Implementation Constraint Files

	Ordering Your Constraints
	Recommended Constraints Sequence
	Constraints Sequence Editing
	Constraint Files Order
	Constraint Files Order with IP Cores

	Changing Read Order

	Entering Constraints
	Saving Constraints in Memory
	Constraints Editing Flow Options
	User Interface Option
	Hand Edit Option

	Pin Assignment
	Floorplanning
	Timing Constraints Wizard
	Constraints Processing Order and Invalid Constraints
	Reporting Features Available When the Wizard is Open
	Constraints Editing within the Wizard
	Constraints Recommended by the Wizard
	Primary Clocks
	Generated Clocks
	Forwarded Clocks
	External Feedback Delays
	Input Delays
	Output Delays
	Combinatorial Delays
	Physically Exclusive Clock Groups
	Logically Exclusive Clock Groups with No Interaction
	Logically Exclusive Clock Groups with Interaction
	Asynchronous Clock Domain Crossings
	Constraints Summary

	Timing Constraints Window
	Timing Constraints Spreadsheet
	Constraints Creation, Grouped by Category
	All Constraints

	XDC Templates
	XDC Template Contents
	Using XDC Templates
	Advanced XDC Templates

	Creating Synthesis Constraints
	RTL Attributes
	Timing Constraints
	Physical and Configuration Constraints
	Elaborated Design Constraints
	Single-Bit Register Names
	Multi-Bit Register Names
	Absorbed Registers and Nets
	Hierarchical Names

	Creating Implementation Constraints
	Adjusting Constraints for Synthesis Logic Replication
	Adjust Constraints for Synthesis with Black-Boxes

	Constraints Scoping
	XDC File Scoping Properties
	Setting XDC File Scoping Properties Example

	XDC Scoping Mechanism
	IP and Sub-Module Constraining with XDC
	Scoped Queries Guidelines
	Scoped Timing Constraints Guidelines
	Recommended Constraints Rules of IP/Sub-Module XDC

	Constraints Efficiency
	Reviewing Constraints Coverage
	Improving Constraints Runtime
	Optimizing Pin Queries
	Recommended Pin Queries
	Example

	Replacing all_registers Queries
	Ordering Constraints for Better Runtime

	Ch. 3: Defining Clocks
	About Clocks
	Propagated Clocks
	Dedicated Hardware Resources

	Primary Clocks
	Primary Clocks Examples

	Virtual Clocks
	Generated Clocks
	About Generated Clocks
	User Defined Generated Clocks
	Example One: Simple Division by 2
	Example Two: Division by 2 With the -edges Option
	Example Three: Duty Cycle Change and Phase Shift with -edges and -edge_shift Options
	Example Four: Using Both -divide_by and -multiply_by at the Same Time
	Example Five: Tracing the Master Clock through Combinational Arcs Only
	Example Six: Forwarded Clock Driven by ODDR

	Automatically Derived Clocks
	Automatically Derived Clock Example
	Local Net Names
	Name Conflicts

	Renaming Auto-Derived Clocks
	Limitations

	Clock Groups
	About Clock Groups
	Clock Categories
	Synchronous Clocks
	Asynchronous Clocks
	Unexpandable Clocks

	Asynchronous Clock Groups
	Asynchronous Clock Groups Examples
	Creating Asynchronous Clock Groups

	Exclusive Clock Groups
	Exclusive Clock Groups Example

	Clock Latency, Jitter, and Uncertainty
	Clock Latency
	set_clock_latency Example

	Clock Uncertainty
	Clock Jitter
	Input Jitter
	System Jitter

	Additional Clock Uncertainty

	Ch. 4: Constraining I/O Delay
	About Constraining I/O Delay
	Input Delay
	Using Input Delay Options
	Min and Max Input Delay Command Options
	Clock Fall Input Delay Command Option
	Add Delay Input Delay Command Option

	Use of set_input_delay Command Options
	Input Delay Example One
	Input Delay Example Two
	Input Delay Example Three
	Input Delay Example Four
	Input Delay Example Five
	Input Delay Example Six

	Output Delay
	Using Output Delay Options
	Min and Max Output Delay Command Options
	Clock Fall Output Delay Command Option
	Add Delay Output Delay Command Option

	Use of set_output_delay Command Options
	Output Delay Example One
	Output Delay Example Two
	Output Delay Example Three
	Output Delay Example Four

	Ch. 5: Timing Exceptions
	About Timing Exceptions
	Multicycle Paths
	Setting the Path Multipliers and Clock Edges
	set_multicycle_path Syntax

	Multicycles in Single Clock Domain
	Relaxing Setup While Maintaining Hold
	Moving the Setup
	Example One: Setup=5 / Hold Moved Accordingly
	Example Two: Setup=5 / Hold=4

	Multicycle Paths and Clock Phase-Shift
	Multicycles Between SLOW-to-FAST Clocks
	Example One: Setup=3 / Hold Moved Accordingly
	Example Two: Setup=3 / Hold=2 (-end)

	Multicycles Between FAST-to-SLOW Clocks
	Example: Setup=3 (-start) / Hold=2

	False Paths
	Min/Max Delays
	Setting Maximum Delay and Minimum Delay Constraints
	Maximum Delay Constraint Syntax
	Minimum Delay Constraint Syntax
	List of Nodes for the -from Option
	List of Nodes for the -to Option
	List of Nodes for the -through Option
	Consequences of Setting Maximum Delay or Minimum Delay Constraints on a Path
	Constraining Input or Output Logic
	Constraining Asynchronous Signals

	Path Segmentation
	Path Segmentation and Timing Exception
	Scenario 1
	Scenario 2

	Case Analysis
	Disabling Timing Arcs

	Ch. 6: CDC Constraints
	About CDC Constraints
	Constraining Bus Skew
	About Bus Skew Constraints
	Syntax of the set_bus_skew Command
	set_bus_skew Example One
	set_bus_skew Example Two

	Set Bus Skew Dialog Box

	Ch. 7: XDC Precedence
	About XDC Precedence
	XDC Constraints Order
	Exceptions Priority
	Exceptions Priority Example
	Exceptions Priority with Multiple -through Options Example

	Ch. 8: Physical Constraints
	About Physical Constraints
	Critical Warning

	Netlist Constraints
	CLOCK_DEDICATED_ROUTE
	MARK_DEBUG
	DONT_TOUCH
	LOCK_PINS
	LOCK_PINS Constraint Example One
	LOCK_PINS Constraint Example Two

	I/O Constraints
	Placement Constraints
	Placement Types
	Fixed Placement
	Unfixed Placement
	Placement Constraint Example One
	Placement Constraint Example Two
	Placement Constraint Example Three
	Placement Constraint Example Four
	Placement Constraint Example Five
	Placement Constraint Example Six
	Placement Constraint Example Seven

	Routing Constraints
	Fixed Routing

	Configuration Constraints
	Configuration Constraint Example One
	Configuration Constraint Example Two
	Configuration Constraint Example Three

	Ch. 9: Defining Relatively Placed Macros
	About Relatively Placed Macros
	Defining Sets of Design Elements
	Creating an RPM
	Assigning Cells to RPM Sets
	Explicitly Grouping Design Elements
	Explicitly Grouping Design Elements With U_SET
	Explicitly Grouping Design Elements With HU_SET

	Syntax for Defining RPM Sets in VHDL
	Syntax for Defining RPM Sets in Verilog
	U_SET Example
	HU_SET Example
	RPM Definition in the Physical Constraints Window

	Viewing RPM Definitions
	Preserving RPM through opt_design

	Assigning Relative Locations
	Relative Slice-Based Coordinates
	BEL/LOC Constraints
	Absolute RPM Grid-Based Coordinates
	RPM_GRID Coordinates VHDL Example
	Setting a Property to Invoke the RPM_GRID System
	RPM_GRID Coordinate Values
	Defining RLOC Properties Directly in the RTL Source File

	Assigning a Fixed Location to an RPM
	XDC Macros
	Specifying Macros
	create_macro
	create_macro Syntax
	create_macro Example
	update_macro
	update_macro Syntax
	update_macro Example One
	update_macro Example Two
	update_macro Example Three

	delete_macros
	delete_macros Syntax
	delete_macros Example

	get_macros
	get_macros Syntax
	get_macros Examples

	Managing Macros
	Managing Macros Example One
	Managing Macros Example Two
	Managing Macros Example Three
	Managing Macros Example Four

	Macro Properties
	Macro Properties Example
	ABSOLUTE_GRID
	CLASS
	NAME
	RLOCS

	Preserving XDC Macros through opt_design
	Advanced XDC Macro Examples
	Relative Grid Macro Examples
	Absolute Grid Macro Examples
	Example: Assign the Variable rloc to the String Value of a Block RAM Cell RLOC
	Example: Build an RLOC List for the Example Circuit

	Converting RPMs to XDC Macros

	Appx. A: Supported XDC and SDC Commands
	Valid Commands in an XDC File
	Supported SDC Commands
	Unsupported SDC Commands

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Vivado Design Suite User and Reference Guides
	Additional Xilinx Resources

	Training Resources
	Please Read: Important Legal Notices

