Vivado Design Suite Tutorial

Implementation

UG986 (v2020.1) August 12, 2020

& XILINX

https://www.xilinx.com

& XILINX

Revision History

The following table shows the revision history for this document.

Section

Revision Summary

08/12/2020 V

ersion 2020.1

* Figure 35: Design Runs Window after Completion
* Figure 37: Incremental Reuse Report
* Figure 45: Vivado IDE Showing project_bft_core Project

Figure Updates

Details

UG986 (v2020.1) August 12, 2020
Implementation

l Send Feedback l

www.Xilinx.com

2

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=2

& XILINX

Table of Contents

REVISION HISTONY........oeeeeeetetetsetessens et assessssssssassssssssssens 2
Implementation TULOFIAL...........rsereeeesessessessesssssssssssesss 5
Tutorial DesSigN DeSCrIPLION....ccciiviireriertetee ettt sttt s e te st e sbeesbesbesaaessasssesasenanen 5
Hardware and Software REQUIrE€MENTS........cocuiviirerienieieeieeteseete ettt st 6
Preparing the Tutorial DeSigN FileS.......coueiiireeieieeeeee ettt 6
Chapter 1: Using Implementation Strategies..........vvrverevreverenennes 8
Step 1: Opening the EXample Project.......co ettt 8
Step 2: Creating Additional Implementation RUNS.........ccccoeeririenieniereeeeeee e 14
Step 3: Analyzing Implementation RESUILS........cccevviviiiiriienicecieseecceee e 15
Step 4: Tightening TiMIiNG REQUIFEMENTS.......ccceviirieiieeieniereeiestesie et sae e 17
CONCIUSION. ...ttt ettt et s e s bt e b e st e s bt e b e et e sat e beesesatesseessesatenaens 18
Chapter 2: Using Incremental Implementation..............vvenennennee. 19
Step 1: Opening the EXample Project. ...ttt 19
Step 2: Viewing the Incremental Column in the Design Runs Window..........cccccecceevenneeee. 23
Step 3: Turning on Incremental Implementation.........cccocvveenirniniencnsieneceeeee e 24
Step 4: Compiling the Reference DeSigN........coveviirernieniiniieienteneeie e sre s s 26
Step 5: Making Incremental Changes.........oo.eoeiieriinenieneeeeeee ettt 27
Step 6: Rerunning Synthesis and Implementation..........c.ccecevrieriennnenienereee e 29
CONCIUSION. .ttt sttt sttt ettt e st s b s bt e st st e et e b e sbesbesbeeatene et et ensenee 32
Chapter 3: Manual and Directed Routing............nnrnerenrencrenennn. 33
Step 1: Opening the EXample ProjeCt......u ettt 33
Step 2: Performing Place and Route on the DesSign........cccevcveriineniieneenienieneeneeresee e 38
Step 3: Analyzing OUtpULt BUS TiMING....ccceeviirierierieeieneesieereeeese ettt s seesaeens 39
Step 4: Improving Bus Timing through Placement...........ccooeeiirieneenenieneceeeeeenee e 44
Step 5: Using Manual Routing to Reduce Clock SKeW........c.cccovvevviiiniieniiiniieniienieesieeieenne 49
Step 6: Copying Routing to Other NetS.......cccvviriieriinerieniereeestese e 59
CONCIUSTION. .ttt ettt et b et st b e b b s b e s bt e se s e et et e b ne 62
Chapter 4: Vivado ECO FIOW............rreeeseeiesessessessessessessessesseass 64

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=3

& XILINX

Step 1: Creating a Project Using the Vivado New Project Wizardcccceverveneevieneennen. 66
Step 2: Synthesizing, Implementing, and Generating the Bitstream........cccccevvveviveennennee. 67
Step 3: Validating the Design on the Board...........ceeeeieriinienieneiienieneesecre st 68
Step 4: Making the ECO MOdifiCatioNS.......cccveieiiiienieniinininenecteeiesiesesese et 75
Step 5: Implementing the ECO Changes.......coceeeerierierieniereeiestesiee st sre s 89
Step 6: Replacing Debug Probes.........coieeiirieiieiectceecece sttt 95
CONCIUSTION. .ttt ettt ettt ettt s bbbt st et b et e sbe s b e sbeeateme et e s esenne 98
Appendix A: Additional Resources and Legal Notices............................ 99
Please Read: Important Legal NOTICES......cccviveririrerieteeiereseeieee et 99

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=4

iv Xl Ll NX Implementation Tutorial
A .

Implementation Tutorial

ﬁ? IMPORTANT! This tutorial requires the use of the Kintex®-7 and Kintex® UltraScale™ family of devices. You
will need to update your Vivado® Design Suite tools installation if you do not have these device families
installed. Refer to the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for
more information on Adding Design Tools or Devices.

This tutorial includes four labs that demonstrate different features of the Xilinx® Vivado Design
Suite implementation tool:

e Lab 1 demonstrates using implementation strategies to meet different design objectives.

e Lab 2 demonstrates the use of the incremental compile feature after making a small design
change.

e Lab 3 demonstrates the use of manual placement and routing, and duplicated routing, to fine-
tune the timing on the design.

e Lab 4 demonstrates the use of the Vivado ECO to make quick changes to your design post
implementation.

Vivado implementation includes all steps necessary to place and route the netlist onto the FPGA
device resources, while meeting the logical, physical, and timing constraints of a design.

E] VIDEO: You can also learn more about implementing the design by viewing the following Quick Take videos:

e Vivado Quick Take Video: Implementing the Design

e Vivado Quick Take Video: Using Incremental Implementation in Vivado

TRAINING: Xilinx provides training courses that can help you learn more about the concepts presented in this
document. Use these links to explore related courses:

Lt

e Designing FPGAs Using the Vivado Design Suite 1
e Designing FPGAs Using the Vivado Design Suite 2
e Designing FPGAs Using the Vivado Design Suite 3
e Designing FPGAs Using the Vivado Design Suite 4

Tutorial Design Description

The design used for Lab 1 is the CPU Netlist example design,
project_cpu_netlist_kintex7, provided with the Vivado Design Suite installation. This
design uses a top-level EDIF netlist source file, and an XDC constraints file.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 5

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;t=vivado+install+guide
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/implementing-the-design.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/incremental-implementation-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-4.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=5

iv Xl Ll NX Implementation Tutorial
A .

The design used for Lab 2 and Lab 3 is the BFT Core example design, project_bft_kintex7.
This design includes both Verilog and VHDL RTL files, as well as an XDC constraints file.

The design used for Lab 4 is available as a Reference Design from the Xilinx website. See
information in Locating Design Files for Lab 4.

The CPU Netlist and BFT Core designs target an XC7K70T device, and the design for Lab 4
targets an XCKUO40 device. Running the tutorial with small designs allows for minimal hardware
requirements and enables timely completion of the tutorial, as well as minimizing data size.

Hardware and Software Requirements

This tutorial requires that the 2020.1 Vivado Design Suite software release or later is installed.

Refer to the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for a
complete list and description of the system and software requirements.

Preparing the Tutorial Design Files

Locating Design Files for Labs 1-3

You can find the files for Labs 1-3 in this tutorial in the Vivado Design Suite examples directory at
the following location:

<Vivado_install_area>/Vivado/<version>/examples/Vivado_Tutorial

You can also extract the provided zip file, at any time, to write the tutorial files to your local
directory, or to restore the files to their starting condition.

Extract the zip file contents from the software installation into any write-accessible location.
<Vivado_install_area>/Vivado/<version>/examples/Vivado_Tutorial.zip
The extracted Vivado_Tutorial directory is referred to as <Extract_Dir> in this tutorial.

Note: You will modify the tutorial design data while working through this tutorial. You should use a new
copy of the original Vivado_Tutorial directory each time you start this tutorial

Locating Design Files for Lab 4

To access the reference design for Lab 4, do the following:

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 6

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;t=vivado+install+guide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=6

iv Xl Ll NX Implementation Tutorial
A .

1. Inyour C: drive, create a folder called /Vivado_Tutorial.
2. Download the reference design files from the Xilinx website.

3. Unzip the tutorial source file to the /Vivado_Tutorial folder.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 7

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=1d3051b4-bde1-465e-9c1d-99add30f6b44;d=ug986-vivado-tutorial-implementation.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=7

& XILINX

Chapter 1

Using Implementation Strategies

In this lab, you will learn how to use implementation strategies with design runs by creating
multiple implementation runs employing different strategies, and comparing the results. You will
use the CPU Netlist example design that is included.

Step 1: Opening the Example Project

1.

3.

Open the Xilinx Vivado IDE.
On Linux:
1. Change to the directory where the lab materials are stored:
cd <Extract_Dir>/Vivado_Tutorial
2. Launch the Vivado IDE: vivado
On Windows:
1. To launch the Vivado IDE, select:
Start = All Programs — Xilinx Design Tools = Vivado 2020.x = Vivado 2020.x

Note: Your Vivado Design Suite installation might be called something other than Xilinx Design
Tools on the Start menu.

Note: As an alternative, click the Vivado 2020.x Desktop icon to start the Vivado IDE.

From the Getting Started page, click Open Example Project.

Quick Start

Create Project >
Open Project >

Open Example Project >

In the Create an Example Project page, click Next.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 8

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=8

iv Xl Ll NX Chapter 1: Using Implementation Strategies
A .

’ Create an Example Project
V|vﬁ.Ddlp This wizard will guide you through the creation of a new Vivado project from a predefined template.
To create a Vivado project you will specify the type of template project you would like to create. Next, you
will need to provide a name and a location for your project files and choose a default board.

& XILINX.

4. In the Select Project Template page, choose the CPU (Synthesized) project and click Next.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 9

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=9

iv Xl Ll NX Chapter 1: Using Implementation Strategies
A .

Select Project Template

Select one ofthe below predefined templates on which to base your new project '
Templates Description
Base Zyng UltraScale+ MPSoC CPU (Synthesized) 2
|
Base MicroBlaze Large synthesized netlist project
Base Zyng
BFT H
GT 10s Wishbone
Configurable MicroBlaze Design

Configurable Zyng UltraScale+ MF

CPU (HDL) Clock
CPU (Synthesized)
Wavegen (HDL)
Open RISC CPU USB |
0

FFT - use

Engine 1
< » < > -

(2

5. In the Project Name page, specify the following, and click Next:
e Project name: project_cpu_netlist

e Project location: <Project_Dir>

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 10

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=10

iv Xl Ll NX Chapter 1: Using Implementation Strategies
A .

Project Name

Enter a name for your project and specify a directory where the project data files will be stored '

Project name: project_cpu_netlist
Project location: | C:Vivado_Tutorial IZ‘

[+ Create project subdirectory

Project will be created at: C:/Vivado_Tutorial/project_cpu_netlist

(2

6. In the Default Part screen, select the xc7k70tfbg676-2 part and click Next.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 11

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=11

iv Xl Ll NX Chapter 1: Using Implementation Strategies
A .

’
Default Part
Choose a default Xilinx part for your project. '
Part /0 Pin Count Awailable I0Bs LUT Elements FlipFlops Block RAMs UltraRAMs DSPs GbTre
¥CTETOHbQETE-2 676 300 41000 82000 135 0 240 8
|
|
L4 ?

(2

7. Inthe New Project Summary page, review the project details, and click Finish.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 12

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=12

& XILINX

Chapter 1: Using Implementation Strategies

VIVADO'

HLx Editions

& XILINX.

New Project Summary

€ Anew project named ‘project_cpu_netlist will be created from the 'CPU (Synthesized) template.

€ The default part and product family for the new project:
Default Part: xc7 k7 0tfbgf76-2
Product: Kintex-7
Family: Kintex-7 |
Package: fog676
Speed Grade: -2

To create the project, click Finish

The Vivado IDE opens with the default view.

Edit View

e Fow Tools Reports Window Laout Holp | Q-QuickAccess Ready
=, >, E & T = Default Layout v
+ PROJECT MANAGER
Sources 7 00X Project summary 200X
setings
Q = 2 + B = Overview | Dashooard
Add Sources
> Design Sources (1 4
Language Templates S Constraints 2 Settings £t
o > = Simulaion-Only Sources (A o)
> = Uity Sources Projectiocation Clusersignocitastan_tiproject_1
Run Simulation Productfamily Kintex7
Projectpart XCTKIONog676-2
v NETUSTANALYSIS Topmodule name: top
> Open Symthesized Desion Targetlanguage HoL
Simulator language: Mixed
~ INPLEVENTATION
» Runimplementation Ubraries | Compie Order implementation
> Openimplemented Desion staus Not started
2 s
Le=io = BEX T essages No ertors orwarnings.
V' PROGRAMAND DEBUG L Part XCTKTONDQ676-2
¥ Generste Bistrzam sategy Vado Implementation Defauits
3 Open Hardware Manager ReportStateoy entation DefaultReports
Constains:
Incrementalimplementation: ~ None
Selectan obiectto see propert
DRC Violatons: Timing
Run Implementation to see DRC resuits RunImplementaton to see timing resufts
TeiConsole | Messages | Log | Reports | DesignRuns 2_oo
Q = 2 + %
Name Constais Status WNS TNS WHS THS TPWS TotalPower FaledRoues LUT FF BRAMS URAM DSP Stat Elapsed RunStategy Reportstategy
impli conss 2 Notstared Defauts (Viac 2018) (vadol
< >

UG986 (v2020.1) August 12, 2020
Implementation

www.Xilinx.com
13

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=13

iv Xl Ll NX Chapter 1: Using Implementation Strategies
A .

Step 2: Creating Additional Implementation

Runs

The project contains previously defined implementation runs as seen in the Design Runs window
of the Vivado IDE. You will create new implementation runs and change the implementation
strategies used by these new runs.

1.
2.

From the main menu, select Flow = Create Runs.
The Create New Runs wizard opens.
Click Next to open the Configure Implementation Runs screen.

The screen appears with a new implementation run defined. You can configure this run and
add other runs as well.

In the Run Strategy drop-down menu, select Performance_Explore as the strategy for the
run.

Click the Add + button twice to create two additional runs.

Select Flow_RunPhysOpt as the Run Strategy for the imp1_3 run.

Select Flow_RuntimeOptimized as the Run Strategy for the imp1_4 run.

The Configure Implementation Runs screen now displays three new implementations along
with the strategy you selected for each, as shown in the following figure.

’

Configure Implementation Runs

Create and configure one or more implementation runs using various parts, constraints, flows and strategies '

Create Implementation Runs

+ -
Mame Constraints Set Part Run Sirategy Report Strategy Make Ac...
impl_2 constrs_2__ % {Exc7k70ffh. ~ fa Perfformance_Explore (Vivado Implementation . %~ Za Vivado Implementation Default Reports (Vivado Impl__ ~
impl_3 consirs_2_ % {8 xc7k70tfb. v fa Flow_RunPhysOpt (Vivada Implementation 20 %~ fa UltraFast Design Methodology Reparis (Vivado Impl .+
impl_4 consirs_2_ ~ {8 xc7k70tfb. v 53 Flow_RuntimeOptimized (Vivado Implementat .~ Za UltraFast Design Methodology Reparts (Vivado Impl .+
Runs to create: 3

8. Click Next to open the Launch Options screen.

9. Select Do not launch now, and click Next to view the Create New Runs Summary.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 14

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=14

iv Xl Ll NX Chapter 1: Using Implementation Strategies
A .

10. In the Create New Runs Summary page, click Finish.

Step 3: Analyzing Implementation Results

1. Inthe Design Runs window, select all the implementation runs.

Design Runs
Q = 2 + %
Name Part Constraints ~ Status Run Strategy Description

impl_1 (active) xc7k70tfbg676-2 constrs_2 Notstarted Vivado Implementation Defaults (Vivado Implementation 2018) Default settings for Implementation.

impl_2 XCTKTOMDOB76-2 constrs_2 Notstated Performance_Explore (Vivado Implementation 2018) Uses multiple algorithms for optimization, placement, and routing to get potentially better results.

impl_3 XCTK70tibg676-2 constrs_2 Not started Flow_RunPhysOpt (Vivado Implementation 2018) Similar to the Implementation Run Defaults, but enables the physical optimization step (phys_opt_desigj

impl_4 XCTK70tibg676-2 constrs_2 Not started Flow_RuntimeOptimized (Vivado Implementation 2018) Each step trades design for better runtime. Physical optimization (phys_oy

2. Click the Launch Runs toolbar button P

3. Inthe Launch Runs dialog box, select Launch runs on local host and Number of jobs: 4, as
shown in the following figure. The number of jobs is the maximum number of implementation
runs for parallel execution. Up to 4 jobs may run in parallel depending on number of available
processors with remaining jobs put into a queue.

| ¥

Launch the selected synthesis or implementation runs.

Launch directory: &« =Default Launch Directory= L
Options
|
iii Launch runs on local host MWumber of jobs: | 4 4

1: :1 izenerate scripts only

[Dont show this dialog again

4. Click OK.

Two runs launch simultaneously, with the remaining runs going into a queue. In this example,
Vivado is running on a machine with only 2 available processors.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 15

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=15

& XILINX

Chapter 1: Using Implementation Strategies

Design Runs ? _O0a X
Q = = I > + %
MName A1 Par Constraints ~ Strategy Status Progress WNS TNS WHS THS TPWS Total Power F|
2 Impl_1(active) xc7K70thg676-2 constrs_2 Vivado Implementation Defaults (Vivado Implementation 2017) Running place_desian... — 50%
Jimpl_2 xc7k7 0thg676-2 constrs_2 Performance_Explore (Vivado Implementation 2017) Running place_design -_— 40%
impl_3 xeTk70bg676-2 constis_2 Flow_RunPhysOpt (vivado Implementation 2017) Queued, 0%
impl_4 xcTk701bg676-2 constrs 2 Flow_| (Vivada 2017) Queued. 0%
< >

When the active run, imp1_1, completes, examine the Project Summary. The Project
Summary reflects the status and the results of the active run. When the active run (imp1_1)
is complete, the Implementation Completed dialog box opens.

Click Cancel to close the dialog box.

Note: The implementation utilization results display as a bar graph at the bottom of the summary page
(you might need to scroll down), as shown in the following figure.

Utilization

Graph | Tahle

LUT
LUTRAM -
FF 1
BRAM -
DSP 1
101

49%

B81%

GTA
BUFG
MMCM

38%
1%

100%

50 78 100

Ltilization (%)

When you open an implementation run, the report _power and the
report_timing_summary results are automatically opened for the run in a new tab in the
Results Window.

When all the implementation runs are complete, select the Design Runs window.

Right-click the imp1_3 run in the Design Runs window, and select Make Active from the
popup menu.

The Project Summary now displays the status and results of the new active run, imp1_3.

UG986 (v2020.1) August 12, 2020
Implementation

Design Runs 2_Oax
Q= 2 K » » + %
Name Part Constraints Status Run Strategy Elapsed WNS Description
+ impi_1 XcTk70MDgE76-2 constrs_2 route_design Complete! Vivado Implementation Defaults (Vivado Implementation 2018) 00:07:01 0.105 Default settings for Implementation
+ impl_2 XcTk70MDgE76-2 constrs_2 route_design Complete! _Explore (Vivado 2018) 00:07-10 0.105 Uses multiple algorithms for optimization, placement, and routin
+/ Impi_3 (active) XCTKTOtfG676-2 consirs_2 route_design Complete! Flow_RunPhysOpt (Vivado Implementation 2018) 00:07:36 0105 Similar to the Implementation Run Defaults, but enables the ph
+ impl_4. XcTK70UDgE76-2 constrs_2 route_design Gompletel Flow_RuntimeOptimized (Vivado Implementation 2018) 00:06:54 0799 Each implementation step trades design performance for better
< >

www.Xilinx.com
16

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=16

iv Xl Ll NX Chapter 1: Using Implementation Strategies
A .

8. Compare the results for the completed runs in the Design Runs window, as shown in the
previous figure.

e The Flow_RuntimeOptimized strategy in imp1_4 completed in the least amount of
time, as you can see in the Elapsed time column.

e The WNS column shows that all runs met the timing requirements.

Step 4: Tightening Timing Requirements

To examine the impact of the Per formance_Explore strategy on meeting timing, you will
change the timing constraints to make timing closure more challenging.

1. Inthe Sources window, double-click the top_full.xdc filein the constrs_2 constraint
set.

The constraints file opens in the Vivado IDE text editor.

Project Summary » | top_full.xdc b4 ?00
Q » B B /N E 9
1l ' # Defirne the top level system clock of the design -~
2 create clock -period 10 -name sysClk [get ports =zysClk]
3
4 # Dafine the clocks for the GTX blocks
5 create clock -name gt _txusrclk i -period 12.5 [get_pins wytEngine/ROCEETIO_WRAPPER T
[create clock -name gtZ_txusrclk i -period 12.8 [get pins nwgtEngine /ROCEETIO_WRAPPER T
7 create clock -name gtd txusrclk i -period 12.5 [get_pins wytEngine/ROCEETIO_WRAPPER T
5] create clock -name gt6_txusrclk i -period 12.8 [get pins uwgtEngine /ROCEETIO_WRAPPER T
9
1n

2. Online 2, change the period of the create_clock constraint from 10 nsto 7.35 ns.
The new constraint should read as follows:

create_clock -period 7.35 -name sysClk [get_ports sysClk]

3. Save the changes by clicking the Save File I button in the toolbar of the text editor.

Note: Saving the constraints file changes the status of all runs using that constraints file from
“Complete” to “Out-of-date,” as seen in the Design Runs window.

Design Runs ? _0ax
Q = ¢ + %
Name Part Constraints Status Run Strategy Elapsed WNS Description
~ impl_1 XCT7K70MDQ676-2 constrs_2 Implementation Out-of-date Vivado Implementation Defaults (Vivade Implementation 2018) 00:07:01 0.105 Default settings for Implementation.
4 impl_2 *c7k70tbg676-2 constrs_2 Implementation Out-of-date F _Explore (Vivado 2018) 00:07:10 0.105 Uses multiple algorithms for optimization, placement, and routin|
4 impl_3 (active xc7k70tfbg676-2 constrs_2 Implementation Out-of-date Flow_RunPhysOpt (Vivado Implementation 2018) 00:07:36 0.105 Similar to the Implementation Run Defaults, but enables the phj

& impl_4 XcTk70Mbg6762 constrs_2 Implementation Out-of-date Flow_RuntimeOptimized (Vivado Implementation 2018) 00:06:54 0799 Each implementation step trades design performance for better

4. In the Design Runs window, select all runs and click the Reset Runs I4 button.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 17

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=17

& XILINX

5. In the Reset Runs dialog box, click Reset.

Chapter 1: Using Implementation Strategies

This directs the Vivado Design Suite to remove all files associated with the selected runs from
the project directory. The status of all runs changes from “Out-of-date” to “Not started.”

6. With all runs selected in the Design Runs window, click the Launch Runs » button.

The Launch Selected Runs window opens.

TIP: You can also launch runs without resetting them first. If the runs are out of date, the Reset Runs dialog box

displays. In this dialog box, you can reset the runs before they are launched.

7. Select Launch runs on local host and Number of jobs: 2 and click OK.

When the active run (imp1_3) completes, the Implementation Completed dialog box opens.

8. Click Cancel to close the dialog box.

9. Compare the Elapsed time for each run in the Design Runs window, as seen in the following

figure.

Design Runs

QI 2 M« P> » + %

Name Part Constraints Status Run Strategy Elapsed
~ impl_1 Xc7k70tbg676-2 constrs_2 route_design Complete, Failed Timing! Vivado Implementation Defaults (Vivado Implementation 2018) 00:10:47
+/ impl_2 (active) xcTk70tfbg676-2 constrs_2 route_design Complete, Failed Timing! Performance_Explore (Vivado Implementation 2018) 00:15:26
+ impl_3 *cTk70tbg676-2 constrs_2 route_design Complete, Failed Timing! Flow_RunPhysOpt (Vivado Implementation 2018) 00:13:22
 impl_4 XcTK7O0HDgET6-2 consts_2 route_dasign Complete, Failed Timing! Flow_RuntimaOptimized (Vivado Implementation 2018) 00:07:32

<

WNS

0400
0,079
0462
-0526

TNS
-3.509
-0.084
-5.340
-5.860

WHS

0.046
0.046
0.046
0.055

? _0aX

THS

0.000
0.000
0.000
0.000

b3

e Notice that the imp1_2 run, using the Performance_Explore strategy is closest to

meeting timing, but also took the most time to complete.

Note: Reserve the Performance_Explore strategy for designs that have challenging timing

constraints and fail to meet timing with the Implementation Defaults strategy.

Conclusion

In this lab, you learned how to define multiple implementation runs to employ different strategies
to resolve timing. You have seen how some strategies trade performance for results, and learned

how to use those strategies in a more challenging design.

This concludes Lab 1. If you plan to continue directly to Lab 2, keep the Vivado IDE open and
close the current project. If you do not plan to continue, you can exit the Vivado Design Suite.

UG986 (v2020.1) August 12, 2020
Implementation

l Send Feedback l

www.Xilinx.com

18

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=18

& XILINX

Chapter 2

Using Incremental Implementation

Incremental implementation can be used when a user wants to get faster implementation
compile times and more consistent implementation results. Incremental implementation is a flow
that achieves greater consistency of results and faster implementation compile times. It should
be used when a design is relatively stable and only small changes are required.

After resynthesizing a design with minor changes, the incremental compile flow can speed up
placement and routing by reusing results from a prior design iteration. This can help you preserve
timing closure while allowing you to quickly implement incremental changes to the design.

In this lab, you use the BFT example design that is included in the Vivado® Design Suite, to learn
how to use the Incremental Implementation. Refer to the Vivado Design Suite User Guide:
Implementation (UG904) to learn more about Incremental Compile.

Step 1: Opening the Example Project

1. Start by loading Vivado IDE by doing one of the following:
e Launch the Vivado IDE from the icon on the Windows desktop.

e Type vivado from a command terminal.

2. From the Getting Started page, click Open Example Project.

Quick Start

Create Project >
Open Project >

Open Example Project >

3. In the Create an Example Project page, click Next.

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 19

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=19

iv Xl Ll NX Chapter 2: Using Incremental Implementation
A ®

Open Example Project b 4

V|VADO p Create an Example Project

This wizard will guide you through the creation of a new Vivado project from a predefined template

To create a Vivado project you will specify the type of template project you would like to create. Next you
will need 1o provide a name and a 10cabon 1or your projéct files and choose a default board

& XILINX

2 | Cancel

4. In the Select Project Template page, select the BFT (Small RTL project) design, and click Next.

¢ Open Example Project it

Select Project Template

Select one of the below predefined templates on which to base your new project '

Templates Description
Base Zynq UltraScale+ MPSoC BFT
Base MicroBlaze

Small RTL project
Base Zynq

Configurable MicroBlaze Design

Configurable Zyng UltraScale+ MP: | —
CPU (HDL = %'ﬂ%'ﬂ%'ﬂ%'ﬂ
R m by by g g ¢ m
CPU (Synthesized i =— — — — — ; =
Wavegen (HDL) l_ (@) [l ©
H > b b b B
¢ > < »

F

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 20

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=20

iv Xl Ll NX Chapter 2: Using Incremental Implementation
A ®

5. In the Project Name page, specify the following, and click Next:
e Project name: project_bft_core_hdl

e Project location: <Project_Dir>

Project Name

Enter a name for your project and specify a directory where the project data files will be stored ’

Project name: project_bft_core_hdl
Project location: | C/Data/Vivado_Tutonal

|»| Create project subdirectory

Project will be created at: C/Data/Vivado_Tutorial/project_bft_core_hdl

6. In the Default Part page, select the xc7k70tfbg484-2 part, and click Next.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 21

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=21

iv Xl Ll NX Chapter 2: Using Incremental Implementation
A ®

¢ Open Example Project X

Default Part

Choose a default Xilinx part for your project. This can be changed later. '
Search: | Q- v
Part WO PinCount Available IOBs LUTElements FlipFlops Block RAMs UltraRAMs DSPs Gb
XCTK70tfbg484-2 484 285 41000 82000 135 0 240 4
Xc7k70tlbg676-2 676 300 41000 82000 135 0 240 8
xc7v585ifig1157-2 1157 600 364200 728400 795 0 1260 20
xcku035-fovad00-2-e 900 468 203128 406256 540 0 1700 16
< »

N
Cance

7. Inthe New Project Summary page, review the project dgails, and click Finish.

#- Open Example Project >

New Project Summary

VIVADO!

HL¥ Editinn
Fens Q Anew project named "project_bft_core_hdl" will be created from the 'BFT template.

ﬂThe default part and product family for the new project:
Default Part: xc7k70fogd84-2
Product: Kintex-7
Family: Kintex-7 |
Package: fbgd84
Speed Grade: -2

i: XI LI NX To create the project, click Finish

The Vivado IDE opens with the default view.

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 22

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=22

& XILINX

Chapter 2: Using Incremental Implementation

¢ project_bft_core_hdl - [C;/Data/Vivado_Tutorial/project_bft_core_hdl/project_bft_core_hdl.xpr] - Vivado 2018.1 - O X
File Edit Flow Tools Reports Window Layout View Help Ready
= « >, B o X Default Layout v

Flow Navigator E N PROJECT MANAGER - project_bft_core_hdl ? X

~

Nl L MARACER Sources ? oo X Project Summary T X

£ Settings - | o b
Q| = & + Updating D &
Add Sources Settings Edit
v Design Sources (1
Language Templates > @ DbR(aBFT) (bftvhdl) (20

> Constraints (1

Project name:

project_bft_core_hdl

£F IP Catalog > Simulation Sources (1 Project location: C:/Data/Vivado_Tutorial/project_bft_con
Product family Kintex-7
v IPINTEGRATOR Hierarchy Libraries Compile Order Project part xc7k70tbg484-2
Create Block Design Top module name: bit
en esign Properties ? ooXx Target language: VHDL
nerate Design o Simulator language: Mixed
v SIMULATION
o ropert Synthesis Impl
Run Simulation
P ~
v RTLANALYSIS
> Open Elaborated Design TciConsole | Message 0 Reporls | Design Runs 2
Q = £ + %
SYNTHESIS
¥ Name Constraints Status Elapsed WNS TNS WHS THS TPWS Total Power Failed Routes LUT
P Run Synthesis synth_1 constrs_1 Not started
> Open Synthesized Desial impl_1 constrs_1 Not started
v IMPLEMENTATION
P Run Implementation
> pen Implemente
v PROGRAM AND DEBUG vl € 2

Step 2: Viewing the Incremental Column in
the Design Runs Window

In the Design Runs window, right-click on any of the column headings and enable the
Incremental column if it is not already enabled, as shown in the following figures:

www.Xilinx.com
23

UG986 (v2020.1) August 12, 2020
Implementation

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=23

iv Xl Ll NX Chapter 2: Using Incremental Implementation
A)

Figure 1: Enabling Incremental Heading

42 errc

Source File Proper ?2 00O X): Progress
® bftvhdl 2o 3, attribute f= [T %
< N = 49 E attribute £z ¢ WNS is "one-hot"
"""""""""""""""""" 50 end entity k v TNS
General Properties T ¢
v WHS
Tcl Console Messages |Log Reports |DesignRuns X | « THS
alz|s + % v WBss
Name Constraints ~ Status Elapsed WNS v TPWs Total Power |
v synth_1 constrs_1 Not started + Total Power
impl_1 constrs_1 Not started v Failed Routes
<
v LUT

Figure 2: Design Runs Window

Tcl Console |Messages |Log |Reports |DesignRRuns X
Q = = + %
Name Constraints Status Elapsed Incremental 71
w synth_1 constrs_1 Not started Off
impl_1 constrs_1 Not started Off
<

This column shows how the incremental flow was used. The information is also available in the
messages in the Vivado log file.

Step 3: Turning on Incremental
Implementation

1. Right-click on the impl_1 run and select Set Incremental Implementation.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 24

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=24

iv Xl Ll NX Chapter 2: Using Incremental Implementation
A)

= T T I L B L B
< > ! |

""""""""""""""""" 500 end entity bf Implementation Run Properties...
General Properties Opti = 7 ‘ :
Tcl Console |Messages |Log | Reports |DesignRuns X
Q| | =2 S + % Change Run Settings...
Name Constraints ~ Status Elapsed Increment Sl et e s B AL 1
v synth_1 constrs_1 Not started Off Save As St%tegy...
impl_1 constrs_1 Not started Off
v £

-
. . T,

2. Inthe Incremental Implementation dialog box, select Automatically use the checkpoint from
the previous run.

¢ Incremental Implementation X

Enable incremental implementation for this run. Allow the
tool to automatically choose the design checkpoint from '
previous run or choose a specific checkpoint

O] Automatically use the checkpoint from the previous run

Specify design checkpoint

—
p—

) Disable incremental compile

This dialog box can be opened from many places inside the Vivado IDE. These include the
Implementation Run Options window and the Project Summary. The same functionality can
also be built into scripts via Tcl commands.

3. To enable automatic checkpoint selection via Tcl, use the following command:
set_property AUTO_INCREMENTAL_CHECKPOINT 1 [get_runs impl_1]
After this is done, you should see the Incremental Column in the Design Runs window update to

Auto(skipped). This setting indicates that Auto mode is enabled but that Incremental
Implementation has not been run.

UG986 (v2020.1) August 12, 2020

www.Xilinx.com
Implementation l Send Feedback l 55

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=25

iv Xl Ll NX Chapter 2: Using Incremental Implementation
A)

Tcl Console | Messages |Log |Reports |DesignRuns X

o T & > £ %
Name Constraints ~ Status Elapsed Incremental 1
v synth_1 constrs_1 Not started Off

impl_1 constrs_1 Auto(Skipped)

It is possible to select your own checkpoint, which is desirable when the checkpoint must not be
updated or lower thresholds for reuse are OK to use. It is your responsibility to manage the
suitability of the checkpoint in this case.

Step 4: Compiling the Reference Design

1. From the Flow Navigator, select Run Implementation.

2. In the Missing Synthesis Results dialog box that appears, click OK to launch synthesis first.
Synthesis runs, and implementation starts automatically when synthesis completes.
Note: The dialog box appears because you are running implementation without first running synthesis.

¢ Missing Synthesis Results X

There is no netlist available. OK to launch synthesis first? Implementation will automatically
start when synthesis completes.

=3

3. After implementation finishes, the Implementation Complete dialog box opens. Click Cancel
to dismiss the dialog box.

UG986 (v2020.1) August 12, 2020

www.Xilinx.com
Implementation l Send Feedback l 26

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=26

iv Xl Ll NX Chapter 2: Using Incremental Implementation
A)

o Implementation successfully completed.

Next

* QOpen Implemented Design
Generate Bitstream

View Reports

Dont show this dialog again

In a project-based design, the Vivado Design Suite saves intermediate implementation results as

design checkpoints in the implementation runs directory. You will use the final checkpoint as the
reference to the incremental compile flow.

Step 5: Making Incremental Changes

In this step, you make minor changes to the RTL design sources. These changes necessitate
resynthesizing the netlist and re-implementing the design.

1. In the Hierarchy tab of the Sources window, double-click the top-level VHDL file,

core_transform.vhdlunder arndil, to open the file in the Vivado IDE text editor, as
shown in the following figure.

UG986 (v2020.1) August 12, 2020

www.Xilinx.com
Implementation l Send Feedback l 57

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=27

& XILINX

PROJECT MANAGER - project_bfi_core_hdl

Sources
a z = +

~ @ bft(aBFT) (bftvhdl) (20)

> @ amd1: round_1(aR1)

=
=

el arnd2 : round_2(aR2) (

@ and3 : round_3(aR
@ arnd4 : round_4{aR4)
@ ingressLoop{0].ingressFifo :
@ ingressLoop[1lingressFifo:
@ ingressLoop(2).ingressFifo:
@ ingressLoop(3)ingressFifo:
@ ingressLoopl4)ingressFifo:

(round_1vhdl) (8)

_) (8)
FifoBuffer (FifoBuffer.v) (
FifoBuffer (FifoBuffer.
FifoBuffer (FifoBuffer.
FifoBuffer (FifoBuffer.v) (
FifoBuffer (FifoBL

Chapter 2: Using Incremental Implementation

@ ingressLoop[5].ingressFifo : FifoBuffer (FifoBufer:

@ ingressLooplB].ingressFifo : FifoBuffer (FifoBufle

rv)

< b
Hierarchy = Libraries Compile Order
Source File Properties ?_0O0B X
@ bitvhdl -]
~
+ Enabled "
General Properties

? X
Project Summary X | bftvhdl* X oo
Q W « & B B N E Q
TT BN oat A IS IR I RS AL LTI LRI IA ST A LTI AA LIRS RIS TSI SRS ~n
library IEEE;
use IEEE.STD_LOGIC_1164.a81l;
use IEEE.STD LOGIC ARITH.all;
use IEEE.STD LOGIC SIGNED.all;
library bftLib;
use bftLib.bftPackage.all;
37 entity bft is
3 port |
wbClk, bftClk, reset : in std logic;
4 whD: rInput :in std logic:
4 i ut: in std legic;
ataForfutput : cut std logic;
a : in std legic_vector (31 downto 0);
wbOutputData : out std logic_wector (31 downto 0);
error : bu:':'Er.{ std legic
46 1
48 ‘ attribute fsm encoding :string;
43 | attribute fsm encoding of bft : entity is "one-hot" ;
50 ‘ end entity bft;
52 architecture aBFT of bft is
— ~
< &

2. Go to line 65 and make swap the inputs to uRe g and xRe g. The following code snippet

shows the required changes:

From

To

begin
process
begin
if rising_edge(clk) then
xStepReg <= xStep;
uReg <= u;
xReg <= x;
end 1if;
end process;

(clk)

begin
process
begin
if rising_edge(clk) then
xStepReg <= xStep;
--uReg <= u;
--xReg <= x;
uReg <= x;
xReg <= u;
end if;
end process;

(clk)

3. Save the changes by clicking the Save File I button in the toolbar of the text editor.

As you can see in the following figure, changing the design source files also changes the run

status for finished runs from Complete to Out-of-date.

Tcl Console | Messages |Log |Reports |Design Runs X
a =z = + %
Name Constraints ~ Status Elapsed Incremental ' WNS TNS WHS THS
v« synth_1 constrs_1 Synthesis Out-of-date 00:01:23 Off
4 impl_1 constrs_1 Implementation Out-of-date 00:02:41 Auto(Skipped) 1452 0... 0062 0.
<
UG986 (v2020.1) August 12, 2020 www.xilinx.com

Implementation

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=28

Chapter 2: Using Incremental Implementation

& XILINX

Step 6: Rerunning Synthesis and
Implementation

With changes to the RTL source now made, synthesis and implementation must be rerun. As
Incremental Implementation has already been configured, all that must be done is to relaunch the
tool flow as would be done in the default flow.

1. Inthe Flow Navigator, click on Run Implementation. At this point, all the runs are reset and
relaunched.

In the Sources window, the Utility Sources is updated with the checkpoint from the
previously routed imp1_1 if the checkpoint has met certain criteria to ensure it is a good
quality reference checkpoint for future runs.

Sources ? 00O X

Q T = + o
Design Sources (1)
> @ = bft(aBFT) (bft.vhdl) (20)
Constraints (1)
constrs_1 (1)
Simulation Sources (1)
sim_1 (1)
Utility Sources (1)
utils_1 (1)
Design Checkpoint (1)
s bft_routed.dcp

Hierarchy Libraries Compile Order

Also updated is the Incremental column in the Design Runs window. This should now say
Auto. If the checkpoint did not meet the criteria to be used as a suitable reference, it shows
Auto(Skipped) as before.

After implementation is complete, the Design Runs window shows the completed run.

Design Runs ? -0a X
a = = + %
Name Constraints ~ Status Elapsed Incremental WNS TNS WHS THS WBSS TPWS Total Powe
-~ «/ synth_1 constrs_1 synth_design Complete! 00:01:02 Off

~ impl_1 constrs_1 route_design Complete! 00:01:31 Auto 1452 0000 0.062 0.000 0.000 0.41
< >

In the Design Runs window, it is possible to examine runtime and timing criteria. In this case:

e Runtime has reduced for implementation as seen in the Elapsed column.

UG986 (v2020.1) August 12, 2020
Implementation

l Send Feedback l

www.Xilinx.com
29

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=29

iv Xl Ll NX Chapter 2: Using Incremental Implementation
A)

e WNS > 0.000 has been maintained
Note: Synthesis has not been run in a different mode than before so should be similar to before.

The “Elapsed” column measurement includes improvements to the place_design
(phys_opt_design is not run here) and route_design and also the extra commands that
are required in the incremental flow such as read _checkpoint -incremental and the
extra reporting. To see more significant runtime improvements, the flow should be used on
larger designs with a good reference checkpoint.

Note: opt _design is not incremental and runtime for opt _design is unimpacted.

Designs that have a complex flow, requiring most effort in the reference run see the highest
benefit. Ideally, reference checkpoints are timing-closed, with fewer than 5% of the leaf cells
different than the updated design.

2. Select the Reports window and double-click the Incremental Reuse Report in the Route
Design section, as shown in the following figure.

Tecl Console | Messages |Log |Reports X Design Runs

Q = 2 + = 72
Report Report Type
Route Design (route design)
& impl_1_route_report_drc_0 Report on error or violations against a set of design rule checks (report_drc)
& impl_1_route_report_methodology_0 Report on error or violations against a set of methodology checks (report_methodology
& impl_1_route_report_power_0 Report power analysis details (report

& impl_1_route_report_route_status_0 Report on status of the routing. (report tus,

& impl_1_route_report_timing_summary_0 Report timing summary (report_timing_summary)

s impl_1_route_report_incremental_reuse_0 | Report on achievable incremental reuse for the given design-checkpoint (report_incremental_reuse)
& impl_1_route_report_clock_utilization_0 Report information about clock nets in design (report_clock_utilization)

& impl_1_route_report_bus_skew_0 Report on calculated bus skew among the signals constrained by set_bus_skew (report_bus_skew

So far, you have modified the generation of the readEgressFifo so that the signal is zero
when the error signal is non-zero. This is a small change to the design so you would expect
the reuse to be high. Now examine the Incremental Reuse Report to confirm this is the case.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 30

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=30

iv Xl Ll NX Chapter 2: Using Incremental Implementation
A)

Incremental Implementation Information

Table of Contents

1. Reuse Summary

2. Reference Checkpoint Information
3. Comparison with Reference Run

4. Non Reuse Information

1. Reuse Summary

+ + - t—— +
| Type | Matched % (of Total) | Reuse % (of Total) | Fixed % (of Total) | Total |
+ e e t—— + +
| Cells | 99.07 | 99.52 | l.9a | 3578 |
| Hets | 99.71 | 98.97 | 0.00 | 5189 |
| Bins | -1 §9.30 | - | 19485 |
| Borts | 100.00 1 100.00 | 100.00 | 711
t t L L ittt t +
*

Reused % can exceed matched % when unmatched cells take their placement directly from other cells that have been matched

3]

. Reference Checkpoint Information

=]
%]
o
[
=)
i)
o
ot
b
o
a
2]
3
<=
v
<
o
=
&
|
—
c
ot
=]
"
i
w
=
o
o
H
=1
O
m
3]
.«
o
i
o
|
o]
&
2]
I
-
o
5]
=]
fut
I
3]
N
o
i
ot
|
2]
=]
[
Ll
w
5]
0
u
-
I
ot
b
i
w
|
I~
-
%.
5]
&
ot
w
-
%.
P
—
~
o
i
o
|
H
=1
I
o
I
B
&
o

____________ n
DCP Information Value |
____________ +

Vivado Version 2019.1

Recorded WHNS 1.450
Recorded WHS 0.05%

|
|
DCP State | POST_ROUTE
|
|
Reference Speed File Version | PRODUCTION 1.12 2017-02-17

Recorded WNS/WHS timing numbers are estimated timing numbers. They may vary slightly from sign-off timing numbers.

In the report you can confirm that a high percentage of cells, nets and ports are fully reused.

In the Reference Checkpoint Information section you can see information reported on the
reference checkpoint. This is useful when the source of the checkpoint is unknown.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 31

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=31

iv Xl Ll NX Chapter 2: Using Incremental Implementation
A)

3. Comparison with Reference Run

t—————— e +

| | WNS (na) | Runtime (elapsed) (hh:mm) | Runtime (cpu) (hh:mm) |

-t e -t + +

| Stage | Reference | Incremental | Reference | Incremental | Reference | Incremental |
____________ ; S ; ¥

| synth design | | | < 1 min | 00:01 | < 1 min | Qo:01 |

| opt_design | | | 00:01 | 00:01 | 00:01 | 0o:01 |

| read checkpoint | | | | < 1 min | | < 1 min |

| place_design | 2.208 | 1.7485 | < 1 min | < 1 min | 00:01 | < 1 min |

| route_design | 1.794 | 1.793 | 00:01 | 00:01 | 00:01 | 00:01 |
______________ ; ——— n

4. Non Reuse Information

po +

| Iype | 3 0|

fom - + t

| Non-Reused Cells | 0.82 |

| Hew | 0.62 |

| Partially reused nets | 0.00 |

| Non-Reused nets | 0.54 |

| Non-Reused Ports | 0.00 |

In the Comparison with Reference Run section, you can see how the runtime and WNS at
each stage of the flow compares. This is good for debugging purposes to understand where
WNS and runtime diverge when there are issues. Note that these designs are not 100% the
same so this information is a only guide.

When run with the RuntimeOptmized directive, the target WNS of this run is either 0. 0 or
the WNS from the reference runif itis < 0. 0. To always target a timing closed design (Target
WNS = 0.0 ns), the incremental directive must be set TimingClosure. This can be done by
applying the following command:

set_property -name INCREMENTAL_CHECKPOINT.MORE_OPTIONS -value {-
incremental_directive TimingClosure} -objects [get_runs impl_1]

Conclusion

This concludes Lab 2. You can close the current project and exit the Vivado IDE.

In this lab, you learned how to run the Incremental Implementation portion of the Incremental
Compile flow, using a checkpoint from a previously implemented design. You also examined the
similarity between a reference design checkpoint and the current design by examining the
Incremental Reuse Report.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 32

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=32

& XILINX

Chapter 3

Manual and Directed Routing

In this lab, you learn how to use the Vivado® IDE to assign routing to nets for precisely
controlling the timing of a critical portion of the design.

e You will use the BFT HDL example design that is included in the Vivado® Design Suite.

e To illustrate the manual routing feature, you will precisely control the skew within the output
bus of the design, wbOutputData.

Step 1: Opening the Example Project

1. Start by loading Vivado IDE by doing one of the following:
e Launch the Vivado IDE from the icon on the Windows desktop.
e Type vivado from a command terminal.

2. From the Getting Started page, click Open Example Project.

Quick Start

Create Project >
Open Project >

Open Example Project >

3. In the Create an Example Project page, click Next.

UG986 (v2020.1) August 12, 2020

www.xilinx.com
Implementation l Send Feedback I 33

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=33

iv Xl Ll NX Chapter 3: Manual and Directed Routing
A ®

Open Example Project b 4

V|VADO p Create an Example Project

This wizard will guide you through the creation of a new Vivado project from a predefined template

To create a Vivado project you will specify the type of template project you would like to create. Next you
will need 1o provide a name and a 10cabon 1or your projéct files and choose a default board

& XILINX

2 | Cancel

4. In the Select Project Template page, select the BFT (Small RTL project) design, and click Next.

¢ Open Example Project it

Select Project Template

Select one of the below predefined templates on which to base your new project '

Templates Description

Base Zynq UltraScale+ MPSoC BFT

Base MicroBlaze Small RTL project

Base Zynq
Configurable MicroBlaze Design
Configurable Zyng UltraScale+ MP: | —
CPU (HDL = %'ﬂ%'ﬂ%'ﬂ%'ﬂ

R m by by g g ! m
CPU (Synthesized i =— —_— — — — L =
Wavegen (HDL) l_ (@) [l ©

H > b b b

¢ > < »

Pt

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 34

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=34

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

5. In the Project Name page, specify the following, and click Next:
e Project name: project_bft_core

e Project location: <Project_Dir>

Project Name

Enter a name for your project and specify a directory where the project data files will be stored '

Project name: |project_bft_core
Project location: | C:Vivado_Tutarial IZ‘

[+ Create project subdirectory

Project will be created at: C:/Vivado_Tutoriallproject_bft_core

(2)

6. In the Default Part page, select the xc7k70tfbg484-2 as your Default Part, and click Next.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 35

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=35

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

’
Default Part
Choose a default Xilinx part for your project. '
|
Part /0 Pin Count Awailable IDBs LUT Elements FlipFlops Block RAMs UltraRAMs DSPs Gl
¥CT KT O0tbg484-2 484 285 41000 82000 135 0 240 4
¥CT KT OtbgRTE-2 G76 300 41000 82000 135 0 240 8
xcTvaE5tFg1157-2 1157 600 364200 728400 795 0 1260 2(
¥cku035-fova900-2-e 900 468 203128 406256 540 0 1700 1€
|
< >

7. Inthe New Project Summary page, review the project details, and click Finish.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 36

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=36

iv Xl Ll NX Chapter 3: Manual and Directed Routing
A ®

New Project Summary

VIVADO

HLy E

ne

€ Anew project named ‘project_bft_core’ will be created from the 'BFT template. |

€ The default part and product family for the new project:
Default Part: xc7 k7 0tfbgd84-2
Product: Kintex-7
Family: Kintex-7
Package: fog484
Speed Grade: -2

‘ i: XILINX To create the project, click Finish

The Vivado IDE opens with the default view.

4 project_bt_core - [C/Vivedo_Tutoralprojec.bftcore/projec bft.corexp] - Vivado 20131 - o x
Eile Edit Flow Tools Reports Window Layout View Help A Quick Access. Ready
[&] « [== DefauttLayout v
Flow Navigator B PROJECT MANAGER - project_bft_core ? X%

 PROJECT MANAGER

Sources 2 0% Projct summary 20@x
Setings
Q T 2 + &% Overview | Dashboard
AdaSources
= Design Sources (1 ¥
Language Templates S @ biaE G (20 Settings it
T 1P Catalog > Constraints (1 Projectname. project_bf_core
> Simulation Sources (1 Project location: C:Nivado_Tutorialiproject_bft_core.
v IPINTEGRATOR > Utility Sources. Product family: Kintex-7
Create Block Desion Projectpart XCTKTO9484-2
Top mogule name: o
Targetlanguage vHoL
o ‘Simulator language: Mixed
~ SWULATION e
o Simutsion Herarchy | Libraies Complle Orcer Synthesis implementation
Status Notstarted Status Notstarted
Properte: 2_o@x
v RTLANALYSIS ropertes B Messages: No errors or wamings. Messages: No errors or wamnings.
3 Open Elsborsted Design B et xeTiT0mgds2 Par xTTotmgdse2
Stategy: Viado Synthesis Defauts stateay ivado Implementaion Defauts
v swTHESIS
Incremental syhesis: HNone Incremental mplementation: Nons
> RunSyntnesis
> Open Syntnesiz
ectan objectt DRC Violations Timing

~ INPLEMENTATION Runimplementaion to see DRC result Run Implementation to see fming resuits
» Runimplementation
> Open Imple Utization Power

~ PROGRAN AND DEBUG Messages | Log | Reporis DesignRums x 2_oo
¥ GenerateBitstieam Q = + %
> Open Hardware Manager Name Constraints ~ Status WNS TNS WHS THS TPWS TotalPower FalledRoutes LUT FF BRAMs URAM DSP Stat Elapsed RunStrategy Report Strategy

VoS constrs 1 Notstarted Defauts 019) y (vado Synthe
impL1 constrs 1 Notstarted Deauts 019) wadol
< >

UG986 (v2020.1) August 12, 2020

www.Xilinx.com
Implementation l Send Feedback l 37

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=37

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

Step 2: Performing Place and Route on the
Design
1. Inthe Flow Navigator, click Run Implementation.

The Missing Synthesis Results dialog box opens to inform you that there is no synthesized
netlist to implement, and prompts you to start synthesis first.

/

There is no netlist available. OK to launch synthesis first? Implementation will automatically
start when synthesis completes.

2. Click OK to launch synthesis first.

Implementation automatically starts after synthesis completes, and the Implementation
Completed dialog box opens when complete, as shown in the following figure.

o Implementation successfully completed.

Next

® Open Implemented Design
Generate Bitstream

View Reports

Dont show this dialog again

3. Inthe Implementation Completed dialog box, select Open Implemented Design and click OK.

The Device window opens, displaying the placement results.
4. Click the Routing Resources button a=m= to view the detailed routing resources in the Device
window.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 38

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=38

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

Device

@ v w0l @R B oo o

Step 3: Analyzing Output Bus Timing

IMPORTANT! The tutorial design has an output data bus, wbOu t putDa t a, which feeds external logic. Your
objective is to precisely control timing skew by manually routing the nets of this bus.

You can use the Report Datasheet command to analyze the current timing of members of the
output bus, wbOutputData. The Report Datasheet command lets you analyze the timing of a
group of ports with respect to a specific reference port.

1. From the main menu, select Reports = Timing — Report Datasheet.

2. Select the Groups tab in the Report Datasheet dialog box, as seen in the following figure, and
enter the following:

e Reference: [get_ports {wbOutputDatal[0]}]

e Ports: [get_ports {wbOutputDatal*]}]

UG986 (v2020.1) August 12, 2020

www.Xilinx.com
Implementation | Send Feedback | 39

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=39

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

Create a datasheet report for the current design. The datasheet has the timing characteristics
of a design atthe /O pads.

Options Groups Timer Settings

1. Reference |[get_pors {wbOutputData[0]}] |I|

Ports [get_ports {wbOutputDatal*T}] |z| +

Command: :-group [get_pors {wbOutputData[0]}] [get_pors {wbOutputData*[}" -name timing_1

| Openin a new tab

Openin Timing Analysis layout

(2)
AN 0K Cancel

3. Click OK.

In this case, you are examining the timing at the ports carrying the wbOutputData bus,
relative to the first bit of the bus, wbOutputDatal0]. This allows you to quickly determine
the relative timing differences between the different bits of the bus.

4. Click the Maximize [button to maximize the Timing - Datasheet window and expand the
results.

5. Select the Max/Min Delays for Groups — Clocked by wbClk = wbOutputData[0] section, as
seen in the following figure.

You can see from the report that the timing skew across the wbOutputData bus varies by
almost 660 ps. The goal is to minimize the skew across the bus to less than 100 ps.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 40

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=40

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

Timing ? _0aXx
Q T £ C H 4 O @ wmaxMin Delays for Groups - Clocked by whClk - wbOutputData[0]
General Information ’ Pad Max Max MaxProcess Min Min MinProcess E "|
Input Ports SetupiHold Delay Edge Corner Delay Edge Cormner .
Output Ports Clock-to-out] wbOutputDiatal28] 9.281 Rise SLOW 4060 Rise FAST 0.659
Setup between Clocks 4] whOutputDatal31] 9.249 Rise SLOW 4054 Rise FAST 0.627
v Setup/Mold for Input Buses whOutputData[30] 9.226 Rise SLOW 4.029 Rise FAST 0.604
~ Clocked by wbClk whOutputData[27] 9214 Rise SLOW 4023 Rise FAST 0592
whlnputData 4 wboutputDiatal26] 9.202 Rise SLOW 3.997 Rise FAST 0.580
~ MawMin Delays for Output Buses <8 wbOutputData[24] 9190 Rise SLOW 3.998 Rise FAST 0.563
* Clocked by wbClk whOutputDatal29] 9130 Rise SLOW 3.971 Rise FAST 0.508
whOutputData <2 whOutputData]23] 9079 Rise SLOW 3049 Rise FAST 0.457
* MaxiMin Delays for Groups 4 whoutputData[20] 9011 Rise SLOW 3929 Rise FAST 0.389
* Clocked by whClk WbOutputData[25) 8984 Rise SLOW 3897 Rise FAST 0.362
| (ool 2zl 4 woOutputData[27] 8962 Rise SLOW 3874 Rise FAST 0.340
4 wbOutputData[22] 2045 Rise SLOW 3870 Rise FAST 0323
4 whOutputDiata[12] 8828 Rise SLOW 3821 Rise FAST 0.206
4] wboutputDiatal18] 8.813 Rise SLOW 3784 Rise FAST 0191
4 whOutputDatalg) 2.301 Rise SLOW 3.322 Rise FAST 0179
4 whOutputDatalg) 3784 Rise SLOW 3.301 Rise FAST 0.162
4 whOutputDiata[13] 8771 Rise SLOW 3808 Rise FAST 0149
4 wboutputDiatal19] 8760 Rise SLOW 3773 Rise FAST 0138
4 whOutputDatal14] 8747 Rise SLOW 3774 Rise FAST 0.125
4 whOutputDatal11] 3738 Rise SLOW 3.782 Rise FAST 0.116
4 wbOutputData[15] 8722 Rise SLOW 3753 Rise FAST 0.100
4 wboutputData[1)] 8.522 Rise SLOW 3.645 Rise FAST 0.100
4 whOutputDatal8) 8717 Rise SLOW 3753 Rise FAST 0.095
4l whOutputDatal16] 3714 Rise SLOW 3753 Rise FAST 0.092
4 wbOutputData[3] 2534 Rise SLOW 3648 Rise FAST 0.088
4 wboutputDiata[10] 8.541 Rise SLOW 3667 Rise FAST 0.081
4] wbOutputData[17] 8.687 Rise SLOW 3.708 Rise FAST 0.065
4 whOutputDatal7) 8.675 Rise SLOW 3.736 Rise FAST 0.053
4 wbOutputData[2) 2674 Rise SLOW 3735 Rise FAST 0.052
4 whOutputDiatal4] 8643 Rise SLOW 3709 Rise FAST 0028
4 wbOutputDatals) 8.642 Rise SLOW 3736 Rise FAST 0.021
4 whOutputDatal0) 8.622 Rise SLOW 3716 Rise FAST 0.000
Worst Case Summary 9.281 Rise SLOW 3645 Rise FAST 0.659
Bus Skew. 0.659ns
Timing Summary - impl_1 (saved) x | Datasheet-timing_1 x

6. Click the Restore [button so you can simultaneously see the Device window and the
Timing - Datasheet results.

7. Click the hyperlink for the Max Delay of the source wbOutputDatal[28].

This highlights the path in the Device window that is currently open.

Note: Ensure the Autofit Selection Q is highlighted in the Device window so you can see the entire
path, as shown in the following figure.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 41

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=41

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

Bl Eot Flow Toos Repots Window Lo Vew Hep | O Quickhccess
s, o] ® >, W MO0 8T %
MPLEMENTED DESIGN 17701004842 (36

Implementation Complete

Defautt Layout v

v PROJECT MANAGER

Netiist Device
& setti

- | =

whOutputDats_reg[2s] (FORE,

Lang.

4 1P Catalog

¥ IPINTEGRATOR

Create Block Design

¥ SIMULATION

Run Simulation

v RTLANALYSIS

> Open Elabarated Design

v SYNTHESIS

Pains.

B woOutputData_regi28)C
<0 wOutputDatai2s]

Timing
4 Q@ MaxMin Delays for Groups - Clocked by whClk - wbOutputDatal0]
»
Max Max MaxProcess Min Min MinProcess E ¥
Pag '

Delay Edge Comer
Report Methodology

9281 Rise SLOW.

Report DRC

ReportNoise

Report Utization

& ReoortPower i

8. In the Device window, right click on the highlighted path and select Schematic from the
popup menu.

This displays the schematic for the selected output data bus. From the schematic, you can
see that the output port is directly driven from a register through an output buffer (0BUF).

If you can consistently control the placement of the register with respect to the output pins

on the bus and control the routing between registers and the outputs, you can minimize skew
between the members of the output bus.

Schematic

® 6 M & |©& T 4+ = C 2cels 22I0Pots 2Nets o

whOutputData_reg[28]

TC wbOutputData_ OBUF[28]_inst
- cE [)
-)
1s L > IO wbOutputData[31:0]
OBUF
Hdr
FDRE

9. Change to the Device window.

To better visualize the placement of the registers and outputs, you can use the
mark_objects command to mark them in the Device window.

UG986 (v2020.1) August 12, 2020

www.Xilinx.com
Implementation l Send Feedback l 2

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=42

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

10. From the Tcl Console, type the following commands:

11.

mark_objects -color blue [get_ports wbOutputDatal*]]
mark_objects -color red [get_cells wbOutputData_regl[*]]

Blue diamond markers show on the output ports, and red diamond markers show on the
registers feeding the outputs, as seen in the following figure.

Device

- @ a ¥ X |©H Rk O o]

]

N L AN
i

s
- |
L |
|
- |
|
=
4
H
=
- E
i B
- B
-
-
-
-
-
i
-
-
-
- |
=
-

The outputs marked in blue are spread out along two banks on the left side starting with
wbOutputData[0] (on the bottom) and ending with wbOutputDatal[31] (at the top),
while the output registers marked in red are clustered close together on the right.

To look at all of the routing from the registers to the outputs, you can use the
highlight_objects Tcl command to highlight the nets.

Type the following command at the Tcl prompt:

highlight_objects -color yellow [get_nets -of [get_pins -of [get_cells \
wbOutputData_reg[*]] -filter DIRECTION==0UT]]

This highlights all the nets connected to the output pins of the wbOutputData_reg(*]
registers.

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 43

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=43

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

In the Device window, you can see that there are various routing distances between the
clustered output registers and the distributed outputs pads of the bus. Consistently placing
the output registers in the slices next to each output port eliminates a majority of the
variability in the clock-to-out delay of the wbOutputData bus.

Device

- @ a 2 ®[oEp @ o o

INNRNRN RPN Ly RN

12. In the main toolbar, click the Unhighlight All " button and the Unmark All @ button.

Step 4: Improving Bus Timing through
Placement

To improve the timing of the wbOutputData bus you will place the output registers closer to
their respective output pads, then rerun timing to look for any improvement. To place the output
registers, you will identify potential placement sites, and then use a sequence of Tcl commands,
or a Tcl script, to place the cells and reroute the connections.

RECOMMENDED: Use a series of Tcl commands to place the output registers in the slices next to the
wbOutPutData bus output pads.

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 44

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=44

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

1. Inthe Device window click to disable Routing Resources === and make sure Autofit Selection
€2 is still enabled on the toolbar.

This lets you see placed objects more clearly in the Device window, without the added details
of the routing.

2. Select the wbOutputData ports placed on the I/O blocks with the following Tcl command:

select_objects [get_ports wbOutputData*]

The Device window will show the selected ports highlighted in white, and zoom to fit the
selection. By examining the device resources around the selected ports, you can identify a
range of placement sites for the output registers.

Device

- Q@ 1 ® |© #H B B o

L
[
[
L]
L]
]
]
]
]
]
-
]
]
L]
-

3. Zoom into the Device window around the bottom selected output ports. The following figure
shows the results.

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 45

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=45

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

Device

- Q@ 1 ® |© #H B B o

F

Direction: Cutput

met whoutputDatald
EEL: PAD

Site: 21 {fixed)

Site type: I0_LYP_T1_13
Tile: LIOB33_x0v34
Fackage pin: 721

170 Bank: 100 Bank 13

The bottom ports are the lowest bits of the output bus, starting with wbOutputData[0].

This port is placed on Package Pin Y21. Over to the right, where the Slice logic contains the
device resources needed to place the output registers, the Slice coordinates are X0Y36. You
will use that location as the starting placement for the 32 output registers,
wbOutputData_reg[31:0].

By scrolling or panning in the Device window, you can visually confirm that the highest
output data port, wbOutputDatal31],is placed on Package Pin K22, and the registers to
the right are in Slice X0Yé67.

Now that you have identified the placement resources needed for the output registers, you
must make sure they are available for placing the cells. You will do this by quickly unplacing
the Slices to clear any currently placed logic.

4. Unplace any cells currently assigned to the range of slices needed for the output registers,
SLICE_X0Y36 to SLICE_X0Y67, with the following Tcl command:

for {set i 0} {$i<32} {incr i} {
unplace_cell [get_cells -of [get_sites SLICE_XOY[expr 36 + $i]]]
}

This command uses a for loop with an index counter (i) and a Tcl expression (36 + $i)to
get and unplace any cells found in the specified range of Slices. For more information on for
loops and other scripting suggestions, refer to the Vivado Design Suite User Guide: Using Tcl
Scripting (UG894).

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 46

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=46

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

o TIP: If there are no cells placed within the specified slices, you will see warning messages that nothing has been
unplaced. You can safely ignore these messages.

With the slices cleared of any current logic cells, the needed resources are available for
placing the output registers. After placing those, you will also need to replace any logic that
was unplaced in the last step.

5. Place the output registers, wbOutputData_regl[31:01, in the specified slice range with
the following command:

for {set i 0} {$i<32} {dincr i} {
place_cell wbOutputData_reg[$i] SLICE_XO0Y[expr 36 + $il]/AFF
}
6. Place any remaining unplaced cells with the following command:
place_design

Note: The Vivado placer works incrementally on a partially placed design.

7. As a precaution, unroute any nets connected to the output register cells,
wbOutputData_reg[31:0], using the following Tcl command:

route_design -unroute -nets [get_nets -of [get_cells \
wbOutputData_regl[#*]]]

8. Route any currently unrouted nets in the design:
route_design

Note: The Vivado router works incrementally on a partially routed design.

9. Analyze the route status of the current design to ensure that there are no routing conflicts:

report_route_status

10. Click the Routing Resources button a== to view the detailed routing resources in the Device
window.

11. Mark the output ports and registers again, and re-highlight the routing between them using
the following Tcl commands:

mark_objects -color blue [get_ports wbOutputDatal*]]

mark_objects -color red [get_cells wbOutputData_reg[*]]
highlight_objects -color yellow [get_nets -of [get_pins -of [get_cells\
wbOutputData_regl[#*]] -filter DIRECTION==0UT]]

O TIP: Because you have entered these commands before, you can copy them from the journal file
(vivado. jou) to avoid typing them again.

12. In the Device window, zoom into some of the marked output ports.

13. Select the nets connecting to them.

O TIP: You can also select the nets in the Netlist window, and they will be cross-selected in the Device window.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 47

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=47

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

14.

15.

In the Device window, you can see that all output registers are now placed equidistant from
their associated outputs, and the routing path is very similar for all the nets from output
register to output. This results in clock-to-out times that are closely matched between the
outputs.

Netlist

= H o
~ I whOutputData_QBUF (22
I whQutputData_0BUF[0]
I whOutputData_OBUF[1]
I whoutputData_OBUF[2]
I whOutputData_OBUF[3]
I whoOutputData_OBUF[4]
I whQutputData_0BUF[5]
I whOutputData_OBUF[6]
I whoutputData_OBUF[7]
I whoutputData_OBUF[8]
I whoutputData_ OBUF[]
I whQutputData_0OBUF[10]
I whOutputData_0OBUF[11]
I whoutputData_OBUF[12]
I whoutputData_OBUF[13]
I whoutputData_ OBUF[14]
I whQutputData_0OBUF[15]
I whOutputData_OBUF[16]
I whoutputData_OBUF[17]
I whoutputData_OBUF[18]
I whoutputData_ OBUF[18]

Run the Reports = Timing = Report Datasheet command again.

The Report Datasheet dialog box is populated with settings from the last time you ran it:
e Reference: [get_ports {wbOutputDatal[0]}]

e Ports: [get_ports {wbOutputDatal*]}]

In the Report Datasheet results, select the Max/Min Delays for Groups = Clocked by wbClk
— wbOutputData[0] section.

Examining the results, the timing skew is closely matched within both the lower bits,
wbOutputDatal0-13], and the upper bits, wbOutputDatal[14-31], of the output bus.
While the overall skew is reduced, it is still over 200 ps between the upper and lower bits.

With the improved placement, the skew is now a result of the output ports and registers
spanning two clock regions, XOYO and X0Y1, which introduces clock network skew. Looking
at the wbOutputData bus, notice that the Max delay is greater on the lower bits than it is
on the upper bits. To reduce the skew, add delay to the upper bits.

You can eliminate some of the skew using a BUFMR/BUFR combination instead of a BUFG,
to clock the output registers. However, for this tutorial, you will use manual routing to add
delay from the output registers clocked by the BUFG to the output pins for the upper bits,
wbOutputDatal[14-31],to further reduce the clock-to-out variability within the bus.

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 48

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=48

& XILINX

Chapter 3: Manual and Directed Routing

Timing

Q

= &£ C
= ¥

General Information
Input Ports Setup/Hold
Cutput Ports Clock-to-out
Setup between Clocks
~ Setup/Hold for Input Buses
~ Clocked by whClk

whlnputData

~ Max/Min Delays for Output |
~ Clocked by whClk

whOutputData

~ Max/Min Delays for Groups
~ Clocked by wbClk

whOutputData[0]

Pad

* whOutputData[0]
* whOutputData[31]
* whOutputData[30]
* whOutputData[29]
* whOutputData[28]
* whOutputData[27]
* whOutputData[26]
* whOutputData[25]
* whOutputData[24]
whOutputData[23]
* whOutputData[22]
* whOutputData[21]
* whOutputData[20]
* whOutputData[19]
* whOutputData[18]
* whOutputData[17]
* whOutputData[16]
* whOutputData[15]
* whOutputData[14]
whOutputData[13]
* whOutputData[12]
* whOutputData[11]
whOutputData[10]
* whOutputData[9]
* whOutputData[8]
whOutputData[7]
* whOutputData[6]
* whOutputData[5]
* whOutputData[4]
* whOutputData[3]
* whOutputData[2]
* whOutputData[1]
* whOutputData[0]
Worst Case Summary

Bus Skew: 0.233 ns

Max
Delay

791
7.720
7.697
7.705
7.707
7.715
7.688
7.694
7.695
770
7.687
7.691
7.723
7.730
7.678
7.681
7738
7.723
7.755
7.842
7.891
7.897
7.905
7.914
7.886
7.881
7915
7919
7.868
7.874
7.875
7.873
791
7.842

Max
Edge

Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise

Rise

Max Process
Corner

sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
SLow
sLOwW
sLOwW
sLow
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLow
sLOwW
sLOwW
sLow
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
sLOwW
SLOW

Min
Delay
3.303
3.236
3.213
3.2
3222
3.228
3.201
3.208
3.208
3.214
3.200
3.203
3.236
3.242
3191
3.193
3231
3.236
3.268
3.336
3.284
3.290
3.297
3.306
3.278
3.274
3.306
XN
3.261
3.267
3.269
32N
3.303
3.191

Min
Edge
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise

Rise

"4 O @ Max/Min Delays for Groups - Clocked by whClk - whOutputData[0]
»

Min Process Edge

Corner Skew

FAST 0.000
FAST 0.190
FAST 0.213
FAST 0.205
FAST 0.204
FAST 0.196
FAST 0.223
FAST 0.217
FAST 0.215
FAST 0.210
FAST 0.224
FAST 0.220
FAST 0.188
FAST 0.181
FAST 0.233
FAST 0.230
FAST 0.193
FAST 0.188
FAST 0.156
FAST 0.032
FAST 0.019
FAST 0.014
FAST 0.007
FAST 0.004
FAST 0.025
FAST 0.030
FAST 0.004
FAST 0.008
FAST 0.043
FAST 0.037
FAST 0.035
FAST 0.033
FAST 0.000
FAST 0.233

Datasheet - timing_2

? —0aX

Step 5: Using Manual Routing to

Skew

Reduce Clock

To adjust the skew, begin by examining the current routing of the nets,
wbOutputData_OBUF[14:31], to see where changes might be made to consistently add

delay. You can use a Tcl for loop to report the existing routing on those nets, to let you examine
them more closely.

UG986 (v2020.1) August 12, 2020

Implementation

l Send Feedback l

www.Xilinx.com
49

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=49

& XILINX

1.

Chapter 3: Manual and Directed Routing

In the Tcl Console, type the following command:

for {set i 141} {$i<32} {incr i} {
puts "$i [get_property ROUTE
[get_cells wbOutputData_reg[$i]]
}

[get_nets

-of [get_pins -of \
-filter DIRECTION==0QUT]]]"

This for loop initializes the index to 14 (set i 14), and gets the ROUTE property to return the

details of the route on each selected net.

The Tcl Console returns the net index followed by relative route information for each net:

14 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGICO0_-0OQ LIOI_OO0 }
15 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGIC1_0Q LIOI_O1 }
16 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGICO_O0Q LIOI_O0 }
17 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGIC1_0Q LIOI_O1 }
18 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGICO_OQ LIOI_O0 }
19 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGIC1_-0Q LIOI_O1 }
20 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGICO0_-OQ LIOI_OO }
21 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGIC1_0Q LIOI_O1 }
22 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGICO_0OQ LIOI_O0 }
23 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGIC1_-0Q LIOI_O1 }
24 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGICO_OQ LIOI_O0 }
25 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGIC1_-0Q LIOI_O1 }
26 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGICO0_-OQ LIOI_OO }
27 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGIC1_0Q LIOI_O1 }
28 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGICO_O0Q LIOI_O0 }
29 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGIC1_-0Q LIOI_O1 }
30 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGICO_OQ LIOI_O0 }
31 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
LIOI_OLOGIC1_-0Q LIOI_O1 }

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

WW2BEGO

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IMUX_L34

IOI_OLOGICO_D1

IOI_OLOGIC1_D1

IOI_OLOGICO_D1

IOI_OLOGIC1_D1

IOI_OLOGICO_D1

IOI_OLOGIC1_D1

IOI_OLOGICO_D1

IOI_OLOGIC1_D1

IOI_OLOGICO_D1

IOI_OLOGIC1_D1

IOI_OLOGICO_D1

IOI_OLOGIC1_D1

IOI_OLOGICO_D1

IOI_OLOGIC1_D1

IOI_OLOGICO_D1

IOI_OLOGIC1_D1

IOI_OLOGICO_D1

IOI_OLOGIC1_D1

From the returned ROUTE properties, note that the nets are routed from the output registers
using identical resources, up to node IMUX_13 4. Beyond that, the Vivado router uses
different nodes for odd and even index nets to complete the connection to the die pad.

By reusing routing paths, you can manually route one net with an even index, like
wbOutputData_OBUF[14], and one net with an odd index, such as
wbOutputData_OBUF[15], and copy the routing to all other even and odd index nets in

the group.

UG986 (v2020.1) August 12, 2020
Implementation

l Send Feedback l

www.Xilinx.com
50

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=50

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

2. Inthe Tcl Console, select the first net with the following command:

select_objects [get_nets -of [get_pins -of \

[get_cells wbOutputData_reg[14]] -filter DIRECTION==OUT]]

3. In the Device window, right-click to open the popup menu and select Unroute.
4. Click Yes in the Confirm Unroute dialog box.

The Device window displays the unrouted net as a fly-line between the register and the

output pad.
5. Click the Maximize button [J to maximize the Device window.
6. Right-click the net and select Enter Assign Routing Mode.

The Target Load Cell Pin dialog box opens, as seen in the following Figure, to let you select a
load pin to route to or from. In this case, only one load pin populates:
wbOutputData_OBUF[14]_dinst.

Please choose atarget load cell pin you want to route tofrom. Select ™Mo
Load' ifunsure of target load cell pin.

Cell Pins

™1 Dir BEL.. Cell MetDelay(.. Rout
C Input 1IN wbOutputData_ OBUF[14]_inst

L4 >

Load Met Delays
Mo Load Exit Mode

7. Select the load cell pin wbOutputData_OBUF[14]_inst/I, and click OK.

The Vivado IDE enters into Assign Routing mode, displaying a new Routing Assignment
window on the right side of the Device window, as shown in the following figure.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 51

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=51

& XILINX

Chapter 3: Manual and Directed Routing

Device

Xmlellr e g e

Routing Assignment

Net: | I whOutputData_OBUF([14]

~ Options
Number of hops: 15 1-2
Maximum number of neighbors: | 1,000 5

¥ Allow overlap with unfixed nets

Heighbor Hodes
Q Name Base Tile

Assigned Hodes
Q Name Base Tile
"2 CLBLL_LL_AQ CLBLL_L_X2Y50
= CLBLL_LOGIC_OUTS4 CLELL L X2Y50
i NetGap: 1

= IMUX_L34 INT_L_X0Y50
"2 10I_0LOGICO_D1 LIOI3_SING_XOY50
= LIOI_0LOGICO_0Q LIOI3_SING_XDY50
=2 LIOI_00 LIOI3_SING_XOY50

Assign Routing... Ezit Mode

@ Ready to assign routing

The Routing Assignment window includes the following sections:

o Net: Displays the current net being routed.

e Options: Are hidden by default, and can be displayed by clicking Options.

¢ Number of hops: Defines how many programmable interconnect points, or PIPs, to
look at when reporting the available neighbors. The default is 1.

¢ Maximum number of neighbors: Limits the number of neighbors displayed for
selection.

¢ Allow overlap with unfixed nets: Enables or disables a loose style of routing which can
create conflicts that must be later resolved. The default is ON.

o Neighbor Nodes: Lists the available neighbor PIPs/nodes to choose from when defining

the path of the route.

o Assigned Nodes: Shows the currently assigned nodes in the route path of the selected net.

e Assign Routing: Assigns the currently defined path in the Routing Assignment window as

the route path for the selected net.

¢ Exit Mode: Closes the Routing Assignment window.

The Assigned Nodes section displays six currently assigned nodes. The Vivado router
automatically assigns a node if it is the only neighbor of a selected node and there are no
alternatives to the assigned nodes for the route. In the Device window, the assigned nodes

appear as a partial route in orange.

UG986 (v2020.1) August 12, 2020

Implementation

[Send Feedback] Www.xilinx.c05n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=52

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

In the currently selected net, wbOutputData_OBUF[14], nodes CLBLL_LL_AQ and
CLBLL_LOGIC_OUTS4 are already assigned because they are the only neighbor nodes
available to the output register, wbOutputData_reg[14]. The nodes IMUX_L34,
IOI_OLOGICO_D1,LIOI_OLOGICO0_0Q,and LIOI_OO0 are also already assigned because
they are the only neighbor nodes available to the destination, the output buffer (OBUF).

A gap exists between the two routed portions of the path where there are multiple neighbors
to choose from when defining a route. This gap is where you will use manual routing to
complete the path and add the needed delay to balance the clock skew.

You can route the gap by selecting a node on either side of the gap and then choosing the
neighbor node to assign the route to. Selecting the node displays possible neighbor nodes in
the Neighbor Nodes section of the Routing Assighment window and appear as dashed white
lines in the Device window.

TIP: The number of reachable neighbor nodes displayed depends on the number of hops defined in the Options.

8. Under the Assigned Nodes section, select the CLBLL_LOGIC_OUTS4 node before the gap.

The available neighbors appear as shown in the following figure.

To add delay to compensate for the clock skew, select a neighbor node that provides a slight
detour over the more direct route previously chosen by the router.

Routing Assignment

Met: [T whOutpulData_OBUF[14]

~ Options

Number of hops: 17| [1-2

Maximum number of neighbors: 1,000

+ Allow overlap with unfixed nets

Neighbor Nodes (one hop from "CLBLL_LOGIC_OUTS4")

Name Base Tile
=2 NW2BEGO INT_L_X2Y50 ~

T MRIBEGD INT_L_x2Y50
= NNGBEGD INT_L_X2Y50
L MNIZBEGD INT_L_X2Y50
= MEGBEGD INT_L_X2Y50
"L ME2BEGD INT_L_X2Y50
= IMUX_LS INT_L_x2Y50

<

>

Assigned Nodes
Q Name Base Tile
% CLBLL_LL_AQ CLBLL_L_X2¥50
L GLBLL_LOGIC_OUTS4 CLBLL_L_X2Y50
AH NetGap: 1

= IMUX_L34 INT_L_X0Y50

%, 10|_0LOGICO_D1 LIOI3_SING_XO0Y50
L LIO_OLOGIGO_0Q LIOI3_SING_X0Y50
% L0100 LIOI3_SING_XO0Y50

Assign Routing Exit Made

@ Readyto assign routing

9. Under Neighbor Nodes, select node NE2BEGO.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 53

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=53

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

This node provides a routing detour to add delay, as compared to some other nodes such as
WW2BEGO, which provide a more direct route toward the output buffer. Clicking a neighbor
node once selects it so you can explore routing alternatives. Double-clicking the node
temporarily assigns it to the net, so that you can then select the next neighbor from that
node.

10. In Neighbor Nodes, assign node NE2BEGO by double-clicking it.

This adds the node to the Assigned Nodes section of the Routing Assignment window, which
updates the Neighbor Nodes.

11. In Neighbor Nodes, select and assign nodes WR1BEG1, and then WR1BEG2.

O TIP: In case you assigned the wrong node, you can select the node from the Assigned Nodes list, right click, and
select Remove on the context menu.

You can turn off the Auto Fit Selection {:} in the Device window if you would like to stay at the same zoom
level.

The following figure shows the partially routed path using the selected nodes shown in
orange. You can use the automatic routing feature to fill the remaining gap.

- aax xeEp @ o o
Routing Assignment
Net | T whOutputData_OBUF[14]

~ Options

Number of hops 12

Maximum number of neighbors: 1,000 =

< Allow overlap with unfixed nets

Neighbor Nodes (one hop from "WR1BEG2'
Q Name Base Tile
= WR1BEG3 INT_R_X1Y51
L FANLALT7 INT_R_X1Y51
L FANLALTE INT_R_X1Y51
L BYP_ALTZ INT_R_X1Y51
L BYP_ALTE INT_R_X1Y51
L NW2BEG2 INT_R_X1Y51

<
L NM2BEG2 INT_R_X1Y51

2 IMUXS INT_R_X1Y51

’ 2 IMUX44 INT_R_X1Y51 e

Assigned Nodes
Q Name Base Tile
= CLBLL_LL AQ CLBLL_L_X2Y50 p
= GLBLL_LOGIC_OUTS4 CLBLL_L_X2Y50
= NE2BEGD INT_L_X2Y50
. WR1BEG1 INT_R_%3V51
. WR1BEG2 INT_L_X2Y51
il MetGap: 1

2 IMUX_L34 INT_L_X0Y50

=2 101_0LOGICO_D1
% LI0I_0LOGICO_DQ
. LIOI_0D

@ Ready to assign routing

12. Under the Assigned Nodes section of the Routing Assignment window, right-click the Net
Gap, and select Auto-Route, as shown in the following figure.

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 54

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=54

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

Assigned Nodes
Q Mame Base Tile
% CLBLL_LL_AQ CLBLL_L_X2Y50 -
%L CLBLL_LOGIC_OUTS4 CLBLL_L_¥2Y50
T NE2BEGO INT_L_X2Y50
2 WR1BEG1 INT_R._X3Y51
= WR1BEG2 INT_L_X2Y51
[R
= IMUX_L34 Auto-Route
T 10_0LOGICD_ Mode F'ropert%s...
" LIDI_OLOGICC Exportto Spreadsheet..
T LICI_00 LT3 SING_R0TSy -
Assign Routing... ‘ | Exit Mode ‘

The Vivado router fills in the last small bit of the gap. With the route path fully defined, you
can assign the routing to commit the changes to the design.

13. Click Assign Routing at the bottom of the Routing Assignment window.

The Assign Routing dialog box opens, as seen in the following figure. This displays the list of
currently assigned nodes that define the route path. You can select any of the listed nodes,
highlighting it in the Device window. This lets you quickly review the route path prior to
committing it to the design.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 55

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=55

& XILINX

assigned

Mame
CLBLL_LL_AQ
CLBLL_LOGIC_OUTS4
MEZBEGO
WR1BEG
WR1BEG2
W2BEG
IMUX_L34
[O1_OLOGICO_DA
LIOI_OLOGICO_OQ
LICI_00

«'| Fix Routing

Routing for net ‘wbOutputData_OBUF[14] will be

Base Tile
CLBLL_L_X2Y50
CLBLL_L_X2Y50
INT_L_X2Y50
INT_R_X3Y51
INT_L_X2Y51
INT_R_¥1Y51
INT_L_X0Y50
LIDI3_SING_X0Y50
LIDI3_SIMNG_X0Y50
LICI3_SING_X0Y50

14. Make sure Fix Routing is checked, and click OK.

Chapter 3: Manual and Directed Routing

The Fix Routing checkbox marks the defined route as fixed to prevent the Vivado router from
ripping it up or modifying it during subsequent routing steps. This is important in this case,

because you are routing the net manually to add delay to match clock skew.

15. Examine the Tcl commands in the Tcl Console.

The Tcl Console reports any Tcl commands that assigned the routing for the current net.

Those commands are:

set_property dis_bel_fixed 1 [
wbOutputData_OBUF[14]_inst }]
set_property is_loc_fixed 1 [

wbOutputData_OBUF[14]_inst 1]

set_property fixed_route {

get_cells

get_cells

{wbOutputData_regl[14]

{wbOutputData_reg[14]

{ CLBLL_LL_AQ CLBLL_LOGIC_OUTS4 NE2BEGO

WR1BEG1 WR1BEG2 SW2BEG1 IMUX_L34 IOI_OLOGICO_D1 LIOI_OLOGICO_0OQ
LIOI_OO0 } } [get_nets {wbOutputData_OBUF[14]1}]

IMPORTANT! The FIXED_ROUTE property assigned to the net, wbOutputData_OBUF[14], uses a directed
routing string with a relative format, based on the placement of the net driver. This lets you reuse defined
routing by copying the FIXED_ROUTE property onto other nets that use the same relative route.

UG986 (v2020.1) August 12, 2020
Implementation

l Send Feedback l

www.Xilinx.com
56

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=56

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

After defining the manual route for the even index nets, the next step is to define the route
path for the odd index net, wbOutputData_OBUF[15], applying the same steps you just
completed.

16. In the Tcl Console type the following to select the net:
select_objects [get_nets wbOutputData_OBUF[15]]
17. With the net selected:
a. Unroute the net.
b. Enter Routing Assignment mode.
c. Select the load cell pin.
d. Route the net using the specified neighbor nodes (NE2BEGO0, WR1BEG1, and WR1BEG2).
e. Auto-Route the gap.
f. Assign the routing.

The Assign Routing dialog box, shown in the following figure, shows the nodes selected to
complete the route path for the odd index nets.

¢ Assign Routing =2 |
Routing for net whOutputData_OBUF[15] will be assigned ‘
Mame Base Tile
T2 CLBLL_LL_AQ CLBLL_L_X2¥51
T2 CLBLL_LOGIC_OUTS4 CLBLL_L_X2Y51
®2 ME2BEGD INT_L_X2Y51
T2 WR1BEG1 INT_R_X3Y52
T2 WR1BEG2 INT_L_X2Y52
T2 SW2IBEG1 INT_R_X1¥52
T IMUX_L34 INT_L_X0Y51
T2 101_0LOGICT_D1 LIOI3_X0YEA
T2 LIOI_OLOGICT_0n LIOI3_X0Ys1
T2 Lo LIOI3_X0YEA
v | Eix Routing

You routed the wbOutputData_OBUF[14] and wbOutputData_OBUF[15] nets with the
detour to add the needed delay. You can now run the Report Datasheet command again to
examine the timing for these nets with respect to the lower order bits of the bus.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 57

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=57

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

18. Switch to the Timing Datasheet report window. Notice the information message in the
banner of the window indicating that the report is out of date because the design was
modified.

19. In the Timing Datasheet report, click Rerun to update the report with the latest timing
information.

20. Select Max/Min Delays for Groups — Clocked by wbClk = wbOutputData[0] to display the
timing info for the wbOutputData bus, as seen in the following figure.

Timing ? -0 X

Q T 2 C 740 @ MaxMinDelays for Groups - Clocked by wbClk - wbQutputData[0]
»

General Information Pad V] Max Max Max Process Min Min Min Process Edge
Input Ports Setup/Hold Delay Edge Corner Delay Edge Corner Skew
Output Ports Clock-to-out # wbOutputData[31] 7720 Rise SLOW 3.236 Rise FAST 0.190
Setup between Clocks # wbOutputData[20] 7.697 Rise SLOW 3213 Rise FAST 0.213
“ Setup/Hold for Input Buse 4 wbOutputData[29] 7705 Rise SLOW 3.221 Rise FAST 0.205
~ Clocked by whClk f whOutputData[28] 7.707 Rize SLOW 3.222 Rize FAST 0.204
whinputData fwautputData[Z?] 7.713 Rize SLOW 3.228 Rize FAST 0.196
~ Max/Min Delays for Outpt 4 wbOutputData[26] 7.688 Rise SLOW 3201 Rise FAST 0.223
~ Clocked by wbClk # wbOutputData[25] 7.604 Rise SLOW 3.208 Rise FAST 0.217
whOutputData # wbOutputData[24] 7.605 Rise SLOW 3.208 Rise FAST 0.215
*~ Max/Min Delays for Groug @ whQutputData[23] 7701 Rise SLOW 3214 Rise FAST 0.210
~ Clocked by wbClk # whOutputData[22] 7.687 Rise SLOW 3200 Rise FAST 0.224
wbOutputDatall] g |\ poutputDatal21] 7.691 Rise SLOW 3202 Rise FAST 0.220
wbOutputData[20] 7723 Rise SLOW 3.236 Rise FAST 0.188
wbOutputData[19] 7730 Rise SLOW 3.242 Rise FAST 0.181
wbOutputData[18] 7.678 Rise SLOW 3191 Rise FAST 0.233
wbOutputData[17] 7.681 Rise SLOW 3193 Rise FAST 0.230
wbOutputData[16] 7718 Rise SLOW 3.231 Rise FAST 0.193
wbOutputData[15] 7.087 Rise SLOW 3366 Rise FAST 0.076
wbOutputData[14] 7.049 Rise SLOW 3328 Rise FAST 0.038
wbOutputData[13] 7.042 Rise SLOW 3336 Rise FAST 0.032
wbOutputData[12] 7.891 Rise SLOW 3.284 Rise FAST 0.019
wbOutputData[11] 7.897 Rise SLOW 3.290 Rise FAST 0.014
wbOutputData[10] 7.905 Rise SLOW 3.297 Rise FAST 0.007
wbOutputData[9] 7.914 Rise SLOW 3306 Rise FAST 0.004
wbOutputData[8] 7.886 Rise SLOW 3.278 Rise FAST 0.025
wbOutputData[7] 7.881 Rise SLOW 3.274 Rise FAST 0.030
wbOutputData[6] 7.915 Rise SLOW 3306 Rise FAST 0.004
wbOutputData[5] 7.919 Rise SLOW 3311 Rise FAST 0.008
wbOutputData[4] 7.868 Rise SLOW 3.261 Rise FAST 0.043
wbOutputData[3] 7.874 Rise SLOW 3.267 Rise FAST 0.037
wbOutputData[2] 7.875 Rise SLOW 3.260 Rise FAST 0.035
wbOutputData[1] 7.878 Rise SLOW 3.271 Rise FAST 0.033
wbOutputData[0] 7911 Rise SLOW 3303 Rise FAST 0.000
wbOutputData[0] 7911 Rise SLOW 3303 Rise FAST 0.000
Worst Case Summary 7.987 Rise SLOW 3191 Rise FAST 0.233

Bus Skew: 0.233 ns

Datasheet - timing_2

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 58

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=58

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

You can see from the report that the skew within the rerouted nets, wbOutputData[14]
and wbOutputData[15], more closely matches the timing of the lower bits of the output
bus, wbOutputDatal[13:0]. The skew is within the target of 100 ps of the reference pin
wbOutputDatalO].

In Step 6, you copy the same route path to the remaining nets,
wbOutputData_OBUF[31:16], to tighten the timing of the whole wbOutputData bus.

Step 6: Copying Routing to Other Nets

To apply the same fixed route used for net wbOutputData_OBUF[14] to the even index nets,
and the fixed route for wbOutputData_OBUF[15] to the odd index nets, you can use Tcl For
loops as described in the following steps.

1.
2.

Select the Tcl Console tab.
Set a Tcl variable to store the route path for the even nets and the odd nets:

set even [get_property FIXED_ROUTE [get_nets wbOutputData_OBUF[14]]]
set odd [get_property FIXED_ROUTE [get_nets wbOutputData_OBUF[15]]]

Set a Tcl variable to store the list of nets to be routed, containing all high bit nets of the
output data bus, wbOutputData_OBUF[16:31]:

for {set i 16} {$i<32} {incr i} {

lappend routeNets [get_nets wbOutputData_OBUF[$i]]
}
Unroute the specified nets:

route_design -unroute -nets $routeNets

Apply the FIXED_ROUTE property of net wbOutputData_OBUF[14] to the even nets:
for {set i 16} {$i<32} {incr i 2} {

set_property FIXED_ROUTE $even [get_nets wbOutputData_OBUF[$i]]
}
Apply the FIXED_ROUTE property of net wbOutputData_OBUF[15] to the odd nets:
for {set i 17} {$i<32} {incr i 2} {

set_property FIXED_ROUTE $odd [get_nets wbOutputData_OBUF[$i]]
}

The even and odd nets of the output data bus, as needed, now have the same routing paths,
adding delay to the high order bits. Run the route status report and the datasheet report to
validate that the design is as expected.

In the Tcl Console, type the following command:

report_route_status

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 59

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=59

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

O TIP: Some routing errors might be reported if the routed design included nets that use some of the nodes you
have assigned to the FIXED_ROUTE properties of the manually routed nets. Remember you enabled Allow
Overlap with Unfixed Nets in the Routing Assignment window.

8. If any routing errors are reported, type the route_design command in the Tcl Console.
The nets with the FIXED_ROUTE property takes precedence over the auto-routed nets.

9. After route_design, repeatthe report_route_status command to see the clean
report.

10. Examine the output data bus in the Device window, as seen in the following figure:

o All nets from the output registers to the output pins for the upper bits 14-31 of the output
bus wbOutputData have identical fixed routing sections (shown as dashed lines).

¢ You do not need to fix the L.OC and the BEL for the output registers. It was done by the
place_cell command in an earlier step.

Device

- @ a o EpE o @

Having routed all the upper bit nets, wbOutputData_OBUF[31:14], with the detour
needed for added delay, you can now re-examine the timing of output bus.

11. Select the Timing window.

Notice the information message in the banner of the window indicating that the report is out
of date because timing data has been modified.

12. Click rerun to update the report with the latest timing information.

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 60

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=60

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

13. Select the Max/Min Delays for Groups — Clocked by wbClk = wbOutputData[0] section to
display the timing info for the wbOutputData bus.

The clock-to-out timing within all bits of output bus wbOutputData is now closely matched
to within 83 ps.

14. Save the constraints to write them to the target XDC, so that they apply every time you
compile the design.

15. Select File = Constraints = Save to save the placement constraints to the target constraint
file, bft_full.xdc, in the active constraint set, constrs_1.

The synthesis and implementation will go out-of-date since constraints were updated. You
can force the design to update by clicking on Details in tool bar, since new constraints are
already applied.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 61

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=61

& X

LINX

Chapter 3: Manual and Directed Routing

Timing

Q

= = C
= =

General Information
Input Ports Setup/Hold
Output Ports Clock-to-cul
Setup between Clocks
~ Setup/Hold for Input Buse
~ Clocked by whClk

whinputData

~ Max/Min Delays for Qutpl
~ Clocked by wbClk

whOutputData

~ Max/Min Delays for Groug
~ Clocked by whClk

whQutputData[0]

Pad

4 whOutputData[0]
whOutputData[31]
whOutputData[30]
whOutputData[29]
whOutputData[28]
whOutputData[27]
whOutputData[26]
4 whOutputData[25]
whOutputData[24]
whOutputData[23]
4 whOutputData[22]
4 whOutputData[21]
4 whOutputData[20]
4 whOutputData[19]
4 whOutputData[18]
4 whOutputData[17]
whOutputData[16]
whOutputData[15]
whOutputData[14]
4 whOutputData[13]
4 whOutputData[12]
whOutputData[11]
4 whOutputData[10]
4 whOutputData[9]
4 whOutputData[8]
4 whOutputData[7]
4 whOutputData[6]
4 whOutputData[5]
whOutputData[4]
whOutputData[3]
whOutputData[2]
4 whOutputData[1]
whOutputData[0]
Worst Case Summary

Bus Skew: 0.083 ns

Mazx
Delay

791
7.924
7.961
7.969
7.970
7.978
7.951
7.958
7.959
7.963
7.951
7.955
7.986
7.9%4
7.942
7.943
7.981
7.987
7.949
7.942
7.891
7.897
7.903
7.914
7.886
7.881
7915
7.919
7.868
7.874
7.875
7.878
791
7.994

Max
Edge

Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise

Rise

Max Process
Corner

sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
sLow
SLow
SLow
SLow
SLow
SLow
SLOW

Min
Delay
3.303
3.366
3.343
3351
3351
3.357
333
3.338
3.338
3.344
3.330
3333
3.365
33N
3.320
3.323
3.360
3.366
3.328
3.336
3.284
3.290
3.297
3.306
3.278
3.274
3.306
m
3.261
3.267
3.269
32N
3.303
3.261

Min
Edge
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise

Rise

74 O @ Max/Min Delays for Groups - Clocked by whClk - wbOutputData[0]
»

Min Process
Corner

FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST

Edge
Skew

0.000
0.073
0.050
0.058
0.059
0.067
0.041
0.047
0.048
0.054
0.040
0.044
0.076
0.083
0.031
0.034
0.070
0.076
0.038
0.032
0.019
0.014
0.007
0.004
0.025
0.030
0.004
0.008
0.043
0.037
0.035
0.033
0.000
0.083

Datasheet - timing_2

? - 0a X

Conclusion

In this lab, you did the following:

e Analyzed the clock skew on the output data bus using the Report Datasheet command.

UG986 (v2020.1) August 12, 2020

Implementation

l Send Feedback l

www.Xilinx.com
62

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=62

iv Xl I_l NX Chapter 3: Manual and Directed Routing
A ®

e Used manual placement techniques to improve the timing of selected nets.
e Used the Assign Manual Routing Mode in the Vivado IDE to precisely control the routing of a
net.

e Used the FIXED_ROUTE property to copy the relative fixed routing among similar nets to
control the routing of the critical portion of the nets.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 63

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=63

& XILINX

Vivado ECO Flow

In this lab, you will learn how to use the Vivado® Engineering Change Order (ECO) flow to
modify your design post implementation, implement the changes, run reports on the changed
netlist, and generate programming files.

Chapter 4

For this lab, you will use the design file that is included with this guide and is targeted at the
Kintex® UltraScale™ KCU105 Evaluation Platform. For instructions on locating the design files,
see Locating Design Files for Lab 4.

A block diagram of the design is shown in the following figure.

Figure 3: Block Diagram of the Design

MMCM clock (100MHz)

VIO

Reset

Pause

Toggle

State Machine

28'b0,ci

<28.0>

> <28:25>

tog_state

count<3:0>

4’b0,count<3:0> LEDs<7.0>

\ mult<7:0>

In this design, a mixed-mode clock manager (MMCM) is used to synthesize a 100 MHz clock
from the 300 MHz clock provided by the board.

A 29-bit counter is used to divide the clock down further. The four most significant bits of the
counter form the count<3: 0> signal that is O-extended to 8 bits and drives the 8 on-board
LEDs through an 8-bit 2-1 mux.

The count<3:0> signal is also squared using a multiplier, and the product drives the other eight
inputs of the mux. A Toggle signal controls the mux select and either drives the LEDs (shown in
the following figure) with the counter value or the multiplier output.

UG986 (v2020.1) August 12, 2020

Implementation

[Send Feedback] Www.xilinx.cogzlr

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=64

& XILINX

Chapter 4: Vivado ECO Flow

A Pause signal allows you to stop the counter, and a Reset signal allows you to reset the
design. The Toggle, Pause, and Reset signals can either be controlled from on-board buttons
shown in the following figure or a VIO in the Hardware Manager as shown in the subsequent
figure. The VIO also allows you to observe the status of the LEDs. The following figures show the
location of the push-buttons and the LEDs on the KCU105 board and a Hardware Manager
dashboard. These allow you to control the push button and observe the LEDs through the VIO.

Figure 4: KCU105 On-Board Push Buttons and LEDs

Figure 5: VIO Dashboard

hw_vios
hw_wio_1
gla /¢ -
=
& | Name Value
E ~ g count_out_OBUF[7:0] [U]100
% I count_out_QBUF...
a8 I count_out_OBUF...

I count_out_QBUF...
I count_out_OBUF...
I count_out_QBUF...
I count_out_OBUF...
I count_out_QBUF...
I count_out_OBUF...

a pause_vio_out

La reset vio_out

‘a toggle_vio_out IIl

La yio_select 1

Acti...

Directi...

Input
Input
Input
Input
Input
Input
Input
Input
Input
Output
Output
Output
Output

. nrn.rl!

hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1

hw_vio_1

UG986 (v2020.1) August 12, 2020
Implementation

l Send Feedback I

www.Xilinx.com
65

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=65

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

Related Information
Locating Design Files for Lab 4

Step 1: Creating a Project Using the Vivado
New Project Wizard

To create a project, use the New Project wizard to name the project, to add RTL source files and
constraints, and to specify the target device.

1
2
3.
4

Open the Vivado Design Suite integrated design environment (IDE).

In the Getting Started page, click Create Project to open the New Project wizard.
Click Next.

In the Project Name page, do the following:

a. Name the new project project _ECO_1lab.

b. Provide the project location C: /Vivado_Tutorial.

c. Ensure that Create project subdirectory is selected.

d. Click Next.

In the Project Type page, do the following:

a. Specify the type of project to create as RTL Project.

b. Leave the Do not specify sources at this time check box unchecked.
c. Click Next.

In the Add Sources page, do the following:

a. Set the Target Language to Verilog.

b. Click Add Files.

c. Inthe Add Source Files dialog box, navigate to the /src/1ab4 directory.

d. Select all Verilog source files.

e. Click OK.

f. Verify that the files are added.

g. Click Add Files.

h. In the Add Source Files dialog box, navigate to the /src/1ab4/IP directory.

Select all of the XClI source files and click OK.

j. Verify that the files are added and Copy sources into project is selected.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 66

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=66

& XILINX

k. Click Next.

Chapter 4: Vivado ECO Flow

7. In the Add Constraints dialog box, do the following:

a. Click the Add button +., and then select Add Files.

b. Navigate to the /src/1ab4 directory and select ECO_kcul05.xdc.

c. Click Next.

8. In the Default Part page, do the following:

a. Select Boards and then select Kintex-UltraScale KCU105 Evaluation Platform.

b. Click Next.

9. Review the New Project Summary page. Verify that the data appears as expected, per the

steps above.

10. Click Finish.

Note: It might take a moment for the project to initialize.

11. In the Sources window in the Vivado IDE, expand top to see the source files for this lab.

Sources
Q =& +
~ Design Sources (1)
~ @B top (topv) (3)
» TFE wio_inst_0:vio_0 (vio 0O
~ Constraints (1)
~ constrs_1 (1)
gy ECO_keul05.xde
* Simulation Sources (1)
Libraries

Hierarchy IF Sources

» TFO clk 0 el wiz_0 (cll wiz 0.

? 0O a

8 my_mult_0: multiplier (multy)

Compile Order

b 4

=

Step 2: Synthesizing, Implementing, and
Generating the Bitstream

1. Inthe Flow Navigator, under Program and Debug, click Generate Bitstream.

This synthesizes, implements, and generates a bitstream for the design.

The No Implementation Results Available dialog box appears.

2. Click Yes.

UG986 (v2020.1) August 12, 2020
Implementation

www.Xilinx.com

l Send Feedback l 67

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=67

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

After bitstream generation completes, the Bitstream Generation Completed dialog box
appears. Open Implemented Design is selected by default.

Click OK.
4. Inspect the Timing Summary report and make sure that all timing constraints have been met.
Timing ? —0a X
Q I = Design Timing Summary
General Information =
Timer Settings Setup Hold Pulse Width
Design Timing Summary ‘Worst Negative Slack (WNS). 6.410ns Worst Hold Slack (WHS): 0.004 ns Worst Pulse Width Slack (WPWS): 0666 ns
Clock Summary (4) Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS) 0.000 ns Total Pulse Width Negalive Slack (TPWS). 0.000 ns
> e CheckTiming (11) MNumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0
? [Ina-Clock Paths Total Number of Endpoints: 4342 Total Number of Endpoints: 4842 Total Number of Endpoints 2749

Inter-Clock Paths
> Other Path Groups
User lgnored Paths

All user specified timing constraints are met.

Timing Summary - impl_1 (saved)

You can use the generated bitstream programming file to download your design into the
target FPGA device using the Hardware Manager. For more information, see the Vivado
Design Suite User Guide: Programming and Debugging (UG908).

Step 3: Validating the Design on the Board

This step is optional, but will help you understand the ECO modifications that you will make in
Step 4: Making the ECO Modifications.

1. From the main menu, select Flow = Open Hardware Manager.

The Hardware Manager window opens.

UG986 (v2020.1) August 12, 2020

www.Xilinx.com
Implementation l Send Feedback l o

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=68

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

¢ project ECO_lab - [C/Data/f¥ivado_Tutorialfproject_ ECO_lab/project ECO_|abxpr] | = || =] ” 2 |
FEile Edit Flow Tools Window Layout View Help Quick Access write_bitstream Complete 4
E‘ b‘ B 4o X Default Layout v
Flow Navigator HARDWARE MANAGER - unconnected ? X
~ PROJECT MANAGER o No hardware targetis open. Openfarget
£ Settings
Hardware ? 00X
Add Sources
o
Language Templates
IF 1P Catalog
v IP INTEGRATOR
Create Block Design
v SIMULATION
Run Simulation Properties 2R EI R P X
-3
v RTLANALYSIS
> Open Elaborated Design
v SYNTHESIS
P Run Synthesis an objectto see properties
> Open Synthesized Design
¥ IMPLEMENTATION
P Run Implementatian
> Openimplemented Design TclConsole X Messages | Serial 0 Links | SerialllO Scans 2 _0O0
Q T = I 8B B @
v PROGRAM AND DEBUG .
" . Finished scamming sources &
¥ii Generate Bitstream | INFO: [IP_Flow 19-234] Refreshing IF repositories

INFO: [IP_Flow 18-1704] No user IF repositories specified

~ Open Hardware Manager
. INFO: [IP_Flow 19-2313] Loaded Vivado IP repository 'C:/Xilinx/Vivado/2017.1/data/ip'.

Open Target open project: Time (s): cpu = 00:00:18 : elapsed = 00:00:10 . Memory (ME): peak = 1154.746 ; gain = Z18.867
. update_compile_order -fileset sources_l
| open mw o
< >

nfiguration Mer

2. Connect to a hardware target using hw_server.

O TIP: For more information about different ways to connect to a hardware target, refer to the Vivado Design
Suite User Guide: Programming and Debugging (UG908).

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 69

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=69

& XILINX

HARDWARE MANAGER - |ocalhostxilink_tcf/Digilent210251845167

Hardware
Q = 2 » » N L]
Name Status
~ B localhost (1 Connected
~ @e xilin_teiDigilent2102518451... Open
~ @ xckuD40_0 (3) Programmed
£ SysMon (System Monitor
& nw_vio_1 (vio_insi_D, OK - Outputs
2 hw_ila_1 (u_ila_0 O ldle
< 5

Hardware Device Properties

8 ¥cku040_0 -]
Name: *cku040_0 2
Part xcku040
D code: 13822093
IR length: 6
Status: Programmed

Programming file: | labiproject_ECO_lab.runs/impl_1itc

Probes file: cl_ECO_lab.runsfimpl_1/debug_ne
User chain count. 4 &
< >
General Properiies

Tcl Console

Q¢ I B E@

hw_ila_1

Dashboard Options
Q ==
~ (W xcku040_0
~ V) hw_ila_1 (u_ila_
/| status
Setiings
Trigger Setup
Capture Setup

ANHINEINELN

Waveform

hw_vio_1 (vio_insi_

SysMon (System hic

refresh hw_device [lindex [get_hw devices xcku0do_0] 0]
INFO: [Labtools 27-2302] Device xcku040 [(JTAG dewice index = 0) is programmed with a design that has 1 ILA core(s).
INFO: [Labtools 27-2302] Device xckuO40 (JTAG device index = 0) i3 programmed with a design that has 1 VIO core(s).

INFO: [Labtools 27-189] Uploading output probe values fer YIO core [hw_vie_l]

display_hw_ila_data [get_hw_ils data hy_ila data 1 -of_objects [get_hw_ilas -of_cbiects [get_hw_devices xckul40_07 -filter {CELL_NAME=-"u_ils_0"}1]
INFO: [Labtools 27-3304] ILA Waveforn data saved to file C:/Data/Vivado Tutorial/project_ECO_lab/project ECO_lab.hw/backup/hw ila_data_l.ila. Use Tcl comnsnd 'import hw_ils data’' or Vivade

<

3.

Chapter 4: Vivado ECO Flow

Waveform - hw_ila_1
a + &

ILA Status:1dle

= !

> » BB a » 4

" count_out_OBU
™ count_out_pre[:
™ mul_out_pre[7:0]
I pause_vio

Trigger Setup - 1

+

Status - hw_ila_{

> > » N

Core status

Idle Walting for Trigger Past-Trigoer Full

Capture status

window 1 of 1 window sample 0 of 1024 Total sample 0 of 1024~
>

The Program Device dialog box opens.

¢ Program Device

pragramming file.

Bitstream file:
Debug probes file:

¥ Enable end of startup check

(o)

Select a bitstream programming file and download it to your hardware device. You can optionally
select a debug probes file that corresponds to the debug cores contained in the bitstream

fivado_Tutorialiproject_ECO_lab/project ECO_lab.runs/impl_1/op.bit

Jtarial/project_ECO_|ab/project_ECO_lab.runs/impl_1/debug_nets It

(-]
-]

g

Cancel

4. Navigate to the Bitstream file and Debug Probes file.

5. Click Program.

D

>

In the Vivado Flow Navigator, under Program and Debug, click Program Device.

Now that the FPGA is configured, you can use the on-board buttons and the on-board LEDs
to control and observe the hardware. Press the Pause button to pause the counter. Press the
Toggle button to select between the count and the multiplier result. Press the Reset button to

reset the counter.

UG986 (v2020.1) August 12, 2020
Implementation

| Send Feedback I

www.Xilinx.com
70

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=70

iv Xl Ll NX Chapter 4: Vivado ECO Flow
A ®

r"q"
= n-l.h

Alternatively, you can use the VIO to control and observe the hardware.

If the following warning message appears, select one of the alternatives suggested in the
message.

WARNING: [Labtools 27-1952] VIO hw_probe OUTPUT_VALUE properties for
hw_vio(s) [hw_vio_1] differ from output values in the VIO corel(s).
Resolution:
To synchronize the hw_probes properties and the VIO core outputs choose
one of the following alternatives:

1) Execute the command 'Commit Output Values to VIO Core', to write
down the hw_probe values to the core.

2) Execute the command 'Refresh Input and Output Values from VIO
Core', to update the hw_probe properties with the core values.

3) First restore initial values in the core with the command 'Reset
VIO Core Outputs', and then execute the command 'Refresh Input and
Output Values from VIO Core'

6. Select the hw_vios tab in the dashboard and click the Add button +. to add probes.
The Add Probes dialog box opens.

UG986 (v2029.1) August 12, 2020 Send Feodback www.xilinx.com
Implementation 71

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=71

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

Add Probes X
= = o
Search:
Probes for hw_vio_1 (5] w
~ 8B hw_vio_1

» & count_out_OBUF[7:0]
Ta pause_vio_out
ta reset_vio_out
La toggle_vio_out
La yio_select

Cancel

7. Select all of the probes for hw_vio_1 and click OK.

8. Inthe hw_vios dashboard, select count _out _OBUF[7:0], then right-click and select Radix
= Unsigned Decimal.

hw_ila_1 » | hw_vios »
hw_wio_1
g Q = = —
=
& | Name Value Acti... Directi.. VIO
]
T | iE) ut hw_vio_1
= Debug Probe Properties. .
= la tput hw_vio_1
(13
a w ¢ Ted tout hw_vio_1
a LED... tput hw_vio_1
ta Radix 4 Binary
Activity Persistence 13 Qctal
Rename... ® Hex
Mame b UnsignedDecima&
Signed Decimal
Remove L
Exportto Spreadsheet..

9. Inthe hw_vios dashboard, select count _out _OBUF[7:01], then right-click and select LED.

The Select LED Colors dialog box opens.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 72

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=72

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

¢ SelectLED Colors | b |

Low Value Color: © Red v

High Value Color: @ Green ~

10. Select Red for the Low Value Color and Green for the High Value Color.
11. Click OK.

12. In the hw_vios dashboard, select pause_vio_out, reset_vio_out, and toggle_vio_out, then
right-click and select Active-High Button.

hw_ila_1 »* | hw_wvios b4
hw_wio_1

2/Q = € -
=2
8 Mame Yalue Acti.. Directi.. VIO
=
E » i count_out_OBUF[7:0] [UI1 Input hw_vio_1
% La pause_vio_out [Bl O - Output hw_vio_1
[
] La reset_vio_out [B]l O A 0] Debug Probe Properties...

la i -

toggle_vio_out [Bl O o] * Tex
La vio_select [B] O - o]}

ﬁc’[iv]};High Button
Active-Low Button

Toagale Button

Mame b
Remave

Exportto Spreadsheet..

13. In the hw_vios dashboard, right-click vio_select and select Toggle Button.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 73

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=73

& XILINX

Chapter 4: Vivado ECO Flow

hw_ila_1 » | hw_vios »

hw_wio_1
g/Q = 2 —
=
S | Name Value Acti... Direci.
]
’g » g count_out_OBUF[7:0] [U]121 Input
= .
§ a pause_vio_out IIl Output
= La reset_vio_out |I| Output

‘a toggle_vio_out IIl Output

la vio_select mn - Audnd
Debug Probe Properties. .

* Text
Active-High Button

Active-Low Buttan

Togg[}Elutton

Rename...

Mame
Remaove

Exportto Spreadsheet..

VID

hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1

beewio_1

14. Expand count_out_OBUF[7:0] to view the VIO LEDs.

Now that the VIO is set up, you are ready to analyze the design.

15. Toggle the vio_select button to control the hardware from the VIO.

16. Press the pause_vio_out button to pause the counter.

17. Press the toggle_vio_out button to select between the count and the multiplier result.

18. Press the reset_vio_out button to reset the counter.

UG986 (v2020.1) August 12, 2020
Implementation

l Send Feedback l

www.Xilinx.com
74

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=74

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

hw_vios s _oOa
hw_wio_ 1 SRR B e
s1Q = @ -
=
E Mame Value Acli.. Direcli.. WO
E ~ i@ count_out_OBUF[T.O] [U100 Input hw_vio_1
% I" count_out_OBUF ... @ Input hw_vio_1
a I' count_sul_OBUF ... Input hw_via_1
count_oui_OBUF input hw_vio_1
I count_out_OBUF ... Input hw_wio_1

I count_oul_OBUF Input hw_vio_1

I count_out_OBUF ... Input hw_wino_1
I count_out_OBUF .. Input hw_vio_1
count_out_OBUF ... Input hw_wio_1

‘e pause_vio_oul Cutput hw_vio_1

allellellcl o @@ @ @ 0@

Le reset_vio_oul Output hw_vio_1

‘a toggle_vio_out Output hw_wvio_1

La vio_select Cutput hw_wvio_1

Step 4: Making the ECO Modifications

1. In the Flow Navigator, select the Project Manager.
2. In the Design Runs window, right-click on impl_1 and select Open Run Directory.

3. The run directory opens in a file browser, as seen in the following figure. The run directory
contains the routed checkpoint (top_routed. dcp) to be used for the ECO flow.

TIP: In a project-based design, the Vivado Design Suite saves intermediate implementation results as design
checkpoints in the implementation runs directory. When you re-run implementation, the previous results are
deleted. Save the router checkpoint to a new directory to preserve the modified checkpoint.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 75

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=75

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

MO-

“ Home Share View (]
5 / 3 w o N -
B D & cut 4 B x _l T New item V) 4 Open~ HHselectal
W Copy path Edit

£ Easy access ~ Select none

ey Gt [#] Paste shorteut A:;".E (.Dpy Delete Rename ,2‘,;":, BT @History {7 Invert selection
Clipboard Organize New Open Select
= « 4 | > ThisPC > OSDisk (C:) > Vivado_Tutorial > project ECO_lab > project ECO lsb.uns » impl_1 v & | Searchimplt »
O Neme h Date modified Type Size @
Quick access T
4 top_placed 1 2427KB
[This PC [top_power_routed 1 11KB
@ Network 7] top_power_routed.rpx 1 2,299 KB
7] top_power_summary_routed.pb 1 1KB
| | top_route_status.pb 1 1KB
[top_route_status 1 1KB
[ls top_routed 1 2,768 KB
] top_timing_summary_routed.pb 1 1KB
[top_timing_summary_routed 1 625 KB
] top_timing_summary_routed.rpx 1 49 KB
7] top_utilization_placed.pb 1 1KB
[top_utilization_placed 1 11KB
B usage_statistics_webtalk 1 Firefox HTML Doc... 62KB
[7] usage_statistics_webtalk 1 XML Document 97KB
[] vivadojou 1 JOU File 1KB
(] vivado.pb 1 PE File 1KB
] write_bitstream.pb 10/31/2018 11:03 ... PB File 7KB @
G5items 1 item selected 2.70 MB =

4. Create a new directory named ECO in the original C: /Vivado_Tutorial/
project_ECO_1lab project directory, and copy the top_routed. dcp file from the
implementation runs directory to that newly created directory.

5. From the main menu, select File = Checkpoint— Open.
The Open Checkpoint dialog box opens.

6. Navigateto C:/Vivado_Tutorial/project_ECO_lab/ECO and select the
top_routed.dcp checkpoint.

A dialog box opens, asking whether to close the current project.
7. Click Yes.
8. From the main menu, select Layout— ECO.

The ECO Layout is selected. The ECO Navigator is displayed on the left of the layout
(highlighted in red in the following figure). It provides access to netlist commands, run steps,
report and analysis tools, and commands to save changes and generate programming files.

The Scratch Pad in the center of the layout (highlighted in red in the following figure) tracks
netlist changes, as well as place and route status for cells, pins, ports, and nets.

Note: ECOs only work on design checkpoints. The ECO layout is only available after you have opened a
design checkpoint in the Vivado IDE.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 76

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=76

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

¥ top_routed.dep - [C/Data/Vivado_Tutorial/project ECO_lab/ECO/top_routed.dep] [oll@] =]
Eile Edit Flow Tools Window Layout View Help Quick Access
=, ® H o -3 ECO ~
CHECKPOINT DESIGN - xcku040-fva1156-2-8 ? X
[ECO Navigator — Scratch Pad X Properties | Netlist . Schematic X Device X | Package X 200
Edit Q = € |4 -] - aQ H R © C 92Cels 13UOPois 244 Nets o
Creats Net Con PnR Object Name
Create Cell
Create Port
Create Pin

Connect Net
Disconnect Net
Replace Debug Probes
Place Cel

Unplace Gell

Check ECO

Optimize Logical Design

Place Design

L

Opimize Physical Design
Route Design
Report
Edit Timing Constraints
T Report Timing Summary
W Report Glock Networks
Report Clock Interaction
Report DRC
TclConsole x Messages | Package Pins | 10 Ports z_00
Report Utilization _
Q T = I B E @
& Report Powsr .
! A total of 36 instances were transformed. B
| CFBLUTS =» CFGLUTS (SRLCSZE, SRLIGE): 68 instances
Program ! IBUF -=> IBUF (INBUF, IBUFCTRL]: 3 instances

IEUFDS => IBUFDS (DIFFINEUF, IBUFCTRL): 1 instances

Save CheckpointAs BAN3ZMIS =» RANSONLG (RANSSZ, RANS32, RAMD3Z, RANDSZ, RAND3Z, RAND32, RANDIZ, RAND3Z, RANDIZ, RAMDSZ, RAND32, RANDZ, RAND3Z, RAND32, RAMD3Z, RAND32]: 4 instances

35 Generate Bitstream :

. INFO: [Project 1-604] Checkpoint was created with ¥iwado w2017.1 (64-bit) build 1829291

3 Witz Debug Probes) open_checkpoint: Time (s): opu = 00:00:46 ; elapsed = 00:00:25 . Memory (MB): peak = 1916.148 ; gain = L007.074

Open Hardware Manager ¢ 2

To illustrate the capabilities of the ECO flow, you next change the functionality of the
multiplier from a square of count [3:0] to a multiply by two.

9. From the Tcl Console, type the following command:

mark_objects -color blue [get_cells my_mult_O0]

TIP: To make it easier to locate objects that are included in the ECO modifications, it helps to mark or highlight
the objects with different colors.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 77

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=77

iv Xl Ll NX Chapter 4: Vivado ECO Flow
A ®

Schematic ? -0

|

& x

- @ e ¥ B © C 92Cells 13V0OPorts 244 Nets

10. Zoom into the multiplier in the schematic window and select the in2[3:0] pins.
Alternatively, you can type the following command in the Tcl Console:

select_objects [get_pins my_mult_0/in2[*]]

11. Click the Disconnect Net button in the Edit section of the Vivado ECO Navigator. The net is
disconnected from the pins in the schematic.

Schematic ? -0&a X

- e e 3 & © = C 92Cells 13UOPors 244 Nets o

my_mult_0 —
in1[3:0 t[7:0
in1[3:0] @ out[7:0] i 4

nlc in2[3:[L
multiplier
]
-
4 > ;

The Tcl Console reproduces the disconnect_net command that you just executed in the
ECO Navigator. This is useful if you want to replay your ECO changes later by opening the
original checkpoint and sourcing a Tcl script with the ECO commands.

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 78

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=78

& XILINX

Chapter 4: Vivado ECO Flow

Tcl Console

Q I B E @O

E wark objects -color blue [get cells wy mult 0]
| startgroup

-

-

-

-

E discormect_net -objects [list {my mult 0/in2[3]}]

{my_mult:ﬂfinZ[Z]}]
{my_mult 0/ina[1]}]

{my_mult 0/inafo]}]

. disconnect net -objects [list
. disconnect _net -objects [list
E discommect_net -objects [list
. endgroup

- 0 a X

The Scratch Pad is populated with the four nets divClk_regl28:

25] that you

disconnected and the multiplier input pins my _mult_0/in2[3:0]. Note the following in

the Scratch Pad:

e The Scratch Pad connectivity column (Con) shows a check mark next to the
divClk_regl[28:25] nets, indicating that they are still connected to the other multiplier

inputs.

e Themy_mult_0/in2[3:0] pins do not show a check mark next to them because they

no longer have nets connected.

e The Place and Route (PnR) column is unchecked for everything, indicating that the

changes have not yet been implemented on the device.

Scratch Pad — 0O a X
Q = & = + o
Con PnR Object Name

~ B my_mult_0/in2
2 my_mult_0/in2[3]
2 my_mult_0/in2[2]
2 rmy_mult_o/in2[1]
2 my_mult_0/in2[0]
~ I divClk_reg
I divClk_reg[25]
I divClk_reg[26]
I divClk_reg[27]
I divClk_reg[28]

L 4 4 44

12. In the Scratch Pad, select the my _mult_0/in2[3],my_mult_0/in2[21], and

my_mult_0/in2[0] pins.
13. In the Edit section of the Vivado ECO Navigator, click Connect Net.

The Connect Net dialog box opens.

UG986 (v2020.1) August 12, 2020
Implementation

l Send Feedback l

www.Xilinx.com
79

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=79

Chapter 4: Vivado ECO Flow

& XILINX

ECO Navigator . Scratch Pad ¥ Cell Pin Properties Nethst N]
Eait Q T & = + o
Create Net Con PnR Object Name
~ B my_mult_0/in2
Create Cell O rmy_mult_0/in2[3]
Create Port 2 my_mult_0/in2[2]
) 2 rmy_mult_o/in2[1]
Create Pin

Run

Connect Met
Disconnect Met
Replace Debug Prohes
Place Cell

Unplace Cell

Check ECO

Optimize Logical Design
Place Design

Optimize Physical Design

Brnta Nacinn

LA L4 4

2 my_mult_0/in2[0]
~ I divClk_reg

I divClk_reg[25]

I divClk_reg[26]

I divClk_reg[27]

I divClk_reg[28]

14. In the Connect Net dialog box, select <constO> from the GROUND section.

UG986 (v2020.1) August 12, 2020

Implementation

l Send Feedback l

www.Xilinx.com
80

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=80

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

Connect selected pins or ports with a net.

Hierarchy: A E‘

Net or Bus:

Search:

GLOBAL_CLOCK &
| CLK
GROUMD
| [=const0= '
| GND_2
POWER
[=constt=
SIGMAL
I count_out
| # count_out_QBUF
[& count_out_pre
| divCIk_reg
[& mul_out_pre
[% mult_out_pre_pre
p_1_in__0
| sl_iport0
I sl_iport1_o_1
[sl_oportd

-1 -k P i

|
|

-
15. Click OK.
<const0>is added to the Scratch Pad.

16. Collapse the <const 0> signal.

The three pins that you connected now show check marks in the Connectivity column of the
Scratch Pad.

UG986 (v2020.1) August 12, 2020

) Send Feedback www.Xilinx.com
Implementation 81

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=81

iv Xl |NX Chapter 4: Vivado ECO Flow
- — ®

Scratch Pad — 0 a X
Q T & 4 + o
Con PnR Object Name

o ~ I divClk_reg

o I divClk_reg[25)]

o I divClk_reg[26]

o I divClk_reg[27]

o I divClk_reg[28]

~ B my_mult_o/in2
o o O my_mult_0fin2[3]
J J 2 my_mult_0/in2[2)
2 my_mult_0/in2[1]
J J 2 my_mult_0/in2[0]
of » T =constd=

17. In the Scratch Pad, select the my_mult_0/in2[1] pin.
18. Click Connect Net.
The Connect Net dialog box opens.

19. In the Connect Net dialog box, select <const1> from the POWER section.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 82

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=82

& XILINX

Connect selected pins or ports with a net.

Hierarchy:

Net or Bus:

Search:

GLOBAL_CLOCK
| CLK
GROUMD
- [=const0=
| GND_2
POWER
[=const1=
SIGMAL
I count_out
| # count_out_QBUF
[& count_out_pre
| divCIk_reg
[& mul_out_pre
[% mult_out_pre_pre
p_1_in__0
| sl_iport0
I sl_iport1_o_1
[sl_oportd

P R

|
|

20. Click OK.

<constl>is added to the Scratch Pad.

21. Collapse the <const 1> signal.

Chapter 4: Vivado ECO Flow

The pin that you connected now shows check marks in the Connectivity column of the

Scratch Pad.

UG986 (v2020.1) August 12, 2020
Implementation

I Send Feedback l WWW.ininx.cogn;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=83

iv Xl |NX Chapter 4: Vivado ECO Flow
- — ®

Scratch Pad — 0O a X
Q = & = + - o
Con PnR Object Name

~ I divClk_reg
I divClk_reg[25]
I divClk_reg[26]
I divClk_reg[27]
I divClk_reg[28]

» I =constl=

~ B my_mult_0/in2
2 my_mult_0/in2[3]
2 my_mult_0/in2[2]
2 my_mult_o/in2[1]
2 my_mult_0/in2[0]

L 4L LA LALA4A444
L 4 4L L 4

» I =constl=

22. Select the my_mult_0/in2 pin in the Scratch Pad.

This command highlights the pins in the currently open Schematic window, and shows the
updated connections.

Note: Make sure that the Autofit Selection @ toggle button is highlighted in the Schematic window so
you can see the entire path, as shown in the following figure.

ScratchPad % Bus PinProperties | Netlist .] Device x| Package x|Schematic X 00
Q T = - -3 - @ a ¥ X |© = C 92Cells 13VOPofs 244 Nets -]
Con PnR ObjectName . B Foss |~
4 ~ I divClk_rea
vy I divCIk_req[25]
v T divClk_req[26] mul_ot
v T divCIk_reg[27] FO=2274
< T divCIk_reg[28] Fos1 |
5 i FO=1
vy » T =const0= [
< &~ B my_mut_0in2 my_mult_0 B FO& ||
v [my_mult_0fin2(3] in[3:0] 0 ou[r:0) g]
< v 2 my_mult_0in2[2] V=B0010" in2[3:0) mul o
v o 2 my_mult_0fin2[1] _lm — 1
v v @ my_mult_0fin2[0] L Fo= [|
v » T <const1= 8 o Fo=1 |
Ay FO=53 i
mul_ou
Fozzm |
FO=41
7 @ FO=1| | o
< > K

When you observe the count signal on the LEDs, you only use four bits. The upper four bits
are padded with zeroes.

Now, you will use the ECO flow to observe counter bit 24 on LED 7. The first step is to
analyze the logic that drives count _out_reg([3].

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 84

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=84

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

23. From the Tcl Console, type the following command:

select_objects [get_cells count_out[3]_i_1]

This lets you quickly identify the LUT3 that drives the count _out_reg[3] register, which
drives LED 3. The inputs are:

e mul_out_pre_regl[3] forpinlO
e count_out_pre_regl3] forpinll
e tog_state_reg forpinl2
24. Click the Cell Properties tab to view the cell properties and select the Truth Table tab.
25. Click Edit LUT Equation to view the equation for the LUT3. Note the LUT equation:
O=11&!'2+10&12

26. Click Cancel to close the window.

ScratchPad | Cell Properties % Netlist ? _ O G| Device x|Package x|Schematic x 200
[count_outi31i_1 - o - e ¥ W |¢ & = C' 92Cells 13V0Pois 244 Nets o
= — o ot G p
2 M 10 0=H&I2+0&I2 | e] R T
— s - o
0 o 0 0 —1,,,7.ﬂ,, o101 cont ot OBUF[Z) et
o @) <
00 1 0 L] i, e L - —
e e >—‘ 2 4 caunt_aut OBUFI] inet
010 1 m Lo o o o P
o111 . cant oeu
oRE) ot cnat OBUFIA] it
10 0 0 °
s — R T
1 0 1 1 .- Fl m..l:-m OBUFTS] s
1 1 0 0 o ¢ FORE e
11 1 1 = cont gt regid) connt cnat OBUFTA i
T e
ot CBUFTL
FORE OBl
ot o el
o r—
8
@t 01 ;
FORE J\—"m
#_pm_mgis] R
e
« k
do © oS5 1 F—e b
Edit LUT Equation.. auro) g o JTI
.. i _eut s o] - o
Propertties Power MNets CellPins Truth Table =] |e ot e v L3

27. From the Tcl Console, type the following command:

select_objects [get_cells count_out[7]_i_1]

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 85

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=85

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

ScratchPad | Cell Properties x Netlist ?_00 Device x Package x| Schematic x 00
[l count_out[7]_i_1 - o - Q XN M |(¢e T = ' 92Cells 13V0Pois 244 Nets
M0 o=0al e FDRE A
mul_out_pre_reg[6]
0 0o 0
FO=2274 count_out_reg[6]
¢ 1|0 FO=41 N FO=2274
CE = ; = c
1 0 0 ¥y FO=1 oy Raca W e . FO=27
8] count_out[6]_i_1 CE FO=4 ¥ 8
11 1 W Fom | o FO8 Mg Pt PO | Q
[B FO=3 ‘ 1 W FO=53 R
FDRE
LuT2
FDRE
mul_out_pre_reg[7]
FO=2274 count_out[7] i 1 count_out_reg[7]
c FO=3 FO=1
FO=41 10 o FO=2274
CE Fo=a f 77 B Foss c
¥ Fo=1 o a I PO | oo ot 7
B Fosa | o LuT2 Fot | o Q o
W FO=53 R
FDRE
FDRE
Edit LUT Equation..
Properties Power MNets CellPins Truth Table =] < ,v

This command selects the LUT2 that drives the count _out_reg[7] register, which drives
LED 7 on the KCU105 board. The only inputs are tog_state_reg for pin 10 and
mul_out_pre_regl 7] for pin 1. You need to replace the LUT2 with a 3-input LUT and
connect the output of counter register divClk_regl24] to the additional input pin.

28. In the Vivado ECO Navigator, under Edit, click Create Cell.
The Create Cell dialog box opens.
a. Inthe Cell name field, enter ECO_LUT3.
b. In the Search field, enter LUT3.
c. Select LUT3 as the cell type and copy the LUT equation O=I1 & !'I2 + 10 & 12 from cell

count_out[3]_i_1.
d. Click OK.
ECO_LUT3 is added to the Scratch Pad and the schematic.

e. Right-click the newly added ECO_LUT3 cell in the Scratch Pad, then select Mark and the
color red.

Note: Marking the ECO_LUT3 cell makes it easier to locate.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 86

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=86

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

Create a cell or an array of cells at a specified level of hierarchy.

Hierarchy: e E‘

Cell name: ECO_LUT3

Create array:

Cell type
Search: LUT3 (1 match)

LUT3

LUT Equation: O=11 &2 +10 &2 EI
Location:

Create hierarchical cell

Cell reference name:

Because you copied the LUT equation from cell count _out [3]_1i_1, the nets must be
hooked up in the same order, with the following connections:

e Netmul_out_pre[7] connected to pin 10
e NetdivClk_reg_n_0_[24] connectedtopin I1
e Net tog_state connected to pin I2 of ECO_LUT3

29. Locate the tog_state netdriven by the tog_state_reg register in the schematic and
select it. Alternatively you can select the net from the Tcl Console by running the following
command:

select_objects [get_nets tog_state]
30. Connect the 12 pin of the newly added ECO_LUT3 cell by doing the following:

a. Hold down the Ctrl key and select pin 12 in the Scratch Pad. This selects pin I2 in
addition to the already selected tog_state net.

b. Click Connect Net.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 87

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=87

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

ScratchPad % Cell Pin Properties | Netlist .] Device x| Package x|Schematic X 00
Q| x| <@ + o - a ¥ X |© C 93Cells 13U0Ports 244 Nets o
. W U
Con PnR Object Name | mul_out_pre_reg(5] a i FO=3 1" o |Fet # FO=53 ‘ R
4 ~ I divClk_reg FO=8
FO=2274 12 E
v T divCIk_reg[25] o G UT3
CE FO=3 ¥ 5
< I divCIk_reg[26] = Q count.
5 @ Fost D count_out[1]_i_1 —
< I divClk_rea[27] W Foss3 | o 1 & Fo=a o Fo=azs |
v T divCIk_reg[28] 1 i FO=3 1" o |Fet Fo=27 | o
v > T =const0> FDRE LSl Y | FO=11 p
v o v B my_mutt_din2 B mul_out_pre_reg[6] LT3 B Fo=s3 R
[my_mult_0fin2(3] FO=214 | & ECO_LUT3 F
v v 2 my_mult_0/in2[2] FO=41 cE Foul @ 8 nic | 0
¢ ¢ @ my_mult_0fin2[1] s §Fos |, Q | noo L count
W FO=53 nis —
g O my_mult_0/in2[0] R -2 FO=2274
«
v > T <const> FORE LuT3 rozer [
~ # ECO_LUT3 count_out[2] i 1 o=l p
mul_out_pre_reg[7] 2 # FO=3 | B Fo=53
a0 10 | R
— - »
B FO=2274 c 2 ‘b FO=3 I o FO=1 L
FO=41 FO=0 F
2 —| CE qlFes w7 12
] T Fos wT3 count_~
o2 o] < >

31. Locate the mul_out_pre[7] netin the schematic and select it.

Alternatively, you can select the net from the Tcl Console by executing the following
command:

select_objects [get_nets mul_out_prel[7]]

32. Connect the 10 pin of the newly added ECO_LUT3 cell by doing the following:

a. Hold down the CTRL key and select pin 10 in the Scratch Pad. This selects pin 10 in
addition to the already selected mul_out_pre[7] net.

b. Click Connect Net.
33. Locate the divClk_reg_n_0_[24] netin the schematic and select it.

Alternatively, you can select the net from the Tcl Console by executing the following
command:

select_objects [get_nets divClk_reg_n_0_[24]]

34. Connect the 11 pin of the newly added ECO_LUT3 cell by doing the following:

a. Hold down the CTRL key and select pin 11 from the Scratch Pad. This selects pin I1 in
addition to the already selected divClk_reg_n_0_[24] net.

b. Click Connect Net.

Next, you need to connect the updated logic function implemented in the newly created
LUT3 to the D input of count _out_reg[7]. The first step is to delete the L.UT2 that
was previously connected to the D input.

35. Select the LUT2 count_out[7]_i_1 in the schematic window.
Alternately, you can select it by executing the following command in the Tcl Console:

select_objects [get_cell count_out[7]_i_1]

36. In the main toolbar, click the Delete button X to delete the selected cell.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 88

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=88

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

37. Select the net connected to the D input of the count _out_regl 7] register in the
schematic window.

Alternatively you can select the net from the Tcl Console by executing the following
command:

select_objects [get_nets count_out[7]_i_1_n_0]

38. Connect the 0 pin of the newly added ECO_1UT3 cell by doing the following:
a. Hold down the CTRL key and select pin 0 from the Scratch Pad.
b. Click Connect Net.

¢ top_routed.dcp - [C/Data/Vivado_Tutorial /project_ECO_lab/ECC/top_routed.dcp]
File Edit Flow Tools Window Layout View Help Quick Access
=, b o~ B X & 36 -] & X
CHECKPOINT DESIGN * - xcku040-fival 156-2-2
ECO Navigator _ ScratchPad X Net Properties | Netlist _ oo Device x| Package x| Schematic X
Edit Q = & = - & - @ @ X XN |¢ + = C 92Cels 13U0Parts 244 Nets
Greste Nai Con PnR ObjectName | _:‘J—- ED 1] | >
vy ~ T tog_state T r — [-
Create Cell v < count_out[4]__1/0] | F‘r;"]— E@_r ey -
Craate Port v o @ count_outisL_i_10 S N . ';g‘j—
5] ut
) v 7 @ count_out[]_i_1/10 = — M .
Creats Pin asvag i1 I
v @ ECO_LUT3/2 T t — | ﬂ
Connsct Net v o tog_state_I_110 = -
Disconnect Net v ¥ count_outfo]_i_1/2 e -—ﬂ
¢ v D coun_oull1]_L1/2 i i
Replace Debug Probes ¢ v o - art st mgn
e o
count_out[2]_i_ LT == L ﬂ
Place Cell v @ count_out{3]_i_142 I H
Unplace Gell b4 < < tog_state_regiQ _ L — W 'ﬂ
J ~ T divClk_rzg_n_0_[24]
Run C4 < < divClk_reg[2411Q et nit
CheckECO v @ divCIk_reg[24]_i_1/5[0] Ej_
v [ECO_LUT3iM
Optimize Logical Design v I count_oul7L_i1_n_o0
Place Design ¥4 4 @ count_out_reg[7)D ke <

The ECO modifications are complete.

Step 5: Implementing the ECO Changes

Before you place and route the updates, you need to check for any illegal logical connections or
other logical issues introduced during the ECO that would prevent a successful implementation
of your changes.

1. Inthe Vivado ECO Navigator, under Run, click Check ECO.
The following figure shows the messages generated by the ECO DRC.

e The two Critical Warnings are due to the partially routed signals that are a result of the
ECO and will be cleaned up during incremental place and route.

e The Warning message is due to nets in the debug hub instance that do not drive any loads.
This Warning can be ignored.

¢ No other warnings were issued and you are ready to implement the changes.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 89

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=89

& XILINX

DRC ? _0aX
Q = = €@ H ¥ 2 Critical Warnings wy 1 Warning Hide All
MName Severity A1 Details

~ L@ AllViolations (3)
~ o Implementation (3)
~ & Routing (3)

~ @ Chip Level (3)

~ RTSTAT-5 (1)
RTSTAT #1 Critical Warning & net(s) have a partial antenna. The problem bus(es) and/or net{s) are divClk req, mul out pre[7] tog state.
~ RTSTAT-6 (1)
RTSTAT#1 Critical Warning 6 net(s) have a partial conflict. The problem bus(es) andior net(s) are divClk req, GLOBAL_LOGICO, GLOBAL_LOGIC.
> RTSTAT-10 (1)
RTSTAT #1 Warning 27 net{s) have no routable loads. The problem bus(es) andior net(s) are aempty fwdt i, ctl rea, ctl req en 2011, cil req er
< >

drc_1 (3 violations)

Because you added additional logic, you need to place the logic using the incremental place,

and then route the updated net connections using incremental route.
In the Vivado ECO Navigator, under Run, click Place Design.

The Place Design dialog box opens, allowing you to specify additional options for the
place_design command. For this exercise, do not specify additional options.

3. Click OK.

=

¢ Place Design

Run design placement with the specified

Chapter 4: Vivado ECO Flow

options.

Options:

4. Vivado runs the incremental placer.

At the end of the place_design step, the incremental Placement Summary is displayed in

the Tcl Console.

UG986 (v2020.1) August 12, 2020
Implementation

www.Xilinx.com

l Send Feedback l 90

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=90

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

e +
| Incremental Placement Summary

e +
| Type | Count | Percentage |
Rt e e +
Total instances	4830	1a0.00
Reused instances	4578	49.5%98
Hon-reused instances	2	0.04
I Hew	1	0.02
Discarded illegal placement due to netlist changes	1] 0.02	
e +		
Incremental Placement Runtime Summary		
Rt e e +		
Imitialization time {elapsed secs)	4.08	
Incremental Placer time (elapsed secs)	7.25	
e +

The incremental placement summary shows that the following two cells did not have their
previous placement reused:

e The new ECO_LUT3 cell, which had to be placed from scratch

e The count_out_reg([7] cell, which had to get updated placement due to the placement
of the ECO_LUT3 driving it

5. In the Vivado ECO Navigator, under Run, click Route Design.

The Route Design dialog box opens.

Depending on selection, route all or a portion
of a design.

(®) Incremental Route

Depending on your selection, you have four options to route the ECO changes:

¢ Incremental Route: This is the default option.

¢ Route selected pin: This option limits the route operation to the selected pin.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 91

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=91

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

¢ Route selected non-Power nets: This option routes only the selected signal nets.
¢ Route selected Power nets: This option routes only the selected VCC/GND nets.
In this case, the best choice is to route the changes you made incrementally.

6. Select Incremental Route.

7. Click OK.

At the end of the route_design step, the incremental Routing Reuse Summary displays in
the Tcl Console.

Type	Count	Percentage
Fully reused nets	3T7el	99.89
Partially reused nets	31 g.02	
Non-reused nets	1] 0.03	

Most of the nets did not require any routing and have been fully reused.

O TIP: It is a good idea to run report_route_status dfter the route operation to make sure all the nets have
been routed and none have any routing issues. This is especially true if you only routed selected pins or selected
nets and want to make sure you have not missed any routes.

8. Inthe Tcl Console, run the report_route_status command.
The Design Route Status looks similar to the following status.

Design Routs Status

nets
0f logical NeLS.iwesssnasanssnnssnnmannns : 5le0 :
of nets not needing roOUCINg. .cecweenas : 1383 :
$# of internally routed netS...eeaa.. : 1308 :
$ of nets with no leads. ..o eeene.. : 57 =
of routable DELS. .. in it : 3747
$ of fully routed NELS. v e vvuwueneas : 3747
of nets with routing errorS.ssssssnas : [

Before you generate a bitstream, run the ECO DRCs on the design.

9. In the ECO Navigator, click Check ECO. Make sure no Critical Warnings are generated.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 92

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=92

& XILINX

Chapter 4: Vivado ECO Flow

Details

o
n
a»
&
E

- 7 All Violations
~ "% Implementation (1
~ % Routing (1
~ 7 Chip Level (1
v O RTSTAT-10 (1

mpty fuft i, ¢l req, cil req_en 2[1] cl_req en 21], m bscan capture, m bscan Grck, m bscan runtest, ram_empty i, fam full i,rd rst req0] s by

bscan tms, s daddr o[13],

7 _0Oax

RreTaTsq 21 nells)have no outable loads. The problem bus(es) andior nel(s)
5 daddr of14] 5 daddr o[15],5_daddr o[16], (the first15 of 19 listed).

10. In the Vivado ECO Navigator, under Program, click Save Checkpoint As.

The Save Checkpoint As dialog box opens and you can specify a name for the checkpoint file

to write to disk.
11. Click OK to save a checkpoint _ﬁle_ with your changes.

’

Create a checkpoint file that contains the netlist, XDC constraints, and the physical
database.

Checkpointfile: | C:Aivado_Tutorialiproject_ECO_lab/ECO/checkpoint_1.dcp E

12. In the Vivado ECO Navigator, under Program, click Generate Bitstream.

The Generate Bitstream dialog box opens.

You can specify a name for a Bit file and select the desired options for the
write_bitstream operation.

13. Click OK to generate a bitstream with your changes.

UG986 (v2020.1) August 12, 2020
Implementation

l Send Feedback l

www.Xilinx.com
93

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=93

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

i\ Create a programming file from the current design

Bit File |=Nivado_Tutorialiproject ECO_labVECOfproject_top_routed. bit III

Options

-raw_bitfile

b

-mask_file
-no_kbinary_hitfile
-bin_file

-readback_file

-logic_location_file

-verbose

L4

Select an option above to see a description of it

14. In the Vivado ECO Navigator, under Program, click Write Debug Probes.

The Write Debug Probes dialog box opens.

4 virte Lrebug Frobes 5

Write debug probes to afile.

| File Mame: |vado_Tutorial/project_ECO_lab/ECO/probes_1.1 |

[+ Overwrite

You can specify a name for a . 1t x file for your debug probes.

UG986 (v2020.1) August 12, 2020

www.Xilinx.com
Implementation l Send Feedback l 94

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=94

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

15. Click OK to generate debug probes file (LTX).

This command allows you to generate a new . 1tx file for your debug probes. If you made
changes to your debug probes using the Replace Debug Probes command, you need to save

the updated information to a new debug probes file to reflect the changes in the Vivado
Hardware Manager.

16. Follow the instructions in Step 3: Validating the Design on the Board to download the
generated bitstream programming file and debug probes file into the target FPGA device
using the Hardware Manager to check your ECO modifications.

Step 6: Replacing Debug Probes

UG986 (v2020.1) August 12, 2020

Another powerful feature of the Vivado ECO flow is the ability to replace debug probes on a
previously inserted Debug Hub. After the debug probes have been replaced, a new LTX file can
be generated that contains the updated debug probe information.

To replace a debug probe in your previously modified design, do the following:

1. From the main menu, select File = Checkpoint = Open.

The Open Checkpoint dialog box opens.

vitedi,mXC

checkpoint_1.dcp Recent Directories
/' top_routed.dcp

C:NVivado_Tutorialiproject_ECO_lab/ECO ~

File Preview

File: checkpoint_1.dcp

Directory: C:/Vivado_Tutorialfproject_ECO_lan/ECO
Created: Today at 12:05 PM

Accessed: Today at 12:05 PM

Modified: Today at 11:57 AM

Size: 2.7 MB

Type: Checkpoint design

Owner: XLNX\gpocklas

Filename: checkpoint_1.dcp

Files of type: | Vivado Checkpoint Files (.dcp) ~

2. BrowsetotheC:/Data/Vivado_Tutorial/project_ECO_lab/ECO directory and
select the previously saved checkpoint_1.dcp file.

Close any previously open checkpoints.

4. From the main menu, select Layout— ECO.
In the Vivado ECO Navigator, under Edit, click Replace Debug Probes.
The Replace Debug Probes dialog box opens.

www.Xilinx.com
Implementation l Send Feedback l 95

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=95

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

In this example, you will replace the net reset_vio thatis connected to probe4 of
u_ila_0 withthenet toggle_vio.

6. Scroll to the bottom of the probes for u_ila_0 in the Replace Debug Probes dialog and click
the reset_vio net name in the Probe column to select it.

7. Click the Edit Probes bu_tton 7 .

’

Use the Edit Probes button to replace one or more debug probes. To reflect these
changes in the Vivado Hardware Manager, regenerate the debug probes file (LTX).

= | & |2 t 3
Search:
Mame Probe
@ Cho [# count_out_pre[0] ~
@& Ch 1 | # count_out_pre[1]
@ Cch2 [" % count_out_pre[2]
@ch3a [# count_out_pre[3]
w @ probe2 (8
@ Cho & mul_out_pre]0]
@ Ch1 # mul_out_pre[1]
@ Ch2 # mul_out_pre[2]
@& Ch3 # mul_out_pre]3]
@ Ch4 & mul_out_pre[4]
@ Chs # mul_out_pre[5)
@ Chs # mul_out_pre[f]
@cCh7 [+ mul_out_pre[7]
v probe3 (1
@ Cho [# pause_vio
w W probed (1
@ Cho [reset_vio
w W probe5 (1
@cho [+ state “

Probes changed: 0

Cancel

The Choose Nets dialog box opens.

8. Choose a new net to connect to the debug probe probe4 by doing the following:

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 96

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=96

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

a. Type toggle_vio in the search field of the Choose Nets dialog box.

b. Click Find.

c. Selectthe toggle_vio net, and move it to the Selected names section.
d. Click OK.

Choose nets to replace existing probes.

Properties

NAME ~ | | contains ~ | toggle_vio +

Regular expression v Search hierarchically |+ Display unique nets

Of objects: E‘

Found: 2 Selected: 1 of 1 A
I toggle_vio

: toggle_vio
toggle_vio_out

I

9. In the Replace Debug Probes dialog box, click OK.

10. Repeat steps 5 through 14 of Step 5: Implementing the ECO Changes to generate an updated
design checkpoint, bitstream file, and probes file (LTX).

The updated debug probes file has the reset _vio net for probe4 replaced with net
toggle_vio, which you can verify when you program the device with the updated bit file
and debug probes file.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 97

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=97

iv XI I_I NX Chapter 4: Vivado ECO Flow
A ®

hw_ila_1

Waveform - hw_ila_1
Q + = 2 > » B G @ @ i » | M = 2 4 &

ILA Status:ldle

twy_ila_1

Dashboard Options
Settings - b

¢ count_out_OBUF_1[7:0]
Mc [3:01

Status - hw_ila_1

Trigger Setup - hw_ila_1 Capture Setup - hw_ila_1

Related Information
Step 5: Implementing the ECO Changes

Conclusion

In this lab you learned the following:

¢ Made changes to the previously implemented design using the Vivado ECO flow.
¢ Implemented the changes using incremental place and route.
e Generated a bitstream and probes file with your changes to configure the FPGA.

e Used the Replace Debug Probes command to switch the sources for debug probes in the
design.

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 98

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=98

& XILINX

Appendix A

Additional Resources and Legal
Notices

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPQOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https:/
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https:/www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING

UG986 (v202Q.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 99

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=99

iv Xl Ll NX Appendix A: Additional Resources and Legal Notices
A ®

OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective
owners.

UG986 (v2029.1) August 12, 2020 send Feedback www.xilinx.com
Implementation 100

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=100

	Vivado Design Suite Tutorial
	Revision History
	Table of Contents
	Implementation Tutorial
	Tutorial Design Description
	Hardware and Software Requirements
	Preparing the Tutorial Design Files
	Locating Design Files for Labs 1-3
	Locating Design Files for Lab 4

	Ch. 1: Using Implementation Strategies
	Step 1: Opening the Example Project
	Step 2: Creating Additional Implementation Runs
	Step 3: Analyzing Implementation Results
	Step 4: Tightening Timing Requirements
	Conclusion

	Ch. 2: Using Incremental Implementation
	Step 1: Opening the Example Project
	Step 2: Viewing the Incremental Column in the Design Runs Window
	Step 3: Turning on Incremental Implementation
	Step 4: Compiling the Reference Design
	Step 5: Making Incremental Changes
	Step 6: Rerunning Synthesis and Implementation
	Conclusion

	Ch. 3: Manual and Directed Routing
	Step 1: Opening the Example Project
	Step 2: Performing Place and Route on the Design
	Step 3: Analyzing Output Bus Timing
	Step 4: Improving Bus Timing through Placement
	Step 5: Using Manual Routing to Reduce Clock Skew
	Step 6: Copying Routing to Other Nets
	Conclusion

	Ch. 4: Vivado ECO Flow
	Step 1: Creating a Project Using the Vivado New Project Wizard
	Step 2: Synthesizing, Implementing, and Generating the Bitstream
	Step 3: Validating the Design on the Board
	Step 4: Making the ECO Modifications
	Step 5: Implementing the ECO Changes
	Step 6: Replacing Debug Probes
	Conclusion

	Appx. A: Additional Resources and Legal Notices
	Please Read: Important Legal Notices

