
Zynq UltraScale+ Device

Technical Reference Manual

UG1085 (v2.2) December 4, 2020

Revision History
The following table shows the revision history for this document.

Date Version Revision

12/04/2020 2.2 Chapter 1: Revised Figure 1-3, Table 1-2, and Table 1-4.
Chapter 2: Table 2-1 and Table 2-2.
Chapter 4: Revised Table 4-1 and TCM Access from a Global Address Space.
Chapter 6: Revised.
Chapter 11: Revised.
Chapter 12: Revised.
Chapter 13: Revised.
Chapter 14: Revised Event Streams, Generic Timer Programming, Event Control Timer
Operation, System Watchdog Timers, Table 14-27,
Chapter 15: Revised Figure 15-1, Programming, Table 15-2, Register Overview,
Table 15-6
Chapter 16: Revised Table 16-2, added Table 16-3
Chapter 17: Revised section and added Dynamic DDR Configuration section.
Chapter 18: Revised Features.
Chapter 19: Revised Simple DMA Mode, Scatter Gather DMA Mode and Rate Control
sections.
Chapter 23: Revised the Clocks section and Table 23-7.
Chapter 24: Revised Quad-SPI Feedback Clock, Table 24-3, Quad-SPI Tap Delay Values
Chapter 25: Revised Figure 25-2 and Figure 25-3.
Chapter 26: Revised Table 26-11.
Chapter 28: Revised Default Logic Levels section. Added Table 28-3.
Chapter 29: Revised Features, Table 29-4, Receiver Termination
Chapter 30: Revised the Bridge Initialization section.
Chapter 31: Revised USB Controller Features, Register Overview, Table 31-40
Chapter 32: Revised Features and Figure 32-5.
Chapter 33: Revised Table 33-2, Audio Metadata, DisplayPort DMA, CRC Field, and
Table 33-23.Chapter 34: SGMII, 1000BASE-SX, or 1000BASE-LX, RX Buffers,
IEEE Std 1588 Time Stamp Unit, and Table 34-14. Added Precision Time Protocol via
EMIO and Priority Queuing
Chapter 35: Revised Table 35-2 and Table 35-4.
Chapter 37: Revised Choosing a Programmable Logic Interface and Table 37-3.
Chapter 38: Revised Table 38-1 and RPU Reset Sequence. Added PL Configuration
Reset.
Chapter 39: Revised Figure 39-2, MBIST, LBIST, and Scan Clear (Zeroization), and
Table 39-16

8/21/2019 2.1 Chapter 12: Revised Encrypt Only Secure Boot Details section.
Chapter 15: Revised the QoS Regulator section. Updated Figure 15-1.
Zynq UltraScale+ Device TRM 2
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=2

7/22/2019 2.0 Chapter 1: Revised the JTAG IDCODE section.
Chapter 4: Revised the RPU Pin Configuration section.
Chapter 5: Revised the Programming the GPU. Note updated.
Chapter 6: Revised Full-Power Operation Mode section, Table 6-16 and added
Table 6-14.
Chapter 11: Revised Boot Modes section, PL Bitstream section and added
Table 11-11.
Chapter 12: Revised Secure Lockdown, SHA-3/384, Boot Operation, Encrypt Only
Secure Boot Details, and Loading Bitstreams sections.
Chapter 14: Revised APU Core Private Physical and Virtual Timers and Watchdog
Enabled on Reset sections.
Chapter 15: Revised Programming and PS Instances sections.
Chapter 17: Revised Table 17-1 and PHY Description section.
Chapter 20: Revised RX/TX Bit Timing Logic section.
Chapter 24: Revised Reference Clock and Quad-SPI Interface Clocks, Quad-SPI
Feedback Clock, and Quad-SPI Tap Delay Values sections.
Chapter 26: Revised Tuning Unit, RX Clock Delay Unit, and Receive Clock Tap Delay
sections.
Chapter 29: Revised the EyeScan Module section.
Chapter 30: Revised the Features section, added a note in Integrated Block for PCI
Express section, and added an Important note in Single CPU Control section.
Chapter 33: Revised Table 33-2.
Chapter 34: Added a note under Table 34-19.
Chapter 35: Revised the LPD-PL Interfaces section.
Chapter 39: Revised the Toggle Detect on PSJTAG, PL TAP Controller, Trace Debug,
Security, Components sections and updated Table 39-6 and Table 39-15.
Appendix A: Arm References updated.

Date Version Revision
Zynq UltraScale+ Device TRM 3
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=3

1/17/2019 1.9 Chapter 1: Revised Figure 1-2.
Chapter 2: Revised Table 2-2.
Chapter 3: Revised System Virtualization and Power Modes sections.
Chapter 4: Revised Tightly Coupled Memory Address Map section.
Chapter 6: Revised Figure 6-1, Figure 6-2, Table 6-3, MIO Pin Considerations,
Table 6-12, and MIO Signals.
Chapter 7: Revised.
Chapter 8: Entire chapter revised.
Chapter 9: Revised Table 9-1, Register Sets, and Table 9-7.
Chapter 11: Revised Table 11-1 and Table 11-4.
Chapter 12: Revised PUF Operations, Figure 12-7, Programming AES-GCM Engine,
RSA Accelerator, Security Related eFUSEs, Secure Boot Introduction, Secure Boot
Summary, Loading Bitstreams, Figure 12-16, and Secure Boot Image Format. Added
Device DNA Identifiers, Initialization Vector Register, Secure Non-Volatile Storage,
and Enhanced SPK Revocation. Added note to Table 12-13.
Chapter 13: Revised SPI Interrupt Sensitivity.
Chapter 14: Revised TTC Counter Features, TTC Block Diagram, Table 14-12, and
Table 14-13.
Chapter 15: Revised.
Chapter 16: Revised TBU Instances.
Chapter 17: Table 17-1, Table 17-2 table note added, and added a note after the third
item in ECC Poisoning Multi-Purpose Register (DDR4 Only).
Chapter 20: Revised.
Chapter 21: Revised.
Chapter 22: Revised Configure Clocks
Chapter 23: Revised Table 23-2, Figure 23-1, FIFOs, and Clocks, Resets.
Chapter 24: Revised Clocks and Resets, Table 24-3, Table 24-4, Table 24-21,
Table 24-22, Table 24-23, and Table 24-32.
Chapter 26: Revised Reference Clock, Interface Controller, DLL Clock Mode, Transmit
CMD/DAT Delay, Receive Clock Tap Delay, Table 26-7, Table 26-12, Table 26-15,
Table 26-16, and Table 26-23.
Chapter 27: Figure 27-2 updated.
Chapter 28: Default Logic Levels revised.
Chapter 31: Device Programming revised.
Chapter 33: Figure 33-1 and Figure 33-18 updated.
Chapter 34: Configure the PHY revised.
Chapter 37: Revised Figure 37-1, Figure 37-2, Figure 37-4, and Figure 37-5.
Chapter 38: Revised Table 38-3 and FPD Reset Sequence.

Date Version Revision
Zynq UltraScale+ Device TRM 4
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=4

8/03/2018 1.8 Chapter 19: Revised
Chapter 20: Revised
Chapter 22: Revised
Chapter 23: Revised
Chapter 24: Revised
Chapter 25: Revised
Chapter 26: Revised
Chapter 27: Revised
Chapter 28: Revised
Chapter 29: Revised
Chapter 30: Revised
Chapter 31: Revised
Chapter 32: Revised
Chapter 33: Revised
Chapter 34: Revised
Chapter 35: Revised
Chapter 36: Revised
Chapter 37: Revised
Chapter 38: Revised

12/22/2017 1.7 Revised Debug Features and added MBIST, LBIST, and Scan Clear (Zeroization) in
Chapter 39.

Date Version Revision
Zynq UltraScale+ Device TRM 5
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=5

11/01/2017 1.6 Chapter 1: Revised Figure 1-1. Added Figure 1-2 and Figure 1-3. Updated
Introduction to the UltraScale Architecture. Added Functional Units and Peripherals,
Device ID Codes, IP Revisions, System Software, and, Documentation.
Chapter 2Chapter 2: Revised Figure 2-1. Revised Table 2-1, Table 2-2, Table 2-4,
Table 2-5, Table 2-7, Table 2-8, Table 2-10, and Table 2-11. Added Table 2-13 and
Table 2-14.
Chapter 3: Revised Application Processor Unit Register Overview and Figure 3-8.
Chapter 5: Revised Graphics Processing Unit Introduction, Graphics Processing Unit
Level 2 Cache Controller, and Graphics Processing Unit Programming Model.
Chapter 6: Revised Introduction. Updated Table 6-1 and Figure 6-16. Revised
Figure 6-1 and Figure 6-2.
Chapter 7: Revised Real Time Clock Introduction and Real Time Clock Functional
Description. Updated Figure 7-1, Figure 7-2, and Figure 7-3. Added Interfaces and
Signals. Revised Table 7-3.
Chapter 9: Revised entire chapter, including changing chapter name.
Chapter 10: Revised Figure 10-1. Updated Table 10-1. Updated System Address
Register Overview. Added Table 10-9.
Chapter 11: Updated Boot and Configuration Introduction, Boot Image Format, and
Functional Units. Revised Table 11-1. Updated Figure 11-1 and Figure 11-3. Added
CSU BootROM Error Codes and PL Bitstream.
Chapter 12: Updated Device and Data Security and Secure Boot. Revised Figure 12-1,
Figure 12-11, and Figure 12-16.
Chapter 13: Revised Interrupts Introduction, System Interrupts, IPI Interrupts and
Message Buffers, CPU Private Peripheral Interrupts, and Programming Examples.
Updated Figure 13-4 and Figure 13-5. Added Figure 13-6.
Chapter 14: Revised APU Core Private Physical and Virtual Timers and System
Watchdog Timers.
Chapter 15: Updated Block Diagram, AXI Performance Monitor, Quality of Service,
and Interconnect Register Overview. Revised Figure 15-1. Added ATB Timeout
Description and Programming Example – Metric Counter. Updated Figure 15-3 and
Figure 15-4.
Chapter 16: Revised Introduction, TrustZone, SMMU Protection on CCI Slave Ports,
XMPU Protection of Slaves, and XPPU Protection of Slaves. Added XMPU Register Set
Overview, XPPU Register Set Overview, Programming Example, and Write-Protected
Registers Table. Revised Figure 16-1, Figure 16-2, Figure 16-4, and Figure 16-6.
Added Figure 16-3, Figure 16-5, and Figure 16-7.
Chapter 17: Revised Figure 17-1, Figure 17-4, Figure 17-5, and Figure 17-8. Updated
DDR Memory Controller Introduction, DDR Subsystem Functional Description,
Debugging PS DDR Designs, DDR Memory Controller Register Overview, and DDR
Memory Controller Programming Model.

Date Version Revision
Zynq UltraScale+ Device TRM 6
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=6

11/01/2017 1.6 (cont’d) Chapter 18: Revised Figure 18-1 and updated On-chip Memory Programming Model.
Chapter 19: Updated DMA Controller Introduction, DMA Controller Functional
Description, DMA Data Flow, DMA Programming for Data Transfer, and DMA
Programming Model for FCI. Updated Figure 19-1.
Chapter 21: Revised Figure 21-1 and Figure 21-2. Added Figure 21-3, Figure 21-4,
Figure 21-5, Figure 21-6, Figure 21-7, Figure 21-8, and Figure 21-9. Added MIO –
EMIO Signals.
Chapter 22: Revised Figure 22-1 and Figure 22-2. Updated I2C Controller Functional
Description, I2C Controller Register Overview, and I2C Controller Programming
Model.
Chapter 23: Revised Figure 23-1. Updated SPI Controller Introduction and
Programming Model.
Chapter 24: Revised Figure 24-1, Figure 24-2, Figure 24-3, and Figure 24-4. Updated
Introduction, System Control, Generic Quad-SPI Controller, Legacy Quad-SPI
Controller, Register Overview, Programming and Usage Considerations, Generic
Quad-SPI Controller Programming, and Legacy Quad-SPI Controller Programming.
Chapter 25: Revised Introduction, Functional Description, and NAND Memory
Controller Register Overview. Added Clocks and Resets.
Chapter 26: Updated SD/SDIO/eMMC Controller Introduction, SD/SDIO/eMMC
Controller Functional Description, and SD/SDIO/eMMC Controller Programming
Model. Revised Figure 26-3 and Figure 26-4.
Chapter 27: Updated Functional Description and Programming Model.
Chapter 28: Updated MIO Table at a Glance and Register Overview.
Chapter 29: Renamed chapter. Revised Transceivers Introduction, Functional
Description, PS-GTR Transceivers Register Overview, and Configuration Program.
Updated Figure 29-1, Figure 29-2, and Figure 29-3.
Chapter 34: Renamed chapter. Revised GEM Ethernet Introduction, Functional
Description, and GEM Ethernet Programming Model. Revised Figure 34-1 and
Figure 34-2 through Figure 34-8.
Chapter 35: Renamed chapter. Revised PS-PL AXI Interfaces Introduction, Functional
Description, Choosing a Programmable Logic Interface, PS-PL Miscellaneous Signals,
Processor Event Signals, and Register Overview. Revised Figure 35-1, Figure 35-2,
Figure 35-3, Figure 35-4, Figure 35-5, and Figure 35-6.
Chapter 36: Updated PL Peripherals Introduction, PL System Monitor, PL System
Monitor, PL System Monitor, Video Codec Unit, GTH and GTY Transceivers, and
Interlaken.
Chapter 37: Renamed chapter. Revised Clocking Introduction and Register Overview.
Added System PLL Units, Basic Clock Generators, Special Clock Generators,
Programming Examples, PLL Integer Divide Helper Data Table, System PLL Control
Registers, and Clock Generator Control Registers. Updated Figure 37-1 through
Figure 37-5. Added Figure 37-6.
Chapter 38: Updated Reset System Introduction, Reset System Functional
Description, and Reset System Register Overview. Revised Figure 38-1.
Chapter 39: Updated System Test and Debug Introduction, JTAG Chain:, and
CoreSight Functional Description. Revised Figure 39-1, Figure 39-4, Figure 39-6,
Figure 39-7, and Figure 39-8.

Date Version Revision
Zynq UltraScale+ Device TRM 7
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=7

03/31/2017 1.5 Chapter 2: Revised the Signals, Interfaces, and Pins Introduction section including
Figure 2-1. Restructured chapter, including revising Table 2-1 through Table 2-12.
Chapter 3: Revised Cortex-A53 MPCore Processor Features, ARM v8 Architecture,
Power Islands, and Application Processing Unit Reset.
Chapter 4: Revised Real-Time Processing Unit Features, RPU CPU Configuration, and
Lock-Step Operation.
Chapter 5: Added Note to Programming the Mali GPU.
Chapter 6: Revised Figure 6-1 and Figure 6-2. Revised Low-Power Operation Mode,
including adding Table 6-1. Revised Full-Power Operation Mode. Added Note to PMU
Processor and before Table 6-14. Added MBIST and Scan Clear Functionality and
Interacting with the PMU sections. Revised Table 6-17.
Chapter 7: Revised Figure 7-1. Updated RTC Controller Unit, RTC Clock Generation,
Specifying the RTC Battery, RTC Controller, and Real Time Clock Programming
Sequences. Updated Table 7-3.
Chapter 8: Updated chapter title. Revised Functional Safety Overview and Functional
Safety Software Test Library. Revised Figure 8-1. Removed Security Features section.
Chapter 9: Revised PS System Monitor Introduction and PS SYSMON Features.
Revised Table 9-1. Added Table 9-2. Updated Figure 9-1.
Chapter 10: Revised Figure 10-1. Updated Table 10-1, Table 10-2, and Table 10-4
through Table 10-8.
Chapter 11: Updated Boot and Configuration Introduction, Boot Flow, Boot Modes,
Golden Image Search, Loopback Mode, and Initialize PCAP Interface. Revised
Table 11-1, Table 11-2, Table 11-3, Table 11-4, Table 11-8, and Table 11-9. Updated
Figure 11-1 and Figure 11-2.
Chapter 12: Updated chapter title. Updated Security Introduction, Secure Processor
Block, Crypto Interface Block, Tamper Monitoring and Response, Key Management,
and Secure Boot. Added Device and Data Security and Protecting Test Interfaces.
Revised Figure 12-1, Figure 12-2, Figure 12-9, Figure 12-10, Figure 12-11, and
Figure 12-12. Added Table 12-2, Table 12-3, Table 12-4, Table 12-5, Table 12-6,
Table 12-7, Table 12-8, Table 12-13, Table 12-14, and Table 12-15. Added Figure 12-4,
Figure 12-5 Figure 12-6, Figure 12-7, Figure 12-14, Figure 12-15, Figure 12-16,
Figure 12-17, Figure 12-18, Figure 12-19, and Figure 12-20.
Chapter 13: Revised Interrupts Introduction. Added System Interrupts, including
Table 13-1. Added GIC Interrupt System Architecture, RPU GIC Interrupt Structure,
APU GIC Interrupt Controller, IPI Processor Comm Interrupts, GIC Proxy Interrupts,
and CPU Private Peripheral Interrupts. Revised Figure 13-1, Figure 13-2, Figure 13-4,
and Figure 13-5. Revised Table 13-3, Table 13-5, and Table 13-6.

Date Version Revision
Zynq UltraScale+ Device TRM 8
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=8

03/31/2017 1.5 (cont’d) Chapter 14: Reorganized and revised entire chapter, including the changes listed
here. Updated chapter title. Updated Timers and Counters Introduction, including
revising Figure 14-1. Added APU MPCore System Counter and APU Core Private
Physical and Virtual Timers. Revised Triple-timer Counters and System Watchdog
Timers. Revised Figure 14-2 and Figure 14-3. Revised Table 14-1 through Table 14-4.
Revised Table 14-11 through Table 14-22.
Chapter 15: Revised Full Power Domain, including adding Figure 15-2 and
Figure 15-3. Revised, including adding Low Power Domain Figure 15-4 and
Figure 15-5.
Chapter 16: Revised Figure 16-1. Revised Table 1. Revised AXI and APB Isolation
Block.
Chapter 17: Revised Figure 17-1, Figure 17-2, Figure 17-4, Figure 17-18, and
Figure 17-21. Revised DDR Memory Controller Features, DDR Subsystem Functional
Description, Debugging PS DDR Designs, and DDR Memory Controller Programming
Model. Revised Table 17-1, Table 17-2, Table 17-3, Table 17-5 through Table 17-33.
Chapter 18: Revised On-chip Memory Introduction, On-chip Memory Functional
Description, On-chip Memory Register Overview, and On-chip Memory Programming
Model. Revised Figure 18-1 and Figure 18-2. Updated Table 18-1 and Table 18-2.
Chapter 19: Revised DMA Controller Introduction, DMA Controller Functional
Description, DMA Data Flow, DMA Interrupt Accounting, DMA Over Fetch, and DMA
Programming Model for FCI. Revised Table 19-5.
Chapter 20: Revised CAN Controller Functional Description, Clocks, Resets, Controller
Modes, Message Format, Message Buffering, Interrupts, RX Message Filtering, and
CAN0-to-CAN1 Connection. Updated Figure 20-1, Figure 20-3, and Figure 20-3.
Revised Table 20-1, Table 20-2, Table 20-3, Table 20-4, and Table 20-5.
Chapter 22: Revised Figure 22-1. Updated Glitch Filter, Revised Table 22-2 through
Table 22-29.
Chapter 23: Revised Table 23-1, Table 23-2, and Table 23-4.
Chapter 24: Revised Generic Quad-SPI Controller Features and Quad-SPI Feedback
Clock. Added Linear Addressing Mode (Memory Reads).
Chapter 25: Revised NAND Memory Controller Features and AXI Interface.
Chapter 26: Updated System/Host Interface, Non-DLL Mode Clocking, DLL Mode,
and SD Tap Delay Settings. Revised Table 26-1, Table 26-2, and Table 26-3 through
Table 26-8. Revised Figure 26-2.
Chapter 27: Updated General Purpose I/O Features, SDK and Hardware Design,
General Purpose I/O Functional Description, MIO Pin Configuration, GPIO Channel
Architecture, Device Pin Channels, MIO Signals, EMIO Signals, Interrupt Function,
System Interfaces, Register Overview, and Programming Model. Revised Table 27-1,
through Table 27-11. Updated Figure 27-3 and Figure 27-4.
Chapter 28: Updated Multiplexed I/O Introduction and Multiplexed I/O Programming
Model – Example. Revised Figure 28-1. Revised Table 28-1 and Table 28-2.
Chapter 29: Revised Figure 29-5, Data Selection Multiplexer, Predriver, and Voltage
Mode Driver, and Table 29-5. Removed Transmitter Boundary Scan, Boundary Scan
Receiver, and SIOU Registers sections.
Chapter 30: Added Important Note in PCIe Domain Interrupts. Revised Important
Note in Card to System Flow (EP Memory to Host Memory).

Date Version Revision
Zynq UltraScale+ Device TRM 9
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=9

3/31/2017 1.5 (cont’d) Chapter 31: Added Note to USB 2.0/3.0 Host, Device, and USB 2.0 OTG Controller
Features.
Chapter 32: Updated SATA Host Controller Interface Features, SATA Host Controller
Interface Description, AXI Master Port Security Features, and AXI Slave Port Security
Features. Revised Figure 32-1 and Figure 32-5. Updated Table 32-4 through.
Chapter 33: Revised DisplayPort Controller Introduction, DisplayPort Controller
Features, DisplayPort DMA, and DisplayPort Controller Register Overview. Updated
Figure 33-18 and Figure 33-20. Revised Table 33-13, Table 33-14, and Table 33-15.
Chapter 34: Revised IEEE Std 1588 Time Stamp Unit, Configure the Controller, Status
and Wakeup Interrupts, Transmitting Frames, Receiving Frames, and Gigabit Ethernet
Debug Guide. Added note to Gigabit Ethernet Controller using EMIO. Revised
Recommended note in Configure the Buffer Descriptors.
Chapter 35: Revised Programmable Logic Introduction, PS-PL Interfaces Features.
Updated Note in AXI Interface Programming. Updated Table 35-8. Revised
Figure 35-1.
Chapter 36: Added High-Speed Transceivers (GTH Quad and GTY Quad) and
DisplayPort Video and Audio Interface.
Chapter 37: Revised Figure 37-1 and Figure 37-2. Updated Clocking Functional
Description, LSBUS Clock, and TOPSW Main Clock.
Chapter 39: Updated System Test and Debug Features, JTAG and DAP Functional
Description, and JTAG Chain Configuration. Added Note to JTAG Error Status Register.

2/02/2017 1.4 Chapter 11: Added an Important note on page 195.
Chapter 20: Removed Step 1F on page 452, and Step 1F and Step 2F on page 471.
Chapter 30: Updated the Important note on page 773.
Chapter 34: Added a Tip on page 976.
Chapter 35: Updated the Note on page 1001. Updated Table 35-8.

Date Version Revision
Zynq UltraScale+ Device TRM 10
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=10

10/25/2016 1.3 Added the dual-core Arm® Cortex™-A53 MPCore™ revisions throughout. Added
Chapter 7, Real Time Clock and Chapter 8, Safety.
Chapter 1: Updated Figure 1-1, Table 1-1, and the Register Reference with
clarifications.
Chapter 2: Revised the Signals, Interfaces, and Pins Introduction section including
Figure 2-1. Updated the AXI Interfaces section and Table 2-5. Revised the Processor
Communications section. Revised the section including adding examples. Added the
PS-PL Miscellaneous Signals section. Added comments to Table 2-12.
Chapter 3: Updated the I/O Coherency section. Updated and moved the ACE Master
Interface section. Updated the Individual MPCore Shutdown Mode section. Revised
Figure 3-8.
Chapter 4: Added the Interrupt Injection Mechanism section. Update Table 4-5.
Chapter 6: Updated the chapter including removing Figure 6-1: Power Modes.
Revised Figure 6-1 and Figure 6-2. Updated the descriptions in the PMU RAM, PMU
GPIs and GPOs, and PMU Programmable Interval Timers sections and removed
sections of Table 6-14. Clarification of some descriptions in the Platform
Management Unit Operation section. Updated the Reset Services section. Updated
and added the register type to Table 6-17.
Chapter 9: Revised the PS and PL System Monitor Programming Model section
including replacing PSSYSMON with AMS_PS_SYSMON and PLSYSMON with
AMS_PL_SYSMON.
Chapter 10: Edited the Global Address Map discussion including Figure 10-1.
Updated the start addresses for R5_0_ATCM_LSTEP and R5_0_BTCM_LSTEP in
Table 10-2. Added the PL AXI Interface section. Updated the S_AXI_HPCx_FPD address
descriptions in Table 10-8.
Chapter 11: Updated Figure 11-1. Added the Tip on page 197. Updated the offset
0x038 description in Table 11-4.
Chapter 12: Updated the Key Management section including Figure 12-3. Updated
Table 12-11, Figure 12-5, Figure 12-7, Figure 12-10, and Figure 12-11. Added the
Battery-Backed RAM (BBRAM), Programming the eFUSE, and Reading the eFUSE
sections.

Date Version Revision
Zynq UltraScale+ Device TRM 11
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=11

10/25/2016 1.3 (cont’d) Chapter 13: Updated the Interrupts Functional Description section including
Figure 13-1. Revised the Shared Peripheral Interrupts section. Updated Figure 13-4
and added a note on page 275. Added Table 13-3 and Table 13-4. Updated
Figure 13-5. Updated the start and end ID numbers in Table 13-5. Updated and
removed registers in the IPI section of Table 13-5 and added a note on page 265.
Added the Clearing Pending Interrupts from the APU GICv2 section.
Chapter 14: Updated the Timers and Counters Introduction. Revised the Physical
Counter, System Watchdog Timer, and Triple-timer Counter sections.
Chapter 15: Revised the Interconnect Introduction, Interconnect Functional
Description and Quality of Service sections. Revised Figure 15-1 and Figure 15-6.
Removed the Interconnect Submodules and Interconnect Programming Models
sections and added them to Chapter 16.
Chapter 16: Updated the System Protection Unit Introduction including adding use
cases and a terminology section. Revised Figure 16-1. Numerous updates to the
System Protection Unit Functional Description section including further information
on poisoning a request. Added the AXI Timeout Block and AXI and APB Isolation
Block sections from Chapter 15. In the XMPU Programming section replaced XMPUx
with DDR_XMPUx, FPD_XMPU with FPD_XMPU_CFG, and OCM_XMPU with
OCM_XMPU_CFG. Added the AXI/APB Isolation Block Programming section from
Chapter 15.
Chapter 17: Revised the DDR Memory Controller Features. Revised Figure 17-1.
Revised Table 17-1 and Table 17-2. Updated Figure 17-5. Added the SDRAM Address
Mapping section. Removed the DDRC traffic class and transaction discussions.
Updated the Address Collision Handling section. Revised the Restriction on Data
Mask when ECC is Enabled, PHY Utility Block, and Data Training sections and updated
Figure 17-8. Replaced Figure 17-14 and added Figure 17-15, Figure 17-16,
Figure 17-17.
Chapter 18: Updated the On-chip Memory Introduction section and added a features
list. Added Figure 18-1 and the 64-bit ECC Support and Low Power Operation
sections.
Chapter 19: Updated the DMA Controller Features section.
Chapter 20: Clarified CAN Controller Introduction and updated Figure 20-1. Updated
the Interrupts section.
Chapter 21: Updated the UART Controller Features section.
Chapter 22: Updated the I2C Introduction section. Updated Figure 22-1. Added I2C
Master Mode, I2C Slave Mode, and MIO-EMIO Signals sections. Removed individual
register descriptions.
Chapter 24: Updated the Quad-SPI Controller Introduction. Updated Figure 24-1 and
Figure 24-2. Revised Table 24-3. Removed the Read/Write Request Details section.
Revised Table 24-10, Table 24-11, and Table 24-12. Updated Figure 24-3 and
Figure 24-4. Added the Legacy Quad-SPI Controller Features, Legacy Quad-SPI
Controller System-level View, Address Map and Device Matching For Linear Address
Mode, and Legacy Quad-SPI Operating Restrictions sections. Updated the Using the
Quad-SPI Controller section. Added the Dynamic Mode and Baud Rate Change
Limitations and the Reference Clock Change Limitations sections. Updated the
Quad-SPI Controller Programming and Usage Considerations section.
Chapter 25: Removed the NAND Flash Device Sequence section. Added Change
Timing Mode and NVDDR-SDR and ONFI Set Feature tables.

Date Version Revision
Zynq UltraScale+ Device TRM 12
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=12

10/25/2016 1.3 (cont’d) Chapter 26: Added the SD Host Controller Operation section. Updated the bit field
descriptions around Figure 26-2. Added the SD Tap Delay Settings section. Revised
Table 26-9 and Table 26-10. Added Table 26-11.
Chapter 27: Moved the PS-PL MIO-EMIO Signals and Interfaces section from
Chapter 28. Updated Figure 27-1 and replaced Figure 27-3. Updated the EMIO
Signals section. Updated the Clock and Reset sections. Removed the Interrupts
section and the MIO Programming section. Revised the register names in Table 27-3.
Chapter 28: Revised the Multiplexed I/O Functional Description sections including
the Output Multiplexer descriptions. Moved the PS-PL MIO-EMIO Signals and
Interfaces section to Chapter 27. Added the Drive Strength section. Updated Note 1
in Table 28-1 and Table 28-2. Updated the register fields in Table 28-4 and
Table 28-5.
Chapter 29: Updated Figure 29-1 and the PS-GTR Transceiver Interface Features
section. Updated Figure 29-2. Updated the Interconnect Matrix section to focus on
using the PCW. Updated Figure 29-3 and Figure 29-4. Removed Figure 29-5 and the
PLL Clock and Reset Distribution section. Added the Spread-Spectrum Clocking
Transmitter Support section. Updated Figure 29-6 Added the Spread-Spectrum
Clocking Receiver section. Removed the PS-GTR Eye Scan section including
Figure 29-10, Figure 29-11, and Table 29-5. Added the TX Configurable Driver
section. Updated the PS-GTR Transceiver Register Overview and PS-GTR Transceiver
Programming Considerations sections.
Chapter 30: Updated Figure 30-1, Figure 30-2, Figure 30-3, Figure 30-4, Table 30-1,
and Table 30-2. Added an Important note on page 752 and another note on page
page 753. Added the PCIe and AXI Domain Interrupts section. Added a note on page
page 761. Added the Programmed I/O Transfers section including Figure 30-10 and
Figure 30-11.
Chapter 31: Added base addresses of the USB controllers on page 815.
Chapter 32: Updated the SATA Host Controller Interface Description. Added an
Important note to page 835. Updated the Link Layer section and added Figure 32-3
and Figure 32-4. Added the SATA Clocking and Reset section. Added register
addresses to Table 32-1 through Table 32-4. Added PM clock frequency selection
rows to Table 32-7.
Chapter 33: Revised entire sections including the DisplayPort Controller Introduction.
After removing the DisplayPort Controller Blocks section, moved Figure 33-1 to the
DisplayPort Controller System Viewpoint section. Added and revised a significant
portion of the DisplayPort Controller Functional Description and DisplayPort
Controller Programming Considerations sections. Updated the graphics in the
Supported Video Formats section.
Chapter 34: Updated the GEM Features list. Added an Important note on page 942
and a Tip on page 943. Added the Clock Control Register section.
Chapter 35: Updated Figure 35-1. Updated the Recommended note on page 998.
Updated the ACP Limitations section. Added the CG devices and revised the bitstream
length values for the ZU7EV in Table 35-8. Added an Important note on page 1026.
Updated the register names in Table 35-9.
Chapter 37: Updated Figure 37-2 and the paragraph that follows on page 1040.
Added the LSBUS Clock section. Clarifying edits to the Full-Power Domain section.
Chapter 38: Updated the Reset System Functional Description section and added
Figure 38-1. In Table 38-1, added PS_POR_B and updated SRST_B. Added Table 38-4.

Date Version Revision
Zynq UltraScale+ Device TRM 13
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=13

10/25/2016 1.3 (cont’d) Chapter 39: Updated the System Test and Debug Features section. Moved the
following sections: System Test and Debug and JTAG and DAP Functional Description.
Updated Table 39-1 and added Note 1. Updated Table 39-2. Revised Figure 39-2.
Updated Table 39-7.

6/01/2016 1.2 Chapter 1: Added the Register Reference section.
Chapter 2: Combined Table 2-2 and Table 2-4.
Chapter 3: Added further descriptions on page 39. Added Figure 3-3 and Figure 3-4.
Added an important note to page 53.
Chapter 4: Updated the Normal (Split) Operation description. Added the Lock-step
Sequence in Cortex-R5 Processors section.
Chapter 5: Added a recommendation on page 94.
Chapter 6: Added the Power Modes section. Updated the PMU System-level View
section. Updated the descriptions in Table 6-3. Revised descriptions in the PMU
Clocking section. Removed PMU local registers from Table 6-6. Updated descriptions
in Table 6-13. Replaced Table 6-14 and Table 6-17. Updated register names in the
Power Down and Power Up sections. Updated the Isolation Request description.
Chapter 9: Updated the PS SYSMON Features descriptions. Revised the steps in the
PS and PL System Monitor Programming Model and added the PL SYSMON
programming steps.
Chapter 11: Revised SD1/MMC33 and SD1-LS in Table 11-1. Revised the
SD0/SD1/MMC section and added SD1-LS support on page 197. Added Table 11-3.
Clarifying edits to Figure 11-2 and the Initialize PCAP Interface section.
Chapter 12: Clarified the secure processor reset in Figure 12-7.
Chapter 13: Updated XPPU in Table 13-5.
Chapter 14: Revised the Physical Counter description. Added the CSU_WDT to the
System Watchdog Timer discussion.
Chapter 15: Updated the device names in Table 16-8.
Chapter 16: Added further address definition on page 347. Added Note 1 to
Table 16-6. Added further information after Table 16-7.
Chapter 17: Added the DDR Memory Types, Densities, and Data Widths section and
updated the Traffic Classes section.
Chapter 19: Added Figure 19-5.
Chapter 24: Revised the descriptions and content in Table 24-8, Table 24-9, and
Table 24-11.
Chapter 25: Added a recommendation on page 627.
Chapter 26: Clarified eMMC throughout chapter. Updated eMMC Card Interface
section. Updated Figure 26-4. Added Note 1 to Table 26-13. Added an important
note to page 686. Updated Figure 26-6.
Chapter 28: Updated Table 28-2 (QSPI pins 1-4, 8-11) and added Note 1 to SD0/1.
Chapter 29: Updated Figure 29-5.
Chapter 30: Updated the Configuration Control (APB Interface) section. Revised the
Power Management section discussion on ASPM. Added important notes in the
Accessing Bridge Internal Registers section. Added information on Endpoint
Compliance. Added a Tip on page 762. Added an important note on page 773.

Date Version Revision
Zynq UltraScale+ Device TRM 14
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=14

6/01/2016 1.2 (cont’d) Chapter 33: Added Figure 33-1 to the DisplayPort Controller Blocks section. Added
the Supported Video Formats section.Chapter 34: Added clock restrictions
generating a reference clock for GEM on page 938. Added a note on page 946.
Chapter 35: Added SACEFPD_ACLK to Table 35-3.
Chapter 37: Updated the Tip on page 1037 and updated an important note and
added a new Tip on page 1038. Updated Figure 37-1, Figure 37-2, and Figure 37-3.
Added Table 37-1 and Table 37-2. Updated the Programmable Clock Throttle section.
Chapter 39: Updated the JTAG and DAP Functional Description section. Updated the
Third-Party Tool Support.

3/07/2016 1.1 Chapter 1: Updated the Block Diagram section and the LLPP in Figure 1-1.
Chapter 2: Updated Figure 2-1, Table 2-1, Table 2-3, and Table 2-2. Removed
Table 2-7: Debug Pins and Associated Signals. Updated Table 2-5. Revised the
Interrupts discussion. Revised Table 2-12.
Chapter 4: Updated the Normal (Split) Operation and TCM Access from a Global
Address Space sections.
Chapter 6: Updated Figure 6-2. Revised the Platform Management Unit Functional
Description section. Clarified descriptions in the PMU GPIs and GPOs section.
Removed Table 6-12: PMU Dedicated I/O. Removed the Use Case for System-level
Reset section.
Chapter 9: Updated the PS System Monitor Introduction. Updated Figure 9-1 and
Table 9-3. Removed Table 7-4: PS SYSMON Block Auxiliary Channel Registers. Updated
Table 9-9.
Chapter 10: Updated the PMU_ROM in Table 10-2.
Chapter 11: Revised Figure 11-2, Table 11-1, Table 11-4, and Table 11-5. Expanded
the Boot and Configuration Functional Description section. Added a
recommendation to the Boot Modes section. Updated the Initialize PCAP Interface
section.
Chapter 12: Added the Tamper Monitoring and Response section. Moved the Secure
Stream Switch section to Chapter 11. Updated the Family Key description. Updated
the Key Management, RSA Accelerator, and RSA Operations sections. Added the CSU
BootROM Error Codes section. Replaced Figure 12-11. Added the Programming
SHA-3 Engine section.
Chapter 13: Revised the RPU GIC Interrupt Structure section.
Chapter 15: Revised Figure 15-1. Removed Figure 13-3: Monitor Points in the LPD and
updated the APM Points section. Added Quality of Service section.
Chapter 16: Revised Figure 16-1. Added notes on page 349 and page 351. Updated
the SMMU section. Added the XMPU SINK Register Summary and the XMPU SINK
Register Summary.
Chapter 17: Revised Figure 17-1. Removed the BIST Loopback Mode section. Updated
the Data Training section. Updated Figure 17-20 and Figure 17-21.
Chapter 18: Updated the On-chip Memory Introduction. Revised Table 18-2 and
Figure 18-2. Removed the Adjust Extra Margin Access Register section.

Date Version Revision
Zynq UltraScale+ Device TRM 15
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=15

3/07/2016 1.1 (cont’d) Chapter 19: Updated the Simple DMA Mode section and Step 4 under Simple Mode
Programming.
Chapter 24: Added the Quad-SPI Tap Delay Circuits section.
Chapter 26: Updated Table 26-9 and Table 26-10 and the Card Detection section.
Chapter 27: Removed the GPIO Bypass Mode section and Figure 27-4.
Chapter 28: Updated the Boot from SD Card section and added the eMMC Mapping
section.
Chapter 29: Updated Figure 29-2. Updated the Reference Clock Network section
including Figure 29-5.
Chapter 30: Updated the Controller for PCI Express Features list. Updated
Figure 30-5. Updated Table 30-10.
Chapter 31: Revised the USB 2.0/3.0 Host, Device, and USB 2.0 OTG Controller
Features section.
Chapter 32: Updated the SATA Host Controller Interface Description and TrustZone
Support sections.
Chapter 33: Added Figure 33-5.
Chapter 34: Updated the Gigabit Ethernet Controller Introduction and Clock Domains
sections. Added the External FIFO Interface section. Updated bit 24 in Table 34-5.
Minor revisions in the IEEE Std 802.3 Pause Frame Reception and PFC Pause Frame
Reception sections.
Chapter 35: Revised Figure 35-1, Figure 35-4, Figure 35-5, Figure 35-6. Added
important notes on page 1007 and page 1008.
Chapter 36: Updated Figure 36-1 and Figure 36-2.
Chapter 37: Updated the System Viewpoint, APU Clock, and DDR Clock sections.
Added the PLL Operation section. Added the Low-Power Domain section to
Table 37-4. Updated the examples in Clocking Programming Considerations. Added
the PLL Integer Divide Programming section.
Chapter 38: Updated the Reset System Functional Description section and the Reset
System Programming Model.
Chapter 39: Added features and a flowchart to the Fabric Trigger Macrocell section.
Moved the PJTAG Signals, JTAG Toggle Detect, JTAG Disable, JTAG Error Status
Register, and JTAG Boot State. Added Figure 39-6.

11/24/2015 1.0 Initial Xilinx release.

Date Version Revision
Zynq UltraScale+ Device TRM 16
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=16

Table of Contents
Revision History . 2

Chapter 1: Introduction

Introduction to the UltraScale Architecture . 26

Application Overview . 27

System Block Diagram . 28

Power Domains and Islands . 30

High-Speed Serial I/O. 32

MIO and EMIO . 34

Platform Management and Boot . 34

Functional Units and Peripherals . 35

Device ID Codes . 37

IP Revisions. 38

System Software . 39

Documentation . 40

Chapter 2: Signals, Interfaces, and Pins

Introduction . 43

Dedicated Device Pins . 45

PS-PL Signals and Interfaces . 49

PS-PL AXI Interfaces . 54

Chapter 3: Application Processing Unit

Introduction . 55

Arm v8 Architecture. 56

APU Functional Units . 59

APU Memory Management Unit . 64

System Virtualization. 67

System Coherency . 70

ACE Interface . 72

ACP Interface . 72

APU Power Management . 72

Clocks and Resets. 76
Zynq UltraScale+ Device TRM 17
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=17

Performance Monitors . 77

System Registers . 77

System Memory Virtualization Using SMMU Address Translation . 78

Chapter 4: Real-time Processing Unit

Introduction . 83

Cortex-R5F Processor Functional Description . 84

Error Correction and Detection. 88

Level2 AXI Interfaces . 89

Memory Protection Unit . 89

Events and Performance Monitor. 90

Power Management . 90

Exception Vector Pointers . 90

System Register Overview. 91

Tightly Coupled Memory . 92

Chapter 5: Graphics Processing Unit

Introduction . 99

Graphics Processing Unit Functional Description . 101

Graphics Processing Unit Level 2 Cache Controller . 109

Graphics Processing Unit Memory Management Unit . 110

Graphics Processing Unit Programming Model . 113

Graphics Processing Unit Register Overview . 115

Chapter 6: Platform Management Unit

Introduction . 120

Functional Description. 125

Operation . 142

Programming Model . 156

Register Overview . 159

MIO Signals. 164

Chapter 7: Real Time Clock

Introduction . 166

Functional Description. 167

Calibration . 171

External Clock Crystal and Circuitry . 173

Battery Selection . 174

RTC Register List. 176

Programming Model . 177
Zynq UltraScale+ Device TRM 18
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=18

Programming Example – Periodic Alarm . 179

Chapter 8: Functional Safety

Introduction . 180

Safety Features overview . 181

Safety Assessment and Safety Metrics. 184

Possible Sub-system Configuration for Safety Applications . 184

Device Safety . 185

Functional Safety Software Test Library. 186

Chapter 9: System Monitors

Introduction . 189

Functional Description. 194

Operating Modes . 210

Programming Examples. 212

Register Sets . 215

System Interfaces. 223

Chapter 10: System Addresses

Introduction . 228

System Address Register Overview . 233

Chapter 11: Boot and Configuration

Introduction . 237

Boot Image Format . 246

Functional Units . 249

CSU BootROM Error Codes . 251

PL Bitstream . 257

Register Overview . 259

Configuration Programming Model . 261

Chapter 12: Security

Introduction . 266

Device and Data Security. 267

Secure Boot . 291

Chapter 13: Interrupts

Introduction . 316

System Interrupts. 318

GIC Interrupt System Architecture . 323
Zynq UltraScale+ Device TRM 19
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=19

RPU GIC Interrupt Controller. 324

APU GIC Interrupt Controller . 326

IPI Interrupts and Message Buffers . 330

GIC Proxy Interrupts . 338

CPU Private Peripheral Interrupts . 339

Register Overview . 341

Programming Examples. 342

Chapter 14: Timers and Counters

Introduction . 345

APU MPCore System Counter . 347

APU Core Private Physical and Virtual Timers . 349

Triple-timer Counters . 353

System Watchdog Timers . 361

MIO - EMIO Signals . 374

Chapter 15: PS Interconnect

Introduction . 375

Block Diagram . 376

ATB Timeout Description. 381

AXI Performance Monitor . 383

Programming Example – Metric Counter . 386

Quality of Service . 387

Interconnect Register Overview . 393

Chapter 16: System Protection Units

Introduction . 395

TrustZone . 400

SMMU Protection on CCI Slave Ports . 408

XMPU Protection of Slaves . 409

XMPU Register Set Overview . 417

XPPU Protection of Slaves . 418

Master IDs List . 428

XPPU Register Set Overview . 430

Programming Example . 431

Write-Protected Registers Table. 435

Security and Safety Errors . 437

AIB Isolation Functionality . 438
Zynq UltraScale+ Device TRM 20
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=20

Chapter 17: DDR Memory Controller

Introduction . 440

System Block Diagram . 445

DDR Subsystem Overview . 450

Functional Description. 463

Controller Initialization . 465

Programming Topics . 469

Register Overview . 498

Programming Model . 510

Reading DRAM Configuration Mode Registers . 527

Chapter 18: On-chip Memory

Introduction . 532

On-chip Memory Functional Description . 533

On-chip Memory Register Overview . 535

On-chip Memory Programming Model . 536

Chapter 19: DMA Controller

Introduction . 538

DMA Controller Functional Description . 540

DMA Data Flow . 542

DMA Performance Requirements. 549

DMA Interrupt Accounting . 549

DMA Over Fetch. 550

DMA Transaction Control . 552

DMA Controller Register Overview . 556

DMA Programming for Data Transfer. 557

DMA Programming Model for FCI. 565

Chapter 20: CAN Controller

Introduction . 571

Functional Description. 572

Register Overview . 595

Programming Model . 595

Chapter 21: UART Controller

Introduction . 604

UART Controller Functional Description . 605

UART Controller Register Overview . 618

MIO – EMIO Signals . 619
Zynq UltraScale+ Device TRM 21
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=21

UART Controller Programming Model . 620

Chapter 22: I2C Controllers

Introduction . 624

Functional Description. 626

I/O Signals . 628

Register Overview . 629

Programming Model . 630

Chapter 23: SPI Controller

Introduction . 647

Functional Description. 648

MIO-EMIO Signals . 653

Register Overview . 655

Programming Model . 656

Chapter 24: Quad-SPI Controllers

Introduction . 663

System Control . 666

Generic Quad-SPI Controller . 668

Legacy Quad-SPI Controller . 677

Register Overview . 689

Programming and Usage Considerations . 693

Generic Quad-SPI Controller Programming . 694

Legacy Quad-SPI Controller Programming . 716

MIO Signals. 717

Chapter 25: NAND Memory Controller

Introduction . 718

Functional Description. 719

Register Overview . 721

Clocks and Resets. 723

I/O Signal Pins . 723

Programming Model . 726

Chapter 26: SD/SDIO/eMMC Controller

Introduction . 743

Functional Description. 746

Clocks and Resets. 750

I/O Signals . 762
Zynq UltraScale+ Device TRM 22
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=22

Register Overview . 765

Programming Examples. 769

Chapter 27: General Purpose I/O

Introduction . 787

Functional Description. 788

Register Overview . 796

MIO Signals. 796

Programming Model . 797

Chapter 28: Multiplexed I/O

Introduction . 802

MIO Pin Assignment Considerations . 807

MIO Table at a Glance . 808

Register Overview . 810

Programming Model . 810

Chapter 29: PS-GTR Transceivers

Introduction . 817

Functional Description. 819

Register Overview . 835

Configuration Program . 835

Chapter 30: PCI Express Controller

Introduction . 836

Functional Description. 838

I/O Signals . 867

Register Overview . 868

Programming Topics . 873

Chapter 31: USB Controller

Introduction . 888

Data Flow . 891

Data Structure Network . 892

Programming Guide. 905

Device Programming . 908

Register Overview . 910

Chapter 32: SATA Controller

Introduction . 930
Zynq UltraScale+ Device TRM 23
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=23

Functional Description. 931

Register Overview . 940

Programming Considerations . 943

Basic Steps When Building a Command . 946

Command FIS (CFIS) . 947

Chapter 33: DisplayPort Controller

Introduction . 948

Functional Description. 952

Register Overview . 990

Programming Considerations . 1000

MIO-EMIO Signals . 1020

Chapter 34: GEM Ethernet

Introduction . 1021

Functional Description. 1025

I/O Signals . 1060

Programming Model . 1069

Register Overview . 1081

Chapter 35: PS-PL AXI Interfaces

Introduction . 1085

Functional Description. 1088

Choosing a Programmable Logic Interface. 1103

Signal Overview . 1111

Register Overview . 1112

Chapter 36: PL Peripherals

Introduction . 1113

PCI Express Integrated . 1114

100G Ethernet . 1115

DisplayPort Video and Audio Interfaces. 1115

Interlaken . 1116

GTH and GTY Transceivers. 1117

PL System Monitor. 1118

Video Codec Unit . 1119

RFSoC . 1122

Chapter 37: PS Clock Subsystem

Introduction . 1127
Zynq UltraScale+ Device TRM 24
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=24

System PLL Units . 1131

Basic Clock Generators . 1133

Special Clock Generators . 1138

Programming Examples. 1139

PLL Integer Divide Helper Data Table . 1144

Register Overview . 1146

Chapter 38: Reset System

Introduction . 1154

Functional Description. 1155

Register Overview . 1163

Programming Model . 1163

Chapter 39: System Test and Debug

Introduction . 1166

JTAG Functional Description . 1168

Arm DAP Controller . 1178

CoreSight Functional Description . 1181

CoreSight Address Map . 1198

Clocks, Reset, and Power Domains. 1201

I/O Signals . 1203

MBIST, LBIST, and Scan Clear (Zeroization) . 1205

Appendix A: Additional Resources and Legal Notices

Xilinx Resources . 1211

Solution Centers. 1211

Documentation Navigator and Design Hubs . 1211

References . 1212

Arm References . 1213

Please Read: Important Legal Notices . 1214
Zynq UltraScale+ Device TRM 25
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=25

Chapter 1

Introduction

Introduction to the UltraScale Architecture
The Xilinx® UltraScale™ architecture enables multi-hundred gigabit-per-second levels of
system performance with smart processing, while efficiently routing and processing data
on-chip. UltraScale architecture-based devices address a vast spectrum of high-bandwidth,
high-utilization system requirements by using industry-leading technical innovations,
including next-generation routing, ASIC-like clocking, 3D-on-3D ICs, multiprocessor SoC
technologies, and new power reduction features. The devices share many building blocks,
providing scalability across process nodes and product families to leverage system-level
investment across platforms.

All Zynq® UltraScale+ devices provide 64-bit processor scalability while combining
real-time control hard engines for graphics, video, waveform, and packet processing
capabilities in the programmable logic. Integrating an Arm®-based system for advanced
analytics and on-chip programmable logic for task acceleration creates unlimited
possibilities for applications including 5G Wireless, next generation ADAS, and Industrial
Internet-of-Things.

The RFSoC devices are similar to the basic MPSoC devices with the addition of key RF
subsystems for multi-band, multi-mode cellular radios and cable infrastructure (DOCSIS).
The RFSoC devices combine the processing system with programmable logic located near
RF-ADCs, RF-DACs, and soft-decision FEC (SD-FEC) units to enable a complete
software-defined radio including direct RF sampling data converters, enabling CPRI™ and
multi-gigabit Ethernet-to-RF on a single, highly programmable SoC.

Table 1-1 shows the main functional units and peripherals. For more information on the
TRM, see References in Appendix A, Xilinx Documentation Navigator, and the Zynq
UltraScale+ Documentation website [Ref 1].
Zynq UltraScale+ Device TRM 26
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/documentation-navigation/silicon-devices/soc/zynq-ultrascale-plus-mpsoc.html
https://www.xilinx.com/support/documentation-navigation/silicon-devices/soc/zynq-ultrascale-plus-mpsoc.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=26

Chapter 1: Introduction
Application Overview
Zynq UltraScale+ MPSoC is the Xilinx second-generation Zynq platform, combining a
powerful processing system (PS) and user-programmable logic (PL) into the same device.
The processing system features the Arm® flagship Cortex®-A53 64-bit quad-core or
dual-core processor and Cortex-R5F dual-core real-time processor. In addition to the cost
and integration benefits previously provided by the Zynq-7000 devices, the Zynq
UltraScale+ MPSoC and RFSoC devices also provide these new features and benefits.

• Scalable PS with scaling for power and performance.
• Low-power running mode and sleep mode.
• Flexible user-programmable power and performance scaling.
• Advanced configuration system with device and user-security support.
• Extended connectivity support including PCIe®, SATA, and USB 3.0 in the PS.
• Advanced user interface(s) with GPU and DisplayPort in the PS.
• RF circuitry for with up to 16 channels of RF-ADCs and RF-DACs (RFSoC devices).
• Increased DRAM and PS-PL bandwidth.
• Improved memory traffic using Arm's advanced QoS regulators.
• Improved safety and reliability.

These new devices offer the flexibility and scalability of an FPGA, while providing the
performance, power, and ease-of-use typically associated with ASICs and ASSPs. The range
of the Zynq UltraScale+ family enables designers to target cost-sensitive and
high-performance applications from a single platform using industry-standard tools. There
are two versions of the PS; dual Cortex-A53 and quad Cortex-A53. The features of the PL
vary from one device type to another. As a result, the Zynq UltraScale+ MPSoCs are able to
serve a wide range of applications including:

• Automotive driver assistance, driver information, and infotainment.
• Broadcast camera.
• Industrial motor control, industrial networking, and machine vision.
• IP and smart camera.
• LTE radio and baseband.
• Medical diagnostics and imaging.
• Multifunction printers.
• Video and night vision equipment.
• Wireless radio.
Zynq UltraScale+ Device TRM 27
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=27

Chapter 1: Introduction
• Single-chip computer.

System Block Diagram
The MPSoC and RFSoC devices consist of two major underlying sections PS and PL in two
isolated power domains. PS acts as one standalone SoC and is able to boot and support all
the features of the processing system shown in Figure 1-1 without powering on the PL.

The PS block has three major processing units.

• Cortex-A53 application processing unit (APU)—Arm v8 architecture-based 64-bit
quad-core or dual-core multiprocessing CPU.

• Cortex-R5F real-time processing unit (RPU)—Arm v7 architecture-based 32-bit dual
real-time processing unit with dedicated tightly coupled memory (TCM).

• Mali-400 graphics processing unit (GPU)—graphics processing unit with pixel and
geometry processor and 64KB L2 cache (available in the EG and EV MPSoC devices).

• Video control unit (VCU)—video compression, decompression, and processing
(available in the EV MPSoC devices).

• Radio frequency (RF)—up to 16 channels of RF-ADCs and RF-DACs (available in the
RFSoC devices).
Zynq UltraScale+ Device TRM 28
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=28

Chapter 1: Introduction
X-Ref Target - Figure 1-1

Figure 1‐1: AXI Interconnect

BRAM
(slave)

2-way Cache
Coherent Master

APU
MPCore

M

To all output
ports

CCI
Coherency

And
Bypass

RPU
GIC

TCMs OCM
Switch

USB0 w/DMA

USB1 w/DMA

LPD DMA

PS SysMon eFUSE

LPD SLCRs

IPI

RTC

IO
P

In
bo

un
d

IO
P

O
ut

bo
un

d

OCM Memory

DAP Controller

S

CSU Processor

PMU Processor

Quad-SPI
GEM x4

NAND
SDIO x2

UART x2

SPI x2

CAN x2 I2C x2S

S

TBU2

Programmable
Logic

FPD SLCRs

FPD configs

DDR Memory Controller

SMMU TCU

AIB

AIB

AIB

AI
B

AI
B

AIB

AI
B

AI
B

DisplayPort

FP
D

DM
A

TBU5

CoreSight

PCIe

SATA

AXI Stream

GPU PPs

AIB

ADB ADB

ADB

TBUx

AIB

LP
D

O
ut

bo
un

d

LP
D

In
bo

un
d

AIB

AIB

S

S
M 128-bit

M_AXI_HPM0_LPD

S_AXI_LPD

S_
AX

I_
HP

3_
FP

D

S_
AX

I_
HP

2_
FP

D
S_

AX
I_

HP
1_

FP
D

S_
AX

I_
HP

0_
FP

D

S_AXI_ACP_FPD

S_AXI_ACE_FPD

S_
AX

I_
HP

C0
_F

PD

S_
AX

I_
HP

C1
_F

PD

M
_A

XI
_H

PM
0_

FP
D

M
_A

XI
_H

PM
1_

FP
D

I/O Coherent
Master

AIB

AIB

AIB

AIB

GPU cfg

[a
fif

s0
]

[a
fif

s1
]

[afifs2]

[fpd_main]

[ocms]

[fpd_lpdibs]

[lpd_ddr]

[usb0s], [usb1s]

[rpus0], [rpus1]

[rpum0],
rpum1]

[ocms]

LPD Main
Switch

RPU
Switch

Full crossbar. Each
input to all output

ports.

Full crossbar.

GPIO x78, x96

S
M64-bit

S
M32-bit

AIB

AIB

FPD
Main

Switch

I/O
2-way 2-way

I/O

I/OAX
I S

tr
ea

m

SI
O

U
 O

ut
bo

un
d

QVN

Non-Coherent
Master

RPU

M

M

TTC x4 LPD SWDT

M M

TBU3 TBU4

TB
U

1
TB

U
0

VCU RF PCIe v3.1 100Gb

PL SysMon

ACP

X21026-060818
Zynq UltraScale+ Device TRM 29
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=29

Chapter 1: Introduction
Power Domains and Islands
There are four main power domains.

• Low-power domain (LPD).
• Full-power domain (FPD).
• PL power domain (PLPD).
• Battery power domain (BPD).

Each power domain can be individually isolated. The platform management unit (PMU) on
the LPD facilitates the isolation of each of the power domains. Additionally, the isolation
can be turned on automatically when one of the power supplies of the corresponding
power domain is accidentally powered down. Since each power domain can be individually
isolated, functional isolation (an important aspect of safety and security applications) is
possible. See Figure 1-2.

Note: The voltages shown in Figure 1-2 are shown as a general guide. See Zynq UltraScale+ MPSoC
Data Sheet: DC and AC Switching Characteristics (DS925) [Ref 2] for the device specifications.
Zynq UltraScale+ Device TRM 30
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=30

Chapter 1: Introduction
X-Ref Target - Figure 1-2

Figure 1‐2: Power Domains and Islands

VCU H.265, H.265

BRAM

PL SYSMON
(SYSMONE4)

100 Gb Ethernet Interlaken

PL Configuration
PL

 F
ab

ric
PL Fabric

DSP, LUT, Clks

SerDes

HD I/O

eFUSE

Real
Time
Clock BBRAM

Oscillator

USB 0

USB 1

PS-GTR

1.2 to 1.5V

Battery Power Domain (BPD)

1.8V
VCC_PSAUX good

1.8V to 3.3V VCCO_PSIO3

1.8V to 3.3V VCCO_PSIO2

1.8V to 3.3V VCCO_PSIO1

1.8V to 3.3V VCCO_PSIO0

0.85 or 0.9V VCC_PSINTLP

1.2V VCC_PSPLL

0.85 or 0.9V
VCC_PSINTFP

0.85V PS_MGTRAVCC

1.8V PS_MGTRAVTT

1.1 to 1.5V VCCO_PSDDR

1.8V VCC_PSDDR_PLL

VCCBRAM

VCCINT_VCU0.9V
VCCADC1.8V
VREFP1.25V
VCCAUX1.8V

VCCO1.2 to 3.3V

0.85 or 0.9V

VCC_PSINTFP_DDR

PS
SysMon

APLL
VPLL
DPLL

RPLL
IOPLL

System

MIO 2
MIO 1
MIO 0

L2 Cache
RAM

CPU 3

CPU 1

CPU 2

CPU 0

APU MPCore
(SCU, GIC, CCI)

APU Debug
RPU debug

Arm DAPPL
debug

FPD
DMA SATA

GPU pipeline
PCIe

Interconnect and SLCR
DisplayPort

GPU PP0

GPU PP1

Bank 0

Bank 1

Bank 2

Bank 3

TCM A0

TCM A1

TCM B0

TCM B1

OCM CtrlIOP

CSU PMU

IPI

Interconnect and SLCR
LPD DMA

PS TAP

PLLs (x6) DDR Memory
ControllerDDRIOB Po

rt
s

Battery

Power
Supplies

PCAP

PCAP-LPD Isolation Wall

PL
-L

PD
 Is

ol
at

io
n

W
al

l

VCC_PSAUX

Low Power Domain (LPD)

Full Power Domain (FPD)

PL Power Domain (PLPD)

PSIO {0:3} Power

High-Performance I/O PL Power Domains for Multiple
PL Units

PLL Power Domains
VCC_PSBATT

ETMGIC

RPU
MPCore

PL-FPD Isolation Wall

PS Auxiliary Power Domain

GTH/GTY Supplies0.9 to 1.8V

1.8V VCC_PSADC

PCIe Gen3, 4

PL TAP

PMU software control

PHY

HP I/O
VCCAUX_IO1.8V

VCCINT0.72, 0.85, or 0.9V PLPD
VCCO1.0 to 1.8V

X19927-120418
Zynq UltraScale+ Device TRM 31
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=31

Chapter 1: Introduction
High-Speed Serial I/O
The SIOU peripherals (plus the USB controller) share four GTR transceivers in the PS. There
are up to 16 GTY transceivers in the PL that are used with user-defined FPGA logic and the
RF circuits in RFSoC devices.

GTR Transceivers

The four GTR transceiver channels are shared with five high-speed serial I/O peripherals;
four from the SIOU in the FPD and the USB 3.0 controller based in the LPD. The controllers
support the following protocols.

• PCI Express® integrated interface—PCIe™ base specification version 2.1.
• SATA 3.1 specification interface.
• DisplayPort interface—implements a DisplayPort source-only interface with video

resolution up to 4k x 2k.
• USB 3.0 interface—compliant to USB 3.0 specification implementing a 5 Gb/s line rate.
• Serial GMII interface—supports a 1 Gb/s SGMII interface.

The PL includes three high-speed serial I/O peripherals. These interfaces are described in
Chapter 36, PL Peripherals.

• PCI Express Integrated interface—PCIe base specification version 3.1 and 4.0.
• 100G Ethernet.
• Interlaken.

Figure 1-3 contrasts the location and I/O connectivity of all the high-speed serial I/O
peripherals.

GTY Transceivers

The GTY transceivers transfer data up to 32.75 Gb/s, enabling 25G+ backplane designs with
dramatically lower power per bit than previous generation transceivers.

The RFSoC devices expand the capabilities of the GTY transceivers to include higher
performance PCIe and gigabit Ethernet-to-RF functionality. The transceivers support data
rates for PCIe Gen3 and Gen4 (rev 0.5) in all devices. PCIe Gen4 x8 and Gen3 x16 endpoint
and root port are supported in RFSoC devices.

For all devices, the transceivers support 150 Gb/s Interlaken and 100 Gb/s Ethernet (100G
MAC/PCS), and enable simple, reliable support for Nx100G switch and bridge applications.
Zynq UltraScale+ Device TRM 32
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=32

Chapter 1: Introduction
X-Ref Target - Figure 1-3

Figure 1‐3: High-Speed Serial I/O Block Diagram

PS

100 Gigabit
Ethernet G

TY
Tr

an
sc

ei
ve

rs

USB 2.0

PS
 G

TR
Tr

an
sc

ei
ve

rs
 x

4
G

TH
Tr

an
sc

ei
ve

rs

M
IO

USB 2.0
ULPI PHY

Programmable
Logic (PL)

USB
Controller

SATA

PCIe v2.1

10/100/1000
GEM

Ethernet

IOP Peripheral

USB 3.0

SIOU Peripherals

IE
EE

15
88

, T
SU

RGMII

Au
di

o/
Vi

de
o

SGMII

Interlaken
v1.2

LUTs

DisplayPort

PS
 G

TR
In

te
rc

on
ne

ct
 M

at
rix

MDIO

Vi
de

o

x2x2

x4

G
M

II/
M

II

Ev
en

ts
 x

3

M
D

IO

x2

EMIO

x2

x4

PL Fabric
BRAM

GEM
Ethernet

PHY

x2

x2

PCIe
v3.1

FI
FO

 P
ac

ke
t I

nt
er

fa
ce

PL

LPD

FPD

PLPD

GTs

Power Domains

PL Fabric

PL AXI
Interconnect

DSPs

ADC/DAC,
SD-FEC

For RFSoC devices:

X19928-090420
Zynq UltraScale+ Device TRM 33
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=33

Chapter 1: Introduction
MIO and EMIO
The PS and PL can be coupled with multiple interfaces and other signals to effectively
integrate user-created hardware accelerators and other functions in the PL logic that are
accessible to the processors. They can also access memory resources in the processing
system. The PS I/O peripherals, including the static/flash memory interfaces share a
multiplexed I/O (MIO) of up to 78 MIO pins. The peripherals can also use the I/Os in the PL
domain for many controllers. This is done using the extended multiplexed I/O interface
(EMIO).

The I/O peripheral signal availability on MIO and EMIO is summarized in Table 2-7. The MIO
pin multiplexing functionality is described in Chapter 28, Multiplexed I/O.

Platform Management and Boot
The PMU receives requests from other processors to power up and power down peripherals
and other units by power sequencing nodes and islands. The PMU also enables and disables
clocks and resets.

After a system reset, the PMU ROM pre-boot code initializes the system and the CSU ROM
executes the first stage boot loader from the selected external boot device. The boot
process configures the MPSoC platform as needed, including the PS and the PL.

After the FSBL execution starts, the CSU enters the post-configuration stage to monitor
tamper signals from various sources in the system. The tamper response registers are listed
at the bottom of Table 11-12.

The system includes many types of security, test, and debug features. The system can be
booted either securely (boot image is either encrypted or authenticated, or encrypted and
authenticated) or non-securely. Either of the following combinations can be implemented.

• Boot image is encrypted.
• Boot image is authenticated.
• Boot image is both encrypted and authenticated for the highest level of security.

The PL configuration bitstream can be applied securely or non-securely. The boot process is
multi-stage and minimally includes the boot ROM and the first-stage boot loader (FSBL).
Zynq UltraScale+ MPSoCs include a factory-programmed configuration security unit (CSU)
ROM. The boot header determines whether the boot is secure or non-secure, performs
some initialization of the system, reads the mode pins to determine the primary boot
device, and loads the FSBL.
Zynq UltraScale+ Device TRM 34
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=34

Chapter 1: Introduction
Optionally, the JTAG interface can be enabled to provide access to the PS and the PL for test
and debug purposes.

Power to the PL can be optionally shut off to reduce power consumption. To further reduce
power, the clocks and the specific power islands in the PS (for example, an APU power
island) can be dynamically slowed down or gated off.

Functional Units and Peripherals
Table 1-1 lists and describes the main functional units and peripherals.

Table 1‐1: Functional Units and Peripherals

Name Description

APU MPCore

Application processing units: two or four 64-bit Cortex-A53 processors, supports
four exception levels, NEON instructions, and single/double precision
floating-point calculations, includes accelerator port (ACP) and AXI coherency
extension (ACE), snoop-control unit (SCU), and L2 cache controller (CG devices are
dual core, all others are quad).

RPU MPCore
Real-time processing units: dual 32-bit Cortex-R5F processor, Arm instruction set,
dynamic branch prediction, redundant CPU logic for fault detection,
32/64/128-bit AXI interface to the PL for low-latency applications.

GPU
Graphics processing units: one geometry processor, two pixel processors, OpenGL
ES 1.1 and 2.0, OpenVG 1.1, advanced anti-aliasing support (available in the EG
and EV product families).

VCU

The video codec unit (VCU) provides multi-standard video encoding and
decoding, including support for the high-efficiency video coding (HEVC) H.265
and advanced video coding (AVC) H.264 standards. The unit contains both encode
(compress) and decode (decompress) functions, and is capable of simultaneous
encode and decode. The VCU is included in the EV product family of the MPSoC
devices.

RF
The RF-ADC, RF-DAC, and soft-decision FEC functions are located in the PL. These
RF circuits enable software-defined radios using the direct RF sampling data
converters to enable CPRI™ and gigabit Ethernet-to-RF functionality. The RF unit
is included in the DR product family exclusively part of the RFSoC devices.

AMBA interconnect
AXI cache-coherent interconnect, interconnects belonging to two power domains,
(central switch and low-power switch), processing system to programmable logic
interface.
APB buses for register access, AHB for some IOP masters.

CSU Configuration security unit: triple redundant processor for controlling; supports
secure and non-secure boot flows.

System interrupts
Processor, controller, and other system element interrupts. Inter-processor
interrupts (IPI). Software generated interrupts. RPU and APU interrupts and system
interrupts. Inter-processor interrupt, support for software generated interrupt and
shared peripheral interrupt.

TTC 4x Triple Timer Counters: programmable 32-bit and 64-bit timers, programmable
event counters.
Zynq UltraScale+ Device TRM 35
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=35

Chapter 1: Introduction
LPD and FPD DMA units
Programmable number of outstanding transfers, support for simple and
scatter-gather mode, support for read-only and write-only DMA mode, descriptor
prefetching, per channel flow control interface.

DDR memory controller
DDR3, DDR3L, DDR4, LPDDR4, up to two ranks, dynamic scheduling to optimize
bandwidth and latency, error-correction code support in 32-bit and 64-bit mode,
software programmable quality of service.

NAND memory controller Complies with ONFI 3.1 specification, supports reset logical unit number, ODT
configuration, on-die termination.

SPI controller Full duplex operation, multi-master environment support, programmable master
mode clock frequency, programmable transmission format.

Quad-SPI controller Stacked and parallel modes, supports command queuing, supports 4/8 bit
interface, 32-bit address support on AXI in DMA mode transfer.

CAN controller Standard and extended frames, automatic retransmission on errors, four RX
acceptance filters with enables, masks, and IDs.

UART controller Programmable baud rate generator, 6/7/8 data bits, modem control signals.

I2C controller I2C bus specification version 2.0 supported, normal and fast mode transfer, slave
monitor mode.

SD/SDIO/eMMC controller Data transfer in 1-bit or 4-bit mode, cyclic redundancy check for data and
command, card insertion/removal detection.

GPIO 78 GPIO signals for device pins, 96 GPIO channels between PS and PL,
programmable interrupt on individual GPIO channel.

PL peripherals

Peripherals present in the PL:
• PCI Express rev 3.1 and 4.0.
• Interlaken
• 100G Ethernet
• PL System Monitor
• Video encoder/decoder (VCU is available in EV MPSoC devices).
• High-speed transceivers (up to 32.75 Gb/s)
• DisplayPort audio and video interface
• RF I/O subsystem (RFSoC devices)

Platform management unit System initialization during boot, management of power gating and retention
states, management of sleep states, triple-redundant processor.

Clock system Five independent system PLLs used as clock source for a few dozen clock
generators for all the functional units and peripherals.

Reset system Individual peripheral level reset generation, PS only reset.
Arm DAP controller Access to debug access port and Arm CoreSight™ components.

Arm CoreSight debug
components

Break-point and single stepping, AXI trace monitor to capture AXI transactions,
CoreSight system trace macrocell (STM) captures software driven traces,
CoreSight extension from the PL.

On-chip memory (OCM) 256KB RAM, very high throughput support on AXI interconnect, ECC support.
Tightly-coupled memory Four TCM banks, each one is 64 KB.

Table 1‐1: Functional Units and Peripherals (Cont’d)

Name Description
Zynq UltraScale+ Device TRM 36
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=36

Chapter 1: Introduction
Device ID Codes

JTAG IDCODE

The device ID code uniquely identifies the major features and PS version of each device
type. There are two ways to access the device ID code:

• IDCODE instruction in the PS TAP controller.
• Software readable CSU.IDCODE register.

The IDCODE read instruction is always available on the PSJTAG controller, even when it is
disabled.

The software reads the same ID code as the PSJTAG interface. The CSU register set also
includes the Version [PS_Version] bit field. This helps software to easily determine the
version of the PS. All production devices are [PS_Version] = 3 or later. The IDCODE value
depends on the device type and the minimum production revision. The device ID codes and
minimum production versions are listed in Table 1-2. The functionality implemented in each
device type is listed in Zynq UltraScale+ MPSoC Product Overview (DS891) [Ref 1]. This

PS-GTR transceivers
Compliant with PCIe 2.0, USB 3.0, DisplayPort 1.2a, SATA 3.1, and SGMII protocols,
internal PLL per lane to support multiple protocols, integrated termination
resistors, BIST, and supports loopbacks as required by the supported protocols.

PCI Express rev 2.1
End Point and Root Port mode, Gen1 and Gen2 rates, MSI, MSI-X, and legacy
interrupt support, AXI PCIe bridge, integrated four-channel fully-configurable
DMA.

USB controller
USB 2.0/3.0 host, device, OTG, 5 Gb/s data rate, AXI master port with built-in DMA,
power management feature, hibernation mode, simultaneous operation of USB
2.0 and 3.0.

SATA host controller
Compliant with the SATA 3.1 specification, supports 1.5G, 3G, and 6G line rates,
compliant with the advanced host controller interface version 1.3. The controller
has an embedded DMA that facilitates memory transfers.

DisplayPort interface Source only controller with an embedded DMA controller that supports 1G or 2G
transceiver lanes, supports real-time video and audio input from the PL.

Gigabit Ethernet controller
and serial GMII (GEM)

IEEE Std 802.3-2008 compatible, full and half-duplex modes of operation,
RGMII/SGMII interface support, MDIO interface, automatic discard frames with
errors, programmable inter packet gap, full-duplex flow control. The controller has
a built in DMA engine that can be used to transfer Ethernet packets from memory.

System protection units
Memory and peripheral partitioning and protection, TrustZone protection, error
handling on permission violation/disallowed transactions, access control for a
specific range of addresses, access control on a per-peripheral basis.

Table 1‐1: Functional Units and Peripherals (Cont’d)

Name Description
Zynq UltraScale+ Device TRM 37
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=37

Chapter 1: Introduction
includes number of APU cores, the availability of the VCU, number of CLBs, number of DSPs,
and other blocks in the device.

IP Revisions
Table 1-3 lists the IP revisions.

Table 1‐2: Device ID Codes and Minimum Production Revisions

Device Name Product Family IDCODE[31:0](1)

ZU2 CG, EG 1471_1093h

ZU3 CG, EG 1471_0093h

ZU4 CG, EG, EV 0472_1093h

ZU5 CG, EG, EV 0472_0093h

ZU6 CG, EG 2473_9093h

ZU7 CG, EG, EV 1473_0093h

ZU9 EG 2473_8093h

ZU11 EG 0474_0093h

ZU15 EG 1475_0093h

ZU17 EG 1475_9093h

ZU19 EG 1475_8093h

ZU21 DR 147E_1093h

ZU25 DR 147E_5093h

ZU27 DR 147E_4093h

ZU28 DR 147E_0093h

ZU29 DR 147E_2093h

ZU39 DR 147E_6093h

ZU43 DR 147F_D093h

ZU46 DR 147F_8093h

ZU47 DR 147F_F093h

ZU48 DR 147F_B093h

ZU49 DR 147F_E093h

Notes:
1. Bits [27:0] refer to the device type. Bits [31:28] are the device revision. The minimum revision

value for each production-qualified device is shown in the table.
Zynq UltraScale+ Device TRM 38
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=38

Chapter 1: Introduction
System Software
The Zynq UltraScale+ MPSoC is a complex system-on-a-chip. With the two or four
high-performance 64-bit APUs, two real-time processing units (RPUs), one graphics
processing unit (GPU), and other hardware peripherals, making it suitable for

Table 1‐3: IP Revisions

System Element Vendor Version

RPU Core CPUs (Cortex-R5F) Arm r1p3
APU Core CPUs (Cortex-A53) Arm r0p4-50rel0
APU Core Crypto Arm r0p4-00rel0
APU Core Neon Arm r0p4-00rel0
CCI Coherent Interconnect (CCI-400) Arm r1p3-00rel0
AXI Interconnect (NIC-400) Arm r0p2-00rel0
APU GIC Interrupts (GIC-400) Arm r0p1-00rel0
RPU GIC Interrupts (PL390) Arm r0p0-00rel2
CoreSight Debug (SoC-400) Arm r3p1-00rel0
AXI Interconnect QoS (QoS-400) Arm r0p2-00rel0
SMMU Memory Management (SMMU-500) Arm r2p1-00rel1
CoreSight STM (STM-500) Arm r0p1-00rel0
GPU Graphics (Mali-400) Arm r1p1-00rel2
GEM Ethernet Controllers Cadence r2p03
GEM Ethernet GXL Cadence r1p06f1
GEM Ethernet RGMII Cadence r1p04
I2C Controllers Cadence r114_f0100_final
TTC Timer/Counters Cadence r2
UART Controllers Cadence r113
SPI Controllers Cadence r109
LPD SWDT, FPD SWDT, CSU SWDT Units Cadence r1p03
DDR Memory Controller Synopsys 2.40a-lp06
DDR Memory PHY (GDSII) Synopsys 1.40a_patch1
USB 3.0 Controllers Synopsys 2.90a
SD/SDIO/eMMC Controllers Arasan ver1p48_140929
NAND Controller (ONFI, AXI, PIO, MDMA) Arasan v3p9_140822
LPD DMA, FPD DMA Units Northwest Logic 1.13
SATA Controller (Dual, AHCI, 128AXI, RAM) CEVA FA13
Zynq UltraScale+ Device TRM 39
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=39

Chapter 1: Introduction
heterogeneous processing. There is ample supporting software to enable
hardware-software co-processing and a virtual environment to derive system-level benefits.

Xilinx provides a virtual development platform, firmware code, and device drivers for all of
the I/O peripherals present in the PS and PL. These device drivers are provided in source
format and support bare-metal or standalone systems and Linux platforms. An example
first-stage boot loader (FSBL) is also provided in source-code format. The source drivers for
stand-alone and FSBL are provided as part of the Xilinx Software Development Kit (SDK).
The Linux drivers are provided through the Xilinx Open Source Git repository.

More information is available in the Zynq UltraScale+ MPSoC Software Developer’s Guide
(UG1137) [Ref 3]. In addition, the Xilinx Alliance Program partners provide system software
solutions for IP, middleware, and operation systems.

System Features Assigned by Software

Table 1-4 lists general purpose features that are assigned by software for specific functions.

Documentation
The Zynq UltraScale+ MPSoC device is divided between the PS and PL. There are several
units in the PL that have special wiring connections to the PS and the PL I/O pins. The units
are powered by PL voltage pins. The PL fabric can be configured using the UltraScale+
LogiCORE™ soft IP.

Table 1‐4: System Features Assigned by Software

Feature Function

PMU global persistent general
storage registers {4:7}

Four registers are used by the FSBL and other Xilinx software
products: PMU_GLOBAL.PERS_GLOB_GEN_STORAGE{4:7}.

PMU global general storage registers
{4:6}

Three registers are used by the FSBL and other Xilinx software
products: PMU_GLOBAL.GLOBAL_GEN_STORAGE{4:6}.

PMU general purpose MIO pins Table 6-3 provides PMU general purpose MIO pins. Pins are
used to control external power supplies.

GPIO signals to reset PL instantiated
logic

Four GPIO pins are used by the Vivado process or the
configuration wizard (PCW) provides resets through the EMIO
to PL fabric.

PMU sleep mode request The PMU has four IPI interrupts. PMU_0 interrupt is assigned by
the PMU firmware to transition the PMU to sleep mode.
Zynq UltraScale+ Device TRM 40
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=40

Chapter 1: Introduction
This technical reference manual (TRM) describes the architecture and functionality of the PS
and parts of the PL. The TRM is a foundation for the Zynq UltraScale+ MPSoC Software
Developer’s Guide (UG1137) [Ref 3] and other application guides. The PS control registers
are defined in the Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4]. See

Table 1‐5: Document Matrix

Document System
Architect

PCB
Design

System
Software

Host
Software Description/

Audience Relative
to the TRM

PMU FW,
FSBL, Drivers Linux, Other

Technical
Reference
Manual

UG1085 Yes Pin
functions

PS
functionality Architecture

Architecture,
functionality,
and control.

Data Sheet:
Overview DS891 Start here Overview Overview ~

Introductions of all the
system elements in the

PS and PL.
MPSoC Data
Sheet:
DC and AC

DS925 Frequencies AC/DC
spec. ~ ~ PCB designer.

RFSoC Data
Sheet:
DC and AC

DS926 Frequencies AC/DC
spec. ~ ~ PCB designer.

PCB Design User
Guide UG583 ~ Yes ~ ~ PCB designer.

System Monitor
User Guide UG580 ~ Analog

inputs Yes ~
Explains the core

functionality of the
SYSMON units.

Online Register
Reference UG1087 ~ ~ Yes ~ Register sets (modules)

descriptions.
Software
Developer
Guide

UG1137 Functionality ~ Yes Yes System software
features.

PS LogiCORE IP
Product Guide PG201 PS-PL

interface ~ ~ ~ Integration using Vivado
design tools.

Packaging and
Pinouts Spec. UG1075 ~ Yes ~ ~ Defines DDR to DRAM

I/O connections.
Product Data
Sheet: Overview DS890 Perspective ~ Perspective ~ All UltraScale and

UltraScale+ devices.
PL-based
MPSoC units Several Functionality

per device GTR Yes ~ Examples:
VCU, PCIe, 100 Gbit.

PL-based FPGA
units Many PL

Instantiations SelectIO ~ ~ Examples:
DSP, LUT, block RAM.

OS and Libraries
Document
Collection

UG643 Yes ~ Yes Yes System and application
programmer.
Zynq UltraScale+ Device TRM 41
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=41

Chapter 1: Introduction
Appendix A, Additional Resources and Legal Notices for a list of helpful documents and
online resources.
Zynq UltraScale+ Device TRM 42
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=42

Chapter 2

Signals, Interfaces, and Pins

Introduction
The dedicated device pins and the major signals and interfaces that cross between Programmable
Logic (PL) and Processing System (PS) power domains are listed in this chapter. Figure 2-1 shows
the dedicated device pins, and the signals and interfaces between power domains.
Zynq UltraScale+ Device TRM 43
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=43

Chapter 2: Signals, Interfaces, and Pins
X-Ref Target - Figure 2-1

Figure 2‐1: PS Pins and Interfaces Diagram

Zynq UltraScale+ MPSoC Device Boundary

Processing System (PS)

S_AXI_HPC{0,1}_FPD
S_AXI_HP{0:3}_FPD
S_AXI_LPD
S_AXI_ACE_FPD
S_AXI_ACP_FPD
M_AXI_HPM0_LPD
M_AXI_HPM{0:1}_FPD

PS-PL
AXI Interfaces

Configuration
Boot Mode
Clocks
Resets
PSJTAG
DDR memory 64-bit

Dedicated
 PS Pins

LPD, FPD
DDR PLLs, IOBs
MIO Banks
PSIO{0:2}
Config I/O Bank
PSIO3
PLLs
PS SYSMON (ADC)
Auxiliary
GTRs
Battery

Dedicated
 PS Power

GEM 1 Gig Ethernet,
SDIO, USB 2.0 ULPI,
SPI, I2C, CAN, UART,
GPIO, TTC, SWDTs,
PJTAG

MIO/EMIO, JTAG

EMIO

MIO {0:77}

PLPD VCCINT
PL SYSMON (ADC)
Auxiliary
Block RAM
HP and HD I/O
banks
GTH and GTY
VCCINT_VCU

Dedicated
 PL Power

PL-to-PS Interrupts
PS-to-PL Interrupts
PS System Errors
WFI, WFE
SYSMON Alarms

System Errors,
Interrupts, and
Alarms

DisplayPort A/V
GEM 1588
Debug
Clocks

IOP Peripherals

Programmable
Logic (PL)

User SelectIO
HP and HD I/O
GTH, GTY
PL SYSMON

PL
Signals

USB 3.0
SATA
PCIe Gen2
DisplayPort A/V

SIO Peripherals

PS GTRs

GTR Transceivers x4

Dedicated
Signals

FPD and LPD
PS_MGTRAVCC
PS_MGTRAVTT

X18939-080318
Zynq UltraScale+ Device TRM 44
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=44

Chapter 2: Signals, Interfaces, and Pins
Dedicated Device Pins
The dedicated device pins are divided into these groups:

• Power.
• Clock, reset, and configuration.
• JTAG interfaces.
• Multiplexed I/O (MIO).
• PS GTR serial channels.
• DDR I/O (see Table 17-3 in DDR PHY Features in Chapter 17).

Power Pins

The dedicated power pins for the PS and internal logic of the PL are listed in Table 2-1. See Zynq
UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) [Ref 2] for
specifications.

Table 2‐1: Power Pins

Pin Name Description

VCC_PSINTLP PS low-power domain (LPD) supply voltage.
VCC_PSINTFP PS full-power domain (FPD) supply voltage.
VCC_PSAUX PS auxiliary voltage.
VCC_PSBATT PS battery operated voltage.

VCC_PSPLL LPD PLLs: RPLL (RPU), IOPLL (I/O).
FPD PLLs: APLL (APU), VPLL (video), DPLL (DDR controller).

VCC_PSDDR_PLL DDR PLLs supply voltage for DDRIOB. Tie to ground.
VCC_PSINTFP_DDR DDR memory controller supply voltage. Tie to ground.
VCCO_PSDDR PS DDR I/O supply voltage. Tie to ground.

VCCO_PSIO[0:3]

Power supply voltage for the PS I/O banks.
• VCCO_PSIO[0] is bank 500. MIO pins 0 to 25.
• VCCO_PSIO[1] is bank 501. MIO pins 26 to 51.
• VCCO_PSIO[2] is bank 502. MIO pins 52 to 77.
• VCCO_PSIO[3] is bank 503. Mode, config, PSJTAG, error, SRST, POR.

VCCINT PL power domain (PLPD) supply voltage.
VCCINT_VCU Video codec unit supply voltage.
VCCAUX PL auxiliary voltage.
VCCBRAM PL block RAM supply voltage.
PS_MGTRAVCC PS-GTR VMGTAVCC supply voltage.
Zynq UltraScale+ Device TRM 45
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=45

Chapter 2: Signals, Interfaces, and Pins
Clock, Reset, and Configuration Pins

The clock pins include the main PS reference clock input and the clock crystal connections to the
real-time clock (RTC) in the battery power domain. The reset and configuration pins control the
device and provide status information.

PS_MGTRAVTT PS GTR VMGTAVTT termination voltage.
VCC_PSADC PS System Monitor analog voltage.
VCCADC PL System Monitor analog voltage.

Table 2‐2: Clock, Reset, and Configuration Pins

Pin Name Direction Type Description

PS_REF_CLK Input Dedicated System reference clock.
PS_PADI Input Dedicated Crystal pad input (RTC).
PS_PADO Output Dedicated Crystal pad output (RTC).
PS_POR_B Input Dedicated Power-on reset signal.

POR_OVERRIDE Input Dedicated

POR delay override.
0 = Standard PL power-on delay time
(recommended default).
1= Faster PL power-on delay time.
Do not allow this pin to float before and during
configuration. This pin must be tied to VCCINT
or GND.

PS_SRST_B Input Dedicated System reset commonly used during debug.

PS_MODE Input/Output Dedicated 4-bit boot mode pins sampled on POR
deassertion.

PS_INIT_B Input/Output Dedicated

Indicates the PL is initialized after a power-on
reset (POR). This signal should not be held Low
externally to delay the PL configuration
sequence because the signal level is not visible
to software. However, if there is a CRC error
detected when the PL bitstream is loaded
PS_INIT_B will be driven low.

PS_DONE Output Dedicated Indicates the PL configuration is completed.
Requires an external pull-up resistor.

PS_PROG_B Input Dedicated PL configuration reset signal.

PS_ERROR_OUT Output Dedicated Asserted for accidental loss of power, a
hardware error, or an exception in the PMU.

PS_ERROR_STATUS Output Dedicated
Indicates a secure lockdown state.
Alternatively, it can be used by the PMU
firmware to indicate system status.

Table 2‐1: Power Pins (Cont’d)

Pin Name Description
Zynq UltraScale+ Device TRM 46
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=46

Chapter 2: Signals, Interfaces, and Pins
PS_MGTREFCLK[3:0] Input Dedicated Reference clock for the PS-GTR transceivers.

PUDC_B Input Dedicated

Pull-Up During Configuration (bar) Dedicated
input pin. Active-Low input enables internal
pull-up resistors on the SelectIO pins after
power-up and during configuration. When
PUDC_B is Low, internal pull-up resistors are
enabled on each SelectIO pin. When PUDC_B is
High, internal pull-up resistors are disabled on
each SelectIO pin. Caution! Do not allow this
pin to float before and during configuration.
Must be tied High or Low. PUDC_B must be tied
either directly or via a ≤ 1 k Ω resistor to
VCCAUX or GND.

Table 2‐2: Clock, Reset, and Configuration Pins (Cont’d)

Pin Name Direction Type Description
Zynq UltraScale+ Device TRM 47
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=47

Chapter 2: Signals, Interfaces, and Pins
JTAG Interfaces

There are two JTAG port interfaces: PSJTAG and PJTAG. The PSJTAG port can reach all TAP
controllers on the chain. The signals are on the device pins listed in Table 2-3.

The PJTAG interface port provides exclusive access to the Arm DAP controller. The PJTAG interface
signals on MIO are listed in Table 28-1.

PSJTAG is discussed in Chapter 39, System Test and Debug.

MIO Pins

The PS uses the MIOs as described in Chapter 28, Multiplexed I/O. The MIO pins are configured by
accessing registers located in the IOU_SLCR register set. The default routing for the peripheral I/O
signals is through the EMIO interface to the PL fabric. The pin availability for the I/O controller is
often different between routing to the MIO pins versus the EMIO interface to the PL.

DDR Memory Controller I/O

The DDR memory controller pins are described in Table 17-3 in Chapter 17, DDR Memory
Controller.

PS GTR Serial Channel Device Pins

There are four pairs of gigabit serial device pins. These connect to the PCIe, SATA, and USB 3.0
signals from the controllers in the PS. The GTR serial channels are described in Chapter 29, PS-GTR
Transceivers.

Table 2‐3: PS JTAG Interface Pins

Pin Name Direction Description

PS_JTAG_TCK Input JTAG data clock.
PS_JTAG_TDI Input JTAG data input.
PS_JTAG_TDO Output JTAG data output.
PS_JTAG_TMS Input JTAG mode select.

Table 2‐4: MIO Pins

Pin Name Type Direction Description

PS_MIO[0:77] Configurable pins,
see Table 28-1 Input/Output

Multiplexed I/Os are configured for the
IOP controllers and other interfaces: SPI,
QSPI, NAND, USB 2.0 ULPI, GEM Ethernet
RGMII, SDIO, UART, GPIO, MDIO, SWDT,
TTC, TPIU, PJTAG.
Zynq UltraScale+ Device TRM 48
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=48

Chapter 2: Signals, Interfaces, and Pins
PS-PL Signals and Interfaces
The PS and PL can be tightly coupled in a heterogeneous processing system using the many signals
and interfaces between the LPD and FPD in the PS and the functionality configured in the PL. The
PL can also be independently isolated from the LPD and FPD regions using isolation walls. The
PS-PL signals and interfaces also include other functions to configure and control the device. The
PS-PL signals and interfaces include these groups:

• PS-PL Voltage Level Shifters
• Processor communications
• System error signals
• MIO-EMIO signals and interfaces
• Miscellaneous signals and interfaces
• Dedicated stream interfaces
• DisplayPort media interfaces
• Clock signals
• Timer signals
• System debug signals and interfaces

The PS-PL signal and interface names are listed in the Zynq UltraScale+ MPSoC Processing System
LogiCORE IP Product Guide (PG201) [Ref 27].

PS-PL Voltage Level Shifters

The PS communicates with the PL using voltage level shifters. All of the signals (input and output)
and interfaces between the PS and PL traverse a voltage boundary and are routed through
voltage-level shifters. Some of the voltage-level shifter enables are controlled by the PL power
state including the signals for the PL, the EMIO JTAGs, the PCAP interface, and other modules. The
PL is treated as a separate power domain (PLPD). The AXI interfaces are isolated using isolation
blocks. To enable an PS-PL AXI interface, the PS-PL isolation must be disabled by making a PMU
service request using the PMU_GLOBAL[REQ_PWRUP_INT_EN] bit.
Zynq UltraScale+ Device TRM 49
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=49

Chapter 2: Signals, Interfaces, and Pins
Processor Communications

Table 2-5 lists the processor communications signals. See Table 35-7 in Chapter 35, PS-PL AXI
Interfaces for additional information.

System Error Signals

Table 2-6 lists the system error signals.

Table 2‐5: Processor Communications

Signal Name Count Source Destination Description

P2F PMU signal 32 signals LPD PL GPO3 register signals to PL.(1)

F2P PMU signal 32 signals PL LPD GPI3 register signals from PL.(1)

APU wake up 2 signals PL FPD APU WFE and WFI event and interrupt
status.

IRQ_P2F_PL_IPIx 4 channels LPD PL IPI interrupts to PL targets.
IRQ_F2P_PL_IPIx 7 channels PL LPD IPI interrupts to PS targets.
PL IRQs 16 signals PL LPD, FPD IRQ signals from PL to GICs.
RPU CPU IRQs 4 signals PL LPD FIQ, IRQ interrupts for each core.
APU CPU IRQs 8 signals PL FPD FIQ, IRQ interrupts for each core.
PS System IRQs >100 signals PS PL PS generated interrupts to GICs and PL.

LPD IOP interrupts 100 LPD PL From peripherals to GICs and PL. See
Table 13-1.

FPD IOP interrupts 64 FPD PL From peripherals to GICs and PL. See
Table 13-1.

Events ~ LPD, FPD PL Events from RPU and APU.
Notes:
1. Software environments might assign meaning to the GPI and GPO signals of the PMU.

Table 2‐6: System Error Signals

Name Count Source Destination Description

System errors 49 PS PL (and PS) System error signals.
P2F PMU error 4 PMU PL (and PS) PMU output error signal.
F2P PMU error 4 PL PMU PMU input error signal.
Zynq UltraScale+ Device TRM 50
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=50

Chapter 2: Signals, Interfaces, and Pins
MIO-EMIO Signals and Interfaces

The MIO device pins are fundamental to the I/O connections for the LPD IOP controllers. Software
routes the controllers I/O signals to the MIO pins using IOU_SLCR registers. When there are not
enough MIO pins for the peripheral I/O, then the EMIO can be used to connect signals to PL I/O
device pins and logic within the PL. Table 2-7 lists the MIO-EMIO signals and interfaces.

RECOMMENDED: The routing of the IOP interface I/O signals must be configured as a group. That is, the signals
within an interface must not be split and routed to different MIO pin groups. For example, if the SPI 0 CLK is
routed to MIO pin 40, then the other signals of the SPI 0 interface must be routed to MIO pins 41 to 45. Similarly,
the signals within an IOP interface must not be split between MIO and EMIO. However, unused signals within an
IOP interface do not necessarily need to be routed. Each unused MIO pin can be configured as a GPIO.

Table 2‐7: MIO-EMIO Signals and Interfaces

Interface MIO Access EMIO Access Notes

GEM{0:3} RGMII GMII MIO: 4-bit RGMII v2.0, external PHY,
250 MHz data rate.
EMIO: 8-bit GMII, RGMII v2.0
(HSTL), RGMII v1.3, MII, SGMII,
1000BASE-SX, and 1000BASE-LX in
PL, 125 MHz data rate.

SDIO{0, 1} Yes Yes The SDIO interface performance is
reduced when using the EMIO
interface.

USB{0, 1} USB 2.0 to external
ULPI PHY.

No The USB 3.0 interface is routed to a
GTR channel

I2C{0, 1} Yes Yes
SPI{0, 1} Yes Yes The SPI interface performance is

reduced when using the EMIO
interface.

UART{0, 1} Yes (RX, TX) Yes (RX, TX,
modem
signals).

CAN{0, 1} Yes Yes External PHY.
GPIO Banks {0:2} Yes (up to 78) No
GPIO Banks {3:5} No Yes (up to 96) Input, output, and 3-state control.
Quad-SPI Yes No
NAND Yes No
LPD_SWDT,
FPD_SWDT

Yes Yes Reset and output pulse.

CSU_SWDT No No
TPIU Trace Up to 16 bits Up to 32 bits
Zynq UltraScale+ Device TRM 51
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=51

Chapter 2: Signals, Interfaces, and Pins
Miscellaneous Signals and Interfaces

Table 2-8 lists the miscellaneous signals and interfaces. For details, see Table 34-1, Table 34-2, and
Table 34-3.

Dedicated Stream Interfaces

The GEM provides packet interface and support for the IEEE Std 1588 in the PL. The packet
streaming interface (FIFO interface) from the GEM (bypassing the DMA) is available to the PL for
implementation of additional functionality like packet inspection or audio-video broadcast (AVB).
Additional signals for supporting the IEEE Std 1588 are also available to the PL. For details on this
interface, refer to Chapter 34, GEM Ethernet.

The DisplayPort streaming interface for video and audio to/from the PL provides video and audio
interfaces to the PL. It can take video/audio input from the PL and direct video/audio output to the
PL. For details on this interface, refer to Chapter 33, DisplayPort Controller.

Table 2‐8: Miscellaneous Signals and Interfaces

Name Count Source Destination Description

GEM FIFO 87 (x4) GEM, PL GEM, PL Ethernet RX and TX FIFO packet
streams.

GEM 1588 136 GEM, PL GEM, PL
Ethernet 94-bit IEEE 1588 timestamp
read by PL interface, PTP event frame
interface, and timestamp clock
interface.

DDR Refresh Req 2 PL FPD DDR memory controller external
refresh request signals.

DDR Refresh Clk 1 PL FPD DDR memory controller refresh
clock.

SEU error alarm 1 PL CSU Single event upset error alarm from
the PL.

LPD DMA flow control 5 PL
LPD, PL clock,

valids,
acknowledges

See Figure 19-4.

FPD DMA flow control 5 PL
FPD, PL clock,

valids,
acknowledges

See Figure 19-4.
Zynq UltraScale+ Device TRM 52
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=52

Chapter 2: Signals, Interfaces, and Pins
DisplayPort Media Interfaces

The DisplayPort streaming interface for video and audio to or from the PL provides video and audio
interfaces to the PL. It can take video or audio input from the PL and direct video or audio output
to the PL. For details on this interface, see Chapter 33, DisplayPort Controller. Table 2-9 lists the
PS-PL DisplayPort media interfaces.

Clock Signals

Table 2-10 lists the clock signals.

Timer Signals

Table 2-11 lists the timer signals.

Table 2‐9: DisplayPort Media Interfaces

Name Count Source Destination Description

Audio 77 PS, PL PS, PL One 32-bit audio input interface. One
32-bit audio output interface.

Video 154 PS, PL PS, PL
Two 36-bit video streams to PS for
overlay. One 36-bit video stream to PL
display controller (e.g, HDMI, VGA,
MIPI).

Table 2‐10: Clock Signals

Name Count Source Destination Description

PL_CLK{0:3} 4 LPD PL PS clock subsystem to PL fabric.
F2P clocks 2 PL LPD PS to PL auxiliary reference clocks.
RTC clock 1 LPD LPD RTC clock oscillator signal.

Table 2‐11: Timer Signals

Name Count Source Destination Description

TTC{0:3}_CLK 4 EMIO, MIO LPD Triple time counter optional clock sources.

TTC{0:3}_WAVE 4 LPD EMIO, MIO Triple timer counter waveform signal
destinations.

WDT0_CLK 1 EMIO, MIO LPD LPD SWDT optional clock sources.
WDT1_CLK 1 EMIO, MIO FPD FPD SWDT optional clock sources.
WDT0_RST 1 LPD GICs, EMIO, MIO LPD SWDT reset signal destinations.
WDT1_RST 1 FPD GICs, EMIO, MIO FPD SWDT reset signal destinations.
Zynq UltraScale+ Device TRM 53
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=53

Chapter 2: Signals, Interfaces, and Pins
System Debug Signals and Interfaces

Table 2-12 lists the system debug signals and interfaces.

PS-PL AXI Interfaces
The PS-PL AXI interfaces are summarized in Table 2-13. These interfaces are described in
Chapter 35, PS-PL AXI Interfaces.

Table 2‐12: System Debug Signals and Interfaces

Name Count Description

CTI 48 CoreSight cross-trigger Interface.
TPIU 36 CoreSight trace-port interface.
FTM 118 Fabric trace module.

STM event CoreSight system trace macrocell.

Table 2‐13: PS-PL AXI Interfaces Summary

Interface Name Abbreviation FIFO Interface Master Usage Description

S_AXI_HP{0:3}_FPD HP{0:3} AFI_{2:5} PL Non-coherent paths from PL to FPD main
switch and DDR.

S_AXI_LPD PL_LPD AFI_6 PL Non-coherent path from PL to IOP in LPD.

S_AXI_ACE_FPD ACE None PL Two-way coherent path between memory in
PL and CCI.

S_AXI_ACP_FPD ACP None PL Legacy coherency. I/O coherent with L2
cache allocation.

S_AXI_HPC{0, 1}_FPD HPC{0, 1} AFI_{0:1} PL I/O coherent with CCI.
No L2 cache allocation.

M_AXI_HPM{0, 1}_FPD HPM{0, 1} None PS FPD masters to PL slaves.
M_AXI_HPM0_LPD LPD_PL None PS LPD masters to PL slaves.
Zynq UltraScale+ Device TRM 54
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=54

Chapter 3

Application Processing Unit

Introduction
The application processing unit (APU) consists of four Cortex™-A53 MPCore processors, L2
cache, and related functionality. The Cortex-A53 MPCore processor is the most
power-efficient Arm v8 processor capable of seamless support for 32-bit and 64-bit code. It
makes use of a highly efficient 8-stage in-order pipeline balanced with advanced fetch and
data access techniques for performance. It fits in a power and area footprint suitable for
entry-level devices, and is at the same time capable of delivering high-aggregate
performance in scalable enterprise systems using high core density.

Cortex-A53 MPCore Processor Features

The Cortex-A53 MPCore processor includes the following features.

• AArch32 and AArch64 execution states.
• All exception levels (EL0, EL1, EL2, and EL3) in each execution state.
• Arm v8-A architecture instruction set including advanced SIMD, VFPv4 floating-point

extensions, and cryptography extensions.
• Separate 32 KB L1 caches for instruction and data.
• Two-stage (hypervisor and guest stages) memory management unit (MMU).
• CPU includes an in-order 8-stage pipeline with symmetric dual-issue of most

instructions.
• 1 MB L2 cache in CCI coherency domain.
• Accelerator coherency port (ACP).
• 128-bit AXI coherency extension (ACE) master interface to CCI.
• Arm v8 debug architecture.
• Configurable endianess.
• Supports hardware virtualization that enables multiple software environments and their

applications to simultaneously access the system capabilities.
• Hardware-accelerated cryptography—3-10x better software encryption performance.
Zynq UltraScale+ Device TRM 55
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=55

Chapter 3: Application Processing Unit
• Large physical address reach enables the processor to access beyond 4 GB of physical
memory.

• TrustZone technology ensures reliable implementation of security applications.

Arm v8 Architecture
The Arm v8-A is the next generation 64-bit Arm architecture. Arm v8 is backward
compatible to Arm v7 (i.e., a 32-bit Arm v7 binary will run on an Arm v8 processor).
Although the Arm v8 is backward compatible with the Arm v7 architecture, the Cortex-A53
MPCore is not necessarily backward compatible with Cortex-A9 architecture. This is because
some of the Cortex-A9 sub-system functions (e.g., Cortex-A9 L2 control registers) were
implementation specific and not part of the Arm v7 architecture.

Arm v8 supports two architecture states.

• 64-bit execution state (AArch64)
• 32-bit execution state (AArch32)

AArch32 is compatible with Arm v7; however, it is enhanced to support some features
included in AArch64 execution state (for example, load-acquire and store-release). Both
execution states support advanced single-instruction multiple-data (SIMD) and
floating-point extension for integer and floating-point. Also, both states support
cryptography extension for the advanced encryption standard (AES)
encryption/decryption, SHA1/256, and RSA/ECC.
Zynq UltraScale+ Device TRM 56
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=56

Chapter 3: Application Processing Unit
Figure 3-1 shows the block diagram of the APU.

The Arm v8 exception model defines exception levels EL0–EL3, where:

• EL0 has the lowest software execution privilege. Execution at EL0 is called unprivileged
execution.

Increased exception levels, from 1 to 3, indicate an increased software execution
privilege.

• EL1 provides support for basic non-secure state.
• EL2 provides support for processor virtualization.
• EL3 provides support for a secure state.

The APU MPCore processor implements all the exception levels (EL0–EL3) and supports
both execution states (AArch64 and AArch32) at each exception level.

X-Ref Target - Figure 3-1

Figure 3‐1: APU Block Diagram

APU

GIC

Cortex-A53 MPCore

Cortex-A53

FPU/NEON/Crypto

32K L1
ICache

32K L1
DCache

Debug/
Timers

Cortex-A53

FPU/NEON/Crypto

32K L1
ICache

32K L1
DCache

Debug/
Timers

Cortex-A53

FPU/NEON/Crypto

32K L1
ICache

32K L1
DCache

Debug/
Timers

Cortex-A53

FPU/NEON/Crypto

32K L1
ICache

32K L1
DCache

Debug/
Timers

Snoop Control Unit (SCU)

L2 Cache 1MB

IRQ/vIRQ
FIQ/vFIQ

Timers
Interrupts

System Counter
 (in LPD) FPD Core Switch CoreSightSPI Interrupts

64-bit counter

APB, TS
ATB

32-bit AXI

128-bit ACP
CCI

128-bit ACE

X15286-080318
Zynq UltraScale+ Device TRM 57
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=57

Chapter 3: Application Processing Unit
When a Cortex-A53 MPCore processor is brought up in 32-bit mode using the
APU_CONFIG0 [VINITHI] parameter register, its exception table cannot be relocated at run
time. The V[13] bit of the system control register defines the base address of the exception
vector.

See the Zynq UltraScale+ MPSoC Software Developer’s Guide (UG1137) [Ref 3] for more
information.

Figure 3-2 shows a top-level functional diagram of the Cortex-A53 MPCore processor.
X-Ref Target - Figure 3-2

Figure 3‐2: APU Block Diagram

Cortex-A53 Processor

APB Decoder APB ROM APB Multiplexer CTM

Governor

CTI Retention
Control

Debug Over
Power Down

Arch
Timer

Clock and
Reset

GIC CPU
interface

Core 0 Governor

Core 0

FPU and NEON
Extension

Crypto
Extension

L1
 ICache

L1
DCache

Debug and
Trace

CTI Retention
Control

Debug Over
Power Down

Arch
Timer

Clock and
Reset

GIC CPU
interface

Core 1 Governor

Core 1

FPU and NEON
Extension

Crypto
Extension

L1
 ICache

L1
DCache

Debug and
Trace

CTI Retention
Control

Debug Over
Power Down

Arch
Timer

Clock and
Reset

GIC CPU
interface

Core 2 Governor

Core 2

FPU and NEON
Extension

Crypto
Extension

L1
 ICache

L1
DCache

Debug and
Trace

CTI Retention
Control

Debug Over
Power Down

Arch
Timer

Clock and
Reset

GIC CPU
interface

Core 3 Governor

Core 3

FPU and NEON
Extension

Crypto
Extension

L1
 ICache

L1
DCache

Debug and
Trace

Level 2 Memory System

L2 Cache SCU ACE
Master Bus Interface ACP Slave

X15287-092916
Zynq UltraScale+ Device TRM 58
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=58

Chapter 3: Application Processing Unit
Security State

An Arm v8 includes the EL3 exception level that provides the following security states, each
with an associated memory address space.

• In the secure state, the processor can access both the secure memory address space
and the non-secure memory address space. When executing at EL3, the processor can
access all the system control resources.

• In the non-secure state, the processor can access only the non-secure memory address
space and cannot access the secure system control resources.

Secure and non-secure AXI transactions are sent through the system using the TrustZone
protocols.

For more information on the Arm v8 security states, see APU MPCore TrustZone Model in
Chapter 16.

APU Functional Units
The following sections describe the main Cortex-A53 MPCore processor components and
their functions.

• Instruction Fetch Unit
• Data Processing Unit
• Advanced SIMD and Floating-point Extension
• Cryptography Extension
• Translation Lookaside Buffer
• Data-side Memory System
• L2 Memory Subsystem
• Cache Protection
• Debug and Trace
• Generic Interrupt Controller
• Timers
Zynq UltraScale+ Device TRM 59
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=59

Chapter 3: Application Processing Unit
Instruction Fetch Unit

The instruction fetch unit (IFU) contains the instruction cache controller and its associated
linefill buffer. The Cortex-A53 MPCore instruction cache is 2-way set associative and uses
virtually-indexed physically-tagged (VIPT) cache lines holding up to 16 A32 instructions,
16 32-bit T32 instructions, 16 A64 instructions, or up to 32 16-bit T32 instructions.

The IFU obtains instructions from the instruction cache or from external memory and
predicts the outcome of branches in the instruction stream, and then passes the
instructions to the data-processing unit (DPU) for processing.

Data Processing Unit

The data-processing unit (DPU) holds most of the program-visible processor states, such as
general-purpose registers and system registers. It provides configuration and control of the
memory system and its associated functionality. It decodes and executes instructions while
operating on data held in the registers, in accordance with the Arm v8-A architecture.
Instructions are fed to the DPU from the IFU. The DPU executes instructions that require
data to be transferred to or from the memory system by interfacing to the data-cache unit
(DCU), which manages all load and store operations.

Advanced SIMD and Floating-point Extension

Advanced SIMD and floating-point extension implements Arm NEON technology; a media
and signal processing architecture that adds instructions targeted at audio, video, 3D
graphics, image, and speech processing. Advanced SIMD instructions are available in
AArch64 and AArch32 states.

Cryptography Extension

The cryptography extension supports the Arm v8 cryptography extensions. The
cryptography extension adds new A64, A32, and T32 instructions to advanced SIMD that
accelerate the following.

• Advanced encryption standard (AES) encryption and decryption.
• Secure-hash algorithm (SHA) functions SHA-1, SHA-224, and SHA-256.
• Finite-field arithmetic used in algorithms such as Galois/counter mode and elliptic

curve cryptography.

Translation Lookaside Buffer

The translation lookaside buffer (TLB) contains the main TLB and handles all translation
table walk operations for the processor. TLB entries are stored inside a 512-entry, 4-way
set-associative RAM.
Zynq UltraScale+ Device TRM 60
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=60

Chapter 3: Application Processing Unit
Data-side Memory System

The data-cache unit (DCU) consists of the following sub-blocks.

• The level 1 (L1) data-cache controller that generates the control signals for the
associated embedded tag, data, and dirty RAMs, and arbitrates between the various
sources requesting access to the memory resources. The data cache is 4-way set
associative and uses a physically-indexed physically-tagged (PIPT) scheme for lookup
that enables unambiguous address management in the system.

• The load/store pipeline that interfaces with the DPU and main TLB.
• The system controller that performs cache and TLB maintenance operations directly on

the data cache and on the instruction cache through an interface with the IFU.
• An interface to receive coherency requests from the snoop-control unit (SCU).

Store Buffer

The store buffer (STB) holds store operations when they have left the load/store pipeline
and are committed by the DPU. The STB can request access to the cache RAMs in the DCU,
request the BIU to initiate linefills, or request the BIU to write the data out on the external
write channel. External data writes are through the SCU. The STB can merge the following.

• Several store transactions into a single transaction if they are to the same 128-bit
aligned address.

• Multiple writes into an AXI or CHI write burst. The STB is also used to queue
maintenance operations before they are broadcast to other cores in the Cortex-A53
MPCore CPU cluster.

The Cortex-A53 MPCore L1 memory system consists of separate L1 instruction and data
caches. It also consists of two levels of TLBs.

• Separate micro TLBs for both instruction and data sides.
• Unified main TLB that handles misses from micro TLBs.

Bus Interface Unit and SCU Interface

The bus interface unit (BIU) contains the SCU interface and buffers to decouple the
interface from the cache and STB. The BIU interface and the SCU always operate at the
processor frequency.
Zynq UltraScale+ Device TRM 61
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=61

Chapter 3: Application Processing Unit
Snoop Control Unit

The integrated snoop-control unit (SCU) connects the APU MPCore and an accelerator
coherency port (ACP) used in Zynq UltraScale+ MPSoCs. The SCU also has duplicate copies
of the L1 data-cache tags for coherency support. The SCU is clocked synchronously and at
the same frequency as the processors.

The SCU contains buffers that can handle direct cache-to-cache transfers between
processors without having to read or write any data to the external memory system.
Cache-line migration enables dirty-cache lines to be moved between processors, and there
is no requirement to write back transferred cache-line data to the external memory system.
The Cortex-A53 MPCore processor uses the MOESI protocol to maintain data coherency
between multiple cores.

L2 Memory Subsystem

The Cortex-A53 MPCore processor’s L2 memory system size is 1 MB. It contains the L2
cache pipeline and all logic required to maintain memory coherence between the cores of
the cluster. It has the following features:

• An SCU that connects the cores to the external memory system through the master
memory interface. The SCU maintains data-cache coherency between the APU MPCore
and arbitrates L2 requests from the cores.

• The L2 cache is 16-way set-associative physically-addressed.
• The L2 cache tags are looked up in parallel with the SCU duplicate tags. If both the L2

tag and SCU duplicate tag hit, a read accesses the L2 cache in preference to snooping
one of the other processors.

Cache Protection

The Cortex-A53 MPCore processor supports cache protection in the form of ECC on RAM
instances in the processor using two separate protection options.

• SCU-L2 cache protection
• CPU cache protection

These options enable the Cortex-A53 MPCore processor to detect and correct a one-bit
error in any RAM and detect two-bit errors in some RAMs.

Cortex-A53 MPCore RAMs are protected against single-event-upset (SEU) such that the
processor system can detect and continue making progress without data corruption. Some
RAMs have parity single-error detect (SED) capability, while others have ECC single-error
correct, double-error detect (SECDED) capability.

Note: The L1 instruction cache is protected by parity bits. It does not implement error correction
code.
Zynq UltraScale+ Device TRM 62
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=62

Chapter 3: Application Processing Unit
The processor can make progress and remain functionally correct when there is a single-bit
error in any RAM. If there are multiple single-bit errors in more than one RAM, or within
different protection granules within the same RAM, then the processor also remains
functionally correct. If there is a double-bit error in a single RAM within the same protection
granule, then the behavior depends on the RAM.

• For RAMs with ECC capability, the error is detected and reported if the error is in a
cache line containing dirty data.

• For RAMs with only parity, a double-bit error is not detected and therefore, could cause
data corruption.

Interrupts upon an error event allow for the system to take the proper action, including
flushing and re-loading caches, logging the error, etc. Multi-bit upsets (MBU) are avoided
by proper interleaving, choice of ECC, and parity coding.

Debug and Trace

The Cortex-A53 MPCore processor supports a range of debug and trace features including
the following.

• Arm v8 debug features in each core.
• ETMv4 instruction trace unit for each core.
• CoreSight™ cross-trigger interface (CTI).
• CoreSight cross-trigger matrix (CTM)
• Debug ROM.

Generic Interrupt Controller

The Cortex-A53 MPCore uses an external generic interrupt controller GIC-400 to support
interrupts. It is a GICv2 implementation and provides support for hardware virtualization.
For a detailed overview on GICv2 and system interrupts, refer to Chapter 13, Interrupts.

Timers

The Cortex-A53 MPCore processor implements the Arm generic timer architecture. For a
detailed overview on APU timers, refer to Chapter 14, Timers and Counters.
Zynq UltraScale+ Device TRM 63
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=63

Chapter 3: Application Processing Unit
APU Memory Management Unit
In the AArch32 state, the Arm v8 address translation system resembles the Arm v7 address
translation system with large physical-address extensions (LPAE) and virtualization
extensions.

In AArch64 state, the Arm v8 address translation system resembles an extension to the long
descriptor format address translation system to support the expanded virtual and physical
address spaces. For more information regarding the address translation formats, see the
Arm® Architecture Reference Manual Arm v8, for the Arm v8-A architecture profile.

The memory management unit (MMU) controls table-walk hardware that accesses
translation tables in main memory. The MMU translates virtual addresses to physical
addresses. The MMU provides fine-grained memory system control through a set of
virtual-to-physical address mappings and memory attributes held in page tables. These are
loaded into the translation lookaside buffer (TLB) when a location is accessed.

Address translations can have one or two stages. Each stage produces output LSBs without
a lookup. Each stage walks through multiple levels of translation. Figure 3-3 and Figure 3-4
show an example block translation and a page translation, respectively.
Zynq UltraScale+ Device TRM 64
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=64

Chapter 3: Application Processing Unit
X-Ref Target - Figure 3-3

Figure 3‐3: Block Translation

TTBR selectVA

63 41

Level 2 index

29

Physical address [28:0]

28 0

TTBRx

PA PA[47:29] Physical address [28:0]

63 0

Page table entry

Level 2 page table with 8192 entries

Page table entry
contains PA [47:29]

Index in table

Page table
base address

Low bits of virtual
address form low bits
of physical address

Virtual address from core

X16949-092916
Zynq UltraScale+ Device TRM 65
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=65

Chapter 3: Application Processing Unit
X-Ref Target - Figure 3-4

Figure 3‐4: Page Translation

TTBR selectVA

63 41

Level 2 index

29

PA [15:0]

28 0

TTBRx

PA PA[47:16] PA [15:0]

L2 page table

Page table entry
contains PA [47:29]

Index in tablePage table
base address

Low bits of virtual
address form low bits
of physical address

Level 3 index

1615

63

0

L3 page table

63

0

Page table
base address

Virtual address from core

X16950-092916
Zynq UltraScale+ Device TRM 66
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=66

Chapter 3: Application Processing Unit
System Virtualization
In some designs, multiple operating systems are required to run on the APU MPCore.
Running multiple guest operating systems on a CPU cluster requires hardware virtualization
support to virtualize the processor system into multiple virtual machines (VM) to allow each
guest operating system to run on its VM.

Operating systems are generally designed to run on native hardware. The system expects to
be executing in the most privileged mode and assumes total control over the whole system.
In a virtualized environment, it is the VM that runs in privileged mode, while the operating
system is executing at a lower privilege level.

When booting, a typical operating system configures the processor, memories, I/O devices,
and peripherals. When executing, it expects exclusive access to such devices, including
changing peripherals' configuration dynamically, directly managing the interrupt controller,
replacing MMU page table entries (PTE), and initiating DMA transfers.

When running de-privileged inside a virtual machine, the guest operating system is not
able to execute the privileged instructions necessary to configure and drive the hardware
directly.

The VM must manage these functions. In addition, the VM could be hosting multiple guest
operating systems. Therefore, direct modification of shared devices and memory requires
cautious arbitration schemes.

The level of abstraction required to address this, and the inherent software complexity and
performance overhead, are specific to the characteristics of the architecture, the hardware,
and the guest operating systems. The main approaches can be broadly categorized in two
groups.

• Full virtualization
• Paravirtualization

In full virtualization, the guest operating system is not aware that it is virtualized, and it
does not require any modification. The VM traps and handles all privileged and sensitive
instruction sequences, while user-level instructions run unmodified at native speed.

In paravirtualization the guest operating system is modified to have direct access to the VM
through hyper-calls or hypervisor calls. A special API is exposed by the VM to allow guest
operating systems to execute privileged and sensitive instruction sequences.

The Arm Cortex-A53 exception level-2 (EL2) provides processor virtualization. The Arm v8
supports virtualization extension to achieve full virtualization with near native guest
operating system performance.
Zynq UltraScale+ Device TRM 67
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=67

Chapter 3: Application Processing Unit
There are four key hardware components for virtualization.

• APU Virtualization
• Interrupt Virtualization
• Timer Virtualization
• System Memory Virtualization Using SMMU Address Translation

APU Virtualization

A processor element is in hypervisor mode when it is executing at EL2 in the AArch32 state.
An exception return from hypervisor mode to software running at EL1 or EL0 is performed
using the ERET instruction.

EL2 provides a set of features that support virtualizing the non-secure state of an Arm v8-A
implementation. The basic model of a virtualized system involves the following.

• A hypervisor software, running in EL2, is responsible for switching between virtual
machines. A virtual machine is comprised of non-secure EL1 and non-secure EL0.

• A number of guest operating systems, that each run in non-secure EL1, on a virtual
machine.

• For each guest operating system, there are applications that usually run in non-secure
EL0, on a virtual machine.

The hypervisor assigns a virtual machine identifier (VMID) to each virtual machine. EL2 is
implemented only in a non-secure state, to support guest operating system management.

EL2 provides information in the following areas.

• Provides virtual values for the contents of a small number of identification registers. A
read of one of these registers by a guest operating system or the applications for a
guest operating system returns the virtual value.

• Traps various operations, including memory management operations and accesses to
many other registers. A trapped operation generates an exception that is taken to EL2.

• Routes interrupts to the appropriate area.

° The current guest operating system.

° A guest operating system that is not currently running.

° The hypervisor.
Zynq UltraScale+ Device TRM 68
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=68

Chapter 3: Application Processing Unit
In a non-secure state the following occurs.

• The implementation provides an independent translation regime for memory accesses
from EL2.

• For the EL1 and EL0 translation regime, address translation occurs in two stages.

° Stage 1 maps the virtual address (VA) to an intermediate physical address (IPA). This
is managed at EL1, usually by a guest operating system. The guest operating system
believes that the IPA is the physical address (PA).

° Stage 2 maps the IPA to the PA. This is managed at EL2. The guest operating system
might be completely unaware of this stage. Hypervisor creates the stage 2
translation table.

Figure 3-5 shows the Arm v8 execution modes discussed in this section.

Note: The following notes refer to Figure 3-5.
1. AArch64 is permitted only if EL1 is using AArch64.
2. AArch64 is permitted only if EL2 is using AArch64.

X-Ref Target - Figure 3-5

Figure 3‐5: Arm v8 Execution Modes

Non-secure State

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

Supervisor (Guest OS1)

AArch64 or AArch32

Supervisor (Guest OS2)

AArch64 or AArch32

Hypervisor Mode

AArch64 or AArch32

EL0

EL1

EL2

SVC

HVC

SMC

Secure Monitor Mode

Supervisor (Secure OS)

AArch64 or AArch32

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

EL3

Secure State

X15288-101617
Zynq UltraScale+ Device TRM 69
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=69

Chapter 3: Application Processing Unit
The hypervisor directly controls the allocation of the actual physical memory, thereby
fulfilling its role of arbiter of the shared physical resources. This requires two stages
(VA IPA, and IPAPA) of address translation. Figure 3-6 shows the traditional versus
virtualized systems addresses in the translation stage.

Interrupt Virtualization

The APU GIC v2 interrupt virtualization is a mechanism to aid interrupt handling, with native
distinction of interrupt destined to secure-monitor, hypervisors, currently active guest
operating systems, or non-currently-active guest operating systems. This reduces the
complexity of handling interrupts using software emulation techniques in the hypervisor.

For detailed overview on the APU GIC, refer to Chapter 13, Interrupts.

Timer Virtualization

The Arm generic timers include support for timer virtualization. Generic timers provide a
counter that measures (in real-time) the passing of time, and a timer for each CPU. The CPU
timers are programmed to raise an interrupt to the CPU after a certain amount of time has
passed, as per the counter.

Timers are likely to be used by both hypervisors and guest operating systems. However, to
provide isolation and retain control, the timers used by the hypervisor cannot be directly
configured and manipulated by guest operating systems. Refer to Chapter 14, Timers and
Counters for further details.

System Coherency
The devices which require interaction with the CPU also share data with the CPU. However,
when the CPU produces the (shared) data, the data is normally cached to improve CPU
performance. Similarly, some devices have caches to improve their performance. There are
two ways to share data between devices and CPUs.

X-Ref Target - Figure 3-6

Figure 3‐6: Traditional versus Virtualized Systems Address Translation Stage

Applications

OS

Hardware

Applications

Guest OS

VM

Hardware

Traditional System Virtualized System

Virtual Address (VA)

Intermediate Physical Address (IPA)

Physical Address (PA)

Virtual Address (VA)

Physical Address (PA)

X15289-092916
Zynq UltraScale+ Device TRM 70
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=70

Chapter 3: Application Processing Unit
• Software coherency
• Hardware coherency

In software coherency, software (as a producer) must flush CPU caches before devices can
read shared data from memory. And, if the device produces the data, then software (as a
consumer) must invalidate CPU caches before using the data produced by the device.

The hardware coherency (I/O coherency) can provide data coherence by having device
memory requests snoop CPU caches. This speeds up data sharing significantly (by avoiding
cache flush/invalidate), and simplifies software.

I/O Coherency

The Cortex-A53 MPCore processor has two options for I/O coherency.

• Accelerator coherency port (ACP) port
• Cache-coherent interconnect (CCI) ACE-Lite ports

The CCI ACE-Lite ports provide I/O coherency. The CCI ACE-Lite ports will snoop APU caches
only if the request is marked coherent. All of the PS masters can be optionally configured as
I/O coherent (including the RPU but excluding the FPD DMA unit). The RPU can be
configured for direct DDR memory access by bypassing I/O coherency.

Full Two-way Coherency

Full coherent masters can snoop each other’s caches. Full coherency is provided through
the CCI ACE-Lite ports. The Cortex-A53 MPCore supports a CCI ACE-Lite port, however, CCI
ACE-Lite support must be implemented in the PL.
Zynq UltraScale+ Device TRM 71
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=71

Chapter 3: Application Processing Unit
ACE Interface
The Zynq UltraScale+ MPSoCs interface to the cache-coherent interconnect (CCI) only
supports the AXI coherency extension (ACE). ACE is an extension to the AXI protocol and
provides the following enhancements. See Chapter 35, PS-PL AXI Interfaces.

• Support for hardware cache coherency.
• Barrier transactions that ensure transaction ordering.

System-level coherency enables the sharing of memory by system components without the
software requirement to perform software cache maintenance to maintain coherency
between caches. Regions of memory are coherent if writes to the same memory location by
two components are observable in the same order by all components.

The ACE coherency protocol ensures that all masters observe the correct data value at any
given address location by enforcing that only one copy exists whenever a store occurs to
the location. After each store to a location, other masters can obtain a new copy of the data
for their own local cache, allowing multiple copies to exist. Refer to the Arm® AMBA® AXI
and ACE protocol specification for a detailed overview.

ACP Interface
The accelerator coherency port (ACP) is a 128-bit AXI slave interface on the snoop control
unit (SCU) that provides an asynchronous cache-coherent access point directly from the PL
to the APU. See Chapter 35, PS-PL AXI Interfaces.

APU Power Management
The Cortex-A53 MPCore processor provides mechanisms and support to control both
dynamic and static power dissipation. The individual cores in the Cortex-A53 processor
support four main levels of power management. This section describes the following.

• Power Islands

• Power Modes

• Event communication using a wait for event (WFE) or a send event (SEV) instruction. See
Table 35-7.

• Communication with the platform management unit (PMU). See Chapter 6, Platform
Management Unit.
Zynq UltraScale+ Device TRM 72
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=72

Chapter 3: Application Processing Unit
Power Islands

Table 3-1 shows the power islands supported by the Cortex-A53 processor.

Power Modes

The power islands can be controlled independently to give several combinations of
powered-up and powered-down islands. The supported power modes in the APU MPCore
are listed.

• Normal State
• Standby State
• Individual MPCore Shutdown Mode
• Cluster Shutdown Mode with System Driven L2 Flush
• Cluster shutdown the MPCore without system driven L2 flush.

Normal State

The normal mode of operation is where all of the processor functionality is available. The
Cortex-A53 processor uses gated clocks and gates to disable inputs to unused functional
blocks. Only the logic in use to perform an operation consumes any dynamic power.

Standby State

The following sections describe the methods to enter a standby state.

MPCore Wait for Interrupt

The Wait for Interrupt (WFI) feature of the Arm v8-A architecture puts the processor in a
low-power state by disabling most of the clocks in the MPCore while keeping the MPCore
powered up. Apart from the small dynamic power overhead on the logic used to enable the
MPCore to wake up from a WFI low-power state, the power draw is reduced to only include
the static leakage current variable. Software indicates that the MPCore can enter the WFI
low-power state by executing the WFI instruction.

Table 3‐1: APU MPCore Power Islands

Power Island Description

CORTEXA53 Includes the SCU, the L2 cache controller, and the debug registers that are described
as being in the debug domain. This domain is a part of the PS full-power domain (FPD).

PDL2 Includes the L2 cache RAM, L2 tag RAM, L2 victim RAM, and the SCU duplicate tag
RAM.

PDCPU[4] This represents core 0, core 1, core 2, and core 3. It includes the advanced SIMD and
floating-point extensions, the L1 TLB, L1 cache RAMs, and debug registers.
Zynq UltraScale+ Device TRM 73
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=73

Chapter 3: Application Processing Unit
When the MPCore is executing the WFI instruction, the MPCore waits for all instructions in
the MPCore to retire before entering the idle or low-power state. The WFI instruction
ensures that all explicit memory accesses that occurred before the WFI instruction in the
order of the program are retired. For example, the WFI instruction ensures that the
following instructions receive the required data or responses from the L2 memory system.

• Load instructions
• Cache and TLB maintenance operations
• Store exclusive instructions

In addition, the WFI instruction ensures that stored instructions update the cache or are
issued to the SCU.

MPCore Wait for Event

The Wait for Event (WFE) feature of the Arm v8-A architecture is a locking mechanism that
puts the MPCore in a low-power state by disabling most of the clocks in the MPCore while
keeping the MPCore powered up. Apart from the small dynamic power overhead on the
logic used to enable the MPCore to wake up from the WFE low-power state, the power draw
is reduced to only include the static leakage current variable.

A MPCore enters into a WFE low-power state by executing the WFE instruction. When
executing the WFE instruction, the MPCore waits for all instructions in the MPCore to
complete before entering the idle or low-power state.

If the event register is set, a WFE does not put the MPCore into a standby state, but the WFE
clears the event register.

While the MPCore is in the WFE low-power state, the clocks in the MPCore are temporarily
enabled (without causing the MPCore to exit the WFE low-power state), when any of the
following events are detected.

• An L2 snoop request that must be serviced by the MPCore L1 data cache.
• A cache or TLB maintenance operation that must be serviced by the MPCore L1

instruction cache, data cache, or TLB.
• An APB access to the debug or trace registers residing in the MPCore power domain.

L2 Wait for Interrupt

When all the cores are in a WFI low-power state, the shared L2 memory system logic that is
common to all the cores also enter a WFI low-power state.
Zynq UltraScale+ Device TRM 74
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=74

Chapter 3: Application Processing Unit
Individual MPCore Shutdown Mode

In the individual MPCore shutdown mode, the PDCPU power island for an individual
MPCore is shut down and all states are lost.

Use these steps to power down the MPCore.

1. Disable the data cache, by clearing the SCTLR.C bit, or the HSCTLR.C bit if in Hyp mode.
This prevents more data cache allocations and causes cacheable memory attributes to
change to normal, non-cacheable. Subsequent loads and stores do not access the L1 or
L2 caches.

2. Clean and invalidate all data from the L1 data cache. The L2 duplicate snoop tag RAM for
this MPCore is empty. This prevents any new data cache snoops or data cache
maintenance operations from other MPCore in the cluster being issued to this core.

3. Disable any data coherency with other MPCores in the cluster by clearing the
CPUECTLR.SMPEN bit. Clearing the SMPEN bit enables the MPCore to be taken out of
coherency by preventing the MPCore from receiving cache or TLB maintenance
operations broadcast by other MPCores in the cluster.

4. Execute an ISB instruction to ensure that all of the register changes from the previous
steps are completed.

5. Execute a DSB SY instruction to ensure completion of all cache, TLB, and branch
predictor maintenance operations issued by any MPCore in the cluster device before the
SMPEN bit is cleared.

6. Execute a WFI instruction and wait until the STANDBYWFI output is asserted to indicate
that the MPCore is in an idle and a low-power state.

7. Deassert DBGPWRDUP Low. This prevents any external debug access to the MPCore.
8. Activate the MPCore output clamps.
9. Remove power from the PDCPU power domain.

To power up the MPCore, apply the following sequence.

1. Assert nCPUPORESET Low. Ensure DBGPWRDUP is held Low to prevent any external
debug access to the MPCore.

2. Apply power to the PDCPU power domain. Keep the state of the signals nCPUPORESET
and DBGPWRDUP Low.

3. Release the MPCore output clamps.
4. Deassert the resets.
5. Set the SMPEN bit to 1 to enable snooping into the MPCore.
6. Assert DBGPWRDUP High to allow external debug access to the MPCore.
Zynq UltraScale+ Device TRM 75
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=75

Chapter 3: Application Processing Unit
7. If required, use software to restore the state of the MPCore to its the state prior to
power-down.

Cluster Shutdown Mode with System Driven L2 Flush

The cluster shutdown mode is where the PDCORTEXA53, PDL2, and PDCPU power islands
are shut down and all previous states are lost. To power down the cluster, apply the
following sequence.

1. Ensure that all cores are in shutdown mode, see Individual MPCore Shutdown Mode.
2. The MPCore asserts the pl_acpinact signal to idle the ACP. This is necessary to prevent

ACP transactions from allocating new entries in the L2 cache during the hardware cache
flush. For more information about the pl_acpinact signal, see Answer Record 70383.

3. Assert L2FLUSHREQ High.
4. Hold L2FLUSHREQ High until L2FLUSHDONE is asserted.
5. Deassert L2FLUSHREQ.
6. Assert ACINACTM. Wait until the STANDBYWFIL2 output is asserted to indicate that the

L2 cache memory is idle.
7. Activate the cluster output clamps.
8. Remove power from the PDCORTEXA53 and PDL2 power domains.

The Zynq UltraScale+ MPSoC provides the ability to power off each of the four APU
processors independent of the other processors. Each processor power domain includes an
associated Neon core. The control for the power gating is dynamic and is handled by the
power management software running on the platform management unit (PMU).

Clocks and Resets
Each of the APU cores can be independently reset. The APU MPCore reset can be triggered
by the FPD system watchdog timer (FPD_SWDT) or a software register write. However, the
APU is reset without gracefully terminating requests to/from the APU. The FPD system reset
(FPD_SRST) is used in cases of catastrophic failure in the FPD system. The APU reset is
primarily for software debug.

Programming steps for a software-generated reset:

1. Enable the reset request interrupt in the PMU. Write a 1 to one or more bits [APUx] in
the PMU_GLOBAL.REQ_SWRST_INT_EN register.

2. Trigger the interrupt request. Write a 1 to one or more bits [APU{0:3}] in the
REQ_SWRST_TRIG register.
Zynq UltraScale+ Device TRM 76
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/70383.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=76

Chapter 3: Application Processing Unit
The clock subsystem provides two clocks to the APU MPCore; one at the full clock rate and
one at half the clock rate. The reference clock generator is described in Chapter 37, PS Clock
Subsystem.

Performance Monitors
The Cortex-A53 MPCore processor includes performance monitors that implement the Arm
PMUv3 architecture. The performance monitors enable gathering of various statistics on the
operation of the processor and its memory system during runtime. They provide useful
information about the behavior of the processor for use when debugging or profiling code.
The performance monitor provides six counters. Each counter can count any of the events
available in the processor.

System Registers
Table 3-2 describes the APU registers.

IMPORTANT: Do not perform a load/store exclusive to the device memory unless a workaround for the
Arm® processor Cortex-A53 MPCore (MP030) product errata notice 829070 for APU registers is
implemented. Speculative data reads might be performed to device memory.

Table 3‐2: APU System Control Registers

Register name Overview

ERR_CTRL Control register
ISR Interrupt status register
IMR Interrupt mask register
IEN Interrupt enable register
IDS Interrupt disable register
CONFIG_0 CPU core configuration
CONFIG_1 L2 configuration
RVBARADDR{0:3}{L,H} Reset vector base address
ACE_CTRL ACE control register
SNOOP_CTRL Snoop control register
PWRCTL Power control register
PWRSTAT Power status register
Zynq UltraScale+ Device TRM 77
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=77

Chapter 3: Application Processing Unit
System Memory Virtualization Using SMMU
Address Translation
The SMMU translates the virtual addresses within each operating environment into physical
addresses of the system and is described in this section. The transaction protection
mechanism of the SMMU is described in Chapter 16, System Protection Units.

Since the MPSoC system can support multiple operating systems with each guest OS
supporting multiple application environments, the SMMU provides two stages of address
translation. The first stage separates memory space for the operating systems and is
managed by the hypervisor. The second stage separates application memory space within
an OS and is managed by the host operating system. The programming of the address
translation is coordinated with the MMUs in the MPCores and any MMUs in the PL to build
the multitasking, heterogeneous system that shares one physically addressed memory
subsystem.

• First-stage hardware address translation for virtualized, multiple-guest operating
systems. Virtual address (VA) to intermediate physical address (IPA).

° Hypervisor software programs the first-stage address translation unit to virtualize
the addresses of bus masters other than the processors, e.g., DMA units and PL
masters.

° Associates each bus master with its intermediate virtual memory space of its OS.
• Second-stage hardware address translation for multi-application operating systems.

Intermediate physical address (IPA) to physical address (PA).

° Guest OS software programs the second-stage translation unit to manage the
addressing of the memory mapped resources for each application program.

° Associates the intermediate virtual memory address to the system’s physical
address space.

The SMMU has the translation buffer and control units.

Translation Buffer Unit

The translation buffer unit (TBU) contains a translation look-aside buffer (TLB) that caches
page tables maintained by the translation control unit (TCU). The SMMU implements a TBU
for system masters as shown in Figure 15-1 in Chapter 15, PS Interconnect.

Translation Control Unit

The TCU controls and manages the address translation tables for the TBUs.
Zynq UltraScale+ Device TRM 78
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=78

Chapter 3: Application Processing Unit
TBU Entry Updates

The TCU uses a private AXI stream interface to update the translation tables in the TBUs.

Figure 3-7 shows how the two address translation stages in the SMMU can be used in the
system with the APU MPCore, GPU, and other masters. The location of the six TBUs is shown
in Figure 15-1 in Chapter 15, PS Interconnect.

SMMU Architecture

The SMMU performs address translation of an incoming AXI address and AXI ID (mapped to
context) to an outgoing address (PA). The Arm SMMU architecture also supports the
concept of translation regimes, in which a required memory access might require two
stages of address translation. The SMMU supports the following.

• Aarch32 short (32-bit) descriptor. Supports up to a 32-bit VA and 32-bit PA.
• Aarch32 long (64-bit) descriptor. Supports up to a 32-bit VA and 40-bit PA.
• Aarch64 (64-bit) descriptor. Supports up to a 49-bit VA and 48-bit PA.

X-Ref Target - Figure 3-7

Figure 3‐7: Example of SMMU Locations in the System

Cache Coherent Interconnect (CCI)

DDR Memory Subsystem

Cache
Coherent
Master 1

Cache
Coherent
Master n

Interconnect

Non-
coherent
Master 1

Non-
coherent
Master n

Interconnect

SMMU TBU
Stage 1

SMMU TBU
Stages 1

and 2

SMMU TBU
Stages 1

and 2

MMU Stage
1 and 2

L1 Cache

GPU
Masters

MMU
Stage 1
Cache

Coherent Interconnect

L2 Cache

APU MPCore
CPU 0

CPU 1
CPU 2

CPU 3

X15290-090817

CPUx
Zynq UltraScale+ Device TRM 79
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=79

Chapter 3: Application Processing Unit
Stage 1 SMMU Translation

Stage 1 translation is intended to assist the operating system, both when running natively
or inside a hypervisor. Stage 1 translation works similarly to a traditional (single stage) CPU
MMU. Normally, an operating system causes fragmentation of physical memory by
continuously allocating and freeing memory space on the heap, both for kernel and
applications. A virtualized system that includes a fragmented model between IPA and PA
spaces (where multiple guest operating systems are sharing the same physical memory) is
not advised because of this issue.

A typical solution, to allocate large contiguous physical memory, is to pre-allocate such
buffers. This is very inefficient because the buffer is only required at runtime. Also, in a
virtualized system, a pre-allocated solution requires the hypervisor to allocate any
contiguous buffers to the guest operating system, which could require hypervisor
modifications.

For a DMA device to operate on fragmented physical memory, a DMA scatter-gather
mechanism is typically used, which increases software complexity and adds performance
overhead. Also, some devices are not capable of accessing the full memory range, such as
32-bit devices in a 64-bit system. One solution is to provide a bounce buffer—an
intermediate area of memory at a low address that acts as a bridge. The operating system
allocates pages in an address space visible to the device and uses them as buffer pages for
DMA to and from the operating system. Once the I/O completes, the content of the buffer
pages is copied by the operating system into its final destination. There is significant
overhead to this operation, which can be avoided with the use of SMMU. I/O virtualization
can be achieved by using stage 1 (for native operating systems) and by stage 1 or 2 (for
guest operating systems).

Stage 2 SMMU Translation

The SMMU stage 2 translations remove the need for the hypervisor to manage shadow
translation tables, which simplifies hypervisor and improves performance. With stage 2
address translation (Figure 3-8), the SMMU enables a guest operating system to directly
configure the DMA capable devices in the system.

The SMMU can also be configured to ensure that devices operating on behalf of one guest
operating system are prevented from corrupting memory of another guest operating
system.
Zynq UltraScale+ Device TRM 80
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=80

Chapter 3: Application Processing Unit
Providing hardware separation between the two stages of address translation allows a clear
definition of the ownership of the two different stages between the guest operating system
(stage 1) and the hypervisor (stage 2). Translation faults are routed to the appropriate level
of software. Management functions (TLB management, MMU enabling, register
configurations) are handled at the appropriate stage of the translation process, improving
performance by reducing the number of entries in the VM.

Stage 1 translations are supported for both secure and non-secure translation contexts.
Stage 2 translations are only supported for non-secure translation contexts. For non-secure
operations, the typical usage model for two-stage address translation is as follows.

• The non-secure operating system defines the stage 1 address translations for
application and operating system level operations. The operating system does this as
though it is defining mapping from VA to PA, but it is actually defining the mapping
from VAs to IPA.

X-Ref Target - Figure 3-8

Figure 3‐8: SMMU Stage 2 Address Translation

Bn

A0 An

Guest OS0

B0 Bn

Guest OSm

Hypervisor

CPU
MMU

Memory
Accessing
Devices

System Memory

SystemMMU

B0

G
ue

st
 O

S m

4GB

B0

Bn

0

St
og

e
1

Ad
dr

es
s

Tr
an

sl
at

io
n

Stage 1: Translations
Managed by Guest OS

An

A0

G
ue

st
 O

S 0
4GB

A0

An

0St
ag

e
1

Ad
dr

es
s

Tr
an

sl
at

io
n

Intermediate Physical
Address (IPA) Space

Virtual Address
(VA) Space

4GB

B0

4GB

An

Bn

A0

St
ag

e
1

Ad
dr

es
s

Tr
an

sl
at

io
n

Physical Address
(PA) Space

0

0

Stage 2: Translations
Managed by Hypervisor

4GB

X15291-103117
Zynq UltraScale+ Device TRM 81
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=81

Chapter 3: Application Processing Unit
• The hypervisor defines the stage 2 address translation that maps the IPA to PA. It does
this as part of its virtualization of one or more non-secure guest operating systems.

TLB Maintenance Operations

SMMU TLB maintenance operations (for example, TLB invalidates) can be initiated in one of
the two ways.

• Accessing SMMU memory-mapped registers.
• Broadcasting TLB maintenance operations to the SMMU through the distributed virtual

memory (DVM) bus. Clearing TLB entries through broadcast messages can significantly
improve system performance by freeing-up TLB entries. TLB maintenance-message
broadcasting is an important feature of the SMMU architecture.

SMMU Clocks and Resets

The SMMU AXI interfaces are clocked by the TOPSW_MAIN_CLK clock in the AXI
interconnect for the FPD. The clock generator is described in Chapter 37, PS Clock
Subsystem. The SMMU reset is in the FPD reset domain.
Zynq UltraScale+ Device TRM 82
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=82

Chapter 4

Real-time Processing Unit

Introduction
The Zynq® UltraScale+™ MPSoC includes a pair of Cortex®-R5F processors for real-time
processing based on the Cortex-R5F MP processor core from Arm®. The Cortex-R5F
processor implements the Arm v7-R architecture and includes a floating-point unit that
implements the Arm VFPv3 instruction set.

In the Cortex-R5F processor, interrupt latency is kept low by interrupting and restarting
load-store multiple instructions. This is achieved by having a dedicated peripheral port that
provides low latency access to the interrupt controller and by having tightly coupled
memory ports for low latency and deterministic accesses to local RAM.

The Cortex-R5F processor is used for many safety-critical applications.

Real-time Processing Unit Features

• Integer unit implementing the Arm v7-R instruction set.
• Single and double precision FPU with VFPv3 instructions.
• Arm v7-R architecture memory protection unit (MPU).
• 64-bit master AXI3 interface for accessing memory and shared peripherals.
• 64-bit slave AXI3 interface for DMA access to the TCMs.
• Dynamic branch prediction with a global history buffer and a 4-entry return stack.
• Separate 128KB TCM memory banks with ECC protection for each TCM.
• 32KB instruction and data L1 caches with ECC protection.
• Independent Cortex-R5F processors or dual-redundant configuration.
• 32-bit master advanced eXtensible interface (AXI) peripheral interface on each

processor for direct low-latency device memory type access to the interrupt controller.
• Debug APB interface to a CoreSight™ debug access port (DAP).
• Low interrupt latency and non-maskable fast interrupts.
• Performance monitoring unit.
Zynq UltraScale+ Device TRM 83
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=83

Chapter 4: Real-time Processing Unit
• Exception handling and memory protection.
• ECC detection/correction on level-1 memories.
• Lock-step (redundant CPU) configuration is available to mitigate random faults in CPU

registers and gates.
• Built-in self-test (BIST) to detect random faults in hardware (probably) caused by

permanent failure.
• Watchdog to detect both systematic and random failures causing program flow errors.

Cortex-R5F Processor Functional Description
The Cortex-R5F processor is a mid-range CPU for use in deeply-embedded, real-time
systems. It implements the Arm v7-R architecture, and includes Thumb-2 technology for
optimum code density and processing throughput. The pipeline has a single arithmetic
logic unit (ALU), but implements limited dual-issuing of instructions for efficient utilization
of other resources such as the register file. Interrupt latency is kept low by interrupting and
restarting load-store multiple instructions, and by use of a dedicated peripheral port that
enables low-latency access to an interrupt controller. The processor has tightly-coupled
memory (TCM) ports for low-latency and deterministic accesses to local RAM, in addition to
caches for higher performance to general memory. Error checking and correction (ECC) is
used on the Cortex-R5F processor ports and in Level 1 (L1) memories to provide improved
reliability and address safety-critical applications. Figure 4-1 shows the system view of the
real-time processing unit.
Zynq UltraScale+ Device TRM 84
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=84

Chapter 4: Real-time Processing Unit
X-Ref Target - Figure 4-1

Figure 4‐1: System View of RPU

32-bit

TCM-A
64KB

GIC

Cortex-R5
32 KB I/D Cache

64-bit

TCM-B0
32KB64-bit

64-bit

LLPP

FPU

64-bit

64-bit

64-bit

TCM-A
64KB

TCM-B0
32KB

LPD
Inbound
Switch
(2x1)

IOU

QSPI

GEM

NAND

SDIO

UART

SPI

CAN

I2C

PM
U

32
-b

it
32

-b
it

C
SU

3x
32

-b
it

2
x

32
-b

it

U
SB

0
32

-b
it

64
-b

it

U
SB

1
32

-b
it

64
-b

it

LP
D

 D
M

A
32

-b
it

64
-b

it

D
AP

32
-b

it
64

-b
it

AMS

eFUSE
LPD

SLCR
IPI

RTC

Others

32
-b

it
XP

PU

64-bit From
FPD

64-bit

64-bit

Cortex-R5
32 KB I/D Cache

LLPP

FPU

TCM-B1
32KB

TCM-B1
32KB

128-bitFrom FPD

128-bit

OCM
256 KB with 64-bit ECC

Exclusive Monitors

64K 64K 64K 64K

XMPU

64-bit64-bit

128-bitTo PL2

128-bit

To FPD
128-bit

From
FPI-LP

128-bit

To
DDRC64-bit

64-bit
128-bit

32-bit

64-bit

64-bit
64-bit

32-bit

RPU Clock

OCM Clock

Interconnect

64-bit

X15294-051518
Zynq UltraScale+ Device TRM 85
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=85

Chapter 4: Real-time Processing Unit
RPU Pin Configuration

The following table describes the real-time processor configuration signals.

Table 4‐1: RPU Pin Configuration

Note: For more information on Configuration Signals, see the ARM Cortex-R5F and Cortex-R5F
Technical Reference Manual [Ref 47].

Pins Selection Description

VINITHIm SLCR configurable (default 1) Reset V-bit value. When High indicates HIVECS mode
at reset.

CFGEE SLCR configurable (default 0) Data endianness at reset.
CFGIE SLCR configurable (default 0) Instruction fetch endianness.
TEINIT SLCR configurable (default 0) Arm or fetch at reset. 0 = Arm.
CFGNMFIm SLCR configurable (default 0) Non-maskable FIQ. 0 = maskable.
INITPPXm 0x1 AXI peripheral interface enabled at reset.
SLBTCMSBm SLCR configurable (default 0) B0TCM and B1TCM interleaving by addr[3].
INITRAMAm 0x0 Enable ATCM.
INITRAMBm 0x1 Enable BTCM.
ENTCM1IFm 0x1 Enable B1TCM interface.
LOCZRAMAm 0x1 When High indicates ATCM initial base address is

zero.
PPXBASEm Based on global address map Base address of AXI peripheral interface. Must be size

aligned.
PPXSIZEm 16 MB Size of AXI peripheral interface.
PPVBASEm Same as PPXBASEm Base address of virtual-AXI peripheral interface.
PPVSIZEm 8 KB Size of virtual-AXI peripheral interface.
GROUPID[3:0] 0x1 ID of the Cortex-R5F processor group.
DBGNOCLKSTOP default (0) Clock control when entering standby.
SLSPLIT default (0) Processor mode
SLCLAMP default (1) Output clamps for redundant processor.
TCM_COMB default (1) Combine TCMs of RPU0 and RPU1.
TCM_WAIT default (0) Insert wait states in TCM access.
TCM_CLK_CNTL default (0) TCM clock disable (all TCMs, both RPU processors).
GIC_AXPROT default (0) GIC access security setting. This bit is equivalent to

AxPROT[1] on AXI bus.
Zynq UltraScale+ Device TRM 86
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=86

Chapter 4: Real-time Processing Unit
RPU CPU Configuration

The RPU MPCore has two Cortex-R5F processors that can operate independently or in
lock-step together. This section describes the CPU arrangements supported and the
functionality of each arrangement.

Split/Lock

Two CPUs are included in this configuration. The processor group can operate in one of two
modes.

• Split mode operates as a twin-CPU configuration. Also known as performance mode.
• Locked mode operates as a redundant CPU configuration. Also known as safety mode.

Lock-Step Operation

When the Cortex-R5F processors are configured to operate in the lock configuration, only
one set of CPU interfaces are used. Because the Cortex-R5F processor only supports the
static split/lock configuration, switching between these modes is only permitted right after
the processor group is brought out of reset. The input signals SLCLAMP and SLSPLIT control
the mode of the processor group. These signals control the multiplex and clamp logic in the
locked configuration. When the Cortex-R5F processors are in the lock-step mode
(Figure 4-2), there should be code in the reset handler to ensure that the distributor within
the generic interrupt controller (GIC) dispatches interrupts only to CPU0.

IMPORTANT: During the lock-step operation, the TCMs that are associated with the redundant
processor become available to the lock-step processor. The size of each ATCM and BTCM becomes
128 KB with BTCM interleaved accesses from the processor and AXI slave interface.

X-Ref Target - Figure 4-2

Figure 4‐2: RPU Cortex-R5 Processor Lock-step Mode

TCMs Associated
with CPU1

TCM A

TCM B

TCMs Associated
with CPU0

TCM A

TCM B Shim
Shim

GIC

Cortex-R5
CPU0

Cortex-R5
CPU1

Caches Associated
with CPU0

D-Cache

I-Cache

Comparison and Synchronization Logic

X15295-092916
Zynq UltraScale+ Device TRM 87
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=87

Chapter 4: Real-time Processing Unit
Error Correction and Detection
The Cortex-R5F processor supports error checking and correction (ECC) data schemes. For
each aligned data set, a number of redundant code bits are computed and stored with the
data. This enables the processor to detect up to two errors in the data set or its code bits,
and correct any single error in the data set or its associated code bits. This is sometimes
referred to as a single-error correction, double-error detection (SEC-DED) ECC scheme.

Interrupt Injection Mechanism

The RPU implements an interrupt injection function to inject interrupts into the generic
interrupt controller’s shared peripheral interrupts (SPI). The RPU GIC has 160 SPIs. Software
can inject an interrupt on each of 160 interrupt lines using this mechanism. The 160 SPIs are
divided into five, 32-bit APB registers. The RPU implements an interrupt register and an
interrupt mask register. The logic in Figure 4-3 is replicated on each interrupt going to the
SPI of the RPU’s GIC. If the interrupt mask corresponding to the interrupt is set in the
RPU_INTR_MASK register, the RPU passes the APB register version of the interrupt to the
GIC.
X-Ref Target - Figure 4-3

Figure 4‐3: RPU Interrupt Injection

SPI from System

SPI from APB
RPU_INTR_0/1/2/3/4

SPI to GIC

Interrupt Mask from APB
RPU_INTR_MASK

X17684-092916
Zynq UltraScale+ Device TRM 88
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=88

Chapter 4: Real-time Processing Unit
Table 4-2 lists the mapping of the SPI bits.

Level2 AXI Interfaces
There are three distinct advanced eXtensible interfaces (AXI) to the rest of the MPSoC. The
first is the AXI master interface. There is also a separate AXI peripheral interface that
connects to the GIC and an AXI slave port provided to allow external masters to access
ICACHE, DCACHE, and TCM RAMs. Access from the AXI slave port to the caches is only
provided for use during debug. The L2 AXI interfaces enable the L1 memory system to have
access to peripherals and to external memory using an AXI master and AXI slave port and
the peripheral ports.

Memory Protection Unit
The memory protection unit (MPU) works with the L1 memory system to control the
accesses to and from L1 cache and external memory. For a detailed description of the MPU,
refer to the Cortex-R5F Technical Reference Manual [Ref 47].

The MPU enables you to partition memory into regions and set individual protection
attributes for each region. When the MPU is disabled, no access permission checks are
performed, and memory attributes are assigned according to the default memory map. The
MPU has a maximum of 16 regions.

Using the MPU memory region programming registers you can specify the following for
each region.

• Region base address
• Region size
• Sub-region enables
• Region attributes
• Region access permissions
• Region enable

Table 4‐2: SPI Map to RPU Interrupt and RPU Interrupt Mask Registers

SPI RPU Interrupt Register RPU Interrupt Mask Register

SPI<31:0> RPU_INTR_0<31:0> RPU_INTR_MASK_0<31:0>
SPI<63:32> RPU_INTR_1<31:0> RPU_INTR_MASK_1<31:0>
SPI<95:64> RPU_INTR_2<31:0> RPU_INTR_MASK_2<31:0>
SPI<127:96> RPU_INTR_3<31:0> RPU_INTR_MASK_3<31:0>
SPI<159:128> RPU_INTR_4<31:0> RPU_INTR_MASK_4<31:0>
Zynq UltraScale+ Device TRM 89
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=89

Chapter 4: Real-time Processing Unit
Events and Performance Monitor
The processor includes logic to detect various events that can occur, for example, a cache
miss. These events provide useful information about the behavior of the processor for use
when debugging or profiling code.

The events are made visible on an output event bus and can be counted using registers in
the performance monitoring unit.

Power Management
Each CPU in the Cortex-R5F processor supports three power management modes
(Table 4-3) from run to shutdown, with decreasing levels of power consumption, but
increasing entry and exit costs.

Exception Vector Pointers
The exception vector pointers (EVP) refer to the base-address of exception vectors (for
reset, IRQ, FIQ, etc). The reset-vector starts at the base-address and subsequent vectors are
on 4-byte boundaries. The Cortex-R5F processor EVPs are determined as follows.

• If the Cortex-R5F processor SCTRL.V register bit is 0, then exception vectors start from
0x0000_0000 (LOVEC).

• If the Cortex-R5F processor SCTRL.V register bit is 1, then exception vectors start from
0xFFFF_0000 (HIVEC).

The reset value of SCTRL.V is taken from the Cortex-R5F processor VINITHIm pin value,
which is driven by the Zynq UltraScale+ MPSoC SLCR bit.

Table 4‐3: Power Management Modes

 Mode
CPU Clock

Gated
CPU Logic
Powered

TCM
Memory

Retention
Exit to Run Mode

Run No Yes Yes N/A
Standby When idle Yes Yes Pipeline restart.

Shutdown Yes No No
Pipeline restart restore registers and configuration from
memory invalidate caches and re-initialize caches and
TCMs.
Zynq UltraScale+ Device TRM 90
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=90

Chapter 4: Real-time Processing Unit
At system boot, the Cortex-R5F processor exception vectors (i.e., VINITHIm pin-value)
default to HIVEC, which is mapped in the OCM. The FSBL (running on the Cortex-R5F
processor) is expected to change the Cortex-R5F processor exception vectors by changing
both the Zynq UltraScale+ MPSoC SLCR to change the value of the VINITHIm pin and the
Cortex-R5F processor SCTRL.V bit to LOVEC. The Cortex-R5F processor exception vectors
should remain at LOVEC.

RECOMMENDED: Xilinx does not recommend that you change the exception vector. Changing the EVP
to HIVEC will result in increased interrupt latency and jitter. Also, if the OCM is secured and the
Cortex-R5F processor is non-secured, then the Cortex-R5F processor cannot access the HIVEC exception
vectors in the OCM.

System Register Overview
Table 4-4 provides an overview of the RPU system registers.

Table 4‐4: RPU Registers

Register name Description

RPU_GLBL_CNTL Global control register for the RPU
RPU_GLBL_STATUS Miscellaneous status information for the RPU
RPU_ERR_CNTL Error response enable/disable register
RPU_RAM Control for extra features of the RAMs
RPU_ERR_INJ Reserved
RPU_CCF_MASK Common cause signal mask register
RPU_INTR_0-4 RPU interrupt injection registers
RPU_INTR_MASK_0-4 RPU interrupt injection mask registers
RPU_CCF_VAL Common cause signal value register
RPU_SAFETY_CHK RPU safety check register
RPU_0_CFG Configuration parameters specific to RPU0
RPU_0_STATUS RPU0 status register
RPU_0_PWRDWN Power-down request from the Cortex-R5F processors
RPU_0_ISR Interrupt status register
RPU_0_IMR Interrupt mask register
RPU_0_IEN Interrupt enable register
RPU_0_IDS Interrupt disable register
RPU_0_SLV_BASE Slave base address register
RPU_0_AXI_OVER RPU0 AXI override register
RPU_1_CFG Configuration parameters specific to RPU1
Zynq UltraScale+ Device TRM 91
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=91

Chapter 4: Real-time Processing Unit
Tightly Coupled Memory
Tightly-coupled memories (TCMs) are low-latency memory that provide predictable
instruction execution and predictable data load/store timing. Each Cortex-R5F processor
contains two 64-bit wide 64 KB memory banks on the ATCM and BTCM ports, for a total of
128 KB of memory. The division of the RAMs into two banks, and placing them on ports A
and B, allows concurrent accesses to both banks by the load-store, instruction prefetch, or
AXI slave ports.

The BTCM memory bank is divided into two 32 KB ranks that are connected to the BTCM-0
and BTCM-1 ports of the Cortex-R5F processors. There are two TCM interfaces that permit
connection to configurable memory blocks of tightly-coupled memory (ATCM and BTCM).

• An ATCM typically holds interrupt or exception code that must be accessed at high
speed, without any potential delay resulting from a cache miss.

• A BTCM typically holds a block of data for intensive processing, such as audio or video
processing.

RPU_1_STATUS RPU1 status register
RPU_1_PWRDWN Power-down request from the Cortex-R5F processors
RPU_1_ISR Interrupt status register
RPU_1_IMR Interrupt mask register
RPU_1_IEN Interrupt enable register
RPU_1_IDS Interrupt disable register
RPU_1_SLV_BASE Slave base address register
RPU_1_AXI_OVER RPU1 AXI override register

Table 4‐4: RPU Registers (Cont’d)

Register name Description
Zynq UltraScale+ Device TRM 92
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=92

Chapter 4: Real-time Processing Unit
The block diagram of RPU along with the TCMs is shown in Figure 4-4.

The entire 256 KB of TCM can be accessed by R5_0 (in lock-step mode). The PMU block
controls power gating to each of the 64 KB TCM banks, through the system power and
configuration state (SPCS) registers.

Tightly Coupled Memory Functional Description

The Cortex-R5F processors in the RPU block operate in normal (split) and lock-step
configuration. Each of these operating modes also defines the TCM access methods. The
following sections describe various TCM access methods.

X-Ref Target - Figure 4-4

Figure 4‐4: Block Diagram of RPU with TCMs

AXI Masters

LSU AXI Slave PFU

Interconnect

Cortex-R5 CPU

AXI
Peripheral
Interface

AXI Virtual
Peripheral
Interface

AHB
Peripheral
Interface

D-cache
Control

I-cache
Control

ATCM
Interface

BTCM
Interface

Level 1
Memory
System

AXI
Peripheral

Port

AHB
Peripheral

Port

AXI Master
Interface

B1 RAM

B0 RAM

A RAM

I-cache
RAMs

D-cache
RAMs

Peripherals/Memory Peripherals/Memory

Level 2 Memory System

Level 2 Memory System

X15296-092916
Zynq UltraScale+ Device TRM 93
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=93

Chapter 4: Real-time Processing Unit
Normal (Split) Operation

The 2-bank 128 KB TCM support for each Cortex-R5F processor in the split mode includes
the following.

• Each TCM is 64 KB.
• One BTCM is composed of two ranks allowing interleaved accesses.
• 32-bit ECC support is available in both normal and lock-step mode.
• TCMs can be combined for a total of 256 KB (128 KB each of ATCM and BTCM) for use

by R5_0 in lock-step mode.
• External TCM access from AXI slave interfaces.

Lock-step Operation

When the Cortex-R5F processors are in the lock-step mode (Figure 4-5), there should be
code in the reset handler to ensure that the distributor within the GIC dispatches interrupts
only to CPU0. During the lock-step operation, the TCMs that are associated with the
redundant processor become available to the lock-step processor. The size of ATCM and
BTCM become 128 KB each with BTCM supporting interleaved accesses from processor and
AXI slave interface.

X-Ref Target - Figure 4-5

Figure 4‐5: TCMs in Lock-step Mode

TCMs
Associated with

CPU1

TCM A

TCM B

TCMs
Associated with

CPU0

TCM A

TCM B

Shim
Shim

Cortex-R5
CPU0

Cortex-R5
CPU1

Caches
Associated with

CPU0

D-Cache

I-Cache

GIC

Comparison and Synchronization Logic
Zynq UltraScale+ Device TRM 94
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=94

Chapter 4: Real-time Processing Unit
Tightly Coupled Memory Address Map

TCMs are mapped in the local address space of each Cortex-R5F processor, but they are also
mapped in the global address space for access from any master. The address maps from the
RPU point of view and from the global address space are shown in Table 4-5.

TCM Access from a Global Address Space

The following address can be routed to the Cortex-R5F processors slave port:

• If 0xFFE6_0000 > ReqAddr[31:0]  0xFFE0_0000, then route request to R5_0
• If 0xFFEE_0000 > ReqAddr[31:0]  0xFFE9_0000, then route request to R5_1

Table 4‐5: TCM Address Map

R5_0 View
(Start Address)

R5_1 View
(Start Address)

Global Address View
(Start Address)

Split mode

R5_0 ATCM (64 KB) 0x0000_0000 N/A 0xFFE0_0000

R5_0 BTCM (64 KB) 0x0002_0000 N/A 0xFFE2_0000

R5_0 instruction cache (32 KB) I-Cache N/A 0xFFE4_0000

R5_0 data cache (32 KB) D-Cache N/A 0xFFE5_0000

R5_1 ATCM (64KB) N/A 0x0000_0000 0xFFE9_0000

R5_1 BTCM (64KB) N/A 0x0002_0000 0xFFEB_0000

R5_1 instruction cache (32 KB) N/A I-Cache 0xFFEC_0000

R5_1 data cache (32 KB) N/A D-Cache 0xFFED_0000

Lock-step mode

R5_0 ATCM (128KB) 0x0000_0000 N/A 0xFFE0_0000

R5_0 BTCM (128KB) 0x0002_0000 N/A 0xFFE2_0000

R5_0 instruction cache (32 KB) I-Cache N/A 0xFFE4_0000

R5_0 data cache (32 KB) D-Cache N/A 0xFFE5_0000

R5_1 slave port is not accessible in lock-step mode.
Zynq UltraScale+ Device TRM 95
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=95

Chapter 4: Real-time Processing Unit
Figure 4-6 shows the address map views of the RPU and APU CPUs. The TCMs are mapped
into a global address space that is accessible (via RPU slave port) by an APU or any other
master that can access a global address space. In addition, TCMs are aliased in the local
view of the RPU starting at address 0x0000-0000.

A TCM cannot be accessed when the Cortex-R5F processor is in reset. The R5F processor
must be in active or halt state to allow another master to access the TCM. The Cortex-R5F
processor connection to TCM is a direct low-latency path that does not go through the
SMMU. There is no protection to stop the Cortex-R5F processor from accessing the TCM.

The RPU exception vectors can be configured to be HIVEC (0xFFFF-0000) or LOVEC
(0x0000-0000). Because the OCM is mapped at HIVEC, and for the RPU to be able to
execute interrupt handlers directly from TCMs, the TCMs must be mapped starting at
address 0x0000-0000 (=LOVEC). Also, to configure the APU with LOVEC in DRAM, the APU
cannot access TCMs at LOVEC. Consequently, TCMs are aliased into a local address map of
the RPU for the Cortex-R5F processor to access them starting at address 0x0000-0000.

There are cases where the CCI-400 will generate transactions using the same master ID as
that of the R5_0. If that region is coherent and protected by an XMPU it will generate an
error, unless the R5_0 is added to the allowed master ID list of the XMPU. If access to that
region by the R5_0 is not compatible with the safety or security goal of the system, the user
can either run the R5F application using only R5_1 (leaving R5_0 unused) or skip the use of
coherency and not add R5_0 to the XMPU allowed list.

X-Ref Target - Figure 4-6

Figure 4‐6: APU and RPU CPUs TCM Address Map

Global Address Map

TCMs (256 KB)

LLPP + RPU-GIC

DRAM

BTCM (64 KB)

ATCM (64 KB)

0xFFFF-FFFF RPU Split View

Global Address Map

TCMs (256 KB)

LLPP + RPU-GIC

DRAM

BTCM (128 KB)

ATCM (128 KB)

RPU Lock-step View

Global Address Map

TCMs (256 KB)

APU-GIC

DRAM

APU View

GIC BaseAddr

Top of DRAM

TCMs alias

0x0000-0000

0xFFE0-0000

X15298-092916
Zynq UltraScale+ Device TRM 96
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=96

Chapter 4: Real-time Processing Unit
Lock-step Sequence in Cortex-R5F Processors

The following sequence is used to enable the lock-step mode of the Cortex-R5F processors.

;SVC out of reset
MOV r0,#0
MOV r1,#0
MOV r2,#0
MOV r3,#0
MOV r4,#0
MOV r5,#0

 MOV r6,#0
MOV r7,#0

 MOV r8,#0
MOV r9,#0
MOV r10,#0
MOV r11,#0
MOV r12,#0
MOV r13,#0x10000

;SP - Choose a suitable stack pointer value based on your system
MOV r14, #0;LR

;User (Sys)
MSR CPSR_cxsf,#0x1F
MOV r13,#0x70000

;SP - Choose a suitable stack pointer value based on your system
MOV r14,#0;LR

;FIQ

MSR CPSR_cxsf,#0x11
MOV r8,#0
MOV r9,#0
MOV r10,#0
MOV r11,#0
MOV r12,#0
MOV r13,#0x60000

;SP - Choose a suitable stack pointer value based on your system
MOV r14,#0;LR

;IRQ

MSR CPSR_cxsf,#0x12
MOV r13,#0x50000

;SP - Choose a suitable stack pointer value based on your system
MOV r14,#0;LR

;Undef
MSR CPSR_cxsf,#0x1B
MOV r13,#0x40000

;SP - Choose a suitable stack pointer value based on your system
MOV r14,#0;LR

;Abort
MSR CPSR_cxsf,#0x17
MOV r13, #0x30000

;SP - Choose a suitable stack pointer value based on your system
MOV r14, #0;LR

;Return to SVC

MSR CPSR_cxsf,#0x13
Zynq UltraScale+ Device TRM 97
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=97

Chapter 4: Real-time Processing Unit
FUNC(asm_init_vfp_regs)
mov>----r1,#0
vmov d0,r1,r1
vmov d1,r1,r1
vmov d2,r1,r1
vmov d3,r1,r1
vmov d4,r1,r1
vmov d5,r1,r1
vmov d6,r1,r1
vmov d7,r1,r1
vmov d8,r1,r1
vmov d9,r1,r1
vmov d10,r1,r1
vmov d11,r1,r1
vmov d12,r1,r1
vmov d13,r1,r1
vmov d14,r1,r1
vmov d15,r1,r1
cmp r0,#1
beq asm_init_vfp_regs32
bx lr

asm_init_vfp_regs32:
vmov d16,r1,r1
vmov d17,r1,r1
vmov d18,r1,r1
vmov d19,r1,r1
vmov d20,r1,r1
vmov d21,r1,r1
vmov d22,r1,r1
vmov d23,r1,r1
vmov d24,r1,r1
vmov d25,r1,r1
vmov d26,r1,r1
vmov d27,r1,r1
vmov d28,r1,r1
vmov d29,r1,r1
vmov d30,r1,r1
vmov d31,r1,r1
bx lr

The ECC for the cache RAMs is initialized as part of the initial invalidation after reset. The
cache ECC checking must be enabled during the invalidation using the following sequence.

DSB
MRC p15, 0, r1, c1, c0, 1 ;Read ACTLR
ORR r1, r1, #(0x1 << 5) ;Set Bits [5:3] = 0b101
BIC r1, r1, #(0x1 << 4) ;to enable ECC no forced
ORR r1, r1, #(0x1 << 3) ;write-through
MCR p15, 0, r1, c1, c0, 1 ;Write ACTLR ISB

MCR p15, 0, r0, c7, c5, 0 ;Invalidate All instruction caches
MCR p15, 0, r0, c15, c5, 0 ;Invalidate All Data caches DSB ISB

If you have ECC on the TCMs, then the initial accesses to the TCM locations also needs to
ensure that the ECC locations are updated correctly.
Zynq UltraScale+ Device TRM 98
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=98

Chapter 5

Graphics Processing Unit

Introduction
The GPU is a 2D and 3D graphics subsystem based on the Arm® Mali™-400 MP2 hardware
accelerator.

Note: The GPU is not supported in the Zynq UltraScale+ CG family.

Features

The GPU consists of the following components.

• One geometry processor (GP)
• Two pixel processors (PP)
• Shared 64 KB L2 cache controller (L2)
• Individual memory management units (MMU) for the GP and each PP
• 128-bit AXI master bus interface

Features achieved by the GPU components.

• OpenGL ES 1.1 and 2.0 (with software support)
• OpenVG 1.1 (with software support)
• SIMD engine features

° 32-bit floating point arithmetic per the IEEE standard (IEEE Std 754)

° 4-way 32-bit simultaneous instruction execution
• Vertex loader DMA unit
• High data latency tolerance
• Advanced 4x and 16x anti-aliasing
• Texture sizes of up to 4096 x 4096 pixels
• Ericsson texture compression (ETC) to reduce memory bandwidth
Zynq UltraScale+ Device TRM 99
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=99

Chapter 5: Graphics Processing Unit
• Local cache to reduce memory bandwidth
• Extensive texture formats:

° RGBA 8888, 565, 1556

° Mono 8 and Mono 16

° YUV format
• Automatic load balancing across the graphics shader engines
• Stage-1 virtual address translation

Power Domains

The GPU is powered by three power sources:

• Control registers, L2 cache, and geometry processor (FPD directly)
• Pixel processor 0 (FPD with power island control PP0)
• Pixel processor 1 (FPD with power island control PP1)

The GPU can operate with one, both, or none of the pixel processors. However, the
programming environment might require all three system elements to be powered on. If
both pixel processors are needed, the power-up sequence should be staggered to minimize
current surges on the device.

Clocking Domain

The GPU runs based only on the GPU_REF_CLK clock. All interfaces, including APB and core,
are clocked based on the GPU_REF_CLK clock. The values of PLL Source and clock frequency
are configured using the GPU_REF_CTRL register. See Chapter 37, PS Clock Subsystem for
more information on GPU_REF_CLK.

Performance

Performance values change with the operating frequency and vary by device. Operating
frequency specifications are reported in the Zynq UltraScale+ MPSoC Data Sheet: DC and
AC Switching Characteristics [Ref 2]. The following example peak performance values are for
a 400 MHz operating frequency.

• Pixel fill rate: 800 Mpixel/sec
• Vertex processing rate: 40 Mvertex/sec
Zynq UltraScale+ Device TRM 100
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=100

Chapter 5: Graphics Processing Unit
Graphics Processing Unit Functional Description
Figure 5-1 shows the block diagram of the GPU.

X-Ref Target - Figure 5-1

Figure 5‐1: GPU Block Diagram

Geometry
Processor

MMU

AXI 64-bit

L2 Cache (64 KB)

Pixel
Processor

MMU

AXI 64-bit

Pixel
Processor

MMU

AXI 64-bit

AXI 128-bitAPB 32-bit

X15299-080318
Zynq UltraScale+ Device TRM 101
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=101

Chapter 5: Graphics Processing Unit
Geometry Processor

Figure 5-2 shows a top-level view of the geometry processor in the GPU.

Figure 5‐2: GPU Geometry Processor Block Diagram

The geometry processor consists of the following.

• A Vertex Shader command processor that reads and executes commands from a
command list stored in memory.

• A Vertex Shader Core that loads data for processing, performs the required calculations
for each vertex, stores data from output registers in memory, and then exports data to
integer or floating point numbers of different sizes.

• A Polygon List Builder unit that creates lists of polygons that the pixel processor must
draw.

• The polygon list builder (PLB) command processor reads and executes commands from
the command list stored in memory.

Geometry Processor

GPU

System Bus Interface

Vertex
Shader

Command
Processor

PLB
Command
Processor

PLB

Vertex Shader Block

Vertex Shader

Vertex
Storer

Vertex
Loader

Configuration Registers

MMU

L2
Cache

Pixel Processor

MMU
Zynq UltraScale+ Device TRM 102
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=102

Chapter 5: Graphics Processing Unit
Vertex Processing

The geometry processor performs the vertex processing tasks shown in Table 5-1.

Vertex Shader

Vertex shader consists of three main stages, loader, shader, and storer.

Vertex Loader

The vertex loader is a DMA unit that loads per-vertex data for processing. It can accept data
from up to 16 distinct streams, each corresponding to one of the 16 input registers. For
each stream, it permits the specification of any of the following data formats.

• 1, 2, 3, or 4 values in 16-bit, 24-bit, or 32-bit floating-point formats
• 1, 2, 3, or 4 values in 8-bit, 16-bit, or 32-bit signed or unsigned fixed-point values
• 1, 2, 3, or 4 values in 8-bit, 16-bit, or 32-bit signed or unsigned normalized values

For each vertex stream, you must specify a stride in 1-byte increments. A stride is an offset
between two data sets.

Table 5‐1: Vertex Processing Tasks Performed by the Geometry Processor

Processing Task Description

Transform and lighting The geometry processor scales, rotates, and positions the geometry of objects in the
scene, and also calculates and assigns values to the vertices.

Primitive assembly The PLB links vertices together to form different primitives.
Culling This step discards polygons that must not be rendered.

Primitive list assembly
The pixel processor is a tile-based renderer. The geometry processor prepares a list of
all primitives required for the pixel processor to render. For each primitive, the PLB writes
a list entry for each tile that the primitive touches.

Rendering
Describes the various tasks the pixel processor performs. During rendering, the pixel
processor uses the information from the polygon list to produce a final frame buffer
image.
Zynq UltraScale+ Device TRM 103
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=103

Chapter 5: Graphics Processing Unit
Vertex Shader Core

The vertex shader core (Figure 5-3) performs most of the required calculations for each
vertex. The vertex shader runs a program on each vertex of a 3D scene typically performing
transform and lighting (T&L). The program is limited to 512 instructions with limited flow
control. The instructions of the program work on vector data that is optimized for
operations in length-4 vectors and smaller vectors.

Vertex Storer

The vertex storer stores data from the output registers of the vertex shader to memory. The
vertex storer can export data to FP24, FP16, 32-bit integer, 16-bit integer, and 8-bit integer.

See the geometry processor control register and vertex shader registers for a description of
how to configure the vertex storer.

X-Ref Target - Figure 5-3

Figure 5‐3: Vertex Shader Core Block Diagram

Vertex Shader Block

16 Work Registers

Execution Units

Input
Multiplexer

Result
Selection

Flow Control Unit

Lookup Table Unit

Miscellaneous Unit

Adder 0

Adder 1

Multiplier 0

Multiplier 1

Output
Registers

Constant Value Registers

Input
Registers

Instruction Memory

X15301-091616
Zynq UltraScale+ Device TRM 104
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=104

Chapter 5: Graphics Processing Unit
Polygon List Builder

The polygon list builder (PLB) creates lists of the polygons that the pixel processor must
draw. For each polygon in a scene, the PLB decides which tiles the polygon covers, and adds
the polygon to the lists that draw those tiles. The PLB only adds a polygon to lists where the
polygon might have to be drawn, reducing the work involved when the pixel processor
renders the scene.

The PLB also discards polygons that are certain not to be visible, based on the following
criteria.

• Invalid polygons. For example, any coordinate that is non-numeric, an x or y coordinate
that is infinity, or where the area is zero.

• Polygons outside the view frustum.
• Back-facing polygons as defined by the OpenGL ES Common Profile specification.
• Polygons outside the current scissoring box.

The PLB can handle up to 512 lists to support the tile-based rendering mode of the pixel
processor efficiently; however, the default is 300. For QVGA or lower resolutions, 300 lists
are normally sufficient to make one list for every tile in the scene. For higher resolutions,
each list covers multiple tiles. This process is known as binning.

Each list ends with a return command. The driver creates a master tile list containing sets of
commands that perform tasks such as beginning new tiles and calling polygon lists. This
master tile list is input to the pixel processor polygon list reader.

The PLB requires a variable amount of memory to store the polygon lists. Memory is
allocated in blocks of 128, 256, 512, or 1024 bytes, as configured in the
GP_PLB_CONF_REG_PARAMS register. Further details are in the Zynq UltraScale+ MPSoC
Register Reference (UG1087) [Ref 4].

The driver must allocate the initial memory, consisting of an array of the selected number of
polygon lists. More memory is allocated automatically by the PLB from a heap area
configured through the GP_PLB_CONF_REG_HEAP_START_ADDR and
GP_PLB_CONF_REG_HEAP_STOP_ADDR registers. When this heap is exhausted, an interrupt
is generated, and the driver must allocate more memory for the heap.
Zynq UltraScale+ Device TRM 105
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=105

Chapter 5: Graphics Processing Unit
Pixel Processor

The pixel processor uses a list of primitives generated by the geometry processor to
produce a final image that is displayed on the screen. There are two pixel processors.
Figure 5-4 is a top-level diagram of a pixel processor.

The pixel processor consists of the following.

• A polygon list reader that reads the polygon lists from main memory and executes
commands from the lists.

• The render state words (RSWs) component is a data structure in main memory that
contains the render state of polygons. The different pipeline stages in the renderer
each reference the RSWs to determine how to process the primitives.

• The vertex loader fetches the required vertices from memory for each primitive in the
polygon list.

• The triangle setup unit takes data from the vertex loader and polygon list reader and
uses vertex data to compute coefficients for edge equations and varying interpolation
equations.

• The rasterizer takes coefficients and equations from the triangle setup unit and uses
these to divide polygons into fragments.

X-Ref Target - Figure 5-4

Figure 5‐4: Pixel Processor Block Diagram

Geometry Processor

GPU

System Bus Interface

MMU

L2
Cache

Pixel Processor

MMU

Title Writeback Unit

Tile Buffers

Blending
UnitRasterizer Fragment

Shader

Configuration Registers

Vertex
Loader

Polygon
List

Reader

Triangle Setup Unit

RSW
Zynq UltraScale+ Device TRM 106
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=106

Chapter 5: Graphics Processing Unit
• The fragment shader is a programmable unit that calculates how each fragment of a
primitive looks.

• The blending unit blends the calculated fragment value into the current frame buffer
value at that position.

• The tile buffers take inputs from the fragment shader. The buffers perform various tests
on the fragments, for example, Z tests and stencil tests. When the tile is fully rendered
it is written to the frame buffer.

• The writeback unit writes the content of the tile buffer to system memory after the tile
is completely rendered.

The pixel processor performs the rendering tasks shown in Table 5-2.

Pixel Processor Fragment Shader

The fragment shader is a programmable unit that calculates the appearance of each
fragment of a primitive. The fragment shader program specified in the RSW for the
primitive is executed for each fragment produced by the rasterizer. The fragment shader
program consists of very-long instruction words (VLIW), and can use any number of
functional units in a single instruction.

Table 5‐2: Pixel Processor Rendering Tasks

Processing Task Description

Triangle setup To prepare the primitive for rendering by calculating various data that is required to
rasterize and shade the primitive.

Rasterization
To divide the primitive into independent fragments. These are fragment-sized pieces of
primitive that the shader pipeline processes. Fragments that could be visible proceed to
the fragment shading stage, and fragments that are certain not to be visible are
discarded.

Fragment shading To determine how the fragment actually looks. In general, the pixel processor calculates
a color for the fragment.

Blending The fragment is blended into the frame buffer to produce the final image.

Producing the frame
buffer content

After blending, the fragment becomes a fragment at a certain position in the tile buffer.
If no other fragment overwrites that position, the fragment becomes a fragment in the
final frame. Multi-sampling techniques to obtain better quality final images can be
applied to the fragment at this stage. When the internal tile buffer is completely
rendered, it is written to the frame buffer in main memory.
Zynq UltraScale+ Device TRM 107
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=107

Chapter 5: Graphics Processing Unit
Figure 5-5 shows the functional units available for the fragment-shader program.
X-Ref Target - Figure 5-5

Figure 5‐5: GPU Fragment Shader Unit

Load Unit

Register File (r0-r5)

Varying Unit Texturing Unit

#load

#var #tex

Stage 1
Output

Stage 1

Stage 2

Vector Add
Unit

Register File (r0-r5)

Scalar Add
Unit

Stage 3

Stage 4

Stage 1 Output

Stage 1 Output

Vector
Multiply Unit

Register File (r0-r5)

Scalar Multiply
Unit

Stage 2
Output

Stage 1
Output

Stage 1 Output

Stage 2 Output

Stage 2 Output

Store Unit

Register File (r0-r5)

Stage 1 OutputStage 1 Output Branch Unit

LUT UnitStage 1 Output

X15303-091616
Zynq UltraScale+ Device TRM 108
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=108

Chapter 5: Graphics Processing Unit
Graphics Processing Unit Level 2 Cache Controller
The advanced peripheral bus (APB) slave controls the Level 2 cache controller through
various commands.

• APB slave provides an interface to enable bus masters to control the Level 2 cache. The
APU MPCore or other AXI bus master can write into the cache controller. The graphics
driver seamlessly supports these connections.

• Arbiter accepts memory access requests into a circulating loop. They circulate in the
loop until the access router determines that they can be removed.

• Tag accessor performs a cache lookup to determine if data is in the cache.
• Access router for each read or write request matching the AXI ID and the timestamp of

the current request against all other requests in the loop.
• Replay buffer that handles all request collisions of data.
• Cache tags unit holds a pipelined SRAM for the cache tags.
• Cache line fetcher draws the external data from the AXI master interface.
• Cache SRAM is the actual data store of the cache.

The Level 2 cache controller performs the tasks shown in Table 5-3.

The Level 2 cache controller is a configurable cache controller able to manage 16 KB to
16 MB of Level 2 cache RAM. It is a four-way set-associative cache controller with a
pseudo-least recently used (LRU) replacement algorithm that yields great bandwidth
savings in graphics operations. It supports high throughput, out of order data transactions
within the AXI protocol limits, and up to 32 outstanding transactions and 64-byte bursts.

Table 5‐3: Level 2 Cache Controller Tasks

Controller Task Description

Looping Memory requests enter by the arbiter and keep circulating in a loop until the access
router determines they can be taken out of the loop.

Cache tag lookup
For each request, the tag accessor performs a cache lookup to see if data is in the cache.
The cache tags are kept in a single SRAM within this sub-unit. It is fully pipelined and
permits one tag operation to be performed per clock cycle. A tag operation consists of
a lookup, tag-write, and line-invalidate.

Access routing The access router passes data for each request to the read buffer, write buffer or replay
buffer.

Handling data
collisions

The replay buffer handles all request collisions of data. These request collisions, also
called bad-hits, continue to loop around the system until the access router determines
when they can be taken out of the loop.

Storing cache tags The cache tags unit holds a pipelined SRAM for the cache tags. The cache tags are stored
in a single SRAM within this sub-unit.
Zynq UltraScale+ Device TRM 109
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=109

Chapter 5: Graphics Processing Unit
Because the Level 2 is a specialized cache controller for use with Mali GPUs, the following
limitations apply.

• Write data is not cached because it does not increase memory bandwidth or
performance savings.

• Writes to any cached location cause the relevant cache line to be cleared.
• Only incremental bursts are supported, there is no support for unaligned, fixed, and

wrapping bursts.
• AXI slave ports are fixed at 64-bits wide. The AXI master port is configurable to be

either 64 bits or 128 bits.

The main part of the cache controller is a loop of the four sub-modules.

• Arbiter
• Tag accessor
• Access router
• Replay buffer

Graphics Processing Unit Memory Management
Unit
All memory accesses from the pixel processor and geometry processor use memory
management units (MMUs) for access checking and translation. The GPU contains several
MMUs to translate and restrict memory accesses that the pixel or geometry processors
initiate. An MMU is configured by writing to control registers and uses in-memory page
table structures as the basis for address translation.

The MMU divides memory into 4 KB pages, where each page can be individually configured.
For each page the following parameters are specified.

• The physical memory address of the page. Known as address translation or virtual
memory, this enables the processor to work using addresses that differ from the
physical addresses in the memory system.

• The permitted types of accesses to that page. Each page can permit reads, writes, both,
or none.
Zynq UltraScale+ Device TRM 110
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=110

Chapter 5: Graphics Processing Unit
The MMU uses a two-level page table structure (Figure 5-6). The first level, the page
directory consists of 1024 directory table entries (DTEs), each pointing to a page table. In
the second level, the page table consists of 1024 page table entries (PTEs), each pointing to
a page in memory.

The MMU address bits are shown in Table 5-4.

The MMU uses the following algorithm to translate an address.

1. Find the DTE at address given by MMU_DTE_ADDR + (4 x DTE index).

2. Find the PTE at address given by (page table address from DTE) + (4 x PTE index).

3. Calculate effective address as (page address from PTE) + (page offset).

X-Ref Target - Figure 5-6

Figure 5‐6: Structure of the Two-level Page Table

MMU_DTE_ADDR

MMU Configuration
Registers

DTE

Page Directory

PTE

Page Table

Memory Page

Table 5‐4: MMU Address Bits

31 22 21 12 11 0
DTE Index PTE Index Page Offset
Zynq UltraScale+ Device TRM 111
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=111

Chapter 5: Graphics Processing Unit
Figure 5-7 shows various possible state transitions for the MMU.
X-Ref Target - Figure 5-7

Figure 5‐7: GPU MMU State Diagram

Disabled

PAGING_ENABLED = 0
IDLE = 1

Enabled

PAGING_ENABLED = 1
IDLE = 0 or 1

Page Fault

PAGING_ENABLED = 1
PAGE_FAULT_ACTIVE=1

IDLE = 1

Stall

PAGING_ENABLED = 1
STALL_ACTIVE = 1

IDLE = 1

Bus Error

PAGING_ENABLED = 1
IDLE = 0 or 1

READ_BUS_ERROR = 1

MMU States

Command:
Enable Paging

Command:
Disable Paging

Command:
Page Fault Done

Command:
Enable Stall

Page Fault Command:
Disable Stall

Error Reading Page Tables

X15305-091616
Zynq UltraScale+ Device TRM 112
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=112

Chapter 5: Graphics Processing Unit
Graphics Processing Unit Programming Model

Power Management in GPU

The GPU acts as a slave with respect to the power management. Another processor runs the
GPU device driver and responsible for managing the GPU’s overall power including the
power down of the pixel processors.

All sub-blocks within the GPU (pixel processor, geometry processor, or the L2 controller)
include an idle signal that is routed to the FPD_SLCR.GPU register containing the PP{0, 1}
and GPU idle indicators. Before requesting the PMU to power down the GPU PP0 or PP1, the
GPU device driver must check the FPD_SLCR.GPU [PPx_Idle] bits to ensure that the targeted
pixel processor is idle.

The device driver then requests the PMU to power down the pixel processor by writing 1 to
the [PP0] or [PP1] bit in the PMU_GLOBAL.PWR_STATE register. The pixel processor power
state is indicated in the PMU_GLOBAL.PWR_STATE register.

Similarly, the device driver can initiate the power up of a GPU pixel processor by setting the
bit associated with the target pixel processor in the Power_Up_Request register, which
triggers the PMU to proceed with powering up the target GPU pixel processor. The request
to release the reset on the GPU or its associated pixel processors must be explicitly
requested by the device driver by setting the appropriate bits in the PMU Reset_Request
register as explained in the PMU Reset section of Chapter 6, Platform Management Unit.
Chapter 6 also has information on the Power_Down_Request and Power_Up_Request
registers.
Zynq UltraScale+ Device TRM 113
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=113

Chapter 5: Graphics Processing Unit
Programming the GPU

The Mali GPU can be configured using the openGLES 2.0 API. Before use, the GPU must be
powered up using the PMU as described in the Operation section in Chapter 6, Platform
Management Unit. Powering up uses a Xilinx driver (in the Linux environment). There are
common libraries used for interacting with the driver. Those libraries are used by the
OpenGLES implementation, which is then called by your specific application. Figure 5-8
describes the top level hierarchy/stack of libraries and driver for the GPU hardware. A list of
documentation references follows the figure.

X-Ref Target - Figure 5-8

Figure 5‐8: GPU Software Stack

Mali GPU

Mali Kernel Driver

OpenGLES Application

GP0

MMU

PP0

MMU

PP1

MMU

L2 cache PMU

MMU GP PP L2 cache PMU

Mali Common User Library

EGL

OpenGLES1 OpenGLES2 OpenVG
X11 fbdev SF

X15306-101616
Zynq UltraScale+ Device TRM 114
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=114

Chapter 5: Graphics Processing Unit
The PMU section of the kernel driver calls the Xilinx PMU API instead of the Arm specified
PMU controlling the API(s).

Some useful references.

• A description of the OpenGL API and how to use them is out of scope of this document.
• Details on an example and API(s) to program and use the GPU can be found at the

Khronos site and the Arm Mali developer site (Arm Mali Developer's Guide and the
OpenGLES 2.0 Specification).

• A simple OpenGLES 2.0 example to draw a triangle.
1 RECOMMENDED: If the GPU accesses other LPD memories (such as OCM, TCM), a delayed response can

occur when there is an outstanding access to other slow I/O peripherals (such as Quad SPI flash
memory) from a different master. OCM and TCM memories are not recommended for GPU access.

Note: See the Arm Mali GPU Application Optimization Guide [Ref 54] to optimize the application’s
memory performance and power utilization.

Graphics Processing Unit Register Overview
Table 5-5 is an overview of the GPU registers.
Zynq UltraScale+ Device TRM 115
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://malideveloper.arm.com/
http://malideveloper.arm.com/
http://malideveloper.arm.com/resources/sample-code/simple-opengl-es-2-0-example/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=115

Chapter 5: Graphics Processing Unit
Table 5‐5: GPU Register Summary

Register Type Register Name Description

Geometry
Processor
Control
Registers

GP_CONTR_REG_VSCL_START_ADDR GPU control register VSCL start address
GP_CONTR_REG_VSCL_END_ADDR GPU control register VSCL end address
GP_CONTR_REG_PLBCL_START_ADDR GPU control register PLBCL start address
GP_CONTR_REG_PLBCL_END_ADDR GPU control register PLBCL end address
GP_CONTR_REG_PLB_ALLOC_START_ADDR GPU control register PLB allocate start address
GP_CONTR_REG_PLB_ALLOC_END_ADDR GPU control register PLB allocate end address
GP_CONTR_REG_CMD GPU control register command
GP_CONTR_REG_INT_RAWSTAT GPU control register interrupt raw interrupt status
GP_CONTR_REG_INT_CLEAR GPU control register interrupt clear
GP_CONTR_REG_INT_MASK GPU control register interrupt mask
GP_CONTR_REG_INT_STAT GPU control register interrupt status
GP_CONTR_REG_WRITE_BOUND_LOW GPU control register write boundary Low
GP_CONTR_REG_WRITE_BOUND_HIGH GPU control register write boundary High
GP_CONTR_REG_PERF_CNT_0_ENABLE GPU control register performance counter 0 enable
GP_CONTR_REG_PERF_CNT_1_ENABLE GPU control register performance counter 1 enable
GP_CONTR_REG_PERF_CNT_0_SRC GPU control register performance counter 0 source
GP_CONTR_REG_PERF_CNT_1_SRC GPU control register performance counter 1 source
GP_CONTR_REG_PERF_CNT_0_VAL GPU control register performance counter 0 value
GP_CONTR_REG_PERF_CNT_1_VAL GPU control register performance counter 1 value
GP_CONTR_REG_PERF_CNT_0_LIMIT GPU control register performance counter 0 limit
GP_CONTR_REG_PERF_CNT_1_LIMIT GPU control register performance counter 1 limit
GP_CONTR_REG_STATUS GPU control register status
GP_CONTR_REG_VERSION GPU control register version
GP_CONTR_REG_VSCL_INITIAL_ADDR GPU control register VSCL initial address
GP_CONTR_REG_PLBCL_INITIAL_ADDR GPU control register PLBCL initial address
GP_CONTR_REG_WRITE_BOUNDARY_
ERROR_ADDR GPU control register write error address

GP_CONTR_REG_AXI_BUS_ERROR_STAT GPU control AXI bus error status
GP_CONTR_REG_WATCHDOG_DISABLE GPU control register watchdog disable
GP_CONTR_REG_WATCHDOG_TIMEOUT GPU control register watchdog timeout
Zynq UltraScale+ Device TRM 116
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=116

Chapter 5: Graphics Processing Unit
Control
Register

VERSION Version register
SIZE Size register
STATUS Status register
COMMAND Command register
CLEAR_PAGE Clear page register
MAX_READS Maximum reads register
ENABLE Enable register

Performance
Counter
Register

PERFCNT_SRC0 Performance counter 0 source register
PERFCNT_VAL0 Performance counter 0 value register
PERFCNT_SRC1 Performance counter 1 source register
PERFCNT_VAL1 Performance counter 1 value register

Geometry
Processor
MMU
Control
Register

GP_MMU_DTE_ADDR MMU current page table address register
GP_MMU_STATUS MMU status register
GP_MMU_COMMAND MMU command register
GP_MMU_PAGE_FAULT_ADDR MMU logical address
GP_MMU_ZAP_ONE_LINE MMU zap-cache line register
GP_MMU_INT_RAWSTAT MMU raw interrupt status register
GP_MMU_INT_CLEAR MMU interrupt clear register
GP_MMU_INT_MASK MMU interrupt mask register
GP_MMU_INT_STATUS MMU interrupt status register

Pixel
Processor
MMU
Control
Register
[x = 0, 1]

PPx_MMU_DTE_ADDR MMU current page table address register
PPx_MMU_STATUS MMU status register
PPx_MMU_COMMAND MMU command register
PPx_MMU_PAGE_FAULT_ADDR MMU logical address
PPx_MMU_ZAP_ONE_LINE MMU zap-cache line register
PPx_MMU_INT_RAWSTAT MMU raw interrupt status register
PPx_MMU_INT_CLEAR MMU interrupt clear register
PPx_MMU_INT_MASK MMU interrupt mask register
PPx_MMU_INT_STATUS MMU interrupt status register

Table 5‐5: GPU Register Summary (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 117
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=117

Chapter 5: Graphics Processing Unit
Pixel
Processor
Render And
Tile Buffer
Control
Register
[x = 0, 1]

PPx_REND_LIST_ADDR Renderer list address register
PPx_REND_RSW_BASE Renderer state word base address register
PPx_REND_VERTEX_BASE Renderer vertex base register
PPx_FEATURE_ENABLE Feature enable register
PPx_Z_CLEAR_VALUE Z clear value register
PPx_STENCIL_CLEAR_VALUE Stencil clear value register
PPx_ABGR_CLEAR_VALUE_0 Alpha-blue-green-red (ABGR) clear value 0 register
PPx_ABGR_CLEAR_VALUE_1 ABGR clear value 1 register
PPx_ABGR_CLEAR_VALUE_2 ABGR clear value 2 register
PPx_ABGR_CLEAR_VALUE_3 ABGR clear value 3 register
PPx_BOUNDING_BOX_LEFT_RIGHT Bounding box left right register
PPx_BOUNDING_BOX_BOTTOM Bounding box bottom register
PPx_FS_STACK_ADDR Fault status (FS) stack address register
PPx_FS_STACK_SIZE_AND_INIT_VAL Fault status (FS) stack size and initial value register
PPx_ORIGIN_OFFSET_X Origin offset X register
PPx_ORIGIN_OFFSET_Y Origin offset Y register
PPx_SUBPIXEL_SPECIFIER Sub-pixel specifier register
PPx_TIEBREAK_MODE Tie-break mode register
PPx_PLIST_CONFIG Polygon list format register
PPx_SCALING_CONFIG Scaling register
PPx_TILEBUFFER_BITS Tile-buffer configuration register

Write-Back
Buffer
Control
Register
[x = 0, 1]
[y = 0, 1, 2]

PPx_WBy_SOURCE_SELECT Write-back y source select register
PPx_WBy_TARGET_ADDR Write-back y target address register
PPx_WBy_TARGET_PIXEL_FORMAT Write-back y target pixel format register
PPx_WBy_TARGET_AA_FORMAT Write-back y target anti-aliasing format register
PPx_WBy_TARGET_LAYOUT Write-back y target layout
PPx_WBy_TARGET_SCANLINE_LENGTH Write-back y target scan-line length
PPx_WBy_TARGET_FLAGS Write-back y target flags register

PPx_WBy_MRT_ENABLE Write-back y multiple render target (MRT) enable
register

PPx_WBy_MRT_OFFSET Write-back y MRT offset register
PPx_WBy_GLOBAL_TEST_ENABLE Write-back y global test enable register
PPx_WBy_GLOBAL_TEST_REF_VALUE Write-back y global test reference value register
PPx_WBy_GLOBAL_TEST_CMP_FUNC Write-back y global test compare function register

Table 5‐5: GPU Register Summary (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 118
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=118

Chapter 5: Graphics Processing Unit
Pixel
Processor
Misc Control
Register
[x = 0, 1]

PPx_VERSION Version register
PPx_CURRENT_REND_LIST_ADDR Current renderer list address register
PPx_STATUS Pixel processor status register
PPx_CTRL_MGMT Control management register
PPx_LAST_TILE_POS_START Last tile where processing started register
PPx_LAST_TILE_POS_END Last tile where processing completed register
PPx_INT_RAWSTAT Interrupt raw status register
PPx_INT_CLEAR Interrupt clear register
PPx_INT_MASK Interrupt mask register
PPx_INT_STATUS Interrupt status register
PPx_WRITE_BOUNDARY_ENABLE Write boundary enable register
PPx_WRITE_BOUNDARY_LOW Write boundary Low register
PPx_WRITE_BOUNDARY_HIGH Write boundary High register
PPx_WRITE_BOUNDARY_ADDRESS Write boundary address register
PPx_BUS_ERROR_STATUS Bus error status register
PPx_WATCHDOG_DISABLE Watchdog disable register
PPx_WATCHDOG_TIMEOUT Watchdog time-out register

Pixel
Processor's
Performance
Counter
Registers

PPx_PERF_CNT_0_ENABLE Performance counter 0 enable register

PPx_PERF_CNT_0_SRC Performance counter 0 system reset controller (SRC)
register

PPx_PERF_CNT_0_LIMIT Performance counter 0 limit register
PPx_PERF_CNT_0_VALUE Performance counter 0 value register
PPx_PERF_CNT_1_ENABLE Performance counter 1 enable register

PPx_PERF_CNT_1_SRC Performance counter 1 system reset controller
register

PPx_PERF_CNT_1_LIMIT Performance counter 1 limit register
PPx_PERF_CNT_1_VALUE Performance counter 1 value register
PPx_PERFMON_CONTR Performance monitor control register
PPx_PERFMON_BASE Performance monitor base address register

Table 5‐5: GPU Register Summary (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 119
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=119

Chapter 6

Platform Management Unit

Introduction
The Zynq® UltraScale+™ MPSoC includes a dedicated user-programmable processor, the
platform measurement unit (PMU) processor for power, error management, and execution
of an optional software test library (STL) for functional safety applications.

The PMU performs the following set of tasks.

• Initialization of the system prior to boot.
• Power management.
• Software test library execution (optional).
• System error handling.

The configuration and security unit (CSU) monitors system temperature sensors.

Power Modes

There are three modes of power management operation at the PS level: battery-powered
mode, low-power operation mode, and full-power operation mode.

To comply with the power domain requirements, there are separate power rails to supply
the power for each domain. Figure 6-1 shows the features within the PS over the power
rails.

Battery Powered Mode

To maintain critical information over the time during power off, the device provides the
battery power mode. The following blocks are contained in the battery-powered domain:

• Battery-backed RAM (BBRAM) holds the key for secure configuration.
• Real-time clock (RTC) with crystal oscillator.
Zynq UltraScale+ Device TRM 120
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=120

Chapter 6: Platform Management Unit
Low-Power Operation Mode

In the low-power operation mode, hardware blocks on the low power rail are powered up in
the PS block (PMU, RPU, CSU, and the IOP). The low-power mode includes all peripherals
except the SATA and display port blocks. Table 6-1 shows the IP enabled in low-power
mode.

Full-Power Operation Mode

All domains are powered in the full-power mode, so the LPD is typically powered whenever
FPD is powered. Like the low-power mode, power dissipation depends on the components
that are running and their frequencies.

Note: If the FPD is needed at any point, it must be powered during the initial boot. This does not
apply if the FPD is never used.

Table 6‐1: Minimum and Typical Configurations for the Low-Power Mode

System Elements
Typical Minimum

Configuration
Typical Configuration

Full Optimization
Comments

Cortex-R5F One core @ 50 MHz Two cores @maximum
data sheet frequency

Clock is gated to the
unused core.

TCM configuration
OCM configuration

Powered down
128KB

64 KB instruction and
64 KB data
256 KB

Power is gated off to
the unused TCM banks.
Power is gated off to
the unused banks

Device security Without AES All, including AES
Peripheral One set of UART, I2C,

and Ethernet
All peripherals in LPS
and one USB 2.0

USB can
independently be
powered down.

PLLs One PLL Two PLLs PLLs that are not used
are in the
powered-down state.

SYSMON Included Included Power is reduced as
there are fewer
supplies to be
sampled.

RTC and BBRAM Included Included Switched to the
VCC_PSAUX rail.

PMU
SOC debug

Included
Standby

Included
Standby

SOC debug is mostly
on the FP rail. The LP
section is not used.

eFuse
Components outside LPD

Included
Powered down

Included
Powered down

PL Powered down Powered down
Zynq UltraScale+ Device TRM 121
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=121

Chapter 6: Platform Management Unit
X-Ref Target - Figure 6-1

Figure 6‐1: Power Domains and Islands

X16958-120418

VCU H.265, H.265

BRAM

PL SYSMON
(SYSMONE4)

100 Gb Ethernet Interlaken

PL Configuration

PL
 F

ab
ric

PL Fabric

DSP, LUT, Clks

SerDes

HD I/O

eFUSE

Real
Time
Clock BBRAM

Oscillator

USB 0

USB 1

PS-GTR

1.2 to 1.5V

Battery Power Domain (BPD)

1.8V
VCC_PSAUX good

1.8V to 3.3V VCCO_PSIO3

1.8V to 3.3V VCCO_PSIO2

1.8V to 3.3V VCCO_PSIO1

1.8V to 3.3V VCCO_PSIO0

0.85 or 0.9V VCC_PSINTLP

1.2V VCC_PSPLL

0.85 or 0.9V
VCC_PSINTFP

0.85V PS_MGTRAVCC

1.8V PS_MGTRAVTT

Note: RFSoC devices provide enhanced
Ethernet, PCIe, and GTY functionality.

VCCO_PSDDR

1.8V VCC_PSDDR_PLL

VCCBRAM

VCCINT_VCU0.9V
VCCADC1.8V
VREFP1.25V
VCCAUX1.8V

VCCO1.2 to 3.3V

0.85 or 0.9V

VCC_PSINTFP_DDR

PS
SysMon

APLL
VPLL
DPLL

RPLL
IOPLL

System

MIO 2
MIO 1
MIO 0

L2 Cache
RAM

CPU 3

CPU 1

CPU 2

CPU 0

APU MPCore
(SCU, GIC, CCI)

APU Debug
RPU debug

Arm DAPPL
debug

FPD
DMA SATA

GPU pipeline
PCIe

Interconnect and SLCR
DisplayPort

GPU PP0

GPU PP1

Bank 0

Bank 1

Bank 2

Bank 3

TCM A0

TCM A1

TCM B0

TCM B1

OCM CtrlIOP

CSU PMU

IPI

Interconnect and SLCR
LPD DMA

PS TAP

PLLs (x6) DDR Memory
ControllerDDRIOB Po

rt
s

Battery

Power
Supplies

PCAP

PCAP-LPD Isolation Wall

PL
-L

PD
 Is

ol
at

io
n

W
al

l

VCC_PSAUX

Low Power Domain (LPD)

Full Power Domain (FPD)

PL Power Domain (PLPD)

PSIO {0:3} Power

High-Performance I/O PL Power Domains for Multiple
PL Units

PLL Power Domains
VCC_PSBATT

ETMGIC

RPU
MPCore

PL-FPD Isolation Wall

PS Auxiliary Power Domain

GTH/GTY Supplies0.9 to 1.8V

1.8V VCC_PSADC

PCIe Gen3, 4

PL TAP

PMU software control

PHY

HP I/O
VCCAUX_IO1.8V

VCCINT0.72, 0.85, or 0.9V PLPD
VCCO1.0 to 1.8V

1.1 to 1.5V
Zynq UltraScale+ Device TRM 122
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=122

Chapter 6: Platform Management Unit
PMU System-level View

The PMU block is located within the low-power domain. Figure 6-2 shows the block
diagram of the PMU. It includes the following subcomponents:

• Dedicated, fault-tolerant triple-redundant processor.
• ROM to hold PMU ROM code that includes the PMU startup sequence, routines to

handle power-up or down requests, and interrupts.
• 128 KB RAM with ECC used for code and data.
• PMU local registers accessible only by the PMU.
• PMU global registers accessible by the PMU processor and also by other bus masters

within the system. These include all power, isolation, and reset request registers. It also
includes error capture registers and the system power state registers.

• 32-bit AXI slave interface to allow masters outside the PMU to access the PMU RAM
and the global register file.

• PMU interrupt controller manages the 23 interrupts to the PMU. Four are from the
inter-processor interconnect (IPI).

• GPI and GPO registers interface to the PMU, MIO, PL, and other resources within the PS
for signaling to and from the PMU.

° Six outputs and six inputs.

° 32 GPO outputs to the PL from the PMU and 32 GPI inputs from the PL to the PMU.

° 47 system errors to the PMU.

° CSU error code.

° 32 memory built-in self test (MBIST) status signals and 32 MBIST completion
signals.

° Three direct reset control signals.

° Four AIB status signals and four AIB control signals.

° 11 logic clear status signals.

° DDR retention control.

° Three programmable settings to the CSU for the PL.
• PMU MDM controller accessible using the PS TAP controller via the PSJTAG interface.
Zynq UltraScale+ Device TRM 123
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=123

Chapter 6: Platform Management Unit
X-Ref Target - Figure 6-2

Figure 6‐2: PMU System Diagram

System
Errors To LPD

Outbound Switch

PMU Processor

Voter

Voter

Internal
Interrupt

Controller

GPI

PMU I/O Units

GPO

MDM

AXI Interconnect

AXI

128 KB
RAM

EC
C

APB AXI

AXI

Error Aggregator Module

Voter

GIC
Proxy

RTC

LPD Outbound
Switch

eFUSE Cache

System Monitor

Reset
Controller

C
lo

ck

M
U

X

External
Peripheral
Interrupts

RTC Wake

- USB Wake
- IPI
- APU Cores 0:3
- DAP PS M

ultiplexed I/O
D

edicated PS I/O

PS
TAP

PMU

PS_ERROR_STATUS

JTAG

- PS_Mode
- PRST

External POR
Internal POR

SRST

POR_B

PS_REF_CLK

SysOsc

pmu_clk

LPD Subsystem

...

...

SRST_B

X15307-090420

PCR reset

SRST

PS_ERR
PMU Interrupt
controller
Towards PL
Zynq UltraScale+ Device TRM 124
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=124

Chapter 6: Platform Management Unit
Functional Description
The functionality within the PMU is outlined in this section.

• Performs the sequencing of events after POR and before CSU reset is released. These
functions include the following.

° Check the power-supply levels using the System Monitor for proper operation of
the CSU and the rest of the LP domain.

° Initialize the PLLs for the default configuration and their potential bypass.

° Trigger and sequence the necessary scan and MBIST.

° Capture and signal errors during this stage. Error ID can be read through JTAG.

° Release reset to the CSU.
• Acts as a delegate to the application and real-time processors during their sleep state

and initiates their power-up and restart after their wake-up request.
• Maintain the system-power state at all times.
• Handles the sequence of low-level events required for power-up, power-down, reset,

memory built-in self repair (MBISR), MBIST, and scan zeroization of different blocks.
• Manages the system during the sleep mode and wake-up the system based on various

triggering mechanisms.
• Includes PS-level error capture and propagation logic.

PMU Processor

The PMU processor is a triple-redundant processor without caches. The processing system
provides fault tolerance by applying redundancy on the PMU and error correction (ECC) on
the RAM interface. The triple redundancy and ECC corrects single errors and generates an
error on multiple errors that cannot be corrected. When an error occurs with one of the
PMU processors, it might not always be possible for the processor in error to properly
continue operation. Thus, at some point, the PMU might require a reset for proper TMR
operation.

There is a provision to allow more complex power protocol management programs to be
implemented as firmware or application programs in the PMU RAM.

Note: PMU processor debug module is disabled by default on ES2 and higher versions.
Zynq UltraScale+ Device TRM 125
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=125

Chapter 6: Platform Management Unit
Table 6-2 lists the implementation features for the PMU processor.

PMU Processor Interfaces

The PMU provides input/output signals that are grouped functionally into the following
interfaces.

• 32-bit AXI master interface to the low-power domain (LPD) interconnect that allows the
PMU to access other PS resources including the SLCR registers and the IPI block.

• 32-bit AXI slave interface from the LPD inbound switch to allow accesses to the PMU
global registers and the PMU RAM by external processors.

• PMU clock and reset signals.
• Power control interface to all islands within the PS.

° L2, OCM, and TCM RAMs.

° APU_Cores [3:0].

° Dual-core Cortex-R5F® real-time processor.

° USB0 and USB1.

° GPU pixel-processor (PP) PP0 and PP1.

° Full-power and PL domain crossing bridges.

Table 6‐2: MicroBlaze Implementation Features

Feature Implementation

Pipeline 5-stage.
Interconnect standard AXI
Endianness Little endian.
Program counter width 32
Support for load/store exclusive Enabled.
Fault tolerance Enabled.
Hardware multiplier/divider/barrel shifter Disabled/disabled/enabled.
Debug Enabled. One of each type of break-point.
Fast interrupt Disabled.
Zynq UltraScale+ Device TRM 126
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=126

Chapter 6: Platform Management Unit
Wake interface from GPIO, RTC, APU GIC, RPU GIC, and USBs.

• Interrupt interface.
• Device reset control interface.
• Memory BIST and BISR control interface.
• Other miscellaneous interfaces including the power-supply monitor interface. Table 6-3

lists the PMU general purpose MIO pins.
• Error capture and propagation interfaces. Table 6-4 lists the error capture and

propagation signals.
Table 6‐3: PMU General Purpose MIO pins

Register Bit
Fields

Pins Size Direction Clock
Clamp
Value

Description

GPI1[15:10] MIO
[31:26] 6 Input Async 6’b0

Inputs for external events that
are available to the PMU using
six MIO pins. The GPI1 register
bits are listed in Table 6-6.
These signals are defined by
FSBL, SDK, development
boards, or users.

GPO1[5:0] MIO
[37:32] 6 Output pmu_clk

Output signals to control
external power supplies and
other board hardware using
MIO pins. See Table 6-9 for pin
assignments.
GPO1[0]: used by the PMU ROM
code for the FPD's
VCC_PSINTFP.
GPO1[1]: used by the PMU ROM
code for the PL's VCCINT.
GPO1[2:5]: user defined
(including Xilinx reference
boards and customer designs).
Not used by the PMU ROM
code.

Table 6‐4: Error Interface Signals To and From the PL

Signal Name Size Direction Clock Clamp
Value

Description

pmu_pl_err 4 Input Async 4’b0 Generic PL errors communicated to PS.

pmu_error_to_pl 47 Output pmu_clk PS error communicated to the PL and
JTAG.
Zynq UltraScale+ Device TRM 127
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=127

Chapter 6: Platform Management Unit
PMU Clocking

The PMU operates on the SysOsc clock (180 MHz ± 15%) that is supplied from the internal
ring-oscillator (IRO) located within the system monitor (PS SYSMON) block. The clock is
gated until the POR block detects that the VCC_PSAUX supply has ramped up.

SysOsc starts to oscillate as soon as the voltage is high enough for the block to function.
The reset of the PMU processor is synchronous and requires a clock edge for it to take
place, POR_B input must be asserted until the voltage has ramped up. This guarantees that
the PMU processor GPOs, which control many hardware logic blocks within the PS, are
initialized when the device is powered up.

PMU Reset

The PMU block uses both power-on reset (POR) and the system reset (SRST) inputs that are
controlled by the reset block. POR clears the state of the PMU completely. All islands and
power domains are powered up and all the isolations are disabled. After a POR, the PMU
executes both scan and BIST clear functions on the LP and FP domains. However, the SRST
will only reset the PMU processor subsystem, the PMU interconnect, and a subset of local
and global registers, leaving most local and global registers in the states they were prior to
the reset. When the SRST triggers the reboot of the PMU, the power state is not cleared and
the power state of the PS is preserved. However, after a power-on reset, the power state is
cleared by specifically clearing all RAMs and flip-flops.

PMU RAM

Much of the PMU functionality is provided by software executed by the PMU processor. The
ROM memory contains instructions that provide default functionality. To extend or replace
these features, or to provide new features, software can be downloaded into the PMU
processor’s 128 KB RAM. The PMU includes a 128 KB RAM with 32-bit ECC that is used to
hold data and code. The PMU RAM is accessible both by the PMU processor and the
external masters through the PMU AXI slave interface.

IMPORTANT: Accesses by the external masters should be 32-bit wide and word-aligned.

The PMU RAM allows only word writes, words are 4 bytes. It does not allow byte writes. If
less than 4 bytes have to be written, then the 4 bytes must be read first, modified, and the
entire 4 bytes must be written back.

For an external master to access the PMU RAM through the APB interface, the PMU
processor must be in sleep mode. A PMU RAM access from an external master while the
PMU processor is not asleep can hang the system. If the PMU processor is not put in sleep
mode, it performs an instruction fetch or load/store on every clock cycle, which means that
the APB never gets to access the RAM. In this case, starvation of the APB interface occurs.

The following is the order of priority to access the PMU RAM.
Zynq UltraScale+ Device TRM 128
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=128

Chapter 6: Platform Management Unit
1. PMU processor data load/store.
2. PMU processor instruction fetch.
3. External access.

PMU ROM

PMU includes a ROM that holds the boot code for the PMU, its interrupt vectors, and the
service routines that the PMU can execute (upon a request). The PMU ROM is responsible
for various functions within the PMU. The following is the list of the tasks that are executed
by the ROM code.

• Pre-boot tasks

° Clean PMU RAM

° Enable the System Monitor and check LP domain supply.

° Configure PLLs with initial settings.

° Trigger and sequence the necessary scan and BIST clear of PS.

° Release reset to CSU.
• Post-boot tasks

° Power-up and power-down domains within the PS.

° Enable and control built-in self-repair (BISR).

° Reset blocks when requested or as a part of the master power-ups.
• Execute firmware code upon request.

MBIST Functionality

ROM code execution initiates MBIST clear on the entire LP domain minus the PMU or on the
entire FP domain. When a memory is tested or cleared using the MBIST, the rest of the
system can be functioning. For most of the blocks, RAM is accessed by the MBIST and it
keeps the block RAM in the reset state when the RAM is accessed by the MBIST engine. For
a few blocks, such as APU core processors, RAM is accessed by the MBIST through the core
functional paths that can be interfered if the block is in reset. In such cases, Arm requires a
small subset of inputs to the core to be tied off to specific values during the MBIST
execution.

Setting a particular bit in the MBIST_RST, MBIST_PG_EN, and MBIST_SETUP registers starts
the MBIST process on that particular block. The MBIST_DONE bit is set to indicate that the
process is finished. MBIST_GOOD provides the status of the process by setting either 0 (fail)
or 1 (success).
Zynq UltraScale+ Device TRM 129
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=129

Chapter 6: Platform Management Unit
There are five control and status registers:

• MBIST_RST rw
• MBIST_PG_EN rw
• MBIST_SETPU rw
• MBIST_DONE ro
• MBIST_GOOD ro

For the RAMs in:

• APU, RPU cores
• CANx, GEMx, USBx,
• GPU, PCIe, SIOU
• PS-PL AXI Interface RAMs

The MBIST units are listed by bit field in the Zynq UltraScale+ MPSoC Register Reference
(UG1087) [Ref 4].

Scan Clear Functionality

Zeroization is a process in which zeros are shifted through all of the storage elements and
then verified that the shift occurred correctly. This is achieved using MBIST and scan clear
functionality. The scan clear engines can only be controlled by the PMU and CSU processors
through their direct interfaces to the engines. Other processors can request the PMU
through its SCAN_CLR_REQ register to start any specific scan clear engines. When a scan
clear engine is started, the completion status signal from the engine transitions from 1 to 0.
This signal, which is routed directly to a PMU LOGCLR_ACK register, communicates the
completion status of the engine to the PMU. When a scan clear engine finishes its
operation, its completion status bit toggles from 0 to 1 generating an interrupt to the PMU.
The pass/fail status of the clearing operation can be checked by the bits in the PMU
LOGCLR_STATUS global register that are directly driven by the pass/fail status of the engine.

The CSU only starts scan clear engines under a security lock-down scenario and there is no
functional requirement for the CSU to check the pass/fail status, or the completion status,
of the clearing operation.

Every power island and every power domain has a scan clear engine. The PMU and CSU
blocks have separate scan clear engines even though they are not power islands. The PMU
scan clear is triggered only on power-on reset and the CSU scan clear can only be triggered
by the PMU.

IMPORTANT: The scan clear has to operate on the entire power island. In this case, the power island
needs to be isolated before the block is put in the scan mode to start the scan clear functionality.
Zynq UltraScale+ Device TRM 130
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=130

Chapter 6: Platform Management Unit
To ensure running the scan clear on the LP domain, the full LPD (minus the PMU) is in reset,
the reset logic must follow these guidelines:

1. Keep reset registers off the LPD scan chain.
2. Leverage the explicit reset input to clear state in registers that have this feature (this is

recommended, but not required). The explicit reset can be asserted by the scan clear
request output from the PMU (scan_clear_trigger_lpd output for the LPD domain) to
force the reset to stay asserted by OR’ing it with the reset. The use of explicit resets for
clearing instead of using scan on these registers requires them to be applied on chains
that are included in the scan test rather than in the scan clear. However, this makes the
scan architecture more complex.

3. The PMU local and global registers implement self-clearing through reset and are
excluded from the scan clear. This is done to prevent an unnecessary power cycle of the
islands during the scan clear of the PMU. The PMU is required to be cleared only during
a POR or after a security shutdown. In either case, the flip-flops on the local and global
registers are excluded from clearing functions. If for any reason this is not acceptable for
the security lock-down, the reset to the flip-flops with the self-clearing feature that are
not cleared through scan has to be asserted after the scan clear function on the rest of
the flops is completed. This guarantees that the self-clearing of the PS is not affected by
a potential IR drop due to the power up of the blocks that were previously powered
down.

Note: User functions that need FPD SC must power MGTRAVCC even if not using the GT.

PMU Interconnect

PMU includes a 2 × 3 interconnect which supports two AXI masters, two APB slaves, and
one AXI slave. One of the masters is the 32-bit AXI master from the triple-redundant
processor and the other is the low-power domain main interconnect. This AXI master is a
port on its register switch allowing any master in the system to access the PMU slaves.

The two APB slaves are the PMU RAM and PMU global register file. The AXI slave is on the
port routed to the LPD switch and only allows the accesses that were originated by the PMU
processor to be routed to the PS slaves outside the PMU.

The PMU processor AXI master can generate a coherent transaction by setting the coherent
bit in the PMU global control register. The PMU AXI master (from the LPD interconnect)
always generates transactions with AWCACHE and ARCACHE equal to 4'b0001 regardless
of the coherency bit. This implies that PMU requests are treated as device transactions that
can be buffered.

The PMU interconnect implements TrustZone security. All accesses that are generated by
the PMU are secure and only secure accesses are allowed to be routed to the PMU. The PMU
interconnect will generate an error on any non-secure access to the PMU.
Zynq UltraScale+ Device TRM 131
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=131

Chapter 6: Platform Management Unit
PMU I/O Registers

The PMU I/O registers include all the registers associated with the interrupts, GPI/GPO, and
the programmable interval timers (PITs). The PMU_IOMODULE registers control the
interrupt controller, GPI{0:3}, GPO{0-3}, and PIT0-PIT3. The PMU_GLOBAL registers enable
the system processors to control interrupts and trigger PMU service requests.The PMU
processor memory map is shown in Table 6-5.

PMU Global Registers

The global register set includes registers that are used as a means of communication
between the PMU and other blocks to synchronize activities regarding power/system
management and reset.

The PMU global register set is mapped at address FFD8 0000—FFDB FFFF. The registers
are summarized in Table 6-16. For a bit-level description, refer to the PMU_GLOBAL section
in the Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4].

PMU GPIs and GPOs

The PMU processor includes four local (only accessible by the PMU processor) GPI banks
and four GPO banks. GPI0 and GPO0 are reserved for the dedicated PMU processor
subsystem features (see PMU Processor), while GPI3 and GPO3 are reserved for
communication with the PL. GPI1, GPI2, GPO1, and GPO2 are used for communication
between the PS hardware features and the PMU.

The PMU’s general-purpose I/O features include miscellaneous wake, errors, and
handshaking signals. The usage of the GPIs and GPOs can be summarized as follows with all
signals being active-High unless otherwise specified.

• GPI0 is used internally by the PMU processor. GPI0[31:0] shows the value of the
fault-tolerance status register.

• GPI1 monitors wake-up requests. Table 6-6 describes the various GPI1 bit(s).

Table 6‐5: PMU I/O Registers and Local Memory

Memory
Address

Size Slave Interface Accessible AXI Interconnect

0xFFD0_0000 32 KB PMU ROM PMU only Local bus
0xFFD4_0000 128 B PMU_IOMODULE register set PMU only Local bus
0xFFD5_0000 1024 B PMU_LMB_BRAM PMU only Local bus
0xFFD6_0000 128 B PMU_LOCAL register set PMU only Local bus
0xFFD8_0000 1024 B PMU_GLOBAL register set System via XPPU System bus
0xFFDC_0000 128 KB PMU RAM memory System via XPPU System bus
Zynq UltraScale+ Device TRM 132
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=132

Chapter 6: Platform Management Unit
• GPI2 monitors power control requests. Table 6-7 describes the various GPI2 bit(s).

Table 6‐6: GPI1 Bit Descriptions

Bit(s) Description

GPI1[3:0] ACPU3-ACPU0 wake from APU GIC associated with ACPU3-ACPU0.
GPI1[5:4] R5_1 and R5_0 wake from RPU GIC associated with R5_1 and R5_0.
GPI1[7:6] USB1 and USB0 wake.
GPI1[8] DAP full-power domain wake-up request.
GPI1[9] DAP RPU wake-up request.

GPI1[15:10]

General purpose wake-up and event signals from MIO (see Table 6-3).
MIO[26] -> GPI1[10]
MIO[27] -> GPI1[11]
...
MIO[31] -> GPI1[15]

GPI1[16] Full-power domain wake directed by the GIC proxy.
GPI1[19:17] Reserved.
GPI1[23:20] APU debug power-up request for ACPU3-ACPU0 APU MPCore processors 0, 1, 2, 3.
GPI1[27:24] Reserved.
GPI1[28] Error interrupt to PMU from error register 1.
GPI1[29] Error interrupt to PMU from error register 2.
GPI1[30] AXI AIB access error. A powered-down block is accessed through AXI.
GPI1[31] APB AIB access error. A powered-down block is accessed through APB.

Table 6‐7: GPI2 Bit Descriptions

Bit(s) Description

GPI2[3:0] Power-down request from APU core {3:0}.
GPI2[5:4] Power-down request from RPU core {1:0}.

GPI2[6] Read the state of the pcfg_por_b input from PL, which signifies that PL is properly
powered up.

GPI2[7] Reserved.
GPI2[8] Request to reset RPU core 0 by debug.
GPI2[9] Request to reset RPU core 1 by debug.
GPI2[15:10] Reserved.
GPI2[16] Warm reset request for APU core 0.
GPI2[17] Warm reset request for APU core 1.
GPI2[18] Warm reset request for APU core 2.
GPI2[19] Warm reset request for APU core 3.
GPI2[20] Warm reset request for APU core 0 by debug logic.
GPI2[21] Warm reset request for APU core 1 by debug logic.
Zynq UltraScale+ Device TRM 133
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=133

Chapter 6: Platform Management Unit
• GPI3 monitors the GPIs from the PL.
• GPO0 is dedicated to the PMU features. Table 6-8 describes the various GPO0 bit(s).

GPI2[22] Warm reset request for APU core 2 by debug logic.
GPI2[23] Warm reset request for APU core 3 by debug logic.
GPI2[28:24] Reserved.

GPI2[31:29]

Power rail removal alarms.
[31]: Asserts when VCC_PSINTFP is removed.
[30]: Asserts when VCC_PSINTLP is removed.
[29]: Asserts when VCC_PSAUX is removed.

Table 6‐8: GPO0 Bit Descriptions

Bit(s) Description

GPO0[0]

Used during debug to remap the 64-byte interrupt base vectors region to the RAM
starting address (0xFFD0 0000).

0 = base vectors in ROM (default).
1 = base vectors in RAM.

GPO0[2:1]

Set PIT0 prescaler.
x0 = PIT0 is a 32-bit timer with no prescaler.
01 = External prescaler.
11 = PIT1 is prescaler to PIT0.

GPO0[4:3]
Set PIT1 prescaler.

x0 = PIT1 is a 32-bit timer with no prescaler.
x1 = External prescaler.

GPO0[6:5]

Set PIT2 prescaler.
x0 = PIT2 is a 32-bit timer with no prescaler.
01 = External prescaler.
11 = PIT3 is prescaler to PIT2.

GPO0[7]
Set PIT3 prescaler.

0 = PIT3 is a 32-bit timer with no prescaler.
1 = External prescaler.

GPO0[8] Used to suppress the comparison of the PMU processor trace bus to not detect a
trace bus mis-compare during fault injection.

GPO0[9] Controls if the PMU processor SLEEP instruction cause a processor hardware reset
during recovery from lock-step mode due to voting mode comparison.

GPO0[10] Makes it possible to clear the value of the fault tolerance status register.
GPO0[11] Makes it possible to reset the fault tolerance state machine.

GPO0[12] Controls if fault tolerance state machine reset of the PMU processor is generated
or not.

Table 6‐7: GPI2 Bit Descriptions (Cont’d)

Bit(s) Description
Zynq UltraScale+ Device TRM 134
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=134

Chapter 6: Platform Management Unit
• GPO1 is dedicated to the MIO for signaling and power-supply management. Table 6-9
lists the GPO1 register bits.

• GPO2 is dedicated to the PMU-generated requests and acknowledges. Table 6-10
describes the various GPO2 bit(s).

• GPO3 is dedicated to the GPOs to the PL.

PMU Programmable Interval Timers

The PMU includes four 32-bit programmable interval timers (PITs). The clock source to
these timers is the fixed system oscillator (SysOsc) to the PMU. These are general-purpose
timers for use as delay counters or event scheduling. The pre-scaler for the PITs can be
configured through GPO0. The following are the possible pre-scaler choices for each PIT.

• PIT0: No pre-scaler, use pre-scaler value from PIT1
• PIT1: No pre-scaler
• PIT2: No pre-scaler, correctable ECC error
• PIT3: No pre-scaler

GPO0[15:13] Used to inject failures in the triple-redundant PMU processor.

GPO0[23:16] Used as magic word #2 to reduce the risk of accidental commands controlling TMR
operation being issued.

GPO0[31:24] Used as magic word #1 to reduce the risk of accidental commands controlling TMR
operation being issued.

Table 6‐9: GPO1 Bit Descriptions

Bit(s) Description

GPO1[5:0] These bits can drive up to six MIO outputs, their usage is described in Table 6-3.
GPO1[31: 6] Not implemented.

Table 6‐10: GPO2 Bit Descriptions

Bit(s) Description

GPO2[5:0] Reserved.

GPO2[6] Used to enable a subset of signals between PL and PS after the PMU has determined
that the PL is properly powered up.

GPO2[7] PS status output from PMU to a dedicated PS general purpose I/O pad.
GPO2[8] Acknowledge to FP wake-up request from DAP.
GPO2[9] Acknowledge to RPU wake-up request from DAP.
GPO2[31:10] Not implemented.

Table 6‐8: GPO0 Bit Descriptions (Cont’d)

Bit(s) Description
Zynq UltraScale+ Device TRM 135
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=135

Chapter 6: Platform Management Unit
The timers are only accessible from the PMU firmware. The PMU processor’s I/O module
driver provides an API for these resources.

PMU Interrupts

When the PMU processor receives an interrupt, it branches to the PMU ROM. The ROM code
must check the pending interrupt register within the interrupt controller in the PMU I/O
module and branch to the appropriate interrupt service routine in the ROM or RAM. The
priority between the pending interrupts can be enforced by the PMU firmware, and if not
present, the priority is managed by the ROM. Table 6-11 lists the PMU interrupts.

Table 6‐11: PMU Interrupts

Bit in Interrupt
Pending Register

External Interrupt Description

31 Secure lock-down request Interrupt from CSU to initiate a secure lock down.
30 Reserved

29 Address error interrupt Interrupt for address errors generated during
accesses to PS SLCRs or PMU global registers.

28 Power-down request Interrupt to signal a power-down request.
27 Power-up request Interrupt to signal a power-up request.

26 Software reset request Interrupt to signal a software-generated reset
request.

25 Hardware block RST
request

Interrupt for all hardware-generated block reset
requests.

24 Isolate request Interrupt to signal an isolation request.
23 ScanClear request Interrupt to signal a scan clear request.

22-19 IPI3-IPI0 Interrupt associated with IPI slices 3-0 to PMU.
18 RTC alarm interrupt Interrupt from RTC to signal the alarm.
17 RTC seconds interrupt Interrupt from RTC triggered every second.

16 Correctable ECC error Interrupt generated when an ECC error on the PMU
RAM is corrected.

15 Reserved

14 GPI3 Interrupt generated when any input on GPI3
changes from 0 to 1.

13 GPI2 Interrupt generated when any input on GPI2
changes from 0 to 1.

12 GPI1 Interrupt generated when any input on GPI1
changes from 0 to 1.

11 GPI0 Interrupt generated when any input on GPI0
changes from 0 to 1.

10-7 Reserved
Zynq UltraScale+ Device TRM 136
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=136

Chapter 6: Platform Management Unit
MIO Pin Considerations

The processing system (PS) contains three banks of 26-bit general-purpose multiplexed I/O
(MIO) used by different peripherals. All the three banks can support LVCMOS18, LVCMOS25,
and LVCMOS33 standards. The I/O that is used in conjunction with the PMU includes the
UTMI+ low pin interface (ULPI) for one USB, six GPIs for wake and signaling, and six GPOs
for power supply control and signaling. The I/O pins for power management and wake up
are accessible from the GPO1 and GPI1 registers, respectively.

Among the six GPOs, the PMU ROM code uses GPO1[0] on MIO[32] to control the FPD's
VCC_PSINTFP power supply and GPO1[1] on MIO[33] to control the PL's VCCINT power
supply. Both pins are active high (1 is power on and 0 is power off). The other four GPO[2:5]
signals can drive outputs onto the MIO[34:37] pins.

The Xilinx development boards assign functionality for the GPO[2:5] signals, but they can be
re-assigned and controlled by PMU user firmware because they are not used by the PMU
ROM code. The GPO signals and MIO pins are listed in Table 6-3.

PMU Error Handling and Propagation Logic

The PMU is responsible for capturing, reporting, and taking an appropriate action with
respect to each error. Each system error is identified in the PMU_GLOBAL error status
registers. The PMU also includes the necessary registers, logic, and interfaces for handling
this functionality.

The PMU provides a collection of error input signals that route all system-level hardware
errors to capture them. These errors are recorded in the error status registers 1 and 2 within
the PMU and are not cleared even during a system reset or an internal POR. A captured
error can only be cleared if a 1 is explicitly written to each corresponding error status bit. All
errors can generate an interrupt to the PMU. This interrupt can be masked per error. The
propagation of all errors to error status registers can be disabled by using the bits in the
error enable registers (ERROR_EN_1 and ERROR_EN_2) global registers in the PMU.

PMU also includes registers that can capture software-generated errors. The software errors
refer to the errors that occur during the execution of PMU ROM, PMU firmware, and the
CSU ROM.

Similar to the hardware errors, software errors are recorded in the PMU and are cleared only
by an external POR or explicitly by writing a 1 to its corresponding error status register bit.
All but the software errors are recorded by the PMU during its pre-boot execution can

6-3 PIT3-PIT0 Programmable interval timer interrupts.
2-0 Reserved

Table 6‐11: PMU Interrupts (Cont’d)

Bit in Interrupt
Pending Register

External Interrupt Description
Zynq UltraScale+ Device TRM 137
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=137

Chapter 6: Platform Management Unit
generate an interrupt to the PMU. Similar to the hardware errors, this interrupt can be
masked per error.

For each of the errors that are processed by the error handling logic, you can decide what
action should be taken when the error occurs. The possible scenarios would be one or a
combination of the following choices.

• Assertion of the PS_ERROR_OUT signal on the device.
• Generation of an interrupt to the PMU processor (PMU_Int).
• Generation of a system reset (SRST).
• Generation of a power-on-reset (POR).

There are four mask registers associated with each of the ERROR_STATUS registers
(ERROR_STATUS_1 and ERROR_STATUS_2). These mask registers can be used to enable
either POR, SRST, PMU interrupt (if firmware is installed), or signal a PS_ERROR_OUT. To set
the mask, write a 1 to the appropriate bit on the ERROR_INT_EN register (ERROR_INT_EN_1
or ERROR_INT_EN_2). To clear the mask, write a 1 to the appropriate bit on the
ERROR_INT_DIS register (ERROR_INT_DIS_1 or ERROR_INT_DIS_2). When selecting the
option to interrupt the PMU when a specific error occurs, there should be user firmware to
process the error. Otherwise, a no-firmware error will occur. The signal states can be
unmasked as desired. Table 6-12 lists all possible sources of error and the corresponding
reset state of the ERROR_SIG_MASK_n mask registers for the PS_ERROR_OUT device pin
signal. All of the other error mask registers are set = 1 (masked).

Table 6‐12: PMU Error Sources and Reset State Masks

System Error

E
R

R
O

R
_

SI
G

_
M

A
SK

_
n

ERROR_STATUS
Register and

[Bits]

JTAG
Error

Register
GIC IRQ Description

Software Errors

CSU BootROM
detected error U _2 [26] [0] ~

BootROM in CSU
experienced an error
during boot, including
bitstream authentication
failure.

PMU ROM code
preboot errors U _2 [25] [1] ~

PMU ROM code
experienced an error
during the preboot
process.
Zynq UltraScale+ Device TRM 138
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=138

Chapter 6: Platform Management Unit
PMU ROM code
service errors U _2 [24] [2] ~

PMU ROM code
experienced an error
processing a service
request.

PMU firmware error
code U _2 [21:18] [6:3] ~ PMU user firmware

reported an error code.
FSBL detected
errors ~

Hardware Errors

PMU hardware
errors U _2 [17] [7]

PMU ROM validation,
TMR fault, RAM UE ECC,
or register address access
error.

CSU error U _2 [16] [8]
CSU hardware errors.
Includes CSU ROM
validation error.

PMU_PB _2 [25]

PLL lock errors M _2 [12:8] [13:9]

PMU unmasks these bits
when PLL is functioning.
An error is signaled when
a PLL loses lock; bits are
in ERROR_STATUS_2.

Generic PL errors U _2 [5:2] [17:14] Generic PL errors
communicated to PS.

FPD bus timeout
error U _2 [1] [18] 153

OR of all timeout signals
from the FPD AIB units;
ABP and AXI.

LPD bus timeout
error U _2 [0] [19] 86

OR of all timeout signals
from the LPD AIB units;
ABP and AXI.

Clock monitor error U _1 [26] [25] 60 Error from clock monitor
logic.

FPD XMPU isolation
error U _1 [25] [26] 166

OR of violation signals
from the FPD and DDRx
XMPU protection units.

Table 6‐12: PMU Error Sources and Reset State Masks (Cont’d)

System Error

E
R

R
O

R
_

SI
G

_
M

A
SK

_
n

ERROR_STATUS
Register and

[Bits]

JTAG
Error

Register
GIC IRQ Description
Zynq UltraScale+ Device TRM 139
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=139

Chapter 6: Platform Management Unit
LPD XMPU isolation
error U _1 [24] [27] 120

OR of violation signals
from the OCM XMPU and
the XPPU protection
units.

Power supply
failures detected by
PS SYSMON unit

U _1 [23:16] [35:28] ~

[16]: VCC_PSINTLP, [17]:
VCC_PSINTFP, [18]:
VCC_PSAUX, [19]:
VCCO_PSDDR, [20]:
VCC_PSIO3, [22]:
VCC_PSIO0, [21]:
VCC_PSIO1, [23]:
VCC_PSIO2

FPD SWDT error U _1 [13] [36] 145 Timeout error from the
FPD SWDT.

LPD SWDT error U _1 [12] [37] 84 Timeout error from the
LPD SWDT.

RPU CCF U _1 [9] [38] ~
All RPU CCFS OR'ed
together after
RPU_CCF_MASK register.

RPU lock-step
errors M _1 [7:6] [40:39] ~ RPU lock-step errors from

RPU MPCore.

FPD over
temperature U _1 [5] [41] ~

FPD temperature near
APU indicates a shutdown
alert from the PS SysMon
unit.

LPD over
temperature U _1 [4] [42] ~

LPD temperature near
RPU indicates a shutdown
alert from the PS SysMon
unit.

RPU hardware
errors U _1 [3:2] [44:43] 45, 44

RPU0 or RPU1 error
including both
correctable and
uncorrectable errors.

Table 6‐12: PMU Error Sources and Reset State Masks (Cont’d)

System Error

E
R

R
O

R
_

SI
G

_
M

A
SK

_
n

ERROR_STATUS
Register and

[Bits]

JTAG
Error

Register
GIC IRQ Description
Zynq UltraScale+ Device TRM 140
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=140

Chapter 6: Platform Management Unit
All the errors listed in Table 6-12 and the five reserved errors are also routed to the PL and
are directly accessible through JTAG. In addition to these errors, the 74 bits of software
errors from the PMU_PB_ERR, CSU_BR_ERR, and PMU_SERV_ERR registers are also
accessible directly through JTAG. You can suppress the accessibility to these errors through
JTAG permanently by blowing an eFUSE. Table 6-13 lists the assignment of errors in the
JTAG status register and the error status interface to PL.

Note: The eFUSE suppresses accessibility of the errors through JTAG, but the errors are accessible
internal to the device.

OCM uncorrectable
ECC M _1 [1] [45] 42

The OCM reported an
uncorrectable ECC error
during an OCM memory
access.

DDR uncorrectable
ECC M _1 [0] [46]

The DDR reported an
uncorrectable ECC error
during a DDR memory
access.

Table 6‐12: PMU Error Sources and Reset State Masks (Cont’d)

System Error

E
R

R
O

R
_

SI
G

_
M

A
SK

_
n

ERROR_STATUS
Register and

[Bits]

JTAG
Error

Register
GIC IRQ Description

Table 6‐13: JTAG Error Register Description

Error source Bit on JTAG
Error Status

Bit on Error
Status to PL

CSU ROM error (same as bit 120). 0 0
PMU pre-boot error (same as bit 78). 1 1
PMU ROM service error (same as bit 99). 2 2
PMU firmware error (same as bits 103:100). 6:3 6:3
Uncorrectable PMU error.
Includes ROM validation, TMR, uncorrectable RAM ECC, and local
register address errors.

7 7

CSU error. 8 8
PLL lock errors [VideoPLL, DDRPLL, APUPLL, RPUPLL, IOPLL]. 13:9 13:9
PL generic errors passed to PS. 17:14 17:14
Full-power subsystem time-out error. 18 18
Low-power subsystem time-out error. 19 19
Reserved errors. 24:20 24:20
Clock monitor error. 25 25
Zynq UltraScale+ Device TRM 141
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=141

Chapter 6: Platform Management Unit
Operation
The PMU is responsible for handling the primary pre-boot tasks and management of the PS
hardware for reliable power up/power down of system resources and system error
management. Optionally, the PMU can run the Xilinx Software Test Library. The
power-on-reset (POR) initiates the PMU operation which directly or indirectly releases
resets to any other blocks that are expected to be powered up.

In the PS, the APU MPCore and Cortex-R5F are classified as power masters. Power masters
in the system are entities that can trigger the power down or power up of all islands
including themselves.

GPU pixel processors, USB, PL, and memory blocks are classified as power slaves as their
power management is triggered by one of the power masters. The power masters can also
be slaves because their islands can be individually powered down.

XMPU errors [FPD XMPU, LPD XMPU]. 27:26 27:26
Supply Detection Failure Errors
[VCCO_PSIO_2, VCCO_PSIO_1, VCCO_PSIO_0, VCCO_PSIO_3,
 VCCO_PSDDR, VCC_PSAUX, VCC_PSINTFP, VCC_PSINTLP]

35:28 35:28

FPD System Watch-Dog Timer Error 36 36
LPD System Watch-Dog Timer Error 37 37
RPU CCF error 38 38
RPU Lockstep Error 40:39 40:39
FPD Temperature Shutdown Alert 41 41
LPD Temperature Shutdown Alert 42 42
RPU1 Error (Both Correctable and Uncorrectable Errors) 43 43
RPU0 Error (Both Correctable and Uncorrectable Errors) 44 44
OCM Uncorrectable ECC Error 45 45
DDR Uncorrectable ECC Error 46 46
PMU Preboot Errors (PMU_PB_ERR.PBERR_Data) 77:47 77:47
PMU Preboot Error Flag (PMU_PB_ERR.PBERR_Flag) 78 78
PMU Service Errors (PMU_SERV_ERR.SERVERR_Data) 98:79 98:79
PMU Service Error Flag (PMU_SERV_ERR.SERVERR_Flag) 99 99
PMU Firmware Error (PMU_SERV_ERR.FWERR) 103:100 103:100
CSU BootROM Errors (CSU_BR_ERR.ERR_TYPE) 119:104 119:104
CSU BootROM Errors (CSU_BR_ERR.BR_ERROR) 120 120

Table 6‐13: JTAG Error Register Description (Cont’d)

Error source Bit on JTAG
Error Status

Bit on Error
Status to PL
Zynq UltraScale+ Device TRM 142
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=142

Chapter 6: Platform Management Unit
When the processors in the PS are powered down, the PMU is the sole entity in the PS that
can capture a request to power up the required system and wake up the target processor.

PMU GPIs can be used as inputs for external wake signals. The ULPI and RGMII are
potentially used for wakes on USB 2.0 and Ethernet, respectively. PMU GPOs are used for
sending signals to power supplies and communicating errors. For a detailed description of
PMU GPIs and GPOs, see PMU GPIs and GPOs, page 132.

Interacting with the PMU

User software services requests from the PMU through the PMU_GLOBAL registers generate
interrupts to the PMU processor and are processed automatically in the priority set by the
PMU ROM code. The requests are initiated by user software enabling the service request
and subsequently asserting the associated trigger for the service. The assertion of the
enabled trigger asserts an associated status flag. Once the PMU has completed the service,
it clears the status flag indicating to the user software that the service has completed. If the
service has experienced a failure, the PMU_SERVICE bit of the
PMU_GLOBAL.ERROR_STATUS_2 register is asserted and the system responds according to
the mask settings for that error event. For all software generated requests to the PMU, the
above sequence is recommended for usage.
Zynq UltraScale+ Device TRM 143
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=143

Chapter 6: Platform Management Unit
Power Down

Any master in the system can request the PMU to power down an island or domain by
writing a 1 to the appropriate bits in the REQ_PWRDWN_TRIG register while the
corresponding mask bit is also enabled in the REQ_PWRDWN_INT_MASK register. The PMU
will be interrupted and after executing the preamble ISR to check the interrupt pending
register within the I/O block, it will execute the power-down-request ISR. In the case of a
simultaneous power down request, the order for processing power-down requests is that
the islands are powered down before the domains. The PMU will proceed to power down an
island only if there is no other request from a master to power it up.

Power Up

Any master in the system can queue a request to the PMU to power up an island or domain
by writing a 1 to the appropriate bits in the REQ_PWRUP_TRIG register. If a 1 is also written
to the same bit in the REQ_PWRUP_INT_MASK register, the PMU will be interrupted. After
executing the preamble ISR to check the interrupt pending register within the I/O block, it
will execute the power-up request ISR. The priority of the power up is enforced such that
domains are powered up first, then the islands, followed by slaves, and then finally the
masters.

Use Case for Power Down and Power Up by PMU

This section describes power-down and power-up using the Zynq UltraScale+ MPSoC PMU.

APU Power Down

A few methods to power-down the APU are described in this section.

Direct Power Down

The flowchart in Figure 6-3 describes how to power down using the APU. As a preparation
for power down, the APU program must follow these steps.

• Disable interrupts to the core.
• Record the intention to power down the CPU in the CPUPWRDWNREQ field of the

PWRCTL register in APU by writing 1 to the field that corresponds to that APU core.
• Save the state of the APU core.
• Configure the GIC or GIC proxy (if the ACPU power-down is expected to be followed by

the FPD power-down) for the wake source.
• Execute a waiting for interrupt (WFI) instruction.
Zynq UltraScale+ Device TRM 144
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=144

Chapter 6: Platform Management Unit
Because the CPUPWRDWNREQ field marks the intention of the APU core to power down,
the execution of the WFI instruction not only puts the APU core in a wait state, it also causes
the power-down request to propagate outside the core and inform the PMU processor by
asserting the GPI2 interrupt.

Requested Power Down

A requested power down occurs when the APU core power down is specifically requested
through the REQ_PWRDWN_TRIG global registers. Setting a particular bit in the register
would power down the APU. In this case, the PMU directly proceeds with powering down
the APU Core. For REQ_PWRDWN_TRIG register description see the Zynq UltraScale+
MPSoC Register Reference (UG1087) [Ref 4].

Ensure that the appropriate bit position in the REQ_PWRDWN_STATUS global register is set
to 0 to indicate that the power down request is served by the PMU.

X-Ref Target - Figure 6-3

Figure 6‐3: APU Power Down Flowchart

Start

Disable interrupts to APU

Set CPUPWRDWNREQ field to 1 in APU power
control register

Save state of APU

Configure GIC or GIC proxy

Execute WFI instruction

Stop

X15308-092916
Zynq UltraScale+ Device TRM 145
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=145

Chapter 6: Platform Management Unit
APU Core Power Up

Unlike power down, powering up an APU core is typically requested either by another CPU
through power-up request registers on the PMU or by interrupts that are associated with
the peripherals on the powered-down APU core. For the latter, the interrupts for these
peripherals are passed to the PMU when the ACPU is powered down. For power up, follow
these steps.

• For powering up an APU core, the particular bit in the REQ_PWRUP_TRIG global register
has to be set by the requesting device. For the description of REQ_PWRUP_TRIG global
register, see the Register Overview section.

• If a direct power-up or wake by the GIC is associated with the APU core, the PMU
follows the steps as specified by the ROM code and powers up the APU. A direct
power-up refers to a power-on event triggered by an interrupt destined for the APU
core, as opposed to software triggering the event by writing to the request register in
the PMU_GLOBAL module.

• If a direct wake up or wake by GIC occurs after the power-up is completed, the reset to
the APU core is also released automatically.

• If the power-up request is made by another processor, the same processor has to
explicitly request for the reset to the APU core be released through the PMU
reset-request register.

• Check if the appropriate bit position in the REQ_PWRUP_STATUS global register is set
to 0 to indicate that the power up request is served by the PMU.

IMPORTANT: After the power-up, the CPUPWRDWNREQ field of the PWRCTL register in the APU
contains the value of 1 as the power status for the core that is just powered up. The CPU is expected to
check the register, upon boot, to identify if this was a cold boot or a wake from sleep. Post-verification,
the processor is expected to clear the bit in the CPUPWRDWNREQ field of the PWRCTL register.

PMU Operation After a Wake-up

After receiving a wake-up trigger, the PMU can follow these three wake-up flows.

Fixed: Direct wake of a processor, will always cause the target processor to be powered up.
For example, when the dual Cortex-R5F MPCores are powered down and any of the two
receives an interrupt from a peripheral or a timer, the interrupt does the following.

• Route to the PMU to trigger the power up of the dual Cortex-R5F MPCores.
• Release its reset to prepare for processing of the pending interrupt.

Similarly, if an APU core is powered down while the FP domain is up, the interrupts for the
APU core that was shutdown can trigger its power up followed by the release of its reset.
Zynq UltraScale+ Device TRM 146
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=146

Chapter 6: Platform Management Unit
On-demand: Prior to requesting a power-down and entering the sleep mode, the user
program can queue up the list that needs to be powered up after the wake in the PMU. The
following procedure should achieve this.

1. Your program requests to power up the desired domains and islands using the
REQ_PWRUP_TRIG register while masking the interrupt for those requests in the
REQ_PWRUP_INT_DIS register. Even though the requests are recorded, the PMU does
not actually execute them until after the wake-up.

2. Your program follows up with the normal request for power down. Because the interrupt
for the power-ups were masked, the power-down routine ignores those requests and
proceeds with powering down the blocks.

3. When the PMU receives a wake-up request, it checks the REQ_PWRUP_STATUS register
for pending power-up requests with the interrupt being masked and proceeds with
powering up those islands.

4. Similarly, if reset to any block needs to be released after the power up, your code queues
up the requests to release those resets in the REQ_SWRST_TRIG register while masking
their interrupts.

5. After the wake-up and its consequent power-up, the PMU releases the reset to the
desired blocks.

Wake-up Code Programming: The wake up routine can be programmed into the PMU
RAM and when a wake interrupt occurs the PMU executes your code which powers up all
the blocks that are necessary after the wake-up.

Wake-up Through MIO

The following wake-up mechanisms can respond to any of the six GPI signals from the six
MIO inputs (MIO 26 to 31) that are allocated to the PMU.

• Wake-up on external events
• Wake-up on Ethernet PHY
• Wake-up on CAN PHY

Based on the mechanism, any interrupt raised by the above interfaces, is issued to the PMU
to wake up the device which has set the interface as its wake-up source.
Zynq UltraScale+ Device TRM 147
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=147

Chapter 6: Platform Management Unit
Wake-up on USB

The USB specification defines a link-layer suspend mode in which both the USB host and
the device enter a no-activity phase to save power. The decision to take the USB host into
the suspend mode is determined solely by the software. Once the host enters the suspend
mode, all devices connected to that host are required to enter the suspend mode within
3 ms. A USB device could not enter the suspend mode by itself; however, when the link
power management (LPM) extension is supported, the USB device can request the USB host
to enter the suspend mode. When the USB host enters the suspend mode, all USB devices
will follow.

A USB host can exit the suspend mode either through interrupts such as timers or through
a remote wake-up request by a device with special USB signal leveling. A USB device can
similarly wake up through interrupts or remote wake signaling from host or additionally
through host reset signaling.

When the USB is in a suspend mode, the USB ULPI link protocol provides a standard method
for the PHY to power-down during a time when the D+/D- signaling is directed to the USB
link. In this case, a subsection of the USB IP that is always on, detects the wake signaling and
generates the wake interrupt to the PMU to proceed with powering up the USB block and
the processor that is responsible for its device driver.

Wake-up on Ethernet

Wake-up by Ethernet can be performed two ways.

Wake on PHY: This wake-up procedure can be implemented using a GPI input signal routed
from an MIO pin.

Wake on MAC: This wake up procedure is widely referred to as wake-on-LAN. This
procedure is implemented using a special network message called a magic packet. The
magic packet is a broadcast frame containing anywhere within its payload 6 bytes of all 255
(FF FF FF FF FF FF), followed by sixteen repetitions of the target computer's 48-bit
MAC address, for a total of 102 bytes. The detection of the magic packet will generate an
interrupt to the processor that is running the device driver which causes a direct wake on
the processor.

Wake on Real-time Clock

This feature allows the system to wake up at a pre-determined time using the internal
real-time clock (RTC). Configure the RTC to generate an interrupt when it reaches a specific
time and date.
Zynq UltraScale+ Device TRM 148
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=148

Chapter 6: Platform Management Unit
Wake through DAP

This feature wakes up a system that is in the sleep mode through the debugger. The
debugger can request two possible direct power-up scenarios through DAP. One option can
wake up the FP domain which includes the MPSoC debug. The other wake option initiates
the power-up of the dual Cortex-R5F subsystem.

Direct Wake by the APU or Cortex-R5F

When any of the application processors or the real-time processors are powered down, if a
peripheral is attempting to interrupt the powered down processor, the interrupt is routed to
the PMU to trigger the power up of that specific processor.

Wake through GIC Proxy

If the power down of an application processor is in conjunction with the power down of the
entire FPD, an LPD device that is associated with that processor can still trigger a direct
wake to that processor by first triggering the power up of the FPD. This is accomplished by
having a GIC proxy block in the LPD that can have selected peripheral interrupts routed to
the PMU as an interrupt other than the direct wakes.

Upon receiving an interrupt from the GIC proxy block:

1. The PMU powers up the FPD.
2. Releases the reset to the FPD and APU.
3. Unmasks the interrupts that trigger the direct wake of that application processor.

The direct wake will take effect resulting in the power up of the application processor.

Deep-sleep Mode

The deep-sleep mode suspends the PS and waits to be woken up. The lowest power deep
sleep is supported for wake sources GPI and RTC. Other sleep states are supported for wake
sources of USB and Ethernet, with additional power for the wake source. Upon wake, the PS
does not have to go through the boot process and the security state of the system is
preserved. This reduces the restart time of the system.

The device consumes the lowest power during this mode while still maintaining its boot and
security state. The PMU is placed in a sleep or suspend state waiting to be interrupted.

During the deep-sleep mode, the wake signal can be generated either through a GPI input
routed from an MIO pin or by an RTC alarm.
Zynq UltraScale+ Device TRM 149
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=149

Chapter 6: Platform Management Unit
Table 6-14 summarizes the PS configuration in deep-sleep mode.

Deep-sleep Mode Programming Model/Example

The processing system in deep-sleep mode is discussed in this section.

System Configuration prior to Sleep

System includes at least the following devices.

• The Cortex-R5F processor in the lock-step mode.
• TCM memory.
• Real-time counter.

System Configuration during Sleep

The configuration of the system during sleep is discussed in this section.

• FPD is powered off.
• RPU, USBs, and OCM are powered off.
• TCM is in retention.
• RTC alarm is set and RTC is functioning.
• PLLs are powered down.

Table 6‐14: Deep-sleep Configuration

Configuration Type Status Description

Cortex-R5F Powered down
TCM configuration
OCM configuration
Device security

In retention
In retention
Suspended

Either TCM or OCM is powered down.

Peripheral Suspended Wake up peripheral logic might be active.
PLLs Powered down

System Monitor Powered down During power down, the SysOsc clock can go to
20 MHz ±50%.

RTC and BBRAM Included Switched to the VCC_PSAUX rail.

PMU
MPSoC debug

Suspended
Powered down

The wake logic is active.
MPSoC debug is mostly in FPD. The LPD portion is
suspended.

eFUSE
Components outside the LPD

Suspended
Powered down

PL internal power Powered down
Zynq UltraScale+ Device TRM 150
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=150

Chapter 6: Platform Management Unit
• System Monitor is powered down.

Power Down Procedure

The power down is initiated by the Cortex-R5F MPCore. As the TCM is placed in retention,
the Cortex-R5F MPCore is required to do the following (Figure 6-4).

1. Set the TCM bit in the RAM_RET_CNTRL register.
2. Set the TCM bit in the REQ_PWRDWN_TRIG register while the interrupt is masked for the

TCM in the REQ_PWRDWN_INT_MASK register.
3. Set the RPU and TCM bits in the REQ_PWRUP_TRIG register while the interrupt mask bits

for those fields are disabled.
4. Set the RPU bit in the REQ_SWRST_TRIG while the interrupt mask bit for it is disabled.
5. Set the alarm.
6. Disable interrupts.
7. Set the SLCR bit to request for a direct RPU power down and execute a WFI instruction.

This procedure causes an interrupt to the PMU to power down the RPU.
Zynq UltraScale+ Device TRM 151
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=151

Chapter 6: Platform Management Unit
Wake Procedure

Once the RTC alarm generates an interrupt to the PMU, the handler for the RTC wake
detects if there is a firmware loaded for this purpose. If not, the handler checks whether an
on-demand procedure is queued up in the PMU. Prior to the power down, the Cortex-R5F
MPCore requests for the power up of the RPU and TCM while the interrupts for the
power-up requests are masked. It requests the Cortex-R5F MPCore reset to be released
while the interrupt for that request is masked, again. Upon waking up from the RTC, the
PMU proceeds with the RPU power-up and issues the Cortex-R5F MPCore reset. Figure 6-5
shows the flowchart for wake-up from a deep sleep.

1. RPU and TCM power up requests are unmasked as a part of the RTC wake.
2. Cortex-R5F MPCore reset request is unmasked as a part of the RTC wake.
3. TCM is powered up first as a result of the follow-up TCM power-up interrupt.
4. RPU is powered up as a result of the follow-up RPU power-up interrupt.

X-Ref Target - Figure 6-4

Figure 6‐4: Deep Sleep Power Down Flowchart

Start

Set TCM bit in RAM retention control
register

Request power down with interrupts
masked

Request power up for RPU and TCM
with interrupt mask bits disabled

Reset RPU with interrupt mask disabled

Set the alarm (RTC)

Disable interrupts

Set SLCR bit for direct RPU
power down

Execute WFI

End

X15309-092916
Zynq UltraScale+ Device TRM 152
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=152

Chapter 6: Platform Management Unit
5. Reset to the Cortex-R5F MPCore is released as a result of the follow up Cortex-R5F
MPCore reset request interrupt.

6. Your code on the Cortex-R5F MPCore releases the system monitor out of the power
down state.

7. The code on the Cortex-R5F MPCore clears the RTC alarm. Because the RTC has an
interrupt status register, setting the alarm bit to 1 clears the interrupt.

X-Ref Target - Figure 6-5

Figure 6‐5: Wake up from Deep Sleep Flowchart

Start

RTC interrupts PMU

RPU and TCM power up
requests are unmasked

Cortex-R5 reset request
unmasked

TCM is powered up

RPU is powered up

Deassert Cortex-R5 reset

User code on Cortex-R5 powers
up SYSMON

Clear RTC alarm

End

X15310-092916
Zynq UltraScale+ Device TRM 153
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=153

Chapter 6: Platform Management Unit
Isolation Request

Isolation is generally used to isolate signals from a powered-up domain and a
powered-down domain to prevent crowbar currents affecting the proper functioning of the
blocks. Isolation ensures that the outputs of the domains are clamped to a known value. The
PMU facilitates isolation of various power domains. This can be done by setting appropriate
bits in the REQ_ISO_TRIG global register. For the PMU_GLOBAL.REQ_ISO_STATUS register
description, see the Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4]. Three bits
control domain isolation between the low-power, full-power, and PL domain. Different
combinations of isolation are available. By writing to bit 0 of the REQ_ISO_TRIG register and
the REQ_ISO_INT_MASK register, the full-power domain can be isolated from the low-power
domain and the PL domain. By writing to bit 1 of these registers, the PS is isolated from the
PL. By writing to bit 2 the PS and the PL are isolated, with the exception of the PCAP
interface. Finally, to lock isolation on the full-power domain, write to bit 4.

Reset Services

This section describes the reset services. Various blocks can be reset through the
REQ_SWRST_TRIG register if the interrupt for that specific reset is unmasked in the
REQ_SWRST_INT_MASK register. The Table 6-15 lists the reset services.

Table 6‐15: Reset Requests

Reset Service Block Request Bit Description

PL 31 Resetting the PL domain depends on your design. This service is not
handled by ROM code.

FPD 30 A hard reset of the full-power domain. Transactions are not flushed.
LPD 29 The PMU firmware uses this service to reset the low-power domain.

This service is not handled by ROM code.
PS_ONLY 28 Acts as an internally generated a system reset (SRST). You can

perform an isolation request on the PL prior to this event and then
issue this request to only SRST the PS.

Reserved 27:26 Reserved
USB1 25 Cycles the reset for USB_1 by asserting the

CRL_APB.RESET_LPD_TOP. USB1_CORERESET signal and then
deasserting it.

USB0 24 Cycles the reset for USB_0 by asserting the
CRL_APB.RESET_LPD_TOP.USB0_CORERESET signal and then
deasserting it.

GEM3 23 Cycles the reset for GEM_3 by asserting the
CRL_APB.RESET_IOU0.GEM3_RESET signal and then deasserting it.

GEM2 22 Cycles the reset for GEM_2 by asserting the
CRL_APB.RESET_IOU0.GEM2_RESET signal and then deasserting it.

GEM1 21 Cycles the reset for GEM_1 by asserting the
CRL_APB.RESET_IOU0.GEM1_RESET signal and then deasserting it.
Zynq UltraScale+ Device TRM 154
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=154

Chapter 6: Platform Management Unit
GEM0 20 Cycles the reset for GEM_0 by asserting the
CRL_APB.RESET_IOU0.GEM0_RESET signal and then deasserting it.

Reserved 19 Reserved
RPU 18 This service performs a sequence that resets the entire RPU and

leaves the block in reset. You can request the R5_0 or R5_1 service
to release the appropriate signal. The following resets signals are
asserted:
• PMU_GLOBAL_RESET_RPU_LS
• CRL_APB.RESET_LPD_TOP.RPU_PGE_RESET
• CRL_APB.RESET_LPD_TOP.R50_RESET
• CRL_APB.RESET_LPD_TOP.R51_RESET
The following signals release the resets.
• PMU_GLOBAL.RESET_RPU_LS
• CRL_APB.RESET_LPD_TOP.PRPU_PGE_RESET
Prior to issuing an RPU request, the application should flush
transactions to the RPU. The debug logic is not reset.

R5_1 17 Cycles the reset for the APU1 (R5_1) by asserting the
CRL_APB.RESET_LPD_TOP.R51_RESET signal and then deasserting it.

R5_0 16 Cycles the reset for APU0 (R5_0) by asserting the
CRL_APB.RESET_LPD_TOP.R51_RESET signal and then deasserting it.

Reserved 15:13 Reserved
Display_Port 12 Cycles the reset for the DisplayPort controller by asserting the

CRL_APB.RESET_FPD_TOP.DP_RESET signal and then deasserting it.
Reserved 11 Reserved
SATA 10 Cycles the reset for the SATA controller by asserting the

CRL_APB.RESET_FPD_TOP.SATA_RESET signal and then deasserting
it.

PCIe 9 Cycles the reset for PCIe by asserting the
CRL_APB.RESET_FPD_TOP.PCIE_RESET signal and then deasserting
it.

GPU 8 This service performs a sequence that resets the entire GPU. Both
pixel processors and the GPU resets are asserted and released by
the following signals.
• CRF_APB.RESET_FPD_TOP.GPU_RESET
• CRF_APB.RESET_FPD_TOP.PP1_RESET
• CRF_APB.RESET_FPD_TOP.PP0_RESET

PP1 7 Cycles the individual reset for the pixel processor by asserting the
CRF_APB.RESET_FPD_TOP.GPU_PP1_RESET signal and the
deasserting it.

PP0 6 Cycles the individual reset for the pixel processor by asserting the
CRF_APB.RESET_FPD_TOP.GPU_PP0_RESET signal and the
deasserting it.

Table 6‐15: Reset Requests (Cont’d)

Reset Service Block Request Bit Description
Zynq UltraScale+ Device TRM 155
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=155

Chapter 6: Platform Management Unit
Programming Model
Beyond the Xilinx provided firmware, the PMU can execute user programs that implement
advance system monitoring and system-critical functions. Typically, PMU code loading
occurs either via CSU ROM code at boot or by the first stage boot loader (FSBL). During this
time, the PMU is either in an already-loaded maintenance mode or in the sleep mode. To
assure that the PMU is in the sleep mode, IPI0 is used to interrupt the PMU. In response to
the IPI0 interrupt, the interrupt service routine for this IPI disables interrupts and executes
a sleep instruction followed by a branch to the user code being loaded in the RAM. This
guarantees that the processor stays in the sleep mode and is not interrupted to execute any
services until it is explicitly woken up by another master through the use of the wake-up bit
in the PMU global control register. After the main processor copies the user program into
the PMU RAM, the processor wake-up feature in the PMU global control register is used to
direct the PMU processor into executing the newly-loaded maintenance code.

Reserved 5 Reserved
APU 4 This service performs a sequence that resets the entire APU and L2

and leaves them in reset until the ACPU reset service (bits 3:0) are
requested while cycling the reset on the L2 and surrounding APU
logic. The debug logic is not reset. The following reset signals are
asserted:
• CRF_APB.RESET_FPD_APU.L2_RESET
• CRF_APB.RESET_FPD_APU.ACPU3_RESET
• CRF_APB.RESET_FPD_APU.ACPU2_RESET
• CRF_APB.RESET_FPD_APU.ACPU1_RESET
• CRF_APB.RESET_FPD_APU.ACPU0_RESET
The L2_RESET is released to make the L2 available.

ACPU3 3 Cycles the individual reset for the APU by asserting the
CRF_APB.RESET_FPD_APU.ACPU3_RESET and the deasserting it.

ACPU2 2 Cycles the individual reset for the APU by asserting the
CRF_APB.RESET_FPD_APU.ACPU2_RESET and the deasserting it.

ACPU1 1 Cycles the individual reset for the APU by asserting the
CRF_APB.RESET_FPD_APU.ACPU1_RESET and the deasserting it.

ACPU0 0 Cycles the individual reset for the APU by asserting the
CRF_APB.RESET_FPD_APU.ACPU0_RESET and the deasserting it.

Table 6‐15: Reset Requests (Cont’d)

Reset Service Block Request Bit Description
Zynq UltraScale+ Device TRM 156
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=156

Chapter 6: Platform Management Unit
The steps required to load a user-level program and start its execution are listed here and
shown in Figure 6-6.

1. Application program on another processor either APU or RPU executes IPI0 to the PMU.
2. IPI0 interrupt service routine.
3. Disables all interrupts.
4. Executes a sleep instruction. The instruction after the sleep instruction must be a branch

to the address for the user code in RAM.
5. The application program loads the PMU user program into the RAM.
6. The application program writes a 1 to bit [0] of the PMU global control register to wake

up the processor.
7. PMU starts executing instructions following the sleep instruction and returns to the

main() function in the code.
8. PMU branches to the user code.
9. The user code clears the bit [0] in the PMU global control register and enables the

interrupt.

An upper-level program can check the PMU global control register to determine the state of
the firmware loading and execution.
Zynq UltraScale+ Device TRM 157
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=157

Chapter 6: Platform Management Unit
X-Ref Target - Figure 6-6

Figure 6‐6: PMU Programming Model

Start

Execute IPI0 (by application program) to PMU

IPI0 ISR

Execute sleep instruction

Load user program into PMU RAM

Set PMU global control register to 1

PMU branch to user code

Clear bit 0 in PMU global control register

Enable interrupt

Stop

Done

Not done

Done

Not done

X15312-092916
Zynq UltraScale+ Device TRM 158
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=158

Chapter 6: Platform Management Unit
Register Overview
The registers in Table 6-16 are in the PMU_GLOBAL module. For more information, see the
Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4].

Table 6‐16: Global Registers

Register Name Type Description

GLOBAL_CNTRL Mixed This register controls functions such as QoS for AXI read
and write transactions that are generated by the PMU, or
indication for firmware presence that can also be
executed by other masters.

PS_CNTRL Mixed This register controls miscellaneous functions related to
the PS that can be controlled by all masters.

APU_PWR_STATUS_INIT Mixed Provides a location in the PMU to hold the initialization
value for the CPUPWRDWNREQ field of the APU PWRCTL
register during an FPD power down. The bit associated
with an ACPU is loaded by the PMU ROM code in the
CPUPWRDWNREQ field of the PWRCTL register right after
the routine releases the reset to the ACPU core after an
FPD power up.
0 = Normal cold reset (default)
1 = Reset after a power up after a shutdown mode

ADDR_ERROR_STATUS Mixed Address error status register. This is a sticky register that
holds the value of the interrupt until cleared by a value of
1.

ADDR_ERROR_INT_MASK RO Address error mask register. This is a read-only location
and can be altered through the corresponding interrupt
Enable or Disable registers.

ADDR_ERROR_INT_EN WO Address error interrupt enable register. A write to this
location will unmask the interrupt.

ADDR_ERROR_INT_DIS WO Address error interrupt disable register. A write of 1 to this
location will mask the interrupt.

GLOBAL_GEN_STORAGE{0:6} RW Global general storage register that can be used by
system to pass information between masters. The register
is reset during system or power-on resets. These registers
are used by the PMUFW, FSBL, and other Xilinx software
products.

PERS_GLOB_GEN_STORAGE{0:7} RW Persistent global general storage register that can be used
by system to pass information between masters. This
register is only reset by the power-on reset and maintains
its value through a system reset. Four registers are used
by the FSBL and other Xilinx software products:
PERS_GLOB_GEN_STORAGE{4:7}. Register is reset only by a
POR reset.

DDR_CNTRL RW This register controls DDR I/O features that have to be
driven when the FPD is powered down.
Zynq UltraScale+ Device TRM 159
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=159

Chapter 6: Platform Management Unit
PWR_STATE RO This register provides the power-up status for all islands
within the PS. (0 = powered down). Reserved bits read as
zero. The register maintains its contents during a system
reset.

AUX_PWR_STATE RO This register provides the retention state for the PS
memories (1 = retention) and the power-down emulation
state for the Arm processor. (1 = powered-down
emulation state). The register maintains its contents
during a system reset.

RAM_RET_CNTRL Mixed This register is used to enable retention request for the L2,
OCM, and TCM RAMs. If a bit in this register is set, a
power-down request of the corresponding RAM bank
would guide the PMU to put the RAM in retention,
instead.

PWR_SUPPLY_STATUS RO This register provides the status of a subset of the power
supplies within the PS

REQ_PWRUP_STATUS Mixed If any of the bits in this register is 1, it would trigger a
power-up request to the PMU. Writing a 1 to any bit will
clear the request.

REQ_PWRUP_INT_MASK RO Power-up request interrupt mask register. This is a
read-only location and can be altered through the
corresponding interrupt enable or disable registers.

REQ_PWRUP_INT_EN WO Power-up request interrupt enable register. Writing a 1 to
this location will unmask the interrupt.

REQ_PWRUP_INT_DIS WO Power-up request interrupt disable register. Writing a 1 to
this location will mask the interrupt.

REQ_PWRUP_TRIG WO Power-up request trigger register. A write of 1 to this
location will generate a power-up request to the PMU.

REQ_PWRDWN_STATUS Mixed If any of the bits in this register is 1, it would trigger a
power-down request to the PMU. Writing a 1 to any bit
will clear the request.

REQ_PWRDWN_INT_MASK RO Power-down request interrupt mask register. This is a
read-only location and can be altered through the
corresponding interrupt enable or disable registers.

REQ_PWRDWN_INT_EN WO Power-down request interrupt enable register. Writing a 1
to this location will unmask the interrupt.

REQ_PWRDWN_INT_DIS WO Power-down request interrupt disable register. Writing a 1
to this location will mask the interrupt.

REQ_PWRDWN_TRIG WO Power-down request trigger register. Writing a 1 to this
location will trigger a power-down request to the PMU.

REQ_ISO_STATUS Mixed If any of the bits in this register is 1, it would capture an
Isolation request to the PMU. Writing a 1 to any bit will
clear the request.

Table 6‐16: Global Registers (Cont’d)

Register Name Type Description
Zynq UltraScale+ Device TRM 160
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=160

Chapter 6: Platform Management Unit
REQ_ISO_INT_MASK RO Isolation request interrupt mask register. This is a
read-only location and can be altered through the
corresponding interrupt enable or disable registers.

REQ_ISO_INT_EN WO Isolation request interrupt enable register. A write of 1 to
this location will unmask the interrupt.

REQ_ISO_INT_DIS WO Isolation request interrupt disable register. A write of 1 to
this location will mask the interrupt.

REQ_ISO_TRIG WO Isolation request trigger register. A write of 1 to this
location will set the corresponding isolation status
register bit.

REQ_SWRST_STATUS Mixed If any of the bits in this register is 1, it triggers a reset
request to the PMU. Writing a 1 to any bit clears the
request.

REQ_SWRST_INT_MASK RO Reset request interrupt mask register. This is a read-only
location and can be altered through the corresponding
interrupt enable or disable registers.

REQ_SWRST_INT_EN WO Reset request interrupt enable register. A write of 1 to this
location will unmask the interrupt.

REQ_SWRST_INT_DIS WO Reset request interrupt disable register. A write of 1 to this
location will mask the interrupt.

REQ_SWRST_TRIG WO Reset request trigger register. A write of 1 to this location
will set the reset status register related to this interrupt.

REQ_AUX_STATUS Mixed If any of the service request bits in this register is 1, it
would capture an auxiliary request to the PMU. Writing a
1 to any bit will clear the request. The services for these
requests need to be implemented by firmware.

REQ_AUX_INT_MASK RO Auxiliary service request interrupt mask register. This is a
read-only location and can be altered through the
corresponding interrupt enable or disable registers.

REQ_AUX_INT_EN WO Auxiliary service request interrupt enable register. A write
of 1 to this location will unmask the interrupt.

REQ_AUX_INT_DIS WO Auxiliary service request interrupt disable register. A write
of 1 to this location will mask the interrupt.

REQ_AUX_TRIG WO Auxiliary service request trigger register. A write of 1 to
this location will set the corresponding auxiliary service
status register bit.

LOGCLR_STATUS RO This register provides the status of the logic clear engines
after they are run. (0 = Fail)

CSU_BR_ERROR Mixed This register holds all errors related to the BootROM
execution on the CSU.

MB_FAULT_STATUS RO This register provides the status of the redundancy logic
in the triple-redundant PMU processor.

Table 6‐16: Global Registers (Cont’d)

Register Name Type Description
Zynq UltraScale+ Device TRM 161
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=161

Chapter 6: Platform Management Unit
ERROR_STATUS_1 Mixed Error status register 1. If the bit in this register is set to 1,
it signifies an error within the system. Writing a 1 to any
bit will clear the error. This register is only reset by the
external power-on reset.

ERROR_INT_MASK_1 RO Error register 1 interrupt mask register. This is a read-only
location and can be altered through the corresponding
interrupt enable or disable registers.

ERROR_INT_EN_1 WO Error register 1 interrupt enable register. A write of 1 to
this location will unmask the interrupt.

ERROR_INT_DIS_1 WO Error register 1 interrupt disable register. A write of 1 to
this location will mask the interrupt.

ERROR_STATUS_2 Mixed Error status register 2. If any of the bits in this register are
set to 2, it signifies an error within the system. Writing a 1
to any bit will clear the error. This register is only reset by
the external power-on reset.

ERROR_INT_MASK_2 RO Error register 2 interrupt mask register. This is a read-only
location and can be altered through the corresponding
interrupt enable or disable registers.

ERROR_INT_EN_2 WO Error register 2 interrupt enable register. A write of 1 to
this location will unmask the interrupt.

ERROR_INT_DIS_2 WO Error register 2 interrupt disable register. A write of 1 to
this location will mask the interrupt.

ERROR_POR_MASK_1 RO Error register 1 power-on reset mask register. This is a
read-only location and can be altered through the
corresponding power-on reset enable or disable registers.

ERROR_POR_EN_1 WO Error register 1 power-on reset enable register. A write of
1 to this location will unmask the interrupt.

ERROR_POR_DIS_1 WO Error register 1 power-on reset disable register. A write of
1 to this location will mask the generation of power-on
reset.

ERROR_POR_MASK_2 RO Error register 2 power-on reset mask register. This is a
read-only location and can be altered through the
corresponding power-on reset enable or disable registers.

ERROR_POR_EN_2 WO Error register 2 power-on reset enable register. A write of
1 to this location will unmask the generation of power-on
reset.

ERROR_POR_DIS_2 WO Error register 2 power-on reset disable register. A write of
1 to this location will mask the generation of power-on
reset.

ERROR_SRST_MASK_1 RO Error register 1 SRST mask register. This is a read-only
location and can be altered through the corresponding
SRST enable or disable registers.

ERROR_SRST_EN_1 WO Error register 1 SRST enable register. A write of 1 to this
location will unmask the generation of SRST.

Table 6‐16: Global Registers (Cont’d)

Register Name Type Description
Zynq UltraScale+ Device TRM 162
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=162

Chapter 6: Platform Management Unit
ERROR_SRST_DIS_1 WO Error register 1 SRST disable register. A write of 1 to this
location will mask the generation of SRST.

ERROR_SRST_MASK_2 RO Error register 2 SRST mask register. This is a read-only
location and can be altered through the corresponding
SRST enable or disable registers.

ERROR_SRST_EN_2 WO Error register 2 SRST enable register. A write of 1 to this
location will unmask the generation of SRST.

ERROR_SRST_DIS_2 WO Error register 2 SRST disable register. A write of 1 to this
location will mask the generation of SRST.

ERROR_SIG_MASK_1 RO Error register 1 signal mask register. This is a read-only
location and can be altered through the corresponding
error signal enable or disable registers. This register is
only reset by the external power-on reset.

ERROR_SIG_EN_1 WO Error register 1 signal enable register. A write of 1 to this
location will unmask the assertion of the PS_ERROR_OUT
signal on the device.

ERROR_SIG_DIS_1 WO Error register 1 signal disable register. A write of 1 to this
location will mask the assertion of the PS_ERROR_OUT
signal on the device.

ERROR_SIG_MASK_2 RO Error register 2 signal mask register. This is a read-only
location and can be altered through the corresponding
error signal enable or disable registers. This register is
only reset by the external power-on reset.

ERROR_SIG_EN_2 WO Error register 2 signal enable register. A write of 1 to this
location will unmask the assertion of the PS_ERROR_OUT
signal on the device.

ERROR_SIG_DIS_2 WO Error register 2 signal disable register. A write of 1 to this
location will mask the assertion of the PS_ERROR_OUT
signal on the device.

ERROR_EN_1 RW Error enable register 1. If any of the bits in this register is
1, the corresponding error is allowed to be propagated to
the error handling logic.

ERROR_EN_2 RW Error enable register 2. If any of the bits in this register is
1, the corresponding error is allowed to be propagated to
the error handling logic.

AIB_CNTRL WO This register is used by the PMU to request functional
isolation on the AXI interfaces between the PL and PS by
using the AIBs. The register maintains its contents during
a system reset. AIBs are only for PS to PL isolation,
handled by ISO_AIB {AXI,APB} and can respond to the PS
master with a SLVERR.

AIB_STATUS RO This register is used by the PMU to check the status of
functional isolation by the AIBs on the AXI interfaces
between the PL and PS. The register maintains its contents
during a system reset.

Table 6‐16: Global Registers (Cont’d)

Register Name Type Description
Zynq UltraScale+ Device TRM 163
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=163

Chapter 6: Platform Management Unit
Table 6-17 lists the I/O registers.

MIO Signals
Six GPI1 register bits can be driven by input signals routed through the MIO, as described
in Table 6-3 and listed in Table 6-9. If these inputs are not routed through the MIO, then
they are driven to 0. Six GPO1 register bits can drive output signals routed through the MIO,

GLOBAL_RESET Mixed This register contains reset for safety-related blocks.
ROM_VALIDATION_STATUS RO This register holds the status of the ROM validation.
ROM_VALIDATION_DIGEST_{0:11} RO This register holds word {0:11} of the ROM validation

digest.
SAFETY_CHK RW Target register for safety applications to check the

integrity of interconnect data lines by periodically writing
to and reading from these registers.

Table 6‐17: I/O Registers

Register Name Description

IRQ_MODE Interrupt mode register.
GPO0 I/O module miscellaneous control register (see Table 6-8).
GPO1 PMU to MIO signals.
GPO2 PMU acknowledgments (see Table 6-10).
GPO3 PMU to PL signals (GPO3).
GPI1[0] Fault tolerance status register (GPI0).
GPI1 General purpose input register 1 (see Table 6-6).
GPI2 General purpose input register 2 (see Table 6-7).
GPI3 General purpose input from PL to PMU.
IRQ_STATUS Interrupt status register.
IRQ_PENDING Interrupt pending register.
IRQ_ENABLE Interrupt enable register.
IRQ_ACK Interrupt acknowledge register.
PIT{0:3}_PRELOAD PIT{0:3} preload register.
PIT{0:3}_COUNTER PIT{0:3} counter register.
PIT{0:3}_CONTROL PIT{0:3} control register.
INSTRUCTION_INJECT_ADDR Instruction injection address (IOModule_1.GPO1).
INSTRUCTION_INJECT Instruction injection (IOModule_1.GPO2).

Table 6‐16: Global Registers (Cont’d)

Register Name Type Description
Zynq UltraScale+ Device TRM 164
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=164

Chapter 6: Platform Management Unit
as described in Table 6-3 and listed in Table 6-6. All 32 GPI3 register bits are driven by PL
input signals. All 32 GPO3 register bits drive PL output signals.
Zynq UltraScale+ Device TRM 165
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=165

Chapter 7

Real Time Clock

Introduction
The real time clock (RTC) unit maintains an accurate time base for system and application
software. For high accuracy needs, the RTC also includes calibration circuitry to offset
temperature and voltage fluctuations.

The RTC is powered by the VCC_PSAUX or VCC_PSBATT power supply. When the auxiliary
supply is available, the RTC uses it to keep the counters active. The RTC automatically
switches to the VCC_PSBATT power supply when the auxiliary supply is not available. The
RTC has the following features:

• Continuous operation using auxiliary or battery power supplies.
• Alarm setting and periodic interrupts.
• Complex calibration circuits for highly accurate time keeping.
• 32-bit seconds counter represents 136 years of time.
• Three counters:

° x 32-bit seconds counter.

° x 16-bit tick counter to measure a second based on 32 KHz crystal.

° x 4-bit fractional counter for calibration.
Zynq UltraScale+ Device TRM 166
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=166

Chapter 7: Real Time Clock
Functional Description

RTC Operation

The RTC generates two system interrupt signals to the GICs, the GIC proxy, and the PL once
every second and when its alarm event occurs. The periodic second tick interrupt can be
used by all system processors. The alarm control must be managed at a system level among
the processors.

Block Diagram

Figure 7-1 shows a system level diagram of the RTC controller. The RTC functionality is
divided across three main modules.

• RTC control registers: implemented in the low-power domain (LPD); this module
incorporates all of the registers associated with the RTC controller.

• RTC counters module: includes all the counters, calibration logic, and latches used to
retain the programmed time and calibration in the battery-powered domain (BPD). It
also includes these functions:

° Interfaces with the crystal oscillator that also operates in the BPD.

° Maintains the current time in seconds.

° Contains calibration circuitry that is used to calculate one second with a maximum
ppm inaccuracy by using a crystal oscillator with an arbitrary static inaccuracy.

° Maintains a previously programmed time for read back and calibration by the
software.

° Maintains the control value used by the oscillator and power switching circuitry.
• Crystal oscillator: provides the RTC clock that is implemented with the GPIO. The power

is supplied by the RTC counters module.
Zynq UltraScale+ Device TRM 167
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=167

Chapter 7: Real Time Clock
X-Ref Target - Figure 7-1

Figure 7‐1: RTC Controller System Block Diagram

RTC Control
Registers

RTC
Counters

Control

Calibration

Time Set

Status

Counts

Interrupts

VCC_PSBATT
(1.2V-1.8V)

Power
MUX

Voltage
Detect

VCC_PSAUX
(1.8V)

CONTROL [Battery_Enable]
BBRAM

O
sc

ill
at

or

RTC Supply

PS SYSMONAPB Slave
Interface

Low Power Domain (LPD) Battery-Powered Domain (BPD)

Crystal

X17680-091317
Zynq UltraScale+ Device TRM 168
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=168

Chapter 7: Real Time Clock
Figure 7-2 shows the functional block diagram of the RTC. The RTC controller is divided into
two separate sections.

X-Ref Target - Figure 7-2

Figure 7‐2: RTC Controller Functional Block Diagram

Low Power Domain (LPD) Battery-Powered Domain (BPD)

RTC Control
Registers

RTC.CONTROL

RTC.SET_TIME_READ

RTC.CALIB_WRITE

RTC.RTC_INT_STATUS

RTC.SET_TIME_WRITE

APB Slave
Interface

Crystal

Oscillator

Tick Counter
16-bit

Compare
Seconds Counter

32-bit

Fraction Counter
4-bit

Compare

RTC Counters

RTC.CALIB_READ

RTC_Alarm (IRQ 58)

RTC_Seconds (IRQ 59)

Clear

CALIB_WRITE [Fraction_Data]

osc_rtc_clk

extend_clear_tick_counter

CALIB_WRITE [Fraction_En]
osc_rtc_clk

osc_rtc_clk
32.768 kHz

CALIB_WRITE [Fraction_En]

osc_rtc_clk

osc_rtc_clk

CALIB_WRITE [Max_Tick]

clear_tick_counter

Bit 3

clear_fraction_counter

osc_rtc_clk

Clear

X17681-091317
Zynq UltraScale+ Device TRM 169
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=169

Chapter 7: Real Time Clock
Interfaces and Signals

This RTC interfaces to logic in the LPD and includes the following features.

• An APB interface to access the registers within the controller and the RTC counters. This
interface is clocked by the LPD_LSBUS_CLK.

• Alarm logic including the alarm register to save the alarm time (in seconds).
• Interrupt status, interrupt mask, interrupt enable, and interrupt disable registers to

manage the seconds and alarm interrupts.
• The RTC control register enables the crystal oscillator, controls power to the RTC, and

enables address errors when accesses are made to the regions within the RTC address
space that are not mapped to any registers.

IMPORTANT: The control register must be programmed every time the LPD is powered on. Otherwise,
the value returned by reading the control register can be different from the actual control settings
stored in the BPD.

The SET_TIME_WRITE, CALIB_WRITE, and CURRENT_TIME registers are all implemented
within the battery-powered RTC but accessed via the APB interface in the LPD.

The controller logic also includes the ALARM alarm register and alarm generation logic.
Whenever the value of the seconds counter in the RTC matches the value that is explicitly
loaded into the alarm register, and the alarm interrupt is enabled, the RTC_Alarm system
interrupt is generated.

The RTC control registers are programmed via the APB interface in the LPD and retained in
the battery-powered domain because it is required for RTC operation. The register set
controls functions and is used when performing calibration functions.

Seconds Counter

The seconds counter is a 32-bit synchronous counter that holds the number of seconds
from a specific reference point (known by the operating system). Initially, calculate the
current time through the operation system’s clock device driver which is based on the
number of seconds that elapse from a reference point. This current time value is
programmed into the RTC counters through the time-set register that is used to initialize
the seconds counter. After that, the seconds counter is clocked every second to increment
and hold the updated current time. The current time is read through the interface to the
RTC controller.

For every oscillator clock cycle, the value in the tick counter is compared against the value
stored in the calibration register. If these values match, the tick counter is reset to zero and
an interrupt is generated.
Zynq UltraScale+ Device TRM 170
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=170

Chapter 7: Real Time Clock
The interrupt signal from the RTC counters is asserted for one osc_rtc_clk cycle and is
captured in the RTC controller’s interrupt status register only on a positive-edge transition.
The follow-on interrupt from the RTC counters can be used by a clock device driver to
calculate the time and date.

The fractional calibration feature, if enabled, takes effect every 16 seconds and delays the
release of the clear signal to the tick counter by the number of oscillator cycles
programmed in the calibration register’s fractional calibration field.

Calibration
The clear signal used to reset the tick counter can be extended/delayed by logic that
operates in conjunction with the fractional calibration value to provide fractional tick
adjustment. More specifically, every time the fraction counter asserts its extend clear signal
to the tick counter, the clear function to the tick counter stays asserted.

Any inaccuracy in the oscillator can be compensated for by adjusting the calibration value
and making the remaining inaccuracy a fraction of a tick in every second. The impact of the
remaining inaccuracy can be compensated for by using a fraction counter. Every 16
seconds, the accumulated inaccuracy can be approximated by a total number of ticks
between zero and 16. This value is programmed in the fractional calibration segment of the
calibration register. After every 16 seconds, the fraction counter starts incrementing from
zero to this value. During the time the fraction counter is incrementing, the clear signal to
the tick counter stays asserted. Therefore, the tick counter increments are delayed by that
value of ticks every 16 seconds. When the fraction comparator determines that the fraction
counter value is equal to the maximum fractional calibration value, the fraction comparator
releases the clear signal of the tick counter. This clear signal allows the fractional counter to
start incrementing again. The fractional calibration register also includes an enable bit.
When this bit is a 1, the fraction comparator performs the operations associated with
fractional calibration, including the tick counter extend clear signal.

RTC Accuracy

For a 32.768 kHz crystal, the static inaccuracy of the RTC is bounded to ±30.5 ppm if the
selected crystal has a larger static inaccuracy. For example, a crystal inaccuracy of +50 ppm
in one-million ticks will generate 50 extra ticks (or off by
1-9/16 of a tick every second). By increasing the calibration value by one leaves the 9/16 of
the tick. Therefore, a crystal’s static +50 ppm impacts the RTC similar to a +17.17 ppm
crystal, because some of the inaccuracy is accounted for through the seconds calibration.

By enabling the fractional calibration feature, the second calculation logic can perform
further calibration by delaying the clearing of the tick counter by one to 15 oscillator ticks
every 16 seconds. In the earlier example, after every 16 seconds, the clock is nine ticks
ahead. Therefore, by programming the value of nine into the fractional calibration field of
Zynq UltraScale+ Device TRM 171
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=171

Chapter 7: Real Time Clock
the calibration register, the time is adjusted by nine ticks every 16 cycles, which corrects the
static inaccuracy of the oscillator.

By using the fractional calibration feature with a 32.768 kHz oscillator, the static inaccuracy
of the RTC is bounded to  2 ppm, no matter the static inaccuracy of the oscillator. If a
higher frequency crystal is used, this number is lowered. For example, by using a 62.5 kHz
oscillator, the static inaccuracy is bounded to 1 ppm.

Calibration Algorithm

Assuming that the RTC is programmed at time S, then at time T the RTC is showing value R.
Each of these time values is the UNIX Epoch time are represented in terms of seconds with
respect to a fixed reference, which for UNIX is 00:00:00 on 1/1/1970.

If C and F are defined as:
C = Value of the calibration register (in the seconds calibration field).
F = Value of the calibration register (in the fractional calibration field).

and fractional calibration is enabled, then the actual crystal oscillator frequency is defined
in Equation 7-1.

Xf = (R–S) × [(C+1) + ((F+1)/16)]/(T–S) Equation 7‐1

where:
CNEW = Int(Xf) – 1
FNEW = Round((Xf – Int(Xf))×16) – 1

Dynamic Oscillator Inaccuracy

The frequency characteristic of a crystal depends on the type of crystal. The frequency is
normally specified by a parabolic curve centered around 25 °C. A common parabolic
coefficient for a 32.768 kHz tuning fork crystal is –0.04 ppm/°C. Therefore, the crystal
frequency can be represented as shown in Equation 7-2.

f = f0[1 – (0.04 x 10-6) x (T–T0)2] Equation 7‐2

For example, a clock built using a regular 32.768 kHz crystal that keeps time at room
temperature loses two minutes per year at 10°C above or below room temperature and
loses eight minutes per year at 20°C above or below room temperature.

The impact of temperature on the crystal oscillator can be analyzed and tabulated in
advance. The example in Table 7-1 analyzes how much the crystal frequency changes with
every 10°C of temperature change, and shows the change in the value to program in the
calibration and fractional calibration registers. If the system has a mechanism to read the
ambient temperature of the crystal, it could access this table and calibrate the RTC
accordingly.
Zynq UltraScale+ Device TRM 172
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=172

Chapter 7: Real Time Clock
External Clock Crystal and Circuitry
The typical crystal used for the RTC is a 20 ppm, 32.768 kHz crystal (Figure 7-3). Using the
RTC calibration mechanism, the effective inaccuracy is reduced to less than two. Using a
65.536 kHz crystal further reduces the effective calibration inaccuracy to less than 1 ppm.

Table 7‐1: Impact of Temperature on a Crystal Oscillator

Temperature
(°C)

Frequency
(Hz)

Change
(PPM)

Change in Fractional
Calibration

Change in
Calibration

85 32,763.3 –144 5 –5
75 32,764.7 –100 12 –4
65 32,765.9 –64 14 –3
55 32,766.8 –36 13 –2
45 32,767.5 –16 8 –1
35 32,767.9 –4 14 –1
25 32,768.0 0 0 0
15 32,767.9 –4 14 –1

X-Ref Target - Figure 7-3

Figure 7‐3: Crystal Circuit Example

20 ppm

GND

22 pF 50V 22 pF 50V

32.768 kHZ

PS_PADI

PS_PADO

1/10 W
5%

1

2

1

2

1

2

1

2

X1

X2

COG, NPOCOG, NPO

X17682-090617
Zynq UltraScale+ Device TRM 173
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=173

Chapter 7: Real Time Clock
Battery Selection
RECOMMENDED: This section includes a few recommendations when specifying the battery and
battery life.

1. Although it is common to derating batteries by 25% from their specified capacity
quoted at 25°C, a derating factor of at least 50% is recommended by Xilinx.

2. The total power in the battery-powered domain, which includes both RTC and BBRAM, is
expected to be 2.5 µA at 50°C, with the IBATT consumed by the BBRAM as specified in
Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925)
[Ref 2]. Since it is not possible to power off the BBRAM, this leakage must be included
when calculating battery life.

3. Power consumption in the RTC and BBRAM is dominated by leakage; therefore, using
leakage as the only source of power consumption gives an accurate estimate of the
battery life.

4. A leakage requirement of 2.5 µA for the battery-powered domain is specified at 50°C,
which is more pessimistic than 25°C. Despite this, the same requirement is used at 25°C.
This temperature (25°C) is a typical specification for battery life.

5. Battery consumption in the battery-powered domain is limited to when the PS main
supplies are off (including VCC_PSAUX). Since the PS is never completely off (most of the
time, although it could be in deep-sleep mode), the battery life (in years) can be divided
by the percentage of the time the device is used, to get the number of years the battery
should last. Embedded systems are rarely completely off and the need to turn off the
device is even less in Zynq UltraScale+ MPSoCs due to the availability of the deep-sleep
mode.

6. Xilinx recommends using batteries in the specified range of the VCC_PSBATT voltage
(1.2V-1.5V). Using batteries with voltages higher than 1.5V requires a low dropout
regulator (LDO) or voltage divider. Although LDOs and voltage dividers cause more
current to be drawn from the battery even during PS power up.

Assuming an average current of 2.5 µA is required by the BPD and 50% derating on the
battery, a 438 mA-hour battery is required to sustain 10 years of continuous operation (see
Equation 7-3).

2.5 µA x 1 mA/1000 µA x 10 years x 8760 h/1 year = 219 mA-h/50% derate = 438 mA-h Equation 7‐3
Zynq UltraScale+ Device TRM 174
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=174

Chapter 7: Real Time Clock
Assuming a 33% system off time (using the battery), the system can operate for 10 years
with one 146 mA-h battery using a 50% derating factor. Table 7-2 shows the lifetime of a
battery depending upon the battery chosen to power the BPD.

Table 7‐2: Battery Lifetime for BPD (using Example Battery Types)

Current Drawn by BPD (µA) = 2.5 Derating Factor = 50%

Battery Type Voltage
(V)

Rated
Capacity
(mA-h)

Derated
Capacity
(mA-h)

% of Time Device is
Powered-On

(Not using battery)

Number of
Batteries Used

Total
Lifetime
(years)

AAA Alkaline 1.5 1125 562.5 1% 1 26
LR1154 Alkaline 1.5 130 65 70% 1 10
SR1154 Silver oxide 1.5 185 92.5 58% 1 10
SR1131 Silver oxide 1.5 83 41.5 81% 1 10
SR1131 Silver oxide 1.5 83 41.5 62% 2 10
SR1131 Silver oxide 1.5 83 41.5 43% 3 10
SR1142 Silver oxide 1.5 125 62.5 71% 1 10
SR1142 Silver oxide 1.5 125 62.5 43% 2 10
SR754 Silver oxide 1.5 70 35 84% 1 10
SR754 Silver oxide 1.5 70 35 68% 2 10
Zynq UltraScale+ Device TRM 175
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=175

Chapter 7: Real Time Clock
RTC Register List
The RTC registers are mapped in a 4 KB space starting at 0xFFA6_0000. The description
and offset address for each register is listed in Table 7-3.

Table 7‐3:

Register Name Offset Width Type
System Reset

Value
Description

SET_TIME_WRITE 0x000 32 Write only 0 Program the RTC with the current time.

SET_TIME_READ 0x004 32 Read only 0
Read the last setting done by
SET_TIME_WRITE.

CALIB_WRITE 0x008 21 Write only 0
Store the value that is used to generate
one second based on the oscillator
period.

CALIB_READ 0x00C 21 Read only 0
Read back the calibration value that
was programmed in the RTC.

CURRENT_TIME 0x010 32 Read only 0 32-bit timer value in seconds.
ALARM(1) 0x018 32 Read/Write 0 Program the alarm value for the RTC.
RTC_INT_STATUS
(1) 0x020 2 Write to

clear 0 Raw interrupt status.

RTC_INT_MASK 0x024 2 Read only 11 b Interrupt mask applied to the status.
RTC_INT_EN 0x028 2 Write only 0 Write a 1 to enable an interrupt.
RTC_INT_DIS 0x02C 2 Write only 0 Write a 1 to disable an interrupt.

ADDR_ERROR 0x030 1 Write to
clear 0

Register address decode error
interrupt status.

ADDR_ERROR_
INT_MASK 0x034 1 Read only 1 b Register address decode error

interrupt mask.
ADDR_ERROR_
INT_EN 0x038 1 Write only 0

Write a 1 to enable address decode
error interrupt.

ADDR_ERROR_
INT_DIS 0x03C 1 Write only 0

Write a 1 to disable address decode
error interrupt.

CONTROL 0x040 32 Read/Write 0100_0000 h
Controls the battery enable, clock
crystal enable, and APB address
decode error.

SAFETY_CHK 0x050 32 Read/Write 0
Safety endpoint connectivity check
register.

Notes:
1. Due to the sticky nature of the alarm interrupt status register, clearing the alarm interrupt status register can be done only

after the second counter outruns the set alarm value.
Zynq UltraScale+ Device TRM 176
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=176

Chapter 7: Real Time Clock
Programming Model
The software is responsible for the following.

• Translation and storage of the second, minute, hour, day, month, and year of the
current time, based on the value stored in the RTC.

• Initialization of the RTC seconds counter with the current time in seconds that is
calculated with respect to a reference point that is also used to calculate the time and
date, as specified in the previous bullet.

• Calibration of the RTC based on its past operation periodically, as needed.
• Calculation and storage of the alarm value in the RTC.

Programming Notes

• Program the control register every time the LPD is powered on. The value returned by
reading the control register matches with the actual control settings that are stored in
the battery powered domain.

• The value that is programmed through the SET_TIME_WRITE register is represented by
the seconds counter when the next second is signaled by the RTC. To make the load
time of this value deterministic, before writing the current time to the SET_TIME_WRITE
register, the value for the calibration should be written to the CALIB_WRITE register.
This clears the tick counter and forces the next second to be signaled exactly in one
second. In that case, the value that is written to the SET_TIME_WRITE register must be
the current time in seconds plus one.

• The value that is programmed through the SET_TIME_WRITE register is loaded in the
seconds counter in one cycle (see previous programming bullet). If, for any reason, an
application reads the time prior to that elapsed one second, an incorrect value could be
read. In that case, after SET_TIME_WRITE register was written, a value of FFFFh should
be written to the RTC_INT_STATUS register to clear the status of the all RTC interrupts.
During a read_time function, the code should read the RTC_INT_STATUS register and if
bit 0 is still 0, it means that one second has not yet elapsed from when the RTC was set
and the current time should be read from the SET_TIME_READ register; otherwise, the
CURRENT_TIME register is read to report the time.

• The alarm value programmed in the RTC controller represents a specific second within
the 136-year range that the RTC is operating. To set an alarm that goes off regularly at
a specific time in a day, or any other regular period, the alarm interrupt service routine
is expected to set the next time that the alarm is expected to go off in the alarm
register.

• The calibration and set_time values are each written and read through different
addresses. When a value is written to either of these registers and read back, a sync
instruction must be inserted between the write and read operations to ensure that the
Zynq UltraScale+ Device TRM 177
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=177

Chapter 7: Real Time Clock
value read is the one that was written. Furthermore, the program should read the
current time from the CURRENT_TIME register twice through back-to-back reads with a
sync instruction between them. If the times match, use that value to ensure a stable
value is read by the program.

Programming Sequences

init rtc

1. Write the value 0019_8231h into the calibration register, CALIB_WRITE.
2. Set the oscillator to crystal and enable the battery switch in the control register,

CONTROL.
3. Clear the interrupt status in the interrupt status register, RTC_INT_STATUS.

4. Disable all interrupts in the interrupt disable register, RTC_INT_DIS.

Set Time

1. Program the SET_TIME_WRITE register with the desired date and time value in seconds.
Zynq UltraScale+ Device TRM 178
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=178

Chapter 7: Real Time Clock
Programming Example – Periodic Alarm
The flowchart in Figure 7-4 shows an example of programming a periodic alarm.
X-Ref Target - Figure 7-4

Figure 7‐4: RTC Periodic Alarm Programming Example Flowchart

Start

Init rtc

Get current time by
reading_current_time register at offset

0x010

Program Alarm register (0x18) =
current_time + alarm

Bit 2 in Interrupt status
register (0x20)

End

No

Yes

X17683-092916
Zynq UltraScale+ Device TRM 179
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=179

Chapter 8

Functional Safety

Introduction
The functional safety of a system or part of a system refers to the correct operation of the
system in response to its input, which includes management of errors, hardware failure, and
changes to operating conditions. Two types of faults can lead to system failure and result in
a violation of the functional safety goals:

• Systematic faults
• Random faults

Systematic faults arise from errors in development or manufacturing processes. When
defects appear in hardware or software, they are systematic faults. Some of the causes of
systematic faults are a failure to verify intended functionality, manufacturing test escapes,
or operating a device outside of a specified range. Mitigation of systematic faults is
achieved by robust best practices and processes defined by safety standards.

Random faults are inherent due to silicon aging or environmental conditions, and so on.
Safety standards focus on detecting and managing random faults. Some of the causes of
random faults include the following.

• Permanent hardware faults, for example, stuck-at faults due to aging silicon
• Temporary hardware faults, for example, corruption of RAM data due to a

single-event-upset (SEU)

The Zynq® UltraScale+ device’s LPD was assessed per the relevant requirements of ISO
26262:2011 and IEC 61508:2010 and was certified suitable for use in ASIL C and SIL 3 (HFT1)
by Exida. The following related artifacts are available under NDA and accessed from the
Xilinx functional safety lounge.

• Device assessment report and certificate
• Safety manual
• FMEDA tool and report with option to customize application of diagnostics
• Software test library (STL) source release
• STL User Guide
Zynq UltraScale+ Device TRM 180
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=180

Chapter 8: Functional Safety
Apart from the Zynq UltraScale+ device related safety artifacts, Xilinx also provides certified
safety solutions, including:

• Vivado Design Suite
• MicroBlaze compiler
• Platform management firmware
• Design methodologies and tools to support functional safety applications in PL
Note: Contact your Xilinx representative for more information on the Xilinx functional safety
solutions and accessing the functional safety lounge.

Safety Features overview
This section presents an overview of the safety mechanisms implemented in the Zynq
UltraScale+ MPSoC. See the Zynq UltraScale+ MPSoC Safety Manual (UG1226) available in
the functional safety lounge for further details including recommendations to address
ASIL/SIL requirements.

Single Point Fault Detection Measures

• ECC protection for OCM, PMU-RAM, CSU-RAM, and RPU L1 cache and TCM memories

° Address decode error detection

° Separate RAMs for ECC syndrome and data

° 4:1 or greater interleaving of memory cells protected by ECC
• Hash validation of CSU BootROM contents at every boot
• Lockstep and redundancy covers R5F

° R5F lockstep with physical and temporal diversity

° Redundant logic in critical control logic such as R5F lockstep checkers
• PMU and CSU implemented with redundancy

° TMR (triple module redundant) processor cores with physical diversity

° Triple redundant flip-flops for critical control bits such as security state
• XMPU and XPPU protect memory space
• Watch-dog timers

° Watchdog timers provided in LPD and FPD

° LPD watchdog timers for RPU and PMU
Zynq UltraScale+ Device TRM 181
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=181

Chapter 8: Functional Safety
Common Cause Failure Measures

• System monitoring

° Voltages monitoring

° Temperature monitoring

° Clock frequency monitoring
• Error management

° Error management is handled and implemented within the PMU

° Errors are signaled as interrupts and mirrored to PL

° All hardware and software errors captured in ERROR_STATUS_1

° ERROR_STATUS_2 registers are visible to the PMU, RPU, APU, and PL
• Monitoring of activation of common cause failures (CCF) by PMU

° MBIST, SCAN, reset, power control
• Hang protection

° Cleanup of outstanding transactions under partial reset
• Meta-stability errors

° PS uses redundant flip-flops in selected clock crossings
• Aging errors

° Large on-chip variation (OCV) margin to account for aging effects

Latent Fault Measures

• All check logic such as XMPU, lockstep, and ECC checkers are checked at boot by LBIST
• All LPD memories can be tested at full processing speed during boot by MBIST

° Most of these memories (excluding PMU and CSU program RAMs) can be tested on
demand during execution

• The functionality and status of TCM, OCM, PMU RAM, R5F lockstep, PMU, XMPU, XPPU,
clocks, voltages, and temperatures can be tested and evaluated through dedicated
STL's
Zynq UltraScale+ Device TRM 182
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=182

Chapter 8: Functional Safety
Isolation Measures

• LPD supports isolation from the rest of the system
• Flexible reset management

° Enables use of processors for redundant processing

° Reset management is implemented in PMU

° Independent reset for LPD, FPD, PL, and PS-only
• Independent power domains

° LPD, FPD, and PL
• Built-in AXI timeout on PL master interfaces

Additional Measures

Safety features for the non-LPD Zynq UltraScale+ MPSoC components include:

• DDR interface supports ECC for 32-bit and 64-bit words

° Double error detection

° Single error correction
• ECC support for APU L2, L1-D memories
• Parity support for APU L1-I memories
• QOS management

° QOS controls on masters

° QOS management in PS AXI

° QOS management in PS DDR controller
• PL or multi APU cores can provide redundant processing
• All FPD memories can be tested at full processing speed during boot by MBIST
• Leverage of PL for implementation of safety features

° Provides HFT channel capability

° Provides error logging

° PL can remain active if PS is reset due to error
Zynq UltraScale+ Device TRM 183
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=183

Chapter 8: Functional Safety
Safety Assessment and Safety Metrics
The Zynq UltraScale+ MPSoC is not an item as described in ISO 26262, but is an element
(developed by Xilinx) of an item developed by an end user (i.e., a Xilinx customer at a later
point in time). Consequently, the Zynq UltraScale+ MPSoC product followed a safety
element out of context (SEooC) development cycle through the proper tailoring of the
ISO-26262 standard, performed according to Clause 9 of ISO-26262 Part 10. The validity of
this tailoring has been checked by an independent functional safety assessor (EXIDA).

Possible Sub-system Configuration for Safety
Applications
Figure 8-1 and Figure 8-2 show the possible combinations of using the Zynq UltraScale+
MPSoC partitions and the respective levels of compliance. For further details, such as
assumptions of uses and recommendations, see the Zynq UltraScale+ MPSoC Safety Manual
(UG1226) available in the functional safety lounge.
X-Ref Target - Figure 8-1

Figure 8‐1: Safety Application Configuration Example - 1

LPD

FPD

PL

Cortex-R5
Cortex-R5

Cortex-R5
Cortex-R5

Cortex-Ax

Safety channel ASIL-C Non-safety
X22142-121218
Zynq UltraScale+ Device TRM 184
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=184

Chapter 8: Functional Safety
Device Safety
The device safety features include power domain separate, power supply, and temperature
monitoring.

Power Domain Separation

The power domains are physically separated from each other to prevent propagation of
failures from one domain to the other. The separation includes isolation between:

• LPD and FPD
• LPD and PL
• PL and FPD

Power Supply and Temperature Monitoring

In safety applications, it might be required to check internal voltage and temperature within
the operating ranges. The PS SYSMON block can be used to monitor PS power supplies.
There are two temperature sensors to independently monitor the temperature of the LPD
and FPD. For a list of monitored power supplies, see Chapter 9, System Monitors.

Built-In Self-Test

The Zynq UltraScale+ device includes a built-in self-test (BIST) to detect faults in hardware
that can be caused due to permanent failures. This section lists the various BIST features.

X-Ref Target - Figure 8-2

Figure 8‐2: Safety Application Configuration Example - 2

LPD

FPD

PL

Cortex-R5
Cortex-R5

Cortex-R5
Cortex-R5

Cortex-Ax

Safety channel ASIL-C Safety channel ASIL-B

Cortex-
R5MB

Non-safety

X22143-121218
Zynq UltraScale+ Device TRM 185
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=185

Chapter 8: Functional Safety
Logic BIST

The logic BIST (LBIST) is an optional feature enabled by the LBIST_EN eFUSE. When enabled,
LBIST is executed only after POR. If LBIST fails, this is reported through the error reporting
mechanism in the boot sequence. This failure can also be detected by reading the JTAG
status [11] bit field. See MBIST, LBIST, and Scan Clear (Zeroization) for more information.

Memory BIST (MBIST)

The memory BIST (MBIST) is implemented for all memories in the PS. The MBIST can be
activated by the PMU. The post-boot software test library (STL) is used to execute MBIST on
user-selected memories. See MBIST, LBIST, and Scan Clear (Zeroization) for more
information.

Scan

Scan is activated by the PMU for a scan-clear operation. After the test is completed, the
PMU scan should be disabled.

Error Management and Reporting

When an error is encountered (i.e., lock-step error), it is signaled to the system error
controller (in the PMU), which in turn can be configured to signal an interrupt to any of the
processors, initiate a system, or a POR reset.

Upon a mismatch the R5F’s will continue to run until the PMU intervenes. The error itself
disrupts the R5F’s operation or the normal operation causes a halt. The R5F will continue
until either the PMU intervenes, the system error disrupts the R5F operation, or the normal
operation comes to a halt. There is no logic or functionality within the RPU to specifically
alter the R5F when a mismatch occurs.

Refer to RPU Reset Sequence for more information.

Functional Safety Software Test Library
The software test library (STL) is a collection of software safety mechanisms to complement
the hardware safety mechanisms in the Zynq UltraScale+ MPSoC. STL safety mechanisms
perform targeted testing on the LPD hardware blocks to provide the additional diagnostics
coverage. The STL source code and the Zynq UltraScale+ MPSoC Software Safety User Guide
(UG1220) is accessible from the functional safety lounge.

The following sections provide an overview of the safety mechanisms that are part of the
STL.
Zynq UltraScale+ Device TRM 186
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=186

Chapter 8: Functional Safety
Register Coverage

This software safety mechanism identifies random hardware faults within the safety critical
registers of the LPD safety subsystem. This mechanism monitors the safety critical registers
of the LPD that are static or updated infrequently. The function creates a golden copy of all
the safety critical registers and compares the actual values with that of the golden copy. If
there is a mismatch, the function reports an error.

GIC Coverage

This software safety mechanism is identifies random faults within the RPU GIC logic. This
function injects interrupts on the user-selected interrupt lines and checks for the correct
response.

Timer Coverage

The LPD includes two instances of the triple-timer counter (TTC) and one system watchdog
timer (LPD_SWDT). For TTC coverage, the STL periodically checks the TTC state. For the
LPD_SWDT, the STL periodically checks its state and monitors the SWDT.

Scrub

Single bit errors in less frequently used memories can accumulate and lead to uncorrectable
fatal errors. To avoid the accumulation of multi-bit errors, this safety memory scrubs the
LPD memories by reading from selected memories to trigger any correctable errors.

LPD DMA Coverage

The LPD DMA unit is used for safety functions. There are two approaches to provide
software coverage for the LPD DMA:

• Periodic checking by the STL function
• Safety application using the CRC protocol for data transferred by the DMA

Using the CRC protocol depends on the application. If the safety software's memory
footprint is larger than the size of the combined TCM and OCM, it might not be practical to
use the CRC protocol for DMA data transfers between DRAM and OCM/TCM. See the
software test library user guide for LPD DMA coverage. The internal state of the LPD DMA
must also be checked during operation. It can be checked by implementing periodic DMA
transactions in conjunction with LPD-DMA control registers.

Peripherals Coverage

At the hardware level, these peripheral safety features are provided:
Zynq UltraScale+ Device TRM 187
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=187

Chapter 8: Functional Safety
• Loopback tests for Gigabit Ethernet, CAN, UART, SPI, and I2C
• MBIST for I/O buffers
• Multiple I/O ports for safety critical I/Os
• Peripheral protection unit (XPPU) on peripheral master ports
Zynq UltraScale+ Device TRM 188
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=188

Chapter 9

System Monitors

Introduction
Each system monitor measures voltage and temperature to provide information and alarms
to other parts of the system including the PMU, RPU, and APU processors. There are two
instances of the SYSMONE4 architecture—the PL SYSMON advanced primitive and the PS
SYSMON unit. The basic functionality of these units are the same. Table 9-1 lists the
differences between the two units.

The PL SYSMON monitors the die temperature in the PL and several internal PL and PS
power supply nodes. The PL SYSMON can also monitor up to 17 external analog channels.
The PL SYSMON operates using the VCCAUX and VCCADC power supplies. Additional power
supplies including VCCINT are required to access the PL SYSMON from the PS. The
PL SYSMON can be configured by the PS using the PLSYSMON register set. The control and
configuration registers of the PL SYSMON can also be accessed via JTAG, I2C, and DRP
interfaces within the PL domain. The availability of each access method depends on the
configuration of the PL. See Register Access via APB Slave Interface for more details.

The PS SYSMON is located in the PS LPD and depends on the VCC_PSAUX and VCC_PSADC
power supplies. The PS SYSMON monitors two temperature points and several fixed voltage
nodes. The PS SYSMON is controlled by the PSSYSMON and AMS register sets that can be
accessed by an AXI interconnect master.

This chapter provides an introduction to the SYSMON units, including measurement points
for each unit and system access interfaces.

The detailed functional aspects of the SYSMONE4 architecture are described in UltraScale
Architecture System Monitor User Guide (UG580) [Ref 6]. This guide provides general and
detailed descriptions and should be used in conjunction with this chapter. In the UltraScale
Architecture System Monitor User Guide, the core functionality of the PS and PL SYSMON
units are compatible with the SYSMONE4 architecture. The SYSMON has a dedicated
interface to the PS and can interface to the PL fabric. The PS SYSMON has a simple register
access path and a fixed set of analog sensor channels Otherwise, the programming and
functionality are the same in both units.
Zynq UltraScale+ Device TRM 189
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=189

Chapter 9: System Monitors
Features

The SYSMONE4 architecture provides the following features.

• Voltage sensing: PS/PL internal, PS I/O banks, and PL inputs from external supplies.
• Temperature sensing channels in the LPD (RPU), FPD (APU), and the PL.
• Single channel read with alarms (measurement, minimum/maximum results since last

unit reset).
• Sequencer channel reads with full control on a per channel basis.

° Minimum/maximum result, average result, quiet (long) acquisition, and low-rate
sampling.

• 16-bit conversion result with 10-bit ADC accuracy, ±1 bit.

° Xilinx provides six LSBs to minimize quantization effects and to improve resolution.
• 1.25V ADC voltage reference (internal in PS SYSMON, internal or external in PL

SYSMON).
• PL SYSMON channel input sampling.

° Internal voltage nodes are unipolar unsigned 0 to 3V or 6V.

° External voltage nodes can be unipolar unsigned 0 to 1V or bipolar ±0.5V range.
• PS SYSMON channel input sampling is unipolar unsigned 0 to 3V (6V for PS I/O banks).
• Two power modes: full operation and sleep.
• Register programmed via multiple hardware paths.

° PL SYSMON: PL JTAG, TAP controller, I2C, APB DRP, and PL DRP.

° PS SYSMON: APB interface for any AXI system master.

Unit Architectures

The PL and PS SYSMON units are functionally very similar. The differences are summarized
in Table 9-1 and include conversion rates, attached sensor channels, and programming
access methods. The alarms from each unit are routed to the interrupt registers in the AMS
register set.

Sensor Channels

The PS SYSMON channels are all unipolar. There are several voltage nodes and two
temperature points. The PL SYSMON channels are unipolar for internal nodes and either
unipolar or bipolar for external nodes. The PL SYSMON unit has one local temperature
point.
Zynq UltraScale+ Device TRM 190
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=190

Chapter 9: System Monitors
Alarms

Alarms occur when voltage measurements exceed an upper or lower threshold. Thermal
management software uses temperature monitoring to control system cooling. The
temperature channels have an optional hysteresis function that uses a lower threshold
value to indicate when an alarm is deasserted to simplify the control of cooling strategies.

IMPORTANT: The over temperature (OT) limits and associated alarm are typically set at or close to the
maximum recommended operating temperature of the device. The OT alarm is generally used to
trigger an immediate but controlled shutdown of the equipment before erroneous operation or
permanent damage occurs.

Block Diagrams

Figure 9-1 shows the block diagram for the PS SYSMON and the PL SYSMON.

PL SYSMON

The PL SYSMON unit monitors voltage nodes within the PL, including several standard
power supplies plus four user-defined voltage nodes, VUser{0:3}. The PL SYSMON can also
measure up to 16 auxiliary analog inputs and the VP_VN dedicated input. Internal nodes are
measured with sampling circuits that generate a 0 to 3V or 6V range. The external auxiliary
inputs, VAUX{P, N}{0:15}, are routed through the analog wires in the PL to analog pins. If PL
SYSMON is not instantiated, the VAUX pins are routed to the analog pins of PL bank 66.
When PL SYSMON is instantiated, the bitstream must define the analog wire connections.

X-Ref Target - Figure 9-1

Figure 9‐1: PS SYSMON and PL SYSMON Block Diagram

Sampling
Circuit

Sampling
Circuit

APB slave
LPD

PS SYSMON Unit

Control and
status registers

PS sensors

10-bit
ADC

Comparators

Alarms

PL SYSMON Unit

Control and
status registers

10-bit
ADC

Comparators

VREFN VREFP

Optional

Alarms

VCC_PSINTLP
VCC_PSINTFP

VCC_PSAUX

APB Slave, LPD
JTAG PL TAP
I2C/PMBus
SYSMONE4 (DRP)

12 PL alarms
To AMS for GIC IRQ 88

12 PS alarms
To AMS for GIC IRQ 88

PS processors and
DAP controller

VCCINT
VCCAUX

VCCBRAM

PL sensors

VAUX{0:15}
VP_VN

Device
boundary

X19410-103117
Zynq UltraScale+ Device TRM 191
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=191

Chapter 9: System Monitors
These channels are measured with a unipolar unsigned 0 to 1V range or a bipolar signed
range of ±0.5V. The PL SYSMON also measures a few of the voltage nodes located in the PS.
The PL temperature sensor diode is physically located in the PL SYSMON. The ADC voltage
reference is selectable between an internal reference and the external pins VREFP and
VREFN.

PS SYSMON

The PS SYSMON monitors several internal voltage nodes plus two on-chip temperature
sensors. The voltage nodes are in the LPD and FPD. They include voltage nodes for internal
and I/O buffers. All voltage measurements are unipolar. The internal nodes are measured
with a 0 to 3V or 6V range. The PS has two temperature sensors. One is physically located
in the PS SYSMON near the RPU. The second, remote sensor is located in the FPD near the
APU. The ADC always uses an internally generated voltage reference.

Comparison of PS SYSMON and PL SYSMON

The notable differences between the PS SYSMON and the PL SYSMON are the programming
bus interfaces, sampling rates, and analog input signal sources. The differences are listed in
Table 9-1.

Table 9‐1: PS SYSMON and PL SYSMON Comparison

Function PS SYSMON PL SYSMON

Sampling frequency 1 M samples per second. 200K samples per second.

Voltage reference Internal. Internal or external (VREFP,
VREFN).

Programming interfaces APB on AXI interconnect.
Includes DAP controller via JTAG.

APB/AXI interconnect.
DRP (PL configuration required).
I2C/PMBus.
PL JTAG controller.

Power domain LPD. PLPD.
Temperature sensors
with OT

Temp_LPD near the RPU MPCore.
Temp_FPD near the APU MPCore.

Temp_PL near the PL SYSMON
unit.

On-chip supply sensors Three PS internal voltage nodes.
Three I/O voltage nodes.

Three PS internal voltage nodes.
Three PL internal voltage nodes.
Four PL internal VUSER nodes.

PL external sensor
channels None.

16 signal pairs; VAUXP, and
VAUXN(2).
One set of dedicated pins, VP and
VN(2).

PL user inputs None. Four, full featured.
Event driven trigger AMS.PS_SYSMON_CONTROL_STATUS CONVST start signal input.(1)

EOS, EOC AMS.ISR_1 [eos], [eoc] interrupts. EOS, EOC signals to PL fabric.(1)
Zynq UltraScale+ Device TRM 192
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=192

Chapter 9: System Monitors
On-chip Thermal Diode

There is an on-chip thermal diode connected to device pins DXP and DXN. There are no
internal connections between this thermal diode and the SYSMON units. The on-chip
thermal diode can be monitored by an external device connected to the DXP and DXN
device pins.

Safety Considerations

The SYSMON units contribute to the safe operation of a product. Appropriately configured,
the SYSMON units can independently monitor supply voltages and die temperatures and
alert the system to deviations beyond limits (thresholds) that can be defined as required.

IMPORTANT: To ensure that the SYSMON units enhance product safety, it is important to consider the
strategies deployed in response to each potential alarm so that the reactions are consistent with the
safety targets of the product. For safety applications, contact Xilinx Sales for technical support.

Set Operating Limits

By defining limits consistent with the maximum and minimum recommended values in the
data sheet, alarms (and interrupts) can be generated when the device is used outside of
specified limits, which could compromise operation. By defining limits at levels that allow
some margin within the maximum and minimum recommended values in the data sheet, a
preliminary warning can be provided for a potential issue while the device is still operating
within specified limits.

Monitor Supply Voltages

Direct measurement of voltages reaching the silicon die enable the SYSMON unit to confirm
the integrity of the external power supplies and the associated power distribution networks.
For example, the SYSMON unit can detect voltage drops caused by the combination of high
current demand and resistance in the path between the power supply and the silicon die.
Similarly, the monitoring and recording of the supply voltages over a longer time (e.g.,
hours or years), can reveal drift in the output voltage of a power supply caused by

Reset (see Reset Sources) POR, write to VP_VN register,
AMS.PS_SYSMON_CONTROL_STATUS. RESET pin, write to VP_VN register.

Notes:
1. This function requires the SYSMONE4 primitive to be instantiated by the bitstream for the PL. The instantiation

disconnects the PL SYSMON unit from the PS, and provides a slave bus interface and the other system signals for
the PL fabric.

2. The VAUXP/VAUXN, and VN/VP analog signals are connected to device pins by instantiating the SYSMONE4
primitive.

Table 9‐1: PS SYSMON and PL SYSMON Comparison (Cont’d)

Function PS SYSMON PL SYSMON
Zynq UltraScale+ Device TRM 193
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=193

Chapter 9: System Monitors
temperature fluctuations or aging. In both cases, the supply voltages measured by the
SYSMON unit can be used to fine tune the power supply controllers or report the
information for further investigation (e.g., at the next scheduled service of the product).

Monitor Temperature

Each temperature sensor is associated with two sets of limits or thresholds. The regular
alarm is ideally suited for controlling temperature using a cooling fan or load reduction
(e.g., reducing processing, clock frequency, or shutting down parts of the device). The direct
measurement of temperature can reveal the progress made by the cooling strategy and can
potentially refine that strategy as a result of what is observed. The OT alarm is normally set
at or close to the maximum recommended operating temperature of the device in the data
sheet. The generation of an OT alarm usually implies that attempts to control temperature
have failed. In this case, the system typically triggers an immediate but controlled shut
down of the equipment to prevent erroneous operation or permanent damage.

Safety User Manual

For safety applications, contact Xilinx Sales for technical support.

Functional Description
This section describes the functional units and their register programming model.

Sensor Channels

All sensor channels can be sampled individually or in a sequence that loops once or
multiple times. The voltage and temperature sensor channels are listed in Table 9-2 and
Table 9-3.

Two Classes of Sensor Channels

There are two classes of sensor channels—basic and full-featured. The full-featured
channels record minimum and maximum values and have upper and lower alarm threshold
settings. The basic channels have only a measurement register.

Sensor Channel Tables

Table 9-2 and Table 9-3 characterize the register control for each of the channels in the PL
and PS SYSMON units. The table headings are described here.

• Channel Name and Description
Zynq UltraScale+ Device TRM 194
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=194

Chapter 9: System Monitors
The channel name with description refers to the temperature points and voltage nodes
in the system.

• Measurement, Minimum/Maximum, Alarm U/L Registers

The offset addresses for the measurement, minimum/maximum, and upper and lower
alarm threshold registers are listed in three columns.

• Sequence Channel, Low-rate, and Average Registers

This column refers to three functions that are supported by three sets of registers. Each
channel can be individually selected for the normal or low-rate sequence. Each channel
can optionally accumulate an average value instead of the last measurement. The
control register names and offset addresses are listed in Table 9-6.

• Alarms, Interrupts, and Errors

The alarms are routed to the interrupt registers in the AMS register set. They are also
OR'd together to generate the SYSMON IRQ signal to the RPU and APU GICs. Alarms are
also routed to the PMU global registers as system errors.

• Input Sampling Circuit Type

For most channels, the sampling circuit type is fixed (temperature or unipolar) and
includes all PS SYSMON sensors.

The VP_VN and VAUX sensor channels in the PL SYSMON unit includes programmable
input sampling circuits types and long acquisition time options.

• Alternate Name

The alternate channel names appear in other documentation and in the standalone
device drivers.
Zynq UltraScale+ Device TRM 195
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=195

Chapter 9: System Monitors

Zy 196
UG

ddresses in Table 9-2 are relative to

Ta

al
US_1

CSU
IOMODULE

ISR (1)

Input
Circuit

Alternate
Channel

Name

Te ~ Temp PS_TEMP1

Te [20] Temp ~

V [22] 3V SUPPLY1

V [23] 3V SUPPLY2

V [24] 3V SUPPLY3

V [25] 3V SUPPLY4

V [27] 6V SUPPLY5

V [26] 6V SUPPLY6

~ ~ ~ ~

V [26] 6V SUPPLY7

V [26] 6V SUPPLY8

P [28] 3V SUPPLY9,
VMGTAVCC
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

PS SYSMON Sensor Channels

The PS SYSMON sensors are controlled by the PSSYSMON register set. The 3-digit offset a
the base address 0xFFA5_0800.

ble 9‐2: PS SYSMON Sensor Channels

Sensor
Channel

Name
Description

Channel
Number

Alarm
No.

Register Address Offsets Sequence
Channel,
Low-rate,

and
Average
Registers

AMS Interrupt
Registers

PMU_Glob
ERROR_STAT

Measurement
Min/
Max

Alarm U/L

mp_LPD Temperature for RPU
MPCore. 0 0 000

080
090

140
150

0 ISR_0 [0] ~

mp_LPD_OT LPD over
temperature (OT). ~ ~ ~ ~ 14C

15C
~ ISR_1 [1] [4]

CC_PSINTLP LPD power supply. 1 1 004
084
094

144
154

0 ISR_0 [1] [16]

CC_PSINTFP FPD power supply. 2 2 008
088
098

148
158

0 ISR_0 [2] [17]

CC_PSAUX PS auxiliary voltage. 6 3 018
08C
09C

160
170

0 ISR_0 [3] [18]

CCO_PSDDR I/O bank 504: DDR
PHY. 13 4 034

0A0
0B0

164
174

0 ISR_0 [4] [19]

CCO_PSIO3
I/O bank 503: boot,
config, JTAG, error,
SRST, POR.

14 5 038
0A4
0B4

168
178

0 ISR_0 [5] [20]

CCO_PSIO0 I/O Bank 500:
MIO[0:25]. 15 6 03C

0A8
0B8

16C
17C

0 ISR_0 [6] [21]

OR of PS alarms in
bits [6:0]. ~ 7 ~ ~ ~ ~ ISR_0 [7] ~

CCO_PSIO1 I/O bank 501:
MIO[26:51]. 32 8 200

280
2A0

180
1A0

2 ISR_0 [8] [22]

CCO_PSIO2 I/O bank 502:
MIO[52:77]. 33 9 204

284
2A4

184
1A4

2 ISR_0 [9] [23]

S_MGTRAVCC GTR SerDes I/O. 34 10 208
288
2A8

188
1A8

2 ISR_0 [10] ~

https://www.xilinx.com

Chapter 9: System Monitors

Zy 197
UG

P [28] 3V SUPPLY10,
VMGTAVTT

V ~ 3V ~

Te ~ Temp T_REMOTE,
Remote_Temp

Te [21] Temp ~

~ ~ ~ ~

No
1.
2. le shows the default mapping, see PS SYSMON

Ta

al
US_1

CSU
IOMODULE

ISR (1)

Input
Circuit

Alternate
Channel

Name
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

S_MGTRAVTT GTR SerDes
terminators. 35 11 20C

28C
2AC

18C
1AC

2 ISR_0 [11] ~

CC_PSADC PS SYSMON ADC
circuitry. 36 12 210

290
2B0

190
1B0

2 ISR_0 [12] ~

mp_FPD Temperature for APU
MPCore. 37 13 214

294
2B4

194
1B4

2 ISR_0 [13] ~

mp_FPD_OT FPD over
temperature (OT). ~ ~ ~ ~ 14C

15C
~ ISR_1 [0] [5]

OR of PS alarms in
bits [13:0]. ~ 15 ~ ~ ~ ~ ISR_0 [15] ~

tes:
Three MIO banks are OR'd together for bit [26] and the two GTR supplies are OR'd together for bit [28].
The PSIO{1, 2} and the two GTR supplies are mapped to sensors channels {7:10} using the ANALOG_BUS register. This tab
Analog_Bus for more information.

ble 9‐2: PS SYSMON Sensor Channels (Cont’d)

Sensor
Channel

Name
Description

Channel
Number

Alarm
No.

Register Address Offsets Sequence
Channel,
Low-rate,

and
Average
Registers

AMS Interrupt
Registers

PMU_Glob
ERROR_STAT

Measurement
Min/
Max

Alarm U/L

https://www.xilinx.com

Chapter 9: System Monitors

Zy 198
UG

ddresses in Table 9-3 are relative to

Ta

rrupt Registers
Input

Circuit

Alternate
Channel

Name

Te R_0 [16] Temp PL_TEMP

Te R_1 [2] Temp ~

V R_0 [17] 3V SUPPLY1

V R_0 [18] 3V SUPPLY2

V Uni 1V, or
Bi ±0.5V VP/VN

V R_0 [20] 3V ~
V R_0 [21] 3V ~

V R_0 [19] 3V SUPPLY3

~ R_0 [23] ~ ~

V SYSMON unit. 3V SUPPLY4

V SYSMON unit. 3V SUPPLY5

V SYSMON unit. 3V SUPPLY6

V
V ~ Uni 1V, or

Bi ±0.5V ~
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

PL SYSMON Sensor Channels

The PL SYSMON sensors are controlled by the PLSYSMON register set. The 3-digit offset a
the base address 0xFFA5_0C00.

ble 9‐3: PL SYSMON Sensor Channels

Sensor
Channel

Name
Description

Channel
Number

Alarm
No.

Register Address Offsets Sequence
Channel,
Low-rate,

and
Average
Registers

Input Mode
and Long

Acquisition
Time

Register

AMS Inte
Measurement

Min/
Max

Alarm U/L

mp_PL SYSMON temperature. 0 0 000
080
090

140
150

0 ~ IS

mp_PL_OT Over temperature (OT). ~ ~ ~ ~ 14C
15C

~ ~ IS

CCINT PL internal voltage. 1 1 004
084
094

144
154

0 ~ IS

CCAUX PL auxiliary voltage. 2 2 008
088
098

148
158

0 ~ IS

P_VN Analog input pins. 3 3 00C ~ ~ 0 0

REFP ADC positive V ref. 4 4 010 ~ ~ 0 ~ IS
REFN ADC negative V ref. 5 5 014 ~ ~ 0 ~ IS

CCBRAM PL block RAM voltage node. 3 3 018
08C
09C

160
170

0 ~ IS

OR of alarm bits [22:16]. ~ 7 ~ ~ ~ ~ ~ IS

CC_PSINTLP LPD power supply. 13 ~ 034
0A0
0B0

164
174

0 ~ Use PS

CC_PSINTFP FPD power supply. 14 ~ 038
0A4
0B4

168
178

0 ~ Use PS

CC_PSAUX PS auxiliary voltage. 15 ~ 03C
0A8
0B8

16C
17C

0 ~ Use PS

AUXP{0:15}
AUXN{0:15} Analog wires in PL fabric.(1) 16 -

31 ~ 040 to
07C

~ ~ 1 1

https://www.xilinx.com

Chapter 9: System Monitors

Zy 199
UG

V R_0 [24] 3V or 6V SUPPLY7

V R_0 [25] 3V or 6V SUPPLY8

V R_0 [26] 3V or 6V SUPPLY9

V R_0 [27] 3V or 6V SUPPLY10

~ R_0 [31] ~ ~

No
1. ter PL configuration, the auxiliary channels can

Ta

rrupt Registers
Input

Circuit

Alternate
Channel

Name
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

User0 Analog wires in PL fabric. 32 8 200
280
2A0

180
1A0

2 ~ IS

User1 Analog wires in PL fabric. 33 9 204
284
2A4

184
1A4

2 ~ IS

User2 Analog wires in PL fabric. 34 10 208
288
2A8

188
1A8

2 ~ IS

User3 Analog wires in PL fabric. 35 11 20C
28C
2AC

18C
1AC

2 ~ IS

OR of alarm bits [29:16]. ~ 15 ~ ~ ~ ~ ~ IS

tes:
The auxiliary channels can be enabled by writing 0001h to the SUPPLY2 (PL SYSMON) register prior to PL configuration. Af
be connected to the PL analog wires using the SYSMONE4 instantiation.

ble 9‐3: PL SYSMON Sensor Channels (Cont’d)

Sensor
Channel

Name
Description

Channel
Number

Alarm
No.

Register Address Offsets Sequence
Channel,
Low-rate,

and
Average
Registers

Input Mode
and Long

Acquisition
Time

Register

AMS Inte
Measurement

Min/
Max

Alarm U/L

https://www.xilinx.com

Chapter 9: System Monitors
Measurement Registers

The ADCs produce a 16-bit conversion result, and the full 16-bit result (or averaged result)
is stored in the 16-bit measurement registers. The specified 10-bit accuracy corresponds to
the 10 MSBs (most significant or left-most bits) in the 16-bit ADC conversion result. The
unreferenced LSBs can be used to minimize quantization effects or improve resolution
through averaging or filtering.

Average Measurements

Channels are individually enabled to either record the last sample, or an average of multiple
samples using the SEQ_AVERAGE registers. The number of samples that are averaged are
the same for all channels within a SYSMON unit that employs averaging. The average value
is calculated using the last 16, 64, or 256 samples as programmed by the CONFIG_REG0
[averaging] bit field. Measurement averaging applies to full feature sensor channels
(internal measurements) in both the PL and PS SYSMON units.

If a channel is selected for averaging, then its measurement register is first written when the
sample count is reached for that channel, which could take 16, 64, or 256 samples of the
channel. The subsequent values written to the measurement register are the average of the
most recent 16, 64, or 256 samples.

When averaging is enabled, the end of sequence (EOS) event occurs after the sequencer has
completed the selected number of samples. In the PL SYSMON unit, the EOS event is
indicated by the assertion of the EOS signal. In the PS SYSMON unit, the EOS event sets the
[eos] interrupt bit in the AMS.ISR_0 register.

When averaging is disabled, the EOS event occurs after the first pass of the sensor channels
and the results are written to the measurement register and the minimum or maximum
registers.
Zynq UltraScale+ Device TRM 200
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=200

Chapter 9: System Monitors
Measurement Registers in AMS

The AMS register set includes several measurement registers that are written to by the PS
SYSMON unit using the single-channel mode (sequencer off). These voltage measurements
are performed using the unipolar sampling circuit with a 0 to 3V range and do not have
alarms or minimum/maximum registers.

The AMS measurement register names for each voltage node are listed in Table 9-4, and are
accessed starting at memory location 0xFFA5_0060.

PS SYSMON Analog_Bus

The sensor channels {7:10} are routed through four multiplexers controlled by the
PSSYSMON.ANALOG_BUS register. The sensor channels connect to the following voltage
nodes.

• VCCO_PSIO1
• VCCO_PSIO2
• PS_MGTRAVCC
• PS_MGTRAVTT

The recommended value of the ANALOG_BUS register is 3210h; this value is assumed for
the definition of these sensor channels in Table 9-2 and in other places. The register is
programmed to 3201h by the PMU ROM pre-boot code and should be reprogrammed by
the FSBL or other software code.

Note: Once the value is reprogrammed by the FSBL it should be changed.

Table 9‐4: Measurement Registers in AMS Register Set

Voltage Node Description Channel Number
Seq
Bit

VCC_PSPLL System PLLs voltage. 48 0
VCC_PSBATT Battery voltage. 51 3
VCCINT PL internal voltage. 54 6
VCCBRAM PL block RAM voltage. 55 7
VCCAUX PL VAUX voltage. 56 8
VCC_PSDDR_PLL PS DDR I/O PLLs {0:5} voltage. 57 9
VCC_DDRPHY_REF PS DDR I/O buffer voltage. 58 10
VCC_PSINTFP_DDR PS DDR controller voltage. 63 15

Notes:
1. PSSYSMON.SEQ_BASIC_MONITOR_CHANNEL0 register for low-rate sequence assignment.
Zynq UltraScale+ Device TRM 201
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=201

Chapter 9: System Monitors
RECOMMENDED: The ANALOG_BUS register should be set to 3210h in the FSBL code. If the
recommended value is not used, the sensor channels {7:10} are remapped and might not be compatible
with the system software.

The functionality of the ANALOG_BUS register is illustrated in Figure 9-2.

Temperature Sensors

The temperature sensors are located in the following three areas of the chip.

• The LPD near the RPU and measured by the PS SYSMON unit.
• The FPD near the APU and measured by the PS SYSMON unit.
• The PL area near the PL SYSMON unit and measured by the PL SYSMON unit.

The ADC result is processed through a temperature sensor translation function to provide a
meaningful temperature value. The temperature sensor translation function and other
details of the SYSMON units are explained UltraScale Architecture System Monitor User
Guide (UG580) [Ref 6].

X-Ref Target - Figure 9-2

Figure 9‐2: PS SYSMON Unit Sensor Channels {7:10}

Ground

Ground

Ground

VCCO_PSIO1
VCCO_PSIO2

PS_MGTRAVCC
PS_MGTRAVTT

Ground

ANALOG_BUS [vuser0]

SUPPLY7

ANALOG_BUS [vuser1]

SUPPLY8

ANALOG_BUS [vuser2]

SUPPLY9

ANALOG_BUS [vuser3]

SUPPLY10

12

12

12

12

ANALOG_BUS = 3210h

VCCO_PSIO1

VCCO_PSIO2

PS_MGTRAVCC

PS_MGTRAVTT

ANALOG_BUS = 3201h

VCCO_PSIO2

VCCO_PSIO1

PS_MGTRAVCC

PS_MGTRAVTT

0
1
2
3
x

0
1
2
3
x

0
1
2
3
x

0
1
2
3
x

X19411-081617
Zynq UltraScale+ Device TRM 202
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=202

Chapter 9: System Monitors
Minimum and Maximum Result Registers

The minimum and maximum values are recorded for fully-featured channels. POR and
system resets affects all minimum value registers set to FFFFh and all maximum value
registers set to 0000h.

Each new measurement is compared to the contents of its maximum and minimum
registers. If the measured value exceeds the minimum/maximum extreme, the appropriate
register is updated. This checking is done every time a result is written to the measurement
register. The minimum and maximum result feature applies to both the PL and PS SYSMON
units.

Sequencer Channel Control

Low-Rate Sampling

Channels that are less time critical can be sampled less often to free up ADC bandwidth for
other channels. The SEQ_LOW_RATE_CHANNEL registers are used to select which channels
are sampled at a lower rate than the others. The CONFIG_REG4 [sequence_rate] specifies
how often the low-rate channels are sampled (every 4th, 16th, and 64th sequence).
Selecting a channel in both the SEQ_CHANNEL and SEQ_LOW_RATE_CHANNEL registers
causes the SEQ_CHANNEL to prevail, but this situation is not recommended. The low-rate
sampling feature applies to both the PL and PS SYSMON units.

Long Acquisition Time

In auto-sequencer mode, the SYSMON unit waits four ADC clock cycles before sampling the
analog input. In the PL SYSMON, the settling time can be extended to ten clock cycles for
the external voltage measurements by setting bits in the SEQ_ACQ registers on a per
channel basis. The long acquisition time extends the settling time after being selected by
the analog multiplexer. The long acquisition time feature applies to the VP_VN, VUSER{0:3},
and VAUX{P, N}{0:15} channels of the PL SYSMON. The PS SYSMON does not use the long
acquisition time feature.
Zynq UltraScale+ Device TRM 203
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=203

Chapter 9: System Monitors
Input Sampling Circuits

All PS SYSMON sensor channels and the internal PL SYSMON channels use a unipolar
sampling circuit. The PL SYSMON external sensor channels can use unipolar or bipolar
mode, selectable on a per channel basis. Operational details of the sampling circuit are
discussed in the UltraScale Architecture System Monitor User Guide (UG580) [Ref 6]. PS
SYSMON uses only unipolar mode. PL SYSMON uses unipolar mode on its internal sensor
channels, and unipolar or bipolar mode on its external sensor channels.

Unipolar Mode

Unipolar mode voltage measurement is an unsigned 16-bit value representing the voltage
range listed in Table 9-2 and Table 9-3.

Bipolar Mode

Bipolar mode voltage measurement is a signed, twos complement 16-bit value representing
a ±0.5V sample for VP_VN and 16x VAUX channels (PL SYSMON unit).

Sensor Alarm Types

Interrupts and system errors are generated by voltage and temperature alarms. When a
measurement exceeds a programmed limit, an alarm is asserted unless disabled by a
CONFIG_REG register. An alarm can assert an interrupt or a system error. Several PS
SYSMON alarms go to interrupt controllers in the PMU and CSU. The IRQ 88 interrupt
control and status registers are in the AMS register set. The routing of the alarm signals are
shown in Figure 9-4. Each fully-featured sensor channel asserts an alarm signal when a
measured value exceeds a software programmed value in its associated upper or lower
threshold register.

Voltage Alarms

The voltage nodes are measured and monitored for low and high conditions. The alarm is
asserted when the measurement register is outside the upper or lower threshold register
settings.

Normal Temperature Alarms

Each temperature channel is monitored and can generate an alarm when the corresponding
normal temperature threshold is exceeded. The normal alarm signals can generate an
interrupt that can be used by software to implement a thermal management scheme such
as the control of a cooling fan. Each monitor has a hysteresis mode to reset the alarm. The
upper and lower temperature alarm thresholds can be used to generate a tamper event in
the CSU.
Zynq UltraScale+ Device TRM 204
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=204

Chapter 9: System Monitors
Upper Alarm Threshold

The PS SYSMON unit has two normal temperature upper alarm threshold registers;
ALARM_UPPER_TEMP_LPD and ALARM_UPPER_TEMP_FPD. The PL SYSMON unit has one
normal temperature upper alarm threshold register; ALARM_UPPER_TEMP_PL. When a
temperature exceeds a threshold and the corresponding alarm is not disabled, the normal
temperature alarm propagates to the system as shown in Figure 9-4.

Lower Alarm Threshold

The PS SYSMON unit has two normal temperature lower alarm threshold registers;
ALARM_LOWER_TEMP_LPD and ALARM_LOWER_TEMP_FPD. The PL SYSMON unit has one
normal temperature lower alarm threshold register; ALARM_LOWER_TEMP_PL.

The temperature alarm is set when the measured temperature exceeds the value in the
ALARM_UPPER_TEMP_xx register. The temperature at which the alarm is cleared depends on
the [threshold_mode] bit setting in the lower alarm threshold register. The alarm deasserts
either immediately after the temperature drops below the upper limit, or when hysteresis is
enabled, when the temperature reaches the lower limit.

All of these registers define a lower temperature threshold that can be used in one of the
following ways.

• Normal Lower Threshold Mode

In normal mode, the alarm is asserted when the temperature is below the lower
threshold. When the temperature returns to between the upper and lower thresholds,
the alarm is deasserted. This mode is selected when bit [0] of the lower threshold
register is set to 1.

• Hysteresis Lower Threshold Mode

In hysteresis mode, the alarm is asserted when the temperature goes above the upper
threshold and deasserts when it falls below the lower threshold. The hysteresis mode is
selected when bit [0] of the lower threshold register is set to 0.

Over Temperature Alarms

When the temperature point exceeds the OT upper threshold, the OT alarm is asserted. The
OT alarm deasserts when the temperature falls below the OT lower threshold.

The default OT upper threshold value corresponds to a temperature of 122°C. The default
value is used after reset and when the ALARM_UPPER_OT [3:0] bits = 0h. The default lower
threshold value is 67°C.

The software can define its own upper and lower OT thresholds. Setting ALARM_UPPER_OT
[3:0] to 3h overrides the default upper and lower thresholds with the temperature values
defined by ALARM_UPPER_OT [15:4] and ALARM_LOWER_OT [15:4]. When overriding the
Zynq UltraScale+ Device TRM 205
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=205

Chapter 9: System Monitors
default OT thresholds, ALARM_LOWER_OT [0] defines hysteresis mode when 0 or normal
mode when 1.

For the PS SYSMON unit, the upper and lower OT threshold values are shared between the
LPD and FPD over-temperature alarms. The register value for temperature translation
algorithms is described in the UltraScale Architecture System Monitor User Guide (UG580)
[Ref 6].

Writing 0000h to the ALARM_UPPER_OT register restores the default upper and lower OT
temperatures and hysteresis mode. In the PS SYSMON unit, the LPD and FPD sensor
channels both use the same threshold register, ALARM_UPPER_OT. The OT alarm signal
causes a system error that is received by the PMU, reset units, and the CSU.

Alarm Interrupt Control

An alarm generates an interrupt if the alarm generation is enabled within the SYSMON and
the corresponding interrupt is enabled (unmasked). The setting and clearing of the alarm
and interrupt signals are illustrated in Figure 9-3. The function is described with and
without hysteresis enabled.

X-Ref Target - Figure 9-3

Figure 9‐3: Alarm Interrupt Function

Alarm

Voltage
or

Temperature

Time

Write to ISR

Upper
Alarm

Lower
Alarm

ISR

No
Effect

Clear
ISR

Clear
ISR

Alarm

Temperature

Time

Write to ISR

Upper
Alarm
Lower
Alarm

ISR

No
Effect

Clear
ISR

Without Hysteresis With Hysteresis

X19412-061217
Zynq UltraScale+ Device TRM 206
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=206

Chapter 9: System Monitors
Alarm Signal Routing

All alarm signals from the PS SYSMON and PL SYSMON are routed to the interrupt
mechanism within the PS. By default, both monitors generate alarm signals, however,
individual alarm signals can be disabled by setting bits in the CONFIG_REG1 and
CONFIG_REG3 registers of each monitor. The alarm signals from the PL SYSMON unit are
always routed to the PS (independent of instantiating the SYSMONE4 primitive). However,
the PL SYSMON alarm signals do pass through the PCAP isolation wall so they are subject
to isolation (alarms appear inactive to the PS when isolation is active).

The alarm interrupts from the PS and PL SYSMON units can be observed in the ISR_{0:1}
registers of the AMS. Each alarm interrupt can be individually masked by the IMR_{0:1}
registers. Unmasked alarm signals assert the IRQ 88 interrupt to the RPU, APU, and proxy
GICs. The routing of the SYSMON alarms to the PMU, CSU, and PL is shown in Figure 9-4.
The interrupt control and status registers are described in the Sensor Alarm Types and
Interrupts section.

The PMU processor receives ten alarm signals from the PS SYSMON unit that are controlled
by the CONFIG_REG disables.

• LPD (RPU) OT.
• FPD (APU) OT.
• Eight power supplies out of range (see Table 9-2 for a list). ERROR_STATUS_1 [16:23].
• Two power supplies out of range (see Table 9-4 for a list).

X-Ref Target - Figure 9-4

Figure 9‐4: Alarm Signal Routing

Alarm Signals

PL Outputs

RPU GIC

8 (VCC) ISR_0
[ps_alm}, [pl_alm]

ISR_1
[x_OT]

PS SYSMON

CONFIG_REG {1, 3}
registers

2 (Temp OT)

2 (GTR)

PMU
Global

ERROR_STATUS_1

2 (Temp)

8 (VCC)
2 (Temp OT)

GIC Proxy IRQ 88

AMS
Register Set

IRQ 88

CSU

TAMPER_STATUS

1 (ADC)

8 (VCC)

2 (Temp OT)
2 (GTR)

APU GIC

11 (VCC)

Instantiated
SYSMONE4

1 (Temp)
1 (Temp OT)

PL SYSMON

CONFIG_REG {1, 3}
registers

LPD-PL
Isolation

Wall

X19413-061418
Zynq UltraScale+ Device TRM 207
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=207

Chapter 9: System Monitors
The PL SYSMON unit can be configured to initiate an automatic shutdown procedure. For
details, see the “Thermal Management” section in the UltraScale Architecture System
Monitor User Guide (UG580) [Ref 6].

GIC IRQ 88 is an OR of the 25 alarm signals from the PS and PL SYSMON units after the
CONFIG_REG alarm disables and the interrupt masking function controlled by the
AMS.ISR_{0, 1} registers.

Interrupts

Each controller reports the following three events.

• End of conversion (EOC) event, useful for single channel mode.
• End of sequence (EOS) event.
• Register address decode error for AMS, PLSYSMON, and PSSYSMON register sets.

The PS SYSMON unit reports all three events as interrupt signals in AMS.ISR_1 [3, 4, 29].

The PL SYSMON unit drives the EOC and EOS signals to PL fabric outputs. The address
decode error sets the AMS.ISR_1 [30] bit.

X-Ref Target - Figure 9-5

Figure 9‐5: Controller Interrupts

PL Outputs

RPU GIC
APU GIC
PMU GIC Proxy

IRQ 88

AMS
Register

Set

ISR_1PS SYSMON

PMU Global

ERROR_STATUS_1

PL SYSMON
Register Decode Error

EOC and EOS Events

EOC and EOS Events

Register Decode Error

Alarm Signals from AMS ISR_0

10

Controller Interrupts PCAP
Isolation

Wall

Instantiated
SYSMONE4

X19414-061418
Zynq UltraScale+ Device TRM 208
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=208

Chapter 9: System Monitors
End of Sequence Event

When a sequencer has completed a loop through all selected channels, it signals the end of
sequence (EOS) event. The EOS signal can be generated after the normal rate sequence is
done, after the low-rate sampling is done, or after either is done by programming the
CONFIG_REG4 [low_rate_eos] bit. For the PL SYSMON, this can be an output on the
SYSMONE4 primitive (requires it to be instantiated). For the PS SYSMON, the AMS.ISR_1
[eos] bit asserts and generates an interrupt if enabled.

End of Conversion (EOC) Event

Each time an ADC completes a measurement, it signals the end of conversion (EOC) event.
For the PL SYSMON, this can be an output on the SYSMONE4 primitive (requires it to be
instantiated). For the PS SYSMON, the AMS.ISR_1 [eoc] bit asserts if enabled. EOC is useful
for single measurement mode.

Register Address Decode Error (APB)

If the software attempts to access a non-existent register or performs a read or write to a
register that does not support that access type, the SYSMON unit detects this and sets a
maskable register address decode error interrupt in ISR_1 [29:31] register bits.

Interrupt Control Registers

The SYSMON interrupt controller processes PS and PL alarms, end-of-process events, and
register address decode errors.

Each SYSMON unit has configuration registers to disable alarms. If an alarm is disabled
when its event occurs, the alarm signal does not assert. The interrupt controllers (AMS
registers and PL signals) will not receive an IRQ. Each alarm can be disabled using a
configuration register; a disabled alarm is ignored by the system.

Status/Clear

AMS.ISR_{0, 1} are sticky registers that latch a 1 when an enabled (unmasked) alarm signal
is detected. These registers are read by software to determine which alarm sensor or
sensors caused the interrupt. Software clears a bit by writing a 1 to it. The software must
either resolve the cause of the alarm or disable the alarm (mask it) for the ISR register bit to
be cleared by writing a 1.
Zynq UltraScale+ Device TRM 209
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=209

Chapter 9: System Monitors
Enable, Disable Mask

An interrupt request signal is asserted if the interrupt is not masked. The following three
registers control interrupt signals.

• Write a 1 to IER_{0:1} bits to enable alarm signal (unmask). Write-only.
• Write a 1 to IDR_{0:1} bits to disable alarm signal (mask). Write-only.
• Read the IMR_{0:1} bits to determine the state of the mask (1 means masked).

Read-only.

Debug Environment

In a debug environment, the DAP controller can provide a general method to generate read
and write transactions on the AXI interconnect including the APB interface to the PS and PL
SYSMON units. The DAP controller is part of the AXI CoreSight™ debug environment.

The JTAG interface can also access the PL SYSMON control and status registers. The
multiplexing of access structures for both SYSMON units are shown in Figure 9-1.

Operating Modes
The PL and PS SYSMON units operate independently. The operating modes include single
read, default sequence, and auto sequence. The SYSMON units normally operate in their
default sequence mode. They can be configured for a custom sequence while in this mode.
Once the custom configuration is complete, set the sequence mode in the CONFIG_REG
register. The activity of the PS ADC can be monitored by reading the AMS.MON_STATUS
register fields [mon_data], [channel], and [busy].

Single-channel Mode

The single-channel mode measures one sensor channel at a time.

1. Write the channel number into the CONFIG_REG0 [mux_channel] bit field and select
single-channel mode in the CONFIG_REG1 [sequence_mode] bit field.

The sensor channel numbers are listed in the sensor channel tables. All channels support
long acquisition [ACQ] and the external channels support input sampling type [BU]
functions (refer to the CONFIG_REG0 register).

2. Wait for the EOC interrupt and then read the associated measurement register.
Zynq UltraScale+ Device TRM 210
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=210

Chapter 9: System Monitors
Default Sequence Mode

After a reset, the SYSMON operates in default mode with a simple auto-sequencer loop. The
default sequence mode is established by any SYSMON reset. The default sequence can also
be programmed by writing 0000h to the CONFIG_REG1 [SEQUENCE_MODE] bit field. In this
mode, the SYSMON unit operates independently of any other control register settings,
monitors the default on-chip sensors, and stores average results in the measurement
registers.

In the default sequence mode, the ADC is calibrated and averaging is set to 16 samples for
all sensor channels. The SYSMON also operates in default mode during device
configuration or if set using the sequence bits. Table 9-5 lists the default channel sequence.

Note: The automatic alarm function is not enabled in this mode.

Sequencer Modes

The SYSMON units can sequence through a list of enabled channels once or continuously.
The analog inputs are time-multiplexed in a fixed order and presented to the ADC input
circuitry one at a time. As readings are taken, the minimum and maximum values are stored
for each channel. Measurements can also be averaged over successive readings. The
sequencer follows the SEQ_CHANNEL and SEQ_LOW_RATE_CHANNEL register settings in
the order shown in Table 9-2 and Table 9-4.

Table 9‐5: Default Sequence for PL and PS SYSMON Units

Sequence Order PL SYSMON Channels PS SYSMON Channels

1 Calibration (low rate) Calibration (low rate)
2 VCC_PSINTLP VCC_PSDDR
3 VCC_PSINTFP VCC_PSIO3
4 VCC_PSAUX VCC_PSIO0
5 Temp_PL (low rate) Temp_LPD (low rate)
6 VCCINT VCC_PSINTLP
7 VCCAUX VCC_PSINTFP
8 VCCBRAM VCC_PSAUX
Zynq UltraScale+ Device TRM 211
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=211

Chapter 9: System Monitors
Programming Examples
This programming section describes examples for software running on a processor. The
sequences are generally applicable to JTAG and other programming ports, but with
different programming methods. The programming examples include the following modes.

• Continuous loop mode
• Single pass sequence mode
Note: The PL SYSMON unit programming examples reference the PLSYSMON register set. The PS
SYSMON unit programming examples reference the PSSYSMON and AMS registers sets.
Note: When accessing a SYSMON unit, be sure its registers are accessible as described in Register
Access via APB Slave Interface and Figure 9-6.

Example – Continuous Loop Mode

This programming example puts the SYSMON into its default sequence mode, enables
alarms, configures the sequencer channels, and selects the continuous loop sequence
mode. This routine can be used for both SYSMON units. Ensure access to the register sets
before attempting to access them (see Register Access via APB Slave Interface).

1. Put the SYSMON unit into its default sequence mode and enable the alarms. Write
0000h to the CONFIG_REG{1, 3} registers.

2. PS SYSMON unit only. If the PS SYSMON unit is held in reset, then deassert reset. This
causes the unit to operate in its default sequence mode and allows the software to
configure the sequence registers. The PS SYSMON unit reset is controlled by
AMS.PS_SYSMON_CONTROL_STATUS [reset_user]. After reset is deasserted, wait until
the AMS_CTRL.PS_SYSMON_CONTROL_STATUS [startup_done] bit is set. Software might
begin the startup state machine again by writing a 1 to the self clearing [startup_trigger]
bit and wait again for the [startup_done] bit.

3. Select the desired full-rate sensor channels. Write to the SEQ_CHANNEL registers.
4. If the low-rate sensor channels are to be included, write to the CONFIG_REG4

[sequence_rate] and [low_rate_eos] bit fields to define the rates and select the low-rate
channels using the SEQ_LOW_RATE_CHANNEL registers. Do not select channels already
selected in the SEQ_CHANNEL registers.

5. PL SYSMON unit only. If the external sensor channels are used (VP_VN, VAUX), select the
desired sampling circuit and acquisition length for each of these channels. Write to the
appropriate SEQ_INPUT_MODE{0, 1} and SEQ_ACQ{0, 1} registers.

6. If desired, set the alarm thresholds by writing to the ALARM_*_UPPER and
ALARM_*_LOWER registers. The thresholds are described in Sensor Alarm Types. The
programming is done using the transfer functions described in the UltraScale
Architecture System Monitor User Guide (UG580) [Ref 6].
Zynq UltraScale+ Device TRM 212
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=212

Chapter 9: System Monitors
7. If average measurements are desired, select the channels in the SEQ_AVERAGE registers
and set the desired averaging count in the CONFIG_REG0 [averaging] bit field.

8. Change the sequence mode from default mode to continuous loop mode and keep the
alarms enabled. Write 2000h to the CONFIG_REG1 register.

Read the measurement registers for the monitored channels. If averaging is enabled, a
value does not appear in the measurement register until the SYSMON unit has looped
through the channel sequencer the number of times in the averaging count value. The EOS
event indicates when the measurement registers have valid data.

Example – Single Pass Sequence Mode

In single pass sequence mode, the sequencer makes one pass through the sequencer
channel select registers and then stops. All channels are available for single pass mode.

The following features are not applicable.

• Low-rate sequencer
• Measurement averaging
1. Put the SYSMON unit into its default sequence mode and enable the alarms. Write

0000h to the CONFIG_REG1 and CONFIG_REG3 registers.
2. PS SYSMON unit only. If the PS SYSMON unit is held in reset, deassert reset. This causes

the unit to operate in its default sequence mode and allows the software to configure
the sequence registers and perform calibration. The PS SYSMON unit reset is controlled
by AMS.PS_SYSMON_CONTROL_STATUS [reset_user]. After reset is deasserted, wait until
the AMS_CTRL.PS_SYSMON_CONTROL_STATUS [startup_done] bit is set. Software might
begin the startup state machine again by writing a 1 to the self clearing [startup_trigger]
bit and wait again for the [startup_done] bit.

3. Select the desired sensor channels. Write to the SEQ_CHANNEL registers.
4. PL SYSMON unit only. If any of the VP_VN, VAUX, or VUser channels are used, (i.e., VUser

channels are internal), select the desired sampling circuit and acquisition length for each
of these channels. Write to the appropriate SEQ_INPUT_MODE{0, 1} and SEQ_ACQ{0, 1}
registers.

5. Change the sequence mode from default mode to single pass mode and keep the
alarms enabled. Write 1000h to the CONFIG_REG1 register.

Read the measurement registers for the monitored channels. The EOS event indicates when
the measurement registers have valid data. The “eos” bit in the ISR_1 register is the EOS for
the PS SYSMON.
Zynq UltraScale+ Device TRM 213
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=213

Chapter 9: System Monitors
Thermal Management

Thermal management software controls the system cooling by reading the temperature
measurement register (polling) and configuring the temperature alarm thresholds
(interrupt-driven). As the temperature rises, or an alarm interrupt is detected, the software
can turn on or increase the speed of the fan cooling the device. The software can also cool
down the device by instructing the system manager to reduce computational activity or
lower the clock rate to reduce power dissipation.

Normal Temperature Alarm

The normal temperature alarm is used for thermal management. The normal alarm can be
cleared with or without hysteresis as described in Lower Alarm Threshold.

Critical Over-Temperature Shutdown

The second set of temperature registers are used to signal a serious OT condition that can
lead to operational failures. This alarm is used to shut down the system or take other drastic
action to reduce the device temperature.

OT Alarm

The OT alarm is used to signal a need for drastic action. The OT alarm can be cleared with
or without hysteresis as described in Lower Alarm Threshold.

The OT alarm is operational in the default state with the OT upper threshold set to
approximately 122°C. This setting can be overwritten using the upper alarm threshold
register. Write the threshold value into the [15:4] bit field and write 03h into [3:0] bits to
activate this value and to activate the lower threshold value defined in the OT lower
threshold register. The measured value can be converted to a temperature using the
transfer function described the UltraScale Architecture System Monitor User Guide (UG580)
[Ref 6].

Note: The PS SYSMON uses the same upper and lower OT threshold registers for both the LPD and
FPD temperature channels.
Zynq UltraScale+ Device TRM 214
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=214

Chapter 9: System Monitors
Register Sets
Table 9-6 summarizes the memory-mapped control and status registers for all three
register sets AMS, PSSYSMON, and PLSYSMON. Register bit details are described in the
Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4].

Software access to the registers is described in Register Access via APB Slave Interface. The
register map for the PL SYSMON when accessed using JTAG, I2C/PMBus or the DRP is
described in the UltraScale Architecture System Monitor User Guide (UG580) [Ref 6].

Table 9-6 includes the registers from the AMS, PSSYSMON (PS), and PLSYSMON (PL)
register sets. The register base addresses are as follows.

• AMS: 0xFFA5_0000
• PS SYSMON: 0xFFA5_0800
• PL SYSMON: 0xFFA5_0C00
Table 9‐6: Register Sets Overview

System Address Register Name AMS PS PL Description

SYSMON, AMS Register Set

0xFFA5_0000 MISC_CTRL 1
Invalid register
access and DRP
access.

0xFFA5_0010 ISR_{0, 1}, IMR_{0, 1},
IER_{0, 1}, IDR_{0, 1} 8

Interrupt status
and mask for
alarms and APU
register address
decode errors
to generate IRQ
88.

0xFFA5_0040 PS_SYSMON_CONTROL_STATUS 1

Control
sequencer,
reset,
conversion
trigger.

0xFFA5_0044 PL_SYSMON_CONTROL_STATUS 1

Indicator for PS
ability to access
PL SYSMON
registers via
APB slave
interface.

0xFFA5_0050 MON_STATUS (indicators). 1
Current
channel, busy,
and clock
health.
Zynq UltraScale+ Device TRM 215
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=215

Chapter 9: System Monitors
0xFFA5_0060
0xFFA5_006C VCC_PSPLL and VCC_PSBATT. 2 Measurement

registers.

0xFFA5_0074 -
0xFFA5_0084

VCCBRAM, VCCINT, VCCAUX,
VCC_PSDDR_PLL, and
VCC_PSINTFP_DDR.

5
Measurement
registers.

PS SYSMON Configuration Registers, PSSYSMON Register Set

0xFFA5_08FC STATUS_FLAG 1
Alarm status
and power
indicator.

0xFFA5_0900 CONFIG_REG0 1
Single-read,
averaging, and
sampling
modes.

0xFFA5_0904 CONFIG_REG1 1
PS alarm
disables [0:6]
and sequencer
mode.

0xFFA5_0908 CONFIG_REG2 1
Sleep mode,
ADC clock
divider ratio.

0xFFA5_090C CONFIG_REG3 1 PS alarms
disables [8:13].

0xFFA5_0910 CONFIG_REG4 1
Low-rate
channel skips,
EOS select.

PL SYSMON Configuration Registers, PLSYSMON Register Set

0xFFA5_0CFC STATUS_FLAG 1

Alarm status,
power indicator,
VREF selection,
PL JTAG access
indicators.

0xFFA5_0D00 CONFIG_REG0 1

Multiplexer,
single-read
channel,
averaging and
sampling
modes.

0xFFA5_0D04 CONFIG_REG1 1
PL alarm
disables [0:6]
and sequencer
mode.

0xFFA5_0D08 CONFIG_REG2 1
Sleep mode,
ADC clock
divider ratio.

Table 9‐6: Register Sets Overview (Cont’d)

System Address Register Name AMS PS PL Description
Zynq UltraScale+ Device TRM 216
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=216

Chapter 9: System Monitors
0xFFA5_0D10 CONFIG_REG4 1

Low-rate
channel skips,
EOS select, and
VUser voltage
range select.

PS and PL Sequencer Configuration (PS SYSMON and PL SYSMON Registers)

0xFFA5_0xxx
{920, 918}
0xFFA5_0xxx
{D20, D24, D18}

PS: SEQ_CHANNEL{0, 2}
PL: SEQ_CHANNEL{0, 1, 2} 2 3

Select sensor
channels for the
normal
sequence loop.
Alternate name:
SEQCHSEL.

0xFFA5_0xxx
{9E8, 9F0}
0xFFA5_0xxx
{DE8, DEC, DF0}

PS: SEQ_LOW_RATE_CHANNEL{0, 2}
PL: SEQ_LOW_RATE_CHANNEL{0, 1, 2} 2 3

Select sensor
channels for the
low-rate
sequence loop.
Alternate name:
SLOWCHSEL.

0xFFA5_0xxx
{928, 91C}
0xFFA5_0xxx
{D28, D2C, D1C}

PS: SEQ_AVERAGE{0, 2}
PL: SEQ_AVERAGE{0, 1, 2} 2 3

Enable sensor
channel
measurement
averaging.
Alternate name:
SEQAVG.

0xFFA5_0Dxx PL: SEQ_INPUT_MODE{0, 1} 2

Select input
sampling
circuitry,
unipolar, bipolar
for external
voltage nodes.
Alternate name:
SEQINMODE.

0xFFA5_0Dxx PL: SEQ_ACQ{0, 1} 2

Select option to
extend
sampling time;
potentially
better reading.
Alternate name:
SEQACQ.

PS and PL ADC Results and Thresholds (PS SYSMON and PL SYSMON Registers)

(1) Voltage Node Names. ~10 ~10 Voltage
measurements.

TEMP_{LPD, FPD, PL} 2 1 Temperature
measurements.

Table 9‐6: Register Sets Overview (Cont’d)

System Address Register Name AMS PS PL Description
Zynq UltraScale+ Device TRM 217
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=217

Chapter 9: System Monitors
Register Access via APB Slave Interface

The programming model for the PS and PL SYSMON units is described from a processor
point of view with access to the PSSYSMON, PLSYSMON, and AMS register sets provided via
a memory mapped LPD APB slave interface in the IOP. In this case, any processor connected
to the AXI interconnect can potentially control the SYSMON, PMU, RPU, APU, DAP
controller, and masters instantiated in the PL.

The AMS and PSSYSMON register sets are natively connected as an ABP slave interface and
are protected by the XPPU protection unit. Check that the [jtag_locked] bit is “0” in the
MON_STATUS register to make sure the clock is operating within the recommended range
before attempting to access the PS SYSMON registers.

By contrast, the PL SYSMON unit's PLSYSMON register set has several programming
interface paths that can be enabled and potentially at the same time. One of the default
access paths is also to the memory mapped APB slave interface in the IOP. The other access
paths to the PL SYSMON unit registers, including PL fabric and serial access, are described
in Register Access via PL Fabric and Serial Channels.

The JTAG DAP controller can use the AXI interconnect to access the APB slave interfaces. For
bandwidth considerations, the DAP controller via JTAG is a serial interface. The access paths
to the PL unit are shown in Figure 9-6. There are several conditions and restrictions that
control access to all register sets.

MIN_xx, MAX_xx

24 22

Minimum,
maximum
voltage and
temperature
readings.

ALARM_UPPER_xx,
ALARM_LOWER_xx 24 22

Upper, lower
alarm
thresholds.

Notes:
1. The address offsets and names for the measurement, temperature, minimum/maximum, and upper/lower

threshold registers are shown in table Table 9-2 and Table 9-3. Table 9-4 shows the measurement registers
for several basic channels measured by the PS SYSMON unit.

Table 9‐6: Register Sets Overview (Cont’d)

System Address Register Name AMS PS PL Description
Zynq UltraScale+ Device TRM 218
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=218

Chapter 9: System Monitors
AMS Register Set Access

The AMS register set adapts the PS SYSMON core to the PS environment. The core's pins are
attached to register bits in the AMS register set. Also, the monitor alarms are processed by
the AMS interrupt registers to generate the IRQ 88 system interrupt. The AMS registers are
located at 0xFFA5_0000.

Access to the AMS register set requires the following.

• Privilege from the XPPU protection unit.
• VCC_PSINTLP, VCC_PSAUX.
• AMS.MON_STATUS [jtag_locked] bit (good AMS_REF_CLK from PS).

PSSYSMON Register Set Access

Software can access the PS SYSMON registers at 0xFFA5_0800 (PSSYSMON register set).
These registers are mapped to the IOP slave ports and are protected by the XPPU. Check the
[jtag_locked] bit to confirm the clock is operating correctly before attempting to access the
PS SYSMON registers.

• AMS requirements.

PLSYSMON Register Set Access

The PL SYSMON unit is controlled by the PLSYSMON register set at 0xFFA5_0C00. These
registers are also protected by the XPPU and require a valid clock. In addition, the PCAP
isolation wall must be disabled to access the PLSYSMON registers and control the PL
SYSMON unit. The APB/AXI and DRP parallel ports provide greater bandwidth access to the
SYSMON units than the serial ports.

• AMS requirements.
• AMS.MON_STATUS [jtag_locked] bit (good clock).
• APB slave interface (default mode).

° Check the AMS.PL_SYSMON_CONTROL_STATUS [accessible] bit.)

° No SYSMONE4 instantiation.
• PCAP isolation wall disabled.
• JTAG, I2C/PMBus arbitration.
• VCCINT (check the [PL_INIT] bit.)
Zynq UltraScale+ Device TRM 219
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=219

Chapter 9: System Monitors
PL SYSMON Register Access Arbitration

The PL SYSMON unit can be accessed using only one of the following ports.

• DRP via APB slave connected to AXI and the PS.
• DRP via PL (using the instantiated SYSMONE4 primitive).
• I2C/PMBus connected to device pins.
• JTAG PL TAP controller.

If the bitstream instantiates the SYSMONE4 primitive, then the PL design has control over
the DRP interface to the PLSYSMON registers. The PS does not have access unless an
alternative DRP to APB to AXI interface is established in the PL fabric and connected to a
PS-PL AXI interface. The state of the native AXI interface to the PLSYSMON registers is
reflected by the AMS.PL_SYSMON_CONTROL_STATUS [accessible] bit.

The PS should avoid attempts to access a PL SYSMON registers whenever a JTAG or
I2C/PMBus transaction is accessing them. The APB interface assumes that it has dedicated
access to the PL SYSMON registers. Simultaneous attempts to access the PL SYSMON via
JTAG or I2C/PMBus can lead to unpredictable behavior of the PS. The JTAG and I2C/PMBus
interfaces are available prior to PL configuration so appropriate caution and measures
should be taken to avoid conflict if the PS also uses the APB interface while the device is in
this state. Dedicated access to the PL SYSMON via the APB interface can be guaranteed
following PL configuration with a design that does not instantiate the SYSMONE4 primitive.
PL configuration disables the I2C/PMBus interface.

The JTAG interface can be disabled by generating a configuration image using the
set_property BITSTREAM.GENERAL.JTAG_SYSMON DISABLE [current_design]
option.
Zynq UltraScale+ Device TRM 220
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=220

Chapter 9: System Monitors
Register Access via PL Fabric and Serial Channels

There are several options for accessing the PL SYSMON unit registers other than the APB
slave interface in the IOP. See Table 9-7.

• DRP slave interface (SYSMONE4 primitive instantiated)
• I2C/PMBus interface (package pins and SYSMONE4 primitive instantiated)
• PL TAP controller (debug environment, arbitrates, can be locked out by bitstream)

X-Ref Target - Figure 9-6

Figure 9‐6: Register Access Paths

PS JTAG
DAP Controller

I2C

AMS Register Set

AXI/APB
Interconnect

PSSYSMON
Register Set

PLSYSMON
Register Set

PL JTAG
TAP

ControllerAXI Bus
Masters

APB

PL Fabric DRP

APB
to

DRP

Arbitration

DRP

0: SYSMONE4 instantiated
1: Not instantiated

PCAP
Isolation Wall

PL bitstream
can disable

this connection

PL

1

0

JTAG
to DRP

I2C to
DRP

[ACCESSIBLE]

The I2C interface only
exists prior to a PL

configuration

APB to
DRP

PS

X19415-091317

Table 9‐7: PL SYSMON Unit Register Access Interfaces

Interface to PL
SYSMON Unit

PL is Not Configured

PL is Configured

No SYSMONE4
SYSMONE4
Instantiated

APB slave interface(1) Yes, but VCCINT required and
disabled PCAP isolation wall.

Yes, if [accessible] and not
isolated. No.(2)

DRP via PL fabric Not applicable. No. Yes, if connected.
I2C/PMBus Yes. No. Yes, if connected.
Zynq UltraScale+ Device TRM 221
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=221

Chapter 9: System Monitors
DRP Slave Interface in PL Fabric

The DRP slave interface is selected by the SYSMONE4 instantiation. This parallel interface
can be adapted to an APB slave interface by a PL design.

PL TAP Controller Interface via JTAG

The JTAG interface is converted to the DRP protocol to access the PL SYSMON. The TAP
controller commands that are used to access the PL SYSMON registers are described the
UltraScale Architecture System Monitor User Guide (UG580) [Ref 6]. The PL JTAG interface is
selected by the SYSMON_DRP command. This also enables the I2C serial interface.

I2C Serial Interface via Device Pins

The I2C serial interface is described in the System Management Wizard v1.3 LogiCORE IP
Product Guide (PG185) [Ref 19]. The commands to access the SYSMON registers are
described the UltraScale Architecture System Monitor User Guide (UG580) [Ref 6].

PM Bus

The PMBus interface uses the same signals as the I2C interface. The bus protocol is
described in UltraScale Architecture System Monitor User Guide (UG580) [Ref 6].

JTAG DAP controller Yes. Yes, unless disabled by
bitstream.

Yes, unless
disabled by
bitstream.

Notes:
1. The I2C/PMBus and PL JTAG arbitrate for access. The software should not access the SYSMONs via the AXI/APB

interconnect when the I2C/PMBus or JTAG interfaces are being used.
2. If the PS needs to communicate with the PL SYSMON unit when the SYSMONE4 primitive is instantiated, then the

PL design must include an alternative path that interfaces to AXI PS-PL interface to the DRP interface on the
instantiated SYSMONE4 primitive. Such a design would result in the PL SYSMON being treated as a user-specific
hardware peripheral by the PS and the base address of the PL SYSMON registers would be within the PS-PL
interface address space.

3. Refer to Answer Record 71067 to know when the APB to DRP path is to be used.

Table 9‐7: PL SYSMON Unit Register Access Interfaces (Cont’d)

Interface to PL
SYSMON Unit PL is Not Configured

PL is Configured

No SYSMONE4
SYSMONE4
Instantiated
Zynq UltraScale+ Device TRM 222
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/71067.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=222

Chapter 9: System Monitors
System Interfaces
The SYSMON units have their own set of clocks and resets, and are controlled and
monitored by several system signals.

• Clocks
• Reset sources and state
• Power
• Control signals

Clocks

The SYSMON clock is driven by an interface clock. The interface clock is divided down to
generate the ADC clock using the CONFIG_REG2 [clock_divider] bit field.

• PL SYSMON clock is based on LPD_LSBUS_CLK (APB bus) or PL_DCLK (when the
SYSMONE4 primitive is instantiated).

• PS SYSMON clock is based on LPD_LSBUS_CLK (APB bus).

The software can determine if the PS SYSMON clock is out of range by reading the
AMS.MON_STATUS [jtag_locked] bit.

On the PL SYSMON unit, if the JTAG interface is experiencing a JTAG_Locked condition, the
PL SYSMON unit is either busy transacting with another interface or the clock is out of
range.

Reset Sources

The PS and PL SYSMON units have different reset methods. Not all reset methods are
available all the time.

PL SYSMON

• Power on (self boot).
• PL configuration including partial reconfiguration of the PL.
• Assert reset pin on SYSMONE4 primitive.
• Write any value to the VP_VN Status Register 3.
Zynq UltraScale+ Device TRM 223
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=223

Chapter 9: System Monitors
PS SYSMON

• Internal or external POR (includes power on).
• System reset.
• Write to AMS.PS_SYSMON_CONTROL_STATUS [reset_user].

The SYSMON unit activity is normally switched between the default mode and the
user-programmed sequence mode. The SYSMON can be reset if necessary. The effects of
the resets are described in Reset States.

When a unit is operating in its default sequence mode, the software can configure a
user-defined sequence by writing to the channel sequence and threshold registers. After
the user mode is configured, write to the CONFIG_REG1 register to select it. Return to the
default sequence mode to program another sequence.

Reset States

Measurement Registers

• Measurement result registers are set to 0000h.
• Minimum result registers are set to FFFFh.
• Maximum result registers are set to 0000h.

Configuration Registers

• Status and configuration.
• Sequence channel and low rate channel.
• Sequence average and acquisition time.
• Upper and lower threshold.
Zynq UltraScale+ Device TRM 224
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=224

Chapter 9: System Monitors

Zy 225
UG

Ta

S
N

g.
ers

SYSMON
Other

Registers

AMS
Registers

Clearing

P Yes Yes N/A

N/A

No Yes Not self
clearing.

Yes No Self cleared
when done.

No No Not self
clearing.

No No Not set.

No No
Stays in

sequence
mode.
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

ble 9‐8: Reset Matrix

YSMON
Unit

Reset Control Default
Sequence

SYSMON
Measurement

Registers

SYSMO
Confi

Regist

S and PL Internal or External POR

Yes, except
modified by

PMU
pre-boot

ROM code.

Yes Yes

PS:
PL:

PS System Reset (SRST)
PL System Reset Yes

PS: CRL_RST_LPD.RST_LPD_TOP [sysmon_reset] Yes No No

PS:
PL:

AMS.PS_SYSMON_CONTROL_STATUS
SYSMONE4 primitive

[startup_trigger] Yes Yes Yes

PS:
PL:

AMS.PS_SYSMON_CONTROL_STATUS
SYSMONE4 primitive

[reset_user] No Yes No

PS:
PL:

PSSYSMON.VP_VN
PLSYSMON.VP_VN

[any register write] No Yes No

PS:
PL:

PSSYSMON.CONFIG_REG1
PLSYSMON.CONFIG_REG1

[sequence_mode]
Yes Yes No

https://www.xilinx.com

Chapter 9: System Monitors
Power

The power needs for each SYSMON are described in this section. The power for the various
register access paths are described in Register Access via APB Slave Interface.

PS SYSMON Unit

• VCC_PSADC supplies power to the ADC circuitry
• VCC_PSAUX supplies power to the LPD and FPD temperature measurement sensors.
• VCC_PSINTLP supplies power to the logic and to the AMS and PSSYSMON register sets.

PL SYSMON Unit

• VCCADC supplies power to the ADC circuitry
• VCCAUX supplies power to the PL temperature measurement sensor.
• VCCINT supplies power to the logic and PLSYSMON registers.

Control and Monitor Signals

Note: The digital signals between the PL SYSMON unit and the PS are susceptible to the state of the
PCAP isolation wall.

Alarms Signals

Each sensor channel can assert an alarm. The CONFIG_REG registers in each SYSMON can
be configured to disable each alarm before it is routed to the PMU, CSU, PL, and the AMS
interrupt registers. The alarm signals are shown in Figure 9-4. Several voltage nodes
measured by the PS SYSMON unit are only accessible via the AMS register set and do not
have alarms, see Table 9-4.

IRQ Interrupt

The AMS interrupt registers are programmed to enable alarm signals to generate IRQ 88 to
the GICs and PL. The IRQ interrupt can also be generated when the PS SYSMON conversion
or sequence is finished, or there is an address decode error on one of the three register sets.
There are two interrupt register sets for the following sources.

• ISR_{0, 1} are read/write and provide the interrupt status (before the mask)
corresponding with each alarm signal. Writing a “1” to a status bit clears the interrupt.

• IMR_{0, 1] are read-only and provide a mask that is used after the status and before the
wide OR gate to generate IRQ 88.

• IER_{0, 1} and IDR_{0,1} are write-only to set and clear bits in the IMR registers.
• ITR_{0, 1} are write-only to enable software to trigger an individual interrupt bit in ISR.
Zynq UltraScale+ Device TRM 226
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=226

Chapter 9: System Monitors
Sequence Triggers

The trigger signal can be used to start a user programmed sequence. The trigger is set up
using the [auto_convst] and [convst] controls of the PS SYSMON unit and the [convst] and
[convstclk] controls of the PL SYSMON unit. The trigger signaling works differently in each
SYSMON unit.

• In the PL SYSMON unit, the trigger signal is an input in the PL fabric when the
SYSMONE4 primitive is instantiated.

• In the PS SYSMON unit, the trigger signal connects to the
AMS.PS_SYSMON_CONTROL_STATUS register.

End-of-Conversion and End-of-Sequence Events

The EOC and EOS events are described in the Interrupts section.
Zynq UltraScale+ Device TRM 227
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=227

Chapter 10

System Addresses

Introduction
This chapter describes the address map of the Zynq® UltraScale+™ MPSoC that can
support a single address map configuration for up to 1 TB of physical address space. The
Arm v8-A architecture allows physical address configuration by software.

Global Address Map

The global address map is composed of multiple inclusive address maps, depending on the
address width of the interface master. The Zynq UltraScale+ MPSoC address map is 40 bits
(the physical address space is a maximum of 40 bits).

32-bit (4 GB) Address Map

To maintain compatibility with 32-bit software, a lower 4 GB address map provides aperture
for all the devices. All of the peripheral address space is allocated in the lower 4 GB, with a
fixed address map.

36-bit (64 GB) Address Map

The 36-bit address map is a superset of the 32-bit address map. The address space beyond
4 GB is allocated to the PL, the interface for PCIe, and the DDR controller. An additional
32 GB is allocated to the DDR controller in this region.

40-bit (1 TB) Address Map

The 40-bit address map is a superset of the 36-bit address map. The address space beyond
64 GB is allocated to the PL, the interface for PCIe, and the DDR controller.
Zynq UltraScale+ Device TRM 228
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=228

Chapter 10: System Addresses
System Address Map Interconnects

Based on the required address size, a page translation table walk can use fewer steps. For
example, a 40-bit address translation (to 4 KB pages) takes four table-walker steps. A 36-bit
address translation takes three table-walker steps. Thus, in a 40-bit address size system,
performance is optimized by limiting the address size to 36 bits, if a 36-bit address size is
sufficient for the application.

The interconnect addresses between various processing system (PS) masters to the
translation buffer units (TBUs) of the system memory management unit (SMMU) are virtual
addresses. The address bus (from master to SMMU) is 48 bits for the 64-bit compliant PS
masters (APU, PCIe, SATA, DisplayPort, USB, GEM, SD, NAND, QSPI, and the CSU, LPD, and
DMA units). The 32-bit PS masters provide a 32-bit address bus, which is zero-extended to
48 bits. The SMMU supports a 49-bit address. For PS-masters, the 49th address bit to the
SMMU is zero, and the address bus from the programmable logic (PL) AXI interfaces into
the PS is 49 bits.
Zynq UltraScale+ Device TRM 229
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=229

Chapter 10: System Addresses
The global system address map is shown in Figure 10-1.

The SMMU supports two stage translations: Stage 1 (virtual address (VA) to intermediate
physical address (IPA)), and stage 2 (IPA to physical address). The PS master virtualization
target is primarily a stage 2 translation (for example, a hypervisor scenario uses only stage 2
translations). The PL can use a stage 1 and/or a stage 2 translation. For details on SMMU
translation, see the SMMU Architecture section in Chapter 3.

For the stage 2 translation, the Arm v8 architecture supports a maximum of 48 bits of IPA
address. For the stage 1 translation, the Arm v8 architecture supports a 49-bit maximum
addressing.

X-Ref Target - Figure 10-1

Figure 10‐1: Global System Address Map

M_AXI_HPM0_FPD

M_AXI_HPM1_FPD

DDR Memory Controller

PCIe

PCIe High

CSU, PMU, TCM, OCM

LPD Slaves

LPD Slaves, CoreSight Ext.

FPD Slaves

reserved

RPU LL port

CoreSight STMs

M_AXI_HPM1_FPD

reserved

4 MB

12 MB

16 MB

16 MB

63 MB

1 MB

16 MB

128 MB

256 MB

224 GB

8 GB

224 GB

32 GB

256 GB

M_AXI_HPM0_FPD
M_AXI_HPM1_FPD 4 GB

4 GB

reserved 12 GB
4 GB 0x1_0000_0000

Quad-SPI 512 MB

Lower PCIe 256 MB

M_AXI_HPM0_FPD 192 MB

VCU Slave Interface 64 MB

DDR Memory Controller

2048 MB

3 GB 0xC000_0000

2 GB 0x8000_0000

1 GB 0x400_0000

0

64 GB 0x10_0000_0000

768 GB 0xC0_0000_0000

512 GB 0x80_0000_0000

32-bit 36-bit 40-bit

reserved 256 GB

1 TB 0x100_0000_0000

M_AXI_HPM0_LPD 512 MB

2.5 GB 0xA000_0000

X15256-052318
Zynq UltraScale+ Device TRM 230
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=230

Chapter 10: System Addresses
System Address Map

PL AXI Interface

The AXI interface from the LPD to PL is assigned a fixed address space of 512 MB in the
lower 4 GB address space. It is typically used for LPD to PL communications because it
provides a low-latency path from the LPD masters like the RPU and the LPD DMA unit to the
PL. The AXI interfaces from the FPD to PL are assigned multiple address ranges.

The comprehensive system-level addresses map is shown in Table 10-1.

Table 10‐1: Top-Level System Address Map

Slave Name Size Start Address End Address

DDR Low 2 GB 0x0000_0000 0x7FFF_FFFF

M_AXI_HPM0_LPD (LPD_PL) 512 MB 0x8000_0000 0x9FFF_FFFF

VCU(1) 64 MB 0xA000_0000 0xA3FF_FFFF

M_AXI_HPM0_FPD (HPM0) interface(1) 192 MB 0xA400_0000 0xAFFF_FFFF

M_AXI_HPM1_FPD (HPM1) interface 256 MB 0xB000_0000 0xBFFF_FFFF

Quad-SPI 512 MB 0xC000_0000 0xDFFF_FFFF

PCIe Low 256 MB 0xE000_0000 0xEFFF_FFFF

Reserved 128 MB 0xF000_0000 0xF7FF_FFFF

STM CoreSight 16 MB 0xF800_0000 0xF8FF_FFFF

APU GIC 1 MB 0xF900_0000 0xF90F_FFFF

Reserved 63 MB 0xF910_0000 0xFCFF_FFFF

FPD slaves 16 MB 0xFD00_0000 0xFDFF_FFFF

Upper LPD slaves 16 MB 0xFE00_0000 0xFEFF_FFFF

Lower LPD slaves 12 MB 0xFF00_0000 0xFFBF_FFFF

CSU, PMU, TCM, OCM 4 MB 0xFFC0_0000 0xFFFF_FFFF

Reserved 12 GB 0x0001_0000_0000 0x0003_FFFF_FFFF

M_AXI_HPM0_FPD (HPM0) 4 GB 0x0004_0000_0000 0x0004_FFFF_FFFF

M_AXI_HPM1_FPD (HPM1) 4 GB 0x0005_0000_0000 0x0005_FFFF_FFFF

PCIe High 8 GB 0x0006_0000_0000 0x0007_FFFF_FFFF

DDR High 32 GB 0x0008_0000_0000 0x000F_FFFF_FFFF

M_AXI_HPM0_FPD (HPM0) 224 GB 0x0010_0000_0000 0x0047_FFFF_FFFF

M_AXI_HPM1_FPD (HPM1) 224 GB 0x0048_0000_0000 0x007F_FFFF_FFFF

PCIe High 256 GB 0x0080_0000_0000 0x00BF_FFFF_FFFF
Zynq UltraScale+ Device TRM 231
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=231

Chapter 10: System Addresses
As listed in Table 10-2, the 4 MB region is further partitioned and set aside for the
configuration security unit (CSU: Chapter 11), platform management unit (PMU: Chapter 6),
tightly-coupled memory in RPU (RPU: Chapter 4), and on-chip memory (OCM: Chapter 18).

Reserved 256 GB 0x00C0_0000_0000 0x00FF_FFFF_FFFF

Notes:
1. The VCU is mapped by the design tools to the 64 MB address space listed in Table 10-1, but it can be configured to another

address within an M_AXI_HPMx_FPD address range, if desired. If VCU is not mapped, the M_AXI_HPM0_FPD interface has a
256 MB range.

Table 10‐1: Top-Level System Address Map (Cont’d)

Slave Name Size Start Address End Address

Table 10‐2: CSU, PMU, TCM, and OCM Address Space

Slave Name Size Start Address End Address

CSU_RAM 32 KB 0x00FFC40000 0x00FFC47FFF

CSU_ROM 128 KB 0x00FFC00000 0x00FFC1FFFF

EFUSE 64 KB 0x00FFCC0000 0x00FFCCFFFF

PMU_ROM 256 KB 0x00FFD00000 0x00FFD3FFFF

PMU_RAM 128 KB 0x00FFDC0000 0x00FFDDFFFF

OCM_RAM 256 KB 0x00FFFC0000 0x00FFFFFFFF

R5_0_ATCM_SPLIT 64 KB 0x00FFE00000 0x00FFE0FFFF

R5_0_BTCM_SPLIT 64 KB 0x00FFE20000 0x00FFE2FFFF

R5_0_ICACHE 64 KB 0x00FFE40000 0x00FFE4FFFF

R5_0_DCACHE 64 KB 0x00FFE50000 0x00FFE5FFFF

R5_1_ATCM_SPLIT 64 KB 0x00FFE90000 0x00FFE9FFFF

R5_1_BTCM_SPLIT 64 KB 0x00FFEB0000 0x00FFEBFFFF

R5_1_ICACHE 64 KB 0x00FFEC0000 0x00FFECFFFF

R5_1_DCACHE 64 KB 0x00FFED0000 0x00FFEDFFFF

R5_0_ATCM_LSTEP 128 KB 0x00FFE00000 0x00FFE1FFFF

R5_0_BTCM_LSTEP 128 KB 0x00FFE20000 0x00FFE3FFFF
Zynq UltraScale+ Device TRM 232
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=232

Chapter 10: System Addresses
The reserved address regions are listed in Table 10-3.

System Address Register Overview
The registers for system-level control, private bus, PS I/O peripherals, and miscellaneous PS
functions are listed in this section.

System-level Control Registers

The system-level control register sets are used to control the PS behavior. The detailed
descriptions for each register is available in the Zynq UltraScale+ MPSoC Register Reference
(UG1087) [Ref 4]. A summary of the registers with their base addresses is shown in
Table 10-4. Several register sets always require a secure access. All registers are accessed via
the XPPU, which can set the access requirements for secure, read/write, and by master.

Table 10‐3: Reserved Addresses

Address Range Notes

0xF000_0000 to 0xF7FF_FFFF 128 MB reserved
0xF910_0000 to 0xFCFF_FFFF 63 MB reserved

Table 10‐4: System-level Register Sets

Base Address Name
Secure
Access

Description

0xFD1A_0000 CRF_APB XMPU FPD clock and reset control.
0xFD5C_0000 APU XMPU APU control. See Table 3-2, page 77.
0xFD61_0000 FPD_SLCR XMPU Global SLCR for full-power domain (FPD).

0xFD69_0000 FPD_SLCR_SECURE Yes Global SLCR for FPD TrustZone settings for PCIe, SATA, and
other protocols.

0xFF18_0000 IOU_SLCR XPPU IOU SLCR for MIO pin configuration.
0xFF24_0000 IOU_SECURE_SLCR Yes IOU SLCR for AXI read/write protection configuration.
0xFF26_0000 IOU_SCNTRS Yes Always system timestamp generator.
0xFF41_0000 LPD_SLCR XPPU SLCR for the low-power domain (LPD).
0xFF4B_0000 LPD_SLCR_SECURE Yes SLCR for LPD TrustZone configuration.
0xFF5E_0000 CRL_APB XPPU LPD clock and reset control.
0xFF9A_0000 RPU XPPU RPU control.
0xFD6E_0000 CCI_GPV Yes CCI_GPV (CCI400, parameters)
0xFD70_0000 FPD_GPV Yes FPD_GPV (parameters)
Zynq UltraScale+ Device TRM 233
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=233

Chapter 10: System Addresses
Private CPU Registers

There are separate private CPU registers for the RPUs and APUs to program the interrupt
controllers. The addresses are shown in Table 10-5. The APU_GIC is located on the AXI
interconnect and can be made exclusively accessible to the APU by using the FPD_XMPU
protection unit.

Note: The generic CPU timer, L2 cache, and SCU (etc.) in the APU can only be accessed through
co-processor instructions, they are not memory mapped.

PS I/O Peripherals Registers

The I/O peripheral registers are accessed through the 32-bit APB bus. The base addresses
for both the low-power domain and the and full-power domain peripherals are listed in
Table 10-6 and Table 10-7.

Table 10‐5: CPU Private Registers

Register Base Address Description

0xF900_0000 to 0xF900_1FFF GIC distributor.
0xF900_2000 to 0xF900_2FFF GICC interface.

Table 10‐6: I/O Peripherals Register Map (LPD)

Base Address Description

0xFF00_0000, 0xFF01_0000 UART0, UART1
0xFF02_0000, xFF03_0000 I2C0, I2C1
0xFF04_0000, 0xFF05_0000 SPI0, SPI1
0xFF06_0000, 0xFF07_0000 CAN0, CAN1
0xFF0A_0000 GPIO
0xFF0B_0000, 0xFF0C_0000,
0xFF0D_0000, 0xFF0E_0000 GEM0, GEM1, GEM2, GEM3

0xFF0F_0000 QSPI
0xFF10_0000 NAND(1)(2)

0xFF16_0000, 0xFF17_0000 SD0, SD1
0xFF99_0000 IPI message buffer memory; see Table 13-3.
0xFF9D_0000, 0xFF9E_0000 USB0, USB1
0xFFA5_0000, 0xFFA5_0800,
0xFFA5_0C00(3)

System monitor register sets (AMS, PSSYSMON,
PLSYSMON)
Zynq UltraScale+ Device TRM 234
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=234

Chapter 10: System Addresses
PS System Registers

Registers not covered in the previous sections are listed in Table 10-8.

0xFFCB_0000 CSU_SWDT, system watchdog timer (csu_pmu_wdt).
Notes:
1. NAND cannot be accessed through AXI as a linear mode peripheral.
2. AXI address cannot be directly translated to NAND memory address.
3. The default address for the PL SYSMON register set is 0xFFA5_0C00, but can be changed by instantiating the

SYSMONE4 LogiCORE and mapping it to an M_AXI_HPMx_FPD or M_AXI_HPM0_LPD interface to the PL.

Table 10‐7: I/O Peripheral Register Map (FPD)

Base Address Description

0xFD0C_0000 SATA registers (HBA, vendor, port-0/1 control)
0xFD0E_0000 AXI PCIe bridge
0xFD0E_0800 AXI PCIe ingress {0:7}
0xFD0E_0C00 AXI PCIe egress {0:7}
0xFD0F_0000 AXI PCIe DMA {0:7}
0xFD3D_0000 SIOU slave access ports
0xFD40_0000 PS GTR transceivers
0xFD48_0000 PCIe attributes
0xFD4A_0000 DisplayPort controller
0xFD4B_0000 GPU
0xFD4C_0000 DisplayPort DMA

Table 10‐6: I/O Peripherals Register Map (LPD) (Cont’d)

Base Address Description

Table 10‐8: PS System Register Map (LPD)

Base Address Description

0xFF30_0000 Inter-processor interrupts (IPI)
0xFF11_0000, 0xFF12_0000,
0xFF13_0000, 0xFF14_0000 TTC0, TTC1, TTC2, TTC3

0xFF15_0000 LPD_SWDT, system watchdog timer (swdt0)
0xFF98_0000 XPPU (Xilinx peripheral protection unit)
0xFF9C_0000 XPPU_Sink
0xFF9B_0000 PL_LPD (S_AXI_LPD)
0xFFA0_0000 Arm for OCM interconnect
0xFFA1_0000 Arm for LPD to FPD interconnect
0xFFA6_0000 Real-time clock (RTC)
0xFFA7_0000 OCM_XMPU
Zynq UltraScale+ Device TRM 235
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=235

Chapter 10: System Addresses
0xFFA8_0000 LPD_DMA channels {0:7}
0xFFC8_0000 CSU_DMA
0xFFCA_0000 Configuration and security unit (CSU)
0xFFCD_0000 Battery-backed RAM (BBRAM) control and data

Table 10‐8: PS System Register Map (LPD) (Cont’d)

Base Address Description

Table 10‐9: PS System Register Map (FPD)

Base Address Description

0xFD00_0000 DDR_XMPU{0:5}
0xFD07_0000 DDR controller
0xFD08_0000 DDR PHY
0xFD09_0000 DDR QoS control
0xFD0B_0000 Arm for DDR
0xFD36_0000 HPC0 (S_AXI_HPC0_FPD)
0xFD37_0000 HPC1 (S_AXI_HPC1_FPD)
0xFD38_0000 HP0 (S_AXI_HP0_FPD)
0xFD39_0000 HP1 (S_AXI_HP1_FPD)
0xFD3A_0000 HP2 (S_AXI_HP2_FPD)
0xFD3B_0000 HP3 (S_AXI_HP3_FPD)
0xFD49_0000 Arm for CCI
0xFD4D_0000 FPD_SWDT, system watchdog timer (swdt1)
0xFD50_0000 FPD_DMA channels {0:7}
0xFD5D_0000 FPD_XMPU
0xFD4F_0000 XMPU_Sink (FPD)
0xFD5E_0000 CCI_REG register set wrapper: debug enables
0xFD5F_0000 SMMU_REG (interrupts, power, and unit control)
0xFD6E_0000 CCI_GPV (CCI400, parameters)
0xFD70_0000 FPD_GPV (parameters)
0xFD80_0000 SMMU_GPV (SMMU500, parameters)
0xFE00_0000 IOU_GPV (parameters)
0xFE10_0000 LPD_GPV (parameters)
Zynq UltraScale+ Device TRM 236
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=236

Chapter 11

Boot and Configuration

Introduction
The system boot-up process is managed and carried out by the platform management unit
(PMU) and configuration security unit (CSU).

The boot-up process consists of three functional stages.

• Pre-configuration stage

The pre-configuration stage is controlled by the platform management unit that
executes PMU ROM code to setup the system. The PMU handles all reset and wake-up
processes. Power-on reset is used to reset the CSU and PMU because they are
responsible for debug, system, and software reset. There are other reset methods such
as SRST and SLCR.

• Configuration stage

In the configuration stage, the BootROM (part of the CSU ROM code) interprets the
boot header to configure the system and load the processing system’s (PS) first-stage
boot loader (FSBL) code into the on-chip RAM (OCM) in both secure and non-secure
boot modes. The boot head defines many boot parameters including the security mode
and the processor MPCore to execute the FSBL. The boot header parameters are listed
in Table 11-4. During boot, the CSU also loads the PMU user firmware (PMU FW) into the
PMU RAM to provide platform management services in conjunction with the PMU ROM.
The PMU FW must be present in most systems for the Xilinx-based FSBL and system
software.

• Post-configuration stage

After a FSBL execution starts, the CSU ROM code enters the post-configuration stage,
which is responsible for system tamper response. The CSU hardware provides ongoing
hardware support to authenticate files, configure the PL via PCAP, store and manage
secure keys, and decrypt files.
Zynq UltraScale+ Device TRM 237
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=237

Chapter 11: Boot and Configuration
Boot Flow

The PMU performs a number of mandatory and optional security operations, including the
following.

• Optional function: zeroize low power domain (LPD) registers. When the LPD_SC eFUSEs
are programmed, the PMU zeroizes all registers in the LPD.

• Optional function: zeroize full power domain (FPD) registers. When the FPD_SC eFUSEs
are programmed, the PMU zeroizes all registers in the FPD.

• Zeroize PMU RAM: the PMU RAM has zeros written to it and read back to confirm the
write was successful.

• Zeroize the PMU processor's TLB memory.
• Voltage checks: the PMU checks the supply voltage of the LPD, AUX, and dedicated I/O

to confirm that the voltages are within specification.
• Zeroize memories: the PMU zeroizes memories located in the CSU, LPD, and FPDs.

Once these security operations are complete, the PMU sends the CSU immutable ROM code
through the SHA-3/384 engine and compares the calculated cryptographic checksum to the
golden copy stored in the device. If the cryptographic checksums enabled in the bif file
match, the integrity of the CSU ROM is validated and the reset to the CSU is released.

The PMU is responsible for handling the primary pre-boot tasks and management of the PS
for reliable power up/power down of system resources. The power-on reset (POR) initiates
the PMU operation which directly or indirectly releases resets to any other blocks that are
expected to be powered up. In this paradigm, the PMU requires ROM code to hold the
initial power-up sequence. The PMU is running even after the boot-up process and is
responsible for handling various system resets. It is also used while changing the power
state of the system (like power-up, sleep, and wake-up).

During initial boot, the PMU is brought out of reset by the POR, which is then followed by
PMU ROM execution. The following describes the sequence of operations done by the PMU
processor by executing PMU ROM pre-boot code after a POR reset.

1. Initialize the PS SYSMON unit and the PLL required for boot.
2. Clear the PMU RAM and CSU RAM (external POR only).
3. Validate the PLL locks.
4. Validate the LPD, AUX, and I/O supply ranges using the PS SYSMON unit.
5. Clear the low-power and full-power domains.
6. If there is no error in the previous steps, the PMU releases the CSU reset and enters the

PMU service mode. If not, generate and flag a boot error.
Note: When PMUFW is not used PMU goes to sleep state after boot-up.
Zynq UltraScale+ Device TRM 238
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=238

Chapter 11: Boot and Configuration
When the CSU reset is released, it performs following sequence.

1. Initialize OCM.
2. Determines the boot mode by reading the boot mode register from the captured boot

mode state PMU FW, at the POR.
3. The CSU continues by loading the FSBL in OCM for execution by either the RPU or the

APU. The CSU then loads the PMU user firmware (PMU FW) into the PMU RAM for
execution by the PMU firmware.

The PMU FW provides platform management services in conjunction with the PMU ROM
code. The PMU FW is required in most systems and must be present for the Xilinx-based
FSBL and system software. The PMU is described in Chapter 6, Platform Management
Unit.

The CSU is the central configuration processor that manages secure and non-secure
system-level configuration. Triple redundancy and built-in ECC (in the embedded processor
and surrounding logic) is for system reliability and strong SEU resilience. The CSU also
contains the key management unit, crypto accelerators, and the PS/PL programming
interface.

The CSU is composed of two main blocks:

• A triple-redundant secure processor. It contains the triple-redundant embedded
processor(s), associated ROM, a small private RAM for security sensitive data storage,
and the necessary control/status registers required to support all secure operations.

• A crypto interface contains AES-GCM, a key vault for key storage, DMA, SHA3, RSA, and
the processor configuration-access port (PCAP) interface.
Zynq UltraScale+ Device TRM 239
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=239

Chapter 11: Boot and Configuration
Boot Modes

The BootROM can boot the system from Quad-SPI, SD, eMMC, USB 2.0 controller 0, or
NAND external boot devices.

Note: The flash memory devices for boot are listed in Answer Record 65463. For SD and eMMC
devices, the JEDEC interface specified in Chapter 26, SD/SDIO/eMMC Controller is supported. For
Quad-SPI and NAND, specific devices are tested and supported.

IMPORTANT: If you use NAND as the primary boot device, only use NAND devices from a vendor that
guarantees screening for zero data corruption on the first parameter page.

Table 11-1 describes various boot modes. All modes can be non-secure. All modes can be
secure and signed except PS JTAG and PJTAG.

Quad-SPI (24b/32b): The BootROM code can boot Quad-SPI using 24- or 32-bit
addressing using the configurations shown in Table 24-1.

The QSPI boot mode size limit and image search limit are listed in Table 11-2. Image search
for multi-boot is supported in this boot mode. The QSPI boot mode also supports x1, x2
and x4 read modes for single Quad-SPI memory and x8 for a dual QSPI. This is the only boot
mode that supports execute-in-place (XIP).

Table 11‐1: Boot Modes

Boot Mode
Mode Pins

[3:0]
Pin Location CSU Mode Description

PS JTAG 0000 JTAG Slave PSJTAG interface, PS dedicated pins.
Quad-SPI (24b) 0001 MIO[12:0] Master 24-bit addressing (QSPI24).
Quad-SPI (32b) 0010 MIO[12:0] Master 32-bit addressing (QSPI32).
SD0 (2.0) 0011 MIO[25:21, 16:13] Master SD 2.0.
NAND 0100 MIO[25:09] Master Requires 8-bit data bus width.
SD1 (2.0) 0101 MIO[51:43] Master SD 2.0.
eMMC (1.8V) 0110 MIO[22:13] Master eMMC version 4.5 at 1.8V.
USB0 (2.0) 0111 MIO[52:63] Slave USB 2.0 only.
PJTAG (MIO #0) 1000 MIO[29:26] Slave PJTAG connection 0 option.
PJTAG (MIO #1) 1001 MIO[15:12] Slave PJTAG connection 1 option.

SD1 LS (3.0) 1110 MIO[51:39] Master SD 3.0 with a required SD 3.0 compliant
voltage level shifter.
Zynq UltraScale+ Device TRM 240
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/65463.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=240

Chapter 11: Boot and Configuration
Table 11-2 shows the boot modes supporting image search along with the search offset
limit.

RECOMMENDED: Xilinx recommends using the QSPI 32-bit boot mode for flash sizes larger than 16 MB
and when the flash supports 32-bit addressing.

RECOMMENDED: Xilinx recommends that verifying the QSPI commands supported by a specific flash
memory. The CSU ROM supports the QSPI commands listed in Table 11-3.

NAND: The NAND boot mode only supports 8-bit widths for reading the boot images.
Image search for multi-boot is supported. Boot mode image search limits are listed in
Table 11-2.

SD0/SD1: These boot modes support FAT 16/32 file systems for reading the boot images.
Image search for multi-boot is supported. The maximum number of files that can be
searched as part of an image search for multi-boot are 8,191. The SD supported version is
2.0, which only supports 3.3V for the I/Os and up to 4 bits of data interface.

SD1(LS): The SD1-LS boot mode is the same as SD0/SD1 with additional support of the
SD 3.0 (with an SD 3.0 compliant voltage level shifter).

eMMC(18): This boot mode is the same as the SD boot mode except it only supports 1.8V
for the I/Os and up to 8 bits of data interface. The eMMC mode is used for eMMC

Table 11‐2: Boot Image Search Limits

Boot Mode Search Offset Limit

QSPI: 24-bit single 16 MB
QSPI: 24-bit dual parallel 32 MB
QSPI: 32 bit 256 MB
QSPI: 32-bit dual parallel 512 MB
NAND 128 MB
SD/eMMC 8,191 files
USB 1 file

Table 11‐3: QSPI Command Codes

Quad-SPI Data Interface Read Mode Command Code

24-bit single Normal read 0x03

24-bit dual Output fast read 0x3B

24-bit quad Output fast read 0x6B

32-bit boot Normal read 0x13

32-bit dual Output fast read 0x3C

32-bit quad Output fast read 0x6C
Zynq UltraScale+ Device TRM 241
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=241

Chapter 11: Boot and Configuration
interfacing and the SD0/1 mode is used for SD card only. The default eMMC boots in legacy
MMC speed mode only i.e., at 3.3V. The application must switch to the high-speed modes.

TIP: For SD and eMMC boot modes, the boot image file should be at the root of first partition of the SD
card (not inside any directory).

USB0: The USB boot mode configures USB controller 0 into device mode and uses the
Device Firmware Upgrade (DFU) protocol to communicate with an attached host. See the
“Boot Sequence for USB Boot Mode” section in Zynq UltraScale+ MPSoC: Embedded Design
Tutorial (UG1209) [Ref 17] for more information.

The USB host contains the FSBL boot image (e.g., boot.bin) that is loaded into OCM memory
for the CSU BootROM code and an all encompassing boot image file (e.g., boota53_all.bin)
that is loaded into DDR memory.

The size of these files are limited by the size of the OCM and DDR memories. The USB boot
mode does not support multi-boot, image fallback, or XIP.

Note: USB Timeout Condition - When the Zynq UltraScale+ MPSoC powers up in the USB boot
mode, the USB host can download the boot image to the Zynq UltraScale+ MPSoC memory through
the USB interface in DFU protocol. However during a time out of approximately five minutes in CSU
ROM code, no image is downloaded and the host will not able to locate the DFU device with DFU
utility.

Golden Image Search

The BootROM can search for a valid boot header to load and run a boot image. To validate
a boot header, the BootROM looks for the identification string XLNX. When a valid
identification string is found in the boot header, the checksum for the boot header is
checked. If the checksum is valid, the rest of the boot header and the rest of the boot image
(including the FSBL) are loaded into the RPU or APU memory for further processing.

Boot images can be located every 32 KB in the boot memory device, which allows for more
than one boot image to be in the memory device.

If an image header is invalid, the BootROM increments the image header address register by
32 KB and tries again. The boot image search mechanism is only available for the Quad-SPI,
NAND, SD, and eMMC boot modes.

If a boot header is valid, but the FSBL determines the boot image is corrupt, the FSBL can
recover by writing the location of another boot header into the CSU.csu_multi_boot register
and issuing a system reset (not a POR). Figure 11-1 illustrates the image search mechanism.
Zynq UltraScale+ Device TRM 242
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=242

Chapter 11: Boot and Configuration
Boot header
valid?

MultiBoot offset less than
device offset limit?

Convert the offset value into string
and concatenate it with boot.bin to
get a new file name. Read the boot

header from 0x0 to 0x48 using
this new file name.

Increment the
MultiBoot
offset by 1

MultiBoot offset = 0 or
boot mode = SD, eMMC, NAND,

Quad-SPI?
Yes

No

No

Yes

No

Lock
Down Yes

From the given
offset, read the boot

header from
0x0 to 0x48

Load the boot image
(with the boot image

header) into the
OCM RAM.

Yes

Lock
Down

X15313-100517

X-Ref Target - Figure 11-1

Figure 11‐1: Image Search Flowchart
Zynq UltraScale+ Device TRM 243
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=243

Chapter 11: Boot and Configuration
Fallback

Using the FSBL, a fallback boot image can be loaded by loading the address of another boot
header into the CSU.csu_multi_boot register and issuing a system reset (not a POR).

After the system reset, the boot header is fetched from the address location equal to the
value of csu_multi_boot register times 32,768.

If the fallback boot header is invalid, the CSU continues normally with its boot image search
function if the boot device supports image search. The BootROM header is described in
Table 11-4.

Fallback and MultiBoot Flow In the Zynq UltraScale+ MPSoC device, the CSU bootROM
supports MultiBoot and fallback boot image search where the configuration security unit
CSU ROM or bootROM searches through the boot device looking for a valid image to load.

The sequence is as follows:

• BootROM searches for a valid image identification string (as image ID) at offsets of 32
KB in the flash.

• After finding a valid identification value, validates the checksum for the header.
• If the checksum is valid, the bootROM loads the image.

This allows for more than one image in the flash. In MultiBoot:

• CSU ROM or FSBL or the user application must initiate the boot image search to choose
a different image from which to boot.

• To initiate this image search, CSU ROM or FSBL updates the MultiBoot offset to point to
the intended boot image and generates a soft reset by writing into the CRL_APB
register.
Zynq UltraScale+ Device TRM 244
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=244

Chapter 11: Boot and Configuration
Figure 11‐2: MultiBoot Flow

Note: The same flow is applicable to both Secure and non-secure boot methods.

In the example fallback boot flow figure, the following sequence occurs:

• The CSU bootROM loads the boot image found at 0x000_0000.
• If this image is found to be corrupted or the decryption and authentication fails, CSU

bootROM increments the MultiBoot offset by 1 and searches for a valid boot image at
0x000_8000 (32 KB offset).

• If the CSU bootROM does not find the valid identification value, it increments the
MultiBoot offset by 1 again and searches for a valid boot image at the next 32 KB
aligned address.

• The CSU bootROM repeats this until a valid boot image is found or the image search
limit is reached. In this example flow, the next image is shown at 0x002_0000
corresponding to a MultiBoot offset value of 4.

• I In Figure 11-2, the MutiBoot offset is updated to 4 by FSBL/CSU-ROM to load the
second image at the address 0x002_0000. When the MultiBoot offset is updated, soft
reset the system.

Boot Header 1

Image 1

.

.

.

.

.

Boot Header 2

Image 2

0x100_0000

0x002_0000

0x000_0000

.

.

.

.

0x001_0000

0x000_8000

0x001_8000

Multi-Boot
Offset=1

Multi-Boot
Offset=2

Multi-Boot
Offset=3

Multi-Boot
Offset=4

X14936-071217
Zynq UltraScale+ Device TRM 245
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=245

Chapter 11: Boot and Configuration
Table 11-2 shows the MultiBoot image search range for different booting devices.

Boot Image Format
Because the CSU ROM supports the MultiBoot option, there can be more than one boot
image in a boot device. The boot image consists of a boot header and partitions for
different images along with a partition header. Figure 11-3 shows the simplest form of a
boot image with only a mandatory image partition (FSBL) with associated mandatory
headers. A detailed secure image format is illustrated in Table 12-17.

With secure boot, the authentication certificate follows the FSBL image. Both the boot
header and partition header are always in plain text.

The boot header format is shown in Table 11-4. This is a plain-text header associated with
each boot image that indicates various characteristics, attributes (Table 11-5), and other
details about that boot image.

X-Ref Target - Figure 11-3

Figure 11‐3: Boot Image Format with FSBL and PMU Firmware

Boot Header

Partition Header
Your design defines the partition information.

Used by the FSBL.

PMU Firmware (PMU FW) Image

FSBL Image

If PMU FW is present in the boot image, then
it is always assumed that the FSBL is

appended at the end of PMU FW.

2,232 bytes
Zynq UltraScale+ Device TRM 246
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=246

Chapter 11: Boot and Configuration
Table 11‐4: Boot Header Format

Offset Description Details

0x000 - 0x01C Reserved for interrupts
This field is used in case of XIP boot mode when the default
0x01F interrupt vectors are changed in the LQSPI address
space.

0x020 Width detection Quad-SPI width description.
0x024 Image identification Boot image identification string.

0x028 Encryption status

This field is used to identify the AES key source.
0000_0000h: Unencrypted.
3A5C_3C5Ah: Red key in BBRAM.
A35C_7CA5h: Obfuscated key in boot header.
A35C_7C53h: Black key in boot header.
A5C3_C5A3h: Red key in eFUSE.
A5C3_C5A5h: Black key in eFUSE (PUF key).
A5C3_C5A7h: eFUSE (family key).
A3A5_C3C5h: User key.
Note: The user key is only used with single partition boot images.

0x02C FSBL execution address FSBL execution start address.
0x030 Source offset PMU FW and FSBL source start address.
0x034 PMU FW image length PMU FW original image length.

0x038
Total PMU FW image
length

PMU FW total image length. This includes the complete PMU
firmware image block size, AES key, AES IV, and GCM tag (in
case of an encrypted image). This field size must be 128 KB.

0x03C FSBL image length FSBL original image length.
0x040 Total FSBL image length Total FSBL image length.
0x044 Image attributes Image attributes are described in Table 11-5.
0x048 Header checksum Header checksum from 0x20 to 0x44.

0x04C–0x068 Obfuscated key 256-bit obfuscated key. Only valid when 0x028 (encryption
status) is A35C_7CA5h.

0x06C Reserved

0x070–0x09C FSBL/User defined
How to use the FSBL/user defined areas is explained in the
Zynq UltraScale+ MPSoC Software Developer’s Guide (UG1137)
[Ref 3].

0x0A0–0x0A8 Secure header
initialization vector

Initialization vector for a secure header for both PMU FW and
FSBL.

0x0AC–0x0B4 Obfuscated or black key
initialization vector Initialization vector used when decrypting the obfuscated key.

0x0B8–0x8B4 Register initialization Store register write pairs for system register initialization.

0x8B8-0xEC0 PUF helper data Store the PUF helper data. The helper data is used only when
the image attribute PUF HD location = 0x3.
Zynq UltraScale+ Device TRM 247
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=247

Chapter 11: Boot and Configuration
I/O Configuration Detection

The BootROM can detect the intended I/O width of the Quad-SPI interface using the width
detection parameter value (0xAA995566) and the image identification parameter value
(0x584C4E58) in a 8- bit parallel configuration.

4-bit I/O Detection

During the Quad-SPI boot process, the BootROM configures the controller with 4-bit I/O.
This configuration includes a single device and the dual 4-bit stacked case. The BootROM
reads the first (or only) Quad-SPI device in x1 mode and reads the width detection
parameter in the BootROM Header. If the width detection parameter is equal to
0xAA995566, then the BootROM assumes it found a valid header that is requesting a 4-bit
I/O configuration. It might be one device or it might be a dual 4-bit stacked configuration.
In the latter case, the second device is always ignored by the BootROM, but it might be
accessed by user code. After reading the width detection parameter in x1 mode, the
BootROM attempts to read the parameter in x4 mode. If x4 mode fails, it tries x2 mode.
After this, the BootROM uses the widest supported I/O bus width to access the Quad-SPI
device.

8-bit I/O Detection

The BootROM also looks for the dual device, 8-bit parallel configuration. In this case, the
BootROM only reads the even bits of the BootROM header because it is only accessing the
first device and the header is split across both devices. The BootROM forms a 32-bit word
that includes the even bits of the width detection (0x20) and image identification (0x24)
parameter values. When the BootROM detects this condition, it assumes the system uses
the 8-bit parallel configuration and programs the controller for the x8 operating mode. This
mode is used for the rest of the boot process.

Table 11‐5: Image Attributes Offset Definition

Field Name Bit Offset Width Default Value Description

Reserved 31:16 16 0x0

Bhdr RSA 15:14 2 0x0

0x3: If the RSA_EN eFUSEs are not programmed, RSA
authentication of the boot image is done, excluding
verification of PPK hash and SPK ID.
If the RSA_EN eFUSEs are programmed, then an error is
generated.
All others: RSA authentication is decided based on the
RSA_EN eFUSEs

SHA2 select 13:12 2 0x0

0x3: While doing RSA authentication, SHA2 is used in
place of SHA3.(1)

All others: SHA3 is used while doing RSA authentication.
Zynq UltraScale+ Device TRM 248
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=248

Chapter 11: Boot and Configuration
Functional Units
Figure 12-1 describes the CSU. The CSU consists of processor, security blocks, CSU DMA,
secure stream switch, and PCAP. The CSU processor and security blocks are described in
Chapter 12, Security.

Secure Stream Switch

The secure-stream switch (SSS) allows data movement between multiple sources and
destinations. During boot, the secure-stream switch is exclusively controlled by the CSU.
After boot, any system master can control the configuration of the secure-stream switch.
Table 11-6 lists the possible connections in the secure stream switch.

The JTAG PS TAP controller is accessible via the dedicated PS pins. The AXI DMA is in the
CSU.

CPU select 11:10 2 0x0

0x0: Cortex-R5F single (split mode).
0x1: Cortex-A53 single 32-bit.
0x2: Cortex-A53 single 64-bit.
0x3: Cortex-R5F dual (lock-step mode).

Hashing select 9:8 2 0x0

0x0, 0x1: No integrity check.
0x2: SHA2 is used as a hash function to do boot image
integrity check.(1)

0x3: SHA3 is used as a hash function to do boot image
integrity check.
Note: This option should not be selected if authentication
(RSA) is used. If the RSA_EN eFUSEs are programmed and this
option is set, an error occurs.

PUF HD
location 7:6 2 0x0

0x3: PUF HD is part of the boot header.
All others: Means PUF HD is in eFUSE.

Authenticate
only 5:4 2 0x0

0x3: Boot image is only RSA signed, do not decrypt the
image even if 0x28 offset is non-zero.
All others: Means if 0x28 is non-zero, then decrypt the
boot image.

OP key 3:2 2 0x0

0x3: Secure header contains operational key for block 0
decryption.
All others: Means that the root device key is used for
block 0 decryption.

Reserved 1:0 2 0x0
Notes:
1. Xilinx recommends using SHA3 only. SHA2 will be deprecated in 2019.1.

Table 11‐5: Image Attributes Offset Definition (Cont’d)

Field Name Bit Offset Width Default Value Description
Zynq UltraScale+ Device TRM 249
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=249

Chapter 11: Boot and Configuration
The secure-stream switch is configured using a single SSS configuration register
(csu_sss_cfg). Some common configurations for the secure stream switch are listed in
Table 11-7.

CSU DMA

The CSU DMA allows the CSU to move data efficiently between the memory and the CSU
stream peripherals (AES, SHA, PCAP), using the secure stream switch. The CSU DMA can
access the OCM, TCM, and DDR memory. The CSU DMA is a two-channel, simple DMA,
allowing separate control of the SRC (read) channel and DST (write) channel with a
128 x 32-bit data FIFO for each channel. The DMA is effectively able to transfer data.

• From the PS-side to the secure stream switch (SSS) side (SRC DMA only).
• From the SSS-side to the PS-side (DST DMA only).
• Simultaneously from the PS-side to the SSS-side and from the SSS-side to the PS-side.

The APB interface allows for control and monitoring of the CSU DMA module’s functions. A
single interrupt output port is sent to the CSU. It is combined with other interrupt sources
before being sent out to the interrupt controller on a single interrupt pin.

Two clocks are provided, one for the main CSU DMA operation and one for the APB
interface. Along with these clocks, there are two-reset inputs. These reset pins are
synchronized to the respective clock domains by the CSU before sending them to the CSU
DMA.

Table 11‐6: Secure Stream Switch

Destinations

AXI DMA JTAG AES-GCM PCAP SHA

Sources

AXI DMA X X X X
JTAG X X
AES-GCM X X
PCAP X X
ROM X

Table 11‐7: Secure Stream Switch Configurations

Secure Stream Switch Setup Description CSU_SSS_CFG Setting

DMA to DMA DMA loopback. 0x00000050

DMA to PCAP PL configuration. 0x00000005

DMA to AES, AES to DMA Secure PS configuration. 0x000005A0

DMA to AES, AES to PCAP Secure PL configuration. 0x0000050A

DMA to DMA, DMA to SHA PS image load with simultaneous SHA
calculation. 0x00005050
Zynq UltraScale+ Device TRM 250
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=250

Chapter 11: Boot and Configuration
The DMA interfaces with a secure-stream switch through two sets of handshake signals; one
for the DMA SRC (memory to stream) direction and the other for the DMA DST
(stream-to-memory) direction.

The DMA has a DST_FIFO that is sized to hold a minimum of one PL configuration frame.
Although overflow is not anticipated, an interrupt register (FIFO_OVERFLOW) is provided in
cases where an overflow occurs.

Loopback Mode

Loopback is implemented in the secure-stream switch hardware. It is not internal to the CSU
DMA. The CSUDMA.CSUDMA_DST_CTRL [SSS_FIFOTHRESH] bit field controls the level of
the DST FIFO to result in asserting the data_out_fifo_level_hit signal on the DST interface.
This can be used to flow control data between the SRC and DST FIFOs in loopback mode. If
loopback mode is used, where SRC data is looped around in the secure-stream switch and
presented to the DST channel, the software should always start the DST channel before
starting the SRC channel. This ensures that the DST channel is always ready once the first
piece of data present at its secure-stream switch interface. Refer to the Programming the
CSU DMA section for details on the CSU DMA programming sequence.

PL Configuration

The processor configuration access port (PCAP) is used to configure the programmable
logic (PL) from the PS. The PCAP is the only interface used to configure the PL during
normal operating conditions. The PCAP bus is 32 bits wide. During debug, the JTAG
interface can be used to configure the PL. The PS is connected to the PCAP through the
secure-stream switch. Bitstream data can be sent to the PL using either the CSU DMA or the
AES path.

PCAP Isolation Wall Control

Software should disable the PS-PL isolation wall before the PL is configured with its
bitstream.

If software does not disable the isolation wall, the CSU automatically disables it and then
re-enables it after PL bitstream reprograms the PL. The exception is partial reconfiguration
(PR) where the isolation wall is not re-enabled after the PL configuration, PR.

CSU BootROM Error Codes
Any error from the CSU while in the boot process is recorded in the
PMU_GLOBAL.CSU_BR_ERR register. This register also determines the boot success or
failure. On failure or error condition, the 16-bit error code is recorded in the CSU_BR_ERR
register.
Zynq UltraScale+ Device TRM 251
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=251

Chapter 11: Boot and Configuration
A configuration BootROM error code is 8 bits long. This means that with an allocation of 16
bits, two error codes are stored. Error bits [15-8] correspond to the first image error code
and error bits [7-0] indicate the most recent image error code (Table 11-8).

Table 11-8 describes the configuration BootROM(CBR) error codes.

Table 11-9 describes the configuration bootRAM (CBR) error codes.

Table 11‐8: BootROM Error Bits

15 8 7 0
First Image Error Last Image Error

Table 11‐9: BootROM Error Codes

Error Code Description Solution

0x10 Secure processor voting has failed during boot. Ensure LPD power supply is correct and power
on reset (POR) the chip.

0x11
Secure processor is unable to power up the
OCM.

Ensure LPD power supply is correct and POR
the chip.

0x12
An error occurred while initializing the OCM
with 0xDEADBEEF value.

Ensure LPD power supply is correct and POR
the chip.

0x14
eFUSE is not properly loaded by hardware.
There is a parity error in eFUSE values.

Ensure LPD power supply is correct and (POR)
the chip.

0x15
The TBITs in eFUSE are not properly written. For
a successful boot, TBITS in eFUSE should have
either all zeros or a 1010b pattern.

Check the TBITS values and POR the chip.

0x16
DMA transfer timeout error during the OCM
initialization.

Ensure LPD power supply is correct and (POR)
the chip.

0x17
eFUSE controller is unable to load the eFUSE
values to the cache registers.

Ensure LPD power supply is correct and (POR)
the chip.

0x20
eFUSE RSA bits read from eFUSE has a
mismatch.

0x23(1)
Error occurred during QSPI 24 boot mode
initialization.

Check that the Quad-SPI device is properly
connected to the QSPI MIO pins.
Ensure the width detection word is set equal to
the data pattern 0xAA995566 and that the
image identification word has x584C4E58,
'XLNX'.
Ensure that the device content is not blank in
single device applications.

0x24
Error occurred during QSPI 32 boot mode
initialization.

Check that the Quad-SPI device is properly
connected to the QSPI MIO pins.
Ensure the width detection word is set equal to
the data pattern 0xAA995566 and that the
image identification word has x584C4E58,
'XLNX'.
Ensure that the device content is not blank.
Zynq UltraScale+ Device TRM 252
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=252

Chapter 11: Boot and Configuration
0x25
Error occurred during NAND boot mode
initialization.

Check that the NAND device is properly
connected to the NAND MIO pins.
Ensure the width detection word is set equal to
the data pattern 0xAA995566 and that the
image identification word has x584C4E58,
'XLNX'.
Ensure that the device content is not blank.

0x26
Error occurred during SD boot mode
initialization.

Check that the SD device is properly connected
to the SD MIO pins.
Ensure SD card is formatted properly with
FAT32/FAT16 file system.

0x27
Error occurred during eMMC boot mode
initialization.

Check that the eMMC device is properly
connected to the eMMC MIO pins.
Ensure that the MMC card is formatted
properly with the FAT32/FAT16 file system.

0x2A
Invalid boot mode is selected in the boot mode
setting. Ensure the boot mode pins values are valid.

0x30 Boot header does not have an XLNX string. Ensure that the Image Identification word has
x584C4E58, 'XLNX' in the Boot header.

0x31
Boot header checksum is wrong or boot header
fields are not length aligned.

Ensure that the boot header checksum is
correctly calculated and written to flash device.
Also, ensure all the length fields are word
aligned.

0x32
Boot header encryption status value is not
valid. Key selected is not a valid key source.

Ensure that the key source value in Encryption
Status field is valid.

0x33
Boot header attributes value is not valid.
Reserved fields in image attributes are not
zero.

Ensure that the reserved field is ZERO in the
Image attributes.

0x34
Either of the boot header PMU firmware length
and total PMU firmware length fields are not
valid.

Ensure the PMU firmware length fields are in
valid range.
Ensure PMU firmware length is more than the
total PMU firmware length.

0x35
Either of the boot header FSBL and total FSBL
length fields are not valid.

Ensure the FSBL length fields are in valid range.
Ensure the FSBL length is more than the total
FSBL length.

0x36 Selected does not support the XIP mode.
Ensure the boot mode pins are set QSPI.
Only non-secure images are allowed in XIP
mode. Ensure image is secure.

0x37
FSBL execution address is not in the OCM
address range.

Ensure the FSBL execution address in the OCM
256K region.

0x38
Source offset is not valid. It is beyond the flash
image search limit.

Check if the offset in the flash is beyond the
flash image search limit. The offset is
calculated from the multi boot register value
and source offset field in boot header.

Table 11‐9: BootROM Error Codes (Cont’d)

Error Code Description Solution
Zynq UltraScale+ Device TRM 253
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=253

Chapter 11: Boot and Configuration
0x3A

Authentication only is selected, but no key
source is selected (for selecting the device key
source) or authentication only is selected, but
no authentication is selected in eFUSE or the
boot header.

To use the authentication only feature, the
encryption key shall be selected so that ROM
can unlock that key. Authentication of the
image is mandatory. Enable eFUSE or boot
header authentication.

0x3B Reading failed from the selected boot device. Ensure the boot device is properly connected
and right boot mode is selected.

0x3D Selected CPU is disabled in the eFUSE. Ensure A53 CPU is enabled for the chip when
A53-0 is selected as a hand off CPU.

0x3E
Time out occurred while calculating the PPK
hash.

Ensure power supply are proper and POR the
chip.

0x40
Boot header and eFUSE RSA are enabled at the
same time, which is not allowed.

The boot header and eFUSE RSA should not be
enabled at the same time. Ensure the RSA
eFUSE is not blown when boot header RSA is
selected.

0x41 Selected PPK value in boot header is not valid. ROM supports 2 PPK keys. Ensure the proper
key value is used in the Boot header.

0x42 Selected PPK is revoked. Ensure the selected PPK is not revoked in
eFUSE.

0x43 All PPK in the device are revoked.
All PPK present inside the chip are revoked.
Authentication cannot be performed on this
chip.

0x44
Mismatch in the PPK hash calculated from Boot
header and PPK hash in eFUSE

Ensure the correct PPK is burned inside the
eFUSEs.
Ensure the PPK keys used to create boot image
match the RSA public key that is present inside
the chip.

0x45 SPK signature verification is failed

Ensure the SPK signature is created with the
PPK that is present in the authentication
certificate.
Ensure the SPK ID present in the boot header is
same as eFUSE SPK ID.

0x46
Selected SPK ID is not matching with the eFUSE
SPK ID.

Ensure the SPK ID present in the boot header is
same as the eFUSE SPK ID.

0x47 Boot header signature is failed.
Ensure the boot header signature is created
with the SPK that is present in the
authentication certificate.

0x48
Selected boot mode does not support the
golden image search.

Golden Image search is supported only by
QSPI, NAND, and SD boot modes. For all other
boot modes, the multi boot register value
should be zero.

0x49
No image found in QSPI after searching the
allowed address range.

ROM reached end of the image search limit for
a QSPI device and no other good image is
found.
Ensure image in the QSPI is valid.

Table 11‐9: BootROM Error Codes (Cont’d)

Error Code Description Solution
Zynq UltraScale+ Device TRM 254
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=254

Chapter 11: Boot and Configuration
0x4A
No image found in NAND after searching the
allowed address range.

ROM reached end of the image search limit for
a NAND device and no other good image is
found.
Ensure the image in the NAND is valid.

0x4B
No image found in the SD/eMMC after
searching the allowed number of files.

ROM reached end of the file limit for a
SD/eMMC device and no other good image is
found.
Ensure the boot file is valid in the SD/eMMC
FAT file system.

0x4D
Time out error while calculating the SPK SHA
hash.

Ensure the LPD power supply is correct and
POR the chip.

0x4E
Time out error while calculating the boot
header SHA hash.

Ensure the LPD power supply is correct and
POR the chip.

0x50 Mismatch while writing to the secure registers. Ensure the LPD power supply is correct and
POR the chip.

0x51
Changing the state of the device from secure to
non-secure is not allowed.

After POR, if first image is secure then
subsequent images are secure.

0x52
Changing the key source is not allowed while in
the secure state.

Ensure the key source is the same across
multiple images used for boot in POR and
SRST.

0x53
Changing the state from non-secure to secure
is not allowed.

Ensure the key source is the same across
multiple images used for boot in POR and
SRST.

0x54
BBRAM key is disabled in eFUSE but the key
source selected is BBRAM.

Ensure the BBRAM_DIS eFUSE bit is not set
when BBRAM is selected as a key source.

0x55
Only encrypted boots with the eFUSE key
source are allowed.

When ENC_ONLY eFUSE bit is set, no other key
sources are allowed apart from eFUSE.

0x60
One of the register addresses in the boot
header is not allowed.

Ensure the register addresses in the boot
header are in the valid address range allowed
by ROM.

0x61
Copying from selected boot device failed after
register initialization.

Ensure the frequencies or any modifications
done to boot devices through register
initialization are correct.

0x62
Boot header read after register initialization is
mismatched with the original boot header.

Ensure the frequencies or any modifications
done to boot devices through register
initialization are correct. Data read after
register initialization does not match the
previous values.

0x70 Error occurred while copying the PMU FW.
Ensure the boot device is connected correctly.
Ensure the frequencies or any modifications
done to boot devices through register
initialization are correct.

Table 11‐9: BootROM Error Codes (Cont’d)

Error Code Description Solution
Zynq UltraScale+ Device TRM 255
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=255

Chapter 11: Boot and Configuration
0x71 Error occurred while copying the FSBL.
Ensure the boot device is connected correctly.
Ensure the frequencies or any modifications
done to boot devices through register
initialization are correct.

0x72 Time out occurred while loading the key. Ensure LPD power supply is correct and POR
the chip.

0x73
Time out occurred while using the CSU DMA in
image processing for AES/SHA.

Ensure LPD power supply is correct and POR
the chip.

0x74 Time out occurred for the PMU to go to sleep.

0x75
Time out occurred while calculating the SHA
during boot image signature verification.

Ensure LPD power supply is correct and POR
the chip.

0x76
Time out occurred while calculating the SHA
for boot image during the integrity check.

Ensure LPD power supply is correct and POR
the chip.

0x78 Boot image signature mismatch occurred.
Ensure the boot image signature is created
with the SPK that is present in authentication
certificate.

0x79
Error occurred while decrypting the PMU
firmware.

Ensure same keys are used as present in the
chip for encrypting the Boot image.
Ensure the right key source is used for
encrypting the image.

0x7A Error occurred while decrypting the FSBL.
Ensure the same keys are used as present in the
chip for encrypting the Boot image.
Ensure right key source is used for encrypting
the image.

0x7B
Mismatch in the hash while checking for the
boot image integrity.

Ensure the SHA3 is used while creating the
boot image integrity.

0x80 Unable to power up the selected CPU. Ensure the power rail is ON for the selected
CPU. FPD in case of A53.

0x81
Unable to wake up the PMU after loading the
PMU firmware.

Ensure the PMU Firmware is running properly
and set FW_IS_PRESENT bit after completing
initialization.

0x90

Tamper event that is detected while in post
boot. Every tamper event is stored in an error
register with 0x90 + Index. Index is the tamper
event ID according to the CSU tamper register.

This is tamper detection by ROM during post
boot.
Ensure all voltages are in range.
Ensure JTAG is not toggled when it is disabled.

0xA0
Error when selected boot mode does not
support fallback.

Ensure no error is present in the first image
during USB boot mode.

0xB0 Error when exceptions occurs while booting. Ensure the LPD power supply is proper and
POR the chip.

Table 11‐9: BootROM Error Codes (Cont’d)

Error Code Description Solution
Zynq UltraScale+ Device TRM 256
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=256

Chapter 11: Boot and Configuration
PL Bitstream
The PL bitstream contains configuration data for the device's Programmable Logic (PL). This
configuration data can be loaded and read back from the PS using the PCAP interface. The
FSBL can handle loading of the initial configuration of the PL using a bitstream stored in the
boot image. Alternatively, the PL bitstream can also be loaded at a later time by application
code, including using software such as U-Boot or Linux. The XilFPGA software library
provides an API that facilitates the loading and read back of configuration data to and from
the PL. More information on the XilFPGA library can be found in the Zynq
UltraScale+ MPSoC Software Developer’s Guide (UG1137) [Ref 3]. The PL bitstream length
and composition depend on the device. Table 11-1 lists the attributes and values of the
bitstream for device type. Although bitstream options such as compression
(BITSTREAM.GENERAL.COMPRESS) can alter the required bitstream length and Since
compressed bitstreams can change in size between design iterations, adequate memory
should be reserved for the full uncompressed bitstream.

0xB1
Error when exceptions occurs while in post
boot.

Ensure the LPD power supply is proper and
POR the chip.

Notes:
1. To use QSPI32 boot mode for flash sizes greater than 16 MB.

Table 11‐9: BootROM Error Codes (Cont’d)

Error Code Description Solution

Table 11‐10: PL Bitstream Length

Device

Configuration
Bitstream

Length
(bits)

Minimum Configuration
Flash Memory Size

(Mb)

Configuration
Frames

Frame
Length

in Words

Configuration
Array Size
in Words

Configuration
Overhead
in Words

XCZU2 44,549,344 64 14,964 93 1,391,652 515
XCZU3 44,549,344 64 14,964 93 1,391,652 515
XCZU4 61,269,888 64 20,956 93 1,948,939 515
XCZU5 61,269,888 64 20,956 93 1,948,939 515
XCZU6 212,086,240 256 71,260 93 6,627,180 515
XCZU7 154,488,736 256 51,906 93 4,827,258 515
XCZU9 212,086,240 256 71,260 93 6,627,180 515
XCZU11 188,647,264 256 63,384 93 5,894,712 515
XCZU15 229,605,952 256 77,147 93 7,174,671 515
XCZU17 290,744,896 512 97,691 93 9,085,263 515
XCZU19 290,744,896 512 97,691 93 9,085,263 515
XCZU21 275,498,848 512 92,568 93 8,608,824 515
Zynq UltraScale+ Device TRM 257
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=257

Chapter 11: Boot and Configuration
Note: Compressed bitstreams can be also encrypted and authenticated.

The allowed register accesses depend on the boot mode and are listed in Table 11-11.

XCZU25 275,498,848 512 92,568 93 8,608,824 515
XCZU27 275,498,848 512 92,568 93 8,608,824 515
XCZU28 275,498,848 512 92,568 93 8,608,824 515
XCZU29 275,498,848 512 92,568 93 8,608,824 515
XCZU39 275,498,848 512 92,568 93 8,608,824 515
XCZU43 275,498,848 512 92,568 93 8,608,824 515
XCZU46 275,498,848 512 92,568 93 8,608,824 515
XCZU47 275,498,848 512 92,568 93 8,608,824 515
XCZU48 275,498,848 512 92,568 93 8,608,824 515
XCZU49 275,498,848 512 92,568 93 8,608,824 515
XCZU58 275,498,848 512 92,568 93 8,608,824 515
XCZU59 275,498,848 512 92,568 93 8,608,824 515

Table 11‐10: PL Bitstream Length (Cont’d)

Device

Configuration
Bitstream

Length
(bits)

Minimum Configuration
Flash Memory Size

(Mb)

Configuration
Frames

Frame
Length

in Words

Configuration
Array Size
in Words

Configuration
Overhead
in Words

Table 11‐11: Register Access Range and Boot Mode

Control Register Ranges
Secure Boot

Mode

QSPI 0x00000000 to 0x000001FC Yes
NAND 0x00000000 to 0x00000020 Yes

0x00000028 to 0x0000004C Yes
0x0000005C to 0x0000006C Yes

SDIO 0x00000004 to 0x00000054 Yes
0x00000060 to 0x000000FE Yes

CRL_APB 0x00000000 to 0x0000001C Yes
0x00000044 to 0x0000009C Yes
0x000000A4 to 0x000001DC Yes

CRF_APB 0x00000000 to 0x0000001C Yes
0x00000048 to 0x000000F8 Yes

UART0 0xFF000000 Yes
UART1 0xFF010000 Yes
I2C0 0xFF020000 Yes
I2C1 0xFF030000 Yes
Zynq UltraScale+ Device TRM 258
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=258

Chapter 11: Boot and Configuration
Register Overview

SPI0 0xFF040000 Yes
SPI1 0xFF050000 Yes
TTC0 to TTC3 0xFF110000 to 0xFF140000 Yes
DDR 0xFD070000 to 0xFD090000 Yes
MBISTJTAG 0xFFCF0000 Yes
RTC 0xFFA60000 Yes
RPU 0xFF9A0000 Yes

Table 11‐12: CSU Register Summary

Register Type Register Name Description

Configuration
security unit
control

csu_status CSU status.
csu_ctrl CSU control.
csu_sss_cfg CSU secure stream switch configuration.
csu_dma_reset CSU DMA reset.
csu_multi_boot MultiBoot address.
csu_tamper_trig CSU secure lockdown.
csu_ft_status CSU fault tolerant status.
csu_isr CSU interrupt status.
csu_imr CSU interrupt mask.
csu_ier CSU interrupt enable.
csu_idr CSU interrupt disable.
jtag_chain_status JTAG chain configuration status.
jtag_sec JTAG security.
jtag_dap_cfg DAP configuration.
idcode Device IDCODE.
version PS version.

ROM SHA digest csu_rom_digest_{0:11} CSU ROM SHA-3 digest 0 to 11.

Table 11‐11: (Cont’d)Register Access Range and Boot Mode

Control Register Ranges Secure Boot
Mode
Zynq UltraScale+ Device TRM 259
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=259

Chapter 11: Boot and Configuration
AES control

aes_status AES status.
aes_key_src AES key source.
aes_key_load AES key load.
aes_start_msg AES start message.
aes_reset AES reset.
aes_key_clear AES key clear.
aes_kup_wr AES KUP write control.
aes_kup_{0:7} AES key update 0 to 7.
aes_iv_{0:3} AES initialization vector 0 to 3.

SHA control

sha_start SHA start message.
sha_reset SHA reset.
sha_done SHA done.
sha_digest_{0:11} SHA digest 0 to 11.

PCAP control

pcap_prog PCAP PROGRAM_B control.
pcap_rdwr PCAP read/write control.
pcap_ctrl PCAP control.
pcap_reset PCAP reset.
pcap_status PCAP status.

Tamper response
tamper_status Tamper response status.
csu_tamper_{0:12} CSU tamper response 0 to 12.

Table 11‐12: CSU Register Summary (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 260
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=260

Chapter 11: Boot and Configuration
Configuration Programming Model

Load the PL Bitstream

After executing CSU ROM code, the CSU hands off the control to the first-stage boot loader
(FSBL). The FSBL uses the PCAP interface to configure the PL with the bitstream. Use the
following steps to load the PL bitstream.

Table 11‐13: CSU DMA Register Summary

Register Type Register Name Description

CSU DMA source

csudma_src_addr Source memory address (LSBs) for
DMA memory  stream data transfer.

csudma_src_size DMA transfer payload for DMA memory  stream
data transfer.

csudma_src_sts General source DMA status.
csudma_src_ctrl General source DMA control register 1.
csudma_src_crc Source DMA pseudo CRC.
csudma_src_i_sts Source DMA interrupt status.
csudma_src_i_en Source DMA interrupt enable.
csudma_src_i_dis Source DMA interrupt disable.
csudma_src_i_mask Source DMA interrupt mask.
csudma_src_ctrl2 General source DMA control register 2.

csudma_src_addr_msb Source memory address (MSBs) for DMA
memory  stream data transfer.

CSU DMA
destination

csudma_dst_addr Destination memory address (LSBs) for DMA
stream  memory data transfer.

csudma_dst_size DMA transfer payload for DMA stream  memory
data transfer.

csudma_dst_sts General destination DMA status.
csudma_dst_ctrl General destination DMA control.
csudma_dst_i_sts Destination DMA interrupt status.
csudma_dst_i_en Destination DMA interrupt enable.
csudma_dst_i_dis Destination DMA interrupt disable.
csudma_dst_i_mask Destination DMA interrupt mask.
csudma_dst_ctrl2 General Destination DMA control register 2.

csudma_dst_addr_msb Destination memory address (MSBs) for DMA
stream  memory data transfer.

Safety csudma_safety_chk Safety endpoint connectivity check register
Zynq UltraScale+ Device TRM 261
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=261

Chapter 11: Boot and Configuration
1. Initialize PCAP Interface.
2. Write a Bitstream Through the PCAP.
3. Wait for the PL Done Status.

The following section explains each of these steps.

Initialize PCAP Interface

1. Take the PCAP out of reset. Write 1 to the csu.pcap_reset[reset] bit.
2. Configure the PCAP in write mode.

a. Select the PCAP mode. Write 1 to the csu.pcap_ctrl[pcap_pr] bit.
b. Select write mode. Write 0 to the csu.pcap_rdwr[pcap_rdwr_b] bit.

3. Power up the PL, if needed. Read the csu.pcap_status [pl_gpwrdwn_b]. If Off, then trigger
a request to the PMU to power up the PL using the pmu_global.req_pwrup_trig [PL] bit.

4. Reset the PL.
a. Assert the PL reset. Write 0 to the csu.pcap_prog [pcfg_prog_b] bit.
b. Wait for at least 250 ns.
c. Deassert the PL reset. Write 1 to the csu.pcap_prog [pcfg_prog_b] bit.

Write a Bitstream Through the PCAP

1. Set the secure stream switch configuration to receive from DMA source: Set the
csu.csu_sss_cfg[pcap_sss] to 0x5.

2. Configure and set the CSU_DMA to establish channel and transfer. Use the following for
CSU DMA programming (see the Programming the CSU DMA section for details).
a. Channel type is DMA_SRC.
b. Source address is the address of the bitstream.
c. Size is bitstream size in words.

3. Wait for the CSU DMA operation to finish. on the source channel (see the Programming
the CSU DMA section for details).

4. Clear the CSU_DMA interrupts and acknowledge the transfer is completed: Set the
csudma.csudma_src_i_sts[done] bit.

5. Wait for PCAP done: Poll while the csu.pcap_status[pcap_wr_idle] bit is cleared.

Wait for the PL Done Status

Wait for the PL done status before doing anything else. This indicates the bitstream is
programmed properly, as described in the following steps.
Zynq UltraScale+ Device TRM 262
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=262

Chapter 11: Boot and Configuration
1. Wait for the PL done status: Poll while the csu.pcap_status[pl_done] bit is clear.
2. Once it is done, reset the PCAP interface: Set the csu.pcap_reset[reset] bit.

Programming the CSU DMA

During execution of the CSU ROM code, the CSU uses the CSU DMA for boot-image
transfer. The FSBL also uses the CSU DMA for PL programming (through PCAP) and also for
image transfers. The CSU DMA can be used after bringing it out of reset, followed by
programing the appropriate transfer channel. To bring the CSU DMA out of reset, clear the
csu.csu_dma_reset[reset] bit, as described in the following steps.
Zynq UltraScale+ Device TRM 263
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=263

Chapter 11: Boot and Configuration
Trigger a CSU DMA Transfer

A CSU DMA transfer is triggered after writing the size value for a DMA source channel. In
the case of PL programming, there is only source channel. In the case of loopback, a DMA
destination channel is configured first and then the source channel is configured.

The following steps are used to initiate a CSU DMA transfer.

1. Decide the channel type to be configured and set the address appropriately.
a. To configure the source channel, set the source address:

- Set the csudma.csudma_src_addr[addr] =
<LSB 30-bit source address (ignore the last 2 bits)>.

- Set the csudma.csudma_src_addr_msb[addr_msb] =
<MSB 16-bit source address>.

b. Else, set the destination address.
- Set the csudma.csudma_dst_addr[addr] =

<LSB 30-bit destination address (ignore last 2 bits)>.
- Set the csudma.csudma_src_addr_msb[addr_msb] =

<MSB 16-bit destination address>
2. Configure the source/destination size.

a. To configure the source channel:

Set the csudma.csudma_src_size[size] = <size of source buffer>.

b. Else,

Set csudma.csudma_dst_size[size] = <size of destination buffer>

Wait for CSU DMA Done

1. CSU DMA done can be verified by polling the done bit of the status register.
a. To poll the source channel:

Poll while the csudma.csudma_src_i_sts[done] is not set.

b. Else,

Poll while the csudma.csudma_dst_i_sts[done] is not set.

DMA done can be acknowledge by clearing the same bit of the status register.
Zynq UltraScale+ Device TRM 264
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=264

Chapter 11: Boot and Configuration
Figure 11-4 describes a CSU DMA transfer.
X-Ref Target - Figure 11-4

Figure 11‐4: CSU DMA Transfer

Start CSU DMA
Transfer

Configuring for a
source channel?

Set the source address (LSB and MSB)

csudma.csudma_src_addr[addr] = <LSB 32- bit source
address>
csudma.csudma_src_addr_msb[addr_msb] =
<MSB 16- bit source address>

Yes

No (destination channel)

Stop

Set the source address (LSB and MSB)

csudma.csudma_dst_addr[addr] = <LSB 32- bit destination
address>
csudma.csudma_dst_addr_msb[addr_msb] =
<MSB 16- bit destination address>

csudma.csudma_src_size[size] = <size of source
buffer>

csudma.csudma_dst_size[size] = <size of destination
buffer>

csudma.csudma_src
_i_sts[done] = 1?

csudma.csudma_ds
t_i_sts[done] = 1?

Yes

Yes (source channel)

NoNo

X15317-091316
Zynq UltraScale+ Device TRM 265
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=265

Chapter 12

Security

Introduction
The increasing ubiquity of Xilinx® devices makes protecting the intellectual property (IP)
within them as important as protecting the data processed by the device. As security threats
have increased, the range of security threats or potential weaknesses that must be
considered to deploy secure products has grown as well. The Zynq UltraScale+ MPSoC
provides features to help secure applications running on the SoC. These features include
the following.

• Encryption and authentication of configuration files.
• Hardened crypto-accelerators for use by the user application.
• Secure methods of storing cryptographic keys.
• Methods for detecting and responding to tamper events.

The sections in this chapter describe these features and their use.

The hardware provides many features to detect security intrusions (see Developing
Tamper-Resistant Designs with Zynq UltraScale+ Devices, XAPP1323 [Ref 32]). This
document provides guidance and practical examples to help protect the user IP and
sensitive data within a system. This protection (in the form of tamper resistance) needs to
be effective before, during, and after the device has been securely booted with a software
image or configured with a programmable logic (PL) bitstream. Sensitive data can include
the software and configuration data that sets up the functionality of the device logic, critical
data, or parameters that might be included in the boot image (i.e., initial memory contents
and initial state). It also includes external data that is dynamically brought in and out of the
device during post-boot normal operation.
Zynq UltraScale+ Device TRM 266
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=266

Chapter 12: Security
Device and Data Security

Configuration Security Unit (CSU) Introduction

At the center of the device security is the configuration security unit (CSU). The CSU is
composed of two main blocks as shown in Figure 12-1. On the left is the secure processor
block (SPB) that contains a triple redundant processor for controlling boot operation. It also
contains an associated ROM, a small private RAM, the physically unclonable function (PUF),
and the necessary control/status registers required to support all secure operations. The
component on the right is the crypto interface block (CIB) and contains the AES-GCM, DMA,
SHA-3, RSA, and PCAP interfaces.

Runtime access to the CSU can be controlled via the Xilinx peripheral protection unit
(XPPU). The CSU has a number of responsibilities, including the following.

• Secure boot.
• Tamper monitoring and response.
• Secure key storage and management.
• Cryptographic hardware acceleration.
Zynq UltraScale+ Device TRM 267
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=267

Chapter 12: Security
Secure Processor Block

The triple-redundant CSU processor provides a highly reliable and robust processing unit
for secure boot. The 128 KB CSU ROM is used to store the secure immutable ROM code
program. The ROM code passes an integrity check using the SHA-3 prior to being executed.
The 32 KB CSU RAM is used as a local secure data storage, and also includes ECC.

The features of the secure processor block are listed here.

• Triple redundant MicroBlaze.

° Not user accessible.

° Operates through first error and halts on second error.
• Internal, uninterruptible clock source.
• Dedicated internal RAM protected by ECC.

X-Ref Target - Figure 12-1

Figure 12‐1: Configuration Security Unit Block Diagram

CSU PMU Switch

CSU ROM
Validation

ROM
(128 KB)

RAM
(32 KB)

CSU Triple
Redundant
MicroBlaze

SHA-3
384

AES-
GCM
256

Secure Stream Switch

PCAP

CSU DMA

CSU
Registers

Key
Management

To PL
Configuration

PMU ROM
Validation

To/From LPD Main Switch

Tamper
Sources INTC

ECC

BBRAM
eFUSE
PUF
Operation
KUP
Family

CSU
Local

Registers

PUF RSA
Multiplier

Security Processor Block Crypto Interface Block

X15318-052418
Zynq UltraScale+ Device TRM 268
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=268

Chapter 12: Security
• Dedicated internal boot ROM protected by SHA-3 integrity check.
• PUF for generation of a device-unique encryption key.

Crypto Interface Block

The features of the CIB include the following.

• Secure stream switch for managing data exchange with cryptographic cores.
• SHA-3/384 hardened core.
• AES-GCM-256 hardened core.
• RSA exponential multiplier accelerator hardened core.
• Secure key management including BBRAM and eFUSE key storage.
• Processor configuration access port (PCAP).

In secure configurations, the RSA and SHA-3/384 are used to authenticate the image and
the AES-GCM is used to decrypt the image. During boot, the CIB and SPB run on the internal
clock oscillator. After boot, the CIB clock can be sourced from a faster PLL clock to increase
the performance of the user-accessible crypto blocks.

Data is moved into and out from the CIB using a direct memory access controller
(CSU_DMA) and the secure stream switch (SSS). The Secure Stream Switch in Chapter 11
outlines the options for data movement. See Secure Stream Switch and CSU DMA in
Chapter 11, Boot and Configuration for more information on DMA between cryptographic
accelerators and memory. The CIB also contains key vaults and key management
functionality for keys used during boot, as well as post boot for cryptographic acceleration.

Access to the PL is provided via the PCAP interface. See PL Configuration in Chapter 11 for
more information. Table 11-12 lists CSU registers for performing cryptographic functions,
as well as other CSU security critical functionality.

CSU Resets

The different secure blocks of the CSU are reset by writing to the registers in Table 12-1.
Write 1 to assert reset, write 0 to deassert reset.

Table 12‐1: CSU Reset Registers

Component Reset Register Name

AES-GCM aes_reset
PCAP pcap_reset
SHA-3/384 sha_reset
Zynq UltraScale+ Device TRM 269
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=269

Chapter 12: Security
Tamper Monitoring and Response

The primary function of the CSU SPB post-boot is to monitor the system for a tamper event.
Table 12-2 lists the twelve different monitoring functions that can be configured.

• The PS system monitor (SYSMON unit) triggering limits for voltage and temperature
alarms are user defined and configured.

° The csu_tamper_4 and csu_tamper_5 registers generate an over and under
temperature alarm when the PS SYSMON unit “threshold mode” is set to 1.

• The PL SEU alarm is a runtime health check of the programmable logic.
• Activity on the external PSJTAG interface pins can be detected from within the device

and reported on the JTAG toggle detect alarm.
• The CSU can act as a centralized tamper monitor and response hub for a system.
• Single external tamper detect signal through MIO.

The csu_tamper_x registers are write to clear (WTC) so that once a tamper is detected, the
tamper alarm can be cleared by writing to the corresponding register.

Table 12‐2: Tamper and Control Registers Channels

Register Event Source

csu_tamper_12 PS SYSMON voltage alarm for PS GTR (VTT and VCC are both monitored).
csu_tamper_11 PS SYSMON voltage alarm for PSIO bank 3.
csu_tamper_10 PS SYSMON voltage alarm for PSIO bank 0/1/2 (all three banks).
csu_tamper_9 PS SYSMON voltage alarm for VCC_PSINTFP_DDR.
csu_tamper_8 PS SYSMON voltage alarm for VCC_PSAUX.
csu_tamper_7 PS SYSMON voltage alarm for VCC_PSINTFP.
csu_tamper_6 PS SYSMON voltage alarm for VCC_PSINTLP.
csu_tamper_5 PS SYSMON upper and lower temperature alarms for FPD.
csu_tamper_4 PS SYSMON upper and lower temperature alarms for LPD.
csu_tamper_3 PL single event upset (SEU) error.
csu_tamper_2 JTAG toggle detect.(1)

csu_tamper_1 Input signal via MIO pin.(2)

csu_tamper_0 CSU register.
Notes:
1. The tamper event is caused by toggling the TDI or TMS input signals on the dedicated JTAG pins. The PJTAG

interface signals on the MIO are not monitored. The JTAG toggle detect system interrupt is persistent and cannot
be cleared until a power-on reset (POR) is done. If this response is chosen, the interrupt must be disabled
(masked) after detection to prevent an endless interrupt loop.

2. Assert the MIO tamper input (tamper 1) High until the Tamper Response occurs as configured by the
csu_tamper_1 register (Table 12-4). If the system is reset using the PS_RESET_B, then de-assert the MIO tamper
signal before releasing PS_RESET_B.
Zynq UltraScale+ Device TRM 270
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=270

Chapter 12: Security
The external tamper detect signals on MIO are listed in Table 12-3.

After a tamper event occurs, how the CSU responds is user configurable. Table 12-4
indicates which bit in the tamper response registers to set to obtain a specific tamper
response for each tamper event. Multiple tamper response bits can be set for each tamper
event. When more than one response bit [3:0] is set, the highest MSB that is set determines
the tamper response. If bit [4] and one of the bits [3:0] are set, the BBRAM key is erased and
the CSU generates the response associated with the MSB. For example, if bits 1, 2, and 4 are
set, the BBRAM key is erased and secure lockdown occurs (no reset).

The registers are readable but can only be set on write accesses. Specifically, once a specific
tamper response is selected for a given tamper event, the bit selecting that response cannot
be cleared except by a POR. This prevents incorrect or rogue software from accidentally
decreasing the tamper response penalty. Tamper responses can only be added.

Lockdown

Non-Secure Lockdown

Non-secure lockdown is initiated by the CSU ROM when a lockdown event occurs in a
non-secure boot mode.

Secure Lockdown

Secure lockdown is a device state that occurs when:

Table 12‐3: External Tamper Detect Signal on MIO

CSU Signal MIO Pins I/O Default Input Value to
Controller

ext_tamper 18,19,20,21,22,23,24,25,26,31,32,33 I 0

Table 12‐4: Tamper Monitor and Response Bits

Bit [4:0] Response

1 xxxx Erase the BBRAM key and the response based on the MSB of bits [3:0], if any are set.(1) (3)

x 1xxx Secure lockdown and 3-states all I/O pins including MIO, PS dedicated, and PL.(2)

x 01xx Secure lockdown.
x 001x System reset.
x 0001 System interrupt (GIC IRQ# 117).

Notes:
1. For example, if bit 4, 3, and 2 are all set, the tamper event erases the BBRAM, generates a secure lockdown, and

3-states on all I/Os.
2. The CSU hardware 3-states the PL I/Os and the CSU ROM code writes 1s to the MIO_MST_TRI {0:2} registers.
3. Bit 4 is set for all CSU_TAMPER registers except for the CSU_TAMPER_0 register. For the CSU_TAMPER_0 register,

BBRAM is cleared using Bit 5.
Zynq UltraScale+ Device TRM 271
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=271

Chapter 12: Security
• A tamper event occurs when tamper monitor and response bits 2 or 3 are set for a
given tamper event source.

• A failure occurs during secure boot. Very early in the secure boot process all failures
will result in secure lockdown. Once image loading has started, failures will only result
in secure lockdown if the SEC_LK_eFUSE is programmed (see Figure 12-7).

Secure lockdowns are processed by the CSU ROM. The CSU ROM performs the following
steps during a secure lockdown:

1. Tri-state the MIOs.
2. Zeroize the AES keys and reset the AES-GCM core.
3. Reset the APUs.
4. Reset the RPUs.
5. Disable the SRST pin.
6. Enable LPD/FPD isolation.
7. Enable the JTAG security gates (if not already enabled).
8. Toggle PROG_B to PL (this will clear whatever configuration is in the PL).
9. Instruct PMU to perform its lockdown.
10. PMU runs MBIST on the LPD, FPD and PMU.
11. PMU waits for PL housecleaning to complete.
12. PMU puts all blocks in reset.
13. PMU runs SCAN clear on the LPD and FPD if the LPD_SC and FPD_SC eFUSEs are

programmed.
14. Secure Lockdown complete is asserted.
15. Optional (disabled by eFUSE)

a. PMU set bootmode to JTAG.
b. (optional) PMU triggers internal POR.
c. (optional) PS reboots, enabling the BSCAN capabilities. See Figure 12-7 for more

details.

Emulating a Tamper Event

During system design and test, a tamper event can be emulated to ensure the system is
functioning correctly. The csu_tamper_trig register, combined with the csu_tamper_0
register, provides a mechanism for testing tamper responses. An example of emulating a
tamper response is as follows.

1. Write to the csu_tamper_trig register.
Zynq UltraScale+ Device TRM 272
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=272

Chapter 12: Security
2. The associated tamper response in csu_tamper_0 is executed.
3. The csu_tamper_trig register self-clears.

Staged Response to a Tamper Event

Systems might require multiple responses to a tamper event. The csu_tamper_trig register,
combined with the csu_tamper_0 register, provides a way to have a two-staged response to
a tamper event. An example of building a staged response is as follows.

1. Set bit 0 in csu_tamper_6 (i.e., generate an IRQ when VCCINT_LPD is out of range).
2. Set bit 2 in csu_tamper_0 (i.e., enter secure lockdown).
3. Tamper event occurs. VCCINT_LPD goes out of range.
4. The csu_tamper_6 causes an IRQ to be set.
5. User software responds to IRQ and clears the tamper.
6. User software performs some additional action, such as logging or zeroing of

configuration or data.
7. User software writes to csu_tamper_trig register.
8. Csu_tamper_0 response is executed. The device goes into secure lockdown.

The tamper events can be securely and permanently logged for later analysis. Logging can
be done within the device through a user eFUSE.

Key Management

The AES crypto engine has access to a diverse set of key sources. Non-volatile key sources
include eFUSEs, BBRAM, a PUF key encryption key (KEK), and a family key. These keys
maintain their values even when the device is powered-down. Volatile key sources include
an operational key and a key update register key.

The device key source selection is exclusively done by the CSU ROM based on the
authenticated boot image header. A device key can be from any of the following sources
(see Figure 12-2).

• BBRAM
• Boot
• eFUSE
• Family
• Operational
• PUF KEK
Zynq UltraScale+ Device TRM 273
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=273

Chapter 12: Security
In addition to the BBRAM and eFUSE key storage locations, the Zynq UltraScale+ MPSoC
also allows for the device key to be stored externally in the boot flash. This key can be
stored in its obfuscated form (i.e., encrypted with the family key) or in its black form (i.e.,
encrypted with the PUF KEK).

A device key (a key used to boot the device) is selected by the CSU ROM based on the
authenticated boot header or the ENC_ONLY eFUSE setting. To use the device key post
boot, the following conditions must be met.

• The device key is available post boot if the initial configuration files are encrypted or if
the authentication only option is selected. See Hardware Root of Trust Only Boot
(Auth_Only Option) for more information.

• The device key used during boot must be the device key used post boot. The key
source cannot be changed until the next POR.

Using only the device key post boot is not restricted. A user key can also be loaded into the
KUP. The aes_key_src register can be used to select between the device key and the key
update key. Figure 12-2 shows the key selection process and the protections in place.

Table 12‐5: Types of Keys

Key Name Description

BBRAM The BBRAM key is stored in plain text form in a 256-bit RAM array.
Boot The boot key register holds the decrypted key while the key is in use.

eFUSE The eFUSE key is stored in eFUSEs. It can be either plain text, obfuscated (i.e., encrypted
with the family key), or encrypted with the PUF KEK.

Family

The family key is a constant AES key value hard-coded into the devices. The same key is
used across all devices in the Zynq UltraScale+ MPSoC family. This key is only used by
the CSU ROM to decrypt an obfuscated key. The decrypted obfuscated key is used to
decrypt the boot images. The obfuscated key can be stored in either eFUSE or the
authenticated boot header. Because the family key is the same across all devices, the
term obfuscated is used rather than encrypted to reflect the relative strength of the
security mechanism.

Operational
The operational (OP) key is obtained by decrypting the secure header using a plain text
key obtained from the other device key sources. For secure boot, this key is optional.
Use of the OP key is specified in the boot header and minimizes the use of the device
key, thus limiting its exposure.

PUF KEK The PUF KEK is a key-encryption key that is generated by the PUF.
Key update register

(KUP)
User provided key source. After boot, a user selected key can be used with the hardened
AES accelerator.
Zynq UltraScale+ Device TRM 274
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=274

Chapter 12: Security
Battery-Backed RAM

The BBRAM module is one of the available options for storing the device AES key. The
BBRAM is a static RAM array. When the device has power on the PS_VCCAUX supply, the
BBRAM is powered by the PS_VCCAUX supply. When the PS_VCCAUX supply is switched off,
the device automatically switches the BBRAM power over to PS_VCCBATT. The key stored in
BBRAM can only be stored in its unencrypted form (i.e., red). It cannot be obfuscated
(family) or encrypted (black). The BBRAM can also be cleared, which is valuable as a tamper
response.

BBRAM Programming

The BBRAM key memory space is 288-bits. The BBRAM can be programmed by system
software running on an RPU or APU processor, or via the PJTAG interface on MIO that
connects to the Arm DAP controller and becomes an AXI bus master. The BBRAM block
diagram is shown in Figure 12-3. The BBRAM and eFUSE programming details are described
in the Programming BBRAM and eFUSEs Application Note (XAPP1319) [Ref 20].

X-Ref Target - Figure 12-2

Figure 12‐2: Key Selection

BBRAM

Boot

eFUSE

Family

Operation

Lock A Lock B

AES-GCM

Key
Update

ROM
Controlled CSU

ROM Valid
CSU

Secure Boot

AES Key Source
Register

Selectable

Device Key

PUF

X15319-031617
Zynq UltraScale+ Device TRM 275
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=275

Chapter 12: Security
BBRAM Readback Protections

In previous generations of Xilinx devices, the AES key stored in battery-backed RAM (known
as BBR) could be read out for validation. The BBR had a protocol mechanism in which the
key was erased prior to being able to program and verify the key. Although these protocol
protection mechanisms still exist, the readback path for the key has been removed. The
Zynq UltraScale+ MPSoC does not allow read back of the AES key in its BBRAM. Instead,
when the key is written, a CRC32 value of that key is provided. After the key has been
written, the device verifies that the key in storage matches the provided CRC32 value. The
device then provides a pass or fail result.

BBRAM Zeroization

The AES key in BBRAM can be erased using an active write to 0's controlled by an internal
zeroization signal. A status bit is provided to confirm that the key is all 0's.

BBRAM Key Agility

The AES key in BBRAM can be securely updated from within the device while the device is
in operation. Once the key is updated, subsequent boots of the device will use the new key.

eFUSE

The eFUSE array contains a block of 256 eFUSEs that can provide a key to the AES-256
crypto engine. This block of eFUSEs has dedicated read and write disables controlled by

X-Ref Target - Figure 12-3

Figure 12‐3: BBRAM Programming Interface

BBRAM Control

288-bit BBRAM

256-bit BBRAM Key
to CSU

APB

addrws

X17981-092516
Zynq UltraScale+ Device TRM 276
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=276

Chapter 12: Security
additional eFUSEs. The eFUSE key can be stored in plain text form (red), obfuscated form
(gray), or encrypted form (black).

eFUSE Programming

The eFUSEs can be programmed by system software running on an RPU or APU processor or
via the PJTAG interface (on MIO) that connects to the Arm DAP controller and becomes an
AXI bus master. In both cases, the eFUSE programming registers are accessed.

The XilSKey macro library provides a convenient structure to program the eFUSEs. For
details on eFUSE programming, see the Programming BBRAM and eFUSEs Application Note
(XAPP1319) [Ref 20].

eFUSE Readback Protections

In previous generations of Xilinx devices, the key stored in the eFUSEs could be read out for
validation. There were options to close the readback path by blowing additional eFUSEs.
This readback path has been removed. The Zynq UltraScale+ MPSoC does not allow read
back. Instead, when the key is written, a CRC32 value of that key is provided. After the key
has been written, the device verifies that the key in storage matches the provided CRC32.
The device then provides a pass or fail result. The read disable eFUSE now prevents the
CRC32 validation from occurring.

eFUSE Zeroization

Although the eFUSE key can by "oneized" by blowing all the eFUSEs from inside the device,
it is unclear how much value this provides from a security point of view. Care must be taken
to ensure that the key cannot be observed using a simple power analysis (SPA) attack
during the blowing of the key bits. It is also possible for an adversary to manipulate external
voltages and clocks to compromise successful eFUSE programming.

Key Update Register

The key update register is used during boot to support the key rolling feature, where the
different AES key must be loaded multiple times. After boot, any key can be loaded into this
register via APB by software running on the PS. A 256-bit KUP key is stored in the eight AES
key update registers.

Operational Key

The OP key is a register that holds the key decrypted from the secure header of the boot
image. See Minimizing Use of the AES Boot Key (OP Key Option) for more details.

Storing Keys in Obfuscated Form

As shown in Figure 12-4, the user key is encrypted with the family key, which is embedded
in the metal layers of the device. This family key is the same for all devices in the Zynq
Zynq UltraScale+ Device TRM 277
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=277

Chapter 12: Security
UltraScale+ MPSoC family. The result is referred to as the obfuscated key. The term
obfuscated is used instead of encrypted to reflect the relative strength of the security
mechanism. The obfuscated key can reside in either the authenticated boot header or
eFUSEs. During boot, the CSU ROM takes the obfuscated key, decrypts it with the family key,
and then uses the resulting user key to decrypt the boot images.

The Xilinx development tools (bootgen) can be used to create a boot image with the
obfuscated key. The family key is not distributed with the Xilinx development tools. To
receive the family key, contact secure.solutions@xilinx.com. For more information on
generating boot images with the obfuscated key, see “Chapter 8: Security Features” in the
Zynq UltraScale+ MPSoC Software Developer’s Guide (UG1137) [Ref 3].

Storing Keys in Encrypted Form (Black)

The black key storage solution, as shown in Figure 12-5, uses a cryptographically strong
KEK generated from a PUF to encrypt the user key. The resulting black key can then be
stored either in eFUSEs or as part of the authenticated boot header resident in external
memory. The black key storage provides the following advantages.

• The user key is the same for all devices. Consequently, the encrypted boot images are
the same for all devices that use the same user key.

• The PUF KEK is unique for each device. Consequently, the black key stored with the
device is unique for each device.

• The PUF KEK value is only known by the device (cannot be read by the user).

X-Ref Target - Figure 12-4

Figure 12‐4: Obfuscated Key

Zynq UltraScale+ MPSoC

Obfuscated Key

Secret Red Key

Family Key

Family Key

Secret Red Key

Secret Red Key

User
Image

Boot Media
(SD or

Quad-SPI)

AES-GCM

AES-GCM

AES-GCM

AES-GCM

Obfuscated Key Load

Encrypted Image
Encrypted

Image
Unencrypted

Image

X18021-031617
Zynq UltraScale+ Device TRM 278
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=278

Chapter 12: Security
The silicon manufacturing process includes inherent, random, and uncontrollable variations
that cause unique and different characteristics from device to device. The Xilinx devices
operate within these variations and device functionality is not affected. PUFs are tiny
circuits that exploit these chip-unique variations to generate unique keys. The type of PUF
used to generate the KEK is also an important consideration. The Zynq UltraScale+ MPSoC
PUF uses an asymmetric technology (i.e., a ring oscillator based type PUF licensed from
Verayo), which is different from the device key storage technology (e.g., SRAM or eFUSE).
This asymmetric technology increases the security level above what can be achieved with a
single technology.

IMPORTANT: PUF regeneration can only be performed when authentication is enabled. The PUF is
disabled in the encrypt-only secure boot mode.

PUF Helper Data

The PUF uses approximately 4 Kb of helper data to help the PUF recreate the original KEK
value over the complete guaranteed operating temperature and voltage range over the life
of the part. The helper data consists of a Syndrome value, an Aux value, and a Chash value
(see Table 12-6). The helper data can either be stored in eFUSEs or in the boot image.

X-Ref Target - Figure 12-5

Figure 12‐5: Black Key Storage

Secret “Red” Key Key Encoder

Encrypted
“Black” Key
Device Unique

Key Decoder

Secret “Red” Key
during config

Only

PUF
Device Unique

PROMUser
Design

Secret “Red” Key

AES-GCM

Encrypted
Bitstream/

FSBL

Encrypted
Bitstream/

FSBL

AES-GCM

Unencrypted
Bitstream/

FSBL

FPGA/SoC

X18921-032117
Zynq UltraScale+ Device TRM 279
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=279

Chapter 12: Security
PUF Operations

Access to the PUF is restricted by the CSU. The CSU offers the PUF as a CSU service. The PUF
can be accessed through the CSU registers. The CSU supports the user commands listed in
Table 12-7.

Figure 12-6 shows a block diagram of how the PUF is connected inside the CSU.

Table 12‐6: PUF Helper Data

Field Size (Bits) Description

Syndrome 4060
These bits aid the PUF in recovering the proper PUF signature given
slight variations in the ring oscillators over temperature, voltage, and
time

Aux 24 This is a Hamming code that allows the PUF to perform some level of
error correction on the PUF signature.

Chash 32

This is a hash of the PUF signature that allows the PUF to recognize if
the regenerated signature is correct.
• If the CHASH is not programmed, then BH black key can be used so

long as (EITHER bh_auth or rsa_en) is used.
• If the CHASH is programmed, then the eFUSE black key can be used

so long as (EITHER bh_auth or rsa_en is used) AND the efuse
syndrome data has not been invalidated.

• If the CHASH is programmed, then the BH black key can be used so
long as (EITHER bh_auth or rsa_en) is used AND the efuse syndrome
data has been invalidated.

Table 12‐7: CSU User Commands

Command Description

Registration Create a new KEK and associated helper data (first time).
Re-registration Create a new KEK and associated new helper data.

Reuse Encrypt/decrypt with the existing KEK and associated helper data (valid for
eFUSE helper data only).
Zynq UltraScale+ Device TRM 280
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=280

Chapter 12: Security
The PUF undergoes a registration process when a key is initially loaded into the device. The
registration process initializes the PUF so that a KEK is created. The registration software
can then use the KEK to encrypt the user key and program the eFUSEs. Alternatively, the
encrypted user key can be output for inclusion into a boot image. The registration software
also programs the helper data into the eFUSEs. Alternatively, the helper data can be output
for inclusion into a boot image. The helper data and the encrypted user key must be stored
in the same location (i.e., both in eFUSE or both in the boot image).

When the device powers on, the CSU bootROM examines the authenticated boot image
header. The boot image header contains information on whether the PUF is used, where the
encrypted key is stored (eFUSE or boot image), and where the helper data is stored (eFUSE
or boot image). The CSU then initializes the PUF, loads the helper data, and regenerates the
KEK. This process is called regeneration. Once the KEK is regenerated, the CSU bootROM
can use it to decrypt the user key, which is then used to decrypt the rest of the boot image.

PUF Control eFUSEs

The eFUSEs listed in Table 12-8 control additional PUF behaviors.

X-Ref Target - Figure 12-6

Figure 12‐6: Block Diagram of PUF Connection in CSU

CSU
MicroBlaze

CSU
AXIM

CSU
Private Registers

PUF

CSU
APB

CSU
Registers

Key

dev_key_sel

AES eFUSE

4K PUF syndrome data

eFUSE
APB

X18925-080318

Table 12‐8: PUF Control eFUSEs

eFUSE Name Description

REG_DIS Disables registrations of the PUF.
SYN_INVALID Invalidates the helper data contained in the eFUSEs.

SYN_LOCK Prevents modification of the helper data contained in the
eFUSEs.
Zynq UltraScale+ Device TRM 281
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=281

Chapter 12: Security
PUF Characterization, Testing, and Ordering

The Zynq UltraScale+ MPSoC PUF Characterization Report (RPT236) is a Xilinx proprietary
document that covers additional characterization testing performed on the PUF. This
characterization covers the PUF's stability (i.e., ability to accurately regenerate the KEK) over
the voltage, temperature, and aging. It also covers characterization of the entropy, or
security strength, of the KEK. Contact your local Xilinx FAE or sales person for details on how
to obtain a copy of the report.

Special ordering codes are required for devices where additional manufacturing tests have
been performed on the PUF to help ensure entropy (i.e., key strength).

Key Management Summary

The device provides a variety of options for securing both boot images and user data. Boot
image keys can be stored in BBRAM, eFUSE, or in the boot image itself. These keys can be
in plain text (red), obfuscated with the family key, or encrypted with the PUF KEK (black).
These options are described in Table 12-9.

Protecting Test Interfaces

JTAG Interface Protections

On power-up, the default boot state is secure, and the JTAG interface only accepts a limited
set of commands. These commands are listed here.

• IDCODE
• HIGHZ_I/O (applies only to PS I/O)
• JTAG_STATUS
• PS_ERROR_STATUS

Table 12‐9: Boot Image Keys

Features BBRAM eFUSE Boot Image

Programming method Internal via software
External via JTAG

Internal via software
External via JTAG
PUF registration
software

Bootgen
Bootgen + PUF
Registration software

Program verification CRC32 Only CRC32 Only N/A
Key state during storage Red Red, black, or

obfuscated
Black or obfuscated

In-use protections Temporary storage in registers, not RAM.
Transferred in parallel, not serial.
Boot: DPA counter measures and zeroization after use.
Zynq UltraScale+ Device TRM 282
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=282

Chapter 12: Security
• BYPASS

The device can boot up in secure and non-secure mode. The two secure boot modes are
hardware root of trust and encrypt only.

Figure 12-7 shows the JTAG capabilities throughout the secure and non-secure boot
process. For non-secure boots, once the boot is complete, either successfully or
unsuccessfully, the full suite of JTAG commands are enabled.

For secure boots, if the boot is completed successfully, the authenticated software is
capable of enabling the additional JTAG commands. Otherwise, only the IDCODE, HIGHZ_IO,
BYPASS, JTAG_STATUS, and PS_ERROR_STATUS commands are available. Since the
PS_ERROR_STATUS pin is driven by GPO of the PMU, when the PMU is reset the
PS_ERROR_STATUS will be cleared. However, at the end of the secure lockdown, if the option
to reboot into JTAG for boundary scan debug is on, then the PMU will get reset and the
ERROR_STATUS pin will be deserted. It should be noted that this reset event doesn’t clear
the JTAG_ERROR_STATUS register, which can be read via the JTAG_ERROR_STATUS
instruction on the JTAG TAP. In the event of a failed secure boot, the JTAG capabilities are
dependent on how the device was provisioned.

• Programming the SEC_LK eFUSE forces every failed secure boot to enter secure
lockdown.

• In the event that SEC_LK is not programmed:

° User integration and test is supported via commanding authentication and
encryption through the boot header. See Integration and Test Support (BH RSA
Option) for more details. In the event of a failed secure boot, JTAG is enabled.

° For fielded systems, where authentication or encryption is forced upon every boot,
the device enables the BSCAN capabilities only to support continuity testing. In this
state, internal memory and registers are zeroized, and both the A53s and the R5s
are held in reset.
Zynq UltraScale+ Device TRM 283
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=283

Chapter 12: Security
In addition to disabling specific JTAG commands, specific JTAG sites are disabled by default
on power-on by software-controlled security gates. Triple redundancy is used to maintain
the state of these security gates. The location of these gates is shown in Figure 39-1 in
Chapter 39, System Test and Debug.

Finally, there is an eFUSE that completely disables the JTAG interface in all situations. Only
BYPASS and IDCODE are allowed when the JTAG_DIS eFUSE is programmed.

X-Ref Target - Figure 12-7

Figure 12‐7: JTAG Interface Protections

PS RESET
(PORB = 0)

PS in Boot

Successful Boot
Non-Secure

Failed Boot
Non-Secure

Successful Secure
Boot

Failed Secure Boot
Secure Lockdown

JTAG Enabled

Disable
Reboot Fuse

Blown?
(SEC_LK)

Secure Lockdown

AES or RSA eFuse
Blown Or

PreviousBootEnc

JTAG Boot
Full JTAG Access

Enable BSCAN
Device Held in Reset

Yes

No

Yes

IDCODE, BYPASS, ERROR_STATUS,
JTAG_STATUS, HIGHZ_IO

IDCODE, BYPASS, ERROR_STATUS,
JTAG_STATUS, HIGHZ_IO,

EXTEST, PRELOAD/SAMPLE

IDCODE, BYPASS, ERROR_STATUS,
JTAG_STATUS, HIGHZ_IO, EXTEST,
PRELOAD/SAMPLE, DAP, PL Support

Authenticated SW
enables JTAG?

JTAG not Enabled

Yes

No

SOFT RESET

PS in Boot

SOFT RESET

PS in Boot

Secure BSCAN
Mode

No

X18920-120418
Zynq UltraScale+ Device TRM 284
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=284

Chapter 12: Security
PL Clearing

The CSU contains the PCAP interface. The PCAP interface can be used to monitor the
configuration memory's health in the PL. The PCAP CSU.pcap_prog [pcfg_prog_b] register
bit can be used to erase the configuration memory in the PL and the CSU.pcap_status can
be used to actively verify the contents have been erased. This provides a means of using PL
configuration memory clearing as a tamper response.

A POR or soft reset, by default, clears the PL. There are applications where independence is
needed between the PS and PL. To enable these applications, the ability to gate the
reset/reprogramming of the PL is added through the PROG_GATE circuit. The PROG_GATE
circuit can be controlled by the PMU_GLOBAL. PS_CNTRL.PROG_GATE and PROG_ENABLE
bits as listed in Table 12-10

After a successful configuration, SW can write to this register and configure the PROG_GATE
circuit so that a soft reset to the PS does not clear the PL.

The behavior can be changed by programming any one of the three PROG_GATE[2:0]
eFUSEs. These eFUSEs override the PROG_GATE circuit and force the PL to always be cleared
upon a PS reset. The PROG_GATE[2:0] eFUSEs can be observed in the SEC_CTRL register in
the eFUSE registers.

Device DNA Identifiers

Each device has a unique 96-bit DNA identifier number to improve security. No two devices
have the same DNA. A DNA identifier number exists in the PL and the PS.

Xilinx recommends using the PL-based DNA identifier for secure applications that depend
on an unchangeable and unique device identifier. There is a PS-based DNA identifier, but it
is possible that one or more of its bits could be changed.

Note: The PL and PS DNA identifiers might not be exactly the same as shipped by Xilinx.

The PL DNA identifier cannot be changed (all PL DNA bits are read-only). Table 12-11 lists
the device DNA identifiers.

Table 12‐10: PROG_GATE Circuit Control

Prog_Enable Prog_Gate Description

0 0 Previous control maintained (This is the reset/power on state. The
PROG_GATE circuit powers on with the PS able to reset the PL).

0 1 pcfg_prog_b is blocked – PS reset does not reset the PL.
1 0 pcfg_prog_b is not blocked – PS reset does reset the PL.
1 1 Invalid condition.
Zynq UltraScale+ Device TRM 285
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=285

Chapter 12: Security
The Xilinx 2D bar code that is printed on the top of each device also includes the PL DNA
identifier.

Error Output Disable

Many secure applications have requirements to disable error notifications to the outside
world. These applications want to disable the PS_ERROR_OUT and PS_ERROR_STATUS
signals. The registers that control these signals are described in Table 6-16 in Chapter 6,
Platform Management Unit. The user software must be loaded and executing to control
these registers.

The ERR_DIS eFUSE permanently disables reading of the PS_ERROR_STATUS register from
the external JTAG chain.

Cryptographic Acceleration

AES-GCM

The AES-GCM core has a 32-bit word-based data interface with support for a 256-bit key.
The AES-GCM mode supports encryption and decryption, multiple key sources, and built-in
message integrity check.

Note: The AES engine operates on a 32-bit boundary.

The AES-GCM-256 core allows for the following key sources.

• BBRAM key
• eFUSE device key

Table 12‐11: Device DNA Identifiers

Identifier Length Read-only? Read Access Methods

PL DNA 96 bits Yes, always.

Method 1: instantiate the PL DNA_PORTE2 primitive
Method 2: connect to the JTAG PL TAP controller
and use the FUSE_DNA instruction
Note: For more details, see the UltraScale Architecture
Configuration User Guide (UG570) [Ref 33].
Note: The Vivado Hardware Manager displays the PL
DNA value.

PS DNA 96 bits No, not all bits.

Access the read-only EFUSE.DNA_x registers at
addresses:
• DNA_0: 0xFFCC_100C
• DNA_1: 0xFFCC_1010
• DNA_2: 0xFFCC_1014
Note: The SDK API, XilSKey_ZynqMp_EfusePs_ReadDna,
returns the PS DNA value.
Zynq UltraScale+ Device TRM 286
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=286

Chapter 12: Security
• Operation key (OPKEY)
• Key update register (KUP)
• Family key (for obfuscated key storage)
• PUF key-encryption-key (KEK) (for black key storage)

Initialization Vector Register

The four initialization vector (IV) registers combined create a larger 128 bit value. This
128-bit values contains two separate fields. The first field resides in the first three AES IV
registers (aes_iv_0, aes_iv_1, and aes_iv_2) and contains the 96-bit AES-GCM initialization
vector (IV). The 96-bit AES-GCM IV is specified by the AES-GCM standard and initializes the
counts used in this AES mode. The fourth register (aes_iv_3) contains the decrypt length
count (DLC). The DLC specifies the data size of the next block. The DLC is used when the key
rolling feature is enabled in the boot image. Table 12-12 shows the IV vector format.

Programming AES-GCM Engine

The XilSecure library provides APIs to access the AES-GCM core. For more information, see
the AES-GCM chapter in the Xilinx Standalone Library Documentation: OS and Libraries
Document Collection (UG643) [Ref 16].

SHA-3/384

The SHA hardware accelerator included in the Zynq UltraScale+ MPSoC implements the
SHA-3 algorithm and produces a 384-bit digest. It is used together with the RSA accelerator
to provide image authentication. It is also used to perform an integrity check of the CSU
and PMU ROMs prior to execution. The SHA-3 block generates a 384-bit digest value. If a
design requires a 256-bit digest, use the least significant 256 bits of the digest (see
Recommendation for Applications Using Approved Hash Algorithms NIST Special Publication
800-107 [Ref 56]).

The hash function is calculated on blocks that are 832-bits long (104 bytes). Only whole
blocks can be processed through the SHA. All messages processed by the SHA-3
accelerator must be appropriately padded. See SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions, NIST FIPS PUB 202 [Ref 57] for padding requirements.
SHA3-384 padding should be M || 01 || 10 * 1.

Table 12‐12: Initialization Vector Format

127 32 0

GCM IV
DLC

(Decrypt
length
count)

96-bit random value
Next block
data size

(key rolling)
Zynq UltraScale+ Device TRM 287
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=287

Chapter 12: Security
Programming SHA-3 Engine

The XilSecure library provides APIs to access the SHA core. See the SHA-3 chapter in the
Xilinx Standalone Library Documentation: OS and Libraries Document Collection (UG643)
[Ref 23].

RSA Accelerator

The Zynq UltraScale+ MPSoC includes an RSA accelerator for public and private key
operations. The RSA accelerator supports the following features.

• Implements a modular exponentiation engine.
• Support for R*R mod M pre-calculation.
• Support for multiple RSA key sizes including 2048, 3072, and 4096. Only the key size of

4096 is supported during boot. For all key sizes supported, see the Xilinx Standalone
Library Documentation: OS and Libraries Document Collection (UG643) [Ref 23].

• Implements efficient processing of a short public exponent.

Programming the RSA Engine

The XilSecure library provides APIs to access the RSA accelerator. See the RSA chapter in the
Xilinx Standalone Library Documentation: OS and Libraries Document Collection (UG643)
[Ref 23].

Information regarding the performance of cryptographic acceleration, within two different
software architectures, is provided in Accelerating Cryptographic Performance on the Zynq
UltraScale+ MPSoC (WP512) [Ref 37].

Secure Non-Volatile Storage

In addition to storing the user key in encrypted form, the PUF can also be used to
encrypt/decrypt data to store in external memory. This use case provides a secure
non-volatile solution. In cases where the PUF helper data is stored in eFUSEs and RSA
authentication is enabled, the regeneration process can be used by the user’s application
software to regenerate the KEK. This KEK can then be used to encrypt data, such as
additional user keys, using the device unique KEK. This encrypted user data can then be
stored off-chip or in the user eFUSEs and decrypted using the same process at a later time.
See the External Secure Storage Using the PUF Application Note (XAPP1333) [Ref 34].

Note: When the PUF is used in this manner, it becomes the device key and the device key selection
cannot be changed back to the BBRAM or eFUSE key without a power on reset. The user can still
choose between the Key Update Register and the PUF (see Figure 12-2.)
Zynq UltraScale+ Device TRM 288
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=288

Chapter 12: Security
Security Related eFUSEs

PS eFUSEs

An eFUSE is a small, one-time programmable, non-volatile memory element. The eFUSE
arrays store various types of important information. The definition of each bit of an eFUSE
is represented in the eFUSE map shown in Table 12-13. The device caches the eFUSE values
into registers so that reading the eFUSE value means reading the eFUSE cache and not the
physical device eFUSEs. Loading the eFUSE cache occurs during the pre-boot phase, via a
register command (EFUSE.EFUSE_CACHE_LOAD) or automatically when the XilSKey library is
used. Reading is done from the eFUSE registers at 0xFFCC0000 (see the Zynq UltraScale+
MPSoC Register Reference (UG1087) [Ref 4]).

Because readback is not available on the AES key, a CRC check has been built in to validate
that the AES key eFUSE has been programmed correctly. Before the CRC check can be
performed on a newly programmed eFUSE, the eFUSE cache must be reloaded.

eFUSEs can be programmed using the Xilinx XilSKey library. Inputs are provided in the
application header file xilskey_efuseps_zynqmp_input.h. The corresponding macro
names are listed in Table 12-13. For PUF usage, input is provided via the
xilskey_puf_registration.h file. For more information on XilSKey library usage, see
the Xilinx library documentation.

For details on how to program eFUSEs, see Programming BBRAM and eFUSEs Application
Note (XAPP1319) [Ref 20].

Table 12‐13: Zynq UltraScale+ MPSoC Security eFUSEs

Size Name Description
XilSKey Name:
XSK_EFUSEPS_

32 USER_{0:7}

256 user defined eFUSEs:
Note: In the input.h file (see text), write data in the
XSK_EFUSEPS_USER{0:7}_FUSES macro and execute the write by
setting the XSK_EFUSEPS_USER{0:7}_FUSE macro = True.

USER{0:7}_FUSE

1 USER_WRLK

8 user-defined eFUSE locks.
USER_WRLK columns:
0: Locks USER_0,
1: Locks USER_1,
...
7: Locks USER_7,
Note: Each eFUSE permanently locks the entire corresponding
user-defined USER_{0:7} eFUSE row so it cannot be changed.

USER_WRLK_{0:7}

1 LBIST_EN Enables logic BIST to run during boot. LBIST_EN

3 LPD_SC
Enables zeroization of registers in low power domain (LBD) during boot.
Note: Any of the eFUSE programmed will perform zeroization. Xilinx
recommends programming all of them.

LPD_SC_EN

3 FPD_SC

Enables zeroization of registers in full power domain (FBD) during boot.
Note: MGTs must be powered to perform zeroization of the FPD.
Note: Any of the eFUSE programmed will perform zeroization. Xilinx
recommends programming all of them.

FPD_SC_EN
Zynq UltraScale+ Device TRM 289
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=289

Chapter 12: Security
3 PBR_BOOT_
ERROR

When programmed, boot is halted on any PMU error. PBR_BOOT_ERR

32 CHASH
PUF helper data N/A - handled by PUF

registration software
directly.

24 AUX
PUF helper data: ECC vector N/A - handled by PUF

registration software
directly.

1 SYN_INVLD Invalidates PUF helper data stored in eFUSEs. XSK_PUF_SYN_INVALID
1 SYN_LOCK Locks PUF helper data from future programming. XSK_PUF_SYN_WRLK
1 REG_DIS Disables PUF registration. XSK_PUF_REGISTER_DISABLE
1 AES_RD Disables the AES key CRC integrity check for eFUSE key storage. AES_RD_LOCK
1 AES_WR Locks AES key from future programming. AES_WR_LOCK

1 ENC_ONLY(1)(2)
When programmed, all partitions are required to be encrypted. Xilinx
recommends using this only if security is required and the hardware
root of trust (RSA_EN) is not used.

ENC_ONLY

1 BBRAM_DIS Disables the use of the AES key stored in BBRAM. BBRAM_DISABLE

1 ERR_DIS
Prohibits error messages from being read via JTAG (ERROR_STATUS
register).
Note: The error is still readable from inside the device.

ERR_DISABLE

1 JTAG_DIS(1) Disables JTAG. IDCODE and BYPASS are the only allowed commands. JTAG_DISABLE
1 DFT_DIS(1) Disables design for test (DFT) boot mode. DFT_DISABLE

3 PROG_GATE

When programmed, these fuses prohibit the PROG_GATE feature from
being engaged. If any of these are programmed, the PL is always reset
when the PS is reset.
Note: Only one eFUSE needs to be programed to prohibit the
PROG_GATE feature from being engaged. Xilinx recommends
programming all three.

PROG_GATE_DISABLE

1 SEC_LK When programmed, the device does not enable BSCAN capability while
in secure lockdown. SECURE_LOCK

15 RSA_EN(1)(2)
When any one of the eFUSEs is programmed, every boot must be
authenticated using RSA. Xilinx recommends programming all 15
eFUSEs.

RSA_ENABLE

1 PPK0_WR Primary public key write lock. When programmed, this prohibits future
programming of PPK0. PPK0_WR_LOCK

2 PPK0_INVLD When either of the eFUSEs are programmed, PPK0 is revocated. Xilinx
recommends programming both eFUSEs when revocating PPK0. PPK0_INVLD

1 PPK1 WR Primary public key write lock. When programmed this prohibits future
programming of PPK1. PPK1_WR_LOCK

2 PPK1_INVLD When either of the eFUSEs are programmed, PPK1 is revocated. Xilinx
recommends programming both eFUSEs when revocating PPK1. PPK1_INVLD

32 SPK_ID
Secondary public key ID.
Note: Write the SPK ID bits into the XSK_EFUSEPS_SPK_ID eFUSE array
and set XSK_EFUSEPS_SPKID = True.

SPK_ID

Table 12‐13: Zynq UltraScale+ MPSoC Security eFUSEs (Cont’d)

Size Name Description
XilSKey Name:
XSK_EFUSEPS_
Zynq UltraScale+ Device TRM 290
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=290

Chapter 12: Security
PL eFUSEs

In addition to the eFUSEs available in the PS, there are 128 eFUSEs available within the PL.
Any value can be programmed into these eFUSEs, which are available via the
FUSE_USER_128 register. A description of the eFUSEs is provided in the UltraScale
Architecture Configuration User Guide (UG570) [Ref 33]. The programming and reading of
the eFUSEs is described in the Internal Programming of BBRAM and eFUSEs Application Note
(XAPP1283) [Ref 35].

Secure Boot

Secure Boot Introduction

The Zynq UltraScale+ device supports two secure boot modes: hardware root of trust or
encrypt only. The hardware root of trust uses asymmetric authentication with optional
encryption to provide confidentiality, integrity, and authentication of the boot and
configuration files. An alternative to the hardware root of trust is the encrypt only secure
boot, which is a boot mechanism that does not utilize asymmetric authentication but

256 AES

User AES key
Note: Write data in the XSK_EFUSEPS_AES_KEY macro and execute
the write by setting the XSK_EFUSEPS_WRITE_AES_KEY
macro = True.

AES_KEY

384 PPK0_0

User primary public key0 HASH
Note: Write data in the XSK_EFUSEPS_PPK0_HASH macro. To
program 256 bits, use the LSBs and set
XSK_EFUSEPS_PPK0_IS_SHA3 = False. To program 384 bits, set
XSK_EFUSEPS_PPK0_IS_SHA3 = True. Execute the write by setting
the XSK_EFUSEPS_WRITE_PPK0_HASH macro = True.

PPK0_HASH

32 PPK1_0

User primary public key1 HASH
Note: Write data in the XSK_EFUSEPS_PPK1_HASH macro. To program
256 bits, use the LSBs and set XSK_EFUSEPS_PPK1_IS_SHA3 = False. To
program 384 bits, set XSK_EFUSEPS_PPK1_IS_SHA3 = True. Execute the
write by setting the XSK_EFUSEPS_WRITE_PPK1_HASH macro = True.

PPK1_HASH

N/A PUF_HD
Syndrome of PUF HD. These eFUSEs are programmed using Xilinx
provided software, Xilskey

N/A - handled by PUF
registration software
directly.

Note:

1. IMPORTANT. Programming any of the noted eFUSE settings preclude Xilinx test access. Consequently, Xilinx does not
accept return material authorization (RMA) requests.

2. When the ENC_ONLY or RSA_EN eFUSE is blown, the JTAG boot mode is no longer available. If this was the only mechanism
used to program the boot flash, a secondary means should be employed. Xilinx recommends some other form of in-system
flash programming and not relying on booting the device successfully to update the flash contents.

Table 12‐13: Zynq UltraScale+ MPSoC Security eFUSEs (Cont’d)

Size Name Description
XilSKey Name:
XSK_EFUSEPS_
Zynq UltraScale+ Device TRM 291
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=291

Chapter 12: Security
requires that all configuration loaded must be encrypted and authenticated using
AES-GCM.

Secure Boot Summary

There are a number of functional blocks involved in the secure boot process, including the
following.

• Dedicated hardware state machines
• Platform management unit (PMU)
• Configuration and security unit (CSU)

The high level boot flow summary is shown in Figure 12-8.

Once power is valid to the device, the dedicated hardware state machines perform a series
of mandatory and optional tasks. The device includes test logic used by the developer for
device verification and test. The test interfaces power up in a known secure state. The
registers in the PMU are zeroized, which means zeros are written to them, and the zeros are
readback to confirm they were written correctly. Optionally, a logic built in self test (LBIST)

X-Ref Target - Figure 12-8

Figure 12‐8: High-Level Boot Flow

Test I/F Lockdown

Zeroize PMU Registers

Run LBIST1

SHA3/384 Integrity
Check of PMU ROM

Release Reset to PMU

Zeroize Registers
LPD/FPD1

Zeroize PMU RAM

Voltage Checks
(LPD, AUX, I/O)

Zeroize memories on CSU,
LPD and FPD

SHA3/384 Integrity Check
of CSU ROM

Release Reset to CSU

Enforces HW Root of Trust when enabled

Enforces Security “State”

Validate Integrity of User Public Key

Public Key Revocation

FSBL and PMU FW1

Authentication/Decryption1

Zeroize storage elements after processing
(including fallback)

Release Reset to RPU/APU

HW PMU CSU

CSU Tamper MonitoringSecure Load of FSBL and
PMU FW1

PMU Release
CSU

HW Release
PMU

Power
Valid

NOTE:
1. Optional.

Power Monitoring

X18922-092820
Zynq UltraScale+ Device TRM 292
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=292

Chapter 12: Security
can be performed during boot. This option is enabled by programming the LBIST_EN eFUSE.
LBIST is commonly used in functional safety applications, see Chapter 8, Functional Safety
for more details on what circuits of the device are covered via LBIST.

Note: Extra boot time is required when running LBIST.

Finally, the dedicated hardware sends the PMU immutable ROM code through the
SHA-3/384 engine and compares the calculated cryptographic checksum to the golden
copy stored in the device. If the cryptographic checksums match, the integrity of the PMU
ROM is validated and the reset to the PMU is released. If any of these tasks fail, an error flag
is set in the JTAG error status register (readable through JTAG). To prevent the error
message from being readable through the JTAG error status register, the ERR_DIS eFUSE can
be programmed.

The PMU performs a number of mandatory and optional security operations as listed in
Table 12-14. See Chapter 6, Platform Management Unit for more information.

Once these security operations are complete, the PMU sends the CSU immutable ROM code
through the SHA-3/384 engine and compares the calculated cryptographic checksum to the
golden copy stored in the device. If the cryptographic checksums match, the integrity of the
CSU ROM is validated and the reset to the CSU is released. If any of these tasks fail, an error
flag is set in the JTAG error status register (readable through JTAG). The error message can
be prevented from being read through the JTAG error status register by programming the
ERR_DIS eFUSE. In the event of a PMU error, the default operation of the device is to
continue the boot process and release the reset to the CSU. Once the design comes online,
it can read the status of all the error messages from inside the device and determine
whether or not to continue to operate. To make the device automatically go into lockdown
when an error occurs during the boot process, the PBR_BOOT_ERROR eFUSE can be
programmed.

Table 12‐14: PMU Security Operations

Security Operation Description Optional?

Zeroize low power domain
(LPD) registers

When the LPD_SC eFUSE is programmed, the PMU zeroizes
all registers in the LPD. Yes

Zeroize full power domain
(FPD) registers

When the FPD_SC eFUSE is programmed, the PMU
zeroizes all registers in the FPD.
Note: The MGTs must be powered during full-power domain
zeroization.

Yes

Zeroize PMU RAM The PMU RAM has zeros written to it, and read back to
confirm the write is successful. No

Voltage checks The PMU checks the supply voltage of the LPD, AUX, and
dedicated I/O to confirm that the voltages are within
specifications.

No

Zeroize memories The PMU zeroizes memories located in the CSU, LPD, and
FPD. No
Zynq UltraScale+ Device TRM 293
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=293

Chapter 12: Security
The CSU is the center of the secure boot process. It enforces the hardware root of trust or
encrypt only secure boot steps when they are enabled. The CSU also maintains the security
state of the device by prohibiting the transition from a secure state to an unsecure state, or
from an unsecure state to a secure state without a full POR. Once the FSBL (and, if
applicable, the PMUFW) has been loaded securely, the CSU zeroizes the storage elements of
the cryptographic engines and releases the reset to the specified processing unit (APU or
RPU).

Hardware Root Of Trust Secure Boot Details

The Zynq UltraScale+ MPSoC hardware root of trust is based on the RSA-4096 asymmetric
authentication algorithm in conjunction with SHA-3/384. There are two key pairs used in
the Zynq UltraScale+ MPSoC, and consequently two public key types: the primary public
key (PPK) and the secondary public key (SPK). Table 12-15 lists the characteristics of each
public key type.

There are two PPKs; the full public key is stored in external memory (e.g., flash) and a
SHA-3/384 hash of the public key is stored in eFUSEs on the device. The CSU, during the
boot process, validates the integrity of the public key stored in external memory using the
hash stored in eFUSEs. The PPKs can be revoked. The main purpose of the PPK is to
authenticate the SPK.

There are 32 SPKs available for the bootloader (FSBL) and up to 256 SPKs available for all
other partitions depending on which SPK revocation method is used (standard or
enhanced). The SPK is delivered via the authenticated boot image, and is consequently
protected against modification. The SPKs can also be revoked and are used to authenticate
everything else.

There are a number of considerations when utilizing the hardware root of trust capabilities.
These are discussed in detail in Device Provisioning, Boot Operation, and Key Revocation.

Table 12‐15: Public Keys

Public Key Number Location Revocation Notes

Primary (PPK) 2 External memory
and hash in eFUSEs.

Can be revoked. Only used to authenticate SPK and
authentication header.

Secondary (SPK) Up to 256 Boot image. Can be revoked. Signed by PPK. Used to authenticate
everything else.
Zynq UltraScale+ Device TRM 294
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=294

Chapter 12: Security
Device Provisioning

Before the device can boot with the root of trust, a minimum amount of user information
must be programmed or provisioned into the device. At a minimum, the hardware root of
trust must be enabled and a hash of the user public key must be programmed into the
device. Figure 12-9 shows the critical eFUSEs that must be programmed.

The generation of the primary and secondary key pairs is a user decision. Utilizing Xilinx
tools, a hash of the each of the PPKs is obtained and programmed into the eFUSE locations
on the device. If desired, the secondary public key identification (ID) can be programmed to
a non-zero value.

IMPORTANT: The Zynq Ultrascale+ MPSoC supports two PPKs. Both PPK hash values shall be
programmed before fielding a system.

Finally, the hardware root of trust must be enabled by programming the fifteen (15) RSA
enable eFUSEs. While programming, any one of the fifteen forces every boot to be
authenticated. It is recommended that all 15 are programmed. The enable eFUSEs are
implemented redundantly as a countermeasure against advanced physical modification
attacks such as those using a focused ion beam (FIB).

X-Ref Target - Figure 12-9

Figure 12‐9: Device Provisioning

MPSoC

RSA Enable
(15 eFUSEs)

Public Key
Hash (eFUSEs)

Valid
?

Public Key
Hash (eFUSEs)

Valid
?

SPK ID
(32 eFUSEs)

On-chip Memory

X18923-032117
Zynq UltraScale+ Device TRM 295
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=295

Chapter 12: Security
Boot Operation

Figure 12-10 shows the top-level hardware root of trust boot flow used to authenticate, and
optionally decrypt, the FSBL.

Note: PMUFW is optional.

The process starts by determining which PPK to use and then validating the PPK integrity.
Since the public key is stored in the boot image in external memory, it be must assumed
that an adversary could tamper with it. Consequently, the CSU reads the public key from
external memory, calculates its cryptographic checksum using the SHA-3/384 engine, and
then compares it to the value stored in eFUSEs. If they match, the integrity of the public key
has been validated and the boot can continue.

The secondary public key, and its associated ID, are then read, stored in on-chip memory
(OCM), and authenticated using the PPK. Once the SPK and SPK ID have been
authenticated, the CSU checks the ID that was bound to the SPK in the boot image to the ID
that is stored in eFUSEs. If the IDs match, the SPK is valid and the boot can continue.

The SPK is then used to verify the authenticity of the entirety of the boot image. The CSU
authenticates the FSBL, and optionally the PMUFW, while in internal memory. If encrypted,
the CSU also performs the decryption.

Note: Encrypting the configuration files is optional.

IMPORTANT: The CSU processes the FSBL and PMUFW as two separation partitions. Consequently, if
the FSBL and PMUFW are encrypted, the AES key and IV are reused, which is a violation of the standard.
If the FSBL and PMUFW must both be encrypted, the PMUFW must be loaded by the FSBL, and not the
CSU.

At this stage, control is handed over to the user and the user is responsible for maintaining
the chain of trust. The remaining secure boot process is configurable by the user. An
example of a hardware root of trust secure boot process is shown in Figure 12-10.
Zynq UltraScale+ Device TRM 296
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=296

Chapter 12: Security
In this example, the FSBL is responsible for securely loading Arm trusted firmware (ATF),
U-Boot, and the PL bitstream, all of which can be considered individual partitions and
authenticated or encrypted separately. The FSBL executing at EL3 is responsible for all of
the security checks (i.e., PPK integrity check and PPK and SPK revocation checks), as well as
the actual authentication or decryption of the partitions. The hardware accelerators are
used by the FSBL to authenticate or decrypt each partition.

ATF is loaded into OCM and authenticated or decrypted. U-Boot is authenticated or
decrypted in external memory because it is too large for internal memory. Bitstreams are
always first loaded from Flash into DDR, for systems that have DDR, regardless of security
settings. In DDR-less systems, the bitstream remains in the Flash for the authentication,
decryption and loading steps. If the bitstream is authenticated, then the bitstream is first
validated using the RSA algorithm. If authentication passes, it is then sent from its source
location (DDR or Flash) to the PCAP or to the AES decryptor and then onto PCAP. As this
causes the bitstream to be read twice, once for authentication and a second time for
decryption/loading, additional steps using internal OCM memory as a temporary buffer are

X-Ref Target - Figure 12-10

Figure 12‐10: Hardware Root of Trust Secure Boot Example

.BIT

PMU PMU

RAM

CSU

RAMCSU

OCM

APU

RPU

PL

DDR

CRAM

Release
CSU
reset

PMU
ROM

Load FSBL and
PMUFW (Optional)

CSU
ROM

PMU
FW Includes XILFPGA, XILSECURE, framework, warm restart, etc.

FSBL Securely load ATF, Uboot and bitstream
Executes out of OCM for security reasons

ATF Executes out of OCM for security reasons

RPU
SW

Linux

UBoot

Authenticated or decrypted in external memory,
or using the secure OCM method

On-chip

Memories

X21037-070218

Time
Zynq UltraScale+ Device TRM 297
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=297

Chapter 12: Security
taken to ensure the bitstream is not modified between these two reads. For more details on
this secure OCM method of loading bitstreams, see the “Bitstream Authentication Using
External Memory” section in the Zynq UltraScale+ MPSoC Software Developer’s Guide
(UG1137) [Ref 3]. If any of these partitions fail authentication or decryption, the FSBL sets
the multi-boot register and initiates a soft reset. The boot process starts over with the CSU
looking for a valid boot image in memory. If a valid boot image is not found, the device
goes into secure lockdown and requires a POR to exit.

To complete the secure boot process, Linux and the software to be executed on the RPU
(RPU SW) must be securely loaded by U-Boot. Linux and the RPU SW might be part of the
boot.bin or they might be a single partition image that is resident in a different physical
memory. In either case, U-Boot does not perform the authentication or decryption but
rather calls the XilSecure library, which was securely loaded as part of the PMUFW. The
XilSecure library executes out of internal PMU RAM, performs all of the security checks (i.e.,
PPK integrity check and PPK and SPK revocation checks), and uses the CSU accelerators to
do the authentication or decryption. In the event of an authentication or decryption failure,
the XilSecure library passes the failure status to U-Boot.

System Configuration

Systems with external DRAM

The HWRoT secure boot can be achieved differently in systems with external DRAM based
on specific requirements and whether the external DRAM is considered secure.

Note: 2019.1 development tools, or subsequent releases, are used.
• Non-bitstream partitions are authenticated and/or decrypted by the FSBL or XilSecure.

In both cases, the external DRAM, which is the final destination, is considered secure.

° The FSBL will copy the partition data from external non-volatile memory to the
specified DRAM address and then authenticate and/or decrypt in place.

° XilSecure, when called, will authenticate and/or decrypt at the destination DRAM
address. The partition must be copied into external DRAM before calling XilSecure.

• Bitstream partitions can be loaded by the FSBL or XilFPGA.

° The bitstream partition can be authenticated and/or decrypted in external DRAM by
XilSecure and then loaded, in plain-text form, using XilFPGA. In this scenario, the
external DRAM is assumed secure since authentication and decryption occurs in
external DRAM.

° The bitstream partition can be authenticated by XilFPGA while in external DRAM.
Once authentication is complete, XilFPGA will read the partition into the device
where it is decrypted by the AES engine and then loaded into the programmable
logic. Since authentication is performed in external DRAM, the external DRAM is
assumed to be secure.
Zynq UltraScale+ Device TRM 298
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=298

Chapter 12: Security
° The FSBL or XilFPGA can be used to authenticate and decrypt the bitstream using
the Secure OCM method. This method does not require the DRAM to be secure.

Systems without external DRAM

Secure boot in systems without external DRAM is supported when the FSBL is used to load
the bitstream and non-bitstream partitions.

• Non-bitstream partitions can only be loaded by the FSBL. The FSBL will copy the
partition data from external non-volatile memory to the internal memory location and
then authenticate and/or decrypt in place. XilSecure does not support loading a
non-bitstream directly from external non-volatile memory.

• Bitstream partitions can only be loaded by the FSBL. The FSBL utilizes the Secure OCM
method to load the bitstream. XilFPGA does not support loading a bitstream directly
from external non-volatile memory.

Secure boot in systems with external DRAM can be achieved differently based on specific
requirements and whether the external DRAM is considered secure.

Note: 2019.1 development tools, or subsequent releases, are used.
• Non-bitstream partitions are decrypted by the FSBL or XilSecure. In both cases, the

external DRAM, which is the final destination, is considered secure.

° The FSBL will copy the partition data from external non-volatile memory to the
specified DRAM address and then decrypt in place.

° XilSecure, when called, will decrypt at the destination DRAM address. The partition
must be loaded into external DRAM before calling XilSecure.

• Bitstream partitions can be loaded in multiple ways in systems with external DRAM.

° The bitstream partition could be decrypted in external DRAM by XilSecure and then
loaded, in plain-text form, using XilFPGA. In this scenario, the external DRAM is
assumed secure.

° XilFPGA can be called to read the bitstream partition into the device where it is
decrypted by the AES engine and then loaded into the programmable logic. The
partition must be loaded into external DRAM before calling XilFPGA. Since the
decryption is performed internal to the device, this method does not require the
DRAM to be secure.

Secure boot in systems without external DRAM is supported when FSBL is used to load the
bitstream and non-bitstream partitions.

• Non-bitstream partitions (e.g. application software) can only be loaded by the FSBL.
The FSBL will copy the partition data from external non-volatile memory to the internal
memory location and then decrypt in place. XilSecure does not support loading a
non-bitstream directly from external non-volatile memory.
Zynq UltraScale+ Device TRM 299
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=299

Chapter 12: Security
• Bitstream partitions can only be loaded by the FSBL. The FSBL will read the partition
data from external non-volatile memory and then send it for decryption and load into
the configuration memory. XilFPGA does not support loading a bitstream directly from
external non-volatile memory.

DPA Resistance

DPA resistance is achieved by authentication before decryption and by key rolling.
Authentication before decryption, using the RSA algorithm, prevents an adversary from
acquiring additional data per key by substituting their own data for the data contained in
the boot image. Key rolling limits the amount of data encrypted on any given key. The
amount of data encrypted by a key is configurable by the user.

Rolling Keys

The AES-GCM accelerator supports the rolling keys feature, where the entire encrypted
image is represented in terms of smaller AES encrypted messages. Each message is
encrypted using its own unique key. The initial key is stored at the key source on the device
(e.g., BBRAM or eFUSE), while keys for each successive message are encrypted (wrapped) in
the prior message. During boot, all partitions can be decrypted through key rolling. In
Figure 12-11, “IV” illustrates the decryption flow and image format for the PMU firmware
and FSBL. The same format is used for other partitions.
Zynq UltraScale+ Device TRM 300
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=300

Chapter 12: Security
X-Ref Target - Figure 12-11

Figure 12‐11: Key Rolling

Secure Header Tag

PMUFW
(Optional)

FSBL

PMUFW
Block 0

PMUFW
Block 1

PMUFW
Block N

PMUFW
Block 0

Block 1 Key

AES-
GCM

Encrypted
PMUFW
Block 0

ENC Block 1 Key

GCM Tag0

PMUFW
Block 1

Block 2 Key

AES-
GCM

Encrypted
PMUFW
Block 1

ENC Block 2 Key

GCM Tag1

PMUFW
Block N

Dummy Key

AES-
GCM

Encrypted
PMUFW
Block N

ENC Dummy Key

GCM TagN

AES-
GCM Encrypted Secure Header

Block 1 IV
ENC Block 1 IV

ENC Block 2 IV
Block 2 IV

Dummy IV
ENC Dummy IV

Block 0 IV from boot header

Optional Key

Part of
Boot Image

Secure Header Tag

FSBL
Block 0

FSBL
Block 1

FSBL
Block N

FSBL
Block 0

Block 1 Key

AES-
GCM

Encrypted
FSBL

Block 0
ENC Block 1 Key

GCM Tag0

FSBL
Block 1

Block 2 Key

AES-
GCM

Encrypted
FSBL

Block 1
ENC Block 2 Key

GCM Tag1

FSBL
Block N

Dummy Key

AES-
GCM

Encrypted
FSBL

Block N
ENC Dummy Key

GCM TagN

AES-
GCM Encrypted Secure Header

Block 1 IV
ENC Block 1 IV

ENC Block 2 IV
Block 2 IV

Dummy IV
ENC Dummy IV

Block 0 IV from boot header

Optional Key

OP key
present in secure

header?

Use Device Key

No

Use OP
Key

Yes

OP Key
Present?

Use Device Key

No

Use OP
Key

Yes

Device Key

Device Key

X17980-092820
Zynq UltraScale+ Device TRM 301
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=301

Chapter 12: Security
Integration and Test Support (BH RSA Option)

Developing secure systems is always a challenge due to the limited, or non-existent,
integration and test capabilities that exist once secure features are enabled. To assist
integration and test efforts, the ability to command a hardware root of trust via the
configuration file is provided. The BH RSA option is set in bootgen. This commands the
device to boot using the root of trust without having to program the eFUSEs that force
authentication. Authenticated or unauthenticated boots can now be performed during the
integration and test phase. The functionality that is not performed in this mode include the
following.

• Does not validate the integrity of the PPK (this would require eFUSEs to be
programmed).

• Does not validate the SPK ID (this would require eFUSEs to be programmed).

Clearly this mode should not be used in a fielded system since this portion of the
configuration file is not authenticated and could easily be modified by an adversary. If this
option is set in the configuration file and the eFUSEs are programmed to force
authentication, the device goes into secure lockdown during boot.

Hardware Root of Trust Only Boot (Auth_Only Option)

The CSU automatically locks out the AES key, stored in either BBRAM or eFUSEs, as a key
source to the AES engine if the FSBL is not encrypted. This prevents using the BBRAM or
eFUSE as the key source to the AES engine during run-time applications.

Note: A user key can still be used by loading it into the key update register (KUP).

Systems that choose not to encrypt the FSBL and employ only the hardware root of trust
boot mechanism can still use the AES key, post-boot, if the Auth-Only option is set.

After a hardware root of trust boot, to leverage the AES cryptographic accelerator and use
the key stored in either the BBRAM or eFUSE as a potential key source, the Auth Only option
must be selected in bootgen.

Note: This option is part of the configuration file that is authenticated.

Key Revocation

Key revocation is an integral part of any public key system. Whether keys are being changed
and revoked due to good key management practices or in the unfortunate case where a
private key is compromised, the ability to revoke a key is a necessary function. This section
describes how to revoke both the PPK and SPK, as well as how to use the revocation as a
permanent and temporary penalty.
Zynq UltraScale+ Device TRM 302
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=302

Chapter 12: Security
PPK Revocation

There are two PPKs in Zynq UltraScale+ MPSoC. Each PPK has a set of invalid bits,
(PPK0_INVLD and PPK1_INVLD) implemented as eFUSEs, that can be programmed to
permanently revoke the PPK from use. If either of these eFUSEs is programmed, the PPK is
revoked. Figure 12-12 shows a notional and proposed method to perform a remote update
forced by the revocation of the PPK.

X-Ref Target - Figure 12-12

Figure 12‐12: PPK Revocation

DesignPPK0
operational

Remote update:
download designPPK1

DesignPPK0 update
multi-boot register

DesignPPK0 initiate
SW reset

Device boots with
designPPK1

Boot successful?

DesignPPK1 is
operational

DesignPPK1 updates
golden Image (if

needed)

DesignPPK1 revokes
PPK0

CSU ROM updates
multi-boot register
and initiates reset

Golden designPPK0
operational

yes no

X18914-032117
Zynq UltraScale+ Device TRM 303
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=303

Chapter 12: Security
In the notional system, it is assumed that resident in external memory is the design
authenticated with PPK0 (DesignPPK0) and a golden image, also signed with PPK0 (Golden
DesignPPK0). Some applications choose to use a golden image as a backup. The golden
image is not full-featured, but provides basic diagnostic and communication in the event of
a failed boot of the primary image. Again, this is a representative system used to describe
the process of updating a system in the event of a primary key revocation, and not a
requirement.

The initial design, DesignPPK0, is notified when a remote update is being performed (in
many cases the design itself is responsible for supporting the remote update). DesignPPK0
writes to the multi-boot register and then initiates a reset. DesignPPK1 is booted, and if
successful, begins operation. DesignPPK1 should update the golden image (if necessary) and
then program the eFUSEs to revoke PPK0. In the event of a failed boot, the CSU updates the
multi-boot register and initiates a reset. As the golden image is stored at a higher address
in external memory, it is ultimately loaded and communication is established. For more
information on the golden image, see Golden Image Search in Chapter 11.

Standard SPK Revocation

Revocation of the SPK is very different than the PPK since the SPK, and its associated ID, are
delivered to the Zynq UltraScale+ MPSoC as part of the programming image and
authenticated with the PPK. To revoke an SPK, change the SPK ID implemented as eFUSEs
inside of the device. If a device boots with an old SPK and SPK ID, the CSU recognizes that
the IDs do not match and keeps the device from booting. Figure 12-13 shows a notional
and proposed method to perform a remote update forced by the revocation of the SPK.
There are two very important steps that are performed to avoid any complications in the
revocation process.
Zynq UltraScale+ Device TRM 304
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=304

Chapter 12: Security
X-Ref Target - Figure 12-13

Figure 12‐13: SPK Revocation

DesignPPK0
operational

Remote update:
download designSPK1

DesignSPK0 update
multi-boot register

DesignSPK0 initiate
SW reset

Device boots with
designSPK1

Boot successful?

DesignSPK1 is
operational

CSU ROM updates
multi-boot register
and initiates reset

Potential hang

yes no

DesignSPK0 verify
remote update

DesignSPK0 changes
SPK ID

DesignSPK0 readback
SPK ID and verify

X18915-032117
Zynq UltraScale+ Device TRM 305
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=305

Chapter 12: Security
Once the new design, DesignSPK1, is loaded into external memory, DesignSPK0 verifies the
integrity of DesignSPK1. The method to verify the integrity of DesignSPK1 is a user decision.
One recommendation is to send a hash of DesignSPK1 with the remote update. DesignSPK0
could then read back DesignSPK1 from external memory, calculate its hash, and then
compare it to what was delivered. DesignSPK0 now revokes the SPK by changing the
programming of a new SPK ID into the SPK ID eFUSEs. DesignSPK0 reads back the SPK ID to
confirm it was programmed correctly. Once these verification steps have been performed,
DesignSPK0 can now update the multi-boot register and initiate a software reset for the
system to boot using DesignSPK1.

Enhanced SPK Revocation

An alternative method of SPK revocation, called enhanced SPK revocation, utilizes the user
eFUSEs (USER_{0:7}) in addition to the SPK ID eFUSEs. This approach provides these
advantages over the standard SPK revocation method:

• An increase in the number of revocations – up to 256
• Allows each partition to have its own SPK, which allows one partition to be invalidated

without invalidating all partitions
• Reduces the risk of failure during an upgrade process

IMPORTANT: The enhanced SPK revocation is not applicable for the FSBL loaded by the CSU ROM. The
standard SPK revocation is used on the FSBL. Everything else that is securely loaded during the boot
process can use the enhanced SPK method.

The enhanced SPK revocation uses the user eFUSEs, rather than SPK ID eFUSEs to determine
if an SPK has been revoked. Since the user eFUSEs are a general purpose resource, it is
important to allocate as many eFUSEs as are required in the architecture to avoid conflict.

Note: All user eFUSEs do not have to be used. As many eFUSEs as needed can be allocated.

When using enhanced SPK revocation, the user eFUSE represents which SPK has been
revoked, thereby allowing many SPKs to be valid at one time. Revocation of the SPK occurs
when the specific user eFUSE has been programmed. The authenticated boot image
specifies which revocation method is employed and the FSBL, XilSecure, and XilFPGA
libraries check the appropriate eFUSEs (user or SPK ID). A user specifies which revocation
method to use, on a partition by partition basis, by selecting either user-efuse or spk-efuse
for the spk_select option in the BIF file. For more details, see the Bootgen User Guide
(UG1283) [Ref 36].
Zynq UltraScale+ Device TRM 306
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=306

Chapter 12: Security
Figure 12-14 below compares and contrasts the standard and enhanced SPK revocation
methods.

Revocation as a Tamper Penalty

Key revocation has a valuable dual use role. Revocation can be used to inflict a penalty
when a tamper event is detected. Programming both PPK invalid bits makes the device
permanently inoperable (also known as a brick). While in some applications bricking the
device is valuable, in other applications a temporary disabling is desired. In this situation,
the SPK ID can be modified as a result of a tamper condition. This keeps the device from
booting until the authorized user creates a new boot image with the correct SPK and SPK ID.
In this scenario, the penalty is temporary until a new boot image is loaded, either remotely
or when a system is returned to a depot.

Encrypt Only Secure Boot Details

The Zynq UltraScale+ MPSoC hardware encrypt only secure boot is based solely on the
confidentiality and symmetric authentication provided by AES-GCM. The encrypt only
secure boot mode is enabled by programming the ENC_ONLY eFUSE. This eFUSE forces the
device to decrypt every partition using the AES-GCM key stored in the eFUSEs.

X-Ref Target - Figure 12-14

Figure 12‐14: Key Revocation in Boot Image

X22150-121818
Zynq UltraScale+ Device TRM 307
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=307

Chapter 12: Security
The CSU, FSBL, XilSecure, and XilFPGA libraries loaded by the CSU decrypts every partition
(e.g., FSBL, PMUFW, ATF, bitstream, U-Boot, etc.) loaded. The CSU ROM reads the ENC_ONLY
eFUSE, sees that it is programmed and then automatically decrypts the FSBL. Since the CSU
processes the FSBL and PMUFW as two separation partitions, the AES key and IV are reused
if the PMUFW is part of the bootloader. The reuse of the AES key and IV is a violation of the
AES standard. Consequently, the PMUFW must be loaded by the FSBL, and not the CSU, in
the encrypt only secure boot mode. Once the FSBL has been decrypted and authenticated
(using symmetric authentication provided by AES-GCM) in internal memory, the CSU
releases the reset to the specified processing unit (APU or RPU). At this stage, control is
handed over to the user and the user is responsible for maintaining the established security.
The remaining secure boot process is configurable by the user. An example of an encrypt
only secure boot process is shown in Figure 12-15.

In this example, the FSBL decrypts the Arm trusted firmware (ATF), U-Boot, and the PL
bitstream, which are all individual partitions. The FSBL executing at EL3 and using the

X-Ref Target - Figure 12-15

Figure 12‐15: Encrypt Only Secure Boot Example

X24642-092920

.BIT

PMU PMU

RAM

CSU

RAMCSU

OCM

APU

RPU

PL

DDR

CRAM

Release
CSU
reset

PMU
ROM

Load and decrypt
FSBL

CSU
ROM

PMU
FW

Includes XILFPGA, XILSECURE, framework, warm restart, etc.

FSBL
Loads and decrypts ATF, Uboot, and bitstream

Executes out of OCM for security reasons

ATF Executes out of OCM for security reasons

RPU
SW

Linux

UBoot

On-chip

Memories

Loads and decrypts Linux and RPU SW

Time
Zynq UltraScale+ Device TRM 308
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=308

Chapter 12: Security
AES-GCM accelerator decrypts each partition using the device key stored in either eFUSE or
BBRAM. However, the eFUSE key must be used when you use ENC_ONLY.

IMPORTANT: If the bitstream is encrypted with the device key, the key stored in eFUSE or BBRAM, the
bitstream must be decrypted and loaded by the FSBL. If the bitstream is encrypted with a user-provided
key, U-Boot and Linux can command the bitstream load and decryption via the XILFPGA library. For
more details, see the Loading Bitstreams section.

IMPORTANT: The PUF is disabled and not supported for use in the encrypt only secure boot mode.

If any of these partitions fail the decryption GCM-tag check, the FSBL sets the multi-boot
register and initiates a soft reset. The boot process starts over with the CSU looking for a
valid boot image in memory. If a valid boot image is not found, the device goes into secure
lockdown and requires a POR to exit.

To complete the secure boot process, Linux and the RPU SW must be decrypted and loaded
by U-Boot. Linux and the RPU SW can be part of the boot.bin or they can be a single
partition image that is resident in a different physical memory. In either case, U-Boot does
not perform the decryption but rather calls the XilSecure library, which was securely loaded
as part of the PMUFW. XilSecure executes out of internal PMU RAM and uses the AES-GCM
accelerator to perform the decryption.

Note: Partitions that are decrypted by U-Boot must be encrypted with a user-provided key and not
the device key.The user-provided key is identified via the XilSecure API.

If there is a decryption failure, while using the GCM-tag check, XilSecure passes the failure
status to U-Boot.

There are two important considerations of the encrypt only secure boot mode that may
require you to provide system-level protections. First, the partitions are not authenticated
before decryption. The symmetric authentication occurs at the end of the decryption cycle.
This means that the device is subject to a DPA random-data attack. Hence, you should
provide system-level protections if the DPA attack vector is a concern. For more
information, see DPA Resistance. Second, the boot and partition headers are not
authenticated. Without authentication of these headers, anyone with access to the boot
image, can modify the control fields resulting in incorrect secure boot behavior. One such
example, is modification of the destination execution address. This address represents the
start instruction address for a loaded partition. Anyone with access to the boot image could
modify the address, causing the device to jump to an arbitrary memory location to modify
or bypass the secure boot process. Hence, you should provide system-level protections if
the lack of authentication of the boot and partition headers is a concern.

Loading Bitstreams

In the example secure boot processes described previously, the bitstream was loaded by the
FSBL. The bitstream can also be loaded, authenticated, and/or decrypted by U-Boot or
Zynq UltraScale+ Device TRM 309
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=309

Chapter 12: Security
Linux. In this scenario, U-Boot or Linux calls the XilFPGA library, which was securely loaded
as part of the PMUFW to perform the security operations. XilFPGA executes out of internal
PMU RAM, performs all of the security checks, and uses the CSU accelerators to do the
authentication and/or decryption.

In the hardware root of trust secure boot mode, bitstreams can be authenticated, or
authenticated and decrypted with either the device key or a user provided key. In the
encrypt only secure boot mode, the bitstream is decrypted using the eFUSE device key
loaded by the FSBL. Bitstream authentication and decryption is supported for the FSBL,
standalone XilFPGA drivers, U-Boot and Linux using either device keys or user keys for both
full bitstreams and partial reconfiguration bitstreams.

Secure Boot Image Format

The secure boot image format is shown in Figure 12-16.
Zynq UltraScale+ Device TRM 310
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=310

Chapter 12: Security
There are multiple authentication certificates (AC) within a boot image. The authentication
certificates include:

• Header AC: authentication certificate for the image header table and partition headers.
• Bootloader AC: authentication certificate for the bootloader (FSBL and optionally the

PMUFW).
• Partition AC: authentication certificate for each partition in the image.

The equations for each signature within an AC (SPK, boot header, and partition) are listed
here.

• SPK signature – the 512 bytes of the SPK signature is generated by this calculation:

X-Ref Target - Figure 12-16

Figure 12‐16: Secure Boot Image

Boot Header 0x000-0xEC0

Image Header Table

Image Headers (IH1-Ihn)

Partition Header 1

Partition Header n

Header ACHeader AC

BootLoader
(FSBL and PMUFW (opt))

BootLoader ACBootLoader AC

Partition 1

Partition 1 AC

Partition(n)

Partition(n) AC

BootLoader AC

Partition 1 AC

Partition n AC

AC Header

SPK IDHeader

PPK(0/1)

SPKHeader

SPK Signature

BH Signature

Partition Signature

Header AC

User Defined Field

PPK

AC Header

SPK IDBootLoader

PPK(0/1)

SPKBootLoader

SPK Signature

BH Signature

Partition Signature

User Defined Field

PPK

AC Header

SPK IDPartition1

PPK(0/1)

SPKPartition1

SPK Signature

BH Signature

Partition Signature

User Defined Field

PPK

AC Header

SPK IDPartition(n)

PPK(0/1)

SPKPartition(n)

SPK Signature

BH Signature

Partition Signature

User Defined Field

PPK

X18916-120518
Zynq UltraScale+ Device TRM 311
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=311

Chapter 12: Security
° SPK signature = RSA(PSK, padding || SHA(SPK+ auth_header))
• Boot header signature – the 512 bytes of the boot header signature is generated by

this calculation:

° Boot header signature = RSA(SSK, padding || SHA(boot header))
• Partition signature – the 512 bytes of the partition signature is generated by this

calculation:

° Partition signature = RSA(SSK, padding || SHA(Partition + authentication
certificate))

Table 12-16 provides a summary of which asymmetric private key is used, and which SHA
padding is used, for each signature within an AC

Each part of the AC is described in the “Authentication Certificate” and “Authentication
Certificate Header” sections in Chapter 16 of the Zynq UltraScale+ MPSoC Software
Developer’s Guide (UG1137) [Ref 3].

Table 12‐16: Authentication Certificates Signatures

AC Signature SHA Padding Used Private Key Used

Header AC
SPK signature Keccak if standard key revocation;

NIST if enhanced key revocation PSK

BH signature Keccak SSKHeader
Header signature NIST SSKHeader

BootLoader AC
SPK signature Keccak PSK
BH signature Keccak SSKBootLoader
BootLoader signature Keccak SSKBootLoader

Partition AC
SPK signature Keccak if standard key revocation;

NIST if enhanced key revocation PSK

BH signature Keccak SSKPartition
Partition signature NIST SSKPartition
Zynq UltraScale+ Device TRM 312
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=312

Chapter 12: Security
Table 12-17 summarizes the encryption and authentication attributes of each portion of the
secure boot image.

Table 12‐17: Secure Boot Image Encryption and Authentication

Boot Image Block Encrypted Authenticated(1) Notes

Boot header No
Yes - signed with user
secondary secret key
(SSK)

Described in Table 11-4 and Table 11-5 of
this TRM. A signature of the BH is
provided in each AC.

Image header table No Yes - signed with user SSK
Described in the “Image Header Table”
section of the Zynq UltraScale+ MPSoC
Software Developer’s Guide (UG1137)
[Ref 3].

Image headers No Yes - signed with user SSK Not currently used.

Partition headers No Yes - signed with user SSK

Described in the “Partition Header
Tables” section of the Zynq
UltraScale+ MPSoC Software Developer’s
Guide (UG1137) [Ref 3]. There is one
partition header for each partition within
the boot image.

FSBL secure header
Dependent
on secure
boot
mode(2)

Yes - signed with user SSK

This is part of the FSBL that minimizes the
use of the device key. The FSBL secure
header contains the key and IV used to
decrypt the FSBL. See Bootgen User Guide
(UG1283) [Ref 36] for more details on
Secure Header use. Only included when
the OP key option is chosen. See
Minimizing Use of the AES Boot Key (OP
Key Option).

FSBL
Dependent
on secure
boot
mode(2)

Yes - signed with user SSK

PMUFW secure header
Dependent
on secure
boot
mode(2)

Yes - signed with user SSK

This is part of the PMUFW and minimizes
the use of the device key. The PMUFW
Secure Header contains the key and IV
used to decrypt the PMUFW. See Bootgen
User Guide (UG1283) [Ref 36] for more
details on Secure Header use.

PMUFW
Dependent
on secure
boot
mode(2)

Yes - signed with user SSK
The PMUFW can be included as part of
the bootloader and consequently loaded
by the CSU. Alternatively, it can be its
own partition.

Partition secure header
Dependent
on secure
boot
mode(2)

Yes - signed with user SSK

This is part of the partition that
minimizes the use of the other device key.
The Partition secure header contains the
key and IV used to decrypt the partition.
See Bootgen User Guide (UG1283)
[Ref 36] for more details on Secure
Header use.
Zynq UltraScale+ Device TRM 313
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=313

Chapter 12: Security
Boot Options

Minimizing Use of the AES Boot Key (OP Key Option)

Good key management practices includes minimizing the use of secret or private keys. This
can be accomplished using the OP key option enabled in bootgen. When enabled, the
encrypted secure header in the FSBL will contain nothing more than the OP key, which is
user specified, and the initialization vector (IV) needed for the first block of the
configuration file. The result is that the AES key stored on the device, in either the BBRAM
or eFUSEs, is used for only 384 bits, which significantly limits its exposure to side channel
attacks. Figure 12-17 explains how the OP key is used to minimize the use of the AES device
key and integrate into the key rolling technique described in DPA Resistance.

The device key is used to decrypt the secure header which results in the OP key and the IV
of the first block of the FSBL. The first encrypted block of the FSBL (shown as Block0-CT) is
then decrypted using the IV and OP key. The result is the decrypted version of the first FSBL
block (shown as Block0-PT) and the key and IV needed to decrypt the next block. This
process continues until the entire FSBL is decrypted. Note that this process is entirely

Partition
Dependent
on secure
boot
mode(2)

Yes - signed with user SSK

Notes:
1. In hardware root of trust secure boot mode.
2. Required for encrypt only secure boot mode and optional for hardware root of trust secure boot mode.

Table 12‐17: Secure Boot Image Encryption and Authentication (Cont’d)

Boot Image Block Encrypted Authenticated(1) Notes

X-Ref Target - Figure 12-17

Figure 12‐17: OP Key

Encrypted
Secure Header

DEC

Device Key

Block0 - IV

OP Key

Block0 - CT

DEC

Block1 - IV

Block1 - Key

Block0 - PT

Block1 - CT

DEC

PT – PlainText
CT –CipherText

X18924-080318
Zynq UltraScale+ Device TRM 314
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=314

Chapter 12: Security
transparent. The bootgen option and the value of the OP key are user specified, but the rest
is handled automatically by the tools and silicon.

Once the OP key is used, it becomes the device key and the device key selection cannot be
changed back to the BBRAM or eFUSE key without a POR. The user can still choose between
the KUP and the OP key (see Figure 12-2). When bootgen creates a single boot image with
multiple encrypted partitions, it automatically encrypts the partitions with the OP key.
However, if a customer chooses to create multiple boot images with encrypted partitions,
the customer must provide bootgen the OP key value as the AES key so the partitions are
encrypted correctly.

Protect Device Key in Development Environment with OP Key

The OP key has an added benefit in that it can be used to protect the device key in a
development environment where some team members are responsible for managing the
device key and other team members are not.

For example, Team A (Secure Team) and Team B (Not Secure Team) work collaboratively to
build an encrypted image without sharing the secret red key. Team A manages the secret
red key. Team B builds encrypted images for development and test but does not have
access to the secret red key. Team A encrypts the boot loader with the device key (using the
OP key option) and delivers the encrypted bootloader to Team B. Team B encrypts all the
other partitions using the OP key. Team B takes the encrypted partitions they created and
the encrypted boot loader from Team A and uses bootgen to combine everything into a
single boot.bin. For more details, see “Using OP Key to Protect the Device Key in a
Development Environment” in Chapter 8 of the Zynq UltraScale+ MPSoC Software
Developer’s Guide UG1137 [Ref 3].
Zynq UltraScale+ Device TRM 315
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=315

Chapter 13

Interrupts

Introduction
Interrupts are pervasive within and between processors in the PS and PL. The system
interrupts communicate status, events, requests, and errors within the heterogeneous
processing system.

The platform management unit (PMU) and configuration security unit (CSU) have local
interrupt controllers. The PMU interrupt controller is described in Chapter 6, Platform
Management Unit. It includes the CPU and external interrupt controllers. The CSU interrupt
controller is a closed system managed by the CSR ROM code.

The RPU uses the Arm PL-390 generic interrupt controller that is compliant to the GICv1
architecture specification. The APU MPCore uses the Arm GIC-400 generic interrupt
controller and is compliant to the GICv2 architecture specification. The GIC manages the
software-generated interrupts (SGI), each CPU’s private peripheral interrupts (PPI), and the
shared peripheral interrupts (SPI).

The PMU uses the GIC proxy interrupts when the RPU and APU cannot service an interrupt
because the processor is powered down. The GIC proxy is a Xilinx architecture for the PMU
external interrupt controller and is controlled by the PMU.

The register documentation for the three system interrupt controllers is listed here.

• RPU GIC: PrimeCell Generic Interrupt Controller (PL390), DDI 0416B, r0p0.
• APU GIC: CoreLink GIC-400 Generic Interrupt Controller, DDI 0471B, r0p1.
• GIC Proxy: Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4], LPD_SLCR

register set.

There are 148 system interrupts that connect to each GIC, the GIC proxy interrupt structure,
and the PL fabric. The system interrupts are normally handled by the RPU or APU MPCores.
The user firmware in the PMU can process system interrupts in the absence of an RPU or
APU. The CSU does not connect to the system interrupts.

Note: An inter-processor interrupt (IPI) channel is associated with a processor target to allow other
processors in the heterogeneous processing system to send it messages and receive a response in
return. The IPI target processor receives an interrupt from another processor and accesses the
message buffer with a prearrange communications protocol. The IPI channels can target the system
Zynq UltraScale+ Device TRM 316
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=316

Chapter 13: Interrupts
processors: APU MPCore, RPU core 0, RPU core 1, four channels to processor(s) in the PL, and four
private channels to the PMU.
Note: The PMU has four IPI interrupts. PMU_0 interrupt is assigned by the PMU firmware to
transition the PMU to sleep mode.

GIC Features

Both GICs have many similar features:

• Multiprocessor environment for the MPCore.
• Arbitrate system interrupts to the CPU cores.
• Software generated interrupt:

° Mechanism for one CPU to interrupt another CPU within an MPCore.
• Private peripheral interrupts IRQ/FIQ from PL.
• Shared peripheral interrupt:

° Manage system interrupts from system elements.

RPU-specific GIC Features

The RPU GIC has some unique features:

• GICv1 programming model.
• Security extensions.

APU-specific GIC Features

The APU GIC includes most of the same features as in the RPU GIC with the addition of
security and virtualization:

• GICv2 programming model.
• Security extensions.
• Virtualization extensions.
• Interrupt groups:

° Group 0 interrupts cause either IRQ or IFQ signaling.

° Group 1 interrupts use IRQ signaling.

° Unified scheme to handle priority.

° Optional register lockdown on some group 0 interrupts.
• CPU private registers have restricted accessed on the AXI interconnect.
Zynq UltraScale+ Device TRM 317
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=317

Chapter 13: Interrupts
GIC Proxy Interrupts

The GIC proxy manages all the system interrupts connected to the GIC SPI interrupts. These
system interrupts set bits in the GICP{0:4}_IRQ_STATUS registers. After the masking
registers, the bit in each register is OR’ed together to set bits in another status register that
is OR’ed together to generate a single interrupt signal to the PMU external interrupt
controller.

The GIC proxy interrupts are used by the PMU in a fall-back mode to handle system
interrupts that cannot be managed by the application processors.

System Interrupts
The system interrupts are generated by many system elements and broadcast to the GICs,
the PMU via the GIC proxy (GICPx_IRQ registers), and to output signals in the PL. The system
interrupts are listed in Table 13-1. The table lists the IRQ numbers for the RPU and APU
interrupt controllers, as well as the GIC proxy bit assignments.

Table 13‐1: System Interrupts

IRQ Name
IRQ Number

(GIC)
IDCICR Bits Required

Type
GICPx_IRQ Bits

(GIC Proxy)
Description

RPU0_Perf_Mon
40 2 [17:16] High level

GICP0 [8] RPU0 performance
monitor
(ARM_PMU)(1).

RPU1_Perf_Mon
41 2 [19:18] High level

GICP0 [9] RPU1 performance
monitor
(ARM_PMU)(1).

OCM 42 2 [21:20] High level GICP0 [10] OCM CE and UE ECC
errors.

LPD_APB 43 2 [23:22] High level GICP0 [11] OR of all APB slave
interface errors in LPD.

RPU0_ECC
44 2 [25:24] High level

GICP0 [12] RPU0 errors
combined: FPU,
memory ECC, and APB
access.

RPU1_ECC
45 2 [27:26] High level

GICP0 [13] RPU1 CE errors
combined: FPU,
memory, ECC, and
APB access.

NAND 46 2 [29:28] High level GICP0 [14] NAND memory
controller.

QSPI 47 2 [31:30] High level GICP0 [15] Quad-SPI controller.
GPIO 48 3 [1:0] High level GICP0 [16] GPIO controller.
I2C0 49 3 [3:2] High level GICP0 [17] I2C0 controller.
Zynq UltraScale+ Device TRM 318
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=318

Chapter 13: Interrupts
I2C1 50 3 [5:4] High level GICP0 [18] I2C1 controller.
SPI0 51 3 [7:6] High level GICP0 [19] SPI0 controller.
SPI1 52 3 [9:8] High level GICP0 [20] SPI1 controller.
UART0 53 3 [11:10] High level GICP0 [21] UART 0 controller.
UART1 54 3 [13:12] High level GICP0 [22] UART 1 controller.
CAN0 55 3 [15:14] High level GICP0 [23] CAN 0 controller.
CAN1 56 3 [17:16] High level GICP0 [24] CAN 1 controller.
LPD_APM 57 3 [19:18] High level GICP0 [25] OR of the LPD and

OCM APM interrupts.
RTC_Alarm 58 3 [21:20] High level GICP0 [26] RTC alarm interrupt.
RTC_Seconds 59 3 [23:22] High level GICP0 [27] RTC seconds interrupt.
ClkMon 60 3 [25:24] High level GICP0 [28] Clock monitor in LPD.
IPI_Ch7 61 3 [27:26] High level GICP0 [29] IPIs targeting channel

7.
IPI_Ch8 62 3 [29:28] High level GICP0 [30] IPIs targeting channel

8.
IPI_Ch9 63 3 [31:30] High level GICP0 [31] IPIs targeting channel

9.
IPI_Ch10 64 4 [1:0] High level GICP1 [0] IPIs targeting channel

10.
IPI_Ch1 65 4 [3:2] High level GICP1 [1] IPIs targeting channel

1.
IPI_Ch2 66 4 [5:4] High level GICP1 [2] IPIs targeting channel

2.
IPI_Ch0 67 4 [7:6] High level GICP1 [3] IPIs targeting channel

0.
TTC0 68:70 4 [13:8] High level GICP1 [4:6] Triple-timer counter 0.
TTC1 71:73 4 [19:14] High level GICP1 [7:9] Triple-timer counter 1.
TTC2 74:76 4 [25:20] High level GICP1 [10:12] Triple-timer counter 2.
TTC3 77:79 4 [31:26] High level GICP1 [13:15] Triple-timer counter 3.
SDIO0 80 5 [1:0] High level GICP1 [16] SDIO 0 controller.
SDIO1 81 5 [3:2] High level GICP1 [17] SDIO 1 controller.
SDIO0_Wakeup 82 5 [5:4] High level GICP1 [18] SDIO 0 wake-up

interrupt.
SDIO1_Wakeup 83 5 [7:6] High level GICP1 [19] SDIO 1 wake-up

interrupt.

Table 13‐1: System Interrupts (Cont’d)

IRQ Name
IRQ Number

(GIC)
IDCICR Bits Required

Type
GICPx_IRQ Bits

(GIC Proxy)
Description
Zynq UltraScale+ Device TRM 319
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=319

Chapter 13: Interrupts
LPD_SWDT
84 5 [9:8] High level

GICP1 [20] LPD watchdog timer
(wdt0). Edge sensitive
trigger.(2)

CSU_SWDT
85 5 [11:10] High level

GICP1 [21] CSU and PMU
watchdog timer. Edge
sensitive trigger.(2)

LPD_ATB 86 5 I [13:12] High level GICP1 [22] OR of all ATB timeout
errors in LPD.

AIB 87 5 [15:14] High level GICP1 [23] OR of all AIB errors on
AXI and APB.

SysMon 88 5 [17:16] High level GICP1 [24] OR of all system
monitor interrupts.

GEM0 89 5 [19:18] High level GICP1 [25] Ethernet 0 controller.
GEM0_Wakeup 90 5 [21:20] High level GICP1 [26] Ethernet 0 wake-up

interrupt.
GEM1 91 5 [23:22] High level GICP1 [27] Ethernet 1 controller.
GEM1_Wakeup 92 5 [25:24] High level GICP1 [28] Ethernet 1 wake-up

interrupt.
GEM2 93 5 [27:26] High level GICP1 [29] Ethernet 2 interrupt.
GEM2_Wakeup 94 5 [29:28] High level GICP1 [30] Ethernet 2 wake-up

interrupt.
GEM3 95 5 [31:30] High level GICP1 [31] Ethernet 3 controller.
GEM3_Wakeup 96 6 [1:0] High level GICP2 [0] Ethernet 3 wake-up

interrupt.
USB0_Endpoint

97:100 6 [9:2] High level
GICP2 [1:4] USB 0 bulk transfer,

isochronous transfer,
controller interrupt,
control transfer.

USB0_OTG 101 6 [11:10] High level GICP2 [5] USB 0 OTG mode.
USB1_Endpoint

102:105 6 [19:12] High level
GICP2 [6:9] USB 1 bulk transfer,

isochronous transfer,
controller interrupt,
control transfer.

USB1_OTG 106 6 [21:20] High level GICP2 [10] USB 1 OTG mode.
USB0_Wakeup 107 6 [23:22] High level GICP2 [11] USB 0 controller to

wake-up PMU.
USB1_Wakeup 108 6 [25:24] High level GICP2 [12] USB 1 controller to

wake-up PMU.
LPD_DMA 109:116 6, 7 [31:26],

[9:0] High level GICP2 [13:20] Eight LPD DMA
channels 0 to 7.

Table 13‐1: System Interrupts (Cont’d)

IRQ Name
IRQ Number

(GIC)
IDCICR Bits Required

Type
GICPx_IRQ Bits

(GIC Proxy)
Description
Zynq UltraScale+ Device TRM 320
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=320

Chapter 13: Interrupts
CSU 117 7 [11:10] High level GICP2 [21] Configuration and
security unit.

CSU_DMA 118 7 [13:12] High level GICP2 [22] CSU DMA controller.
eFuse 119 7 [15:14] High level GICP2 [23] eFuse interrupt.
LPD_XMPU_XPPU

120 7 [17:16] High level
GICP2 [24] OCM XMPU and XPPU

protection units in
LPD.

PL_PS_Group0
121:128 7, 8 [31:18],

[1:0]
Rising

edge/high
level

GICP2 [25:31]
GICP3[0]

PL to PS interrupt
signals 0 to 7.(3)

Reserved 129:135 8 [15:2] High level GICP3 [1:7] Seven reserved
interrupts.

PL_PS_Group1
136:143 8 [31:16]

Rising
edge/high

level

GICP3 [8:15] PL to PS interrupt
signals 8 to 15.(3)

DDR 144 9 [1:0] High level GICP3 [16] DDR memory
controller.

FPD_SWDT
145 9 [3:2] High level

GICP3 [17] FPD system watchdog
timer (wdt1). Edge
sensitive trigger.(2)

PCIe_MSI0 146 9 [5:4] High level GICP3 [18] PCIe MSI vectors 0 to
31.

PCIe_MSI1 147 9 [7:6] High level GICP3 [19] PCIe MSI vectors 32 to
63.

PCIe_INTx
148 9 [9:8] High level

GICP3 [20] PCIe legacy: OR of INT
A, B, C, and D
interrupts.

PCIe_DMA 149 9 [11:10] High level GICP3 [21] PCIe_DMA controller.
PCIe_MSC 150 9 [13:12] High level GICP3 [22] PCIe_MSC controller.
DisplayPort 151 9 [15:14] High level GICP3 [23] DisplayPort controller.
FPD_APB

152 9 [17:16] High level
GICP3 [24] OR of all APB slave

interface errors in
FPD.

FPD_ATB 153 9 [19:18] High level GICP3 [25] OR of all ATB timeout
errors in FPD.

DPDMA 154 9 [21:20] High level GICP3 [26] DisplayPort DMA
controller.

FPD_APM 155 9 [23:22] High level GICP3 [27] OR of the CCI and DDR
APM interrupts.

FPD_DMA 156:163 9, 10 31:24],
[7:0] High level GICP3 [28:31]

GICP4 [0:3]
Eight FPD DMA
channels 0 to 7.

Table 13‐1: System Interrupts (Cont’d)

IRQ Name
IRQ Number

(GIC)
IDCICR Bits Required

Type
GICPx_IRQ Bits

(GIC Proxy)
Description
Zynq UltraScale+ Device TRM 321
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=321

Chapter 13: Interrupts
GPU 164 10 [9:8] High level GICP4 [4] OR of all GPU
interrupts.

SATA 165 10 [11:10] High level GICP4 [5] SATA controller.
FPD_XMPU

166 10 [13:12] High level
GICP4 [6] FPD and memory

XMPU protection
units in FPD.

APU_VCPUMNT
167:170 10 [21:14] High level

GICP4 [7:10] Virtual processor
interface
maintenance.

CPU_CTI
171:174 10 [29:22] High level

GICP4 [11:14] CoreSight
cross-trigger
interface.

APU{0:3}_Perf_M
on 175:178 10, 11 [31:30],

[5:0] High level
GICP4 [15:18] APU{0:3} performance

monitors
(ARM_PMU)(1).

APU{0:3}_Comm 179:182 11 [13:6] High level GICP4 [19:22] Communications from
APU cores 0 to 3.

L2_Cache
183 11 [15:14] High level

GICP4 [23] L2 cache
uncorrectable ECC
error.

APU_ExtError
184 11 [17:16] High level

GICP4 [24] APU AXI transaction
with write error
response.

APU_RegError 185 11 [19:18] High level GICP4 [25] APU register access
address decode error.

CCI 186 11 [21:20] High level GICP4 [26] Cache coherent
interconnect unit.

SMMU 187 11 [23:22] High level GICP4 [27] System memory
management unit.

Notes:
1. The ARM_PMU is a performance monitor unit developed by Arm and is different from the platform management unit (PMU)

developed by Xilinx.
2. The system watchdog timers produce an interrupt pulse of at least four clock periods, which are programmable using the

x_SWDT.MODE [IRQLN] bit field. The four clock pulse length is sufficiently long enough for normal situations. The GIC
interrupt controllers must be programmed for edge sensitivity.

3. The minimum interrupt pulse width for detection is four clock periods of the GIC, which is normally a 100 MHz clock resulting
in a minimum 40 ns pulse width. The signal synchronizers might detect a shorter pulse, but it is not guaranteed. Glitches
should be avoided.

Table 13‐1: System Interrupts (Cont’d)

IRQ Name
IRQ Number

(GIC)
IDCICR Bits Required

Type
GICPx_IRQ Bits

(GIC Proxy)
Description
Zynq UltraScale+ Device TRM 322
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=322

Chapter 13: Interrupts
GIC Interrupt System Architecture
The system interrupt architecture includes GIC interrupt controllers for both MPCores, the
GIC proxy interrupt unit for the PMU, and the IPI interrupts for system-level processor
communications.

Interrupt Block Diagram

Figure 13-1 shows the block diagram of the processor interrupts. The shared peripheral
interrupts are generated from various subsystems that include the I/O peripherals in the PS
and logic in the PL. The PCIe MSI are handled by the controller for PCIe by decoding the MSI
into a bit-vector and then asserting a sideband interrupt. To guarantee PCIe ordering, the
controller for PCIe must wait for the completion of previously outstanding (inbound) writes
before asserted an MSI interrupt. Also, the controller for PCIe must ensure that the MSI
buffer, which holds the MSI information after asserting interrupt to CPU, does not end up
stalling the PCIe inbound traffic (which can cause deadlock).

X-Ref Target - Figure 13-1

Figure 13‐1: GIC Interrupts Block Diagram

Cortex-A53 MPCore

CPU0 CPUn

CPU0 I/FVCPU0 I/F CPU0 I/FVCPUn I/F

Distributor

RPU Cores

CPU0 CPU1

GIC (PL390)
CPU0 I/F CPU1 I/F

Distributor

niRQ0/nFIQ0
nViRQ/nVFIQ

niRQ0/nFIQ0 niRQ1/nFIQ1

Interrupt Source Blocks
(e.g., VCU, GPU,

DisplayPort)

PCIe
Top Level IPI

PCIe Inbound

To Interconnect

To PMU

To PL

To PMU

To PMU

MSI

Legacy IRQ/FiQ per CPU
From PL

APU

GIC-400

X15327-092816
Zynq UltraScale+ Device TRM 323
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=323

Chapter 13: Interrupts
RPU GIC Interrupt Controller
There are two interfaces between the RPU MPCore and the RPU GIC.

• Distributor interface is used to assign the interrupts to each of the Cortex-R5F MPCore
processors.

• CPU interface with a separate set of 4 KB memory-mapped registers for each CPU. This
provides protection against unwanted accesses by one CPU to interrupts that are
assigned to the other.

The APU MPCores processors access the RPU_GIC interrupt controller (Figure 13-2) through
their peripheral interface. The low-latency peripheral interfaces are really designed for
strongly ordered or device type accesses, which are restrictive by nature. Memory that is
marked as strongly ordered or device type is typically sensitive to the number of reads or
writes performed. Because of this, instructions that access strongly ordered or device
memory are never abandoned when they have started accessing memory. These
instructions always complete either all or none of their memory accesses. The same is true
of all accesses to the low-latency peripheral port, regardless of the memory type.

X-Ref Target - Figure 13-2

Figure 13‐2: RPU Interrupt Controller Block Diagram

nIRQ

C
PU

 0

D
is

tri
bu

to
r

SG
I D

is
tri

bu
to

r

In
te

rru
pt

 C
on

tro
lle

r D
is

tri
bu

to
r (

IC
D

)

Shared
Peripheral

Interrupts (SPI)

Softwre
Generated

Interrupts (SGI)

Software
Generated

Interrupts (SGI)

nFIQ nIRQ

nFIQ CPU 0
Interface

nIRQ

nFIQ

CPU 0
CPU 1

IOP PL

nIRQ

C
PU

 1
D

is
tri

bu
to

r

nFIQ

nIRQ

nFIQ CPU 1
Interface

nIRQ

nFIQ

X15328-021517
Zynq UltraScale+ Device TRM 324
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=324

Chapter 13: Interrupts
Software Generated Interrupts

Each CPU can interrupt itself, the other CPU, or both CPUs within the MPCore using a
software generated interrupt (SGI). There are 16 software generated interrupts. An SGI is
generated by writing the SGI interrupt number to the PL390.enable_sgi_control (ICDSGIR)
register and specifying the target CPU(s). This write occurs through the CPU's own private
bus. Each CPU has its own set of SGI registers to generate one or more of the 16 software
generated interrupts. The interrupts are cleared by reading the interrupt acknowledge
PL390.control_n_int_ack_n (ICCIAR) register or writing to the corresponding bits of the
interrupt clear-pending PL390.enable_sqi_pending (ICDICPR) register.

All SGIs are edge triggered. The sensitivity types for SGIs are fixed and cannot be changed;
the control register is read-only, because it specifies the sensitivity types of all the 16 SGIs.

Shared Peripheral Interrupts

A group of approximately 160 shared peripheral interrupts (SPIs) from various modules can
be routed to one or both of the CPUs or the PL. The interrupt controller manages the
prioritization and reception of these interrupts for the CPUs.

SPI Interrupt Sensitivity

The shared peripheral interrupts (SPI) can be targeted to any number of CPUs, but only one
CPU handles the interrupt. If an interrupt is targeted to both CPUs and they respond to the
GIC at the same time, the MPCore ensures that only one of the CPUs reads the active
interrupt ID#. The other CPU receives the spurious (ID 1023 or 1022) interrupt or the next
pending interrupt, depending on the timing.

Except for IRQ (121) through IRQ(128) and IRQ (136) through IRQ(143), which are the
interrupts from the PL, all interrupt sensitivity types are fixed by the requesting sources and
cannot be changed. The GIC must be programmed to accommodate this. The BootROM
does not program these registers; therefore the SDK device drivers must program the GIC
to accommodate these sensitivity types.

For an interrupt of level sensitivity type, the requesting source must provide a mechanism
for the interrupt handler to clear the interrupt after the interrupt has been acknowledged.
This requirement applies to any IRQ-F2P[n] (from PL) with a high-level sensitivity type.

For an interrupt of rising edge sensitivity, the requesting source must provide a pulse wide
that is large enough for the GIC to catch. This is normally at least two CPU_2x3x periods.
This requirement applies to any IRQ-F2P[n] (from PL) with a rising-edge sensitivity type. See
Answer Record 69390 for more information.

The sensitivity control for each interrupt has a 2-bit field that specifies sensitivity type and
handling model.
Zynq UltraScale+ Device TRM 325
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com

https://www.xilinx.com/support/answers/69390.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=325

Chapter 13: Interrupts
Interrupt Prioritization

All of the SGI and SPI interrupt requests are assigned a unique ID number. The controller
uses the ID number to arbitrate. The interrupt distributor holds the list of pending
interrupts for each CPU and then selects the highest priority interrupt before issuing it to
the CPU interface. Interrupts of equal priority are resolved by selecting the lowest ID.

The prioritization logic is physically duplicated to enable the simultaneous selection of the
highest priority interrupt for each CPU. The interrupt distributor holds the central list of
interrupts, processors, and activation information, and is responsible for triggering software
interrupts to the CPUs.

SGI and PPI distributor registers are banked to provide a separate copy for each CPU. The
interrupt controller ensures that an interrupt targeting more than one CPU can only be
handled by one CPU at a time.

The interrupt distributor transmits to the CPU interfaces the highest pending interrupt. It
receives back the information that the interrupt is acknowledged and can now change the
status of the corresponding interrupt. Only the CPU that acknowledges the interrupt can
end that interrupt.

APU GIC Interrupt Controller
The APU uses an external GICv2 controller as a central resource to support and manage
interrupts. There are peripheral interrupts, software generated interrupts, and virtual
interrupts.

Peripheral Interrupts

Peripheral interrupts are asserted by a signal to the GIC. The GIC architecture defines the
following types of peripheral interrupts.

• Private peripheral interrupt (PPI) is a peripheral interrupt that is specific to a single
processor.

• Shared peripheral interrupt (SPI) is a peripheral interrupt that the distributor can route
to any of a specified combination of processors. These are wired interrupts coming
from various sources to the GIC.

Each peripheral interrupt is either edge-triggered or level-sensitive.
Zynq UltraScale+ Device TRM 326
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=326

Chapter 13: Interrupts
Software-generated Interrupts

Software-generated interrupts (SGIs) are generated by software writing to a GICD_SGIR
register in the GIC. The system uses SGIs for inter-processor communication.

An SGI has edge-triggered properties. The software triggering of the interrupt is equivalent
to the edge transition of the interrupt request signal.

Virtualization Extensions

GIC virtualization extensions are used when an virtual SGI occurs. Management registers in
the GIC virtualization extensions enable the requesting processor to be reported to the
guest OS, as required by the GIC specifications. By writing to the management registers in
the GIC virtualization extensions, a hypervisor can generate a virtual interrupt that appears
to a virtual machine as an SGI.

Virtual Interrupt

A virtual interrupt targets a virtual machine running on a processor and is typically signaled
to the processor by the connected virtual CPU interface.

APU Interrupt Partitioning

This section covers the partitioning of the GICv2.

The distributor block performs interrupt prioritization and distribution to the CPU interface
blocks that connect to the processors in the system.

Each CPU interface block performs priority masking and preemption handling for a
connected processor in the system.

The GIC virtualization extensions add a virtual CPU interface for each processor in the
system. Each virtual CPU interface is partitioned into the following blocks.

• Virtual interface control: The main component of the virtual interface control block is
the GIC virtual interface control registers. These registers include a list of active and
pending virtual interrupts for the current virtual machine on the connected processor.
Typically, these registers are managed by the hypervisor that is running on that
processor.

• Virtual CPU interface: Each virtual CPU interface block provides physical signaling of
virtual interrupts to the connected processor. The Arm processor virtualization
extensions signal these interrupts to the current virtual machine on that processor. The
GIC virtual CPU interface registers, accessed by the virtual machine, provide interrupt
control and status information for the virtual interrupts.
Zynq UltraScale+ Device TRM 327
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=327

Chapter 13: Interrupts
APU Interrupt Grouping and Virtualization

A virtual machine running on a processor communicates with a virtual CPU interface on the
GICv2 (Figure 13-3). The virtual machine receives virtual interrupts from this interface, and
cannot distinguish these interrupts from physical interrupts.

A hypervisor handles all IRQs, translating those destined for a virtual machine into virtual
interrupts, and, in conjunction with the GIC, manages the virtual interrupts and the
associated physical interrupts. It also uses the GIC virtual interface control registers to
manage the virtual CPU interface. As part of this control, the hypervisor updates the List
registers that are a subset of the GIC virtual interface control registers. In this way the
hypervisor and GIC together provide a virtual distributor that appears to a virtual machine
as the physical GIC distributor.

The GIC virtual CPU interface signals virtual interrupts to the virtual machine, subject to the
normal GIC handling and prioritization rules.

• Secure software assigns the following.

° Secure interrupts to group 0, signaled to the processor as FIQs

° Non-secure interrupts to group 1, signaled to the processor as IRQs.
• A hypervisor is used for the following.

° Implements a virtual distributor, using features of the virtualization extension on
the GIC. This virtual distributor can virtualize IRQ interrupts from the GIC as virtual
IRQ and virtual FIQ interrupts, which it routes to an appropriate virtual machine.

° Routes physical IRQs to hypervisor mode, so they can be serviced by the virtual
distributor.

When the GIC signals an IRQ to the processor, the interrupt is routed to hypervisor mode.
The hypervisor determines whether the interrupt is for itself or for a guest OS. If it is for a
guest OS it determines the following.

• The specific guest OS that must handle the interrupt.
• Whether that guest OS has configured the interrupt as an FIQ or as an IRQ
• The interrupt priority, based on the priority configuration by the target guest OS.

If the interrupt targets the current guest OS, the hypervisor updates the list registers, to add
the interrupt to the list of pending interrupts for the current virtual machine.
Zynq UltraScale+ Device TRM 328
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=328

Chapter 13: Interrupts
Note: The APU GIC is physically located on the AXI interconnect as an FPD slave, but should only be
accessed by the APU MPCore. The FPD main interconnect switch can restrict access to the APU GIC.
However, a PL master can access the APU GIC through the S_AXI_ACP_FPD interface and cannot be
stopped by the FPD switch. The XMPU can be configured to block the S_AXI_ACP_FPD interface from
accessing the APU GIC.

X-Ref Target - Figure 13-3

Figure 13‐3: APU with Interrupt Virtualization Block Diagram

MPSoC

GIC

Distributor

GICD_IGROUP

EnableGrp0

FIQEn==1

EnableGrp1

Guest OS 2

Processor

Hypervisor

Virtual Distributor

List Registers IRQ AssignmentRegister
Updates

EnableGrp0

FIQEn==1

EnableGrp1

Non-secure
System Software

Guest OS 1
Guest OS 0

Secure
Software

Secure Monitor

Hardware Interrupt

Group 0
Interrupt

Group 1
Interrupt

Group 0
Virtual

Interrupt

Virtual CPU Interface

Group 1
Virtual

Interrupt

IRQ

vIRQ

vFIQ

FIQ

CPU Interface

Maintenance
Interrupt

X15329-092816
Zynq UltraScale+ Device TRM 329
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=329

Chapter 13: Interrupts
IPI Interrupts and Message Buffers
The heterogeneous multiprocessor system uses the inter-processor interrupt (IPI) structure
to exchange short interrupt-driven messages between processors in the system. The IPI
architecture allows the passing of messages across the system without the complications of
autonomous read-write transactions and polling inefficiency.

• Four channels assigned to target the PMU.
• Seven channels can be assigned to target RPU core 0, RPU core 1, the APU MPCore,

four processors in the PL, and four channels to the PMU (in addition to the dedicated
channels).

• Register access is restricted to a processor by the XPPU protection unit.
Note: The IPI channel registers can be owned by any of the masters except the interrupts for the
PMU channels are only routed to the PMU.

Processor communications include both an IPI interrupt structure and memory buffers to
exchange short private 32B messages between eight IPI agents — the PMU, RPU, APU, and
PL processors. Access to the interrupt registers and message buffers is protected by the
XPPU to give exclusive access to the AXI transactions of the agents.

In a typical situation, the sender writes a 32-byte request message and generates an
interrupt to the receiver. The receiver can write a response message and clear the interrupt
that is observed by the sender. The communications process uses both the IPI interrupt
structure and the message buffers. There are eleven interrupt channels and eight sets of
message buffers.

• The interrupt channels are as follows.

° Seven interrupts default to APU MPCore, RPU0, RPU1, and PL {0:3}, but can be
reprogrammed to any processor because they are distributed to all four system
interrupt controllers.

° Four interrupts are hardwired to the PMU interrupt controller, IPI channels {3:6}.
Zynq UltraScale+ Device TRM 330
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=330

Chapter 13: Interrupts
• Message buffers provide exclusive communications between each sender and each
receiver.

° Seven sets of assignable message buffers.

° One set of buffers dedicated to the PMU.

° Each set has eight request and eight response buffers (16 buffers per set, 128 total
buffers).

The PMU special considerations are as follows.

• Four sets of IPI interrupt registers for one processor.
• The PMU IPI 0 interrupt instructs the PMU to enter sleep mode.
• One set of message buffers are used for all four PMU interrupts.

The IPI interrupts and message buffers are independent hardware functions that are
associated by software programming. There are default owners and an implied association
between the interrupt registers and message buffers. Only the PMU interrupts are fixed in
hardware.

The sender can post multiple interrupt requests and have different communication
protocols with each target. The assignment and use of the non-PMU interrupts and the
entire message passing architecture can be programmed as needed by the system
architecture. The reset default conditions and software conventions in the SDK define a
starting state for the system.
Zynq UltraScale+ Device TRM 331
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=331

Chapter 13: Interrupts
Interrupt Architecture

The interrupt architecture includes eleven sets of registers with six registers per set. Each set
is divided between sending an interrupt (TRIG and OBS) and receiving an interrupt (ISR,
IMR, IER, and IDR). Access to each set of interrupt registers is protected by eight of the
64 KB apertures in the XPPU. Only eight apertures are needed because the four PMU
interrupt registers are all within one 64 KB address space.

To send an interrupt, the sender writes a 1 to the bit in its trigger register that corresponds
to the receiving master. The receiver sees the interrupt in its status register, ISR, in the bit
field that corresponds to the sender. The sender can observe the state of the interrupts that
it triggered to the receivers using its observation register (OBS). The receiver agent
processes interrupts in a normal manner. The registers and signal routings are shown in
Figure 13-4.

X-Ref Target - Figure 13-4

Figure 13‐4: Sender-Receiver Interrupt Functions

Trigger Register (TRIG)

2 3

Write

Observation Register (OBS)

2 3

Read

Sender
Channel 8

8 Read status request.
Write 1 to clear.Status/Clear

Receiver
Channel 2

8Mask

8

IPI IRQ Channel 2
(OR of all bits)

Enable

Disable

To mask

IPI IRQ signals are routed to RPU and APU GICs,
GIC Proxy, PL outputs, and PMU in interrupt controller.

Except PMU (0.3) IRQs are only routed to the PMU
interrupt controller in I/O module.

IPI CH 3 to 6 are hardware
assigned to the PMU.

Write 1 to enable.

Write 1 to disable.

Receiver
Channel 3

Observe
interrupt request status.

Set an
interrupt.

X19836-090717
Zynq UltraScale+ Device TRM 332
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=332

Chapter 13: Interrupts
Interrupt Register Descriptions

Each processor is assigned to a set of six IPI registers divided into sending and receiving
interrupts. The IPI interrupt register functionality is provided in Table 13-2.

Interrupt Register Channels

Each interrupt channel has six registers. Two registers are for sending an interrupt and four
registers are for receiving an interrupt. The trigger and observation registers are used to
send and monitor interrupts. The status/clear, mask, disable, and enable registers are used
to receive an interrupt.

There are eleven sets of interrupt registers for use by any processor, except IPI channels
{3:6}, which are hardwired for the PMU. The default and hardwired channel assignments are
shown in Figure 13-5. Default channel assignments are defined in the Xilinx software and
supported by the master IDs configured in the XPPU after reset.

Table 13‐2: IPI Interrupt Register Functionality

Channel
Activity

Register Name Acronym
Bit Writes Bit Reads

Write a 1 Write a 0 Read a 1 Read a 0

Send
interrupt

Trigger TRIG Assert interrupt Ignored Write only

Observation OBS Read only Interrupt request
asserted.

Interrupt request
not asserted.

Receive
interrupt

Status and clear ISR Clear bit Ignored Interrupt request
asserted.

Interrupt request
not asserted.

Mask IMR Read only
IRQ not generated

if status bit is
asserted.

IRQ generated if
status bit is

asserted.
Mask enable IER Set IMR = 1 Ignored Write only
Mask disable IDR Set IMR = 0 Ignored Write only
Zynq UltraScale+ Device TRM 333
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=333

Chapter 13: Interrupts
The non-PMU IRQ system interrupts are bused to four places, as follows.

Note: It is the responsibility of the individual masters to mask any unwanted IPIs in their own GIC.
• RPU GIC uses the GICv1.0 architecture and is controlled by the RPU.
• APU GIC uses the GICv2.0 architecture and is controlled by the APU.
• GIC proxy is a Xilinx architecture for the PMU external interrupt controller and is

controlled by the PMU.
• PL outputs include four signals from the PS to the PL.

The PMU IRQ signals are only routed to the PMU.

X-Ref Target - Figure 13-5

Figure 13‐5: IPI Interrupt Channel Architecture

Channel0

Channel1

Channel2

PMU_0

PMU_1

PMU_2

PMU_3

Channel7

Channel8

Channel9

Channel10

Sender
Registers

* Trigger (TRIG)
* Observe (OBS)

Channel0

Channel1

Channel2

PMU_0

PMU_1

PMU_2

PMU_3

Channel7

Channel8

Channel9

Channel10

XPPU 64KB
Aperture

Permissions

Channel0

Channel1

Channel2

PMU_0

PMU_1

PMU_2

PMU_3

Channel7

Channel8

Channel9

Channel10

IPI Channel
Assignments

APU MPCore

RPU0

RPU1

PMU 0

PMU 1

PMU 2

PMU 3

PL 0

PL 1

PL 2

PL 3

Receiver
Registers

*Status-clear (ISR)
* Mask (IMR)
* Enable (IER)
* Disable (IDR)

Channel0

Channel1

Channel2

PMU_0

PMU_1

PMU_2

PMU_3

Channel7

Channel8

Channel9

Channel10

IRQ Signal
Routing

All, GIC [67]

All, GIC [65]

All, GIC [66]

PMU only, IPI0

PMU only, IPI1

PMU only, IPI2

PMU only, IPI3

All, GIC [61]

All, GIC [62]

All, GIC [63]

All, GIC [64]

Default

Handwired
for PMU

Default

*RPU and APU GICs
* GIC proxy
* PL outputs
* PMU I/O module

Note: It is possible for a
processor to send an
interrupt to itself.

Interrupt
Routing

Channel0

Channel1

Channel2

PMU_0

PMU_1

PMU_2

PMU_3

Channel7

Channel8

Channel9

Channel10

Channel1

Channel2

PMU_0

PMU_1

PMU_2

PMU_3

Channel7

Channel8

Channel9

Channel10

Channel0

X19837-090717
Zynq UltraScale+ Device TRM 334
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=334

Chapter 13: Interrupts
Message Passing Architecture

The messaging system connects eight agents together in a mesh configuration. The PL is
represented by four agents, and the PMU is one agent. The message passing between
agents can be done exclusively between the sender and receiver using all 128 of the 32B
permission apertures in the XPPU.

To support message passing, the software in the two processors must pre-define the format
of the request and response message buffers. The buffer content does not affect the
hardware. The use of a message buffer is optional. Figure 13-6 shows the IPI message
passing architecture.

X-Ref Target - Figure 13-6

Figure 13‐6: IPI Message Passing Architecture

Message
Buffers

Request
XPPU 32B
Permission
Apertures

Agents 1-8

Agent 1
Response

Read

Write

Request
Agent 2

Response

Read

Write

Request
Agent 8

Response

Read

Write

Write

Read

Write
Read

WriteRead

Agent as
Requester

Agent as
Responder

Note: It is possible for a
processor to exchange
messages with itself.

128 total buffers:
8 for sending, 8 for receiving,
2 way communication

X19838-090717
Zynq UltraScale+ Device TRM 335
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=335

Chapter 13: Interrupts
Register and Buffer Summary

The IPI interrupt channels and message buffers are pre-defined and software associated as
described in Table 13-3.

Note: The software might reassign the interrupt channels and message buffers except for the PMU
interrupts.

Programming

The communication channels between processors must be coordinated with an agreed
upon protocol and message format.

Generate an Interrupt

To generate an interrupt, the sender writes a 1 to a bit in its trigger (TRIG) register that
corresponds to the target receiver. It can verify that a bit is set in the receiver's status
register by reading its own OBS register. However, it cannot determine if the interrupt is
enabled to generate the IRQ interrupt signal.

Table 13‐3: IPI Channel and Message Buffer Default Associations

Channel
Number

Default
Owner

IPI Interrupt Registers IPI Message Buffers

Name Base Address
XPPU 64 KB

Aperture
SI Agent
Number Base Address

XPPU 32B
Apertures

Channel 0 APU MPSoC Channel0 0xFF30_0000 048 1 0xFF99_0000 256 - 271
Channel 1 RPU0 Channel1 0xFF31_0000 049 2 0xFF99-0000 272 - 287
Channel 2 RPU1 Channel2 0xFF32_0000 050 3 0xFF99_0400 288 - 303
Channel 3

PMU(1)

PMU_0(2) 0xFF33_0000

051 8 0xFF99_0E00 368 - 383
Channel 4 PMU_1 0xFF33_1000
Channel 5 PMU_2 0xFF33_2000
Channel 6 PMU_3 0xFF33_3000
Channel 7 PL 0 Channel7 0xFF34_0000 052 4 0xFF99_0600 304 - 319
Channel 8 PL 1 Channel8 0xFF35_0000 053 5 0xFF99_0800 320 - 335
Channel 9 PL 2 Channel9 0xFF36_0000 054 6 0xFF99_0A00 336 - 351

Channel 10 PL 3 Channel10 0xFF37_0000 055 7 0xFF99_0C00 352 - 367
Notes:
1. The PMU interrupts are hardwired because the PMU IRQ signals only go to the PMU interrupt.
2. The PMI IPI0 interrupt causes the PMU to enter sleep mode.
Zynq UltraScale+ Device TRM 336
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=336

Chapter 13: Interrupts
Determine the Source of Interrupt

A processing unit reads its interrupt status (ISR) and mask (IMR) registers to determine the
source that caused the IRQ interrupt. Once serviced, the ISR can be cleared by writing the
data that was read from this register. The bits that were set are cleared while preserving any
bits that got set after the read took place, which helps to eliminate missed interrupts.

Send an IPI Communication

This section describes how to send an IPI communication.

1. Write a 32B request into the appropriate message buffer.
2. Write a 1 in the target receiver bit of its interrupt trigger register.
3. Optionally, verify that the interrupt is posted by reading its observation register.
4. Determine that the interrupt has been processed with one of the following steps.

a. Poll the observation register until the status bit is cleared indicating that the receiver
has processed the interrupt.

b. Receive an IPI interrupt from the sender.

The method to indicate when an interrupt has been processed must be pre-arranged
between the sender and receiver. The format of the message buffers must also be
pre-arranged.

Receive an IPI Communication

This section describes how to receive an IPI communication.

1. Prepare to receive a message request with one of the following steps.
a. Enable the interrupt from the sender using the IPI mask register, IMR, and in the

processor's interrupt controller by accessing GIC registers.
b. Poll the status register for bits being set.

2. When an interrupt is received, optionally write a 32B response into the appropriate
message buffer.

3. Signal to the sender that the interrupt has been processed with one of the following
steps.
a. Clear the status register.
b. Issue an IPI interrupt back to the sender.
Zynq UltraScale+ Device TRM 337
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=337

Chapter 13: Interrupts
Interrupt Registers

There are several sets of interrupt registers and IPI message buffers that are memory
mapped.

• RPU GIC: Arm PL390 with GICv1 interrupt architecture.
• APU GIC: Arm GIC400 with GICv2 interrupt architecture.
• GIC proxy system interrupt controller and Xilinx PMU interrupt architecture.
• IPI interrupts and Xilinx processor communications architecture.
• IPI message buffers, 32B x 128 buffers starting at address 0xFF99_0000.

The interrupt register sets are summarized in Table 13-5.

GIC Proxy Interrupts
The GIC proxy interrupts are used by the PMU when the RPU and APU cannot service an
interrupt because the processor is powered-down.

The GIC proxy interrupts are listed in Table 13-4 and are controlled by the five sets of
interrupt registers in the LPD_GIC_PROXY register set: GICP{0:4}_IRQ_{TRIGGER, STATUS,
MASK, ENABLE, DISABLE}. The mask register bits are applied to the status register bits.

Interrupt Status Register

The bits in the GIC proxy status registers GICP{0:4}_IRQ_STATUS are sticky and remain
asserted after the source of the interrupt has deasserted its signal. The minimum interrupt
pulse width for detection is four clock periods of the GIC proxy unit, which is normally a
100 MHz clock resulting in a minimum 40 ns pulse width. A shorter pulse width might also
be detected. The status register bits are cleared by writing a 1 to them. The status register
shows the interrupt state before the mask is applied. This register can be polled to
determine if the event occurred or did not occur, irrespective of the state of the associated
mask bit. Software acknowledges the interrupt by clearing this register.

Interrupt Mask Register (IMR_REG)

The mask register is read-only. When a bit reads as a 1, it means an active interrupt from the
status register is masked and it does not propagate to the GICP_PMU_IRQ_STATUS register.
The default (reset) state is 1, implying all interrupts are masked.
Zynq UltraScale+ Device TRM 338
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=338

Chapter 13: Interrupts
Interrupt Enable and Interrupt Disable Registers

There are separate write-only registers for enabling (GICPx_IRQ_ENABLE) and disabling
(GICPx_IRQ_DISABLE) a particular interrupt. This allows enabling/disabling on any single
interrupt without the need for a read-modify-write register operation.

Interrupts to PMU

The state of the GIC proxy interrupts after the interrupt mask are OR'ed together on a per
register basis to set bits in the LPD_SLCR.GICP_PMU_IRQ_STATUS register. For example, if
any unmasked interrupt in the LPD_GIC_PROXY.GICP0_IRQ_STATUS register is active, then
the LPD_SLCR.GICP_PMU_IRQ_STATUS [src0] bit is set by the interrupt hardware.

The PMU can read the GICP_PMU_IRQ_{STATUS, MASK} registers to determine which GIC
proxy register allowed the interrupt to propagate. Finally, the GIC proxy status and mask
registers that were determined to propagate the interrupt can be read to determine which
system element caused the interrupt.

CPU Private Peripheral Interrupts
The functionality of the RPU PPIs are described by the GICv1 architecture specification. This
is a subset of the APU PPI functionality that is described by the GICv2 specification.

Each CPU connects to a private set of peripheral interrupts. The list for the RPU is a subset
of the APU. The sensitivity type (edge or level) for PPIs are fixed and cannot be changed.

RPU Private Interrupts

The ICDICFR1 register is read-only, since it specifies the sensitivity types of all five PPIs.

The fast interrupt (FIQ) signal and the interrupt (IRQ) signal from the PL are inverted and
then sent to the interrupt controller. Consequently, they are active High at the PS-PL
interface, although the ICDICFR1 register reflects them as active Low level.
Zynq UltraScale+ Device TRM 339
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=339

Chapter 13: Interrupts
APU Private Interrupts

Each APU core has a private set of peripheral interrupts routed from the CPU itself and the
PL. They are listed in Table 13-4.

GIC Address Map

The APU GIC's base address is configured by the APU MPCore pins (PERIPHBASE). The RPU
GIC's base address is aligned to the Cortex-R5F MPCore’s low-latency peripheral port (LLPP)
base-address.

The GIC-400 uses eight pages of 4 KB memory-mapped address-space. However, to
support a 64 KB page size (as required by SBSA v2), the GIC-400 address needs to be
mapped such that pages are 64 KB. For this, the AXI address is mapped to a GIC slave
interface as described in this equation.

AddressGIC400[14:0] = {AddressAXI[18:16], AddressAXI[11:0]}

Table 13‐4: APU Private Peripheral Interrupts

Name Interrupt
ID

Description

Virtual maintenance interrupt 25 Configurable event generated by virtual CPU interface to indicate
a situation that might require hypervisor action.

Hypervisor timer 26 Physical timer event in hypervisor mode, PPI5 (CNTHP IRQ).
Virtual timer 27 Virtual timer generated event, PPI4 (CNTV IRQ).
Legacy FIQ signal 28 FIQ signal from the PL.
Secure physical timer 29 Secure physical timer event, PPI1 (CNTPS IRQ).
Non-secure physical timer 30 Non-secure physical timer event, PPI2 (CNTPNS IRQ).
Legacy IRQ signal 31 IRQ signal from the PL.
Zynq UltraScale+ Device TRM 340
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=340

Chapter 13: Interrupts
Register Overview
There are several interrupt register sets as shown in Table 13-5.

Table 13‐5: Interrupt Register Overview

Starting
Address Register Set Count Description

RPU - Private CPU Bus for RPU MPCore

0xF900_0000 PL390.enable 1 Interrupt control register (ICDICR).
0xF900_0080 PL390.sgi_security_if_n 1 SGI interrupt security register (ICDISR).
0xF900_0084 PL390.spi_security 5 SPI interrupt security register (ICDISR).
0xF900_0104 PL390.spi_enable_set 5 SPI enable set register (ICDISER).
0xF900_0184 PL390.spi_enable_clr 5 SPI interrupt clear-enable registers

(ICDICER).
0xF900_0200 PL390.sgi_pending_set_if_n 1 SGI interrupt set-pending registers

(ICDISPR).
0xF900_0204 PL390.spi_pending_set 5 SPI interrupt set-pending registers

(ICDISPR).
0xF900_0280 PL390.sgi_pending_clr_if_n 1 SGI pending clear register (ICDICPR).
0xF900_0284 PL390.spi_pending_clr 5 SPI pending clear register (ICDICPR).
0xF900_0300 PL390.sgi_active_if_n 1 SGI active bit registers (ICDABR).
0xF900_0304 PL390.spi_active 5 SPI active bit registers (ICDABR).
0xF900_0400 PL390.priority_sgi_if_n 16 SGI interrupt priority registers (ICDIPR).
0xF900_0420 PL390.priority_spi 160 SPI interrupt priority registers (ICDIPR).
0xF900_0820 PL390.targets_spi 160 SPI target register interrupt (ICDIPTR).
0xF900_0C08 PL390.spi_config 5 SPI interrupt configuration register

Interrupt (ICDICR).
APU - AXI Interconnect with Access Restricted to APU MPCore

0xF901_0000 GIC400.GICD 180 Display controller.
0xF902_0000 GIC400.GICC 15 CPU interface.
0xF904_0000 GIC400.GICH 99 Hypervisor.
0xF906_0000 GIC400.GICV 14 Virtual machine.
GIC Proxy - LPD Slave

0xFF41_8000
LPD_GIC_PROXY.GICP{0:5}_
{STATUS, MASK, ENABLE, DISPLAY,
TRIGGER}

30 System interrupt control registers.

0xFF41_80A0
LPD_GIC_PROXY.GICP_IRQ_
{STATUS, MASK, ENABLE, DISPLAY,
TRIGGER}

5 OR'ed interrupts control registers.
Zynq UltraScale+ Device TRM 341
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=341

Chapter 13: Interrupts
Programming Examples
• For Programming of the GICV1, refer to the Arm® Generic Interrupt Controller

Architecture version 1.0.
• For Programming of the GICV2, refer to the Arm® Generic Interrupt Controller

Architecture version 2.0.

Clearing Pending Interrupts from the APU GICv2

The GICv2 gets reset based on reset of the interconnect and does not have a soft reset bit.
These steps ensure that all pending interrupts are cleared after the CPU comes back up from
a reset:

1. Write the value FFFF_FFFFh into the GICD_ICENABLERx register.
2. Write the value FFFF_FFFFh into the GICD_ICPENDRx register.
3. Write the value FFFF_FFFFh into the GICD_ICACTIVERx register.
4. Write the value FFFF_FFFFh into the GICD_CPENDSGIRx register.

IPI - LPD Slave

0xFF30_0000 IPI.CH0_{TRIG, OBS, ISR, IMR, IER, IDR}
IPI.CH1_{TRIG, OBS, ISR, IMR, IER, IDR}
IPI.CH2_{TRIG, OBS, ISR, IMR, IER, IDR}
IPI.PMU_0_{TRIG, OBS, ISR, IMR, IER, IDR}
IPI.PMU_1_{TRIG, OBS, ISR, IMR, IER, IDR}
IPI.PMU_2_{TRIG, OBS, ISR, IMR, IER, IDR}
IPI.PMU_3_{TRIG, OBS, ISR, IMR, IER, IDR}
IPI.CH7_{TRIG, OBS, ISR, IMR, IER, IDR}
IPI.CH8_{TRIG, OBS, ISR, IMR, IER, IDR}
IPI.CH9_{TRIG, OBS, ISR, IMR, IER, IDR}
IPI.CH10_{TRIG, OBS, ISR, IMR, IER, IDR}

60
Inter-processor interrupts:
trigger, observation, status and clear,
mask, mask enable, mask disable.

IPI_CTRL 1 SLVERR bus error enable control.
IPI_{ISR, IMR, IER, IDR} 4 SLVERR interrupt status, mask, mask

enable/disable.
0xFF38_0030 SAFETY_CHK 1 Safety endpoint connectivity check

register, no effect on IPI operations.

Table 13‐5: Interrupt Register Overview (Cont’d)

Starting
Address

Register Set Count Description
Zynq UltraScale+ Device TRM 342
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=342

Chapter 13: Interrupts
The following is sample FSBL code for clearing the pending interrupts from the APU GICv2.

XFsbl_Printf (DEBUG_GENERAL, "Clear pending interrupts from APU GIC\n\r");
for (i = 0; i < 6; i++) {

Xil_Out32 (GICD_BASEADDR + 0x180 + 4*i, 0xffffffff); // GICD_ICENABLERx (x= 0 to 5)
Xil_Out32 (GICD_BASEADDR + 0x280 + 4*i, 0xffffffff); // GICD_ICPENDRx (x= 0 to 5)
Xil_Out32 (GICD_BASEADDR + 0x380 + 4*i, 0xffffffff); // GICD_ICACTIVERx (x= 0 to 5)

}

for (i = 0; i < 4; i++) {
Xil_Out32 (GICD_BASEADDR + 0xF10 + 4*i, 0xffffffff); // GICD_CPENDSGIRx (x= 0 to 3)

}

Programming Model IPI

This section describes programming the interrupts.

Example: Initiate an IPI

1. Initiator software writes a request message to memory.
2. Initiator writes a 1 to its Trigger register for the target processor.
3. Initiator may pole its Observation register or wait for an IPI response interrupt from the

target.
4. After the target has indicated it has responded to the interrupt, the initiator can read the

response message in memory. This is in a pre-defined format to a pre-defined memory
location.

Example: Receive an IPI

1. The target must enable interrupts to receive an IRQ to its interrupt controller. This is
done using the Mask register.

2. The target IRQ handler reads its status (ISR) and mask (IMR) registers to determine the
identity of the initiator.

3. The target reads the Request Message written by the initiator. It processes it and
provides a Response Message. The messages are in a pre-determined format in a
pre-determined place in memory.

4. The target clears the IRQ in the IPI and optionally sends an IPI response to the target.
Zynq UltraScale+ Device TRM 343
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=343

Chapter 13: Interrupts
Enable the Interrupt

To enable the interrupt, write a 1 to the bit corresponding to the processing unit whose
interrupt needs to be enabled in the *_IER register.

Disable the Interrupt

To disable the interrupt, write a 1 to the bit corresponding to the processing unit whose
interrupt needs to be disabled in the *_IDR register.
Zynq UltraScale+ Device TRM 344
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=344

Chapter 14

Timers and Counters

Introduction
The PS has many different types of timers and counters.

• APU MPCore AArch64 timers:

° APU MPCore global timer (system private).

° APU core private timers (physical private, virtual private).
• Triple-timer counter:

° Four triple-timer counter (TCC) units in the LPD.
• System watchdog timers:

° FPD_SWDT: system watchdog timer on the FPD interconnect (swdt1).

° LPD_SWDT: system watchdog timer on the LPD interconnect (swdt0).

° CSU_SWDT: system watchdog timer on the CSU/PMU interconnect.
Zynq UltraScale+ Device TRM 345
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=345

Chapter 14: Timers and Counters
System Block Diagram

Figure 14-1 shows the system timers in the PS.
X-Ref Target - Figure 14-1

Figure 14‐1: Timers System Block Diagram

LPD_SWDT
Clock In.
Reset Out.

Clock In.
Waveform

Out.

TTC 0
TTC 1
TTC 2
TTC 3

System
Triple Timer

Counter

MIO
and

EMIO

MIO Pins

EMIO

TTC
0, 1, 2, 3

LPD_SWDT
FPD_SWDT

CPU
Private
Timer

APU core0
APU core1
APU core2
APU core3

APU MPcore
Global Timer

Counter

x4

System Interrupts
LPD_GIC, FPD_GIC, GIC Proxy, PL

x4

x2

PPI
CPU Private
Interrupts

x12

LPD FPD

FPD_SWDT

Clock In.
Reset Out.

CSU_SWDT

RPU core0
RPU core1

X18798-021717
Zynq UltraScale+ Device TRM 346
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=346

Chapter 14: Timers and Counters
APU MPCore System Counter
The system timer is documented in the Cortex-A53 MPCore Technical Reference Manual.
This counter is sometimes referred to as the global counter. The counter is controlled by
IOU_SCNTRS register set. The clock controlled by CRL_APB.TIMESTAMP_REF_CTRL register;
Vivado PCW [TIMESTAMP] setting.

Features

• 64-bit counter is private to the APU MPCore.
• Auto-incrementing feature.
• 64-bit comparator can assert a private interrupt.

Software can access the CNTFRQ register to read or modify the clock frequency of the
system counter. Each Cortex-A53 MPCore has a counter input that can capture each
increment of the system counter.

Typically, initializing and reading the system counter frequency includes setting the system
counter frequency using the system control register interface, only during the system boot
process. The system counter frequency is set by writing the system counter frequency to the
CNTFRQ register. Only software executing at the highest exception level implemented can
write to CNTFRQ.

Software can read the CNTFRQ register to determine the current system counter frequency
in these states and modes.

• Non-secure EL2 mode.
• Secure and non-secure EL1 modes.
• When CNTKCTL.EL0PCTEN is set to 1, secure and non-secure EL0 modes.

Applications

Event Streams

The system counter can be used to generate one or more event streams to generate
periodic wake-up events. An event stream might be used for these reasons.

• To impose a timeout on a wait-for-event polling loop.
• To safeguard against any programming error that means an expected event is not

generated.
Zynq UltraScale+ Device TRM 347
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=347

Chapter 14: Timers and Counters
An event stream is configured by these selections.

• Selecting which bit from the bottom 32-bits of a counter triggers the event. This
determines the frequency of the events in the stream.

• Selecting whether the event is generated on each 0 to 1 transition or each 1 to 0
transition of the selected counter bit.

Programming

Generic Timer Programming

Memory-mapped controls of the system counter are accessible only through the
memory-mapped interface to the system counter.

These controls are listed.

• Enabling and disabling the counter.
CNTCR, counter control register EN, bit [0]:

° 0: System counter disabled.

° 1: System counter enabled.
• Setting the counter value.

Two contiguous RW registers CNTCV [31:0] and CNTCV [63:32] that hold the current
system counter value, CNTCV. If the system supports 64-bit atomic accesses, these two
registers must be accessible by such accesses.

• Changing the operating mode to change the update frequency and increment value.
CNTCR, counter control register FCREQ, bits [17:8]: frequency change request.

• Enabling halt-on-debug for a debugger to use to suspend counting.
CNTCR, counter control register HDBG, bit [1]: Halt-on-debug. Controls whether a
halt-on-debug signal halts the system counter:

° 0: System counter ignores halt-on-debug.

° 1: Asserted halt-on-debug signal halts system counter update.
Zynq UltraScale+ Device TRM 348
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=348

Chapter 14: Timers and Counters
Register Overview

The MPCore timers are defined by the AArch64 architecture specification. Table 14-1
provides an overview of the AArch32 registers.

Register Access

The system counter control and status registers are accessible to all APU cores using their
CPU private register space.

APU Core Private Physical and Virtual Timers
The system timer is documented in the Cortex-R5F or Cortex-A53 MPCore TRMs [Ref 46]
[Ref 48]. The clock is controlled by the CRL_APB.DBG_TSTMP_CTRL register Vivado PCW
[DBG_TSTMP] setting.

System Timer

The System timer can be exclusively configured for A53 and R5F by reading and writing to
IOU_SCNTR and IOU_SCNTRS registers residing in the LPD_IOU domain. These registers can
be accessed by any master. Both registers IOU_SCNTR and IOU_SCNTRS map to the same
physical timer (IOU_SCNTR is read-only). The clock is controlled by the
CRL_APB.DBG_TSTMP_CTRL register Vivado PCW [DBG_TSTMP] setting.

For more information refer to the Cortex-R5F or Cortex-A53 MPCore TRMs [Ref 46] [Ref 47].

Features

• 64-bit counter is private to each CPU core.

Table 14‐1: AArch32 Register Overview

Function Control Register

Timer frequency. CNTFRQ
Kernel control. CNTKCTL
Hypervisor control. CNTHCTL
Virtual offset. CNTVOFF

Table 14‐2: System Timer Registers

Register Name Address Access Type Description

IOU_SCNTR 0xFF250000 Read/Write System Timestamp Generator
IOU_SCNTRS 0xFF260000 Read/Write System Timestamp Generator- Secure
Zynq UltraScale+ Device TRM 349
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=349

Chapter 14: Timers and Counters
• Same PPI interrupt number for each APU core.
• Extensions to the timer to AArch64:

° Non-secure EL1 physical timer.

° Secure E1 physical timer.

° Non-secure EL2 physical timer.

° Virtual timer.

Physical Timer

Physical Counter

Each APU core includes a physical counter that contains the count value of the system
counter. The CNTPCT register holds the current physical counter value. The CNTPCT counter
operates in the LPD power domain to provide a reliable and uniform view of the system
time to each of the APU cores. This counter is controlled by the TIMESTAMP_REF_CTRL
register. The timer is clocked at ½ the APU clock frequency. This logic generates a tick after
N clock pulses, where N is defined as:

N = (½ APU clock frequency)/100 MHz.

100 MHz is a configurable clock that goes to the TSGEN module. TSGEN is the timestamp
generator in the Coresight™ debug module in the APU and runs between 200 MHz and
400 MHz. The CNTCR register controls the counter operation by enabling, disabling, or
halting the counter. Normally, it is 100 MHz after boot, but the frequency can be changed
using DBG_TSTMP_CTRL register.

Accessing the Physical Counter

Software with sufficient privilege can read CNTPCT using a 64-bit system control register
read.

Virtual Timer

Virtual Counter

Each APU core includes a virtual counter that indicates virtual time. The virtual counter
contains the value of the physical counter minus a 64-bit virtual offset. When executing in
a non-secure EL1 or EL0 mode, the virtual offset value relates to the current virtual machine.

The CNTVOFF register contains the virtual offset. CNTVOFF is only accessible from EL2 or
EL3 when SCR.NS is set to 1. The CNTVCT register holds the current virtual counter value.
Zynq UltraScale+ Device TRM 350
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=350

Chapter 14: Timers and Counters
Accessing the Virtual Counter

Software with sufficient privilege can read CNTVCT using a 64-bit system control register
read.

Register Access

Accessing the Timer Registers

For each timer, all timer registers have the same access permissions.

EL1 Physical Timer

Accessible from EL1 modes, except that non-secure software executing at EL2 controls
access from non-secure EL1 modes.

When access from EL1 modes is permitted, CNTKCTL.EL0PTEN determines whether the
registers are accessible from EL0 modes. If an access is not permitted because
CNTKCTL.EL0PTEN is set to 0, an attempted access from EL0 is UNDEFINED.

The following describes the EL1 physical timer.

• Except for accesses from the monitor mode, accesses are to the registers in the current
security state.

• For accesses from monitor mode, the value of SCR_EL3.NS determines whether
accesses are to the secure or the non-secure registers.

• The non-secure registers are accessible from hypervisor mode.
• CNTHCTL.NSEL1TPEN determines whether the non-secure registers are accessible from

non-secure EL1 modes. If this bit is set to 1, to enable access from non-secure EL1
modes CNTKCTL.EL0PTEN determines whether the registers are accessible from
non-secure EL0 modes.

If an access is not permitted because CNTHCTL.NSEL1TPEN is set to 0, an attempted access
from a non-secure EL1 or EL0 mode generates a hypervisor trap exception. However, if
CNTKCTL.EL0PTEN is set to 0, this control takes priority, and an attempted access from EL0
is UNDEFINED.

Virtual Timer

Accessible from secure and non-secure EL1 modes and from hypervisor mode.
CNTKCTL.EL0VTEN determines whether the registers are accessible from EL0 modes. If an
access is not permitted because CNTKCTL.EL0VTEN is set to 0, an attempted access from an
EL0 is UNDEFINED.
Zynq UltraScale+ Device TRM 351
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=351

Chapter 14: Timers and Counters
EL2 Physical Timer

Accessible from non-secure hypervisor mode, and from the secure monitor mode when
SCR_EL3.NS is set to 1.
Zynq UltraScale+ Device TRM 352
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=352

Chapter 14: Timers and Counters
Register Overview

Table 14-3 provides an overview of the APU core private timers.

Triple-timer Counters
The four triple-timer counter (TTC) units are located in the LPD region and each unit has
three similar counters. The TTCs can generate periodic interrupts or can be used to count
the widths of signal pulses from an MIO pin or from the PL. All three counters must have the
same security status because they share a single APB bus.

TTC Counter Features

• 32-bit APB programming interface.
• A selectable clock input.

° Internal PS bus clock (LPD_LSBUS_CLK)

° Internal clock (from PL)

° External clock (from MIO)
• Support for three independent 32-bit timer/counters.
• Support for a 16-bit prescaler for the clock.
• Three system interrupts, one for each timer counter.
• Interrupt on overflow, counter match programmable values.
• Increment and decrement counting.
• Generates a waveform output (for example, PWM) through the MIO and to the PL.

Table 14‐3: APU Core Private Timers (AArch64)

Function Physical Timer Virtual Timer Physical Secure Timer Hypervisor Physical Timer

Timer value CNTP_TVAL_EL0 CNTV_TVAL_EL0 CNTPS_TVAL_EL1 CNTHP_TVAL_EL2
Timer control CNTP_CTL_EL0 CNTV_CTL_EL0 CNTPS_CTL_EL1 CNTHP_CTL_EL2
Compare value CNTP_CVAL_EL0 CNTV_CVAL_EL0 CNTPS_CVAL_EL1 CNTHP_CVAL_EL2
Timer count CNTPCT_EL0 CNTVCT_EL0
Zynq UltraScale+ Device TRM 353
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=353

Chapter 14: Timers and Counters
TTC Block Diagram

Figure 14-2 is a block diagram of the TTC. The clock-in and wave-out multiplexing for the
timer/clock 0 is controlled by the slcr.MIO_PIN_xx registers. If no selection is made in these
registers, then the default becomes the EMIO interface.

X-Ref Target - Figure 14-2

Figure 14‐2: TTC Block Diagram

LPD_LSBUS_CLK Pre-scaler 32-bit
Counter

Event Timer
Interrupt

Clock-In
MIO

EMIO

slcr.MIO_PIN_xx

Wave-Out
MIO

EMIO

slcr.MIO_PIN_xx

Interrupt (GIC)

Timer/Clock 0

Pre-scaler 32-bit
Counter

Event Timer
Interrupt

Wave-Out (EMIO)

Interrupt (GIC)

Timer/Clock 1

Clock-In (EMIO)

Pre-scaler 32-bit
Counter

Event Timer
Interrupt

Wave-Out (EMIO)

Interrupt (GIC)

Timer/Clock 2

Clock-In (EMIO)

Status and Control RegistersAPB (pclk)

TTC
X17918-092220
Zynq UltraScale+ Device TRM 354
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=354

Chapter 14: Timers and Counters
TTC Functional Description

Each prescaler module can be independently programmed to use the LPD_LSBUS_CLK, or an
external clock from the MIO or the PL. For an external clock, the SLCR registers determine
the exact pinout via the MIO or from the PL. The selected clock is then divided down from
two to 0xFFFF_FFFF before being applied to the counter. The counter module can count
up or count down, and can be configured to count for a given interval. It also compares
three match registers to the counter value and generates an interrupt if one matches.

The interrupt module combines interrupts of various types: counter interval, counter
matches, counter overflow, and event timer overflow. Each type can be individually enabled.

Initialization

On initialization, the counters are set to these configurations.

• Overflow mode.
• Internal clock selected.
• Counter disabled.
• All interrupts disabled.
• Event timer disabled.
• Output waveforms disabled.

Prescaler

The interface includes a prescaler module to provide a selectable clock frequency for
driving the timer-counter. The prescaler can be programmed to operate on the system clock
or an external clock (ext_clk). The selected clock is then divided down to provide the count
clock; division can be from ÷2 to ÷65536.

Counter Module

The counter module can increment or decrement and can be configured to count for a
given interval. It also compares three match registers to the value of the counter and
generates an interrupt if one matches.

Interrupt Module

Three interrupt signals are available for use at the system level, one from each timer
counter. An interrupt occurs when a bit in the interrupt enable register and the
corresponding bit in the interrupt detect register are both set. The resulting ANDed outputs
are then ORed to generate the system interrupt signal. The interrupt register takes the
interrupt signals from the timer-counter module and stores them until the register is read.
When the interrupt register is read by the processor, it is reset. To enable an interrupt, it is
necessary to write a 1 to the corresponding bit position in the interrupt enable register.
Zynq UltraScale+ Device TRM 355
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=355

Chapter 14: Timers and Counters
Modes of Operation

Each of the timer counter modules can operate in one of four modes, and register matching
can also be programmed for each of these modes.

• Interval timing, increment count.
• Interval timing, decrement count.
• Overflow detection, increment count.
• Overflow detection, decrement count.

Interval Mode

If the interval bit is set in the counter control register, the counter counts up to or down
from a programmable interval value. An interrupt is generated when the count passes
through zero. When interval mode operation is not enabled, the counter is free-running. To
increment, when the counter value register is equal to the interval register value, the
counter is reset to zero, the interval interrupt is set, and counting up is restarted. To
decrement, when the counter value register is equal to zero, the interval interrupt is set. The
counter is then reset to the interval register value and counting down is restarted.

Overflow Mode

If the interval bit in the counter control register is not set, the counter can count up to or
down from its full 32-bit value. An interrupt is generated when the count passes through
zero. To increment, when the counter value register reaches 0xFFFF_FFFF it overflows to
zero, then the overflow interrupt is set and counting up is restarted. To decrement, when
the counter value register reaches zero, the overflow interrupt is set. The counter then
overflows to 0xFFFF_FFFF and counting down is restarted.

Event Control Timer Operation

The event control timer operates by having an internal 32-bit counter clocked by the
LPD_LSBUS_CLK clock that resets to 0 during the non-counting phase of the external pulse
and increments during the counting phase of the external pulse.

The event control timer register (TTC.Event_Control_Timer_{0:3}) controls the behavior of
the internal counter.

• [E_En] bit: When 0, immediately resets the internal counter to 0, and stops
incrementing.

• [E_Lo] bit: Specifies the counting phase of the external pulse.
Zynq UltraScale+ Device TRM 356
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=356

Chapter 14: Timers and Counters
• [E_Ov] bit: Specifies how to handle an overflow at the internal counter (during the
counting phase of the external pulse).

° When 0: Overflow causes [E_En] to be 0 (see the [E_En] bit description).

° When 1: Overflow causes the internal counter to wrap around and continues
incrementing.

° When an overflow occurs, an interrupt is always generated (subject to further
enabling through another register).

The event register is updated with the non-zero value of the internal counter at the end of
the counting-phase of the external pulse. The event register shows the widths of the
external pulse, measured in number of cycles of LPD_LSBUS_CLK. If overflow occurs, the
event register is not updated and maintains the old value.

Register Overview

Table 14-1 provides an overview of the AArch32 register. Table 14-14 lists the system
watchdog timer registers and Table 14-5 lists the TTC registers.

Table 14‐4: Watchdog Timers

Watchdog
Timers

LPD_SWDT FPD_SWDT CSU_SWDT

Clock
select

IOU_SLCR.WDT_CLK_SEL
[SELECT]

FPD_SLCR.WDT_CLK_SEL
[SELECT]

LPD_SLCR.CSUPMU_WDT_CLK_SEL
[SELECT]

Reset
input

RST_CTRL_LPD.RST_LPD_TOP
[lpd_swdt_reset]

RST_CTRL_FPD.RST_FPD_TOP
[swdt_reset]

RST_CTRL_LPD.RST_LPD_IOU2
[swdt_reset]

Mode
select

SWDT.MODE
[WDEN], [RSTEN], [IRQEN], [RSTLN],
[IRQLN], [ZKEY]

WDT.MODE
[WDEN], [RSTEN], [IRQEN], [RSTLN],
[IRQLN], [ZKEY]

CSU_WDT.MODE
[WDEN], [RSTEN], [IRQEN], [RSTLN],
[IRQLN], [ZKEY]

Control SWDT.CONTROL
[CLKSEL], [CRV], [CKEY]

WDT.CONTROL
[CLKSEL], [CRV], [CKEY]

CSU_WDT.CONTROL
[CLKSEL], [CRV], [CKEY]

Restart SWDT.RESTART
[RSTKEY]

WDT.RESTART
[RSTKEY]

CSU_WDT.RESTART
[RSTKEY]

Status SWDT.STATUS
[WDZ]

WDT.STATUS
[WDZ]

CSU_WDT.STATUS
[WDZ]

Reset
output on
MIO pins

IOU_SLCR.MIO_PIN_xx IOU_SLCR.MIO_PIN_xx ~

System
error
status

PMU_GLOBAL.ERROR_STATUS_1
[LPD_SWDT]

PMU_GLOBAL.ERROR_STATUS_1
[FPD_SWDT]

~

GIC proxy
interrupt
status

LPD_GIC_PROXY.GICP1_IRQ_STATUS
[20]

LPD_GIC_PROXY.GICP3_IRQ_STATUS
[17]

LPD_GIC_PROXY.GICP1_IRQ_STATUS
[21]
Zynq UltraScale+ Device TRM 357
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=357

Chapter 14: Timers and Counters
TTC Programming Examples

• Initialization
• Set options
• Prescalar
• setup timer
• Setup ticker
• Stop timer

Table 14‐5: TTC Registers

Name Description

Clock_Control_{1:3} Clock control register.
Counter_Control_{1:3} Operational mode and reset.
Counter_Value_{1:3} Current counter value.
Interval_Counter_{1:3} Interval value.
Match_{1:3}_Counter_{1:3} Match value.
Interrupt_Register_{1:3} Counter 1 to 3 interval, match, overflow, and event interrupts.
Interrupt_Enable_{1:3} ANDed with corresponding interrupt.
Event_Control_Timer_{1:3} Enable, pulse, and overflow.
Event_Register_{1:3} APB interface clock cycle count for event.
Zynq UltraScale+ Device TRM 358
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=358

Chapter 14: Timers and Counters
TTC Programming

The programming steps for the TTC are listed in Table 14-6 through Table 14-11.
Figure 14-4 shows the TTC flowchart.

Table 14‐6: TTC Initialization

Task Register Register Field Register Offset Bits Value

Check if timer counter is
started counter_control DIS 0x0C 0 Read operation

Ensure timer counter has not started
Write reset value to the
counter control register counter_control All 0x0C 31:0 0x21 (hex)

Reset clock control clock_control All 0x00 31:0 0x00 (hex)
Reset interval count value interval_counter All 0x24 31:0 0x00 (hex)
Reset match-1 value match_1_counter All 0x3C 31:0 0x00 (hex)
Reset match-2 value match_2_counter All 0x48 31:0 0x00 (hex)
Reset IER interrupt_enable All 0x60 31:0 0x00 (hex)
Reset ISR interrupt_register All 0x54 31:0 0x00 (hex)
Reset counter counter_control RST 0x0C 4 1b'1

Table 14‐7: TTC Set Options

Task Register Register Field Register Offset Bits Value

External clock set option clock_control C_Src 0x00 5 1b'1

External clock deselect option clock_control C_Src 0x00 5 1b'0

Negative edge clock selection clock_control Ex_E 0x00 6 1b'1

Negative edge clock deselect clock_control Ex_E 0x00 6 1b'0

Interval mode select counter_control INT 0x0C 1 1b'1

Interval mode deselect counter_control INT 0x0C 1 1b'0

Decrement counter counter_control DEC 0x0C 2 1b'1

Decrement counter deselect counter_control DEC 0x0C 2 1b'0

Select match mode counter_control Match 0x0C 3 1b'1

Deselect match mode counter_control Match 0x0C 3 1b'0

Disable waveform output counter_control Wave_en 0x0C 5 1b'1

Enable waveform output counter_control Wave_en 0x0C 5 1b'0

Select waveform polarity counter_control Wave_pol 0x0C 6 1b'0

Select waveform polarity counter_control Wave_pol 0x0C 6 1b'0
Zynq UltraScale+ Device TRM 359
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=359

Chapter 14: Timers and Counters
Table 14‐8: TTC Set Prescaler

Task Register Register Field Register Offset Bits Value

Clear prescaler control bits clock_control PS_V | PS_En 0x00 4:0 5b'00000

Write the value only if prescaler
value is less than 16 clock_control PS_V | PS_En 0x00 4:0

Prescaler
value to

be written

Table 14‐9: Setup Timer

Task Register Register Field Register Offset Bits Value

Stop timer counter_control DIS 0x0C 0 1b'1

Initialize the device. Refer to TTC Initialization.
Set required options. Refer to TTC Set Options.
Calculate interval and prescaler.

Setup interval interval_counter All 0x24 31:0 Interval value calculated in previous
step

Set prescaler value calculated in previous step. Refer to TTC Set Prescaler.

Table 14‐10: Setup Ticker

Task Register Register Field Register Offset Bits Value

Setup timer. Refer to Setup Timer.
Register the ticker handler with the GIC.
Enable TTC interrupts in the GIC.
Enable interval interrupt interval_counter Interval 0x60 0 1b'1

Start timer counter_control DIS 0x0C 0 1b'0

Table 14‐11: TTC Stop Timer

Task Register Register Field Register Offset Bits Value

Stop timer counter_control DIS 0x0C 0 1b'1
Zynq UltraScale+ Device TRM 360
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=360

Chapter 14: Timers and Counters
System Watchdog Timers
There are three system watchdog timer (SWDT) units in the PS. They are all based on the
Arm system watchdog timer architecture. One major difference between the timers is the
system interface signals.

The clock source for the LPD and FPD watchdog timers can come from one of three sources.
The CSU_SWDT can source its clock from either the local bus or directly from the
PS_REF_CLK pin.

A watchdog timer is used to detect and recover from system malfunctions. The watchdog
timer can be used to prevent system lockup; for example, when software becomes trapped
in a deadlock. In normal operation, an interrupt handler running on a processor restarts the
watchdog timer at regular intervals before the timer counts down to zero. In cases where
the timer does reach zero and the watchdog is enabled, one or a combination of the
following signals is generated: a system reset, an interrupt, or an external signal. The
watchdog timeout period and the duration of any output signals are programmable.

There are three watchdog timers in the system. Each timer has the same programming
model and similar control registers.

• LPD_SWDT: uses the SWDT register set and is sometimes referred to as swdt0.
• FPD_SWDT: uses the WDT register set and is sometimes referred to as swdt1.
• CSU_SWDT: uses the CSU_WDT register set.

The LPD watchdog timer, LPD_SWDT, protects the RPU MPCore and its interconnect. The
FPD watchdog timer, FPD_SWDT, protects the APU MPCore and its interconnect. The third
watchdog timer, CSU_SWDT, protects the CSU and PMU interconnects. It also includes a
logic built-in self-test (LBIST) to promote operating safety.

The APU SWDT can be used to reset the APU or the FPD. The RPU SWDT can be used to reset
the RPU or the LPD.

• An internal 24-bit counter.
• Variable timeout period, from 1 ms to 30 seconds using a 100 MHz clock.
• Programmable reset period.
Zynq UltraScale+ Device TRM 361
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=361

Chapter 14: Timers and Counters
Figure 14-3 is a block diagram of the watchdog timer.

Figure 14-3 notes:

• Clock selects: FPD_SLCR.WDT_CLK_SEL [select] and FPD_SLCR.WDT_CLK_SEL [select].
• MIO pin selects: IOU_SLCR.MIO_PIN_x registers.
• Program the clock prescaler and restart values: {SWDT, WDT, SU_WDT}.CONTROL

[CLKSEL], [CRV].
• A restart signal causes the 24-bit counter to reload the [CRV] value and restart

counting.
• A halt signal causes the counter to halt during CPU debug (same behavior as the APU

SWDT).

The halt conditions are as follows:

° Clock selects: FPD_SLCR.WDT_CLK_SEL [select] and FPD_SLCR.WDT_CLK_SEL [select].

° LPD system WDT– halted by RPU only; either core in the debug can halt it.

° LPD CSU WDT– halted by RPU only; either core in the debug can halt it.

° FPD System WDT– halted by APU only; any core in the debug can halt it.

X-Ref Target - Figure 14-3

Figure 14‐3: SWDT Block Diagram

Reference Clock

EMIO signal from PL Pre-scaler 24-bit Counter

LPD_SWDT is IRQ 84
FPD_SWDT is IRQ 145
CSU_SWDT is IRQ 85

System Reset Signal

EMIOWDTRSTO

CLKSEL

CRV

Zero

Restart

Halt (during CPU debug)

FPD_SLCR.WDT_CLK_SEL[0]
IOU_SLCR.MIO_PIN_xx

LPD_APB (LPD and CSU timers)
FPD_APB (FPD timer)

MIO device input signal

IRQ

Reset OutRegisters and Control Logic

MIO Pin

System Error Controller

Clock

X17917-052318
Zynq UltraScale+ Device TRM 362
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=362

Chapter 14: Timers and Counters
SWDT Functional Description

The control logic block has an APB interface connected to the system interconnect. Writes
to the MODE and CONTROL registers require a key. The mode register requires the zKEY and
the controller register requires the cKEY.

• The zero mode register controls the behavior of the watchdog timer when its internal
24-bit counter reaches zero. Upon receiving a zero signal, the control logic block (if
both mode bits [WDEN] and [IRQEN] are set) asserts the interrupt output signal for
MODE IRQLN clock cycles, and (if [WDEN] is set) also asserts the reset output signals
for approximately one clock cycle. The 24-bit counter then stays at zero until it is
restarted.

• The counter control register sets the timeout period by setting reload values in
CONTROL[CLKSET] and [CRV] bits to control the prescaler and the 24-bit counter.

• The restart register is used to restart the counting process. Writing to this register with
a matched key causes the prescaler and the 24-bit counter to reload the values from
the CRV signals.

• The status register shows whether the 24-bit counter reaches zero. Regardless of the
[WDEN] bit in the zero mode register, the 24-bit counter keeps counting down to zero
when it is not zero and the selected clock source is present. Once the 24-bit counter
reaches zero, the [WDZ] bit of the status register is set and remains set until the 24-bit
counter is restarted.

• The prescaler block divides down the selected clock input. The [CLKSEL] bit is sampled
at every rising clock edge.

• The internal 24-bit counter counts down to zero and stays at zero until it is restarted.
While the counter is at zero, the zero output signal is High.

Interrupt to RPU and APU GIC Interrupt Controllers

The pulse length of four clock cycles (SWDT.MODE[IRQLN] = 2'b00) from the watchdog
timer is sufficient for the interrupt controller to capture the interrupt using rising-edge
sensitivity.

Watchdog Enabled on Reset

The purpose of this watchdog is to prevent system lockup if the software becomes trapped
in a deadlock. The watchdog is therefore enabled on reset as the software lockup could
occur immediately after the reset is removed.
Zynq UltraScale+ Device TRM 363
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=363

Chapter 14: Timers and Counters
CPU Debug

An input cpu_debug is provided by the SWDT. It is possible to stop the CPU and analyze the
content of system register and memory. To enable diagnosis of system problems during
prototype commissioning, connect the signal that stops the CPU to the SWDT input
cpu_debug. This suspends the SWDT and it will not time out on a CPU that is stopped for
diagnostic purposes.

SWDT I/O Control and Configuration Register Sets

The system watchdog timer configuration registers are listed in Table 14-12.

Table 14‐12: SWDT I/O Control and Configuration Register Sets

Name Internal External MIO EMIO Register Control

Clock Input
LPD_SWDT LPD_LSBUS_CLK ~ Yes Yes IOU_SLCR.WDT_CLK_SEL.
FPD_SWDT TOPSW_LSBUS_CLK ~ Yes Yes FPD_SLCR.WDT_CLK_SEL.
CSU_SWDT PS_REF_CLK No No LPD_SLCR.CSUPMU_WDT_CLK_SEL.

Reset Output
LPD_SWDT IRQ [84] ~ [1] Yes Yes Always IRQ and EMIO.

IOU_SLCR.MIO_PIN_xx.
FPD_SWDT IRQ [145] ~ [1] Yes Yes Always IRQ and EMIO.

IOU_SLCR.MIO_PIN_xx.
CSU_SWDT IRQ [85] ~ [2] No No Always IRQ.

Configuration Register Sets
LPD_SWDT ~ ~ ~ ~ SWDT register set.
FPD_SWDT ~ ~ ~ ~ WDT register set.
CSU_SWDT ~ ~ ~ ~ CSU_WDT register set.

Notes:
1. The LPD and FPD system watchdog timers can cause a system lockdown to affect the PS_ERROR_STATUS signal.
Zynq UltraScale+ Device TRM 364
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=364

Chapter 14: Timers and Counters
SWDT Register Overview

The registers for the three SWDT units are summarized in Table 14-13.

Table 14‐13: SWDT Register Overview

LPD_SWDT FPD_SWDT CSU_SWDT

Clock select IOU_SLCR
WDT_CLK_SEL [SELECT]

FPD_SLCR
WDT_CLK_SEL [SELECT]

LPD_SLCR
CSUPMU_WDT_CLK_SEL
[SELECT]

Reset input RST_CTRL_LPD
RST_LPD_TOP [lpd_swdt_reset]

RST_CTRL_FPD
RST_FPD_TOP [swdt_reset]

RST_CTRL_LPD
RST_LPD_IOU2 [swdt_reset]

Mode select SWDT.MODE
[WDEN], [RSTEN], [IRQEN],
[RSTLN], [IRQLN], [ZKEY]

WDT.MODE
[WDEN], [RSTEN], [IRQEN],
[RSTLN], [IRQLN], [ZKEY]

CSU_WDT.MODE
[WDEN], [RSTEN], [IRQEN],
[RSTLN], [IRQLN], [ZKEY]

Control SWDT.CONTROL
[CLKSEL], [CRV], [CKEY]

WDT.CONTROL
[CLKSEL], [CRV], [CKEY]

CSU_WDT.CONTROL
[CLKSEL], [CRV], [CKEY]

Restart SWDT.RESTART
[RSTKEY]

WDT.RESTART
[RSTKEY]

CSU_WDT.RESTART
[RSTKEY]

Status SWDT.STATUS
[WDZ]

WDT.STATUS
[WDZ]

CSU_WDT.STATUS
[WDZ]

Reset output on
MIO pins

IOU_SLCR.MIO_PIN_xx IOU_SLCR.MIO_PIN_xx ~

System error
status

PMU_GLOBAL
ERROR_STATUS_1 [LPD_SWDT]

PMU_GLOBAL
ERROR_STATUS_1
[FPD_SWDT]

~

GIC proxy
interrupt status

LPD_GIC_PROXY
GICP1_IRQ_STATUS [20]

LPD_GIC_PROXY
GICP3_IRQ_STATUS [17]

LPD_GIC_PROXY
GICP1_IRQ_STATUS [21]
Zynq UltraScale+ Device TRM 365
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=365

Chapter 14: Timers and Counters
SWDT Register Overview

Table 14-14 is an overview of the SWDT registers, SWDT, WDT, and CSU_WDT register sets.

Table 14‐14: SWDT Register Overview

Offset Name Access Bits Description

0x00 Watchdog zero mode
register state on
reset: 0x1C2

Read/Write 0 WDEN: Watchdog enable. If set, the watchdog is enabled
and can generate enabled signals.

1 RSTEN: Reset enable. If set, the watchdog issues an
internal reset when the counter reaches zero, if
WDEN = 1.

2 IRQEN: Interrupt request enable. If set,
the watchdog issues an interrupt
request when the counter reaches zero, if WDEN = 1.

3 Reserved.
6:4 RSTLN: Reset length, 2 to 256 PCLK cycles.
8:7 IRQLN: Interrupt request length, 4 to 32 PCLK cycles.

11:9 EXLN: External signal length, 8 to 2048 PCLK cycles.
Write only 23:12 ZKEY: Zero access key. Writes to the zero mode register

are only valid if this field is 0xABC.
0x04 Counter control

register state on
reset: 0b111100

Read/Write 1:0 CLKSEL: Counter clock prescale, from PCLK/8 to
PCLK/4096.

13:2 CRV: Counter restart value. The counter is restarted with
0xNFFF, where N is the value of this field.

Write only 25:14 CKEY: Counter access key. Writes to the control register
are only valid if this field is 0x248.

0x08 Restart register Write only 15:0 RSTKEY: Restart key. The watchdog is restarted if this field
is set to 0x1999.

0x0C Status register state
on reset: 0x00

Read only 0 WDZ: Watchdog zero. This bit is set when the counter
reaches zero.
Zynq UltraScale+ Device TRM 366
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=366

Chapter 14: Timers and Counters
SWDT Programming Sequence

Programming Model

The watchdog timers are only reset by a power-on reset and not by a system reset. This
ensures that the timer is not reset by its own reset output.

Enable Sequence

1. SWDT is reset by a power-on reset.
2. Disable the timer by clearing the WDEN bit. Write AB_C000h to the mode register. This

disables the timer and sends the correct [ZKEY] bit field of 12'h0ABC. The other bits can
be 0 for now.

3. Initialize the counter control register. For example, writing 0x0923C to the control
register sets the divide by eight prescalar and the counter restart value to its
maximum.The [CKEY] value in bits 25:14 must be 12'h0248.

4. Enable the timer. For example, writing 0xABC1C5 to the mode register. Bit 0, [WDEN]
enables the timer. Bit 1, [RSTEN] deasserts reset. Bit 2, [IRQEN] enables interrupts.
Always write 0 to bit 3. Also, IRQLN and RSTLN must be greater than or equal to the
specified minimum values.

SWDT Programming Examples

• Timer start/stop/restart
• Timer expiry
• Enable/disable signal output
• Set/get control values
• Self test
• Example
Zynq UltraScale+ Device TRM 367
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=367

Chapter 14: Timers and Counters
Watchdog Timer Programming

The programming steps for the watchdog timer are listed in Table 14-15 through
Table 14-25. Table 14-26 lists an example of programming the watchdog timer interrupt.

Table 14‐15: Watchdog Timer Start

Task Register Register Field Register Offset Bits Value

Enable watchdog timer. MODE WDEN 0x00 0 1

Program zero access key. MODE ZKEY 0x00 23:12 12'h0ABC

Table 14‐16: Watchdog Timer Stop

Task Register Register Field Register Offset Bits Value

Disable watchdog timer. MODE WDEN 0x00 0 0

Program zero access key. MODE ZKEY 0x00 23:12 12'h0ABC

Table 14‐17: Watchdog Timer Restart

Task Register Register Field Register Offset Bits Value

Restart watchdog timer. RESTART RSTKEY 0x08 31:0 1999h

Table 14‐18: Check Watchdog Timer Expiry

Task Register Register Field Register Offset Bits Value

Read status register. STATUS WDZ 0x0C 0 Read operation
Wait until status register WDZ field is set. It is set when the watchdog reaches a zero count.

Table 14‐19: Watchdog Timer Enable Signal Output

Task Register Register Field Register Offset Bits Value

To enable reset signal.
Enable reset. MODE RSTEN 0x00 1 1

To enable IRQ signal.
Enable IRQ. MODE IRQEN 0x00 2 1

Program zero access key. MODE ZKEY 0x00 23:12 12'h0ABC

Table 14‐20: Watchdog Timer Disable Signal Output

Task Register Register Field Register Offset Bits Value

If the reset signal to be disabled.
Disable reset. MODE RSTEN 0x00 1 0

If IRQ signal to be disabled.
Disable IRQ. MODE IRQEN 0x00 2 0

Program access value. MODE ZKEY 0x00 23:12 12'h0ABC
Zynq UltraScale+ Device TRM 368
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=368

Chapter 14: Timers and Counters
Table 14‐21: Watchdog Timer Set Control Value

Task Register Register Field Register Offset Bits Value

To set clock prescale value.
Read clock prescale value. CONTROL CLK_SEL 0x04 1:0 Value to be written
To set counter reset value.
Read counter reset value. CONTROL CRV 0x04 13:2 Value to be set
Program new zero access key. CONTROL CKEY 0x04 25:14 12'h0248

Table 14‐22: Watchdog Timer Get Control Value

Task Register Register Field Register Offset Bits Value

To read clock prescale value.
Read clock prescale value. CONTROL CLK_SEL 0x04 1:0 Read operation
To read counter reset value.
Read counter reset value. CONTROL CRV 0x04 13:2 Read operation

Table 14‐23: Watchdog Timer Self Test

Task Register Register Field Register Offset Bits Value

Read zero mode register. MODE All 0x00 31:0 Read
Select the number of clock cycles that the internal system reset is held active after it is invoked.
Write back reset length. MODE All 0x00 31:0 Mode | RSTLN
Read back zero mode register. MODE All 0x00 6:4 Read
Write to the zero mode register is only valid if zero access key (ZKEY) is set to 0xABC.
Write with key value. MODE All 0x00 31:0 Mode | RSTLN| ZKEY
Read back zero mode register. MODE All 0x00 31:0 Read
Read ZKEY and compare with 0xABC. If it is matching, hardware test passed. Otherwise, hardware test failed and
hardware locking feature is functional.
Program original register
value and return success. MODE All 0x00 31:0 Mode | ZKEY

Table 14‐24: Watchdog Timer Setup Interrupts

Task Register Register Field Register Offset Bits Value

Initialize generic interrupt controller (GIC) controller.
Set GIC priority trigger type.
Register GIC interrupt handler.
Connect GIC to the snoop control unit (SCU) watchdog timer interrupt handler.
Enable GIC interrupt.
Zynq UltraScale+ Device TRM 369
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=369

Chapter 14: Timers and Counters
Table 14‐25: Watchdog Timer Interrupt Handler

Task Register Register Field Register Offset Bits Value

Notify the application by setting a global variable.

Table 14‐26: Watchdog Timer Interrupt Example

Task Register Register Field Register Offset Bits Value

Perform self test. Refer to Watchdog Timer Self Test.

Set the initial counter restart to the smallest value. Refer to Watchdog Timer Set Control Value.
Set the initial divider ratio at the smallest value. Refer to Watchdog Timer Set Control Value.
Disable the reset output. Refer to Watchdog Timer Disable Signal Output.
Start watchdog timer device. Refer to Watchdog Timer Start.
Restart watchdog timer. Refer to Watchdog Timer Restart.
Check if watchdog timer is expired. Refer to Check Watchdog Timer Expiry.
Stop watchdog timer. Refer to Watchdog Timer Stop.
Set up interrupt system. Refer to Watchdog Timer Setup Interrupts.
Enable IRQ output. Refer to Watchdog Timer Enable Signal Output.
Start watchdog timer device. Refer to Watchdog Timer Start.
Restart watchdog timer. Refer to Watchdog Timer Restart.
Wait till watchdog timer IRQ handler notification. Refer to Watchdog Timer Interrupt Handler.
If no notification is received,

Disable interrupts and return failure.
Else, if test passed,

Restart watchdog timer. Refer to Watchdog Timer Restart.
Verify that the watchdog timer does not time out when restarted all the time.
Restart watchdog timer. Refer to Watchdog Timer Restart.
If more time has passed than it took for it to expire when not restarted in the previous test, then stop the timer.
Check if watchdog timer is expired. Refer to Check Watchdog Timer Expiry.
If no notification from interrupt handler, disable interrupts and return success.
Zynq UltraScale+ Device TRM 370
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=370

Chapter 14: Timers and Counters
Watchdog Timer Flowcharts

Figure 14-4 shows the watchdog timer example flowchart for timer configuration and timer
expiration.

X-Ref Target - Figure 14-4

Figure 14‐4: Watchdog Timer Flowchart

Watchdog
Timer

Perform self test.
Refer to watchdog timer

self-test.

Set control value for counter reset.
Refer to watchdog timer

set control value.

Set control value for clock prescale.
Refer to watchdog timer set control

value

Disable reset signal output. Refer to
watchdog timer disable signal output.

Start watchdog timer device.
Refer to watchdog timer start.

Restart the watchdog timer.
Refer to watchdog timer restart.

Is timer
expired?

Stop watchdog timer.
Refer to watchdog timer stop.

Refer to check watchdog timer
expiry

A

A

Interrupt
mode? B

Setup interrupt system. Refer
to watchdog timer setup

interrupts.

Enable IRQ signal output.
Refer to watchdog timer

enable signal output.

Start watchdog timer device.
Refer to watchdog timer

start.

Restart the watchdog timer.
Refer to watchdog timer

restart.

C

No

Yes

No

Yes

X15336-091316
Zynq UltraScale+ Device TRM 371
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=371

Chapter 14: Timers and Counters
Figure 14-5 shows the watchdog timer timeout test flowchart.
X-Ref Target - Figure 14-5

Figure 14‐5: Watchdog Timer Timeout Test

C

Is watchdog
timer timeout

handled by ISR?

Watchdog timer timeout test
when it does not get restarted

Taking more time?
No watchdog timer

interrupt?
Or timer expired?

Test passed

Disable interrupts

Test Failed

Return

Restart watchdog timer.
Refer to watchdog timer

restart.

Restart watchdog timer.
Refer to watchdog timer

restart.

No watchdog
 timer interrupt?

Or no timer
 expired?

Disable interrupts

Return

Test Failed

Wait test
time over?

Watchdog timer
timeout test with
periodical restart

Yes No Yes

No

Yes

No

No

Yes

X15337-091316
Zynq UltraScale+ Device TRM 372
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=372

Chapter 14: Timers and Counters
Figure 14-6 shows the watchdog timer polled mode example flowchart.
X-Ref Target - Figure 14-6

Figure 14‐6: Watchdog Timer Polled Mode Flowchart

B

Set control value for counter reset = 1.
Refer to watchdog timer set control value.

Restart watchdog timer.
Refer to watchdog timer restart.

Wait until watchdog timer is expired.
Refer to check watchdog timer expiry.

Did it take longer
than expected? Return

Test Failed

Restart timer.
Refer to watchdog timer restart.

Watchdog
timer never

expires?

Return

Test Failed

Test Passed

Polled Mode

No

Yes

No

Yes

X15338-091316
Zynq UltraScale+ Device TRM 373
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=373

Chapter 14: Timers and Counters
MIO - EMIO Signals
Timer I/O signals are listed in Table Table 14-27. There are four triple timer counters (TTC0
to TTC3) in the system. Each TTC has three sets of interface signals: clock in and wave out for
counter/timers 0, 1, and 2. For each triple timer counter, the signals for counter/timer 0 can
be routed to the MIO using the MIO_PIN_xx registers. If the clock in or wave out signal is
not selected by the MIO_PIN_xx register, then the signal is routed to EMIO by default. The
signals for counter/timers 1 and 2 are only available through the EMIO.

System watchdog timer I/O signals are listed in Table 14-28.

Table 14‐27: MIO – EMIO Signals

TTC PS I/O Name Index(1) I/O MIO Pins EMIO Signals

Controller
Default
Input
Value

TTC0
ttc0_clk_in 0 I 6,14,22,30,38,46,54,62,70 emio_ttc0_clk_i[2:0] 0
ttc0_wave_out 1 O 7,15,23,31,39,47,55,63,71 emio_ttc0_wave_o[2:0] -

TTC1
ttc1_clk_in 0 I 4,12,20,28,36,44,52,60,68 emio_ttc1_clk_i[2:0] 0
ttc1_wave_out 1 O 5,13,21,29,37,45,53,61,69 emio_ttc1_wave_o[2:0] -

TTC2
ttc2_clk_in 0 I 2,10,18,26,34,42,50,58,66 emio_ttc2_clk_i[2:0] 0
ttc2_wave_out 1 O 3,11,19,27,35,43,51,59,67 emio_ttc2_wave_o[2:0] -

TTC3
ttc3_clk_in 0 I 0,8,16,24,32,40,48,56,64 emio_ttc3_clk_i[2:0] 0
ttc3_wave_out 1 O 1,9,17,25,33,41,49,57,65 emio_ttc3_wave_o[2:0] -

Notes:
1. The index numbers are listed in Table 28-1.

Table 14‐28: System Watchdog Timer I/O Signals

SWDT PS I/O Name Index(1) I/O MIO Pins EMIO Signals Controller

SWDT0
(LPD_SWDT) wdt0_clk_i 0 I 6,10,18,22,30,34,42,46,50,

62,66,70,74
emio_wdt0_clk_i 0

wdt0_rst_o(2) 1 O 7,11,19,23,31,35,43,47,51,
63,67,71,75

emio_wdt0_rst_o
(2) ~

SWDT1
(FPD_SWDT) wdt1_clk_i 0 I 4,8,16,20,24,32,36,44,48,5

6,64,68,72
emio_wdt1_clk_i 0

wdt1_rst_o(2) 1 O 5,9,17,21,25,33,37,45,49,5
7,65,69,73

emio_wdt1_rst_o
(2) ~

Notes:
1. The index numbers are listed in Table 28-1.
2. wdt0_rst_o and wdt1_rst_o are active high.
Zynq UltraScale+ Device TRM 374
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=374

Chapter 15

PS Interconnect

Introduction
The interconnect located within the processing system (PS) comprises multiple switches to
connect system resources using the advanced eXtensible interface (AXI) point-to-point
channels for communicating addresses, data, and response transactions between master
and slave clients. This Arm® AMBA 4.0 interconnect implements a full array of the
interconnect communications capabilities and overlays for QoS, debug, and test
monitoring.

Features

The interconnect is based on the AXI high-performance datapath switches.

• Interconnect switches based on the Arm NIC-400.
• Cache coherent interconnect (CCI-400).
• System memory management unit (SMMU) enabling use of virtual addresses.
• Separate interconnects in two power domains: full-power domain (FPD) and low-power

domain (LPD).
• QoS support for better prioritizing AXI transactions.
• AXI performance monitors (APM) gather transaction metrics.
• AXI timeout block (ATB) that works as a watchdog timer for interconnect hang.
• AXI isolation block (AIB) module that is responsible for the functionally that isolates the

AXI/APB master from the slave in preparation for powering down an AXI/APB master or
slave.

• Interfaces between the processing system (PS) and programmable logic (PL) with the
following.

° S_AXI_HPC[0:1]_FPD and S_AXI_HP[0:3]_FPD: High-performance AXI slave ports that
are accessed by AXI masters in the PL.

° M_AXI_HPM0/1_FPD: Low-latency AXI master ports for accessing AXI slaves in the
PL.
Zynq UltraScale+ Device TRM 375
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=375

Chapter 15: PS Interconnect
° S_AXI_ACE_FPD: Two way AXI coherency extension slave port that can be accessed
by AXI masters in the PL.

° S_AXI_ACP_FPD: Cache-coherent accelerator coherency slave port that can be
accessed by AXI masters in the PL.

° S_AXI_LPD: Low-power domain AXI slave ports that are accessed by AXI masters in
the PL.

° M_AXI_HPM0_LPD: Low-power domain AXI master port for accessing AXI slaves in
the PL.

Block Diagram
The top-level interconnect architecture is described in Figure 15-1. The LPD interconnect
that is associated with the real-time processing unit (RPU) and the FPD interconnect that is
associated with the application processing unit (APU) are shown in Figure 4-1.
Zynq UltraScale+ Device TRM 376
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=376

Chapter 15: PS Interconnect
X-Ref Target - Figure 15-1

Figure 15‐1: PS Interconnect

X21027-110620

BRAM
(slave)

2-way Cache
Coherent Master

APU
MPCore

5 6

M

8, 8

8, 8

16, 16

16, 16

To all output
ports

CCI
Coherency

And
Bypass

RPU
GIC

TCMs

32
, 3

2

32
, 3

2

32
, 3

2

32
, 3

2

32
, 3

2

28
, 2

8

16
, 1

6

16
, 1

6

16, 16

8, 8

16
, 1

6

16
, 1

6

16
, 1

6

16
, 1

6

8, 8

8, 8

16
, 1

6

16
, 1

6

14
, 8

8, 8

OCM
Switch

USB0 w/DMA

USB1 w/DMA

LPD DMA

PS SysMon eFUSE

LPD SLCRs

IPI

LPD Units

RTC

IO
P

In
bo

un
d

IO
P

O
ut

bo
un

d

OCM Memory

S0

DAP Controller

APB

APB
S

S1

CSU Processor

PMU Processor

AXI

Quad-SPI

GEM x4

NAND

SDIO x2

IOP with Masters

IOP units

UART x2

SPI x2

CAN x2 I2C x2

IOP Slave-only

S

S

TBU2

Programmable
Logic

Outstanding Read/Write Buffer Depth

S2

14, 8

FPD SLCRs

FPD configs

DDR Memory Controller

SMMU TCU

AIB

AIB

AIB

AI
B

AI
B

AIB

DDR QoS and QVN

XPPU

XMPUs

APMs

S4 S5S3

8,
 8

AI
B

8,
 8

AI
B

16
, 1

6

DisplayPort

FP
D

DM
A

TBU5

CoreSight

S2
S3 S4

DVMM2 M1 M0

S0

S1

PCIe

SATA

AXI Stream

ATB

GPU PPs

ATB

AIB

AXI Timeout Block

AXI Isolation Block

ADB ADB

ADB AXI Domain Bridge

TBUx SMMU Translation Buffer Unit

FPD

LP
D

DDR

FPD
LPD

PL
PD

AIB

LP
D

O
ut

bo
un

d

AT
B

AT
BLP

D
In

bo
un

d

AT
B

AIB

AIB

S

SM

128-bit

M_AXI_HPM0_LPD

S_AXI_LPD

S_
AX

I_
H

P3
_F

PD

S_
AX

I_
H

P2
_F

PD

S_
AX

I_
H

P1
_F

PD

S_
AX

I_
H

P0
_F

PD

S_AXI_ACP_FPD

S_AXI_ACE_FPD

S_
AX

I_
H

PC
0_

FP
D

S_
AX

I_
H

PC
1_

FP
D

M
_A

XI
_H

PM
0_

FP
D

M
_A

XI
_H

PM
1_

FP
D

I/O Coherent
Master

ATB

APB

AIB

AIB

AIB

AIB

GPU cfg

[a
fif

s0
]

[a
fif

s1
]

[afifs2]

[fpd_main]

[ocms]

[fpd_lpdibs]

[lpd_ddr]

[usb0s], [usb1s]

[rpus0], [rpus1]

[rpum0],
rpum1]

[ocms]

LPD Main
Switch

RPU
Switch

Full crossbar.
Each input to all

output ports.

Full crossbar.
To all output ports.

GPIO x78, x96

SM

64-bit

SM

32-bit

AIB

AIB

FPD Main
Switch

I/O
2-way 2-way

I/O

I/O

Advanced QoS Regulators
Data Bus Width

AX
I S

tre
am

SI
O

U
O

ut
bo

un
d

APB

QVN

Non-Coherent
Master

RPU M

M

TTC x4 LPD SWDT

M M

TBU3 TBU4

TB
U1

TB
U0

VCU RF PCIe v3.1 100Gb

PL SysMon

IOP Outbound to FPD register:
IOU_INTERCONNECT_ROUTE

ACP

28 1 3 4 9

28
29

26
27

25

21

16
15

7

12 13 14
22

22

23

10

11

17

18

24

[afifm6]

3332
30

31

19

34

20
Zynq UltraScale+ Device TRM 377
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=377

Chapter 15: PS Interconnect
FPD Main Switch

The 128-bit FPD main switch is one of the switches in top-level interconnect that connects
the FPD masters to the LPD slaves (including the OCM and TCM). The switch provides a
direct path to the OCM (bypassing the LPD interconnect) to minimize latency and improve
throughput from the FPD to the OCM. In addition, the switch provides a separate (narrow)
path to access the LPD peripheral registers by the FPD masters.

Cache Coherent Interconnect

The cache-coherent interconnect (CCI) combines parts of the interconnect and coherency
functions into a single block. It provides two ACE slave ports (for full coherency), three
ACE-Lite slaves (for I/O coherency), two ACE-Lite master ports (for DDR), and one ACE-Lite
master port for non-DDR memory-mapped accesses. It also provides the distributed virtual
memory (DVM) message interface to the system memory management unit (SMMU).
Figure 15-1 shows the CCI port connections. CCI registers are globally mapped and can be
accessed from the LPD.

Full Coherency

Full (both-way) coherent masters can snoop each other's caches. For fine-grain data sharing
between the APU and PL, a system can have cache implemented in the PL. The APU can
snoop PL caches, and the PL can snoop APU caches.

I/O Coherency

The I/O (one-way) coherent masters can snoop APU caches through the CCI ACE-Lite slave
ports, thus avoiding the need for software to providing coherency by flushing APU caches
(when APU data is shared with I/O masters).

All of the PS masters, including the RPU but excluding the full-power DMA controller
(FPD DMA), DisplayPort, and S_AXI_HP{0:3}_FPD PS masters, can be optionally configured
as I/O coherent. For more information on I/O Coherency, see Zynq UltraScale MPSoC Cache
Coherency [Ref 58].

ACP Coherency

The PL masters can also snoop APU caches through the APU accelerator coherency port
(ACP). The ACP accesses can be used to (read or write) allocate into L2 cache. However, the
ACP supports restricted transactions. See Chapter 35, PS-PL AXI Interfaces.

Interconnect Submodules

The interconnect has following sub-modules.

• Xilinx memory protection unit (XMPU): FPD, OCM, and DDR.
Zynq UltraScale+ Device TRM 378
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=378

Chapter 15: PS Interconnect
• Xilinx peripheral protection unit (XPPU).
• System memory management unit (SMMU).
• AXI timeout block (ATB) that works as a watchdog timer for interconnect hang.
• AXI and APB isolation block (AIB) units that are responsible for functionally isolating

the AXI/APB master from the slave in preparation for powering down an AXI/APB
master or slave.

• PS-PL AXI interfaces.
• AXI performance monitor.

Xilinx Memory Protection Unit

The Xilinx memory protection unit (XMPU) provides memory partitioning and TrustZone
protection for memory and FPD slaves. The XMPU can be configured to isolate a master or
a given set of masters to a programmable set of address ranges. The XMPU is further
described in Chapter 16, System Protection Units.

Xilinx Peripheral Protection Unit

The Xilinx peripheral protection unit (XPPU) provides LPD peripheral isolation and IPI
protection. The XPPU can be configured to permit one or more masters to access an LPD
peripheral. The XPPU is further described in Chapter 16, System Protection Units.
Zynq UltraScale+ Device TRM 379
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=379

Chapter 15: PS Interconnect
System Memory Management Unit

The system memory management unit (SMMU) provides protection services of slaves and
address translation for I/O masters to identify more than its actual addressing capability. In
absence of memory isolation, I/O devices can corrupt system memory. The SMMU provides
device isolation to prevent DMA attacks. To offer isolation and memory protection, it
restricts device access for DMA-capable I/O to a pre-assigned physical space. The SMMU
consists of the translation control unit (TCU) and multiple translation buffer units (TBUs).
The protection functions are described in Chapter 16, System Protection Units. The
translation functions are described in SMMU Architecture in Chapter 3.

AXI Timeout Block

There is an AXI timeout block in the interconnect to ensure that the interconnect does not
hang because of a non-responding slave. This block keeps track of AXI transactions and
times out when the slave does not respond within a specific time. It responds to the master
with a response. This completes the AXI transaction and prevents the master from hanging
forever while waiting for the response from the slave.

AXI and APB Isolation Block

Interconnect has AXI and APB isolation block (AIB) units that are responsible for functionally
isolating the AXI/APB master from the slave in preparation for an AXI/APB master or slave
to be powered down. The AIB manages AXI and APB interfaces during the isolation process
resulting in a graceful transition to a power-down state. The AIB is transparent and offers
zero latency during normal transactions. When isolation is requested, the AIB blocks all new
transactions generated by a master until all the outstanding interactions are completed by
the slave, then isolates the slave by responding to all new transactions on behalf of the
slave.

Quality of Service Block

The quality of service (QoS) has a set of features that allow the regulating of memory traffic
to meet the needs of memory client devices.

• Traffic regulating mechanism by using the NIC-400 QoS block.
• QoS latency is managed by the DDR memory controller. See Chapter 17, DDR Memory

Controller.
• Deep buffer at source to increase latency tolerance.
Zynq UltraScale+ Device TRM 380
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=380

Chapter 15: PS Interconnect
PS-PL AXI Interfaces

There are several types of PS-to-PL and PL-to-PS AXI interfaces. They are described in
Chapter 35, PS-PL AXI Interfaces.

IOP Bus Masters

The bus requests from the peripheral masters can be routed directly to DDR memory
(non-coherent) or through the CCI (coherent). The route for the eight IOP masters are
individually selected by the IOU_INTERCONNECT_ROUTE register.

ATB Timeout Description
There is an AXI timeout block in the interconnect to ensure that the interconnect does not
hang because of a non-responding slave. This block keeps track of AXI transactions and
times out when the slave does not respond within a specific time. It responds to the master
with a response. This completes the AXI transaction and prevents the master from hanging
forever while waiting for the response from the slave. Figure 15-2 describes the top-level
architecture of the AXI timeout block.

X-Ref Target - Figure 15-2

Figure 15‐2: AXI Timeout Block Architecture

AXI
Master

AXI Timeout Block

AXI
Slave

Write Data
Channel

Write Data
Channel

Write Address
Channel

Write Address
Channel

Write Response
Channel Write Response

Channel

Read Data
Signals

Read Data
Signals

Read Address
Channel

Read Address
Channel

Read Response Read Response

SLVERR if
Timed Out

SLVERR if
Timed Out

AXI Clock

Master AXI
Reset

X15340-091616
Zynq UltraScale+ Device TRM 381
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=381

Chapter 15: PS Interconnect
The AXI timeout block instances in the interconnect are shown in Table 15-1. These blocks
in the LPD and FPD domains derive the timeout value from the ATB_PRESCALE register,
which is present in the LPD_SLCR and FPDSLCR register sets, respectively.

Instances

Programming

Use the following steps to enable an AXI Timeout Block. The specific registers are either
part of the LPD_SLCR or FPD_SLCR module in Zynq UltraScale+ MPSoC Register Reference
UG1087 [Ref 4].

1. Enable the ATB to send responses in the ATB_RESP_EN register.
2. Configure the ATB_RESP_TYPE register to generate a SLVERR for a timed-out AXI

transaction.
3. Set the timeout value by writing to the ATB_PRESCALE.value register. The formula for

calculating the timeout is 65536 * APB Clock Period * (ATB_PRESCALE.value + 1), where
APB Clock Period is either LPD_LSBUS (LPD) or TOPSW_LSBUS (FPD).

4. If required, enable ATB interrupts by configuring ERR_ATB_IER.
5. Enable timeouts by writing a 1 to ATB_PRESCALE.enable.

To disable the ATB, clear ATB_CMD_STORE_EN. This prevents the ATB from tracking read
and write transactions.

Note: The ATB is only able to track a limited number of transactions (<16) before hanging the
requesting master. After the first indication of a timeout, it is recommended that the system treat it
as a critical error that requires restart.

RECOMMENDED: Xilinx recommends configuring these registers during boot time. To change the ATB
configuration during run-time, the user must complete all outstanding AXI transactions and idle all AXI
masters using the path.

Table 15‐1: AXI Timeout Block Instances

Instance Number Domain Master Device Slave Device

1 LPD LPD main interconnect M_AXI_HPM0_LPD
2 LPD LPD inbound interconnect Core switch
3 FPD Core switch PCIe and GPU
4 FPD FPD main interconnect M_AXI_HPM0_FPD
5 FPD FPD main interconnect M_AXI_HPM1_FPD
Zynq UltraScale+ Device TRM 382
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=382

Chapter 15: PS Interconnect
AXI Performance Monitor
The programmable AXI performance monitors (APM) collect real-time transaction metrics
at multiple points on the PS AXI interconnect to help system software profile real-time
activity. This section provides an overview of the APM with specific functionality of the
PS-based implementation.

Features

The APM provides several features for system software to profile the PS AXI interconnect
traffic.

• Clock counter for real-time profiling by system software.
• Event Counter accumulates AXI events; the counters can be set, read by system

software, and used to analyze and enhance the system performance.
• Cross-probe trigger between event counter and event logging.

Implementation

The APMs are based on the Xilinx AXI Performance Monitor available as a LogiCORE IP in
the PL fabric. The APM functionality is defined in AXI Performance Monitor LogiCORE IP
Product Guide (PG037) [Ref 22]. The PS-based APMs implement the advanced mode without
error logging or the AXI Stream features.

PS Instances

There are four APM units in on the PS AXI interconnect and are characterized in Table 15-2.
Each APM has one slot as listed in Table 15-2, except the DDR_APM has six slots
corresponding to the six DDR memory controller ports.

Table 15‐2: APM Units

Unit
Name

Number
of

Counters

Power
Domain Clock Register Set Location

DDR_APM 10 FPD TOPSW_LSBUS_CLK APM_DDR
Six Xilinx AXI port interface
(XPI) data ports on the DDR
memory controller.

CCI_APM 8 FPD TOPSW_LSBUS_CLK APM_CCI_INTC AXI channel from the CCI to
the main switch.

OCM_APM 8 LPD LPD_LSBUS_CLK APM_INTC_OCM AXI channel from the OCM
switch to the OCM memory.

LPD_APM 8 LPD LPD_LSBUS_CLK APM_LPD_FPD AXI channel from the LPD
switch to the FPD main switch.
Zynq UltraScale+ Device TRM 383
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=383

Chapter 15: PS Interconnect
The following table shows which PS clock increments the Global Clock Count Register for
each instance of the APM.

Event Metric List

There are several types of events to capture. Table 15-4 lists the metrics measured by each
APM. The metric selection is done in the MSR_x register.

Table 15‐3: GCCR Clock per APM Instance
Unit Name GCCR Clock

DDR_APM DDR_REF_CLK
CCI_APM DDR_REF_CLK
OCM_APM CPU_R5_CLK
LPD_APM LPD_SWITCH_CLK

Table 15‐4: APM Event Metric List

Selection
[SEL] Metric Description

0 Write Transaction
Count

Number of write transactions by/to a particular master/slave.
Count increments for every write address acceptance on the
interface.

1 Read Transaction Count Number of read transactions by/to a particular master/slave. Count
increments for every read address acceptance on the interface.

2 Write Byte Count Number of bytes written by/to a particular master/slave.
3 Read Byte Count Number of bytes read from/by a particular slave/master.
4 Write Beat Count Number of beats written by/to a particular master/slave.

5 Total Read Latency
Used with Num_Rd_Reqs (Read Transaction Count) to compute the
Average Read Latency. This metric is for the selected ID
transactions.

6 Total Write Latency
Used with Num_Wr_Reqs (Write Transaction Count) to determine
the Average Write Latency. This metric is for the selected ID
transactions.

7 Slv_Wr_Idle_Cnt Number of idle cycles caused by the slave during a Write
transaction.

8 Mst_Rd_Idle_Cnt Number of idle cycles caused by the master during a read
transaction.

9 Num_BValids Number of BValids given by a slave to the master. This count helps
in checking the responses against the number of requests given.

10 Num_WLasts
Number of WLasts given by the master. This count should exactly
match the number of requests given by the master. This helps in
debugging of the system.

11 Num_RLasts
Number of RLasts given by the slave to the master. This count helps
in checking the responses against requests. This count should
exactly match the number of requests given by the master.
Zynq UltraScale+ Device TRM 384
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=384

Chapter 15: PS Interconnect
Register Overview

There are four similar sets of APM registers.

• APM_CCI_INTC
• APM_INTC_OCM
• APM_LPD_FPD
• APM_DDR

The APM registers are summarized in Table 15-5.

Synchronization mechanism is recommended before accessing registers of the same APM
by multiple masters simultaneously. For example, when APU0 and RPU0 are trying to access

12 Minimum Write Latency Minimum write latency number. The default minimum write latency
provided by the core is 0xFFFFFFFF.

13 Maximum Write
Latency Maximum write latency number.

14 Minimum Read Latency Minimum Read Latency number. The default minimum read latency
provided by the core is 0xFFFFFFFF.

15 Maximum Read Latency Maximum Read latency number.

Table 15‐5: APM Register Overview

APM_CCI_INTR,
APM_INTC_OCM,

APM_LPD_FPD
APM_DDR Description

CR Control.
RIDR, RIDMR, WIDR, WIDMR Read and Write ID filter and mask.
FECR Flag enables.
SWDR Software-written data.
GCCR_H, GCCR_L Global Clock Counter, high and low.
SIR, SICR, SISR Sample Interval configuration and control.
GIER, IER, ISR Interrupt enable and status.
MSR_{0,1} MSR_{0:2} Metric select. Slot select for APM_DDR only.
IR_{0:7} IR_{0:9} Increment value.
RR_{0:7} RR_{0:9} Range, high and low limits.
MCR_{0:7} MCR_{0:9} Metric count.

Table 15‐4: APM Event Metric List (Cont’d)

Selection
[SEL]

Metric Description
Zynq UltraScale+ Device TRM 385
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=385

Chapter 15: PS Interconnect
APM_INTC_OCM registers simultaneously, both APU0 and RPU0 should use the
synchronization mechanism.

All APM instances exhibit a common behavior where a read to any register results in four
reads inside of the APM module. The returned read data is the result of the first read. The
only side effect to over-reading is if SICR.MET_CNT_RST is set to 1’b1. In this case, the metric
counters are reset every time the sample register is read and a few samples are lost.

Programming Example - Read Byte Count on DDR Port 3

This simple example lists the steps to program the APM_DDR to count the number of bytes
read from the DDR memory by the DisplayPort controller. The DisplayPort controller
accesses DDR memory using XPI port (slot) 3 as shown in Figure 15-1. Additional
programming examples are in the AXI Performance Monitor LogiCORE IP Product Guide
(PG037) [Ref 22].

Note: The DDR XPI port 3 is shared by the DisplayPort and the S_AXI_HP0_FPD interface from the PL.
There is no way for the APM to select between the AXI traffic from the PL and the DisplayPort
controller. So, this example will also count the bytes read by this PL AXI interface, if it is active.

APM metric counter 7 is used for this example. All programming registers are in the
APM_DDR register set.

1. Configure metric counter 7 to the XPI port (slot) 3. Write 011b to the
MSR_1 [MET_CT7_SLOT] bit field.

2. Select the read-byte count metric. Write 011b to the MSR_1 [MET_CT7_SEL] bit field.
3. Enable the metric counter. Write 1 to the CR [MET_CNT_EN] bit.
4. Configure the sample interval time. Write 32'h000 to the SIR [SMPL_INTRVL_SIR] bit

field.
5. Load the sample interval time value into the APM counter. Write 1 to the SICR [LOAD]

bit.
6. Disable the down counter. Write 0 to the SICR [ENABLE] bit.
7. Reset and enable the down counter. Write 9'h101 to SICR: [MET_CNT_RST] = 1,

[LOAD] = 0, and [ENABLE] = 1.
8. Get the byte count from metric counter 7. Read MCR_7 [MET_CT].

Programming Example – Metric Counter
This example lists the steps used to program the DDR APM to count the number of bytes
read from the DDR memory by the DisplayPort controller. The DisplayPort controller
accesses DDR memory using the XPI port (slot) 3 as shown in Figure 15-1.
Zynq UltraScale+ Device TRM 386
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=386

Chapter 15: PS Interconnect
APM metric counter 7 is used for this example. All programming registers are in the
APMDDR register set.

1. Configure metric counter 7 to the XPI port (slot) 3. Write 011b to the
MSR_1 [MET_CT7_SLOT] bit field.

2. Select the read-byte count metric. Write 011b to the MSR_1 [MET_CT7_SEL] bit field.
3. Enable the metric counter. Write 1 to the CR [MET_CNT_EN] bit.
4. Set the sample interval time. Write 32'h000 to SIR [SMPL_INTRVL_SIR] bit field.
5. Load the sample interval time value into the APM counter. Write 1 to the SICR [LOAD]

bit.
6. Disable the down counter. Write 0 to SICR [ENABLE] bit.
7. Reset and enable the down counter. Write 9'h101 to SICR: [MET_CNT_RST] = 1,

[LOAD] = 0, [ENABLE] = 1.
8. Get the byte count from metric counter 7. Read MCR_7 [MET_CT].

Quality of Service
The interconnect is built using the Arm NIC400 IP. Figure 15-1 shows the high-level block
diagram of the interconnect switch hierarchy. There are six independent AXI ports on the
DDR controller. In some cases, traffic classes are physically separated on the interconnect
using different paths.

The AXI interconnect supports all the AXI4 signals. For some AXI masters, the interconnect
provides registers for programming the value of the ArQoS and AwQoS bits.

The PL AXI masters include the following options.

• Static QoS: For programming the value of the AxQoS bits using the AFIFM.RDQoS
registers.

• Dynamic QoS: The PL master can drive the QoS bits on a per transaction basis.

The NIC400 IP (interconnect) uses the following AxQoS bits for arbitration.

• AxQoS[3:0] is used to indicate the priority of the request. An 0xF is the highest priority
and an 0x0 is the lowest priority.

• In the event that more than one requester has the same AxQoS priority value, the
NIC400 reverts to a least recently granted arbitration scheme to break the tie.
Zynq UltraScale+ Device TRM 387
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=387

Chapter 15: PS Interconnect
AXI Traffic Types

Each AXI transaction carries a traffic type based on its need to be serviced. For example,
high-priority traffic carries the low latency (LL) declaration. Video and audio traffic are
isochronous and must be serviced in a timely matter to avoid system degradation. The
three types of AXI traffic are described in this section.

Low Latency (High Priority) Masters

For some masters, read latency is key to meeting performance requirements. In the PS, the
three key low-latency masters are the APU, RPU, and SMMU. Without low-latency access to
memory, the CPU spends most of the time in idle waiting for data to either be fetched from
or stored to external memory space.

High Throughput (Best Effort) Masters

These masters can tolerate longer latency but they must have very high throughput to
achieve an architectural goal. The typical examples are the GPU and PL. Due to the nature of
these devices, they could issue a data request long before it is used to effectively cancel out
latency. However, the interconnect must be able to accept multiple outstanding requests at
the same time.

Isochronous (Video and Audio Class) Masters

This category of masters can tolerate longer latency in typical conditions. However, there is
a critical moment (maximum latency) that data must be available without causing system
breakdown. The key requirement is a guaranteed maximum latency. The typical examples
requiring these masters are video encoders, camera sensors, or display devices.

QoS Subsystems

The four major components of the QoS are listed.

• AXI QoS-400 Regulators on AXI Interconnect.
• AXI and APB Timeout Units (ATB).
• AXI QoS Virtual Network Channels (QVN network).
• DDR QoS Controller in DDR memory controller.

Each one of these components implements different pieces of QoS support, but together
the individual pieces form the complete QoS System solution. Of the four components, the
DDR controller has the most sophisticated QoS features, but the other three components
are essential to guarantee the overall required system performance.
Zynq UltraScale+ Device TRM 388
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=388

Chapter 15: PS Interconnect
QoS Regulator

The QoS-400 regulator provides advanced features to manage content flow through the
LPD and FPD AXI interconnect. In Figure 15-1, the QoS Regulators are marked numerically.
Table 15-6 table lists the QoS Regulators and the corresponding numeric representation.

Table 15‐6: QoS Regulators Mapping

QoS Regulator Position

afifm0m_intfpd_* 1
afifm1m_intfpd_* 2
afifm2m_intfpd_* 3
afifm3m_intfpd_* 4
afifm4m_intfpd_* 5
afifm5m_intfpd_* 6
coresightm_intfpd_ib_* 7
dp_intfpd_ib_* 8
gdma_intfpd_ib_* 9
gpu_intfpd_ib_* 10
intfpdcci_intfpdmain_ib_* 11
intfpdsmmutbu3_intfpdmain_* 12
intfpdsmmutbu4_intfpdmain_* 13
intfpdsmmutbu5_intfpdmain_* 14
pciem_intfpd_ib_* 15
satam_intfpd_ib_* 16
iopinbound_iopoutbound* 17
admam_intlpd_ib_* 18
Iopoutbound_lpd main* 19
gem0m_intiou_*

20
gem1m_intiou_*
gem2m_intiou_*
gem3m_intiou_*
dap_intlpd_ib_* 21
intcsupmu_intlpd_ib_* 22
intfpd_intlpdocm_* 23
afifm6m_intlpd_ib_* 24
intlpdinbound_intlpdmain_* 25
rpum0_intlpd_* 26
rpum1_intlpd_* 27
Zynq UltraScale+ Device TRM 389
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=389

Chapter 15: PS Interconnect
Outstanding Command Issuing Control

The QoS-400 can be programmed to limit the maximum number of outstanding
transactions possible at any one time.

Command Issue Rate Control

The QoS-400 can be programmed to limit the command issue rate.

The QoS-400 module is instantiated in almost all AXI masters in the system, Table 15-7 lists
the exceptions.

QoS Controller

This section does not attempt to describe the full details of the QoS controller operation,
but describes the high-level functions as they relate to the system QoS.

One of the issues with isochronous traffic passing through the interconnect is that the
timeout associated with the transaction only starts to run once the transaction enters the
DDR controller. If a transaction was trapped just outside of the DDR controller, behind
another transaction (perhaps due to the system being very heavily utilized), that
transactions’ timer would not be running. When the transaction eventually enters the DDR
controller, it starts its timer running, but does not account for the elapsed time it has
waited, while sitting just outside the controller. The result is that the timeout is inaccurate
and fails to meet the needs of the programmed isochronous maximum latency.

One of the aims of the QoS controller is to ensure that there is space available in the
memory controller CAMs for isochronous traffic at all times. It achieves this goal by
monitoring the CAM levels and throttling the XPI port.

usb0m_intlpd_ib_* 28
usb1m_intlpd_ib_ 29
Qos_Control_Register_S0 30
Qos_Control_Register_S1 31
Qos_Control_Register_S3 32
Qos_Control_Register_S4 33

Table 15‐7: AXI Masters Without QoS-400

AXI Master Rationale

DPDMA Controller Classified as a video class master.
CSU Issuing capability is one.
PMU Issuing capability is one.

Table 15‐6: (Cont’d)QoS Regulators Mapping

QoS Regulator Position
Zynq UltraScale+ Device TRM 390
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=390

Chapter 15: PS Interconnect
QoS Virtual Networks in CCI-400

Figure 15-3 shows how the traffic from the low-latency and best-effort masters goes to
port 1 and port 2 of the DDR memory controller through the CCI-400. The CCI-400 has
three master ports, two are connected to the DDR memory controller. To avoid head-of-line
blocking (HOLB) on the DDR memory controller ports, the CCI-400 does not mix the
best-effort traffic with low-latency traffic. This is possible because the CCI-400 allows
access to the complete DDR memory through both master ports.

When both low-latency and best-effort masters try to read from the same DDR memory
region that is allocated to one of the master ports of the CCI-400, a mix of best-effort and
low-latency traffic can be present on that particular port of the DDR memory controller.
This mix can lead to head-of-line blocking on that port. To avoid a HOLB issue, the QoS
virtual networks (QVN) feature is used inside the CCI-400. The QVN-aware slave is
implemented to talk with the CCI-400 QVN enabled master ports.

As shown in Figure 15-4, there are two queues per port structure in the QoS controller. The
red queue is mapped to low-latency traffic and the blue queue is mapped to best-effort
traffic based on the AxQoS signal values. The QVN logic implementation details are listed.

• The low-latency and best-effort credit counters indicate the depth of the queue.
• When there is space available in the queue and a master virtual network requests a

token, then grant the token and reduce the credit counter.
• Once the transaction is in queue, it waits until the DDR memory controller port

arbitration accepts the read command.
• Once the arbitration accepts the read command, the respective pop signal is asserted.

X-Ref Target - Figure 15-3

Figure 15‐3: Low Latency and Best Effort Paths through the CCI-400 to the DDR Controller

CCI Cache Coherent Interface

LL Traffic BE Traffic

Port 1 Port 2

Main AXI
Switch

DDR Controller

X15889-101817
Zynq UltraScale+ Device TRM 391
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=391

Chapter 15: PS Interconnect
• Assertion of the low-latency/best-effort queue command pop signal increases the
respective credit counter.

• After the previous steps, the logic stops issuing a QVN token when the respective read
command queue is full.

• The Push signal indicates that the master is requesting a token on the virtual channel.
• Push_Enable indicates that there is room available in the queue and a token can be

issued.
X-Ref Target - Figure 15-4

Figure 15‐4: End-to-End Path with QVN Enabled

DRAM

DDR PHY

High
Priority

Read CAM
(HPR)

Low
Priority
Read
CAM
(LPR)

CAM Scheduler

Req Req

Read Port Arbiter

AXI to DRAM cmd Conversion

P1 P2

AXI Port Key
P1 and P2: CCI-400

DDRC

AXI Read Ports

CCI-400

LL
Traffic

BE
Traffic

QoS Controller

LL Queue
cmd pop

BE Queue
cmd pop

LL Credit
Counter

BE Credit
Counter

cnt Up cnt Up

cnt Down cnt Down

Port 1
VN 1

Port 1
VN 2

Push_Enable
Push

Push_Enable
Push

P1

AXI Port Interface

LL Queue
cmd pop

BE Queue
cmd pop

LL Credit
Counter

BE Credit
Counter

cnt Up cnt Up

cnt Down cnt Down

Port 2
VN 1

Port 2
VN 2

Push_Enable
Push

Push_Enable
Push

P2

AXI Port
Interface (XPI)

X15890-101117
Zynq UltraScale+ Device TRM 392
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=392

Chapter 15: PS Interconnect
The QVN issues credit from the credit counter (this counter size is the same as the XPI
queue depth) to the master when there is space in the XPI queue. Once credit is issued, the
credit counter is decremented. When the pop signal is asserted, the transaction is popped
from the XPI and the credit counter is incremented to return the credit.

DDR Controller QoS

For information about the QoS features and system limitations of the DDR controller, see
Chapter 17, DDR Memory Controller.

Interconnect Register Overview
Table 15-8 is an overview of the interconnect registers.

Table 15‐8: Interconnect Registers

Register Name Description

CCI400 Register Set

Control_Override_Register Control override register.
Speculation_Control_Register Speculation control register.
Secure_Access_Register Secure access register.
Status_Register Status register.
Imprecise_Error_Register Imprecise error register.
Performance_Monitor_Control_Register Performance monitor control register.
Snoop_Control_Register_{0:4} Snoop control for CCI Slave interface {0:4}.
Shareable_Override_Register_S{0:2} Shareable override for CCI Slave interface {0:2}.
Read_Qos_Override_Register_{0:4} Read QoS override for CCI Slave interface {0:4}.
Write_Qos_Override_Register_{0:4} Write QoS override for CCI Slave interface {0:4}.
Qos_Control_Register_{0:4} QoS control for CCI Slave interface {0:4}.
Max_OT_Register_{0:2} Maximum outstanding for CCI Slave interface {0:2}.
Target_Latency_Register_{0:4} Target latency for CCI Slave interface {0:4}.
Latency_Regulation_Register_{0:4} Latency regulation for CCI Slave interface {0:4}.
Qos_Range_Register_{0:4} QoS range for CCI Slave interface {0:4}.
Cycle_Counter Cycle counter.
Cycle_Counter_Control Cycle counter control.
Cycle_Count_Overflow Cycle count overflow.
ESR{0:3} Event Interface and Number {0:3}.
Event_Counter{0:3} Event counter {0:3}.
Event_Counter{0:3}_Control Event counter {0:3} control.
Zynq UltraScale+ Device TRM 393
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=393

Chapter 15: PS Interconnect
Event_Counter{0:3}_Overflow Event counter {0:3} overflow.
CCI_REG Register Set

MISC_CTRL Controls for the register block.
{ISR, IMR, IER, IDR}_0 CCI interrupt registers for address error decode, error response, and

event counter overflows.
CCI_MISC_CTRL Miscellaneous control register.

FPD_SLCR
LPD_SLCR Register Sets

ATB_PRESCALE Prescale value for ATB timeout (AXI and APB).
ATB_CMD_STORE_EN ATB timeout enable.
ATB_RESP_{EN, TYPE} ATB timeout response enable and type.
ERR_ATB_{ISR, IMR, IER, IDR} ATB error interrupts.

LPD_SLCR Register Set

ERR_AIBAXI_{ISR, IMR, IER, IDR} AIB AXI error interrupts.
ERR_AIBAPB_{ISR, IMR, IER, IDR} AIB APB error.
ISO_AIBAXI_REQ Request AXI isolation.
ISO_AIBAXI_TYPE 1: AIB sends SLVERR response.

0: No response is sent.
ISO_AIBAXI_ACK Isolation acknowledgment.
ISO_AIBAPB_REQ Request APB isolation.
ISO_AIBAPB_TYPE 1: AIB sends SLVERR response.

0: No response is sent.
ISO_AIBAPB_ACK Isolation acknowledgment.

Table 15‐8: Interconnect Registers (Cont’d)

Register Name Description
Zynq UltraScale+ Device TRM 394
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=394

Chapter 16

System Protection Units

Introduction
The AXI interconnect has several system features that protect the system from erroneous
application software and misbehaving hardware interfaces. Erroneous software includes
malicious and unintentional code that corrupts system memory or causes system failures.
Misbehaving hardware includes incorrect device configuration, malicious functionality, or
unintentional design.

The Arm TrustZone technology tags the security level of each AXI transaction. The Xilinx
peripheral protection unit (XPPU) and the Xilinx memory protection unit (XMPU) verify that
a system master is explicitly allowed to access an address. The system memory
management unit (SMMU) has two sections: two-stage address translation and access
protection. The two-stage address translation creates partitions to support multiple host
operating systems with exclusive access to their assigned peripherals and other system
elements. This functionality is described in Chapter 3, Application Processing Unit. The
SMMU access protection functionality is similar to the XMPU; they work together on the AXI
interconnect to support safety and security applications.

Typical AXI masters include DMA units (LPD, FPD, PL, and SIOU peripherals), RPU and APU
MPCores, and PL masters accessing the system via the PS-PL AXI interfaces. The PS slaves
include control and status registers and memory (DDR, OCM). Slaves in the PL must be
protected by logic configured in the PL fabric.

The system protection functionality includes several features.

• System protection starts with masters that generate AXI transaction requests:

° Master ID (unique for each AXI master).

° Address (physical, intermediate physical, or virtual).

° TrustZone secure or non-secure (NS).

° Read or write.
• Transaction security state can be modified by a translation buffer unit (TBU) of the

SMMU (translation function).
Zynq UltraScale+ Device TRM 395
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=395

Chapter 16: System Protection Units
• Secure slaves are protected against non-secure transactions by several mechanisms:

° XPPU protection unit protects IOP slave ports, SIOU slave ports, and Quad-SPI
memory.

° Multiple XMPU protection units protect DDR and OCM memory, and FPD slaves.

° SMMU with multiple TBUs control accesses by processors in the PS and PL.

° Hardware configured register sets that always require a secure transaction.
• Write-protected registers limit access by errant code.
• Local processor registers are only accessible by a single processor.
• Isolation walls provide a hard separation between power domains (and islands). See

Chapter 6, Platform Management Unit.

The Xilinx protection units, SMMU translation buffer units with protection mechanisms, and
system masters and slaves are shown in Figure 16-1.
Zynq UltraScale+ Device TRM 396
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=396

Chapter 16: System Protection Units
X-Ref Target - Figure 16-1

Figure 16‐1: System Protection Units

BRAM
(slave)

2-way Cache
Coherent Master

APU
MPCore

M

To all output
ports

CCI
Coherency

And
Bypass

RPU
GIC

TCMs OCM
Switch

USB0 w/DMA

USB1 w/DMA

LPD DMA

PS SysMon eFUSE

LPD SLCRs

IPI

RTC

IO
P

In
bo

un
d

IO
P

O
ut

bo
un

d

OCM Memory

DAP Controller

S

CSU Processor

PMU Processor

Quad-SPI
GEM x4

NAND
SDIO x2

UART x2

SPI x2

CAN x2 I2C x2S

S

TBU2

Programmable
Logic

FPD SLCRs

FPD configs

DDR Memory Controller

SMMU TCU

AIB

AIB

AIB

AI
B

AI
B

AIB

AI
B

AI
B

DisplayPort

FP
D

DM
A

TBU5

CoreSight

PCIe

SATA

AXI Stream

GPU PPs

AIB

ADB ADB

ADB

TBUx

AIB

LP
D

O
ut

bo
un

d

LP
D

In
bo

un
d

AIB

AIB

S

S
M 128-bit

M_AXI_HPM0_LPD

S_AXI_LPD

S_
AX

I_
HP

3_
FP

D

S_
AX

I_
HP

2_
FP

D
S_

AX
I_

HP
1_

FP
D

S_
AX

I_
HP

0_
FP

D

S_AXI_ACP_FPD

S_AXI_ACE_FPD

S_
AX

I_
HP

C0
_F

PD

S_
AX

I_
HP

C1
_F

PD

M
_A

XI
_H

PM
0_

FP
D

M
_A

XI
_H

PM
1_

FP
D

I/O Coherent
Master

AIB

AIB

AIB

AIB

GPU cfg

[a
fif

s0
]

[a
fif

s1
]

[afifs2]

[fpd_main]

[ocms]

[fpd_lpdibs]

[lpd_ddr]

[usb0s], [usb1s]

[rpus0], [rpus1]

[rpum0],
rpum1]

[ocms]

LPD Main
Switch

RPU
Switch

Full crossbar. Each
input to all output

ports.

Full crossbar.

GPIO x78, x96

S
M 64-bit

S
M 32-bit

AIB

AIB

FPD
Main

Switch

I/O
2-way 2-way

I/O

I/OAX
I S

tr
ea

m

SI
O

U
 O

ut
bo

un
d

QVN

Non-Coherent
Master

RPU

M

M

TTC x4 LPD SWDT

M M

TBU3 TBU4

TB
U

1
TB

U
0

VCU RF PCIe v3.1 100Gb

PL SysMon

ACP

X21028-060818
Zynq UltraScale+ Device TRM 397
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=397

Chapter 16: System Protection Units
Secured Register Sets

Some control register sets always require a secure transaction. All other register sets are
protected by the XPPU protection unit except the SATA, PCIe, and GPU register sets are
protected by the FPD_XMPU.

• XPPU protected (majority of registers).
• XMPU protected (SIOU controller registers).
• Hardware protected (always secure registers).

The security protections for the register sets are listed with their addresses in Table 10-4.

Write-Protected Registers

Several register sets include a write protection mechanism to avoid inadvertent register
writes. The register write protection mechanism is not a security function. The register write
protection feature can be used in an open development environment to block errant code
from accessing important system-level functions. The write-protected registers are listed in
the Write-Protected Registers Table section.

Processor-only Accessible Registers

There are several register sets that are only accessible to a processor (e.g., PMU, CSU, RPU,
and APU):

• PMU address map (PMU_LOCAL_REG, PMU_IOMODULE, PMU_LMB_BRAM).
• CSU address map.
• RPU address map (RPU GIC registers).
• APU address map (PPI interrupts).

TrustZone Security

TrustZone technology provides a foundation for system-wide security and the creation of a
trusted platform. The basic principle behind TrustZone technology is the isolation of all
software and hardware states and resources into two worlds, trusted and not trusted.

A non-secure virtual processor can only access non-secure system resources, whereas, a
secure virtual processor can see all resources. Resource access is extended to bus accesses
using the NS flag which is mapped to the AxPROT[1] attribute on the AXI interconnect.

Any part of the system can be designed to be part of the secure world including debug,
peripherals, interrupts, and memory. By creating a security subsystem, assets can be
protected from software attacks and common hardware attacks.
Zynq UltraScale+ Device TRM 398
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=398

Chapter 16: System Protection Units
Typical example TrustZone technology use cases include firmware protection, security
management, and peripheral/IO protection. The TrustZone functionality is further
described in the TrustZone section.

SMMU Protection

The SMMU offers isolation services in addition to its address translation features. The
two-stage address translation for I/O devices can also affect the transaction context. The
SMMU also provides transaction filtering to isolate the transactions masters.

To offer isolation and memory protection, the SMMU restricts device access of
DMA-capable I/O to a configured physical address space.

The protection features are described in the SMMU Protection on CCI Slave Ports section.
The address translation functions are described in the System Memory Virtualization Using
SMMU Address Translation section in Chapter 3, Application Processing Unit.

XPPU and XMPU Protection Units

The AXI interconnect has two types of protection units to monitor bus transactions on an
AXI channel. Each unit determines if the type of transaction and its master are allowed to
access the memory location. The XMPU appears on several AXI channels to protect the DDR
system memory, OCM memory, and the SIOU address space. There is one XPPU to protect
the IPI buffers, control and status registers on the IOP inbound switch, other non-DDR
memory, and the Quad-SPI memory space.

The protection units are shown in Figure 16-1 as one blue and several small red rectangles.

Use Case Examples

In this system protection use case, the RPU runs a safety application where a certain region
of the OCM might be required to be protected and dedicated for use by the RPU. Some
peripherals like the UART controller and the Quad-SPI controller could also require
protection and be dedicated for use by the RPU. To accomplish these requirements the
following is required:

• The RPU generates secure transactions.
• The XMPU protects the region of the OCM for the RPU and makes the rest available for

use by other masters.
• The XPPU protects the UART controller and Quad-SPI controller for use by the RPU.

Similarly, to protect access to the PL through the PS PCAP interface, the XPPU can be
programmed to protect the CSU subsystem and DMA register sets.
Zynq UltraScale+ Device TRM 399
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=399

Chapter 16: System Protection Units
Terminology

Table 16-1 summarizes the system protection units terminology.

Note: In this chapter, the term secure implies the TrustZone classification. Secure is not meant to
imply secure boot, encryption, or authentication.

TrustZone
TrustZone technology is a software-controlled, hardware-enforced system for separating
secure and non-secure AXI transactions. Devices and peripherals are assigned a security
profile that is either statically controlled (always secure or always non-secure), or
dynamically controlled using a configuration register. Similarly, software processes are
assigned a secure or non-secure state. All AXI transactions are tagged to indicate their
security level, and the tags are propagated throughout the interconnect using the
ARPROT[1] and AWPROT[1] AXI sideband signals.

Since TrustZone defines the security level of each AXI transaction, the system protection
units can be used to allow or disallow a transaction based on its security level. Secure
transactions can optionally access non-secure slaves, if allowed. Non-secure transactions
cannot access secure locations.

Table 16‐1: System Protection Units Terminology

Descriptions

TrustZone Allows and maintains isolation between the secure and non-secure processes within the
same system.

SMMU System Memory Management Unit includes one translation cache unit (TCU) and six
translation buffer units (TBU). Provides protection (and address translation) for all
non-APU transactions targeting the PS address space. The protection functionality is
applied to the physical address that occurs after the address translations. The SMMU
registers are accessible only from the APU.

XMPU Xilinx Memory Protection Units (8 units). Provides memory partitioning and TrustZone
protection for memory and FPD slaves.

XPPU Xilinx Peripheral Protection Unit (1 unit). Provides LPD peripheral isolation and IPI
protection.

ATB AXI Timeout Block. Prevents AXI masters from lockup if the slave does not respond within
a programmed time. The ATB generates a response back to the master if the transaction
times out. This term should not be confused with the CoreSight advanced trace bus (ATB)
unit.

AIB AXI Isolation Block. Provides functional isolating between the AXI master and the slave in
preparation for an AXI master or slave to be powered down. The AIB is useful in a power
management use case where, to save power, the FPD can be powered down when not
needed.
Zynq UltraScale+ Device TRM 400
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=400

Chapter 16: System Protection Units
Architecture

The PS AXI interconnect supports a 40-bit physical address, where the 41st bit (=AxPROT[1])
indicates secure or non-secure access. Strictly speaking, secure transactions are not allowed
to access non-secure memory. Because the secure mode can issue secure or non-secure
transactions, a secure transaction is allowed to access both secure and non-secure memory.
The downside includes the potential of cross-contamination of software bugs because
secure software can unintentionally corrupt non-secure memory.

In accordance with the recommendations of Arm’s Trusted Base System Architecture
specification, devices developed with TrustZone technology enable the delivery of
platforms capable of supporting a full trusted execution environment (TEE) and
security-aware applications and secure services, or trusted applications (TA). A TEE is a
small secure kernel that is normally developed with standard APIs and developed to the TEE
specification evolved by the Global Platform industry forum. See Arm References for more
information.

TrustZone technology enables the development of a separate rich operating system (ROS)
and TEEs by creating additional operating modes to the normal domain, known as the
secure domain and the monitor mode. The secure domain has the same capabilities as the
normal domain while operating in a separate memory space. The secure monitor acts as a
virtual gatekeeper controlling migration between the domains.

The TrustZone technology forms the basis of a trusted secure environment for Arm systems.
It enables a secure world (secure operating system) to be separated from a non-secure
world (main operating system). TrustZone technology enables isolation between a secure
and a non-secure world, which is enforced by hardware such that a non-secure world
cannot access the resources in a secure world, but a secure world can access both secure
and non-secure resources.

Master and Slave Security Profiles

Each system master provides a security setting with each AXI transaction. The AXI
transactions pass through a protection unit to help maintain system integrity for security
and safety applications. Profiles types include: secure, non-secure (NS), programmable, and
dynamic.

• Secure slaves prevent unauthorized access by non-secure masters:

° Slave security profiles for most peripherals are implemented by the XPPU and
XMPUs.

° Access to several system control register sets must always be done by a secure
master.

• DDR and OCM memory can include secure and non-secure regions:

° Programmable on a per region basis (1 MB for DDR, 4 KB for OCM).
Zynq UltraScale+ Device TRM 401
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=401

Chapter 16: System Protection Units
° Configurable using the XMPU protection units.
• Several types of masters:

° Fixed type: secure or non-secure.

° Programmable: a register selects between secure and non-secure.

° Dynamic: master can change security levels on a per transaction basis, e.g., PS-PL
AXI interfaces.

• System boot assumes secure mode until FSBL reads the BootROM header.

° The processor system boots in secure mode.
• RPU does not use TrustZone technology. Transactions from the RPU to the TrustZone

environment of the APU can be configured as secure or non-secure.
• The boot-time security level of the RPU is configurable, the default is to issue secure

transactions.

TrustZone Profile Table

The security profile for master and slaves are listed in Table 16-2.

Table 16‐2: TrustZone Profile

PS Entity Slave Port Master Port Notes

APU

APU MPCore/L2 ~ Both
GIC Both ~ Global interrupt controller (GIC).
APU system counter Secure ~ System counter uses two APB ports (secure

and non-secure).APU system counter Non-secure ~
CCI

CCI_REG control
registers Both (internal) ~

Cache coherent interconnect (CCI) control
registers can be configured to be secure or
non-secure.

CCI GPV Secure ~ Can be programmed to have a non-secure
access to all the CCI 400 registers.

SMMU

TCU APB Secure ~ SMMU_REG
TBU AXI Both Both Programmable.
XPPU, XMPU

APB interface Secure ~ XPPU, XMPU_{DDR, FPD, OCM} registers
AXI interface Both Both Programmable.
Zynq UltraScale+ Device TRM 402
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=402

Chapter 16: System Protection Units
FPD and LPD DMA Units

DMA channels SLCR configurable SLCR
configurable

Programmable on a per channel basis.

RPU

RPU R5_0/1 ~ SLCR
configurable

RPU TCMs XPPU configurable ~ External AXI slave port.
LPD Peripherals and Slaves

Secure SLCR Secure ~ See Table 10-4.
CSU Secure Secure
PMU Secure Secure
eFUSE/BPD/PS_SYSMON Secure ~ Fuses, battery power unit, PS SYSMON unit.
CoreSight Secure Secure

IOP peripherals XPPU configurable SLCR
configurable

I2C, GPIO, SPI, GEM Ethernet, SDIO, CAN,
USB, UART, Quad-SPI, and NAND.

LP slave interfaces on
APB XPPU configurable ~ Potential secure slaves: reset-controller.

TTC{0:3} Configurable ~
{LPD, FPD, CSU}_SWDT TBD ~
FPD Peripherals and Slaves (FPD_GPV) can be configured to be secure.

Secure SLCR Secure ~

GPU/SATA/DP/PCIe XPPU configurable SLCR
configurable

FP slaves APB XPPU configurable ~ Potential secure slaves: reset-controller and
PCIe.

DDR System Memories and OCM

OCM XMPU
configurable ~ Secure/non-secure per region with 4 KB

granularity.

DDR DRAM XMPU
configurable ~ Secure/non-secure per region with 1 MB

granularity.
Notes:
1. Secure: Peripheral or memory device is always secure, independent of the condition.
2. Non-secure: Peripheral or memory device is always non-secure, independent of the condition.
3. Configurable: Peripheral or memory device could be configured as secure or non-secure but only one mode is allowed

at any given time.
4. Both: Part of the peripheral or memory device is secure while the other part is non-secure.

Table 16‐2: TrustZone Profile (Cont’d)

PS Entity Slave Port Master Port Notes
Zynq UltraScale+ Device TRM 403
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=403

Chapter 16: System Protection Units
Table 16‐3: CCI Registers

Module Name Registers Description

CCI_REG

MISC_CTRL Controls for the register block
ISR_0 Interrupt Status Register
IMR_0 Interrupt Mask Register
IER_0 Interrupt Enable Register
IDR_0 Interrupt Disable Register
CCI_MISC_CTRL Misc. Control Register
Zynq UltraScale+ Device TRM 404
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
http://zynq_design:8086/module?mod_id=CCI_REG#CCI_REG___MISC_CTRL
http://zynq_design:8086/module?mod_id=CCI_REG#CCI_REG___ISR_0
http://zynq_design:8086/module?mod_id=CCI_REG#CCI_REG___IMR_0
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=404

Chapter 16: System Protection Units
CCI_GPV (CCI 400)

Control_Override_Register Additional control register that provides a
fail-safe override for some CCI-400
functions.

Speculation_Control_Register Disables speculative fetches for a master
interface or for traffic through a specific
slave interface.

Secure_Access_Register Secure_Access_Control, Enable
non-secure access to CCI-400 registers

Status_Register Safely enables and disables snooping
Imprecise_Error_Register Records the CCI-400 interfaces that

receive an error that is not signaled
precisely.

Performance_Monitor_Control_Register Controls the performance monitor.
Snoop_Control_Register_S0/S1/S2/S3/S4 One Snoop Control Register exists for

each slave interface.
Shareable_Override_Register_S0/S1/S2/S3 Overrides shareability of normal

transactions
Read_Qos_OverCCride_Register_S0/S1/S2/S3/S4 Contains override values for ARQOS, with

a register for each slave interface.
Write_Qos_Override_Register_S0/S1/S2/S3/S4 Contains override values for AWQOS, with

a register for each slave interface.
Qos_Control_Register_S0/S1/S2/S3/S4 Controls the regulators that are enabled

on the slave interfaces.
Max_OT_Register_S0/S1/S2 Determine how many outstanding

transactions are permitted when the OT
regulator is enabled for each ACE-Lite
slave interface.

Target_Latency_Register_S0/S1/S2/S3/S4 Determine the target latency, in cycles, for
the regulation of reads and writes.

Latency_Regulation_Register_S0/S1/S2/S3/S4 Latency regulation value, AWQOS or
ARQOS, scale factor coded for powers of
2 in the range 2-5-2-12, to match a 16-bit
integrator.

Qos_Range_Register_S0/S1/S2/S3/S4 Enables you to program the minimum and
maximum values for the ARQOS and
AWQOS signals that the QV regulators
generate.

Cycle_Counter The cycle counter counts either every
CCI-400 clock cycle depending on the
PMCR bit.

Cycle_Counter_Control Enable or disable the cycle and event
counters.

Cycle_Count_Overflow Detects for an overflow of the event
counter.

Table 16‐3: CCI Registers (Cont’d)

Module Name Registers Description
Zynq UltraScale+ Device TRM 405
UG1085 (v2.2) December 4, 2020 www.xilinx.com

Event_Select_Register_0/1/2/3 Selects the event.

https://www.xilinx.com
http://zynq_design:8086/module?mod_id=CCI_GPV#CCI_GPV___Performance_Monitor_Control_Register
http://zynq_design:8086/module?mod_id=CCI_GPV#CCI_GPV___Snoop_Control_Register_S0
http://zynq_design:8086/module?mod_id=CCI_GPV#CCI_GPV___Shareable_Override_Register_S0
http://zynq_design:8086/module?mod_id=CCI_GPV#CCI_GPV___Read_Qos_Override_Register_S0
http://zynq_design:8086/module?mod_id=CCI_GPV#CCI_GPV___Write_Qos_Override_Register_S0
http://zynq_design:8086/module?mod_id=CCI_GPV#CCI_GPV___Qos_Control_Register_S0
http://zynq_design:8086/module?mod_id=CCI_GPV#CCI_GPV___Max_OT_Register_S0
http://zynq_design:8086/module?mod_id=CCI_GPV#CCI_GPV___Target_Latency_Register_S0
http://zynq_design:8086/module?mod_id=CCI_GPV#CCI_GPV___Event_Counter0_Control
http://zynq_design:8086/module?mod_id=CCI_GPV#CCI_GPV___Event_Counter0_Overflow
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=405

Chapter 16: System Protection Units
TrustZone System-level Control Registers

The system-level control registers (SLCR) contains the LPD_SLCR_SECURE and
FPD_SLCR_SECURE register sets with the TrustZone control registers.

Note: These SLCR registers are always secure, which means that the reads and writes are always
done with a secure AXI transaction.

These registers include security controls:

• Peripherals and RPU security controls.
• FPGA advanced eXtensible interface (AXI) master ports security control.

Register Write Protection Lock

Further protection is provided by using a secure configuration register lock. Once set, it
prevents all further write accesses to the security register subset of the SLCR, regardless of
its security status, until a power-on reset is detected.

PL TrustZone Extension

The AXI TrustZone signals extend into the PL, allowing users to build trusted master and
slave devices within the PL. The secure (encrypted) bitstream is designed for the PL to be as
secure as any other secure element in the PS. The security state of the PL to PS AXI interface
masters is controlled by the PL.

DDR TrustZone Protection

All of the transactions going to the DDR memory port interfaces provide TrustZone security
protection by six XMPUs.

Event_Counter_0/1/2/3 Indicates the number of events occur.
Event_Counter_0/1/2/3_Control Enables or disables the event counter.
Event_Counter_0/1/2/3_Overflow Detects for overflow of the event counter.

Table 16‐3: CCI Registers (Cont’d)

Module Name Registers Description
Zynq UltraScale+ Device TRM 406
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=406

Chapter 16: System Protection Units
APU MPCore TrustZone Model

The TrustZone technology allows and maintains isolation between secure and non-secure
processes within the same system. A secure mode can access both secure and non-secure
worlds, but a non-secure mode can only access a non-secure world. The Arm technical
reference manual contains further implementation details. Figure 16-2 shows the Arm v8
modes.

Notes relevant to Figure 16-2.

• AArch64 is permitted only if EL1 is using AArch64.
• AArch64 is permitted only if EL2 is using AArch64.
• EL3 is the most secure exception level.
• SVC instruction generates a supervisor call. It is normally used to request privileged operations.
• HVC instruction causes a hypervisor call exception and processor mode changes to the hypervisor.
• Secure monitor call (SMC) is used to enter the secure monitor mode.

X-Ref Target - Figure 16-2

Figure 16‐2: Arm v8 Modes

Non-secure State

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

App 0

AArch64 or
AArch32)

App n

AArch64 or
AArch32

Supervisor (Guest OS1)

AArch64 or AArch32

Supervisor (Guest OS2)

AArch64 or AArch32

Hypervisor Mode

AArch64 or AArch32

EL0

EL1

EL2

SVC

HVC

SMC

Secure Monitor Mode

Supervisor (Secure OS)

AArch64 or AArch32

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

EL3

Secure State
Zynq UltraScale+ Device TRM 407
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=407

Chapter 16: System Protection Units
SMMU Protection on CCI Slave Ports
The system memory management unit (SMMU) is described in SMMU Architecture in
Chapter 3. The system protection aspects of the SMMU are emphasized in this section. The
SMMU can be described as a hardware assist to provide address translation and isolation to
the attached AXI masters. SMMU protection is discussed in both a native (non-virtualized)
and a virtualized scenario.

Address Translation Isolation (Native, Non-Virtualized
Scenario)

The SMMU provides address translation for an I/O device to identify more than its actual
addressing capability. In absence of memory isolation, I/O devices may be able to corrupt
system memory. The SMMU provides device isolation to prevent DMA attacks. To offer
isolation and memory protection, it restricts device access for DMA-capable I/O to a
pre-assigned physical space.

As an example, consider the AXI interfaces from programmable logic to the PS that passes
through the SMMU in the PS. When enabled, the SMMU also offers protection from DMA
masters in the PL restricted access to the PS memory region; this is protection in the context
of a symmetric multiprocessing system running an OS. The OS on an APU can isolate the
DMA from interfering with other devices under the APU. In a similar way, the SMMU can
also be enabled to restrict DMA units or other PS masters from accessing the PS memory
region.

Guest Domain Isolation (Virtualized Scenario)

As described in Chapter 3, the SMMU enables address translation in a virtualized system.
An SMMU provides isolation among different guest operating systems by setting
appropriate translation regimes and context. This isolation among guest operating systems
prevents malfunction, faults, or hacks in one domain from impacting other domains. An
SMMU provides system integrity in a virtualized environment.

Additionally, the SMMU supports two security states. In a system with secure and
non-secure domains, SMMU resources can be shared between secure and non-secure
domains. For details on two security states in the SMMU, see the Arm System Memory
Management Unit Architecture Specification [Ref 50].
Zynq UltraScale+ Device TRM 408
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=408

Chapter 16: System Protection Units
TBU Instances

There are six TBUs supported by the SMMU TCU. These are listed in Table 16-4 with their
system masters.

The SMMU uses a 15-bit stream ID to perform address translations. This information is part
of a transaction and indicates which master originated the request. Bits [9:0] of the stream
ID are the master ID defined in Table 16-13. Bits [14:10] are the TBU number the master
transaction passes through. For example, for the GEM0 PS master, its master ID is 10'h074
and its TBU number is 5'h02. Concatenating these fields gives GEM0 a stream ID of
15'h0874.

XMPU Protection of Slaves
The XMPU is a region-based memory protection unit. This section describes the XMPU in
detail, including configuration and functionality.

The XMPU interface consists of the following features:

• Slave AXI port to receive a transaction.
• Master AXI port with poison output.
• APB slave for programming the control registers.
• Interrupt for AXI and register access violations.
• AXI clock (same for master and slave ports) and APB clock for register programming.
• Lock register - once set, the lock is only resettable by a POR reset.
• Memory partitioned and protected to isolate a master or a given set of masters to a

programmable set of address ranges.

Table 16‐4: System Masters

SMMU Unit System Masters

TBU0
S_AXI_HPC{0, 1}_FPD
SMMU TCU
CoreSight

TBU1 SIOU peripheral's DMA units
TBU2 LPD

TBU3 S_AXI_HP0_FPD
DisplayPort

TBU4 S_AXI_HP{1, 2}_FPD

TBU5 S_AXI_HP3_FPD
FPD DMA
Zynq UltraScale+ Device TRM 409
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=409

Chapter 16: System Protection Units
• Six DDR XMPUs provide 1 MB memory apertures.
• FPD and OCM XPMUs provide 4 KB memory apertures.
• TrustZone protection for ports going into the DDR memory controller is provided using

secure/non-secure bits in the register for masters that cannot drive the AxPROT[1] bit.
• AXI transaction permission violation interrupt.
• APB slave interface address decode error interrupt.

Architecture

The system block diagram (Figure 16-1) shows the AXI interfaces and APB bus structures
connected to the XPPU and eight XMPUs.

The poison by attribute method allows the AXI transaction to continue to the memory with
an option to set the [POISON] attribute that is received by the memory unit. The poison by
address method redirects the AXI transaction to its sink unit.

XMPU Regions

Each XMPU has 16 regions, numbered from 0 to 15. Each region is defined by a start
address and an end address. There are two region address alignment possibilities, 1 MB and
4 KB, depending on the XMPU unit. For the XMPU configured with the 1 MB region
alignment, the start address of each region is 1 MB aligned. Similarly, for the OCM_XMPU
configured with the 4 KB alignment, the start address is 4 KB aligned.

When a memory space is included in more than one XMPU region configuration, the higher
region number has higher priority (that is, region 0 has lowest priority). Each region can be
independently enabled or disabled. If a region is disabled, it is not used for protection
checking.

If none of the regions are enabled or the request does not match any of the regions, then a
subtractive decode determines whether or not the request is allowed. That is, the XMPU
takes the default action (allow or poison) as specified in the XMPU control register. There
are two ways to poison a request: forward the transaction with a poison attribute or poison
(replace) the upper address bits and then forward the transaction.

Poison Attribute Signals

An AXI request can be poisoned by adding poison attribute signals on AxUSER and then
passing the poisoned request to a connected AXI slave. When the destination slave (for
example, a DDR memory interface port) receives a poisoned request, it handles the request
with a write-ignore/read-all-zero (WI/RAZ) response, and, optionally generates a DECERR.
Only the DDR_XMPU and OCM_XMPU support poison attribute signals.
Zynq UltraScale+ Device TRM 410
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=410

Chapter 16: System Protection Units
Poison Address

An AXI request can be poisoned by changing the address to a preprogrammed poison
address. A 4 KB poisoned address aperture is defined as an AXI slave, which is an XMPU
sink. The interconnect routes the 4 KB poisoned address to this sink, which responds to
poisoned transactions similar to an undefined register space. This results in either a data
abort or an interrupt to the processor.

Region Checking Operation

An incoming read or write request on an AXI port is checked against each XMPU region as
described in this section.

TIP: When a memory space is included in more than one XMPU region, the higher region number has
higher priority (that is, region 0 has the lowest priority). This determines the set of permissions used for
the checks described in this section.

For the enabled region, two basic checks are completed first.

• Check if the address of the transaction (AXI_ADDR) is within the region.
That is, START_ADDR  AXI_ADDR  END_ADDR.

• Check whether the master ID of the incoming transaction is allowed. That is,
incoming_MID & MID_Mask == MID_Value & MID_Mask.

If these checks are true, then the region configuration is checked with regards to security
and read and write permissions.

Note: Disabled regions do not grant permissions.

Master ID Validation

Each XMPU uses the inbound Master ID in each AXI transaction to validate the transfer. The
Master ID is masked by the [MASK] bit field and then compared against the [ID] bit field of
the Rxx_MASTER region registers. If Equation 16-1 is satisfied (along with security and
read/write checks), the transaction is allowed. In Equation 16-1, these are [10-bit
parameters] in the Rxx_MASTER region register:

Equation 16‐1

Security Validation

• If the region is configured as secure, then only the secure request can access this
region.

• If the region is configured as secure, then the read and write permissions are
independently checked to determine whether or not the transactions are allowed.

[ID] & [MASK] == AXI_MasterID & [MASK]
Zynq UltraScale+ Device TRM 411
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=411

Chapter 16: System Protection Units
• If the transaction is non-secure and the region is configured as secure, then the check
fails, and the transaction is handled as described in XMPU Error Handling.

• If the region is configured as non-secure and the transaction is non-secure, then read
and write permissions are independently checked to determine whether or not the
transaction is allowed. If the check fails, the transaction is handled as described in
XMPU Error Handling.

See Isolation Methods in Zynq UltraScale+ MPSoCs (XAPP1320) [Ref 38] for more
information.

Instances

Table 16-5 lists the system protection units.

Note: The DDR_XMPU{1, 2} protection units are located on two parallel AXI channels between the
CCI and the DDR memory controller. They can be configured identically, or differently depending on
how these channels are used. The QVN virtual network controller in the CCI works with the DDR
memory controller for optimal system performance of these two memory paths for bulk,
isochronous, and low latency transactions.

Table 16‐5: System Protection Units

Protection
Unit

System Slave System Masters
Control

Registers

DDR XMPU0 DDR Port 0 LPD (RPU, PMU, CSU, others) 0xFD00_0000
DDR XMPU1 DDR Port 1 CCI (APU, S_AXI_ACE_FPD, TCU) 0xFD01_0000
DDR XMPU2 DDR Port 2 CCI (APU, S_AXI_ACE_FPD, TCU) 0xFD02_0000
DDR XMPU3 DDR Port 3 S_AXI_HP0_FPD, DisplayPort 0xFD03_0000
DDR XMPU4 DDR Port 4 S_AXI_HP{1,2}_FPD 0xFD04_0000
DDR XMPU5 DDR Port 5 S_AXI_HP3_FPD, FPD DMA 0xFD05_0000

FPD XMPU SIOU, APU GIC, SMMU TCU, FPD
XMPU, others(1) FPD main switch to SIOU 0xFD5D_0000

OCM XMPU OCM LPD main switch to OCM 0xFFA7_0000
Notes:
1. See Table 16-6 for more information.
Zynq UltraScale+ Device TRM 412
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=412

Chapter 16: System Protection Units
Table 16-6 lists the peripherals secured by FPD_XMPU.
Table 16‐6: Peripherals Secured by FPD_XMPU

Memories/Peripherals Protection Unit Address

ACPU_GIC FPD_XMPU 0xF900_0000
AFI 0/1/2/3/4/5 FPD_XMPU 0xFD36_0000

0xFD37_0000
0xFD38_0000
0xFD39_0000
0xFD3A_0000
0xFD3B_0000

APM 0/5 FPD_XMPU 0xFD0B_0000
0xFD49_0000

APU FPD_XMPU 0xFD5C_0000
CCI_GPV FPD_XMPU 0xFD6E_0000
CCI_REG FPD_XMPU 0xFD5E_0000
CRF_APB FPD_XMPU 0xFD1A_0000
DDDR_CTRL FPD_XMPU 0xFD07_0000
DDR_PHY FPD_XMPU 0xFD08_0000
DDR_QOS_CTRL FPD_XMPU 0x FD09_0000
DDR_XMPU0/1/2/3/4/5_CFG FPD_XMPU 0xFD00_0000

0xFD01_0000
0xFD02_0000
0xFD03_0000
0xFD04_0000
0xFD05_0000

DISPLAY PORT FPD_XMPU 0xFD4A_0000
DPDMA FPD_XMPU 0xFD4C_0000
FPD_DMA_CH0/1/2/3/4/5/6/7 FPD_XMPU 0xFD50_0000

0xFD51_0000
0xFD52_0000
0xFD53_0000
0xFD54_0000
0xFD55_0000
0xFD56_0000
0xFD57_0000

FPD_GPV FPD_XMPU 0xFD70_0000
FPD_SLCR FPD_XMPU 0xFD61_0000
FPD_SLCR_SECURE FPD_XMPU 0xFD69_0000
Zynq UltraScale+ Device TRM 413
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=413

Chapter 16: System Protection Units
Error Handling

XMPU Error Handling

Errors can occur from security violations. The errors can be due to read or write
transactions. When an error occurs, the XMPU poisons the request, records the address and
master ID of the first transaction that failed the check, flags the violation, and, optionally
generates an interrupt. When a security violation occurs, there is an additional logging to
indicate that the error was a security violation. Only one error and the first error is recorded
for both read/write AXI channels. For simultaneous read and write errors, only the write
error is recorded.

IMPORTANT: The following is required for the various XMPU instances if used in the Zynq UltraScale+
MPSoC to function properly. When using a Xilinx delivered tool flow, they are already setup by the
first-stage boot loader (FSBL).

For the XMPU instances, DDR, and OCM memories, a poison attribute is used by
programming the XMPU CTRL [PoisonCfg] bit to 0 and the XMPU POISON [ATTRIB] bit to 1.

When a violation occurs the base address is recorded and the AxUser [10] poison bit is set
for the AXI transaction. For write transactions, the memory controller masks the write data

FPD_XMPU_CFG FPD_XMPU 0xFD5D_0000
FPD_XMPU_SINK FPD_XMPU 0xFD4F_0000
GPU FPD_XMPU 0xFD4B_0000
PCIE_LOW FPD_XMPU 0xE000_0000
PCIE_HIGH_1/2 FPD_XMPU 0x6000_0000

0x8000_0000
PCIE_MAIN FPD_XMPU 0xFD0E_0000
PCIE_ATTRIB FPD_XMPU 0xFD48_0000
PCIE_DMA FPD_XMPU 0xFD0F_0000
RCPU_GIC FPD_XMPU 0xF900_0000
SATA FPD_XMPU 0xFD0C_0000
SERDES FPD_XMPU 0xFD40_0000
SIOU FPD_XMPU 0xFD3D_0000
SMMU FPD_XMPU 0xFD80_0000
SMMU_REG FPD_XMPU 0xFD5F_0000
SWDT1 FPD_XMPU 0xFD4D_0000

Table 16‐6: Peripherals Secured by FPD_XMPU

Memories/Peripherals Protection Unit Address
Zynq UltraScale+ Device TRM 414
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=414

Chapter 16: System Protection Units
and can assert a DECERR and/or interrupt. For read transactions, the memory controller
returns zeros and can assert DECERR and/or interrupt.

The responses by DDR Memory Controller are configured by DDRC.POISONCFG register.
The DECERR response by the OCM Memory Controller is controlled by the OCM_ERR_CTRL
[PZ_ERR_RES] bit.

For the XMPU instance in the FPD interconnect, a poison address is used by programming
the XMPU CTRL [PoisonCfg] bit to 1 and the POISON [ATTRIB] bit to 0. The poison address
is fixed in the XMPU read-only POISON [BASE] bit field to point to XMPU_SINK at
0xFD4F_0000. When a violation occurs, the incoming base address is recorded and a new
outgoing base [BASE] is applied to the AXI transaction. This addresses the FPD_XMPU_SINK
unit where the offset address is recorded, a PSLVERR is returned and an interrupt is
generated.

Configuration

The XMPU is configurable either one time or through a secure master. At boot time, the
XMPU can be configured and its configuration is locked. If an XMPU register set is locked,
the XMPU can only be reconfigured after the next system reset. If the configuration is not
locked, then the XMPU can be reconfigured any number of times by trusted software (using
a secure master).

RECOMMENDED: Xilinx recommends only configuring each XMPU one time. If you program an XMPU,
program all its settings. This ensures only the programmed transactions will go through.

Alignment and Poison Configuration

The recommended bit settings for the XMPU alignment and poisoning configurations are
listed in Table 16-7 with poison attribute and base settings. The DDR and OCM memory
controllers expect attribute poisoning when the AXI transaction is disallowed by an XMPU.
The FPD XMPU must poison the transaction so it is steered to the XMPU sink unit.

Table 16‐7: XMPU Configuration Table

Register Bit Field
Bit Field Type

Bit Field Meaning

CTRL [AlignCfg]
Read-only
1 = 1 MB
0 = 4 KB

CTRL [PoisonCfg]
R/W, reset value

0 = attribute
1 = address

POISON
[ATTRIB]

R/W, reset value
AxUser bit

POISON [BASE]
Read-only

Address bits [31:12]

6 XMPUs on DDR 1 0 0 ~
1 XMPU on OCM 0 0 0 ~
1 XMPU on FPD 0 1 ~ 20’h FD4F0
Zynq UltraScale+ Device TRM 415
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=415

Chapter 16: System Protection Units
Block Diagram

The AXI transaction data paths for the XMPUs are shown in Figure 16-3.
X-Ref Target - Figure 16-3

Figure 16‐3: XMPU Poison Methods Block Diagram

OCM Memory

OCM Switch

Offset address +
[BASE] register

APB

AXI

Address
Poison

AXI

FPD_XMPU

IOP Switch
(to Peripheral Slaves)

DECERR

DDR {0:5}

Original
Address

AxUser [Poison]
signal

0: LPD AXI
1: CCI AXI
2: CCI AXI
3: HP0, DisplayPort
4: HP1, HP2
5: HP3, FPD_DMA

AXI

Attribute
Poison

AXI

OCM_XMPU and
DDR_XMPUx

FPD_Sink PSLVERR

IRQ

PSLVERR Invalid Reg

AXI

Poisoned Trans
or Invalid Reg

APB

IRQ

PSLVERR Invalid Reg

Poisoned Trans
or Invalid Reg

X19912-100417
Zynq UltraScale+ Device TRM 416
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=416

Chapter 16: System Protection Units
XMPU Register Set Overview
Each XMPU protection unit is controlled by its own register set. The XMPU registers are
listed in Table 16-8. The base addresses for each XMPU is listed in Figure 16-4.

Table 16‐8: XMPU Register Summary

Address Register Names
Number

of
Registers

Description

XMPU Control and Status

0x0000 CTRL 1 Default read/write, poison, and alignment
configuration.

0x0004+ ERR_STATUS1, ERR_STATUS2 2
Poison address and master ID value (FPD_XMPU),
or Poison attribute and base address (DDR_XMPU
and OCM_XMPU).

0x000C POISON 1 Base address of XPPU sink.

0x0010+ ISR, IMR, IEN, IDS 4 Interrupt controls: address decode error, transaction
violations.

XMPU Regional Controls

0x0100+ R{00:15}_START 16 Region starting base address.
0x0104+ R{00:15}_END 16 Region ending base address.
0x0108+ R{00:15}_MASTER 16 Region master IDs.

0x010C+ R{00:15}_CONFIG 16 Region profile: enable, read/write allowed, secure
level, relaxed checking.

XMPU Sink for FPD XMPU

0xFD4F_FF00 ERR_STATUS 1 R/W type and offset address access violations.
0xFD4F_FFEC ERR_CTRL 1 PSLVERR signaling enable.
0xFD4F_FF10+ ISR, IMR, IER, IDR 4 Interrupt controls: register address decode error.
Zynq UltraScale+ Device TRM 417
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=417

Chapter 16: System Protection Units
XPPU Protection of Slaves
The XPPU is used to protect LPD peripheral and control registers (SLCR) along with message
buffers (IPI) rather than memory (DDR, OCM). Controlled access to these registers helps
achieve security, safety, and operating system isolation. The XPPU is located in the LPD to
protect the IOP from erroneous read and write transactions. The XPPU is shown in the IOP
interconnect in Figure 16-1.

Two data structures are used by the XPPU to control access.

• The master ID list (part of the register set shown in Figure 16-4), is partially user
programmable to allow the enumeration of the masters that are allowed to access
peripherals. The list defines a pool of potential masters. Out of 20 master IDs to be
programmed in the list, the first eight master ID entries on the list are predefined and
the rest can be defined and allocated by user software. The master ID list should be
initialized before the XPPU is enabled.

• The aperture permission list defines the set of accessible address apertures (where
apertures refer to the peripheral IP address space) and identifies the masters that can
access each aperture. The XPPU includes 400 apertures. As shown in Figure 16-4, a
RAM is used to store the permission settings set up by the software. This RAM is on the
system address map and is accessible like regular software programmable registers.

Note: The XPPU must be programmed once before being used and should only be enabled when
there are no transactions going through it to avoid misbehavior. Transactions can be generated from
several sources including another system master or a CSU event.

The master ID list and the aperture permission list provides access control for all peripheral
apertures. The apertures can be made accessible or hidden from any master ID.

Features

• Provides access control for a specified set of address apertures on a per-master basis.
• Provides a means of controlling access on a per-peripheral or a per-message buffer

basis.
• Supports up to 20 simultaneous sets of masters.
• Several sets of programmable apertures:

° 128 x 32B for IPI message buffers.

° 256 x 64 KB for peripheral slave ports.

° 16 x 1 MB for peripheral slave ports.

° Single 512 MB for Quad-SPI memory controller.
• AXI transaction permission violation interrupt.
Zynq UltraScale+ Device TRM 418
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=418

Chapter 16: System Protection Units
• APB slave interface address decode error interrupt.

When an AXI transaction is not permitted to proceed, the protection unit sets the poison
user bit and forwards the transaction to the XPPU_SINK where an interrupt is generated and
the unit responds with or without a ready or SLVERR.

The XPPU is a look-up based peripheral protection unit. The XPPU is for protecting
peripherals, message buffers (for inter-processor interrupts and communications), and
Quad-SPI flash memory. The XPPU also has a mechanism to protect the access of its own
programming registers.

In comparison with the XMPU, the XPPU uses finer grained address matching and provides
many more address apertures to suit the different needs of peripherals, IPI, and Quad-SPI
flash memory.

The XPPU interfaces consist of the following.

• Slave AXI port where master ID is carried on lower bits of AxUSER.
• Master AXI port where master ID is carried on lower bits of AxUSER.
• APB slave for programming the XPPU.
• Level-sensitive, asynchronous interrupt output.
• AXI clock (same for master and slave ports).
• APB bus clock for programming registers.

Instances

The locations of the various system protection modules in the PS are shown in Figure 16-1
as XMPU, XPPU, and TBUx. The ATB timeout and AIB isolation units are also shown in
Figure 16-1.

The one instance of the XPPU is in the LPD. The XMPU is placed in the following locations.

• Six instances on the DDRC with a 1 MB address alignment.
• One instance on the OCM interconnect with a 4 KB address alignment.
• One instance on the FPD interconnect with a 4 KB address alignment.
Note: The XMPU instances near the DDR memory have a 1 MB region alignment. The XMPU
instance for the OCM and the FPD peripherals has a 4 KB alignment. These configurations are fixed
and cannot be changed.
Zynq UltraScale+ Device TRM 419
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=419

Chapter 16: System Protection Units
XPPU Operation

For every read and write transaction, the XPPU determines if the transaction is allowed to
proceed with fine grain control of specific memory addresses. If the transaction is allowed,
it proceeds normally. If the transaction is not allowed, it invalidates the transaction by
address poisoning. When an address is poisoned, the transaction is sent to the XPPU_Sink
unit.

An AXI transaction request is allowed to access the memory range defined by an
APERPERM_xxx register if three conditions are satisfied:

• The requesting Master fits one or more of the profiles of a MASTER_IDxx register.
• The bit for the that profile is set in the [PERMISSION] bit field. For example, if the

master satisfies the MasterID and read/write permissions of the MASTER_ID00 register
and bit 0 of the [PERMISSION] bit field = 1, then the transaction is allowed to proceed.

• The transaction request satisfies the APERPERM_xxx [TRUSTZONE] bit setting.

IMPORTANT: XPPU is used to configure the device control address space to be TZ or non-TZ. Devices
(peripherals) are configured to be TZ or non-TZ by separate registers—this control is not provided by
XPPU.

A block-level diagram summarizing the XPPU operation is shown in Figure 16-4.
X-Ref Target - Figure 16-4

Figure 16‐4: XPPU Functional Block Diagram

APB
Interface

AxADDR
AxUSER
AxPROT

APB

Control
Registers

Permission
RAM

Address
Decode

ADDR

ID
Permission

CheckMatch

Data

Aperture
Info

poison

Master ID
Lookup

AXI
AxADDR
AxUSER
AxPROT

AXI

X15344-100417
Zynq UltraScale+ Device TRM 420
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=420

Chapter 16: System Protection Units
Master ID List

When an AXI transaction is received, the master ID (MID) that is available as part of AxUSER
is compared against all entries of the MID list, together with parity checks (if enabled).

An AXI MID matches the nth entry if the following is true.

(MASTER_IDnn.MASTER_ID_MASK & MID ==MASTER_IDnn.MASTER_ID_MASK & MASTER_IDnn.MASTER_ID) &&
(~CTRL.MID_PARITY_EN || CTRL.MID_PARITY_EN & (MASTER_IDnn.MASTER_ID_PARITY == Computed parity))

An entry in the master ID list consists of the fields shown in Table 16-9.

For a matched entry, if it is enabled by the corresponding bit of the PERMISSIONS field (as
defined by the PERM field shown in Table 16-11) and if the read only (MASTER_IDnn.MIDR)
bit is set, only read transactions are allowed and write transactions are not allowed.

The bitwise result of matching against each entry of the master ID list is stored in the match
vector (MATCH [m–1:0]. The parity bit is computed and written by the software if the parity
option is enabled.

Table 16‐9: Master ID List Entry

Name Bit Field Bitfield Description

Master ID MID [9:0] The master ID to match.
ID mask MIDM [25:16] The ID mask.
Read-only MIDR [30] If set, only read transactions are allowed.
Register parity MIDP [31] Parity of bits [30, 25:16, 9:0].
Zynq UltraScale+ Device TRM 421
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=421

Chapter 16: System Protection Units
Aperture Permission List

Table 16-10 shows the four sets of apertures and the address protected for each aperture.

IMPORTANT: The 32B IPI buffers can be accessed only with burst length = 1 and burst size = 4B or 8B
transactions. The 32B aperture is used to access IPI message buffers. The 64 KB aperture is for
peripherals. For example, 0xFF00_0000 is the address for UART0 registers for which the aperture
permission list entry is at address 0xFF98_1000.

The overlapping address range between IPI buffers and 64 KB peripheral registers is
resolved as follows:

• For the range 0xFF99_0000 – 0xFF99_0FFF (the first 4 KB), the 32B APL entry takes
precedence over the 64 KB APL entries. The 64 KB APL is ignored here.

• For the range 0xFF99_1000 – 0xFF99_FFFF (the remaining 60 KB), the PSLVERR
signal is returned because no registers exist. This is independent of the 64 KB aperture
allowing access to this area.

Table 16‐10: XPPU Address Table

Aperture Size
Number of
Supported
Apertures

Aperture
Number

Protected Memory
Address Range

Aperture
Configuration

Register Address

32B 128

256 0xFF99_0000 - 0xFF99_001F 0xFF98_1400

257 0xFF99_0020 - 0xFF99_003F 0xFF98_1404

… …

383 0xFF99_0FE0 - 0xFF99_0FFF 0xFF98_15FC

64 KB 256

000 0xFF00_0000 - 0xFF00_FFFF 0xFF98_1000

001 0xFF01_0000 - 0xFF01_FFFF 0xFF98_1004

… …

255 0xFFFF_0000 - 0xFFFF_FFFF 0xFF98_13FC

1 MB 16

384 0xFE00_0000 - 0xFE0F_FFFF 0xFF98_1600

385 0xFE10_0000 - 0xFF1F_FFFF 0xFF98_1604

… ….

399 0xFEF0_0000 - 0xFEFF_FFFF 0xFF98_163C

512 MB 1 400 0xC000_0000 - 0xDFFF_FFFF 0xFF98_1640
Zynq UltraScale+ Device TRM 422
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=422

Chapter 16: System Protection Units
Entry Format

Aperture Permission List

The XPPU aperture register structure enumerates the permission settings on each protected
peripheral, message buffer, and the Quad-SPI flash memory. Each APERPERM_{000:400}
register entry contains the information listed in Table 16-11.

Four parity bits are added to protect the (TrustZone and permission) fields, which are
equally divided into four protected fields. Parity must be computed by software when
writing an entry in the aperture permission list. If the controller detects a parity error, then
a status bit is set.

• Bit [31] is parity for bit [27] and bits [19:15].
• Bit [30] is parity for bits [14:10].
• Bit [29] is parity for bits [9:5].
• Bit [28] is parity for bits [4:0].

The aperture permission list must be completely initialized by software to 0 before the
XPPU can be enabled. The software is also required to compute and write parity. For
unprotected apertures, all supported master match bits in the permission RAM should be
set to 1.

Table 16‐11: Aperture Permissions Register Format

Field Name Bitfield Description

PERMISSION [19:0]

Master ID profile permission. Each of the 20 [PERMISSION] bits correspond
to the MASTER_ID{19:0} registers. The [PERMISSION] field helps to
determine if the transaction request of the master characterized by a
MASTER_ID register is permitted.
0 = not allowed.
1 = allowed.
A 1 in bit position n (n < m) indicates that the nth entry in the master ID list
has permission to access the aperture. This check is further qualified by
parity and TrustZone checks.

TRUSTZONE [27] 1 = Secure or non-secure transactions are allowed.
0 = Only secure transactions are allowed.

PARITY [31:28]
The hardware checks the parity bits for the [PERMISSION] and [TRUSTZONE]
bit fields. Software must generate and load the parity bits before the
protection unit uses the register.
Zynq UltraScale+ Device TRM 423
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=423

Chapter 16: System Protection Units
Protected Addresses

The XPPU protects the address ranges shown in Figure 16-5.

Permission Checking

Permission checking is performed using the AXI master ID and TZ security settings of the
AXI transaction. The MasterID sets one or more of the 20 local MATCH bits that are
compared against the address-selected aperture permission register, APERPERM_xxx. The
XPPU also tests the AxPROT[1] and R/W signals with the APERPERM_xxx [TRUSTZONE] bit.
The following equation is for read transactions.

Transaction_OK = (MATCH & PERMISSION != 0)
AND { (TRUSTZONE == 1) OR {(AxPROT[1] == 0) && (TRUSTZONE == 0) }}

• The first term means that the incoming AXI master ID, after the mask is applied, should
be listed in the master ID list, and it should also be listed as an allowed master in the
aperture permission list, APERPERM_xxx registers.

• The second term means that the incoming AXI TrustZone (on AxPROT [1]) should meet
the aperture (slave) TrustZone setting.

X-Ref Target - Figure 16-5

Figure 16‐5: XPPU Aperture Memory Map

0xFFFF_FFFF

0xC000_0000

0xE000_0000

0xFF00_0000

0xFE00_0000

0x0000_0000

64 KB Apertures x 256 (16MB). Control registers and some RAM.

32 B Apertures x 128 (4 KB). Restricted access to IPI message buffers.

1 MB Apertures x 16 (16 MB). SIOU registers and windows.

512 MB Aperture. Quad-SPI memory.

0xFF99_0000
0xFF99_0FFF

X19918-101817
Zynq UltraScale+ Device TRM 424
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=424

Chapter 16: System Protection Units
The result from this equation is further qualified with the parity check on the selected
register from the aperture permission list if the parity check is enabled.

If all of the these checks pass, then the transaction is allowed.
X-Ref Target - Figure 16-6

Figure 16‐6: XPPU Functional Block Diagram

ARADDR

Rnn_START_ADDR

Start < ARRADR < END

Rnn_END_ADDR

12 or 20
upper bits

ARID

Rnn_MASTER_ID.mask

ARID & mask == value & mask

Rnn_MASTER_ID.value

Priority Encoder
16 Region Match Signals

R00_CONFIG

R15_CONFIG

. .
 .

. . .
Security and
Permission

Check

NSCheckType
RegionNS
RdAllowed 0=allow

1=poison

No Match

Rnn_CONFIG Enable

ARPROT[1]

DefRDAllowed

Lowest region
number that
matches

16 Regions Compared

X15343-101817
Zynq UltraScale+ Device TRM 425
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=425

Chapter 16: System Protection Units
Error Handling

Table 16-12 lists the possible errors that can be encountered by the XPPU and how they are
handled.

Sync and Async Abort

To understand the sync and async abort, consider the example application running in the APU
domain that generates two types of interrupts: sync and error aborts. The actual error type
depends on the corresponding transaction type (read or write) and each must have their own
handler. The requirements for two types of errors comes from the Arm architecture itself, not the
Xilinx-specific implementation. Handling these errors is up to the developer and the requirements
of the system being developed. See Isolation Methods in Zynq UltraScale+ MPSoCs
(XAPP1320) [Ref 38] for more information.

Table 16‐12: Error Handling in XPPU(1)

Error Actions

Master ID list parity error
The MASTER_IDnn register associated with the parity error is disabled and
cannot enable a match, that is, MATCH [nn] is forced to 0. The
MID_PARITY bit of the ISR register is set and an interrupt can optionally
be signaled.

Master ID list read only error

A master ID read-only error occurs when any matched MASTER_IDnn
register is enabled by the corresponding bit of the PERM field from the
selected entry for the addressed peripheral, its MIDR bit is set, and the
transaction is a write. When multiple master IDs are both matched and
enabled and one or more have MIDR bits set, a master ID read-only error
is still flagged. The MID_RO bit of the ISR register is set.

Master ID list miss error When all MATCH vector bits are zero, a master ID miss error occurs. The
MID_MISS bit of the ISR register is set.

Aperture permission list parity error The transaction is disallowed and APER_PARITY bit of the ISR register is
set. An interrupt can optionally be signaled.

Transaction TrustZone error(2)

When a non-secure transaction attempts to access a secure slave, a
transaction TrustZone error occurs. This error is flagged only when there
is no MID_MISS error and no APER_PARITY error. This error is not flagged
when there is a MID_MISS error or an APER_PARITY error. The transaction
is poisoned and an interrupt can optionally be signaled.

Transaction permission error(2)

When a master ID is not allowed to access a slave, a transaction
permission error occurs. An access to an address not covered by the XPPU
causes this type of error. A burst length/size error (when accessing 32B
buffers) also causes this type of error to occur. This error is flagged only
when there is no MID_MISS error and no APER_PARITY error. This error is
not flagged when there is a MID_MISS error or an APER_PARITY error. The
transaction is poisoned. An interrupt can optionally be signaled.

Notes:
1. Access to an address not covered by the aperture permission registers goes through the XPPU intact.
2. The first transaction address, master ID, and read/write mode are captured for debugging. When there are simultaneous

read/write errors, only the write error is recorded. Only the first error is recorded. To record further errors, the ISR (interrupt
status register) must be cleared first.
Zynq UltraScale+ Device TRM 426
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=426

Chapter 16: System Protection Units
Transaction Poisoning

Transaction poisoning can be accomplished by the following.

• Force the outgoing AxADDR [48:32] to zeros.
• Replace the incoming AxADDR[31:12] with LPD_XPPU.POISON[BASE].
• Keep the incoming AxADDR[11:0] intact.

On the system address map, a 4 KB size sink module at address {17'b0,
LPD_XPPU.POISON[BASE] 12'b0} is present, which takes a poisoned transaction, returns an
error response, and optionally records the lower 12 bits of the transaction address. This can
cause either a data abort or an interrupt to the processor.

Note: The poisoned reads return value of all zeros and poisoned writes are ignored. To make the
system aware of transaction poisoning, generation of a slave error response can be enabled using
the XPPU_SINK.ERR_CTRL[PSLVERR] bit.

X-Ref Target - Figure 16-7

Figure 16‐7: XPPU Address Poison Block Diagram

Offset address +
[BASE] register

AXI

Address
Poison

AXI

XPPU

IOP Switch
(to Peripheral

Slaves)

FPD Switch

XPPU_Sink

APB

APB

IRQ

PSLVERR

IRQ

PSLVERR Invalid Reg

Secure
Bridge

AXI

APB

Poisoned Trans
or Invalid Reg

Poisoned Trans
or Invalid Reg

X19919-100417
Zynq UltraScale+ Device TRM 427
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=427

Chapter 16: System Protection Units
XPPU Self-Protection

The following measures are used to protect the XPPU itself.

• The master ID list and the aperture permission list can only be written by secure
masters.

• The master ID list and the aperture permission list can be locked from further writes (by
secure masters) through the same protection mechanism as for other peripherals (that
is, setting appropriate entries in the master ID list and aperture permission list).

RECOMMENDED: Xilinx recommends setting up the XPPU one time during boot by the FSBL or other
secure agent. Programming the XPPU requires access through the XPPU.

The XPPU programming interface uses the XPPU itself for protection, an access destined to
a location in the XPPU (including master ID and aperture registers) visits the XPPU twice.

• The first visit comes from AXI, and passes through the protection logic to the AXI
interconnect and on to the APB bridge.

• The second visit comes from the APB, and arrives at the addressed location, assuming
its first visit passed the XPPU permission check.

Master ID Validation

Each XPPU also uses the Master ID in each AXI transaction to validate the transaction. The
Master ID is masked by the [MIDM] bit field and then compared against the [MID] bit field
in the MASTER_IDxx registers. If Equation 16-2 is satisfied (along with [TRUSTZONE] and
[PERMISSION] checks in the APERPERM_xxx register), then the transaction is allowed. In
Equation 16-2, these are [10-bit parameters] in the MASTER_IDxx register:

Equation 16‐2

Master IDs List
The PS interconnect assigns the master ID bits and transfers these bits on the AxUSER bits
of the associated AXI transaction. For masters that support multiple channels or sources, a
portion of the master ID bits are derived from the AXI ID (AWID/ARID) of the associated AXI
transaction. This allows the user to enforce system-level protection on a per channel, per
processor, or per PL IP basis. In the context of the SMMU, the description of a master ID and
a stream ID have the same meaning.

Note: The PS interconnect assigns the master ID bits and transfers these bits on the AxUSER bits of
the associated AXI transaction.

[MID] & [MIDM] == AXI_MasterID & [MIDM]
Zynq UltraScale+ Device TRM 428
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=428

Chapter 16: System Protection Units
Table 16‐13: Master IDs List

Master Device Master ID [9:0]

RPU0 0000, 00, AXI ID[3:0]
RPU1 0000, 01, AXI ID[3:0]
PMU processor 0001, 00, 0000
CSU processor 0001, 01, 0000
CSU DMA 0001, 01, 0001
USB0 0001, 10, 0000
USB1 0001, 10, 0001
DAP APB control 0001, 10, 0010
LPD DMA 0001, 10, 1xxx CH{0:7}
SD0 0001, 11, 0000
SD1 0001, 11, 0001
NAND 0001, 11, 0010
QSPI 0001, 11, 0011
GEM0 0001, 11, 0100
GEM1 0001, 11, 0101
GEM2 0001, 11, 0110
GEM3 0001, 11, 0111
APU APU 0010, AXI ID [5:0]
SATA 0011, 00, 000x DMA{0, 1}
GPU 0011, 00, 0100
DAP AXI CoreSight 0011, 00, 0101
PCIe 0011, 01, 0000
DisplayPort DMA 0011, 10, 0xxx DMA{0:5}
FPD DMA 0011, 10, 1xxx CH{0:7}
S_AXI_HPC0_FPD (HPC0) 1000, AXI ID [5:0] from PL
S_AXI_HPC1_FPD (HPC1) 1001, AXI ID [5:0] from PL
S_AXI_HP0_FPD (HP0) 1010, AXI ID [5:0] from PL
S_AXI_HP1_FPD (HP1) 1011, AXI ID [5:0] from PL
S_AXI_HP2_FPD (HP2) 1100, AXI ID [5:0] from PL
S_AXI_HP3_FPD (HP3) 1101, AXI ID [5:0] from PL
S_AXI_LPD (PL_LPD) 1110, AXI ID [5:0] from PL
S_AXI_ACE_FPD (ACE) 1111, AXI ID [5:0] from PL
Zynq UltraScale+ Device TRM 429
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=429

Chapter 16: System Protection Units
PS-PL AXI Interfaces

The PL is required to drive all 10 bits of the ACE port's master ID. The AXI_USER is the master
ID for ACE.

AXI_USER[9:0] = {4'b1111, AXI_ID[5:0]}

The upper four bits are required to be driven High by the logic in the PL.

XPPU Register Set Overview

Table 16‐14: XPPU Register Summary

Start Address Register Names
Number of
Registers

Description

XPPU Control and Status

0xFF98_0000 CTRL 1 Permission and parity error
checking enables.

0xFF98_0004+ ERR_STATUS{1, 2} 2 Poisoned address and Master ID
value.

0xFF98_000C POISON 1 Base address of XPPU sink.

0xFF98_0010+ ISR, IMR, IEN, IDS 4
Interrupt controls: register
address decode error,
transaction violations, parity
errors.

0xFF98_003C M_MASTER_IDS 1 Number of Master IDs
configured.

0xFF98_0040+ M_APERTURE_{32 B, 64 KB, 1 MB, 512 MB} 4 Apertures for IPI, IOP CSRs,
Memory, and Quad-SPI.

0xFF98_0050+ BASE_{32 B, 64 KB, 1 MB, 512 MB} 4 Base address for each aperture
start address (read-only).

XPPU Aperture Controls

0xFF98_0100+ MASTER_ID{00:19} 20 Master ID profiles.
0xFF98_1000 -
0xFF98_13FF APERPERM_{000:255} 256 IOP, 64-KB pages.

0xFF98_1400 -
0xFF98_15FF APERPERM_{256:383} 128 IPI, 32-B pages.

0xFF98_1600 -
0xFF98_163F APERPERM_{384:399} 16 IOP memory, 64-KB pages.

0xFF98_1640 APERPERM_400 1 Quad-SPI memory, 512 MB.
XPPU Sink Control and Status

0xFF9C_FF00 ERR_STATUS 1 R/W type and Offset address
access violations.
Zynq UltraScale+ Device TRM 430
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=430

Chapter 16: System Protection Units
Lock Unused Memory Attribute

Enabling this option restricts the use of all memory locations (memory and peripherals) not
explicitly defined by the isolation setup. In a secure system this would typically be checked,
however, there are operations in a system that are not always clear and could be impacted
by this parameter. For example, when loading authenticated and/or encrypted images after
boot (a partial bit file), the system must access the CSU, eFuse, and potentially BBRAM
register space. If these are not explicitly added to the secure subsystem performing this
action, it will be blocked by the lock unused memory option. For more details see Isolation
Methods in ZynqUltraScale+MPSoCs (XAPP1320) [Ref 38].

Programming Example
This programming example includes the XPPU and XMPU programming steps for the RPU
and APU to permit secure read and write access to several system elements in the following
system configuration:

• The APU is the master of these system elements:

° DDR memory space: DDR XMPU, first 1 GB of memory.

° GEM0 control registers: XPPU aperture.

° SATA AHCI registers: FPD XMPU, a 64 KB region.
• The RPU is the master for these system elements:

° OCM memory space: OCM XMPU, first 64 KB of memory.

° I2C0 control registers: XPPU aperture.
Note: The memory regions can be configured for read-only/write-only or non-secure access based
configuration parameters.
Note: The Vivado Design Suite generates first stage bootloader (FSBL) code to program the XMPU
and XPPU based on the design defined by the processor configuration wizard (PCW).

The XMPU and XPPU register sets are listed in Table 16-8 and Table 16-14.

0xFF9C_FFEC ERR_CTRL 1 PSLVERR signaling enable.
0xFF9C_FF10+ ISR, IMR, IER, IDR 4 Interrupt controls: register

address decode error.

Table 16‐14: XPPU Register Summary

Start Address Register Names Number of
Registers

Description
Zynq UltraScale+ Device TRM 431
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=431

Chapter 16: System Protection Units
Use Cases

This section describes how each protection unit is used for this programming example.

XMPU DDR Protection Units: The APU transactions are routed through the CCI and to
access the DDR memory via the DDR XMPU{1, 2} protection units. Other system masters can
also use this path, but they are blocked by the protection units using AXI Master ID filtering.
In this example system, only an APU core is allowed to access the DDR memory controller.

The DDR XMPU{0, 3, 4, 5} units are disabled; the RPU, PL masters, and others are not
permitted to access DDR memory.

XMPU FPD Protection Unit: APU transactions are routed through the FPD XMPU
protection unit to reach the SATA AHCI memory-mapped registers in the SIOU.

XMPU OCM Protection Unit: RPU transactions are routed through the OCM XMPU
protection unit to reach the OCM memory.

XPPU Protection Unit: The XPPU protection unit permits access to the I2C and GEM
registers.

Program the DDR XMPUs

There are six DDR, one FPD, and one OCM memory protection units. Four of the DDR XMPUs
are not used in this programming example (all of the other XMPUs are used).

Disable the unused DDR XMPU units by setting the [DefWrAllowed] and [DefRdAllowed] bit
fields to “not allowed” and leave the region registers R{00:15}_{START, END, MASTER,
CONFIG} in their reset state.

• Write 0h to the DDR_XMPUx_CFG.CTRL registers (units 0, 3, 4, and 5).

Program two DDR XMPU units (1, 2} for the two parallel AXI channels from the CCI to the
DDR memory controller. For this example, they are programmed in the same manner.

1. Disallow default accesses for all regions. Write 8h to the DDR_XMPUx_CFG.CTRL
registers.

2. Program a set of region configuration registers for secure reads and writes to the first
GB of DDR memory by any of the APU cores.
a. Write 0007h to the DDR_XMPUx_CFG.R00_CONFIG register for ports 1 and 2.
b. Write 0000h to the DDR_XMPUx_CFG.R00_START register for ports 1 and 2.
c. Write 03FFh to the DDR_XMPUx_CFG.R00_END register. The memory region for the

DDR XMPU units is 1-MB aligned so bits [19:0] are always 0h and bits [39:20] are
programmed. The resulting end address is 0x0_3FF0_0000 plus the block size. The
result is 0x0_3FFF_FFFF for a total of 1 GB.
Zynq UltraScale+ Device TRM 432
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=432

Chapter 16: System Protection Units
d. Write 00C0_0080h to the DDR_XMPUx_CFG.R00_MASTER register. To allow only the
APU cores to access the DDR memory, the [MASK] bit field is set to C0h and the [ID]
bit field is set to 80h. See Table 16-9 for the list of Master ID numbers and equation
Equation 16-1 for the comparison testing done by the controller.

Note: Additional, high-order Master ID bits could be tested, but that is unnecessary for these DDR
protection units because no other master with similar ID bits has access to the DDR XMPU{1, 2} units.
Note: To enable additional masters to access the DDR memory region via the CCI, including the
DMA units in the GEM and PCIe controllers, then program additional sets of region registers using
their Master IDs and the desired memory range.

Program the FPD XMPU

Program the FPD XMPU so that it only allows the APU to access the SATA AHCI registers
with secure reads and writes in a 64-KB memory region.

1. Disallow default accesses for all regions. Write 0h to the FPD_XMPU_CFG.CTRL register.
2. Program a set of region registers.

a. Write 0007h to the FPD_XMPU_CFG.R00_CONFIG register. If strict secure/non-secure
checking is desired, write 0017h instead.

b. Write 0F_D0C0h to the FPD_XMPU_CFG.R00_START register. The memory region for
the FPD XMPU unit is 4-KB aligned so bits [11:0] are always 0h and address bits
[31:12] are programmed. The resulting start address is 0xFD0C_0000; the start of the
OCM memory.

c. Write 0F_D0CFh to the FPD_XMPU_CFG.R00_END register. The end address is
0xFD0C_F000 plus the last block. The result is 0xFD0C_FFFF.

d. Write 02C0_0080h to the FPD_XMPU_CFG.R00_MASTER register. To allow only the
APU cores to access the SATA AHCI registers, the [MASK] bit field is set to 2C0h and
the [ID] bit field is set to 080h. Refer to Table 16-9 for the list of Master ID numbers
and Equation 16-1 for the comparison testing done by the controller.

Note: These [ID] and [MASK] bit field settings are more selective than the DDR XMPU settings
because the DDR XMPUs have additional AXI masters with access to the AXI channels protected by
these protection units.

Program the OCM XMPU

Program the OCM XMPU so that it allows the RPU to access the first 64 KB of the OCM
memory region with secure read and write transactions.

1. Disallow default accesses for all regions. Write 0h to the OCM_XMPU_CFG.CTRL register.
2. Program a set of region registers.

a. Write 0007h to the OCM_XMPU_CFG.R00_CONFIG register. If strict
secure/non-secure checking is desired, write 0017h instead.
Zynq UltraScale+ Device TRM 433
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=433

Chapter 16: System Protection Units
b. Write 0F_FFC0h to the OCM_XMPU_CFG.R00_START register. The memory region
for the FPD XMPU unit is 4-KB aligned so bits [11:0] are always 0h and address bits
[31:12] are programmed. The resulting start address is 0xFFFC_0000; the start of the
OCM memory.

c. Write 0F_D0CFh to the OCM_XMPU_CFG.R00_END register. The end address is
0xFD0C_F000 plus the last block; the result is 0xFD0C_FFFF.

d. Write 02C0_0080h to the OCM_XMPU_CFG.R00_MASTER register. To allow only the
APU cores to access the SATA AHCI registers, the [MASK] bit field is set to 2C0h and
the [ID] bit field is set to 080h. Refer to Table 16-9 for the list of Master ID numbers
and Equation 16-1 for the comparison testing done by the controller.

Program the XPPU

This example configures two AXI masters and two 64 KB apertures in the XPPU.

• RPU0 permitted to access the I2C0 controller.
• APU permitted to access the GEM registers.

This is a two-step process that establishes two masters using the MASTER_IDxx registers
and two 64-KB aperture registers.

Configure two masters: the master ID [MID] and mask [MIDM] bit fields identify the
master using Equation 16-1.

1. Configure the APU as master 0. Write 02C0_0080 to the MASTER_ID00 register.
2. Configure the RPU0 as master 1. Write 02C0_0000 to the MASTER_ID01 register.
Note: The first eight MASTER_IDxx registers are predefined by reset, but they can be overwritten
and configured for any master.

Program two 64-KB Apertures: one each for access to the GEM0 and I2C0 registers.

The GEM0 registers are mapped to 0xFF0B_0000. Access is controlled by the
APERPERM_011 register at 0xFF98_102C.

• Configure aperture 11 for APU access. Write 0_0001h (enable bit for master 0) to the
APERPERM_011 [PERMISSION] bit field.

The I2C0 registers are mapped to 0xFF02_0000. Access is controlled by the APERPERM_002
register at 0xFF98_1008.

• Configure aperture 2 for RPU0 access. Write 0_0002h (enable bit for master 1) to the
APERPERM_002 [PERMISSION] bit field.

Note: The aperture registers include two other fields. The [TRUSTZONE] bit would be set to 0 in this
example to ensure only secure transactions are allowed and the [PARITY] bit needs to be calculated
and written to ensure data integrity.
Zynq UltraScale+ Device TRM 434
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=434

Chapter 16: System Protection Units
Enable XPPU permission and parity checking: the XPPU control register includes
permission and parity checking enables.

1. Enable the XPPU unit. Write a 1 to the CTRL [ENABLE] bit.
2. Optionally enable parity for the master configuration registers {00:19}. Write a 1 to the

CTRL [MID_PARITY_EN] bit.
3. Optionally enable parity for the aperture registers {000:400}. Write a 1 to the CTRL

[APER_PARITY_EN] bit.
Note: Parity errors are signaled by the ISR [MID_PARITY] and [APER_PARITY] status bits.

Write-Protected Registers Table

CRF APB Registers

The CRF_APB write-protected registers are listed Table 16-15. The protection is controlled
by the CRF_APB.CRF_WPROT [active] bit.

Table 16‐15: Write-protected Registers, CRF_APB

Registers Count Registers Count Registers Count

acpu_ctrl 1 dll_ref_ctrl 1 qspi_ref_ctrl 1
adma_ref_ctrl (LPD_DMA) 1 dp_audio_ref_ctrl 1 reset_ctrl 1
ams_ref_ctrl 1 dp_stc_ref_ctrl 1 reset_reason 1
apll_{cfg,ctrl} 2 dp_video_ref_ctrl 1 rpll_{cfg,ctrl} 2
apll_frac_cfg 1 dpll_cfg 1 rpll_frac_cfg 1
apll_to_lpd_ctrl 1 dpll_frac_cfg 1 rpll_to_fpd_ctrl 1
bank3_ctrl{0:5} 6 dpll_to_lpd_ctrl 1 rst_ddr_ss 1
bank3_status 1 gdma_ref_ctrl (FPD_DMA) 1 rst_fpd_apu 1
blockonly_rst 1 gem_tsu_ref_ctrl 1 rst_fpd_top 1
boot_mode_{por,user} 2 gem{0:3}_ref_ctrl 4 rst_lpd_dbg 1
can{0,1}_ref_ctrl 2 gpu_ref_ctrl 1 rst_lpd_iou{0,2} 2
chkr{0:7}_clka_lower 8 i2c{0,1}_ref_ctrl 2 rst_lpd_top 1
chkr{0:7}_clka_upper 8 acpu_ctrl 1 sata_ref_ctrl 1
chkr{0:7}_clkb_cnt 8 iopll_{cfg,ctrl} 2 sdio{0,1}_ref_ctrl 2
chkr{0:7}_ctrl 8 iopll_frac_cfg 1 spi{0,1}_ref_ctrl 2
clkmon_{disable,enable} 2 iopll_to_fpd_ctrl 1 timestamp_ref_ctrl 1
clkmon_{mask,status} 2 iou_switch_ctrl 1 topsw_lsbus_ctrl 1
clkmon_trigger 1 lpd_lsbus_ctrl 1 topsw_main_ctrl 1
Zynq UltraScale+ Device TRM 435
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=435

Chapter 16: System Protection Units
Other Write-Protected Registers

The remaining write-protected registers are listed in Table 16-16. The protection is
controlled by the lock bit shown in Table 16-16.

cpu_r5_ctrl 1 lpd_switch_ctrl 1 uart{0,1}_ref_ctrl 2
csu_pll_ctrl 1 nand_ref_ctrl 1 usb{0,1}_bus_ref_ctrl 2
dbg_fpd_ctrl 1 pcap_ctrl 1 usb3_dual_ref_ctrl 1
dbg_lpd_ctrl 1 pcie_ref_ctrl 1 vpll_{cfg,ctrl} 2
dbg_trace_ctrl 1 pl{0:3}_ref_ctrl 4 vpll_frac_cfg 1
dbg_tstmp_ctrl 1 pl{0:3}_thr_ctrl 4 vpll_to_lpd_ctrl 1
ddr_ctrl 1 pll_status 1

Table 16‐16: Write-Protected Registers, Others

Register Set Registers Count Lock Register Bit

DDR_XMPU{0:5}_CFG
ctrl, poison, err_status{1,2} 24 LOCK [RegWrDis]

All registers except interrupt
registers.r{00:15}_config, master 192

r{00:15}_start, end 192

FPD_XMPU_CFG
ctrl, poison, err_status{1,2} 4 LOCK [RegWrDis]

All registers except interrupt
registers.r{00:15}_config, master 32

r{00:15}_start, end 32

OCM_XMPU_CFG
ctrl, poison, err_status{1,2} 4 LOCK [RegWrDis]

All registers except interrupt
registers.

r{00:15}_config, master 32
r{00:15}_start, end 32

VCU_SLCR

alg_{dec,enc}_core_ctrl 2 CRL_WPROT [ACTIVE]
Write lock for several
registers.alg_{dec,enc}_mcu_ctrl 2

alg_vcu_axi_ctrl, pll_status 2
vcu_pll_{cfg,ctrl}, vcu_pll_frac_cfg 2

EFUSE

efuse_cache_load 1 WR_LOCK [LOCK]
Write lock for several
registers.efuse_{rd, pgm}_addr 2

cfg, tpgm, trd 3
tsu_h_{cs, ps, ps_cs} 3

Table 16‐15: Write-protected Registers, CRF_APB (Cont’d)

Registers Count Registers Count Registers Count
Zynq UltraScale+ Device TRM 436
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=436

Chapter 16: System Protection Units
Security and Safety Errors
Errors in a system can be classified into security or safety errors. An error could be safety
critical and/or security critical.

Security Error

The result of a security critical error can expose security assets. When this type of error
occurs, the system needs to be locked down. Some examples include PS SYSMON alarms for
voltage or temperature, and an indication of a single-event upset (SEU).

Safety Error

A correctable or catastrophic error is categorized as a safety error. As a result of a
catastrophic safety error, the system needs to be reset to a safe state.

A safety-compliant system is required to detect and react to an error in less than 10 ms. It
is also required to put itself into a safe state as a result of an error.

A safe state is one where the following occurs.

• Error manager is informed.
• Failure is isolated.
• If possible, high-level software (safety operating system) gets an indication of the error.
• Indicate error to outside world.
• Store error source and context for diagnostic purpose.

The hardware error status is sent to the platform management unit (PMU) as interrupts.
Based on the error source, the user-programmable software on the PMU should determine
the type of reset (PS-only reset, full-power domain reset, or RPU reset).

For some of the errors (e.g., a power failure that is both security and safety related) the
action can be configured in the configuration security unit (CSU) for a security lockdown.
However, you should only configure one or the other (depending upon the specific system
requirement). Various enable registers for power-on reset (POR), system reset, and PS error
are provided in the PMU_GLOBAL register set, which can be configured to trigger the
respective action.

The PMU is responsible for capturing all errors within the device, reporting these errors to
the outside world, and taking the appropriate action with respect to each error. The PMU
includes the necessary registers, logic, and interfaces for handling these functions.

Refer to Chapter 6, Platform Management Unit for further details on error handling and
reporting.
Zynq UltraScale+ Device TRM 437
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=437

Chapter 16: System Protection Units
AIB Isolation Functionality
The AMBA interconnect has AXI and APB isolation blocks (AIBs) that are responsible for
functionally isolating the AXI/APB master from the slave in preparation for an AXI/APB
master or slave to be powered down. The AIB manages AXI and APB interfaces during the
isolation process resulting in a graceful transition to a power-down state.

The AIB is transparent and offers zero latency during normal transactions. When isolation is
commanded by the PMU, the AIB does not propagate new transactions; it will respond to
the master with an SLVERR or ignore the transaction and cause the interconnect to timeout.
The AIB response is selected by the lpd_slcr_aib.ISO_AIB{AXI, APB}_TYPE registers. When the
isolation command is received, the AIB will allow all posted transactions to complete. When
this is done, the AIB will assert an interrupt to indicate that the channel is quiescent and
ready for an orderly isolation.

Instances

The AIB instances in the interconnect are shown in Table 16-17.

Table 16‐17: AIB Instances

Instance Number Domain Master Device Slave Device

1 LPD RPU0 LPD interconnect
2 LPD RPU1 LPD interconnect
3 LPD RPU through LPD interconnect DDR through FPD interconnect
4 LPD LPD interconnect FPD interconnect (all other FPD slaves)
5 LPD LPD interconnect RPU0
6 LPD LPD interconnect RPU1
7 LPD LPD interconnect USB0
8 LPD LPD interconnect USB1
9 LPD LPD interconnect OCM

10 LPD LPD interconnect M_AXI_HPM0_LPD
11 FPD FPD interconnect LPD interconnect (except OCM)
12 FPD FPD interconnect LPD interconnect (only to OCM)
13 FPD FPD interconnect M_AXI_HPM0_FPD
14 FPD FPD interconnect M_AXI_HPM1_FPD
15 FPD FPD interconnect GPU
Zynq UltraScale+ Device TRM 438
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=438

Chapter 16: System Protection Units
Programming

An AXI/APB isolation block programming model when using AXI as a slave is listed in the
following steps.

1. Enable the slave response by configuring the ISO_AIBAXI_TYPE (0xFF413038) register
for a specific slave.

RECOMMENDED: Xilinx recommends configuring this register during boot time and not changing it
later.

2. Request for the isolation by writing into the ISO_AIBAXI_REQ (0xFF413030) register
depending on the slave to be isolated.

3. Wait for the acknowledgment by polling the ISO_AIBAXI_ACK (0xFF413040) register.

RECOMMENDED: Xilinx recommends holding the request until there is an acknowledgment.
Zynq UltraScale+ Device TRM 439
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=439

Chapter 17

DDR Memory Controller

Introduction

Figure 17-1 shows the Zynq® UltraScale+™ MPSoC DDR subsystem placement. It connects
to rest of the MPSoC through six AXI data interfaces and one AXI control interface. One of
the data paths is connected to the real-time processing unit (RPU) and two to the cache
coherent interconnect (CCI-400). Others are multiplexed across the DisplayPort controller,
FPD DMA, and the programming logic (PL). Of the six interfaces, five are 128-bits wide and
the sixth interface (tied to the RPU) is 64-bits wide.

The DDR subsystem supports DDR3, DDR3L, LPDDR3, DDR4, and LPDDR4. It can accept read
and write requests from six application host ports that are connected to the controller using
AXI bus interfaces. These requests are queued internally and scheduled for access to DRAM
devices. The memory controller issues commands on the DDR PHY interface (DFI) interface
to the PHY module that reads and writes data from DRAM.

System Memories

The processor-addressable memories are shown in Figure 17-1 and include the following:

• External DDR DRAM memory.
• Internal OCM memory (LPD), see Chapter 18, On-chip Memory.
• RPU tightly-coupled memory (TCM), see Chapter 4, Real-time Processing Unit.
• PL block UltraRAM memories, see UltraScale Architecture Memory Resources User Guide

(UG573) [Ref 10].
Zynq UltraScale+ Device TRM 440
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=440

Chapter 17: DDR Memory Controller
X-Ref Target - Figure 17-1

Figure 17‐1: System Memories

BRAM
(slave)

2-way Cache
Coherent Master

APU
MPCore

M

To all output
ports

CCI
Coherency

And
Bypass

RPU
GIC

TCMs OCM
Switch

USB0 w/DMA

USB1 w/DMA

LPD DMA

PS SysMon eFUSE

LPD SLCRs

IPI

RTC

IO
P

In
bo

un
d

IO
P

O
ut

bo
un

d

OCM Memory

DAP Controller

S

CSU Processor

PMU Processor

Quad-SPI
GEM x4

NAND
SDIO x2

UART x2

SPI x2

CAN x2 I2C x2S

S

TBU2

Programmable
Logic

FPD SLCRs

FPD configs

DDR Memory Controller

SMMU TCU

AIB

AIB

AIB

AI
B

AI
B

AIB

AI
B

AI
B

DisplayPort

FP
D

DM
A

TBU5

CoreSight

PCIe

SATA

AXI Stream

GPU PPs

AIB

ADB ADB

ADB

TBUx

AIB

LP
D

O
ut

bo
un

d

LP
D

In
bo

un
d

AIB

AIB

S

S
M 128-bit

M_AXI_HPM0_LPD

S_AXI_LPD

S_
AX

I_
HP

3_
FP

D

S_
AX

I_
HP

2_
FP

D
S_

AX
I_

HP
1_

FP
D

S_
AX

I_
HP

0_
FP

D

S_AXI_ACP_FPD

S_AXI_ACE_FPD

S_
AX

I_
HP

C0
_F

PD

S_
AX

I_
HP

C1
_F

PD

M
_A

XI
_H

PM
0_

FP
D

M
_A

XI
_H

PM
1_

FP
D

I/O Coherent
Master

AIB

AIB

AIB

AIB

GPU cfg

[a
fif

s0
]

[a
fif

s1
]

[afifs2]

[fpd_main]

[ocms]

[fpd_lpdibs]

[lpd_ddr]

[usb0s], [usb1s]

[rpus0], [rpus1]

[rpum0],
rpum1]

[ocms]

LPD Main
Switch

RPU
Switch

Full crossbar. Each
input to all output

ports.

Full crossbar.

GPIO x78, x96

S
M64-bit

S
M32-bit

AIB

AIB

FPD
Main

Switch

I/O
2-way 2-way

I/O

I/OAX
I S

tr
ea

m

SI
O

U
 O

ut
bo

un
d

QVN

Non-Coherent
Master

RPU

M

M

TTC x4 LPD SWDT

M M

TBU3 TBU4

TB
U

1
TB

U
0

VCU RF PCIe v3.1 100Gb

PL SysMon

ACP

X21029-060818
Zynq UltraScale+ Device TRM 441
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=441

Chapter 17: DDR Memory Controller
Features

• DDR3, DDR3L, LPDDR3, DDR4, and LPDDR4.
• Support Dynamic DDR configuration of key timings parameter values by reading the

SPD on SODIMM/UDIMM/RDIMM parts.
• Dual-rank configurations.
• Dynamic scheduling to optimize bandwidth and latency.
• 64 read and 64 write buffers in fully associative content addressable memories (CAMs).
• Error correction code (ECC) support in 32-bit and 64-bit mode, 2-bit error detection

and 1-bit error correction. No ECC support for LPDDR3.
• Programmable quality of service (QoS):

° Video, isochronous: reads and writes.

° Low latency: reads.

° Best effort: reads and writes.
• Delayed writes for optimum performance on SDRAM data bus.
• Out-of-order execution of commands for enhanced SDRAM efficiency.
• Automatic DRAM low-power modes:

° Entry and exit events based on memory traffic.

° Power-down, clock-stop, and self-refresh.

° Clock-stop not supported with RDIMMs.

° No automatic low-power support for LPDDR3 and LPDDR4.
• Explicit SDRAM mode register updates under software control.
• Highly efficient read-modify-write transactions when byte enables are used with ECC

enabled.
• Automatic logging of both correctable and uncorrectable errors.
• Ability to poison the write data by adding uncorrectable errors, for use in testing ECC

error handling (ECC poison).
• Responsive to XMPU poisoned AXI transaction.
• Enable 2tCK command timing (2T timing) on the DDR3/DDR4

command/address/control bus signals. This feature can be used as a workaround to
address signal quality problems on the CAC bus caused by sub-optimal board layout or
power quality issues.
Zynq UltraScale+ Device TRM 442
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=442

Chapter 17: DDR Memory Controller
DDR PHY Features

• Complete PHY initialization, training, and control.
• Automatic differential data strobe (DQS) gate training.
• Delay line calibration and voltage threshold (VT) compensation.
• Automatic write leveling.
• Automatic read and write data bit deskew and eye centering.
• Automatic address/command bit deskew and eye centering for LPDDR3.
• Automatic bit deskew and eye centering for LPDDR4.
• Enhanced power saving support.
• PHY control and configuration registers.
• Compatible with the DFI 4.0 PHY interface standard.

DDR Memory Types, Densities, and Data Widths

The DDR memory controller is able to connect to devices under the conditions listed in
Table 17-1.
,

Table 17‐1: DDR Memory Controller Conditions

Parameter Value Notes

Maximum total memory density (GB) 34 This is the maximum supported density.

Total data width (bits) 16, 32, 64 16 and 64-bit LPDDR4 are not supported.
16-bit is supported for DDR4 only.

Component memory density (Gb per die) 0.5, 1, 2, 4, 6, 8, 12, 16
3, 6, 12 and 16Gb single-channel LPDDR4
are not supported.
6, 12, 24 and 32Gb dual-channel LPDDR4
are not supported.

Component data width (bits) 8, 16, 32 4-bit devices not supported. Byte-mode
LPDDR4 devices not supported.

Number of ranks 2
Number of row address bits 17 Limited by the memory controller.
Number of bank address bits 3
Bank group 2
MEMC_FREQ_RATIO 2 DDR PHY to controller clock ratio (2:1).
Zynq UltraScale+ Device TRM 443
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=443

Chapter 17: DDR Memory Controller
Table 17-2 lists some memory configuration examples. The memory configuration speeds
are listed in the Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics
(DS925) [Ref 2].

Note: Table 17-2 lists just some of the possible memory configurations. Other configurations are
possible.

DDR DRAM Pins

The DDR I/O pins are located on bank 504 and can have a 16-bit, 32-bit or 64-bit data path
to the DRAMs depending on the device type. Bytes 0 to 1 correspond to 16-bit data, bytes
0 to 3 correspond to 32-bit data, and bytes 0 to 7 correspond to 64-bit data. Byte 8 refers
to the ECC bits. The pins are summarized in Table 17-3. See Zynq UltraScale+ MPSoC
Packaging and Pinout User Guide (UG1075) [Ref 7] for pin assignments. The pin swap
guidelines are described in Answer Record 67330. See UltraScale Architecture PCB Design
User Guide (UG583)[Ref 15] for clamshell functionality.

Table 17‐2: Example Memory Configurations

Technology Configuration
Number of

Components
Total

Width
Component

Density
Capacity Rank

DDR3 (with ECC) x8 9 72 4 Gb/8 Gb 4 GB/8 GB 1 and 2
DDR3 (with ECC) x16 5 72 2 Gb 1
DDR3L (with ECC) x8 9 72 4 Gb/8 Gb 4 GB/8 GB 1 and 2
DDR3L (with ECC) x16 5 72 2 Gb 1
LPDDR3 x32 2 64 4Gb 1
DDR4 x8 8 64 8 Gb/16 Gb 8 GB/16 GB 1 and 2
DDR4 (with ECC) x16 5 72 8 Gb 1
LPDDR4 x32 1 32 8 Gb 1
LPDDR4 x32 with DDP 2 32 16 Gb 2
LPDDR4 (with ECC) x32 2 40 8 Gb 1

Table 17‐3: DDR Pins

Pin Name Direction Description

PS_DDR_DQ Input/Output DRAM data.
PS_DDR_DQS_P Input/Output DRAM differential data strobe positive.
PS_DDR_DQS_N Input/Output DRAM differential data strobe negative.
PS_DDR_ALERT_N Input DRAM alert signal.
PS_DDR_ACT_N Output DRAM activation command.
PS_DDR_A Output DRAM row and column address.
PS_DDR_BA Output DRAM bank address.
PS_DDR_BG Output DRAM bank group.
Zynq UltraScale+ Device TRM 444
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/67330.html
https://www.xilinx.com/support/answers/67330.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=444

Chapter 17: DDR Memory Controller
Power and Reset

The DDR memory controller is powered by the VCC_PSINTFP_DDR pins. These pins must be
connected to the VCC_PSINTFP power pins and the FPD power supply. The DDR memory
controller can only be reset along with the FPD using the PMU_GLOBAL.GLOBAL_RESET
[FPD_RST] reset bit.

System Block Diagram
The DDR subsystem (Figure 17-2) consists of six instances of the Xilinx memory protection
unit (DDR_XMPU), AXI to APB bridge, AXI performance monitor, DDR controller and DDR
PHY.

The XMPU protection unit prevents unauthorized access to restricted areas of the DDR.
Both read and write accesses are restricted. The AXI performance monitor provides AXI
throughput and latency for all six input ports of the DDR controller. The AXI performance
monitor can be accessed by software.

After the request goes through the performance monitors and protection units, the DDR
controller establishes a priority for each read, write, and high priority read request based on
many factors. The requests are arbitrated and presented to the DDR PHY, and several stages
of buffering occurs.

The PHY processes read/write requests from the controller and translates them into specific
signals within the timing constraints of the target DDR memory. Signals from the controller
are used by the PHY to produce internal signals that connect to the pins through the digital
PHYs. The DDR pins connect directly to the DDR device or devices through the PCB signal
traces.

PS_DDR_CK_N Output DRAM differential clock negative.
PS_DDR_CK Output DRAM differential clock positive.
PS_DDR_CKE Output DRAM clock enable.
PS_DDR_CS Output DRAM chip select.
PS_DDR_DM Output DRAM data mask.
PS_DDR_ODT Output DRAM termination control.
PS_DDR_PARITY Output DRAM parity signal.
PS_DDR_RAM_RST_N Output DRAM reset signal, active Low.
PS_DDR_ZQ Input/Output ZQ calibration signal.

Table 17‐3: DDR Pins (Cont’d)

Pin Name Direction Description
Zynq UltraScale+ Device TRM 445
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=445

Chapter 17: DDR Memory Controller
Xilinx Memory Protection Unit

The XMPU is a region-based memory protection unit. In this chapter, an AXI port interface
is referred to as an AXI port. An incoming read or write request on an AXI port in one of the
XMPUs is checked against each XMPU region. Any read or write transactions to the DDR
regions undergo predefined checks and only when they pass these checks are the
transactions allowed. Read and write permissions are independently checked. If the check
fails, then the transaction is handled as described in the XMPU Error Handling section in the
System Protection Units in Chapter 16.

The addresses and master IDs are used for checks. If the address and ID range checks are
true, and if the memory region is configured as secure, then only a secure request can
access this region. If the transaction is non-secure and the region is configured as secure,
the check fails, and the transaction is handled as described in the XMPU Error Handling
section. If the region is configured as secure, the region's read/write permissions determine
if reads or writes are allowed.

X-Ref Target - Figure 17-2

Figure 17‐2: DDR Subsystem Block Diagram

X24647-092820

AXI
Performance

Monitor

XMPU0

From
RPU and LPD

Masters

XMPU1

From
CCI-400

XMPU2

From
CCI-400

XMPU3 XMPU4

From
S_AXI_HP1_FPD

and
S_AXI_HP2_FPD

XMPU5

From
S_AXI_HP3_FPD

and
FPD_DMA

DDR QoS Controller
AXI to
APB

Bridge

DDR Memory Controller

DDR multiPHY

DDR3, LPDDR3, DDR4, LPDDR4
Standard DDR Memory Interface

From Top
Switch

From
S_AXI_HP0_FPD
and DisplayPort
Zynq UltraScale+ Device TRM 446
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=446

Chapter 17: DDR Memory Controller
If a read (or write) security check passes but the permission check fails, then the XMPU
poisons the request, records the address and master ID of the first transaction that failed
the check, flags a read (or write) permission violation, and optionally generates an
interrupt. For more details, refer to the XMPU Error Handling section.

DDR QoS Controller

The DDR memory controller implements the top-level QoS policy for the six ports it
supports for DDR access. The QoS is a priority based scheme, where each master in a system
can assign a priority value to a transaction request where a servicing node with a choice of
more than one transaction selects the transaction with the higher QoS value to process first.
The system-level QoS implements two major objectives: Prevention of Head-of-Line
Blocking and Traffic Classes.

Prevention of Head-of-Line Blocking

Head-of-line blocking (HOLB) can occur when two or more different traffic classes share the
same physical channel. A typical example is when a low-priority request cannot make
progress and a high priority request is blocked behind it. HOLB is prevented with the
following guidelines.

• Have two ports between the CCI-400 and the DDR controller carry two QoS virtual
network channels (QVN) per physical channel.

• On all other DDR controller ports, assign only one class of traffic to each port.

Traffic Classes

The Zynq UltraScale+ MPSoC broadly defines three types of traffic classes.

• Video/isochronous traffic class is a real-time, fixed bandwidth, fixed maximum latency
class. Typically, a long latency and low priority is acceptable, but the latency must be
bounded in all cases and never exceed a predefined maximum value.

• Low latency (LL) traffic class is a low-latency, high-priority (HPR) class. It is typically
assigned the highest memory access priority and can only be surpassed by a video
class transaction that has exceeded its threshold maximum latency.

• Best effort (BE) traffic is a high-latency, low-priority (LPR) class used for all other traffic
types. This class of traffic is typically assigned the lowest memory access priority.

• DDR reads are prioritized in one of these three classes: best effort (BER),
video/isochronous (VPR), and low latency (LL). DDR writes are prioritized in one of
these two classes: best effort (BEW) and video/isochronous (VPW).

Further details are described in the Read and Write Priorities section of this chapter.
Zynq UltraScale+ Device TRM 447
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=447

Chapter 17: DDR Memory Controller
The QoS controller ensures that there is space available in the DDR controller content
addressable memory (CAM) for video class traffic at all times. It achieves this by
continuously monitoring the CAM levels and throttling the XPI data port arbiter requests
for non-video class traffic when preprogrammed CAM thresholds are exceeded. When the
CAM level drops below the predefined threshold value, it sends a control signal to the
DDRC to throttle down all BE requests. When the CAM reaches a programmed threshold
level, the QoS controller masks the corresponding AXI port/direction from requesting to the
port arbiter (PA) inside the DDRC using the pa_rmask and pa_wmask signals. Figure 17-3
shows the functional block diagram of the QoS controller.

The QoS controller has a defined set of software-programmable registers per port.

Type Register

The DDR_QOS_CTRL.PORT_TYPE register (2 bits) specifies the traffic class for each of the six
ports.

X-Ref Target - Figure 17-3

Figure 17‐3: QoS Controller Functional Block Diagram

7-bit Read LPR Threshold Register

=
If [(Read LPR CAM Level

<= Read LPR threshold) &&
PORTn_LPR_CTRL ==1] then

assert pa_rmask

TYPE

pa_rmask[n]

To DDRC

RD LPR CAM

Level from
DDRC

7-bit Read HPR Threshold Register

=
If [(Read HPR CAM Level <=

Read HPR threshold) &&
PORTn_HPR_CTRL ==1] then

assert pa_rmask

0 1 TYPE

pa_rmask[n]

To DDRC

RD HPR CAM

Level from
DDRC

7-bit Write Threshold Register

=
If [(Write CAM Level

<= Write threshold) &&
PORTn_WR_CTRL ==1] then

assert pa_wmask

TYPE

pa_wmask[n]

To DDRC

WR CAM Level

 from DDRC

0 10 1

X15349-110620

Bit Field Value Description

00 Best effort traffic class.
01 Low-latency traffic class.
10 Video/isochronous traffic class.
11 Reserved
Zynq UltraScale+ Device TRM 448
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=448

Chapter 17: DDR Memory Controller
Control Registers

The QoS control register (QOS_CTRL) enables and disables controller operation
independently per port for write queue, LPR, and HPR. Each port uses the following control
bits that you set (where n equals the number of ports).

Threshold Registers

When the DDRC CAM levels reaches their threshold, the QoS controller applies the
following throttling rules.

Interrupt Sources

Several events in the DDR memory controller can assert IRQ 144. The interrupts from the
following sources are managed by the DDR_QOS_CTRL.QOS_IRQ_{STATUS, MASK} registers.

• Correctable ECC error [DDR_ECC_CORERR].
• Uncorrectable ECC error.
• DFI initialization complete [DFI_INIT_COMP].
• DFI parity error due to mode register set (MRS) [DFI_ALT_ERR_FTL].
• DFI parity error counter reaches to its maximum count [DFI_ALT_ERR_MAX].
• DFI parity or CRC error detected on the DFI interface [DFI_ALT_ERR].
• Performance counter interrupt when register copy is done [PC_COPY_DONE].

Bit Field Name Description

PORTn_LPR_CTRL QoS function for low-priority reads (read LPR) channel enable/disable.
PORTn_HPR_CTRL QoS function for high-priority reads (read HPR) channel enable/disable.
PORTn_WR_CTRL QoS function for write channel enable/disable.

Bit Field Name Description

RD_LPR_THRSLD Read LPR threshold.
RD_HPR_THRSLD Read HPR threshold.
WR_THRSLD Write threshold.

Rule Description

Read channel
throttle rules

If ((slots available in read LPR CAM  read LPR threshold) && PORTn_LPR_CTRL == 1),
then assert pa_rmark to DDRC for all best effort ports.
If ((slots available in read HPR CAM  read HPR threshold) && PORTn_HPR_CTRL == 1),
then assert pa_rmark to DDRC for all low-latency ports

Write channel
throttle rule

If ((slots available in write CAM  write CAM threshold) && PORTn_WR_CTRL == 1),
then assert pa_wmask to DDRC for all best-effort ports.
Zynq UltraScale+ Device TRM 449
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=449

Chapter 17: DDR Memory Controller
• Invalid DDR memory controller register access [INV_APB].

All interrupts from the list, except for DFI initialization complete, must be cleared in both
the QoS controller and DDR controller by writing to their respective clear registers. The
steps that are required for clearing interrupts are listed.

1. Clear the interrupt in the DDR controller by writing to the respective clear register.
2. Clear the interrupt in the QoS controller by writing to the

DDR_QOS_CTRL.qos_irq_status register.

DDR Subsystem Overview
The DDR subsystem (Figure 17-4) is divided into two major blocks, the DDR memory
controller and the DDR PHY and I/O, and includes the DRAM memory device(s).

X-Ref Target - Figure 17-4

Figure 17‐4: DDR Subsystem Block Diagram

AXI Port
Interface

(n)

Command
MUX

Port Arbiter

Data MUX/
Response

DeMUX

DDR Control
Registers

Response
Engine

AXI Port
Interface

(0)

Scheduler

DDRC

command

data

aclk[0]

Port 0
AXI

command

data

aclk[n]

Port n
AXI

PHY
Utility
Block
(PUB)

Data PHY
(DDRPHYDATX8)

SSTL
I/O

Bank

DDR
External
Memory

Top-Level
DDR PHY

Data PHY
(DDRPHYDATX8)

uMCTL2 HIF

Address/Command
PHY

(DDRPHYACX18)

Data PHY
(DDRPHYDATX8)

Data PHY
(DDRPHYDATX8)

DDR PHY
Registers

D
F
I

D
F
I

ddrc_ref_clk
APB

Interface
APB

Interface

Internet Sources

CAM Levels

XPI Levels

Write Data RAM
Interface

Retry RAM
Interface

Read Re-Order
RAM Interface

X15350-110620
Zynq UltraScale+ Device TRM 450
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=450

Chapter 17: DDR Memory Controller
The DDR memory controller consists of four major blocks: an AXI port interface, a port
arbiter, a DDR controller, and the APB register block. The AXI port interface (XPI) interfaces
the AXI application port to the memory controller. It converts AXI burst into read and write
requests that are forwarded to the port arbiter. The port arbiter block arbitrates command
requests from multiple AXI port interfaces and ensures maximum memory bus efficiency.
The DDR controller (DDRC) block contains a logical content addressable memory (CAM)
that holds information on the commands. The CAM is used by the scheduling algorithms to
optimally schedule commands to be sent to the PHY, based on priority, bank/rank status
and DDR timing constraints.

AXI Port Interface

The AXI port interface (XPI) provides the interface to the application ports. It provides bus
protocol handling, data buffering and reordering for read data, data bus size conversion
(upsizing or downsizing), and memory burst address alignment.

The XPI interfaces the AXI application port to the DDR memory controller and performs the
following main functions.

• Read address generation.
• Write address generation.
• Write data generation.
• Read data and response generation.
• Write response generation.

The XPI converts AXI bursts into DRAM read and write requests that are forwarded to the
port arbiter (PA). In the opposite direction, the XPI converts the responses from the DDRC
into appropriate AXI responses. All AXI ports are configured synchronous to the memory
controller clock.

Read Address Channel

The AXI read address channel has the following features.

• The read transaction can be of any length up to 16.
• The burst types supported are incremental and wrapping. Fixed burst is not supported.
• The burst start address can be unaligned to the AXI data width boundaries.
• The size of the burst can be less than the full width of the AXI data bus (also known as

sub-sized transfers).

All read requests are stored in read-address queue (RAQ). Generation of new read requests
are based on alignment (derived from AXI address and size), burst lengths (derived from AXI
length and memory burst length), and burst type (derived from AXI incremental or
Zynq UltraScale+ Device TRM 451
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=451

Chapter 17: DDR Memory Controller
wrapping). Each AXI burst is divided into packets of length equal to the memory burst
length (BL4, BL8, or BL16). In case of an unaligned burst, the first read request is unaligned
and the remaining read requests are aligned. In general, realignment to a memory burst
boundary potentially causes some data beats to be discarded (affecting bandwidth) and
potentially introduces additional latency on the read data and response channel. The XPI
handles the generation of the token that is used by the DDRC for identifying the read
command and corresponding data.

Write Address Channel

Write address queue (WAQ) is used to store all the addresses for write requests from a given
port. There is a single queue for all AXI IDs from a given port. The write-address channel
behavior is similar to the read-address channel. Write address and read address channels
are independent and the ordering between the write and read requests might not be
preserved. To preserve the sequence, a higher-level protocol needs to wait for a read/write
response before sending the next transaction. Transactions across the ports are
independent and can be issued in any order. The write command is not forwarded to the
DDRC until the write data is collected and the strobes are evaluated.

Read Data and Response Channel

The XPI handles the common response interface to the DDRC to process the read data from
the memory. AXI read data and response channel has a single-data storage queue, the read
data queue (RDQ). Data from different IDs are stored in the same queue and are returned in
the order of read-address acceptance. The controller provides an OKAY response for each
read, except for exclusive read transactions. A SLVERR response can be returned for read
transactions (both normal and exclusive) in the following cases.

• ECC uncorrected error detected at the DFI.
• Invalid LPDDR3 row address.
• Transaction is poisoned.

The read data can be returned from the DDRC in a different order from the order that the
read commands are forwarded from the XPI. This is due to the re-ordering of read
commands in the DDRC to maximize SDRAM bandwidth. A read reorder buffer is
implemented in each port to reorder the read data for that port to the same order as the
order of the AXI read commands. The read reorder buffer SRAM holds the same number of
entries as the read CAM and each entry holds the read data corresponding to a DDR
command. The AXI protocol allows the read data for transactions of different IDs to be
interleaved. To reduce potential delays where read data for one ID is blocked waiting for
data associated with another ID, the read reorder buffer is organized in number of virtual
channels. The read reorder virtual channel (RRVC) is a mechanism to allow independent
read data reordering between multiple groups of AXI IDs.
Zynq UltraScale+ Device TRM 452
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=452

Chapter 17: DDR Memory Controller
Write Data Channel

The AXI write data channel has a data storage queue. This queue is used as a registering
layer between the AXI domain and DDR controller. At the output of the write-data queue
(WDQ), some beats of a write data can be masked depending on alignment, burst size, and
burst length. DDR write data from each port is forwarded to the DDRC, which forwards the
data to the DDR.

Write Response Channel

The write response is generated once the last beat of write data, for a given AXI burst, is
accepted by the DDRC. The write response generation makes use of the result of the
exclusive access monitor. For a write transaction, the response is always returned as OKAY.
For an exclusive write transaction, the response can be returned as OKAY or EXOKAY. A
SLVERR response can be returned in the following cases.

• Invalid LPDDR3 row address.
• On-chip parity address or data error.
• Transaction is poisoned.

Exclusive Access

All exclusive read transactions have an EXOKAY response (except in the case of an ECC
uncorrectable error). Successful exclusive write accesses have an EXOKAY response,
unsuccessful exclusive write accesses return an OKAY response. If an exclusive write fails,
the data mask for the exclusive write is forced Low and the data is not written. The DDRC
monitors one address per transaction ID for exclusivity. Therefore, if a master does not
complete the write portion of an exclusive operation, a subsequent exclusive read to the
same ID changes the address that is being monitored for exclusivity. Once an exclusive
access monitor for a given address is enabled, all write transactions are monitored for
violation, regardless of the originating port. The violation check operates across the ports.
The exclusive access monitor compares the exclusive write transaction address, size, length,
ID, and port number against the exclusive read transaction address, size, length, ID, and
port number, and only accepts an exclusive write when these parameters match. Otherwise,
the exclusive write is considered as a fail. An exclusive access monitor is present in the
DDRC. Zynq UltraScale+ devices support eight exclusive access address monitors for six
ports.

XMPU Poisoned Transaction

A sideband signal, AxPOISON, renders an AXI transaction (read or write) invalid and causes
an error response (AXI SLVERR). If a write is poisoned, all of its strobes are deasserted,
making the write effectively transparent to the memory. If a read is poisoned, the command
is issued to the DDR memory and all of the read data beats are overridden and returned as
all zeros in conjunction with error response.
Zynq UltraScale+ Device TRM 453
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=453

Chapter 17: DDR Memory Controller
Port Arbiter

The port arbiter (PA) block provides latency sensitive, priority-based arbitration between
the DRAM commands issued by the XPIs (by the ports). The PA block arbitrates command
requests from six AXI ports to the host interface (HIF) of the DDR controller (DDRC). The
port arbiter is comprised of multiple tiers of arbitration stages which include the following.

Read/Write Arbitration

The main goal of the read/write arbitration is to combine reads and writes together as long
as the selected direction has available credits and the timeout has not occurred for any port
of the opposite direction. If all conditions are equal, reads are prioritized over writes.
Minimizing direction switches improves memory bus efficiency.

For example while executing reads, stay on the reads as long as there is a timed-out read
port or expired video/isochronous priority reads (VPR) with available credit, else switch to
writes if there is a timed-out write port or expired video/isochronous priority writes (VPW)
with available credit. Otherwise, switch to writes when there is no read-credit left and there
is a pending write with available credit.

While executing writes, stay on the writes as long as there is a timed-out write port or
expired-VPW with available credit, else switch to reads if there is a timed-out read port or
expired-VPR with available credit. Otherwise, switch to reads if there is an HPR read port
with available credit, else switch to reads when there is no write-credit left and there is a
pending read with available credit.

The timeouts are implemented using aging counters implemented per port, per direction
that count down the time when a port is requesting but not granted. The timeout condition
occurs when a port aging counter becomes 0 and the port becomes the highest priority
requester (priority 0) to the port arbiter. The PCFGR [rd_port_priority] and PCFGW
[wr_port_priority] register bits determine the initial value of the counters. The aging feature
and the timeout are enabled by the PCFGR [rd_port_aging_en] and PCFGW
[wr_port_aging_en] register bits.

Read and Write Priorities

The read channel of a port can be set to operate as high priority reads (HPR), low priority
reads (LPR), or video/isochronous priority reads (VPR). The write channel of a port can be
set as best-effort writes (BEW) or video/isochronous priority writes (VPW). The PA gives
higher priority to an HPR read port than an LPR/VPR read port. VPRs that are not expired
are treated as LPRs from the arbiter point of view. If a VPR transaction expires in the XPI, it
has higher priority than HPRs or writes.

BEW and VPW have the same initial priority. VPWs that are not expired, are treated as BEWs
from the arbiter point of view. If a VPW transaction expires in the XPI, it has higher priority
than BEWs. When multiple VPR/VPW commands expire simultaneously, the PA executes
them in round-robin order to the DDRC.
Zynq UltraScale+ Device TRM 454
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=454

Chapter 17: DDR Memory Controller
Port Command Priority

The next tier of arbitration policy is the multiple-level port command priorities. The
priorities are per command and can dynamically change for a given port based on AXI
AxQoS signals (arqos/awqos). This tier of arbitration has a lower-level priority than the
timeout tier. In addition, for reads, the port priority tier has lower priority than the
HPR/LPR-VPR tier.

Round-Robin Arbitration

After passing all tiers of arbitration, a tie is resolved by the final round-robin arbitration
stage. The round-robin pointer starts from a port that has the lowest port index. After a
grant, the pointer is moved to the first active requester after the one that just received the
grant.

Port Arbiter Masking

When the mask bit for an AXI interface to the QoS controller is set, it masks the request
from the corresponding AXI port/direction to the port arbiter (PA). An external QoS
controller controls the port arbitration by throttling certain XPI ports based on traffic class,
queue status, and other dynamic criteria. The port masking is managed by the QoS setting
in the tools and the various QoS policies followed by the DDRC.

DDR Controller Address Map

The DDR controller (DDRC) block performs the scheduling and SDRAM command
generation. It holds information on the commands, and then based on the scheduling
algorithms optimally schedule commands to be sent to the PHY-based on priority,
bank/rank status, and DDR timing constraints.

Address Map

A master that wants to access the DDR provides memory read and write requests using a
system address. The system address is the command address of a transaction as presented
on one of the XPI data ports. The address mapper block within the DDR controller converts
this system address to a physical address. It maps the system address to the SDRAM rank,
bank group (for DDR4), bank, row, and column addresses.

The controller supports the definition of up to two disjoint memory regions mapping to the
SDRAM consecutive addresses. The system address region specification is the same for all
data ports. An error response is not generated by the controller for addresses falling
outside the specified address regions. The same address translation is applied from one
base address to the next base address. The base addresses must be specified and they
cannot overlap. It is assumed that an outside agent can generate address decode errors if
errors happen to occur. An example is shown in Figure 17-5.
Zynq UltraScale+ Device TRM 455
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=455

Chapter 17: DDR Memory Controller
SDRAM Address Mapping

The DDRC is responsible for mapping system addresses used by the PS and PL AXI masters
to the SDRAM row, bank, and column addresses. Optimizing the mapping to specific data
access patterns allows increased SDRAM utilization by reducing page and row change
overhead. Many combinations of address remapping are not available however, the
bank-row-column and row-bank-column configurations are achievable.

The first part of the mapping is the conversion of a system address to an AXI byte address.
The DDRC maps the disjointed address regions into internal consecutive addresses. The
second part of this mapping is conversion of AXI byte address to HIF word address. This is
performed in the XPI block. The last part is the conversion of the HIF word address to the
SDRAM address. A flexible address mapper maps the HIF word address to the SDRAM
rank/bank/bank group/row/column address. This address mapper is located within the
DDRC.

The address mapper maps HIF word addresses to SDRAM addresses by selecting the HIF
address bit that maps to every applicable SDRAM address bit. The available address space
is only accessible when no two SDRAM address bits are determined by the same HIF address
bit. The registers ADDRMAPx (x = 0 to 11) are used to program the address mapper.

Each SDRAM address bit has an associated register vector to determine its source. The
associated HIF address bit is determined by adding the internal base of the ADDRMAPx (x
= 0 to 11) register to the programmed value for that register, as described in Equation 17-1.

[HIF address bit number] = [internal base] + [register value] Equation 17‐1

X-Ref Target - Figure 17-5

Figure 17‐5: Address Region Mapping Example

Region 0

System
40-bit Address Map

Region 1

Region 0

Region 1

Internal Controller
36-bit Address Map

0

34 GB

1024 GB

2
2 GB

32 GB

64

32

2

0

X15351-101917
Zynq UltraScale+ Device TRM 456
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=456

Chapter 17: DDR Memory Controller
For example, an ADDRMAP3.addrmap_col_b7 register internal base is 7. When a full data
bus is in use, column bit 7 is determined by Equation 17-2.

[Internal base (i.e., 7)] + [register value] Equation 17‐2

If the ADDRMAP3.addrmap_col_b7 register is programmed to 2, then the HIF address bit is
as shown in Equation 17-2.

[AXI address bit number]= 7 + 2 = 9 Equation 17‐3

The result is that the column address bit 7 that is sent to the SDRAM is mapped to an HIF
address bit of *_ADDR[9].

In the half bus-width mode, all the column bits shift up by one bit. In this case, the
ADDRMAP3.addrmap_col_b6 register determines the mapping of the SDRAM column
address bit 7. In the quarter bus-width mode (only supported for DDRA), all of the column
bits shift up by two bits.

Address Collision Handling

The DDRC can execute transactions out-of-order while ensuring that all transactions appear
as if they are executed in the order that they are received. Every transaction that requires a
response from the DDRC arrives with a token number which is provided back to the Zynq
UltraScale+ MPSoC as part of the response. Because the DDRC queues transactions prior to
execution, it is possible that multiple transactions to the same SDRAM address can arrive
before the first transaction to that address is issued. To enforce ordering of accesses to the
same address, the DDRC uses the following algorithm.

• New read colliding with queued read causes no problems. The two reads can end up
being executed out-of-order.

• New write colliding with queued write.

° If a write combine is enabled, the DDRC overwrites the data for the old write with
the one from the new write and only performs one write transaction (write
combine).

° If the write combine is disabled, the DDRC holds the new write transaction in a
temporary buffer, applies flow control to prevent more transactions from arriving,
and flushes the internal queue holding the colliding transaction until that
transaction is serviced. Once completed, the DDRC accepts the new transaction.

• New read (or write) colliding with queued write (or read) respectively. In this case, the
DDRC performs the following sequence.
a. Holds the new transactions in a temporary buffer.
b. Applies flow control back at the AXI port interface to prevent more transactions from

arriving.
Zynq UltraScale+ Device TRM 457
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=457

Chapter 17: DDR Memory Controller
c. Flushes the internal queue holding the colliding transaction until that transaction is
serviced.

d. Accepts the new transaction and removes flow control.
• A new read colliding with both read and write can happen when a read collides with a

read-modify-write (RMW) command. In this case, the reads are flushed until the read
collision is cleared, then the writes are flushed

• A new write colliding with both read and write can happen when a write collides with a
RMW command. In this case, the new write is held in a temporary buffer until the read
is completed. Then, it is combined with the queued write (if write combine is enabled).

• In a new RMW colliding with queued write case, the new RMW is stored in a temporary
buffer until the queued write is completed.

Error Correcting Code

The error correcting code (ECC) block consists of an encoder and a decoder that can detect
and correct single-bit errors, and detect double-bit errors for configurations where the
DRAM data width is configured to be 32 or 64 bits. The syndrome bits are calculated on a
32-bit or 64-bit basis based on DRAM data width selection. The ECC block support only
covers the data bus and is not applicable for address and command bus. ECC is not
supported for LPDDR3.

The ECC block has these features:

• Hamming code based ECC calculations
• Single-bit error detection and correction
• Double-bit error detection
• Error counter for single-bit and double-bit errors
• Supports error injection (single-bit and double-bit errors) for testing and debugging
• Interrupt generation on error

Figure 17-6 illustrates the interface between the DDR subsystem and DRAM memories with
ECC enabled.
Zynq UltraScale+ Device TRM 458
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=458

Chapter 17: DDR Memory Controller
The ECC feature can be enabled or disabled by programming the ECCCFG0.ecc_mode
register. If ECCCFG0 [ecc_mode] = 100, the ECC is enabled and the controller performs the
following functions.

• On writes, the syndrome is calculated across DRAM data width, and the resulting ECC
code is written as an additional byte along with the data as shown in Figure 17-6. This
additional ECC byte is always written to the uppermost byte (byte 8 for both 32-bit and
64-bit DRAM).

• On reads, the DRAM data bus including the ECC byte is read from the DRAM and is
then decoded. A check is performed to verify that the ECC byte is as expected, based
on the data in DRAM data bus. If it is correct, the data is sent to the processing system
as normal. If it is not correct it executes steps as described in ECC Error Behavior.

• On read-modify-write operations, first a read is performed. The read data is then
combined with the write data, making use of the write mask received to over-write
certain bytes of the data that are read. The ECC is then calculated on the resulting data,
and the write is performed.

Note: Avoid streaming high priority, non 64-bit write transactions to memory when ECC is enabled.
The read-modify-write sequences negatively impact memory controller performance and might
cause unrelated high throughput video traffic to be starved.
Note: Enabling ECC on the DDR can diminish overall available memory bandwidth or increase access
latency under certain conditions. System designers should carefully consider the trade offs between
enabling ECC and bandwidth/latency requirements of other components in the system, when there is
a possibility of a significant amount of partial (sub-64 bit) writes to memory. See Answer Record
67651 for more information.

ECC Initialization

When the ECC mode is enabled, a write operation computes and stores an ECC code along
with the data, and a read operation reads and checks the data against the stored ECC code.
Consequently, it is possible to receive ECC errors when reading uninitialized memory
locations. To avoid this problem, all memory locations must be written before being read.

X-Ref Target - Figure 17-6

Figure 17‐6: DDR Interface with ECC Enabled

DDR
Subsystem

DRAM
(Data Memory)

DRAM
(ECC Memory)

32/64-bits

8-bits

X21069-070218
Zynq UltraScale+ Device TRM 459
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/67651.html
https://www.xilinx.com/support/answers/67651.html
https://www.xilinx.com/support/answers/67651.html
https://www.xilinx.com/support/answers/67651.html
https://www.xilinx.com/support/answers/67651.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=459

Chapter 17: DDR Memory Controller
Writing to the entire DDR DRAM through the CPU can be time intensive. It might be
worthwhile to use a DMA device to generate larger bursts to the DDR controller
initialization and offload the CPU.

If the ECC mode is selected in the Vivado tools, the first-stage boot loader (FSBL) initializes
the DDR DRAM to a known value.

ECC Error Behavior

The controller performs these steps when it detects correctable ECC errors:

1. Sends the corrected data to the PS core as part of the read data.
2. Writes the address, syndrome bits, and data mask bits to ECC registers in the DDRC

register set.
3. Performs a RMW operation to correct the data present in the DRAM (only if ECC

scrubbing is enabled (ECCCFG0.dis_scrub = 0). This RMW operation is invisible to the
core. Only one scrub RMW command can be outstanding in the controller at any time.
No scrub is performed on single-bit ECC errors that occur while the controller is
processing another scrub RMW.

4. Sets the [DDRECC_CORERR] interrupt bit in the DDR_QOS_CTRL.QOS_IRQ_STATUS
register.

The controller performs these steps when it detects uncorrectable ECC errors:

1. Sends the data with the error back to the AXI interconnect as the read data.
2. Writes the address and syndrome bits to ECC registers in the DDRC register set.
3. Generates an error response SLVERR on the AXI interface. If L2 cache is disabled, CPU

receives the SLVERR response directly which can cause a Data Abort exception. If L2
cache is enabled, L2 cache reports the SLVERR by issuing an interrupt to CPU.

4. Sets the [DDRECC_UNCRERR] interrupt bit in the DDR_QOS_CTRL.QOS_IRQ_STATUS
register.

Data Mask During ECC Mode

When ECC is enabled, the memory controller generates a simple write to the DRAMs when
the data is 64 bits wide and aligned to a 64-bit boundary. Otherwise, the controller
performs a more time-consuming read-modify-write operation on the DRAM. In this case,
the controller first fetches the read data from the DRAM and merges it with the write data
from the AXI interconnect and generates the ECC bits. The controller then writes whole
words with ECC to the DRAMs.

Note: If a stream of partial writes are performed by an AXI port interface with high priority, it can
have a major negative impact on the ability of other ports to access memory. For example, this can
cause an isochronous video stream to drop data.
Zynq UltraScale+ Device TRM 460
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=460

Chapter 17: DDR Memory Controller
Encoding for Corrected Bit Number

Table 17-4 provides the encoding used for the status register field DDRC.ECCSTAT
[corrected_bit_num] which indicates the bit that is corrected.

Table 17‐4: Encoding for DDRC.ECCSTAT [corrected_bit_num]

Value on
DDRC.ECCSTAT[corrected_bit_num]

Bit that has Error

DRAM Bus Width = 64 DRAM Bus Width = 32

0 64 (ecc[0]) 64 (ecc[0])
1 65 (ecc[1]) 65 (ecc[1])
2 66 (ecc[2]) 66 (ecc[2])
3 0 0
4 67 (ecc[3]) 67 (ecc[3])
5 1 1
6 2 2
7 3 3
8 68 (ecc[4]) 68 (ecc[4])
9 4 4

10 5 5
… … …
15 10 10
16 69 (ecc[5]) 69 (ecc[5])
17 11 11
18 12 12
… … …
21 15 15
22 16 16
… … …
31 25 25
32 70 (ecc[6]) 70 (ecc[6])
33 26 26
34 27 27
… … …
38 31 31
39 32 NA
… … …
63 56 NA
64 71 (ecc[7]) 71 (ecc[7])
Zynq UltraScale+ Device TRM 461
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=461

Chapter 17: DDR Memory Controller
ECC Programming Model

This section describes the ECC programming requirements.

Note: These configurations are in addition to the regular DDR initialization programming.
Initialization of the entire DDR space before reading any data from it is recommended to prevent ECC
error generation as a result of accessing uninitialized areas of memory. See ECC Initialization for
more details.

Monitoring ECC Status

1. Read the ECC status register (DDRC.ECCSTAT), which provides bit number corrected by
single-bit ECC error, single-bit error indicators, and double-bit error indicators. See
Encoding for Corrected Bit Number for the encoding used for the status register field
DDRC.ECCSTAT [corrected_bit_num].

2. Read the ECC error counter register (DDRC.ECCERRCNT) to see the number of
correctable and uncorrectable ECC errors detected.

3. Read the DDRC.{ECCCADDR0, ECCCADDR1} register to see the bank/row/column
information of the corrected ECC error.

4. Read the DDRC.{ECCUADDR0, ECCUADDR1} register to see the bank/row/column
information of the uncorrected ECC error.

ECC Poisoning

1. Program DDRC.ECCCFG1 [data_poison_en] to 1'b1, which introduces the ECC errors on
writes to the address specified by the DDRC.ECCPOISONADDR {0, 1} registers.

2. Selects the correctable data poisoning or uncorrectable data poisoning. Program
DDRC.ECCCFG1 [data_poison_bit] bit (1'b0 - 2-bit (uncorrectable) data poisoning,
1'b0 - 1-bit (correctable) data poisoning).

3. Set the address to be poisoned in the DDRC.ECCPOISONADDR {0, 1} registers.
Note: ECCPOISONADDR0[11:0], ecc_poison_col, must be burst aligned. In 64-bit bus width
mode, ecc_poison_col[2:0] must be set to 0. In 32-bit bus width mode, ecc_poison_col[3:0] must
be set to 0.

4. Write to the poison address. Subsequent reads to the same 1-2 DRAM burst length of
addresses are detected.

65 57 NA
66 58 NA
… … …
71 63 NA

Table 17‐4: Encoding for DDRC.ECCSTAT [corrected_bit_num] (Cont’d)

Value on
DDRC.ECCSTAT[corrected_bit_num]

Bit that has Error

DRAM Bus Width = 64 DRAM Bus Width = 32
Zynq UltraScale+ Device TRM 462
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=462

Chapter 17: DDR Memory Controller
A sample test program tests the ECC correctable/uncorrectable error detection by inserting
error bits into DDR memory is described in the Zynq UltraScale+ MPSoC – 64-bit DDR Access
with ECC technical article [Ref 25].

ECCSTAT Register DDRC for Encoding of ECC Corrected Bit
Number

Figure 17-7 shows the DDR ECC error bit location.

Functional Description
The DDR PHY (DDRP) provides the interface between the DDR controller and the I/O pads.
It handles all issues associated with command launch, write data launch, and read data
capture.

DDR PHY PLL Control

The six DDR PLLs provide fast, accurate clocking to the I/O buffers interfacing to the
DRAMs. The DDR_REF_CLK provides the source clock to the PLLs, which are controlled by six
sets of registers. The data and ECC registers can be updated individually or as a group using
the broadcast set of registers, PLLCR{0:5}. The PLL control architecture is shown in
Figure 17-8.

X-Ref Target - Figure 17-7

Figure 17‐7: DDR ECC Error Bit Location

DDR ECC Error Bit
Location

0

64 Bytes + ECC
ECCCADDR0 [ecc_corr_row] (Row)

1

2

3

4

5

6

7

01234567

ECCCADDR0 [ecc_corr_rank] (Rank)

ECCCSTAT [ecc_corrrected_bit_num] = 35

ECCCSTAT [ecc_corrrected_err] = 0010

ECCCADDR1 [ecc_corr_col] = 4

ECCCADDR1 [ecc_corr_bank] (Bank Number)
ECCCADDR1 [ecc_corr_bg] (Bank Group)

4 0

10
00

01
00

00
10

00
01

10
00

01
00

00
10

00
01

x72

8 Beats to DRAMs

From HIF of DDRC

Example:
Error in bit 35 of column 5

X21014-060618
Zynq UltraScale+ Device TRM 463
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=463

Chapter 17: DDR Memory Controller
X-Ref Target - Figure 17-8

Figure 17‐8: DDR PHY PLL Control Architecture

DDR PLL 0
DX8SL0PLLCR{0:5} Data Byte 0Clock

Data Byte 1

DDR PLL Control Registers
(DDR_PHY register set)

DX8SLbPLLCR{0:5}

Broadcast to
PLL control registers.

DDR PLL 1
DX8SL1PLLCR{0:5} Data Byte 2Clock

Data Byte 3

DDR PLL 2
DX8SL2PLLCR{0:5} Data Byte 4Clock

Data Byte 5

DDR PLL 3
DX8SL3PLLCR{0:5} Data Byte 6Clock

Data Byte 7

DDR PLL 4
DX8SL4PLLCR{0:5} ECC ByteClock

DDR PLL 5
PLLCR{0:5} Address

and
Command

Clock

Data PLL Control

DDR_REF_CLK

DRAM

D
ev

ic
e

Bo
un

da
ry

X19906-092917
Zynq UltraScale+ Device TRM 464
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=464

Chapter 17: DDR Memory Controller
The DDR controller PHY consists of the following units.

PHY Utility Block

The PHY utility block (PUB) controls various features of the PHY such as initialization, DQS
gate training, delay line calibration and VT compensation, write leveling, and
programmable configuration controls. It also provides a DFI interface to the PHY. The PUB
includes configuration registers in the DDR_PHY register set.

PHY Description

The PHY has four types of I/O buffers: address/command, data (8-bit blocks), clocking, and
SSTL (configurable).

• DDRPHYAC
The DDR SDRAM address/command PHY (DDRPHYAC) provides an address and
command interface to the external SDRAM memories. A memory interface would
typically contain a single address/command PHY.

• DDRPHYDATX8
The DDR SDRAM data PHY (DDRPHYDATX8) provides data interface to one byte of an
external SDRAM memory.

• SSTL I/O library
The stub-series terminated logic (SSTL) I/O library includes process, voltage, and
temperature (PVT)-compensated, on-die termination (ODT), and output impedance.

Controller Initialization
The controller initialization sequence has the following phases.

• PHY initialization
• DRAM initialization
• Data training
Zynq UltraScale+ Device TRM 465
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=465

Chapter 17: DDR Memory Controller
Figure 17-9 and Figure 17-10 show high-level illustrations of the initialization sequence of
the PHY.

X-Ref Target - Figure 17-9

Figure 17‐9: PHY Initialization Sequence

Uninitialized PHY

Configure PHY
Initialization

Trigger PHY
Initialization

PLL Initialization

Delay Line
Calibration

PHY Reset

Impedance Calibration
Configure SDRAM Timing
Configure Data Training

Wait for PHY
Initialization to

 complete.

PHY Initialized

Trigger DRAM
Initialization and

Data Training

A

RDIMM Initialization

DRAM Initialization

PHY
Initialization

DRAM
Initialization

X15353-092816
Zynq UltraScale+ Device TRM 466
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=466

Chapter 17: DDR Memory Controller
Impedance calibration failures can be caused by an open or short on the PS_DDR_ZQ pin.
Double check to ensure PS_DDR_ZQ is connected to GND with a 240Ω resistor. There should
be separate 240Ω resistors at the FPGA and the DRAM.

PHY Initialization

After deassertion of reset, the PHY is uninitialized. PHY initialization is comprised of
initializing the PHY PLL(s), running the initial impedance calibration, and running delay-line
calibration. These functions can all be triggered at the same time by writing
PIR = x0000_0033. The initial impedance calibration can be run in parallel with the PLL
initialization and subsequent delay line calibration.

X-Ref Target - Figure 17-10

Figure 17‐10: PHY Initialization Sequence (Continued)

A

CA Training
(LPDDR3 only)

Write Leveling

Read Leveling

Write Latency
Adjustment Training

Read and Write Bit
Deskew Training

Read and Write Eye
Centering Training

VREF Training
(DDR4 and LPDDR4 only)

PHY READY

Data Training

DQS2DQ Training
(LPDDR4 only)

X15354-032417
Zynq UltraScale+ Device TRM 467
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=467

Chapter 17: DDR Memory Controller
DRAM Initialization

The DDR controller performs DRAM initialization. The DDR_PHY PIR must be programmed
with PIR = 0004_0001 to transfer control of the DFI interface from the PUB to the DDR
controller for DRAM initialization.

Data Training

After RDIMM initialization and SDRAM initialization, the PIR can be programmed to run one
or more of the training steps.

The following training steps can be triggered by writing to the appropriate PIR register bit.

1. CA training (LPDDR3 only).
2. Write leveling.
3. Read leveling.
4. DQS2DQ training (LPDDR4 only).
5. Write latency adjust training.
6. Read data bit deskew training.
7. Write data bit deskew training.
8. Read data eye training.
9. Write data eye training.
10. VREF training (DDR4 and LPDDR4).

Dynamic DDR Configuration

The controller is able to be configured for different memory settings at runtime while the
DDR controller is in reset. Typically, this is used in DIMM topologies by reading the DRAM
configuration from the DIMM SPD EEPROM via a I2C peripheral.

See Answer Record 75768 for more information.
Zynq UltraScale+ Device TRM 468
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com

https://www.xilinx.com/support/answers/75768.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=468

Chapter 17: DDR Memory Controller
Programming Topics
PHY General Status Register

Impedance Calibration

PLL Initialization

Delay Line Calibration

DRAM Initialization

CA Training (LPDDR3 Only)

Write Leveling

Read Leveling

Write DQS2DQ Training (LPDDR4 only)

Write Latency Adjustment

Data Eye Training

VREF Training (DDR4 and LPDDR4 only)

PHY General Status Register

After initializing the DRAM interface, basic status information is captured in PHY General
Status Register 0 (PGSR0). This register indicates whether various initialization and data
training steps were completed, and whether any high-level errors or warnings were flagged
for any of the steps. Table 17-5 defines the fields within PGSR0.

Table 17‐5: PHY General Status Register 0 (PGSR0)

Bits Name Description Address

[0] IDONE
Initialization done: if set, indicates that the DDR
system initialization has completed. This bit is set
after all the selected initialization routines have
completed.

0xFD080030

[1] PLDONE PLL lock done: if set, indicates that PLL locking has
completed. 0xFD080030

[2] DCDONE Digital delay line (DDL) calibration done: if set,
indicates that DDL calibration has completed. 0xFD080030

[3] ZCDONE Impedance calibration done: if set, indicates that
impedance calibration has completed. 0xFD080030
Zynq UltraScale+ Device TRM 469
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=469

Chapter 17: DDR Memory Controller
[4] DIDONE DRAM initialization done: if set, indicates that DRAM
initialization has completed. 0xFD080030

[5] WLDONE Write leveling done: if set, indicates that write leveling
has completed. 0xFD080030

[6] QSGDONE DQS gate training done: if set, indicates that read
leveling (DQS Gate Training) has completed. 0xFD080030

[7] WLADONE Write leveling adjustment done: if set, indicates that
write leveling adjustment has completed. 0xFD080030

[8] RDDONE Read bit deskew done: if set, indicates that read bit
deskew has completed. 0xFD080030

[9] WDDONE Write bit deskew done: if set, indicates that write bit
deskew has completed. 0xFD080030

[10] REDONE Read eye training done: if set, indicates that read eye
training has completed. 0xFD080030

[11] WEDONE Write eye training done: if set, indicates that write eye
training has completed. 0xFD080030

[12] CADONE CA training done: if set, indicates that LPDDR3 CA
training has completed. 0xFD080030

[14] VDONE
VREF training done: if set, indicates that DRAM and
host VREF training has completed. DDR4 and LPDDR4
only.

0xFD080030

[15] DQS2DQDONE Write DQS2DQ training done. if set, indicates that
write DQS2DQ training has completed. LPDDR4 only. 0xFD080030

[18] DQS2DQERR Write DQS2DQ training error: if set, indicates that
there is an error in DQS2DQ training. 0xFD080030

[19] VERR VREF training error: if set, indicates that there is an
error in VREF training. 0xFD080030

[20] ZCERR Impedance calibration error: if set, indicates that
there is an error in impedance calibration. 0xFD080030

[21] WLERR Write leveling error: if set, indicates that there is an
error in write leveling. 0xFD080030

[22] QSGERR DQS gate training error: if set, indicates that there is
an error in read leveling (DQS Gate Training). 0xFD080030

[23] WLAERR Write leveling adjustment error: if set, indicates that
there is an error in write leveling adjustment. 0xFD080030

[24] RDERR Read bit deskew error: if set, indicates that there is an
error in read bit deskew. 0xFD080030

[25] WDERR Write bit deskew error: if set, indicates that there is an
error in write bit deskew. 0xFD080030

[26] REERR Read eye training error: if set, indicates that there is
an error in read eye training. 0xFD080030

Table 17‐5: PHY General Status Register 0 (PGSR0) (Cont’d)

Bits Name Description Address
Zynq UltraScale+ Device TRM 470
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=470

Chapter 17: DDR Memory Controller
By studying the contents of PGSR0, it is possible to identify any errors or warnings that
occurred during initialization and training. Additional registers can be checked for more
information related to any errors or warnings. See subsequent sections in this chapter for a
more detailed description of each initialization and training step, as well as where to look
for more debugging information.

Impedance Calibration

The PHY includes calibration I/O cells and finite state machine logic to automatically
compensate output drive strength and on-die termination strength, adjusting for variations
in process, voltage, and temperature. The Impedance Control Status Registers (ZQnSR)
provide additional debugging information. ZQ0SR shows the results of calibration for
address, command, and control I/Os. ZQ1SR shows the results of calibration for data,
strobe, and mask I/Os. Table 17-6 lists the fields within ZQnSR.

Impedance calibration failures can be caused by an open or short on the PS_DDR_ZQ pin.
Double check to ensure PS_DDR_ZQ is connected to GND with a 240Ω resistor. There should
be separate 240Ω resistors at the FPGA and the DRAM.

[27] WEERR Write eye training error: if set, indicates that there is
an error in write eye training. 0xFD080030

[28] CAERR CA training error: if set, indicates that there is an error
in LPDDR3 CA training. 0xFD080030

[29] CAWRN CA training warning: if set, indicates that there is a
warning in LPDDR3 CA training. 0xFD080030

[31] APLOCK AC PLL lock: if set, indicates that the AC PLL has
locked. 0xFD080030

Table 17‐5: PHY General Status Register 0 (PGSR0) (Cont’d)

Bits Name Description Address

Table 17‐6: Impedance Control Status Register (ZQnSR)

Bits Name Description Address

[1:0] ZPD

Output impedance pull-down calibration
status. Valid status encodings are:
2b00 = Completed with no errors
2b01 = Overflow error
2b10 = Underflow error
2b11 = Calibration in progress

0xFD08069C

and
0xFD0806BC

[3:2] ZPU

Output impedance pull-up calibration status.
Valid status encodings are:
2b00 = Completed with no errors
2b01 = Overflow error
2b10 = Underflow error
2b11 = Calibration in progress

0xFD08069C

and
0xFD0806BC
Zynq UltraScale+ Device TRM 471
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=471

Chapter 17: DDR Memory Controller
[5:4] OPD

On-die termination (ODT) pull-down
calibration status. Valid status encodings are:
2b00 = Completed with no errors
2b01 = Overflow error
2b10 = Underflow error
2b11 = Calibration in progress

0xFD08069C

and
0xFD0806BC

[7:6] OPU

On-die termination (ODT) pull-up calibration
status. Valid status encodings are:
2b00 = Completed with no errors
2b01 = Overflow error
2b10 = Underflow error
2b11 = Calibration in progress

0xFD08069C

and
0xFD0806BC

[8] ZERR
Impedance calibration error: if set, indicates
that there was an error during impedance
calibration.

0xFD08069C

and
0xFD0806BC

[9] ZDONE

Impedance calibration done: indicates that the
first round of impedance calibration has
completed. Any time impedance calibration is
restarted, this bit goes back to 0 until all
segments are recalibrated, following which
this bit returns to 1.

0xFD08069C

and
0xFD0806BC

[10] PU_DRV_SAT

Pull-up drive strength code saturated due to
drive strength adjustment setting in ZQnPR
register. Is non-zero only in LPDDR4 mode. If
this is set to 1'b1, the adjustment factor or
ZPROG setting for the corresponding segment
needs to be scaled.

0xFD08069C

and
0xFD0806BC

[11] PD_DRV_SAT

Pull-down drive strength code saturated due
to drive strength adjustment setting in ZQnPR
register. Is non-zero only in DDR4 mode. If this
is set to 1'b1, the adjustment factor or
ZPROG setting for the corresponding segment
needs to be scaled.

0xFD08069C

and
0xFD0806BC

[12] PU_ODT_SAT

Pull-up termination strength code saturated
due to drive strength adjustment setting in
ZQnPR register. Is non-zero only in DDR4
mode. If this is set to 1'b1, the adjustment
factor or ZPROG setting for the corresponding
segment needs to be scaled.

0xFD08069C

and
0xFD0806BC

[13] PD_ODT_SAT

Pull-down termination strength code
saturated due to drive strength adjustment
setting in ZQnPR register. Is non-zero only in
LPDDR4 mode. If this is set to 1'b1, the
adjustment factor or ZPROG setting for the
corresponding segment needs to be scaled.

0xFD08069C

and
0xFD0806BC

Table 17‐6: Impedance Control Status Register (ZQnSR) (Cont’d)

Bits Name Description Address
Zynq UltraScale+ Device TRM 472
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=472

Chapter 17: DDR Memory Controller
PLL Initialization

After triggering reset, the PHY waits for the PLLs to lock before any further initialization task
that uses a high-speed (controller) clock can commence. The PLL initialization completion
status is indicated by the PGSR0.P.LDONE bit. The lock status of individual PLLs is indicated
by the bits in Table 17-7.

If any PLLs fail to lock, check the integrity of the Vcc_psddr_pll supply. See the UltraScale
Architecture PCB Design User Guide (UG583) [Ref 15] to ensure that the guidelines for the
Vcc_psddr_pll supply have been followed. Check that the correct memory interface device
frequency has been entered in the Zynq UltraScale+ MPSoC DDR configuration page in the
Vivado design tools. This number must be set no lower than 166 MHz.

Delay Line Calibration

After the PLLs have locked, the PHY executes delay line calibration before any further
initialization task that uses a high-speed (controller) clock can commence.

Each master delay line has to be calibrated for the SDRAM clock period. This is done by
measuring the number of delay line steps that are required to produce a delay equal to the
DDR clock period. Each master delay line is calibrated independently. Delay line calibration
is normally done as part of the PHY initialization sequence.

Once all delay lines have been calibrated, the calibration done status is asserted through a
status register bit, PGSR0.DCDONE. The results of the calibration are available in the
registers listed in Table 17-8.

Table 17‐7: PLL Lock Status Bits

Register Bits Name Description Address

PGSR0 [31] APLOCK AC PLL lock: if set, indicates that the AC PLL has
locked. 0xFD080030

DX0GSR0 [16] DPLOCK DATX8 PLL lock: if set, indicates that the DATX8
PLL controlling bytes 0 and 1 has locked. 0xFD0807E0

DX2GSR0 [16] DPLOCK DATX8 PLL lock: if set, indicates that the DATX8
PLL controlling bytes 2 and 3 has locked. 0xFD0809E0

DX4GSR0 [16] DPLOCK DATX8 PLL lock: if set, indicates that the DATX8
PLL controlling bytes 4 and 5 has locked. 0xFD080BE0

DX6GSR0 [16] DPLOCK DATX8 PLL lock: if set, indicates that the DATX8
PLL controlling bytes 6 and 7 has locked. 0xFD080DE0

DX8GSR0 [16] DPLOCK DATX8 PLL lock: if set, indicates that the DATX8
PLL controlling byte 8 has locked. 0xFD080FE0
Zynq UltraScale+ Device TRM 473
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=473

Chapter 17: DDR Memory Controller
Table 17‐8: Master Delay Line Registers

Register Bits Name Description Address

ACMDLR0 [8:0] IPRD Initial period: initial period measured by the master
delay line calibration for AC. 0xFD0805A0

ACMDLR0 [24:16] TPRD
Target period: target period measured by the master
delay line calibration for AC. This changes with voltage
and temperature.

0xFD0805A0

DX0MDLR0 [8:0] IPRD Initial period: initial period measured by the master
delay line calibration for byte 0. 0xFD0807A0

DX0MDLR0 [24:16] TPRD
Target period: target period measured by the master
delay line calibration for byte 0. This changes with
voltage and temperature.

0xFD0807A0

DX1MDLR0 [8:0] IPRD Initial period: initial period measured by the master
delay line calibration for byte 1. 0xFD0808A0

DX1MDLR0 [24:16] TPRD
Target period: target period measured by the master
delay line calibration for byte 1. This changes with
voltage and temperature.

0xFD0808A0

DX2MDLR0 [8:0] IPRD Initial period: initial period measured by the master
delay line calibration for byte 2. 0xFD0809A0

DX2MDLR0 [24:16] TPRD
Target period: target period measured by the master
delay line calibration for byte 2. This changes with
voltage and temperature.

0xFD0809A0

DX3MDLR0 [8:0] IPRD Initial period: initial period measured by the master
delay line calibration for byte 3. 0xFD080AA0

DX3MDLR0 [24:16] TPRD
Target period: target period measured by the master
delay line calibration for byte 3. This changes with
voltage and temperature.

0xFD080AA0

DX4MDLR0 [8:0] IPRD Initial period: initial period measured by the master
delay line calibration for byte 4. 0xFD080BA0

DX4MDLR0 [24:16] TPRD
Target period: target period measured by the master
delay line calibration for byte 4. This changes with
voltage and temperature.

0xFD080BA0

DX5MDLR0 [8:0] IPRD Initial period: initial period measured by the master
delay line calibration for byte 5. 0xFD080CA0

DX5MDLR0 [24:16] TPRD
Target period: target period measured by the master
delay line calibration for byte 5. This changes with
voltage and temperature.

0xFD080CA0

DX6MDLR0 [8:0] IPRD Initial period: initial period measured by the master
delay line calibration for byte 6. 0xFD080DA0

DX6MDLR0 [24:16] TPRD
Target period: target period measured by the master
delay line calibration for byte 6. This changes with
voltage and temperature.

0xFD080DA0

DX7MDLR0 [8:0] IPRD Initial period: initial period measured by the master
delay line calibration for byte 7. 0xFD080EA0
Zynq UltraScale+ Device TRM 474
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=474

Chapter 17: DDR Memory Controller
DRAM Initialization

After the PHY PLLs have been initialized and the delay lines and PHY I/Os have been
calibrated, the interface is ready for initializing the DRAMs. The DRAM must be correctly
initialized before further training of the PHY can be executed. The controller has built-in
logic for performing DRAM initialization that is applicable to all DRAM types supported by
the controller. The built-in initialization completion is indicated through the PGSR.IDONE
register bit.

CA Training (LPDDR3 Only)

CA training is a feature of LPDDR3 memory used for optimizing the setup and hold times of
the CA bus relative to the memory clock. CA training is a special mode of operation in the
memory enabled through mode register writes. In this mode, the value of the CA bus
captured by the memory during assertion of the chip select (cs_n) is reflected back on the
DQ bus. The rising edge CA values are returned on even DQ bits and falling edge CA values
are returned on odd DQ bits. Since minimum DQ width is 16, only 8 CA bits can be trained
in a session. Consequently, two sessions are required for complete CA training. Completion
of CA training is signaled by PGSR0.CADONE. High-level error and warning flags are
PGSR0.CAERR and PGSR0.CAWRN, respectively.

CA training deskews the CA bits by adjusting bit delay line (BDL) delays on all the CA bits.
The results of this deskew are visible in the AC bit delay line registers, as listed in Table 17-9.

DX7MDLR0 [24:16] TPRD
Target period: target period measured by the master
delay line calibration for byte 7. This changes with
voltage and temperature.

0xFD080EA0

DX8MDLR0 [8:0] IPRD Initial period: initial period measured by the master
delay line calibration for byte 8. 0xFD080FA0

DX8MDLR0 [24:16] TPRD
Target period: target period measured by the master
delay line calibration for byte 8. This changes with
voltage and temperature.

0xFD080FA0

Table 17‐8: Master Delay Line Registers (Cont’d)

Register Bits Name Description Address

Table 17‐9: AC Bit Delay Line Registers

Register Bits Name Description Address

ACBDLR1 [5:0] ACTBD
Delay select for the BDL on ACTN. In LPDDR3 mode,
with address copy enabled, this is connected to
CA_B[9].

0xFD080544

ACBDLR2 [5:0] BA0BD
Delay select for the BDL on BA[0]. In LPDDR3 mode,
with address copy enabled, this is connected to
CA_B[6].

0xFD080548

ACBDLR2 [13:8] BA1BD
Delay select for the BDL on BA[1]. In LPDDR3 mode,
with address copy enabled, this is connected to
CA_B[7].

0xFD080548
Zynq UltraScale+ Device TRM 475
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=475

Chapter 17: DDR Memory Controller
CA training also adjusts a locally calibrated delay line (LCDL) to center the clock within the
CA bits. The results of this training are listed in Table 17-10.

ACBDLR2 [21:16] BG0BD
Delay select for the BDL on BG[0]. In LPDDR3 mode,
with address copy enabled, this is connected to
CA_B[8]

0xFD080548

ACBDLR6 [5:0] A00BD Delay select for the BDL on address A[0]. 0xFD080558

ACBDLR6 [13:8] A01BD Delay select for the BDL on address A[1]. 0xFD080558

ACBDLR6 [21:16] A02BD Delay select for the BDL on address A[2]. 0xFD080558

ACBDLR6 [29:24] A03BD Delay select for the BDL on address A[3]. 0xFD080558

ACBDLR7 [5:0] A04BD Delay select for the BDL on address A[4]. 0xFD08055C

ACBDLR7 [13:8] A05BD Delay select for the BDL on address A[5]. 0xFD08055C

ACBDLR7 [21:16] A06BD Delay select for the BDL on address A[6]. 0xFD08055C

ACBDLR7 [29:24] A07BD Delay select for the BDL on address A[7]. 0xFD08055C

ACBDLR8 [5:0] A08BD Delay select for the BDL on address A[8]. 0xFD080560

ACBDLR8 [13:8] A09BD Delay select for the BDL on address A[9]. 0xFD080560

ACBDLR8 [21:16] A10BD
Delay select for the BDL on address A[10]. In LPDDR3
mode, with address copy enabled, this is connected
to CA_B[0].

0xFD080560

ACBDLR8 [29:24] A11BD
Delay select for the BDL on address A[11]. In LPDDR3
mode, with address copy enabled, this is connected
to CA_B[1].

0xFD080560

ACBDLR9 [5:0] A12BD
Delay select for the BDL on address A[12]. In LPDDR3
mode, with address copy enabled, this is connected
to CA_B[2].

0xFD080564

ACBDLR9 [13:8] A13BD
Delay select for the BDL on address A[13]. In LPDDR3
mode, with address copy enabled, this is connected
to CA_B[3].

0xFD080564

ACBDLR9 [21:16] A14BD
Delay select for the BDL on address A[14]. In LPDDR3
mode, with address copy enabled, this is connected
to CA_B[4].

0xFD080564

ACBDLR9 [29:24] A15BD
Delay select for the BDL on address A[15]. In LPDDR3
mode, with address copy enabled, this is connected
to CA_B[5].

0xFD080564

Table 17‐9: AC Bit Delay Line Registers (Cont’d)

Register Bits Name Description Address

Table 17‐10: AC Local Calibrated Delay Line Register (ACLCDLR)

Bits Name Description Address

[8:0] ACD Address/command delay for AC Macro 0: Delay select for the
address/command (ACD) LCDL. 0xFD080584

[24:16] ACD1 Address/command delay for AC Macro 1: delay select for the
address/command (ACD) LCDL. 0xFD080584
Zynq UltraScale+ Device TRM 476
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=476

Chapter 17: DDR Memory Controller
Write Leveling

For signal integrity reasons, clock, address, and control signals in multiple SDRAM systems
must be routed sequentially from one SDRAM to the next. This is called fly-by topology and
helps to reduce the number of stubs and their length. The write data and strobe signals can,
however, be routed with equal delay to each SDRAM. The fly-by topology can cause skew
between the clock and the data strobe, making it difficult for the controller to maintain
tDQSS, tDSS, and tDSH specification. Write leveling is used to compensate for this skew by
aligning the clock with the data strobe at each SDRAM.

The PHY uses the write leveling feature, and feedback from the SDRAM, to adjust the
DQS_t - DQS_c to CK_t - CK_c relationship. Write leveling has adjustable delay settings on
DQS_t - DQS_c to align the rising edge of DQS_t - DQS_c with that of the clock at the DRAM
pin. The DRAM asynchronously feeds back CK_t - CK_c (sampled with the rising edge of
DQS_t - DQS_c) through the DQ bus. Writing leveling repeatedly delays DQS_t - DQS_c until
a transition from 0 to 1 is detected. The DQS_t - DQS_c delay established through write
leveling confirms the tDQSS specification.

The completion of write leveling is signaled by PGSR0[WLDONE] PGSR0[WLERR] indicates
that an error occurred during write leveling. More detailed status information is listed in
Table 17-11.

Table 17‐11: Write Leveling Status Information in DATX8 (DXnGSR0)

Register Bits Name Description Address

DX0GSR0 [5] WLDONE Write leveling done: if set, indicates that the DATX8 has
completed write leveling for byte 0. 0xFD0807E0

DX1GSR0 [5] WLDONE As described above, but for byte 1. 0xFD0808E0

DX2GSR0 [5] WLDONE As described above, but for byte 2. 0xFD0809E0

DX3GSR0 [5] WLDONE As described above, but for byte 3. 0xFD080AE0

DX4GSR0 [5] WLDONE As described above, but for byte 4. 0xFD080BE0

DX5GSR0 [5] WLDONE As described above, but for byte 5. 0xFD080CE0

DX6GSR0 [5] WLDONE As described above, but for byte 6. 0xFD080DE0

DX7GSR0 [5] WLDONE As described above, but for byte 7. 0xFD080EE0

DX8GSR0 [5] WLDONE As described above, but for byte 8. 0xFD080FE0

DX0GSR0 [6] WLERR Write leveling error: if set, indicates that there is a write
leveling error in the DATX8 for byte 0. 0xFD0807E0

DX1GSR0 [6] WLERR As described above, but for byte 1. 0xFD0808E0

DX2GSR0 [6] WLERR As described above, but for byte 2. 0xFD0809E0

DX3GSR0 [6] WLERR As described above, but for byte 3. 0xFD080AE0

DX4GSR0 [6] WLERR As described above, but for byte 4. 0xFD080BE0

DX5GSR0 [6] WLERR As described above, but for byte 5. 0xFD080CE0

DX6GSR0 [6] WLERR As described above, but for byte 6. 0xFD080DE0
Zynq UltraScale+ Device TRM 477
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=477

Chapter 17: DDR Memory Controller
Additional write leveling debugging information is listed in Table 17-12.

DX7GSR0 [6] WLERR As described above, but for byte 7. 0xFD080EE0

DX8GSR0 [6] WLERR As described above, but for byte 8. 0xFD080FE0

Table 17‐11: Write Leveling Status Information in DATX8 (DXnGSR0) (Cont’d)

Register Bits Name Description Address

Table 17‐12: Write Leveling Debug Registers

Register Bits Name Description Address

DX0GSR0 [15:7] WLPRD

Write leveling period: returns the DDR clock period
measured by the write leveling LCDL during
calibration of byte 0. The measured period is used
to generate the control of the write leveling
pipeline, which is a function of the write-leveling
delay and the clock period. This value is PVT
compensated.

0xFD0807E0

DX1GSR0 [15:7] WLPRD As described above, but for byte 1. 0xFD0808E0

DX2GSR0 [15:7] WLPRD As described above, but for byte 2. 0xFD0809E0

DX3GSR0 [15:7] WLPRD As described above, but for byte 3. 0xFD080AE0

DX4GSR0 [15:7] WLPRD As described above, but for byte 4. 0xFD080BE0

DX5GSR0 [15:7] WLPRD As described above, but for byte 5. 0xFD080CE0

DX6GSR0 [15:7] WLPRD As described above, but for byte 6. 0xFD080DE0

DX7GSR0 [15:7] WLPRD As described above, but for byte 7. 0xFD080EE0

DX8GSR0 [15:7] WLPRD As described above, but for byte 8. 0xFD080FE0

DX0LCDLR0 [8:0] WLD Write leveling delay: delay select for the write
leveling (WL) LCDL for byte 0. 0xFD080780

DX1LCDLR0 [8:0] WLD As described above, but for byte 1. 0xFD080880

DX2LCDLR0 [8:0] WLD As described above, but for byte 2. 0xFD080980

DX3LCDLR0 [8:0] WLD As described above, but for byte 3. 0xFD080A80

DX4LCDLR0 [8:0] WLD As described above, but for byte 4. 0xFD080B80

DX5LCDLR0 [8:0] WLD As described above, but for byte 5. 0xFD080C80

DX6LCDLR0 [8:0] WLD As described above, but for byte 6. 0xFD080D80

DX7LCDLR0 [8:0] WLD As described above, but for byte 7. 0xFD080E80

DX8LCDLR0 [8:0] WLD As described above, but for byte 8. 0xFD080F80

DX0LCDLR1 [8:0] WDQD Write data delay: delay select for the write data
(WDQ) LCDL for byte 0. 0xFD080784

DX1LCDLR1 [8:0] WDQD As described above, but for byte 1. 0xFD080884

DX2LCDLR1 [8:0] WDQD As described above, but for byte 2. 0xFD080984

DX3LCDLR1 [8:0] WDQD As described above, but for byte 3. 0xFD080A84

DX4LCDLR1 [8:0] WDQD As described above, but for byte 4. 0xFD080B84
Zynq UltraScale+ Device TRM 478
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=478

Chapter 17: DDR Memory Controller
DX5LCDLR1 [8:0] WDQD As described above, but for byte 5. 0xFD080C84

DX6LCDLR1 [8:0] WDQD As described above, but for byte 6. 0xFD080D84

DX7LCDLR1 [8:0] WDQD As described above, but for byte 7. 0xFD080E84

DX8LCDLR1 [8:0] WDQD As described above, but for byte 8. 0xFD080F84

DX0GTR0 [19:16] WLSL

Write leveling system latency: used to adjust the
write latency of byte 0 after write leveling.
Valid values:
0000: Write latency = WL-1 DRAM clock period
0001: Write latency = WL-0.5 DRAM clock period
0010: Write latency = WL
0011: Write latency = WL+0.5 DRAM clock period
0100: Write latency = WL+1 DRAM clock period
0101: Write latency = WL+1.5 DRAM clock period
0110: Write latency = WL+2 DRAM clock period
0111: Write latency = WL+2.5 DRAM clock period
1000: Write latency = WL+3 DRAM clock period
1001: Write latency = WL+3.5 DRAM clock period
1010: Write latency = WL + 4 DRAM clock period
1011 - 1111: RESERVED

Write DQS are pipelined according to the table
above.
Note: Write data carries additional pipeline delay
according to WDQSL.

0xFD0807C0

DX1GTR0 [19:16] WLSL As described above, but for byte 1. 0xFD0808C0

DX2GTR0 [19:16] WLSL As described above, but for byte 2. 0xFD0809C0

DX3GTR0 [19:16] WLSL As described above, but for byte 3. 0xFD080AC0

DX4GTR0 [19:16] WLSL As described above, but for byte 4. 0xFD080BC0

DX5GTR0 [19:16] WLSL As described above, but for byte 5. 0xFD080CC0

DX6GTR0 [19:16] WLSL As described above, but for byte 6. 0xFD080DC0

DX7GTR0 [19:16] WLSL As described above, but for byte 7. 0xFD080EC0

DX8GTR0 [19:16] WLSL As described above, but for byte 8. 0xFD080FC0

DX0GTR0 [26:24] WDQSL

DQ write path latency pipeline for byte 0: write
data is pipelined by (WLSL + WDQSL). Total write
data pipeline is:
[Write leveling system latency] + WDQSL/2 DRAM
clock periods.

0xFD0807C0

DX1GTR0 [26:24] WDQSL Same as above, for byte 1. 0xFD0808C0

DX2GTR0 [26:24] WDQSL Same as above, for byte 2. 0xFD0809C0

DX3GTR0 [26:24] WDQSL Same as above, for byte 3. 0xFD080AC0

DX4GTR0 [26:24] WDQSL Same as above, for byte 4. 0xFD080BC0

DX5GTR0 [26:24] WDQSL Same as above, for byte 5. 0xFD080CC0

Table 17‐12: Write Leveling Debug Registers (Cont’d)

Register Bits Name Description Address
Zynq UltraScale+ Device TRM 479
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=479

Chapter 17: DDR Memory Controller
Read Leveling

The read DQS strobes from the DRAM are ordinarily gated by the PHY to suppress noise and
correctly capture read data. The precise alignment of the gate to the read data is a
prerequisite for proper reads. Since delays, such as board trace lengths in the read path, are
often imprecisely known, it is necessary to train the gate for a particular system. The PHY
features a built-in read DQS strobe gate training unit that might be triggered as part of the
initialization process.

Read leveling is an algorithm that works with the edge of the DQS. Gate and a delayed (by
a few LCDL taps) gate sample the DQS signal. Gate starts from (a position of delay equal to
zero) until the first edge of the DQS is found between the two sampling edges of the gate
and delayed gate. Final position of the gate is found by adding a programmable (delay)
offset to this value.

The completion of read leveling is signaled by PGSR0.QSGDONE. PGSR0.QSGERR indicates
that an error occurred during read leveling. Errors are flagged in the DATX8 Rank Status
register 1, as listed in Table 17-13.

DX6GTR0 [26:24] WDQSL Same as above, for byte 6. 0xFD080DC0

DX7GTR0 [26:24] WDQSL Same as above, for byte 7. 0xFD080EC0

DX8GTR0 [26:24] WDQSL Same as above, for byte 8. 0xFD080FC0

Table 17‐12: Write Leveling Debug Registers (Cont’d)

Register Bits Name Description Address

Table 17‐13: DATX8 Rank Status Register 1 (DXnRSR1)

Register Bits Name Description Address

DX0RSR1 [1:0] RDLVLERR
Read leveling error: if set, indicates that there is an
error in read leveling training of byte 0. One bit for
each of the up to two ranks.

0xFD0807D4

DX1RSR1 [1:0] RDLVLERR Same as above, for byte 1. 0xFD0808D4

DX2RSR1 [1:0] RDLVLERR Same as above, for byte 2. 0xFD0809D4

DX3RSR1 [1:0] RDLVLERR Same as above, for byte 3. 0xFD080AD4

DX4RSR1 [1:0] RDLVLERR Same as above, for byte 4. 0xFD080BD4

DX5RSR1 [1:0] RDLVLERR Same as above, for byte 5. 0xFD080CD4

DX6RSR1 [1:0] RDLVLERR Same as above, for byte 6. 0xFD080DD4

DX7RSR1 [1:0] RDLVLERR Same as above, for byte 7. 0xFD080ED4

DX8RSR1 [1:0] RDLVLERR Same as above, for ECC byte. 0xFD080FD4
Zynq UltraScale+ Device TRM 480
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=480

Chapter 17: DDR Memory Controller
Additional read leveling debugging information is listed in Table 17-14.

Table 17‐14: Read Leveling Debug Registers

Register Bits Name Description Address

DX0GSR0 [25:17] GDQSPRD
Read DQS gating period: returns the DDR clock
period measured by the read DQS gating LCDL
during calibration of byte 0. This value is PVT
compensated.

0xFD0807E0

DX1GSR0 [25:17] GDQSPRD Same as above, for byte 1. 0xFD0808E0

DX2GSR0 [25:17] GDQSPRD Same as above, for byte 2. 0xFD0809E0

DX3GSR0 [25:17] GDQSPRD Same as above, for byte 3. 0xFD080AE0

DX4GSR0 [25:17] GDQSPRD Same as above, for byte 4. 0xFD080BE0

DX5GSR0 [25:17] GDQSPRD Same as above, for byte 5. 0xFD080CE0

DX6GSR0 [25:17] GDQSPRD Same as above, for byte 6. 0xFD080DE0

DX7GSR0 [25:17] GDQSPRD Same as above, for byte 7. 0xFD080EE0

DX8GSR0 [25:17] GDQSPRD Same as above, for byte 8. 0xFD080FE0

DX0GTR0 [4:0] DGSL

DQS gating system latency: this is used to
increase the number of clock cycles need to
expect valid DDR read data for byte 0. This is
used to compensate for board delays and other
system delays. Power-up default is 0x00 (i.e., no
extra clock cycles required). Valid values are 0 to
18 and each increment adds a half SDRAM CK
period.

0xFD0807C0

DX1GTR0 [4:0] DGSL Same as above, for byte 1. 0xFD0808C0

DX2GTR0 [4:0] DGSL Same as above, for byte 2. 0xFD0809C0

DX3GTR0 [4:0] DGSL Same as above, for byte 3. 0xFD080AC0

DX4GTR0 [4:0] DGSL Same as above, for byte 4. 0xFD080BC0

DX5GTR0 [4:0] DGSL Same as above, for byte 5. 0xFD080CC0

DX6GTR0 [4:0] DGSL Same as above, for byte 6. 0xFD080DC0

DX7GTR0 [4:0] DGSL Same as above, for byte 7. 0xFD080EC0

DX8GTR0 [4:0] DGSL Same as above, for byte 8. 0xFD080FC0

DX0LCDLR2 [8:0] DQSGD DQS gating delay: delay select for the DQS
gating (DQSG) LCDL for byte 0. 0xFD080788

DX1LCDLR2 [8:0] DQSGD Same as above, for byte 1. 0xFD080888

DX2LCDLR2 [8:0] DQSGD Same as above, for byte 2. 0xFD080988

DX3LCDLR2 [8:0] DQSGD Same as above, for byte 3. 0xFD080A88

DX4LCDLR2 [8:0] DQSGD Same as above, for byte 4. 0xFD080B88

DX5LCDLR2 [8:0] DQSGD Same as above, for byte 5. 0xFD080C88

DX6LCDLR2 [8:0] DQSGD Same as above, for byte 6. 0xFD080D88
Zynq UltraScale+ Device TRM 481
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=481

Chapter 17: DDR Memory Controller
Write DQS2DQ Training (LPDDR4 only)

LPDDR4 memory devices use an unmatched DQS-DQ path to enable high-speed
performance and save power. As a result, the DQS strobe is trained to arrive at the DQ latch
center-aligned with the data eye. The DQ receiver latches the data present on the DQ bus
when DQS reaches the latch. DQS2DQ training is accomplished by delaying the DQ signals
relative to DQS such that the data eye arrives at the receiver latch centered on the DQS
transition. DQS to DQ training is referred to as write training in the JEDEC® standard and
write DQ training in the DFI standard.

DQS2DQ training completion is signaled by the PGSR0.DQS2DQDONE bit. If errors are
encountered during training, PGSR0.DQS2DQERR is set. Per byte error flags are visible in
DXnGSR2.DQS2DQERR, as listed in Table 17-15.

DX7LCDLR2 [8:0] DQSGD Same as above, for byte 7. 0xFD080E88

DX8LCDLR2 [8:0] DQSGD Same as above, for byte 8. 0xFD080F88

Table 17‐14: Read Leveling Debug Registers (Cont’d)

Register Bits Name Description Address

Table 17‐15: DQS2DQ Training Error Flags

Register Bits Name Description Address

DX0GSR2 [15:12] DQS2DQERR

Write DQS2DQ training error: if set, indicates
that the DATX8 has encountered an error during
execution of the write DQS2DQ training of byte
0. Each 2 bits indicate an error on one rank. (e.g.
bits [13:12] indicate an error on rank 0)
Status encoding is:
2'b00: No error
2'b01: oscillator results are all 0s
2'b10: oscillator results are all 1s
1'b11: oscillator results read timeout

0xFD0807E8

DX1GSR2 [15:12] DQS2DQERR Same as above, for byte 1. 0xFD0808E8

DX2GSR2 [15:12] DQS2DQERR Same as above, for byte 2. 0xFD0809E8

DX3GSR2 [15:12] DQS2DQERR Same as above, for byte 3. 0xFD080AE8

DX8GSR2 [15:12] DQS2DQERR Same as above, for ECC byte. 0xFD080FE8
Zynq UltraScale+ Device TRM 482
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=482

Chapter 17: DDR Memory Controller
Additional debugging info is available in the DXnLCDLR1 and DXnGTR0 registers, as listed in
Table 17-16.

Write Latency Adjustment

After write leveling, the strobe is aligned to the clock at each SDRAM, but it is not known if
the strobe is aligned to the correct clock edge. To clear up this ambiguity, a second level of
write leveling is used to determine if extra pipeline stages need to be added in the write
path due to the write leveling or the board delays.

The write latency adjustment writes a fixed-pattern back-to-back sequence of two BL16s,
appended with extra DQS pulses at the end of the last BL16 to obtain a sufficiently long
pattern so that nine, previously ambiguous, system write latency situations can be uniquely
distinguished. The algorithm writes this data using the minimal DFI pipeline depth.

The distinction is performed by counting the number of one beats in odd and even DQ
lines. After determining the write latency, a second sequence of writes and reads are issued
to validate the computed latency adjustment setting. For a multi-rank system, this sequence
is repeated for each rank.

Table 17‐16: Write DQS2DQ Training Debug Registers

Register Bits Name Description Address

DX0LCDLR1 [8:0] WDQD Write data delay: delay select for the write data
(WDQ) LCDL for byte 0. 0xFD080784

DX1LCDLR1 [8:0] WDQD As described above, but for byte 1. 0xFD080884

DX2LCDLR1 [8:0] WDQD As described above, but for byte 2. 0xFD080984

DX3LCDLR1 [8:0] WDQD As described above, but for byte 3. 0xFD080A84

DX8LCDLR1 [8:0] WDQD As described above, but for ECC byte. 0xFD080F84

DX0GTR0 [26:24] WDQSL
DQ write path latency pipeline for byte 0: Write
data is pipelined by (WLSL + WDQSL). Total write
data pipeline is: [Write leveling system latency] +
WDQSL/2 DRAM clock periods.

0xFD0807C0

DX1GTR0 [26:24] WDQSL Same as above, for byte 1. 0xFD0808C0

DX2GTR0 [26:24] WDQSL Same as above, for byte 2. 0xFD0809C0

DX3GTR0 [26:24] WDQSL Same as above, for byte 3. 0xFD080AC0

DX8GTR0 [26:24] WDQSL Same as above, for ECC byte. 0xFD080FC0
Zynq UltraScale+ Device TRM 483
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=483

Chapter 17: DDR Memory Controller
If an error is detected, the PGSR0.WLAERR field is set. Warnings and errors are flagged in
DXnRSR2.WLAWN and DXnRSR3.WLAERR, respectively. See Table 17-17

The write latency adjustment changes the same outputs controlled by write leveling. See
Table 17-12 for more debugging information.

Table 17‐17: DATX8 Rank Status Registers 2 and 3 (DXnRSR2 and DXnRSR3)

Register Bits Name Description Address

DX0RSR2 [1:0] WLAWN

Write latency adjustment "DQS off on
some DQ lines".
Warning: One bit per rank indicates that,
for that rank, the WLA algorithm found
some DQ lines where the read data
sequence did not match the expected
comparison signatures for byte 0.

0xFD0807D8

DX1RSR2 [1:0] WLAWN Same as above, for byte 1. 0xFD0808D8

DX2RSR2 [1:0] WLAWN Same as above, for byte 2. 0xFD0809D8

DX3RSR2 [1:0] WLAWN Same as above, for byte 3. 0xFD080AD8

DX4RSR2 [1:0] WLAWN Same as above, for byte 4. 0xFD080BD8

DX5RSR2 [1:0] WLAWN Same as above, for byte 5. 0xFD080CD8

DX6RSR2 [1:0] WLAWN Same as above, for byte 6. 0xFD080DD8

DX7RSR2 [1:0] WLAWN Same as above, for byte 7. 0xFD080ED8

DX8RSR2 [1:0] WLAWN Same as above, for byte 8. 0xFD080FD8

DX0RSR3 [1:0] WLAERR
Write latency adjustment error: indicates,
for each of the system ranks, that an error
occurred in the WLA algorithm for byte 0.

0xFD0807DC

DX1RSR3 [1:0] WLAERR Same as above, for byte 1. 0xFD0808DC

DX2RSR3 [1:0] WLAERR Same as above, for byte 2. 0xFD0809DC

DX3RSR3 [1:0] WLAERR Same as above, for byte 3. 0xFD080ADC

DX4RSR3 [1:0] WLAERR Same as above, for byte 4. 0xFD080BDC

DX5RSR3 [1:0] WLAERR Same as above, for byte 5. 0xFD080CDC

DX6RSR3 [1:0] WLAERR Same as above, for byte 6. 0xFD080DDC

DX7RSR3 [1:0] WLAERR Same as above, for byte 7. 0xFD080EDC

DX8RSR3 [1:0] WLAERR Same as above, for byte 8. 0xFD080FDC
Zynq UltraScale+ Device TRM 484
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=484

Chapter 17: DDR Memory Controller
Data Eye Training

As bit rates increase to 2133 Mb/s and beyond, maintaining timing margins in the DDR
interfaces becomes more difficult. The PHY solution includes delay lines to compensate for
per-bit skew due to factors such as PHY to I/O routing skews, package skews, and PCB skew.

The PHY contains automatic training sequences to perform read and write deskew, which
align the data bits to the DQ bit with the longest delay using bit delay lines (BDL). After
performing bit deskew, the read and write eye centering training is executed to place the
strobe in the center of the eye defined by the bits in the respective byte.

During read or write eye training each individual byte lane has a register DXnGSR2 that
contains error and warning status flags for each of the eye training algorithms.

Error conditions are fatal and the PHY will immediately terminate data training. Within the
DXnGSR2 register, a bit field named ESTAT contains an error status code. This error status
code identifies the sub-step where the failure occurred and the algorithm descriptions
provide the conditions for the error and the associated error status code.

A warning status generally indicates that either the right or left edges of the data eye could
not be detected. This can occur for a variety of reasons but this is more likely to occur
during write bit deskew or write eye centering. When this warning occurs, the algorithm has
assumed that the edge of the eye has been detected when it has exhausted the available
DDL resources. This can result in a skewed center positioning of the DQS/DQS# within the
data eye.

Read bit deskew, write bit deskew, read eye training, and write eye training are the data eye
training steps.
Zynq UltraScale+ Device TRM 485
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=485

Chapter 17: DDR Memory Controller
Read Bit Deskew

The read bit deskew algorithm is performed in parallel for all byte lanes and requires write
and read access to memory. The goal of the PHY read bit deskew algorithm is to align a
0-to-1 transition on each of the data bits in the read path. An initial pattern is written into
memory, read back, and then evaluated. Then per-bit delay lines are used to align all the
data bits to each other. After deskewing, another read is executed to confirm data integrity.

Read bit deskew completion is signaled by the PGSR0.RDDONE bit. The high-level error flag
is PGSR0.RDERR. Additional debugging information is listed in Table 17-18 and Table 17-19.

Table 17‐18: DATX8 General Status Register 2 (DXnGSR2)

Register Bits Name Description Address

DX0GSR2 [0] RDERR
Read bit deskew error: if set, indicates that the
DATX8 has encountered an error during
execution of the read bit deskew training of byte
0.

0xFD0807E8

DX1GSR2 [0] RDERR Same as above, for byte 1. 0xFD0808E8

DX2GSR2 [0] RDERR Same as above, for byte 2. 0xFD0809E8

DX3GSR2 [0] RDERR Same as above, for byte 3. 0xFD080AE8

DX4GSR2 [0] RDERR Same as above, for byte 4. 0xFD080BE8

DX5GSR2 [0] RDERR Same as above, for byte 5. 0xFD080CE8

DX6GSR2 [0] RDERR Same as above, for byte 6. 0xFD080DE8

DX7GSR2 [0] RDERR Same as above, for byte 7. 0xFD080EE8

DX8GSR2 [0] RDERR Same as above, for byte 8. 0xFD080FE8

DX0GSR2 [1] RDWN
Read bit deskew warning: if set, indicates that the
DATX8 has encountered a warning during
execution of the read bit deskew training of byte
0.

0xFD0807E8

DX1GSR2 [1] RDWN Same as above, for byte 1. 0xFD0808E8

DX2GSR2 [1] RDWN Same as above, for byte 2. 0xFD0809E8

DX3GSR2 [1] RDWN Same as above, for byte 3. 0xFD080AE8

DX4GSR2 [1] RDWN Same as above, for byte 4. 0xFD080BE8

DX5GSR2 [1] RDWN Same as above, for byte 5. 0xFD080CE8

DX6GSR2 [1] RDWN Same as above, for byte 6. 0xFD080DE8

DX7GSR2 [1] RDWN Same as above, for byte 7. 0xFD080EE8

DX8GSR2 [1] RDWN Same as above, for byte 8. 0xFD080FE8

DX0GSR2 [11:8] ESTAT

Error status: if an error occurred for byte 0 as
indicated by RDERR, the error status code can
provide additional information regarding when
the error occurred during the algorithm
execution.

0xFD0807E8

DX1GSR2 [11:8] ESTAT Same as above, for byte 1. 0xFD0808E8
Zynq UltraScale+ Device TRM 486
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=486

Chapter 17: DDR Memory Controller
DX2GSR2 [11:8] ESTAT Same as above, for byte 2. 0xFD0809E8

DX3GSR2 [11:8] ESTAT Same as above, for byte 3. 0xFD080AE8

DX4GSR2 [11:8] ESTAT Same as above, for byte 4. 0xFD080BE8

DX5GSR2 [11:8] ESTAT Same as above, for byte 5. 0xFD080CE8

DX6GSR2 [11:8] ESTAT Same as above, for byte 6. 0xFD080DE8

DX7GSR2 [11:8] ESTAT Same as above, for byte 7. 0xFD080EE8

DX8GSR2 [11:8] ESTAT Same as above, for byte 8. 0xFD080FE8

Table 17‐18: DATX8 General Status Register 2 (DXnGSR2) (Cont’d)

Register Bits Name Description Address

Table 17‐19: Read Bit Deskew Error Indications

PGSR0.RDERR DXnGSR2.RDERR DXnGSR2.ESTAT PGSR0.
RDDONE

Error Condition

1 1 0000 1 Initial read data is skewed by more than
three beats of data prior to any deskew.

1 1 0001 1
Read DQS/DQS# is too early relative to
data, and during deskew, DQS/DQS# LCDL
is at maximum value and any read DQ BDL
is at minimum value.

1 1 0010 1
While searching for left edge of read data
eye, DQS/DQS# LCDL is at the minimum
value and any read DQ BDL is at the
maximum value.

1 1 0101 1
While searching for right edge of read data
eye, DQS/DQS# LCDL is at the maximum
value and any read DQ BDL is at the
minimum value.

1 1 0111 1 Read data miscompare after read bit
deskew.
Zynq UltraScale+ Device TRM 487
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=487

Chapter 17: DDR Memory Controller
The results of read bit deskew can be viewed in the DXnBDLR3, DXnBDLR4, and DXnBDLR5
registers, as listed in Table 17-20.

Table 17‐20: Read Bit Deskew Results Registers

Register Bits Name Description Address

DXnBDLR3 [5:0] DQ0RBD
DQ0 read bit delay: delay select
for the BDL on DQ0 read path.

FD080750, FD080850, FD080950,
FD080A50, FD080B50, FD080C50,
FD080D50, FD080E50, FD080F50

DXnBDLR3 [13:8] DQ1RBD
DQ1 read bit delay: delay select
for the BDL on DQ1 read path.

FD080750, FD080850, FD080950,
FD080A50, FD080B50, FD080C50,
FD080D50, FD080E50, FD080F50

DXnBDLR3 [21:16] DQ2RBD
DQ2 read bit delay: delay select
for the BDL on DQ2 read path.

FD080750, FD080850, FD080950,
FD080A50, FD080B50, FD080C50,
FD080D50, FD080E50, FD080F50

DXnBDLR3 [29:24] DQ3RBD
DQ3 read bit delay: delay select
for the BDL on DQ3 read path.

FD080750, FD080850, FD080950,
FD080A50, FD080B50, FD080C50,
FD080D50, FD080E50, FD080F50

DXnBDLR4 [5:0] DQ4RBD
DQ4 read bit delay: delay select
for the BDL on DQ4 read path.

FD080754, FD080854, FD080954,
FD080A54, FD080B54, FD080C54,
FD080D54, FD080E54, FD080F54

DXnBDLR4 [13:8] DQ5RBD
DQ5 read bit delay: delay select
for the BDL on DQ5 read path.

FD080754, FD080854, FD080954,
FD080A54, FD080B54, FD080C54,
FD080D54, FD080E54, FD080F54

DXnBDLR4 [21:16] DQ6RBD
DQ6 read bit delay: delay select
for the BDL on DQ6 read path.

FD080754, FD080854, FD080954,
FD080A54, FD080B54, FD080C54,
FD080D54, FD080E54, FD080F54

DXnBDLR4 [29:24] DQ7RBD
DQ7 read bit delay: delay select
for the BDL on DQ7 read path.

FD080754, FD080854, FD080954,
FD080A54, FD080B54, FD080C54,
FD080D54, FD080E54, FD080F54

DXnBDLR5 [5:0] DMRBD
DM read bit delay: delay select for
the BDL on DM read path.

FD080758, FD080858, FD080958,
FD080A58, FD080B58, FD080C58,
FD080D58, FD080E58, FD080F58
Zynq UltraScale+ Device TRM 488
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=488

Chapter 17: DDR Memory Controller
Write Bit Deskew

The write bit deskew algorithm is performed in parallel for all byte lanes and requires write
and read access to memory. The goal of the PHY write bit deskew algorithm is to align a
0-to-1 transition on each of the data bits in the write path. An initial pattern is written into
memory, read back, and then evaluated. Then per-bit delay lines are used to align all the
data bits to each other. After deskewing, another read is executed to confirm data integrity.

Write bit deskew completion is signaled by the PGSR0.WDDONE bit. The high-level error
flag is PGSR0.WDERR. Additional debugging information is listed in Table 17-21 and
Table 17-22.

Table 17‐21: DATX8 General Status Register (DXnGSR2)

Register Bits Name Description Address

DX0GSR2 [2] WDERR
Write bit deskew error: if set, indicates that the
DATX8 has encountered an error during
execution of the write bit deskew training of
byte 0.

FD0807E8

DX1GSR2 [2] WDERR Same as above, for byte 1. FD0808E8

DX2GSR2 [2] WDERR Same as above, for byte 2. FD0809E8

DX3GSR2 [2] WDERR Same as above, for byte 3. FD080AE8

DX4GSR2 [2] WDERR Same as above, for byte 4. FD080BE8

DX5GSR2 [2] WDERR Same as above, for byte 5. FD080CE8

DX6GSR2 [2] WDERR Same as above, for byte 6. FD080DE8

DX7GSR2 [2] WDERR Same as above, for byte 7. FD080EE8

DX8GSR2 [2] WDERR Same as above, for byte 8. FD080FE8

DX0GSR2 [3] WDWN
Write bit deskew warning: if set, indicates that
the DATX8 has encountered a warning during
execution of the write bit deskew training of
byte 0.

FD0807E8

DX1GSR2 [3] WDWN Same as above, for byte 1. FD0808E8

DX2GSR2 [3] WDWN Same as above, for byte 2. FD0809E8

DX3GSR2 [3] WDWN Same as above, for byte 3. FD080AE8

DX4GSR2 [3] WDWN Same as above, for byte 4. FD080BE8

DX5GSR2 [3] WDWN Same as above, for byte 5. FD080CE8

DX6GSR2 [3] WDWN Same as above, for byte 6. FD080DE8

DX7GSR2 [3] WDWN Same as above, for byte 7. FD080EE8

DX8GSR2 [3] WDWN Same as above, for byte 8. FD080FE8

DX0GSR2 [11:8] ESTAT

Error status: If an error occurred for byte 0 as
indicated by WDERR, the error status code can
provide additional information regarding when
the error occurred during the algorithm
execution.

FD0807E8
Zynq UltraScale+ Device TRM 489
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=489

Chapter 17: DDR Memory Controller
DX1GSR2 [11:8] ESTAT Same as above, for byte 1. FD0808E8

DX2GSR2 [11:8] ESTAT Same as above, for byte 2. FD0809E8

DX3GSR2 [11:8] ESTAT Same as above, for byte 3. FD080AE8

DX4GSR2 [11:8] ESTAT Same as above, for byte 4. FD080BE8

DX5GSR2 [11:8] ESTAT Same as above, for byte 5. FD080CE8

DX6GSR2 [11:8] ESTAT Same as above, for byte 6. FD080DE8

DX7GSR2 [11:8] ESTAT Same as above, for byte 7. FD080EE8

DX8GSR2 [11:8] ESTAT Same as above, for byte 8. FD080FE8

Table 17‐21: DATX8 General Status Register (DXnGSR2) (Cont’d)

Register Bits Name Description Address

Table 17‐22: Write Bit Deskew Error Indications

PGSR0.WDERR DXnGSR2.WDERR DXnGSR2.ESTAT
PGSR0.

WDDONE
Error Condition

1 1 0000 1
Initial write data is skewed by more
than three beats of data prior to any
deskew.

1 1 0001 1
Write DQS/DQS# is too early relative
to data, and during deskew, DQ LCDL
is at minimum value and any write DQ
BDL is at minimum value.

1 1 0010 1
While searching for left edge of write
data eye, DQ LCDL is at the maximum
value and any write DQ BDL is at the
maximum value.

1 1 1100 1 Read data miscompare after write bit
deskew.
Zynq UltraScale+ Device TRM 490
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=490

Chapter 17: DDR Memory Controller
The results of write bit deskew can viewed in the DXnBDLR0, DXnBDLR1, and DXnBDLR2
registers, as listed in Table 17-23.

Table 17‐23: Write Bit Deskew Error Indications

Register Bits Name Description Address

DXnBDLR0 [5:0] DQ0WBD
DQ0 write bit delay: delay
select for the BDL on DQ0
write path.

FD080740, FD080840, FD080940,
FD080A40, FD080B40, FD080C40,
FD080D40, FD080E40, FD080F40

DXnBDLR0 [13:8] DQ1WBD
DQ1 write bit delay: delay
select for the BDL on DQ1
write path.

FD080740, FD080840, FD080940,
FD080A40, FD080B40, FD080C40,
FD080D40, FD080E40, FD080F40

DXnBDLR0 [21:16] DQ2WBD
DQ2 write bit delay: delay
select for the BDL on DQ2
write path.

FD080740, FD080840, FD080940,
FD080A40, FD080B40, FD080C40,
FD080D40, FD080E40, FD080F40

DXnBDLR0 [29:24] DQ3WBD
DQ3 write bit delay: delay
select for the BDL on DQ3
write path.

FD080740, FD080840, FD080940,
FD080A40, FD080B40, FD080C40,
FD080D40, FD080E40, FD080F40

DXnBDLR1 [5:0] DQ4WBD
DQ4 write bit delay: delay
select for the BDL on DQ4
write path.

FD080744, FD080844, FD080944,
FD080A44, FD080B44, FD080C44,
FD080D44, FD080E44, FD080F44

DXnBDLR1 [13:8] DQ5WBD
DQ5 write bit delay: delay
select for the BDL on DQ5
write path.

FD080744, FD080844, FD080944,
FD080A44, FD080B44, FD080C44,
FD080D44, FD080E44, FD080F44

DXnBDLR1 [21:16] DQ6WBD
DQ6 write bit delay: delay
select for the BDL on DQ6
write path.

FD080744, FD080844, FD080944,
FD080A44, FD080B44, FD080C44,
FD080D44, FD080E44, FD080F44

DXnBDLR1 [29:24] DQ7WBD
DQ7 write bit delay: delay
select for the BDL on DQ7
write path.

FD080744, FD080844, FD080944,
FD080A44, FD080B44, FD080C44,
FD080D44, FD080E44, FD080F44

DXnBDLR2 [5:0] DMWBD
DM write bit delay: delay
select for the BDL on DM
write path.

FD080748, FD080848, FD080948,
FD080A48, FD080B48, FD080C48,
FD080D48, FD080E48, FD080F48
Zynq UltraScale+ Device TRM 491
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=491

Chapter 17: DDR Memory Controller
Read Eye Centering

The read eye centering algorithm is performed in parallel for all byte lanes and requires
write and read access to memory. The goal of the PHY read eye centering algorithm is to
center the strobe within the data eye in each byte in the read path. An initial pattern is
written into memory, read back, and then evaluated. Then read DQS/DQS# is moved to find
the left and right edges of the read eye, and the optimal position is calculated. After
centering, another read is executed to confirm data integrity.

Read eye centering completion is signaled by the PGSR0.REDONE bit. The high-level error
flag is PGSR0.REERR. Additional debugging information is listed in Table 17-24 and
Table 17-24.

Table 17‐24: DATX8 General Status Register 2 (DXnGSR2)

Register Bits Name Description Address

DX0GSR2 [4] REERR
Read eye centering error: if set, indicates that
the DATX8 has encountered an error during
execution of the read eye centering training of
byte 0.

FD0807E8

DX1GSR2 [4] REERR Same as above, for byte 1. FD0808E8

DX2GSR2 [4] REERR Same as above, for byte 2. FD0809E8

DX3GSR2 [4] REERR Same as above, for byte 3. FD080AE8

DX4GSR2 [4] REERR Same as above, for byte 4. FD080BE8

DX5GSR2 [4] REERR Same as above, for byte 5. FD080CE8

DX6GSR2 [4] REERR Same as above, for byte 6. FD080DE8

DX7GSR2 [4] REERR Same as above, for byte 7. FD080EE8

DX8GSR2 [4] REERR Same as above, for byte 8. FD080FE8

DX0GSR2 [5] REWN
Read eye centering warning: if set, indicates
that the DATX8 has encountered a warning
during execution of the read eye centering
training of byte 0.

FD0807E8

DX1GSR2 [5] REWN Same as above, for byte 1. FD0808E8

DX2GSR2 [5] REWN Same as above, for byte 2. FD0809E8

DX3GSR2 [5] REWN Same as above, for byte 3. FD080AE8

DX4GSR2 [5] REWN Same as above, for byte 4. FD080BE8

DX5GSR2 [5] REWN Same as above, for byte 5. FD080CE8

DX6GSR2 [5] REWN Same as above, for byte 6. FD080DE8

DX7GSR2 [5] REWN Same as above, for byte 7. FD080EE8

DX8GSR2 [5] REWN Same as above, for byte 8. FD080FE8
Zynq UltraScale+ Device TRM 492
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=492

Chapter 17: DDR Memory Controller
The results of the read eye centering can be viewed in the DXnLCDLR3 and DXnLCDLR4
registers, as listed in Table 17-26.

DX0GSR2 [11:8] ESTAT

Error status: If an error occurred for byte 0 as
indicated by REERR, the error status code can
provide additional information regarding when
the error occurred during the algorithm
execution.

FD0807E8

DX1GSR2 [11:8] ESTAT Same as above, for byte 1. FD0808E8

DX2GSR2 [11:8] ESTAT Same as above, for byte 2. FD0809E8

DX3GSR2 [11:8] ESTAT Same as above, for byte 3. FD080AE8

DX4GSR2 [11:8] ESTAT Same as above, for byte 4. FD080BE8

DX5GSR2 [11:8] ESTAT Same as above, for byte 5. FD080CE8

DX6GSR2 [11:8] ESTAT Same as above, for byte 6. FD080DE8

DX7GSR2 [11:8] ESTAT Same as above, for byte 7. FD080EE8

DX8GSR2 [11:8] ESTAT Same as above, for byte 8. FD080FE8

Table 17‐24: DATX8 General Status Register 2 (DXnGSR2) (Cont’d)

Register Bits Name Description Address

Table 17‐25: Read Eye Centering Error Indications

PGSR0.REERR DXnGSR2.REERR DXnGSR2.ESTAT
PGSR0.

REDONE Error Condition

1 1 0000 1 Initial read data miscompare before
centering.

1 1 0101 1 Read data miscompare after read eye
centering.

Table 17‐26: Read Eye Centering Results Registers

Register Bits Name Description Address

DXnLCDLR3 [8:0] RDQSD
Read DQS delay: delay select
for the read DQS (RDAS) LCDL
for each byte.

FD08078C, FD08088C, FD08098C,
FD080A8C, FD080B8C, FD080C8C,
FD080D8C, FD080E8C, FD080F8C

DXnLCDLR4 [8:0] RDQSND
Read DQSN delay: delay
select for the read DQSN
(RDQSN) LCDL for each byte.

FD080790, FD080890, FD080990,
FD080A90, FD080B90, FD080C90,
FD080D90, FD080E90, FD080F90
Zynq UltraScale+ Device TRM 493
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=493

Chapter 17: DDR Memory Controller
Write Eye Centering

The write eye centering algorithm is performed in parallel for all byte lanes and requires
write and read access to memory. The goal of the PHY write eye centering algorithm is to
center the strobe within the data eye in each byte in the write path. An initial pattern is
written into memory, read back, and then evaluated. Then write DQ is moved to find the left
and right edges of the write eye, and the optimal position is calculated. After centering,
another read is executed to confirm data integrity.

Write eye centering completion is signaled by the PGSR0.WEDONE bit. The high-level error
flag is PGSR0.WEERR. Additional debugging information is available in DXnGSR2 as listed in
Table 17-27 and Table 17-28.

Table 17‐27: DATX8 General Status Register 2 (DXnGSR2)

Register Bits Name Description Address

DX0GSR2 [6] WEERR
Write eye centering error: if set, indicates that
the DATX8 has encountered an error during
execution of the write eye centering training of
byte 0.

FD0807E8

DX1GSR2 [6] WEERR Same as above, for byte 1. FD0808E8

DX2GSR2 [6] WEERR Same as above, for byte 2. FD0809E8

DX3GSR2 [6] WEERR Same as above, for byte 3. FD080AE8

DX4GSR2 [6] WEERR Same as above, for byte 4. FD080BE8

DX5GSR2 [6] WEERR Same as above, for byte 5. FD080CE8

DX6GSR2 [6] WEERR Same as above, for byte 6. FD080DE8

DX7GSR2 [6] WEERR Same as above, for byte 7. FD080EE8

DX8GSR2 [6] WEERR Same as above, for byte 8. FD080FE8

DX0GSR2 [7] WEWN
Write eye centering warning: if set, indicates
that the DATX8 has encountered a warning
during execution of the write eye centering
training of byte 0.

FD0807E8

DX1GSR2 [7] WEWN Same as above, for byte 1. FD0808E8

DX2GSR2 [7] WEWN Same as above, for byte 2. FD0809E8

DX3GSR2 [7] WEWN Same as above, for byte 3. FD080AE8

DX4GSR2 [7] WEWN Same as above, for byte 4. FD080BE8

DX5GSR2 [7] WEWN Same as above, for byte 5. FD080CE8

DX6GSR2 [7] WEWN Same as above, for byte 6. FD080DE8

DX7GSR2 [7] WEWN Same as above, for byte 7. FD080EE8

DX8GSR2 [7] WEWN Same as above, for byte 8. FD080FE8

DX0GSR2 [11:8] ESTAT
Error Status: If an error occurred for byte 0 as
indicated by WEERR, the error status code can
provide additional information on when the
error occurred during the algorithm execution.

FD0807E8
Zynq UltraScale+ Device TRM 494
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=494

Chapter 17: DDR Memory Controller
DX1GSR2 [11:8] ESTAT Same as above, for byte 1. FD0808E8

DX2GSR2 [11:8] ESTAT Same as above, for byte 2. FD0809E8

DX3GSR2 [11:8] ESTAT Same as above, for byte 3. FD080AE8

DX4GSR2 [11:8] ESTAT Same as above, for byte 4. FD080BE8

DX5GSR2 [11:8] ESTAT Same as above, for byte 5. FD080CE8

DX6GSR2 [11:8] ESTAT Same as above, for byte 6. FD080DE8

DX7GSR2 [11:8] ESTAT Same as above, for byte 7. FD080EE8

DX8GSR2 [11:8] ESTAT Same as above, for byte 8. FD080FE8

Table 17‐27: DATX8 General Status Register 2 (DXnGSR2) (Cont’d)

Register Bits Name Description Address

Table 17‐28: Write Eye Centering Error Indications

PGSR0.WEERR DXnGSR2.WEERR DXnGSR2.ESTAT
PGSR0.

WEDONE
Error Condition

1 1 0000 1 Initial read data miscompare before
centering

1 1 0101 1 Read data miscompare after write eye
centering.
Zynq UltraScale+ Device TRM 495
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=495

Chapter 17: DDR Memory Controller
The results of Write Eye Centering can be viewed in the DXnGTR0 and DXnLCDLR1 registers
listed in Table 17-29.

Table 17‐29: Write Eye Centering Results Registers

Register Bits Name Description Address

DXnGTR0 [26:24] WDQSL

DQ write path latency pipeline: Write data
is pipelined by (WLSL + WDQSL). Total
write data pipeline is:
[Write leveling system latency] +
WDQSL/2 DRAM clock periods.
This value is adjusted by LPDDR4
tDQS2DQ training and write eye
centering.
Any update in DXnLCDLR1.WDQD
updates this field after 20 ctl_clk clock
cycles. Reading this field shows the
number of pipelines (UI delays) written
into the DXnLCDLR1.WDQD field.
Ensure this field is never overwritten by
software. Writing into this field changes
(corrupts) the total write DQ delay written
into the DXnLCDLR1.WDQD field.

FD0807C0, FD0808C0,
FD0809C0, FD080AC0,
FD080BC0, FD080CC0,
FD080DC0, FD080EC0,

FD080FC0

DXnLCDLR1 [8:0] WDQD

Write data delay: delay select for the write
data (WDQ) LCDL for each byte.
The WDQ LCDL register is automatically
updated after DDL calibration (by Tck/4)
and after write leveling when write
leveling is performed.
Total delay should be written into this
field. It overrides the delay set by
hardware.
Delay written in this field is converted to
following two elements after 20 ctl_clk
clock cycles:
1. Number of UI delays (pipelines) added
to write dq path that can be read from
DxnGTR0.WDQSL field.
2. The remainder of the delay that is the
number of LCDL tap delays (written delay
- DxnGTR0.WDQSL * one UI period). It is
smaller than one UI and is available to
read in this field.
Reading this field returns the delay in
item 2. This field should be programmed
only after running calibration.

FD080784, FD080884,
FD080984, FD080A84,
FD080B84, FD080C84,
FD080D84, FD080E84,

FD080F84
Zynq UltraScale+ Device TRM 496
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=496

Chapter 17: DDR Memory Controller
VREF Training (DDR4 and LPDDR4 only)

The write and read eyes should be as wide as possible to provide a stable and robust
memory access. The eye position depends upon LCDL, as well as VREF values. The write and
read data eye training is used to find out the best eye position by changing LCDL values
with an initial calculated and programmed VREF setting.

VREF training is used to determine a range of VREF values where memory interface (write
and read) is stable and then determine an optimum write and read eye position.

These types of VREF training are supported:

• DRAM VREF training: this training is used to optimize the write eye by sweeping DRAM
VrefDQ values inside memory.

• Host VREF training: this training is used to optimize the read eye by sweeping the PHY
I/O's VREF setting.

VREF training completion is signaled by the PGSR0.VDONE bit. If errors are encountered
during training, PGSR0.VERR is set. Per byte error flags are visible in DXnGSR3, as listed in
Table 17-30.

Table 17‐30: DATX8 General Status Register 3 (DXnGSR3)

Register Bits Name Description Address

DX0GSR3 [9:8] HVERR
Host VREF training error: indicates if set
that there is an error in VREF Training of
byte 0. Each bit indicates an error for one
rank.

FD0807EC

DX1GSR3 [9:8] HVERR Same as above, for byte 1. FD0808EC

DX2GSR3 [9:8] HVERR Same as above, for byte 2. FD0809EC

DX3GSR3 [9:8] HVERR Same as above, for byte 3. FD080AEC

DX4GSR3 [9:8] HVERR Same as above, for byte 4. FD080BEC

DX5GSR3 [9:8] HVERR Same as above, for byte 5. FD080CEC

DX6GSR3 [9:8] HVERR Same as above, for byte 6. FD080DEC

DX7GSR3 [9:8] HVERR Same as above, for byte 7. FD080EEC

DX8GSR3 [9:8] HVERR Same as above, for byte 8. FD080FEC

DX0GSR3 [17:16] DVERR
DRAM VREF training error: indicates if set
that there is an error in VREF Training of
byte 0. Each bit indicates an error for one
rank.

FD0807EC

DX1GSR3 [17:16] DVERR Same as above, for byte 1. FD0808EC

DX2GSR3 [17:16] DVERR Same as above, for byte 2. FD0809EC

DX3GSR3 [17:16] DVERR Same as above, for byte 3. FD080AEC

DX4GSR3 [17:16] DVERR Same as above, for byte 4. FD080BEC
Zynq UltraScale+ Device TRM 497
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=497

Chapter 17: DDR Memory Controller
Register Overview

DDR QoS Control Registers

DX5GSR3 [17:16] DVERR Same as above, for byte 5. FD080CEC

DX6GSR3 [17:16] DVERR Same as above, for byte 6. FD080DEC

DX7GSR3 [17:16] DVERR Same as above, for byte 7. FD080EEC

DX8GSR3 [17:16] DVERR Same as above, for byte 8. FD080FEC

DX0GSR3 [26:24] ESTAT

VREF training error status code: indicates
which phase of error check failed. Valid
status encodings are:
ESTAT[0] = Initial VREF check failed.
ESTAT[1] = Final check for DRAM VREF
failed.
ESTAT[2] = Final check for Host VREF
failed.

FD0807EC

DX1GSR3 [26:24] ESTAT Same as above, for byte 1. FD0808EC

DX2GSR3 [26:24] ESTAT Same as above, for byte 2. FD0809EC

DX3GSR3 [26:24] ESTAT Same as above, for byte 3. FD080AEC

DX4GSR3 [26:24] ESTAT Same as above, for byte 4. FD080BEC

DX5GSR3 [26:24] ESTAT Same as above, for byte 5. FD080CEC

DX6GSR3 [26:24] ESTAT Same as above, for byte 6. FD080DEC

DX7GSR3 [26:24] ESTAT Same as above, for byte 7. FD080EEC

Table 17‐30: DATX8 General Status Register 3 (DXnGSR3) (Cont’d)

Register Bits Name Description Address

Table 17‐31: DDR QoS Control Registers

Register Name Register Description

PORT_TYPE Set port type register.
QOS_CTRL Set port type register.
RD_HPR_THRSLD Set value for read high-priority read (HPR) CAM threshold.
RD_LPR_THRSLD Set value for read low-priority read (LPR) CAM threshold.
WR_THRSLD Set value for write CAM threshold.
ZQCS_CTRL0 ZQCS control register 0.
ZQCS_CTRL1 ZQCS control register 1.
ZQCS_STATUS ZQCS status register.
Zynq UltraScale+ Device TRM 498
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=498

Chapter 17: DDR Memory Controller
DDR Controller Registers

DDRC_EXT_REFRESH

DDRC external refresh control register.
DDRC_EXT_REFRESH_RANK0_
REQ
DDRC_EXT_REFRESH_RANK1_
REQ

QOS_IRQ_STATUS Interrupt status register for intrN. This is a sticky register that holds the
value of the interrupt until cleared with a value of 1.

QOS_IRQ_MASK Interrupt mask register for intrN. This is a read-only location and can
be atomically altered by either the IDR or the IER.

QOS_IRQ_ENABLE Interrupt enable register. A write of zero to this location unmasks the
interrupt. (IMR: 0)

QOS_IRQ_DISABLE Interrupt disable register. A write of one to this location masks the
interrupt. (IMR: 1)

DDRC_URGENT DDRC urgent sideband signal control register.
DDRC_QVN_CTRL DDRC QVN control register.
DDRC_MRR_STATUS DDRC MRR register status.
DDRC_MRR_DATA{0:11} DDRC MRR register data {0:11}.
DDR_CLK_CTRL DDR subsystem clock control.

Table 17‐32: DDR Controller Registers

Register Name Register Description

MSTR(2) Master register.
STAT Operating mode status register.
MRCTRL{0:2} Mode register read/write control register {0:2}
MRSTAT Mode register read/write status register.
DERATEEN Temperature derate enable register.
DERATEINT(4) Temperature derate interval register.
PWRCTL Low-power control register.
PWRTMG Low-power timing register.
HWLPCTL(3) Hardware low-power control register.
RFSHCTL0 Refresh control register 0.
RFSHCTL1 Refresh control register 1.
RFSHCTL3(2) Refresh control register 3.
RFSHTMG Refresh timing register.
ECCCFG0 ECC configuration register 0.

Table 17‐31: DDR QoS Control Registers (Cont’d)

Register Name Register Description
Zynq UltraScale+ Device TRM 499
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=499

Chapter 17: DDR Memory Controller
ECCCFG1(3) ECC configuration register 1.
ECCSTAT ECC status register.
ECCCLR ECC clear register.
ECCERRCNT ECC error counter register.
ECCCADDR{0:1} ECC corrected error address register {0:1}.
ECCCSYN{0:2} ECC corrected syndrome register {0:2}.
ECCBITMASK{0:2} ECC corrected data bit mask register {0:2}.
ECCUADDR{0:1} ECC uncorrected error address register {0:1}.
ECCUSYN{0:2} ECC uncorrected syndrome register {0:2}.
ECCPOISONADDR{0:1} ECC data poisoning address register{0:1}.
CRCPARCTL{0:2} CRC parity control register {0:2}.
CRCPARSTAT CRC parity status register.
INIT{0:7}(1)(2)(3) SDRAM initialization registers {0:7}.
DIMMCTL DIMM control register.
RANKCTL Rank control register.
DRAMTMG{0:14}(1)(2)(4) SDRAM timing registers {0:14}.
ZQCTL{0:2}(2)(4) ZQ control register {0:2}.
ZQSTAT ZQ status register.
DFITMG{0:1}(1)(2)(3)(4) DFI timing register {0:1}.
DFILPCFG{0:1} DFI low-power configuration register {0:1}.
DFIUPD{0:2}(3) DFI update register {0:2}.
DFIMISC(3) DFI miscellaneous control register.
DFITMG2(4) DFI timing register 2.
DBICTL(1) DM/DBI control register.
ADDRMAP{0:11} Address map registers {0:11}.
ODTCFG(1)(4) ODT configuration register.
ODTMAP ODT/rank map register.
SCHED(3) Scheduler control register.
SCHED1 Scheduler control register 1.
PERFHPR1(3) High-priority read CAM register 1.
PERFLPR1(3) Low-priority read CAM register 1.
PERFWR1(3) Write CAM register 1.
PERFVPR1 Video/isochronous priority read CAM register 1.
PERFVPW1 Video/isochronous priority write CAM register 1.
DQMAP{0:5} DQ map registers {0:5}.

Table 17‐32: DDR Controller Registers (Cont’d)

Register Name Register Description
Zynq UltraScale+ Device TRM 500
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=500

Chapter 17: DDR Memory Controller
DBG{0:1} Debug register {0:1}.
DBGCAM CAM debug register.
DBGCMD Command debug register.
DBGSTAT Status debug register.
SWCTL Software register programming control enable.
SWSTA Software register programming control status.
POISONCFG AXI poison configuration register.
POISONSTAT AXI poison status register.
PSTAT Port status register.
PCCFG Port common configuration register.
PCFGR_{0:5} Port {0:5} configuration read register.
PCFGW_{0:5} Port {0:5} configuration write register.
PCTRL_{0:5} Port {0:5} control register.
PCFGQOS0_{0:5}(3) Port {0:5} read QoS configuration register 0.
PCFGQOS1_{0:5}(3) Port {0:5} read QoS configuration register 1.
PCFGWQOS0_{0:5}(3) Port {0:5} write QoS configuration register 0.
PCFGWQOS1_{0:5}(3) Port {0:5} write QoS configuration register 1.
SARBASE0 SAR base address register n.
SARSIZE0 SAR size register n.
SARBASE1 SAR base address register n.
SARSIZE1 SAR size register n.
DERATEINT_SHADOW Temperature derate interval shadow register.
RFSHCTL0_SHADOW Refresh control shadow register 0.
RFSHTMG_SHADOW Refresh timing shadow register.
INIT3_SHADOW SDRAM initialization shadow register 3.
INIT4_SHADOW SDRAM initialization shadow register 4.
INIT6_SHADOW SDRAM initialization shadow register 6.
INIT7_SHADOW SDRAM initialization shadow register 7.
DRAMTMG{0:14}_SHADOW SDRAM timing shadow registers {0:14}.
ZQCTL0_SHADOW ZQ control shadow register 0.
DFITMG0_SHADOW DFI timing shadow register 0.
DFITMG1_SHADOW DFI timing shadow register 1.
DFITMG2_SHADOW DFI timing shadow register 2.

Table 17‐32: DDR Controller Registers (Cont’d)

Register Name Register Description
Zynq UltraScale+ Device TRM 501
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=501

Chapter 17: DDR Memory Controller
ODTCFG_SHADOW ODT configuration shadow register.
Notes:
1. Quasi dynamic registers group 1.
2. Quasi dynamic registers group 2.
3. Quasi dynamic registers group 3.
4. Quasi dynamic registers group 4.
5. For detailed description, see the Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4].

Table 17‐32: DDR Controller Registers (Cont’d)

Register Name Register Description
Zynq UltraScale+ Device TRM 502
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=502

Chapter 17: DDR Memory Controller
DDRPHY Registers

Table 17‐33: DDRPHY Registers

Register Type Register Name Register Description

Configuration
register

PGCR{0:7} PHY general configuration registers {0:7}.
DXCCR DATX8 common configuration register.
DSGCR DDR system general configuration register.
ODTCR ODT configuration register.
DCR DRAM configuration register.
RDIMMGCR0 RDIMM general configuration register 0.
RDIMMGCR1 RDIMM general configuration register 1.
RDIMMGCR2 RDIMM general configuration register 2.
DTCR0 Data training configuration register 0.
DTCR1 Data training configuration register 1.
DCUGCR DCU general configuration register.
RIOCR{0:5} Rank I/O configuration registers {0:5}.
ACIOCR{0:5} AC I/O configuration registers {0:5}.
DX{0:8}GCR0 DATX8 {0:8} general configuration registers {0:8}.
DX{0:8}GCR1 DATX8 {0:8} general configuration register 1.
DX{0:8}GCR2 DATX8 {0:8} general configuration register 2.
DX{0:8}GCR3 DATX8 {0:8} general configuration register 3.
DX{0:8}GCR4 DATX8 {0:8} general configuration register 4.
DX{0:8}GCR5 DATX8 {0:8} general configuration register 5.
DX{0:8}GCR6 DATX8 {0:8} general configuration register 6.
DX8SL0IOCR DATX8 0-1 I/O configuration register.
DX8SL1IOCR DATX8 2-3 I/O configuration register.
DX8SL2IOCR DATX8 4-5 I/O configuration register.
DX8SL3IOCR DATX8 6-7 I/O configuration register.
DX8SL4IOCR DATX8 0-1 I/O configuration register.
DX8SLbIOCR DATX8 0-8 I/O configuration register.
Zynq UltraScale+ Device TRM 503
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=503

Chapter 17: DDR Memory Controller
Status Register PGSR0 PHY general status register 0.
PGSR1 PHY general status register 1.
PGSR02 PHY general status register 2.
DCUSR00 DCU status register 0.
DCUSR01 DCU status register 1.
ZQ0SR ZQ n impedance control status register.
ZQ1SR ZQ n impedance control status register.
DX{0:8}RSR1 DATX8 {0:8} rank status register 1.
DX{0:8}RSR2 DATX8 {0:8} rank status register 2.
DX{0:8}RSR3 DATX8 {0:8} rank status register 3.
DX{0:8}GSR0 DATX8 {0:8} general status register 0.
DX{0:8}GSR1 DATX8 {0:8} general status register 1.
DX{0:8}GSR2 DATX8 {0:8} general status register 2.
DX{0:8}GSR3 DATX8 {0:8} general status register 3.

Line Register ACBDLR{0:9} AC bit delay line registers {0:9}.
ACBDLR15 AC bit delay line register 15.
ACBDLR16 AC bit delay line register 16.
ACLCDLR AC local calibrated delay line register.
ACMDLR0 AC master delay line register 0.
ACMDLR1 AC master delay line register 1.
DX{0:8}BDLR0 DATX8 {0:8} bit delay line register 0.
DX{0:8}BDLR1 DATX8 {0:8} bit delay line register 1.
DX{0:8}BDLR2 DATX8 {0:8} bit delay line register 2.
DX{0:8}BDLR3 DATX8 {0:8} bit delay line register 3.
DX{0:8}BDLR4 DATX8 {0:8} bit delay line register 4.
DX{0:8}BDLR5 DATX8 {0:8} bit delay line register 5.
DX{0:8}BDLR6 DATX8 {0:8} bit delay line register 6.
DX{0:8}LCDLR0 DATX8 {0:8} local calibrated delay line register 0.
DX{0:8}LCDLR1 DATX8 {0:8} local calibrated delay line register 1.
DX{0:8}LCDLR2 DATX8 {0:8} local calibrated delay line register 2.
DX{0:8}LCDLR3 DATX8 {0:8} local calibrated delay line register 3.
DX{0:8}LCDLR4 DATX8 {0:8} local calibrated delay line register 4.
DX{0:8}LCDLR5 DATX8 {0:8} local calibrated delay line register 5.
DX{0:8}MDLR0 DATX8 {0:8} master delay line register 0.
DX{0:8}MDLR1 DATX8 {0:8} master delay line register 1.

Table 17‐33: DDRPHY Registers (Cont’d)

Register Type Register Name Register Description
Zynq UltraScale+ Device TRM 504
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=504

Chapter 17: DDR Memory Controller
Control Register PLLCR{0:5} Address/control PLL controls {0:5}.
AACR Anti-aging control register.
RDIMMCR0 RDIMM control register 0.
RDIMMCR1 RDIMM control register 1.
RDIMMCR2 RDIMM control register 2.
RDIMMCR3 RDIMM control register 3.
RDIMMCR4 RDIMM control register 4.
IOVCR0 I/O VREF control register 0.
IOVCR1 I/O VREF control register 1
VTCR0 VREF training control register 0.
VTCR1 VREF training control register 1.
ZQCR ZQ impedance control register.
DX8SL0OSC DATX8 0-1 oscillator, delay-line test, PHY FIFO and high-speed reset,

loopback, and gated clock control register.
DX8SL0PLLCR0 DAXT8 0-1 PLL control register 0.
DX8SL0PLLCR1 DAXT8 0-1 PLL control register 1 (Type B PLL only).
DX8SL0PLLCR2 DAXT8 0-1 PLL control register 2 (Type B PLL only).
DX8SL0PLLCR3 DAXT8 0-1 PLL control register 3 (Type B PLL only).
DX8SL0PLLCR4 DAXT8 0-1 PLL control register 4 (Type B PLL only).
DX8SL0PLLCR5 DAXT8 0-1 PLL control register 5 (Type B PLL only).
DX8SL0DQSCTL DATX8 0-1 DQS control register.
DX8SL0TRNCTL DATX8 0-1 training control register.
DX8SL0DDLCTL DATX8 0-1 DDL control register.
DX8SL0DXCTL1 DATX8 0-1 DX control register 1.
DX8SL0DXCTL2 DATX8 0-1 DX control register 2.

Table 17‐33: DDRPHY Registers (Cont’d)

Register Type Register Name Register Description
Zynq UltraScale+ Device TRM 505
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=505

Chapter 17: DDR Memory Controller
Control Register
(Cont’d)

DX8SL1OSC DATX8 0-1 oscillator, delay-line test, PHY FIFO and high-speed reset,
loopback, and gated clock control register.

DX8SL1PLLCR0 DAXT8 0-1 PLL control register 0.
DX8SL1PLLCR1 DAXT8 0-1 PLL control register 1 (Type B PLL only).
DX8SL1PLLCR2 DAXT8 0-1 PLL control register 2 (Type B PLL only).
DX8SL1PLLCR3 DAXT8 0-1 PLL control register 3 (Type B PLL only).
DX8SL1PLLCR4 DAXT8 0-1 PLL control register 4 (Type B PLL only).
DX8SL1PLLCR5 DAXT8 0-1 PLL control register 5 (Type B PLL only).
DX8SL1DQSCTL DATX8 0-1 DQS control register.
DX8SL1TRNCTL DATX8 0-1 training control register.
DX8SL1DDLCTL DATX8 0-1 DDL control register.
DX8SL1DXCTL1 DATX8 0-1 DX control register 1.
DX8SL1DXCTL2 DATX8 0-1 DX control register 2.
DX8SL2OSC DATX8 0-1 oscillator, delay-line test, PHY FIFO and high-speed reset,

loopback, and gated clock control register.
DX8SL2PLLCR0 DAXT8 0-1 PLL control register 0.
DX8SL2PLLCR1 DAXT8 0-1 PLL control register 1 (Type B PLL only).
DX8SL2PLLCR2 DAXT8 0-1 PLL control register 2 (Type B PLL only).
DX8SL2PLLCR3 DAXT8 0-1 PLL control register 3 (Type B PLL only).
DX8SL2PLLCR4 DAXT8 0-1 PLL control register 4 (Type B PLL only).
DX8SL2PLLCR5 DAXT8 0-1 PLL control register 5 (Type B PLL only).
DX8SL2DQSCTL DATX8 0-1 DQS control register.
DX8SL2TRNCTL DATX8 0-1 training control register.
DX8SL2DDLCTL DATX8 0-1 DDL control register.
DX8SL2DXCTL1 DATX8 0-1 DX control register 1
DX8SL2DXCTL2 DATX8 0-1 DX control register 2
DX8SL3OSC DATX8 0-1 oscillator, delay-line test, PHY FIFO and high-speed reset,

loopback, and gated clock control register.
DX8SL3PLLCR0 DAXT8 0-1 PLL control register 0.
DX8SL3PLLCR1 DAXT8 0-1 PLL control register 1 (Type B PLL only).
DX8SL3PLLCR2 DAXT8 0-1 PLL control register 2 (Type B PLL only)
DX8SL3PLLCR3 DAXT8 0-1 PLL control register 3 (Type B PLL only)
DX8SL3PLLCR4 DAXT8 0-1 PLL control register 4 (Type B PLL only)
DX8SL3PLLCR5 DAXT8 0-1 PLL control register 5 (Type B PLL only)
DX8SL3DQSCTL DATX8 0-1 DQS control register.
DX8SL3TRNCTL DATX8 0-1 training control register.

Table 17‐33: DDRPHY Registers (Cont’d)

Register Type Register Name Register Description
Zynq UltraScale+ Device TRM 506
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=506

Chapter 17: DDR Memory Controller
Control Register
(Cont’d)

DX8SL3DDLCTL DATX8 0-1 DDL control register.
DX8SL3DXCTL1 DATX8 0-1 DX control register 1.
DX8SL3DXCTL2 DATX8 0-1 DX control register 2.
DX8SL4OSC DATX8 0-1 oscillator, delay-line test, PHY FIFO and high-speed reset,

loopback, and gated clock control register.
DX8SL4PLLCR0 DAXT8 0-1 PLL control register 0.
DX8SL4PLLCR1 DAXT8 0-1 PLL control register 1 (Type B PLL only).
DX8SL4PLLCR2 DAXT8 0-1 PLL control register 2 (Type B PLL only).
DX8SL4PLLCR3 DAXT8 0-1 PLL control register 3 (Type B PLL only).
DX8SL4PLLCR4 DAXT8 0-1 PLL control register 4 (Type B PLL only).
DX8SL4PLLCR5 DAXT8 0-1 PLL control register 5 (Type B PLL only).
DX8SL4DQSCTL DATX8 0-1 DQS control register.
DX8SL4TRNCTL DATX8 0-1 training control register.
DX8SL4DDLCTL DATX8 0-1 DDL control register.
DX8SL4DXCTL1 DATX8 0-1 DX control register 1.
DX8SL4DXCTL2 DATX8 0-1 DX control register 2.
DX8SLbOSC DATX8 0-1 oscillator, delay-line test, PHY FIFO and high-speed reset,

loopback, and gated clock control register.
DX8SLbPLLCR0 DAXT8 0-1 PLL control register 0.
DX8SLbPLLCR1 DAXT8 0-1 PLL control register 1 (Type B PLL only).
DX8SLbPLLCR2 DAXT8 0-1 PLL control register 2 (Type B PLL only).
DX8SLbPLLCR3 DAXT8 0-1 PLL control register 3 (Type B PLL only).
DX8SLbPLLCR4 DAXT8 0-1 PLL control register 4 (Type B PLL only).
DX8SLbPLLCR5 DAXT8 0-1 PLL control register 5 (Type B PLL only).
DX8SLbDQSCTL DATX8 0-1 DQS control register.
DX8SLbTRNCTL DATX8 0-1 training control register.
DX8SLbDDLCTL DATX8 0-1 DDL control register.
DX8SLbDXCTL1 DATX8 0-1 DX control register 1.
DX8SLbDXCTL2 DATX8 0-1 DX control register 2.

Identification
Register

RIDR Revision identification register.

Initialization
Register

PIR PHY initialization register.

Table 17‐33: DDRPHY Registers (Cont’d)

Register Type Register Name Register Description
Zynq UltraScale+ Device TRM 507
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=507

Chapter 17: DDR Memory Controller
Timing Register PTR0 PHY timing register 0.
PTR1 PHY timing register 1.
PTR2 PHY timing register 2.
PTR3 PHY timing register 3.
PTR4 PHY timing register 4.
PTR5 PHY timing register 5.
PTR6 PHY timing register 6.
DX0GTR0 DATX8 n general timing register 0.
DX1GTR0 DATX8 n general timing register 0.
DX2GTR0 DATX8 n general timing register 0.
DX3GTR0 DATX8 n general timing register 0.
DX4GTR0 DATX8 n general timing register 0.
DX5GTR0 DATX8 n general timing register 0.
DX6GTR0 DATX8 n general timing register 0.
DX7GTR0 DATX8 n general timing register 0.
DX8GTR0 DATX8 n general timing register 0.

Parameters
Register

DTPR0 DRAM timing parameters register 0.
DTPR1 DRAM timing parameters register 1.
DTPR2 DRAM timing parameters register 2.
DTPR3 DRAM timing parameters register 3.
DTPR4 DRAM timing parameters register 4.
DTPR5 DRAM timing parameters register 5.
DTPR6 DRAM timing parameters register 6.
DCUTPR DCU timing parameters register.

Purpose Register GPR0 General purpose register 0.
GPR1 General purpose register 1.

Command
Register

SCHCR0 Scheduler command register 0.
SCHCR1 Scheduler command register 1.

Table 17‐33: DDRPHY Registers (Cont’d)

Register Type Register Name Register Description
Zynq UltraScale+ Device TRM 508
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=508

Chapter 17: DDR Memory Controller
Mode Register MR0 LPDDR4 mode register 0.
MR1 LPDDR4 mode register 1.
MR2 LPDDR4 mode register 2.
MR3 LPDDR4 mode register 3.
MR4 DDR4 mode register 4.
MR5 DDR4 mode register 5.
MR6 DDR4 mode register 6.
MR7 DDR4 mode register 7.
MR11 LPDDR4 mode register 11.
MR12 LPDDR4 mode register 12.
MR13 LPDDR4 mode register 13.
MR14 LPDDR4 mode register 14.
MR22 LPDDR4 mode register 22.

Address Register DTAR0 Data training address register 0.
DTAR1 Data training address register 1.
DTAR2 Data training address register 2.
DCUAR DCU address register.
BISTAR0 BIST address register 0.
BISTAR1 BIST address register 1.
BISTAR2 BIST address register 2.
BISTAR3 BIST address register 3.
BISTAR4 BIST address register 4.

Data Register DTDR0 Data training data register 0.
DTDR1 Data training data register 1.
DTEDR0 Data training eye data register 0.
DTEDR1 Data training eye data register 1.
DTEDR2 Data training eye data register 2.
VTDR VREF training data register.
DCUDR DCU data register.
ZQ0DR0 ZQ n impedance control data register 0.
ZQ0DR1 ZQ n impedance control data register 1.
ZQ0OR0 ZQ n impedance control override data register 0.
ZQ0OR1 ZQ n impedance control override data register 1.

Table 17‐33: DDRPHY Registers (Cont’d)

Register Type Register Name Register Description
Zynq UltraScale+ Device TRM 509
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=509

Chapter 17: DDR Memory Controller
Programming Model
This section contains the programming models for various operations.

Programming Modes

This section outlines the circumstances under which the DDRC registers can be written.
Most registers are initialized when the DDRC core is in reset (core_ddrc_rstn = 0) and should
not need to be changed afterwards. The exceptions are listed in the following sections. The
core_ddrc_core_clk should be brought up and running before the DDRC core is brought out
of reset (core_ddrc_rstn is deasserted).

The DDRC register programming modes are described in the Zynq UltraScale+ MPSoC
Register Reference UG1087 [Ref 4]. In UG1087, registers are described as static, dynamic,
dynamic - refresh related, or quasi dynamic.

Data Register
(Cont’d)

ZQ1DR0 ZQ n impedance control data register 0.
ZQ1DR1 ZQ n impedance control data register 1.
ZQ1OR0 ZQ n impedance control override data register 0.
ZQ1OR1 ZQ n impedance control override data register 1.

Training register CATR0 CA training register 0.
CATR1 CA training register 1.

Drift register DQSDR0 DQS drift register 0.
DQSDR1 DQS drift register 1.
DQSDR2 DQS drift register 2.

Run register DCURR DCU run register.
Loop register DCULR DCU loop register.
ID Register RANKIDR Rank ID register.
Program Register ZQ0PR0 ZQ n impedance control program register 0.

ZQ0PR1 ZQ n impedance control program register 1.
ZQ1PR0 ZQ n impedance control program register 0.
ZQ1PR1 ZQ n impedance control program register 1.

Table 17‐33: DDRPHY Registers (Cont’d)

Register Type Register Name Register Description
Zynq UltraScale+ Device TRM 510
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=510

Chapter 17: DDR Memory Controller
Dynamic Registers

The dynamic registers can be written at any time during the operation of the DDRC.

Dynamic - Refresh Related Registers

The refresh related registers are dynamic, however, to update them perform the following:

• Change the refresh associated register as desired.
• After the changed register is stable, toggle the RFSHCTL3.refresh_update_level signal.

The SDRAM controller recognizes the refresh_update_level signal change and updates all
refresh-related register values accordingly. This mechanism is needed to avoid sampling
errors in the target clock domain, as well as to allow the controller to provide special
handling (such as issuing an additional refresh and resetting the refresh timer if needed)
when a refresh-related timing register has changed.

The refresh related registers are dynamic, except RFSHCTL3.refresh_mode, which can only
be programmed during the initialization or when the controller is in self-refresh mode. At
initialization, the RFSHCTL3.refresh_mode must be set to match the refresh mode field of
MR3, written to SDRAM via INIT4.emr3. When updating this register in self-refresh mode,
the corresponding MR3 command is sent automatically after SRX. In this case, the
INIT4.emr3 should be modified as well because the value written to the SDRAM via the MR3
command is taken from INIT4.emr3, and not from RFSHCTL3.refresh_mode.

Quasi Dynamic Registers

In addition to the dynamic registers, the following categories of registers can be written
after reset:

• Group 1: registers that can be written when no Read/Write traffic is present at the DFI.
• Group 2: registers that can be written in self-refresh, DPD, and MPSM modes.
• Group 3: registers that can be written when the controller is empty.
• Group 4: registers that can be written depending on MSTR.frequency_mode and the

MSTR2.target_frequency.

Each category requires specific conditions for the registers to be programmed. Once the
programming conditions are met, the SWCTL.sw_done register must be programmed to
1’b0 to enable the software programming.

Once the programming is completed, the SWCTL.sw_done must be set to 1’b1 and the
SWSTAT.sw_done_ack must be read as 1’b1 to ensure that the quasi dynamic registers are
propagated correctly to the destination clocks.
Zynq UltraScale+ Device TRM 511
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=511

Chapter 17: DDR Memory Controller
Traffic must be enabled again depending on the register category as described in the
following sections.

Group 1: Registers that can be written when no read/write traffic is present
at the DFI

By setting the DBG1.dis_dq register and polling DBGCAM.wr_data_pipeline_empty and
DBGCAM.rd_data_pipeline_empty1, it is possible to prevent any read or write traffic from
being sent on the DFI. Also, if DDR4 retry is enabled by
CRCPARCTRL1.crc_parity_retry_enable, poll CRCPARSTAT.cmd_in_err_window until it is equal
to 0. If software intervention is enabled by CRCPARCTL1.alert_wait_for_sw, also monitor
CRCPARSTAT.dfi_alert_err_int and CRCPARSTAT.dfi_alert_err_fatl_int during the polling. If
one or more of them are asserted before polling is done, retry procedure must be
completed prior to the subsequent steps. In this mode, it is safe to write to the group 1
registers.

Re-enable the traffic by writing DBG1.dis_dq to 1’b0. To make sure the correct value is
propagated, registers DBGCAM.wr_data_pipeline_empty and
DBGCAM.rd_data_pipe-line_empty must be polled at least twice after DBG1.dis_dq is set to
1.

Group 2: Registers that can be written in self-refresh, DPD, and MPSM modes

When the DDRC has entered self-refresh mode via software (PWRCTL.selfref_sw), the DFI
bus is idle until software exits self-refresh. The same is true in deep power-down (DPD) for
LPDDR3, and maximum power saving mode (MPSM) for DDR4.

Note: For self-refresh, ensure that self-refresh is not caused by “Automatic Self-refresh only” by
checking the STAT.operating_mode = 3’b011 and STAT.selfref_type = 2’b10. If DDR4 retry is
enabled by CRCPARCTRL1.crc_parity_retry_enable and software intervention is enabled by
CRCPARCTL1.alert_wait_for_sw, also monitor CRCPARSTAT.dfi_alert_err_int and
CRCPARSTAT.dfi_alert_err_fatl_int during the polling STAT.selfref_type. If one or more of them are
asserted before polling is done, retry procedure must be completed prior to the subsequent steps.

In this section, references to self-refresh mean self-refresh (non-LPDDR4), or SR-Powerdown
(LPDDR4).

• For MPSM, ensure STAT.operating_mode = 3’b110 is the case before changing any of
the registers listed below (see explanation below). If DDR4 retry is enabled by
CRCPARCTRL1.crc_parity_retry_enable, poll CRCPARSTAT.cmd_in_err_window until it
equals 0. If software intervention is enabled by CRCPARCTL1.alert_wait_for_sw, also
monitor CRCPARSTAT.dfi_alert_err_int and CRCPARSTAT.dfi_alert_err_fatl_int during the
polling. If one or more of them are asserted before polling, retry procedure must be
completed prior to the subsequent steps.

• For DPD, ensure STAT.operating_mode = 3’b110 is the case before changing any of the
registers listed below (see the explanation below).
Zynq UltraScale+ Device TRM 512
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=512

Chapter 17: DDR Memory Controller
• STAT.operating_mode = 3’b1xx for DPD/MPSM, but entry/exit and in mode itself can
be differentiated as follows:

° operating_mode = 3’b101 — DPD/MPSM entry is occurring.

° operating_mode = 3’b110 — DPD/MPSM mode is reached.

° operating_mode = 3’b111 — DPD/MPSM exit is occurring.

In this mode, it is safe to write the group 2 registers.

Re-enable the traffic by writing PWRCTL.selfref_sw to 1’b0.

Group 3: Registers that can be written when controller is empty

For multi-port configurations, PCTRL_n.port_en is used to enable or disable the input traffic
per port.

The controller idleness can be polled first from PSTAT register (wr_port_busy_n and
rd_port_busy_n bit fields) and should read as PSTAT==32’b0 (not busy).

The DDRC CAM/pipeline empty status must be polled ((DBGCAM.dbg_wr_q_empty==
1’b1) && (DBGCAM.dbg_rd_q_empty== 1’b1) && (DBGCAM.wr_data_pipeline_empty==
1’b11) && (DBGCAM.rd_data_pipeline_empty== 1’b1)). Also, if the DDR4 retry is enabled
by the CRCPARCTRL1.crc_parity_retry_enable, poll CRCPARSTAT.cmd_in_err_window until it
is equal to 0.

If software intervention is enabled by CRCPARCTL1.alert_wait_for_sw, monitor
CRCPARSTAT.dfi_alert_err_int and CRCPARSTAT.dfi_alert_err_fatl_int during the polling. If
one or more of them are asserted before polling is finished, retry, because the procedure
must be completed prior to the subsequent steps. In this mode, it is safe to write the group
3 registers. Enable the traffic by writing 1’b1 to PCTRL_n.port_en.

Group 4: Registers that can be written depending on MSTR.frequency_mode

When MSTR.frequency_mode = 0, it is safe to write to group 4 registers in the *_SHADOW
registers. When MSTR.frequency_mode = 1, it is safe to write to group 4 registers in the
non-*_SHADOW registers.
Zynq UltraScale+ Device TRM 513
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=513

Chapter 17: DDR Memory Controller
Power Saving Features

The DDR memory controller supports various methods to save power within the system in
different modes: Precharge power-down, self-refresh, deep power-down, maximum power
saving, and disabling clock to the SDRAM using PWRCTL.en_dfi_dram_clk_disable.

In multi-rank systems, these power-saving modes cannot be applied on a per-rank basis. If
applied, they are always applied globally. When enabled, the controller automatically enters
and exits precharge power-down mode based on a programmable idle timeout period.
Self-refresh can be entered/exited using the following approaches.

• Based on a programmable idle timeout period (similar to precharge power-down idle
timeout).

• Software controlled.
• Hardware low-power interface(s).

Deep power-down (DPD) and maximum power saving mode (MPSM) entry and exit are
explicitly controlled by you. In addition, the clock to the SDRAM can be disabled by setting
the PWRCTL.en_dfi_dram_clk_disable bit.

This can be done in the following modes:

• Self-refresh.
• Self-refresh power down (LPDDR4 only).
• Power-down.
• Deep power-down.
• Maximum power saving mode.

IMPORTANT: Do not enable more than one of the following power-saving modes simultaneously.

• Deep power-down.
• Maximum power saving mode.

You can enable any combination of power-down and self-refresh modes simultaneously.

• Power-down: PWRCTL[powerdown_en]=1.
• Automatic self-refresh: PWRCTL[selfref_en]=1.
• Software self-refresh: PWRCTL[selfref_sw=1.

Enabling the assertion of the PWRCTL[en_dfi_dram_clk_disable] bit is valid in combination
with any of the power-saving modes.
Zynq UltraScale+ Device TRM 514
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=514

Chapter 17: DDR Memory Controller
Automatic Low Power Modes

The automatic low power modes include power-down, clock-stop, and self-refresh. The
modes supported for each memory type are listed in Table 17-34. The controller can
automatically switch in and out of these modes based on the memory traffic.

Precharge Power Down

Table 17‐34: Low Power Feature Support

Memory Type Low-power Features

DDR 3 and 4 UDIMM Power-down, clock-stop, self-refresh.
DDR 3 and 4 RDIMM Power-down, self-refresh.

LPDDR 3 and 4 No automatic low-power.

X-Ref Target - Figure 17-11

Figure 17‐11: Precharge Power Down Flowchart

Start

Set t_cke parameter in DRAMTMG5 register.

Set powerdown_to_x32 parameter in
PWRTMG register.

Set t_xp parameter in DRAMTMG1 register.

Set t_ckpde, t_ckpdx parameters in
DRAMTMG7 register.

Set/reset powerdown_en bit of PWRCTL register for
enabling/disabling automatic precharge

power-down sequence.

Stop

X15355-092816
Zynq UltraScale+ Device TRM 515
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=515

Chapter 17: DDR Memory Controller
Deep Power-Down

Note: This power saving mode is applicable for LPDDR3 devices only.

Entering Deep Power-down

By setting the PWRCTL.deeppowerdown_en bit, the SDRAM device can be put into deep
power-down mode if all of these conditions are true:

• The period specified by PWRTMG.powerdown_to_x32 has passed while the DDRC is idle
(except for issuing refreshes).

• PWRCTL.selfref_sw = 0.
• PWRCTL.selfref_en = 0.
• If HWLPCTL.hw_lp_en = 1, DPD is entered only when the hardware low power interface

has completed a self-refresh exit. (This can be checked by observing
STAT.operating_mode and STAT.selfref_type).

• If HWLPCTL.hw_lp_exit_idle_en = 1, DPD is entered only when all bits of
cactive_in_ddrc = 0.

Entering deep power-down includes these steps:

1. If there is a self-refresh exit previously, wait for at least one refresh command (or eight
per-bank refresh commands if LPDDR3 per-bank refresh is enabled) to all active ranks.
Auto-refresh logic must be enabled, or refresh should be issued using direct software
requests of refresh command via DBGCMD.rank*_refresh.

2. Precharging (closing) all open pages. Pages are closed one at a time in no specified
order.

3. Waiting for tRP (row precharge) idle period.
4. Issuing the command to enter deep power-down. For multi-rank systems, all

chip-selects are asserted so that all ranks enter deep power-down simultaneously. The
deep power-down entry commands are CKE=0, CSN=0, CA0=1, CA1=1, and CA2=0.

5. This step occurs only if the DFI low power interface for deep power-down is enabled
(DFILPCFG0.dfi_lp_en_dpd). It attempts an entry to low power mode via DFI low power
interface with dfi_lp_wakeup set by DFILPCFG0.dfi_lp_wakeup_dpd. The low power entry
attempt is delayed with DFITMG0.dfi_t_ctrl_delay + DRAMTMG6.t_ckdpde clock cycles,
this is needed to satisfy SDRAM timings related to disabling clocks when the PHY is
programmed to gate the clock, to save maximum power.
Zynq UltraScale+ Device TRM 516
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=516

Chapter 17: DDR Memory Controller
If the DDRC receives a read or write request from the SoC core during step 1 or step 3, the
deep power-down entry is immediately aborted. The same is true if
PWRCTL.deep_powerdown_en is driven to 0 during step 1 or step 3. Once the deep
power-down entry command is issued, proper deep power-down exit is required, as
described in the following section.

Note: Contents of SDRAM might be lost upon entry into deep power-down mode.

Exiting Deep Power-down

Once the DDRC puts the DDR SDRAM device in deep power-down mode, the DDRC
automatically exits deep power-down and repeats the initialization sequence when
PWRCTL.deeppowerdown_en is reset to 0. An exit from DFI low power mode is performed
prior to exiting deep power-down (this occurs only if DFI low power mode entry during
deep power-down entry is successful). DFI low power mode is exited after the wakeup time
specified by DFILPCFG0.dfi_lp_wakeup_dpd, but not earlier than
DFITMG1.dfi_t_dram_clk_enable + DRAMTMG6.t_ckdpdx clock cycles.

Exiting deep power-down involves these steps when SDRAM initialization is performed by
the PHY (INIT0.skip_dram_init = 2’b01 or 2’b11):

1. To prevent the uMCTL2 asserting dfi_cke before the SDRAM initialization is complete, it
is necessary to set INIT0.skip_dram_init = 2’b11 before clearing
PWRCTL.deeppowerdown_en

2. If step 1 is performed, to ensure that controller updates do not occur when
INIT0.skip_dram_init is changed back to 2’b01 (which could make DFI bus active when
dfi_ctrlupd_req), it is necessary to set DFIUPD0.dis_auto_ctrlupd and DBG1.dis_hif and
to stop sending software controller updates before clearing
PWRCTL.deeppowerdown_en.

3. Clear DFIMISC.dfi_init_complete_en = 0 register, before clearing
PWRCTL.deeppowerdown_en to ensure that the DDRC waits until the PHY completes its
initialization.

4. Reset PWRCTL.deeppowerdown_en to 0 and poll STAT.operating mode to detect when
the DDRC exits from DPD and then start the SDRAM initialization by setting the PUB_PIR
register.

5. Once PHY Init is started and PIR is programmed, set back the old value of skip_dram_init,
if it was updated as described in step 1.

6. Poll the relevant PUB’s PGSR register to detect when the PUB Initialization is complete.
7. Change back the DFIUPD0.dis_auto_ctrlupd and DBG1.dis_hif values and/or restart

sending software controller updates, if they were disabled as described in step 2.
8. Set DFIMISC.dfi_init_complete_en = 1 to allow the DDRC’s state machine to exit the

initialization state.
Zynq UltraScale+ Device TRM 517
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=517

Chapter 17: DDR Memory Controller
Self Refresh

Maximum Power Saving

Note: Maximum power saving mode is applicable for DDR4 devices only.

Entering Maximum Power Saving Mode

By setting the PWRCTL.mpsm_en bit, you can put the DDR4 devices into maximum power
saving mode, if all of these conditions are true:

• The DDRC is idle (except for issuing refreshes).
• PWRCTL.selfref_sw = 0.
• PWRCTL.selfref_en = 0.
• If HWLPCTL.hw_lp_en = 1, MPSM is entered only when the hardware low power

interface has completed a self-refresh exit. (This can be checked by observing
STAT.operating_mode and STAT.selfref_type).

X-Ref Target - Figure 17-12

Figure 17‐12: Self Refresh Flowchart

Start

Stop

Set selfref_to_x32 parameter in PWRTMG register.

Set stay_in_selfref bit in PWRCTL register.

Set t_cksre, t_ckesr and t_cksrx parameters in DRAMTMG5 registers.

Program DRAMTMG register as per
requirement.

Set/Reset selfref_en bit of
PWRCTL register for automatic

self-refresh entry/exit.

Set/reset selfref_sw bit of
PWRCTL register for

software controlled self-refresh
entry/exit.

Read selfref_state bit of STAT
register to confirm self-refresh

state.

X15357-092717
Zynq UltraScale+ Device TRM 518
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=518

Chapter 17: DDR Memory Controller
• If HWLPCTL.hw_lp_exit_idle_en=1, MPSM is entered only when all bits of
cactive_in_ddrc = 0.

If CA parity is enabled, the DDRC disables CA parity before entering maximum power saving
mode, and enables the CA parity after exiting maximum power saving mode. Note that the
DDRC uses the setting of INIT6.mr5[2:0] to determine whether to perform this
disabling/enabling of CA parity, and uses the entire INIT6.mr5[15:0] for the automatic MRS
commands. Consequently, if any part of the SDRAM’s MR5 is updated by software, it is also
the responsibility of the software to update INIT6.mr5 so that it is aligned to the SDRAM’s
MR5, if it is intended to enter MPSM.

If CAL mode is enabled, the DDRC disables CAL mode before entering maximum power
saving mode, and enables CAL mode after exiting maximum power saving mode.

If geardown is enabled, the user must disable geardown by using self-refresh, before
setting the PWRCTL.mpsm_en, as follows:

1. Put SDRAM in self-refresh mode by setting PWRCTL.selfref_sw to 1 and polling
STAT.operating_mode.

2. Disable geardown mode by setting MSTR.geardown_mode to 0.
3. Wake SDRAM up from self-refresh by setting PWRCTL.selfref_sw to 0 and polling

STAT.operating_mode (geardown is disabled).

The DDRC does not disable or enable geardown before entering or after exiting MPSM.

Entering maximum power saving mode includes the following steps:

1. If there is a self-refresh exit previously, wait for at least one refresh command to all
active ranks. Auto-refresh logic must be enabled, or refresh should be issued using
direct software requests of refresh command via DBGCMD.rank*_refresh.

2. Precharging (closing) all open pages. Pages are closed one-at-a-time (not in a specified
order).

3. Waiting for tRP (row precharge) idle period.
4. Issuing the MRS command to enter maximum power saving mode. For multi-rank

systems, MRS commands should be sent to all ranks. This occurs either simultaneously,
to even and odd ranks separately, or to each rank separately, depending on the value of
registers DIMMCTL.dimm_output_inv_en, DIMMCTL.dimm_addr_mirr_en, and
DIMMCTL.dimm_stagger_cs_en.

5. This step occurs only if DFI low power interface for maximum power saving mode is
enabled (DFILPCFG1.dfi_lp_en_mpsm). It attempts an entry to low power mode via DFI
low power interface with dfi_lp_wakeup set by DFILPCFG1.dfi_lp_wakeup_mpsm. The
low power entry attempt is delayed with DFITMG0.dfi_t_ctrl_delay +
DRAMTMG11.t_ckmpe clock cycles, this is needed to satisfy SDRAM timings related to
disabling clocks when the PHY is programmed to gate the clock, to save maximum
power.
Zynq UltraScale+ Device TRM 519
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=519

Chapter 17: DDR Memory Controller
If the DDRC receives a read or write request from the SoC core during step 1 or step 2, the
maximum power saving mode entry is immediately aborted. The same is true if
PWRCTL.mpsm_en is driven to 0 during step 1 or step 2. Once the maximum power saving
mode entry command is issued, proper maximum power saving mode exit is required as
described in the next section.

Exiting Maximum Power Saving Mode

Once the DDRC puts the DDR SDRAM device in maximum power saving mode, the DDRC
automatically exits maximum power saving mode when PWRCTL.mpsm_en is reset to 0. An
exit from DFI low power mode is performed prior to exiting the maximum power saving
mode (occurs only if DFI low power mode entry during maximum power saving mode is
successful). DFI low power mode is exited after the wakeup time specified by
DFILPCFG0.dfi_lp_wakeup_mpsm, but not earlier than DFITMG1.dfi_t_dram_clk_enable +
DRAMTMG5.t_cksrx clock cycles (tCKMPX value is the same as tCKSRX).

After exiting maximum power saving mode, geardown should be enabled back by using
self-refresh, if it was disabled before MPSM entry.

1. After setting PWRCTL_.mpsm_en to 0, put SDRAM in self-refresh mode by setting
PWRCTL.selfref_sw to 1 and polling STAT.operating_mode.

2. Enable back geardown mode by setting MSTR.geardown_mode back to 1.
3. Wake SDRAM up from self-refresh by setting PWRCTL.selfref_sw to 0 and polling

STAT.operating_mode (geardown is enabled immediately after self-refresh exit)
Zynq UltraScale+ Device TRM 520
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=520

Chapter 17: DDR Memory Controller
Asserting PWRCTL.en_dfi_dram_clk_disable to Disable the Clocks to DRAM

DDR Initialization

PHY Initialization

After deasserting the reset, the PHY is uninitialized. PHY initialization is comprised of
initializing the PHY PLL(s), running the initial impedance calibration, and running delay line
calibration. These functions can all be triggered at the same time by writing
PIR = x0004_0073. The initial impedance calibration can be run in parallel with the PLL
initialization and subsequent delay line calibration.

X-Ref Target - Figure 17-13

Figure 17‐13: Asserting the PWRCTL.en_dfi_dram_clk_disable bit to
Disable the Clocks to DRAM Flowchart

Start

Stop

Set dfi_t_dram_clk_disable and dfi_t_dram_clk_enable
parameters in DFITMG1 register.

Set t_cksre, t_ckesr, and t_cksrx parameters in
DRAMTMG5 register.

Set t_ckpde, t_ckpdx, t_ckdpde, t_ckdpdx, and t_ckcsx
parameters in DRAMTMG6 register.

Set t_ckpde and t_ckpdx parameters in DRAMTMG7 register.
Set various parameters of DRAMTMG8 register appropriately.

Set en_dfi_dram_clk_disable bit of PWRCTL register
for disabling clock to DRAM.

X15359-092816
Zynq UltraScale+ Device TRM 521
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=521

Chapter 17: DDR Memory Controller
DRAM Initialization

The DDR PHY has an embedded state machines that performs DRAM initialization based on
the DRAM type programmed into the PHY registers.

To trigger DRAM initialization using the PHY the PIR = x0000_0081 or PIR = x0010_0081
when RDIMM is required. Alternatively, you can have the DDR controller perform DRAM
initialization. To do this, the PIR must be programmed with PIR = 0004_0001 to transfer
control of the DFI interface from the PUB to the DDR controller.

Data Training

After the PHY and SDRAM are successfully initialized, the PHY is trained for optimum
operating timing margins. This includes CA training (LPDDR3 only), write leveling, the
training of the DQS gating during reads, write latency adjustment, bit deskew, and the
training of the read and write data eyes. Table 17-35 lists the various training options.
Figure 17-14 through Figure 17-17 shows the flowcharts.

Table 17‐35: Data Training

CA training This feature of the LPDDR3 memory is used for optimizing the setup and hold times of the
CA bus relative to the memory clock.

Write leveling This training is used to compensate for skew by aligning the clock with the data strobe at
each SDRAM.

DQS gate
training

This training executes a series of reads sweeping the read DQS gate over possible gating
positions to discover an appropriate placement that results in successful read operations.

Write DQS2DQ
training

LPDDR4 memory devices use an unmatched DQS-DQ path to enable high-speed
performance and save power. As a result, the DQS strobe is trained to arrive at the DQ latch
center-aligned with the data eye. The DQ receiver latches the data present on the DQ bus
when DQS reaches the latch, and DQS2DQ training is accomplished by delaying the DQ
signals relative to DQS such that the data eye arrives at the receiver latch centered on the
DQS transition.

Write latency
adjustment

This is second level of write leveling to find if extra pipeline stages need to be been added
in the write path due to the write leveling and/or the board fly-by delays. After determining
the write latency, a second sequence of writes and reads are issued to validate the computed
latency adjustment setting.

Data eye training
(read, write)

This training is used at greater than 2133 Mb/s rates to compensate for per-bit skew due to
factors such as PHY to I/O routing skews, package skews, PCB skew, etc. The PHY performs
automatic training sequences for read and write deskew, which aligns the data bits to the
DQ bit with the longest delay using a bit delay line (BDL). After performing bit deskew, the
read and write eye centering training is executed to place the strobe in the center of the eye
defined by the bits in the respective byte.

VREF training
Write and read eyes should be as wide as possible to provide a stable and robust memory
access. The eye position depends upon LCDL, as well as VREF values. The write and read data
eye training is used to find out the best eye position by changing LCDL values with an initial
calculated and programmed VREF setting.
Zynq UltraScale+ Device TRM 522
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=522

Chapter 17: DDR Memory Controller
X-Ref Target - Figure 17-14

Figure 17‐14: Data Training Flowchart 1

Start

Program PGCR0 to PGCR5
(PHY general configuration registers)

Program PTR0 to PTR2 (PHY timing registers)

Program PLL control register 0 (PLLCR0)
Program ZQ impedance control register (ZQCR)
Program ZQ n impedance control program register 0 (ZQnPR0)
Program ZQ n impedance control program register 1 (ZQnPR1)
Program DRAM control register (DCR)

Program MR0 to MR6 (LPDDR4 mode registers)

Program DTPR0 to DPTR6
(DRAM timing parameters registers)

Program RDIMMGCR0 to RDIMMGCR2
(RDIMM general control registers)

A

Program RDIMMCR0 to RDIMMCR4
(RDIMM control registers)

Program PTR3 to PTR4 (PHY timing registers)

Program DATX8 common control register (DXCCR)
Program DDR system general control register (DSGCR)
Program ODT control register (ODTCR)
Program anti-aging control register (AACR)

X15361-092816
Zynq UltraScale+ Device TRM 523
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=523

Chapter 17: DDR Memory Controller
X-Ref Target - Figure 17-15

Figure 17‐15: Data Training Flowchart 2

A

Program DTCR0 to DTCR1
(data training configuration registers)

Program DTAR0 to DTAR3
 (data training address registers)

Program ACIOCR0 to ACIOCR5
 (AC I/O configuration registers)

Program IOVCR0 to IOVCR1
 (I/O VREF control registers)

Program DXnGCR0 to DXnGCR4
(DATX8 n general configuration registers)

Program CA training register 0 (CTAR0)

Program ACBDLR6 to ACBDLR8
 (AC bit delay line registers)

Program VTCR0 to VTCR1
(VREF training control registers)

B
X15362-092816
Zynq UltraScale+ Device TRM 524
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=524

Chapter 17: DDR Memory Controller
X-Ref Target - Figure 17-16

Figure 17‐16: Data Training Flowchart 3

PHY initialization register (PIR) = 0x0004_0073
to enable PLL initialization and calibration

Program PIR register = 0x0004_001 to skip
DRAM initialization (since this is handled by the

DDR controller)

Poll the PGSR0 status register
for 0x8000_000F to confirm PHY

initialization is complete

Poll the PGSR0 status register
for 0x8000_001F to confirm DRAM

initialization is skipped

C

Yes

No

No

B

Yes

X15363-092816
Zynq UltraScale+ Device TRM 525
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=525

Chapter 17: DDR Memory Controller
X-Ref Target - Figure 17-17

Figure 17‐17: Data Training Flowchart 4

Set bit [9] (WL) of PIR register to configure write leveling.
Set bit [10] (QSGATE) of PIR register to configure read DQS gate training.

Set bit [11] (WLADJ) of PIR register to configure write leveling adjust.
Set bit [12] (RDDSKW) of PIR register to configure read data bit deskew.
Set bit [13] (WRDSKW) of PIR register to configure write data bit deskew.
Set bit [14] (RDEYE) of PIR register to configure read data eye training.
Set bit [15] (WREYE) of PIR register to configure write data eye training.

Set bit [17] (VREF) of PIR register to configure VREF training.

Set bit [20] of PIR register to configure write DQS2DQ
training, only if memory is LPDDR4

Set bit [2] of PIR register to configure hardware CA
training, only if memory is LPDDR3

Set bit [0] of PIR register to initiate all the previous
training sequences

C

Poll bit [0] of the PGSR0 status register to
confirm that all the training stages are complete.

Identify if there are any training failures.

Stop

Training not complete

Training complete

X15364-021717
Zynq UltraScale+ Device TRM 526
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=526

Chapter 17: DDR Memory Controller
Reading DRAM Configuration Mode Registers
This section describes how to perform mode register reads and writes via software. Mode
register reads (MRR) are applicable only to LPDDR2/LPDDR3/LPDDR4, and are used to read
configuration and status data from mode registers in the SDRAM. Mode register writes
(MRW or MRS) are applicable to all supported DDR protocols, and are used to write
configuration data to mode registers in the SDRAM.

For DDR4, the PS DDR also supports Multi-purpose register (MPR) reads and writes.

Mode Register Accesses

The basic sequence is as follows:

1. Poll MRSTAT.mr_wr_busy until it is 0. This checks that there is no outstanding MR
transaction. No writes should be performed to MRCTRL0 and MRCTRL1 if
MRSTAT.mr_wr_busy = 1.

2. Write MRCTRL0.mr_type = 1 (for read), and MRCTRL0.mr_rank = 0x1 or 0x2 (depending
on which rank you want to read).

3. Write MRCTRL1[15:8] to the address of the mode register to be read.
4. In a separate APB transaction, write MRCTRL0.mr_wr to 1. This bit is self-clearing, and

triggers the MR transaction. The DDRC then asserts the MRSTAT.mr_wr_busy while it
performs the MR transaction to SDRAM, and no further accesses can be initiated until it
is deasserted.

5. Read MRCTRL0.mr_wr to make sure it has been cleared back to 0.
6. Read MRSTAT.mr_wr_busy to make sure the MRR has completed.
7. Read DDR_QOS_CTRL.DDRC_MRR_STATUS to look for bit 0 = 1 and bits 3:1 greater than

0.
8. Read DDR_QOS_CTRL.DDRC_MRR_DATA0 to see the results of the MRR.
9. Read DDR_QOS_CTRL.DDRC_MRR_DATA11 to reset the MRR read FIFO RD pointer.
10. Repeat to read other registers.
Zynq UltraScale+ Device TRM 527
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=527

Chapter 17: DDR Memory Controller
For example, the sequence to read MR8 is:

configparams force-mem-accesses 1

#Check DDRC.MRSTAT.mr_wr_busy == 0
mrd 0xfd070018

#Write DDRC.MRCTRL0.mr_rank and mr_type to indicate read from rank 0.
mwr 0xfd070010 0x11

#Write DDRC.MRCTRL1[15:8] to the MR address to be read, in this case 8.
mwr 0xfd070014 0x800

#Write DDRC.MRCTRL0.mr_rank and mr_type to indicate read from rank 0, this time setting
#bit 31 = 1 to initiate the MRR.
mwr 0xfd070010 0x80000011

#Read DDRC.MRCTRL0 to look for bit 31 to have been cleared
mrd 0xfd070010

#Check DDRC.MRSTAT.mr_wr_busy == 0
mrd 0xfd070018

#Check DDR_QOS_CTRL.DDRC_MRR_STATUS to look for 0x3 or higher
mrd 0xfd090518

#Read DDR_QOS_CTRL.DDRC_MRR_DATA0 to see the results of the MRR
mrd 0xfd09051c

#Read DDR_QOS_CTRL.DDRC_MRR_DATA11 to reset the MRR read FIFO RD pointer.
mrd 0xfd090548

Multi-Purpose Register (DDR4 Only)

This section describes how MPR reads and MPR writes are performed. The DDR4 SDRAMs
contain four 8-bit programmable MPRs that can be used for DQ training, CA parity log, MRS
readout, or for vendor specific purposes. The registers can be accessed when the SDRAM is
in MPR mode and MRCTRL0.mpr_en is set to 1.

For an MPR write, the SoC core must perform the following steps:

1. Issue MRS command to SDRAM MR3 to put the SDRAM into MPR mode. The register
MRCTRL0.mpr_en must be set to 0. The MPR page selection, MR3[1:0] must also be
selected at this time.

2. Wait until MRSTAT.mr_wr_busy is 0. Write MRCTRL1.mr_data, where
MRCTRL1.mr_data[7:0] = <MPR data>.

3. Write MRCTRL0, where MRCTRL0.mr_addr = MPR Location, MRCTRL0.mr_type = write,
MRCTRL0.mr_wr = 1 and MRCTRL0.mpr_en = 1. This causes the DDRC to issue the MPR
Write.

4. Issue MRS command to SDRAM MR3 to exit the SDRAM from MPR mode. The register
MRCTRL0.mpr_en must be set to 0.
Zynq UltraScale+ Device TRM 528
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=528

Chapter 17: DDR Memory Controller
For an MPR Read, the SoC core must perform the following steps:

1. If retry is enabled by CRCPARCTRL1.crc_parity_retry_enable = 1, disable reads and writes
from being issued on the DFI by setting DBG1.dis_dq = 1 and polling
DBGCAM.wr_data_pipeline_empty and DBGCAM.rd_data_pipeline_empty, to ensure that
all outstanding commands have been sent on the DFI. Poll
CRCPARSTAT.cmd_in_err_window until it equals 0, to ensure that no parity error has
occurred. If software intervention is enabled by CRCPARCTL1.alert_wait_for_sw, also
monitor CRCPARSTAT.dfi_alert_err_int and CRCPARSTAT.dfi_alert_err_fatl_int during the
polling CRCPARSTAT.cmd_in_err_window. If one or more of them are asserted before the
polling is done, retry procedure must be completed prior to the subsequent steps.
Note: If software performs MPR read during software intervention time of retry to read
parity/CRC error log from SDRAM, do not poll CRCPARSTAT.cmd_in_err_window.

2. Issue MRS command to SDRAM MR3 to put the SDRAM into MPR mode. The register
MRCTRL0.mpr_en must be set to 0. The MPR page selection, MR3[1:0] and read format,
MR3[12:11] must also be selected at this time. A typical sequence is:

#Read value in DDRC.INIT4.emr3
set curval "0x[string range [mrd -force 0xfd0700E0] end-8 end]"
set current_emr3 [expr {$curval & 0x0000FFFF}]

#Clear bits 0, 1, 2, 11, and 12
set wrval [expr {$current_emr3 & 0x0000E7F8}]

#Set MPR page [1:0], MPR mode [2], and Read Format [12:11]
#Read Format: 00=serial, 01=parallel, 10=staggered
#Page 0 is parallel, others must be serial
set page 0x2
set mpr_mode [expr {1 << 2}]
set read_format [expr {00 << 11}]
set wrval [expr {$wrval + $page + $mpr_mode + $read_format}]

#Set MRCTRL0 bits to write to rank0 of MR3
mwr 0xFD070010 0x00003010

#Set MRCTRL1 to write data
mwr 0xFD070014 $wrval

#Set MRCTRL0 bit 31 to trigger the write to MR3
mwr 0xFD070010 0x80003010
Zynq UltraScale+ Device TRM 529
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=529

Chapter 17: DDR Memory Controller
3. Wait until MRSTAT.mr_wr_busy is 0. Write MRCTRL1.mr_data, where
MRCTRL1.mr_data[1:0] = 00.

#Read MRSTAT.mr_wr_busy
mrd 0xFD070018

#Set MRCTRL1.mr_data = 0
mwr 0xFD070014 0x00000000

4. Write MRCTRL0, where MRCTRL0.mr_addr = MPR Location, MRCTRL0.mr_type = read,
MRCTRL0.mr_wr = 1, and MRCTRL0.mpr_en = 1. This causes the DDRC to issue the MPR
Read.

#Set MPR location [15:12], MR type [0] = 1 (read), MR rank [4], and
MPR Enable [1] = 1 (MPR)
set mpr_location [expr {0x3 << 12}]
set mr_type 1
set mr_rank [expr {1 << 4}]
set mpr_enable [expr {0 << 1}]
set mrctrl0_val [expr {$mpr_location + $mr_type + $mr_rank +
$mpr_enable}]

#Set MRCTRL0
mwr 0xFD070010 $mrctrl0_val

#Set MRCTRL0 bit 31 to trigger the write to MR3
set mr_wr [expr {1 << 31}]
set mrctrl0_val [expr {$mrctrl0_val + $mr_wr}]
mwr 0xFD070010 $mrctrl0_val

The mode register contents are available on DDR_QOS_CTRL.DDRC_MRR_DATA[11:0],
qualified by DDR_QOS_CTRL.DDRC_MRR_STATUS.VALID.

DDR_QOS_CTRL.DDRC_MRR_STATUS[0] == 1 indicates that valid data is available in the
read FIFO.

DDR_QOS_CTRL.DDRC_MRR_STATUS[3:1] indicates how many valid data entries are
available in the FIFO.

Each FIFO entry is 288 bits, representing a burst of four 72-bit values.

DDRC_MRR_DATA0 = UI0 of bytes 3:0

DDRC_MRR_DATA1 = UI0 of bytes 7:4

DDRC_MRR_DATA2 = UI0 of the ECC byte

This is the MSB for serial mode reads.
Zynq UltraScale+ Device TRM 530
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=530

Chapter 17: DDR Memory Controller
This pattern repeats four times:

DDRC_MRR_DATA3 = UI1 of bytes 3:0

up to:

DDRC_MRR_DATA11 = UI3 of the ECC byte

Reading DDRC_MRR_DATA11 pops the FIFO and makes the next 288 bits available in
DDRC_MRR_DATA[11:0].

When all the data has been read from the FIFO, it is safe to move to the next step.

5. Issue MRS command to SDRAM MR3 to exit the SDRAM from MPR mode. The register
MRCTRL0.mpr_en must be set to 0.

6. If reads/writes have been disabled in step 1, re-enable reads and writes on the DFI by
setting DBG1.dis_dq = 0.
Zynq UltraScale+ Device TRM 531
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=531

Chapter 18

On-chip Memory

Introduction
The on-chip memory (OCM) contains 256 KB of RAM. It supports a 128-bit AXI slave
interface port. The OCM has eight exclusive access monitors that can simultaneously
monitor up to eight exclusive access transactions.

The OCM supports AXI read and write throughput for RAM access by implementing a
double-width memory (256 bits) to maximize the read and write bandwidth. Maximum
bandwidth is achieved when the read/write accesses are a multiple of 256 bits with 256-bit
aligned addresses. The OCM memory unit implements a read-modify-write operation to
accommodate writes that are not 256 bits or unaligned to an 8 byte boundary.

Arbitration between the read and write channels of the OCM switch ports is performed
within the OCM.

Accesses to the OCM must pass through the OCM protection unit, OCM_XMPU. The entire
256 KB of RAM is divided into 64 blocks (4 KB each) and assigned security attributes
independently.

Features

• OCM RAM size is 256 KB.
Note: The OCM clock is the same as the cpu_r5_clk.

• Clock frequency up to 600 MHz.
• Ensures low memory access latency for the RPU MCore AXI accesses.
• Exclusive access support, implements eight exclusive access monitors.
• AXI port exclusive access.
• Round-robin arbitration.
• 64-bit ECC with error injection scheme to check ECC errors.
• Four island power down and data retention support.
• Memory protection and TrustZone support.
Zynq UltraScale+ Device TRM 532
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=532

Chapter 18: On-chip Memory
On-chip Memory Functional Description
The OCM memory is mainly composed of four memory banks. The OCM also contains
arbitration, framing, ECC, and interrupt logic in addition to the RAM arrays. The OCM
architecture diagram is shown in Figure 18-1.

Address Mapping

The address range assigned to the OCM memory exists in the higher 256 KB of the 32-bit
address map. This cannot be modified.

Mapping Summary

The 256 KB RAM array is mapped to a high address range (0xFFFC_0000 to
0xFFFF_FFFF) in a granularity of four independent 64 KB banks. Each bank is on a
separate power island controlled by the PMU. The mapping summary is listed in Table 18-1.

X-Ref Target - Figure 18-1

Figure 18‐1: OCM Memory Architecture

OCM

Bank 364 KB + ECC

Bank 264 KB + ECC

Bank 164 KB + ECC

Bank 064 KB + ECC

Exclusive Monitors (8)

RPU core0

RPU core1

FPU Main Switch

IOP
Masters

64

64

128

128

128

O
C

M
 S

w
itc

h

O
C

M
_X

M
PU

DDR Memory

LDP Switch

X18011-080318

Table 18‐1: OCM Mapping Summary

Address Range Size Memory Bank

FFFC_0000—FFFC_FFFF 64 KB 0
FFFD_0000—FFFD_FFFF 64 KB 1
FFFE_0000—FFFE_FFFF 64 KB 2
FFFF_0000—FFFF_FFFF 64 KB 3
Zynq UltraScale+ Device TRM 533
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=533

Chapter 18: On-chip Memory
64-bit ECC Support

The OCM supports 64-bit wide ECC functionality to detect multi-bit errors and recover from
a single-bit memory fault. The syndrome bits are calculated on a 64-bit basis. For every 64
bits processed by the ECC, both write channels generate and append eight additional
syndrome bits. This adds 32 syndrome bits per memory location (256 bit).

On a write, if all bytes are being written, the ECC is generated (on a per 64-bit basis) and
written into the ECC RAM along with the write-data that is written into the data RAM. If one
or more bytes are not written (the byte enables are disabled), then the data RAM is first
read, and the read data is corrected and merged with the write data. The merged write data
is written with all bytes enabled. If the read (of the read-modify-write operation) results in
an uncorrectable error, then the write is not performed and an AXI SLVERR is generated.

If a correctable or uncorrectable error is detected during a read, then the read address is
captured in the ocm.OCM_{CE, UE}_FFA registers, depending on the type of error. For a
correctable error, an optional interrupt is generated. If the ECC error status register
(OCM_ISR) is not cleared by software, any further error information is not recorded.

1-bit or 2-bit errors per 64-bit (ECC WORD) can be injected based on the memory-mapped
register value (64 + 8 bits) that is XOR-ed with the written data and syndrome.

Low Power Operation

The OCM memory implements four different banks with the two MSBs of the address
determining the bank that is accessed. Each bank is implemented in a separate power-gated
island that is controlled by the PMU. The PMU can also configure the RAMs in a retention
state, in addition to the complete powered-down state. In the case of an access to a bank
that is powered down or is in retention, the OCM generates an address decode error.
Zynq UltraScale+ Device TRM 534
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=534

Chapter 18: On-chip Memory
On-chip Memory Register Overview
The OCM implementation register is provided in Table 18-2. Further details are in the Zynq
UltraScale+ MPSoC Register Reference (UG1087) [Ref 4].

Table 18‐2: OCM Register Overview

Type Register Name Description

Error control
OCM_ERR_CTRL Enable/disable a error response.

OCM_ECC_CTRL Enable/disable ECC. Detect only capability can be enabled
only when ECC is enabled.

Interrupt
OCM_ISR
OCM_IMR
OCM_IEN
OCM_IDS

Interrupt control and status registers.

Correctable error registers

OCM_CE_FFA
OCM_CE_FFD0
OCM_CE_FFD1
OCM_CE_FFD2
OCM_CE_FFD3
OCM_CE_FFE

Correctable error-related information pertaining to various
data banks can be found in these registers.

Uncorrectable error registers

OCM_UE_FFA
OCM_UE_FFD0
OCM_UE_FFD1
OCM_UE_FFD2
OCM_UE_FFD3
OCM_UE_FFE

Uncorrectable error-related information pertaining to
various data banks can be found in these registers.

Fault injection

OCM_FI_D0
OCM_FI_D1
OCM_FI_D2
OCM_FI_D3
OCM_FI_SY
OCM_FI_CNTR

Fault injection data registers are used to inject faults in any
of the 64 Kb data banks.

Information OCM_IMP Provides information regarding the amount of OCM
memory currently implemented on the device.

Miscellaneous

OCM_CLR_EXE Clear exclusive access monitors.
OCM_RMW_UE_FFA Read-modify-write uncorrectable error log.
OCM_SAFETY_CHK Safety endpoint connectivity check register.
OCM_PRDY_DBG Debug register.
Zynq UltraScale+ Device TRM 535
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=535

Chapter 18: On-chip Memory
On-chip Memory Programming Model
The flowchart in Figure 18-2 shows the details regarding error/fault injection and detection
in OCM memory.

Inject Fault

1. Enable error response by setting the third bit of the ocm.OCM_ERR_CTRL register.
2. Enable ECC by setting the zeroth bit of the ocm.OCM_ECC_CTRL register.
3. To only detect single bit errors, set the first bit of the ocm.OCM_ECC_CTRL register. By

default this bit is zero and it indicates that single-bit errors are corrected.
4. To inject an error on every write after fault injection count cycle, set the second bit of the

ocm.OCM_ECC_CTRL register. If a zero is programmed for the same bit in the register,
then only a single fault is injected.

X-Ref Target - Figure 18-2

Figure 18‐2: OCM Error Checking Flowchart

Inject fault

Is it
correctable?

Read correctable error
register set

Read non-correctable error
register set

No

Yes

Exit

Check for error

X15365-071817
Zynq UltraScale+ Device TRM 536
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=536

Chapter 18: On-chip Memory
5. The fault injection count must be programmed by setting the required value in the first
24 bits of the ocm.OCM_FI_CNTR register.

6. A fault can be injected into the syndrome bits using the ocm.OCM_FI_SY register. Faults
in the data words can be injected using the ocm.OCM_FI_D{0:3} registers.

7. Interrupts can be enabled for different errors by setting the required bits of the
ocm.OCM_IEN register.

8. Unwanted interrupts can be disabled by setting the required bits of the ocm.OCM_IDS
register.

9. Reading the ocm.OCM_IMR register gives information regarding the type of interrupts
that are masked out. This is a read-only register and reflects the settings done on the
ocm.OCM_IEN and ocm.OCM_IDS registers.

Check for Error

If errors occur due to a fault injection or other reasons, an interrupt is generated. The
ocm.OCM_ISR register provides the interrupt status and the cause of the error. This is a
sticky register that holds the value of the interrupt until cleared by a value of 1. Read bits 6
and 7 of the ocm.OCM_ISR register for information on whether the error is correctable or
uncorrectable.

Read Correctable Error Register Set

1. Retrieve the address of the first occurrence of an access with a corrected error. Read the
18-bit [ADDR] bit field in the ocm.OCM_CE_FFA register.

2. Retrieve ECC syndrome bits of corrected error. Read ocm.OCM_CE_FFE [SYNDROME] bit
field.

3. Retrieve corrected data. Read the four data words using the ocm.OCM_CE_FFD{0:3}
registers.

Read Uncorrectable Error Register Set

1. Retrieve the address of the first occurrence of an access with an uncorrected error. Read
the 18-bit [ADDR] bit field in the ocm.OCM_UE_FFA register.

2. Retrieve ECC syndrome bits of uncorrected error. Read ocm.OCM_UE_FFE [SYNDROME]
bit field.

3. Retrieve uncorrected data. Read the four data words using the ocm.OCM_UE_FFD{0:3}
registers.
Zynq UltraScale+ Device TRM 537
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=537

Chapter 19

DMA Controller

Introduction
The general purpose direct memory access (DMA) controller supports memory to memory
and memory to I/O buffer transfers. There are two instances of the general purpose DMA
controller: LPD DMA and FPD DMA. The LPD DMA can have I/O coherent access. The FPD
DMA transfers are never hardware coherent with CCI. This chapter refers to the FPD and LPD
DMA controllers collectively as DMA. The 8-channel LPD and FPD DMA controllers are
architecturally identical except for coherency, command buffer size, and data width.

• FPD DMA: 128-bit AXI data interface, 4 KB command buffer, non-coherent with CCI.
• LPD DMA: 64-bit AXI data interface, 2 KB command buffer, I/O coherent with CCI.

Features

• AXI-4 interface, burst length is limited to 16 to provide AXI-3 compatibility.
• Source (SRC) and destination (DST) payloads can start and end at any alignment. The

DMA takes care of 4 KB boundary crossing.
• Over fetching can be enabled/disabled per channel.
• Each channel can be programmed as secure or non-secure.
• Programmable number of outstanding transactions per channel on the source side. Up

to 32 outstanding transactions supported on each AXI channel.
• Periodic transaction scheduling. Period can be independently programmed per

channel.
• Simple register-based DMA and scatter gather (SG) DMA modes. Hybrid descriptor

support in SG DMA mode.
• Read-only DMA mode.

° Read data is discarded in this mode.

° Read-only feature is only supported in simple DMA mode.
Zynq UltraScale+ Device TRM 538
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=538

Chapter 19: DMA Controller
• Write-only DMA mode.

° Data specified in the control register is written to DST address locations, no read
command is issued.

° Write-only feature is only supported in simple DMA mode.
• Common buffer is automatically shared among all enabled DMA channels.
• Support for DMA START, STOP, and PAUSE features.
• Interrupt accounting support.
• Descriptor prefetch support to maximize DMA efficiency. 100% efficiency with 128-bit

aligned SRC and DST payloads.
• Support for error recovery.
• INCR and FIXED type burst supported. Fixed bursts are only supported in simple DMA

mode.
• Independent AXI burst length is supported on both the SRC and DST sides.
• Flow control on a per channel basis via the PL EMIO interface.
Zynq UltraScale+ Device TRM 539
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=539

Chapter 19: DMA Controller
DMA Controller Functional Description
The Zynq UltraScale+ MPSoC DMA (Figure 19-1) is a general-purpose DMA for
memory-to-memory, memory-to-I/O, I/O-to-memory, and I/O-to-I/O transfers.

The DMA acts as an AXI-4 master. Each channel can be independently enabled or disabled
at any time. DMA supports pause functionality per-channel, which allows software to pause
the channel using a descriptor and allows software to program new sets of descriptors.
Software can resume the channel once it has programmed a new set of descriptors.

The DMA implements a common buffer that is sized to allow the DMA to utilize the full AXI
bandwidth available. All channels share the common buffer. A common structure is
automatically managed where software enables and disables the channel without concern
for the allocation of buffer per channel. Each channel uses the available buffer on a first
come first serve basis. Buffer utilization of each channel can be controlled by programming
issuing capability of each channel and rate control. DMA supports two modes of operation,
simple register-based DMA or scatter-gather DMA.

The DMA implements independent SRC and DST descriptors that can transfer any size
payload (up to 1 GB). Descriptor payloads can start and end at any alignment. For some AXI

X-Ref Target - Figure 19-1

Figure 19‐1: DMA Block Diagram

DMA
Channel 1

DMA
Channel 7

MUX

Common
Buffer

Read
Arbiter

Write
Arbiter

Control and Status Registers APB

DMA
Channel 0

RDATA

AXI RD CMD AXI WR CMD

WDATA

X15366-092817
Zynq UltraScale+ Device TRM 540
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=540

Chapter 19: DMA Controller
slaves, overfetch of data is not allowed on the read channel. For these slaves, software can
disable overfetch. Software can independently enable/disable overfetch on each DMA
channel. Over-fetch disable can significantly impact DMA efficiency (depends on payload
alignment). Xilinx advises only using this feature if it is required by an AXI slave.

DMA Architecture

The major functional blocks are:

• Common buffer
• Arbiter

° AXI read channel

° AXI write channel
• DMA engine channel(s)

Common Buffer

A common buffer is shared between the DMA channels to hold the AXI read transaction
data before it goes out on an AXI write channel. The common buffer is sized to allow
utilization of full AXI bandwidth. The size of the common buffer is 4 KB for FPD DMA and
2 KB for LPD DMA.

• Shares the full buffer space between enabled channels. When only one channel is
enabled, it can use the full buffer memory space.

• Does not utilize/reserve any space in the memory if a channel is disabled (from a
previous enable).

• In the event of an error, the DMA channel frees all occupied common buffer entries.
• Shared buffer on a first-come first-served basis.
• Software can limit the common buffer usage of a particular channel by programming

read-issuing and rate-control registers. The design of the DMA ensures no starvation
on any channel irrespective of their rate control and read issuing parameters.
Zynq UltraScale+ Device TRM 541
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=541

Chapter 19: DMA Controller
AXI Read Arbiter

Each DMA channel has two AXI read interfaces. One interface is used for reading data
buffers and the other interface is used for reading buffer descriptors. The DMA implements
round-robin arbitration. Arbitration is never granted to any request if the common buffer
does not have enough space. This way the DMA does not put back pressure on the AXI read
channel.

If there is not enough space in the common buffer, the arbiter stays parked on the
requesting channel until space is available.

AXI Write Arbiter

The DMA channels share an AXI write channel. The features of the write arbiter are listed.

• Round-robin arbitration
• Common buffer flush in the event of an error

DMA Channel

The DMA channel is responsible for the bulk of the DMA operation and management.

DMA Data Flow
This section outlines the DMA model, modes, and the buffer descriptor (BD) format.

DMA Model

The LPD and FPD DMA controllers each have eight DMA channels. Each channel is divided
into two functional sides (in simple DMA mode) or two queues (in scatter-gather DMA
mode), source (read) and destination (write).
Zynq UltraScale+ Device TRM 542
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=542

Chapter 19: DMA Controller
The schematic in Figure 19-2 illustrates the source and destination side scatter-gather
mode buffer descriptor arrays. The buffer descriptors point to their respective buffers. The
DMA facilitates transfer of data from source (SRC) buffers to destination (DST) buffers. A
source side descriptor can go to multiple destination side descriptors.

DMA Modes

Each DMA channel can be independently programmed in one of the following DMA modes
as described in this section.

Simple DMA Mode

Simple DMA mode is also known as single-command mode because the DMA performs a
data transfer upon receiving a command in a single command manner. In simple DMA
mode, the DMA transfer parameters are specified in the control registers. The DMA channel
uses these parameters to transfer the data from the SRC to the DST side. This is the single
command mode where the DMA channel operation is done after finishing the transfer.
Subsequent transfers require the following steps.

1. Update the control registers with new transaction parameters.
2. Enable the DMA channel.

X-Ref Target - Figure 19-2

Figure 19‐2: SRC and DST Descriptors Pointing to Data Buffers

Memory

SRC DESC 0

SRC DESC 1

SRC DESC 2

SRC DESC n

SRC BUFFER 0

SRC BUFFER 1

SRC BUFFER 2

SRC BUFFER n

Source Buffer
Descriptor Array

.

.

.

DST DESC 0

DST DESC 1

DST DESC 2

DST DESC 3

DST BUFFER 0

DST BUFFER 1

DST BUFFER 2

DST BUFFER n

Destination Buffer
Descriptor Array

.

.

.

X15367-092516
Zynq UltraScale+ Device TRM 543
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=543

Chapter 19: DMA Controller
The DMA channel only looks at the SRC size of the transaction. It is always assumed that the
transaction size of the DST side is the same as the SRC side’s transaction size.

There are simple DMA sub-modes. The read-only and write-only modes are only supported.
in simple DMA mode. Each channel can be programmed in one of following sub modes.

• In the read-only mode, the DMA channel reads the data (register specified location)
but does not write the data anywhere. This feature can be used to scrub the memory.

• In the write-only mode, the DMA channel reads preloaded data from the control
registers and writes it to memory. The DMA channel does not read data from a memory
location. Software loads the source data into the registers that are used to write the
DST locations. In write-only mode, both SRC and DST registers need to be configured.

Scatter Gather DMA Mode

In scatter gather mode, DMA transfer parameters are specified in memory (descriptors) and
parameters in APB registers are ignored. Software programs SRC and DST descriptors
programs registers to point to the start of these descriptors in memory and enables a
channel. Upon receiving a channel enable, the DMA channel fetches SRC and DST
descriptors from memory and uses these parameters to perform the actual data transfer.
The descriptors must be configured before enabling a channel.

Descriptor Format

In scatter-gather DMA mode, the channel reads the data from the address specified in the
SRC descriptor and writes to a location specified by the DST descriptor. The DMA
implements a hybrid descriptor to support descriptor storage in two formats.

• Linear
• Linked-list
• Hybrid (multiple linear buffer descriptor arrays chained as a linked list)

Software can make use of a hybrid descriptor to dynamically switch between linear and
linked-list mode. The hybrid descriptor approach allows the DMA driver software to arrange
descriptors in a contiguous array of BDs, or a linked list of BDs, or a mixed mode wherein
contiguous arrays of BDs can be chained together to create a linked list of BD arrays. This
approach allows the driver software to be designed in a manner wherein BDs can be
allocated at initialization or in real time (and chained to a preceding BD). In applications
where contiguous sets of memory are easily available, the software driver might not be able
to manage a link list for descriptor storage. In this case, the descriptor can be stored in a
linear array.
Zynq UltraScale+ Device TRM 544
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=544

Chapter 19: DMA Controller
To support previously described cases, the DMA implements a hybrid descriptor. Each
descriptor on the SRC and DST side implements a bit descriptor-element type, which
indicates the type of the current descriptor. This allows software to switch between a linear
and a link-list scheme dynamically. Figure 19-3 shows supported descriptor modes.

X-Ref Target - Figure 19-3

Figure 19‐3: DMA Supported Descriptor Mode Use-cases in Scatter Gather Mode

Dscr0

Dscr1

Dscr2

Dscr3

Dscr4

Dscr5

Dscr6

Dscr7

Dscr0

Dscr1

Dscr2

Dscr3

Dscr4

Dscr5

Dscr6

Next Addr

Dscr3
Next Addr

Dscr0
Next Addr

Dscr7

Dscr8

Dscr13

Next Addr

Dscr5
Next Addr

Dscr4
Next Addr

Dscr2
Next Addr

Dscr1
Next Addr

Linear Descriptor Mode Linked-List Descriptor Mode Hybrid Descriptor Mode

128-bit Descriptor
Descriptor Element

Type = 0

256-bit Descriptor
Descriptor Element

Type = 1

128 and 256-bit Descriptor
Descriptor Element Type = 0 and 1

Linked-List Descriptor is Only
Used on Page Boundary

X15368-092516
Zynq UltraScale+ Device TRM 545
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=545

Chapter 19: DMA Controller
Linear Descriptor Use Case

In the linear descriptor use case mode, BDs are stored in a linear array. In Figure 19-3, the
first block shows the linear descriptor mode. This can be considered as one 4K page. Each
descriptor is 128 bits and the DMA channel can fetch 256 bits on every descriptor read. This
allows the DMA to fetch two descriptors in a single AXI read and reduces the number of
descriptor fetches. Further details are shown in Table 19-1.

• Each descriptor is 128 bits wide
• Each descriptor must be 128-bit aligned
• The descriptor element type is always 0 (in linear descriptor mode).

Linked-list Descriptor Use Case

Each descriptor is 256 bits wide, the first 128 bits store the descriptor information and the
next 128 bits provide a pointer to the next descriptor. In this mode, the descriptor can be
located anywhere in the memory (it might not be in the same 4K page).

Further details are shown in Table 19-2.

• Each descriptor is 256 bits wide
• Each descriptor must be 256-bit aligned
• The descriptor element type is always 1 (in link-list descriptor mode)
• DMA channel can only fetch the next descriptor if it has read a current descriptor. Two

descriptor fetches requires two AXI reads.

Table 19‐1: Buffer Descriptor Format in Linear Descriptor Mode

ADDR LSB
[31:0] WORD0

RSVD
[31:12]

ADDR MSB
[11:0] WORD1

RSVD
[31:29]

SIZE
[29:0] WORD2

RSVD
[31:5]

CNTL
[4:0] WORD3

Table 19‐2: Buffer Descriptor Format in Linked-list Descriptor Mode

ADDR LSB
[31:0] WORD0

RSVD
[31:12]

ADDR MSB
[11:0] WORD1

RSVD
[31:29]

SIZE
[29:0] WORD2

RSVD
[31:5]

CNTL
[4:0] WORD3
Zynq UltraScale+ Device TRM 546
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=546

Chapter 19: DMA Controller
Hybrid Descriptor Use Case

Linear and link-list descriptor types can be chained to reduce software and hardware
overhead. For example, if software allocates two noncontiguous 4 KB pages to store
descriptors, then it can contiguously store BDs in the first page and make the last BD of the
first page point to the first BD of the next available page. Because the next address pointer
in linear descriptor is not required, this scheme reduces both memory usage and software
overhead. The descriptor mode diagram (Figure 19-3) details this use case.

• Each descriptor is aligned to its natural size.

° Linear descriptor is 128-bit aligned.

° Link-list descriptor is 256-bit aligned.

Buffer Descriptor Summary

• Both the SRC and DST descriptors must be aligned to their size.
• For efficiency, a DMA can prefetch a descriptor.
• The DMA never prefetches across the 4 KB boundary.
• The circular descriptor should always have at least one link-list element.
• Descriptors are not updated back to the memory. For instance, once a SRC/DST buffer

descriptor is used by the DMA for data transfer, no updating of any field of SRC or DST
buffer descriptor occurs to signal completion of a buffer descriptor to the software.

• A completion interrupt, along with status (interrupt accounting), is supported. The
software can read the content of ZDMA_CH_IRQ_SRC_ACCT/ZDMA_CH_IRQ_DST_ACCT
to find the number of buffer descriptors processed.

Buffer Descriptor Format

The buffer descriptor (BD) format used in scatter gather (SG) mode is shown in Table 19-3.
Both the SRC and DST implement the same format descriptor with a few exceptions. Similar
words are implemented in the control registers, which can be used in simple DMA mode. By
dividing the descriptor into 32-bit words and implementing them on the control registers,
a consistent view is provided in both simple and SG mode.

NEXT DSCR ADDR LSB
[31:0] WORD4

RSVD
[31:12]

NEXT DSCR ADDR MSB
[11:0] WORD5

RSVD
[31:0] WORD6

RSVD
[31:0] WORD7

Table 19‐2: Buffer Descriptor Format in Linked-list Descriptor Mode (Cont’d)
Zynq UltraScale+ Device TRM 547
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=547

Chapter 19: DMA Controller
Table 19‐3: Buffer Descriptor Format

Word
Number Field Name

Size
(bytes) Bits Description

0 ADDR LSB 4 [31:0] Lower 32 bits of the address pointing to the data/payload buffer.

1 ADDR MSB 4
[11:0] Upper 12 bits of the address pointing to the data/payload buffer.

[31:12] Reserved

2 SIZE 4
[29:0] Buffer size in bytes (1 G = 230)

[31:30] Reserved

3 CNTL 4

[0]

Coherency:
0: AXI transactions generated to process the descriptor payload are
marked non-coherent.
1: AXI transactions generated to process the descriptor payload are
marked coherent.
Note: This bit has no effect for the FPD DMA controller.

[1]

DSCR element type:
Each descriptor can be viewed as a 128/256-bit descriptor.
0: Current descriptor size is 128 bits (linear)
1: Current descriptor size is 256 bits (linked-list)

[2]

INTR
0: Completion interrupt is not required
1 (SRC-side): Interrupt is set at the completion of this element.
Completion indicates that data is read, but it could be in the DMA
buffer (and not yet written to destination).
1 (DST-side): Interrupt is set at the completion of this element.
Completion indicates that data is written to the destination location
and BRESP is received.

[4:3]

CMD
This field is valid only on a SRC descriptor and is reserved on a DST
descriptor.
00: Next DSCR is valid, the DMA channel continues with
scatter-gather operation (in this case). Software must ensure that the
next descriptor is valid.
01: Pause after completing this descriptor. Software can use this
command to pause the DMA operation and update the descriptors.
Once software is done updating the descriptors, it can resume the
channel from where it paused. If software has updated a descriptor to
new location, it can resume the channel and tell it to fetch the
descriptor from the new location. Pause mode allows software to
keep the state of the channel and avoid the enable sequence.
10: STOP after completing this descriptor. Once the DMA channel
detects STOP, it finishes the current descriptor payload transfer and
goes to IDLE. Any subsequent transfer requires the software to follow
an enable sequence. STOP does not preserve the state of the channel.
11: Reserved.

[31:5] Reserved.
Zynq UltraScale+ Device TRM 548
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=548

Chapter 19: DMA Controller
DMA Performance Requirements
The DMA provides 100% efficiency in the following scenario.

• Read and write descriptor payload are 128-bit aligned (in scatter-gather mode)
• SRC and DST descriptors are 256-bit aligned
• SRC and DST payload is >4 KB

100% efficiency is achieved when there is no back pressure on the read and write AXI
channels and DMA fully utilizes AXI read and write channels.

DMA Interrupt Accounting
The DMA channel does not update descriptors in memory. The feedback when the
descriptor is done is provided by a SRC/DST done interrupt along with an interrupt
accountings counter (control register). The following interrupt accounting scheme is
implemented on each DMA channel, on both the SRC and DST sides.

• The software can selectively request a completion interrupt on descriptors. Once a
descriptor is processed, the DMA increments the interrupt accountings counter. The
definition of a descriptor done is different on the SRC and DST sides.

• A SRC descriptor done interrupt is generated once the DMA is done reading all the
data corresponding to the source buffer descriptor. The SRC descriptor done interrupt
does not guarantee that data is written at a destination location. Data can still be in a
shared common buffer.

4 NEXT
ADDR LSB 4 [31:0] Lower 32 bits of the NEXT descriptor address. This field exists only if

the DSCR element type is set as 1.

5 NEXT
ADDR MSB 4

[11:0] Upper 12 bits of the NEXT descriptor address.

[31:12] Reserved
This field exists only if the DSCR element type is set as 1.

6 Reserved 4 [31:0] Reserved
This field exists only if the DSCR element type is set as 1.

7 Reserved 4 [31:0] Reserved
This field exists only if the DSCR element type is set as 1.

Table 19‐3: Buffer Descriptor Format (Cont’d)

Word
Number

Field Name Size
(bytes)

Bits Description
Zynq UltraScale+ Device TRM 549
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=549

Chapter 19: DMA Controller
• A DST descriptor done interrupt is generated once the DMA channel receives a
response to the last AXI write of the buffer corresponding to the DMA buffer descriptor.
The DST done interrupt ensures that data has been written to the memory location.

An interrupt is generated to the software as soon as the interrupt accounting’s count
transitions to non-zero. When the software takes this interrupt, it should also read the
interrupt accountings register. Count provides the number of processed descriptors with
interrupt enabled. This counter is cleared on read (due to coherency). Implementing this
scheme eliminates the need for a timeout mechanism. It also provides flexibility to the
software to enable an interrupt on a required descriptor.

The DMA channel implements a separate 32-bit interrupt account counter for the source
and destination sides. If the software does not read/clear the counter for a long time, this
counter can overflow. The DMA generates an interrupt to indicate the overflow condition
on the interrupt accounting counter. If a counter over flows on the last descriptor of a DMA
transfer (DMA DONE), then the interrupt accounting counter overflow interrupt is
generated two clock cycles after the DMA done interrupt due to asynchronous boundary
crossing logic.

DMA Over Fetch
The DMA supports an AXI bus width of 128/64 bits. In the case where the source descriptor
payload ends at a non-128/64 bit aligned boundary, the DMA channel fetches the last beat
as the full-128/64 bit wide bus. This is considered an over fetch. The over fetch option can
be disabled, if required. In the case where an over fetch is disabled and the SRC descriptor
payload ends on a non-128/64 bit boundary, the DMA fetches any remaining bytes as a
single byte AXI read.

The example in Figure 19-4 uses a source descriptor size of 8190 bytes (with a start address
at 0x000_0000 and end address at 0x0000_1FFD), a 128-bit wide AXI bus, and a burst
length of 16, the DMA can fetch 256 bytes in a single AXI burst. Two scenarios are
documented.

Scenario 1: Over Fetch is Disabled

• 31 AXI read command with burst length of 16 and AXI size of 16 bytes (7936 bytes
fetched)

• One AXI read command with burst length of 15 and AXI size of 16 bytes (240 bytes
fetched)

• To fetch the remaining 14 bytes, the DMA channel issues 14 single-beat AXI read
commands with an AXI size of 1 byte.
Zynq UltraScale+ Device TRM 550
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=550

Chapter 19: DMA Controller
Scenario 2: Over Fetch is Enabled

• 32 AXI burst length of 16 and AXI size of 16 bytes (8192 bytes fetched)

RECOMMENDED: If the over fetch is disabled, it could significantly impact the performance of the DMA
channel. Xilinx recommends only disabling the over fetch when absolutely necessary.

X-Ref Target - Figure 19-4

Figure 19‐4: Over Fetch Scenarios

Over Fetching
Disabled

To Fetch a Buffer of 8190 bytes

Over Fetching
Enabled

To Fetch a Buffer of 8190 bytes

0x0000_0000 0x0000_0000

0x0000_1F00

0x0000_1FF0

0x0000_2000 0x0000_2000

DMAC to Ignore
Last 2 bytes

32 Read Requests
Each of Size 256 bytes

(Burst Length: 16, AXI Size:16)
Total Number of

Bytes Read: 8192

1 Read Request of size 240 bytes
(Burst Length: 15, AXI Size:16)

Total Number of
Bytes Read: 8176

31 Read Requests
Each of Size 256 bytes

(Burst Length: 16, AXI Size:16)
Total Number of

Bytes Read: 7936

14 Read Requests
Each of Size 1 byte

(Burst Length: 1, AXI Size:1)
Total Number of

Bytes Read: 8190

X15369-092516
Zynq UltraScale+ Device TRM 551
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=551

Chapter 19: DMA Controller
DMA Transaction Control
The transaction control mechanism is used to control the rate and number of read/write
data transactions from a channel. The control parameters are applicable only to data
transactions and not for descriptor read transactions.

TIP: If the multiple rate control mechanism is enabled on a channel, a transaction is issued to
arbitration when all enabled rate control mechanisms provide permission to issue that transaction.

Data transactions on AXI read channels can be controlled per each channel using the
following control mechanisms.

Outstanding Transactions

Each DMA channel provides a control register ZDMA_CH_CTRL1[SRC_ISSUE] where the
software can program a maximum number of read outstanding transactions. The DMA
channel uses this parameter to limit the number of outstanding read data transactions.

Rate Control

Each DMA channel can be independently programmed to issue transactions on a periodic
basis. Higher priority channels can have a shorter interval between transactions. The lower
priority channels can have a longer interval between transactions. The issue rate is
independently controlled for each channel using an interval count that is programmed into
the ZDMA_CH_RATE_CTRL [CNT] bit field. Rate control is enabled by setting
ZDMA_CH_CTRL0 [RATE_CTRL] = 1. There are 16 pairs of registers for rate control (8
channels in each LPD and FPD DMA unit).

Enabling rate control causes the DMA channel to copy the interval count,
ZDMA_CH_RATE_CTRL [CNT] bit field, into the channel's decrementing counter. This counter
is decremented with every clock cycle. When the counter reaches 0, the DMA channel issues
a transaction to the arbiter and again copies the interval count into the decrementing
counter. The channel waits for the counter to reach 0 again, and then issues another
transaction and reloads the counter. The cycle continues until disabled by setting
[RATE_CTRL] = 0.

Arbitration has no queue of its own and does not get full. Instead, it relies on the AXI
queues. Bandwidth maximization depends on parameters such as transaction, length, and
alignment.

Rate control remains in effect until disabled. Therefore, when any new transactions begin,
the previously programmed rate controls take effect (unless disabled).
Zynq UltraScale+ Device TRM 552
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=552

Chapter 19: DMA Controller
TIP: When rate control is enabled, the read data transaction frequency is always equal to or less than
the programmed rate control frequency (1/rate control count).

Flow Control Interface

Data transactions on the AXI write channel can only be controlled using the flow-control
interface (FCI). The FCI is implemented per channel to provide read/write access flow
control ability to the PL slave. The FCI can be independently controlled from each channel's
control register. Software configures what accesses are flow controlled by the FCI
(read/write).

The PL slave provides credits to the DMA channel. Each credit is a permission for a single
AXI transaction. When the FCI is attached to the SRC (read), there is a permission to
generate one AXI data read transaction (write transaction when FCI is attached to DST
(write)). Table 19-4 lists the FCI signals.

IMPORTANT: The maximum number of credits accepted are 32.

The timing diagram for the flow control interface is as shown in Figure 19-5.

Table 19‐4: Flow Control Interface Signals

Signal Description

pl2dma_clk PL clock: Signals from/to PL are synchronous to pl2dma_clk. The DMA handles all clock
domain crossing.

pl2dma_cvld Credit valid
dma2pl_cack Credit acknowledgment:

• Credits are accumulated when both pl2dma_cvld and dma2pl_cack are High (TRUE).
• Each FCI can accumulate up to 32 credits.
• If the FCI is not enabled, the credits are flushed.

dma2pl_tvld Transaction valid
pl2dma_tack Transaction acknowledgment: The DMA channel indicates that one write transaction is

done (AXI write command was generated and a BRESP is received) when TVLD and
TACK are TRUE.
Zynq UltraScale+ Device TRM 553
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=553

Chapter 19: DMA Controller
Software can configure FCI to flow control either the SRC or DST based on whether the DMA
channel is reading from or writing to the PL slave.

• FCI must be configured to flow control SRC if the DMA is reading from the PL slave.
• FCI must be configured to flow control DST if the DMA is writing to the PL slave.

X-Ref Target - Figure 19-5

Figure 19‐5: FCI Flow Control Interface

X16933-092516
Zynq UltraScale+ Device TRM 554
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=554

Chapter 19: DMA Controller
FCI Considerations

• FCI is always disabled.
• FCI is configured to flow control the SRC (read) side upon reset.
• When FCI is enabled, both the SRC and DST sides use ARLEN for all AXI transactions.
• Software configures the FCI interface to the correct side (SRC/DST).
• In case of an error, the DMA channel waits until the transaction valid FIFO is empty

before going to DONE with an error state.
• The DMA channel will stop issuing write commands, if the PL slave does not provide a

TACK in response to a TVLD for an extended time and the transaction FIFO goes full.

When the FCI is attached to the DST side, the SRC transactions are limited by the threshold
allowed in the common buffer. This threshold can be programmed by the PROG_CELL_CNT
of the ZDMA_CH_FCI register in that channel. The DMA channel stops issuing data read
commands once the number of occupied cells exceeds the programmed cell count
threshold. If the write side of the channel is using FCI and the read side is not controlled,
then the channel uses most of the common buffer. This limits the other channels. By using
the threshold on common buffer usage, the channel's usage of the common buffer can be
controlled.

Once the channel is enabled with the FCI, the DMA channel accumulates incoming credits.
Each channel can accumulate up to 32 credits. Each transaction consumes one credit.
Channel will not issue a new transaction if credit is not available. Credit is consumed upon
generation of read/write commands based on the FCI configuration. If the FCI is not
enabled, it does not affect the generation of AXI commands on the SRC/DST.

The FCI accepts credit from the PL slave as long as the credit FIFO is not full. Credits are
flushed until the channel is enabled. Once a channel is enabled, a DMA channel uses credits
to flow control the SRC/DST AXI commands. In the event of an error, the DMA channel
performs an error-recovery sequence. Once done with error recovery, the channel clears
both the FCI_EN and channel EN flags. Once it clears the FCI_EN, the DMA channel flushes
all available and incoming credits until the next peripheral enable. The software provides
channel state information to the PL slave (enable, pause, and error).

The DMA channel provides a transaction valid notification to the PL slave on every AXI write
transaction completion. A transaction valid is always generated on receiving a valid BRESP.
Irrespective of any read/write association, a transaction valid always indicates completion of
a write transaction. Software can calculate and provide the total number of valid
transactions expected to complete the current DMA transaction to PL slave. PL slave can use
a transaction valid to find where a DMA channel is in a current DMA transaction.
Zynq UltraScale+ Device TRM 555
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=555

Chapter 19: DMA Controller
DMA Controller Register Overview
Table 19-5 is an overview of the DMA controller registers.

Table 19‐5: DMA Controller Registers

Register Name Description

ZDMA_ERR_CTRL Enable/disable an error response.
ZDMA_CH_ISR Interrupt status register for intrN. This is a sticky register that holds the value

of the interrupt until cleared by a value of 1.
ZDMA_CH_IMR Interrupt mask register for intrN. This is a read-only location and can be

automatically altered by either the IDS or the IEN.
ZDMA_CH_IEN Interrupt enable register. A write of 1 to this location will unmask the

interrupt. (IMR: 0).
ZDMA_CH_IDS Interrupt disable register. A write of 1 to this location will mask the interrupt.

(IMR: 1).
ZDMA_CH_CTRL0 Channel control register 0.
ZDMA_CH_CTRL1 Channel control register 1.
ZDMA_CH_FCI Channel flow control register.
ZDMA_CH_STATUS Channel status register.
ZDMA_CH_DATA_ATTR Channel DATA AXI parameter register.
ZDMA_CH_DSCR_ATTR Channel DSCR AXI parameter register.
ZDMA_CH_SRC_DSCR_WORD0 SRC DSCR word 0.
ZDMA_CH_SRC_DSCR_WORD1 SRC DSCR word 1.
ZDMA_CH_SRC_DSCR_WORD2 SRC DSCR word 2.
ZDMA_CH_SRC_DSCR_WORD3 SRC DSCR word 3.
ZDMA_CH_DST_DSCR_WORD0 DST DSCR word 0.
ZDMA_CH_DST_DSCR_WORD1 DST DSCR word 1.
ZDMA_CH_DST_DSCR_WORD2 DST DSCR word 2.
ZDMA_CH_DST_DSCR_WORD3 DST DSCR word 3.
ZDMA_CH_WR_ONLY_WORD0 Write-only data word 0.
ZDMA_CH_WR_ONLY_WORD1 Write-only data word 1.
ZDMA_CH_WR_ONLY_WORD2 Write-only data word 2.
ZDMA_CH_WR_ONLY_WORD3 Write-only data word 3.
ZDMA_CH_SRC_START_LSB SRC DSCR start address LSB register.
ZDMA_CH_SRC_START_MSB SRC DSCR start address MSB register.
ZDMA_CH_DST_START_LSB DST DSCR start address LSB register.
ZDMA_CH_DST_START_MSB DST DSCR start address MSB register.
ZDMA_CH_RATE_CTRL Rate control count register.
Zynq UltraScale+ Device TRM 556
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=556

Chapter 19: DMA Controller
DMA Programming for Data Transfer
This section describes the steps and the register configuration necessary to perform DMA
transfers using various modes supported by the DMA.

Simple Mode Programming

Step 1

Wait until the DMA is in an idle state by reading the STATE field of ZDMA_CH_STATUS and
ensuring it is either 00 or 11. In the case where the DMA is in PAUSE state, follow the steps
to bring the DMA out from PAUSE as described in Channel Paused.

Step 2

• Ensure that POINT_TYPE (bit 6) of the ZDMA_CH_CTRL0 register is 0.
• Program the data source buffer address LSB into register

ZDMA_CH_SRC_DSCR_WORD0.
• Program the data source buffer address MSB into register

ZDMA_CH_SRC_DSCR_WORD1.

Step 3

• Program the data destination buffer address LSB into register
ZDMA_CH_DST_DSCR_WORD0.

• Program the data destination buffer address MSB into register
ZDMA_CH_DST_DSCR_WORD1.

Step 4

• In simple DMA mode, both the SRC and DST transaction sizes must be programmed.
The DMA uses the SRC transaction size but it also requires programming both registers.
Program the source data size into the ZDMA_CH_SRC_DSCR_WORD2 register.

• Program the destination data transaction size into the ZDMA_CH_DST_DSCR_WORD2
register. Make sure that the SRC and DST transaction sizes are the same.

ZDMA_CH_IRQ_SRC_ACCT SRC interrupt account count register.
ZDMA_CH_IRQ_DST_ACCT DST interrupt account count register.
ZDMA_CH_CTRL2 DMA control register 2.

Table 19‐5: DMA Controller Registers (Cont’d)

Register Name Description
Zynq UltraScale+ Device TRM 557
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=557

Chapter 19: DMA Controller
Step 5

Optionally, enable an interrupt by setting INTR as a 1 in the ZDMA_CH_DST_DSCR_WORD3
and/or ZDMA_CH_SRC_DSCR_WORD3 registers.

Step 6

In cases where the source and destination buffer are allocated as cache coherent or are
flushed, there is no need to set COHRNT. Otherwise, if the source and destination buffer are
not allocated as cache coherent or have not been flushed, set COHRNT in the
ZDMA_CH_SRC_DSCR_WORD3 and ZDMA_CH_DST_DSCR_WORD3 registers, respectively.
The COHRNT bit is valid only in case of LPD DMA. The FPD DMA does not support
coherency.

Step 7

Enable the DMA channel to perform DMA transfers by setting the EN bit of
ZDMA_CH_CTRL2. After enabling DMA, check for possible error conditions as described in
Error Conditions.

Scatter Gather Mode Programming

DMA supports three different use cases under scatter gather mode.

• Linear
• Linked list
• Hybrid

Linear Mode Use Case

Linear mode is used when software can find a contiguous set of memory to accommodate
all the buffer descriptors necessary (source and destination) as an array. The flowchart in
Figure 19-6 captures the main steps.
Zynq UltraScale+ Device TRM 558
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=558

Chapter 19: DMA Controller
X-Ref Target - Figure 19-6

Figure 19‐6: Linear Mode DMA Programming Model

Wait for Idle

Enable DMA channel

Disable interrupts
(if interrupt mode)

Source and destination
descriptor setup

DMA transfers
done?

Clear interrupt status

Wait for DMA
transaction to complete

Disable DMA channel

End

Interrupt
mode?

Enable interrupts
(if interrupt mode)

Poll descriptor
done status in

ZDMA_CH_ISR
register

No Wait for descriptor
done interrupt

Release descriptors

Fetch the
SRC and

DST buffer
descriptors

Transfer
data to DST

buffer

Fetch the
SRC buffer

Yes

X15370-092516
Zynq UltraScale+ Device TRM 559
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=559

Chapter 19: DMA Controller
Step 1

Ensure DMA is not in a busy state by reading the STATE field of the ZDMA_CH_STATUS and
ensuring it is not 10. In the case where the DMA is in PAUSE state, follow the steps to bring
the DMA out from PAUSE as described in Channel Paused.

Step 2

a. Ensure that the bit POINT_TYPE (bit 6) of the ZDMA_CH_CTRL0 is set to 1 for
scatter-gather mode of operation.

b. Allocate the source buffer descriptor array in memory. Ensure that the buffer
descriptor start address is 128-bit aligned (for the LPD DMA, 64-bit aligned is
acceptable). In case any buffer descriptors are not allocated as cache coherent or the
buffer descriptors are not flushed prior to enabling the DMA channel, set the
AXCOHRNT field to 1. The address of the first buffer descriptor in an array is written
to ZDMA_CH_SRC_START_LSB and ZDMA_CH_SRC_START_MSB.

c. Allocate the destination buffer descriptor array in memory. Ensure that the buffer
descriptors start address is 128-bit aligned (for the LPD DMA, 64-bit aligned is
acceptable). In case any buffer descriptors are not allocated as cache coherent or the
buffer descriptors are not flushed prior to enabling the DMA channel, set the
AXCOHRNT field to 1. The address of the first buffer descriptor in an array is written
to ZDMA_CH_DST_START_LSB and ZDMA_CH_DST_START_MSB. The AXCOHRNT bit is
valid only in the case of LPD DMA. The FPD DMA does not support coherency at
buffer descriptor or buffer level.

TIP: The buffer descriptors can also be pre-allocated during initialization time and can be reused for
each DMA data transfer. In this case, Step 2 can be skipped.

Step 3

a. Program each source data fragment to successively transfer into the allocated
source buffer descriptors. The ADDR LSB and ADDR MSB fields are programmed.

b. Program the size of each source data fragment to transfer into the respective source
buffer descriptor. The SIZE field is programmed.

c. Set the coherency bit if the source data buffer is not flushed or is not allocated as
cache coherent prior to enabling the DMA channel for data transfer. The coherency
bit is valid only in the case of LPD DMA. The FPD DMA does not support coherency
at buffer descriptor or buffer level.

d. Ensure that the DSCR element type is 0.
e. Set the INTR field if an interrupt is required after data is read for transfer. Typically,

this can be set for the buffer descriptor corresponding to the last source data
fragment. Setting the last source descriptor for interrupt reduces the number of
interrupts received.
Zynq UltraScale+ Device TRM 560
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=560

Chapter 19: DMA Controller
f. The non-final buffer descriptor command field can be set to 00 for the next
descriptor valid. For the final-buffer descriptor, set the command field to 10 for STOP
after completing this descriptor.

TIP: You can set 01 for pause after completing the descriptor if you want the DMA in a paused state
after completing the final-buffer descriptor. The steps to come out of a paused state into a
enabled/disabled state are described in Channel Paused, page 569.

Step 4

a. Program each destination buffer fragment to successively transfer into the allocated
buffer descriptors. The ADDR LSB and ADDR MSB fields are programmed.

b. Program the size of each destination data fragment to transfer into the respective
destination buffer descriptor. The SIZE field is programmed.

c. Set the coherency bit if the source data buffer is not invalidated or is not allocated
as cache coherent prior to enabling the DMA channel for data transfer. The
coherency bit is valid only in the case of LPD DMA. The FPD DMA does not support
coherency at buffer descriptor or buffer level.

d. Ensure that the DSCR element type is 0.
e. Set the INTR field if an interrupt is required after the data is read for transfer.

Typically, this can be set for the buffer descriptor corresponding to the last
destination data fragment. Setting the last destination descriptor for interrupt
reduces the number of interrupts received.

f. The non-final buffer descriptor command field can be set to 00 for the next
descriptor valid. For the final buffer descriptor, set the command field to 10 for STOP
after completing this descriptor.

TIP: You can set 01 for pause after completing the descriptor if you want the DMA in a paused state
after completing the final-buffer descriptor. The steps to come out of a paused state into a
enabled/disabled state are described in Channel Paused, page 569.

Step 5

Enable the DMA channel by writing into the control register ZDMA_CH_CTRL2. This initiates
the data DMA transfer.

Step 6

Upon transfer completion, the DMA channel provides interrupt(s) to the processor
depending upon how the INTR field of the buffer descriptor(s) are set.

Software can use ZDMA_CH_IRQ_DST_ACCT and/or ZDMA_CH_IRQ_SRC_ACCT to decipher
the number of processed buffer descriptors on the source and destination sides. Software
can internally maintain counters of both the number of source and destination buffer
Zynq UltraScale+ Device TRM 561
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=561

Chapter 19: DMA Controller
descriptors configured for the DMA transfers. Upon updating the
ZDMA_CH_IRQ_DST_ACCT and/or ZDMA_CH_IRQ_SRC_ACCT with an equal count, software
can infer that the DMA data transfer is complete. Software should count only the
descriptors that are enabled for interrupts. For for information on handling interrupts, refer
to Interrupt Handling.

Step 7

After the DMA transfers are done, disable the DMA channel. Refer to Channel Disabled for
more information.

Linked List Mode Use Case

To facilitate DMA data transfers using the linked list mode, the following steps are
necessary. The linked-list mode can be used when software cannot find a contiguous set of
memory that can accommodate all the buffer descriptors necessary (source and
destination) as an array.

Step 1:

Ensure that the DMA is not in a busy state by reading the STATE field of ZDMA_CH_STATUS
and ensuring that it is not 10. In case DMA is in the PAUSE state, follow the steps to bring
it out of the PAUSE state as described in Channel Paused.

Step 2:

a. Ensure the POINT_TYPE bit in ZDMA_CH_CTRL0 is set to 1.
b. Allocate the source buffer descriptor objects in memory. Ensure that the buffer

descriptor object address is 256-bit aligned. In case any buffer descriptors are not
allocated as cache coherent or the buffer descriptors are not flushed prior to
enabling DMA channel, set the AXCOHRNT field to 1. The address of the first buffer
descriptor in a list is written to ZDMA_CH_SRC_START_LSB and
ZDMA_CH_SRC_START_MSB.

c. Allocate the destination buffer descriptor objects in memory. Ensure that the buffer
descriptor object address is 256-bit aligned. In case any buffer descriptors are not
allocated as cache coherent or the buffer descriptors are not flushed prior to
enabling the DMA channel, set the AXCOHRNT field to 1. The address of the first
buffer descriptor in a list is written to ZDMA_CH_DST_START_LSB and
ZDMA_CH_DST_START_MSB. The AXCOHRNT bit is valid only in case of LPD DMA.
The FPD DMA does not support coherency at buffer descriptor or buffer level.

TIP: The buffer descriptors can also be pre-allocated during initialization time.
Zynq UltraScale+ Device TRM 562
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=562

Chapter 19: DMA Controller
Step 3:

For each allocated source buffer descriptor object, program the following.

a. Program the source data fragment to transfer into the source buffer descriptor
object. The ADDR LSB and ADDR MSB fields are programmed.

b. Program the size of each source data fragment to transfer into the source buffer
descriptor object. The SIZE field is programmed.

c. Set the coherency bit if the source data buffer is not flushed or is not allocated as
cache coherent. The coherency bit is valid only in the case of LPD DMA. The
FPD DMA does not support coherency at buffer descriptor or buffer level.

d. Set the DSCR element type to 1.
e. Set the INTR field if an interrupt is required after the data is read for transfer.

Typically, this can be set for the buffer descriptor object corresponding to the last
source data fragment. Setting the last source descriptor for interrupt reduces the
number of interrupts received.

f. The non-final buffer descriptor command field can be set to 00 for the next
descriptor valid. For the final buffer descriptor, set the command field to 10 for STOP
after completing this descriptor.

TIP: You can set 01 for pause after completing the descriptor if you want the DMA in a paused state
after completing the final-buffer descriptor. The steps to come out of a paused state into a
enabled/disabled state are described in Channel Paused, page 569.

g. Program the NEXT ADDR LSB and NEXT ADDR MSB to point to the next source buffer
descriptor. If this is the last buffer descriptor in a linked list, these fields must be
NULL.

Step 4:

For each allocated destination buffer descriptor object, program the following.

a. Program the destination data fragment to transfer into the destination buffer
descriptor object. The ADDR LSB and ADDR MSB fields are programmed.

b. Program the size of each destination data fragment to transfer into each respective
destination buffer descriptor. The SIZE field is programmed.

c. Set the coherency bit if the destination data buffer is not flushed or is not allocated
as cache coherent. The coherency bit is valid only in the case of LPD DMA. The
FPD DMA does not set support coherency at buffer descriptor or buffer level.

d. Set the DSCR element type to 1.
e. Setting the last source descriptor for interrupt reduces the number of interrupts

received.et the INTR field if an interrupt is required after the data is read for a
Zynq UltraScale+ Device TRM 563
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=563

Chapter 19: DMA Controller
transfer. Typically, this is set for the buffer descriptor corresponding to the last
source data fragment. Setting the last destination descriptor for interrupt reduces
the number of interrupts received.

f. The non-final buffer descriptor command field can be set to 00 for the next
descriptor valid. For the final buffer descriptor, set the command field to 10 for STOP
after completing this descriptor.

TIP: You can set 01 for pause after completing the descriptor if you want the DMA in a paused state
after completing the final-buffer descriptor. The steps to come out of a paused state into a
enabled/disabled state are described in Channel Paused, page 569.

g. Program the NEXT ADDR LSB and NEXT ADDR MSB to point to the next destination
buffer descriptor. If this is the last buffer descriptor in a linked list, these fields must
be NULL.

Step 5:

Enable the DMA channel by writing into the control register ZDMA_CH_CTRL2. This initiates
the DMA data transfer.

Step 6:

Upon transfer completion, the DMA channel provides interrupt(s) to the processor
depending upon how the INTR field of the buffer descriptor(s) are set. For for information
on handling interrupts, refer to Interrupt Handling.

Software can use ZDMA_CH_IRQ_DST_ACCT and/or ZDMA_CH_IRQ_SRC_ACCT to decipher
the number of processed buffer descriptors on the source and destination sides. Software
can internally maintain counters of both the number of source and destination buffer
descriptors configured for the data transfer. Upon updating of the
ZDMA_CH_IRQ_DST_ACCT and/or ZDMA_CH_IRQ_SRC_ACCT with an equal count, software
can infer that the data transfer is complete. Software should count only those descriptors
for which interrupts are enabled.

Step 7

After the DMA transfers are done, disable the DMA channel. Refer to Channel Disabled for
more information.
Zynq UltraScale+ Device TRM 564
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=564

Chapter 19: DMA Controller
Interrupt Handling

Interrupt handling is done by following these steps.

1. Read the status from the ZDMA_CH_ISR register.
2. If the [DMA_DONE] bit is set, mark the channel state as Idle in the software context.
3. Check if the [DMA_PAUSE] bit is set. If yes, set the channel state to PAUSED in the

software context.
4. In case any other error bit is set, set the channel as IDLE in the software context.
5. Clear the interrupt status from the ZDMA_CH_ISR register by writing back value read in

step 1.

DMA Programming Model for FCI
The DMA implements one FCI per channel. An FCI interface can be independently
controlled per channel. After each DMA transaction is done, the DMA channel clears both
the channel EN and FCI_EN flags. Software must enable the FCI interface for each DMA
transaction. If the FCI interface is not enabled (FCI_EN = 0), the DMA channel flushes all
incoming credits.

Credits are only valid when the FCI interface is enabled (FCI_EN = 1).

• Setup channel mode (simple and scatter gather mode).
• ZDMA_CH_{DATA, DSCR}_ATTR attribute registers.
• Setup DMA mode:

° Simple mode, program the DSCR registers.

° SG mode, program the DSCR in memory and program the DSCR start address
register.

• Set the FCI control parameters, ZDMA_CH_FCI [EN, SIDE].
• Set the enable bit, CH2_CTRL [EN]. This provides a trigger to the DMA channel.

The DMA channel provides transaction acknowledgment for all valid credits received after
the ZDMA_CH_FCI [EN] bit is set. The DMA channel clears ZDMA_CH_FCI [EN] once it is done
with the DMA transaction. The software must enable FCI along with the channel enable for
subsequent DMA transfers.
Zynq UltraScale+ Device TRM 565
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=565

Chapter 19: DMA Controller
The suggested use-model for your applications follows.

• SRC and DST payload addresses are aligned to programmed AXI burst length and an
over fetch is enabled.

• Software provides the transfer size details to the flow control slave.

Implementation Notes

• If the suggested use-model requirements are satisfied, attaching FCI to SRC/DST is not
required.

• When FCI is enabled, both the AXI read and write command use the same burst length
SRC AXI length (ARLEN).

• When the SRC and DST descriptor payloads are not aligned to the bus width, the
number of read and write transactions could be different.

• The size of the first and last transaction can be different based on the alignment of the
read and write payload.

• One credit means one AXI read or write transaction. The size of the transaction can vary
based on the 4k boundary crossing and over fetch disable. The DMA channel never
generates a transaction larger than the programmed ARLEN.

• Read/write transactions can be controlled using more than one mechanism. A channel
might not generate a transaction, even if it has credits, due to other channel control
parameters.

° Rate control counter

° Outstanding transaction count

FCI Attached to the SRC

Software can enable the FCI before enabling a channel. The DMA channel uses ARLEN on
both the SRC and DST sides.

Number of SRC transaction = Number of DST transaction

SRC AXI transaction size/length = DST AXI transaction size/length

If a DMA channel is reading data from the flow controlling slave, each credit given to the
DMA channel reads ARLEN x bus width (in bytes) worth of data. ARLEN x bus width (in
bytes) worth of data is written to the FCI slave if the DMA channel is writing data to a slave.

The DMA channel can accept up to 32 credits. The slave can use this to pipeline credits to
the DMA channel. Because of the aligned address requirement, each credit is the transfer
size of ARLEN x bus width (bytes). A slave uses this to keep track of the number of bytes
transferred. This information is used by slave to issue credits.
Zynq UltraScale+ Device TRM 566
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=566

Chapter 19: DMA Controller
DMA Channel Reading from a Flow Controlling the PL Slave

A DMA channel reading from a flow controlling the PL slave scenario is similar to the
suggested use model except the one-to-one correlation between SRC and DST AXI
commands does not exist. The number of commands generated on the SRC side can be
different than the DST. In this case, the number of transaction valid responses can be
less/more than the number of credits used. Unless the software calculates the number of
valid transactions required for DMA transfer, the PL slave cannot use the valid transactions.

The DMA channel only generates read data transactions if credit is available. Once it has
enough data to generate a write transaction, it issues a write command. The slave can
snoop on the AXI read channel to keep track of the number of beats/bytes read by the DMA
channel.

DMA Channel Writing to a Flow Controlling the PL Slave

In a DMA channel writing to a flow controlling the PL slave scenario, the software
configures the FCI to flow control the DST. Each valid credit allows the DMA channel to
perform one AXI write command. If you do not flow control the read/SRC when the FCI is
configured to the flow control DST, the channel can issue multiple read transactions and
utilize the entire common buffer. This will starve other channels. To resolve this issue,
software configures the maximum number of entries used by the DMA channel. Once the
DMA channel exceeds the programmed value, it will not issue more read transactions. The
PROG_CELL_CNT of the ZDMA_CH_FCI register can be programmed in the register.

Maximum number of occupied cells = (ARLEN + 1) << PROG_CELL_CNT

If the software programs PROG_CELL_CNT to zero, the maximum number of entries
occupied by the DMA channel is the same as one full AXI burst.

Because the SRC and DST addresses are unaligned and over fetch can be disabled, the DMA
channel might have to generate multiple read transactions to do a single write transaction.
Because of this, it is advised to program PROG_CELL_CNT to a 1. As explained previously,
the number of SRC and DST transfers can be different and unless the software calculates the
number of valid transactions required for DMA transfer, the PL slave cannot use the valid
transactions.

The DMA channel generates write data transactions only if credits are available. The write
command is only generated when enough credit and enough data is available to generate
one write transaction.
Zynq UltraScale+ Device TRM 567
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=567

Chapter 19: DMA Controller
Programming Model for Changing DMA Channel States

A DMA channel can be in one of the following states at any time. This section explains each
state and how to go into a particular state.

• Disabled
• Enabled
• Paused

Channel Enabled

The software can enable one or more channels at any time using the following enable
sequence.

• Setup channel mode (simple or scatter gather mode).
• Set the ZDMA_CH_{DATA, DSCR}_ATTR attribute registers.
• Setup DMA mode.

° Simple mode, program the DSCR registers.

° In scatter gather mode, program the DSCR in memory and program the DSCR start
address register.

• Set enable bit in the ZDMA_CH_CTRL2 register. This provides a trigger to the DMA
channel.

Channel Disabled

The channel can go into a disabled state for the following reasons.

1. Current SRC descriptor indicates CMD = STOP.
• DMA processes the current descriptor and goes into a disable state.
• DMA channel ensures that all the data is transferred to the DST memory location

before going into a disable state and updating the status register.
• This mechanism can be used to indicate the end of an operation.
2. DMA channel is in simple DMA mode and transfer is done.

a. Once a channel is done transferring the data indicated into the SRC/DST DSCR
register, the channel goes into a disable state.

b. For subsequent transfers, the software must enable the channel.
Zynq UltraScale+ Device TRM 568
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=568

Chapter 19: DMA Controller
3. Software can put any paused channel into a disable state.
a. The current channel state is pause and it has received a CONT from the APB register.

Mode = Pause & enable = 0 and CONT = 1
The DMA channel goes into disable mode.

4. Any error detected on an AXI channel/descriptor programming puts the DMA channel
into a disable state.

Channel Paused

The software can pause any channel by setting the scatter-gather descriptor command bits
to PAUSE. This feature is used to pause the DMA operation and program the next set of
descriptors.

Current DSCR indicates CMD = Pause

If the current descriptor command bits indicates a pause, the DMA channel completes the
current descriptor payload to the DST locations. Once it is done with data transfer, the DMA
channel goes into pause mode. The channel keeps the current operational state.

Coming Out of Pause

There are two ways to bring a channel out of pause and into active mode.

1. Keep the current state and read the next descriptor continuously from the last
descriptor before going into pause.

CONT bit is set in the control register and [CONT_ADDR] = 0.

2. Use the DSCR start address to fetch the first descriptor coming out of pause.

CONT bit is set in the control register and [CONT_ADDR] = 1.

Software can also put the DMA channel in disable mode from pause mode:

Mode = Pause, enable = 0, and [CONT] = 1.

Security

The DMA allows software to mark each channel secure/non-secure by programming the
LPD_SLCR_SECURE.slcr_adma and FPD_SLCR_SECURE.slcr_gdma registers for the RPU and APU
DMA units, respectively. The secure bit field [tz] includes 8 bits to set the TrustZone security
setting for the 8 DMA channels. If a channel is marked secure, only a secure master can
access its DMA control and status registers. The DMA tags all the AXI transactions secure if
a channel is marked secure.
Zynq UltraScale+ Device TRM 569
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=569

Chapter 19: DMA Controller
Secure DMA channel characteristics include the following.

• Only secure masters can access their control and status registers.
• All AXI transactions from this channel are marked secure. They can access both secure

and non-secure regions.

Non-secure DMA channel characteristics include the following.

• Both secure and non-secure masters can access their control and status registers.
• All AXI transactions from this channel are marked non-secure. They can access only

non-secure regions.

Error Conditions

DMA errors are isolated per channel and an error on one channel should not affect any
other channel. There are multiple sources producing errors during DMA operation.

Software Programing Error

The DMA assumes that software programs registers and descriptors as expected. In case of
wrong software programming, a DMA channel does not take any action for error recovery
and DMA channel behavior is unpredictable.

DMA Implements Interrupt Accounting Support

The software can selectively enable interrupt generation on each descriptor (independent
on SRC and DST). On every descriptor done (which asked for an interrupt), the DMA
increments a descriptor done counter. Each DMA channel implements an 8-bit interrupt
accounting counter on the SRC and DST sides. An interrupt accounting counter overflow is
indicated as an interrupt. Independent SRC and DST interrupts are generated. This is
non-fatal error as it does not affect the channel functionality.

AXI Errors

In case of an AXI decode/slave error on data read/write or descriptor read, the DMA channel
performs an error recovery sequence and recovers all occupied entries in the common
buffer. After completing the error recovery sequence, it generates an interrupt to indicate
the type of error and disables the channel.
Zynq UltraScale+ Device TRM 570
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=570

Chapter 20

CAN Controller

Introduction
There are two CAN controllers in the PS. Each one is independently configured and
controlled. Defining the CAN protocol is outside the scope of this document, and
knowledge of the specifications is assumed.

Features

• Compatible with the ISO 11898-1, CAN 2.0A, and CAN 2.0B standards.
• Standard (11-bit identifier) and extended (29-bit identifier) frames.
• Transmit message FIFO (TXFIFO) with a depth of 64 messages.
• Transmit prioritization through one high-priority transmit buffer (TXHPB)
• Watermark interrupts for TXFIFO and RXFIFO.
• Automatic re-transmission on errors or arbitration loss in normal mode.
• Receive message FIFO (RXFIFO) with a depth of 64 messages.
• Four RX acceptance filters with enables, masks, and IDs.
• Loopback and snoop modes for diagnostic applications
• Sleep mode with automatic wake-up
• Maskable error and status interrupts
• 16-bit time stamping for receive messages
• Readable RX/TX error counters
Zynq UltraScale+ Device TRM 571
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=571

Chapter 20: CAN Controller
Functional Description
The CAN controllers are controlled by the CAN0 and CAN1 registers sets (for example, the
CAN0.MSR register). The system viewpoint of the CAN controller is shown in Figure 20-1.

X-Ref Target - Figure 20-1

Figure 20‐1: CAN Controller System Viewpoint

CAN
Controllers

PL

Clock

TX, RX

TX, RX

ClockingCAN{0,1} REF clock

LPD_LSBUS_CLK

IRQ ID# {55,56}

MIO-EMIO
Routing

EMIO

MIO
Pins

Device
Boundary

TX, RX

External
Clock

Source

Control
Registers

APB
Interconnect

Slave
Port

X15371-120518
Zynq UltraScale+ Device TRM 572
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=572

Chapter 20: CAN Controller
Block Diagram

The high-level architecture of the CAN controller is shown in Figure 20-2. The sub-modules
are described in subsequent sections.

Clocks

The CAN controller operates with two clocks: the bus LPD_LSBUS_CLK for register
configuration and the CAN transceiver reference clock CAN{0, 1}_REF_CLK.

The LPD_LSBUS_CLK clock is used to clock all APB register logic using only the positive
edge.

The CAN reference clock is used to generate an over-sampling clock based on the desired
baud rate. The frequency of this clock depends on the required baud rate accuracy and
must keep within the range of the baud-rate divider logic. It uses only the positive edge of
this clock. The signal produced by the baud-rate division of this clock (the quantum clock)
is used as an enable for bit-timing logic clocked by the CAN_REF_CLK, it is not used as a
clock directly. The frequency of CAN_REF_CLK must be chosen such that a suitable accuracy
is achieved for the required baud rate as specified in the ISO 11898-1, CAN 2.0A, and CAN
2.0B standards.

X-Ref Target - Figure 20-2

Figure 20‐2: CAN Controller Block Diagram

Object Layer – Data Buffer and Filtering Transfer Layer
Protocol Engine

Bit Stream
Processor

Bit Timing
Logic

TX
 FIFO

TX
HPB

TX
Priority
Logic

TX Storage

Configuration
Registers

RX
FIFO

Acceptance
Filtering

CAN TX

CAN RX

Data Read

Register R/W

Data Write

APB
Interface

X15372-091116
Zynq UltraScale+ Device TRM 573
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=573

Chapter 20: CAN Controller
The CAN_REF_CLK is divided by a programmable baud-rate prescaler (BRPR) to generate
the quantum clock as shown in Equation 20-1.

Equation 20‐1

Additionally, the number of quantum clocks within each phase of the CAN frame can be
configured through the BTR register. The controller and I/O interface are driven by the
reference clock (CAN_REF_CLK). The controller's interconnect also requires an APB interface
clock. The APB interconnect clock always comes from the PS clock subsystem.

The reference clock normally comes from the PS clock subsystem, but it can alternatively be
driven by an external clock source through any available MIO pin. The reference clock is
used by the protocol engine, the baud-rate generator, and the datapath. The controllers
share the same reference clock frequency from the PS clock subsystem. If the reference
clock is from an MIO pin, then the frequencies can be different.

LPD_LSBUS_CLK Clock

The LPD_LSBUS_CLK clock runs asynchronous to the CAN reference clock.

Reference Clock

CAN_REF_CLK is normally sourced from the PS clock subsystem, but it can alternatively be
driven by an external clock source through an MIO pin. Internally, the PS has three PLLs and
two clock divider pairs. The clock source choice, PS clock subsystem or external MIO pin, is
controlled by the IOU_SLCR.CAN_MIO_CTRL register.

The CAN reference clock frequencies are controlled by CRL_APB.CAN0_REF_CTRL and
CRL_APB.CAN1_REF_CTRL registers.

Example: Configure and Route Internal Clock for Reference Clock

Configure the clock and disable MIO path. Assume the PLL is operating at 1000 MHz and
the required CAN reference clock is 24 MHz (23.8095 MHz).

1. Program the clock subsystem. Write 0x0030_0E03 to the CRL_APB.CAN0_REF_CTRL
register.
a. Enable both CAN reference clocks.
b. Divide the I/O PLL clock by 42 (0x02A): [DIVISOR0] = 0x0E and [DIVISOR1] = 0x03

used by both controllers.
2. Disable the MIO path. Write 0x0000_0000 to the IOU_SLCR.CAN_MIO_CTRL register to

select the clock from the internal clock subsystem/PLL for both controllers.

ƒquantum_clk
ƒCAN_REF_CLK

BRP 1+
---------------------------=
Zynq UltraScale+ Device TRM 574
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=574

Chapter 20: CAN Controller
Programming Example – Assign MIO Pin as CAN Reference Clock Input

This example assigns MIO pin 45 to the clock input reference for the CAN controller.
Configure MIO pin 45 for the external CAN reference clock. These steps refer to the
IOU_SLCR register set.

1. Route the reference clock. Write 32h'0000_1200 to the MIO_PIN_45 register.
2. Disable the output driver. Write a 1 to the MIO_MST_TRI1 [PIN_45_TRI] bit.
3. Select CMOS input (not Schmitt). Write 0 to BANK1_CTRL3 [20] bit.
4. Select the internal pull-up resister. Write 1 to BANK1_CTRL4 [20] bit.
5. Enable the internal pull-up resister. Write 1 to BANK1_CTRL5 [20] bit.

The output controls, [drive0], [drive1], and [slow_fast_slew_n] do not need programming,
but it is recommended to select minimum drive and slow slew rate. The voltage applied to
PSIO bank 1 can be read using the BANK1_STATUS [0] bit.

Configure the reference clock at the controller. These steps refer to the
IOU_SLCR.CAN_MIO_CTRL register.

6. Select the clock path to use MIO pin 45. Write 1 to the [CAN_REF_SEL] bit.
7. Select MIO Pin 45. Write 2Dh (45d) to the [CAN_MUX] bit.
8. Choose an active reference clock edge for RX using the [CAN_RXIN_REG] bit.

Resets

There are two resets associated with the CAN. The effects for each reset type are
summarized in Table 20-1.

Example: Reset using Local CAN Reset

Write to the local CAN reset register. Write a 1 to can.SRR[SRST] bit field. This bit is
self-clearing.

Table 20‐1: CAN Reset Effects

Name
APB

Interface
RX and TX

FIFOs
Protocol
Engine

Control
and Status
Registers

Acceptance
Filters

(ID and Mask)

Local CAN reset can.SRR[SRST] Yes Yes Yes Yes No
PS reset subsystem:
CRL_APB.RST_LPD_IOU2 [CAN_RESET] Yes Yes Yes Yes No
Zynq UltraScale+ Device TRM 575
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=575

Chapter 20: CAN Controller
Example: Reset using Reset Subsystem

Write to the SLCR reset register for CAN. Write a 1 then a 0 to the CRL_APB.RST_LPD_IOU2
[CAN_RESET] bit field.

Configuration Registers

The CAN controller configuration register defines the configuration registers. This module
allows for read and write access to the registers through the APB interface. An overview of
the CAN controller registers is shown Register Overview.

Transmit and Receive Messages

A separate storage buffers exist for transmit (TXFIFO) and receive (RXFIFO) messages
through a FIFO structure. Each buffer can store up to 64 messages. Once a message is
written into the TXFIFO, the total delay to transmit it over the CAN bus is
2 x (TX driver delay + propagation delay + RX driver delay).

TX High Priority Buffer

Each controller also has a transfer high-priority buffer (TXHPB) that provides storage for
one transmit message. Messages written on this buffer have maximum transmit priority.
They are queued for transmission immediately after the current transmission is complete,
preempting any message in the TXFIFO.

Acceptance Filters

Acceptance filters sort incoming messages with the user-defined acceptance mask and ID
registers to determine whether to store messages in the RXFIFO, or to acknowledge and
discard them. Messages passed through acceptance filters are stored in the RXFIFO.

Controller Modes

The CAN controller supports the following modes of operation.

• Configuration Mode
• Normal Mode
• Sleep Mode
• Loopback Mode (Diagnostics)
• Snoop Mode (Diagnostics)
Zynq UltraScale+ Device TRM 576
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=576

Chapter 20: CAN Controller
Configuration Mode

The CAN controller enters the configuration mode when any of the following actions are
performed, regardless of the operation mode.

• Writing a 0 to the [CEN] bit in the SRR register.
• Writing a 1 to the [SRST] bit in the SRR register. The controller enters the configuration

mode immediately following the software reset.
• Driving a 0 on the reset input. The controller continues to be in reset as long as reset is

0. The controller enters configuration mode after reset is negated to 1.

Normal Mode

Normal mode transmits and receives messages on the TX and RX I/O signals as defined by
the Bosch and IEEE specifications.

Sleep Mode

Sleep mode can be used to save a small amount of power during idle times. When in sleep
mode, the controller can transition to normal mode or configuration mode. Sleep mode
includes the following actions.

• When another node transmits a message, the controller receives the message and exits
sleep mode.

• When there is a new TX request, the controller switches to normal mode and the
services the request.

• An interrupt can be generated when the controller enters sleep mode.
• An interrupt can be generated when the controller wakes up.

Sleep mode is exited by the hardware when there is CAN bus activity or a request in either
the TXFIFO or TXHPB. When the controller exits sleep mode, can.MSR[SLEEP] is set to 0 by
the hardware and an interrupt can be generated.

The CAN controller enters sleep mode from configuration mode when the [LBACK] bit in the
[MSR] is 0, the [SLEEP] bit in the MSR register is 1, and the [CEN] bit in the SRR register is
1. The CAN controller enters sleep mode only when there are no pending transmission
requests from either the TXFIFO or the TX high-priority buffer.

The CAN controller enters sleep mode from normal mode only when the [SLEEP] bit is 1, the
CAN bus is idle, and there are no pending transmission requests from either the TXFIFO or
the TX high-priority buffer (TXHPB).

When another node transmits a message, the CAN controller receives the transmitted
message and exits sleep mode. When the controller is in sleep mode, if there are new
transmission requests from either the TXFIFO or the TXHPB, these requests are serviced,
Zynq UltraScale+ Device TRM 577
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=577

Chapter 20: CAN Controller
and the CAN controller exits sleep mode. Interrupts are generated when the CAN controller
enters sleep mode or wakes up from sleep mode. From sleep mode, the CAN controller can
enter either the configuration or normal modes.

Loopback Mode (Diagnostics)

Loopback mode is used for diagnostic purposes. When in loopback mode, the controller
must only be programmed to enter configuration mode or issue a reset. In loop back mode,
the following actions occur.

• The controller transmits a recessive bitstream onto the CAN_PHY_TX bus signal.
• TX messages are internally looped back to the RX line and are acknowledged.
• TX messages are not sent on the CAN_PHY_TX bus signal. The controller receives all the

messages that it transmits.
• The controller does not receive any messages transmitted by other CAN nodes.

Snoop Mode (Diagnostics)

Snoop mode is used for diagnostic purposes. When in snoop mode, the controller must
only be programmed to enter configuration mode or be held in reset. In snoop mode the
following actions occur.

• The controller transmits a recessive bitstream onto the CAN bus.
• The controller does not participate in normal bus communication.
• The controller receives messages that are transmitted by other CAN nodes.
• Software can program acceptance filters to dynamically enable/disable and change

criteria. Error counters are disabled and cleared to 0. Reads to error counter registers
return to 0.

Mode Transitions

The supported mode transitions are shown in Figure 20-3. The transitions are primarily
controlled by the resets, the [CEN] bit, the MSR register settings, and a hardware wake-up
mechanism.

To enter normal mode from configuration mode the following steps must occur.

• Clear can.MSR[LBACK, SNOOP, SLEEP] = 0.
• Set can.SRR[CEN] = 1.

To enter sleep mode from normal mode (interrupt generated), set can.MSR[SLEEP] = 1.
Zynq UltraScale+ Device TRM 578
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=578

Chapter 20: CAN Controller
Events that cause the controller to exit sleep mode (interrupt generated) include the
following steps.

• RX signal activity (hardware sets can.MSR[SLEEP] = 0).
• TXFIFO or TXHPB activity (hardware sets can.MSR[SLEEP] = 0).
• Software writes 0 to can.MSR[SLEEP].

X-Ref Target - Figure 20-3

Figure 20‐3: CAN Operating Mode Transitions, Mode Settings

Configuration

Reset

Normal

Sleep

Loopback
Snoop

Reset

can.SRR[CEN]=0

Diagnostics

CRL_APB.RST_LPD_IOU2 [CANx_RESET] = 0

Reset:
CRL_APB.RST_LPD_IOU2 [CANx_RESET]=1
OR
can.SRR[SRST}=1
(Self-clearing)

Hardware Forces
can.SRR[CEN]=0

X15373-022217
Zynq UltraScale+ Device TRM 579
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=579

Chapter 20: CAN Controller
Table 20-2 defines the CAN controller modes of operation and corresponding control and
status bits.

Message Format

The same message format is used for RXFIFO, TXFIFO, and TXHPB. Each message includes
four words (16 bytes). Software must read and write all four words regardless of the actual
number of data bytes and valid fields in the message.

The message words, fields, and structure are shown in Table 20-3.

Table 20‐2: CAN Controller Modes of Operation

[CAN_RESET] bit

Software Reset
Register (can.SRR)

Mode Select Register
(MSR)

(Read/Write bits)

Status Register (SR)
(Read Only bits)

Operational
ModeSRST

(CAN
Reset)

CEN
(CAN

Enable)
LBACK SLEEP SNOOP CONFIG LBACK SLEEP NORMAL SNOOP

1 X X X X X 1 0 0 0 0 Reset
0 1 X X X X 1 0 0 0 0 Reset
0 0 0 X X X 1 0 0 0 0 Configuration
0 0 1 1 X X 0 1 0 0 0 Loop back
0 0 1 0 1 0 0 0 1 0 0 Sleep
0 0 1 0 0 1 0 0 0 1 1 Snoop
0 0 1 0 0 0 0 0 0 1 0 Normal

Table 20‐3: CAN Message Format

Message Word Registers
 Description Bits

Bit Field
Name

Frame Types
Data Remote

Frame Size
Standard Extended

Default
Value

Identifier:

{RXFIFO, TXFIFO, TXHPB}_ID

Remote transmission request 0 [RTR] = 0 = 1 NA, = 0 Applies 0
Extended message frame ID 18:1 [IDL] Valid Valid NA Applies 0
Identifier extension for frame size 19 [IDE] Valid Valid = 0 = 1 0
Substitute remote transmission
request 20 [SRRRTR] = 0 = 1 Applies NA, = 1 0

Standard message frame ID 31:21 [IDH] Valid Valid Applies Applies 0
Data Length Code (DLC):

{RXFIFO, TXFIFO, TXHPB}_DLC

Data length code, 0 to 8 bytes 31:28 [DLC] Valid Valid Valid Valid 0
Reserved 27:0 ~ ~ ~ ~ ~ 0
Timestamp (RXFIFO only) 15:0 [RXT]
Zynq UltraScale+ Device TRM 580
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=580

Chapter 20: CAN Controller
Bit Field Details

Writes

If a bit field or data byte is not required, then write zeros.

Reads

Data starts at byte 0 and continues for the number of counts in DLC.

Message Buffering

This section describes the RX and TX message buffers.

RX Messages

The RXFIFO can store up to 64 RX CAN messages that are received and optionally filtered.
RX messages that pass any of the acceptance filters are stored in the RXFIFO. When no
acceptance filter is selected, all received messages are stored in the RXFIFO. The software
reads these messages as described in Read Messages from RXFIFO.

A timestamp is added to each successfully stored RX message. A free running 16-bit
counter is clocked using CAN_REF_CLK. The rules for time stamping an RX message are as
follows.

Data Word 1:

{RXFIFO, TXFIFO, TXHPB}_DATA1

Data Byte 0 31:24 [DB0] Valid Valid Valid Valid 0
Data Byte 1 23:16 [DB1] Valid Valid Valid Valid 0
Data Byte 2 15:8 [DB2] Valid Valid Valid Valid 0
Data Byte 3 7:0 [DB3] Valid Valid Valid Valid 0
Data Word 2:

{RXFIFO, TXFIFO, TXHPB}_DATA2

Data Byte 4 31:24 [DB4] Valid Valid Valid Valid 0
Data Byte 5 23:16 [DB5] Valid Valid Valid Valid 0
Data Byte 6 15:8 [DB6] Valid Valid Valid Valid 0
Data Byte 7 7:0 [DB7] Valid Valid Valid Valid 0

Table 20‐3: CAN Message Format (Cont’d)

Message Word Registers
 Description

Bits Bit Field
Name

Frame Types
Data

Remote Frame Size
Standard

Extended Default
Value
Zynq UltraScale+ Device TRM 581
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=581

Chapter 20: CAN Controller
• The counter rolls over. No status bit indicates that a roll-over condition occurred. At
certain bit rates, the choice of the reference clock frequency is constrained by the
roll-over clock.

• The timestamp included when an RX message is successfully collected. The sampling of
the counter takes place at the last bit of EOF.

• The counter is cleared when can.SSR [CEN] = 0 or when software writes a 1 to the
can.TCR register.

Software must read all four registers of an RX message in the RXFIFO, regardless of how
many data bytes are in the message. The first word is read using the RXFIFO_ID register and
contains the received message standard and extended IDs, [IDH], and [IDL], respectively.
The second word is read using the RXFIFO_DLC register and contains the 16-bit timestamp
and data length code [DLC] field. The third and fourth words contain data word 1
(RXFIFO_DATA1) and data word 2 (RXFIFO_DATA2) registers.

Writes to the RXFIFO registers are ignored. Read data from an empty RXFIFO are invalid and
might generate an interrupt.

The messages in the RXFIFO are retained even if the CAN controller enters the bus-off state
or configuration mode.

TX Messages

The controller has a configurable TXFIFO that software can use buffer up to 64 TX CAN
messages. The controller also has a high priority transmit buffer (TXHPB), with storage for
one message. When a higher priority message needs to be sent, software writes the
message to the high priority transmit buffer when it is available. The message in the TXHPB
has higher priority over messages in the TXFIFO.

When arbitration loss or errors occur during the transmission of a message, the controller
tries to retransmit the message. No subsequent message, even a newer, high-priority
message is transmitted until the original message is transmitted without errors or
arbitration loss.

The controller transmits the message starting with bit 31 of the IDR word. After the
identifier word is transmitted, the TXFIFO_DLC word is transmitted. This is followed by the
data bytes in this order: DB0, DB1, ... DB7. The MSB of a data byte is transmitted first.

The status bit, can.ISR[TXOK] is set = 1 after the controller successfully transmits a message
from either the TXFIFO or TXHPB.

The messages in the TXFIFO and TXHPB are retained even if the CAN controller enters
bus-off state or configuration mode.

The message format is described in Message Format.
Zynq UltraScale+ Device TRM 582
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=582

Chapter 20: CAN Controller
Reads from RXFIFO

All 16 bytes must be read from the RXFIFO to receive the complete message.

• The first word read (4 bytes) returns the identifier of the received message RXFIFO_DLC
register.

• The second read returns the 16-bit receive time stamp and data length code [DLC] field
of the received message RXFIFO_DLC register.

• The third read returns data word 1 RXFIFO_DATA1 register.
• The fourth read returns data word 2 RXFIFO_DATA2 register.

A free running 16-bit counter provides a time stamp relative to the time the message was
successfully received.

All four words must be read for each message, even if the message contains less than eight
data bytes. Write transactions to the RXFIFO are ignored. Reads from an empty RXFIFO
return invalid data and generates an RX underflow interrupt.

RX and TX Error Counters

When an RX or TX error occurs, the associated error counters in the protocol engine (see
Protocol Engine) are incremented. The two error counters are 8 bits wide and are read using
the read-only can.ECR register, bit fields [REC] and [TEC]. The RX and TX counters are reset
when any the these situations occur.

• After a 1 is written to can.SRR[SRST] field = 1. This bit write is self-clearing.
• Anytime can.SRR[CEN] = 0 (configuration mode).
• When the controller enters the bus-off state.

Interrupts

Each CAN controller has a single interrupt signal to the generic interrupt controller (GIC).
CAN 0 connects to IRQ ID#55 and CAN 1 connects to ID #56. The source of an interrupt can
be grouped into one of the following.

• TXFIFO and TXHPB
• RXFIFO
• Message passing and arbitration
• Sleep mode and bus-off state

Enable and disable interrupts by using the can.IER register. Check the raw status of the
interrupt using the can.ISR register. Clear interrupts by writing a 1 to the can.ICR register.
Zynq UltraScale+ Device TRM 583
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=583

Chapter 20: CAN Controller
Some interrupt sources have an additional method to clear the interrupt as shown in
Table 20-4.

List of Interrupts

All of the CAN interrupts are sticky. CAN status and interrupts are identified in Table 20-4.
All bits are cleared by writing to the ICR register. Some bits can be cleared by writing a 0 to
the can.SRR [CEN] bit field.

Table 20‐4: List of CAN Status and Interrupts

Name Bit
Number

Additional Methods to Clear Interrupt Usage

Arbitration lost 0 Write 0 to can.SRR[CEN] Arbitration lost during message
transmission

Message TX 1 Write 0 to can.SRR[CEN] Message transmission successful

TXFIFO full 2 None Read to determine if more TX messages
can be written to the TXFIFO.

TXHPB full 3 None Read to determine if more TX messages
can be written to the TXHPB.

Message RX 4 Write 0 to can.SRR[CEN] New message received in RXFIFO

RXFIFO underflow 5 None Programming error, message read from
RXFIFO when no messages were there.

RXFIFO overflow 6 Write 0 to can.SRR[CEN] RX FIFO was full and RX message(s)
likely lost.

RXFIFO not empty 7 None One or more RX messages can be read.

Message error 8 Write 0 to can.SRR[CEN] Any of the five errors in the error status
register, ESR.

Bus-off state 9 Write 0 to can.SRR[CEN] Bit is asserted when controller enters
bus-off state

Enter sleep mode 10 Write 0 to can.SRR[CEN] Bit is asserted when controller enters
sleep state

Exit sleep mode 11 Write 0 to can.SRR[CEN] Controller wakes up and enters normal
or configuration mode.

RXFIFO
watermark 12 None Operational threshold indicates RXFIFO

is above watermark setting.
TXFIFO
watermark 13 None Operational threshold indicates TXFIFO

has more room than watermark setting.
TXFIFO empty 14 None TXFIFO empty indicator.
Zynq UltraScale+ Device TRM 584
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=584

Chapter 20: CAN Controller
RXFIFO and TXFIFO Interrupts

The FIFO watermark levels and all the FIFO interrupts are illustrated in Figure 20-4.

Example: Program RXFIFO Watermark Interrupt (12)

The following steps can be used to setup and control the RXFIFO watermark interrupt. See
Figure 20-4. The watermark status and control interrupts are described in the Protocol
Engine section.

1. Disable the RXFIFO watermark interrupt. Write a 0 to can.IER[12].
2. Program the RXFIFO full watermark level. Write to can.WIR[FW].
3. Clear the RXFIFO watermark interrupt. Write a 1 to can.ICR[12].
4. Read the RXFIFO watermark status. Read can.ISR[12].
5. Enable the RXFIFO watermark interrupt. Write a 1 to can.IER[12].

X-Ref Target - Figure 20-4

Figure 20‐4: CAN RXFIFO and TXFIFO Watermark Interrupts

RXFIFO (64 messages)
FIFO is Filling

TXFIFO (64 messages)
FIFO is Emptying

Overflow Interrupt
Can.ISR[6]

Empty Interrupt
can.ISR[14]

Not Empty
Interrupt
can.ISR[7]

Watermark
Interrupt

can.ISR[13]

Full Interrupt
can.ISR[2]

Interrupt bit TXFWMEMP
is asserted when
the number of
Watermark Interrupt
messages in
TXFIFO is less than the
can.WIR[EW, bits 13:8]
threshold.

Underflow Interrupt
can.ISR[5]

Watermark Interrupt
can.ISR[12]

Interrupt bit RXFWMFLL is
asserted when the number of

Messages in RXFIFO exceeds
The can.WIR[FW, bits 5:0]

threshold

X15374-091116
Zynq UltraScale+ Device TRM 585
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=585

Chapter 20: CAN Controller
Example: Program TXFIFO Watermark Interrupt (13)

The following steps can be used to setup and control the TXFIFO watermark interrupt. See
Figure 20-4. The watermark status and control interrupts are described in the Protocol
Engine section.

1. Disable the TXFIFO watermark interrupt. Write a 0 to can.IER[13].
2. Program the TXFIFO empty watermark level. Write to can.WIR[EW].
3. Clear the TXFIFO watermark interrupt. Write a 1 to can.ICR[13].
4. Read the TXFIFO watermark status. Read can.ISR[13].
5. Enable the TXFIFO watermark interrupt. Write a 1 to can.IER[13].

Example: Program TXFIFO Empty Interrupt (14)

The following steps can be used to control the TXFIFO empty interrupt:

1. Disable the TXFIFO empty interrupt. Write a 1 to can.IER[14].
2. Clear the TXFIFO empty interrupt. Write a 1 to can.ICR[14].
3. Enable the TXFIFO empty interrupt. Write a 1 to can.IER[14].
4. Read the TXFIFO empty status. Read can.ISR[14]. It indicates the status (whether TXFIFO

is empty).

RX Message Filtering

To filter RX messages, configure and enable up to four acceptance filters with acceptance
mask, and ID registers to determine whether to store messages in the RXFIFO or to
acknowledge and discard them.

Acceptance filtering is performed by the following sequence.

1. The incoming identifier is masked with the bits in the acceptance filter mask register.
2. The acceptance filter ID register is also masked with the bits in the acceptance filter

mask register.
3. Both resulting values are compared.
4. If both these values are equal, then the message is stored in the RXFIFO.
5. Acceptance filtering is processed by each of the defined filters. If the incoming

identifier passes through any acceptance filter, then the message is stored in the
RXFIFO.
Zynq UltraScale+ Device TRM 586
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=586

Chapter 20: CAN Controller
Acceptance Filter Enable

The acceptance filter register (AFR) defines the acceptance filters usage. It includes four
enable bits that correspond to the four acceptance filters. Each acceptance filter ID register
(AFIR) and acceptance filter mask register (AFMR) pair is associated with a use acceptance
filter (UAF) bit.

• When the UAF bit is 1, the corresponding acceptance filter pair is used for acceptance
filtering.

• When the UAF bit is 0, the corresponding acceptance filter pair is not used for
acceptance filtering.

To modify an acceptance filter pair in normal mode, the corresponding UAF bit in this
register must first be set to 0. After the acceptance filter is modified, the corresponding
UAF bit must be set to 1 for the filter to be enabled.

The UAF bits in the can.AFR register enable the RX acceptance filters.

• If all UAF bits are set to 0, then all received messages are stored in the RXFIFO.
• If the UAF bits are changed from a 1 to 0 during reception of a CAN message, the

message will not be stored in the RXFIFO.

If any of the enabled filters (up to four) satisfy the following equation, then the RX message
is stored in the RXFIFO.

If (AFMR and Message_ID) == (AFMR and AFIR) then capture message

Each acceptance filter is independently enabled. The filters are selected by the can.AFR
register.

• Set can.AFR[UAF4] = 1 to enable AFMR4 and AFID4.
• Set can.AFR[UAF3] = 1 to enable AFMR3 and AFID3.
• Set can.AFR[UAF2] = 1 to enable AFMR2 and AFID2.
• Set can.AFR[UAF1] = 1 to enable AFMR1 and AFID1.

If all can.AFR[UAFx] bits are set to 0, then all received messages are stored in the RXFIFO.
The UAF bits are sampled by the controller at the start of an incoming message.
Zynq UltraScale+ Device TRM 587
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=587

Chapter 20: CAN Controller
Acceptance Filter Mask Register

The acceptance filter mask registers (AFMR) contain mask bits used for acceptance filtering.
The incoming message identifier portion of a message frame is compared with the message
identifier stored in the acceptance filter ID register. The mask bits define the identifier bits
that are stored in the acceptance filter ID register and are compared to the incoming
message identifier.

There are four AFMRs. These registers are stored in a memory. Reads from AFMRs return Xs
if the memory is not initialized. Asserting a software reset or hardware reset does not clear
register contents. These registers can be read from and written to. These registers are
written to only when the corresponding UAF bits in the can.AFR register are 0 and the
[ACFBSY] bit in the can.SR register is 0.

Acceptance Filter Identifier

The acceptance filter ID registers (AFIR) contain identifier bits, which are used for
acceptance filtering. There are four read/write acceptance filter ID registers. These registers
should only be written when the corresponding UAF bits in the SR register are 0 and the
[ACFBSY] bit in the SR register is 0.

TIP: Proper programming of the TXFIFO_ID and RXFIF_ID [IDE] bits for standard and extended frames
must be followed. Setting the [AIIDE] bit in AMIR register to 0 implies that there is only a standard
frame ID check.

Example: Program Acceptance Filter

Each acceptance filter has its own mask (can.AFMR{1,2,3,4}) and ID register
(can.AFIR{1,2,3,4}).

1. Disable acceptance filters. Write a 0 to the can.AFR register.
2. Wait for the filter to not be busy. Poll the can.SR[ACFBSY] bit for a 0.
3. Write a filter mask and ID. Write to a pair of AFMR and AFIR registers (see examples in

Program the AFMR and AFIR Registers section).
4. Write additional filter masks and IDs. Go to step 2.
5. Enable one or more filters. To enable all filters, write 32'h0F to the can.AFR register.
Zynq UltraScale+ Device TRM 588
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=588

Chapter 20: CAN Controller
Program the AFMR and AFIR Registers

The valid AFMR and AFIR register bit fields for sending TX messages to the controller are
summarized in Table 20-5. These fields are described in the Message Format section.

In the AFMR mask registers, enable (unmask) the compare functions for each field for the
incoming RX message by writing a 1 to the bit field. In the AFIR registers, write the values
that are to be compared to the incoming TX message.

Example: Program the AFMR and AFIR for Standard Frames

This example sets up the acceptance filter for standard frames. The frame ID number is
shown as 55Eh, but could be set to a specific value based upon your application.

1. Configure the filter mask for standard frames. Write FFF8_0000h to the can.AFMR
register.
a. Enable the compare for the standard message ID, [AMIDE] = 1.
b. Compare all bits in the standard message ID, [AMIDH] = 7FFh.
c. Enable the compare for substitute remote transmission request, [AMSRR] = 1.
d. Zero-out the extended frame bits, [AMIDL, AMRTR] = 0.

2. Configure the filter ID for standard frames. Write ABC0_0000h to the can.AFIR register.
a. Select the standard frame message mode, [AIIDE] = 0.
b. Program the standard message ID, [AIIDH] = 55Eh.
c. Disable substitute remote transmission request, [AISRR] = 0.
d. Zero-out extended frame bits, [AIIDL, AIRTR] = 0.

Table 20‐5: CAN Message Acceptance Mask and Identifier Register Bit Fields

AFMR{1:4} Registers
AFIR{1:4} Registers

[AMRTR]
[AIRTR]

[AMIDL]
[AIIDL]

[AMIDE]
[AIIDE]

[AMSRR]
[AISRR]

[AMIDH]
[AIIDH]

Standard frame Set = 0 Set = 0 Valid Valid Valid
Extended frame Valid Valid Valid Valid Valid
Zynq UltraScale+ Device TRM 589
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=589

Chapter 20: CAN Controller
Example: Program the AFMR and AFIR for Extended Frames

This example setups up the acceptance filter for extended frames. The frame ID number is
shown as 55Eh, but could be set to a specific value based upon your application.

1. Configure the filter mask for extended frames. Write FFFF_FFFFh to the can.AFMR
register.
a. Enable the substitute remote transmission request mask for frame, [AMSRR] = 1.
b. Compare all bits in the compare for the standard message ID, [AMIDH] = 7FFh.
c. Enable the extended frame, [AIIDE] = 1.
d. Extended ID, [AIIDL] = 3_FFFFh.
e. Remote transmission request bit for extended frame, [AIRTR] = 1.

2. Configure the filter ID for extended frames. Write ABDF_9BDEh to the can.AFIR register.
a. Standard ID, [AIIDH] = 55Eh.
b. Remote transmission request bit for standard frame, [AISRR] = 1.
c. Select standard/extended frame, [AIIDE] = 1.
d. Extended ID, [AIIDL] = 3_CDEFh.
e. Remote transmission request bit for extended frame, [AIRTR] = 0.
Zynq UltraScale+ Device TRM 590
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=590

Chapter 20: CAN Controller
Protocol Engine

The CAN protocol engine consists primarily of the bit timing logic (BTL) and the bitstream
processor (BSP) modules. Figure 20-5 shows a block diagram of the CAN protocol engine.

RX/TX Bit Timing Logic

The primary functions of the bit timing logic (BTL) module include the following.

• Generate the RX sampling clock for the bitstream processor (BSP).
• Synchronize the CAN controller to CAN traffic on the bus.
• Sample the bus and extracting the data stream from the bus during reception.
• Insert the transmit bitstream onto the bus during transmission.

The nominal length of the bit time clock period is based on the CAN_REF_CLK clock
frequency, the baud rate generator divider (can.BRPR register), and the segment lengths
(can.BTR register).

The bit timing logic module manages the re-synchronization function for CAN using the
sync width parameter in the can.BTR[SJW] bit field. The CAN bit timing is shown in
Figure 20-6.

The sync segment count always equals one time quanta period. The TS 1 and TS 2 period
counts are programmable using the can.BTR[TS1, TS2] bit fields. These registers are written

X-Ref Target - Figure 20-5

Figure 20‐5: CAN Controller Protocol Engine

Bitstream
Processor

Bit Timing
Logic

Clock
Prescaler

TX Message

RX Message

TX Bit

Sampling
Clock

Control

RX Bit
Control/Status

TX

RX

Protocol Engine – Data Layer

PHY

CAN
Bus

Physical
Layer

Device
Boundary

Reference Clock

Buffer and Filter

X15375-091116
Zynq UltraScale+ Device TRM 591
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=591

Chapter 20: CAN Controller
when the controller is in configuration mode. The width of the propagation segment
(PROP_SEG) must be less than the actual propagation delay.

Time Quanta Clock

The time quanta clock (TQ_CLK) is derived from the controller reference clock
(CAN_REF_CLK) divided by the baud rate prescaler (BRP).

tTQ_CLK = tCAN_REF_CLK * (can.BRPR[BRP] + 1) freqTQ_CLK
= freqCAN_REF_CLK / (can.BRPR[BRP] + 1)

tSYNC_SEGMENT = 1 * tTQ_CLK tTIME_SEGMENT1
= tTQ_CLK * (can.BPR[TS1] + 1) tTIME_SEGMENT2
= tTQ_CLK * (can.BPR[TS2] + 1) tBIT_RATE
= tSYNC_SEGMENT + tTIME_SEGMENT1 + tTIME_SEGMENT2 freqBIT_RATE
= freqCAN_REF_CLK / ((can.BRPR[BRP] + 1) * (3 + can.BTR[TS1] + can.BTR[TS2]))

TIP: A given bit-rate can be achieved with several bit-time configurations, but values should be
selected after careful consideration of oscillator tolerances and CAN propagation delays. For more
information on CAN bit-time register settings, refer to the CAN 2.0A, CAN 2.0B, and ISO 11898-1
specifications.

Bitstream Processor

The bitstream processor (BSP) module performs several functions while sending and
receiving CAN messages. The BSP obtains a message for transmission from either the
TXFIFO or the TXHPB and performs the following functions before passing the bitstream to
the BTL.

• Serializing the message.
• Inserting Stuff bits, CRC bits, and other protocol defined fields during transmission.

X-Ref Target - Figure 20-6

Figure 20‐6: CAN Bit Time

TS1 TS2

Phase
Segment 2

Phase
Segment 1

Propagation
Segment

Sync
Segment

Nominal Bit Time

X15376-091116
Zynq UltraScale+ Device TRM 592
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=592

Chapter 20: CAN Controller
During transmission the BSP simultaneously monitors RX data and performs bus arbitration
tasks. It then transmits the complete frame when arbitration is won, and retrying when
arbitration is lost.

During reception the BSP removes Stuff bits, CRC bits, and other protocol fields from the
received bitstream. The BSP state machine also analyzes bus traffic during transmission and
reception for form, CRC, ACK, Stuff, and bit violations. The state machine then performs
error signaling and error confinement tasks. The CAN controller does not voluntarily
generate overload frames but does respond to overload flags detected on the bus.

This module determines the error state of the CAN controller: error active, error passive, or
bus-off. When TX or RX errors are observed on the bus, the BSP updates the transmit and
receive error counters according to the rules defined in the CAN 2.0A, CAN 2.0B, and
ISO 11898-1 standards. Based on the values of these counters, the error state of the CAN
controller is updated by the BSP.

CAN0-to-CAN1 Connection

The I/O signals of the two CAN controllers in the PS can be connected together. In this
mode, the RX signal of one CAN controller is connected to the TX signal of the other
controller. These connections are enabled using the IOU_SLCR.MIO_LOOPBACK
[CAN0_LOOP_CAN1] bit.

I/O Interface

This section discusses the MIO and EMIO signals.

MIO Programming

Each set of controller RX/TX signals is connected to either MIO pins or the EMIO interface.

Programming Example – Assign MIO Pin to CAN RX Input

This example assigns MIO pin 46 to the CAN RX controller signal. These steps refer to the
IOU_SLCR register set.

1. Route the reference clock. Write 32h'0000_1221 to the MIO_PIN_46 register.
2. Disable output driver. Write a 1 to the MIO_MST_TRI1 [PIN_46_TRI] bit.
3. Select CMOS input (not Schmitt). Write 0 to BANK1_CTRL3 [21] bit.
4. Select the internal pull-up resister. Write 1 to BANK1_CTRL4 [21] bit.
5. Enable the internal pull-up resister. Write 1 to BANK1_CTRL5 [21] bit.

The I/O buffer output controls, [drive0], [drive1], and [slow_fast_slew_n] do not need
programming, but it is recommended to select minimum drive and slow slew rate. The
voltage applied to PSIO bank 1 can be read using the BANK1_STATUS [0] bit.
Zynq UltraScale+ Device TRM 593
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=593

Chapter 20: CAN Controller
Programming Example – Assign MIO Pin to CAN TX Output

This example assigns MIO pin 47 to the CAN TX controller signal. These steps refer to the
IOU_SLCR register set.

1. Route the reference clock. Write 32h'0000_1220 to the MIO_PIN_47 register.
2. Enable output driver. Write a 0 to the MIO_MST_TRI1 [PIN_47_TRI] bit.
3. Select slow slew rate output. Write 0 to the BANK1_CTRL6 [22] bit.
4. Choose an output drive strength. Write to the BANK1_CTRL0 [22] and BANK1_CTRL1 [22]

bits.

The I/O buffer input control, [schmit_cmos_n], does not need programming, but it is
recommended to select CMOS. The voltage applied to PSIO bank 1 can be read using the
BANK1_STATUS [0] bit.

MIO-EMIO Signals

The CAN I/O signals are identified in Table 20-6.

Table 20‐6: CAN MIO Pins and EMIO Signals

CAN
Interface

Default
Controller Input

Value

MIO Pins EMIO Signals

Numbers I/O Name I/O

CAN 0 RX 0 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42,
46, 50, 54, 58, 62, 66, 70, 74 I EMIOCAN0PHYRX I

CAN 0 TX – 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43,
47, 51, 55, 59, 63, 67, 71, 75 O EMIOCAN0PHYTX O

CAN 0 CLK – Any MIO pin I – –

CAN 1 RX 0 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41,
45, 49, 53, 57, 61, 65, 69, 73, 77 I EMIOCAN1PHYRX I

CAN 1 TX – 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40,
44, 48, 52, 56, 60, 64, 68, 72, 76 O EMIOCAN1PHYTX O

CAN 1 CLK – Any MIO pin I – –
Zynq UltraScale+ Device TRM 594
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=594

Chapter 20: CAN Controller
Register Overview
The control and status registers are listed in Table 20-7. Each of these registers is 32-bits
wide. Any read operations to reserved bits or bits that are not used return a 0. Write a 0 to
reserved bits and unused bit fields. Writes to reserved locations are ignored.

Programming Model

Flowchart

Figure 20-7 shows the programming flowchart. Table 20-8 through Table 20-10 list the CAN
controller modes.

Table 20‐7: CAN Register Overview

Type Register Names
(CAN Registers, except where noted)

Description

Configuration and
control SRR, MSR, BRPR, BTR, ECR, TCR

Enable/disable and reset the controller.
Setup baud rate and timing.
Clear timestamp counter.

Interrupt processing ISR, IER, ICR, WIR
Enable/disable the interrupt detection, mark
interrupt sent to the interrupt controller, read
raw interrupt status.

Status ECR, ESR, SR Inform about the status of the controller.

Transmit FIFO
TXFIFO_ID,
TXFIFO_DLC, TXFIFO_DATA1,
TXFIFO_DATA2

Write message to be transmitted.

Transmit high-priority
buffer

TXHPB_ID,
TXHPB_DLC, TXHPB_DATA1,
TXHPB_DATA2

Store one high priority transmit message.

Receive FIFO
RXFIFO_ID,
RXFIFO_DLC,
RXFIFO_DATA1,
RXFIFO_DATA2

Read received message.

Acceptance filter
AFR,
AFMR[4:1],
AFIR[4:1]

Configure and control the four acceptance
filters.
Zynq UltraScale+ Device TRM 595
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=595

Chapter 20: CAN Controller
X-Ref Target - Figure 20-7

Figure 20‐7: CAN Controller Flowchart

CAN

Reset device. Set SRST
[Bit 0] in SRR.

Perform self test. Refer to
section on CAN self test.

Enter into configuration
mode. Refer to section on
CAN enter mode.

Configuration mode
is set?

Set baud rate and prescaler.
Refer to section on CAN set baud
rate and prescaler.

Set bit timing. Refer to section on
CAN set bit timing.

A

A

Configuration mode
is set?

Program Device for loopback
mode. Refer to section on CAN
Enter mode).

Send frame. Refer to section on
CAN send frame.

Receive frame. Refer to section
on CAN receive frame.

Verify TX frame and RX frame.

End

If
interrupt
mode?

Set interrupt system. Refer to
section CAN on set interrupt
system.

Enable all interrupts. Refer to
section on CAN enable
interrupts.

If
interrupt
mode?

Wait until ISR notifies TX
and RX done with no
loopback error.

NoEND

Yes

No

YesYes

No

No

Yes

X15377-091116
Zynq UltraScale+ Device TRM 596
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=596

Chapter 20: CAN Controller
Table 20‐8: CAN Get Mode

Task Register Register Field Register Offset Bits Value (Binary)

If CONFIG (bit 0) bit is set, the device is in configuration mode.
If NORMAL (bit 3) bit is set, then if the SNOOP (bit 12) bit is set, then the device is in snoop mode, else device is
in normal mode.
When none of these (CONFIG, NORMAL, or SNOOP) bits are set, device is in loopback mode.
Read status register SR All 0x18 31:0 Read operation

Notes:
1. If CONFIG (bit 0) bit is set, device is in configuration mode.
2. If NORMAL bit (bit 3) is set, then if SNOOP bit (bit 12) is set, then device is in snoop mode, else device is in normal mode.
3. When none of above bits are set, device is in loopback mode.

Table 20‐9: CAN Set Baud Rate and Prescaler

Task Register Register Field Register Offset Bits Value (Binary)

Get the current mode of the device to confirm that the device is in configure mode. Refer to the CAN Get Mode.
Program baud rate value. BRPR BRP 0x08 7:0 7b'00101001

Table 20‐10: CAN Set Bit Timing

Task Register Register Field Register Offset Bits Value (Binary)

Get the current mode of the device to confirm the device is in configure mode. Refer to the CAN Get Mode.
Program the baud rate value. BTR SJW | TS2 | TS1 0x0C 8:0 8b110101111

Table 20‐11: CAN Enter Mode

Task Register Register Field Register Offset Bits Value (Binary)

To get the current mode of to device. Refer to the CAN Get Mode.
If current mode is normal mode, and requested mode is sleep mode, then follow these normal mode to sleep
mode steps.
Select sleep mode and return MSR SLEEP 0x04 0 1b'1

If current mode is sleep mode, and requested mode is normal mode, then follow these sleep mode too normal
mode steps.
Select normal mode and return. MSR SLEEP | LBACK | SNOOP 0x04 2:0 3b'000

If the mode transition is not any of the two cases above, CAN must enter configuration mode before switching
into the target operation mode.
Set configuration mode SRR CEN | SRST 0x00 1:0 2b'00

Check the device mode. Refer to the CAN Get Mode. If the device is not entered into configuration mode, return.
If entered, then follow these steps to set the requested mode.
To set sleep mode

Select sleep mode. MSR SLEEP 0x04 0 1b'1

Enable CAN. SRR CEN 0x00 1 1b'1
Zynq UltraScale+ Device TRM 597
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=597

Chapter 20: CAN Controller
To set normal mode

Select normal mode. MSR SLEEP | LBACK | SNOOP 0x04 2:0 3b'000

Enable CAN SRR CEN 0x00 1 1b'1

To set loopback mode

Select sleep mode. MSR LBACK 0x04 1 1b'1

Enable CAN SRR CEN 0x00 1 1b'1

To set snoop mode

Select snoop mode. MSR SNOOP 0x04 2 1b'1

Enable CAN SRR CEN 0x00 1 1b'1

Table 20‐11: CAN Enter Mode (Cont’d)

Task Register Register Field Register Offset Bits Value (Binary)

Table 20‐12: Check CAN FIFO is Full

Task Register Register Field Register Offset Bits Value (Binary)

Read status register. SR TXFLL 0X18 10 READ operation
If TXFLL is set, then the FIFO is full. Else, the FIFO is not full.

Table 20‐13: CAN Frame Send

Task Register Register Field Register Offset Bits Value (Binary)

Check if the CAN FIFO is full to make sure there is room in the FIFO. Refer to Check CAN FIFO is Full.

Program TXFIFO_ID. TXFIFO_ID IDH | SRRRTR | IDE | IDL | RTR 0x30 31:0 0x20000000
(hex)

Program TXFIFO_DLC. TXFIFO_DLC DLC 0x34 31:28 4b'1000

Program TXFIFO_DATA1. TXFIFO_DATA1 DB0 | DB1 | DB2 | DB3 0x38 31:0 Data
Program TXFIFO_DATA2. TXFIFO_DATA2 DB4 | DB5| DB6 | DB7 0x3c 31:0 Data

Table 20‐14: CAN Check RX Empty

Task Register Register Field Register Offset Bits Value (Binary)

Read ISR. ISR RXNEMP 0x1C 7 Read operation
If the RXNEMP bit is set, then the RX is not empty. Else, the RX FIFO is empty.
Zynq UltraScale+ Device TRM 598
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=598

Chapter 20: CAN Controller
Programming Guide Overview

The controller has several operating modes and different ways to receive and transmit
messages. The low-level functions were described in Functional Description. The
system-level operations are described in Clocks. All the controller registers are listed in
Table 20-7. Further details are in the Zynq UltraScale+ MPSoC Register Reference (UG1087)
[Ref 4].

Table 20‐15: CAN Receive Frame

Task Register Register Field Register Offset Bits Value (Binary)

Check RX empty to make sure data is present (refer CAN Check RX empty)
Read RXFIFO_ID. RXFIFO_ID IDH | SRRRTR | IDE | IDL | RTR 0x50 31:0 Read
Read RXFIFO_DLC. RXFIFO_DLC DLC | RXT 0x54 31:0 Read
Read RXFIFO_DATA1. RXFIFO_DATA1 DB0 | DB1 | DB2 | DB3 0x58 31:0 Read
Read RXFIFO_DATA2. RXFIFO_DATA2 DB4 | DB5| DB6 | DB7 0x5C 31:0 Read
Clear RXNEMP bit. ISR RXNEMP 0x1C 7 1'b0

Table 20‐16: CAN Setup Interrupt System

Task Register Register Field Register Offset Bits Value (Binary)

Initialize GIC. Refer to the GIC section.
Register GIC interrupt handler. Refer to the GIC section.
Register CAN interrupt handler with the GIC.
Enable GIC. Refer to the GIC section.
Enable processor interrupts.

Table 20‐17: CAN Interrupt Handler

Task Register Register Field Register Offset Bits Value (Binary)

Read ISR (status). ISR All 0x1C 14:0 Read
Get enabled interrupts list
(pendingintr and status). IER All 0x20 14:0 Read

Clear all interrupts. ICR All 0x24 14:0 pendingintr
If error interrupt is set (bit CERROR), notify application the error interrupt has been set.
Read error status (esr_status). ESR 0x14 All 4:0 Read
Clear error status. ESR 0x14 esr_status 4:0 esr_status
If the bus off interrupt is set (BSOFF bit), return from interrupt.
If water mark full OR RXNEMP interrupts set, receive frame. Refer to CAN Receive Frame.
If TXOK interrupt is set notify application that TX is ok.
Zynq UltraScale+ Device TRM 599
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=599

Chapter 20: CAN Controller
Configuration Mode State

The CAN controller enters configuration mode, irrespective of the operation mode, when
any of the following actions are performed.

• Writing a 0 to the CEN bit in the SRR register.
• Writing a 1 to the SRST bit in the SRR register. The controller enters configuration

mode immediately following the software reset.
• Driving a 1 on the reset input controlled through the SLCR. The controller continues to

be in reset as long as reset = 1. The controller enters configuration mode after reset is
negated to 0.

In configuration mode the following apply.

• The CAN controller loses synchronization with the CAN bus and drives a constant
recessive bit on the bus line.

• The error count register (ECR) is reset.
• The error status register (ESR) is reset.
• The bit timing register (BTR) and baud-rate prescaler register (BRPR) can be modified.
• The CAN controller does not receive any new messages.
• The CAN controller does not transmit any messages. Messages in the TXFIFO and the

TXHPB are appended. These packets are sent when normal operation is resumed.
• Reads from the RXFIFO can be performed.
• Writes to the TXFIFO and TXHPB can be performed (provided the snoop bit is not set).
• Interrupt status register bits ARBLST, TXOK, RXOK, RXOFLW, ERROR, BSOFF, SLP, and

WKUP can be cleared.
• Interrupt status register bits RXNEMP and RXUFLW can be set due to RXFIFO read

operations.
• Interrupt status register bits TXBFLL and TXFLL and status register bits TXBFLL and

TXFLL can be set due to write operations to the TXHPB and TXFIFO, respectively.
• Interrupts are generated if the corresponding bits in the interrupt enable register (IER)

are 1.
• All configuration registers are accessible.

When in configuration mode, the CAN controller stays in this mode until the CEN bit in the
SRR register is set to 1. After the CEN bit is set to 1, the CAN controller waits for a sequence
of 11 recessive bits before exiting configuration mode.

The CAN controller enters normal, loopback, snoop, or sleep modes from configuration
mode, depending on the LBACK, snoop, and sleep bits in the MSR register.
Zynq UltraScale+ Device TRM 600
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=600

Chapter 20: CAN Controller
Start-up Controller

The controller can operate in normal, sleep, snoop and loopback modes. Refer to
Figure 20-3 for supported transitions. The controller clocks and configuration bits are
programmed on startup. The operating mode is then selected and enabled.

Example: Start-up Sequence

1. Configure clocks. Refer to the Clocks section.
2. Configure TX/RX signals. Refer to the MIO Programming section.
3. Wait for configuration mode. Read can.SR[CONFIG] until it equals 1.
4. Reset the controller. The controller comes up in configuration mode. Refer to the Resets

section.
5. Program the bit-sampling clock. Refer to the RX/TX Bit Timing Logic section.
6. Program the interrupts, as needed. Refer to the Interrupts section.
7. Program the acceptance filters. Refer to the RX Message Filtering section.
8. Select operating mode. Normal, sleep, snoop, or loopback. Refer to the Change

Operating Mode section.
9. Enable the controller. Write a 1 to can.SRR[CEN].

Change Operating Mode

This section contains programming examples to change the operating mode.

Example: Normal to Sleep Mode

Sleep mode is entered from the normal mode when the following conditions are met.

1. Select sleep mode. Write a 1 to can.MSR[SLEEP].
2. Wait for the CAN bus to go idle.
3. Wait for all the TXFIFO and TXHPB messages to be transmitted.

In normal mode, can.MSR[LBACK] = 0 and can.SSR[CEN] = 1. Also,
can.MSR[SNOOP] = don't care.
Zynq UltraScale+ Device TRM 601
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=601

Chapter 20: CAN Controller
Example: Configuration to Sleep Mode

Sleep mode is entered from the configuration mode when the following conditions are met.

1. Select sleep mode. Write a 1 to can.MSR[SLEEP] and write a 0 to can.MSR[LBACK].
2. Enable the controller. Write a 1 to can.SSR[CEN].
3. Wait for the TXFIFO or TXHPB to empty.

In configuration mode, can.MSR[SNOOP] = don't care.

Sleep mode is exited when I/O bus activity is detected or when software writes a message
to either the TXFIFO or the TXHPB. When the controller exits sleep mode, can.MSR[SLEEP] is
set to 0 and an interrupt is generated by the controller.

Write Messages to TXFIFO

With either option, can.SR[TXFLL] can be polled before writing a message.

All messages written to the TXFIFO should follow the format defined in Message Format.

Example: Write Message to TXFIFO Using Polling Method

1. Poll the TXFIFO status. Read can.SR[TXFLL] for a 0 and can.SR[TXFEMP] for a 1, and then
write the message into the TXFIFO.

2. Write the message to TXFIFO. Write to all four data registers (can.TXFIFO_ID,
can.TXFIFO_DLC, can.TXFIFO_DATA1, and can.TXFIFO_DATA2).

Example: Write Message to TXFIFO Using Interrupt Method

In interrupt mode, writes can continue until can.ISR[TXFLL] generates an interrupt.

Messages can be continuously written to the TXFIFO until the TXFIFO is full. When the
TXFIFO is full, the can.ISR[TXFLL] and can.SR[TXFLL] are set to 1. When the TXFIFO is empty,
can.ISR[TXFEMP] is set to 1.

Write Messages to TXHPB

All messages written to the TXHPB use the polling method. The format should follow the
Message Format section.
Zynq UltraScale+ Device TRM 602
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=602

Chapter 20: CAN Controller
Example: Write Message to TXHPB

1. Poll the TXHPB status. Read can.SR[TXBFLL] until it equals 0 and then write the message
into the TXHPB.

2. Write the message to TXHPB. Write to all four data registers (can.TXHPB_ID,
can.TXHPB_DLC, can.TXHPB_DATA1, and can.TXHPB_DATA2).

Read Messages from RXFIFO

Whenever a new message is received and put into the RXFIFO, the can.ISR[RXNEMP] and
can.ISR[RXOK] bits are set to 1. If the RXFIFO is empty when the message is read, then the
can.ISR[RXUFLW] is also set to 1.

Example: Read Message from RXFIFO Using Polling Method

1. Poll the RXFIFO status. Read the can.ISR[RXOK] or can.ISR[RXNEMP] register until a
message is received. Proceed to step 2 when a bit is set.

2. Read the message from the RXFIFO. Read all four of the registers (can.RXFIFO_ID,
can.RXFIFO_DLC, can.RXFIFO_DATA1, and can.RXFIFO_DATA2).

3. Determine if more messages are in the RXFIFO. Read can.ISR[RXNEMP].

Example: Read Message from RXFIFO Using Interrupt Method

The can.ISR[RXOK] and/or can.ISR[RXNEMP] bit fields can generate the interrupt.

1. Program the RXFIFO watermark level interrupt. Write to can.WIR[FW] to set the
watermark can.ISR[RXFWMFLL] interrupt.

2. Proceed to step 3 when an interrupt is received.
3. Wait until a message is received. Read can.ISR[RXOK] or can.ISR[RXFWMFLL].
4. Read the message from the RXFIFO. Read all four of the registers (can.RXFIFO_ID,

can.RXFIFO_DLC, can.RXFIFO_DATA1, and can.RXFIFO_DATA2).
5. Determine if RXFIFO is not empty. Read can.ISR[RXNEMP].
6. Repeat until the RXFIFO is empty.
7. Clear the interrupt.
Zynq UltraScale+ Device TRM 603
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=603

Chapter 21

UART Controller

Introduction
The UART controller is a full-duplex asynchronous receiver and transmitter that supports a
wide range of programmable baud rates and I/O signal formats. The controller can
accommodate automatic parity generation and multi-master detection mode. The PS UART
interface specifications (RX/TX baud rate and clock frequency) are listed in the Zynq
UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) [Ref 2].

The UART operations are controlled by the configuration and mode registers. The state of
the FIFOs, modem signals, and other controller functions are read using the status, interrupt
status, and modem status registers.

The controller is structured with separate RX and TX data paths. Each path includes a
64-byte FIFO. The controller serializes and deserializes data in the TX and RX FIFOs and
includes a mode switch to support various loopback configurations for the RxD and TxD
signals. The FIFO interrupt status bits support polling or interrupt driven handler. Software
reads and writes data bytes using the RX and TX data port registers.

When using the UART in a modem-like application, the modem control module detects and
generates the modem handshake signals and also controls the receiver and transmitter
paths according to the handshaking protocol.

Features

• Programmable baud rate generator
• Configurable receive and transmit FIFOs, with byte, two-byte or four-byte APB access

mechanisms
• 6, 7, or 8 data bits
• 1, 1.5, or 2 stop bits
• Odd, even, space, mark, or no parity
• Parity, framing, and overflow error detection
• Line break generation and detection
• Automatic echo, local loopback, and remote loopback channel modes
Zynq UltraScale+ Device TRM 604
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=604

Chapter 21: UART Controller
• Interrupt generation
• Modem control signals: CTS, RTS, DSR, DTR, RI, and DCD
• UART has two clocks. The advanced peripheral bus (APB) clocks up to 100 MHz. The

uart_ref_clock ranges from 1 MHz to 100 MHz.

UART Controller Functional Description

UART Controller Block Diagram

The block diagram for the UART controller is shown in Figure 21-1.
X-Ref Target - Figure 21-1

Figure 21‐1: UART Controller

APB
Slave

Interface

APB

Control and
Status Register

Interrupts

UARTx System
Interrupt (IRQ

53 and 54)

Optional
Divide by 8

UART_REF_CLK

TXFIFO

RXFIFO

Transmitter

Receiver

Mode
Switch MIO/EMIO

EMIOCTS, RTS, DSR, DCD, RI, DTR

UART TxD

UART RxD

Baud Rate
Generator

uart.mode [CLKS]
X15379-120518
Zynq UltraScale+ Device TRM 605
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=605

Chapter 21: UART Controller
Control Logic

The control logic contains the control register and the mode register that are used to select
the various operating modes of the UART.

The control register enables, disables, and issues soft resets to the receiver and transmitter
modules. In addition, it restarts the receiver timeout period and controls the transmitter
break logic. The receive line break detection must be implemented in Software. It is
indicated by a frame error followed by one or more zero bytes in the RXFIFO.

The mode register selects the clock used by the baud rate generator. It also selects the bit
length, parity bit, and stop bit used by the transmitted and received data. In addition, it
selects the mode of operation of the UART, switching between normal UART mode,
automatic echo, local loopback, or remote loopback, as required.

Baud Rate Generator

The baud rate generator furnishes the bit period clock, or baud rate clock, for both the
receiver and the transmitter. The baud rate clock is implemented by distributing the base
clock UART_REF_CLK and a single cycle clock enable to achieve the effect of clocking at the
appropriate frequency division. The effective logic for the baud rate generation is shown in
Figure 21-2.

The baud rate generator can use either the master clock signal, UART_REF_CLK, or the
master clock divided by eight, UART_REF_CLK/8. The clock signal used is selected according
to the value of the CLKS bit in the Mode register (uart.mode). The resulting selected clock
is termed sel_clk in the following description.

The sel_clk clock is divided down to generate three other clocks: baud_sample,
baud_tx_rate, and baud_rx_rate. The baud_tx_rate is the target baud rate used for
transmitting data. The baud_rx_rate is nominally at the same rate, but gets resynchronized
to the incoming received data. The baud_sample runs at a multiple ([BDIV] + 1) of
baud_rx_rate and baud_tx_rate and is used to over-sample the received data.

X-Ref Target - Figure 21-2

Figure 21‐2: UART Board Rate Generator

uart.mode[0]

Divide
by 8

CD
Programmable

Divider

sel_clk

UART Ref clock

Rx and Tx
Baud rate

0

1

Sel
Clk

uart.Baud_rate_gen[15:0]

BDIV
Programmable

Divider

uart.Baud_rate_divider[7:0]

Baud
Sample

X19864-101917
Zynq UltraScale+ Device TRM 606
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=606

Chapter 21: UART Controller
The sel_clk clock frequency is divided by the CD field value in the Baud Rate Generator
register to generate the baud_sample clock enable. This register can be programmed with
a value between 1 and 65535.

The baud_sample clock is divided by [BDIV] plus 1. BDIV is a programmable field in the
Baud Rate Divider register and can be programmed with a value between 4 and 255. It has
a reset value of 15, inferring a default ratio of 16 baud_sample clocks per baud_tx_clock /
baud_rx_rate.

The frequency of the baud_sample clock enable is shown in Equation 21-1.

Equation 21‐1

The frequency of the baud_rx_rate and baud_tx_rate clock enables is show in Equation
Equation 21-2.

Equation 21‐2

IMPORTANT: It is essential to disable the transmitter and receiver before writing to the Baud Rate
Generator register (uart.Baud_rate_gen), or the baud rate divider register (uart.Baud_rate_divider). A
soft reset must be issued to both the transmitter and receiver before they are re-enabled.

Some examples of the relationship between the UART_REF_CLK clock, baud rate, clock
divisors (CD and BDIV), and the rate of error are shown in Table 21-1. The highlighted entry
shows the default reset values for CD and BDIV. For these examples, a system clock rate of
UART_REF_CLK = 50 MHz and UART_REF_CLK/8 = 6.25 MHz is assumed. The frequency of
the UART reference clock can be changed to get a more accurate Baud rate frequency, refer
to Chapter 37, PS Clock Subsystem for details to program the UART_REF_CLK.

baud_sample sel_clk
CD-------------=

baud_rate sel_clk
CD BDIV 1+ 
----------------------------------=

Table 21‐1: UART Parameter Value Examples

Clock
Baud
Rate

Calculated
CD Actual CD BDIV

Actual Baud
Rate

Error
(BPS) % Error

UART_REF_CLK 600 10416.667 10417 7 599.980 0.020 -0.003
UART_REF_CLK /8 9,600 81.380 81 7 9,645.061 45.061 0.469
UART_REF_CLK 9,600 651.041 651 7 9,600.614 0.614 0.006
UART_REF_CLK 28,800 347.222 347 4 28,818.44 18.44 0.064
UART_REF_CLK 115,200 62.004 62 6 115,207.37 7.373 0.0064
UART_REF_CLK 230,400 31.002 31 6 230,414.75 14.75 0.006
UART_REF_CLK 460,800 27.127 9 11 462,962.96 2,162.96 0.469
UART_REF_CLK 921,600 9.042 9 5 925,925.92 4,325.93 0.469
Zynq UltraScale+ Device TRM 607
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=607

Chapter 21: UART Controller
Transmit FIFO

The transmit FIFO (TxFIFO) stores data written from the APB interface until it is removed by
the transmit module and loaded into its shift register. The TxFIFO’s maximum data width is
eight bits. Data is loaded into the TxFIFO by writing to the TxFIFO register.

When data is loaded into the TxFIFO, the TxFIFO empty flag is cleared and remains in this
Low state until the last word in the TxFIFO has been removed and loaded into the
transmitter shift register. This means that host software has another full serial word time
until the next data is needed, allowing it to react to the empty flag being set and write
another word in the TxFIFO without loss in transmission time.

The TxFIFO full interrupt status (TXFULL) indicates that the TxFIFO is completely full and
prevents any further data from being loaded into the TxFIFO. If another APB write to the
TxFIFO is performed, an overflow is triggered and the write data is not loaded into the
TxFIFO. The transmit FIFO nearly full flag (TNFUL) indicates that there is not enough free
space in the FIFO for one more write of the programmed size, as controlled by the WSIZE
bits of the Mode register.

The TxFIFO nearly-full flag (TNFUL) indicates that there is only byte free in the TxFIFO.

A threshold trigger (TTRIG) can be setup on the TxFIFO fill level. The Transmitter Trigger
register can be used to setup this value, such that the trigger is set when the TxFIFO fill level
reaches this programmed value.

Transmitter Data Stream

The transmit module removes parallel data from the TxFIFO and loads it into the transmitter
shift register so that it can be serialized.

The transmit module shifts out the start bit, data bits, parity bit, and stop bits as a serial data
stream. Data is transmitted, least significant bit first, on the falling edge of the transmit
baud clock enable (baud_tx_rate). A typical transmitted data stream is illustrated in
Figure 21-3.
X-Ref Target - Figure 21-3

Figure 21‐3: Transmitted Data Stream

baud_tx_rate

TXD D0 D1 D2 D3 D4 D5 D6 D7 PA S

START STOP

X19865-091517
Zynq UltraScale+ Device TRM 608
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=608

Chapter 21: UART Controller
The uart.mode[CHRL] register bit selects the character length, in terms of the number of
data bits. The uart.mode[NBSTOP] register bit selects the number of stop bits to transmit.

Receiver FIFO

The RxFIFO stores data that is received by the receiver serial shift register. The RxFIFO’s
maximum data width is eight bits.

When data is loaded into the RxFIFO, the RxFIFO empty flag is cleared and this state remains
Low until all data in the RxFIFO has been transferred through the APB interface. Reading
from an empty RxFIFO returns zero.

The RxFIFO full status (Chnl_int_sts [RXFULL] and Channel_sts [RXFULL] bits) indicates that
the RxFIFO is full and prevents any further data from being loaded into the RxFIFO. When a
space becomes available in the RxFIFO, any character stored in the receiver will be loaded.

A threshold trigger (RTRIG) can be setup on the RxFIFO fill level. The Receiver Trigger Level
register (Rcvr_FIFO_trigger_level) can be used to setup this value, such that the trigger is set
when the RxFIFO fill level transitions this programmed value. The Range is 1 to 63.

Receiver Data Capture

The UART continuously over-samples the UARTx_RxD signal using UART_REF_CLK and the
clock enable (baud_sample). When the samples detect a transition to a Low level, it can
indicate the beginning of a start bit. When the UART senses a Low level at the UART_RxD
input, it waits for a count of half of BDIV baud rate clock cycles, and then samples three
more times. If all three bits still indicate a Low level, the receiver considers this to be a valid
start bit, as illustrated in Figure 21-4 for the default BDIV of 15.
X-Ref Target - Figure 21-4

Figure 21‐4: Default BDIV Receiver Data Stream

baud_sample

rxd

1 2 3 4 5 6 7 8

Start Bit

9 10 11 12 13 14 15 16 1 2

Data (LSB)

X19866-091517
Zynq UltraScale+ Device TRM 609
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=609

Chapter 21: UART Controller
When a valid start bit is identified, the receiver baud rate clock enable (baud_rx_rate) is
re-synchronized so that further sampling of the incoming UART RxD signal occurs around
the theoretical mid-point of each bit, as illustrated in Figure 21-5.

When the re-synchronized baud_rx_rate is High, the last three sampled bits are compared.
The logic value is determined by majority voting; two samples having the same value define
the value of the data bit. When the value of a serial data bit has been determined, it is
shifted to the receive shift register. When a complete character has been assembled, the
contents of the register are then pushed to the RxFIFO.

Receiver Parity Error

Each time a character is received, the receiver calculates the parity of the received data bits
in accordance with the uart.mode [PAR] bit field. It then compares the result with the
received parity bit. If a difference is detected, the parity error bit is set = 1, uart.Chnl_int_sts
[PARITY]. An interrupt is generated, if enabled.

Receiver Framing Error

When the receiver fails to receive a valid stop bit at the end of a frame, the frame error bit
is set = 1, uart.Chnl_int_sts [FRAMING]. An interrupt is generated, if enabled.

Receiver Overflow Error

When a character is received, the controller checks to see if the RxFIFO has room. If it does,
then the character is written into the RxFIFO. If the RxFIFO is full, then the controller waits.
If a subsequent start bit on RxD is detected and the RxFIFO is still full, then data is lost and
the controller sets the Rx overflow interrupt bit, uart.Chnl_int_sts [OVER] = 1. An interrupt
is generated, if enabled.

X-Ref Target - Figure 21-5

Figure 21‐5: Re-synchronized Receiver Data Stream

baud_sample

baud_rx_rate

rxd

1 2 3 4 5 6 7 8

Data Bit

9 10 11 12 13 14 15 16 1 2

X19867-091517
Zynq UltraScale+ Device TRM 610
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=610

Chapter 21: UART Controller
Receiver Timeout Mechanism

The receiver timeout mechanism enables the receiver to detect an inactive RxD signal (a
persistent High level). The timeout period is programmed by writing to the
uart.Rcvr_timeout [RTO] bit field. The timeout mechanism uses a 10-bit decrementing
counter. The counter is reloaded and starts counting down whenever a new start bit is
received on the RxD signal, or whenever software writes a 1 to uart.Control [TORST]
(regardless of the previous [TORST] value).

If no start bit or reset timeout occurs for 1,023 bit periods, a timeout occurs. The Receiver
timeout error bit [TOUT] will be set in the interrupt status register, and the [TORST] bit in the
Control register should be written with a 1 to restart the timeout counter, which loads the
newly programmed timeout value.

The upper 8 bits of the counter are reloaded from the value in the [RTO] bit field and the
lower 2 bits are initialized to zero. The counter is clocked by the UART bit clock. As an
example, if [RTO] = 0xFF, then the timeout period is 1,023 bit clocks (256 x 4 minus 1). If 0
is written into the [RTO] bit, the timeout mechanism is disabled.

When the decrementing counter reaches 0, the receiver timeout occurs and the controller
sets the timeout interrupt status bit uart.Chnl_int_sts [TOUT] = 1. If the interrupt is enabled
(uart.Intrpt_mask [TOUT] = 1), then the IRQ signal to the PS interrupt controller is asserted.

Whenever the timeout interrupt occurs, it is cleared with a write back of 1 to the
Chnl_int_sts [TOUT] bit. Software must set uart.Control [TORST] = 1 to generate further
receive timeout interrupts.
Zynq UltraScale+ Device TRM 611
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=611

Chapter 21: UART Controller
I/O Mode Switch

The mode switch controls the routing of the RxD and TxD signals within the controller as
shown in Figure 21-6. The loopback using the mode switch occurs regardless of the
MIO-EMIO routing of the UARTx TxD/RxD I/O signals. There are four operating modes as
shown in Figure 21-6. The mode is controlled by the uart.mode [CHMODE] register bit field:
normal, automatic echo, local loopback and remote loopback.

Normal Mode

Normal mode is used for standard UART operations.

Automatic Echo Mode

Echo mode receives data on RxD and the mode switch routes the data to both the receiver
and the TxD pin. Data from the transmitter cannot be sent out from the controller.

X-Ref Target - Figure 21-6

Figure 21‐6: UART Mode Switch for TxD and RxD

Mode
Switch

Mode
Switch

Mode
Switch

Transmit

Mode

Switch

UARTx TxD

Receive

TxFIFO

RxFIFO UARTx RxD

UARTx TxD

UARTx RxD

Transmit

Receive

TxFIFO

RxFIFO

UARTx TxD

UARTx RxD

Transmit

Receive

TxFIFO

RxFIFO

Transmit

Receive

TxFIFO

RxFIFO

Transmit

Receive

TxFIFO

RxFIFO

Normal Mode

Local Loopback Mode

Mode
Switch

Remote Loopback Mode

UARTx TxD

UARTx RxD

UARTx TxD

UARTx RxD

Automatic Echo Mode

X19863-091517
Zynq UltraScale+ Device TRM 612
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=612

Chapter 21: UART Controller
Local Loopback Mode

Local loopback mode does not connect to the RxD or TxD pins. Instead, the transmitted
data is looped back around to the receiver.

Remote Loopback Mode

Remote loopback mode connects the RxD signal to the TxD signal. In this mode, the
controller cannot send anything on TxD and the controller does not receive anything on
RxD.

UART0-to-UART1 Connection

The I/O signals of the two UART controllers in the PS can be connected together. In this
mode, the RxD and CTS input signals from one controller are connected to the TxD and RTS
output signals of the other UART controller by setting the iou_slcr.MIO_LOOPBACK
[UA0_LOOP_UA1] bit = 1. The other flow control signals are not connected. This
UART-to-UART connection occurs regardless of the MIO-EMIO programming.

Status and Interrupts

Interrupt and Status Registers

There are two status registers that can be read by software. Both show raw status. The
Chnl_int_sts register can be read for status and generate an interrupt. The Channel_sts
register can only be read for status.

The Chnl_int_sts register is sticky; once a bit is set, the bit stays set until software clears it.
Write a 1 to clear a bit. This register is bit-wise AND'ed with the Intrpt_mask mask register.
If any of the bit-wise AND functions have a result = 1, then the UART interrupt is asserted
to the PS interrupt controller.

• Channel_sts: Read-only raw status. Writes are ignored.
Zynq UltraScale+ Device TRM 613
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=613

Chapter 21: UART Controller
The various FIFO and system indicators are routed to the uart.Channel_sts register and/or
the uart.Chnl_int_sts register as shown in Figure 21-7.

The interrupt registers and bit fields are summarized in Table 21-2.

Interrupt Mask Register

Intrpt_mask is a read-only interrupt mask/enable register that is used to mask individual
raw interrupts in the Chnl_int_sts register:

• If the mask bit = 0, the interrupt is masked.
• If the mask bit = 1, the interrupt is enabled.

This mask is controlled by the write-only Intrpt_en and Intrpt_dis registers. Each associated
enable/disable interrupt bit should be set mutually exclusive (e.g., to enable an interrupt,
write 1 to Intrpt_en[x] and write 0 to Intrpt_dis[x]).

X-Ref Target - Figure 21-7

Figure 21‐7: Interrupts and Status Signals

uart.Channel_sts[14:10, 4:0]
(all bits are dynamic)

UARTx System Interrupt
(IRQ 53 and 54)

Status

0: Masked
1: Enabled

uart.Intrpt_mask

uart.Chnl_int_sts[12:0]
(all bits are sticky)

Interrupts

FIFO
and other

System
Indicators

uart.Intrpt_en

uart.Intrpt_dis

Mask Enable

0 1

1 0

UART
register
access

UART
register

read

X19861-101917

Table 21‐2: UART Interrupt Status Bits

Interrupt Register Names and Bit Assignments

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

uart.Intrpt_en
uart.Intrpt_dis
uart.Intrpt_mask
uart.Chnl_int_sts

x RBRK TOVR TNFUL TTRIG DMS TOUT PARITY FRAMING OVER TXFUL TXEMPTY RXFULL RXEMPTY RXOVR

uart.Channel_sts
TNFUL TTRIG FLOWDEL TACTIVE RACTIVE X X X X X TXFUL TXEMPTY RXFULL RXEMPTY RXOVR
Zynq UltraScale+ Device TRM 614
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=614

Chapter 21: UART Controller
Channel Status

These status bits are in the Channel_sts register.

• TACTIVE: Transmitter state machine active status. If in an active state, the transmitter is
currently shifting out a character.

• RACTIVE: Receiver state machine active status. If in an active state, the receiver is has
detected a start bit and is currently shifting in a character.

• FLOWDEL: Receiver flow delay trigger continuous status. The FLOWDEL status bit is
used to monitor the RxFIFO level in comparison with the flow delay trigger level.

Non-FIFO Interrupts

These interrupt status bits are in the Chnl_int_sts register.

• TOUT: Receiver Timeout Error interrupt status. This event is triggered whenever the
receiver timeout counter has expired due to a long idle condition.

• PARITY: Receiver Parity Error interrupt status. This event is triggered whenever the
received parity bit does not match the expected value.

• FRAMING: Receiver Framing Error interrupt status. This event is triggered whenever
the receiver fails to detect a valid stop bit. See Receiver Data Capture.

• DMS: indicates a change of logic level on the DCD, DSR, RI or CTS modem flow control
signals. This includes High-to-Low and Low-to-High logic transitions on any of these
signals.
Zynq UltraScale+ Device TRM 615
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=615

Chapter 21: UART Controller
FIFO Interrupts

The status bits for the FIFO interrupts listed in Table 21-2 are illustrated in Figure 21-8.
These interrupt status bits are in the Channel Status (uart.Channel_sts) and Channel
Interrupt Status (uart.Chnl_int_sts) registers.

The FIFO trigger levels are controlled by these bit fields:

• uart.Rcvr_FIFO_trigger_level[RTRIG], a 6-bit field
• uart.Tx_FIFO_trigger_level[TTRIG], a 6-bit field

Modem Control

The modem control module facilitates the control of communication between a modem and
the UART. It contains the Modem Status register, the Modem Control register, the DMSI bit
in interrupt status register, and FLOWDEL in the channel status register. This event is
triggered whenever the CTS, DSR, RIX, or DCD in the modem status register are being set.

The read-only Modem Status register is used to read the values of the clear to send (CTS),
data carrier detect (DCD), data set ready, (DSR) and ring indicator (RI) modem inputs. It also
reports changes in any of these inputs and indicates whether automatic flow control mode
is currently enabled. The bits in the Modem Status register are cleared by writing a 1 to the
particular bit.

The read/write only Modem Control register is used to set the data terminal ready (DTR) and
request to send (RTS) outputs, and to enable the Automatic Flow Control Mode register.

X-Ref Target - Figure 21-8

Figure 21‐8: UART RxFIFO and TxFIFO Interrupt

TxFIFO (64 bytes)

Full Interrupt
[TXFULL]

Empty Interrupt
[TXEMPTY]

Trigger Interrupt
[TTRIG]

RxFIFO (64 bytes)

Full Interrupt
[RXFULL]

Overflow Interrupt
[OVER]

Trigger Interrupt
[RTRIG]

Nearly Full Interrupt
[TNFUL]

Empty Interrupt
[RXEMPTY]

Overflow Interrupt
[TOVR]

uart.Rcvr_FIFO_trigger_level

uart.Tx_FIFO_trigger_level

X19862-101917
Zynq UltraScale+ Device TRM 616
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=616

Chapter 21: UART Controller
By default, the automatic flow control mode is disabled, meaning that the modem inputs
and outputs work completely under software control. When the automatic flow control
mode is enabled by setting the FCM bit in the Modem Control register, the UART
transmission and reception status is automatically controlled using the modem handshake
inputs and outputs.

In automatic flow control mode the request to send output is asserted and deasserted
based on the current fill level of the receiver FIFO, which results in the far-end transmitter
pausing transmission and preventing an overflow of the UART receiver FIFO. The FDEL field
in the Flow Delay register (Flow_delay) is used to setup a trigger level on the Receiver FIFO
which causes the deassertion of the request to send. It remains Low until the FIFO level has
dropped to below four less than FDEL.

Additionally in automatic flow control mode, the UART only transmits while the clear to
send input is asserted. When the clear to send is deasserted, the UART pauses transmission
at the next character boundary.

If flow control is selected as automatic, then Flow Delay register must be programmed in
order to have a control on the inflow of data, which is done by deasserting RTS signal. The
value corresponds to the RxFIFO level at which RTS signal will be deasserted. It will be
reasserted when the RxFIFO level drops to four below the value programmed in the Flow
Delay register.

The uart.Channel_sts [FLOWDEL] register bit is used to monitor the RxFIFO level in
comparison with the flow delay trigger level. The [FLOWDEL] bit is set whenever the RxFIFO
level is greater than or equal to trigger the level programmed in the Flow Delay register.

The trigger level programmed in the Flow Delay register has no dependency on the Rx
Trigger Level register. This is to only control the inflow of data using the RTS modem signal.

The CPU will be interrupted by receive data only on receipt of an Rx Trigger interrupt. Data
is retrieved based on the trigger level programmed in the Rx Trigger Level register.
Zynq UltraScale+ Device TRM 617
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=617

Chapter 21: UART Controller
UART Controller Register Overview
An overview of the UART registers is shown in Table 21-3.

Clocks

The controller and I/O interface are driven by the reference clock (UART{0, 1}_REF_CTRL).
The controller's interconnect also requires an APB interface clock (LSBUS clock). Both of
these clocks always come from the PS clock subsystem.

LSBUS Clock

See Chapter 37, PS Clock Subsystem for more information. The LSBUS Clock runs
asynchronous to the UART reference clock.

Reference Clock

The reference clock is generated based on the generic clocking diagram shown in
Figure 37-4. The input clock source can be selected based on the
crl_apb.UART{0,1}_REF_CTRL [srcsel] bits, where the source can be from the RPLL, IOPLL, or
DPLL. The crl_apb.UART{0,1}_REF_CTRL [divisor0] register selects the 6-bit programmable
divider 0. The crl_apb.UART{0,1}_REF_CTRL [divisor1] register selects the 6-bit

Table 21‐3: UART Registers

Type Register Names Description

Configuration Control
Mode
Baud_rate_gen
Baud_rate_divider

Configure mode and baud rate.

Interrupt processing Intrpt_en
Intrpt_dis
Intrpt_mask
Chnl_int_sts
Channel_sts

Enable/disable interrupt mask, channel interrupt
status, channel status.

RX and TX data TX_RX_FIFO0 Read data received. Write data to be transmitted.
Receiver Rcvr_timeout

Rcvr_FIFO_trigger_level
Configure receiver timeout and RXFIFO trigger
level value.

Transmitter Tx_FIFO_trigger_level Configure TXFIFO trigger level value.
Modem Modem_ctrl

Modem_sts
Flow_delay

Configure modem-like application.
Zynq UltraScale+ Device TRM 618
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=618

Chapter 21: UART Controller
programmable divider 1.The crl_apb.UART{0,1}_REF_CTRL [clkact] bit selects whether the
clock should be gated or enabled.

Resets

The controller reset bits are generated by the PS, see Chapter 38, Reset System.

MIO – EMIO Signals
The UART I/O signals are identified in Table 21-4. The MIO pins and any restrictions based
on device versions are shown in Table 28-1 in Chapter 28, Multiplexed I/O.

Table 21‐4: UART MIO Pins and EMIO Signals

UART Interface Signal

Default
Controller

Input
Value

MIO Pins EMIO Signals

Numbers I/O Name I/O

UART 0 Transmit ~ 3, 7, 11, 15, 19, 23, 27, 31, 35, 39,
43, 47, 51, 55, 59, 63, 67, 71, 75 O EMIOUART0TX O

UART 0 Receive 2, 6, 10, 14, 18, 22, 26, 30, 34, 38,
42, 46, 50, 54, 58, 62, 66, 70, 74 I EMIOUART0RX I

UART 0 Clear to Send ~ ~ EMIOUART0CTSN I
UART 0 Ready to Send ~ ~ ~ EMIOUART0RTSN O
UART 0 Data Set Ready ~ ~ EMIOUART0DSRN I
UART 0 Data Carrier Detect ~ ~ EMIOUART0DCDN I
UART 0 Ring Indicator ~ ~ EMIOUART0RIN I
UART 0 Data Terminal Ready ~ ~ ~ EMIOUART0DTRN O
UART 1 Transmit ~ 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40,

44, 48, 52, 56, 60, 64, 68, 72 O EMIOUART1TX O

UART 1 Receive 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41,
45, 49, 53, 57, 61, 65, 69, 73 I EMIOUART1RX I

UART 1 Clear to Send ~ ~ EMIOUART1CTSN I
UART 1 Ready to Send ~ ~ ~ EMIOUART1RTSN O
UART 1 Data Set Ready ~ ~ EMIOUART1DSRN I
UART 1 Data Carrier Detect ~ ~ EMIOUART1DCDN I
UART 1 Ring Indicator ~ ~ EMIOUART1RIN I
UART 1 Data Terminal Ready ~ ~ ~ EMIOUART1DTRN O
Zynq UltraScale+ Device TRM 619
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=619

Chapter 21: UART Controller
UART Controller Programming Model
The flow diagram for the UART controller programming sequence is shown in Figure 21-9.

X-Ref Target - Figure 21-9

Figure 21‐9: UART Controller Flowchart

UART

Initialization
(see UART Initialization section)

Perform self-test
(see UART Self-test section)

If interrupt
mode?

Configure interrupts
 Initialize GIC (see Interrupt chapter)
 Connect GIC with UART interrupt ID
 Register interrupt handler

Set UART operation mode
(see Set UART Operation Mode section)

If interrupt?Set receive buffer time out

Start receiving data

Start sending data

Check total received count ==
total sent byte count

Fill the send buffer and start transfer
(see UART Send Data section).

Wait until data is transferred.

Start receiving data
(see UART Receive Data section)

Wait until data is received.

Verify data

Set operation mode to normal

END

Yes

Yes

No

X15380-082817
Zynq UltraScale+ Device TRM 620
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=620

Chapter 21: UART Controller
UART Controller Programming

The programming steps/tasks for the UART controller are listed in Table 21-5 through
Table 21-9.

• UART Configuration
• UART Self Test
• UART Set Operating Mode
• UART Send Data
• UART Receive Data

Table 21‐5: UART Configuration

Task Register Register Field Register Offset Bits Note

Set the default baud rate 115200 b/s.
Fastest possible input clock data rate is 25 MHz/2, ensure requested data rate does not exceed the limit.
Read bit 0 in mode register (base + 0x04) to check if clock/8 option is set.
Check if input
clock is divided by
8.

Mode register Clk_sel 0x004 0 Read operation

If clk_sel bit is set, divide input clock value by 8 to calculate baud rate.
Calculate baud rate generator value (Best_BRGR).
Calculate baud rate divider value (Best_BAUDDIV).

Disable UART Configuration
register RX_DIS | TX_DIS 0x000 5 and 3 28h

Clear bit 5:2 in base + 0x00.
Set bit 5 and bit 3 in base + 0x00.
Write baud rate
generator value

Baud generator
register All 0x018 31:0 Best_BRGR

Write baud rate
divider value

Baud divider
register All 0x0034 31:0 Best_BAUDDIV

Reset TX and RX Configuration
register TX_RST | RX_RST 0x00 1:0 11b

Enable UART Configuration
register RX_DIS | TX_DIS 0x000 5 and 3 0

Clear bit 5:2 in base + 0x00.
Set bit 2 and bit 4 in base + 0x00.
Clear bits 1, 2, 3, 4, 5, and 7 in base + 0x04. Set bit 5 in base + 0x04.
Set mode to 8-bit,
1 stop, and no
parity

Mode register
CHAR_LEN_8BIT |
PARITY_NONE |
STOPMODE_1

0X004 7, 5:1 Reg = 20h
Zynq UltraScale+ Device TRM 621
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=621

Chapter 21: UART Controller
Write value to set
RXFIFO trigger 8
bytes.

RX_WM All 0x0020 31:0 8h

Write RX time-out
value. Timeout register All 0x001C 31:0 1h

Write values to
disable all
interrupts.

Interrupt disable All 0x00C 12:0 1FFFh

Table 21‐5: UART Configuration (Cont’d)

Task Register Register Field Register Offset Bits Note

Table 21‐6: UART Self Test

Task Register Register Field Register Offset Bits Note

Save interrupt mask register
contents.

Interrupt mask
register All 0x0010 31:0 Read operation

Disable all interrupts. Interrupt disable All 0x00C 12:0 1FFFh

Save mode register contents. Mode register All 0x004 31:0 Read operation

Enable local loopback. Mode register CH_mode
L_LOOP 0x004 9:8 10b

Sending data refer section UART send data.
Wait until RXFIFO empty flag
cleared Status register RX_EMPTY 0x02c 2 Read and check

Wait until RXFIFO empty flag is set.
Receive data, refer to UART receive data section. Repeat previous three steps until all bytes (sent and received)
are transferred.
Verify all data received (both send and receive buffers).

Restore (write back) interrupt
mask value saved in first step.

Interrupt enable
register All 0x008 31:0

Value read in the first
task of this UART

self-test procedure.

Restore mode register
contents. Mode register All 0x004 31:0

Value read in the third
task of this UART

self-test procedure.
Zynq UltraScale+ Device TRM 622
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=622

Chapter 21: UART Controller
Table 21‐7: UART Set Operating Mode

Task Register Register Field Register Offset Bits Note

Clear bits 9 and 8 in base + 0x04. Then, set bits 9:8.
For normal mode (0). Mode register CHMODE 0x004 9:8 00b

For auto mode (1). Mode register CHMODE 0x004 9:8 01b

For local loop back mode (2). Mode register CHMODE 0x004 9:8 10b

For remote loop back mode (3). Mode register CHMODE 0x004 9:8 11b

Table 21‐8: UART Send Data

Task Register Register Field Register Offset Bits Note

Set bits 8 and 7 in base+0x0C to disable interrupts.

Disable interrupts. Interrupt disable
register TX_EMPTY | TX_FULL 0x0C 4:3 11b

Check bit number 8 in base+0x2C.
Check if TX_FULL bit is set, if
TXFIFO is full, send nothing. Status register TXFULL 0x02C 4 Read

If TX_FULL is not set, fill the
remaining bytes. TXFIFO register All 0x0030 31:00 Data to be sent

Perform previous two tasks until all bytes transferred.

Read interrupt mask
register

Interrupt mask
register

RX_FULL |
RX_EMPTY |

RX_OVR_FLW
0x0010 2:0 Read

If any of RXFIFO full or RXFIFO empty or RX overflow interrupts are set, enable TX empty interrupt by setting bit
3 in base + 0x008.
If any bit set from previous
operation, write TXEMPTY
bit to 1.

Interrupt enable
register TX_EMPTY 0x8 3 1b

Wait until the transfer is over by monitoring bit 11 (transfer active) and bit 7 (TX empty) in base + 0x2C.

Table 21‐9: UART Receive Data

Task Register Register Field Register Offset Bits Note

Save interrupt mask register (base+0x10) offset contents.
Disable interrupts. Interrupt disable

register All 0x0C 4:3 1FFFh

Wait until all data received by checking the bit 1 in status register (base+0x002C) to check the RXFIFO is empty.
Check RX_EMPTY flag. Status register RX_EMPTY 0x002C 1 Read operation
Receive data by reading
FIFO register.

FIFO register All 0x0030 31:0 Read data operation

Do the previous two operations until RX_EMPTY is not set and bytes yet to be sent.
Restore the interrupt
mask register.

Interrupt enable
register All 0x008 31:0 Value read in first

step.
Zynq UltraScale+ Device TRM 623
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=623

Chapter 22

I2C Controllers

Introduction
The I2C controllers can function as a master or a slave in a multi-master design. They can
operate over a clock frequency range up to 400 kb/s.

The controller supports multi-master mode for 7-bit and extended 10-bit addressing
modes. In master mode, a transfer can only be initiated by the processor writing the slave
address into the I2C address register. The processor is notified of any available received
data by a data interrupt or a transfer complete interrupt. If the hold bit is set, the I2C
interface holds the clock signal (SCL) Low after the data is transmitted to support slow
processor service. The master can be programmed to use both normal addressing and
extended addressing modes. The extended addressing mode is only supported in master
mode.

In slave monitor mode, the I2C interface is set up as a master and continues to attempt a
transfer to a particular slave until the slave device responds with an ACK or until the timeout
occurs.

Controller supports repeated start functionality. After the start condition, the master can
generate a repeated start. This is equivalent to a normal start and is usually followed by the
slave I2C address.

A common feature between master mode and slave mode is the timeout, [TO] interrupt flag
bit. If at any point the SCL clock signal is held Low by the master or the accessed slave for
more than the period specified in the timeout register, a [TO] interrupt bit is generated to
avoid stall conditions.
Zynq UltraScale+ Device TRM 624
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=624

Chapter 22: I2C Controllers
I2C Controller Features

There are two I2C controllers in the LPD IOP section of the PS.

• I2C bus specification version 2.
• 16-byte FIFO.
• Programmable normal and fast bus data rates.
• Multi-master support.
• Master mode

° Read and write transfers

° Seven and 10-bit addressing.

° Clock stretching by allowing hold for slow processor service.

° [TO] interrupt bit to avoid stall condition.

° Repeated start.

° Slave monitor mode
• Slave mode

° Transmit and receive.

° Fully programmable slave response address.

° [HOLD] bit helps to prevent the overflow condition.

° [TO] bit helps interrupt flag to avoid stall condition.

° Clock stretching helps to delay communication if data is not readily available.
• Software can poll for status or function as interrupt-driven device.
• Programmable interrupt generation.
Zynq UltraScale+ Device TRM 625
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=625

Chapter 22: I2C Controllers
Functional Description

System Block Diagram

The system viewpoint diagram for the I2C module is shown in Figure 22-1.
X-Ref Target - Figure 22-1

Figure 22‐1: I2C System Block Diagram

I2C
Controllers

I2C{0,1} IRQ ID = {49, 50}

Control
Registers

Clocking

Interconnect

MIO – EMIO
Routing

SCL, SDA

SCL, SDA
SCL_T

PL
EMIO

...

Device
Boundary

MIO
Pins

IOU_LSBUS_CLK

APB
Slave
Port

X15381-120518
Zynq UltraScale+ Device TRM 626
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=626

Chapter 22: I2C Controllers
I2C Module Block Diagram

The block diagram of I2C module is shown in Figure 22-2.

I2C Master Mode

The master is always the device that drives the SCL clock signal. The slaves are the devices
that respond to the master. There can be multiple slaves on the I2C bus however, there is
normally only one master. It is possible to have multiple masters. To select master mode, set
Control [MS] bit = 1.

Slave Monitoring

The slave monitoring option is available in the master mode by setting Control [SLVMON]
bit = 1. To monitor a specific slave on the bus, wait until the ACK is received or a timeout
occurs.

10-bit Addressing Mode

The I2C controller supports the 10-bit addressing mode. The extended addressing mode is
only supported in master mode. When the controller uses 10-bit addressing, it enables the
mode and writes the 10-bit address:

1. Set I2C{0,1}.Control_Reg[NEA] = 0.
2. Write 10-bit address to the I2C Address register (I2C{0,1}.I2C_Address).

X-Ref Target - Figure 22-2

Figure 22‐2: I2C Block Diagram

APB
Interface

Interrupts

APB

Status
Register

RX Data
Register

TX Data
Register

Control
Register

Controller

RX Shift
Register

Clock
Enable

Generator

SCL/SDA
InterfaceSystem Interrupt

X15382-092217
Zynq UltraScale+ Device TRM 627
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=627

Chapter 22: I2C Controllers
Note: In the Linux flow, a 10-bit address needs to be passed to the I2C core layer through the device
tree or through the IOCTL.

I2C Slave Mode

When configured in slave mode, the I2C controller can only respond to the external master
device. A slave cannot initiate a transfer over the I2C bus, only a master can initiate
transfers. Both master and slave can transfer data over the I2C bus, but that transfer is
always controlled by the master. To configure an I2C controller as a slave, set Control [MS]
bit = 0.

Glitch Filter

The I2C bus specification specifies that 50 ns glitches should be removed from the clock
and data signals. The I2C controller provides a digital glitch filter for filtering glitches on the
SDA and SCL inputs. The filter is built using a shift register and the filter length is specified
in terms of APB interface clock cycles (LPD_LSBUS_CLK). The glitch filter control register
Glitch_Filter is used to set the length of the glitch filter shift register. The appropriate value
written into the Glitch_Filter register allows for the removal of 50 ns glitches. Consequently,
the value written into the Glitch_filter_reg.GF register should be equal to the number of APB
clock cycles that gives a total length of 50 ns. The default value is five. If the length of the
glitch filter shift register is set to zero, then the glitch filter is bypassed.

I/O Signals
Table 22-1 lists the I2C interface signals by MIO pin number.

Table 22‐1: I2C Interface Pins and Signals

I2C
Interface

MIO Pins EMIO Signals

Number I/O Name I/O

I2C 0 SCL
2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54,
58, 62, 66, 70, 74 I/O

EMIOI2C0SCLI I
EMIOI2C0SCLO O
MIOI2C0SCLT O

I2C 0 SDA
3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55,
59, 63, 67, 71, 75 I/O

EMIOI2C0SDAI I
EMIOI2C0SDAO O
EMIOI2C0SDAT O

I2C 1 SCL
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56,
60, 64, 68, 72, 76 I/O

EMIOI2C1SCLI I
EMIOI2C1SCLO O
MIOI2C1SCLT O
Zynq UltraScale+ Device TRM 628
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=628

Chapter 22: I2C Controllers
I2C0-to-I2C1 Loopback Connection

The I/O signals of the two I2C controllers in the PS are connected together when the
iou_slcr.MIO_LOOPBACK [I2C0_LOOP_I2C1] bit is set = 1. In this mode, the serial clocks are
connected together and the serial data signals are connected together.

Register Overview
An overview of the I2C registers is provided in Table 22-2.

For individual register descriptions, refer to the Zynq UltraScale+ MPSoC Register Reference
(UG1087) [Ref 4].

Interrupt Mask Register

Each bit in the interrupt mask register (IMR) corresponds to a bit in the interrupt status
register (ISR). If bit [i] in the interrupt mask register is set, the corresponding bit in the
interrupt status register is ignored. Otherwise, an interrupt is generated whenever bit [i] in

I2C 1 SDA
1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57,
61, 65, 69, 73, 77 I/O

EMIOI2C1SDAI I
EMIOI2C1SDAO O
EMIOI2C1SDAT O

Table 22‐2: I2C Register Overview

Register Type Register Name Description

Configuration Control_Reg Configure the operating mode.
Data Address

Data
Transfer_Size
Slave_Mon_Pause
Time_Out
Status_Reg
Glitch_Filter

Transfer data and monitor status.

Interrupt processing Interrupt_Status
Intrpt_Mask
Intrpt_Enable
Intrpt_Disable

Enable or disable interrupt detection, mask
interrupt set to the interrupt controller, read raw
interrupt status.

Table 22‐1: I2C Interface Pins and Signals (Cont’d)

I2C
Interface

MIO Pins EMIO Signals

Number I/O Name I/O
Zynq UltraScale+ Device TRM 629
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=629

Chapter 22: I2C Controllers
the interrupt status register is set. Bits in the IMR mask register are set through a write to
the interrupt disable register and are cleared by a write to the interrupt enable register. All
mask bits are set (interrupts disabled) after reset. The interrupt mask register has the same
bit field order as the interrupt status register.

Interrupt Enable Register

The interrupt enable register (IER) has the same bit field order as the interrupt status
register. Setting a bit in the interrupt enable register clears the corresponding mask bit in
the interrupt mask register, effectively enabling a corresponding interrupt to be generated.

Programming Model
The following steps are used to program and use the I2C controller.

Reset Controller

To reset the I2C controller using bits from the CRL_APB.RST_LPD_IOU2 register, which is a
software control register.

• Assert the I2C 0 controller reset: write a 1 to the CRL_APB.RST_LPD_IOU2 [i2c0_reset]
bit.

• Deassert the I2C 0 controller reset: write a 0 to the CRL_APB.RST_LPD_IOU2 [i2c0_reset]
bit.

Similarly, the [i2c1_reset] bit of the register controls the reset for I2C 1 controller.

Configure I/O Signal Routing

The I2C SCL and SDA signals can be routed to one of many sets of MIO pins or to the EMIO
interface. All of the I2C signals are listed in Table 22-1. The MIO pins are configured by
accessing registers located in the IOU_SLCR register set.

Configure Clocks

The controller, I/O interface, and the APB interconnect are driven by the LPD_LSBUS_CLK
clock. This clock is generated from the PS. The clock signal can be derived from any of the
PLLs as described in Chapter 37, PS Clock Subsystem.

Controller Configuration

I2C transfer parameters are programmed using the Control register.
Zynq UltraScale+ Device TRM 630
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=630

Chapter 22: I2C Controllers
Configure Interrupts

Interrupts help to control data in the FIFO.

Initiate Data Transfers

Transfers are achieved in polled mode or interrupt-driven mode. The limitation on data
count while performing a master read transfer is 255 bytes. The next sections show
examples of read and write transfer in master mode and an example in slave monitor mode.

Master Read Using Polled Method

1. Set the transfer direction as read and clear the FIFOs. Write 41h to the Control register.
2. Clear the interrupts. Read and write back the read value of the IRS status register.
3. Write the read data count to the transfer size register and hold bus, if required. Write

the read data count value to the Transfer_Size register. If the read data count is greater
than the FIFO depth, set Control [HOLD] = 1.

4. Write the slave address. Write the address to the Address register.
5. Wait for data to be received into the FIFO. Poll on Status [RXDV] = 1.

a. If Status [RXDV] = 0, and any of the following interrupts are set:
Interrupt_Status [NACK], Interrupt_Status [ARB_LOST], Interrupt_Status [RX_OVF], or
Interrupt_Status [RX_UNF], then stop the transfer and report the error, otherwise
continue to poll on the Status [RXDV].

b. If Status [RXDV] = 1, and if any of the following interrupts are set: Interrupt_Status
[NACK], Interrupt_Status [ARB_LOST], Interrupt_Status [RX_OVF], or
Interrupt_Status [RX_UNF], then stop the transfer and report the error. Otherwise, go
to step 6.

6. Read the data and update the count. Read the data from the FIFO until
Status [RXDV] = 1. Decrement the read data count and if it is less than or equal to the
FIFO depth, clear the Control [HOLD] register.

7. Check for the completion of transfer. If the total read count reaches zero, poll on
Interrupt_Status [COMP] = 1. Otherwise, continue from step 5.

Master Read Using Interrupt Method

1. Set the direction of the transfer as read and clear the FIFOs. Write 41h to the Control
register.

2. Clear the interrupts. Read and write back the read value to the Interrupt_Status register.
3. Enable the timeout, NACK, RX overflow, arbitration lost, DATA, and completion

interrupts. Write 22Fh to the I2C.IER register.
Zynq UltraScale+ Device TRM 631
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=631

Chapter 22: I2C Controllers
4. Write the read data count to the transfer size register and hold bus, if required. Write
the read data count value to the Transfer_Size register. If the read data count is greater
than the FIFO depth, set the Control [HOLD] register bit.

5. Write the slave address. Write the address to the Address register.
6. Wait for data to be received into the FIFO.

a. If the read data count is greater than the FIFO depth, wait for ISR [DATA] bit = 1.
Read 14 bytes from the FIFO. Decrement the read data count by 14 and if it is less
than or equal to the FIFO depth, clear the Control [HOLD] register bit.

b. Otherwise, wait for ISR [COMP] bit = 1 and read the data from the FIFO based on the
read data count.

7. Check for the completion of the transfer. Check if the read count reaches zero.
Otherwise, repeat from step 6.

Master Write Using Interrupt Method

1. Set the direction of transfer as write and clear the FIFOs. Write 40h to the Control
register.

2. Clear the interrupts. Read and write back the read value to the ISR status register.
3. Enable the timeout, NACK, TX overflow, arbitration lost, DATA, and completion

interrupts. Write 24Fh to the IER interrupt enable register.
4. Enable the bus hold logic. Set Control [HOLD] bit if the write data count is greater than

the FIFO depth.
5. Calculate the space available in the FIFO. Subtract the Transfer_Size register value from

the FIFO depth.
6. Fill the data into the FIFO. Write the data to the Data register based on the count

obtained in step 5.
7. Write the slave address. Write the address to the Address register.
8. Wait for the data to be sent. Check that the ISR [COMP] bit is set.

a. If writing further data, repeat steps 5, 6, and 8.
b. If there is no further data, set Control [HOLD] bit = 0.

9. Wait for the completion of transfer. Check that the ISR [COMP] register bit is set = 1.

Slave Monitor Mode

The slave monitor mode helps to monitor when the slave is in the busy state. The slave
ready interrupt occurs only when the slave is not busy. This process can only be done in
master mode.

1. Select slave monitor mode and clear the FIFOs. Write 60h to the Control register.
Zynq UltraScale+ Device TRM 632
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=632

Chapter 22: I2C Controllers
2. Clear the interrupts. Read and write back the read value to the ISR status register.
3. Enable the interrupts. Set the IER [SLV_RDY] bit = 1.
4. Set the slave monitor delay. Write Fh to the Slave_Mon_Pause register.
5. Write the slave address. Write the address to the Address register.

6. Wait for the slave to be ready. Poll on ISR [SLV_RDY] status register bit until = 1.
Zynq UltraScale+ Device TRM 633
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=633

Chapter 22: I2C Controllers
I2C Controller Programming Sequence

The flow diagram for the I2C controller programming sequence is shown in Figure 22-3 and
Figure 22-4.

X-Ref Target - Figure 22-3

Figure 22‐3: I2C Master Interrupt Example Flowchart

I2C MasterIntr

Initialize device
• reset (refer to I2C Reset)
• get_options

(refer to I2C Get Options)

Perform self test
(refer to I2C Self-Test)

Setup GIC interrupt system with I2C
master interrupt handler

(refer to GIC)

Set SCLK (100000)
(refer to I2C Set SCLK)

Fill the send buffer with random data

All bytes
transferred?

Wait until bus free
(refer to I2C Check Bus is Busy)

A

End

A

Send data on bus
(refer to I2C Master Send)

Wait until ISR indicates all
data bytes are transferred

Wait until bus free
(refer to I2C Check Bus is Busy)

Receive data from slave
(refer to I2C Master Receive)

Wait until ISR indicates all data bytes
are received

Verify data
Yes

No

X15383-092716
Zynq UltraScale+ Device TRM 634
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=634

Chapter 22: I2C Controllers
X-Ref Target - Figure 22-4

Figure 22‐4: I2C Slave Polled Example Flowchart

I2C Polled Slave

Initialize device:
 Reset (refer to I2C Reset section)
 get_options (refer to I2C Get Options section)

Perform self test (refer to I2C Self-Test section)

Set up slave with address
(refer to I2C Setup Slave section)

Set SCLK (100000)
(refer to I2C Set SCLK section)

Fill the send buffer with random data

Send the buffer
(refer to I2C Slave Send Polled section)

Wait until the bus is free
(refer to I2C Check Bus is Busy section)

Receive the buffer
(refer to I2C Slave Receive Polled section)

A

A

Verify data

End

X15384-092716
Zynq UltraScale+ Device TRM 635
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=635

Chapter 22: I2C Controllers
I2C Controller Programming Steps

The programming steps for the I2C controller are listed in Table 22-3 through Table 22-28.

Table 22‐3: I2C Reset

Task Register Register Field Bits Notes

Abort start

Save interrupt mask register IMR, 0x20 All 9:0 Read operation
Disable interrupts IDR, 0x28 All 9:0 Write 2FFh
Reset configuration and clear
FIFOs Control, 0x00 All 15:0 Write 40h

Read interrupt status register ISR, 0x10 All 9:0 Read operation

Write back interrupt status register ISR, 0x10 All 9:0 Clear bits detected
as set.

Restore interrupt state IER, 0x24 All 9:0 0x2FF and ~IMR
Abort end

Reset configuration Control, 0x00 All 15:0 Write 0h
Reset time out Time_Out, 0x1C All 7:0 Write FFh
Disable all interrupts IDR, 0x28 All 9:0 Write 2FFh

Table 22‐4: I2C Get Options

Task Register Register Field Bits Notes

Read control register Control, 0x00 All 15:0 Read operation

Table 22‐5: I2C Check Bus is Busy

Task Register Register Field Bits Notes

Read bus active state Status, 0x04 BA 8 Read operation
If set bus is busy, else bus is free

Table 22‐6: I2C Transmit FIFO Fill

Task Register Register Field Bits Notes

Read transfer size register Transfer_Size, 0x14 Transfer_Size 7:0 Read operation
Calculate available bytes = FIFO DEPTH(16) – Transfer_Size
Fill data register with the data until available bytes count is reached. Refer to I2C Send Byte.

Table 22‐7: I2C Send Byte

Task Register Register Field Bits Notes

Write byte into data register Data, 0x0C DATA 7:0 Write data
Zynq UltraScale+ Device TRM 636
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=636

Chapter 22: I2C Controllers
Table 22‐8: I2C Reset Hardware

Task Register Register Field Bits Notes

Disable all interrupts IDR, 0x28 All 9:0 2FFh

Clear interrupt status

Read interrupt status register ISR, 0x10 All 9:0 Read operation
Write back interrupt status
register ISR, 0x10 All 9:0 Clear bits detected as set.

Clear hold, master enable, and acknowledge bits
Read control register Control, 0x00 All 15:0 Read operation

Clear bits Control, 0x00
CLR_FIFO,

HOLD,
ACK_EN, MS

6, 4, 3,
and 1

(~(0x0015) | 0x0040)
(hex)

Reset time out Time_Out, 0x1C All 7:0 FFh

Clear transfer size register Transfer_Size, 0x14 Transfer_Size 7:0 Write 00h

Clear status register

Read status register ISR, 0x04 All 8:0 Read operation
Write back status register ISR, 0x04 All 8:0 Read value
Reset configuration register Control, 0x00 All 15:0 Write 0000h

Table 22‐9: I2C Setup Master

Task Register Register Field Bits Notes

Read control register Control, 0x00 All 15:0 Read operation
If [HOLD] is set = 1, then check if bus is busy (refer to I2C Check Bus is Busy); if bus is busy return

Setup master Control, 0x00 CLR_FIFO, HOLD,
ACK_EN, NEA, MS

6, 4, 3, 2,
and 1 5Eh

For receiver role

Enable master receiver Control, 0x00 RW 0 1

For transmitter role

Enable master transmitter Control, 0x00 RW 0 0

Disable all interrupts IDR, 0x28 All 9:0 2FFh
Zynq UltraScale+ Device TRM 637
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=637

Chapter 22: I2C Controllers
Table 22‐10: I2C Master Send

Task Register Register Field Bits Notes

Set repeated start if data is more than FIFO depth
Set hold bit Control, 0x00 HOLD 4 1

Setup master for transmitter role (refer to I2C Setup Master)
Transmit FIFO full (refer to I2C Transmit FIFO Fill)
Program transfer address Address, 0x08 ADD 9:0 Address

Enable interrupts IER, 0x24 ARB_LOST, NACK,
COMP 9, 2, and 0 205h

Table 22‐11: I2C Master Receive

Task Register Register Field Bits Notes

Set repeated start if data is more than FIFO depth
Set hold bit Control, 0x00 HOLD 4 1

Setup master for receiver role (refer to I2C Setup Master)
Program transfer address Address, 0x08 ADD 9:0 Write address

Setup transfer size Transfer_Size, 0x14 Transfer_Size 7:0 Required
transfer size

Enable interrupts IER, 0x24 ARB_LOST, RX_OVF,
NACK, COMP

9, 5, 2, 1 and
0 227h
Zynq UltraScale+ Device TRM 638
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=638

Chapter 22: I2C Controllers
Table 22‐12: I2C Master Send Polled

Task Register Register Field Bits Notes

Set repeated start if data is more than FIFO DEPTH
Set hold bit Control, 0x00 HOLD 4 1

Setup master for transmitter role (refer to I2C Setup Master)
Read interrupt status register ISR, 0x10 All 9:0 Read operation
Write back interrupt status
register ISR, 0x10 All 9:0 Clear bits detected

as set.
Transmit first FIFO full of data (refer to I2C Transmit FIFO Fill)
Program transfer address Address, 0x08 ADD 9:0 Address
Read interrupt status register ISR, 0x10 All 9:0 Read operation
Perform the following steps as long as no errors are reported by hardware from the status register read and
total bytes are sent.

Read status register Status, 0x04 All 8:0 Read operation
Read interrupt status register ISR, 0x10 All 9:0 Read operation
Transmit first FIFO full of data (refer to I2C Transmit FIFO Fill)
Check for transfer completion
Read interrupt status register ISR, 0x10 All 9:0 Read operation
If any error reported by hardware transfer failed
Clear hold bit if not repeated
start operation Control, 0x00 HOLD 4 0
Zynq UltraScale+ Device TRM 639
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=639

Chapter 22: I2C Controllers
Table 22‐13: I2C Master Receive Polled

Task Register Register Field Bits Notes

Set repeated start if data is more than FIFO DEPTH
Set hold bit Control, 0x00 HOLD 4 1

Setup master for receiver role (refer to I2C Setup Master)
Read interrupt status register ISR, 0x10 All 9:0 Read operation

Write back interrupt status register ISR, 0x10 All 9:0 Clears bits
detected as set

Transfer address Address, 0x08 ADD 9:0 Address

Program transfer size Transfer_Size, 0x14 Transfer_Size 7:0 Required
transfer size

Read interrupt status register ISR, 0x10 All 9:0 Read operation
Start loop 1: perform the following steps as long as receiving bytes and no errors from hardware
reported

Read status register Status, 0x04 All 8:0 Read operation
Start loop 2: perform the following steps as long as RXDV bit is non zero in SR

Clear repeat start if receive byte
count is less than 14 Control, 0x00 HOLD 4 0

Receive byte Data, 0x0C DATA 7:0 Read operation
Read status register Status, 0x04 All 8:0 Read operation
End loop 2

If receive byte count is >0 and bytes still need to be received
Read interrupt status register ISR, 0x10 All 9:0 Read operation

Write back interrupt status register ISR, 0x10 All 9:0 Clears bits
detected as set

If receive byte count > maximum
transfer size, then program
transfer size

Transfer_Size, 0x14 Transfer_Size 7:0 Maximum
transfer size

Else program with required
transfer size Transfer_Size, 0x14 Transfer_Size 7:0 Required

transfer size
Read interrupt status register ISR, 0x10 All 9:0 Read operation
End loop 1

Clear hold bit if not repeated start
operation Control, 0x00 HOLD 4 0

If any error reported by hardware transfer failed else transfer success
Zynq UltraScale+ Device TRM 640
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=640

Chapter 22: I2C Controllers
Table 22‐14: I2C Enable Slave Monitor

Task Register Register Field Bits Notes

Clear transfer size register Transfer_Size, 0x14 Transfer_Size 7:0 0

Enable slave monitor mode Control, 0x00
MS | NEA

| CLR_FIFO |
SLVMON

15:0 0066h

Enable slave monitor interrupt IER, 0x24 SLV_RDY 4 1

Initialize slave monitor register Slave_Mon_Pause, 0x18 Pause 3:0 Fh

Program transfer address Address, 0x08 ADD 9:0 Address

Table 22‐15: I2C Disable Slave Monitor

Task Register Register Field Bits Notes

Disable slave monitor mode Control, 0x00 SLVMON 5 0

Disable slave monitor interrupt IER, 0x24 SLV_RDY 4 0

Table 22‐16: I2C Master Send Data

Task Register Register Field Bits Notes

Transmit first FIFO full of data (refer to I2C Transmit FIFO Fill)
Set repeated start bit if requested Control, 0x00 HOLD 4 1

Table 22‐17: I2C Master Interrupt Handler

Task Register Register Field Bits Notes

Read interrupt status register ISR, 0x10 All 9:0 Read operation
Write back interrupt status
register ISR, 0x10 All 9:0 Clear bits

detected as set
Get the enabled interrupts IMR, 0x20 All 9:0 Read operation
ISR & IMR

Check if hold bit is set (isHold) Control, 0x00 HOLD 4 Read operation
If send operation && (ISR & [COMP])

Send data (refer to I2C Master Send Data)
If receive operation && (ISR & [COMP]) || (ISR & [DATA)
Perform the following operations until receive data valid mask is set (loop-1 started)
Read status register Status, 0x04 All 8:0 Read operation
Clear hold bit if not needed Control, 0x00 HOLD 4 0

Receive byte Data, 0x0C DATA 7:0 Read operation
Loop-1 ended

If receive byte count is >0 and bytes still need to be received
Read interrupt status register ISR, 0x10 All 9:0 Read operation
Zynq UltraScale+ Device TRM 641
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=641

Chapter 22: I2C Controllers
Write back interrupt status
register ISR, 0x10 All 9:0 Clear bits

detected as set
If receive byte
count > maximum transfer size
then setup transfer size

Transfer_Size, 0x14 Transfer_Size 7:0 Maximum transfer
size

Else program with required
transfer size Transfer_Size, 0x14 Transfer_Size 7:0 Required transfer

size

Enable interrupts IER, 0x24
ARB_LOST,

RX_OVF, NACK,
DATA, COMP

9, 5, 2, 1,
and 0 227h

Clear hold bit if all interrupts
attended Control, 0x00 HOLD 4 0

Clear hold bit if slave ready
interrupt is triggered Control, 0x00 HOLD 4 0

Clear hold bit if any other
interrupts occurred. (event
errors)

Control, 0x00 HOLD 4 0

Table 22‐17: I2C Master Interrupt Handler (Cont’d)

Task Register Register Field Bits Notes

Table 22‐18: I2C Setup Slave

Task Register Register Field Bits Notes

Clear ack_en, nea,
FIFO, and set master
in slave mode

Control, 0x00 CLR_FIFO, ACK_EN,
NEA, MS 6, 3, 2, and 1 2Ch

Disable all
interrupts Intrpt_disable_reg0 All 9:0 2FFh

Transfer address Address, 0x08 ADD 9:0 Address

Table 22‐19: I2C Slave Send

Task Register Register Field Bits Notes

Enable interrupts IER, 0x24 TX_OVF, TO, NACK,
DATA, COMP 6, 3, 2, 1, and 0 4Fh

Table 22‐20: I2C Slave Receive

Task Register Register Field Bits Notes

Enable interrupts IER, 0x24 RX_UNF, RX_OVF, TO,
NACK, DATA, COMP 7, 5, 3, 2, 1, and 0 AFh
Zynq UltraScale+ Device TRM 642
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=642

Chapter 22: I2C Controllers
Table 22‐21: I2C Slave Send Polled

Task Register Register Field Bits Notes

Use RXRW bit in status register to wait master to start a read
Read status register Status, 0x04 All 8:0 Read operation
Check the RXRW bit is set by reading status register continuously. If master tries to send data, it is an error.
Read interrupt status register ISR, 0x10 All 9:0 Read operation
Write back interrupt status
register ISR, 0x10 All 9:0 Clear bits

detected as set
Send data as long as there is more data to send and there are no errors (refer to I2C Send Byte)
Read status register Status, 0x04 All 8:0 Read operation
Wait for master to read the data out of the Tx FIFO; [SR] & [TXDV] != 0.. And there are no errors.
Read interrupt status register ISR, 0x10 All 9:0 Read operation
If master terminates the transfer before all data is sent, it is an error (interrupt status register and NACK)
Write back interrupt status
register ISR, 0x10 All 9:0 Clear bits

detected as set

Table 22‐22: I2C Slave Receive Polled

Task Register Register Field Bits Notes

Read status register Status, 0x04 All 8:0 Read operation
Read interrupt status register ISR, 0x10 All 9:0 Read operation
Write back interrupt status
register ISR, 0x10 All 9:0 Clear bits

detected as set
Read status register Status, 0x04 All 8:0 Read operation
Write back status register Status, 0x04 All 8:0 Write status
Read status register Status, 0x04 All 8:0 Read operation
Perform the following operations until all bytes received (Loop-1 started)

Perform the following operations as long as SR and RXDV = 0 (Loop-2 started)

Read status register Status, 0x04 All 8:0 Read operation
If (status register and (DATA | COMP) != 0) && (status register and RXDV ==0) && receive byte count >0) then
it is a failure.
Write back interrupt status
register ISR, 0x10 All 9:0 Clear bits

detected as set
Loop-2 ended

Perform the following operations until status register and RXDV!= 0 and receive byte count!=0 (Loop-3
started)

Receive byte Data, 0x0C DATA 7:0 Read operation
Read status register Status, 0x04 All 8:0 Read operation
Zynq UltraScale+ Device TRM 643
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=643

Chapter 22: I2C Controllers
Loop-3 ended

Loop-1 ended

Table 22‐22: I2C Slave Receive Polled (Cont’d)

Task Register Register Field Bits Notes

Table 22‐23: I2C Receive Data

Task Register Register Field Bits Notes

Read status register Status, 0x04 All 8:0 Read operation
Until (status register and RXDV) && receive byte count !=0 (Loop -1 started)
Receive byte Data, 0x0C DATA 7:0 Read operation
Read status register Status, 0x04 All 8:0 Read operation
Loop-1 ended

Table 22‐24: I2C Slave Interrupt Handler

Task Register Register Field Bits Notes

Read interrupt status register ISR, 0x10 All 9:0 Read operation
Write the status back to clear the interrupts so no events are missed while processing this interrupt
Write back interrupt status
register ISR, 0x10 All 9:0 Clear bits detected

as set
Get the enabled interrupts (imr) IMR, 0x20 All 9:0 Read operation
Use the mask register AND with the interrupt status register so disabled interrupts are not processed (~(imr) and
IntrStatusReg).
Data interrupt (If interrupt status register and data)
• This means master wants to do more data transfers.
• Also check for completion of transfer, signal upper layer if done
For sending transmit FIFO fill (refer to I2C Transmit FIFO Fill)
Else receive slave data (refer to I2C Slave Receive data)
Zynq UltraScale+ Device TRM 644
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=644

Chapter 22: I2C Controllers
Note: The actual frequency of SCL output is exactly 22 times slower than the frequency of
clock_enable. The frequency of clock_enable signal is defined by the frequency of pclk input and the
values of divisor_a and divisor_b.

Table 22‐25: I2C Set and Clear Options

Task
Control Register Field

(offset 0x00) Bits Set Options

For 7-bit address option NEA 2 1

For 10-bit address option NEA 2 0

Slave monitor option SLVMON 5 1

For repeated start option HOLD 4 1

Clear Options

For 7-bit address option NEA 2 0

For 10-bit address option NEA 2 1

Slave monitor option SLVMON 5 0

For repeated start option HOLD 4 0

Table 22‐26: I2C Set SCLK

Task Register Register Field Bits Notes

Read transfer size register Transfer_Size, 0x14 Transfer_Size 7:0 Read operation
If the Transfer_Size register is not = 0, then stop here. If the device is currently transferring data, the transfer
must complete or be aborted before setting options.
Make sure clock option is with in range FSCL >0. Calculate values for divisor_a (best_divA) and divisor_b
(best_divB)

Program the divisor values Control, 0x00 divisor_a |
divisor_b 15:8 Best_divA |

best_divB

Table 22‐27: I2C Get CLK

Task Register Register Field Bits Notes

Read the divisor values (Div_a | Div_b) Control, 0x00 divisor_a |
divisor_b 15:8 Read operation

Calculate actual clock value = (input clock / (22U x (Div_a + 1U) x (Div_b + 1U)).
Zynq UltraScale+ Device TRM 645
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=645

Chapter 22: I2C Controllers
Table 22‐28: I2C Self-Test

Task Register Register Field Bits Notes

All the I2C registers should be in their default state.

Read control register (CR) Control, 0x00 All 15:0 Read operation
Read interrupt mask register
(imr) IMR, 0x20 All 9:0 Read operation

If (CR != 0) OR if (imr != 0x2FF) stop here.
Perform reset (refer to I2C Reset Hardware)
Write test value (0x05) into
slave monitor register Slave_Mon_Pause, 0x18 Pause 3:0 5h

Read back slave monitor
register Slave_Mon_Pause, 0x18 Pause 3:0 Read operation

Verify the value with written value. If not same test failed. Else passed.
Reset slave monitor register Slave_Mon_Pause, 0x18 Pause 3:0 0h
Zynq UltraScale+ Device TRM 646
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=646

Chapter 23

SPI Controller

Introduction
The SPI bus controller enables communications with a variety of peripherals such as
memories, temperature sensors, pressure sensors, analog converters, real-time clocks,
displays, and any SD card with serial mode support. The SPI controller can function in
master mode, slave mode, or multi-master mode. There are two instances of an SPI
controller. Both the controllers are identical and independently controlled by software
drivers. They can be operated simultaneously. The following discussions are applicable to
both instances of the controller.

Features

• Full-duplex operation offers simultaneous receive and transmit.
• Master or slave SPI modes of operation.
• Four wire bus: data RX, data TX, clock, and select.
• Supports multi-master environment: Identifies an error condition if more than one

master detected.
• Memory-mapped APB interface.
• Buffered operation with separate transmit and receive FIFOs: The APB can read from

the RXFIFO and write to the TXFIFO.
• In master mode, the SPI clock can be generated from one of three separate clock

sources.
• Programmable master-mode clock frequencies.
• Serial clock with programmable polarity.
• Programmable transmission format.
• FIFO levels available through DUT outputs, or through software accessible registers.
• FIFO level status can be polled by software or can be interrupt driven.
• Programmable interrupt generation.
Zynq UltraScale+ Device TRM 647
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=647

Chapter 23: SPI Controller
Functional Description
Figure 23-1 shows the SPI controller block diagram.

FIFOs

The RX and TX FIFOs are each 128-bytes deep. Software reads and writes these FIFOs using
the register mapped data-port registers. The FIFOs bridge two clock domains; the APB
interface (LPD_LSBUS_CLK) and the controller's SPI_REF_CLK. Software writes to the TXFIFO
in the APB clock domain and the controller reads the TXFIFO in the SPI_Ref_Clk domain. The
controller fills the RXFIFO in the SPI_Ref_Clk domain and software reads the RXFIFO in the
APB clock domain.

RXFIFO

If the controller attempts to push data into a full RXFIFO, then the content is lost and the
sticky overflow flag is set. No data is added to a full RXFIFO. Software writes a 1 to the bit
to clear the [RX_OVERFLOW] bit.

X-Ref Target - Figure 23-1

Figure 23‐1: SPI Controller Block Diagram

TX FIFO

Master Mode:
MOSI

APB
Interface

Transmit

SPI CTRL

RX FIFO

SPI
Master

SPI
Slave

Receive
Slave
Sync

SS[2:0]

SCLK

SS[0]

Slave Mode:
MISO

Interrupt Interrupt
Control

SPI Interface
Signals to MIO

or EMIO

APB
Slave

Master Mode:
MOSI

Slave Mode:
MISO

X15385-120718
Zynq UltraScale+ Device TRM 648
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=648

Chapter 23: SPI Controller
TXFIFO

If software attempts to write data into a full TXFIFO, then the write is ignored. No data is
added to a full TXFIFO. The [TX_FIFO_full] bit is asserted until the TXFIFO is read and the
TXFIFO is no longer full. If the TXFIFO overflows, the sticky [RX_OVERFLOW] bit is set = 1.

Clocks

The SPI controller receives two clock inputs from the PS clock subsystem and, in slave mode,
the SCLK clock from the attached SPI master.

• SPI_REF_CLK clock operates the controller and the baud-rate divider for the SCLK in
master mode.

• LPD_LSBUS_CLK clock operates the APB slave interface for register access. Refer to
Answer Record 73356.

These clocks run asynchronous to each other. Clock generation is described in Chapter 37,
PS Clock Subsystem. The clock frequency specifications are defined in the data sheet.

Master Mode SCLK

In master mode, the I/O signals are clocked by the controller generated SCLK that is derived
from the SPI_REF_CLK using the baud-rate divider using the spi.Config [BAUD_RATE_DIV]
bit field. The range of the baud-rate divider is from a minimum of 4 to a maximum of 256
in binary steps (i.e., divide by 4, 8, 16,... 256). The slave select input pin must be driven
synchronously with respect to the SCLK input.

Slave Mode SCLK

In slave mode, the controller samples the MOSI and SS I/O signals and drives the MISO
signal using the SCLK from the attached master. The input signals are synchronized to the
SPI_REF_CLK and processed by the controller.

Note: The SPI_REF_CLK frequency should be at least 2x the SCLK frequency for the controller to
properly detect the start of the word transfer on the SPI bus.

Resets

The controller is reset by the PS reset subsystem individually or by a system or POR reset.
See Chapter 38, Reset System for more information.
Zynq UltraScale+ Device TRM 649
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/73356.html
https://www.xilinx.com/support/answers/73356.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=649

Chapter 23: SPI Controller
SPI Controller Modes of Operation

The SPI controller operates in three modes:

• Master mode
• Multi-master mode
• Slave mode

In multi-master mode, the controller’s output signals are 3-stated when the controller is not
active and can detect contention errors when enabled. The outputs are 3-stated
immediately by resetting the SPI enable bit. An interrupt status register indicates a mode
fault.

In slave mode, the controller receives the serial clock from the master device and uses the
SPI_REF_CLK to synchronize data capture. The slave mode includes a programmable start
detection mechanism when the controller is enabled while the slave select (SS) signal is
asserted. The read and write FIFOs provide buffering between the SPI I/O interface and the
software servicing the controller via the APB slave interface. The FIFOs are used for both
slave and master I/O modes.

Master Mode

In master mode, the SPI I/O interface can transmit data to a slave or initiate a transfer to
receive data from a slave. In this mode, the controller drives the serial clock and slave
selects with an option to support the SPI's multi-master mode. The serial clock is derived
from the PS clock subsystem.

The controller selects one slave device at a time using one of the three slave select lines. If
more than three slave devices need to be connected to the master, it is possible to add a
3-to-8 decoder on the MIO or EMIO interface. The multiplexer is enabled using the
spi.Config [PERI_SEL] bit.

The controller initiates messages using up to three individual slave select output signals
that can be externally expanded. The controller reads and writes to the slave devices by
writing bytes to the 32-bit read/write data port register.

Multi-master Mode

For multi-master mode, the controller is programmed for master mode [MODE_SEL] and
can initiate transfers on any of the slave selects. When the software is ready to initiate a
transfer, it enables the controller using the [SPI_EN] bit. When the transaction is done, the
software disables the controller. The controller cannot be selected by an external master
when the controller is in master mode.

The controller detects another master on the bus by monitoring the open-drain slave select
signal (active Low). The detection mechanism is enabled by the [Modefail_gen_en]. When
Zynq UltraScale+ Device TRM 650
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=650

Chapter 23: SPI Controller
the controller detects another master, it sets the spi.ISR [MODE_FAIL] interrupt status bit
and clears the spi.Enable [SPI_EN] control bit. The software can receive the [MODE_FAIL]
interrupt so it can abort the transfer, reset the controller, and re-send the transfer.

SPI Data Transfers

The SPI controller follows a specific series of operations to initiate and control the data
transfers on the SPI bus. The following subsections detail the data transfer handshake
mechanisms.

Data Transfer

The SCLK clock and MOSI signals are under control of the master. Data to be transmitted is
written into the TXFIFO by software using register writes and then unloaded for
transmission by the controller hardware in a manual or automatic start sequence. Data is
driven onto the master output (MOSI) data pin. Transmission is continuous while there is
data in the TXFIFO. Data is received serially on the MISO data pin and is loaded eight bits at
a time into the RXFIFO. Software reads the RXFIFO using register reads. For every n bytes
written to the TXFIFO, there are n bytes stored in RXFIFO that must be read by software
before starting the next transfer.

Auto/Manual Slave Select and Start

Data transfers on the I/O interface can be manually started using software or automatically
started by the controller hardware. In addition, the slave select assertion/deassertion can
be done by the controller hardware or from software.

• Manual Slave Select

Software selects the manual slave select method by setting the spi.Config [Manual_CS]
bit = 1. In this mode, software must explicitly control the slave select assertion/deassertion.
When the [Manual_CS] bit = 0, the controller hardware automatically asserts the slave
select during a data transfer.

• Automatic Slave Select

Software selects the auto slave select method by programming the spi.Config [Manual_CS]
bit = 0. The SPI controller asserts/deasserts the slave select for each transfer of TXFIFO
content on to the MOSI signal. Software writes data to the TXFIFO and the controller asserts
the slave select automatically, transmits the data in the TXFIFO, and then deasserts the slave
select. The slave select gets deasserted after all the data in the TXFIFO is transmitted. This
is the end of the transfer. Software ensures the following in automatic slave select mode.

° Software continuously fills the TXFIFO with the data bytes to be transmitted,
without the TXFIFO becoming empty, to maintain an asserted slave select.

° Software continuously reads data bytes received in the RXFIFO to avoid overflow.
Zynq UltraScale+ Device TRM 651
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=651

Chapter 23: SPI Controller
Software uses the TXFIFO and RXFIFO threshold levels to avoid FIFO under- and over-flows.
The TXFIFO’s not-full condition is flagged when the number of bytes in TXFIFO is less than
the TXFIFO threshold level. The RXFIFO full condition is flagged when the number of bytes
in RXFIFO is equal to 128.

Manual Start

The following procedure describes how to start data transfers in manual mode.

Enable

Software selects the manual transfer method by setting the spi.Config [Man_start_en]
bit = 1. In this mode, software must explicitly start the data transfer using the manual start
command mechanism. When the [Man_start_en] bit = 0, the controller hardware
automatically starts the data transfer when there is data available in the TXFIFO.

Command

Software starts a manual transfer by writing a 1 to the spi.Config [Man_start_com] bit. When
the software writes the 1, the controller hardware starts the data transfer and transfers all
the data bytes present in the TXFIFO. The [Man_start_com] bit is self-clearing. Writing a 1 to
this bit is ignored if [Man_start_en] = 0. Writing a 0 to [Man_start_com] has no effect,
regardless of mode.

Clocking

The slave select input pin must be driven synchronously with respect to the SCLK input. The
controller operates in the SPI_REF_CLK clock domain. The input signals are synchronized
and analyzed in the SPI_REF_CLK domain.

Word Detection

The start of a word is detected in the SPI_REF_CLK clock domain.

• Detection when controller is enabled: If the controller is enabled (from a disabled
state) at a time when the slave select is active-Low, the controller ignores the data and
waits for the SCLK to be inactive (a word boundary) before capturing data. The
controller counts SCLK inactivity in the SPI_REF_CLK domain. A new word is assumed
when the SCLK idle count reaches the value programmed into the [Slave_Idle_count] bit
field.
Zynq UltraScale+ Device TRM 652
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=652

Chapter 23: SPI Controller
• Detection when slave select is asserted: With the controller enabled and slave select
is detected as High (inactive), the controller assumes the start of the word occurs on
the next active edge of SCLK after slave select transitions active-Low.

IMPORTANT: The start condition must be held active for at least four SPI_REF_CLK cycles to be
detected. If slave mode is enabled at a time when the master is very close to starting a data transfer,
there is a small probability that false synchronization will occur, causing packet corruption. This issue
is avoided by any of the following design selections.

• Ensure that the external master does not initiate data transfer until at least ten
SPI_REF_CLK cycles are complete after slave mode is enabled.

• Ensure that slave mode is enabled before the master is enabled.
• Ensure that the slave select input signal is not active when the slave is enabled.

MIO-EMIO Signals

MIO Signals

The SPI I/O interface signals available on the MIO interface are listed in Table 23-1. If the
I/O signals are not routed to a set of MIO pins (MIO_PIN_xx register programming), then the
EMIO interface input signals are enabled.

Table 23‐1: SPI MIO Pins

SPI Interface I/O
All Modes

Slave or
Master Mode Master Mode

Clock MOSI MISO SS 0 SS 1 SS 2

Signal Type I/O I/O I/O I/O O O
Index(1) 5 0 1 2 3 4
Controller Default
Input Value

0 0 0 1 - -

SPI 0, choice 1 0 5 4 3 2 1
SPI 0, choice 2 12 17 16 15 14 13
SPI 0, choice 3 26 31 30 29 28 27
SPI 0, choice 4 38 43 42 41 40 39
SPI 0, choice 5 52 57 56 55 54 53
SPI 0, choice 6 64 69 68 67 66 65
SPI 1, choice 1 6 11 10 9 8 7
SPI 1, choice 2 22 23 18 21 20 19
Zynq UltraScale+ Device TRM 653
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=653

Chapter 23: SPI Controller
EMIO Signals

The SPI I/O interface signals available on the EMIO interface are identified in Table 23-2.

SPI 1, choice 3 32 37 36 35 34 33
SPI 1, choice 4 44 49 48 47 46 45
SPI 1, choice 5 58 63 62 61 60 59
SPI 1, choice 6 70 75 74 73 72 71

Notes:
1. The index numbers are listed in Table 28-1.

Table 23‐1: SPI MIO Pins (Cont’d)

SPI Interface I/O
All Modes Slave or

Master Mode
Master Mode

Clock MOSI MISO SS 0 SS 1 SS 2

Table 23‐2: SPI EMIO Signals

SPI Interface Default Input
EMIO Signals

Input Name (I) Output Name (O) 3-state Name (O)

SPI 0 Clock 0 spi0_sclk_i spi0_sclk_o spi0_sclk_t
SPI 0 MOSI 0 spi0_s_i spi0_m_o spi0_mo_t
SPI 0 MISO 0 spi0_m_i spi0_s_o spi0_so_t
SPI 0 Slave Select 0 1 spi0_ss_i_n spi0_ss_o_n -
SPI 0 Slave Select 1 ~ - spi0_ss1_o_n -
SPI 0 Slave Select 2 ~ - spi0_ss2_o_n -
SPI 0 SS 3-state ~ - - spi0_ss_n_t
SPI 1 Clock 0 spi1_sclk_i spi1_sclk_o spi1_sclk_t
SPI 1 MOSI 0 spi1_s_i spi1_m_o spi1_mo_t
SPI 1 MISO 0 spi1_m_i spi1_s_o spi1_so_t
SPI 1 Slave Select 0 1 spi1_ss_i_n spi1_ss_o_n -
SPI 1 Slave Select 1 ~ - spi1_ss1_o_n -
SPI 1 Slave Select 2 ~ - spi1_ss2_o_n -
SPI 1 SS 3-state ~ - - spi1_ss_n_t
Zynq UltraScale+ Device TRM 654
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=654

Chapter 23: SPI Controller
SPI0-to-SPI1 Loopback Connection

The I/O signals of the two SPI controller in the PS are connected together when the
iou_slcr.MIO_LOOPBACK [SPI0_LOOP_SPI1] bit is set = 1. In this mode, the clock, slave
select, MISO, and MOSI signals from one controller are connected to the other controller’s
clock, slave, MISO, and MOSI signals, respectively.

Register Overview
Table 23-3 summarizes the SPI controller registers.

Table 23‐3: SPI Controller Registers

Type Register Name Description

Controller configuration Config Configuration
Controller enable Enable SPI controller enable
Interrupt ISR Interrupt status (RX full, not empty and TX

full, not full)
IER Interrupt enable
IDR Interrupt disable
IMR Interrupt mask/enable

FIFO thresholds TX_thres TXFIFO threshold level for not full
RX_thres RXFIFO Threshold level for not empty

Master mode Delay Slave select delays and separation counts in
master mode

FIFO data ports Tx_data Transmit data (TXFIFO)
Rx_data Receive data (RXFIFO)

Slave mode Slave_Idle_count Slave idle count detects inactive SCLK
Zynq UltraScale+ Device TRM 655
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=655

Chapter 23: SPI Controller
Programming Model
The flow diagram for the SPI programming sequence is shown in Figure 23-2.

X-Ref Target - Figure 23-2

Figure 23‐2: SPI Programming Sequence Flowchart

SPI

Perform abort and reset
(Refer to section on SPI Abort and Reset)

Disable controller
Clear RX FIFO, drop the data
Clear mode fault condition
Enable the mode fail generation

Perform a self test (Refer to section on SPI self-test)

If interrupt
based?Setup an interrupt system

Set options:
Set device as SPI master
Force slave select

Set the baud rate (prescaler) value

Assert slave select (flash chip) pin

Perform flash erase

Write data into the flash
(Refer to SPI Memory Write/Read - I/O addressing mode section)

Read back the data from flash.
(Refer to SPI Memory Read - Linear addressing mode section)

Verify data

Disable interrupt system

END

Yes

No

X15386-092916
Zynq UltraScale+ Device TRM 656
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=656

Chapter 23: SPI Controller
The programming steps to perform various operations on the SPI controller are listed in
Table 23-4 through Table 23-6.

Table 23‐4: SPI Abort and Reset

Task Register Register Field
Register
Offset Bits Note

Disable SPI device Enable SPI_EN 0x14 0 0

Check RX FIFO empty ISR RX_FIFO_not_empty 0x04 4 Read
Read RX buffer Rx_data RX_FIFO_data 0x20 31:0 Read
Clear mode fault ISR MODE_FAIL 0x04 1 1

Enable mode fail generation Config Modefail_gen_en 0x00 17 1

Table 23‐5: SPI Self Test

Task Register Register Field
Register
Offset Bits Note

Abort and reset Refer to SPI Abort and Reset.
Check SPI registers
default state Config Modefail_gen_en 0x00 17 Read

TX FIFO reset state check ISR TX_FIFO_not_full 0x04 2 Read operation

Writing known values Delay d_nss, d_btwn,
d_after, d_int 0x18

31:24, 23:16,
15:8, and 7:0

Register write
5AA5_AA55h

Read back delay register
and verify Delay d_nss, d_btwn,

d_after, d_int 0x18
31:24, 23:16,
15:8, and 7:0 Read operation

Reset delay register Delay d_nss, d_btwn,
d_after, d_int 0x18

31:24, 23:16,
15:8, and 7:0 Register write 0h

Abort and reset Refer to SPI Abort and Reset.

Table 23‐6: SPI Setup Interrupt System

Task

Initialize GIC.
Register GIC interrupt handler.
Register SPI interrupt handler with the GIC.
Enable GIC.
Enable processor interrupts.
Zynq UltraScale+ Device TRM 657
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=657

Chapter 23: SPI Controller
Table 23‐7: SPI Set Options

Task Register Register Field
Register
Offset Bits Note

Selecting Options

Select master I/O mode Config MODE_SEL 0x00 0 1

Select clock polarity,
CPOL Config CLK_POL 0x00 1 1

Select clock phase, CPHA Config CLK_PH 0x00 2 1

Select external
multiplexer mode Config PERI_SEL 0x00 9 0

Select manual CS mode Config Manual_CS 0x00 14 1

Select manual start Config Man_start_en 0x00 15 1

Read CPOL and CPHA
status Config CLK_POL, CLK_PH 0x00 1, 2 Read

If CPOL and CPHA status is different from requested

Disable the controller Enable SPI_EN 0x14 0 0

End if

Write the selected
options Config

MODE_SEL,
CLK_POL,
CLK_PH,PERI_SEL,
CS,Manual_CS
Man_start_en

0x00
0, 1, 2, 9, 14,

and 15

If CPOL and CPHA status is different from requested

Enable the device Enable SPI_EN 0x14 0 1

End if

Notes:
1. See Answer Record 73588 for more information.
Zynq UltraScale+ Device TRM 658
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com

http://xkb/Pages/73/73588.aspx
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=658

Chapter 23: SPI Controller
Table 23‐8: SPI Flash Erase

Task

If chip erase needs to be performed, follow these next steps.

Prepare the write buffer with a write enable command (0x06).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Prepare the write buffer with the read status command (0x05).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Wait until read status becomes 0x01.
Prepare the write buffer with a write status command (0x01).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Prepare the write buffer with the read status command (0x05).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Wait until read status becomes 0x01.
Prepare the write buffer with a write enable command (0x06).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Prepare the write buffer with the read status command (0x05).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Prepare the write buffer with a chip erase command (0x60).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Prepare the write buffer with the read status command (0x05).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Wait until read status becomes 0x01.

Table 23‐9: SPI Flash Write

Task

If chip erase needs to be performed, follow these next steps.

Prepare the write buffer with a write enable command (0x06).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Prepare the write buffer with a write command (0x02), address and data pointers.
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Prepare the write buffer with the read status command (0x05).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Wait until the read status becomes 0x01.
Prepare the write buffer with the write disable command (0x04).
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Wait until the read status becomes 0x01.
Perform the previous steps until all bytes are transferred.
Zynq UltraScale+ Device TRM 659
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=659

Chapter 23: SPI Controller
Table 23‐10: SPI Flash Read

Task

If flash read needs to be performed, follow these next steps.

Fill the write buffer with a read command (0x03) and an address to be read.
Perform the transfer (refer to SPI Memory Write/Read Command Issue).
Wait until all bytes are received.

Table 23‐11: SPI Set Slave Select

Task Register Register Field Register Offset Bits Note

Read the status of
Decode slave select Config PERI_SEL 0x00 9 Read operation

If decode slave select is set

Set the slave select value Config CS 0x00 13:10 001

Else

Clear the slave select
value Config CS 0x00 13:10 0

Table 23‐12: SPI Memory Write/Read Command Issue

Task Register Register Field
Register
Offset

Bits Note

If manual slave select is configured

Initialize slave select
value (0, 1, 2) Config CS 0x00 13:10 0

End if

Enable the device Enable SPI_EN 0x14 0 1

Clear all the interrupts ISR
RX_OVERFLOW,
MODE_FAIL,
RX_FIFO_not_empty,
RX_FIFO_full

0x04
0, 1, 4,
and 5

Register write
43h

Send data TXD TXD 0x1C 31:0 data
Perform the previous steps until all of the bytes are transferred

Enable interrupts IER
RX_OVERFLOW,
MODE_FAIL,
TX_FIFO_not_full,
RX_FIFO_full

0x08 0,1,2 and 5 Register write
27h

Check if master mode
enabled Config MODE_SEL 0x00 0 Read operation

Check if manual start
option enabled Config Man_start_en 0x00 15 Read operation

If both the previous options are set
Zynq UltraScale+ Device TRM 660
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=660

Chapter 23: SPI Controller
Start transfer manually Config Man_start_com 0x00 16 1

Wait until transfer is over

Table 23‐12: SPI Memory Write/Read Command Issue (Cont’d)

Task Register Register Field Register
Offset

Bits Note

Table 23‐13: SPI Interrupt Handler

Task Register Register Field Register
Offset

Bits Note

Read interrupt status ISR All 0x04 31:0 Read operation

Clear interrupts ISR
RX_OVERFLOW,
MODE_FAIL,
TX_FIFO_underflow

0x04 0, 1, and 6 Register write
43h

Disable TX FIFO full
interrupt Intr_dis_reg TX_FIFO_full 0x0C 3 1

If a mode fault interrupt occurs

Perform abort (refer to SPI Abort and Reset)
Return from interrupt
If a TX FIFO full interrupt occurs

Receive data Rx_data RXD 0x20 31:0 Read operation
Perform previous step until all bytes are received.
Fill TX FIFO Tx_data TXD 0x1C 31:0 Data
Perform previous steps until all remaining bytes are transferred.
If all bytes transferred (if 1)

Disable interrupts IDR
RX_OVERFLOW,
MODE_FAIL,
TX_FIFO_not_full,
RX_FIFO_full

0x0C
0, 1, 2,
and 5

Register write
27h

If manual slave select is configured (if 2)

Disable slave manually Config CS 0x00
10, 11, 12,

and 13 1111b

End if (if 2)

Disable device Enable SPI_EN 0x14 0 0

If 1 over

Else bytes remain to be transferred

Enable TX FIFO not full
interrupt IER TX_FIFO_not_full 0x08 2 1

Check if master mode
enabled Config MODE_SEL 0x00 0 Read operation

Check if manual start
option enabled Config Man_start_en 0x00 15 Read operation
Zynq UltraScale+ Device TRM 661
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=661

Chapter 23: SPI Controller
If both the previous options are set

Start transfer manually Config Man_start_com 0x00 16 1

Else over

End if

If RX overflow interrupt occurs

If manual slave select is configured

Disable slave manually Config CS 0x00
10, 11, 12,

and 13 1111b

End if

RX overflow handling is over

If a TX underflow interrupt occurs

If a manual slave select is configured

Disable slave manually Config CS 0x00
10, 11, 12,

and 13 1111b

End if

TX underflow handling is over

Return from interrupt

Table 23‐13: SPI Interrupt Handler (Cont’d)

Task Register Register Field Register
Offset

Bits Note
Zynq UltraScale+ Device TRM 662
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=662

Chapter 24

Quad-SPI Controllers

Introduction
The IOP has two Quad-SPI controllers with different functional features and I/O interfacing
capabilities. They share the same APB slave interface and I/O signals to the multiplexed I/O
(MIO) pins. Only one controller can be enabled at a time. The Quad-SPI controllers access
multi-bit flash memory devices for high throughput and low pin-count applications.

The legacy Quad-SPI controller (LQSPI) provides a linear addressable memory space on the
Quad-SPI AXI slave interface. It supports execute-in-place (XIP) for booting and application
software for some configurations. The generic Quad-SPI controller (GQSPI) provides I/O,
DMA, and SPI mode interfacing. Boot and XIP are not supported in the GQSPI. The I/O
interface configurations are summarized in Table 24-1 for the legacy and generic Quad-SPI
controllers. See Answer Record 65463 for Xilinx tested and supported QSPI devices.

Only one controller can be selected at a time. Switching between controllers is explained in
System Control.

Table 24‐1: Quad-SPI I/O Configurations

I/O Type
Device
Count

Slave
Selects

Data
Signals Figure Controller Type

Boot(1)

(GQSPI)
XIP(2)

(LQSPI)

Single SS 4-bit 1 1 4 Figure 24-5 LQSPI and GQSPI Yes Yes
Dual SS stacked 2 2 4 Figure 24-7 LQSPI and GQSPI Yes(3) Yes(3)

Dual SS parallel(4) 2 2 8 Figure 24-6 LQSPI and GQSPI Yes No
Notes:
1. The CSU BootROM uses the GQSPI controller for system boot. The Width Detection parameter in the boot header selects

between 4- and 8-bit I/O. If the XIP FSBL is selected (FSBL length = 0 in the boot header), the BootROM switches to the LQSPI
controller before handing-off the system to the FSBL code.

2. XIP requires linear addressing and is only supported with the LQSPI controller.
3. The dual SS stacked configuration supports boot and XIP with the image only in the lower device.
4. The data ordering used by the GQSPI and LQSPI controllers are different for the dual SS parallel configuration 8-bit I/O.
Zynq UltraScale+ Device TRM 663
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/65463.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=663

Chapter 24: Quad-SPI Controllers
Legacy Quad-SPI Controller Mode

The legacy Quad-SPI controller operates only in linear address modes. The legacy Quad-SPI
controller can interface to one or two flash devices. To minimize pin count, two devices can
be connected in parallel for 8-bit performance, or in a stacked, 4-bit arrangement.

Linear Address Mode

The linear address mode uses a subset of device operations to eliminate the software
overhead to read the flash memory. Linear address mode issues commands to the flash
memory and controls the flow of data from the flash memory bus to the AXI interface. The
controller responds to memory requests on the AXI interface as if the flash memory were a
ROM memory.

Generic Quad-SPI Controller Modes

The generic Quad-SPI controller meets the requirements for generic low-level access by the
software. The controller supports generic and future command sequences and future
NOR/NAND flash devices. Due to the generic nature of the Quad-SPI controller, software
can generate any command sequence in any mode. The Quad-SPI controller supports all
features in SPI, dual-SPI, and Quad-SPI modes. The generic Quad-SPI controller operates in
three modes, the I/O, DMA, and SPI modes.

The generic Quad-SPI controller can interface to one or two flash devices. To minimize pin
count, two devices can be connected in parallel for 8-bit performance, or in a stacked, 4-bit
arrangement.

I/O Mode

In generic I/O mode, the software interacts closely with the flash device protocol. The
software writes the flash commands in the generic FIFO and data into the TXFIFO. The
software reads the RXD register that contains the data received from the flash device. The
generic Quad-SPI controller removes the software overhead that occurs when filling the
TXFIFO in I/O mode.

DMA Mode

In generic DMA mode, the internal DMA module transfers data from the flash device to the
system memory. This mode avoids using the processor for reading the flash data
beat-by-beat and removes the software overhead that occurs when the TXFIFO is filled with
data read from the flash device.

SPI Mode

In SPI mode, the generic Quad-SPI controller can be used as a standard SPI controller.
Zynq UltraScale+ Device TRM 664
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=664

Chapter 24: Quad-SPI Controllers
Architecture Overview

Figure 24-1 shows the dual Quad-SPI controller. The controller consists of a legacy linear
Quad-SPI controller and the generic Quad-SPI controller. Register control (generic_qspi_sel)
set to 1 selects the generic Quad-SPI controller. The shaded units in Figure 24-1 are used by
both the legacy and generic controllers. The receive capture logic with delay line is shared
between both the controllers.
X-Ref Target - Figure 24-1

Figure 24‐1: Quad-SPI Dual Controllers Block Diagram

DMA

AXI Master
Write I/F

AXI Slave
Read I/F

Generic
Quad-SPI
Controller

APB Slave
I/F

Legacy Linear
Quad-SPI
Controller

RX Capture
and

Delay Line

DIN

DOUT

OEN

DIN

DOUT

OEN

I/O
Logic

DOUT

DOUT

OEN

LQSPI_CFG [LQ_MODE]

X15432-103117
Zynq UltraScale+ Device TRM 665
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=665

Chapter 24: Quad-SPI Controllers
System Control
The selected controller must be inactive before switching to the other controller, changing
clock rates, or reconfiguring the I/O protocol.

Controller Selection

One controller is selected at a time using the LQSPI_CFG [LQ_MODE] bit. The generic
controller is selected by setting the bit = 0 and the legacy linear controller is selected by
setting the bit = 1. The active controller must be quiescent before switching from one
controller to the other.

Legacy Controller to Generic Quad-SPI Controller

1. Wait until all pending transfers from the legacy controller are completed.
2. Disable the legacy linear controller. Set LQSPI_En [SPI_EN] = 0.
3. Configure the generic Quad-SPI controller.
4. Select the generic controller. Set LQSPI_CFG [LQ_MODE] = 0.
5. Enable the generic controller. Set GQSPI_En [GQSPI_EN] =1.
6. Use the generic controller.

Generic Quad-SPI Controller to Legacy Controller

1. Wait until all pending transfers from the generic controller are completed.
2. Disable the generic controller. Set GQSPI_En [GQSPI_EN] = 0.
3. Configure the legacy linear Quad-SPI controller.
4. Select the legacy linear Quad-SPI controller. Set LQSPI_CFG [LQ_MODE] = 1.
5. Enable the legacy linear controller. Set LQSPI_En [SPI_EN] = 1.
6. Use the legacy linear controller.

Clock Polarity, Phase, and Baud Rate Reconfiguration

To reconfigure the clock polarity, phase, or baud-rate divisor values, the controller must be
disabled before configuration.
Zynq UltraScale+ Device TRM 666
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=666

Chapter 24: Quad-SPI Controllers
Dynamic Mode and Baud Rate Change Limitations

The generic Quad-SPI controller requires a reset (CRL_APB.RST_LPD_IOU2[qspi_reset]) to
simultaneously switch both the baud-rate divisor and the dual-parallel mode. For example,
when operating in the single or stacked mode and accessing the lower flash with a baud
rate of 4 and switching to the dual-parallel or stacked dual-parallel mode with a baud rate
of 2, a reset is required.

Reference Clock Change Limitations

The Quad-SPI controller requires a reset (CRL_APB.RST_LPD_IOU2 [qspi_reset]) when the
reference clock is changed.

Clocks and Resets

The Quad-SPI controller core and I/O interface are driven by the reference clock,
QSPI_REF_CLK. The controller's master and slave AXI interfaces are driven by the
IOU_SWITCH_CLK, and the APB slave programming interface is clocked by the
LPD_LSBUS_CLK clock. All of these clocks are generated by the PS clock subsystem. These
three clocks run asynchronous to each other.

See the Interconnect Clock Generators section in Chapter 37, PS Clock Subsystem for more
information.

Reference Clock and Quad-SPI Interface Clocks

The reference clock is generated by the PS clock subsystem using the circuit shown in
Figure 37-4. The input clock source can be selected based on the crl_apb.QSPI_REF_CTRL
[srcsel] bits, where the source can be from the RPLL, IOPLL, or DPLL. The
crl_apb.QSPI_REF_CTRL [divisor0] register selects the 6-bit programmable divider 0. The
crl_apb.QSPI_REF_CTRL [divisor1] register selects the 6-bit programmable divider 1. The
crl_apb.QSPI_REF_CTRL [clkact] bit selects whether the clock should be gated or enabled.

To generate the Quad-SPI interface clock, the reference clock is divided down by 2, 4, 8, 16,
32, 64, 128, or 256 using the qspi.Config [BAUD_RATE_DIV] bit field. See Answer Record
69831 for how to generate the QSPI interface clock.

Quad-SPI Feedback Clock

The Quad SPI interface has an optional feedback clock pin named clk_for_lpbk. The
clk_for_lpbk pin is not used for loopback mode. The internal clock is used for loopback
mode. The loopback mode is used with the high-speed Quad SPI timing mode, where the
memory interface clock needs to be greater than 40 MHz. The feedback signal is received
from the internal input from the I/O. So, MIO pin 6 should be programmed and allowed to
toggle freely.
Zynq UltraScale+ Device TRM 667
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/69831.html
https://www.xilinx.com/support/answers/69831.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=667

Chapter 24: Quad-SPI Controllers
Based on the tap delay value programmed, the internal clock is delayed and used for
capturing the data. See Quad-SPI Tap Delay Values for programming the tap values for
different operation frequencies.This pin (MIO 6) is not driven from outside and should be
left floating in QSPI clock feedback mode. In QSPI non-clock feedback mode, the pin is not
used by the QSPI, so it can be used as a peripheral I/O (GPIO, CAN, I2C, and so on).

Resets

The controller reset bits are generated by the PS. For more information, see Chapter 38,
Reset System.

Generic Quad-SPI Controller

Controller Features

• Low-level (generic) access
• 3, 4, 6,…n-byte addresses
• SPI NAND flash devices
• Command queuing (generic FIFO depth is 32)
• 4- or 8-bit interface
• Two chip-select lines
• 4-bit bidirectional I/O signals
• x1, x2, and x4 read/write
• 44-bit address space on AXI in DMA mode
• Byte stripe when two data buses are connected
• Single system interrupt for controller/DMA interrupt status (IRQ 47)
• Single transfer rate (STR) mode
• 64-word RXFIFO, 64-word TXFIFO
Zynq UltraScale+ Device TRM 668
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=668

Chapter 24: Quad-SPI Controllers
Block Diagram

Figure 24-2 shows a block diagram of the generic Quad-SPI controller.

The following interfaces are used by the generic Quad-SPI controller.

• The APB slave read/write interface is used to read/write the registers and also to write
the TX FIFO and generic FIFO data.

• The AXI master write interface is used to issue DMA write requests on the AXI interface.
The data read from flash memory is written into the RXFIFO. The data from the RXFIFO
is transferred into external memory (for example, DDR) using this interface. The AXI
address bus is 44 bits wide and the data is 32 bits wide.

X-Ref Target - Figure 24-2

Figure 24‐2: Generic Quad-SPI Controller Block Diagram

AXI Master
Write I/F

RX Capture
and

Delay Line

I/O
Logic

DIN

DOUT

Generic Quad-SPI Controller

DMA
(AXI Master)

APB Slave I/F

APB
Registers

Generic
FIFO

20 x 32

RX
FIFO

Command
Generator

TX
FIFO

Quad
SPI
RX

Quad-SPI TX

OEN

X15433-051618
Zynq UltraScale+ Device TRM 669
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=669

Chapter 24: Quad-SPI Controllers
DMA–AXI Master

The DMA unit generates AXI requests for the RXFIFO. It is a master on the AXI interface. The
DMA module uses the AXI write channel to initiate AXI write requests that write RXFIFO data
into the external memory (for example, DDR). This 32-bit AXI master interface allows access
to the PS slaves via the top-level interconnect. An APB interface is provided for control and
monitoring of the DMA write-channel module's functions. There is a single interrupt output
that is sent to the DMA logic where it is combined with other controller interrupt sources to
become a single system interrupt. The DMA controller does not support unaligned data
transfers. All the data transfers are word aligned.

The DMA memory transactions can be routed to the CCI for cache coherency with the APU
or bypass it. The route is selected by an iou_slcr.IOU_INTERCONNECT_ROUTE [QSPI] bit.

SPI Interface Logic

The SPI interface logic sends the data and commands to the SPI electrical interface. The SPI
interface has two sets of chip select, clock (SCLK), and data ports. Depending on the data
bus select of the generic FIFO, both data buses/both SCLK signals or a single data
bus/single SCLK is activated.

Register Set

The register set contains the control, status, and interrupt registers. These registers are
memory mapped with an APB interface.

APB Interface

The 32-bit APB interface accesses the generic FIFO, TXFIFO, RXFIFO, and also the register
set.

Command Generator

The SPI Command generator will generate the SPI command after reading the command
FIFO and TX Data FIFOs. The command generator module decodes each field of the
command FIFO and accordingly generates the relevant SPI request.

RXFIFO

The RXFIFO is used to hold the receive data. The data received from the SPI interface is
written into the RXFIFO. When during data transfer the RXFIFO is full, the SCLK is not
toggled (the CS remains asserted) and no Quad-SPI data is lost. The Quad-SPI RX block
ensures that the RXFIFO does not overflow.
Zynq UltraScale+ Device TRM 670
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=670

Chapter 24: Quad-SPI Controllers
Generic Command FIFO—20-bit Width and 32-bit Depth

The generic FIFO contains information related to the SPI requests. The FIFO is 32 bits deep
and 20 bits wide. Details of each field are described in Table 24-2 and Table 24-3. Because
the generic FIFO is 32 bits deep, it can hold more than one SPI/flash request. The number
of SPI commands that can be issued to the SPI device per request depends on the sequence
of SPI device commands needed for that request. The generic FIFO is accessed by the APB
interface. Each entry in the generic FIFO requires one APB write request.

Table 24‐2: Generic FIFO Fields

Reserved Poll Stripe Receive Transmit
Databus

Select cs_upper cs_lower
SPI

Mode Exponent
data
_xfer

immediate
_data

31:20 19 18 17 16 15:14 13 12 11:10 9 8 7:0

Table 24‐3: Generic FIFO Details

Field Bits Description

Reserved 31:20 Reserved.

Poll 19

This bit is applicable when receive is enabled.
1'b0: Once.
1'b1: Poll.
When set to 1'b1, the generic Quad-SPI controller keeps reading the data until it
matches the received data with the POLL_DATA field data from the poll register,
depending on the configured masking in poll register.

Stripe 18

1'b0: Do not Stripe. Mirror the same data on the lower and upper data buses.
1'b1: Stripe data across the lower and upper data buses.
Only byte stripe is supported.
The lower data bus uses even bytes, i.e., byte 0, 2, 4 …, of a data word. The upper data
bus uses odd bytes, i.e., byte 1, 3, 5, …, of a data word.
Stripe is applicable when the data bus select is 2'b11, and both upper and lower data
buses are active.
Stripe = 1'b0 is not applicable when receive = 1'b1.

Receive 17
1'b0: Discard RX data.
1'b1: Capture/receive data.
When [receive, transmit, data_xfer] = [0,0,1], it represents a dummy cycle.

Transmit 16
1'b0: Write dummies/Zero pump
1'b1: Transmit
When [receive, transmit, data_xfer] = [0,0,1], it represents a dummy cycle.
Zynq UltraScale+ Device TRM 671
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=671

Chapter 24: Quad-SPI Controllers
Data bus select 15:14

2'b00: No bus.
2'b01: Lower bus select.
2'b10: Upper bus select.
2'b11: Both lower and upper buses.
The number of data bus bits depends on the SPI mode.
SPI mode: the data bus is 1 bit wide.
Dual-SPI mode: the data bus is 2 bits wide.
Quad-SPI mode: the data bus is 4 bits wide.
The lower clock (QSPI0_SCLK sclk_out) is driven when the lower bus is selected. The
upper clock (QSPI1_SCLK) is driven when the upper bus is selected.

cs_upper 13(1) 1'b0: Do not drive the upper chip select.
1'b1: Drive the upper chip select.

cs_lower 12(1) 1'b0: Do not drive the lower chip select.
1'b1: Drive the lower chip select.

SPI mode 11:10

2'b00: Reserved.
2'b01: SPI.
2'b10: Dual-SPI.
2'b11: Quad-SPI.

Exponent 9

0: Absolute.
1: Exponent.
When data_xfer = 1, this field is used.
When data_xfer = 1, and because the immediate_data is 8 bits, the maximum data to
be transmitted/received is 28 = 256 bits. To transmit/receive more than 256 bits of
data, use the exponent bit.
For example, when reading 1G bytes from the SPI flash, the generic FIFO fields uses
the following contents.

data_xfer = 1'b1
exponent = 1'b1
immediate_data = 8'h1E (decimal 30).

The number of data bytes = 230 = 1G bytes.
Notes:
1. When both bits {13:12} are set to 1, it indicates the configuration for the dual parallel mode. Both of these bits are set by the

driver.

Table 24‐3: Generic FIFO Details (Cont’d)

Field Bits Description
Zynq UltraScale+ Device TRM 672
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=672

Chapter 24: Quad-SPI Controllers
Generic Quad-SPI Commands

Table 24-4 lists the fields used for programming the generic FIFO for different SPI
commands when the generic Quad-SPI controller is used for SPI mode commands and only
the lower data bus is used. When needed, the other fields (poll, stripe, and exponent) can
be programmed.

data_xfer 8 1'b0: The immediate_data is used as immediate.
1'b1: The immediate_data is used as the number of data bytes to be sent/received.

immediate_data 7:0

When data_xfer = 1'b0, and transmit is a non zero, these bits are sent on the SPI
interface.
When data_xfer = 1'b1, and transmit is non zero, this field specifies the number of
data bytes sent from the TXFIFO.
When data_xfer = 1'b1, and receive is non zero, this field specifies the number of
data bytes to read into the RXFIFO.
The maximum number of data bytes allowed are 228 in DMA and PIO mode.
When data_xfer = 1'b1, RX = 1'b0 and TX = 1'b0, this field specifies the number of
dummy SCLK cycles sent on the SPI interface.
When data_xfer = 1'b0, RX = 1'b0, data bus select is non zero, TX = 1'b0, and
cs_lower/cs_upper is non zero, this field specifies the CS setup time using the number
of reference clock cycles.
When data_xfer = 1'b0, RX = 1'b0, data bus select is non zero, TX = 1'b0, and
cs_lower/cs_upper is zero, this field specifies the CS hold time using the number of
reference clock cycles.

Table 24‐3: Generic FIFO Details (Cont’d)

Field Bits Description
Zynq UltraScale+ Device TRM 673
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=673

Chapter 24: Quad-SPI Controllers
Table 24‐4: Generic Quad-SPI Controller: SPI Mode Commands

SPI
Command

Receive Transmit Data Bus
Select

cs_upper cs_lower SPI
Mode

data
_xfer

immediate
_data

Description

CS assert 1'b0 1'b0 2'b01 1'b0 1'b1 2'b01 1'b0
8'h04

(CS setup
Time)

Assert lower chip
select (CS).
The immediate_data
field specifies the
value of the CS setup
time (tCSS). Because
the value is 8’h04,
the CS setup time is
four QSPI_REF_CLK
cycles.
In SPI mode, the
receive and transmit
are not considered.
The data bus select
and cs_upper and
cs_lower should be
valid values.

read 1'b1 1'b0 2'b01 1'b0 1'b1 2'b01 1'b1
8'h34

(52 read
data bytes)

Read lower data bus.
The immediate_data
field specifies the
number of data bytes
read. Because the
value is 8’h34, the
number of data bytes
received is 52 bytes.

write
immediate 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 8'h64

Write lower data bus
immediate.
The immediate_data
field specifies the
data to be written.
Because the value is
8'h64, the data sent
on the SPI is 8'h64.

write 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b1
8'h64

(100 write
data bytes)

Write lower data bus.
The immediate_data
field specifies the
number of write data
bytes. Because the
value is 8'h64, the
number of data bytes
written is 100 bytes.
Zynq UltraScale+ Device TRM 674
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=674

Chapter 24: Quad-SPI Controllers
read_write
immediate 1'b1 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 8'h64

Read and write lower
data bus immediate.
The immediate_data
field specifies the
data to be written.
Because the value is
8'h64, the data sent
on the SPI is 8'h64.
When receive is set to
1, one data byte is
received and stored
in the RXFIFO.

read_write 1'b1 1'b1 2'b01 1'b0 1'b1 2'b01 1'b1

8'h64
(100 read
and write

data bytes)

The read and write
lower data bus.
The immediate_data
field specifies the
number of write and
read data bytes.
Because the value is
8'h64, the number
of data bytes received
is 100 bytes and
transmitted is also
100 bytes.

Table 24‐4: Generic Quad-SPI Controller: SPI Mode Commands (Cont’d)

SPI
Command

Receive Transmit Data Bus
Select

cs_upper cs_lower SPI
Mode

data
_xfer

immediate
_data

Description
Zynq UltraScale+ Device TRM 675
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=675

Chapter 24: Quad-SPI Controllers
dummy 1'b0 1'b0 2'b01 1'b0 1'b1 2'b01 1'b1

8'h06
(six dummy

SCLK
cycles)

Inserts dummy cycles
on lower data bus.
The immediate_data
field specifies the
number of dummy
SCLK cycles. Because
the value is 8'h06,
the number of
dummy cycles is six.
Data bus select,
data_xfer and
cs_upper, and
cs_lower should be
valid values. The data
bus select value
during the dummy
phase should be
same as the data
phase.

CS
deassert 1'b0 1'b0 2'b01 1'b0 1'b0 2'b01 1'b0 8'h06

Deassert the lower
chip select.
The immediate_data
field specifies the
value of the chip
select hold time
(tCSH). Because the
value is 8'h06, the
chip select hold time
is five reference clock
cycles (one less than
the specified value
(6-1 = 5)). SPI mode,
receive, and transmit
are not considered.
The data bus select
should be valid. The
minimum
immediate_data field
should be four.

Table 24‐4: Generic Quad-SPI Controller: SPI Mode Commands (Cont’d)

SPI
Command

Receive Transmit Data Bus
Select

cs_upper cs_lower SPI
Mode

data
_xfer

immediate
_data

Description
Zynq UltraScale+ Device TRM 676
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=676

Chapter 24: Quad-SPI Controllers
Generic Controller I/O Wiring Diagrams

There are four possible I/O wiring diagrams for the generic controller as listed in Table 24-1:

• Single slave select, 4-bit (Figure 24-5).
• Dual slave select, stacked (Figure 24-7).
• Dual slave select, parallel (Figure 24-6).

Legacy Quad-SPI Controller
The legacy Quad-SPI controller (LQSPI) provides a linear addressable memory space on the
AXI slave interface.

Features

• 32-bit AXI interface for linear address mode transfers.
• Programmable bus protocol for flash memories from Micron and Spansion.
• Scalable performance: 1x, 2x, 4x, and 8x I/O widths.
• Flexible I/O:

° Single slave select 4-bit I/O flash interface mode.

° Dual slave select 8-bit parallel I/O flash interface mode.

° Dual slave select 4-bit stacked I/O flash interface mode.
• Supports up to 512 MB addresses.
• 63-word RXFIFO, 63-word TXFIFO.
• Linear address mode (executable read accesses):

° Memory reads and writes are interpreted by the controller.

° AXI port buffers up to four read requests.

° AXI incrementing and wrapping address functions.
• Auto filling of TXFIFO with zeros.
• Single transfer rate (STR) mode.
Zynq UltraScale+ Device TRM 677
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=677

Chapter 24: Quad-SPI Controllers
System-level View

The Quad-SPI flash controller is part of the I/O peripheral (IOP) and connects to external SPI
flash memory through the multiplexed I/O (MIO) as shown in Figure 24-3. The controller
supports one or two memories.

X-Ref Target - Figure 24-3

Figure 24‐3: Legacy Quad-SPI Controller System-level View

Control
and Status
Registers

MIO

Quad-SPI
Device

Quad-SPI
Device

Quad-SPI
Device

Quad-SPI
Device

Quad-SPI
Device

Device
Boundary

MIO
Pins

.
.
.

Single Slave Select 4-bit I/O

Dual Slave Select 8-bit Parallel I/O

Dual Slave Select 4-bit Stacked I/O

OR

OR

QSPI 1
Slave Select

QSPI 0
Slave Select

QSPI 1
Slave Select

QSPI 0
Slave Select

QSPI 0
Slave Select

Slave
Port

APB

IRQ ID# 47

AXI Slave for
Flash Reads

QSPI_REF_CLK

Interconnect

LPD_LSBUS_CLK

Legacy
Quad-SPI
Controller

X17786-120518
Zynq UltraScale+ Device TRM 678
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=678

Chapter 24: Quad-SPI Controllers
Address Map and Device Matching For Linear Address Mode

When a single device is used, the address map for direct memory reads starts from
0xC000_0000 and increases to a maximum of 0xCFFF_FFFF (256 MB). The address map
for a two-device system depends on the memory device and I/O configuration. In a
two-device system, the Quad-SPI devices must be from the same vendor and have the same
protocol.

The 8-bit parallel I/O configuration also requires that the devices have the same capacity.
The address map for the parallel I/O configuration starts from 0xC000_0000 and increases
to the address of the combined memory capacities, up to a maximum of 0xDFFF_FFFF
(512 MB).

In the 4-bit stacked I/O configuration, the devices can have different capacities, but must
have the same protocol. When two different size devices used a 2048 Mb device on the
lower address. In this mode, the Quad-SPI 0 device starts at 0xC000_0000 and increases to
a maximum of 0xCFFF_FFFF (256 MB). The Quad-SPI 1 device starts at 0xD000_0000 and
increases to a maximum of 0xDFFF_FFFF (another 256 MB). If the first device is smaller
than 256 MB, then there will be a memory space hole between the two devices.

Figure 24-4 shows a block diagram of a linear address mode.
X-Ref Target - Figure 24-4

Figure 24‐4: Legacy Linear Controller Block Diagram

AXI Slave
Interface

Command
FIFO

AXI-to-SPI
Command
Converter

APB Slave
Interface

SPI-to-AXI
Data

Formatter

Configuration, Control,
and Status
Registers

TX FIFO Serializer

MIO

Control

RX FIFO De-Serializer

Loopback
Clock

Control

X17787-051618
Zynq UltraScale+ Device TRM 679
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=679

Chapter 24: Quad-SPI Controllers
Legacy Quad-SPI Operating Restrictions

When a single device is used, it must be connected to QSPI 0. When two devices are used,
both devices must be identical (same vendor and same protocol sequencing).

Legacy Quad-SPI Functional Description

The legacy Quad-SPI flash controller can only operate in linear address mode. For reads, the
controller supports single, dual, and quad modes in linear address mode.

Legacy Quad-SPI Linear Address Mode

The controller has a 32-bit AXI slave interface to support linear address mapping for read
operations. When a master issues an AXI read command through this port, the Quad-SPI
controller generates commands to load the corresponding memory data and send it back
through the AXI interface.

In linear address mode, the flash memory subsystem is similar to a typical read-only
memory with an AXI interface that supports a command pipeline depth of four. By reducing
the amount of software overhead, the linear address mode improves the overall throughput
of the read memory. From a software perspective, there is no perceived difference between
accessing the legacy Quad-SPI memory subsystem and that of other ROMs, except for the
potentially longer latency.

A transfer to linear address mode occurs when the qspi.LQSPl_CFG [LQ_MODE] bit is set
to 1. Before entering into linear address mode, both the TXFIFO and RXFIFO must be empty.
Once the qspi.LQSPI_CFG [LQ_MODE] bit is set, the FIFOs automatically control the legacy
Quad-SPI module and I/O access to TXD and RXD are undefined.

In linear address mode, the CS pins are automatically controlled by the QSPI controller.
Before a transition into legacy Quad-SPI linear address mode, both of the
qspi.Config [Man_start_en] and qspi.Config[PCS] must be zero.

A simplified block diagram of the controller showing the linear and I/O portions is shown in
Figure 24-4.

Linear Address Mode AXI Interface Operation

Only AXI read commands are supported by the linear address mode. All valid write
addresses and write data are acknowledged immediately but are ignored, that is, no
corresponding programming (write) of the flash memory is carried out. All AXI writes
generate an external AXI slave error (SLVERR) on the write response channel.

Both increment or wrapping address burst reads are supported. Fixed address bursts are
not supported and cause an SLVERR response. Therefore, the only recognized ARBURST[1:0]
value is either 2'b01 or 2'b10. All read accesses must be word-aligned and the data width
must be 32 bits (no narrow burst transfers are allowed).
Zynq UltraScale+ Device TRM 680
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=680

Chapter 24: Quad-SPI Controllers
Table 24-5 lists the read address channel signals from a master that are ignored by the
interface.

The AXI slave interface provides a read acceptance capability of four to accept up to four
outstanding AXI read commands.

Legacy Quad-SPI AXI Read Command Processing

AXI read-burst commands are translated into SPI flash read instructions that are sent to the
Quad-SPI controller TXFIFO. The controller transmit logic retrieves the read instruction from
the TXFIFO and passes them to the SPI flash memory device according to the SPI protocol.

A 64-deep FIFO is used to provide read data buffering to hold up to four burst of 16 data.
Since the RXFIFO starts receiving data as soon as the chip-select signal is active, the linear
address module removes any incoming data that corresponds to the instruction code, the
address, and the dummy cycles, and responses to the AXI read instruction with valid data.

Legacy Quad-SPI AXI Interface Configuration and Read Modes

AXI read-burst transfers are translated into SPI flash read instructions that are sent to the
Quad-SPI controller TXFIFO. The controller transmit logic retrieves the read instructions
from the TXFIFO and passes them to the SPI flash memory device according to the SPI
protocol.

The SPI read command is used in linear address mode by writing to the
qspi.LQSPI_CFG [INST_CODE]. The supported read command codes and the recommended
configuration register settings (qspi.LQSPI_CFG) are listed in Table 24-6. The optimal
register values for Quad-SPI boot performance using a 33 MHz PS_REF_CLK are shown in
Table 24-6. These Quad-SPI registers can be programmed in non-secure mode using the
register initialization feature in the BootROM header which to speeds the loading of the
FSBL/user code. A faster PS_REF_CLK requires adjusting the clock dividers.

The choice of operating mode depends on the capabilities of the Quad-SPI device. For the
fastest performance, the I/O fast read modes use 4-bit parallel transfers for address and
data. The quad output fast read uses 4-bit parallel transfers for data only. These are still
faster than a serial-bit mode.

Table 24‐5: Ignored AXI Read Address Channel Signals

Signal Value

ARADDR[1:0] Ignored, assumed to be 0 (always assumed to be word aligned).
ARSIZE[2:0] Ignored, always a 32-bit interface.
ARLOCK[1:0] Ignored
ARCACHE[3:0] Ignored
ARPROT[2:0] Ignored
Zynq UltraScale+ Device TRM 681
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=681

Chapter 24: Quad-SPI Controllers
Legacy Quad-SPI Controller Unsupported Devices

There are devices that implement custom 4-bit wide SPI-like interfaces for flash memory
access. Other Quad-SPI devices offer an option to switch operation to a custom 4-bit
interface, through a non-volatile configuration bit. These interfaces operate differently
from the devices supported by the dual controller. These flash memory devices operate in
4-bit mode during the instruction phase, as well as the address and data phases. This
requires the Quad-SPI flash controller to power up in 4-bit mode and remain in that mode
permanently (or until otherwise configured, if the option is available). The dual controller
does not offer support for these custom interfaces.

4-byte Address Support

The 4-byte address commands supported by the legacy Quad-SPI controller are listed in
Table 24-7. The legacy Quad-SPI controller supports the following 4-byte address
commands. The number of data lanes (DQ pins) for sending the instruction, opcode, and
data and receiving the data are listed in table. The legacy Quad-SPI controller does not
support instructions where the flash device requires using a different number of data lanes
for the same instruction code.

Table 24‐6: Quad-SPI Device Configuration Register Values

Instruction
Code

LQSPI_CFG LQSPI_CFG COMMAND Register

Single Dual Micron Winbond/Spansion

03h 0x80000203 0xe0000203 0x00002000 0x00002000

0Bh 0x8000020b 0xe000020b 0x00002820 0x00002820

3Bh 0x8000023b 0xe000023b 0x00002820 0x00002820

6Bh 0x8000026b 0xe000026b 0x00002820 0x00002820

BBh 0x800002bb 0xe00002bb 0x00001c20 0x00001810

EBh 0x800002eb 0xe00002eb 0x00001828 0x00001418

13h 0x88000213 0xe8000213 0x00002800 0x00002800

0Ch 0x8800020c 0xe800020c 0x00003020 0x00003020

3Ch 0x8800023c 0xe800023c 0x00003020 0x00003020

6Ch 0x8800026c 0xe800026c 0x00003020 0x00003020

BCh 0x880002bc 0xe80002bc 0x00002020 0x00001C10

ECh 0x880002ec 0xe80002ec 0x00001a28 0x00001618
Zynq UltraScale+ Device TRM 682
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=682

Chapter 24: Quad-SPI Controllers
3-Byte Address Support

The legacy Quad-SPI controller supports the following 3-byte address commands. The
number of data lanes (DQ pins) for sending the instruction, opcode, and data and receiving
the data listed in Table 24-7. The legacy Quad-SPI controller does not support instructions
where the flash device requires using a different number of data lanes for the same
instruction code.

Table 24‐7: 4-byte Address Support

Command
Number

Instruction
Code

Address
Bytes

Opcode
Lanes

Address
Lanes

Data
Lanes Command Type

1 8'h13 4 bytes 1 1 1 4-byte address read. Single lane for opcode,
address, and data.

2 8'h3C 4 bytes 1 1 2
4-byte address fast read, dual output. Single
lane for opcode, address, and two lanes for
data.

3 8'h6C 4 bytes 1 1 4
4-byte address fast read, quad output. Single
lane for opcode, address, and four lanes for
data.

4 8'hBC 4 bytes 1 2 2 4-byte address fast read, dual I/O. Two lanes
for opcode, address, and two lanes for data.

5 8'hEC 4 bytes 1 4 4
4-byte address fast read, quad I/O. Single lane
for opcode, four lanes for address and four
lanes for data.

6 8'h0C 4 bytes 1 1 1 4-byte fast. Single lane for opcode, address,
and data.

Table 24‐8: 3-Byte Address Support

Command
Number

Instruction
Code

Address
Bytes

Data Lanes Used
for Opcode

Data Lanes Used
for Address

Data Lanes
Used for Data

Command Type

1 8'h05 3 bytes 1 – 1 Read status register
2 8'h03 3 bytes 1 1 1 Read normal
3 8'h0B 3 bytes 1 1 1 Read fast
4 8'h3B 3 bytes 1 1 2 Read dual output
5 8'h6B 3 bytes 1 1 4 Read quad output
6 8'hBB 3 bytes 1 2 2 Read dual I/O
7 8'hEB 3 bytes 1 4 4 Read quad I/O
Zynq UltraScale+ Device TRM 683
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=683

Chapter 24: Quad-SPI Controllers
Legacy Linear Addressing

The legacy Quad-SPI has 128 MB of allocated system memory and requires a 27-bit address
[26 down to 0] to decode the address space. Register bit 27 of a linear Quad-SPI
configuration register is added to enable the 4-byte address capability. When enabled, a
32-bit address is formed by concatenating the lower 27 bits received on the AXI address bus
with five zeros.

When two flash devices are cascaded and the 4-byte address feature enabled, then bit 26 is
used to select the flash. Setting bit 26 of the AXI address bus selects the upper flash by
using the lower 26 bits of the AXI address bus and appending the MSB 6 bits with zeros to
form a 4-byte address to the flash. Setting bit 26 to zero selects the lower flash by using the
lower 26 bits of the AXI address bus and appending the MSB 6 bits with zeros to form a
4-byte address to the flash.

When two flash devices are cascaded and the 4-byte address feature is not enabled, then
bit 26 is used to select the flash. Setting bit 26 of the AXI address bus selects the upper flash
and the lower 24 bits of the AXI address bus are used to address the flash. To select the
lower flash, bit 26 is set to zero and the lower 24 bits of the AXI address bus are used to
address the flash.

When two flash devices are connected in parallel and the 4-byte address feature is enabled,
then to access the flash pad bit 26 down to bit 1 with seven zeros. Bit 0 is discarded because
the memory content is shared across the memories.

When two flash devices are connected in parallel and the 4-byte address feature is disabled,
then to access the flash use bit 24 down to bit 1. Bit 0 is discarded because the memory
content is shared across the memories.

When a single flash is connected and the 4-byte address feature is enabled, then to access
the flash pad bit 25 down to bit 0 of the AXI address bus with six zeros.

When a single flash is connected and the 4-byte address feature is disabled, then to access
the flash use bits 23 down to bit 0 of the AXI address.

Programming Requirements for Linear Mode

In linear mode, for both the 3-byte and 4-byte address, set the DUMMY_CYCLE_EN register
bit to 1'b1. For the read data bytes 0x03 command, set the DUMMY_CYCLE_EN register to
1'b1 and program the DUMMY_CYCLES in the COMMAND register to zeros.
Zynq UltraScale+ Device TRM 684
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=684

Chapter 24: Quad-SPI Controllers
Legacy Quad-SPI I/O Interface

The I/O signals are available through the MIO pins. The Quad-SPI controller supports up to
two SPI flash memories in either a shared or separate bus configuration. The controller
supports operation in the following configurations.

• Quad-SPI single slave select 4-bit I/O.
• Quad-SPI dual slave select 8-bit parallel I/O.
• Quad-SPI dual slave select 4-bit stacked I/O.

IMPORTANT: QSPI0 should always be present when using the Quad-SPI memory subsystem. QSPI1 is
optional and is only required for a two-memory arrangement. Therefore, QSPI1 cannot be used alone.

Legacy Quad-SPI Single Slave Select 4-bit I/O

Figure 24-5 shows a block diagram of the 4-bit flash memory interface connected to the
controller configuration.

X-Ref Target - Figure 24-5

Figure 24‐5: Legacy Quad-SPI Single Slave Select 4-bit I/O

Legacy
Quad-SPI
Controller

Quad-SPI
Flash Memory

Zynq UltraScale+ MPSoC

QSPI0_SCLK

QSPI0_IO[3:0]

QSPI0_SS_B
S

IO[3:0]

CLK

X17788-092916
Zynq UltraScale+ Device TRM 685
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=685

Chapter 24: Quad-SPI Controllers
Legacy Quad-SPI Dual Slave Select 8-bit Parallel I/O

The controller supports up to two SPI flash memories operating in parallel, as shown in
Figure 24-6. This configuration increase the maximum addressable SPI flash memory from
16 MB (24-bit address) to 32 MB (25-bit address). In this configuration, the device level XIP
mode is not supported.

For 8-bit parallel configuration, the even bits of the data words are located in the lower
memory and the odd bits of data are located in the upper memory. The Quad-SPI controller
manages the data in linear mode. The controller reads from the two Quad-SPI devices and
ORs (OR operation) the status information from both devices before writing the status data
in the RXFIFO. Figure 24-9 shows the data bit arrangement of a 32-bit data word for an 8-bit
parallel configuration. Table 12-8 shows the Quad-SPI commands in dual Quad-SPI parallel
mode.

X-Ref Target - Figure 24-6

Figure 24‐6: Legacy Quad-SPI Dual Slave Select 8-bit Parallel I/O

Quad-SPI
Controller

QSPI1_SCLK

QSPI1_IO[3:0]

QSPI1_SS_B
S

IO[3:0]

CLK

Quad-SPI
Flash Memory

QSPI0_SCLK

QSPI0_IO[3:0]

QSPI0_SS_B
S

IO[3:0]

CLK

Zynq UltraScale+ MPSoC

Quad-SPI
Flash Memory

(Upper)

X17789-092916
Zynq UltraScale+ Device TRM 686
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=686

Chapter 24: Quad-SPI Controllers
In 8-bit parallel configuration, the total addressable memory size is 512 MB.This requires a
29-bit address. All accesses to memory must be word aligned and have double-byte
resolution. In linear mode, the Quad-SPI controller divides the AXI address by two and
sends the divided address to the Quad-SPI device.

Note: In a dual parallel configuration of two flash devices, when GQSPI is used to write to flash, and
LQSPI in linear mode is used to read data from flash, the data read does not match with the data
write. This data mismatch is caused by the difference in the handling of data by the two controllers
in dual parallel configuration. GQSPI writes are "byte striped" and LQSPI reads are "bit interleaved".
The application software should handle this interoperability between LQSPI and GQSPI in a dual
parallel configuration.

Table 24‐9: Quad-SPI Dual Slave Select 8-bit Parallel I/O Data Management

Single Device

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
byte 0 byte 1 byte 2 byte 3

Dual Devices
Lower Memory

6 4 2 0 14 12 10 8 22 20 18 16 30 28 26 24

Dual Devices
Upper Memory

7 5 3 1 15 13 11 9 23 21 19 17 31 29 27 25
byte 0 byte 1 byte 2 byte 3

Table 24‐10: Quad-SPI Command List for Dual Quad-SPI Parallel Mode

Command Dual Parallel Quad-SPI Controller

Sector Erase The Quad-SPI controller sends and erase command to both devices. A 64 KB erase operation
erases each device, which effectively erases a combined 128 KB from both memories.

Read ID
The received data is taken from the lower flash bus and places it in RXD. There is no need to
combine data. The upper and lower flash devices must be identical when using the parallel flash
mode.

Read The even and odd data bits are read from both devices and are interleaved as shown in
Table 24-9.

RDSR The work-in-progress (WIP) bit from both devices are OR'ed together to form the LSB of the data
read. The other seven bits come from the lower bus.
Zynq UltraScale+ Device TRM 687
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=687

Chapter 24: Quad-SPI Controllers
Legacy Quad-SPI Dual Slave Select 4-bit Stacked I/O

To reduce the I/O pin count, the controller also supports up to two SPI flash memories in a
shared bus configuration, as shown in Figure 24-7. This configuration increase the
maximum addressable SPI flash memory from 256 MB (28-bit address) to 512 MB (29-bit
address), but the throughput remains the same as in single memory mode. In this 4-bit
stacked I/O configuration, the device level XIP mode (read instruction codes of BBh and
EBh) is not supported.

The lower SPI flash memory should always be connected when using the linear Quad-SPI
memory subsystem. The upper flash memory is optional. The total address space is 512 MB
with a 29-bit address. In linear address mode, the AXI address bit 28 determines the upper
or lower memory page. All of the commands are executed by the device selected by address
bit 28.

X-Ref Target - Figure 24-7

Figure 24‐7: Quad-SPI Dual Slave Select 4-bit Stacked I/O

Quad-SPI
Controller

QSPI1_SS_B

IO[3:0]

CLK

Quad-SPI
Flash Memory

QSPI0_SCLK

QSPI0_IO[3:0]

QSPI0_SS_B
S

IO[3:0]

CLK

Zynq UltraScale+ MPSoC

Quad-SPI
Flash Memory

(Upper)

S

X17790-092916
Zynq UltraScale+ Device TRM 688
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=688

Chapter 24: Quad-SPI Controllers
Register Overview
The registers for the legacy controller are not shared by the generic controller because
there are few overlapped registers. However, all the DMA related registers are shared
between the legacy controller and the generic controller. The register set for the dual
controller is located at 0xFF0F_0000.

Table 24-11 lists the Quad-SPI controller registers.

Table 24‐11: Quad-SPI Register Summary

Register Name Register
Offset

Width Type Reset Value Description

Config 0x00000000 32 Mixed 0x80000000 Quad-SPI configuration register.
ISR 0x00000004 32 Mixed 0x00000104 Quad-SPI interrupt status register.
IER 0x00000008 32 Mixed 0x00000000 Interrupt enable register.
IDR 0x0000000C 32 Mixed 0x00000000 Interrupt disable register.
IMR 0x00000010 32 RO 0x00000000 Interrupt unmask register.
Enable 0x00000014 32 Mixed 0x00000000 Quad-SPI enable register.
Delay 0x00000018 32 RW 0x00000000 Delay register.

TXD0 0x0000001C 32 WO 0x00000000
Transmit data register. Keyhole
addresses for the transmit data FIFO.
See also TXD1-3.

Rx_data 0x00000020 32 RO 0x00000000 Receive data register.
Slave_Idle_count 0x00000024 32 Mixed 0x000000FF Slave idle count register.
Tx_thres 0x00000028 32 RW 0x00000001 TXFIFO threshold register.
Rx_thres 0x0000002C 32 RW 0x00000001 RXFIFO threshold register.

GPIO 0x00000030 32 RW 0x00000001
General purpose inputs and outputs
register for the Quad-SPI controller.

LPBK_DLY_ADJ 0x00000038 32 RW 0x00000033
Loopback master clock delay
adjustment register.

TXD1 0x00000080 32 WO 0x00000000
Transmit data register. Keyhole
addresses for the transmit data FIFO.

TXD2 0x00000084 32 WO 0x00000000
Transmit data register. Keyhole
addresses for the transmit data FIFO.

TXD3 0x00000088 32 WO 0x00000000
Transmit data register. Keyhole
addresses for the transmit data FIFO.

LQSPI_CFG 0x000000A0 32 RW 0x000002EB
Configuration register specifically for
the linear Quad-SPI controller.

LQSPI_STS 0x000000A4 9 RO 0x00000000
Status register specifically for the
linear Quad-SPI controller.
Zynq UltraScale+ Device TRM 689
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=689

Chapter 24: Quad-SPI Controllers
COMMAND 0x000000C0 32 Mixed 0x00000000
Command control register. This
register needs to be programmed for
every request.

TRANSFER_SIZE 0x000000C4 32 Mixed 0x00000000 Transfer size register.
DUMMY_CYCLE_EN 0x000000C8 32 Mixed 0x00000000 Dummy cycles enable register.
MOD_ID 0x000000FC 32 RW 0x01090101 Module identification register.

GQSPI_CFG 0x00000100 32 Mixed 0x00000000
Generic Quad-SPI configuration
register.

GQSPI_ISR 0x00000104 32 Mixed 0x00000B84
Generic Quad-SPI interrupt status
register.

GQSPI_IER 0x00000108 32 Mixed 0x00000000
Generic Quad-SPI interrupt enable
register.

GQSPI_IDR 0x0000010C 32 Mixed 0x00000000
Generic Quad-SPI interrupt disable
register.

GQSPI_IMR 0x00000110 32 Mixed 0x00000FBE
Generic Quad-SPI interrupt unmask
register.

GQSPI_En 0x00000114 32 Mixed 0x00000000 Generic Quad-SPI enable register.

GQSPI_TXD 0x0000011C 32 WO 0x00000000
Generic Quad-SPI TX data register.
Keyhole addresses for the transmit
data FIFO.

GQSPI_RXD 0x00000120 32 RO 0x00000000 Generic Quad-SPI RX data register.

GQSPI_TX_THRESH 0x00000128 32 Mixed 0x00000001
Generic Quad-SPI TXFIFO Threshold
Level register.

GQSPI_RX_THRESH 0x0000012C 32 Mixed 0x00000001
Generic Quad-SPI RXFIFO threshold
level register.

GQSPI_GPIO 0x00000130 32 Mixed 0x00000001
Generic Quad-SPI GPIO for write
protect register.

GQSPI_LPBK_DLY_ADJ 0x00000138 32 Mixed 0x00000033
Generic Quad-SPI loopback clock
delay adjustment register.

GQSPI_GEN_FIFO 0x00000140 32 Mixed 0x00000000
Generic Quad-SPI generic FIFO data
register. Keyhole addresses for the
generic FIFO.

GQSPI_SEL 0x00000144 32 Mixed 0x00000000 Generic Quad-SPI select register.

GQSPI_FIFO_CTRL 0x0000014C 32 Mixed 0x00000000
Generic Quad-SPI FIFO control
register.

GQSPI_GF_THRESH 0x00000150 32 Mixed 0x00000010
Generic Quad-SPI generic FIFO
threshold level register.

GQSPI_POLL_CFG 0x00000154 32 Mixed 0x00000000
Generic Quad-SPI poll configuration
register

GQSPI_P_TIMEOUT 0x00000158 32 RW 0x00000000
Generic Quad-SPI poll timeout
register.

Table 24‐11: Quad-SPI Register Summary (Cont’d)

Register Name Register
Offset

Width Type Reset Value Description
Zynq UltraScale+ Device TRM 690
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=690

Chapter 24: Quad-SPI Controllers
GQSPI_XFER_STS 0x0000015C 32 RO 0x00000000
Generic Quad-SPI transfer status
register.

GQSPI_GF_SNAPSHOT 0x00000160 32 Mixed 0x00000000
Generic Quad-SPI generic FIFO snap
shot register.

GQSPI_RX_COPY 0x00000164 32 Mixed 0x00000000
Generic Quad-SPI receive data copy
register.

QSPI_DATA_DLY_ADJ 0x000001F8 32 RW 0x00000000 Quad-SPI RX data delay register.

GQSPI_MOD_ID 0x000001FC 32 RW 0x010A0000
Generic Quad-SPI module
identification register.

QSPIDMA_DST_ADDR 0x00000800 32 Mixed 0x00000000
Destination memory address for DMA
streammemory data transfer.

QSPIDMA_DST_SIZE 0x00000804 32 Mixed 0x00000000
DMA transfer payload for DMA
streammemory data transfer.

QSPIDMA_DST_STS 0x00000808 32 Mixed 0x00000000 General DST DMA status.
QSPIDMA_DST_CTRL 0x0000080C 32 RW 0x803FFA00 General DST DMA control.
QSPIDMA_DST_I_STS 0x00000814 32 Mixed 0x00000000 DST DMA interrupt status register.
QSPIDMA_DST_I_EN 0x00000818 32 Mixed 0x00000000 DST DMA interrupt enable.
QSPIDMA_DST_I_DIS 0x0000081C 32 Mixed 0x00000000 DST DMA interrupt disable.
QSPIDMA_DST_I_MASK 0x00000820 32 Mixed 0x000000FE DST DMA interrupt mask.
QSPIDMA_DST_CTRL2 0x00000824 32 Mixed 0x081BFFF8 General DST DMA control register 2.

QSPIDMA_DST_ADDR_MSB 0x00000828 32 Mixed 0x00000000
Destination memory address (MSBs)
for DMA streammemory data
transfer.

Table 24‐11: Quad-SPI Register Summary (Cont’d)

Register Name Register
Offset

Width Type Reset Value Description
Zynq UltraScale+ Device TRM 691
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=691

Chapter 24: Quad-SPI Controllers
Quad-SPI Tap Delay Values

The recommended clock and data tap delay values should be programmed based upon the
frequency of operation. Refer to the Zynq UltraScale+ MPSoC Data Sheet: DC and AC
Switching Characteristics (DS925) [Ref 2] and Answer Record 72797 for information on I/O
timing.

At 40 MHz, the Quad-SPI controller should be in non-loopback mode with the clock and
data tap delays bypassed. The register settings are shown in Table 24-12. These are default
values and are applicable for both generic and legacy modes.

At 100 MHz, the Quad-SPI controller should be in clock loopback mode with the clock tap
delay bypassed, but the data tap delay enabled. The register settings are shown in
Table 24-13. These values are applicable for both generic and legacy modes.

Note: The taps mentioned here refer to non-PVT compensated delay elements. Programmable delay
elements are provided on incoming data and on sampling clock to delay data or sampling clock
signals. The value of these taps should not be changed dynamically.

Table 24‐12: Quad-SPI Controller at 40 MHz Tap Delay Value

Register Bit Value Description

IOU_SLCR.IOU_TAPDLY_BYPASS [LQSPI_RX] 1 Bypass clock tap delay.
QSPI.LPBK_DLY_ADJ [USE_LPBK] 0 Disable clock loopback mode.
QSPI.LPBK_DLY_ADJ [DLY1] 00 Clock tap delay 1.
QSPI.LPBK_DLY_ADJ [DLY0] 000 Clock tap delay 0.
QSPI.QSPI_DATA_DLY_ADJ [USE_DATA_DLY] 0 Data tap delay enable.
QSPI.QSPI_DATA_DLY_ADJ [DATA_DLY_ADJ] 000 Data tap delay.

Table 24‐13: Quad-SPI Controller at 100 MHz Tap Delay Value

Register Bit Value Description

IOU_SLCR.IOU_TAPDLY_BYPASS [LQSPI_RX] 1 Bypass clock tap delay.
GQSPI_LPBK_DLY_ADJ [USE_LPBK] 1 Enable clock loopback mode.
GQSPI_LPBK_DLY_ADJ [DLY1] 00 Clock tap delay 1.
GQSPI_LPBK_DLY_ADJ [DLY0] 000 Clock tap delay 0.
QSPI_DATA_DLY_ADJ [USE_DATA_DLY] 1 Data tap delay enable.
QSPI_DATA_DLY_ADJ [DATA_DLY_ADJ] 010 Data tap delay (three taps).
Zynq UltraScale+ Device TRM 692
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/72797.html
https://www.xilinx.com/support/answers/72797.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=692

Chapter 24: Quad-SPI Controllers
At 150 MHz, only the generic controller can be used. The generic controller should be in
clock loopback mode and the clock tap delay enabled, but the data tap delay disabled. The
register settings are shown in Table 24-14.

Note: The legacy Quad-SPI controller does not support 150 MHz frequency.

Programming and Usage Considerations
The generic Quad-SPI controller supports two operating modes: I/O mode and the DMA
mode.

In I/O mode, which supports all types of memory operations, the SPI memory instructions
are sent to the generic FIFO at 0x00000140 and the program data is sent to a fixed offset
address of 0x0000011C. The read data or status is retrieved from a fixed offset address of
0x00000120, 0x0000010C. The software is responsible for providing the SPI instruction
and handling data formatting, and alignment. The generic Quad-SPI controller is
responsible for managing the low-level signaling.

DMA Mode Configuration Sequence

1. DMA configuration

° Program the QSPIDMA_DST_ADDR with the destination location (word aligned).

° For memories greater than 32 address bits, the QSPIDMA_DST_ADDR_MSB must be
configured.

° Program the QSPIDMA_DST_SIZE with the number of words to transfer (word
aligned).

° Program the QSPIDMA_DST_CTRL and QSPIDMA_DST_CTRL2 as required.

Table 24‐14: Generic Quad-SPI Controller at 150 MHz Tap Delay Values

Register Bit Value Description

IOU_SLCR.IOU_TAPDLY_BYPASS [LQSPI_RX] 0 Enable clock tap delay.
GQSPI_LPBK_DLY_ADJ[USE_LPBK] 1 Enable clock loopback mode.
GQSPI_LPBK_DLY_ADJ [DLY1] 00 Clock tap delay 1.
GQSPI_LPBK_DLY_ADJ [DLY0] 000 Clock tap delay 0.
QSPI_DATA_DLY_ADJ [USE_DATA_DLY] 0 Data tap delay disable.
QSPI_DATA_DLY_ADJ [DATA_DLY_ADJ] 000 Data tap delay.
Zynq UltraScale+ Device TRM 693
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=693

Chapter 24: Quad-SPI Controllers
2. Quad-SPI I/O mode configuration

° Configure the MODE_EN bits to 2'b10 in the GQSPI_CFG register.

° Program the generic FIFO for writing the command, flash memory address, dummy
cycles, and transfer size.

In all the modes listed, one or two SPI memories can be used, but the lower memory should
always be present in dual-parallel mode. Configure the two memory devices to use separate
data buses to double both throughput and storage size or a common shared data bus to
reduce pin count with double storage size.

By default, the Quad-SPI memory subsystem comes up in I/O mode to allow users to
configure the flash memory or to carry out different type of memory operations.

Transfer Size Limitations

The RXFIFO, TXFIFO, and generic command FIFO are 32-bit wide FIFOs, and all transfers
must be a multiple of 4-bytes (i.e., 4, 8, 12, 16, etc.).

For the TXFIFO, a transfer of a non-multiple of 4 bytes results in the subsequent transfer to
pop out from the start of the next word, and not from the next byte. This means that trying
to transmit any number of bytes in a word drains the entire 4 bytes of that word completely,
but the data transfer will only be the bytes requested. For example, when 5 words (20 bytes)
are loaded into the TXFIFO and a request is made to transmit 10 bytes, this results in a
10 byte transmission. However, as the number of bytes requested is not word aligned, the
TXFIFO pops out the entire 4 bytes of the last word, which drains off 12 bytes instead of 10
bytes. As a result, the remaining number of bytes in the FIFO is 8 bytes (2 words).

Generic Quad-SPI Controller Programming
The flow diagram for the generic Quad-SPI programming sequence is shown in Figure 24-8.
Zynq UltraScale+ Device TRM 694
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=694

Chapter 24: Quad-SPI Controllers
X-Ref Target - Figure 24-8

Figure 24‐8: Generic Quad-SPI Programming Flowchart

Generic
Quad-SPI

Perform Abort
Clear and disable interrupts
Clear FIFO
Switch I/O mode and clear RXFIFO
Disable GQSPI

If interrupt
based?

Setup interrupt
system

Set options
Manual start
Set prescaler to 8
Select flash (slave select line, BUS)

Select GQSPI

Perform Reset
Set default configuration
Set default DMA mode
Set manual start
Set little endian
Disable poll time out
Set hold time out
Clear prescaler
Set CPOL CPHA to zero
Allow high frequencies
Reset thresholds
DMA INIT

Read ID
Prepare flash message (READ_ID)
Perform transfer
Validate flash message

Data Transfers
Prepare write command message
Perform transfer
Prepare status command message
Perform transfer

End

Transfer

Enable GQSPI
Select slave
Push messages into FIFO

If interrupt
based?

Enable interrupts
Rest of messages Transfer inside ISR

Poll for status
Transfer next message

End of Transfer

ISR

Check status
Clear interrupts
Check for error
If TX done

Fill next message into TXFIFO
If RX done

Read RXFIFO into buffer
If no more messages

Disable interrupts
Disable device
Indicate completion

End

Yes

No

No

Yes

X15441-092916
Zynq UltraScale+ Device TRM 695
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=695

Chapter 24: Quad-SPI Controllers
Generic FIFO Programming

Programming SPI Modes

Table 24-15 lists the lower data bus pins driven by the generic Quad-SPI controller as per
the SPI mode, receive, and transmit of the lower data bus.

Programming Data Transfer Length and Usage of Exponent

This section describes some examples on programming different data transfer lengths. Only
the length related fields are mentioned.

When 128 bytes are read/written from the SPI flash, the generic FIFO configuration uses the
values in Table 24-16.

Table 24‐15: SPI Modes in Generic Quad-SPI Controller (Lower Data Bus is Active)

SPI
Mode Mode Description

Data Bus
Select Receive Transmit Lower Data Bus [3:0] I/O

2'b01 SPI transmit. 2'b01 1'b0 1'b1 Not used Not used Not used O
2'b01 SPI receive. 2'b01 1'b1 1'b0 Not used Not used I Not used
2'b01 SPI transmit and receive. 2'b01 1'b1 1'b1 Not used Not used I O
2'b10 Dual-SPI transmit. 2'b01 1'b0 1'b1 Not used Not used O O
2'b10 Dual-SPI receive. 2'b01 1'b1 1'b0 Not used Not used I I
2'b11 Quad-SPI transmit. 2'b01 1'b0 1'b1 O O O O
2'b11 Quad-SPI receive. 2'b01 1'b1 1'b0 I I I I

Table 24‐16: Generic FIFO Configuration for 128 Bytes

Description immediate_data data_xfer exponent

128 bytes 8'h80 1'b1 1'b0
Zynq UltraScale+ Device TRM 696
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=696

Chapter 24: Quad-SPI Controllers
When 1,000 bytes are read/written from the SPI flash, the generic FIFO configuration uses
the values described by the options listed in Table 24-17.

When 1G bytes are read/written from the SPI flash, the generic FIFO configuration uses the
values in Table 24-18.

When 64 bytes are read/written from the SPI flash, the generic FIFO configuration uses the
values in Table 24-19.

Programming Poll

The poll bit of the generic FIFO is used to continuously read the status of SPI device until it
matches with the value in the POLL_DATA field of the poll register. The data read from the
SPI device is written into the RXFIFO.

When two flash devices are used, the Quad-SPI controller does not execute the next
command until the data from both flash devices matches with the value in the POLL_DATA
of the poll register, which is determined by the mask bits.

The poll bit is useful when checking the status of a flash device. For example, when a page
program is issued to a flash device, the software polls the status, to check if write is
completed. The polling requires multiple read requests to status register. By setting the poll
bit 1, the generic Quad-SPI controller continuously reads the data and checks the expected
status bits.

Table 24‐17: Generic FIFO Configuration for 1,000 Bytes

Description immediate_data data_xfer exponent

Option 1
512 bytes using exponent 8'h09 1'b1 1'b1

256 bytes 8'h08 1'b1 1'b1

Remaining 232 bytes 8'hE8 1'b1 1'b0

Option 2

256 bytes 8'h08 1'b1 1'b1

256 bytes 8'h08 1'b1 1'b1

256 bytes 8'h08 1'b1 1'b1

Remaining 232 bytes 8'hE8 1'b1 1'b0

Table 24‐18: Generic FIFO Configuration for 1G Bytes

Description immediate_data data_xfer exponent

1G bytes 8'h1E 1'b1 1'b1

Table 24‐19: Generic FIFO Configuration for 64 Bytes

Description immediate_data data_xfer exponent

64 bytes 8'h40 1'b1 1'b0
Zynq UltraScale+ Device TRM 697
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=697

Chapter 24: Quad-SPI Controllers
Use Case: Check Success of Page Program/Erase

When a page program/erase command is issued to a flash device, the software needs to poll
the status of the operation. This requires multiple read requests to the status register. By
setting the poll bit 1, the generic Quad-SPI controller continuously reads the data and
checks the expected status bits. This mechanism avoids having the software/processor issue
multiple read requests and is controlled on the MPSoC by the generic Quad-SPI controller.

When the poll bit is set the useful fields are listed.

• Generic FIFO field—SPI mode.
• Generic FIFO field—receive.
• Generic FIFO field—data bus select.
• Poll register field—POLL_DATA value.
• Poll register field—enable lower data bus mask.
• Poll register field—enable upper data bus mask.
• Poll register field—data bus mask, the same value is used for both upper and lower

devices.

In the case of a polling operation when one data bus of a generic Quad-SPI controller is
active, in single mode or stacked mode, only one data bus is active and the value of the data
bus select is either 2'b01 or 2'b10. In this case, only one device is connected to the
generic Quad-SPI controller. Hence, the data on the connected device is captured and
compared against the POLL_DATA field of the poll register.

In the case of a polling operation when two data buses of a generic Quad-SPI controller are
active, in dual-parallel mode, there are two devices connected to the generic Quad-SPI
controller. When the value of receive = 1'b1, the possible values of the data bus select are
2'b01, 2'b10, or 2'b11.

• When receive = 1'b1 and the data bus select is 2'b01, the data in the lower device is
captured and compared against the immediate_data field depending on the poll mask
register values.

• When receive = 1'b1 and the data bus select is 2'b10, the data in the upper device is
captured and compared against the POLL_DATA field depending on the poll mask
register value.

• When receive = 1'b1 and the data bus select is 2'b11, the data in both the lower and
upper devices is captured simultaneously and compared independently against the
POLL_DATA field of the poll register. The generic Quad-SPI controller reads the data
from both data buses. It compares the data against value that is configured in the
POLL_DATA field of the poll register, also considering the poll mask value. The
controller waits until the data matches. Once the data matches, the controller goes to
the next entry (if any) of the generic FIFO.
Zynq UltraScale+ Device TRM 698
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=698

Chapter 24: Quad-SPI Controllers
Terminating Poll

The poll operation termination is controlled using the POLL_TIMEOUT register and the
EN_POLL_TIMEOUT field of the generic Quad-SPI configuration register.

When the EN_POLL_TIMEOUT field is set to 0, the generic Quad-SPI controller polls
indefinitely until it matches with the value programmed in the POLL_DATA field of the poll
register. In this case, the poll operation is only terminated when the received data matches
with the value of the POLL_DATA field. This depends on the poll mask value, if enabled.

When the EN_POLL_TIMEOUT field is set to 1, the value of the POLL_TIMEOUT register is
used. The generic Quad-SPI controller increments an internal counter and keeps polling for
the number of reference clock cycles configured in the POLL_TIMEOUT register. When the
internal counter expires, the generic Quad-SPI controller generates a Poll_Timeout_Int
interrupt.

When both upper and lower data buses are active, the interrupt indicates if the captured
data of any one or both of the devices captured data does not matched with the POLL_DATA
field of the poll register. This depends on the poll mask value, if enabled.

When only one data bus is active, in dual-parallel mode, the poll counter expires when
either the lower or upper data is not as expected in the POLL_DATA field of the poll register.
This depends on the poll mask value, if enabled.

Programming Stripe

The stripe bit of a generic FIFO is used when both lower and upper data buses are active.
When both cs_lower and cs_upper are set to 1, program the options listed in Table 24-20.

Table 24‐20: Transmit and Receive Generic FIFO Stripe Bit

Description immediate_data data_xfer Stripe Transmit Receive Data Bus Select

Transmit immediate_data field to both flash devices when stripe is 1'b0.

Generic FIFO fields 8'hEB 1'b0 1'b0 1'b1 1'b0 2'b11

Transmit even bytes of TXFIFO data to lower device and odd bytes of TXFIFO to upper device when stripe is 1'b1.

Generic FIFO fields 8'h64 1'b1 1'b1 1'b1 1'b0 2'b11

Transmit TXFIFO data to both devices (not commonly used) when stripe is 1'b0.

Generic FIFO fields 8'h64 1'b1 1'b0 1'b1 1'b0 2'b11

Receive RXFIFO (Stripe = 1'b0 is not applicable when receive is set to 1.

Generic FIFO fields 8'h64 1'b1 1'b1 1'b0 1'b1 2'b11
Zynq UltraScale+ Device TRM 699
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=699

Chapter 24: Quad-SPI Controllers
Transferring Odd Bytes

The generic Quad-SPI controller transfers the data using the programmed data length in
the immediate_data field. When the data length bytes are odd, to send the last data byte,
the lower data bus is active for extra byte time than the upper data bus. For example, when
the immediate_data field is 5 bytes and the stripe option is used, the bytes 0, 2, and 4 (total
of 3 bytes) are sent/received on the lower data bus and 1, 3 (total 2 bytes) are sent/received
on the upper data bus. The SCLK of the lower and upper are toggled accordingly.

Modes of Operation

Generic Quad-SPI Controller in PIO Mode

For PIO mode operation, follow these steps.

1. Select the generic Quad-SPI controller by writing a 1 to the generic_qspi_sel register bit.
2. Set the mode_en bits = 2'b00 of the GQSPI_CFG register.
3. Check to make sure that the generic FIFO is not full and then write the data into the

generic FIFO using a read or write command request on the APB interface.
4. Write the TX data into the TXFIFO when there is a write transfer over the APB interface.
5. When there is a write request, the generic Quad-SPI controller sends the command,

address, dummies from the generic FIFO and sends write data from the TXFIFO.
6. When there is a read request, the generic Quad-SPI controller sends the command,

address, dummies from the generic FIFO and sends read data into the RXFIFO.
7. Read requests are issued from the APB interface to receive the RX data.

When two flash devices are connected in stacked mode, the generic Quad-SPI controller
checks for the data bus select field of the generic FIFO and sends the requests accordingly.

Generic Quad-SPI Controller in DMA Mode

For DMA mode operation, follow these steps.

1. Select the generic Quad-SPI controller by writing a 1 to the generic_qspi_sel register bit.
2. Set the mode_en bits = 2'b10 of the GQSPI_CFG register.
3. Write the command, address, dummies in the generic FIFO using the read request.
4. The generic Quad-SPI controller sends the command as programmed in the generic

FIFO and reads the data into the RXFIFO.
5. The DMA controller issues DMA requests using the AXI master interface and sends the

RXFIFO data.
Zynq UltraScale+ Device TRM 700
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=700

Chapter 24: Quad-SPI Controllers
When two flash devices are connected in stacked mode, the generic Quad-SPI controller
checks for the data bus select field of the generic FIFO and sends the requests accordingly.

Flash Commands

NOR Flash Commands

To send different flash commands to the flash devices, the generic FIFO must be precisely
programmed. The following examples describe sample SPI flash commands.

Page Read Command

The generic FIFO contents for the read command are listed in Table 24-21.

Table 24‐21: Generic FIFO Contents for Read Command

Description Reserved Poll Stripe Receive Transmit Data Bus
Select

CS_
Upper

CS_
Lower

SPI
Mode Exponent Data

_xfer
Immediate

_Data

31:20 19 18 17 16 15:14 13 12 11:10 9 8 7:0
Start driving chip
select (CS). Setup
time is four
QSPI_REF_CLK cycles.

12'd0 1'b0 1'b0 1'b0 1'b0 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h04

Send opcode 03 for
page read. Start
driving chip select
and clock.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h03

Send first address
byte 10. 12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h10

Send second address
byte 20. 12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h20

Send third address
byte 30. 12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h30

Read 100 bytes. 12'd0 1'b0 1'b0 1'b1 1'b0 2'b01 1'b0 1'b1 2'b01 1'b0 1'b1 8'h64

Stop CS/SCLK,
chip-select is
deasserted. CS hold
time is three
reference clock cycles
(optional).

12'd0 1'b0 1'b0 1'b0 1'b0 2'b01 1'b0 1'b0 2'b01 1'b0 1'b0 8'h04
Zynq UltraScale+ Device TRM 701
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=701

Chapter 24: Quad-SPI Controllers
Quad I/O Read Command

The generic FIFO contents for the quad I/O read command are listed in Table 24-22.

Table 24‐22: Generic FIFO Contents for Quad I/O Read Command

Description Reserved Poll Stripe Receive Transmit Data Bus
Select

CS_
Upper

CS_
Lower

SPI
Mode Exponent Data

_xfer
Immediate

_Data

31:20 19 18 17 16 15:14 13 12 11:10 9 8 7:0
Start driving chip
select (CS). Setup
time is four
reference clock
cycles.

12'd0 1'b0 1'b0 1'b0 1'b0 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h04

Send opcode EB for
page read in SPI
mode.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'hEB

Send first address
byte 10 in quad
mode.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b11 1'b0 1'b0 8'h10

Send second
address byte 20 in
quad mode.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b11 1'b0 1'b0 8'h20

Send third address
byte 30 in quad
mode.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b11 1'b0 1'b0 8'h30

Send dummy cycle. 12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b11 1'b0 1'b0 8'hA0

Send four dummy
cycles. 12'd0 1'b0 1'b0 1'b0 1'b0 2'b01 1'b0 1'b1 2'b11 1'b0 1'b1 8'h04

Read 100 bytes in
quad mode. 12'd0 1'b0 1'b0 1'b1 1'b0 2'b01 1'b0 1'b1 2'b11 1'b0 1'b1 8'h64

Stop CS/SCLK, chip
select is deasserted
(optional).

12'd0 1'b0 1'b0 1'b0 1'b0 2'b01 1'b0 1'b0 2'b11 1'b0 1'b0 8'h00
Zynq UltraScale+ Device TRM 702
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=702

Chapter 24: Quad-SPI Controllers
Quad Page Program Command

The generic FIFO contents for the quad page program command are listed in Table 24-23.

Table 24‐23: Generic FIFO Contents for Quad Page Program Command

Description Reserved Poll Stripe Receive Transmit Data Bus
Select

CS_
Upper

CS_
Lower

SPI
Mode Exponent Data

_xfer
Immediate

_Data

31:20 19 18 17 16 17:16 13 12 11:10 9 8 7:0
Start driving chip
select (CS). Setup
time is four
reference clock
cycles.

12'd0 1'b0 1'b0 1'b0 1'b0 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h04

Send opcode 02 for
page program in
SPI mode.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h02

Send first address
byte 10 in SPI
mode.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h10

Send second
address byte 20 in
SPI mode.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h20

Send third address
byte 30 in SPI
mode.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h30

Send fourth
address byte 40 in
SPI mode.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b01 1'b0 1'b0 8'h40

Write 512 bytes in
quad mode. Use
exponent bit as
29 = 512.

12'd0 1'b0 1'b0 1'b0 1'b1 2'b01 1'b0 1'b1 2'b11 1'b1 1'b1 8'h09

Stop CS/SCLK, chip
select is
deasserted.

12'd0 1'b0 1'b0 1'b0 1'b0 2'b01 1'b0 1'b0 2'b11 1'b0 1'b0 8'h00
Zynq UltraScale+ Device TRM 703
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=703

Chapter 24: Quad-SPI Controllers
Two SPI Flash Memories with Separate Buses (Dual Parallel)

The generic Quad-SPI controller supports up to two SPI flash memories operating in
parallel as shown in Figure 24-9. Unlike the legacy Quad-SPI (LQSPI) controller, the chip
select is driven independently to the upper and lower flash memory devices. The selection
of the lower/upper memory is controlled by using the data bus select field (Table 24-4).
With this approach, commands and data can be transmitted and received from both
devices, or only upper or only lower flash memory device. In this configuration, the device
level XIP mode is not supported.
X-Ref Target - Figure 24-9

Figure 24‐9: Dual Parallel Mode

Generic
Quad-SPI
Controller

SPI Flash
Memory Upper

SPI Flash
Memory Lower

QSPI1_SCLK

QSPI1_SS_B

QSPI1_IO[3:0]

QSPI0_SCLK

QSPI0_SS_B

QSPI0_IO[3:0]

X15438-092916
Zynq UltraScale+ Device TRM 704
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=704

Chapter 24: Quad-SPI Controllers
Data Arrangement

When the stripe field of a generic FIFO is set, the lower data bus uses even bytes, i.e., byte
0, 2, 4 …, of a data word, and the upper data bus uses odd bytes, i.e., byte 1, 3, 5, …, of a data
word.

Two SPI Flash Memories with a Shared Bus (Stacked)

To reduce I/O pin count, the generic Quad-SPI controller also supports two SPI flash
memories in a shared bus arrangement. Figure 24-10 shows an example of a lower data bus
connected to both flash devices. It is also possible to connect the upper data bus to both
flash devices. The lower or upper memory selection is controlled by the data bus select
field.
X-Ref Target - Figure 24-10

Figure 24‐10: Stacked Mode

Generic
Quad-SPI
Controller

SPI Flash
Memory Upper

SPI Flash
Memory Lower

QSPI0_SCLK

QSPI0_SS_B

QSPI0_IO[3:0]

QSPI1_SS_B

X15439-092916
Zynq UltraScale+ Device TRM 705
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=705

Chapter 24: Quad-SPI Controllers
Write Protect

The write protect output signal is controlled by the QSPI.GPIO [WP_N] bit. Write protect is
often connected on bit [2] of a 4-bit quad-SPI device bus. The write protect signal is driven
Low for most flash devices, therefore the reset value is High (write protection deasserted).

In SPI and dual-SPI modes, the write protect signal from the general-purpose I/O register is
connected to the WPB pin through the wpn_mo2 output for connection to the write protect
control input on the flash device.

In quad mode, the write protect signal is connected as MIO2 and is driven by the controller.

When a write protect operation is not used, the write protect pin is driven to a 1 as expected
by the SPI devices. Hence, an internal pull-up resistor is needed by the SPI device.

Controller Hold Signal

The hold signal is not supported by the generic Quad-SPI controller. In dual- or single-bit
modes, the hold signal is tied to 1. In quad mode, the hold signal is driven by the controller.
When a hold operation is not used, the hold pin is driven High as expected by the SPI
devices.

Controller Interrupt

The generic Quad-SPI controller has a single interrupt output signal. The dma_irq signal
from the DMA module is ORed with the internal interrupt (gqspi_int_irq) in the generic
Quad-SPI controller, as shown in Figure 24-11. The generic Quad-SPI interrupt register does
not show the status of the DMA interrupt signal.

The following steps outline the software programming model for a DMA interrupt.

1. Enable the DMA IRQ bits[0..7] of qspidma_dst_i_en, the DMA interrupt enable register.
2. The interrupt is set due to the DMA. For example, DMA done.
3. The generic Quad-SPI controller interrupt is asserted as the DMA module asserts

dma_irq signal that is ORed with the generic Quad-SPI internal interrupt signal.
4. The software reads the generic Quad-SPI interrupt status register. The generic Quad-SPI

interrupt status register bits are not set because this model is for the DMA interrupt.
5. The software reads the DMA interrupt status register, the DMA done bit is set.
6. The software writes a 1 to clear the done bit of the DMA interrupt status register.
7. The dma_irq signal is deasserted and the generic Quad-SPI interrupt is immediately

deasserted.
Zynq UltraScale+ Device TRM 706
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=706

Chapter 24: Quad-SPI Controllers
Programming Examples

The programming examples for the generic Quad-SPI controller are listed in Table 24-24
through Table 24-31.

° Generic Quad-SPI Initialization and Reset

° Generic Quad-SPI Abort

° Generic Quad-SPI Set Options

° Generic Quad-SPI Interrupt Transfer

° Generic Quad-SPI Polled Transfer

° Generic Quad-SPI Flash Read ID

° Generic Quad-SPI Flash Erase

° Generic Quad-SPI Flash Write

X-Ref Target - Figure 24-11

Figure 24‐11: Interrupt Mechanism

Generic Quad-SPI Controller

DMA

ISR

IER

IMR

Generic Quad-SPI
Registers

ISR

IER

IMR

Interrupt

dma_irq

gqspi_int_irq

X15440-092916
Zynq UltraScale+ Device TRM 707
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=707

Chapter 24: Quad-SPI Controllers
Table 24‐24: Generic Quad-SPI Initialization and Reset

Task Register Register Field
Register
Offset Bits Value

Select generic
Quad-SPI GQSPI_SEL generic_qspi_sel 0x144 0 1

Call: Quad-SPI PSU abort

Configure SPI GQSPI_CFG

MODE_EN |
GEN_FIFO_START_MODE |
ENDIAN | EN_POLL_TIMEOUT |
WP_HOLD | BAUD_RATE_DIV |
CLK_PH | CLK_POL

0x100 31:0 A008_0000h

Allow high
frequencies GQSPI_LPBK_DLY_ADJ USE_LPBK 0x138 5 1

Reset thresholds GQSPI_TX_THRESH Level_TX_FIFO 0x128 5:0 00_0001b

Reset thresholds GQSPI_RX_THRESH Level_RX_FIFO 0x12C 5:0 00_0001b

Reset thresholds GQSPI_GF_THRESH Level_GF_FIFO 0x150 4:0 1_0000b

DMA initialize QSPIDMA_DST_CTRL

FIFO_LVL_HIT_THRESH |
APB_ERR_RESP | ENDIANNESS |
AXI_BRST_TYPE | TIMEOUT_VAL
| FIFO_THRESH | PAUSE_STRM |
PAUSE_MEM

0x80C 31:0 403F_FA00h
Zynq UltraScale+ Device TRM 708
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=708

Chapter 24: Quad-SPI Controllers
Table 24‐25: Generic Quad-SPI Abort

Task Register Register Field
Register
Offset Bits Value

Read interrupt
status and save GQSPI_ISR All bits 0x104 31:0 Read

operation
Clear poll
timeout counter
interrupt

GQSPI_ISR Poll_Time_Expire 0x104 1 1

Disable
interrupts QSPIDMA_DST_I_STS

FIFO_OVERFLOW |
INVALID_APB |
THRESH_HIT | TIMEOUT_MEM |
TIMEOUT_STRM | AXI_BRESP_ERR |
DONE

0x814 7:1
WTC, read and
write back the
same value.

Clear the
transfer count
interrupt

QSPIDMA_DST_STS DONE_CNT 0x808 15:13 111b

Disable
interrupts GQSPI_IDR

RX_FIFO_EMPTY | Gen_FIFO_full |
Gen_FIFO_not_full |
TX_FIFO_EMPTY | Gen_FIFO_Empty
| RX_FIFO_full |
RX_FIFO_not_empty | TX_FIFO_full |
TX_FIFO_not_full |
Poll_Time_Expire

0x10C 11:0 FBEh

Disable
interrupts QSPIDMA_DST_I_DIS

FIFO_OVERFLOW | INVALID_APB |
THRESH_HIT |TIMEOUT_MEM |
TIMEOUT_STRM | AXI_BRESP_ERR |
DONE

0x81C 7:1 7'h7F

Clear FIFO
interrupt: Read
RXFIFO Empty
status

GQSPI_ISR RX_FIFO_Empty 0x104 11 Read
operation

If read RXFIFO empty status == TRUE

Reset FIFO GQSPI_FIFO_CTRL RST_TX_FIFO | RST_GEN_FIFO 0x14C 1:0 11b

ENDIF

If read RXFIFO empty status == FALSE
Switch to I/O
mode GQSPI_CFG MODE_EN 0x100 31:30 00

Clear RX_FIFO GQSPI_FIFO_CTRL RST_RX_FIFO 0x14C 2 1

ENDIF

If DMA read mode == TRUE

Enable DMA GQSPI_CFG MODE_EN 0x100 31:30 10b

ENDIF

Disable device GQSPI_En GQSPI_EN 0x114 0 0

END: Quad-SPI PSU abort
Zynq UltraScale+ Device TRM 709
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=709

Chapter 24: Quad-SPI Controllers
Table 24‐26: Generic Quad-SPI Set Options

Task Register Register Field Register Offset Bits Value

For clock active-Low option GQSPI_CFG CLK_POL 0x100 1 1

For clock phase option GQSPI_CFG CLK_PH 0x100 2 1

For star manual mode option GQSPI_CFG GEN_FIFO_START_MODE 0x100 29 1

Table 24‐27: Generic Quad-SPI Interrupt Transfer

Task Register Register Field
Register
Offset

Bits Value

Enable device GQSPI_En GQSPI_EN 0x114 0 1

Select slave by writing appropriate values to GQSPI_GEN_FIFO.
Select bus width, stripe configuration values in to GQSPI_GEN_FIFO.
If byte count is less than 8, follow this next step.

Do the transfer in
I/O mode GQSPI_CFG MODE_EN 0x100 31:30 00b

If transmission, fill the write buffers and follow these next steps.

Enable TX GQSPI_GEN_FIFO TX 0x140 16 1

Select data transfer GQSPI_GEN_FIFO Data transfer 0x140 8 1

Write data GQSPI_TXD TX_DATA 0x11C 31:0 Write buffer
address

If reception, fill the write buffers and follow these next steps.

Disable TX GQSPI_GEN_FIFO TX 0x140 16 0

Enable RX GQSPI_GEN_FIFO RX 0x140 17 1

Select data transfer GQSPI_GEN_FIFO Data transfer 0x140 8 1

If DMA is requested, follow these next steps.

Write destination
address QSPIDMA_DST_ADDR ADDR 0x800 31:2 Destination

address
Write address MSB QSPIDMA_DST_ADDR_MSB ADDR_MSB 0x828 11:0 MSB of adder
Write size of DMA
transfer QSPIDMA_DST_SIZE SIZE 0x804 28:2 Size of data

For dummy transfer, follow these next steps.

Disable TX GQSPI_GEN_FIFO TX 0x140 16 0

Disable RX GQSPI_GEN_FIFO RX 0x140 17 0

Select data transfer GQSPI_GEN_FIFO Data transfer 0x140 8 1

For both dummy and transfer, follow these next steps.

Enable TX GQSPI_GEN_FIFO TX 0x140 16 1

Enable RX GQSPI_GEN_FIFO RX 0x140 17 1

Select data transfer GQSPI_GEN_FIFO Data transfer 0x140 8 1
Zynq UltraScale+ Device TRM 710
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=710

Chapter 24: Quad-SPI Controllers
Write data GQSPI_TXD TX_DATA 0x11C 31:0 Write buffer
address

If DMA read mode enabled, follow these next steps.

Write destination
address QSPIDMA_DST_ADDR ADDR 0x800 31:2 Destination

address
Write address MSB QSPIDMA_DST_ADDR_MSB ADDR_MSB 0x828 11:0 MSB of adder
Write size of DMA
transfer QSPIDMA_DST_SIZE SIZE 0x804 28:2 Size of data

If byte count is less than 256, follow these next steps.

Write size of DMA
transfer QSPIDMA_DST_SIZE SIZE 0x804 28:2 Size of data

Write IMM data
count GQSPI_GEN_FIFO IMM 0x140 7:0 Data count

Else:

Write exponent
entries until all
bytes over

GQSPI_GEN_FIFO EXP 0x140 9 Exponent
entry count

Write immediate
entries left GQSPI_GEN_FIFO IMM 0x140 7:0 Data count

If I/O mode selected, follow this next step.

Write dummy entry GQSPI_GEN_FIFO GEN_DATA 0x140 19:0 0

If manual start mode enabled, follow these next steps.

Manual start GQSPI_CFG GEN_FIFO_START_MODE 0x100 29 1

Enable interrupts GQSPI_IER

TX_FIFO_not_full |
TX_FIFO_EMPTY |
RX_FIFO_not_empty |
Gen_FIFO_Empty |
RX_FIFO_EMPTY

0x108
11, 7,
4, 8,

and 2
1

If read mode DMA enabled, follow this next step.

Clear done bit QSPIDMA_DST_I_EN Done 0x818 2 1

Table 24‐27: Generic Quad-SPI Interrupt Transfer (Cont’d)

Task Register Register Field Register
Offset

Bits Value
Zynq UltraScale+ Device TRM 711
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=711

Chapter 24: Quad-SPI Controllers
Table 24‐28: Generic Quad-SPI Polled Transfer

Task Register Register Field
Register
Offset Bits Value

Enable device GQSPI_En GQSPI_EN 0x114 0 1

Select slave by writing appropriate values to GQSPI_GEN_FIFO.
Select bus width, stripe configuration values in to GQSPI_GEN_FIFO.
If byte count is less than 8, the follow these next steps.

Do the transfer in
I/O mode GQSPI_CFG MODE_EN 0x100 31:30 00b

If transmission, fill the write buffers and follow these next steps.

Enable TX GQSPI_GEN_FIFO TX 0x140 16 1

Select data transfer GQSPI_GEN_FIFO Data transfer 0x140 8 1

Write data GQSPI_TXD TX_DATA 0x11C 31:0 Write buffer address
If reception, fill the write buffers and follow these next steps.

Disable TX GQSPI_GEN_FIFO TX 0x140 16 0

Enable RX GQSPI_GEN_FIFO RX 0x140 17 1

Select data transfer GQSPI_GEN_FIFO Data transfer 0x140 8 1

If DMA is requested, then follow these next steps.

Write destination
address QSPIDMA_DST_ADDR ADDR 0x800 31:2 Destination address

Write address MSB QSPIDMA_DST_ADDR_MSB ADDR_MSB 0x828 11:0 MSB of adder
Write size of DMA
transfer QSPIDMA_DST_SIZE SIZE 0x804 28:2 Size of data

For dummy transfer follow these next steps.

Disable TX GQSPI_GEN_FIFO TX 0x140 16 0

Disable RX GQSPI_GEN_FIFO RX 0x140 17 0

Select data transfer GQSPI_GEN_FIFO Data transfer 0x140 8 1

For both dummy and transfer follow these next steps.

Enable TX GQSPI_GEN_FIFO TX 0x140 16 1

Enable RX GQSPI_GEN_FIFO RX 0x140 17 1

Select data transfer GQSPI_GEN_FIFO Data Xfer 0x140 8 1

Write data GQSPI_TXD TX_DATA 0x11C 31:0 Write buffer address
If DMA read mode enabled, follow these next steps.

Write destination
address QSPIDMA_DST_ADDR ADDR 0x800 31:2 Destination address

Write address MSB QSPIDMA_DST_ADDR_MSB ADDR_MSB 0x828 11:0 MSB of address
Write size of DMA
transfer QSPIDMA_DST_SIZE SIZE 0x804 28:2 Size of data
Zynq UltraScale+ Device TRM 712
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=712

Chapter 24: Quad-SPI Controllers
If byte count is less than 256, follow these next steps.

Write size of DMA
transfer QSPIDMA_DST_SIZE SIZE 0x804 28:2 Size of data

Write IMM data
count GQSPI_GEN_FIFO IMM 0x140 7:0 Data count

Else:

Write exponent
entries until all
bytes over

GQSPI_GEN_FIFO EXP 0x140 9 Exponent entry
count

Write immediate
entries left GQSPI_GEN_FIFO IMM 0x140 7:0 Data count

If I/O mode is selected.

Write dummy entry GQSPI_GEN_FIFO GEN_DATA 0x140 19:0 0

If manual start mode enabled, follow these next steps.

Manual start GQSPI_CFG GEN_FIFO_START_
MODE 0x100 29 1

If more data is left for transfer, follow these next steps.

Read ISR GQSPI_ISR All 0x104 31:0 Read operation
If TX_FIFO_not_full bit is set, follow these next steps.

Write data GQSPI_TXD TX_DATA 0x11C 31:0 Write buffer address
If read mode DMA selected and RX buffer is not null, follow these next steps.

Read DMA ISR QSPIDMA_DST_I_STS All 0x114 7:1 Read operation
If done bit is set until the TX buffer is empty and the FIFO empty bits are cleared, follow these next steps.

Write back the read
value to DMA ISR QSPIDMA_DST_I_STS All 0x114 7:1 The value read in the

previous operation
Read using I/O
mode GQSPI_CFG MODE_EN 0x100 31:30 00b

If read mode DMA is not selected and the RX buffer is not null, follow these next steps.

Read RX threshold
offset GQSPI_RX_THRESH Level_RX_FIFO 0x12C 5:0 Read

If the RX buffer is not empty, follow these next steps.

Read remaining
bytes GQSPI_RXD RX_DATA 0x120 31:0 Read

Read over

Deselect slave by writing appropriate values to GQSPI_GEN_FIFO.

Table 24‐28: Generic Quad-SPI Polled Transfer (Cont’d)

Task Register Register Field Register
Offset

Bits Value
Zynq UltraScale+ Device TRM 713
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=713

Chapter 24: Quad-SPI Controllers
If manual start mode enabled, follow these next steps.

Manual start GQSPI_CFG GEN_FIFO_START_
MODE 0x100 29 1

Wait until the FIFO empty flag is false.

Disable device GQSPI_En GQSPI_EN 0x114 0 0

Table 24‐28: Generic Quad-SPI Polled Transfer (Cont’d)

Task Register Register Field Register
Offset

Bits Value

Table 24‐29: Generic Quad-SPI Flash Read ID

Task Register Register Field Register Offset Bits Value

Fill the write buffer with a READ_ID command (9Fh) and all required parameters like SPI bus width, mode.
If polled mode, perform steps mentioned in generic Quad-SPI polled transfer (Table 24-28).
If interrupt mode perform steps mentioned in generic Quad-SPI interrupt transfer (Table 24-27).

Table 24‐30: Generic Quad-SPI Flash Erase

Task

Select slave by writing appropriate values to GQSPI_GEN_FIFO.
For bulk erase:

Fill the write buffer with a write enable command (06h).
Perform a generic Quad-SPI polled transfer for polled mode.
Perform a generic Quad-SPI interrupt transfer for interrupt mode.
Fill the write buffer with the bulk erase command (C7h).
Perform a generic Quad-SPI polled transfer for polled mode.
Perform a generic Quad-SPI interrupt transfer for interrupt mode.
Perform the following steps until the flash status becomes 1.
Fill the write buffer with the read status command (05h).
Perform a generic Quad-SPI polled transfer for polled mode.
Perform a generic Quad-SPI interrupt transfer for interrupt mode.
For die erase:

Fill the write buffer with the write enable command (06h).
Perform a generic Quad-SPI polled transfer for polled mode.
Perform a generic Quad-SPI interrupt transfer for interrupt mode.
Fill the write buffer with the die erase command (C4h).
Perform a generic Quad-SPI polled transfer for polled mode.
Perform a generic Quad-SPI interrupt transfer for interrupt mode.
Perform the following steps until flash status becomes 1.
Fill the write buffer with the read status command (05h).
Zynq UltraScale+ Device TRM 714
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=714

Chapter 24: Quad-SPI Controllers
Perform a generic Quad-SPI polled transfer for polled mode.
Perform a generic Quad-SPI interrupt transfer for interrupt mode.

Table 24‐30: Generic Quad-SPI Flash Erase (Cont’d)

Task

Table 24‐31: Generic Quad-SPI Flash Write

Task

Select slave by writing the appropriate values to GQSPI_GEN_FIFO.
For flash write:

Fill the write buffer with the write enable command (06h).
Perform a generic Quad-SPI polled transfer for polled mode.
Perform a generic Quad-SPI interrupt transfer for interrupt mode.
Fill the write buffer with a write command (2 or 12h).
Perform a generic Quad-SPI polled transfer for polled mode.
Perform a generic Quad-SPI interrupt transfer for interrupt mode.
Perform the following steps until flash status becomes 1.
Fill the write buffer with the read status command (05h).
Perform a generic Quad-SPI polled transfer for polled mode.
Perform a generic Quad-SPI interrupt transfer for interrupt mode.
Select slave by writing the appropriate values to GQSPI_GEN_FIFO.
For flash read:

Fill the write buffer with a write command (6Bh or 6Ch).
Perform a generic Quad-SPI polled transfer for polled mode.
Perform a generic Quad-SPI interrupt transfer for interrupt mode.
Zynq UltraScale+ Device TRM 715
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=715

Chapter 24: Quad-SPI Controllers
Legacy Quad-SPI Controller Programming
The legacy Quad-SPI controller is programmed to provide a linearly addressable memory
space for reads and writes done by system masters with access provided via the XPPU
protection unit.

Linear Addressing Mode (Memory Reads)

The sequence of operations for data reads in linear addressing mode is as follows:

1. Set manual start enable to auto mode. Set qspi.Config[Man_start_en] = 0.
2. Assert the chip select. Set qspi.Config[PCS] = 0.
3. Program the configuration register for linear addressing mode. The supported read

command codes and the recommended configuration register settings
(qspi.LQSPI_CFG) are listed in Table 24-6.

4. Enable the controller. Set qspi.Enable[SPI_EN] = 1.
5. Read data from the linear address memory region. The memory range depends on

the size and number of devices. The range is from 0xC000_0000 to 0xDFFF_FFFF.
6. Disable the controller. Set qspi.Enable[SPI_EN] = 0.
7. De-assert chip select. Set qspi.Config[PCS] = 1.
Zynq UltraScale+ Device TRM 716
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=716

Chapter 24: Quad-SPI Controllers
MIO Signals
The Quad-SPI flash memory signals are routed through the MIO multiplexer to the MIO
device pins. The sides of the dual controller port can be individually enabled or can operate
together as an 8-bit I/O interface. The Quad-SPI flash memory signals are routed to the MIO
pins as listed in Table 24-32.

Table 24‐32: Quad-SPI Flash Interface Signals

Quad-SPI Flash Memory
Interface

MIO Pin
Controller

Default Input
Value

Data Mode
Quad-SPI0

(lower)
Quad-SPI1

(upper)
I/O Name

1-Bit Data
2-Bit
Data

4-Bit
Data

Chip select 5 7 O SS_b ~
Serial clock 0 12 O SCLK ~

Optional feedback clock 6 O LPBK_CLK ~
MOSI I/O 0 I/O 0 4 8 I/O IO[0] 0
MISO I/O 1 I/O 1 1 9 I/O IO[1] 0
Write protect I/O 2 2 10 I/O IO[2] 0

Hold I/O 3 3 11 I/O IO[3] 0
Zynq UltraScale+ Device TRM 717
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=717

Chapter 25

NAND Memory Controller

Introduction
This chapter describes the architecture and features of the Zynq® UltraScale+™ MPSoC
NAND controller. Defining the NAND protocol is outside the scope of this document, and
knowledge of the specifications is assumed.

Features

• ONFI Specification 3.1.
• Up to a 512 Gb device.
• 8-bit I/O width with two chip enable.
• SDR and NV-DDR data interfaces.
• Boot mode support.
• Multi-LUN/DIE operations.
• Full access to spare area.
• Supports SLC flash memory with ECC algorithms:

° Hamming code with 1-bit error correction and 2-bit error detection.

° Bose-Chaudhuri-Hocquenghem (BCH) code with 4-bit, 8-bit, 12-bit, and 24-bit
error correction.

The NAND flash controller configuration and operational registers are programmed via its
AXI slave interface. The block supports the open NAND flash interface working group
(ONFI) standards 1.0, 2.0, 2.1, 2.2, 2.3, 3.0, and 3.1. The controller handles all the command,
address, and data sequences, manages all the hardware protocols, and allows access NAND
flash memory simply by reading or writing into the operational registers. The NAND DMA
controller accesses system memory using its AXI master interface.

See Answer Record 65463 for Xilinx tested and supported NAND devices.
Zynq UltraScale+ Device TRM 718
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/65463.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=718

Chapter 25: NAND Memory Controller
Functional Description
Figure 25-1 shows the NAND flash AXI functional block diagram.

NAND Flash Interface

The NAND flash interface handles all the command, address, and data sequences, and
manages all the hardware protocols for ONFI 1.0, 2.0, 2.1, 2.2, 2.3, 3.0, and 3.1, and provides
an 8-bit interface to the flash memories. The interface supports a maximum of 512 Gb of
NAND flash memory. SDR and NV-DDR data interfaces are supported. Timing modes (0-5)
are supported for both SDR and NV-DDR.

Dual-port RAM

The dual-port RAM block has handshake logic to communicate with the AXI interface and
on the other side communicate with the flash interface. The typical RAM size is 256 x 32 to
support block sizes of 512 bytes. The FIFO depth is configurable.

X-Ref Target - Figure 25-1

Figure 25‐1: NAND Flash AXI Functional Block Diagram

AXI
Master

Interface

AXI
Slave

Interface

Dual-Port
RAM

Control
Registers

NAND
Flash

Interface

ECC

Flash
Memory 0

Flash
Memory 1

AXI Bus
NAND Flash Bus

(8-Bit)

IOP Inbound
Switch

IOP Outbound
Switch

X15446-051818
Zynq UltraScale+ Device TRM 719
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=719

Chapter 25: NAND Memory Controller
ECC

The ECC module provides error detection and correction support for single-level cell (SLC)
flash memory. ECC supports Hamming code with 1-bit error correction, 2-bit error
detection, and BCH code with 4-bit, 8-bit, 12-bit, and 24-bit error detection.

RECOMMENDED: Skip the blank check operation, proceed with writing the data, and verify the written
data by reading it back. This is because the NAND controller does not update the ECC to a spare area
for erase commands. ECC failures can occur when trying to read erased data.

Control Registers

The host processor controls the configuration and operation of the NAND flash controller
through the control registers. Configuration includes the set up time (TCCS, TDQSQ, TDS),
memory configuration (address, page size, packet size, packet count), and timing modes
(SDR and NV-DDR). The control registers also provide operating status such as busy and
data-ready signals.

AXI Interface

The AXI interface provides the system bus interface.

AXI Master Interface

The AXI master interface transfers boot code from the NAND flash memory to the system
memory during system power-up. The NAND flash controller acts as a master during a
memory DMA mode of transaction. When the AXI master interface places control signals on
the AXI bus depends upon the FIFO status. During a write transaction, the AXI master
interface reads data from system memory and stores it in the FIFO. During a read
transaction, the AXI master interface reads data from the FIFO and writes data into system
memory. The AXI master interface asserts a DMA interrupt when the DMA buffer boundary
is reached.

The DMA memory transactions can be routed to the CCI for cache coherency with the APU
or can bypass it. The route is selected by the iou_slcr.IOU_INTERCONNECT_ROUTE [NAND}
bit.
Zynq UltraScale+ Device TRM 720
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=720

Chapter 25: NAND Memory Controller
AXI Slave Interface

The AXI slave block contains the operational registers. A processor connecting to the
custom interface can control the operation of the NAND flash controller through the NAND
flash control registers. The flash memory read/write operations can be performed through
the NAND flash interface.

Address Aliasing

The NAND controller checks only for address bits [31:15] and [7:0], and ignores the address
bits [14:8]. Consequently, addresses assigned to the NAND controller will alias to the 256B
register address space.

Register Overview
Table 25-1 lists the NAND memory controller registers and the sequence of NAND flash
devices.

Table 25‐1: Register Address Mapping for NAND Flash Controller

Register Type Register Name Description

Packet control register Packet_Register Packet register allows control of packet
count and size.

Memory bank register Memory_Address_Register1 32-bit argument points to the flash
memory area.

Memory bank register Memory_Address_Register2 Memory address register 2.
NAND command register Command_Register Command register to configure DMA

transfer and page size.
NAND program register Program_Register Program register.
Interrupt register Interrupt_Status_Enable_Register Interrupt status enable register.
Interrupt register Interrupt_Signal_Enable_Register Interrupt signal enable register.
Interrupt register Interrupt_Status_Register Interrupt status register.
Status register Ready_Busy Ready busy register.
System address register DMA_system_address1_register DMA system address register.
Status register Flash_Status_Register Flash status.
Zynq UltraScale+ Device TRM 721
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=721

Chapter 25: NAND Memory Controller
NAND timing information
register

Timing_Register Sets timing for the NV-DDR mode.
When operating in NV-DDR mode, the
data might be sampled incorrectly
within a FIFO in the controller leading
to a data comparison error. The dqs_in
phase can be shifted by 1-tap (around
500 ps) when meta-stability is
observed using the tap delay register
(Timing_Register[dqs_buff_sel_in])
configuration.

Data port register Buffer_Data_Port_Register NAND flash internal buffer access
register.

ECC register ECC_Register ECC register.
ECC register ECC_Error_Count_Register ECC error count register.
ECC register ECC_Spare_Command_Register ECC spare command register.
Error status register Error_count_1bit_register Error count 1-bit register.
Error status register Error_count_2bit_register Error count 2-bit register.
Error status register Error_count_3bit_register Error count 3-bit register.
Error status register Error_count_4bit_register Error count 4-bit register.
System address register DMA_system_address0_register DMA system address register.
DMA register DMA_buffer_boundary_register DMA buffer boundary register.
CPU release register CPU_Release_Register CPU release register.
Error status register Error_count_5bit_register Error count 5-bit register.
Error status register Error_count_6bit_register Error count 6-bit register.
Error status register Error_count_7bit_register Error count 7-bit register.
Error status register Error_count_8bit_register Error count 8-bit register.
NAND data interface
register

Data_interface_register Sets SDR mode and NV-DDR mode.

Table 25‐1: Register Address Mapping for NAND Flash Controller (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 722
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=722

Chapter 25: NAND Memory Controller
Clocks and Resets
The controller and I/O interface are driven by the reference clock (NAND_REF_CTRL). The
controller's interconnect also requires an APB interface clock (LSBUS clock). Both of these
clocks always come from the PS clock subsystem.

LSBUS Clock

The LSBUS clock runs asynchronous to the NAND reference clock.

Reference Clock

The reference clock can be generated based on the generic clocking diagram shown in
Figure 37-4.

The input clock source can be selected based on the crl_apb. NAND_REF_CTRL [srcsel] bits,
where the source can be from the RPLL, IOPLL, or DPLL. The crl_apb. NAND_REF_CTRL
[divisor0] register selects the 6-bit programmable divider 0. The crl_apb. NAND_REF_CTRL
[divisor1] register selects the 6-bit programmable divider 1. The crl_apb. NAND_REF_CTRL
[clkact] bit selects whether the clock should be gated or enabled.

Resets

The controller reset bits are generated by the PS, Chapter 38, Reset System.

I/O Signal Pins
The NAND flash memory signals are routed to the MIO pins as listed in Table 25-2.

Table 25‐2: NAND Interface Signals

NAND Signals

MIO Pins

I/O Signal Name Default Value

O
p

ti
o

n
 1

O
p

ti
o

n
 2

Chip enable 1 9 26 O NFC_CE[1] -
Ready/busy 0 10 27 I NFC_RB_n[0] 0
Ready/busy 1 11 28 I NFC_RB_n[1] 0
Data strobe 12 32 I/O NFC_DQS_OUT -
Chip enable 0 13 13 O NFC_CE[0] -
Command latch enable 14 14 O NFC_CLE -
Zynq UltraScale+ Device TRM 723
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=723

Chapter 25: NAND Memory Controller
Figure 25-2 shows a block diagram of a single NAND flash memory connected to the NAND
controller.

Address latch enable 15 15 O NFC_ALE -
Data/address/CMD 0 16 16 I/O NFC_DQ_OUT[0] 0
Data/address/CMD 1 17 17 I/O NFC_DQ_OUT[1] 0
Data/address/CMD 2 18 18 I/O NFC_DQ_OUT[2] 0
Data/address/CMD 3 19 19 I/O NFC_DQ_OUT[3] 0
Data/address/CMD 4 20 20 I/O NFC_DQ_OUT[4] 0
Data/address/CMD 5 21 21 I/O NFC_DQ_OUT[5] 0
Write enable 22 22 O NFC_WE_B -
Data/address/CMD 6 23 23 I/O NFC_DQ_OUT[6] 0
Data/address/CMD 7 24 24 I/O NFC_DQ_OUT[7] 0
Read enable 25 25 O NFC_RE_n -

Table 25‐2: NAND Interface Signals (Cont’d)

NAND Signals

MIO Pins

I/O Signal Name Default Value

O
p

ti
o

n
 1

O
p

ti
o

n
 2

X-Ref Target - Figure 25-2

Figure 25‐2: Single NAND Device Wiring Diagram

X24651-09292

GPIO

NAND
Controller

NAND Flash

NFC_DQ_OUT[7:0]

NFC_DQS_OUT

NFC_RE_n

NFC_WE_B

NFC_CLE

NFC_ALE

NFC_CE[0]

NFC_RB_n[0]

DQ_[7:0]

DQS

RE_n

ALE

CE

Rb_n

WE_B

CLE

WPn
Zynq UltraScale+ Device TRM 724
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=724

Chapter 25: NAND Memory Controller
Figure 25-3 shows a block diagram of two NAND flash memories connected to the NAND
controller.
X-Ref Target - Figure 25-3

Figure 25‐3: Two NAND Flash Device Wiring Diagram

NAND
Controller

NAND Flash

DQ_[7:0]

DQS

RE_n

WE_B

CLE

ALE

CE

RB_n

WPn

NAND Flash

DQ_[7:0]

DQS

RE_n

WE_B

CLE

ALE

CE

RB_n

WPn

NFC_DQ_OUT[7:0]

NFC_DQS_OUT

NFC_RE_n

NFC_WE_B

NFC_CLE

NFC_ALE

NFC_CE[0]

NFC_RB_n[0]

NFC_CE[1]

NFC_RB_n[1]

GPIO

X21063-090420
Zynq UltraScale+ Device TRM 725
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=725

Chapter 25: NAND Memory Controller
Programming Model

Flash Initialization

Table 25‐3: Flash Initialization Program Steps

Task Register
Register

Field
Register
Offset

Bits
Value

(Binary)

Clear data interface
register Data_interface_register All 0x06C 10:0 0x00

Clear DMA buffer
boundary register DMA_buffer_boundary_register All 0x054 3:0 0x00

Perform the following operations for all targets.
Reset the device (see Reset the Target Device (ONFI Reset).
Read ONFI ID (see Read ONFI ID).
Verify ONFI ID.
Read mandatory parameter pages (three are mandatory) and perform the following three steps three times.
If first parameter:
• Read parameter page (see Read ONFI Parameters Page).
• Else change read column (see Change Read Column).
• Check CRC.
If first target, fill the geometry.
Zynq UltraScale+ Device TRM 726
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=726

Chapter 25: NAND Memory Controller
Reset the Target Device (ONFI Reset)

Table 25‐4: Reset Target Device Program Steps

Task Register Register Field
Register
Offset Bits Value (Binary)

Enable transfer
complete interrupt. Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'1

Program command
register with reset
command (0xFF),
no ECC, and no
DMA.

Command_Register All 0x0C 31:0 0x0000FF00

TRAINING: Select
the device.

Memory_Address_Register2 Chip_Select 0x08 31:30 Targets chip
select value.

Set reset. Program_Register Reset 0x10 8 1b'1

Poll for transfer
complete event. Interrupt_Status_Register trans_comp_reg 0x1C 2

Wait until
transfer is
completed or
wait time is
over.

Clear the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'0

Clear the transmit
complete flag after
transfer completed.

Interrupt_Status_Register trans_comp_reg 0x1C 2 1b'1
Zynq UltraScale+ Device TRM 727
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=727

Chapter 25: NAND Memory Controller
Read ONFI ID

Table 25‐5: Read ONFI ID Program Steps

Task Register Register Field
Register
Offset Bits

Value
(Binary)

Enable buffer read
ready interrupt. Interrupt_Status_Enable_Register buff_rd_rdy_sts_en 0x014 1 1b'1

Program ONFI read
ID command (0x90)
with no ECC, no
DMA, and one
address cycles.

Command_Register All 0x0C 31:0 0x01000090

Program column, page, and block address (next two steps).

Program memory
address register 1. Memory_Address_Register1 All 0x04 31:0

• Program
block
address in
bits 31:25.

• Program
page
address in
bits 22:16.

• Program
column
address in
bits 12:0.

Program memory
address register 2. Memory_Address_Register2 All 0x008 31:0

Write
required
values for
memory
address.

Select the device. Memory_Address_Register2 Chip_Select 0x08 31:30 Targets chip
select value.

Select packet size
and count. Packet_Register Packet_count |

packet_size 0x00 23:0
Required
packet size
and count.

Set read ID program
register. Program_Register Read_ID 0x10 6 1b'1

Poll for buffer read
ready event. Interrupt_Status_Register buff_rd_rdy_reg 0x1C 1

Wait until bit
is set or wait
time is over.

Enable the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'1

Clear buffer read
ready interrupt. Interrupt_Status_Register buff_rd_rdy_reg 0x1C 1 1b'1
Zynq UltraScale+ Device TRM 728
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=728

Chapter 25: NAND Memory Controller
Read ONFI Parameters Page

Read packet data. Buffer_Data_Port_Register Data_Port_Register 0x030 31:0
Read until all
data is
received.

Poll for transfer
complete event. Interrupt_Status_Register trans_comp_reg 0x1C 2

Wait until
transfer is
completed or
wait time is
over.

Clear the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'0

Clear the transmit
complete flag after
transfer completed.

Interrupt_Status_Register trans_comp_reg 0x1C 2 1b'1

Table 25‐5: Read ONFI ID Program Steps (Cont’d)

Task Register Register Field Register
Offset

Bits Value
(Binary)

Table 25‐6: Read ONFI Parameters Page

Task Register Register Field
Register
Offset Bits Value (Binary)

Enable buffer
read ready
interrupt.

Interrupt_Status_Enable_Register buff_rd_rdy_sts_en 0x014 1 1b'1

Program read
parameter
page
command
(0xEC) with no
ECC, no DMA,
and one
address cycle.

Command_Register All 0x0C 31:0 0x010000EC

Program column, page, and block address (next two steps).

Program
memory
address
register 1.

Memory_Address_Register1 All 0x04 31:0

• Program block
address in bits
31:25.

• Program page
address in bits
22:16.

• Program
column address
in 12:0 bits.
Zynq UltraScale+ Device TRM 729
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=729

Chapter 25: NAND Memory Controller
Program
memory
address
register 2.

Memory_Address_Register2 All 0x008 31:0
Write required
values for memory
address.

Select the
device. Memory_Address_Register2 Chip_Select 0x08 31:30 Targets chip select

value.
Select packet
size and count
(256).

Packet_Register Packet_count |
packet_size 0x00 23:0 Required packet

size and count.

Set read
parameter
page in
program
register.

Program_Register Read_Parameter_Page 0x10 7 1b'1

Poll for buffer
read ready
event.

Interrupt_Status_Register buff_rd_rdy_reg 0x1C 1 Wait until bit is set
or wait time over.

Enable the
transmit
complete
interrupt after
transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'1

Clear buffer
read ready
interrupt.

Interrupt_Status_Register buff_rd_rdy_reg 0x1C 1 1b'1

Read packet
data. Buffer_Data_Port_Register Data_Port_Register 0x030 31:0 Read until all data

received.
Poll for transfer
complete
event.

Interrupt_Status_Register trans_comp_reg 0x1C 2
Wait until transfer
is completed or
wait time is over.

Clear the
transmit
complete
interrupt after
transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'0

Clear the
transmit
complete flag
after transfer
completed.

Interrupt_Status_Register trans_comp_reg 0x1C 2 1b'1

Table 25‐6: Read ONFI Parameters Page (Cont’d)

Task Register Register Field Register
Offset

Bits Value (Binary)
Zynq UltraScale+ Device TRM 730
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=730

Chapter 25: NAND Memory Controller
Change Read Column

Table 25‐7: Change Read Column

Task Register Register Field
Register
Offset Bits

Value
(Binary)

If DMA is enabled,
enable DMA
boundary interrupt.

Interrupt_Status_Enable_Register dma_int_sts_en |
trans_comp_sts_en 0x014 6 and 2 0x44

(hex)

Else enable buffer
read ready
interrupt.

Interrupt_Status_Enable_Register buff_rd_rdy_sts_en 0x014 1 1b'1

Program change
read column
command (0x05)
with no ECC, DMA,
and address cycles.

Command_Register All 0x0C 31:0

Program
0x05 with
required
DMA mode
and address
cycles.

Set page size. Command_Register page_size 0x0C 25:23

3'd0: 512B
3'd1: 2 KB
3'd2: 4 KB
3'd3: 8 KB
3'd4: 16 KB
3'd5: 1 KB
0x16 bit
flash
support
6-7 - RES

Program column, page, and block address (next two steps).

Program memory
address register 1. Memory_Address_Register1 All 0x04 31:0

• Program
block
address
in bits
31:25.

• Program
page
address
in bits
22:16

• Program
column
address
in bits
12:0.

Program memory
address register 2. Memory_Address_Register2 All 0x008 31:0

Write
required
values for
memory
address.
Zynq UltraScale+ Device TRM 731
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=731

Chapter 25: NAND Memory Controller
Select packet size
and count. Packet_Register Packet_count |

packet_size 0x00 23:0
Required
packet size
and count.

If DMA enabled, program DMA system address and buffer boundary (following three steps).
Invalidate the data cache.
For 64-bit
architecture,
program higher
address word.

DMA_system_address1_register DMA_system_
address1_register 0x024 31:0

Program
higher
address
word.

Program lower
address word. DMA_system_address0_register DMA_system_

address0_register 0x50 31:0
Program
lower
address
word.

Select the device. Memory_Address_Register2 Chip_Select 0x08 31:30 Targets chip
select value.

Set read command
in program register. Program_Register Read 0x10 0 1b'1

For non-DMA mode, perform following steps until all packets received (next six steps).

Poll for buffer read
ready event. Interrupt_Status_Register buff_rd_rdy_reg 0x1C 1

Wait until
bit is set or
wait time is
over.

If buffer read ready
events are equal to
packet count, then
enable the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'1

Else, clear buffer
read ready
interrupt in status
enable register.

Interrupt_Status_Register buff_rd_rdy_reg 0x14 1 1b'0

Clear buffer read
ready interrupt. Interrupt_Status_Register buff_rd_rdy_reg 0x1C 1 1b'1

Read packet data. Buffer_Data_Port_Register Data_Port_Register 0x030 31:0
Read until
all data
received.

Table 25‐7: Change Read Column (Cont’d)

Task Register Register Field Register
Offset

Bits Value
(Binary)
Zynq UltraScale+ Device TRM 732
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=732

Chapter 25: NAND Memory Controller
XNandPsu_SetEccAddrSize

If buffer read ready
events are less than
packet count, then
enable buffer read
ready interrupts
and start next
iteration, else break
the loop here.

Interrupt_Status_Enable_Register buff_rd_rdy_sts_en 0x014 1 1b'1

Poll for transfer
complete event. Interrupt_Status_Register trans_comp_reg 0x1C 2

Wait until
transfer is
completed
or wait time
is over.

Clear the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'0

Clear the transmit
complete flag after
transfer completed.

Interrupt_Status_Register trans_comp_reg 0x1C 2 1b'1

Table 25‐7: Change Read Column (Cont’d)

Task Register Register Field Register
Offset

Bits Value
(Binary)

Table 25‐8: XNandPsu_SetEccAddrSize

Task Register Register Field
Register
Offset

Bits Value (Binary)

Calculate and write
ECC_Addr, ECC_Size
and Slc_Mlc values
and program into ECC
register.

ECC_Register All 0x034 27:0
Refer to the
register set
definitions.

Program BCH mode
in memory address
register 2.

Memory_Address_Register2 nfc_bch_mode 0x008 27:25

3'b001: 12-bit
ECC
3'b010: 8-bit
ECC
3'b011: 4-bit
ECC
3'b100: 24-bit
ECC
Zynq UltraScale+ Device TRM 733
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=733

Chapter 25: NAND Memory Controller
Erase Block

Table 25‐9: Erase Block

Task Register Register Field
Register
Offset Bits Value (Binary)

Enable transfer
complete interrupt. Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'1

Program command
for block erase
(0xD060).

Command_Register All 0x0C 31:0

Program
0xD060 with
required DMA
mode and
address cycles.

Program column, page, and block address (next two steps).

Program memory
address register 1. Memory_Address_Register1 All 0x04 31:0

• Program block
address in bits
31:25.

• Program page
address in bits
22:16.

• Program
column
address in bits
12:0.

Program memory
address register 2. Memory_Address_Register2 All 0x008 31:0

Write required
values for
memory
address.

Select the device. Memory_Address_Register2 Chip_Select 0x08 31:0 Targets chip
select value.

Set block erase in
program register. Program_Register Block_Erase 0x10 2 1b'1

Poll for transfer
complete event. Interrupt_Status_Register trans_comp_reg 0x1C 2

Wait until
transfer is
completed or
wait time is over.

Clear the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'0

Clear the transmit
complete flag after
transfer completed.

Interrupt_Status_Register trans_comp_reg 0x1C 2 1b'1
Zynq UltraScale+ Device TRM 734
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=734

Chapter 25: NAND Memory Controller
Read Status

Table 25‐10: Read Status

Task Register Register Field
Register
Offset Bits Value (Binary)

Enable transfer
complete interrupt. Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'1

Program command
for read status
(0x70).

Command_Register All 0x0C 31:0 0x00000070

Select the device. Memory_Address_Register2 Chip_Select 0x08 31:30 Targets chip
select value.

Program packet size
and packet count. Packet_Register Packet_count |

packet_size 0x00 23:0
Required
packet size
and count.

Set status in
program register. Program_Register Read_Status 0x10 3 1b'1

Poll for transfer
complete event. Interrupt_Status_Register trans_comp_reg 0x1C 2

Wait until
transfer is
completed or
wait time is
over.

Clear the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'0

Clear the transmit
complete flag after
transfer completed.

Interrupt_Status_Register trans_comp_reg 0x1C 2 1b'1

Read flash status
register. Flash_Status_Register Flash_Status 0x28 15:0 Read

operation.
Zynq UltraScale+ Device TRM 735
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=735

Chapter 25: NAND Memory Controller
Program Page

Table 25‐11: Program Page

Task Register Register Field
Register
Offset Bits

Value
(Binary)

Program command
for page
programming
(0x1080) with ECC,
DMA enabled.

Command_Register All 0x0C 31:0

Program the
command
with
required
address
cycles.

If DMA is enabled,
enable DMA
boundary interrupt.

Interrupt_Status_Enable_Register dma_int_sts_en |
trans_comp_sts_en 0x014

6 and
2 0x44 (hex)

Else enable buffer
write ready interrupt. Interrupt_Status_Enable_Register buff_wr_rdy_sts_en 0x014 0 1b'1

Set page size. Command_Register page_size 0x0C 25:23

3'd0: 512B
3'd1: 2 KB
3'd2: 4 KB
3'd3: 8 KB
3'd4: 16 KB
3'd5: 1 KB
0x16 bit
flash
support
6-7 - RES

Select packet size
and count. Packet_Register Packet_count |

packet_size 0x00 23:0
Required
packet size
and count.

If DMA enabled, program DMA system address and buffer boundary (following three steps).
Invalidate the data cache.
For 64-bit
architecture,
program higher
address word.

DMA_system_address1_register DMA_system_
address1_register 0x024 31:0

Program
higher
address
word.

Program lower
address word. DMA_system_address0_register DMA_system_

address0_register 0x50 31:0
Program
lower
address
word.
Zynq UltraScale+ Device TRM 736
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=736

Chapter 25: NAND Memory Controller
Program column, page, and block address (next two steps).

Program memory
address register 1. Memory_Address_Register1 All 0x04 31:0

• Program
block
address in
bits 31:25.

• Program
page
address in
bits 22:16.

• Program
column
address in
bits 12:0.

Program memory
address register 2. Memory_Address_Register2 All 0x008 31:0

Write
required
values for
memory
address.

Select the device. Memory_Address_Register2 Chip_Select 0x08 31:30 Targets chip
select value.

Set ECC spare
command (0X85) if
hardware ECC
enabled.

ECC_Spare_Command_Register
Number_of_ECC_
and_Spare_Address_
cycles |
ECC_Spare_cmd

0x3c 30:0

0X85 for
spare
command
and required
address
cycles.

Set page program in
program register. Program_Register Page_Program 0x10 4 1b'1

For non-DMA mode, perform following steps until all packets received (next six steps).

Poll for buffer write
ready event. Interrupt_Status_Register buff_wr_rdy_reg 0x1C 0

Wait until bit
is set or wait
time is over.

If buffer write ready
events are equal to
packet count, then
enable the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'1

Else, clear buffer
write ready interrupt
in status enable
register.

Interrupt_Status_Register buff_wr_rdy_sts_en 0x14 0 1b'0

Clear buffer write
ready interrupt. Interrupt_Status_Register buff_wr_rdy_reg 0x1C 0 1b'1

Table 25‐11: Program Page (Cont’d)

Task Register Register Field Register
Offset

Bits Value
(Binary)
Zynq UltraScale+ Device TRM 737
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=737

Chapter 25: NAND Memory Controller
Read Page

Write packet data. Buffer_Data_Port_Register Data_Port_Register 0x030 31:0 Write until
all data over.

If buffer write ready
events are less than
packet count, then
enable buffer write
ready interrupts and
start next iteration
else break the loop
here.

Interrupt_Status_Enable_Register buff_wr_rdy_sts_en 0x014 0 1b'1

Poll for transfer
complete event. Interrupt_Status_Register trans_comp_reg 0x1C 2

Wait until
transfer is
completed
or wait time
is over.

Clear the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'0

Clear the transmit
complete flag after
transfer completed.

Interrupt_Status_Register trans_comp_reg 0x1C 2 1b'1

Table 25‐11: Program Page (Cont’d)

Task Register Register Field Register
Offset

Bits Value
(Binary)

Table 25‐12: Read Page

Task Register Register Field Register
Offset

Bits Value
(Binary)

Program
command for read
page (0x3000)
with ECC, DMA
enabled.

Command_Register All 0x0C 31:0

Program the
command
with required
address
cycles.

If DMA is enabled,
enable DMA
boundary
interrupt.

Interrupt_Status_Enable_Register dma_int_sts_en |
trans_comp_sts_en 0x014

6 and
2 0x44 (hex)

Else enable buffer
read ready
interrupt.

Interrupt_Status_Enable_Register buff_rd_rdy_sts_en 0x014 1 1b'1

Enable single bit
error and multi-bit
error if hardware
ECC is enabled.

Interrupt_Status_Enable_Register err_intrpt_sts_en |
mul_bit_err_sts_en 0x014 4:3 2b'3
Zynq UltraScale+ Device TRM 738
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=738

Chapter 25: NAND Memory Controller
Set page size. Command_Register page_size 0x0C 25:23

3'd0 - 512B
3'd1 - 2 KB
3'd2 - 4 KB
3'd3 - 8 KB
3'd4 - 16 KB
3'd5 - 1 KB
0x16 bit
flash support
6-7 - RES

Program column, page, and block address (next two steps).

Program memory
address register 1. Memory_Address_Register1 All 0x04 31:0

• Program
block
address in
bits 31:25.

• Program
page
address in
bits 22:16.

• Program
column
address in
bits 12:0.

Program memory
address register 2. Memory_Address_Register2 All 0x008 31:0

Write
required
values for
memory
address.

Select packet size
and count. Packet_Register Packet_count |

packet_size 0x00 23:0
Required
packet size
and count.

If DMA enabled, program DMA system address and buffer boundary (following three steps).
Invalidate the data cache.
For 64-bit
architecture,
program higher
address word.

DMA_system_address1_register DMA_system_address1
_register 0x024 31:0

Program
higher
address
word.

Program lower
address word. DMA_system_address0_register DMA_system_address0

_register 0x50 31:0
Program
lower
address
word.

Select the device. Memory_Address_Register2 Chip_Select 0x08 31:30 Targets chip
select value.

Table 25‐12: Read Page (Cont’d)

Task Register Register Field Register
Offset

Bits Value
(Binary)
Zynq UltraScale+ Device TRM 739
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=739

Chapter 25: NAND Memory Controller
Set ECC spare
command (0X85)
if hardware ECC
enabled.

ECC_Spare_Command_Register
Number_of_ECC_and_
Spare_Address_cycles |

ECC_Spare_cmd
0x3c 30:0

0X85 for
spare
command
and required
address
cycles.

Set page program
in program
register.

Program_Register Read 0x10 0 1b'1

For non-DMA Mode, perform following steps until all packets received (next six steps).

Poll for buffer read
ready event. Interrupt_Status_Register buff_rd_rdy_reg 0x1C 1

Wait until bit
is set or wait
time is over.

If buffer read
ready events are
equal to packet
count, then enable
the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'1

Else, clear buffer
read ready
interrupt in status
enable register.

Interrupt_Status_Register buff_rd_rdy_sts_en 0x14 1 1b'0

Clear buffer read
ready interrupt. Interrupt_Status_Register buff_rd_rdy_reg 0x1C 1 1b'1

Read packet data. Buffer_Data_Port_Register Data_Port_Register 0x030 31:0
Read until all
data
received.

If buffer read
ready events are
less than packet
count, then enable
buffer read ready
interrupt and start
next iteration else
break the loop
here.

Interrupt_Status_Enable_Register buff_rd_rdy_sts_en 0x014 1 1b'1

Poll for transfer
complete event. Interrupt_Status_Register trans_comp_reg 0x1C 2

Wait until
transfer is
completed or
wait time is
over.

Table 25‐12: Read Page (Cont’d)

Task Register Register Field Register
Offset

Bits Value
(Binary)
Zynq UltraScale+ Device TRM 740
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=740

Chapter 25: NAND Memory Controller
Change Timing Mode for SDR and NV-DDR

Clear the transmit
complete interrupt
after transfer
completed.

Interrupt_Status_Enable_Register trans_comp_sts_en 0x014 2 1b'0

Clear the transmit
complete flag after
transfer
completed.

Interrupt_Status_Register trans_comp_reg 0x1C 2 1b'1

If hardware ECC mode is enabled, check for ECC errors.
Hamming multi-bit errors
Read interrupt
status. Interrupt_Status_Register mul_bit_err_reg 0x1C 3 Read

If multi-bit error
bit set, clear the
status.

Interrupt_Status_Register mul_bit_err_reg 0x1C 3 1b'1

Read ECC error
count. ECC_Error_Count_Register Page_bound_Err_count 0x38 16:8 Read

Hamming single-bit or BCH errors
Read interrupt
status. Interrupt_Status_Register err_intrpt_reg 0x1C 4 Read

If multi-bit error
bit set, clear the
status.

Interrupt_Status_Register err_intrpt_reg 0x1C 4 1b'1

Read ECC error
count. ECC_Error_Count_Register Page_bound_Err_count 0x38 16:8 Read

Table 25‐12: Read Page (Cont’d)

Task Register Register Field Register
Offset

Bits Value
(Binary)

Table 25‐13: Change Timing Mode for SDR and NV-DDR

Task Register Register Field Register
Offset

Bits Value
(Binary)

If the interface is NV-DDR, program the ONFI set feature with the data interface and timing values
for all targets.
If the interface is SDR:
• Change clock frequency with SDR CLK 100 MHz.
• Update the new data interface and timing mode values in the data interface register.
Reset all targets (refer to Reset the Target Device (ONFI Reset))
Set feature with new modes (ONFI Set Feature)
Zynq UltraScale+ Device TRM 741
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=741

Chapter 25: NAND Memory Controller
ONFI Set Feature

Table 25‐14: ONFI Set Feature

Task Register Register Field
Register
Offset Bits Value (Binary)

Mask all bits in
interrupt status
enable register.

Interrupt_Status_Enab
le_Register

ALL 0x14 All 0x00000000

Enable buffer
write ready
interrupt.

Interrupt_Status_Enab
le_Register

Bit 0 0x14 1 1b'1

Write command
into command
register.

Command_Register Number_of_Address_
cycles |

0x0c All 0x110000EF
(HEX)

Program page,
column, and block
address.

Memory_Address_Reg
ister1

All 0x04 All Memory
address

Memory_Address_Reg
ister2

All 0x08 All Memory
address and
modes

Program packet
size and packet
count.

Packet_Register All 0x00 All Packet count
and size

Set read
parameter page.

Program_Register Set_Features 0x10 10 1b'1

Write feature to NAND memory.
Zynq UltraScale+ Device TRM 742
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=742

Chapter 26

SD/SDIO/eMMC Controller

Introduction
The two SD controllers have the same feature set and can be operated independently. The
controller communicates with SDIO devices, SD memory cards, and eMMC cards with up to
eight data lines. In SD mode, data transfers in 1-bit and 4-bit modes. In eMMC mode, data
transfers in 1-bit, 4-bit, and 8-bit modes. The interface can be routed through the MIO
multiplexer to the MIO pins or through the EMIO to the SelectIO pin in the PL.

The controller is accessed by the APU and RPU via the AXI bus. The controller also includes
a DMA unit with an internal FIFO to meet throughput requirements.

Features

The controller is compatible with:

• SD host controller standard specification version 3.00.
• SD memory card specification version 3.01.
• SD memory card security specification version 1.01.
• SDIO card specification version 3.0.
• eMMC specification version 4.51.
• MMC specification version 4.51.

System/Host Interfaces

• AXI master, DMA interface.
• AXI slave, PIO data transfers.
• APB slave, register accesses.
Zynq UltraScale+ Device TRM 743
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=743

Chapter 26: SD/SDIO/eMMC Controller
SD/SDIO Card Interface

• Operating mode with maximum clock rate:

° Standard mode (19 MHz)

° High-speed mode (50 MHz)

° SDR12 (25 MHz)

° SDR25 (50 MHz)

° SDR50 (100 MHz)

° SDR104 (200 MHz)

° DDR50 mode (50 MHz)
• Up to 800 Mb/s data rate using four parallel data lines (SDR104 mode).
• Cyclic redundancy check CRC7 for command and CRC16 for data integrity.
• Variable-length data transfers.
• Performs read wait control, suspend/resume operation SDIO card.
• Designed to work with I/O cards, read-only cards, and read/write cards.
• Supports read wait control, suspend/resume operation.

eMMC Card Interface

• Operating mode with maximum clock rate:

° Standard mode (25 MHz)

° High-speed SDR mode (50 MHz)

° High-Speed DDR mode (50 MHz)

° HS200 mode (200 MHz)
• Up to 1660 Mb/s data rate using 8-bit parallel data lines (HS200 mode).
• Cyclic redundancy check CRC7 for command and CRC16 for data integrity.
• Card detection (insertion/removal).

FIFO Buffer

• Configurable (minimum one block size) FIFO used to aid data transfer between the CPU
and the controller.

• Handle the FIFO overrun and underrun condition by stopping the SD clock.
Zynq UltraScale+ Device TRM 744
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=744

Chapter 26: SD/SDIO/eMMC Controller
Speed Modes

The SD card speed modes are listed in Table 26-1. The eMMC speed modes are listed in
Table 26-2.

Table 26‐1: SD Card Speed Modes(1)

SD Speed Mode Data Rate Bus Width
SD_CLK

Frequency
in MHz

Throughput
in MB/s

SD Interface
Voltage

I/O Interface
Support

Default speed(2) Single 1, 4 25 12.5 3.3V MIO and EMIO
High speed Single 1, 4 50 25 3.3V MIO
SDR12 Single 4 25 12.5 1.8V MIO and EMIO
SDR25 Single 4 50 25 1.8V MIO
DDR50 Double 4 50 50 1.8V MIO
SDR50 Single 4 100 50 1.8V MIO
SDR104 Single 4 200 100 1.8V MIO

Notes:
1. SD line selection is based on the SD 2.0 or 3.0 compliance. Refer to the Zynq UltraScale+ MPSoC Processing System Product

Guide (PG201) [Ref 5].
2. In the SD default speed mode with level shifter, the maximum frequency (FMAX) is 19 MHz.

Table 26‐2: eMMC Speed Modes

eMMC Speed Mode Data Rate Bus Width
Frequency

in MHz
Throughput

in MB/s Voltage
MIO/EMIO

Support

Legacy MMC speed(1)(2) Single 1, 4, 8 25 25 3.3V and 1.8V MIO and EMIO
High-speed SDR Single 4, 8 50 50 3.3V and 1.8V MIO
High-speed DDR Double 4, 8 50 100 3.3V and 1.8V MIO
HS200 Single 4, 8 200 200 1.8V MIO

Notes:
1. Legacy MMC speed relates to default eMMC speed.
2. The default eMMC boots in legacy MMC speed mode only. Your application must switch to the high-speed modes.
Zynq UltraScale+ Device TRM 745
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=745

Chapter 26: SD/SDIO/eMMC Controller
Functional Description
Figure 26-1 shows the SD/SDIO/eMMC controller block diagram.

Host Interface (Master/Slave)

The host controller interfaces to the system bus using the AXI master and slave interface.

The slave bus is used to access the registers inside the host controller. Also, when operating
in PIO mode, the driver can access the SD data port register through this interface. This is
the PIO method in which the host driver transfers data using the buffer data port register.
The slave bus supports only single transfer access (no burst support). Also, in the case of
the AXI interface, the slave bus supports only one outstanding read/write transaction.

The master bus is used by the DMA controller (when using DMA or ADMA2 modes). The
DMA controller uses the master DMA interfaces to transfer data between the internal buffer
and the system memory and vice versa. The DMA controller also uses the master interface
to fetch the descriptors while operating in ADMA2 mode.

X-Ref Target - Figure 26-1

Figure 26‐1: SD/SDIO/eMMC Controller Block Diagram

AXI
Master

AXI
Slave

PIO/DMA
Controller

Host Control
Register

Set

Block
Buffer
FIFO

(Configurable)

SD
Interface
Controller

TX Clock
Delay

(DLY_BUF/
DLL)

TX
Flip-Flops

RX
Flip-Flops

RX Clock
Delay

(DLY_BUF/
DLL)

SD
TUNING

SD
RECV_CTRL

SD
CMD_CTRL

SD
XMIT_CTRL

SD
TIME_OUT

SD
CARD_DET

SD
CLK_GEN

SD I/O Signal
Interface to MIO

SD Host Controller

IOP Outbound
Switch

IOP Inbound
Switch

X15448-052118
Zynq UltraScale+ Device TRM 746
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=746

Chapter 26: SD/SDIO/eMMC Controller
Register Set

The register set implements the SD host controller specification (version 3.00). The host
controller register set also implements the data port registers for the programmed I/O (PIO)
mode transfers. The register set provides the control signals to the rest of the controller,
monitors the status signals to set the interrupt status bits, and eventually generates
interrupt signal.

The SD/SDIO controller registers are programmed by the processor through the AXI slave
interface. Interrupts are generated to the host processor based on the values set in the
interrupt status register and interrupt enable registers.

The registers are listed in Table 26-12.

PIO/DMA Controller

The PIO/DMA controller implements the SDMA and ADMA2 engines as defined in the SD
host controller specification and maintains the block transfer counts for PIO operation. It
interacts with the registers set and starts the DMA engine when a command with data
transfer is involved. The DMA controller interfaces to the host (AXI) master interface to
generate memory transfers. The DMA controller also interfaces with the block buffer to
store/fetch block data. The DMA controller implements a separate DMA for SDMA
operation and separate DMA for the ADMA2 operation. In addition, it implements a host
transaction generator that generates controls for the host master interface.

The DMA memory transactions can be routed to the CCI for cache coherency with the APU
or bypass it. The route is selected by an iou_slcr.IOU_INTERCONNECT_ROUTE [SDx] bit.

Block Buffer

The dual-port block buffer (read/write on both ports) stores block data during SD transfers.
The size of the block buffer is configurable and must be a minimum of one block size (a
block size is 512 bytes in SD memory and up to 2 KB in SDIO). To achieve maximum
performance, the block buffer must be sized to twice the maximum block size supported by
the corresponding host controller. The block buffer uses a circular buffer architecture. One
side of the block buffer is interfaced with the DMA controller and operates at the host clock
rate while the other side of the block buffer interfaces with the SD control logic and
operates at the SD clock rate. During a write transaction (data transferred from the Arm
APU/RPU to the SD 3.0/SDIO 3.0 card), the data is fetched from the system memory and is
stored in the block buffer. When a block of data is available, the SD control logic transfers
it onto the SD interface. The DMA controller continues to fetch additional blocks of data
when the block buffer has space. During a read transaction (data transferred from an
SD 3.0/SDIO 3.0 card to the APU/RPU), the data from the SD 3.0/SDIO 3.0 card is written
into the block buffer, and at the end when the CRC of the block is valid, the data is
committed. When a block of data is available, the DMA controller transfers this data to the
system memory. The SD control logic meanwhile receives the next block of data, provided
Zynq UltraScale+ Device TRM 747
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=747

Chapter 26: SD/SDIO/eMMC Controller
that there is space in the block buffer. If the controller cannot accept any data from an
SD 3.0/SDIO 3.0/eMMC 4.51 card, then it will issue a read wait (if the card supports a read
wait mechanism) to stop the data transfer from the card or by stopping the clock.

TIP: FIFO depth can be varied by using the dot-parameter instantiation parameter.

Note: When the block buffer size is twice the block size, the block buffer behaves as a ping-pong
buffer.

Card Detect

The SD card detect logic monitors the SD_CD# pin for card insertion/removal events. It
implements debouncing logic to filter false transitions on the SD_CD# pin. The card
insertion and removal events are reported to the SD host register set from which the
interrupt is eventually generated.

Figure 26-2 shows the SDHC card detection.

• The SD host controller card detection uses the SD host control register card detect
signal bit as the selection bit.

• If the SD control register card detection bit is 1'b1, then the card is inserted during
boot time or an eMMC.

• If the SD control register card detection bit is 1'b0, then the SD slot interface is used
to identify the insertion and removal of the card using the MIO pin.

X-Ref Target - Figure 26-2

Figure 26‐2: Card Detection in SDHC

SD Slot

SDHC

sdio_cd_n

1'b0

SD{0,1}_CDn_Ctrl

0

1

S

CDn

X15452-091316
Zynq UltraScale+ Device TRM 748
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=748

Chapter 26: SD/SDIO/eMMC Controller
Timeout Control

The SD timeout control unit implements the timeout check between block transfers. It uses
the contents of the timeout control register to implement timeout between blocks.

The timeout control operates under the control of the transmit control and receive control
units (based on direction). When a timeout is detected, the event is reported to the transmit
control or receive control units.

Command Controller

The SD command control generates the command sequence on the CMD line of the SD
interface for every new command programmed by the software. The command control
controller also implements the response reception and checking the validity of the
response. It uses the response type field to determine the length of the response and the
presence of the CRC7 field. The response is received on the receive clock, which is either the
looped back clock or the tuned clock. After the response is received, the contents of the
response (start bit, command index, CRC7, end bit) are verified and the response status is
written to registers, setting various status bits. The controller also implements a timeout
check on the response reception to make sure that the response is received within the
defined time (5 or 64 clocks based on command type). The received response is stored into
the appropriate bit position in the response register. The SD command controller generates
controls to the SD transmit control and SD receive control based on the transfer direction.
The SD command controller also generates an auto command (AutoCMD12 or AutoCMD23)
when enabled.

SD Transmit Control

The SD transmit control unit is used for writing transfers to transfer data to the card. After
the command is issued, the controller waits for a block of data to be available in the block
buffer and transfers the data onto the SD DAT lines. Based on the configuration of data lines
(1-bit, 4-bit, or 8-bit), the data from the block buffer is appropriately routed. The CRC16 is
individually calculated on a per-lane basis and is attached at the end of block transfer
before the END bit. In DDR operation, the transmit control unit implements a separate
CRC16 for each edge of the clock. At the end of block transfer, it waits for the CRC response
on the DAT0 line and reports the result of the CRC check to the register set. The controller
also checks for a write busy indication (DAT0 line) before transferring the next block of data.
A timeout check is implemented to ensure that the write busy is asserted no more than the
required limit.

SD Receive Control

The SD receive control unit is used for read transfers for receiving data from the card. After
the command is issued, the controller waits for the block of data to be received from the
card. Based on the configuration of data lines (1-bit, 4-bit, or 8-bit), the data from the SD
interface is assembled into bytes and eventually into a 32-bit word before it is written into
Zynq UltraScale+ Device TRM 749
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=749

Chapter 26: SD/SDIO/eMMC Controller
the block buffer. The CRC16 is individually calculated on a per-lane basis and is checked
against the received CRC16 at the end of block transfer before the END bit. In DDR
operation, the receive control unit implements a separate CRC16 checker for each edge of
the clock. The data is received on the receive clock. This receive clock is either the looped
back clock (SD_CLK from the IO_BUF) or the tuned clock using delayed-lock loop (DLL) or
delay (DLY) elements. A timeout check is implemented to ensure that the gap between the
block is no larger than the required limit.

Clocks and Resets

Resets

The controller reset bits are generated by the PS, see Chapter 38, Reset System.

Clocking Overview

The SD clock generator generates the SD clock from the reference clock (sdio_ref_clk) based
on the controls programmed in the clock control register (SDIO.reg_clockcontrol). These
include the clock divide value, SD clock enable, etc. The outputs are the SD_CLK and the
SD_CARD clock. The SD_CLK is used by the most of the SD control logic (SD Command
Control, SD transmit control, SD tuning block and block buffer). The SD_CARD clock is the
same as SD_CLK, except that this is available only when the SD clock enable
(SDIO.reg_clockcontrol [clkctrl_sdclkena]) bit is set and is connected to the SD_CLK pin on
the SD interface. Figure 26-3 shows the clocking architecture.

The host controller supports both full speed and high speed cards. For the high speed card,
the host controller should clock out the data at the rising edge of the SDIO clock. For the
full speed card, the host controller should clock out the data at the falling edge of the SDIO
clock.

X-Ref Target - Figure 26-3

Figure 26‐3: Clocking Architecture

Divider Clock Gate Clock Gatesdio_ref_clk
(from clock
subsystem)

reg_clockcontrol
[clkctrl_sdclkfreqsel]

reg_clockcontrol
[clkctrl_intclkena]

reg_clockcontrol
[clkctrl_sdclkena]

SD Interface
Controller

SD_CARD clock
SD_CLK

SD Command Control,
SD Transmit Control,

SD Tuning Unit and Block Buffer

X19890-120518
Zynq UltraScale+ Device TRM 750
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=750

Chapter 26: SD/SDIO/eMMC Controller
The host bus interface (AXI Master/Slave), the host control register set, and the PIO/DMA
controller operate on the AXI interface clock.

Reference Clock

The reference clock is generated in the PS clock subsystem. The input clock source can be
selected based on the crl_apb.SDIO{0,1}_REF_CTRL[srcsel] bits, where the source can be
from the RPLL, IOPLL, or DPLL. The crl_apb.SDIO{0,1}_REF_CTRL[divisor0] register selects the
6-bit programmable divider 0. The crl_apb.SDIO{0,1}_REF_CTRL[divisor1] register selects the
6-bit programmable divider 1.The crl_apb.SDIO{0,1}_REF_CTRL[clkact] bit selects whether
the clock should be gated or enabled.

Tuning Unit

The SD PS controller supports auto-tuning for SDR-104,SDR-50 and HS200. Whereas,
manual tuning is supported for HSD/SDR25/DDR50 modes and eMMC high-speed
SDR/DDR modes in order to find the valid rx clock delay. The tuning unit generates the
delay controls to the external delay controller. The tuning unit receives the 64-byte tuning
word (SD mode) or 128-byte tuning word (eMMC mode) and maintains a tuning vector to
determine the optimal delay. The tuning unit can be configured with the number of
supported delay taps (180 maximum). Using this, the tuning unit performs tuning and
selects the optimal tap point for the receive clock.

Note: Programming the delay taps non-sequentially might lead to the failing of the auto-tuning.
See Answer Record 65676 for the work-around sequence.

Interface Controller

The SD interface controller maps the internal signals to the external SD interface and vice
versa. Based on the bus width (1, 4, or 8) the internal signals are driven out appropriately.

In the case of a default speed (DS) mode, the outputs are driven on the negative edge of the
SD_CLK.

The inputs from the RXFLOPS unit are latched on the rx_clk (looped back or tuned clock)
and output to the receive control unit for further processing.

RX Clock Delay Unit

The RX clock delay unit is used to support receive clock tuning to center align the receive
data to the receive clock. There are two modes for delaying the receive clock. The first one
is the automatic tuning of the receive clock when operating in SDR104 modes in SD 3.0 or
eMMC 4.51 in SDR50 modes. The second one is under manual controls to offset for
post-silicon board delays. The manual control is implemented for high-speed mode and
SDR25/SDR50/DDR50 modes using the corectrl_itapdlysel and corectrl_itapdlyen signals.
Zynq UltraScale+ Device TRM 751
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/65676.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=751

Chapter 26: SD/SDIO/eMMC Controller
The maximum number of tap delays (phases of the clock) is 180, but the useful number of
tap delays is greatly reduced as the clock frequency goes up. A typical design uses four to
eight tap delay selections.

The preferred method uses the looped back SD_CLK (rxclk_in) to generate multiple phases
of the clock. In the case of a DLL-based approach, this looped back clock is not ideal
because the clock itself can dynamically be stopped by the host controller to pause the data
reception from the SD/eMMC card. Because the DLL takes longer times to lock the clock, a
continuous clock is needed. Because the SD_CLK is a gated version of the internal sd_clk,
Xilinx recommends using the sd_clk as the input to the RXCLK delay unit.

TXCLK Delay Unit

The CMD and DAT outputs need to be delayed with regard to the output SD_CLK signal to
meet the hold time requirements in various modes of operation. The outgoing SD clock is
delayed. The delayed clock is used to flip-flop the CMD/DAT lines and this output is used to
drive the SD interface. The SD_CLK output itself is not delayed.

Controller Clocking

The controller supports a range of clock frequencies including the popular 25, 50, 100, and
200 MHz.

Frequencies above 25 MHz automatically switch to use the DLL clock generator, however
the minimum DLL clock frequency is 33 MHz. Controller frequencies between 25 and
33 MHz are not supported.
Zynq UltraScale+ Device TRM 752
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=752

Chapter 26: SD/SDIO/eMMC Controller
Non-DLL Clock Mode

The non-DLL clock mode is automatically selected by the controller when the clock
frequency is 25 MHz or less. The frequency is controlled by the IOU_SLCR.SD_CONFIG_REG1
[SDx_BASECLK] and SDIO.reg_clockcontrol [clkctrl_sdclkfreqsel] bit fields as shown in
Table 26-3.

Table 26‐3: Non-DLL Mode Frequencies

[SDx_BASECLK]
(MHz)

[clkctrl_sdclkfreqsel](1) Actual BASECLK
Divider Value(2)

SD Output Frequency(3)
(MHz)

200 4 8 25
5 10 20
6 12 16.67

100 2 4 25
3 6 16.67
4 8 12.5
5 10 10

50 1 2 25
2 4 12.5
3 6 8.3
4 8 6.26
5 10 5

25 1 2 12.5
2 4 6.125
3 6 4.12
4 8 3.12
5 10 2.5

Notes:
1. The [clkctrl_sdclkfreqsel] bit field must not be set to 0.
2. See the description of SDIO.reg_clockcontrol register in the Zynq UltraScale+ MPSoC Register Reference

(UG1087) [Ref 4].
3. Maximum clock frequencies are specified in the Zynq UltraScale+ MPSoC Data Sheet: DC and AC

Switching Characteristics (DS925) [Ref 2] data sheet.
Zynq UltraScale+ Device TRM 753
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=753

Chapter 26: SD/SDIO/eMMC Controller
DLL Clock Mode

The DLL input frequency to the SD controller comes from the PLL output of the IOPLL or
RPLL (not from the VCO output). The SD controller DLL input frequency can be changed by
the IOPLL or RPLL in the CRL_APB.DLL_REF_CTRL register. The DLL mode is automatically
selected by the SD controller when the SD output clock frequency is more than 25 MHz;
however, the minimum DLL clock frequency is 33 MHz. The DLL mode supported SD
reference clocks are 50 MHz, 100 MHz, and 200 MHz. The reference clock values are
updated in the IOU_SLCR.SD_CONFIG_REG1 base clock. In the DLL mode of operation, the
tap delays in the IOU_SLCR.{SD_ITAPDLY and OTAPDLY} registers must be programmed.

The input tap delay programming sequence is as follows using the IOU_SLCR register set.

1. A DLL reset is issued.
2. The sdx_itapchgwin is set (to gate any glitches on the line).
3. The sd0_itapdlyena is enabled and the tap delay values are programmed.
4. The sdx_itapchgwin is cleared after setting the input tap delay.
5. The DLL reset is released. Wait for the DLL to lock.

The output tap delay programming sequence is as follows:

1. A DLL reset is issued.
2. The tap values are programmed.
3. The DLL reset is released. Wait for the DLL to lock.
Note: Refer to the programming sequence in the SD Change Bus Speed section for the DLL
reference clock setting.

Transmit CMD/DAT Delay

The TX CMD/DAT delay is used to delay the CMD/DAT lines to avoid a hold time violation in
the card due to board layout timing issues. In some cases, the board layout might not be
optimal and the CMD/DAT lines might have hold time violations on the card because the
SD_CLK and CMD/DAT are source synchronous for the card.

One option is to use delay buffers on each of the CMD and eight DAT lines to provide
enough hold margin and use these delayed outputs to the SD interface. This approach has
the disadvantage of using nine delay lines and also not having the same delay on each of
the CMD/DAT lines. Another option is to delay the internal sd_clk that is being sent out on
the clock line (as SD_CLK), and use this delayed clock to flop out the CMD/DAT lines. This
approach has the advantage of using only one single DLL/delay on the clock line and
provides uniform output delays across the CMD/DAT lines.

The TX clock delay unit uses the delay buffers or a DLL to generate a phase-shifted clock.
Using the variable delay output, you can program the tap delay using the external ports. To
Zynq UltraScale+ Device TRM 754
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=754

Chapter 26: SD/SDIO/eMMC Controller
configure the OTAPDLYSEL, refer to the Program Sequence for DLL TAP Delay in Table 26-27.
The following are bit fields in SD{0,1}_OTAPDLYSEL.

• sd{0,1}_otapdlysel[5:0]: Used to select the optimum delay from 8 to 45 tap delay lines.

The TXFLOPS unit implements the final stage registers using this delayed clock. The
TXFLOPS unit also implements two sets of registers for each of the CMD/DAT lines (one for
the positive edge output and another one for the negative edge output).

In the case of DDR, both the flip-flops are used and in SDR mode, only the positive edge is
used (DS mode uses the negative edge outputs) when operating in default DS. The outputs
are driven on the falling edge of the clock so that the card can have enough setup/hold
time when latching the data. In this case, the output tap delay control is not necessary and
should be disabled.

When operating in HS modes and other SDR modes, the output data is driven on the rising
edge of the clock. The same clock is also output to the card (SD interface). Based on the
post-silicon board layout, the card might see hold time violations for the CMD/DAT lines. To
avoid this, the output tap delay lines can be programmed under user control.

Receive Clock Tap Delay

The RX clock delay is used for tuning/delaying the receive clock so as to align the clock in
the center of the data window. This is used in both auto tuning (in SDR50 and SDR104
mode) and optional manual tuning (for high-speed modes such as DDR).

During read operation, the host controller acts as a receiver, and the data might not be
exactly aligned with respect to the clock. The clock signal can be delayed either by auto
tuning or manual tuning so that the clock is center aligned to receive data.

For SDR104 mode and for SDR50 mode, automatic tuning is performed. The host controller
has an algorithm to correctly find the center of the eye for better timing. The tuning
procedure selects one phase of the clock (rxclk_in) for each iteration. At the end of tuning,
the right phase of the clock is selected that is in the center of the data.

In other modes (such as DDR50), the manual tuning of the SD_CLK (rxclk_in) can be
performed using the external controls.

• sd{0,1}_itapdlysel [7:0]: Used to select the optimum delay from 30 to 180 tap delay
lines.

• sd{0,1}_itapdlyen: Used to enable the input tap delay.

The clock delay can be imposed by either using tap delay or a DLL that generates multiple
phases of the clock. The maximum number of phases (tap delay) supported is 180, even
though the typical number of phases (tap delay) is four or eight.
Zynq UltraScale+ Device TRM 755
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=755

Chapter 26: SD/SDIO/eMMC Controller
Figure 26-4 shows the usage of the DLL for the TX CMD/DAT delay and the RX clock tap
delay.

X-Ref Target - Figure 26-4

Figure 26‐4: SD Clock Control Using Existing DLL

Divider

DLL

1

0

TX Logic
Interface

RX Logic
Interface

sdio_ref_clk

sd_clk < 25 MHz

clk0
DLL_REF_CTRL.srcsel[2:0]

clkctrl_sdclkfreqsel[7,6,15:8]

SD{0,1}_ITAPDLYSEL[7:0]

SD{0,1}_OTAPDLYSEL[5:0]

clk_TX

clk_RX

SD_CLK
I/O PAD

rx_clkrx_clk_tap_delay

tx_cmd/datasdcard_clk_dly
1

0

1

0

sd_clk >= 33 MHz

sd_clk > 33 MHz)

SD.reg_clockcontrol [clkctrl_clkgensel];
set to divider clock if SD

Divider Clock

Programmed Clock

X15449-092517
Zynq UltraScale+ Device TRM 756
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=756

Chapter 26: SD/SDIO/eMMC Controller
The block diagram (Figure 26-4) is further described in this section.

• The DLL has the DLL_REF_CTRL.srcsel[2:0], clkctrl_sdclkfreqsel[7, 6,15:8],
SD{0,1}_ITAPDLYSEL[7:0], and SD{0,1}_OTAPDLYSEL[5:0] register controls.

• DLL clock can be generated based on the DLL_REF_CTRL.srcsel[2:0] and DLL divisor
value. This DLL divisor internally selects based on the clkctrl_sdclkfreqsel[7, 6,15:8]
value from the reg_clockcontrol register of SDI{0,1}. For example, the DLL is derived
from the IOPLL (Table 26-4).

Note: For more information, see Xilinx Answer 71825.

• A CLK_TX is generated based on the SD{0,1}_OTAPDLYSEL[5:0] register and multiplexed
with the feedback clock for SD_CLK value > 33 MHz as the select line. If SD_CLK is
greater than 25 MHz, the CLK_TX is selected as the transmission clock for the TX
CMD/DATA delay. The CLK_TX is shifted by up to a fully divided clock cycle from CLK_0
in increments of 1/DIV. The TX clock delay can be calculated (Equation 26-1) using the
OTAP delay, the DLL divisor, and a clock period.

Delay = (OTAPDLYSEL[5:0] x Clock Period) x (1/DLL_DIV) Equation 26‐1

For example, calculate the TX clock delay with the following values.

OTAPDLYSEL[5:0] = 4
Clock period = 5 ns (1/DLL_REF_CLK)
DLL_DIV = 7.5
TX clock delay = (4 x 5) x (1/7.5) = 2.667 ns

• A CLK_RX is generated based on the SD{0,1}_ITAPDLYSEL[7:0] register and multiplexed
with the feedback clock for SD_CLK value ≥ 33 MHz as the select line. If SD_CLK is ≥
33 MHz, the CLK_RX is selected as the receive clock for the RX clock delay unit.The
CLK_RX is shifted by up to a fully divided clock cycle from CLK_0 in increments of
1/(4 x DIV). The RX clock delay is calculated (Equation 26-2) using the ITAP delay, DLL
divisor, and a clock period.

Delay = (ITAPDLYSEL[7:0] x Clock Period) x (1/4 x DLL_DIV) Equation 26‐2

Table 26‐4: DLL Mode Supported Clocks

SD{0,1}_BASECLK
(MHz)

DLL (MHz)
IOPLL or RPLL clkctrl_sdclkfreqsel

Actual DLL Divider
Value

SD Output Frequency
(MHz)

200 1500 0 7.5 200
1500 1 15 100
1500 2 30 50
1500 3 45 33.33

100 1500 0 15 100
1500 1 30 50

50 1500 0 30 50
Zynq UltraScale+ Device TRM 757
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/71825.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=757

Chapter 26: SD/SDIO/eMMC Controller
For example, calculate the RX clock delay with the following values.

ITAPDLYSEL[7:0] = 4
Clock period = 5 ns (1/DLL_REF_CLK)
DLL_DIV = 7.5
RX clock delay = (4 x 5) x (1/(4 x 7.5)) = 0.667 ns

SD Tap Delay Settings

The [SD0_ITAPCHGWIN] and [SD1_ITAPCHGWIN] bits in the IOU_SLCR.SD_ITAPDLY register
are used to gate the output of the tap delay lines to avoid glitches being propagated into
the controller. This signal should be asserted a few clocks before the corectrl_itapdlysel
changes and stay asserted for a few clocks afterwards.

For SDIO{0, 1}, use the IOU_SLCR register set and the tap delay values in Table 26-5 through
Table 26-10.

Table 26‐5: SD104/eMMC200 Mode

Register Bit SDIO0 Bank 0 SDIO{0, 1}
Bank 1

SDIO{0, 1}
Bank 2

Description

SD_ITAPDLY[SDx_ITAPDLYENA] 1'b1 1'b1 1'b1 SLCR I tap delay
enable (RX).

SD_ITAPDLY[SDx_ITAPDLYSEL] N/A(1) N/A(1) N/A(1) RX tap delay values.
SD_OTAPDLY[SDx_OTAPDLYSEL] 6'b000011 6'b000011 6'b000010 TX tap delay values.

Notes:
1. The (N/A) value is calculated from auto-tuning by the SDIO controller. You can program this value with trial and error.

Table 26‐6: SD50 Mode

Register Bit
SDIO0
Bank 0

SDIO{0, 1}
Bank 1

SDIO{0, 1}
Bank 2

Description

SD_ITAPDLY[SDx_ITAPDLYENA] 1'b1 1'b1 1'b1 SLCR I tap delay enable (RX).
SD_ITAPDLY[SDx_ITAPDLYSEL] 8'b00010100 8'b00010100 8'b00010100 RX tap delay values.
SD_OTAPDLY[SDx_OTAPDLYSEL] 6'b000011 6'b000011 6'b000011 TX tap delay values.

Table 26‐7: SD DDR Mode

Register Bit SDIO0 Bank 0
SDIO{0, 1}

Bank 1
SDIO{0, 1}

Bank 2 Description

SD_ITAPDLY[SDx_ITAPDLYENA] 1'b1 1'b1 1'b1 SLCR I tap delay
enable (RX).

SD_ITAPDLY[SDx_ITAPDLYSEL] 8'b00111101 8'b00111101 8'b00111101 RX tap delay
values.

SD_OTAPDLY[SDx_OTAPDLYSEL] 6'b000100 6'b000100 6'b000100 TX tap delay
values.
Zynq UltraScale+ Device TRM 758
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=758

Chapter 26: SD/SDIO/eMMC Controller
Table 26‐8: eMMC DDR Mode

Register Bit SDIO0 Bank 0
SDIO{0, 1}

Bank 1
SDIO{0, 1}

Bank 2 Description

SD_ITAPDLY[SDx_ITAPDLYENA] 1'b1 1'b1 1'b1 SLCR I tap delay
enable (RX).

SD_ITAPDLY[SDx_ITAPDLYSEL] 8'b00010010 8'b00010010 8'b00010010 RX tap delay
values.

SD_OTAPDLY[SDx_OTAPDLYSEL] 6'b000110 6'b000110 6'b000110 TX tap delay
values.

Table 26‐9: SD HSD Mode

Register Bit SDIO0 Bank 0 SDIO{0, 1}
Bank 1

SDIO{0, 1}
Bank 2

Description

SD_ITAPDLY[SDx_ITAPDLYENA] 1'b1 1'b1 1'b1 SLCR I tap delay
enable (RX).

SD_ITAPDLY[SDx_ITAPDLYSEL] 8'b00010101 8'b00010101 8'b00010101 RX tap delay
values.

SD_OTAPDLY[SDx_OTAPDLYSEL] 6'b000101 6'b000101 6'b000101 TX tap delay
values.

Table 26‐10: eMMC HSD Mode

Register Bit SDIO0 Bank 0 SDIO{0, 1}
Bank 1

SDIO{0, 1}
Bank 2

Description

SD_ITAPDLY[SDx_ITAPDLYENA] 1'b1 1'b1 1'b1 SLCR I tap delay
enable (RX).

SD_ITAPDLY[SDx_ITAPDLYSEL] 8'b00010101 8'b00010101 8'b00010101 RX tap delay
values.

SD_OTAPDLY[SDx_OTAPDLYSEL] 6'b000110 6'b000110 6'b000110 TX tap delay
values.
Zynq UltraScale+ Device TRM 759
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=759

Chapter 26: SD/SDIO/eMMC Controller
SD Interface Voltage Translation

SD initialization and booting of the PS is completed at 3.3V in high-speed mode. After
initialization, the SD interface (command, data, and clock) operates at 1.8V to support the
ultra high-speed (UHS) SD cards. The highest speed modes are only supported when the
bank voltage is 1.8V.

Dynamic switching from 3.3V to 1.8V is required on the host and the SD interface.
Figure 26-5 shows the SD voltage switching sequence diagram.

The voltage translation function is implemented by an external voltage level translator as
shown in Figure 26-6.

After the boot up, the SEL pin is used to switch from 3.3V to 1.8V to operate at the highest
speed modes of the SD cards (Table 26-1). The SEL pin is automatically driven by the
controller if configured in SD3.0.

IMPORTANT: Voltage level shifters are only used for SD cards. SD interface voltage translation is only
applicable to SD UHS cards.
Zynq UltraScale+ Device TRM 760
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=760

Chapter 26: SD/SDIO/eMMC Controller
X-Ref Target - Figure 26-5

Figure 26‐5: SD Voltage Switching Sequence Diagram

Start

Check S18A

Voltage switch
command (CMD11)

Response OK?

SD Clock enable = 0

Check data[3:0]

1.8V signal enable = 1

Wait 5 ms

Check 1.8V
signal enable

SD Clock Enable = 1

Wait 1 ms

Check data[3:0]

END

SD POWER = 0

STOP1111b

Done

1

Done

0000b

S18A = 1

S18A = 0

Yes

No

Not 0000b

0

Not 1111b

X15450-091316
Zynq UltraScale+ Device TRM 761
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=761

Chapter 26: SD/SDIO/eMMC Controller
I/O Signals

MIO-EMIO Signals

The SDIO media interface signals are independently routed to the MIO pins or to a set of
EMIO interface signals, see Table 26-11. MIO is discussed in Chapter 28, Multiplexed I/O.

X-Ref Target - Figure 26-6

Figure 26‐6: External Voltage Translator

SD Host Controller Voltage Translator
SD

1.8 V 3.3 V/1.8 V

SD_CLK

CMD

DATA[3:0]

SEL

Direction

CLK

CMD

DATA[3:0]

X15451-120518

Table 26‐11: SDIO Interface Signals

SDIO Interface
MIO Pins EMIO Signals Default

Controller
Input ValueNumber I/O Name I/O

SDIO 0 clock 22,38,64 I/O
emio_sdio0_fb_clk_in I 0
emio_sdio0_clkout O ~

SDIO 0 command 21,40,66 I/O
emio_sdio0_cmdin I 0
emio_sdio0_cmdout O ~
emio_sdio0_cmdena O ~

SDIO 0 data 0 13,41,67 I/O
emio_sdio0_datain[0] I 0
emio_sdio0_dataout[0] O ~
emio_sdio0_dataena[0] O ~

SDIO 0 data 1 14,42,68 I/O
emio_sdio0_datain[1] I 0
emio_sdio0_dataout[1] O ~
emio_sdio0_dataena[1] O ~
Zynq UltraScale+ Device TRM 762
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=762

Chapter 26: SD/SDIO/eMMC Controller
SDIO 0 data 2 15,43,69 I/O
emio_sdio0_datain[2] I 0
emio_sdio0_dataout[2] O ~
emio_sdio0_dataena[2] O ~

SDIO 0 data 3 16,44,70 I/O
emio_sdio0_datain[3] I 0
emio_sdio0_dataout[3] O ~
emio_sdio0_dataena[3] O ~

SDIO 0 data 4 17,45,71 I/O
emio_sdio0_datain[4] I 0
emio_sdio0_dataout[4] O ~
emio_sdio0_dataena[4] O ~

SDIO 0 data 5 18,46,72 I/O
emio_sdio0_datain[5] I 0
emio_sdio0_dataout[5] O ~
emio_sdio0_dataena[5] O ~

SDIO 0 data 6 19,47,73 I/O
emio_sdio0_datain[6] I 0
emio_sdio0_dataout[6] O ~
emio_sdio0_dataena[6] O ~

SDIO 0 data 7 20,48,74 I/O
emio_sdio0_datain[7] I 0
emio_sdio0_dataout[7] O ~
emio_sdio0_dataena[7] O ~

SDIO 0 card detect 24,39,65 I emio_sdio0_cd_n I
SDIO 0 write protect 25,50,76 I emio_sdio0_wp I
SDIO 0 power control 23,49,75 O emio_sdio0_buspower O ~

SDIO 0 LED control ~ ~ emio_sdio0_ledcontrol O ~
SDIO 0 bus voltage ~ ~ emio_sdio0_bus_volt[2:0] O ~

SDIO 1 clock 51 I/O
emio_sdio1_fb_clk_in I 0
emio_sdio1_clkout O ~

SDIO 1 command 50 I/O
emio_sdio1_cmdin I 0
emio_sdio1_cmdout O ~
emio_sdio1_cmdena O ~

SDIO 1 data 0 46, 71 I/O
emio_sdio1_datain[0] I 0
emio_sdio1_dataout[0] O ~
emio_sdio1_dataena[0] O ~

Table 26‐11: SDIO Interface Signals (Cont’d)

SDIO Interface
MIO Pins EMIO Signals Default

Controller
Input ValueNumber I/O Name I/O
Zynq UltraScale+ Device TRM 763
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=763

Chapter 26: SD/SDIO/eMMC Controller
Note: SDIO 0/1 power control & emio_sdio0/1_buspower signal is a an output signal. This can be
used enable or disable to an external power device to control VDD supply which powers the SDIO
level shifter. For more information, refer to UltraScale Architecture PCB Design User Guide (UG583)
[Ref 15] for more information for PCB recommendations.

SDIO 1 data 1 47,72 I/O
emio_sdio1_datain[1] I 0
emio_sdio1_dataout[1] O ~
emio_sdio1_dataena[1] O ~

SDIO 1 data 2 48,73 I/O
emio_sdio1_datain[2] I 0
emio_sdio1_dataout[2] O ~
emio_sdio1_dataena[2] O ~

SDIO 1 data 3 49,74 I/O
emio_sdio1_datain[3] I 0
emio_sdio1_dataout[3] O ~
emio_sdio1_dataena[3] O ~

SDIO 1 data 4 39 I/O
emio_sdio1_datain[4] I 0
emio_sdio1_dataout[4] O ~
emio_sdio1_dataena[4] O ~

SDIO 1 data 5 40 I/O
emio_sdio1_datain[5] I 0
emio_sdio1_dataout[5] O ~
emio_sdio1_dataena[5] O ~

SDIO 1 data 6 41 I/O
emio_sdio1_datain[6] I 0
emio_sdio1_dataout[6] O ~
emio_sdio1_dataena[6] O ~

SDIO 1 data 7 42 I/O
emio_sdio1_datain[7] I 0
emio_sdio1_dataout[7] O ~
emio_sdio1_dataena[7] O ~

SDIO 1 card detect 45,77 I emio_sdio1_cd_n I
SDIO 1 write protect 44,69 I emio_sdio1_wp I
SDIO 1 power control 43,70 O emio_sdio1_buspower O ~

SDIO 1 LED control ~ ~ emio_sdio1_ledcontrol O ~
SDIO 1 bus voltage ~ ~ emio_sdio1_bus_volt[2:0] O ~

Table 26‐11: SDIO Interface Signals (Cont’d)

SDIO Interface
MIO Pins EMIO Signals Default

Controller
Input ValueNumber I/O Name I/O
Zynq UltraScale+ Device TRM 764
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=764

Chapter 26: SD/SDIO/eMMC Controller
Register Overview
The SD controller registers are listed in Table 26-12.

Table 26‐12: SD Controller Register Overview

Register
Type Register Name Address Width Type Description

Command
Generation

reg_sdmasysaddrlo 0x0000 16 Read/Write
This register contains the lower 16-bit
of the physical system memory
address used for DMA transfers or the
second argument for the auto CMD23.

reg_sdmasysaddrhi 0x0002 16 Read/Write
This register contains the higher
16-bits of the physical system memory
address used for DMA transfers or the
second argument for the auto CMD23.

reg_blocksize 0x0004 16 Read/Write This register is used to configure the
number of bytes in a data block.

reg_blockcount 0x0006 16 Read/Write This register is used to configure the
number of data blocks.

reg_argument1lo 0x0008 16 Read/Write This register contains the lower bits of
the SD command argument.

reg_argument1hi 0x000A 16 Read/Write This register contains the higher bits
of the SD command argument.

reg_transfermode 0x000C 16 Read/Write This register is used to control the
operations of data transfers.

reg_command 0x000E 16 Read/Write This register is used to program the
command for the host controller.

Response reg_response{0:7}
0x0010

to
0x001E

16 Read only Store responses from SD cards.

Buffer reg_dataport 0x0020 32 Read/Write This register is used to access the
internal buffer.
Zynq UltraScale+ Device TRM 765
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=765

Chapter 26: SD/SDIO/eMMC Controller
Host
controller 1

reg_presentstate 0x0024 32 Read only
The host driver can get the status of
the host controller from this 32-bit
read-only register.

reg_hostcontrol1 0x0028 8 Read/Write
This register is used to program DMA
modes, LED control, data transfer
width, high-speed enable, card detect
test level, and signal selection.

reg_powercontrol 0x0029 8 Read/Write This register is used to program the SD
bus power and voltage level.

reg_blockgapcontrol 0x002A 8 Mixed
This register is used to program the
block gap request, read wait control,
and interrupt at block gap.

reg_wakeupcontrol 0x002B 8 Read/Write This register is used to program the
wakeup functionality.

reg_clockcontrol 0x002C 16 Mixed
This register is used to program the
clock frequency select, generator
select, clock enable, and internal clock
state fields.

reg_timeoutcontrol 0x002E 8 Read/Write The register sets the data timeout
counter value.

reg_softwarereset 0x002F 8
Clear on

Write
CLRONWR

This register is used to program the
software reset for data, command, and
for all.

Interrupt
controls

reg_normalintrsts 0x0030 16 Mixed This register gives the status of all the
interrupts.

reg_errorintrsts 0x0032 16
Write to

Clear
(WTC)

This register gives the status of the
error interrupts.

reg_normalintrstsena 0x0034 16 Mixed This register is used to enable the
normal interrupt status register fields.

reg_errorintrstsena 0x0036 16 Read/Write This register is used to enable the
error interrupt status register fields.

reg_normalintrsigena 0x0038 16 Mixed This register is used to enable the
normal interrupt signal register.

reg_errorintrsigena 0x003A 16 Mixed This register is used to enable the
error interrupt signal register.

reg_autocmderrsts 0x003C 16 Read only
This register is used to indicate
CMD12 response error of auto CMD12
and CMD23 response error of auto
CMD 23.

Table 26‐12: SD Controller Register Overview (Cont’d)

Register
Type

Register Name Address Width Type Description
Zynq UltraScale+ Device TRM 766
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=766

Chapter 26: SD/SDIO/eMMC Controller
Host
controller 2 reg_hostcontrol2 0x003E 16 Mixed

This register is used to program UHS
select mode, UHS select mode,
execute tuning, sampling clock select,
asynchronous interrupt enable, and
preset value enable.

Capabilities
reg_capabilities 0x0040 64 Read only

This register provides the host driver
with information specific to the host
controller implementation.

reg_maxcurrentcap 0x0048 64 Read only This register indicates maximum
current capability for each voltage.

Force event

reg_ForceEventfor
AUTOCMDErrorStatus 0x0050 16 Write only

This register is not physically
implemented, rather it is an address
where auto CMD error status register
can be written.

reg_forceeventforerrintsts 0x0052 16 Mixed
This register is not physically
implemented, rather it is an address
where the error interrupt status
register can be written.

ADMA
controller

reg_admaerrsts 0x0054 8 Read only

When the ADMA error interrupt
occurs, this register holds the ADMA
state in the ADMA error states field
and the ADMA system address holds
the address around the error
descriptor.

reg_admasysaddr0 0x0058 16 Read/Write This register contains the physical
address used for ADMA data transfer.

reg_admasysaddr1 0x005A 16 Read/Write This register contains the physical
address used for ADMA data transfer.

reg_admasysaddr2 0x005C 16 Read/Write This register contains the physical
address used for ADMA data transfer.

reg_admasysaddr3 0x005E 16 Read/Write This register contains the physical
address used for ADMA data transfer.

Table 26‐12: SD Controller Register Overview (Cont’d)

Register
Type

Register Name Address Width Type Description
Zynq UltraScale+ Device TRM 767
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=767

Chapter 26: SD/SDIO/eMMC Controller
Preset
values

reg_presetvalue0 0x0060 16 Read only
This register is used to read the
SD_CLK frequency select value, clock
generator select value, and driver
strength select value.

reg_presetvalue1 0x0062 16 Read only

This register is used to read the
SD_CLK frequency select value, clock
generator select value, and driver
strength select value for default
speed.

reg_presetvalue2 0x0064 16 Read only
This register is used to read the
SD_CLK frequency select value, clock
generator select value, and driver
strength select value for high speed.

reg_presetvalue3 0x0066 16 Read only
This register is used to read the
SD_CLK frequency select value, clock
generator select value, and driver
strength select value for SDR12.

reg_presetvalue4 0x0068 16 Read only
This register is used to read the
SD_CLK frequency select value, clock
generator select value, and driver
strength select value for SDR25.

reg_presetvalue5 0x006A 16 Read only
This register is used to read the
SD_CLK frequency select value, clock
generator select value, and driver
strength select value for SDR50.

reg_presetvalue6 0x006C 16 Read only
This register is used to read the
SD_CLK frequency select value, clock
generator select value, and driver
strength select value for SDR104.

reg_presetvalue7 0x006E 16 Read only
This register is used to read the
SD_CLK frequency select value, clock
generator select value, and driver
strength select value for DDR50.

General
control and

status

reg_boottimeoutcnt 0x0070 32 Read/Write This is used to program the boot
timeout value counter.

reg_slotintrsts 0x00FC 16 Read only This register is used to read the
interrupt signal for each slot.

reg_hostcontrollerver 0x00FE 16 Read only
This register is used to read the vendor
version number and the specification
version number.

Table 26‐12: SD Controller Register Overview (Cont’d)

Register
Type

Register Name Address Width Type Description
Zynq UltraScale+ Device TRM 768
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=768

Chapter 26: SD/SDIO/eMMC Controller
SD Command Generation

The registers to generate SD commands are listed in Table 26-13.

Table 26-13 shows register settings for three transactions: SDMA generated transactions,
ADMA2 generated transactions, and CPU data transfers and non-DAT transfers. When
initiating transactions, the host driver programs these registers sequentially from 000h to
00Fh. The beginning register offset is calculated based on the type of transaction. The last
written offset is always 00Fh because writing to the upper byte of the command register
triggers the issuance of the SD command.

Programming Examples
This section shows examples of various data transfer protocols for a host controller.

DMA Data Transaction

DMA Read Transfer

On receiving the response end bit from the card for the write command (data flowing from
host to card), the SD host controller acts as the master and requests the system/host bus.
After receiving the grant, the host controller starts reading a block of data from the system
memory and fills the first FIFO. Whenever a block of data is ready, the transmitter starts
sending the data in the SD bus.

While transmitting the data in the SD bus, the host controller requests the bus to fill the
second block in the second FIFO. Ping-pong FIFOs are used to increase the throughput.
Similarly, the host controller reads a block of data from the system memory whenever a
FIFO is empty. This continues until all the blocks are read from the system memory. The
transfer complete interrupt is only set after transferring all the blocks of data to the card.

Table 26‐13: SD Commands

Register SDMA Command
ADMA2

Command
CPU Data Transfer Non DAT Transfer

SDMA system address, argument 2 Yes/No No/Auto CMD23 No/Auto CMD23 No/No
Block size Yes Yes Yes No (protected)
Block count Yes Yes Yes No (protected)
Argument 2 Yes Yes Yes No (protected)
Transfer mode Yes Yes Yes No (protected)
Command Yes Yes Yes Yes
Zynq UltraScale+ Device TRM 769
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=769

Chapter 26: SD/SDIO/eMMC Controller
DMA Write Transfer

The block of data received from the card (data flowing from card to host) is stored in the
first half of the FIFO. Whenever a block of data is ready, the SD host controller acts as the
master and requests the system/host bus. After receiving the grant, the host controller
starts writing a block of data into the system memory from the first FIFO. While transmitting
the data into system memory, the host controller receives the second block of data and
stores it in the second FIFO. Similarly, the host controller writes a block of data into the
system memory whenever data is ready. This continues until all the blocks are transferred to
the system memory. The transfer complete interrupt is only set after transferring all the
blocks of data to the system memory.

TIP: The host controller receives a block of data from the card only when it has room to store a block
of data in a FIFO. When both the FIFOs are full, the host controller stops the data coming from the card
through a read wait mechanism (if the card supports a read wait mechanism) or by stopping the clock.

SD Configuration

Table 26‐14: SD Configuration

Task
SD{0, 1}

Registers Register Field
Register
Offset Bits Value

Reset the controller. reg_softwarereset swreset_for_all 0x2f 0 1b'1

Wait until device has
been reset. reg_softwarereset swreset_for_all 0x2f 0 Read operation

Read and save
controller
capabilities(1).

reg_capabilities ALL 0x40 63:0 Read operation

Select voltage 3.3V
and enable bus
power.

reg_powercontrol pwrctrl_sdbusvoltage |
pwrctrl_sdbuspower 0x29 3:1,0 4b'1111

Change the clock frequency to 400 KHz (see Table 26-15).
Select 32-bit ADMA2
mode. reg_hostcontrol1 hostctrl1_dmaselect 0x28 4:3 2b'10

Enable all interrupt
status except card
interrupt initially.

reg_normalintrstsena ALL 0x34 15:0 0xFEFF

Enable error
interrupts. reg_errorintrstsena ALL 0x36 12:0 Write 3FF h

Disable all interrupt
signals. reg_normalintrsigena ALL 0x38 15:0 Write 0000h

Disable all error
signals. reg_errorintrsigena ALL 0x40 12:0 Write 000h
Zynq UltraScale+ Device TRM 770
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=770

Chapter 26: SD/SDIO/eMMC Controller
Transfer mode
register: default
value.
DMA enabled, block
count enabled, data
direction card to
host (read).

reg_transfermode
xfermode_dmaenable |

xfermode_blkcntena
| xfermode_dataxferdir

0x0C
4, 1,

and 0 Write 1 to all bits

Set block size to 512
by default. reg_blocksize xfer_blocksize 0x04 11:0 Write 200h

Notes:
1. the re-tuning interval in the SDIO capabilities register is determined by the IOU_SLCR.SD_CONFIG_REG3 [SD0_RETUNETMR]

and [SD1_RETUNETMR] fields. The default value for this register is set to 0x8, which enables auto refresh at 128s. The
software driver must ensure programming this register to the appropriate value based on your specific application
requirements.

Table 26‐14: SD Configuration (Cont’d)

Task SD{0, 1}
Registers

Register Field Register
Offset

Bits Value

Table 26‐15: SD Clock Frequency Change

Task
SD{0, 1}

Registers
Register Field

Register
Offset

Bits Value

Disable clock. reg_clockcontrol clkctrl_intclkena and
clkctrl_sdclkena 0x2C 2 and 0 Write 0

Set clock divisor. reg_clockcontrol clkctrl_sdclkfreqsel and
clkctrl_intclkena 0x2C 15:7 and 0

Write 1 to bit
0 and divisor
value to bits

15:7.
Wait until internal
clock stabilized. reg_clockcontrol sdhcclkgen_intclkstable_dsync 0x2C 1 Read until set

Enable SD clock. reg_clockcontrol clkctrl_sdclkena 0x2C 2 Write 1
Zynq UltraScale+ Device TRM 771
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=771

Chapter 26: SD/SDIO/eMMC Controller
SD Card Initialize

Table 26‐16: SD Card Initialize

Task
SD{0, 1}

Registers Register Field
Register
Offset Bits Value

Check the present state register
to make sure the card is inserted
and detected by the host
controller.

reg_presentstate sdhccarddet_inserted_dsync 0x24 16 Read

74 clock delay after card is powered up, before the first command.
Send CMD0 to card with no response expected (see Table 26-17).
Send CMD8 to card with response (0x1AA for supply voltage 2.7–3.6V and AA pattern) expected (see
Table 26-17).
Read response 0 for CMD8 and
decide card version. reg_response0 command_response 0x10 15:0 Read

Send ACMD41 while card is still busy with power up.
Send CMD55 (see Table 26-17).
Send ACMD41 0x40300000: host high capacity support and 3.3V window (see Table 26-17).
Read response 0 for response
with card capacity. reg_response0 command_response 0x10 15:0 Read

Perform above three steps until OCR ready bit (31st) is set.
Send CMD2 for card ID (see Table 26-17).
Read card specific data in
response. reg_response0 command_response 0x10 15:0 Read

Read card specific data in
response. reg_response1 command_response 0x12 15:0 Read

Read card specific data in
response. reg_response2 command_response 0x14 15:0 Read

Read card specific data in
response. reg_response3 command_response 0x16 15:0 Read

Send CMD3 and read response
until relative card address
(upper 16 bits of response)
received.

reg_response0 command_response 0x10 15:0 Read

Send CMD9 with relative address received.
Read card specific data in
response. reg_response0 command_response 0x10 15:0 Read

Read card specific data in
response. reg_response1 command_response 0x12 15:0 Read

Read card specific data in
response. reg_response2 command_response 0x14 15:0 Read

Read card specific data in
response. reg_response3 command_response 0x16 15:0 Read
Zynq UltraScale+ Device TRM 772
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=772

Chapter 26: SD/SDIO/eMMC Controller
SD CMD Transfer

Table 26‐17: SD CMD Transfer

Task
SD{0, 1}

Registers Register Field
Register
Offset Bits Value

Check the command
inhibit to make sure no
other command
transfer is in progress.

reg_presentstate presentstate_inhibitcmd 0x24 0 Read

Write block count
register. reg_blockcount xfer_blockcount 0x06 15:0 Block count

Write timeout. reg_timeoutcontrol timeout_ctrvalue 0x2E 3:0 0x0E

Write argument
register. reg_argument1lo command_argument1 0x08 15:0 Argument

Clear all normal status
interrupts. reg_normalintrsts ALL 0x30 15:0 0xFFFF

Clear all error status
interrupts. reg_errorintrsts All 0x36 12:0 0xF3FF

Frame the command.
Check for data inhibit in
case of command using
DAT lines.

reg_presentstate presentstate_inhibitdat 0x24 1 Read

Write command. reg_command ALL 0x0E 13:0 Command
Polling for response
while command
complete bit set.

reg_normalintrsts normalintrsts_cmdcomplete 0x30 0 Read until
set

Clear error bits if error
interrupt bit sets from
previous operation.

reg_errorintrsts ALL 0x32 15:0 0xF3FF

Clear command
complete bit. reg_normalintrsts normalintrsts_cmdcomplete 0x30 0 1b'1
Zynq UltraScale+ Device TRM 773
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=773

Chapter 26: SD/SDIO/eMMC Controller
SD Set Block Size

Setup ADMA2 Descriptor Table

SD Read Polled

Table 26‐18: SD Set Block Size

Task
SD{0, 1}

Registers Register Field
Register
Offset Bits Value

Check the present state
register to make sure the
bus is free.

reg_presentstate
presentstate_inhibitcmd,
presentstate_inhibitdat,

sdhcdmactrl_wrxferactive,
sdhcdmactrl_rdxferactive

0x24 9:8 and 1:0 Read

Send block write command (CMD16) (see Table 26-17).
Read card-specific data in
response. reg_response0 command_response 0x10 15:0 Read

Set the block size. reg_blocksize xfer_blocksize 0x04 11:0 0x200

Table 26‐19: Setup ADMA2 Descriptor Table

Task SD{0, 1}
Registers

Register Field Register
Offset

Bits Value

Read block size and
calculate total descriptor
lines.

reg_blocksize xfer_blocksize 0x04 11:0 Read operation

Prepare descriptor table.
Program descriptor table
address to ADMA2 address
register.

reg_admasysaddr0 adma_sysaddress0 0x58 15:0 Descriptor table
address

Table 26‐20: SD Read Polled

Task
SD{0, 1}

Registers
Register Field

Register
Offset

Bits Value

Check the present state
register to make sure the
card is present.

reg_presentstate sdhccarddet_inserted_dsync 0x24 16 Read

If not already set, set block size to 512 (see Table 26-18).
Set up ADMA2: slave select setup ADMA2 descriptor table.
Set up mode register with
Auto CMD12 enable, block
count enable, data
transfer direction, DMA
enable, and multi/single
block select.

reg_transfermode ALL 0x0C 5:0 0x37

Send block read command (CMD18) (see Table 26-17).
Zynq UltraScale+ Device TRM 774
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=774

Chapter 26: SD/SDIO/eMMC Controller
SD Write Polled

SD Select Card

Check for transfer
completed. reg_normalintrsts reg_errorintrsts 0x30 15 Read

operation
Clear the interrupts
(if any). reg_normalintrsts ALL 0x30 15:0 0xF3FF

Check transfer complete
and clear if transfer is
completed.

reg_normalintrsts normalintrsts_xfercomplete 0x30 1 1b'1

Read response 0. reg_response0 command_response 0x10 15:0 Read

Table 26‐20: SD Read Polled (Cont’d)

Task SD{0, 1}
Registers

Register Field Register
Offset

Bits Value

Table 26‐21: SD Write Polled

Task
SD{0, 1}

Registers Register Field
Register
Offset Bits Value

Check the present state
register to make sure the card
is present.

reg_presentstate sdhccarddet_inserted_dsync 0x24 16 Read

If not already set, set block size to 512 (see Table 26-18).
Set up ADMA2 (see Table 26-19).
Set up mode register with
auto CMD12 enable, block
count enable, data transfer
direction, DMA enable, and
multi/single block select.

reg_transfermode ALL 0x0C 5:0 0x37

Send block read command (CMD18) (see Table 26-17)

Check for transfer completed. reg_normalintrsts reg_errorintrsts 0x30 15 Read
operation

Clear the interrupts (if any). reg_normalintrsts ALL 0x30 15:0 0xF3FF

Check transfer complete and
clear if transfer is completed. reg_normalintrsts normalintrsts_xfercomplete 0x30 1 1b'1

Table 26‐22: SD Select Card

Task
SD{0, 1}

Registers Register Field
Register
Offset Bits Value

Send card select command CMD7 (see Table 26-17).
Read response 0. reg_response0 command_response 0x10 15:0 Read
Set default block size (512) (see Table 26-18).
Zynq UltraScale+ Device TRM 775
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=775

Chapter 26: SD/SDIO/eMMC Controller
eMMC Card Initialize

SD Get Bus Width

Table 26‐23: eMMC Card Initialize

Task
SD{0, 1}

Registers Register Field
Register
Offset Bits Value

Check the present state register to
make sure the card is present. reg_presentstate sdhccarddet_inserted_dsync 0x24 16 Read

74 clock delay after card is powered up, before the first command.
Send CMD0 to card with no response expected (see Table 26-17).
Send CMD1 while card is still busy with power up (perform the following two steps).
Send command (CMD1) with options to host high-capacity support and high-voltage window (see Table 26-17).
Read response 0. reg_response0 command_response 0x10 15:0 Read
Send CMD2 for CARD ID (see Table 26-17).
Send CMD3. Save relative card address in response 0.
Read card specific data in response. reg_response0 command_response 0x10 15:0 Read
Read card specific data in response. reg_response1 command_response 0x12 15:0 Read
Read card specific data in response. reg_response2 command_response 0x14 15:0 Read
Read card specific data in response. reg_response3 command_response 0x16 15:0 Read
Send CMD9 with relative card address saved in CMD3 response.
Read card specific data in response. reg_response0 command_response 0x10 15:0 Read
Read card specific data in response. reg_response1 command_response 0x12 15:0 Read
Read card specific data in response. reg_response2 command_response 0x14 15:0 Read
Read card specific data in response. reg_response3 command_response 0x16 15:0 Read

Table 26‐24: SD Get Bus Width

Task
SD{0, 1}

Registers
Register Field

Register
Offset

Bits Value

Send block write command (CMD55) (see Table 26-17).
Set block size to desired
value. reg_blocksize xfer_blocksize 0x04 11:0 Block size

value
Set up ADMA2 descriptor table.
Set transfer mode with
data direction and DMA
enable.

reg_transfermode xfermode_dmaenable |
xfermode_dataxferdir 0x0C 4 and 1 0x11

Data cache invalidate range.
Send ACMD51 with desired block count.
Check for transfer
completed. reg_normalintrsts reg_errorintrsts 0x30 15 Read

operation
Zynq UltraScale+ Device TRM 776
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=776

Chapter 26: SD/SDIO/eMMC Controller
SD Change Bus Width

SD Get Bus Speed

Clear the interrupts (if any). reg_normalintrsts ALL 0x30 15:0 0xF3FF

Check transfer complete
and clear if transfer is
completed.

reg_normalintrsts normalintrsts_xfercomplete 0x30 1 1b'1

Read response 0. reg_response0 command_response 0x10 15:0 Read

Table 26‐24: SD Get Bus Width (Cont’d)

Task SD{0, 1}
Registers

Register Field Register
Offset

Bits Value

Table 26‐25: SD Change Bus Width

Task
SD{0, 1}

Registers Register Field
Register
Offset Bits Value

For SD Card
Send block write command (CMD55) (see Table 26-17) if not defined as eMMC card.
Send CMD6 command with 4-bit data bus width selected.
Set bus width in host
control register. reg_hostcontrol1 hostctrl1_datawidth 0x28 1 1b'1

Read card specific data in
response. reg_response0 command_response 0x10 15:0 Read

For eMMC
Send ACMD6 command with 4-bit data bus width selected.
Wait for 2 ms.
Set bus width in host
control register. reg_hostcontrol1 hostctrl1_datawidth 0x28 1 1b'1

Read card specific data in
response. reg_response0 command_response 0x10 15:0 Read

Table 26‐26: SD Get Bus Speed

Task SD{0, 1}
Registers

Register Field Register
Offset

Bits Value

Set block size to
desired value. reg_blocksize xfer_blocksize 0x04 11:0 Block size

value
Set up ADMA2 descriptor table (see Table 26-19).
Set transfer mode
with data direction
and DMA enable.

reg_transfermode xfermode_dmaenable |
xfermode_dataxferdir 0x0C 4 and 1 0x11

Data cache invalidate range.
Send CMD6.
Zynq UltraScale+ Device TRM 777
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=777

Chapter 26: SD/SDIO/eMMC Controller
SD Change Bus Speed

Check for transfer
completed. reg_normalintrsts reg_errorintrsts 0x30 15 Read

operation
Clear the interrupts
(if any). reg_normalintrsts ALL 0x30 15:0 0xF3FF

Check transfer
complete and clear if
transfer is
completed.

reg_normalintrsts normalintrsts_xfercomplete 0x30 1 1b'1

Read response 0. reg_response0 command_response 0x10 15:0 Read

Table 26‐26: SD Get Bus Speed (Cont’d)

Task SD{0, 1}
Registers

Register Field Register
Offset

Bits Value

Table 26‐27: SD Change Bus Speed

Task
SD{0, 1} and

IOU_SLCR
Registers

Register Field
Register
Offset

Bits Value

For SD card
Set block size to desired
value. reg_blocksize xfer_blocksize 0x04 11:0 Block size

value
Set up ADMA descriptor table (see Table 26-19).
Set transfer mode with
data direction and DMA
enable.

reg_transfermode xfermode_dmaenable |
xfermode_dataxferdir 0x0C 4 and 1 0x11

Data cache (dcache) invalidate range.
Send CMD6.
Check for transfer
completed. reg_normalintrsts All 0x30 15 Read

operation
Clear the error interrupts
(if any). reg_errorintrsts All 0x30 15:0 0xF3FF

Check transfer complete
and clear if transfer is
completed.

reg_normalintrsts normalintrsts_xfercomplete 0x30 1 1b'1

Change clock frequency to 50 MHz (see Table 26-15).
Enable high speed. reg_hostcontrol1 hostctrl1_highspeedena 0x28 2 1b'1

Read response 0. reg_response0 command_response 0x10 15:0 Read
For eMMC card
Send CMD6 with eMMC high-speed argument and wait 2 ms.
Change clock frequency to 52 MHz.
Enable high speed. reg_hostcontrol1 hostctrl1_highspeedena 0x28 2 1b'1
Zynq UltraScale+ Device TRM 778
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=778

Chapter 26: SD/SDIO/eMMC Controller
Program sequence to execute the tuning for high-speed cards

Set block size value. reg_blocksize xfer_blocksize 0x04 11:0 Block size
value

Set the mode to data
transfer. reg_transfermode xfermode_dataxferdir 0x0C 4 0x10

Set the execute tuning
mode. reg_hostcontrol2 hostctrl2_executetuning 0x3E 6 0x40

SD card: send CMD19 or eMMC card: send CMD 21.
Check if the reg_hostcontrol2 for tuning mask bit is not set.
Repeat the process until the tuning mask bit is not set.
Check the sampling
clock select is set. reg_hostcontrol2 hostctrl2_

samplingclkselect 0x3E 8 0x80

Set the desired clock frequency using Table 26-28, if sampling clock selection is set.
Program sequence for DLL tap delay for SD0 and SD1 controllers for high-speed cards.

Set the DLL reset value. SD_DLL_CTRL SD{0,1}_DLL_RST 0x0 2 and 18 0x4

Set the ITAPCHGWIN to
gate the glitches in the
line.

SD_ITAPDLY SD{0,1}_ITAPCHGWIN 0x0 9 and 25 0x200

Set the ITAPDLYENA. SD_ITAPDLY SD{0,1}_ITAPDLYENA 0x0 8 and 24 0x100

Unset the ITAPCHGWIN. SD_ITAPDLY SD{0,1}_ITAPCHGWIN 0x0 9 and 25 Clear bit 9

Set the taps for the
desired clock value. SD_OTAPDLYSEL SD{0,1}_OTAPDLYSEL 0x0

5:0 and
21:16

Desired
value based

on the
clock.

Release DLL reset. SD_DLL_CTRL SD{0,1}_DLL_RST 0x0 2 and 18 Clear bit 2.

Set the taps for the
desired clock value. SD_OTAPDLYSEL SD1_OTAPDLYSEL 0x0 21:16

Desired
value based

on the
clock.

Unset the DLL reset
value. SD_DLL_CTRL SD1_DLL_RST 0x0 18 Unset the

bit 2.

Table 26‐27: SD Change Bus Speed (Cont’d)

Task
SD{0, 1} and

IOU_SLCR
Registers

Register Field
Register
Offset

Bits Value
Zynq UltraScale+ Device TRM 779
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=779

Chapter 26: SD/SDIO/eMMC Controller
SD Change Clock Frequency

SD Send Pullup Command

Get eMMC EXT CSD

Table 26‐28: SD Change Clock Frequency

Task Register Register Field
Register
Offset Bits Value

Disable clock. reg_clockcontrol clkctrl_intclkena |
clkctrl_sdclkena 0x2C 2 and 0 Clear bit 0

and 2
Set clock divisor
value. reg_clockcontrol clkctrl_sdclkfreqsel 0x2C 15:8 Desired

value
Wait until internal
clock to stabilize. reg_clockcontrol sdhcclkgen_intclkstable_dsync 0x2C 1 Read

Enable SD clock. reg_clockcontrol clkctrl_sdclkena 0x2C 2 Set bit 2

Table 26‐29: SD Send Pullup Command

Task Register Register Field Register Offset Bits Value

Send CMD55.
Send ACMD42.

Table 26‐30: Get eMMC EXT CSD

Task Register Register Field
Register
Offset Bits Value

Set block size to
desired value. reg_blocksize xfer_blocksize 0x04 11:0 Block size value

Set up ADMA2 descriptor table (see Table 26-19).
Data cache invalidate range.
Set transfer mode
with data direction
and DMA enable.

reg_transfermode xfermode_dmaenable |
xfermode_dataxferdir 0x0C 4 and 1 0x11
Zynq UltraScale+ Device TRM 780
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=780

Chapter 26: SD/SDIO/eMMC Controller
Resetting the DLL

Manual Tuning

Table 26‐31: Resetting the DLL

Task Register Register Field
Register
Offset Bits Value

Disable clock. reg_clockcontrol clkctrl_sdclkena 0x2C 2 Clear bit 2
Set the DLL reset
value. SD_DLL_CTRL SD{0,1}_DLL_RST 0x358 2 and 18 Set bit 2 and 18

Wait for 1 or 2 microseconds.
Release DLL from
reset. SD_DLL_CTRL SD{0,1}_DLL_RST 0x358 2 and 18 Clear bit 2 and 18

Wait until
internal clock to
stabilize.

reg_clockcontrol sdhcclkgen_intclkstable_dsync 0x2C 1 Read

Enable SD clock. reg_clockcontrol clkctrl_sdclkena 0x2C 2 Set bit 2

Table 26‐32: Manual Tuning

Task Register Register Field
Register
Offset Bits Value

Disable clock. reg_clockcontrol clkctrl_sdclkena 0x2C 2 Clear bit 2
Gate the glitches in
the line. SD_ITAPDLY SD{0,1}_ITAPCHGWIN 0x314 9 and 25 Set bit 9 and 25

Enable Rx tap delay
clock. SD_ITAPDLY SD{0,1}_ITAPDLYENA 0x314 8 and 24 Set bit 8 and 24

Select number of
taps for DLL. SD_ITAPDLY SD{0,1}_ITAPDLYSEL 0x314

7:0 and
23:16

Desired value
based on
the clock

Unset the
ITAPCHGWIN. SD_ITAPDLY SD{0,1}_ITAPCHGWIN 0x314 9 and 25 Clear bit 9

and 25
Set the taps for the
desired clock value. SD_OTAPDLYSEL SD{0,1}_OTAPDLYSEL 0x318

5:0 and
21:16

Desired value
based on
the clock.

Wait for few cycles for the taps to get synchronized.
Set the DLL reset
value. SD_DLL_CTRL SD{0,1}_DLL_RST 0x358 2 and 18 Set bit 2

and 18
Wait for few cycles
Release DLL from
reset. SD_DLL_CTRL SD{0,1}_DLL_RST 0x358 2 and 18 Clear bit 2

and 18
Wait until internal
clock to stabilize. reg_clockcontrol sdhcclkgen_intclkstable_dsync 0x2C 1 Read

Enable SD clock. reg_clockcontrol clkctrl_sdclkena 0x2C 2 Set bit 2
Zynq UltraScale+ Device TRM 781
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=781

Chapter 26: SD/SDIO/eMMC Controller
SD/eMMC Example Flow Diagram
X-Ref Target - Figure 26-7

Figure 26‐7: SD/eMMC Example Flow Diagram

SD_example

Read present status register
Disk Initialize

If (card detected
| stable | inserted)?

Card
inserted?

Yes

Return

Card

Initialize SD card
(see SD Card Initialize section)

Change clock frequency to 25 MHz
(see SD Change Clock Frequency)

Select card
(see SD Select Card section)

Get current bus width
(see SD Get Bus Width)

Get current bus speed
(see SD Get Bus Speed)

Card supports
high speed?

Yes

Change bus speed
(see SD Change Bus Speed)

Enable pullup
(see SD Send Pull Up Command)

Card supports
4-bit bus width?

Change bus width
(see SD Bus Width)

Set block size to 512
(see SD Set Block Size)

Initialize eMMC card
(see eMMC Card Initialize section)

Change clock frequency to 26 MHz
(see SD Change Clock Frequency)

Select card
(see SD Select Card section)

Change bus width
(see SD Change Bus Width section)

Get eMMC EXT CSD
(see Get eMMC EXT CSD section)

CSD register 4-bit
width bit set?Return

Card supports
high speed?

Change bus speed
(see SD Change Bus Speed)

Get eMMC EXT CSD
(see Get eMMC EXT CSD)

High-speed bit is set?

Yes

Set block size to 512
(see SD Set Block Size)

Read present status register

Perform polled write operation
(see SD Write Polled section)

End

Perform polled read operation
(see SD Read Polled section)

End

Operation
requested

Yes

No

No

Read Write

Yes

Yes

No

No

No

No

No

Return

eMMC SD

Yes

X15453-091316
Zynq UltraScale+ Device TRM 782
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=782

Chapter 26: SD/SDIO/eMMC Controller
Sequence Flowchart for Using DMA

Figure 26-8 is a flowchart for using DMA.
X-Ref Target - Figure 26-8

Figure 26‐8: DMA Data Transaction Flowchart

Start

Set System Address
Register

Set Block Size
Register

Set Block Count Register

Set Argument Register

Set Transfer Mode
Register

Set Command Register

Wait for Transfer Complete Interrupt
and DMA Interrupt

Clear Transfer Complete Status
Clear DMA Interrupt Status

End

Wait for Command
Complete Interrupt

Clear Command
Complete Status

Get Response Data

Check Interrupt Status

Clear DMA Interrupt
Status

Set System Address
 Register

Command Complete
Interrupt Occurs

Transfer Complete
Interrupt Occurs

X15454-091316
Zynq UltraScale+ Device TRM 783
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=783

Chapter 26: SD/SDIO/eMMC Controller
Non-DMA Data Transaction

Steps for a Non-DMA Data Transaction

1. Set the value corresponding to the executed data byte length of one block to the block
size register.

2. Set the value corresponding to the executed data block count to the block count
register.

3. Set the value corresponding to the issued command to the argument register.
4. Set the value to multi or single block select and block count enable.
5. Set the value corresponding to the issued command to the data transfer direction, auto

CMD12 enable, and DMA enable.
6. Set the value corresponding to the issued command in the command register. When

writing the upper byte of the command register, the SD command is issued.
7. Wait for the command complete interrupt.
8. Write a 1 to the command complete in the normal interrupt status register to clear this

bit.
9. Read the response register and get the necessary information in accordance with the

issued command.
10. When this sequence is used for writing to a card, go to step 11. When reading from a

card, go to step 15.
11. Wait for a buffer write ready interrupt.

Non-DMA Write Transfer

On receiving the buffer write ready interrupt, the Arm processor acts as a master and starts
transferring the data through the buffer data port register (FIFO_1). The transmitter starts
sending the data in the SD bus when a block of data is ready in FIFO_1. While transmitting
the data in the SD bus, the buffer write ready interrupt is sent to the Arm processor for the
second block of data. The Arm processor acts as a master and starts sending the second
block of data through the buffer data port register to FIFO_2. The buffer write ready
interrupt is only asserted when a FIFO is empty to receive a block of data.

12. Write a 1 to the buffer write ready in the normal interrupt status register to clear this bit.
13. Write the block data (in accordance with the number of bytes specified in step 1) to the

buffer data port register.
14. Repeat until all the blocks are sent and then go to step 19.
Zynq UltraScale+ Device TRM 784
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=784

Chapter 26: SD/SDIO/eMMC Controller
Non-DMA Read Transfer

The buffer read ready interrupt is asserted whenever a block of data is ready in one of the
FIFOs. On receiving the buffer read ready interrupt, the Arm processor acts as a master and
starts reading the data through the buffer data port register (FIFO_1). The receiver starts
reading the data from the SD bus only when a FIFO is empty and can receive a block of data.
When both the FIFOs are full, the host controller stops the data coming from the card
through a read wait mechanism (if the card supports a read wait mechanism) or by stopping
the clock.

Wait for Buffer Read Ready Interrupt

15. Write a 1 to the buffer read ready in the normal interrupt status register to clear this bit.
16. Read the block data (in accordance with the number of bytes specified in step 1) from

the buffer data port register.
17. Repeat until all blocks are received and then go to step 18.
18. If this sequence is for a single or multiple block transfer, go to step 19. For an infinite

block transfer, go to step 21.
19. Wait for a transfer complete interrupt.
20. Write a 1 to the transfer complete in the normal interrupt status register to clear this bit.
21. Perform the sequence for abort transaction.
Note: Step 1 and step 2 can be executed at same time. Step 4 and step 5 can also be executed at
same time.

IMPORTANT: During the process of auto tuning, the software driver must ignore the reg_presentstate
(SDIO) register’s [sdhcdmactrl_piobufrdena] field before sending CMD19 or CMD21.

Sequence Flowchart for Not Using DMA

Figure 26-9 is a flowchart for not using DMA.
Zynq UltraScale+ Device TRM 785
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=785

Chapter 26: SD/SDIO/eMMC Controller
X-Ref Target - Figure 26-9

Figure 26‐9: Non-DMA Data Transaction Flowchart

Start

Set Block Size
Register

Set Block Count
Register

Set Argument Register

Set Transfer Mode
Register

Write or Read?

Set Command Register

Clear Command
Complete Status

Wait for Command
Complete Interrupt

Get Response Data

Clear Buffer Write Ready
Status

Wait for Buffer
Write Ready Interrupt

Set Block Data

More Blocks?

Clear Buffer Read Ready
Status

Wait for Buffer Read
Ready Interrupt

Get Block Data

More Blocks?

Single Multi/Infinite
Block Transfer

Clear Transfer
Complete Status

Wait for Transfer
Complete Interrupt Abort Transaction

End

X15455-091316
Zynq UltraScale+ Device TRM 786
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=786

Chapter 27

General Purpose I/O

Introduction
The general purpose I/O (GPIO) is a collection of input/output signals available to software
applications. The GPIO consists of the MIO with 78 pins, and the extended multiplexed I/O
interface (EMIO) with 288 signals that are divided into 96 inputs from the programmable
logic (PL) and 192 outputs to the PL. The GPIO is organized into six banks of registers that
group related interface signals.

Each GPIO channel is independently and dynamically programmed as input, output, or
interrupt sensing. Software applications can read all GPIO values within a bank using a
single load instruction, or write data to one or more GPIOs using a single store instruction.
The GPIO control and status registers are memory mapped beginning at base address
0xFF0A_0000 and are protected by the XPPU.

Features

Key features of the GPIO peripheral are summarized as follows:

• 78 GPIO interfaces to the device pins.

° Routed through the MIO multiplexer.

° Programmable I/O drive strength, slew rate, and 3-state control.
• 96 GPIO interfaces to the PL (four allocated by software to reset PL logic).

° Routed through the EMIO interface.

° Data inputs.

° Data outputs.

° Output enables.
• I/O interface is organized into six banks (3 MIO and 3 EMIO).
• Interface control registers are grouped by bank {0:5}.
• Input values are read using the six DATA_RO_x registers.
• Two types of data ports for writing:
Zynq UltraScale+ Device TRM 787
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=787

Chapter 27: General Purpose I/O
° Full bank write using the DATA_x registers.

° Split bank maskable write using the MASK_DATA_x_{LWS, MWS} register pairs.
• The function of each GPIO can be dynamically programmed on an individual or group

basis.
• Enable, bit or bank data write, output enable and direction controls.
• Programmable interrupts on individual GPIO basis.

° Status read of raw and masked interrupt

° Selectable sensitivity: Level-sensitive (High or Low) or edge-sensitive (positive,
negative, or both).

SDK and Hardware Design

The Xilinx software and hardware design tools assign functionality to GPIO channels. For
example, the tools define four GPIO [92:95] channels routed to the EMIO for resets to
user-defined logic in the PL.

Functional Description
Figure 27-1 shows the block diagram of the GPIO. The GPIO is divided into six banks.

• Bank 0: 26-bit bank controlling MIO pins [0:25].
• Bank 1: 26-bit bank controlling MIO pins [26:51].
• Bank 2: 26-bit bank controlling MIO pins [52:77].

Note: Bank 0 to bank 2 are 26 bits each.
• Bank 3: 32-bit bank controlling EMIO signal sets [0:31].
• Bank 4: 32-bit bank controlling EMIO signal sets [32:63].
• Bank 5: 32-bit bank controlling EMIO signal sets [64:95].
Note: Up to four outputs for GPIO[92:95] can act as reset signals to user-defined logic in the PL. The
number of GPIO EMIO signals depends on the number of PL fabric resets selected in the Vivado PS
configuration wizard (PCW). For example, if one reset is selected, GPIO[95] is assigned as a reset
signal. If two are selected, then GPIO[95:94] are assigned.

The GPIO is controlled by software through a series of memory-mapped registers. The
control for each bank is the same, although there are minor differences between the MIO
and EMIO banks due to their differing functionality.

The EMIO interface is not connected to MIO pins. The EMIO inputs cannot be connected to
the MIO outputs and the MIO inputs cannot be connected to the EMIO outputs. Each bank
is independent and can only be used as software observable/controllable signals.
Zynq UltraScale+ Device TRM 788
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=788

Chapter 27: General Purpose I/O
X-Ref Target - Figure 27-1

Figure 27‐1: GPIO Block Diagram

26-bit

MIO

26-bit

32-bit

EMIOGPIOI[64:95]
EMIOGPIOO[64:95]
EMIOGPIOTN[64:95]

EMIO Interface to PL

x78

26-bit

GPIO
Bank 3

EMIOGPIOI[0:31]
EMIOGPIOO[0:31]
EMIOGPIOTN[0:31]

32-bit

Pin

EMIOGPIOI[32:63]
EMIOGPIOO[32:63]
EMIOGPIOTN[32:63]

GPIO
Bank 2

GPIO
Bank 1

GPIO
Bank 0

GPIO
Bank 4

GPIO
Bank 5

32-bit

X15456-092516
Zynq UltraScale+ Device TRM 789
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=789

Chapter 27: General Purpose I/O
MIO Pin Configuration

Banks 0 to 2 of the GPIO peripheral are routed to device pins through the MIO. All MIO pin
configuration registers in Table 28-2 use the IOU_SLCR register set.

Basic GPIO Functions

The main function of the GPIO peripheral is to provide direct access to device pins from
withing the PS and to allow software designers to drive pins through application software in
a highly flexible manner. This is useful for a wide variety of system applications to control
external hardware components and implement general purpose interfaces between devices.
The GPIO peripheral also provides an interrupt capability through an event detection unit.
The basic functions of a bank of GPIO pins are illustrated in Figure 27-2.

GPIO Channel Architecture

The GPIO channels for the MIO and EMIO are very similar. For the MIO, the input, output,
and 3-state signals connect to the I/O buffer. For the EMIO, all three signals (two output and
one input) are available to the PL fabric.
Zynq UltraScale+ Device TRM 790
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=790

Chapter 27: General Purpose I/O
Device Pin Channels

GPIO banks 0, 1, and 2 connect to device pins through the MIO (see Figure 27-2).

Software configures the GPIO as either an output or input. The DATA_RO register always
returns the state of the GPIO pin regardless of whether the GPIO is set to input (OE signal
false) or output (OE signal true). To generate an output waveform, software repeatedly
writes to one or more GPIOs (usually using the MASK_DATA register).

X-Ref Target - Figure 27-2

Figure 27‐2: GPIO Channel

INT_MASK

INT_DIS

INT_EN

INT_STAT

INT_TYPE

INT_POLARITY

INT_ANY

DATA_RO

DATA

MASK_DATA_LSW

MASK_DATA_MSW

DIRM

OEN

Interrupt
Detection

Logic

INT
State

Read

Clr
D Q

MIO

IRQ #48 to GIC

Write-1-to-clear

Input

Output

Output Enable

GPIO
Device Pad

MIO Device I/O
Buffers and Pins
(Banks 0, 1 & 2)

X18806-080318
Zynq UltraScale+ Device TRM 791
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=791

Chapter 27: General Purpose I/O
Applications might need to switch more than one GPIO at the same time (less a small
amount of inherent skew time between two I/O buffers). In this case, all of the GPIOs that
need to be switched simultaneously must be from the same 16-bit half-bank (i.e., either the
most-significant 16 bits or the least-significant 16 bits) of GPIOs to enable the MASK_DATA
register to write to them in one store instruction.

GPIO bank control (for banks 0, 1, and 2) is summarized as follows:

• DATA_RO: This register enables software to observe the value on the device pin. If the
GPIO signal is configured as an output, then this would normally reflect the value being
driven on the output. Writes to this register are ignored.
Note: If the MIO is not configured to enable this pin as a GPIO pin, then DATA_RO is
unpredictable because software cannot observe values on non-GPIO pins through the GPIO
registers.

• DATA: This register controls the value to be output when the GPIO signal is configured
as an output. All 32 bits of this register are written at one time. Reading from this
register returns the previous value written to either DATA or MASK_DATA_{LSW,MSW}; it
does not return the current value on the device pin.

• MASK_DATA_LSW: This register enables more selective changes to the desired output
value. Any combination of up to 16 bits can be written. Those bits that are not written
are unchanged and hold their previous value. Reading from this register returns the
previous value written to either DATA or MASK_DATA_{LSW,MSW}; it does not return the
current value on the device pin. This register avoids the need for a read-modify-write
sequence for unchanged bits.

• MASK_DATA_MSW: This register is the same as MASK_DATA_LSW, except it controls
the upper16 bits of the bank.

• DIRM: Direction Mode. This controls whether the I/O pin is acting as an input or an
output. Since the input logic is always enabled, this effectively enables/disables the
output driver. When DIRM[x]==0, the output driver is disabled.

• OEN: Output Enable. When the I/O is configured as an output, this controls whether
the output is enabled or not. When the output is disabled, the pin is 3-stated. When
OEN[x]==0, the output driver is disabled.
Note: If MIO TRI_ENABLE is set to 1, enabling 3-state and disabling the driver, then OEN is
ignored and the output is 3-stated.
Zynq UltraScale+ Device TRM 792
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=792

Chapter 27: General Purpose I/O
MIO Signals

This section describes the operation of GPIO bank 0, bank 1, and bank 2.

Input Mode

In input mode, the pin values are passed through to the corresponding register location
after meta-stability protection (GPIO inputs are considered asynchronous). The pin values
are available through two different paths. There is a dedicated path as well as a path
through the register. In the latter case, the direction control must be set to 0 for the input
from the I/O pad to be passed through to the register. There are two APB address locations
allocated to the pin: A read only location for the dedicated path and a read/write location
for the registered path. The pin value can be read from either location in the input mode.
The two paths produce different values in the output mode with inactive output enable.

Output Mode

In output mode, the pin values are driven by the corresponding register location. The
direction control must be set to a 1 and the output enable set to a 1 for the output to be
passed through the pad driven by MIO. The direction control and output enable can be
controlled separately. The direction control can be used to disable input values being
passed to the registers or APB write bus values being applied to input registers. The output
enable can be used separately to control whether an output value is passed or not passed
to the pin. The actual I/O pad direction control (gpio.OEN_{0:5}) is the logical combination
of both these signals, the output enable value is masked when the direction mode is set to
input.

In the output mode, when the output enable is active, the output pin value can be read from
either the APB read only location or the APB read/write location. When the output enable is
inactive, the pin is an input pin, and the value is available at the read only location. The
register value that drives the inactive 3-state buffer can be read from the read/write
location. The GPIO output and OEN signals are asserted and de-asserted asynchronously to
all PL clocks.

EMIO Signals

This section describes the operation of GPIO bank 3, bank 4, and bank 5. The register
interface for the EMIO banks is the same as for the MIO banks. The EMIO interface
differences are explained in this section.

The inputs come from the PL and are unrelated to the output values or the OEN
(gpio.OEN_{0:5}) register. They can be read from the DATA_0_R0 register when their bit in
the DIRM register is set to 0 (making it an input). The outputs are not 3-state capable and
are not affected by the OEN register. The output value is programmed using the DATA,
MASK_DATA_LSW, and MASK_DATA_MSW registers. DIRM must be set to 1 (making it an
output). For more details on these registers, refer to Table 27-2.
Zynq UltraScale+ Device TRM 793
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=793

Chapter 27: General Purpose I/O
Note: Similar to MIO, there is no PL clock associated with the GPIO EMIO signals and should be
considered asynchronous to PL logic.

Interrupt Function

The interrupt detection logic monitors the GPIO input signal. The interrupt trigger can be a
positive edge, negative edge, either edge, Low-level or High-level. The trigger sensitivity is
programmed using the INT_TYPE, INT_POLARITY and INT_ANY registers.

If an interrupt is detected, the GPIO's INT_STAT state is set true by the interrupt detection
logic. If the INT_STAT state is enabled (unmasked), then the interrupt propagates through to
a large OR function. This function combines all interrupts for all GPIOs in all four banks to
one output (IRQ ID#52) to the interrupt controller. If the interrupt is disabled (masked), then
the INT_STAT state is maintained until cleared, but it does not propagate to the interrupt
controller unless the INT_EN is later written to disable the mask. As all GPIOs share the same
interrupt, software must consider both INT_MASK and INT_STAT to determine which GPIO is
causing an interrupt.

The interrupt mask state is controlled by writing a 1 to the INT_EN and INT_DIS registers.
Writing a 1 to the INT_EN register disables the mask allowing an active interrupt to
propagate to the interrupt controller. Writing a 1 to the INT_DIS register enables the mask.
The state of the interrupt mask can be read using the INT_MASK register.

If the GPIO interrupt is edge sensitive, then the INT state is latched by the detection logic.
The INT latch is cleared by writing a 1 to the INT_STAT register. For level-sensitive interrupts,
the source of the interrupt input to the GPIO must be cleared in order to clear the interrupt
signal. Alternatively, software can mask that input using the INT_DIS register.

The state of the interrupt signal going to the interrupt controller can be inferred by reading
the INT_STAT and INT_MASK registers. This interrupt signal is asserted if INT_STAT=1 and
INT_MASK=0.

GPIO bank control is summarized as follows:

• INT_MASK: This register is read-only and shows which bits are currently masked and
which are un-masked/enabled.

• INT_EN: Writing a 1 to any bit of this register enables/unmasks that signal for
interrupts. Reading from this register returns an unpredictable value.

• INT_DIS: Writing a 1 to any bit of this register masks that signal for interrupts. Reading
from this register returns an unpredictable value.

• INT_STAT: This registers shows if an interrupt event has occurred or not. Writing a 1 to
a bit in this register clears the interrupt status for that bit. Writing a 0 to a bit in this
register is ignored.

• INT_TYPE: This register controls whether the interrupt is edge sensitive or level
sensitive.
Zynq UltraScale+ Device TRM 794
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=794

Chapter 27: General Purpose I/O
• INT_POLARITY: This register controls whether the interrupt is active-Low or active
High (or falling-edge sensitive or rising-edge sensitive).

• INT_ON_ANY: If INT_TYPE is set to edge sensitive, then this register enables an
interrupt event on both rising and falling edges. This register is ignored if INT_TYPE is
set to level sensitive.

System Interfaces

The controller clocks and resets are described in this section. All of the interrupts generated
in the GPIO controller are routed to IRQ 48. The GPIO I/O signals can be routed to either the
MIO or EMIO.

Clock

The controller operates on the rising edge of the LPD_LSBUS_CLK clock that is used for both
the APB interface as well as all other GPIO logic.

Reset

The controller uses a single reset signal associated with the LPD_LSBUS_CLK interface clock.

Table 27‐1: GPIO Interrupt Trigger Settings

Type gpio.INT_TYPE_0 gpio.INT_POLARITY_0 gpio.INT_ANY_0

Rising edge-sensitive 1 1 0

Falling edge-sensitive 1 0 0

Both rising- and falling edge-sensitive 1 X 1

Level sensitive, asserted High 0 1 X

Level sensitive, asserted Low 0 0 X
Zynq UltraScale+ Device TRM 795
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=795

Chapter 27: General Purpose I/O
Register Overview
An overview of the GPIO registers is shown in Table 27-2.

MIO Signals
All GPIO I/O pins routed through the MIO are listed in Table 27-3.

Table 27‐2: GPIO Register Overview

Function Register Name Description Type

Data reads and data writes

gpio.MASK_DATA_{0:5}_LSW
gpio.MASK_DATA_{0:5}_MSW Bit masked data output writes. Mixed

gpio.DATA_{0:5} Output data R/W
gpio.DATA_{0:5}_RO Input data RO

I/O buffer control
gpio.DIRM_{0:5} Direction R/W
gpio.OEN_{0:5} Output enable R/W

Interrupt controls

gpio.INT_MASK_{0:5} Interrupt mask RO
gpio.INT_EN_{0:5} Interrupt enable WO
gpio.INT_DIS_{0:5} Interrupt disable WO
gpio.INT_STAT_{0:5} Interrupt status WTC
gpio.INT_TYPE_{0:5} Interrupt type RW
gpio.INT_POLARITY_{0:5} Interrupt polarity RW
gpio.INT_ANY_{0:5} Interrupt any RW

Table 27‐3: GPIO Interface Signals via MIO Pins

MIO Pins

GPIO 0 I/O GPIO 1 I/O GPIO 2 I/O

0 I/O 26 I/O 52 I/O
1 I/O 27 I/O 53 I/O
2 I/O 28 I/O 54 I/O
3 I/O 29 I/O 55 I/O
4 I/O 30 I/O 56 I/O
5 I/O 31 I/O 57 I/O
6 I/O 32 I/O 58 I/O
7 I/O 33 I/O 59 I/O
8 I/O 34 I/O 60 I/O
Zynq UltraScale+ Device TRM 796
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=796

Chapter 27: General Purpose I/O
Programming Model
This section discusses GPIO programming models. The example flow in Figure 27-3 is
programming a GPIO interrupt. In this case, Bank0 of the GPIO is configured to latch the
switch input from the board and generate an interrupt when there is a status change on the
switch. Bank 1 is configured as output to display LED with the corresponding Bank 0
interrupt.

9 I/O 35 I/O 61 I/O
10 I/O 36 I/O 62 I/O
11 I/O 37 I/O 63 I/O
12 I/O 38 I/O 64 I/O
13 I/O 39 I/O 65 I/O
14 I/O 40 I/O 66 I/O
15 I/O 41 I/O 67 I/O
16 I/O 42 I/O 68 I/O
17 I/O 43 I/O 69 I/O
18 I/O 44 I/O 70 I/O
19 I/O 45 I/O 71 I/O
20 I/O 46 I/O 72 I/O
21 I/O 47 I/O 73 I/O
22 I/O 48 I/O 74 I/O
23 I/O 49 I/O 75 I/O
24 I/O 50 I/O 76 I/O
25 I/O 51 I/O 77 I/O

Table 27‐3: GPIO Interface Signals via MIO Pins (Cont’d)

MIO Pins

GPIO 0 I/O GPIO 1 I/O GPIO 2 I/O
Zynq UltraScale+ Device TRM 797
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=797

Chapter 27: General Purpose I/O
The register level configuration details are listed in Table 27-4 through Table 27-11 for the
GPIO interrupt programming flow shown in Figure 27-3.

X-Ref Target - Figure 27-3

Figure 27‐3: GPIO Interrupt Programming Flow

Initialize GPIO driver:
Disable interrupts for all the banks.

Run self-test:
Check the interrupt status for bank 0.
If any interrupt is enabled, then disable it.
Write, read, and compare the interrupt type,
polarity, and any edge sensitivity fields of bank 0.

Setup direction for bank 0 as inputs.

Setup direction for bank 1 as GPIO outputs
and configure output enable.

Setup interrupts for bank 0 GPIO inputs:
Enable falling-edge interrupt for all pins of the
GPIO bank 0.
Register the call back handler for GPIO bank 0 GIC ID.
Enable the GPIO interrupts of bank 0.

GPIO Int

Wait for interrupts from all the GPIO inputs to exit.

All interrupts
received

Yes

No

New interrupt received

End

Interrupt handler:
Bank 0 interrupt status read.
Get the interrupt mask status.
Clear interrupt status.
Drive corresponding LED.

X15459-092416
Zynq UltraScale+ Device TRM 798
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=798

Chapter 27: General Purpose I/O
Initialize the GPIO Driver

Table 27-4 shows the registers used to initialize the GPIO driver and mask the interrupts for
all the GPIO banks.

Run Self-Test on the GPIO

Table 27-5 and Table 27-6 describe the flow to run self-test on the GPIO.

In Table 27-5, the tasks outline the flow to check the interrupt status for bank 0. If any
interrupt is enabled, then disable the particular interrupt (bank 0).

The tasks in Table 27-6 outline the flow used to write, read, and compare the interrupt type,
polarity, and any edge sensitivity fields of bank 0.

Table 27‐4: Registers Used to Initialize the GPIO Driver

Task Register Name Bit Field Register Offset Bits Value

Disable interrupts for GPIO bank 0 gpio.INT_DIS_0 INT_DISABLE_0 0x214 31:0 FFFF_FFFFh

Disable interrupts for GPIO bank 1 gpio.INT_DIS_1 INT_DISABLE_1 0x254 31:0 FFFF_FFFFh

Disable interrupts for GPIO bank 2 gpio.INT_DIS_2 INT_DISABLE_2 0x294 31:0 FFFF_FFFFh

Disable interrupts for GPIO bank 3 gpio.INT_DIS_3 INT_DISABLE_3 0x2D4 31:0 FFFF_FFFFh

Disable interrupts for GPIO bank 4 gpio.INT_DIS_4 INT_DISABLE_4 0x314 31:0 FFFF_FFFFh

Disable interrupts for GPIO bank 5 gpio.INT_DIS_5 INT_DISABLE_5 0x354 31:0 FFFF_FFFFh

Table 27‐5: Check the Interrupt Status and Disable Interrupts

Task Register Name Register Field Register Offset Bits Value

Get the interrupt mask status gpio.INT_MASK_0 INT_MASK_0 0x20C 31:0 Read value

Disable interrupts for GPIO bank 0 gpio.INT_DIS_0 INT_DISABLE_0 0x214 31:0 Read value of
previous step

Table 27‐6: Read, Write, and Compare Interrupt Types

Task Register Name Register Field Register
Offset

Bits Value

Write interrupt type gpio.INT_TYPE_0 INT_TYPE_0 0x21C 31:0 Test Value
Write interrupt polarity gpio.INT_POLARITY_0 INT_POL_0 0x220 31:0 Test Value
Write interrupt any edge sensitivity gpio.INT_ANY_0 INT_ON_ANY_0 0x224 31:0 Test Value
Read interrupt type gpio.INT_TYPE_0 INT_TYPE_0 0x21C 31:0
Read interrupt polarity gpio.INT_POLARITY_0 INT_POL_0 0x220 31:0
Read interrupt any edge sensitivity gpio.INT_ANY_0 INT_ON_ANY_0 0x224 31:0
Zynq UltraScale+ Device TRM 799
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=799

Chapter 27: General Purpose I/O
Setup Direction for Bank 0 as Inputs

Setup Direction for Bank 1 as GPIO Outputs and Configure
Output Enable

Setup Interrupts for Bank 0 GPIO Inputs

The tasks in Table 27-9 outline the flow used to enable a falling-edge interrupt for all pins
of the GPIO bank 0.

The task in Table 27-10 outlines the flow used to register the call back handler for the GPIO
Bank 0 GIC ID.

Table 27‐7: Setup the Direction for Bank 0 as Inputs

Task Register Name Register Field
Register
Offset Bits Value

Set bank 0 as input GPIO gpio.DIRM_0 DIRECTION_0 0x204 31:0 0000_0000h

Table 27‐8: Setup Direction for Bank 1 as GPIO Outputs and Configure Output Enable

Task Register Name Register Field
Register
Offset Bits Value

Set Bank1 as output GPIO gpio.DIRM_1 DIRECTION_1 0x244 31:0 FFFF_FFFFh

Set BANK1 output Enable gpio.OEN_1 OP_ENABLE_1 0x248 31:0 FFFF_FFFFh

Table 27‐9: Setup Interrupts for Bank 0 GPIO Inputs

Task Register Name Register Field
Register
Offset

Bits Value

Write interrupt type gpio.INT_TYPE_0 INT_TYPE_0 0x21C 31:0 0000_0000h

Write interrupt polarity gpio.INT_POLARITY_0 INT_POL_0 0x220 31:0 0000_0000h

Write interrupt any edge sensitivity gpio.INT_ANY_0 INT_ON_ANY_0 0x224 31:0 0000_0000h

Table 27‐10: Enable the GPIO Interrupts of Bank 0

Task Register Name Register Field
Register
Offset

Bits Value

Enable interrupts for GPIO bank 0 gpio.INT_EN_0 INT_ENABLE_0 0x210 31:0 FFFF_FFFFh
Zynq UltraScale+ Device TRM 800
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=800

Chapter 27: General Purpose I/O
Wait for Interrupts from all the GPIO Inputs to Exit

The tasks in Table 27-10 outline the flow used for interrupt handling and to drive a GPIO
write to glow LED.

Table 27‐11: Wait for Interrupts from all the GPIO Inputs to Exit

Task Register Name Register Field Register
Offset

Bits Value

Bank 0 interrupt status read gpio.INT_STAT_0 INT_STATUS_0 0x218 31:0
Get the interrupt mask status gpio.INT_MASK_0 INT_MASK_0 0x20C 31:0

Clear interrupt status gpio.INT_STAT_0 INT_STATUS_0 0x218 31:0 Write a 1 to clear the
particular interrupt.

Drive the corresponding
LEDs gpio.DATA_1 DATA_1 0x44 31:0 Accumulated

interrupt status.
Zynq UltraScale+ Device TRM 801
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=801

Chapter 28: Multiplexed I/O
Chapter 28

Multiplexed I/O

Introduction
The features and functional description of the multiplexed I/Os (MIOs) are described in this
chapter including the MIO signal routing, bank-level mapping, and pin assignment
considerations for efficient use of the available MIO pins.

The basic MIO function is to multiplex access from the processing system (PS) peripheral
interface pins to the appropriate peripheral interfaces, as defined in the configuration
registers. An additional function is to control access from the extended multiplexed I/O
interface (EMIO) block to the input signals of the peripheral interfaces, for instance, where
there is a receive path. The MIO module allows you to configure the PS pin-out as required.
Seventy-eight (78) of the general purpose I/Os (GPIO) are used as MIOs. They are
configured by accessing the MIO control registers (detailed in this chapter) and are located
in the system-level control, IOU_SLCR register set.

The 78 MIO signals are divided into three banks, and each bank includes 26 device pins.
Each bank (500, 501, and 502) has its own power pins, VCCO_PSIO{0:2} for the hardware
interface. The I/O logic and interface to the system are in the LPD power domain. The
voltage signaling level, 1.8 or 3.3V, can be determined by reading the IOU_SLCR.bank{0:2}
registers.

The boot device is assigned to a specific set of MIO pins (see Table 11-1). These
assignments can drive the decisions on bank assignments for interfacing with other
hardware.
Zynq UltraScale+ Device TRM 802
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=802

Chapter 28: Multiplexed I/O
Overview of the Blocks Function

The MIO module can be described as a wide multiplexer/de-multiplexer, routing a number
of different peripheral interfaces to a limited number of external pins under software
configuration. A number of different interfaces are routed to and from the pins by the MIO,
with varying timing requirements. Therefore, a priority structure based on maximum toggle
rates must be implemented to place high-speed signal interfaces (such as gigabit Ethernet
RGMII or USB ULPI) closer to the pin in the multiplexer tree structure.

Control of the functionality associated with each pin is through the MIO section of the
IOU_SLCR system-level control registers. Output control signals are generated from these
register settings. These signals are used either directly as multiplexer selects or indirectly
through multiplexer select remapping functions. There are multiple port mapping options
available for peripherals (e.g., 12 for CAN and I2C) where the interface to the peripheral can
be constructed using any of the following.

• Mapping of ports from a single group.
• Mapping of ports from different groups.
• A mix of PS pins and PL pins through the EMIO interface.

PS and PL Pins

The MIO is fundamental to the I/O peripheral connections due to the limited number of
MIO pins (Figure 28-1). Software programs the routing of the I/O signals to the MIO pins.
The I/O peripheral signals can also be routed to the PL (including PL device pins) through
the EMIO interface. This is used to gain access to more device pins (PL pins) and to allow an
I/O peripheral controller to interface to internal logic in the PL.

X-Ref Target - Figure 28-1

Figure 28‐1: MIO-EMIO Wiring Diagram

PS I/O
Peripherals

PL

PS PL

AXI
Masters

EMIO
Interface

PS MIO
Pins

PL
Pins

AXI
Slaves

MIO
Multiplexer

D
ev

ic
e

Bo
un

da
ry

X15461-120718
Zynq UltraScale+ Device TRM 803
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=803

Chapter 28: Multiplexed I/O
Output Multiplexer

The output multiplexer example in Figure 28-2 shows a single bit cell of an output
multiplexer. The l3_output_* signal name is used to denote any of the range of low-speed
peripherals, where the ordering is not significant. To illustrate the general multiplexing
structure, other interfaces are identified without specifying a particular signal. Interfaces of
similar speed can be swapped at each multiplexer level. For instance, the fast trace-port
interface can be used where neither the ULPI nor RGMII PHY interfaces are used.

Figure 28-2 shows the default multiplexer structure for the output and enable multiplexer.
For most pins, only one of the high-speed interfaces (RGMII or ULPI or trace) is present.
Similarly, for many signals generated or consumed by peripherals, there is no
corresponding 3-state enable under the implemented protocol for its external interface. For
example, because RGMII does not use 3-state enables, the diagram includes them to
illustrate the concept of the output enable shadowing the output signal.

X-Ref Target - Figure 28-2

Figure 28‐2: MIO Multiplexing Stages and 3-State Output Control

Controller
Outputs

Outputs
From
Controllers

Notice: Not all mux
inputs are populated
with controller outputs.

Inputs to
Controllers

Level 3 Muxing

Level 2 Muxing

0
1
2
3
4
5
6
7

Controller
Outputs

0

Input Tie-Offs

EMIO

Other
MIO
Pins

1
2
3

Level 1 Muxing

Controller
Output

Controller
Input

0

1

Controller
Output

MIO Pin

0

1

To Program Muxing
Levels, refer to the
select fields in Registers
iou_slcr.MIO_PIN_[77:0]

Level 0 Muxing

IOU_SLCR.MIO_MST_TRI{0:2}

Controller

0 = 3-state
1 = Drive

0 = Let controller decide
1 = Force 3-state

X18979-120718
Zynq UltraScale+ Device TRM 804
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=804

Chapter 28: Multiplexed I/O
Master 3-state Enables

As shown in Figure 28-2, each pin has a master 3-state enable that overrides any interface
specific output enable provided by the peripherals. The master enable is logically combined
with the interface specific output enable signals (if provided) currently selected by the
output enable multiplexer tree to produce a single output enable for connection to the I/O
cell.

Access to the master enable control registers is on a bit-by-bit basis as the pins are
configured or in parallel by accessing two 32-bit registers.

Default Logic Levels

The inputs to the I/O peripherals are driven with default values when another source is not
routed to either the MIO or the EMIO. If an input is routed to EMIO, but the PL is powered
down, then the same default value is driven to the I/O peripheral (see Figure 28-3.)

For MIO-only signals, the default signal input is driven when the MIO multiplexer does not
route the signal to an MIO pin.

For MIO-EMIO signals, the default signal input is driven when the MIO multiplexer does not
route the signal to an MIO pin (the signal defaults to the EMIO interface) and when the
signal is programmed to be routed through the EMIO, but the PL either does not drive the
signal (not configured) or is not able to drive it (powered down).

The default input signal logic levels are designed to be benign to the I/O peripheral. As a
precaution, the related peripheral core should also be disabled when not in use. The logic
levels are shown in the signal tables in each chapter for each I/O peripheral.

When PS_POR_B is asserted Low, the PS GPIO outputs connected to EMIO are forced and
held High.
Zynq UltraScale+ Device TRM 805
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=805

Chapter 28: Multiplexed I/O
X-Ref Target - Figure 28-3

Figure 28‐3: Non-selected Controller Inputs

Hardcoded
Tie-Offs

0

EMIO Output

EMIO Input

Voltage translation
and drives a default
value to the MIO mux.

EMIO Inputs

1

No Interface
Selected

Subsystems
With MIO And
EMIO Routing

MIO Mux

Input Signal
Tie-Offs

Programmable
Logic

MIO
Pins

Subsystems
With MIO-only

Routing

X21065-061418
Zynq UltraScale+ Device TRM 806
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=806

Chapter 28: Multiplexed I/O
MIO Pin Assignment Considerations
IMPORTANT: There are several important MIO pin assignment considerations. The MIO-at-a-Glance
table and these pin assignment considerations are helpful for pin planning. There are individual MIO
signal tables for each controller/unit that uses the MIO pins.

Interface Frequencies

The clocking frequency for an interface usually depends on the device speed grade and
whether the interface is routed through the MIO or EMIO.

I/O Buffer Output Enable Control

The output enable for each MIO I/O buffer is controlled by a combination of the setting of
the three-state override control bit, the selected signal type (input-only or not), and the
state of the peripheral controller. The three-state override bit can be controlled from either
of two places: the iou_slcr.MIO_PIN_xx register bit or the iou_slcr.MIO_MST_TRIx register
bits. These bits control the same flip-flop to help control the three-state signal of the I/O
buffer. The I/O buffer output is enabled when the three-state override control bit equals 0
and either the signal is an output-only or the I/O peripheral is driving a signal that is
configured as I/O.

Boot from SD Card

The BootROM expects the SD card to be connected to MIO pins 13 through 25 for SD0 and
MIO pins 39 through 51 for SD1.

eMMC Mapping

The SD1/eMMC can only operate in 4-bit mode when it is mapped to MIO bank 3.

Quad-SPI Interface

The lower memory Quad-SPI interface (QSPI_0) must be used when using the Quad-SPI
memory subsystem. The upper interface (QSPI_1) is optional and is only used for a
two-memory arrangement (parallel or stacked). Do not use the Quad-SPI 1 interface alone.

Drive Strength

After power up, the default I/O setting of the MIO banks 0, 1, and 2 is 8 mA.
Zynq UltraScale+ Device TRM 807
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=807

Chapter 28: Multiplexed I/O

Zy 808
UG

g with their function, direction, and

Ta

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

ge
ge
ge 3 4 5 6 7 8 9 10 11

ge 0 1 2 3 4 5 6 7 8 9 10 11

ge
qs
na
pc
us 3 4 5 2 7 8 9 10 11

us 0 1 6 3 4 5 2 7 8 9 10 11

pm
sd 2 1 3 4 5 6 7 8 9 10 11 13 0

sd 0 13 4 5 6 7 3 2 1

CS
Di
au
gp
gp
gp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ca 1 0 1 0 1 0 1 0 1 0 1

ca 1 0 1 0 1 0 1 0 1 0 1 0

i2c 1 0 1 0 1 0 1 0 1 0 1
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

MIO Table at a Glance
For pin planning, see Table 28-1. MIO signals are also listed in each controller chapter alon
presence in EMIO.

ble 28‐1: MIO Interfaces

Interface 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

m0 0 1 2 3 4 5 6 7 8 9 10 11

m1 0 1 2 3 4 5 6 7 8 9 10 11

m2 0 1 2

m3
m_tsu 0 0

pi(2) 4 1 2 3 0 5 12 6 8 9 10 11 7

nd 2 13 14 4 1 3 0 5 6 7 8 9 10 16 11 12 15 2 13 14 4

ie 0 0 0 0 0 0 0 0

b0 0 1 6

b1
u 0 1 2 3 4 5 6 7 8 9 10 11

0(1) 4 5 6 7 8 9 10 11 3 2 13 1 0 2 1 3 4 5 6 7 8 9 10 11 13 0

1(1) 8 9 10 11 13 0 1 4 5 6 7 3 2

U tamper 0 0 0 0 0 0 0 0 0 0 0 0

splayPort
x 0 1 2 3 0 1 2 3

io0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

io1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

io2 0 1 2

n0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

n1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

https://www.xilinx.com

Chapter 28: Multiplexed I/O

Zy 809
UG

i2c 0 1 0 1 0 1 0 1 0 1 0 1

pjt 2 3 0 1 2

lpd 0 1 0 1 0 1 0 1

fp 0 1 0 1 0 1 0 1

sp 2 1 0 5 4 3 2 1 0

sp 5 4 3 2 1 0 5 4 3 2 1 0

ttc 1 0 1 0 1

ttc 0 1 0 1

ttc 0 1 0 1

ttc 0 1 0 1

md 0 1

ua 1 0 1 0 1 0 1 0 1 0 1

ua 1 0 1 0 1 0 1 0 1 0

tra 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

No
1. tion is as follows.

, [5], [6], and [7], respectively.
2. l is not used by the Quad-SPI and can be used

Ta

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

ag 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1

_swdt 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

d_swdt 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

i0 5 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0 5 4 3

i1 5 4 3 2 1 0 1 4 3 2 5 0 5 4 3 2 1 0 5 4 3 2 1 0

0 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2 0 1 0 1 0 1 0 1 0 1 0 1 0 1

3 0 1 0 1 0 1 0 1 0 1 0 1 0 1

io{0:3} 0 1

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

ce 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 0 1 2

tes:
SD0/1 peripheral pins can also be configured as eMMC 0/1, respectively. The difference between SD and eMMC configura

° The Card Detect and Write Protect signals are only available in SD mode.
° The BUS_POW pin in SD mode is treated as a reset pin in eMMC mode.
° In SD mode, data transfers in 1-bit and 4-bit modes. In eMMC mode, data transfers in 1-bit, 4-bit, and 8-bit modes.
° If the SD interface is configured for SD 3.0, the signals SEL, DIR_CMD, DIR_0, and DIR_1_3 are mapped to sdio{0,1}_data_out [4]
In Quad-SPI loopback mode, leave the clk_for_lpbk signal floating. In Quad-SPI non-loopback mode, the clk_for_lpbk signa
as a peripheral I/O (such as GPIO, CAN, or I2C).

ble 28‐1: MIO Interfaces (Cont’d)

Interface 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

https://www.xilinx.com

Chapter 28: Multiplexed I/O
Register Overview
Some MIO pins are programmed by the PMU ROM pre-boot. Some might also be
programmed by the PMU user firmware, the CSU for the boot device, the FSBL, or other
low-level code. The affected registers are listed in Table 28-2. All MIO registers use the
IOU_SLCR register set and can be programmed in any order.

Note: Setting MIO_MST_TRIx [PIN_xx_TRI] to 0 enables the GPIO to control the 3-state mode of the
I/O. If the 3-state control is set to 1 in the MIO, then the output driver will be set to 3-state regardless
of the GPIO settings.

Programming Model
Typically, the MIO configuration code is generated as part of the FSBL from the hardware
project. An SDK export of a Vivado Design Suite project carries the PCW configuration
information for the MIO pins. The SDK tools process the MIO configuration during FSBL
creation.

I2C Interface Programming Example

The MIO can be configured to route the I2C interface signals to MIO pins 2 and 3. To route
the I2C SCL signal to MIO pin 2, write 'h40 to the IOU_SLCR.MIO_PIN_2 register. To route
the I2C SDA signal to MIO pin 3, write 'h40 to the IOU_SLCR.MIO_PIN_3 register.

Table 28‐2: MIO Control Registers

Description Register Name Type

Route I/O signals of IOP peripherals to
MIO pins {0:77}. MIO_PIN_{0:77} R/W

Disable 3-state output buffers on MIO
pins {0:77}. MIO_MST_TRI{0:2} R/W

Select input type (CMOS or Schmitt
with hysteresis). BANK{0:2}_CTRL3 R/W

Select internal pull-up or pull-down. BANK{0:2}_CTRL4 R/W
Enable or disable internal resister. BANK{0:2}_CTRL5 R/W
Select slew rate output (fast or slow). BANK{0:2}_CTRL6 R/W
Select output drive strength (2 bits; 2,
4, 8, and 12 mA). BANK{0:2}_CTRL{0, 1} R /W

Read the voltage applied to PSIO bank. BANK{0:2}_STATUS R
Enable loopback function with MIO for
SPI, UART, CAN, and I2C I/O interfaces. MIO_LOOPBACK R/W
Zynq UltraScale+ Device TRM 810
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=810

Chapter 28: Multiplexed I/O

Zy 811
UG

Th

Ta

o1 spi0 spi1 mdio2 ttc0 ttc1 ttc2 ttc3 mdio3 ua0 ua1 trace

Siz 6 6 2 2 2 2 2 2 2 2 18

Pi

0
sclk

5
clk
0

txd
1

clk
0

1
n_ss_
out[2]

4

wave_
out
1

rxd
0

clk
1

2
n_ss_
out[1]

3

clk
0

rxd
0

dq_0
2

3
n_ss_
out[0]

2

wave_
out
1

txd
1

dq_1
3

4
miso

1
clk
0

txd
1

dq_2
4

5
mosi

0

wave_
out
1

rxd
0

dq_3
5

6
sclk

5
clk
0

rxd
0

dq_4
6

7
n_ss_
out[2]

4

wave_
out
1

txd
1

dq_5
7

8
n_ss_
out[1]

3

clk
0

txd
1

dq_6
8

9
n_ss_
out[0]

2

wave_
out
1

rxd
0

dq_7
9

10
miso

1
clk
0

rxd
0

dq_8
10

11
mosi

0

wave_
out
1

txd
1

dq_9
11

12
sclk

5
clk
0

txd
1

dq_10
12
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

e MIO pins and their signal names for each interface are listed in Table 28-3.

ble 28‐3: MIO Interfaces

Interface Type

gem0 gem1 gem2 gem
3

gem_
tsu qspi(2) nand pcie usb0 usb1 pmu sd0(1) sd1(1) test_

scan csu dpaux gpio0 gpio1 gpio2 can0 can1 i2c0 i2c1 mdio0 pjtag lpd_
swdt

fpd_
swdt mdi

e 12 12 12 12 1 13 17 1 12 12 12 13 13 38 1 4 26 26 26 2 2 2 2 2 4 2 2 2

n

sclk_out
4

io[0]
0

io[0]
0

phy_tx
1

scl
0

tck
3

io[1]
1

io[1]
1

io[1]
1

phy_rx
0

sda
1

tdi
0

io[2]
2

io[2]
2

io[2]
2

phy_rx
0

scl
0

tdo
1

io[3]
3

io[3]
3

io[3]
3

phy_tx
1

sda
1

tms
2

si_mio[0
] 0

io[4]
4

io[4]
4

phy_tx
1

scl
0

clk_in
0

n_ss_ou
t
5

io[5]
5

io[5]
5

phy_rx
0

sda
1

rst_out
1

clk_for_l
pbk
12

io[6]
6

io[6]
6

phy_rx
0

scl
0

clk_in
0

n_ss_ou
t_

upper
6

io[7]
7

io[7]
7

phy_tx
1

sda
1

rst_out
1

upper
_io[0]

8

io[8]
8

io[8]
8

phy_tx
1

scl
0

clk_in
0

upper
_io[1]

9

ce[1]
2

io[9]
9

io[9]
9

phy_rx
0

sda
1

rst_out
1

upper
_io[2]

10

rb_n[0]
13

io[10]
10

io[10]
10

phy_rx
0

scl
0

clk_in
0

upper
_io[3]

11

rb_n[1]
14

io[11]
11

io[11]
11

phy_tx
1

sda
1

rst_out
1

sclk_
out_

upper
7

dqs
4

io[12]
12

io[12]
12

phy_tx
1

scl
0

tck
3

https://www.xilinx.com

Chapter 28: Multiplexed I/O

Zy 812
UG

13
n_ss_
out[2]

4

wave_
out
1

rxd
0

dq_11
13

14
n_ss_
out[1]

3

clk
0

rxd
0

dq_12
14

15
n_ss_
out[0]

2

wave_
out
1

txd
1

dq_13
15

16
miso

1
clk
0

txd
1

dq_14
16

17
mosi

0

wave_
out
1

rxd
0

dq_15
17

18
miso

1
clk
0

rxd
0

19
n_ss_
out[2]

4

wave_
out
1

txd
1

20
n_ss_
out[1]

3

clk
0

txd
1

21
n_ss_
out[0]

2

wave_
out
1

rxd
0

22
sclk

5
clk
0

rxd
0

23
mosi

0

wave_
out
1

txd
1

24
clk
0

txd
1

25
wave_

out
1

rxd
0

26
sclk

5
clk
0

rxd
0

dq_4
6

27
n_ss_
out[2]

4

wave_
out
1

txd
1

dq_5
7

Th

Ta

o1 spi0 spi1 mdio2 ttc0 ttc1 ttc2 ttc3 mdio3 ua0 ua1 trace
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

ce[0]
1

data_io
[0]
4

io[13]
13

io[13]
13

phy_rx
0

sda
1

tdi
0

cle
3

data_io
[1]
5

io[14]
14

io[14]
14

phy_rx
0

scl
0

tdo
1

ale
0

data_io
[2]
6

io[15]
15

io[15]
15

phy_tx
1

sda
1

tms
2

dq[0]
5

data_io
[3]
7

io[16]
16

io[16]
16

phy_tx
1

scl
0

clk_in
0

dq[1]
6

data_io
[4]
8

io[17]
17

io[17]
17

phy_rx
0

sda
1

rst_out
1

dq[2]
7

data_io
[5]
9

io[18]
18

ext_
tamper

0

io[18]
18

phy_rx
0

scl
0

clk_in
0

dq[3]
8

data_io
[6]
10

io[19]
19

ext_
tamper

0

io[19]
19

phy_tx
1

sda
1

rst_out
1

dq[4]
9

data_io
[7]
11

io[20]
20

ext_
tamper

0

io[20]
20

phy_tx
1

scl
0

clk_in
0

dq[5]
10

cmd_io
3

io[21]
21

ext_
tamper

0

io[21]
21

phy_rx
0

sda
1

rst_out
1

we_b
16

clk_out
2

io[22]
22

ext_
tamper

0

io[22]
22

phy_rx
0

scl
0

clk_in
0

dq[6]
11

bus_po
w
13

io[23]
23

ext_
tamper

0

io[23]
23

phy_tx
1

sda
1

rst_out
1

dq[7]
12

cd_n
1

io[24]
24

ext_
tamper

0

io[24]
24

phy_tx
1

scl
0

clk_in
0

re_n
15

wp
0

io[25]
25

ext_
tamper

0

io[25]
25

phy_rx
0

sda
1

rst_out
1

rgmii_
tx_clk

0

gem_
tsu_clk

0

ce[1]
2

gpi[0]
0

io[26]
26

ext_
tamper

0

io[0]
0

phy_rx
0

scl
0

tck
3

rgmii_
txd[0]

1

rb_n[0]
13

gpi[1]
1

io[27]
27

data_
out
0

io[1]
1

phy_tx
1

sda
1

tdi
0

e MIO pins and their signal names for each interface are listed in Table 28-3.

ble 28‐3: MIO Interfaces (Cont’d)

Interface Type

gem0 gem1 gem2 gem
3

gem_
tsu qspi(2) nand pcie usb0 usb1 pmu sd0(1) sd1(1) test_

scan csu dpaux gpio0 gpio1 gpio2 can0 can1 i2c0 i2c1 mdio0 pjtag lpd_
swdt

fpd_
swdt mdi

https://www.xilinx.com

Chapter 28: Multiplexed I/O

Zy 813
UG

28
n_ss_
out[1]

3

clk
0

txd
1

dq_6
8

29
n_ss_
out[0]

2

wave_
out
1

rxd
0

dq_7
9

30
miso

1
clk
0

rxd
0

dq_8
10

31
mosi

0

wave_
out
1

txd
1

dq_9
11

32
sclk

5
clk
0

txd
1

dq_10
12

33
n_ss_
out[2]

4

wave_
out
1

rxd
0

dq_11
13

34
n_ss_
out[1]

3

clk
0

rxd
0

dq_12
14

35
n_ss_
out[0]

2

wave_
out
1

txd
1

dq_13
15

36
miso

1
clk
0

txd
1

dq_14
16

37
mosi

0

wave_
out
1

rxd
0

dq_15
17

38
sclk

5
clk
0

rxd
0

clk
0

39
n_ss_
out[2]

4

wave_
out
1

txd
1

clk
1

40
n_ss_
out[1]

3

clk
0

txd
1

dq_0
2

41
n_ss_
out[0]

2

wave_
out
1

rxd
0

dq_1
3

Th

Ta

o1 spi0 spi1 mdio2 ttc0 ttc1 ttc2 ttc3 mdio3 ua0 ua1 trace
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

rgmii_t
xd[1]

2

rb_n[1]
14

gpi[2]
2

io[28]
28

hot_plu
g_dete

ct
1

io[2]
2

phy_tx
1

scl
0

tdo
1

rgmii_t
xd[2]

3

reset_
n
0

gpi[3]
3

io[29]
29

data_o
e
2

io[3]
3

phy_rx
0

sda
1

tms
2

rgmii_t
xd[3]

4

reset_
n
0

gpi[4]
4

io[30]
30

data_in
3

io[4]
4

phy_rx
0

scl
0

clk_in
0

rgmii_t
x_ctl

5

reset_
n
0

gpi[5]
5

io[31]
31

ext_ta
mper

0

io[5]
5

phy_tx
1

sda
1

rst_out
1

rgmii_r
x_clk

6

dqs
4

gpo[0]
6

io[32]
32

ext_ta
mper

0

io[6]
6

phy_tx
1

scl
0

clk_in
0

rgmii_r
xd[0]

7

reset_
n
0

gpo[1]
7

io[33]
33

ext_ta
mper

0

io[7]
7

phy_rx
0

sda
1

rst_out
1

rgmii_r
xd[1]

8

reset_
n
0

gpo[2]
8

io[34]
34

data_o
ut
0

io[8]
8

phy_rx
0

scl
0

clk_in
0

rgmii_r
xd[2]

9

reset_
n
0

gpo[3]
9

io[35]
35

hot_plu
g_dete

ct
1

io[9]
9

phy_tx
1

sda
1

rst_out
1

rgmii_r
xd[3]

10

reset_
n
0

gpo[4]
10

io[36]
36

data_o
e
2

io[10]
10

phy_tx
1

scl
0

clk_in
0

rgmii_r
x_ctl

11

reset_
n
0

gpo[5]
11

io[37]
37

data_in
3

io[11]
11

phy_rx
0

sda
1

rst_out
1

rgmii_t
x_clk

0

clk_out
2

io[12]
12

phy_rx
0

scl
0

tck
3

rgmii_t
xd[0]

1

cd_n
1

data_io[
4]
8

io[13]
13

phy_tx
1

sda
1

tdi
0

rgmii_t
xd[1]

2

cmd_io
3

data_io[
5]
9

io[14]
14

phy_tx
1

scl
0

tdo
1

rgmii_t
xd[2]

3

data_io
[0]
4

data_io[
6]
10

io[15]
15

phy_rx
0

sda
1

tms
2

e MIO pins and their signal names for each interface are listed in Table 28-3.

ble 28‐3: MIO Interfaces (Cont’d)

Interface Type

gem0 gem1 gem2 gem
3

gem_
tsu qspi(2) nand pcie usb0 usb1 pmu sd0(1) sd1(1) test_

scan csu dpaux gpio0 gpio1 gpio2 can0 can1 i2c0 i2c1 mdio0 pjtag lpd_
swdt

fpd_
swdt mdi

https://www.xilinx.com

Chapter 28: Multiplexed I/O

Zy 814
UG

42
miso

1
clk
0

rxd
0

dq_2
4

43
mosi

0

wave_
out
1

txd
1

dq_3
5

44
sclk

5
clk
0

txd
1

45
n_ss_
out[2]

4

wave_
out
1

rxd
0

46
n_ss_
out[1]

3

clk
0

rxd
0

47
n_ss_
out[0]

2

wave_
out
1

txd
1

48
miso

1
clk
0

txd
1

49
mosi

0

wave_
out
1

rxd
0

50
1_
c clk

0
rxd
0

51
1_
o

wave_
out
1

txd
1

52
sclk

5
clk
0

txd
1

clk
0

53
n_ss_
out[2]

4

wave_
out
1

rxd
0

clk
1

54
n_ss_
out[1]

3

clk
0

rxd
0

dq_0
2

55
n_ss_
out[0]

2

wave_
out
1

txd
1

dq_1
3

Th

Ta

o1 spi0 spi1 mdio2 ttc0 ttc1 ttc2 ttc3 mdio3 ua0 ua1 trace
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

rgmii_t
xd[3]

4

data_io
[1]
5

data_io[
7]
11

io[16]
16

phy_rx
0

scl
0

clk_in
0

rgmii_t
x_ctl

5

data_io
[2]
6

bus_pow

13

io[17]
17

phy_tx
1

sda
1

rst_out
1

rgmii_r
x_clk

6

data_io
[3]
7

wp
0

io[18]
18

phy_tx
1

scl
0

clk_in
0

rgmii_r
xd[0]

7

data_io
[4]
8

cd_n
1

io[19]
19

phy_rx
0

sda
1

rst_out
1

rgmii_r
xd[1]

8

data_io
[5]
9

data_io[
0]
4

io[20]
20

phy_rx
0

scl
0

clk_in
0

rgmii_r
xd[2]

9

data_io
[6]
10

data_io[
1]
5

io[21]
21

phy_tx
1

sda
1

rst_out
1

rgmii_r
xd[3]

10

data_io
[7]
11

data_io[
2]
6

io[22]
22

phy_tx
1

scl
0

clk_in
0

rgmii_r
x_ctl

11

bus_po
w
13

data_io[
3]
7

io[23]
23

phy_rx
0

sda
1

rst_out
1

gem_ts
u_clk

0

wp
0

cmd_io
3

io[24]
24

phy_rx
0

scl
0

clk_in
0

gem
md

0

gem_ts
u_clk

0

clk_out
2

io[25]
25

phy_tx
1

sda
1

rst_out
1

gem
mdi

1

rgmii_tx
_clk

0

ulpi_cl
k_in

0

io[0]
0

phy_tx
1

scl
0

tck
3

rgmii_tx
d[0]

1

ulpi_di
r
1

io[1]
1

phy_rx
0

sda
1

tdi
0

rgmii_tx
d[1]

2

ulpi_rx
_data[

2]
6

io[2]
2

phy_rx
0

scl
0

tdo
1

rgmii_tx
d[2]

3

ulpi_n
xt
3

io[3]
3

phy_tx
1

sda
1

tms
2

e MIO pins and their signal names for each interface are listed in Table 28-3.

ble 28‐3: MIO Interfaces (Cont’d)

Interface Type

gem0 gem1 gem2 gem
3

gem_
tsu qspi(2) nand pcie usb0 usb1 pmu sd0(1) sd1(1) test_

scan csu dpaux gpio0 gpio1 gpio2 can0 can1 i2c0 i2c1 mdio0 pjtag lpd_
swdt

fpd_
swdt mdi

https://www.xilinx.com

Chapter 28: Multiplexed I/O

Zy 815
UG

56
miso

1
clk
0

txd
1

dq_2
4

57
mosi

0

wave_
out
1

rxd
0

dq_3
5

58
sclk

5
clk
0

rxd
0

dq_4
6

59
n_ss_
out[2]

4

wave_
out
1

txd
1

dq_5
7

60
n_ss_
out[1]

3

clk
0

txd
1

dq_6
8

61
n_ss_
out[0]

2

wave_
out
1

rxd
0

dq_7
9

62
miso

1
clk
0

rxd
0

dq_8
10

63
mosi

0

wave_
out
1

txd
1

dq_9
11

64
sclk

5
clk
0

txd
1

dq_10
12

65
n_ss_
out[2]

4

wave_
out
1

rxd
0

dq_11
13

66
n_ss_
out[1]

3

clk
0

rxd
0

dq_12
14

67
n_ss_
out[0]

2

wave_
out
1

txd
1

dq_13
15

68
miso

1
clk
0

txd
1

dq_14
16

Th

Ta

o1 spi0 spi1 mdio2 ttc0 ttc1 ttc2 ttc3 mdio3 ua0 ua1 trace
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

rgmii_tx
d[3]

4

ulpi_rx
_data[

0]
4

io[4]
4

phy_tx
1

scl
0

clk_in
0

rgmii_tx
_ctl

5

ulpi_rx
_data[

1]
5

io[5]
5

phy_rx
0

sda
1

rst_out
1

rgmii_rx
_clk

6

ulpi_st
p
2

io[6]
6

phy_rx
0

scl
0

tck
3

rgmii_rx
d[0]

7

ulpi_rx
_data[

3]
7

io[7]
7

phy_tx
1

sda
1

tdi
0

rgmii_rx
d[1]

8

ulpi_rx
_data[

4]
8

io[8]
8

phy_tx
1

scl
0

tdo
1

rgmii_rx
d[2]

9

ulpi_rx
_data[

5]
9

io[9]
9

phy_rx
0

sda
1

tms
2

rgmii_rx
d[3]
10

ulpi_rx
_data[

6]
10

io[10]
10

phy_rx
0

scl
0

clk_in
0

rgmii_rx
_ctl
11

ulpi_rx
_data[

7]
11

io[11]
11

phy_tx
1

sda
1

rst_out
1

rgmii_
tx_clk

0

ulpi_clk
_in
0

clk_out
2

io[12]
12

phy_tx
1

scl
0

clk_in
0

rgmii_
txd[0]

1

ulpi_dir
1

cd_n
1

io[13]
13

phy_rx
0

sda
1

rst_out
1

rgmii_
txd[1]

2

ulpi_rx_
data[2]

6

cmd_io
3

io[14]
14

phy_rx
0

scl
0

clk_in
0

rgmii_
txd[2]

3

ulpi_nxt
3

data_io
[0]
4

io[15]
15

phy_tx
1

sda
1

rst_out
1

rgmii_
txd[3]

4

ulpi_rx_
data[0]

4

data_io
[1]
5

io[16]
16

phy_tx
1

scl
0

clk_in
0

e MIO pins and their signal names for each interface are listed in Table 28-3.

ble 28‐3: MIO Interfaces (Cont’d)

Interface Type

gem0 gem1 gem2 gem
3

gem_
tsu qspi(2) nand pcie usb0 usb1 pmu sd0(1) sd1(1) test_

scan csu dpaux gpio0 gpio1 gpio2 can0 can1 i2c0 i2c1 mdio0 pjtag lpd_
swdt

fpd_
swdt mdi

https://www.xilinx.com

Chapter 28: Multiplexed I/O

Zy 816
UG

69
mosi

0

wave_
out
1

rxd
0

dq_15
17

70
sclk

5
clk
0

rxd
0

71
n_ss_
out[2]

4

wave_
out
1

txd
1

72
n_ss_
out[1]

3

txd
1

73
n_ss_
out[0]

2

rxd
0

74
miso

1
rxd
0

75
mosi

0
txd
1

76
1_
c

gem2_
mdc

0

gem3_
mdc

0

77
1_
o

gem2_
mdio

1

gem3_
mdio

1

No
1. tion is as follows.

 data_io[6], and data_io[7], respectively.
2. l is not used by the Quad-SPI and can be used

Th

Ta

o1 spi0 spi1 mdio2 ttc0 ttc1 ttc2 ttc3 mdio3 ua0 ua1 trace
nq UltraScale+ Device TRM
1085 (v2.2) December 4, 2020 www.xilinx.com

rgmii_
tx_ctl

5

ulpi_rx_
data[1]

5

data_io
[2]
6

wp
0

io[17]
17

phy_rx
0

sda
1

rst_out
1

rgmii_
rx_clk

6

ulpi_stp
2

data_io
[3]
7

bus_pow
13

io[18]
18

phy_rx
0

scl
0

clk_in
0

rgmii_
rxd[0]

7

ulpi_rx_
data[3]

7

data_io
[4]
8

data_io
[0]
4

io[19]
19

phy_tx
1

sda
1

rst_out
1

rgmii_
rxd[1]

8

ulpi_rx_
data[4]

8

data_io
[5]
9

data_io
[1]
5

io[20]
20

phy_tx
1

scl
0

clk_in
0

rgmii_
rxd[2]

9

ulpi_rx_
data[5]

9

data_io
[6]
10

data_io[
2]
6

io[21]
21

phy_rx
0

sda
1

rst_out
1

rgmii_
rxd[3]

10

ulpi_rx_
data[6]

10

data_io
[7]
11

data_io[
3]
7

io[22]
22

phy_rx
0

scl
0

clk_in
0

rgmii_
rx_ctl

11

ulpi_rx_
data[7]

11

bus_po
w
13

cmd_io
3

io[23]
23

phy_tx
1

sda
1

rst_out
1

wp
0

clk_out
2

io[24]
24

phy_tx
1

scl
0

gem0_
mdc

0

gem
md

0

cd_n
1

io[25]
25

phy_rx
0

sda
1

gem0_
mdio

1

gem
mdi

1

tes:
SD0/1 peripheral pins can also be configured as eMMC 0/1, respectively. The difference between SD and eMMC configura

° The Card Detect and Write Protect signals are only available in SD mode.
° The BUS_POW pin in SD mode is treated as a reset pin in eMMC mode.
° In SD mode, data transfers in 1-bit and 4-bit modes. In eMMC mode, data transfers in 1-bit, 4-bit, and 8-bit modes.
° If the SD interface is configured for SD 3.0, the signals SEL, DIR_CMD, DIR_0, and DIR_1_3 are mapped to data_io[4], data_io[5],
In Quad-SPI loopback mode, leave the clk_for_lpbk signal floating. In Quad-SPI non-loopback mode, the clk_for_lpbk signa
as a peripheral I/O (such as GPIO, CAN, or I2C).

e MIO pins and their signal names for each interface are listed in Table 28-3.

ble 28‐3: MIO Interfaces (Cont’d)

Interface Type

gem0 gem1 gem2 gem
3

gem_
tsu qspi(2) nand pcie usb0 usb1 pmu sd0(1) sd1(1) test_

scan csu dpaux gpio0 gpio1 gpio2 can0 can1 i2c0 i2c1 mdio0 pjtag lpd_
swdt

fpd_
swdt mdi

https://www.xilinx.com

Chapter 29

PS-GTR Transceivers

Introduction
The multi-gigabit GTR transceivers provide I/O for high-speed communication links
between the media access controllers (MACs) of the peripherals in the serial input output
unit (SIOU) and their link partners outside the device. The four programmable transceivers
support the sublayer protocols with data rates up to 6 Gb/s.

The PS-GTR transceivers provide the only I/O path for the PCIe v2.0, USB3.0, DisplayPort
(transmitter only), GEM Ethernet, and SATA controllers. The interface's interconnect matrix
(ICM) connects up to four MAC I/O signals from the controllers to the physical coding
sublayer (PCS) and the physical media attachment (PMA) units in the transceiver interfaces.

The PCS provides 8B/10B encoding and decoding, elastic buffer, and buffer management
logic such as comma detection and byte and word alignment.

The PMA provides one PLL per lane with the ability to share reference clocks, transmitter
de-emphasis, receiver continuous time linear equalizer, SSC support, out-of-band signaling,
and LFPS/Beacon signaling for USB3.0/PCIe v2.0 designs.

The PS-GTR transceivers are controlled by the SERDES register set that are exclusively
programmed and managed by the Vivado PS configuration wizard (PCW). This chapter
explains the detailed functionality of the GTR transceivers and system functions. The system
block diagram for the SIOU and GTR transceivers are shown in Figure 29-1.

Note: The high-speed serial I/O controllers in the SIOU are exclusive and separate from the
high-speed serial I/O peripherals in the PL that include 100 Gb Ethernet (x4 CAUI-4), and PCIe Gen3
(up to x16). See Chapter 36, PL Peripherals for further information.

The high-speed serial I/O controllers connected to the GTRs are shown in Figure 1-1,
page 29. The controller connections to the GTRs are shown in Figure 1-3, page 33.
Zynq UltraScale+ Device TRM 817
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=817

Chapter 29: PS-GTR Transceivers
Features

Functionality

• Memory mapped configuration, and control registers.
• PS-GTR transceiver registers are exclusively programmed through PCW.
• Independent PS-GTR protocol support per lane (programmable through PCW).
• D+/D- lane polarity inversion for flexible board integration.
• SSC support.
• Elastic buffer management.
• 8b10b support for USB3.0 and PCIe v2.0 only. For other protocols, 8b10b support is in

the MAC IP.

Clocking

• Internal PLL per lane.
• Different reference clock inputs per lane, with the ability to share reference clocks

between lanes (programmed through PCW).

Power

• PS-GTR requires two analog supplies: PS_MGTRAVTT (1.8V nominal value), and
PS_MGTRAVCC (0.850V nominal value).

PCIe v2.0 PHY Protocol

• Gen 1 and Gen 2.
• Lane-to-lane deskew for multi-lane PCIe design.
• Beacon signaling.
• Supports integrated RX termination resistors.

USB3.0 PHY Protocol

• Integrated RX termination resisters.
• LFPS signaling.
Zynq UltraScale+ Device TRM 818
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=818

Chapter 29: PS-GTR Transceivers
DisplayPort 1.2a PHY Protocol (Transmitter only)

• Reduced bit rate (RBR), 1.62 Gb/s.
• High bit rate (HBR), 2.7 Gb/s.
• HBR2, 5.4 Gb/s.
• Supports integrated RX termination resistors.

Gigabit Ethernet PHY Interfaces

• SGMII.
• 1000BASE-SX.
• 1000BASE-LX.
• Supports integrated RX termination resistors.

SATA v3.1 PHY Protocol

• Generation 1, 1.5 Gb/s.
• Generation 2, 3.0 Gb/s.
• Generation 3, 6.0 Gb/s.
• Out-of-band (OOB) signaling.
• Supports integrated RX termination resistors.
Note: The protocols other than the ones listed are not supported.

Functional Description
Figure 29-1 provides a top-level overview of the PS-GTR block and its interface with other
components. Figure 29-1 shows four PS-GTR transceivers that are shared among various
controllers. For information on the DisplayPort, SATA, PCIe, Ethernet, and USB blocks, see:

Chapter 30, PCI Express Controller

Chapter 31, USB Controller

Chapter 32, SATA Controller

Chapter 33, DisplayPort Controller

Chapter 34, GEM Ethernet
Zynq UltraScale+ Device TRM 819
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=819

Chapter 29: PS-GTR Transceivers
X-Ref Target - Figure 29-1

Figure 29‐1: SIOU Block

USB 3.0 GEM
Ethernet

DisplayPort SATA PCIe v2.0

Registers Interconnect Matrix (ICM)

4 x Physical Coding Sublayer (PCS)

4 x Physical Medium Attachment (PMA)4 x PS-GTR
Transceivers

AMBA Interconnect

PIPE
Interface

PADs

Low Power
Domain

Full Power
Domain

SGMII,
1000BASE-SX, or

1000BASE-LX
Interface

X15465-072018
Zynq UltraScale+ Device TRM 820
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=820

Chapter 29: PS-GTR Transceivers
Interconnect Matrix

The interconnect matrix (ICM) implements connectivity between the media access
controllers (MACs) and the physical coding sublayer (PCS). The ICM is automatically
programmed by the Processing System Configuration Wizard (PCW). Table 29-1 shows the
connectivity implemented by the ICM between PS-GTR transceivers and the available MACs.

PS-GTR transceivers can be broadly divided into the following blocks.

• Physical Coding Sublayer
• Reference Clock Network
• Physical Medium Attachment Sublayer

Physical Coding Sublayer

The physical coding sublayer (PCS) consists of transmit and receive paths. It also includes
common logic that is required for both receive and transmit paths, clock generator logic,
and reset generator/synchronization logic.

Table 29‐1: Interconnect Matrix

Controller PHY Lane 0 PHY Lane 1 PHY Lane 2 PHY Lane 3

PCIe v2.0 PCIe.0 PCIe.1 PCIe.2 PCIe.3
SATA SATA.0 SATA.1 SATA.0 SATA.1
USB0 3.0 USB0 USB0 USB0
USB1 3.0 USB1
DisplayPort DP.1 DP.0 DP.1 DP.0
GEM0(1) GEM0
GEM1(1) GEM1
GEM2(1) GEM2
GEM3(1) GEM3

Notes:
1. The GEM Ethernet interface to the GTRs includes SGMII, 1000BASE-SX, and 1000BASE-LX protocols.
Zynq UltraScale+ Device TRM 821
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=821

Chapter 29: PS-GTR Transceivers
Transmit Path

Figure 29-2 shows a block diagram of the transmit path.

The PCS transmit block has the following features.

• Transmit buffer management.
• 8B/10B encoder for PCIe v2.0, DisplayPort, and USB3.0 only. Other protocols contain

the encoder in the MAC IP.
• Transmit power state finite state machine (FSM).
• Low-frequency periodic signal (LFPS)/beacon transmitter (USB 3.0 and PCIe).
• Symbol (comma) generator for PCIe v2.0 and USB3.0 only. Other protocols contain the

generator in their MAC IP.

X-Ref Target - Figure 29-2

Figure 29‐2: PCS Transmit Path

Symbol
(Comma)
Generator

MUX

TX Buffer
Management 8B/10B

Encoder

TX
Interface

RX Detect
State Machine

LFPS/Beacon
Transmitter

Transmit Power
State Machine

ICM
PMA IF

X15466-100917
Zynq UltraScale+ Device TRM 822
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=822

Chapter 29: PS-GTR Transceivers
Receive Path

Figure 29-3 shows a block diagram of the receive path.

The PCS receive block has the following features.

• Symbol (comma) alignment for USB3.0 and PCIe v2.0 only. For other protocols, symbol
alignment happens in the MAC IP.

• Elasticity buffer management.
• 8B/10B decoder for USB3.0 and PCIe v2.0. Other protocols contain the decoder in the

MAC IP.
• Receive power state FSM.
• LFPS/beacon detector (USB 3.0 and PCIe v2.0).

X-Ref Target - Figure 29-3

Figure 29‐3: PCS Receive Path

Symbol Align
(Comma)

Detect

Elastic
Buffer

MUX 8B/10B
Decoder

RX
Interface

LFPS/Beacon
Detector

Receive Power
State Machine

ICM

PMA IF

X15467-100917
Zynq UltraScale+ Device TRM 823
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=823

Chapter 29: PS-GTR Transceivers
Reference Clock Network

The reference clock network architecture has four lanes (PS_MGTREFCLK0, PS_MGTREFCLK1,
PS_MGTREFCLK2, and PS_MGTREFCLK3) and supports multiple protocols at each lane
independently. The reference clock frequencies required to support various protocols are
listed in Table 29-2. Each lane can be programmed through the PCW under Clock
Configurations to have its own reference clock, or share a reference clock from another lane.
For more information regarding the reference clock frequencies, refer to the Zynq
UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) [Ref 2].

Physical Medium Attachment Sublayer

The physical medium attachment (PMA) sublayer is based on the following architecture.

• Programmable TX driver
• Clock data recovery (CDR)
• Serializer/deserializer (SerDes)
• I/O buffers

PLL Lock Status

Each of the four PS-GTR lanes contain its own PLL clock circuit. The input for each clock
circuit is individually selected from one of several clock sources using the PCW. The PLL
status can be read using the L{0:3}_PLL_STATUS_READ_1 [pll_lock_status_read] register bit 4.
The PLL generates a wide number of frequencies. The required GTR clock frequencies for
each protocol are listed in Table 29-2.

Note: The PLL lock status bit is valid only after GTR reset (GTR reset is performed by a controller
reset). After the lock bit is set, it stays set until another reset occurs (i.e., during normal operation, if
the PLL lock is lost, the lock status bit will not update).

Table 29‐2: Reference Clock per Protocol

Protocol Reference Clock Frequency (MHz)

PCIe v2.0 (multi-lane)
Only the common clock architecture is supported.

100.0 MHz

SATA (multi-core) 125.0 MHz, 150.0 MHz
USB 3.0 26.0 MHz, 52.0 MHz, 100.0 MHz
DisplayPort (harmonic of 27.0 MHz) 27.0 MHz, 108.0 MHz, 135.0 MHz
GEM SGMII, 1000BASE-SX, or 1000BASE-LX 125.0 MHz
Zynq UltraScale+ Device TRM 824
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=824

Chapter 29: PS-GTR Transceivers
PMA Transmitter

Figure 29-4 shows a block diagram of the PMA transmitter.

Serializer and Clock Divider

The serializer and clock divider module are clocked with the high-speed half-rate clocks
from the PLL through the PS-GTR transceiver clock and reset distribution block. The parallel
data is loaded after the load signal is active. When not being loaded, the data is serially
shifted out to the voltage mode driver. The clock divider block, implemented with the
serializer, generates all the required clocks for serialization.

X-Ref Target - Figure 29-4

Figure 29‐4: PMA Transmitter Block Diagram

Clock
Divider

Serializer

Driver
Data

Selection
Pre-Driver
Controller

RX Detect
ComparatorReceiver Detect Signal

Slew Control

PWM/SYS Signals

LFPS Signals

TX Termination

TX Data

High Speed Clock

DN_TX
DP_TX

LFPS
Data

PWM
Data

X15469-100917
Zynq UltraScale+ Device TRM 825
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=825

Chapter 29: PS-GTR Transceivers
TX Polarity Control

When the TXP and TXN differential I/O signals are swapped on the PCB, the differential data
transmitted by the PS-GTR transceiver TX is reversed. One solution is to invert the parallel
data before serialization and transmission on the differential pair. The TX polarity control
can be accessed using the SERDES.L{0:3}_TX_ANA_TM_13 [3:2] register bits. To enable TX
polarity reversal, set these two bits High so TXP is negative and TXN is positive.

Data Selection Multiplexer, Predriver, and Voltage Mode Driver

The PMA transmitter uses a voltage mode driver supporting normal swing, low swing, and
low-power low-swing mode. The predriver controller puts the driver in the correct states
and selects the correct analog components. This module is tightly coupled with the function
of the analog voltage mode driver and high-speed serial data selection multiplexer. The
allowed states of the analog transmitters are as follows.

• Normal swing high-speed data transmission with and without allowed de-emphasis
level for supported protocols.

• Low swing mode high-speed data transmission with and without allowed de-emphasis
level for supported protocols.

• Electrical idle which holds the common mode at line.
• Putting the line in a high-Z state.
• LFPS transmission.
• Receiver detection state.

The data selection multiplexer selects data from various sources including serial data during
LFPS. The low-power driver mode performs receiver detection through the predriver by
selecting the appropriate data at the data selection multiplexer input and controlling the
driver switches.
Zynq UltraScale+ Device TRM 826
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=826

Chapter 29: PS-GTR Transceivers
TX Configurable Driver

IMPORTANT: This section outlines advanced features of the PS-GTR transceiver. Xilinx strongly advices
using the default settings in the PCW.

The PS-GTR transceiver TX driver is a high-speed voltage-mode differential output buffer.
To maximize signal integrity, it includes the following features.

• Differential voltage control
• Transmit de-emphasis control

Each controller modifies the differential output voltage and de-emphasis to default values
based on the protocol selected. Table 29-3 shows these default values on a per protocol
basis.

Note: Xilinx recommends using the default TX differential output voltages and de-emphasis
settings.

Table 29‐3: Default Differential Output Voltage and De-Emphasis by Protocol

Protocol
Default Differential Output Voltage

(Lx_TX_ANA_TM_16)
Default De-Emphasis
(Lx_TX_ANA_TM_18)

USB3 850 mV –3.5 dB
PCIe Gen. 1 850 mV –3.5 dB

PCIe Gen. 2 850 mV –3.5 dB (default) controller might modify
this value to –6 dB during link-up.

GEM SGMII or
1000BASE-SX/LX 850 mV 0 dB

DisplayPort RBR,
HBR, and HBR2 Controller modifies value during link-up. Controller modifies value during link-up.

SATA Gen. 1, 2, and 3 425 mV 0 dB
Zynq UltraScale+ Device TRM 827
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=827

Chapter 29: PS-GTR Transceivers
Table 29-4 defines the TX configurable driver attributes.

Table 29‐4: TX Configurable Driver Attributes

Register name Address offset Bit Value and description

TX Swing

L0_TX_ANA_TM_15
L1_TX_ANA_TM_15
L2_TX_ANA_TM_15
L3_TX_ANA_TM_15

Lane 0: 0x0003C
Lane 1: 0x0403C
Lane 2: 0x0803C
Lane 3: 0x0C03C

6

Enable TX full/low swing setting.
1'b0: Default set by the PCW.
1'b1: TX swing defined by L0_TX_ANA_TM_15[7],
L1_TX_ANA_TM_15[7], L2_TX_ANA_TM_15[7], or
L3_TX_ANA_TM_15[7].

7 1'b0: Full swing (>0.8V) – default value.
1'b1: Low swing (>0.4)

TX Margin

L0_TX_ANA_TM_16
L1_TX_ANA_TM_16
L2_TX_ANA_TM_16
L3_TX_ANA_TM_16

Lane 0: 0x00040
Lane 1: 0x04040
Lane 2: 0x08040
Lane 3: 0x0C040

0

Enable TX driver swing control.
1'b0: Default set by the PCW.
1'b1: TX differential output defined by
L0_TX_ANA_TM_16[3:1], L1_TX_ANA_TM_16[3:1],
L2_TX_ANA_TM_16[3:1], or L3_TX_ANA_TM_16[3:1].

3:1 If full swing:
000  0.85V – default value.
001  0.85V
010  0.6375V
011  0.53125V
100  0.425V
101  0.31875V
110  0.2656V
111  0.213V
If low swing:
000  0.478V – default value.
001  0.478V
010  0.372V
011  0.2656V
100  0.159V
101  0.10625V
110  0.053V
111  Reserved
Zynq UltraScale+ Device TRM 828
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=828

Chapter 29: PS-GTR Transceivers
Electrical Idle

There are two different kinds of electrical idle: one during sub-low power mode, and
another during high-speed low-latency mode. During high-speed mode, the predriver
controller controls the driver to short the lines (TXP and TXN) where they instantly change
to the common-mode voltage specified by the protocols. In sub-low power mode, a
low-power circuit holds the line. The power-consuming driver is in shut-off mode during the
electrical idle.

Spread-Spectrum Clocking Transmitter Support

By default, spread-spectrum clocking (SSC) is generated by the PS-GTR transmitter for USB
3.0, SATA Gen1, SATA Gen2, SATA Gen 3, and DisplayPort. SSC settings are done by the PCW.
For PCIe, SSC generation in the transmitter is turned off because the protocol specification
requires SSC to be supported by the reference clock (PS_MGTREFCLK).

TX De-emphasis

L0_TX_ANA_TM_18
L1_TX_ANA_TM_18
L2_TX_ANA_TM_18
L3_TX_ANA_TM_18

Lane 0: 0x00048
Lane 1: 0x04048
Lane 2: 0x08048
Lane 3: 0x0C048

7:0

8'b0000_0000  –6.0 dB de-emphasis
8'b0000_0001  –3.5 dB de-emphasis
8'b0000_0010  –0.0 dB de-emphasis – default
value.
Other settings not supported
1'b0: Default set by the PCW.
1'b1: TX de-emphasis value set by
L0_TX_ANA_TM[7:0], L1_TX_ANA_TM[7:0],
L2_TX_ANA_TM[7:0], or L3_TX_ANA_TM[7:0].

L0_TX_ANA_TM_118
L1_TX_ANA_TM_118
L2_TX_ANA_TM_118
L3_TX_ANA_TM_118

Lane 0: 0x001D8
Lane 1: 0x041D8
Lane 2: 0x081D8
Lane 3: 0xC1D8

0 Force TX swing de-emphasis

Table 29‐4: TX Configurable Driver Attributes (Cont’d)

Register name Address offset Bit Value and description
Zynq UltraScale+ Device TRM 829
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=829

Chapter 29: PS-GTR Transceivers
PMA Receiver

The PMA receiver consists of the PMA receiver analog implementation and receiver control
module. The RX analog PMA interfaces with the PCS through the control module. The
control module also provides power state information and isolation in certain cases.
Figure 29-5 shows a block diagram of the PMA receiver.

Note: GTR calibration is done by the processor configuration wizard settings in Vivado software.
From 2020.1 software version this calibration code is placed in the psu_init source code. See
Answer Record 72992 for more information.

Receiver Termination

The resistors enabled by the resistor calibration code allow the input impedance to be
fine-tuned. The LSB of the receiver termination calibration is 2. The single-ended receiver
termination, as seen from the RXP/RXN pins, is calibrated across process to be within 45 to 55
and ensured to be within 42 to 58including voltage and temperature variations. Similarly, the
differential receiver termination as seen from the RXP/RXN pins is calibrated across process to be
within 90 to 110and ensured to be within 84 to 116including voltage and temperature

X-Ref Target - Figure 29-5

Figure 29‐5: PMA Receiver Block Diagram

RX Term and
ESD circuit

IQ Samplers
and

Realign

EyeScan
and

Sampler

I/O
Deserialzer

Eye
Deserialzer

CDRLF

EyeScan
Module

IQ PI
and

EyeScan
PI

Clock
ProcessorPLL

Receiver
Control
Module

EQ Adaptation Engine

Calibration Engine PI/
Samplers

LFPS

Signal Detect

LSRX

Squelch

Equalizer

RX Data

RX Clock

EPI
Code

IQ PI
Code

DP_RX

DN_RX

X15471-101216
Zynq UltraScale+ Device TRM 830
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/72992.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=830

Chapter 29: PS-GTR Transceivers
variations. Refer to UltraScale Architecture PCB Design User Guide (UG583) [Ref 15].

Receiver Equalizer

Equalization is implemented as a continuous time linear equalizer (CTLE).

Spread-Spectrum Clocking Receiver

The PS-GTR receiver supports 5000 ppm down-spread, spread-spectrum clocking (SSC)
modulated at rate of 30-33 KHz.

Sampler and Realign

There are four samplers that operate on four phases of a half-rate clock. Because the four
phases are quadrature phases, they are collectively called the IQ path. The sampling clock is
the recovered clock that is the output of the IQ-phase interpolator (PI). The samplers
operate on a full CMOS-level clock, sample the low-swing data received from the equalizer,
and output CMOS-level data. Local current-mode logic (CML) to CMOS converters convert
the recovered clock phases coming from the PI in CML levels to CMOS levels for sampling.

The outputs of the four samplers are finally realigned to one phase of the recovered clock,
inside the realign block, before being sent to the digital loop filter. The on-chip EyeScan,
that measures the horizontal eye opening known as an E-sampler, operates at half the rate
of clocks coming from the EyeScan PI. For the vertical EyeScan (opening), the EyeScan
digital-to-analog converter (DAC) is used to control the sampling point in E-samplers in the
Y-direction. Sampler offsets are independently calibrated out for these samplers using an
offset calibration scheme.

Clock Processor

A full-rate CMOS-level clock is distributed from the PLL module to the receiver. The PLL
clock goes into the clock processor module. This module divides down the PLL full-rate
clock as per the programmed division factor and provides two differential phases of this
divided clock as output. Because the receiver front end operates at half rate, the division
factor is always programmed to give two half-rate clocks. Thus, for a division factor of two,
the outputs are 0° and 180° phases of a half-rate CMOS clock.

Phase Interpolator

The PI receives the 0° and 180° phases of the half-rate CMOS-level clocks from the clock
processor. The PI provides four quadrature phases of the CML-level half-rate clock that are
phase shifted as compared to the input clocks as dictated by the PI code coming from the
clock and data recovery loop filter (CDRLF). The PI can shift the recovered clocks with a
resolution of UI/32. The samplers use these clocks to sample the receive data over a span of
two UI. Table 29-5 describes these clocks. Each clock is 90° out of phase with the next clock.
Zynq UltraScale+ Device TRM 831
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=831

Chapter 29: PS-GTR Transceivers
Table 29‐5: CMOS-level Clocks

Clock Clock Usage

I clock Samples the data in the middle of the first data eye.
Q clock Samples the data at the edge between the first and second data eyes.
I-bar clock Samples the data in the middle of the second data eye.
Q-bar clock Samples the data at the edge at the end of the second data eye.
Zynq UltraScale+ Device TRM 832
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=832

Chapter 29: PS-GTR Transceivers
The CDRLF uses the feedback path to control the PI where the phase of the clocks are lined
up where they are expected to be, relative to the incoming serial data stream. Figure 29-6
shows the recovered clock relationship to the incoming data after CDR lock.

For on-chip EyeScan, a replica PI takes in the PI codes from the EyeScan module. The
EyeScan PI codes are offset by a particular value from the main IQ PI codes to do a
horizontal EyeScan. Thus, the recovered EyeScan clocks are phase shifted from the main
recovered IQ clocks by an offset defined by the EyeScan module. This, in combination with
the EyeScan samplers, enables 2D EyeScan.

RX Polarity Control

If the RXP and RXN differential I/O signals are swapped on the PCB, then the differential
data transmitted by the PS-GTR transceiver TX are reversed. The PS-GTR receiver allows
inversion to be done on parallel bytes in the PCS after the SIPO to offset reversed polarity
on the differential pair. RX polarity control can be accessed using the
SERDES.L{0:3}_TM_MISC1 [7] register bit. To enable RX polarity reversal, set bit 7 High so
RXP is negative and RXN is positive.

CDRLF, Deserializer, and PI Controller

The digital CDR loop filter takes in the main recovered clock and the four data samples from
the IQ samplers and generates the IQ PI codes as output. This loop filter, in combination
with the samplers and PI, forms a proportional and integral negative feedback loop to align
the I phase of the recovered clock to the center point of the received data bits. The
deserializer converts the half-rate data from the samplers to 10-bit symbol data, which is
then given to the receiver control module for further processing before it is passed to the
PCS.

The PI controller converts the output PI codes from the CDRLF to thermometric format as
accepted by the analog PI. The CDRLF, deserializer, and PI controller constitute a digital
module that is synthesized and implemented using the digital flow tools. This block runs at
a clock speed of 3 GHz.

X-Ref Target - Figure 29-6

Figure 29‐6: PI Clock Relationship to Data Post CDR Lock

Incoming
Data

1/2 rate
PI clocks

UI

I Q Ibar Qbar I

X15472-101216
Zynq UltraScale+ Device TRM 833
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=833

Chapter 29: PS-GTR Transceivers
EyeScan Module

The EyeScan module implements a function that moves the sample point for data anywhere
in the data eye and measures the number of bit errors at that point. To accomplish this, the
EyeScan module uses three other digital modules in addition to an analog phase
interpolator and a deserializer. These digital modules are the CDRLF and PI controller, and
the eye plot PI controller.

The eye plot PI controller controls the eye-phase interpolator (E PI), under the direction of
the EyeScan module. The E PI tracks to the location of the primary PI when no additional
ups and downs are requested by the EyeScan module. The EyeScan module can request
additional ups and downs be performed on the E PI to create a fixed offset between the E PI
and primary PI. The deserializer uses the E PI to sample receive eye data (E data) at times
that are at different phases to the normal sampled I and Q data. An up request causes the
clock phase delay to increase (moving the clock phase later in time), and a down request
causes the clock phase delay to decrease (moving the clock phase earlier in time). The
EyeScan module uses this system to measure the bit-error rate at any point in the received
data eye.

Note: For more information on EyeScan Module, see Xilinx Answer 67295.

Sideband Receive Path

The blocks covered in this section are supporting blocks as part of various protocols or test
features. They are not part of the regular datapath.

Signal Detect

The signal-detect block is used to detect an exit from electrical idle in the PCIe protocol. In
the SATA protocol, the signal detect block is used to detect out of band (OOB) signaling.
This block compares the magnitude of differential signals on the PS_MGTRRX pins with a
specified reference and provides an output. This output is asserted in the presence of a
differential signal greater than 175 mVPPD (PCIe) or 200 mVPPD (SATA) and deasserted in the
presence of any signal less than 65 mVPPD (PCIe) or 75 mVPPD (SATA). The reference of
comparison is programmable. The output is asserted during the reception of valid
high-speed data but it can glitch because of high-frequency components in the data. A
programmable digital filter is implemented to filter out such unwanted glitches.

LFPS Detect

The LFPS block is used to detect low frequency periodic signaling (LFPS) in the USB 3.0
protocol. It compares the magnitude of differential signals on the PS_MGTRRX pins with a
specified reference and provides an output to the PCS. This output is asserted in the
presence of an LFPS signal greater than 300 mVPPD and deasserted in the presence of any
signal less than 100 mVPPD. The reference of comparison is programmable from 100 to
200 mVPPD. The output is deasserted during reception of valid super-speed (SS) data but it
Zynq UltraScale+ Device TRM 834
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/67295.html
https://www.xilinx.com/support/answers/67295.html
https://www.xilinx.com/support/answers/67295.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=834

Chapter 29: PS-GTR Transceivers
can glitch because of high-frequency components in the data. A programmable digital filter
is implemented in PCS to filter out such unwanted glitches.

Register Overview
This section lists the applicable PS-GTR transceiver interface registers.

PS-GTR Registers

The PS-GTR registers are listed in the Zynq UltraScale+ MPSoC Register Reference (UG1087)
[Ref 4] and programmed by the Vivado Processor Configuration Wizard (PCW).

Configuration Program
The PS-GTR transceiver is exclusively programmed using the processor configuration
wizard (PCW).

Under PCW, the user can program the reference clocking scheme for each PS-GTR lane, as
well as the protocols used per lane. All other behavior of the PS-GTR transceiver is
exclusively handled by the respective MAC IP.
Zynq UltraScale+ Device TRM 835
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=835

Chapter 30

PCI Express Controller

Introduction
The Zynq® UltraScale+™ MPSoC provides a controller for the integrated block for PCI
Express® v2.1 compliant, AXI-PCIe bridge, and DMA modules. The AXI-PCIe bridge
provides high-performance bridging between PCIe and AXI. The block diagram of the
controller for PCIe is shown in Figure 30-1.

X-Ref Target - Figure 30-1

Figure 30‐1: Block Diagram of the Controller for PCIe

AXI-PCIe Bridge
(DMA, RP/EP)

Integrated Block for PCIe

Egress Address
Translation / BAR

MSI/INTx/Msg

Ingress Address
Translation/BAR

Tr
an

sa
ct

io
n

La
ye

r

D
at

a
Li

nk
 L

ay
er

Ph
ys

ic
al

 L
ay

er

Configuration/Status Register

AXI3 64-bit

Clock/Reset

Interrupts

AXI3 64-bit

AXI4 Streaming

AXI4 Streaming

Configuration Status
APB

PCIe Configuration

ECAM Write FIFO

DMA (4 channels)

Bl
k

R
eg

ECAM
Read Sidebands

(interrupts etc.)

PIPE

X15485-093016
Zynq UltraScale+ Device TRM 836
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=836

Chapter 30: PCI Express Controller
The controller for PCIe supports both Endpoint and Root Port modes of operations. As
shown in Figure 30-1, the controller comprises two sub-modules.

• The AXI-PCIe bridge provides AXI to PCIe protocol translation and vice-versa,
ingress/egress address translation, DMA, and Root Port/Endpoint (RP/EP) mode
specific services.

• The integrated block for PCIe interfaces to the AXI-PCIe bridge on one side and the
PS-GTR transceivers on the other. It performs link negotiation, error detection and
recovery, and many other PCIe protocol specific functions. This block cannot be directly
accessed.

Features

This section provides a summary of features supported by the controller for PCIe.

• Endpoint or Root Port mode of operation
• Support for Gen1 (2.5 GT/s) or Gen2 (5.0 GT/s) link rates.
• Support for single x1, x2, or x4 link.
• Endpoint mode supports MSI-X interrupts in addition to MSI and legacy.
• Support for advanced error reporting capability.
• AXI-PCIe bridge supports:

° 64-bit AXI3 compliant AXI master and AXI slave interfaces operating at a 250 MHz
clock.

° MSI-X table and PBA implementation at predefined location for Endpoint mode.

° Eight fully-configurable address translation apertures in each direction
(egress—AXI to PCIe and ingress—PCIe to AXI).

° Generation of configuration transactions through the enhanced configuration
access mechanism (ECAM) and messages by the AXI CPU in Root Port mode.

° Receive interrupt controller aggregates and presents legacy and MSI interrupts
from PCIe to the AXI CPU in Root Port mode.

• Receive PCIe message FIFO for Root Port.
• Four-channel fully-configurable DMA engine.

° Each DMA channel controllable from PCIe CPU, AXI CPU, or both.

° Separate source and destination scatter-gather queues with the option to have
separate status scatter-gather queues.

Note: I/O space is not supported. Link rate change in root mode is not supported.
Zynq UltraScale+ Device TRM 837
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=837

Chapter 30: PCI Express Controller
Functional Description
This section provides an overview of the clock and reset scheme for the controller for PCIe
followed by a functional description of the integrated block for PCI Express and the
AXI-PCIe bridge with the DMA controller.

Clock Scheme

The controller for PCIe operates in multiple clock domains. Figure 30-2 shows the clock
domains. The pipe_clk and user_clk are derived from the PS-GTR transceiver interface
provided 250 MHz clock.

X-Ref Target - Figure 30-2

Figure 30‐2: Controller for PCIe Clock Domains

PCIE
100 MHz
REFCLK

pipe_clk

PIPE Compliant PHY

user_clkaxi_clk

Integrated Block for PCIeAXI-PCIe

RAM

Ph
ys

ic
al

 L
ay

er

Configuration/
Status Register

Block

AXI4
Stream

PIPE

APB

Serial
Interface

D
at

a
Li

nk
 L

ay
er

Tr
an

sa
ct

io
n

La
ye

r

Configuration Space

Egress Address
Translation

DMA

Ingress Address
Translation

AXI3

AXI3 AXI4
Stream

Registers,
Interrupts,

Message FIFO
Misc.

Signals

apb_clk

Interrupts

X15486-093016
Zynq UltraScale+ Device TRM 838
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=838

Chapter 30: PCI Express Controller
Table 30-1 provides a description of the clocks.

Reset Scheme

The reset scheme of the controller for PCIe is shown in Figure 30-3.

Table 30‐1: Clock Description

Clock Description

PCIe 100 MHz
reference clock

The PCIe protocol specifies a 100 MHz clock with spread spectrum. This clock is used as a
reference clock to the PS-GTR transceiver interface, which is part of the PHY. The PS-GTR
transceiver interface generates a 250 MHz clock from this reference clock for the parallel
datapath. This clock comes from external interface (typically on-board clock source in the case
of Root Port mode, and sourced by a host system via the PCIe slot in the case of Endpoint
mode). Only common clock mode is supported for reference clock.

pipe_clk The PS-GTR transceiver interface provided clock is converted to a 125 MHz clock for a Gen1
link and a 250 MHz clock for a Gen2 link.

user_clk
This is a 250 MHz clock derived from a PS-GTR transceiver interface provided clock. The link
and transaction layers of the integrated block for PCIe operate in this clock domain. The
AXI-PCIe bridge interfaces to the integrated block for PCIe in the user_clk domain.

apb_clk
The APB interface and its associated register block and supporting logic runs in the apb_clk
domain. This clock domain is independent of all other domains in terms of frequency and
phase and is derived from the PLL on the PS.

axi_clk

The AXI interfaces of the AXI-PCIe bridge run in the axi_clk domain. This domain is
independent of all other domains in terms of frequency and phase. To keep up with the x4
Gen2 throughput requirements, this clock needs to be at least 250 MHz.
This clock is derived from the PLL on the PS and can be programmed to a lower frequency for
lower performance PCIe configurations through the CRF_APB.PCIE_REF_CNTRL registers. For
non-x4 Gen2 configurations, the 125 MHz is sufficient to achieve the best performance.

X-Ref Target - Figure 30-3

Figure 30‐3: Controller for PCIe Reset Scheme

PCIe Controller

PCIe PCIe PHY
(SerDes + PLL)

sys_rst_n
pipe_reset

phy_rdy_nphy_rdy_n

APB Register Block
apb_rst_n

pcie_cfg_rst

AXI-PCIe Bridge

rst_n

p_rst_n

Link up == 0
(in Endpoint mode)

User Reset Output
(in Root mode)

X15487-093016

pcie_reset_n & pcie_ctrl_rst

pcie_bridge_rst
Zynq UltraScale+ Device TRM 839
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=839

Chapter 30: PCI Express Controller
Table 30-2 provides a description of the resets.

TIP: The reset to AXI-PCIe bridge is determined by the mode of operation i.e., whether Root Port or
Endpoint as shown in Figure 30-3.

Integrated Block for PCI Express

The integrated block for PCIe complies with the PCI Express base specification, rev. 2.1 and
consists of the physical, data link, and transaction layers. The protocol uses packets to
exchange information between layers. Packets are formed in the transaction and data link
layers to carry information from the transmitting component to the receiving component.
Information is added to the transmitted packet that is required to handle the packet at
specific layers.

The functions of the protocol layers include the following.

• Generating and processing of TLPs.
• Flow-control management.
• Initialization and power management functions.
• Data protection.
• Error checking and retry functions.
• Physical link interface initialization.
• Maintenance and status tracking.

Table 30‐2: Reset Description

Reset Description

pcie_reset_n

This is the PCIe protocol reset. In Endpoint mode, this reset is controlled by the host device,
and the Endpoint designated MIO pin can be used as an input for this reset. In Root Port
mode, this reset is controlled by the software outside the PCIe block, and the MIO pin can be
configured as an output to drive the reset.
When the MIO pin is not allocated to the PCIe, this signal is driven High to allow the PCIe
block to come out of reset under local software control (pcie_ctrl_rst_n).

pcie_cfg_rst_n This resets the register block that holds the attribute configuration of the controller for PCIe.

pcie_ctrl_rst_n

The reset pcie_reset_n is controlled by the host. It is possible that this reset is released before
the configuration of the PCIe core is completed, thereby causing the controller for PCIe to
come out of reset prematurely. This reset allows the software to override the externally
controlled pcie_reset_n. Software is required to release this reset only after the integrated
block for PCIe attribute programming and the PS-GTR transceiver interface programming is
complete.

pcie_bridge_rst_n
The AXI interfaces of the AXI-PCIe bridge have a separate clock and reset domain. The reset
pcie_bridge_rst_n controls this domain. This reset can be released once the AXI clock domain
is stable. This domain does not reset due to a link down to allow the AXI domain (APU or RPU)
to (if needed) access the bridge configuration registers.
Zynq UltraScale+ Device TRM 840
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=840

Chapter 30: PCI Express Controller
The integrated block for PCI Express supports up to 4-lane 2.5 GT/s and 5.0 GT/s PCI Express
Endpoint and Root Port configurations.

The integrated block for PCIe provides PIPE interface for connection to the gigabit
transceivers. The PIPE interface runs at 250 MHz in Gen2 (5 Gb/s, per lane, per direction)
mode or 125 MHz in Gen1 (2.5 Gb/s, per lane, per direction) mode.

The PS-GTR transceivers in the processing system (PS) are used for
serialization/deserialization (SerDes) purposes. The high-speed transceivers are used
through the multiplexer switch and are shared with other blocks (such as DisplayPort, SATA,
USB, and GEM) in the PS.

Further details on transceivers are available in Chapter 29, PS-GTR Transceivers.

IMPORTANT: The AXI streaming and sideband signals between the AXI-PCIe bridge and the integrated
block for PCI Express are not directly accessible. Every PCIe transfer initiated in the AXI domain passes
through the AXI-PCIe bridge.

PCI Express uses a credit-based flow control mechanism. The integrated block for PCIe can
be programmed to advertise credit information based on the buffering used. This is set by
default to optimal values (based on the RAMs used in the implementation). The values are
available in the PCIE_ATTRIB register space for various flow control credit options.

IMPORTANT: In both Endpoint and Root Port modes, the integrated block for PCIe advertises infinite
completions; finite completions are not supported.

IMPORTANT: When integrated block for PCIe is enabled in root port mode, enabling coherency features
through CC-400 using AxACACHE overrides in AXI-PCIe Bridge registers and enabling SMMU are not
supported.

Configuration Control (APB Interface)

The attributes for the integrated block for PCIe (Endpoint or Root Port mode) are
configured through the programmable configuration and status registers (CSR) accessible
through the APB interface. APB interface uses the apb_clk, which is asynchronous to the
other clocks. It is a 32-bit wide address and 32-bit wide data bus interface.

The integrated block for PCIe attributes are used to set up the mode of operation (Root Port
or Endpoint), the list of capabilities and address pointers and so on. A detailed list of these
attributes is available in the PCIE_ATTRIB register set in the Zynq UltraScale+ MPSoC
Register Reference (UG1087) [Ref 4].
Zynq UltraScale+ Device TRM 841
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=841

Chapter 30: PCI Express Controller
Power Management

The PCIe protocol specification indicates four low-power states: L0s, L1, L2, and L3, with L0s
having the least recovery latency (shallow-power state) and L3 having the maximum
recovery latency as it involves possible power supply turn-off (deep-power state). L0 is the
normal working link state. In addition to the L0 state, the integrated block for PCIe supports
the L1 (low power) state. Entry into L1 from L0 needs to be initiated by the software.

Note: The integrated block for PCIe does not support active state power management (ASPM).
ASPM L0s support is optional per the PCI-SIG ASPM Optionality ECN [Ref 55].

Programmed Power Management

To achieve considerable power savings on the PCI Express hierarchy tree, the core supports
these link states of the programmed power management (PPM).

• L0: Active state, data exchange state.
• L1: Higher latency, lower power standby state.

The PPM protocol is initiated by the downstream component/upstream port.

• PPM L0 state

The L0 state represents normal operation and is transparent to your logic. The core
reaches the L0 state after a successful initialization and training of the PCI Express link as
per the protocol.

• PPM L1 state

The following steps outline the transition of the core to the PPM L1 state.

a. The transition to a lower power PPM L1 state is always initiated by an upstream
device by programming the PCI Express device power state to non-D0 (in the PM
capability in configuration register space). The current device power state can be
read through APB registers.

b. The integrated block for PCIe stops accepting any further transactions. Any pending
transactions are accepted fully and completed later.

c. The integrated block for PCIe exchanges appropriate power management data link
layer packets (DLLPs) with its link partner to successfully transition the link to a lower
power PPM L1 state.

d. All transactions are stalled for the duration of time when the device power state is
non-D0.
Zynq UltraScale+ Device TRM 842
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=842

Chapter 30: PCI Express Controller
TIP: After identifying the device power state as non-D0, the software logic can initiate a request
through the cfg_pm_wake to the upstream link partner to configure the device back to the D0 power
state. If the upstream link partner has not configured the device to allow the generation of PM_PME
messages (cfg_pmcsr_pme_en = 0), the assertion of cfg_pm_wake is ignored by the core. See the Zynq
UltraScale+ MPSoC Register Reference (UG1087) [Ref 4].

AXI-PCI Express Bridge

The AXI-PCIe bridge is a protocol converter between the AXI3 and PCIe domains and also
provides optional DMA capability.

When a remote master issues a transaction over PCIe link, it appears as an AXI transaction
on the AXI master port. When a local master (in the PS) issues an AXI transaction on the
slave port, it goes onto the PCIe link based on address translation apertures set as either
memory or configuration TLP.

The bridge supports non-contiguous and zero-byte enable in compliance with the PCIe
specification. For the AXI master the following is true.

• On AXI, a 1DW or 2DW write from the PCIe domain received with a non-contiguous
byte enable is completed as a series of 1 byte writes only for the enabled bytes.

• PCIe zero-byte writes are propagated over AXI as writes with no byte enables asserted.
• PCIe reads with non-contiguous byte enables are converted to AXI reads reading all

bytes. Disabled bytes are read and data is provided as part of the completion data. AXI
memory, which can be the target of such non-contiguous reads, should be prefetchable
and should not have any read side-effects.

• PCIe zero-byte reads are issued as a single byte read in the AXI domain and provided as
completion data. This provides the desired write-flushing mechanism.

• Writes use the same AXI ID (m_awid, m_wid, m_bid) for all write transactions regardless
of the source; hence, these should be completed in order on AXI.

• Read and write response timeouts are configurable through registers in the bridge.

° Reads initiated by the master AXI that do not complete within the specified timeout
period are assumed to never complete and result in a completer abort response on
the PCIe link.

° Writes initiated by the master AXI that do not complete within the specified
timeout period are assumed to never complete and are terminated.

For the AXI slave the following is true.

• An AXI write with non-contiguous byte enable is completed with as many contiguous
byte-enable write transactions as necessary to write all enabled bytes in the PCIe
domain and then is provided with an aggregated write response.
Zynq UltraScale+ Device TRM 843
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=843

Chapter 30: PCI Express Controller
• Transactions that cannot be forwarded to the PCIe due to PCIe specific reasons (such as
the PCIe data link layer is down, PCIe domain is in reset, or when bus master enable = 0
for Endpoint applications) are dropped and completed on AXI with a DECERR status.

• AXI slave interface initiated reads, I/O writes, and configuration writes that fail to
complete after a timeout duration are assumed to never complete and are terminated
with a SLVERR response to the AXI. When the AXI clock is 250 MHz, the duration of the
timeout is 50 ms. The timeout has a linear relation with the AXI clock, for example, the
timeout is 100 ms if the AXI clock is 125 MHz. When the integrated block for PCIe
completion timeout disable attribute is set to one, the timeout is disabled.

Accessing Bridge Internal Registers

Internal bridge registers are accessed through the AXI slave using a bridge register
translation. Various registers like the DMA registers, MSI-X table, and pending-bit array are
accessed through their respective translations. The various translation registers are listed in
the Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4].

The MSI-X table and PBA are applicable only for Endpoint mode of operation and the
corresponding registers are implemented in the AXI-PCIe bridge at predefined offsets.

The bridge register translation on exit from reset is configured to accept all AXI transactions
as bridge register access. As part of the Zynq UltraScale+ MPSoC initialization, one of the
actions should be to reconfigure the bridge register translation into a specific (small)
window to enable other address translations like DMA registers or ECAM. Refer to the
Bridge Initialization section of the programming model for further details.

IMPORTANT: The recommended address values, as defined in the Zynq UltraScale+ MPSoC Register
Reference (UG1087) [Ref 4], should be used for various apertures. All access to the bridge registers
should be one DWORD (32 bits) from the AXI domain.
Zynq UltraScale+ Device TRM 844
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=844

Chapter 30: PCI Express Controller
Figure 30-4 shows the AXI and PCIe domain access of various registers in the AXI-PCIe
bridge.

AXI Domain

• Bridge registers are accessed through the AXI slave bridge register translation.
• DMA channel registers are accessed through the AXI slave DMA register translation.

Integrated Block for PCIe Domain

Bridge and DMA registers are accessed over the integrated block for PCIe at fixed offsets in
the PCIe BAR region. The cfg_dma_reg_bar is zero (by default) making all BAR0 transactions
consumable by the bridge.

• PCIe access to bridge registers is disabled (by default)
(cfg_disable_pcie_bridge_reg_access).

• PCIe access to DMA channel registers is controlled through
cfg_disable_pcie_dma_reg_access. This access is enabled by default.

The registers in the bridge are prefetchable. The BAR targeting these registers (BAR0 by
default) can be marked prefetchable.

X-Ref Target - Figure 30-4

Figure 30‐4: AXI-PCIe Bridge Register

AXI-PCIe Bridge

Bridge Core

E_BREG

E_ECAM

E_DREG

MSGF_*

Bridge
Registers

DMA Channel
Registers

AXI Domain

Bridge Register
(BREG) Aperture

PCIe Domain

Host Access to
Bridge Registers

disabled by
default

DMA Register
(DREG) Aperture BAR0

X15488-093016
Zynq UltraScale+ Device TRM 845
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=845

Chapter 30: PCI Express Controller
Address Translation

The bridge provides eight fully-configurable address apertures to support address
translation both for ingress (from PCIe to AXI) and egress (from AXI to PCIe) transactions.

• In an AXI master, up to eight ingress translation regions can be set up. Translation is
done for the PCIe TLPs that are not decoded as MSI or MSI-X interrupts or internal
DMA transactions.

• In an AXI slave, up to eight translation regions can be set up. Translation is done for AXI
transactions destined for PCIe and not PCIe ECAM or any other internal bridge register
access.

IMPORTANT: For egress translations, it is important to limit the AXI domain address to the following
ranges per the System Address Map in Chapter 10.

• 256 MB region starting at 0xE000_0000.
• 8 GB region starting at 0x6_0000_0000.
• 256 GB region starting at 0x80_0000_0000.

Only when AXI transactions target these ranges are they routed to the controller for PCIe
for further translation by the bridge.

In the following discussions, the term tran refers to ingress/egress translation. For example,
tran_size refers to translation size and a tran_src_base refers to ingress/egress_src_base.

A translation is hit when the following occurs.

• Translation is enabled (tran_enable == 1).
• The tran_src_base[63:(12+tran_size)] == source address [63:(12+tran_size)].

On a hit, the upper source address bits are replaced with destination base address bits
before forwarding the transaction to the destination.

Destination address = {tran_dst_base[63:(12+tran_size)] source address[12+tran_size]}.

If a translation is marked invalid (tran_invalid == 1), the transaction is not forwarded to
destination and is handled as error.

• For egress, DECERR response is returned on AXI.
• For ingress, it is handled as an unsupported request on the PCIe.

If translation is valid (tran_invalid==0) and security_enable==1 then the following occurs.

• For ingress, ARPROT/AWPROT on AXI is assigned value from tz_at_ingr[i] associated
with the translation.
Zynq UltraScale+ Device TRM 846
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=846

Chapter 30: PCI Express Controller
• For egress, if ARPROT/AWPROT from AXI matches the security level of tz_at_egr[i]
associated with the translation then transaction is forwarded to PCIe. Otherwise, it is
discarded with SLVERR response on AXI.

IMPORTANT: The security values for translation (tz_at_ingr/egr) are programmed at boot time as part
of the SLCR_PCIE register under the FPD_SLCR_SECURE register set in the Zynq UltraScale+ MPSoC
Register Reference (UG1087) [Ref 4].

The following sequence provides an example for ingress address translation.

1. Consider host assigns PCIe BAR2 = 0xFFA0_0000; 1MB size.
2. Ingress source base = 0xFFA0_0000; destination base = 0x44A0_0000;

aperture size = 64 KB
3. Incoming PCIe memory transaction hitting BAR2 at 0xFFA0_xyzw translates to address

0x44A0_xyzw on AXI master port.
Note: The source/destination address programmed should be aligned to the translation aperture
size. For a 64 KB aperture size, the lower 16 bits of the source/destination addresses must be zeros.

If multiple translation hits occur, the translation with the lowest index (lowest translation
register address offset for the ingress/egress direction) is used for the transaction.

When operating as an Endpoint, the PCIe BARs are setup by the host PC during
enumeration and ingress translations required for PCIe to AXI translations are set up by the
AXI CPU.

IMPORTANT: The bridge registers are accessible only through the AXI interface and not over PCIe by
default. Host CPU access to bridge registers is enabled by writing to the bridge register
(cfg_disable_pcie_bridge_reg_access bit in the AXI_PCIE_MAIN.cfg_pcie_rx0 register) through AXI.

When a transaction fails to hit all translations, the subtractive decode (if enabled) and the
transaction is forwarded without translation. This is controlled by the
AXIPCIE_MAIN.I_ISUB_CONTROL register for ingress translations and the
AXIPCIE_MAIN.E_ESUB_CONTROL register for egress translations.

Enhanced Configuration Access Mechanism

The bridge implements ECAM to translate AXI read or write transactions to PCIe
configuration read or write TLPs. ECAM maps a portion of the AXI memory address space to
the PCI Express configuration transactions. A write transaction targeting this region is
converted into a PCI Express configuration write transaction and a read transaction
targeting this region is converted into a PCI Express configuration read transaction.
Zynq UltraScale+ Device TRM 847
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=847

Chapter 30: PCI Express Controller
The ECAM region is hit when the following occurs.

• ECAM is enabled (ecam_enable == 1).
• The ecam_base[63:(12+ecam_size)] == AXI address[63:(12+ecam_size)].

On a hit, the lower AXI address bits are mapped into the PCI Express configuration
transaction as listed in Table 30-3.

ECAM transactions are not permitted to cross a DWORD address boundary. If a transaction
hit to the ECAM region crosses a DWORD address boundary or times out, the transaction is
aborted with SLVERR.

Note: The bridge generates SLVERR for ECAM transactions when the link is down. Software is
required to check for link up status before sending ECAM transactions. The exception to this is
during access of the local root configuration space (bus number = 0) when the PCIe controller is
used as the Root Port.

Generation of Type-0 or Type-1 Configuration Transactions

Type-0 or type-1 configuration transactions are generated when operating as Root Port to
enumerate the PCIe hierarchy. The following summarizes when a type-0 or a type-1
configuration transaction is generated. The bus, device and function number terminology
used in the following description is extracted from the incoming AXI address hitting the
ECAM aperture.

• When the bus number in the ECAM address == PCIe core bus number.

° For device number = 0 and function number = 0, an internal configuration access is
generated for the integrated block for PCIe.

° If either device number or function number is non-zero, transaction is ended with a
DECERR.

Table 30‐3: AXI Address to PCIe Configuration TLP Mapping

AXI Address Bits(1) PCIe Configuration TLP Field Notes

AXI address [27:20] Bus number [7:0].
If ecam_size is set less than 256 MB, then the
upper bus number bits that are not controlled
by the AXI address are set to 0.

AXI address [19:12] AXI address[19:15] = Device
Number[4:0].

For PCI Express devices, implementing an
alternative routing ID (ARI).
AXI Address[19:12] = Function Number[7:0].

AXI address [14:12] Function number [2:0].

AXI address [11:2] Configuration register DWORD
address [11:2].

Notes:
1. AXI address[1:0] along with AXI transaction size are used to compute the transaction byte enables.
Zynq UltraScale+ Device TRM 848
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=848

Chapter 30: PCI Express Controller
• If the target bus number in an ECAM address == secondary bus number programmed
through CSR module.

° For device number = 0, a type-0 configuration TLP is transmitted.

° For non-zero device number, the transaction is ended with DECERR.
• When an ECAM address targets a bus number that is different from the other options, a

type-1 configuration TLP is transmitted.

Configuration Request Retry Status

In cases where an Endpoint is not ready to respond, a configuration request retry status
(CRS) response is issued to incoming PCIe configuration requests.

Note: In this section, an Endpoint refers to the Endpoints that would be connected to a Zynq
UltraScale+ MPSoC operating as a Root.

The PCIe Root Port CRS software visibility is controlled by the PCIE_ATTRIB.ATTR_79 bit [5].
If the CRS software visibility is enabled, then reads targeting DW0 in configuration space
(Device ID: Vendor ID) result in, the AXI response OKAY with AXI data = 0xFFFF0001 (this
special data means that the device has issued a CRS status).

If the CRS software visibility is not enabled, the AXI-PCIe bridge continues to retry the
transaction until a status other than CRS is returned. However the transaction will be
aborted with DECERR if it fails to succeed after being attempted for >1 second (the longest
time period that a PCIe device is permitted to return CRS status).

Root Port Received Interrupt and Message Controller

A received interrupt and message controller collects interrupts and messages received from
the PCIe hierarchy. Interrupt reception is applicable only to Root Port mode.

The following interrupt outputs are provided and connected to the AXI CPU (PS generic
interrupt controller (GIC) in this case).

• Two interrupt ports for MSI.

° Configurable address range, support for 64 vectors.

° Each interrupt output provides interrupt for 32 vectors.
• One interrupt port for legacy interrupt.
• One interrupt port for DMA.
• One interrupt port for miscellaneous.

A 128-word deep message FIFO is implemented to hold messages and optionally MSI
interrupts (based on msii_status_enable). Legacy interrupts, DMA channel interrupts, and
optionally MSI are recorded into interrupt status registers. The FIFO level is indicated in the
AXI_PCIE_MAIN.MSGF_RX_FIFO_LEVEL register. When this register is not zero, there are
Zynq UltraScale+ Device TRM 849
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=849

Chapter 30: PCI Express Controller
received interrupts or messages pending. The oldest received interrupt or message
contents are available by reading the AXI_PCIE_MAIN.MSGF_RX_FIFO_TYPE,
AXI_PCIE_MAIN.MSG, AXI_PCIE_MAIN.ADDRESS_LO, AXI_PCIE_MAIN.ADDRESS_HI, or
AXI_PCIE_MAIN.DATA registers. When finished reading the current interrupt or message,
the current element is removed from the FIFO by writing to the
AXI_PCIE_MAIN.MSGF_RX_FIFO_POP register.

Each status register has a corresponding mask register; only when mask register bit
entry = 1 and corresponding status register bit = 1, then an interrupt output is generated
to the AXI CPU. For example, legacy interrupts provide AXI_PCIE_MAIN.MSGF_LEG_MASK
and AXI_PCIE_MAIN.MSGF_LEG_STATUS registers. Only when MSGF_LEG_MASK[i] = 1 and
MSGF_LEG_STATUS[i] = 1, is an interrupt output generated to the AXI-CPU. All four legacy
interrupts are ORed together to generate one output interrupt.

Interrupts

Interrupt generation capability is provided to both the PCIe bus and the system interrupt
controllers (see Chapter 13, Interrupts). This sections describes the various interrupts.

PCIe Bus Interface Interrupts

As an Endpoint, the controller supports, legacy, MSI (multi-vector up to four) and MSI-X (up
to four vectors) interrupt generation. These interrupts (when enabled) are generated by
DMA transactions due to the completion of a DMA transfer or due to an error event. The
mask for these events are enabled in the
AXIPCIE_DMA*.DMA_CHANNEL_PCIE_INTERRUPT_CONTROL register. A coalesce count
option is also provided for DMA completion events so that the frequency of interrupts can
be controlled.

A software controlled interrupt is provided (per DMA channel) and can be asserted without
enabling the DMA channel. Four scratchpad registers (per DMA channel) are also provided.
These can be asserted by writing to the
AXIPCIE_DMA*.DMA_CHANNEL_PCIE_INTERRUPT_ASSERT [pcie_software_interrupt]
register. All interrupts require enabling of the
AXIPCIE_DMA*.DMA_CHANNEL_PCIE_INTERRUPT_CONTROL[interrupt_mask] bit.

When in Endpoint mode, the bridge optionally generates interrupts when
cfg_pcie_int_axi_pcie_n = 0. When MSI-X is enabled, the bridge implements an MSI-X table
and PBA at fixed offset with regards to cfg_dma_reg_bar. Each DMA channel in the bridge
uses one MSI-X vector for interrupts (for example, ith MSI-X table entry is used for ith DMA
channel interrupt generation. Any miscellaneous interrupt uses the MSI-X table's 0th entry
to generate MSI-X interrupt upstream.

Note: As an Endpoint, when legacy interrupts are used, only INTA is supported.
Zynq UltraScale+ Device TRM 850
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=850

Chapter 30: PCI Express Controller
IMPORTANT: As a Root Port, if an Endpoint sends non-compliant MSI TLP, it will be dropped. It is
required for the first byte-enable field in the MSI TLP to be equal to all ones.

System Interrupts

System interrupts can be generated when the controller for PCIe is used either as a Root
Port or as an Endpoint. The five PCIe system interrupts (MSI0, MSI1, INT{A, B, C, D}, DMA,
and MSC) are listed in Table 13-1.

As an Endpoint, the following interrupts can be generated to the system controller.

• DMA interrupts due to completion or an error when enabled; these are generated when
the DMA operation is enabled.

• Since the PCIe protocol does not support interrupts downstream, the host software can
create an interrupt in the AXI domain.

• Host software controlled interrupts provided per DMA channel which can be used for
handshake purpose. Note that PCIe protocol doesn’t support interrupts downstream so
this provides a means of host (Root Port) interrupting processor on MPSoC Endpoint.
The interrupts are asserted by writing to the
AXIPCIE_DMA*.DMA_CHANNEL_AXI_INTERRUPT_ASSERT [axi_software_interrupt]
register.

All interrupts require an enabled
AXIPCIE_DMA*.DMA_CHANNEL_AXI_INTERRUPT_CONTROL [interrupt_enable] bit.
Additionally, for AXI domain interrupts that are provided per DMA channel, the
AXIPCIE_MAIN.MSGF_DMA_MASK bits for each DMA channel should be set.

Transaction Handling

This section provides an overall summary of PCIeAXI transaction handling and mapping.
Zynq UltraScale+ Device TRM 851
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=851

Chapter 30: PCI Express Controller
Ingress Transactions

Figure 30-5 is a flowchart for ingress transaction handling.
X-Ref Target - Figure 30-5

Figure 30‐5: Ingress Transaction Handling

PCIe
Message/

MSI
Interrupt?

Completion
Data for Bridge-
DMA Initiated

Read?

MSI?

Ingress
Translation

Error?

From PCIe (Ingress)

No

No

No

No

Transaction on AXI
Master

Yes

msgf_msi_status_enable=1

msgf_msi_status_enable=0

Set MSI Vector
Status

Mask[31:0] Mask[63:32]

AXI CPU Interrupt

Legacy
Interrupt?

Yes

Yes

Set Legacy Interrupt
Status

AXI CPU Interrupt

M
a
s
k

M
a
s
k

M
a
s
k

M
a
s
k

OR

Yes

RX
Message

FIFO Full?

Yes

No Write
Message
to FIFO.

Drop Packet and
Signal the FIFO
Overflow Error

No

R
X

M
es

sa
ge

O

ve
rfl

ow
 E

rro
r

R
X

M
es

sa
ge

 A
va

ila
bl

e

OR

Bridge Internally
Generated Errors

Set Egress
Translation

Error

Eg
re

ss

Tr
an

sl
at

io
n

Er
ro

r

Set Ingress
Translation

Error
In

gr
es

s
Tr

an
sl

at
io

n
Er

ro
r

Yes PCIe Block
Generated

Errors

M
as

te
r E

rro
r

Sl
av

e
Er

ro
r

D
M

A
C

ha
nn

el
 In

te
rru

pt
s[

3:
0]

AXI CPU Interrupt

OR

AXI CPU Interrupt

AXI CPU Interrupt

X15489-093016
Zynq UltraScale+ Device TRM 852
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=852

Chapter 30: PCI Express Controller
PCIe to AXI Map

Table 30-4 summarizes the PCIe-AXI transaction mapping.

Table 30‐4: Ingress Transaction Map

PCIe Transaction AXI Transaction Map Conditions

Memory read TLP AXI read on AXI master port.

Translated address if ingress
translation is hit.
If translation is not hit, and subtractive
decode is enabled, forward to AXI
without translation. Otherwise,
unsupported request.

Memory write TLP AXI write on AXI master port.
Translated address if ingress
translation is hit. Otherwise, the same
address (no translation) on
subtractive decode.

Configuration TLP – Handled internally by the integrated
block for PCIe.

Successful Cpl (CfgWr response) AXI response OKAY.
Cpl with unsupported request
(CfgWr response) AXI response DEC_ERR.

Cpl with unsupported request
(CfgRd response)

AXI response DEC_ERR if
cfg_rd_ur_is_ur_ok1s_n = 1.
AXI response OKAY with data as all
1's when cfg_rd_ur_is_ur_ok1s_n = 0.

Cpl with completer abort AXI response SLVERR.

Cpl with CRS

AXI response OKAY with data
0xFFFF0001 when CRS software
visibility is enabled.
AXI response DECERR after 1s retry
when CRS software visibility is not
enabled.
Zynq UltraScale+ Device TRM 853
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=853

Chapter 30: PCI Express Controller
Egress Transactions

Figure 30-6 is a flowchart for egress transaction handling.

ECAM write and I/O write transactions are non-posted in the PCIe domain. Non-posted
transactions must not be allowed to stall posted transactions to avoid deadlock conditions.
These non-posted writes require arbitration for a PCIe tag and completion handling
resources managed by the bridge's reorder queue. These non-posted writes are not queued
in reorder queue and instead are queued into an additional non-posted write FIFO.

X-Ref Target - Figure 30-6

Figure 30‐6: Egress Transaction Handling

AXI Read

PCIe ECAM
Configuration

Read?

Translate
on Match.

Translation
Error?

I/O Read
through
Bridge

Register?

Drop and
Log Error

No

Yes

Egress Read (PCIe TLP)

No

Yes

No

Bridge
Register
Access?

Bridge
Responds

on AXI

Yes

Local
Access?

Yes

Bridge
Responds

on AXI

Yes

AXI Write

PCIe ECAM
Configuration

Write?

Translate
on Match.

Translation
Error?

I/O Write
through
Bridge

Register?

Drop and
Log Error

Yes

Yes

Egress Write (PCIe TLP)

No

Yes

Message
Write through

Bridge
Register?

No
Non Posted
Write FIFO

Egress Write
 (PCIe TLP)

Egress Non-Posted Write
(PCIe TLP)

Bridge
Register
Access?

Bridge
Responds

on AXI

Yes

No

Local
Access?

No

Bridge
Responds

on AXI

Yes

X15490-093016
Zynq UltraScale+ Device TRM 854
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=854

Chapter 30: PCI Express Controller
AXI-PCIe Transaction Mapping

Table 30-5 summarizes AXI transaction mapping to PCIe domain.

To generate messages, the AXI-PCIe bridge provides registers. Refer to the
AXI_PCIE_MAIN.TX_PCIE_MSG_* registers for details on generating these types of
transactions in the Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4].

Note: Special handling is required by software for memory write transactions with ECRC errors. The
PCI Express specification mandates that the ECRC errors be captured and signaled to the software.
The error could be in the payload or in the header. If the payload is corrupted, a known location
could receive incorrect data. If the address is corrupted, the transaction could end up at a completely
incorrect slave. Software is required to read the header from the AER registers in the PCIe
configuration space and take corrective action because, by the time software receives notification of
such an event, the write transaction with the ECRC error could already be executed.

Endpoint Compliance

When doing PCIECV for PCISIG compliance, the Endpoint drivers on a host system are not
installed. Likewise, when using the Zynq UltraScale+ MPSoC as an Endpoint for a PCIECV
test, any driver accessing AXI-PCIe bridge registers running on the Zynq UltraScale+ MPSoC
(APU or RPU clusters) should not be installed.

If the driver running on the Zynq UltraScale+ MPSoC accesses the AXI-PCIe bridge registers,
it can cause the transaction pending bit (in PCIe configuration space) to be set, which would
cause a PCIECV compliance failure.

Security Features

The AXI master is capable of generating transactions with TrustZone secure and non-secure
classification. The TrustZone classification of each address translation, as well as each DMA
channel, is configurable from the FPD SLCR SECURE register block.

The AXI master provides security ports, namely awprot[1] and arprot[1], are driven
differently depending on the transaction source. The DMA transaction source is assigned a

Table 30‐5: Egress Transaction Map

AXI Transaction PCIe Transaction Notes

AXI read
transaction

Local bridge register read if BREG aperture is hit.
DMA register read if DREG aperture is hit.
Configuration read TLP if ECAM aperture is hit.
Memory read TLP if no other aperture is hit.

For memory read TLP, the address is
translated if the egress translation is hit.
Otherwise, it remains the same.

AXI write
transaction

Local bridge register write if BREG aperture is hit.
DMA register write if DREG aperture is hit.
Configuration write TLP if ECAM aperture is hit.
Memory write TLP if no other aperture is hit.

For memory write TLP, the address is
translated if the egress translation is hit.
Otherwise, it remains the same.
Zynq UltraScale+ Device TRM 855
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=855

Chapter 30: PCI Express Controller
security level by the FPD_SLCR_SECURE.slcr_pcie[24:21] bits. Each bit corresponds to one
DMA channel. The integrated block for PCIe on ingress translation hit, takes the security
level provided by FPD_SLCR_SECURE.slcr_pcie[20:13].

Security levels are defined for other translation apertures in FPD_SLCR_SECURE.slcr_pcie
register.

Note: The AXI-PCIe bridge does not implement a store and forward FIFO to drop a memory write
packet that has an ECRC error in it. This type of memory write is eventually executed by the
PS—either as a PCIe write to the bridge registers or as an AXI write transaction to an AXI slave
internal to the PS, depending on the address in the header of the packet. ECRC errors are captured
in AER capability. Xilinx recommends managing these packets in software on an individual basis.

TIP: The default values represented on the Zynq UltraScale+ MPSoC Register Reference (UG1087)
[Ref 4] for PCIE_ATTRIB registers are preset defaults. These values can be different depending upon the
configuration used by the Processing System Configuration Wizard (PCW) in the zynq_ultra_ps_e. For
configuration options, refer to the Zynq UltraScale+ MPSoC Processing System Product Guide (PG201)
[Ref 5].

DMA

The controller for PCIe contains a high-performance 4-channel direct memory access
(DMA) engine. Each channel can be programmed for either transmit or receive DMA
operation. Each channel can be controlled from both the PCIe or AXI domains. The DMA
supports separate source and destination scatter-gather queues. The DMA hardware is
responsible for merging the source and destination information for data movement. The
scatter-gather elements can be located in either PCIe or AXI memory.

Each DMA channel implements 128 bytes of DMA registers. DMA channel registers are
accessed through AXI slave when AXI transaction hits the DMA register translation. The
channel registers are at (DREG + 0x0) for first channel, (DREG + 0x80) for second channel
and so on. DMA channel registers are accessed through PCI Express through the BAR
associated with DMA channel registers (cfg_dma_reg_bar). This access is by default BAR0.
DMA channel registers are at (BAR0 + 0x00) for the first channel and (BAR0 + 0x80) for the
second channel and so on.

Table 30‐6: DMA Channel Address Map

DMA Channel AXI Address PCIe Address

0 DREG_BASE cfg_dma_reg_bar(1)

1 DREG_BASE + 0x80 cfg_dma_reg_bar + 0x80
2 DREG_BASE + 0x100 cfg_dma_reg_bar + 0x100
3 DREG_BASE + 0x180 cfg_dma_reg_bar + 0x180

Notes:
1. By default, cfg_dma_reg_bar is BAR0.
Zynq UltraScale+ Device TRM 856
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=856

Chapter 30: PCI Express Controller
Suffice DMA Descriptors

This section provides the details of the DMA descriptors. The scatter-gather queues
supported by DMA are listed.

• SRC-Q provides data buffer source information and corresponding STAS-Q to indicate
completion of SRC-Q processing by the DMA

• DST-Q provides destination buffer information and corresponding STAD-Q which
indicates DST-Q processing completion by DMA

• Source and destination scatter-gather queues describe the fragmentation of the source
and the destination memory. The queues are independent. The DMA channel merges
the information from the queues to perform DMA operations based on the
fragmentation of each queue.

The Q elements layout is shown in Figure 30-7.

The source and destination scatter-gather Q elements are 128 bits wide. The corresponding
status scatter-gather Q elements can be chosen to be either 32-bit or 64-bit.

X-Ref Target - Figure 30-7

Figure 30‐7: DMA SGL-Q Format

Source Address [31:0]

Source Address [63:32]

Byte Count [23:0]Flags [7:0]

UserHandle[15:0]UserID[15:0]

SRC SGL Flags-
[0]: Location (AXI or PCIe)
[1]: EOP
[2]: Interrupt
[7:4]: Attributes

SRC-SGL

UserHandle[15:0]UserID[15:0]
C

M
PL

T

Error[3:1]
Completed Byte

Count [26:0]

Upper Status
Non-Zero

Error-
[1]: Source Error
[2]: Destination Error
[3]: Internal DMA Error

STAS/STAD-SGL

Destination Address [31:0]

Destination Address [63:32]

Byte Count [23:0]Flags [7:0]

UserHandle[15:0]UserID[15:0]

DST SGL Flags-
[0]: Location (AXI or PCIe)
[1]: Enable one packet per element
[7:4]: Attributes

DST-SGL

X15491-093016
Zynq UltraScale+ Device TRM 857
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=857

Chapter 30: PCI Express Controller
The description of various format fields are listed in Table 30-7, Table 30-8, and Table 30-9.

Table 30‐7: SRC-Q Element Descriptions

Field Name Location Description

Source address [63:0] Source address.
Byte count [87:64] Byte count, a value of 0 implies 224 bytes.

Flags[7:0] [95:88]

[7:4] DMA data read attribute
If source is AXI m_arcache[3:0] = [7:4]
If source is PCIe, PCIe attr[2:0] = [6:4]

[3] Reserved
[2] Interrupt

A value of 1, generates an interrupt when the status-Q is written with
a DMA completion status and valid when EOP = 1. The interrupt is
generated in either PCIe or AXI or both directions based on the DMA
channel interrupt register configuration.
A value of 0, does not generate an interrupt.

[1] EOP
A value of 1, end of packet, status Q is updated when EOP is
transferred to DMA destination.
A value of 0, not end of packet, packet can span multiple Q elements.

[0] Location
A value of 1, DMA data source is AXI
A value of 0, DMA data source is PCIe

UserHandle[15:0] [111:96]
The UserHandle is copied from SRC SGL with EOP = 1 to corresponding
STAS-Q elements in the UserHandle field.
It provides a means to associate SRC-Q to STAS-Q elements.

UserID[15:0] [127:112]
UserID is copied from SRC SGL with EOP = 1 to corresponding STAS and
STAD-Q element's UserID field.
It provides a means to transfer user specific data from source to
destination.
Zynq UltraScale+ Device TRM 858
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=858

Chapter 30: PCI Express Controller
Table 30‐8: DST-Q Element Descriptions

Field Name Location Description

Destination address [63:0] Destination address.

Byte count [87:64] Byte count.
Value of 0 implies 224 bytes.

Flags[7:0] [95:88]

[7:4] DMA data write attribute.
If destination is AXI m_awcache[3:0] = [7:4].
If destination is PCIe, PCIe Attr[2:0] = [6:4].

[3:2] Reserved
[1] Enable one packet per destination SGL.

A value of 1, skip to next destination SGL on EOP.
A value of 0, pack packets back-to-back in destination SGL.

[0] Location
A value of 1, DMA data destination is AXI.
A value of 0, DMA data destination is PCIe.

UserHandle[15:0] [111:96]
UserHandle is copied from the final DST SGL element used in packet
transfer to corresponding STAD-Q element’s UserHandle field.
It provides a means to associate DST-Q elements to STAD-Q elements.

Reserved [127:112] Reserved

Table 30‐9: Status Q Element Descriptions

Field Name Location Description

UserID[15:0] [63:48] UserID copied from SRC SGL element with EOP=1

UserHandle[15:0] [47:32]

For STAS-Q, this is copied from the SRC-Q element with EOP = 1.
For STAD-Q, this is copied from final DST-Q element used for packet
transfer.
This provides software with a means to associate SRC/DST-Q with
STAS/STAD elements.

Upper status is
non-zero [31] For 64-bit status elements this bit is 1 when [63:32] = 0.

For 32-bit status elements, this bit always reads 0.

Completed byte count [30:4] Completed byte count.
Range is 0 to (227–1).

Internal error [3] Internal error during DMA operation.
Destination error [2] Destination error during DMA operation.
Source error [1] Source error during DMA operation.
Completed [0] Status Q element completion indication.
Zynq UltraScale+ Device TRM 859
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=859

Chapter 30: PCI Express Controller
IMPORTANT: Both UserHandle and UserID cannot be zero at the same time when using 64-bit status
queues and checking the “upper status is non-zero” bit for a status queue update by the DMA. When
not using the UserID field, keep the UserID to a fixed non-zero signature value so that the UserHandle
can start from the value of zero.

Status-Q elements contain information for a single packet transfer. The upper status is a
non-zero bit that provides a method to ensure that CPUs read the correct information in
case of 32-bit atomic operations.

DMA errors are indicated in status-Q elements for packets that are able to be completed. In
error situations where packets cannot complete, DMA errors are indicated in channel's error
status registers.

These Qs can be resident either in host memory or AXI memory. Q elements are required to
be in contiguous location for DMA to fetch multiple SRC/DST-Q elements in a burst fetch.
The software driver sets up the Q elements in contiguous location and DMA takes care of
wrap-around of Q. Every DMA channel has the following registers pertaining to each Q.

• Q_PTR: Indicates the starting address of the Q.
• Q_SIZE: The number of SGL elements in Q.
• Q_LIMIT: An index of the first element still owned by the software; DMA hardware

wraps around to start element location when Q_LIMIT is equal to Q_SIZE.

Figure 30-8 shows a DMA SGL-Q operation.
X-Ref Target - Figure 30-8

Figure 30‐8: DMA SGL-Q Operation Summary

Submit New Elements to
Hardware

Q_SIZE = N
Q_LIMIT = 0

Q_SIZE = N
Q_LIMIT = 2

Q_SIZE = N
Q_LIMIT = 3

Q_SIZE = N
Q_LIMIT = 1

Initial SGL Q
with Software

Element #0

Element #(N-1)

DMA Wraps
Around

X15492-093016
Zynq UltraScale+ Device TRM 860
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=860

Chapter 30: PCI Express Controller
Status Updates

The status elements are updated only on EOP and not every SGL element. This section
describes the status updates and suggests use of UserHandle field to associate multiple
SRC or DST-Q elements to a single STAS or STAD-Q element update.

TIP: The DMA does not use the UserHandle or UserID fields. To utilize the UserHandle field, you can
implement the same relationships entirely in software layer and use the UserHandle and UserID fields
in your custom environment.

Relationship between SRC-Q and STAS-Q

As shown in Figure 30-9, packet-0 spans across three SRC-Q elements; the third element
indicates EOP=1 with UserHandle=2. On EOP, DMA updates STAS-Q with UserHandle = 2,
which corresponds to the handle value in the SRC-Q element with EOP = 1. Similarly,
packet-1 spans two elements and in STAS-Q the updated handle value corresponds to
EOP = 1 element. This UserHandle mechanism allows software to associate number of
SRC-Q elements corresponding to a STAS-Q update.

Relationship between DST-Q and STAD-Q

Software sets up DST-Q elements with predefined UserHandle values and points to empty
buffers. For example, in Figure 30-9 a packet-0 spans across two DST-Q elements; one
STAD-Q element is updated with the handle value of the last DST-Q element used by the
packet and corresponding packet length. Software maintains the number of DST-Q
elements used (buffers used and appropriate buffer fragment pointers) for a particular
status completion.

X-Ref Target - Figure 30-9

Figure 30‐9: UserHandle Usage

Handle = 0
EOP = 0

Handle = 2
EOP = 1

Handle = 1
EOP = 0

Handle = 3
EOP = 0

Handle = 4
EOP = 1

Handle = 2

Handle = 4

SRC-Q STAS-Q

Packet-0

Packet-1

Handle = 0

Handle = 2

Handle = 1

Handle = 3

Handle = 4

Handle = 1
Byte Count

Handle = 4
Byte Count

DST-Q STAD-Q

Packet-0

Packet-1

X15493-093016
Zynq UltraScale+ Device TRM 861
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=861

Chapter 30: PCI Express Controller
The DMA provides programmable options for the following.

• Number of status Qs: The DMA can be operated in 3-Q mode or 4-Q mode. In 3-Q
mode, only a single status-Q is used for both the SRC and DST queues.

• 32-bit or 64-bit status Q: DMA provides an option to use the 32-bit status Q or 64-bit
status Q. The upper 32 bits of the status Q are unavailable when the 32-bit status
Q mode of operation is programmed.

Note: In rare circumstances, the status-Q might not be updated with a completion status when an
interrupt is received. These issues can be resolved by reading the DMA completion interrupt status
register twice before reading the status-Q.

DMA Channel Flow Control

Each DMA channel contains three internal per-channel first in, first out (FIFO) buffers.

1. One FIFO caches up to eight source SGL elements.
a. The buffer is filled by reading the source SGL queue, that is made available as the

SRC_Q_LIMIT register is updated.
b. The buffer is emptied when DMA transactions, that fully satisfy the size of the

current source SGL element, are created.
2. One FIFO caches up to eight destination SGL elements.

a. The buffer is filled by reading the destination SGL queue that is made available as
the DST_Q_LIMIT register is updated.

b. The buffer is emptied when DMA transactions, that fully satisfy the size of the
current destination SGL element, are created.

3. One FIFO caches up to four DMA completion status.
a. The buffer is filled when DMA transfers with SRC SGL EOP == 1 completes.
b. The buffer is emptied when DMA completion status is written to the DMA

completion status (STAS/SATD) queues.

DMA channels arbitrate amongst other DMA channels and bridge functions, using a
round-robin arbitration scheme, to carry out a DMA transfer. The DMA transaction size
arbitrated is up to 512 bytes for x1 to x4 PCI express lanes.

The source SGL element, and the destination SGL element are available in the internal FIFO
cache. The DMA completion status FIFO has at least one element available to receive DMA
completion status. When a DMA source SGL with EOP == 1 completes, the DMA completion
status is written into the per channel DMA completion status internal FIFO until it can be
written to the external STAS/STAD DMA completion status queues.
Zynq UltraScale+ Device TRM 862
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=862

Chapter 30: PCI Express Controller
DMA Error Detection

The following describes scenarios resulting in DMA errors.

• Errors occurred while reading the SGL from the SRC or DST QUEUE or while reading the
DMA data.

° Errors detected and reported by PCIe read.
- Unsupported request or completer abort status returned for read.
- ECC/parity or ECRC error detected by the integrated block for PCIe.
- Poisoned TLP (EP bit set in a received TLP that contained a data payload).

° Errors detected and reported by AXI read.
- AXI error response returned for a read (read response is not OKAY).
- No response received for read (completion timeout).
- Internal RAM ECC error while processing SGL or DMA data.

• Errors occurred while writing DMA completion status to the status queue or while
writing DMA data.

° Error response returned for STA(S/D) QUEUE or DMA write.
- PCIe does not provide a response for memory writes.
- AXI error response returned for a write (write response is not OKAY).

° Internal ECC error while processing STA(S/D) QUEUE or DMA write.
• Out of range LIMIT pointer detected while DMA is enabled.

° SRC_LIMIT >= SRC_SIZE.

° DST_LIMIT >= DST_SIZE.

° STA_LIMIT >= STA_SIZE.
• Out of range NEXT pointer detected while DMA is enabled.

° SRC_NEXT >= SRC_SIZE.

° DST_NEXT >= DST_SIZE.

° STA_NEXT >= STA_SIZE.
• Invalid queue SIZE detected while DMA is enabled.

° SRC_SIZE < 2.

° DST_SIZE < 2.

° STA_SIZE < 2.
Zynq UltraScale+ Device TRM 863
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=863

Chapter 30: PCI Express Controller
DMA Error Handling

The DMA core associates the DMA errors with the source DMA channel and reports the
errors on a per DMA channel basis.

When any DMA error occurs (as listed in DMA Error Detection), it is handled by the DMA
channel as follows.

1. DMA enable register value is set to 0 (if 1).

° No new DMA operations are scheduled.

° DMA operations, started while the DMA was still enabled, continue for completion.
Note: After the error is detected, expect continued DMA activity for a short period of time for
the already in process transactions to complete.

2. PCIe DMA error and AXI DMA error registers are set to 1 to log the error.
3. A PCIe and AXI interrupt event is scheduled and reflected in the PCIe interrupt status

and AXI interrupt status. Error interrupts are handled the same way as regular DMA
interrupts.

° The same interrupt vector is used as for regular DMA completion interrupts.

° The interrupt is generated only when interrupts are enabled. Software can read the
PCIe DMA error and/or the AXI DMA error to determine if the interrupt is generated
due to an error.

When a DMA transaction fully completes, and (normally) a status queue element is written,
then any errors detected during the DMA are reported in the status queue element written
during DMA completion. This is a common scenario for small DMA operations. For larger
DMA, because DMA operations are halted as soon as possible after detecting a DMA error,
the DMA transaction with the error does not complete and the status queue element is not
written.

When an error occurs, the software can continue operation without performing a system
reset (depending on the severity of the error). In such cases, the DMA channel must be reset
before reusing it again. For more details on how to reset a channel, refer to the
Programming Topics.

DMA Operation

This section describes two modes of DMA operation.

• Dual CPU control, where a single DMA channel is managed by both the host CPU as
well as the AXI CPU. This requires a software device driver to be running on both the
host CPU and the Arm CPU on the Zynq UltraScale+ MPSoC.

• Single CPU control, where a single DMA channel is only managed by the host CPU.
Zynq UltraScale+ Device TRM 864
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=864

Chapter 30: PCI Express Controller
IMPORTANT: The SGL elements contain fields which determine direction of data flow. A single DMA
channel cannot be tasked with elements to simultaneously support DMA transfers with multiple
directions of data flow. For example, in the case of SRC-SGL, if the first element indicates PCIe as a
source of data, the subsequent element cannot indicate AXI as source of data. Before changing
dataflow directions on the same DMA channel, all DMA transfers for the prior data flow direction must
be fully completed.

Dual-CPU Control

The DMA supports multi-CPU DMA operation, that is, each DMA channel can be managed
by both host CPU as well as an AXI CPU.

The dataflow for this mode is described in this section. The example assumes that the Zynq
UltraScale+ MPSoC’s integrated block for PCIe is an Endpoint.

System to Card (Host Memory to EP Memory)

1. The host software sets up and manages SRC and STAS Q elements in host memory; Arm
software (driver on the Zynq UltraScale+ MPSoC) sets up and manages DST and STAD Q
elements in AXI memory.

2. The source buffer lies in PCIe memory and destination buffer in AXI memory.
3. DMA channel's registers are programmed by both host CPU and AXI CPU (registers

corresponding to SRC/STAS Qs by host and DST/STAD Qs by AXI CPU).
4. On DMA channel enable, the SRC elements are fetched over PCIe and DST elements over

AXI.
5. Source buffer pointed by SRC-Q is fetched over PCIe and made available (AXI write

transaction on AXI master port) to the destination address (provided by DST-Q) on AXI.
6. On completion of the operation the STAS-Q is updated in host memory and the STAD-Q

is updated in AXI memory.

Card to System Flow (EP Memory to Host Memory)

1. Host software sets up and manages the DST and STAD Q elements in host memory; Arm
software (driver on the Zynq UltraScale+ MPSoC) sets up and manages the SRC and
STAS Q elements in AXI memory.

2. The source buffer lies in the AXI memory and destination buffer in PCIe memory.
3. DMA channel's registers are programmed by both host CPU and AXI CPU. Registers

corresponding to SRC/STAS Qs by the AXI CPU, and DST/STAD Qs by the host.
4. On DMA channel enable, SRC elements are fetched over AXI (read transactions) and DST

elements over PCIe.
Zynq UltraScale+ Device TRM 865
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=865

Chapter 30: PCI Express Controller
5. The source buffer pointed by SRC-Q is fetched over AXI (read transaction) and made
available to the destination address (provided by DST-Q) as memory write TLP over
PCIe.

6. On completion of the operation, the STAS-Q is updated in AXI memory and the STAD-Q
is updated in host memory.

Single CPU Control

In this mode, host software controls all the Qs for a DMA channel. The AXI domain address
for buffer transfers needs to be made known to host software in advance.

System to Card Flow (Host memory to EP)

1. Software sets up the SRC-Q with a buffer address in the host and an appropriate buffer
size in host memory.

2. Software sets up the DST-Q with a buffer address in the AXI domain and an appropriate
buffer size in host memory.

3. Software sets up the STAS-Q and STAD-Q in host memory.
4. On enabling the DMA, the DMA fetches SRC and DST elements over PCIe.
5. The DMA fetches the buffer pointed to by SRC elements (upstream memory read) and

provides it on the AXI interface (as AXI write transaction) targeting the AXI address
provided in DST-Q.

6. On completion of DMA transfer (encountering EOP), STAS-Q and STAD-Q are updated in
host memory.

Card to System Flow (EP to Host Memory)

1. Software sets up the SRC-Q with a buffer address pointing to the AXI domain and the
appropriate buffer size in host memory.

2. Software sets up the DST-Q with a buffer address in the host and the appropriate buffer
size.

3. Software sets up STAS-Q and STAD-Q in host memory.
4. On enabling the DMA, the DMA fetches the SRC and DST elements over PCIe.
5. The DMA fetches the buffer pointed to by the SRC elements over AXI (through AXI read

transaction) and writes it into the address provided in DST-Q in host memory (upstream
memory write).

6. On completion of the DMA transfer (encountering EOP), STAS-Q and STAD-Q are
updated in host memory.

Each DMA channel provides scratchpad and doorbell registers. The doorbell register is
useful to raise interrupts from PCIe to AXI domains as downstream interrupts are not
Zynq UltraScale+ Device TRM 866
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=866

Chapter 30: PCI Express Controller
supported in PCIe. The scratchpad registers can be used for communication in the case of
a host CPU interrupting an AXI CPU.

IMPORTANT:
Xilinx strongly recommends using the integrated DMA controller in the PS PCIe to exercise PCIe traffic.

Deadlock situations can occur when the PS PCIe shares the path between the CCI and the FPD Main
Switch with an external master also targeting the PS PCIe interface. Refer to Figure 15-1 to see this
path.

When the Zynq UltraScale+ MPSoC is used as an Endpoint, external DMA like FPD DMA or PL DMA IP
connected to S_AXI_HP[0:3]_FPD can be used to exercise PCIe traffic. This is because they to not route
traffic through the CCI to the FPD.

Do not use PL DMA IP connected to S_AXI_HPC[0:1], S_AXI_LPD, or any other PS masters like LPD DMA
to exercise PCIe traffic because these masters use the shared path between the CCI and the FPD Main
Switch.

When the Zynq UltraScale+ MPSoC is used as a Root Port, Xilinx recommends that PCIe link partners
(Endpoints) access only the PS-DDR. They should not access any other memory like OCM or PL memory
on the Root Port. It is also recommended that the GPU (if enabled) should not access Programmable
Logic, because the share path between the CCI and the FPD Main Switch can result in a deadlock
situation.

For more information, see Xilinx Answer 72341.

I/O Signals

MIO Signals

The PCIe Root Port mode and Endpoint mode reset signals are routed to specific MIO pins
as listed in Table 30-10.

Table 30‐10: PCIe Reset Signals on MIO

PCIe Reset MIO Pins I/O
Default Input Value to

Controller

Rootport reset output (use GPIO controller) 0 ... 77 O ~
Endpoint reset input 29,30,31,33,34,35,36,37 I 0
Zynq UltraScale+ Device TRM 867
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/72341.html
https://www.xilinx.com/support/answers/72341.html
https://www.xilinx.com/support/answers/72341.html
https://www.xilinx.com/support/answers/72341.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=867

Chapter 30: PCI Express Controller
Register Overview
This section provides an overview of the registers in the PCI Express controller and DMA.

Table 30-11 lists the bridge core registers.

Table 30-12 lists ingress address translation registers.

Table 30-13 lists the egress address translation registers.

Table 30-14 lists the DMA channel control and status registers.

Bridge Core Registers

The bridge core registers program the bridge features and apertures for various access
regions. Table 30-11 summarizes the bridge core registers.

Table 30‐11: Bridge Core Registers

Register Name Description

BRIDGE_CORE_CFG_PCIE_RX0 PCI Express receive access and BAR configuration.
BRIDGE_CORE_CFG_PCIE_RX1 PCI Express receive transaction attribute handling.
BRIDGE_CORE_CFG_AXI_MASTER AXI master maximum payload size configuration.
BRIDGE_CORE_CFG_PCIE_TX PCI Express transmit cut through configuration.
BRIDGE_CORE_CFG_INTERRUPT PCI Express core interrupt routing configuration.

BRIDGE_CORE_CFG_RAM_DISABLE0 ECC RAM 1-bit error correction enable/disable (designs with ECC
support only).

BRIDGE_CORE_CFG_RAM_DISABLE1 ECC RAM 2-bit error handling enable/disable (designs with ECC
support only).

BRIDGE_CORE_CFG_PCIE_RELAXED_ORDER PCI Express receive completion ordering configuration.
BRIDGE_CORE_CFG_PCIE_RX_MSG_FILTER PCI Express receive message filtering configuration.

BRIDGE_CORE_CFG_RQ_REQ_ORDER PCI Express and AXI read reorder queue completion ordering
configuration.

BRIDGE_CORE_CFG_PCIE_CREDIT PCI Express transmit completion header and data credit metering
configuration.

BRIDGE_CORE_CFG_AXI_M_W_TICK_COUNT AXI master write completion timeout configuration.
BRIDGE_CORE_CFG_AXI_M_R_TICK_COUNT AXI master read completion timeout configuration.

BRIDGE_CORE_CFG_CRS_RPL_TICK_COUNT PCIe configuration write/read request CRS replay timeout
configuration.

E_BREG_CAPABILITIES Egress bridge register translation: capabilities.
E_BREG_STATUS Egress bridge register translation: status.
E_BREG_CONTROL Egress bridge register translation: control.
Zynq UltraScale+ Device TRM 868
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=868

Chapter 30: PCI Express Controller
E_BREG_BASE_LO Egress bridge register translation: source address Low.
E_BREG_BASE_HI Egress bridge register translation: source address High.
E_ECAM_CAPABILITIES Egress ECAM translation: capabilities.
E_ECAM_STATUS Egress ECAM translation: status.
E_ECAM_CONTROL Egress ECAM translation: control.
E_ECAM_BASE_LO Egress ECAM translation: source address Low.
E_ECAM_BASE_HI Egress ECAM translation: source address High.
E_MSXT_CAPABILITIES Egress MSI-X table translation: capabilities.
E_MSXT_STATUS Egress MSI-X table translation: status.
E_MSXT_CONTROL Egress MSI-X table translation: control.
E_MSXT_BASE_LO Egress MSI-X table translation: source address Low.
E_MSXT_BASE_HI Egress MSI-X table translation: source address High.
E_MSXP_CAPABILITIES Egress MSI-X PBA translation: capabilities.
E_MSXP_STATUS Egress MSI-X PBA translation: status.
E_MSXP_CONTROL Egress MSI-X PBA translation: control.
E_MSXP_BASE_LO Egress MSI-X PBA translation: source address Low.
E_MSXP_BASE_HI Egress MSI-X PBA translation: source address High.
E_DREG_CAPABILITIES Egress DMA register translation: capabilities.
E_DREG_STATUS Egress DMA register translation: status.
E_DREG_CONTROL Egress DMA register translation: control.
E_DREG_BASE_LO Egress DMA register translation: source address Low.
E_DREG_BASE_HI Egress DMA register translation: source address High.
E_ESUB_CAPABILITIES Egress subtractive decode translation: capabilities.
E_ESUB_STATUS Egress subtractive decode translation: status.
E_ESUB_CONTROL Egress subtractive decode translation: control.
I_MSII_CAPABILITIES Ingress PCI Express received MSI interrupt translation: capabilities.
I_MSII_CONTROL Ingress PCI Express received MSI interrupt translation: control.

I_MSII_BASE_LO Ingress PCI Express received MSI interrupt translation: source
address Low.

I_MSII_BASE_HI Ingress PCI Express received MSI interrupt translation: source
address High.

I_MSIX_CAPABILITIES Ingress PCI Express received MSI-X interrupt translation:
capabilities.

I_MSIX_CONTROL Ingress PCI Express received MSI-X interrupt translation: control.

I_MSIX_BASE_LO Ingress PCI Express received MSI-X interrupt translation: source
address Low.

Table 30‐11: Bridge Core Registers (Cont’d)

Register Name Description
Zynq UltraScale+ Device TRM 869
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=869

Chapter 30: PCI Express Controller
I_MSIX_BASE_HI Ingress PCI Express received MSI-X interrupt translation: source
address High.

I_ISUB_CAPABILITIES Ingress subtractive decode translation: capabilities.
I_ISUB_STATUS Ingress subtractive decode translation: status.
I_ISUB_CONTROL Ingress subtractive decode translation: control.

MSGF_MISC_STATUS Received interrupt and message controller: miscellaneous
interrupt status.

MSGF_MISC_MASK Received interrupt and message controller: miscellaneous
interrupt mask.

MSGF_MISC_SLAVE_ID Slave error AXI ID.
MSGF_MISC_MASTER_ID Master error AXI ID.
MSGF_MISC_INGRESS_ID Ingress error AXI ID.
MSGF_MISC_EGRESS_ID Egress error AXI ID.
MSGF_LEG_STATUS Legacy interrupt status.
MSGF_LEG_MASK Legacy interrupt mask.
MSGF_MSI_STATUS_LO MSI interrupt status.
MSGF_MSI_STATUS_HI MSI interrupt status.
MSGF_MSI_MASK_LO MSI interrupt mask.
MSGF_MSI_MASK_HI MSI interrupt mask.
MSGF_DMA_STATUS DMA interrupt status.
MSGF_DMA_MASK DMA interrupt mask.
MSGF_RX_FIFO_LEVEL Received interrupt and message FIFO: level.
MSGF_RX_FIFO_POP Received interrupt and message FIFO: pop element.
MSGF_RX_FIFO_TYPE Received interrupt and message FIFO: message/interrupt type.
MSGF_RX_FIFO_MSG Received message header.
MSGF_RX_FIFO_ADDRESS_LO Received message/interrupt address.
MSGF_RX_FIFO_ADDRESS_HI Received message/interrupt address.
MSGF_RX_FIFO_DATA Received message/interrupt data payload.
TX_PCIE_IO_EXECUTE PCIe I/O write/read request execution.
TX_PCIE_MSG_EXECUTE PCIe message request execution.
TX_PCIE_MSG_CONTROL PCIe message request execution: control.
TX_PCIE_MSG_SPECIFIC_LO PCIe message request execution: message specific.
TX_PCIE_MSG_SPECIFIC_HI PCIe message request execution: message specific.
TX_PCIE_MSG_DATA PCIe message request execution: message data payload.

Table 30‐11: Bridge Core Registers (Cont’d)

Register Name Description
Zynq UltraScale+ Device TRM 870
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=870

Chapter 30: PCI Express Controller
Address Translation Registers

There are eight address translation apertures in each direction namely ingress (PCIe to AXI)
and egress (AXI to PCIe). Each aperture defines registers for translation that are listed in
Table 30-12 and Table 30-13. The first translation aperture starts at offset 0x00, the next
one at 0x20, and the subsequent one at 0x40, and so on.

DMA Channel Control and Status Registers

There are four DMA channels at offsets 0x00 for channel-0, 0x80 for channel-1, 0x100 for
channel-2, and 0x180 for channel-3. Each channel has its own control and status register
set (Table 30-14).

Table 30‐12: Ingress Address Translation Registers

Register Name Description

TRAN_INGRESS_CAPABILITIES Ingress AXI translation: capabilities.
TRAN_INGRESS_STATUS Ingress AXI translation: status.
TRAN_INGRESS_CONTROL Ingress AXI translation: control.
TRAN_INGRESS_SRC_BASE_LO Ingress AXI translation: source address Low.
TRAN_INGRESS_SRC_BASE_HI Ingress AXI translation: source address High.
TRAN_INGRESS_DST_BASE_LO Ingress AXI translation: destination address Low.
TRAN_INGRESS_DST_BASE_HI Ingress AXI translation: destination address High.

Table 30‐13: Egress Address Translation Registers

Register Name Description

TRAN_EGRESS_CAPABILITIES Egress AXI translation: capabilities.
TRAN_EGRESS_STATUS Egress AXI translation: status.
TRAN_EGRESS_CONTROL Egress AXI translation: control.
TRAN_EGRESS_SRC_BASE_LO Egress AXI translation: source address Low.
TRAN_EGRESS_SRC_BASE_HI Egress AXI translation: source address High.
TRAN_EGRESS_DST_BASE_LO Egress AXI translation: destination address Low.
TRAN_EGRESS_DST_BASE_HI Egress AXI translation: destination address High.

Table 30‐14: DMA Channel Control and Status Registers

Register Name Description

DMA_CHANNEL_SRC_Q_PTR_LO Source queue base address Low.
DMA_CHANNEL_SRC_Q_PTR_HI Source queue base address High.
DMA_CHANNEL_SRC_Q_SIZE Source queue size.
DMA_CHANNEL_SRC_Q_LIMIT Source queue limit pointer.
DMA_CHANNEL_DST_Q_PTR_LO Destination queue base address Low.
Zynq UltraScale+ Device TRM 871
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=871

Chapter 30: PCI Express Controller
DMA_CHANNEL_DST_Q_PTR_HI Destination queue base address High.
DMA_CHANNEL_DST_Q_SIZE Destination queue size.
DMA_CHANNEL_DST_Q_LIMIT Destination queue limit pointer.
DMA_CHANNEL_STAS_Q_PTR_LO Source status queue base address Low.
DMA_CHANNEL_STAS_Q_PTR_HI Source status queue base address High.
DMA_CHANNEL_STAS_Q_SIZE Source status queue size.
DMA_CHANNEL_STAS_Q_LIMIT Source status queue limit pointer.
DMA_CHANNEL_STAD_Q_PTR_LO Destination status queue base address Low.
DMA_CHANNEL_STAD_Q_PTR_HI Destination status queue base address High.
DMA_CHANNEL_STAD_Q_SIZE Destination status queue size.
DMA_CHANNEL_STAD_Q_LIMIT Destination status queue limit pointer.
DMA_CHANNEL_SRC_Q_NEXT Source queue next pointer.
DMA_CHANNEL_DST_Q_NEXT Destination queue next pointer.
DMA_CHANNEL_STAS_Q_NEXT Source status queue next pointer.
DMA_CHANNEL_STAD_Q_NEXT Destination status write only to initialize the DMA channel.
DMA_CHANNEL_SCRATCH0 Scratchpad register.
DMA_CHANNEL_SCRATCH1 Scratchpad register.
DMA_CHANNEL_SCRATCH2 Scratchpad register.
DMA_CHANNEL_SCRATCH3 Scratchpad register.
DMA_CHANNEL_PCIE_INTERRUPT_CONTROL PCI Express interrupt control.
DMA_CHANNEL_PCIE_INTERRUPT_STATUS PCI Express interrupt status.
DMA_CHANNEL_AXI_INTERRUPT_CONTROL PCI Express interrupt control.
DMA_CHANNEL_AXI_INTERRUPT_STATUS AXI interrupt status.
DMA_CHANNEL_PCIE_INTERRUPT_ASSERT PCI Express interrupt assertion.
DMA_CHANNEL_AXI_INTERRUPT_ASSERT AXI interrupt assertion.
DMA_CHANNEL_DMA_CONTROL DMA channel control.
DMA_CHANNEL_DMA_STATUS DMA channel status.

Table 30‐14: DMA Channel Control and Status Registers (Cont’d)

Register Name Description
Zynq UltraScale+ Device TRM 872
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=872

Chapter 30: PCI Express Controller
Programming Topics
This section summarizes programming of the PCI Express controller for Endpoint and Root
Port mode operations.

Programming the PS-GTR Transceiver

The following steps are used to program the PS-GTR transceiver interface to support the
PCI Express protocol. For more information on the PS-GTR transceiver interface, refer to
Chapter 29, PS-GTR Transceivers.

1. Assign SerDes lanes to the PCIe PHY that presents a PIPE interface to the controller for
PCIe.

2. Program SERDES.ICM_CFG0 and SERDES.ICM_CFG1 to support the PCIe protocol lanes
as per the requirement (Table 30-15).

3. Set the PLL reference clock to 100 MHz: SERDES.PLL_REF_SEL0 = 0x0D

Table 30‐15: PS-GTR Multiplexer Configuration for PCI Express Lanes

PCI Express Lane
Configuration

Registers to program Comments

x1 SERDES.ICM_CFG0[L0_icm_cfg] = 1
Other 3 lanes (L1, L2, L3) can be used by
other protocols like SATA, DisplayPort, USB,
GEM.

x2 SERDES.ICM_CFG0[L0_icm_cfg] = 1
SERDES.ICM_CFG0[L1_icm_cfg] = 1

Other 2 lanes (L2, L3) can be used by other
protocols like SATA, DisplayPort, USB, GEM.

x4 SERDES.ICM_CFG0 = 0x0011
SERDES.ICM_CFG1 = 0x0011 All lanes are assigned to PCIe protocol.
Zynq UltraScale+ Device TRM 873
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=873

Chapter 30: PCI Express Controller
Programming Reset Pin

Program the MIO registers in the IOU_SLCR module to configure the PCIe reset pin. For the
Endpoint port, the PCIe reset pin is configured as an input. For the Root Port, it is
configured as an output.

• For the Endpoint port, use one of MIO_PIN_[29,30,31,33,34,35,36,37] from the
IOU_SLCR module as PCIe reset input (based on board layout). The input reset signal is
listed in table Table 30-10.

• For the Root Port, use any GPIO to map the reset output, which is driven by software.

Programming Controller

The following steps describe the sequence of operations to program the PCI Express
controller.

1. Program the CRF_APB.RST_FPD_TOP register to release pcie_cfg_rst, gt_rst, and
pcie_bridge_reset.

2. Program the CRF_APB.PCIE_REF_CTRL register to activate the clock. The minimum
required values for 250 MHz are set as default divisor values. Frequencies that are less
than 250 MHz can have performance implications.

3. Program the integrated block for PCIe to Endpoint or Root Port role using the APB
interface. The default values in registers are for an Endpoint mode of operation.

4. For the Root Port mode operation, program the following.
a. Set the BAR and the memory base/limit registers to defaults for the Root Port, as

documented in the Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4].

PCIE_ATTRIB.ATTR_7= 0x0
PCIE_ATTRIB.ATTR_8= 0x0
PCIE_ATTRIB.ATTR_9= 0x0
PCIE_ATTRIB.ATTR_10= 0x0
PCIE_ATTRIB.ATTR_11= 0xFFFF
PCIE_ATTRIB.ATTR_12= 0xFF
PCIE_ATTRIB.ATTR_13= 0x0
PCIE_ATTRIB.ATTR_15= 0xFFF0
PCIE_ATTRIB.ATTR_16= 0xFFF0
PCIE_ATTRIB.ATTR_17= 0xFFF1
PCIE_ATTRIB.ATTR_18= 0xFFF1

PCIE_ATTRIB.ATTR_101 [ATTR_DISABLE_BAR_FILTERING] = 0x1 (this setting is
specific to RP mode).

Note: For EP mode, BAR settings are dependent on user selection such as size, prefetchable
or not, etc.
Zynq UltraScale+ Device TRM 874
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=874

Chapter 30: PCI Express Controller
b. Change the class code.

PCIE_ATTRIB.ATTR_24 [ATTR_CLASS_CODE] = 0x400
PCIE_ATTRIB.ATTR_25 [ATTR_CLASS_CODE] = 0x6

c. Change the header to type-1.

PCIE_ATTRIB.ATTR_34 [ATTR_HEADER_TYPE] = 0x1
PCIE_ATTRIB.ATTR_100 [ATTR_UPSTREAM_FACING] = 0x0

d. Change the device port type to Root Port.

PCIE_ATTRIB.ATTRIB_50 [ATTR_PCIE_CAP_DEVICE_PORT_TYPE] = 0x4

e. Change the Next pointer for PM capability to point to PCIe capability.

PCIE_ATTRIB.ATTRIB_53 [ATTR_PM_CAP_NEXTPTR] = 0x60

f. Disable the MSI capability.

PCIE_ATTRIB.ATTRIB_41 = 0x0

g. Enable the routing of various message TLPs to the bridge from the integrated block
for PCIe.

PCIE_ATTRIB.ATTRIB_101 [ATTR_ENABLE_MSG_ROUTE] = 0x7FF

h. Set the credits to defaults, as documented in the register database.

PCIE_ATTRIB.ATTR_105 [ATTR_VC0_TOTAL_CREDITS_CD] = 0xCD
PCIE_ATTRIB.ATTR_106 [ATTR_VC0_TOTAL_CREDITS_CH] = 0x24
PCIE_ATTRIB.ATTR_106 [ATTR_VC0_TOTAL_CREDITS_NPH] = 0xC
PCIE_ATTRIB.ATTR_107 [ATTR_VC0_TOTAL_CREDITS_NPD] = 0x18
PCIE_ATTRIB.ATTR_108 [ATTR_VC0_TOTAL_CREDITS_PD] = 0xB5
PCIE_ATTRIB.ATTR_109 [ATTR_VC0_TOTAL_CREDITS_PH] = 0x20

i. CRS SW visibility is specific to RP mode.

PCIE_ATTRIB.ATTR_79 [ATTR_ROOT_CAP_CRS_SW_VISIBILITY] = 0x1

5. Program CRF_APB.RST_FPD_TOP to release pcie_ctrl_rst.

At this point, the controller is ready to initiate link training with a link partner, if pcie_reset_n
(PERST#) is released by the board or the host.

Note: When using the Xilinx delivered tool flow, the attributes for Endpoint or Root Port mode
operation are set by the first-stage boot loader.
Zynq UltraScale+ Device TRM 875
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=875

Chapter 30: PCI Express Controller
Bridge Initialization

Bridge initialization is performed by the software driver running on the PS processor.

Note: When using 32-bit addressing mode, Xilinx recommends using 256 MB space for PCIe
(starting at address 0xE000_0000). For Root Port, 16 MB of this space can be used for ECAM and
the rest of the 240 MB can be used for BARs for Endpoints.
If you require more than 256 MB space for PCIe, then use a higher addressing mode (40-bit or
44-bit).
1. Program the registers in the AXI-PCIe bridge with the following information.
Note: After power on, these registers can be accessed using address 0xFD0E_0000 as documented
in the Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4]. Access to registers is possible
only by using the respective aperture addresses programmed after completing the bridge
initialization and enabling the bridge translation.
2. Setup the AXI-PCIe bridge register apertures for bridge internal registers, ECAM

aperture, and DMA register access.
a. Map the bridge register aperture.

AXIPCIE_MAIN.E_BREG_CONTROL[breg_size] = 4KB - 32KB
AXIPCIE_MAIN.E_BREG_BASE_LO = 0xFD0E0000
AXIPCIE_MAIN.E_BREG_BASE_HI = 0x00000000

b. Map the ECAM space.

AXIPCIE_MAIN.E_ECAM_CONTROL[ecam_size] = 4 KB (when Endpoint); 16 MB (when
Root Port)
AXIPCIE_MAIN.E_ECAM_BASE_LO = 0xE0000000
AXIPCIE_MAIN.E_ECAM_BASE_HI = 0x00000000
AXIPCIE_MAIN.E_ECAM_CONTROL[ecam_enable] = 1

Note: In the Root Port mode, this address can also be mapped to 40/44-bit space based on your
requirement. In such cases care should be taken to program both ECAM_BASE_HI and
ECAM_BASE_LO addresses appropriately.
c. Map DMA register aperture

AXIPCIE_MAIN.E_DREG_CONTROL[dma_size] = 0B
AXIPCIE_MAIN.E_DREG_BASE_LO = 0xFD0F0000
AXIPCIE_MAIN.E_DREG_BASE_HI = 0x00000000

Note: Enable DMA register access, if Endpoint application is going to exercise DMA
AXIPCIE_MAIN.E_DREG_CONTROL[dma_enable] = 1 (only for Endpoint mode).
Zynq UltraScale+ Device TRM 876
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=876

Chapter 30: PCI Express Controller
3. For the Root Port mode.
a. Setup ingress MSI aperture.

AXIPCIE_MAIN.I_MSII_BASE_LO = 0xFE440000
AXIPCIE_MAIN.I_MSII_CONTROL[i_msii_enable] = 1

Note: An address assigned by the software driver can also be used.
b. Disable DMA register access from Endpoint as there is no BAR in Root mapped to

local registers.

AXIPCIE_MAIN.BRIDGE_CORE_CFG_PCIE_RX0[cfg_dma_reg_bar] = 7 (disabled)
AXIPCIE_MAIN.BRIDGE_CORE_CFG_PCIE_RX0[cfg_disable_pcie_dma_reg_access] = 1

c. Allow all upstream transactions (memory read, write) to access the AXI interface
without any translation by enabling ingress subtractive decode.

AXIPCIE_MAIN.I_ISUB_CONTROL = 0x01

4. Enable translation apertures in the bridge for access by the AXI processor (i.e., after this
access to bridge registers, the access is possible only by the use of the address
programmed in AXIPCIE_MAIN.{E_BREG_BASE_HI, E_BREG_BASE_LO} and the DMA
registers can be accessed by use of address programmed in
AXIPCIE_MAIN.{E_DREG_BASE_HI, E_DREG_BASE_LO} and so on.

AXIPCIE_MAIN.E_BREG_CONTROL[breg_enable] = 1
AXIPCIE_MAIN.E_BREG_CONTROL[breg_enable_force] = 0

5. If using the Root Port mode, release pcie_reset_n from the MIO/GPIO programming
registers. For Endpoint mode, wait for pcie_reset_n to be released by the host.

After the release of reset, link training is done with the peer and a link is established.

In the Endpoint mode, the host programs the PCIe configuration space registers inside the
integrated block for PCIe.
Zynq UltraScale+ Device TRM 877
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=877

Chapter 30: PCI Express Controller
Programmed I/O Transfers

This section describes setting up programmed I/O (PIO) transfers (both ingress and egress)
in Endpoint mode.

Ingress Transfers

Ingress refers to PCIe in the AXI direction. For PIO transfers from the host system to be
accepted by the Endpoint, they have to hit the Endpoint BAR.

Since the host system is unaware of the AXI domain address on the Endpoint, an ingress
translation is setup to map incoming BAR-hit transactions to AXI transactions. Before
setting up the ingress translation aperture, the Endpoint software performs a handshake
with the software driver running on the host system.

This example demonstrates a handshake using software interrupts and the scratchpad in
DMA registers. A typical flow is illustrated in Figure 30-10.

X-Ref Target - Figure 30-10

Figure 30‐10: Ingress PIO Transfers Flow Chart

Start

PCIe Specific
(probe)

Wait for ACK from EP

Start

Bridge initialization and
enable AXI interrupts

Host Driver Flow (Master) Endpoint Processor
(Cortex-A53) Driver Flow

(Slave)

Handshake

Signal Endpoint to
setup translation

Wait for interrupt from
host

Doorbell Interrupt

ACK for
translation doneEnd

Handshake

Setup ingress
translation

Is PCIe link
up?

Yes

No

Stop

Start PIO Transfers

X18017-093016
Zynq UltraScale+ Device TRM 878
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=878

Chapter 30: PCI Express Controller
Driver on a Zynq UltraScale+ MPSoC Endpoint

1. Checks for PCIe link up before proceeding ahead with any other initialization.
2. Performs bridge initialization as described in Bridge Initialization.
3. Enables AXI interrupts by programming:

AXIPCIE_DMA0.DMA_CHANNEL_AXI_INTERRUPT_CONTROL[interrupt enable] = 1

AXIPCIE_MAIN.MSGF_DMA_MASK = 0x1

This example only uses the DMA channel 0 interrupt.

4. Wait for interrupt from host before setting up ingress translation aperture.
5. Once the interrupt

(AXIPCIE_DMA0.DMA_CHANNEL_AXI_INTERRUPT_STATUS[software_int]) is received:
a. Read BAR2 or BAR4 via the ECAM aperture to obtain the BAR value host

programmed in the Endpoint configuration space (BAR0 is dedicated to the bridge).
b. Setup the ingress source address to the BAR address and destination address to the

desired destination address; program the ingress aperture size and enable the
translation.
Note: The handshake can also be implemented using a poll mode where the driver polls for
a predefined signature value in the scratchpad registers of the DMA channel. Instead of
reading the BAR address via ECAM and programming, the host system driver can pass the
address and size via scratchpad registers. There are different ways of implementing this and
one options is described. The memory enable bit in the command register in the PCIe
configuration space can also be used to validate the BAR assignment.

6. Once translation is setup and to inform the host system, raise an interrupt to the host
(AXIPCIE_DMA0.DMA_CHANNEL_PCIE_INTERRUPT_ASSERT[pcie_software_interrupt]) or
write a signature value to the scratchpad register.

Driver on Host System

1. Does required a PCIe device specific probe?
2. A doorbell interrupt to the Endpoint is raised though the

AXIPCIE_DMA0.DMA_CHANNEL_AXI_INTERRUPT_ASSERT[axi_software_interrupt]
register and wait for an acknowledgment from the Endpoint.

3. On reception of an acknowledgment (interrupt or polling based), PIO transfers to write
to a BAR mapped space are started and read back for verification.
Zynq UltraScale+ Device TRM 879
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=879

Chapter 30: PCI Express Controller
Egress Transfers

Egress refers to the AXI to PCIe direction. Typically, these transfers are achieved using the
DMA however, egress transactions provide a way for an Endpoint to drive 4-byte transfers
into the host system memory without using a DMA. This requires bus mastering to be
enabled for the Endpoint. Additionally, egress translation aperture should be setup. For
this, host system driver allocates memory and physical address of this memory is
communicated to the Endpoint, which becomes the egress translation destination address.
For egress source address, the address must fall within the PCIe address range as defined in
Chapter 10, System Addresses. This is 256 MB in the 4G address space and 8 GB and 256 GB
for higher address widths. A typical flow is illustrated in Figure 30-11.

X-Ref Target - Figure 30-11

Figure 30‐11: Egress Transfer Flow Chart

Start

PCIe Specific
(probe)

Wait for transfer
completion notification

from Endpoint

Start

Bridge initialization and
enable AXI interrupts

Host Driver Flow (Master) Endpoint Processor
(Cortex-A53) Driver Flow

(Slave)

Handshake
Enable bus mastering,

allocate memory and signal
Endpoint to setup translation

Wait for interrupt from
host

Doorbell Interrupt with address
value in scratchpad

Transfer done
signal to host

End

Setup egress
translation

Handshake

Start data transfer and
signal host when done

Is PCIe link
up?

Yes

No

Stop

X18018-093016
Zynq UltraScale+ Device TRM 880
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=880

Chapter 30: PCI Express Controller
Egress Host Driver

1. Does the host driver require a PCIe device specific probe?
2. Enables bus mastering for the Endpoint and allocates the memory region to accept data

from the Endpoint.
3. Conveys the physical address of the memory to the Endpoint through the scratchpad

registers using doorbell interrupts.
4. Waits for a transfer completion signal from the Endpoint to consume data.

Egress Endpoint Driver

1. Checks for PCIe link up before proceeding ahead with any other initialization.
2. Performs bridge initialization as described in Bridge Initialization.
3. Enables AXI interrupts by programming:

AXIPCIE_DMA0.DMA_CHANNEL_AXI_INTERRUPT_CONTROL[interrupt enable] = 1

AXIPCIE_MAIN.MSGF_DMA_MASK = 0x1

This example only uses the DMA channel 0 interrupt.

4. Wait for interrupt from host before setting up ingress translation aperture.
5. Once the interrupt

(AXIPCIE_DMA0.DMA_CHANNEL_AXI_INTERRUPT_STATUS[software_int]) is received:
a. Read the scratchpad to obtain the host system memory address allocated for egress

transfers.
b. Setup the egress source address to AXI address (falling in the PCIe address domain)

and destination address to the received host system memory address; program the
egress aperture size and enable the translation.

Perform data transfers and signal the host system on completion to further process
transferred by host system software.
Zynq UltraScale+ Device TRM 881
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=881

Chapter 30: PCI Express Controller
Endpoint Mode DMA Operation

This section describes the DMA operation when the Zynq UltraScale+ MPSoC controller for
PCIe is used as an Endpoint. The dual CPU mode is outlined, where a single DMA channel is
managed by both source and sink processors. The AXI CPU and PCIe CPU can each become
source or sink based on the direction of data transfer.

The DMA Operation section describes the dataflow for this mode. Once the core is
configured for Endpoint mode of operation, the DMA activity can be divided into three
phases.

• Initialization Phase: initializes the DMA channel, sets up the descriptor elements.
• DMA Phase: the DMA operation phase.
• Exit Phase: the DMA transaction completes and the allocated resources are released in

this phase.

Handshake between Host and AXI-CPU Driver

In the example in Figure 30-12, the driver in the host is considered to be the master. It can
enable/disable/reset a DMA channel. Hence, a handshake is required between the host
software and AXI-CPU software to indicate DMA reset/channel enable/disable events. The
scratch pad registers available per DMA channel can be used for communication of a
handshake event with signature values written to convey the meaning. This is typically
based on a predefined messaging protocol between the two software drivers.

X-Ref Target - Figure 30-12

Figure 30‐12: Initialization Phase

Start

PCIe Specific
(probe)

Descriptor Setup

Disable DMA
Channel

Enable DMA
Channel

Initialization

Host Driver Flow (Master)

Start

Bridge Initialization

Descriptor Setup

Program DMA
Channel Registers

Endpoint Processor (Cortex-A53)
Driver Flow (Slave)

Handshake

X15494-093016
Zynq UltraScale+ Device TRM 882
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=882

Chapter 30: PCI Express Controller
Descriptor Setup

The SRC and DST SGL elements need to be setup based on the required transfer flow.

For example, for the system to card transfers (host to AXI-CPU).

• Setup appropriate flags in the SRC element on the host (buffer fetch direction PCIe and
interrupt if required on the EOP element).

• Setup appropriate flags in the DST element on the AXI-CPU (buffer write direction AXI
and back-to-back packing of data if needed).

• Setup appropriate flags for elements in a card-to-system (C2S) transfer.

Sequence for Enabling DMA Channel

The following DMA channel enable sequence is recommended. The process can be
completed in any order, provided the DMA enable value is set to 1 in the end.

Note: Prior to enabling the DMA channel, the source scatter-gather queue, the destination
scatter-gather queue, the DMA source completion status queue, and the DMA destination
completion status queue must be initialized.
1. Verify that the DMA channel is idle.

Read the DMA running and verify it reads 0x0. If a non-0, follow the instructions
provided in Disabling an Active DMA Channel.

2. Initialize the queue base address and attributes.
a. Write SRC_Q_PTR_LO and SRC_Q_PTR_HI with the base address of the queue.
b. Write DST_Q_PTR_LO and DST_Q_PTR_HI with the base address of the queue.
c. Write STAS_Q_PTR_LO and STAS_Q_PTR_HI with the base address of the queue.
d. Write STAD_Q_PTR_LO and STAD_Q_PTR_HI with the base address of the queue.

3. Initialize the queue size.
a. Write SRC_Q_SIZE to the size of the queue.
b. Write DST_Q_SIZE to the size of the queue.
c. Write STAS_Q_SIZE to the size of the queue.
d. Write STAD_Q_SIZE to the size of the queue.
Zynq UltraScale+ Device TRM 883
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=883

Chapter 30: PCI Express Controller
4. Initialize queue Next pointers to the beginning of the queue.
a. Write SRC_Q_NEXT = 0x0.
b. Write DST_Q_NEXT = 0x0.
c. Write STAS_Q_NEXT = 0x0.
d. Write STAD_Q_NEXT = 0x0.

5. Initialize scatter-gather queues to the empty condition (no DMA operations to execute).
a. Write SRC_Q_LIMIT = 0x0.
b. Write DST_Q_LIMIT = 0x0.

6. Initialize status queues to the fully available condition (all status queue elements except
one, which is needed to preserve software flow control, are available).
a. STAS_Q_LIMIT set to (STAS_Q_SIZE-1).
b. STAD_Q_LIMIT set to (STAD_Q_SIZE-1).

7. Initialize all STAS and STAD queue elements to 0x0.

DMA completion status queue elements must be initialized to 0x0 so that the software
can specify the completion of status elements. Status elements return a non-0 value
when complete.

8. Optionally, initialize all the SRC and DST scatter-gather queue elements.

The initialization of source and destination SGL elements is solely at the discretion of
software. Source and destination SGL elements will not be fetched until they have been
filled in with DMA transaction instructions and the associated queue's LIMIT pointer
advanced to give these elements to the DMA channel to execute.

9. Write DMA enable = 1 to enable the DMA channel.

Optionally, for interrupt mode, the following registers are programmed to enable the
interrupts.

• AXIPCIE_DMA.DMA_CHANNEL_PCIE_INTERRUPT_CONTROL for enabling interrupts in
the PCIe domain.

• AXIPCIE_DMA.DMA_CHANNEL_AXI_INTERRUPT_CONTROL for enabling interrupts in the
AXI domain.

Interrupts for various events can be enabled, SGL completion (EOP) or error. Additionally,
coalesce count can be set to control the frequency of interrupt generation.

IMPORTANT: DMA channel MSI-X and MSI interrupts are signaled using the MSI-X/MSI interrupt vector
corresponding to their DMA channel number. For example, DMA channel[0] interrupts are signaled on
MSI-X/MSI vector 0, DMA channel[1] interrupts are signaled on MSI-X/MSI vector 1, etc.
Zynq UltraScale+ Device TRM 884
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=884

Chapter 30: PCI Express Controller
DMA Operation

DMA channel executes the DMA transactions by writing the source SGL and the destination
SGL into the SRC/DST SGL queues and incrementing the SRC/DST_Q_LIMIT registers
(Figure 30-13).

Note: Queue management registers *_PTR_LO, *_PTR_HI, *_SIZE, and *_NEXT must not be written
when the DMA channel is enabled. It is permissible to modify only the SRC/DST/STAS/STAD_Q_LIMIT
queue registers, while the DMA channel is enabled. Increment these registers to provide additional
elements for the DMA channel to execute.

IMPORTANT: The minimum queue size must be large enough to hold at least one full DMA transaction
of maximum size. DMA completion status queues are only written when a source SGL element is
completed that had its EOP flag == 1 (end of a DMA transaction). If the queue is too small to be able
to place all of the SGL for a single DMA transaction in the queue, then the SGL with EOP == 1 is not
added to the queue and the DMA operation will not complete. In such a case, the software is not able
to free queue elements and no new SGL can be given to the DMA channel unless the queue elements
are freed.

A queue size of N has N queue elements: [0],[1],...,[N-1]. For example, a queue size of 2 has
[0] and [1] elements.

The queue wraps at the N-1 element. For example, for a queue size of 2 the wrap occurs as:
[0], [1], [0],...

RECOMMENDED: The DMA queues are intended to be initially setup and reused for multiple DMA
operations. The DMA queues are designed to enable highly overlapped transactions. Software can setup
new DMA operations in the queue while the DMA channel is executing operations that the software
placed in the queue earlier.

X-Ref Target - Figure 30-13

Figure 30‐13: DMA Phase

Data Buffer to
transfer or empty
buffer to receive

DMA Operation

Release data buffer
sent or pass data

received

Interrupt
received or
poll timer

expiry

YesDescriptor post
processing

Data Buffer to
transfer or empty
buffer to receive

DMA Operation

Release data buffer
sent or pass data

received

Interrupt
received or
poll timer

expiry

YesDescriptor post
processing

DMA Phase
Host Driver Flow (Master) Endpoint Processor (Cortex-A53) Driver Flow (Slave)

X15495-093016
Zynq UltraScale+ Device TRM 885
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=885

Chapter 30: PCI Express Controller
The DMA queues can also be setup for each DMA transaction, although this method
provides lower performance because the queues must be reconfigured between DMA
transactions. DMA queues can only be reconfigured when the DMA channel is disabled. The
steps to setup the DMA queues are listed.

1. Wait for all outstanding DMA transactions for the channel to complete.
2. Disable the DMA channel.
3. Reconfigure the queues.
4. Re-enable the DMA channel.

Descriptor Post-processing

When a DMA transaction completes (software reads the current DMA completion status
queue element and reads status == complete), software processes the resulting DMA data
and recycles the source/destination SGL queue elements associated with the transfer as well
as the associated DMA source/destination completion status queue elements.

Note: Status queue elements must be written to 0x0 when recycled because software uses a read of
non-0 for a status queue element as indication that a DMA transfer is completed. Recycled queue
elements are reused when the queue LIMIT pointer wraps back to the position of the recycled
elements.

Disabling an Active DMA Channel

The preferred process to disable an operational DMA channel (Figure 30-14) is as follows.

1. Software stops adding new DMA transfers to the source and destination SGL queues.
The last source and destination SGL queue elements given to the DMA channel to
execute (via SRC/DST_Q_LIMIT registers) should be fully consumed by the final DMA
transfer.

2. Software waits for all outstanding DMA operations to complete and processes the DMA
completion status from the DMA completion status queue. Software implements a
timeout in the event that the DMA operations are never complete. This can occur if
software is not provided with the matching source and destination SGL elements that
can be fully consumed.

3. Software writes DMA_Enable == 0 to the DMA channel. This disables the DMA channel.
4. Software reads the DMA_Running in the DMA channel. If DMA_Running == 0, then the

DMA channel is finished with all the outstanding transactions. The software can
optionally skip to step 6.

5. If DMA_Running == 1, then the DMA channel could not have finished all the
outstanding transactions. One or more of its internal source SGL, destination SGL, or
DMA completion status queues is not empty. Software writes DMA_Reset == 1, waits
256 nS, and writes DMA_Reset == 0. Setting DMA_Reset == 1 flushes the internal DMA
source SGL, destination SGL, and DMA completion status FIFOs.
Zynq UltraScale+ Device TRM 886
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=886

Chapter 30: PCI Express Controller
6. The DMA channel is now ready for reuse.

You can use these steps when you use a single CPU mode, where a host driver manages the
DMA channel. The driver on Arm will only be responsible for bridge initialization.

X-Ref Target - Figure 30-14

Figure 30‐14: Exit Phase

Disable DMA
Channel

Release PCIe
Resources,
Descriptors

End

Release DescriptorsHandshake

Data transfer
complete or
driver to be
removed?

Yes

End

Exit Phase
Host Driver Flow (Master) Endpoint Processor (Cortex-A53)

Driver Flow (Slave)

X15496-093016
Zynq UltraScale+ Device TRM 887
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=887

Chapter 31

USB Controller

Introduction
The USB 3.0 controller consists of two independent dual-role device (DRD) controllers. Both
can be individually configured to work as host or device at any given time. The USB 3.0 DRD
controller provides an eXtensible host controller interface (xHCI) to the system software
through the advanced eXtensible interface (AXI) slave interface. An internal DMA engine is
present in the controller and it utilizes the AXI master interface to transfer data. The three
dual-port RAM configurations implement the RX data FIFO, TX data FIFO, and
descriptor/register cache. The AXI master port and the protocol Layers access the different
RAMs through the buffer management unit.

USB 2.0/3.0 Controller Details

Each instance of the controller supports the configurations in Table 31-1.

Table 31‐1: USB Controller Configurations

Configuration PHY Interface Super Speed High Speed Full Speed Low Speed

USB 2.0 host ULPI Yes Yes Yes
USB 2.0 device ULPI Yes Yes Yes
USB 2.0 OTG ULPI Yes Yes Yes
USB 3.0 host (xHCI) PIPE3 Yes Yes Yes Yes
USB 3.0 device PIPE3 Yes Yes Yes
Zynq UltraScale+ Device TRM 888
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=888

Chapter 31: USB Controller
USB Controller Features

• Two USB 2.0/3.0 controllers
• Supports a 5.0 Gb/s data rate
• Supports host and device modes
• Supports on-the-go (OTG) host/device selection for USB 2.0 (only)
• Provides simultaneous operation of the USB 2.0 and USB 3.0 interfaces (only in host 3.0

mode).
• 64-bit AXI master port with built-in DMA
• AXI port for register programming
• Power management features: hibernation mode
• Support for 48-bit address space
• Supports 12 endpoints (six out and six in)
Note: When the USB controller is used in a 3.0 configuration, USB 2.0 mode must also be enabled
in the MPSoC processor configuration window (PCW). This is necessary because the DC voltage bus
(VBUS) valid signal from the ULPI interface PHY is used. Consequently, it is mandatory to enable the
USB 2.0 mode though the USB 3.0 mode is required irrespective of the host, device, or OTG modes.

PHY Loopback

The USB 3.0 host and device modes support PHY loopback. When the host/device with PHY
connects to a tester during the polling state, the tester sends a TS2 ordered set with the
loopback bit enabled. The host/device changes the link state from polling to loopback and
asserts USB3_{0:1}_XHCI.TxDetRxLoopback.

Next, the tester sends TX data to the host/device, and the host/device PHY decodes the
data and sends it back. There is no programming involved. When the tester finishes
loopback testing and is ready to exit loopback mode, it performs a U2 or loopback (LFPS
handshake) exit. See the USB 3.0 specification for more information.
Zynq UltraScale+ Device TRM 889
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=889

Chapter 31: USB Controller
Figure 31-1 shows a high-level diagram of the Zynq UltraScale+ MPSoC USB 3.0 block.

The controller can be visualized as software and embedded blocks. The embedded partition
consists of USB 3.0 host/device and the associated PHY interfaces. Software drivers for host
or device that connect the controller to the USB peripheral stack are available from either
third-party or open source vendors.

The DC voltage bus (VBUS) can be controlled using PL signals only in non-OTG mode.

• U2dsport_vbus_ctrl for USB 2.0
• U3dsport_vbus_ctrl for USB 3.0

These signals are only used for non-OTG mode. There is no VBUS control port signal in
USB 2.0 OTG mode with a ULPI interface. The VBUS control signal comes from the
command.

X-Ref Target - Figure 31-1

Figure 31‐1: Zynq UltraScale+ MPSoC USB 3.0 Block Diagram

USB 3.0 Dual Role Device Controller 1

AXI Bus
Interface,

Buffer, and
Register

Management
Module

CSR
Regs

USB 3 Protocol
Layer

USB 3 Link
Layer

PIPE3
Interface

USB 2 Protocol
Layer

USB 2 Link
Layer

ULPI
Interface

RAM1RAM0 RAM2

S CSR Access

M DMA

USB 3.0 Dual Role Device Controller 2

AXI Bus
Interface,

Buffer, and
Register

Management
Module

CSR
Regs

USB 3 Protocol
Layer

USB 3 Link
Layer

PIPE3
Interface

USB 2 Protocol
Layer

USB 2 Link
Layer

ULPI
Interface

RAM1RAM0 RAM2

S CSR Access

M DMA

To
AXI

Switch

To
AXI

Switch

Zynq UltraScale+ MPSoC USB 3.0 block

X15497-091616
Zynq UltraScale+ Device TRM 890
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=890

Chapter 31: USB Controller
Data Flow
To operate the USB controller in various modes, a set of data structures are defined by the
xHCI specification. The application software gives information to the xHCI driver that takes
care of the programming and interaction with the data structures. The data structures are
used to communicate control, status, and data between the xHCI stack (software) and
USB 3.0 controller. The data structures support 32-bit or 64-bit memory buffer address
space.

The basic data structures are shown in Table 31-2.

Table 31‐2: Basic Data Structures

Data Structure Max Size (Bytes) Boundary Alignment (Bytes)

Context Data Structures

Device context 2048 PAGESIZE 64
Device context data structure contains slot context and endpoint contexts (up to 32). An array of device contexts
is prepared and maintained by the xHCI embedded block and software. This array contains a maximum of 256
device contexts. The first entry (slot ID = 0) in the device context base address array is utilized by the xHCI
scratchpad mechanism.
Slot context 64 PAGESIZE 32
The slot context data structure defines information that applies to a device as a whole. The slot context data
structure of a device context is also referred to as an output slot context.
Endpoint context 64 PAGESIZE 32
The endpoint context data structure defines information that applies to a specific endpoint
Stream context 16 PAGESIZE 16
This data structure defines information that applies to a specific stream associated with an endpoint.
Input context 132 PAGESIZE 64
The input context data structure specifies the endpoints and the operations to be performed on those endpoints
by the address device, configure endpoint, and evaluate context commands.
Input control context 64 PAGESIZE 64
The input control context data structure defines which device context data structures are affected by a command
and the operations to be performed on those contexts.
Port bandwidth context #ports * 4 PAGESIZE 32
The port bandwidth context data structure is used to provide system software with the percentage of periodic
bandwidth available on each root hub port, at the speed indicated by the device speed field of the get port
bandwidth command. Software allocates the context data structure and the xHCI updates the context data
structure during the execution of a get port bandwidth command.
Zynq UltraScale+ Device TRM 891
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=891

Chapter 31: USB Controller
Data Structure Network
The data structures in the xHCI are linked as shown in Figure 31-2.

Ring Data Structures

Transfer ring segments 64 KB 64 KB 16
A transfer request block (TRB) ring is an array of TRB structures, that are used by the xHCI as a circular queue to
communicate with the host. Transfer rings provide data transport to and from USB devices. There is a 1:1 mapping
between transfer rings and USB pipes. They are defined by an endpoint context data structure contained in a
device context, or the stream context array pointed to by the endpoint context.
Command ring segments 64 KB 64 KB 64
The command ring provides system software the ability to issue commands to enumerate USB devices, configure
the xHCI to support those devices, and coordinate virtualization features. The command ring is managed by the
command ring control register that resides in the operational registers.
Event ring segments 64 KB 64 KB 64
The event ring provides the xHCI with a means of reporting to system software: data transfer and command
completion status, root hub port status changes, and other xHCI related events. An event ring is defined by the
event ring segment table base address, segment table size, and dequeue pointer registers which reside in the run
time registers.
Event ring segment table 512 KB None 64
This is a table of event ring segments.
Scratchpad buffers PAGESIZE PAGESIZE Page
A scratchpad buffer is a PAGESIZE block of system memory located on a PAGESIZE boundary. Each of these buffers
allocated from system memory for storing internal state.

Table 31‐2: Basic Data Structures (Cont’d)

Data Structure Max Size (Bytes) Boundary Alignment (Bytes)
Zynq UltraScale+ Device TRM 892
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=892

Chapter 31: USB Controller
X-Ref Target - Figure 31-2

Figure 31‐2: Network of Software Data Structures

Device Context #255 (64 bit)

. . .

. . .

. . .

. . .
Device Context #2 (64 bit)

Device Context #1 (64 bit)

Device Context #0 (64 bit)

EP#15 OUT Context Pointer

. . .

. . .

. . .

. . .

EP#1 OUT Pointer

EP#0 IN-OUT Context

Slot Context Pointer

EP#1 IN Context Pointer

EP#2 OUT Context Pointer

EP#15 IN Context Pointer

Scratchpad Buffer Base

Control
State
Address
Route String
Speed
TT Port Number
TT Hub Slot
Power Management
ISOC packet schedule

EP Type
Control
State
Bandwidth
TR Dequeue/Enqueue
(Transfer Ring)
Error Count

Buffer TRB

. . .

TRBBuffer

Transfer Descriptor Pointer

. . .

. . .

Transfer Descriptor Pointer

Event Ring Pointer

Command Ring Pointer

Transfer Ring Pointer

Buffer TRB

. . .

TRBBuffer

Event Seg #n

. . .

. . .

Event Seg #(n-1)

Event Seg #0 Events

xHC Hardware

Doorbell #255

. . .

. . .

Doorbell #254

Doorbell #0
(Host Ctrl Commands)

Device Context
Base Address
Array Pointer
(DCBAAP)

X15498-091616
Zynq UltraScale+ Device TRM 893
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=893

Chapter 31: USB Controller
Data Structure Network

The data structures are detailed in this section.

Device Context Data Structure

Figure 31-3 refers to the slot context data structure where each instance of this structure
represents a device connected to the host.

X-Ref Target - Figure 31-3

Figure 31‐3: Device Context Data Structure

Slot Context

EP Context 0 Bi-directional
Direction = N/A

EP Context 1 Out
Direction = 0

EP Context 1 In
Direction = 1

EP Context 15 In
Direction = 1

EP Context 15 Out
Direction = 0

...

Offset
000h

020h

040h

060h

080h

3C0h

3E0h

400h

... ...

0

1

2

3

30

31

Device Context Index (DCI)
X15499-091616
Zynq UltraScale+ Device TRM 894
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=894

Chapter 31: USB Controller
Slot Context Data Structure and State Diagram

Figure 31-4 and Table 31-3 refer to the slot context state transfers and how a host treats
each state of the device connected to the bus.

Table 31‐3: Slot Context Data Structure

31 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 0
Context Entries Hub MTT RsvdZ Speed Route String 03-00H

Number of Ports Root Hub Port Number Maximum Exit Latency 07-04H

Interrupter Target RsvdZ TT TT Port Number TT Hub Slot ID 0B-08H

Slot State RsvdZ USB Device Address 0F-0CH

xHCI Reserved (Rsvd0) 13-10H

xHCI Reserved (Rsvd0) 17-14H

xHCI Reserved (Rsvd0) 1B-18H

xHCI Reserved (Rsvd0) 1F-1CH

X-Ref Target - Figure 31-4

Figure 31‐4: Slot Context State Machine

Enabled Default Addressed Configured
Address
Device

(BSR=1)

Address
Device

(BSR=0)

Configure
Endpoint
(DC=0)

Configure Endpoint (DC=1),
Reset Endpoint,
Stop Endpoint,

Evaluate Context,
Negotiate Bandwidth, or
Set TR Dequeue Pointer

Configure Endpoint (DC=0),
Reset Endpoint,
Stop Endpoint,

Evaluate Context,
Negotiate Bandwidth, or
Set TR Dequeue Pointer

Reset Endpoint,
Stop Endpoint,

Evaluate Context, or
Set TR Dequeue Pointer

Address
Device

(BSR=0)

Reset Device

Reset Device Configure
Endpoint
(DC=1)

Disabled

Disable Slot

Enable Slot

X15500-091616
Zynq UltraScale+ Device TRM 895
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=895

Chapter 31: USB Controller
Endpoint Context Data Structure and State Diagram

Table 31-4 refers to the Endpoint data structure that contains information for each Endpoint
in a device. Figure 31-5 represents the Endpoint state machine and error handling.

The interface consists of transfer request buffers (TRBs) that are managed in TRB rings. All
transfer types (ISOC, interrupt, Control, Bulk, also command, events) use the same basic TRB
structure. TRBs also support scatter/gather operations. Any transfer (command, data, event)
between the software and the controller are moved as blocks of data. These blocks are
called transfer request blocks (also TRBs). Based on the type of data movement, the
specification defines various TRBs.

Table 31‐4: Endpoint (EP) Data Structure

31 24 23 16 15 14 10 9 8 7 6 5 4 3 2 1 0
Maximum ESIT Payload High Interval LSA MaxPStreams Multi RsvdZ EP State 03-00H

Maximum Packet Size Maximum Burst Size HID RsvdZ EP Type CERR RsvdZ 07-04H

Transfer Ring Dequeue Pointer Low RsvdZ DCS 0B-08H

Transfer Ring Dequeue Pointer High 0F-0CH

Maximum ESIT Payload Low Average TRB Length 13-10H

xHCI Reserved (Rsvd0) 17-14H

xHCI Reserved (Rsvd0) 1B-18H

xHCI Reserved (Rsvd0) 1F-1CH

X-Ref Target - Figure 31-5

Figure 31‐5: Endpoint Structure State Machine

Disabled

Address Device
or Configure

Endpoint

Running

Error

Halted

Set TR
Dequeue
Pointer

Configure
Endpoint,

Disable Slot, or
Reset Device

STALL
USB Transaction Error, or

Split Transaction Error

TRB
Error

Stop
Endpoint

Stopped
Ring Doorbell
or Configure

Endpoint

Ring
Doorbell

Set TR
Dequeue
Pointer

Set TR
Dequeue
Pointer

Reset
Endpoint

X15501-091616
Zynq UltraScale+ Device TRM 896
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=896

Chapter 31: USB Controller
Figure 31-6 represents the formation of transfer rings from an atomic buffer level.

The Table 31-5 to Table 31-34 represent the various TRBs.

Transfer TRBs

Normal TRB

Control TRB: Setup Stage

X-Ref Target - Figure 31-6

Figure 31‐6: Formation of Transfer Rings

Transfer Ring (TR)

Transfer Descriptors (TD)

Transfer Request Block (TRB)

Buffers

X15502-091616

Table 31‐5: Normal TRB Data Structure

31 22 21 17 16 15 10 9 8 7 6 5 4 3 2 1 0
Data Buffer Pointer Low 03-00H

Data Buffer Pointer High 07-04H

Interrupter Target TD Size TRB Transfer Length 0B-08H

RsvdZ TRB Type BEI RsvdZ IDT IOC CH NS ISP ENT C 0F-0CH

Table 31‐6: Control TRB Setup Stage Data Structure

31 22 21 18 17 16 15 10 9 8 7 6 5 4 1 0
wValue bRequest bRequestType 03-00H

wLength wIndex 07-04H

Interrupter Target RsvdZ TRB Transfer Length 0B-08H

RsvdZ TRT TRB Type RsvdZ IDT IOC RsvdZ C 0F-0CH
Zynq UltraScale+ Device TRM 897
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=897

Chapter 31: USB Controller
Control TRB: Data Stage

Control TRB: Status Stage

ISOC TRB

NoOp TRB

Table 31‐7: Control TRB Data Stage Data Structure

31 22 17 16 15 10 9 7 6 5 4 3 2 1 0
Data Buffer Low 03-00H

Data Buffer High 07-04H

Interrupter Target TD Size TRB Transfer Length 0B-08H

RsvdZ DIR TRB Type RsvdZ IDT IOC CH NS ISP ENT C 0F-0CH

Table 31‐8: Control TRB Data Status Data Structure

31 22 21 17 16 15 10 9 6 5 4 3 2 1 0
RsvdZ 03-00H

RsvdZ 07-04H

Interrupter Target RsvdZ 0B-08H

RsvdZ DIR TRB Type RsvdZ IOC CH RsvdZ ENT C 0F-0CH

Table 31‐9: ISOC TRB Data Structure

31 30 29 22 21 20 19 17 16 15 10 9 8 7 6 5 4 3 2 1 0
Data Buffer Pointer Low 03-00H

Data Buffer Pointer High 07-04H

Interrupter Target TD Size TRB Transfer Length 0B-08H

SIA Frame ID TLBPC TRB Type BEI TBC IDT IOC CH NS ISP ENT C 0F-0CH

Table 31‐10: NoOp TRB Data Structure

31 22 21 17 16 15 10 9 6 5 4 3 2 1 0
RsvdZ 03-00H

RsvdZ 07-04H

Interrupter Target RsvdZ 0B-08H

RsvdZ TRB Type RsvdZ IOC CH RsvdZ ENT C 0F-0CH
Zynq UltraScale+ Device TRM 898
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=898

Chapter 31: USB Controller
Event TRBs

Transfer Event TRB

Command Completion Event TRB

Port Status Change Event TRB

Bandwidth Request Event TRB

Table 31‐11: Event TRB Data Structure

31 24 23 20 16 15 10 9 3 2 1 0
TRB Pointer Low 03-00H

TRB Pointer High 07-04H

Completion Code TRB Transfer Length 0B-08H

Slot ID VF ID TRB Type RsvdZ ED RsvdZ C 0F-0CH

Table 31‐12: Command Completion TRB Data Structure

31 24 23 17 16 15 10 9 4 3 1 0
Command TRB Pointer Low RsvdZ 03-00H

Command TRB Pointer High 07-04H

Completion Code Command Completion Parameter 0B-08H

Slot ID VF ID TRB Type RsvdZ C 0F-0CH

Table 31‐13: Port Status TRB Data Structure

31 24 23 16 15 10 9 1 0
Port ID RsvdZ 03-00H

RsvdZ 07-04H

Completion Code RsvdZ 0B-08H

RsvdZ TRB Type RsvdZ C 0F-0CH

Table 31‐14: Bandwidth Request TRB Data Structure

31 24 23 16 15 10 9 1 0
RsvdZ 03-00H

RsvdZ 07-04H

Completion Code RsvdZ 0B-08H

Slot ID RsvdZ TRB Type RsvdZ C 0F-0CH
Zynq UltraScale+ Device TRM 899
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=899

Chapter 31: USB Controller
Doorbell Event TRB

Host Controller Event TRB

Device Notification Event TRB

MFINDEX Wrap Event TRB

Table 31‐15: Doorbell TRB Data Structure

31 24 23 16 15 9 5 4 1 0
RsvdZ DB Reason 03-00H

RsvdZ 07-04H

Completion Code RsvdZ 0B-08H

Slot ID VF ID TRB Type RsvdZ C 0F-0CH

Table 31‐16: Host Controller Event TRB Data Structure

31 24 23 16 15 10 9 1 0
RsvdZ 03-00H

RsvdZ 07-04H

Completion Code RsvdZ 0B-08H

RsvdZ TRB Type RsvdZ C 0F-0CH

Table 31‐17: Device Notification TRB Data Structure

31 24 23 16 15 10 9 8 7 4 3 2 1 0
Device notification Data Low Notification Type RsvdZ 03-00H

Device notification Data High 07-04H

Completion Code RsvdZ 0B-08H

Slot ID RsvdZ TRB Type RsvdZ C 0F-0CH

Table 31‐18: MFINDEX TRB Data Structure

31 24 23 16 15 10 9 1 0
RsvdZ 03-00H

RsvdZ 07-04H

Completion Code RsvdZ 0B-08H

RsvdZ TRB Type RsvdZ C 0F-0CH
Zynq UltraScale+ Device TRM 900
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=900

Chapter 31: USB Controller
Command TRB

NoOp Command TRB

Enable Slot Command TRB

Disable Slot Command TRB

Address Device Command TRB

Table 31‐19: NoOp Command TRB Data Structure

31 16 15 10 9 1 0
RsvdZ 03-00H

RsvdZ 07-04H

RsvdZ 0B-08H

RsvdZ TRB Type RsvdZ C 0F-0CH

Table 31‐20: Enable Slot TRB Data Structure

31 21 20 16 15 10 9 1 0
RsvdZ 03-00H

RsvdZ 07-04H

RsvdZ 0B-08H

RsvdZ Slot Type TRB Type RsvdZ C 0F-0CH

Table 31‐21: Disable Slot TRB Data Structure

31 24 23 16 15 10 9 1 0
RsvdZ 03-00H

RsvdZ 07-04H

RsvdZ 0B-08H

Slot ID RsvdZ TRB Type RsvdZ C 0F-0CH

Table 31‐22: Address Device TRB Data Structure

31 24 23 16 15 10 9 8 4 3 1 0
Input Context Pointer Low RsvdZ 03-00H

Input Context Pointer High 07-04H

RsvdZ 0B-08H

Slot ID RsvdZ TRB Type BSR RsvdZ C 0F-0CH
Zynq UltraScale+ Device TRM 901
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=901

Chapter 31: USB Controller
Configure Endpoint Command TRB

Evaluate Context Command TRB

Reset Endpoint Command TRB

Stop Endpoint Command TRB

Table 31‐23: Configure Endpoint TRB Data Structure

31 24 23 16 15 10 9 8 4 3 1 0
Input Context Pointer Low RsvdZ 03-00H

Input Context Pointer High 07-04H

RsvdZ 0B-08H

Slot ID RsvdZ TRB Type DC RsvdZ C 0F-0CH

Table 31‐24: Evaluate Context TRB Data Structure

31 24 23 16 15 10 9 4 3 1 0
Input Context Pointer Low RsvdZ 03-00H

Input Context Pointer High 07-04H

RsvdZ 0B-08H

Slot ID RsvdZ TRB Type RsvdZ C 0F-0CH

Table 31‐25: Reset Endpoint TRB Data Structure

31 24 23 21 20 16 15 10 9 8 1 0
RsvdZ 03-00H

RsvdZ 07-04H

RsvdZ 0B-08H

Slot ID RsvdZ Endpoint ID TRB Type TSP RsvdZ C 0F-0CH

Table 31‐26: Stop Endpoint TRB Data Structure

31 24 23 22 21 20 16 15 10 9 1 0
RsvdZ 03-00H

RsvdZ 07-04H

RsvdZ 0B-08H

Slot ID SP RsvdZ Endpoint ID TRB Type RsvdZ C 0F-0CH
Zynq UltraScale+ Device TRM 902
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=902

Chapter 31: USB Controller
Set TR Dequeue Pointer Command TRB

Reset Device Command TRB

Force Event Command TRB

Negotiate Bandwidth Command TRB

The negotiate bandwidth command TRB uses the same format as the disable slot command
Table 31-21, with the exception that the TRB type field is set to the negotiate bandwidth
command TRB type ID, and the slot ID is set to the ID of the slot that requires the bandwidth
negotiation.

Set Latency Tolerance Command TRB

Table 31‐27: Set TR Dequeue Pointer TRB Data Structure

31 24 23 21 20 16 15 10 9 4 3 1 0
New TR Dequeue Pointer Low SCT DCS 03-00H

New TR Dequeue Pointer High 07-04H

Stream ID RsvdZ 0B-08H

Slot ID RsvdZ Endpoint ID TRB Type RsvdZ C 0F-0CH

Table 31‐28: Reset Device TRB Data Structure

31 24 23 16 15 10 9 1 0
RsvdZ 03-00H

RsvdZ 07-04H

RsvdZ 0B-08H

Slot ID RsvdZ TRB Type RsvdZ C 0F-0CH

Table 31‐29: Force Event TRB Data Structure

31 24 23 22 21 16 15 10 9 4 3 1 0
Event TRB Pointer Low RsvdZ 03-00H

Event TRB Pointer High 07-04H

VF Interrupter Target RsvdZ 0B-08H

RsvdZ VF ID TRB Type RsvdZ C 0F-0CH

Table 31‐30: Set Latency Tolerance TRB Data Structure

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RsvdZ 03-00H

RsvdZ 07-04H

RsvdZ 0B-08H

RsvdZ Best Effort Latency Tolerance Value (BELT) TRB Type RsvdZ C 0F-0CH
Zynq UltraScale+ Device TRM 903
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=903

Chapter 31: USB Controller
Get Port Bandwidth Command TRB

Force Header Command TRB

Other TRBs

Link TRB

Event Data TRB

Table 31‐31: Get Port Bandwidth TRB Data Structure

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Port Bandwidth Context Pointer Low RsvdZ 03-00H

Port Bandwidth Context Pointer High 07-04H

RsvdZ 0B-08H

Hub Slot ID RsvdZ Dev Speed TRB Type RsvdZ C 0F-0CH

Table 31‐32: Force Header TRB Data Structure

31 24 23 16 15 10 9 5 4 1 0
Header Information Low Type 03-00H

Header Information Mid 07-04H

Header Information High 0B-08H

Root Hub Port Number RsvdZ TRB Type RsvdZ C 0F-0CH

Table 31‐33: Link TRB Data Structure

31 22 21 17 16 15 10 9 6 5 4 3 2 1 0
Ring Segment Pointer Low RsvdZ 03-00H

Ring Segment Pointer High 07-04H

Interrupter Target RsvdZ 0B-08H

RsvdZ TRB Type RsvdZ IOC CH RsvdZ TC C 0F-0CH

Table 31‐34: Event Data TRB Data Structure

31 21 17 16 15 10 9 8 6 5 4 3 2 1 0
Event Data Low 03-00H

Event Data High 07-04H

Interrupter Target RsvdZ 0B-08H

RsvdZ TRB Type = Translate BEI RsvdZ IOC CH RsvdZ ENT C 0F-0CH
Zynq UltraScale+ Device TRM 904
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=904

Chapter 31: USB Controller
Programming Guide

Initial Commands to USB Controller

There is only one command ring that is used for issuing xHCI specific commands or
commands related to device slots.

The command ring control register is defined in the operational register space. All xHCI
commands are issued by placing the desired command TRB(s) on the command ring, then
ringing the xHCI command doorbell register, that is writing the host controller command
code to the DB target field of doorbell register 0.

All commands result in the generation of a command completion event TRB on the event
ring.

Host Mode Initialization

After the system boots, the following steps are executed in the system software.

1. The host controller is enumerated, assigned a base address for the xHCI register space.
2. The system software sets the frame length adjustment (FLADJ) register to a

system-specific value.
3. Initialize the system I/O memory maps.
4. Wait until the controller not ready (CNR) flag in the USBSTS is 0 before writing any xHCI

operational or run time registers.
5. Program the maximum device slots enabled (MaxSlotsEn) field in the configuration

register to enable the device slots that system software is going to use.
6. Program the device context base address array pointer (DCBAAP) register with a 64-bit

address pointing to where the device context base address array is located.
7. Define the command ring dequeue pointer by programming the command ring control

register with a 64-bit address pointing to the starting address of the first TRB of the
command ring.

8. Initialize interrupts
9. Initialize each active interrupter by with the following steps.

a. Defining the event ring.
- Allocate and initialize the event ring segment(s)
- Allocate the event ring segment table (ERST). Initialize the ERST table entries to

point to and to define the size (in TRBs) of the respective event ring segment.
Zynq UltraScale+ Device TRM 905
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=905

Chapter 31: USB Controller
- Program the interrupter event ring segment table size (ERSTSZ) register with the
number of segments described by the event ring segment table.

- Program the interrupter event ring dequeue pointer (ERDP) register with the
starting address of the first segment described by the event ring segment table.

- Program the interrupter event ring segment table base address (ERSTBA)
register with a 64-bit address pointer to where the event ring segment table is
located.
Note: Writing the ERSTBA enables the event ring.

b. Define the interrupts.
- Enable system bus interrupt generation by writing a 1 to the interrupter enable

(INTE) flag of the USBCMD register.
- Enable the interrupter by writing a 1 to the interrupt enable (IE) field of the

management register.
- Write the USBCMD to turn the host controller ON by setting the run/stop (R/S)

bit to 1. This operation allows the xHCI to begin accepting doorbell references.
c. The host controller is now up and running.

10. The root hub ports begin reporting device connects. System software can begin
enumerating devices. USB2 (LS/FS/HS) devices require the port reset process to advance
the port to the enabled state. Once USB2 ports are enabled, the port is active with start
of files (SOFs) occurring on the port.

Device Detection, Enumeration

The USB device initialization process is the same, whether the device attached to the port is
a function or a hub. Once the pipes associated with an external hub are set up, the hub
driver enumerates the devices attached to the external hub's ports using standard hub class
command sequences.

1. When the xHCI detects a device attach, it sets the current connect status (CCS) and
connect status change (CSC) flags to 1. If the assertion of CSC results in a 0 to 1
transition of the port status change event generation, the xHCI generates a port status
change event.

2. Upon receipt of a port status change event the system software evaluates the port ID
field to determine the port that generated the event.

3. System software then reads the PORTSC register of the port that generated the event.
CSC = 1 if the event was due to attach (CCS = 1) or detach (CCS = 0).

4. A USB2 protocol port requires software to reset the port, to advance the port to the
enabled state, and a USB device from the powered state to the default state. After an
attach event, the PED and PR flags is 0 and the PLS field is 7 (polling) in the PORTSC
register.
Zynq UltraScale+ Device TRM 906
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=906

Chapter 31: USB Controller
5. System software enables the port by resetting the port (writing a 1 to the PORTSC PR
bit) then waiting for a port status change event due to the assertion of the port reset
change (PRC) flag.

6. The completion of the port reset causes the PORTSC register PRC and PED flags to be set
(1), the PR flag to be cleared (0), and the PLS field to be U0 (0). If the assertion of PRC
results in a 0 to 1 transition of PSCEG, the xHCI generates a port status change event as
a result of the transition of PRC. The reset operation sets the USB2 device into the
default state, preparing it for a SET_ADDRESS request.

7. After the port successfully reaches the enabled state, the system software obtains a
device slot for the newly attached device using an enable slot command.

8. After successfully obtaining a device slot, the system software initializes the data
structures associated with the slot.

9. Once the slots related data structures are initialized, the system software uses an
address device command to assign an address to the device and enable its default
control endpoint.

10. For full-speed devices, the system software should initially read the first 8 bytes of the
USB device descriptor to retrieve the value of the bMaxPacketSize0 field and determine
the actual maximum packet size for the default control endpoint, by issuing a USB
GET_DESCRIPTOR request to the device, update the default control endpoint context
with the actual maximum packet size, and inform the xHCI of the context change.

11. Software then issues an evaluate context command with add context bit [1] (A1) set to
1 to inform the xHCI of the change to the default control endpoint's maximum packet
size parameter.

12. Now that the default control endpoint is fully operational.
a. System software can read the complete USB device descriptor and possibly the

configuration descriptors to be able to hand the device off to the appropriate class
driver(s).

b. The class driver can then configure the device slot using a configure endpoint
command, and configure the USB device itself by issuing a USB
SET_CONFIGURATION request through the devices' default control endpoint.

c. The successful completion of both operations is required to advance the state of the
USB device from Address to Configured and the xHCI device slot from Address to
Configured.

d. If required, the system software can configure alternate interfaces.
13. The pipe interfaces to the USB device are now fully operational.

Device Detach

• When the device is detached from a root hub port, the PORTSC current connection
status (CCS) bit is cleared to 0 and the connect status change (CSC) bit is set to 1.
Zynq UltraScale+ Device TRM 907
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=907

Chapter 31: USB Controller
• If a 0 to 1 transition of PSCEG occurs, the xHCI reports the change through a port
status change event.

• After the detection of detach, system software disables the device slot associated with
the port by issuing a disable slot command for the affected slot.

Device Programming
The following sequence describes register programming for initialization of the xHCI
controller as a USB 2.0 device.

1. In register DCTL, set the CSftRst field to 1 and wait for a read to return 0. This resets the
device.

2. In registers GSBUSCFG0/1, leave the default values if the correct power-on values were
selected during coreConsultant configuration.

3. This step is only required to enable threshold. In register GTXTHRCFG/ GRXTHRCFG,
leave the default values (if the correct power-on values were selected during
coreConsultant configuration).

4. In register GSNPSID, the software must read the Synopsys ID register to find the device
version and configure the driver for any version-specific features.

5. Optionally, in register GUID, the software can program the user ID GUID read/write
register.

6. In register GUSB2PHYCFG, program the following PHY configuration fields: USBTrdTim,
FSIntf, PHYIf, TOUTCal, or leave the default values (if the correct power-on values were
selected during coreConsultant configuration).

IMPORTANT: The PHY must not be enabled for auto-resume in device mode. The field
GUSB2PHYCFG[15] (ULPIAutoRes) must be written with 0 during the power-on initialization in case the
reset value is 1.

7. In register GUSB3PIPECTL, program the following PHY configuration fields: DatWidth,
PrtOpDir, or leave the default values (if the correct power-on values were selected
during coreConsultant configuration).

8. In register GTXFIFOSIZn, write these registers to allocate prefetch buffers for each TX
endpoint. Unless the packet sizes of the endpoints are application specific, it is
recommended to use the default value.

9. In register GRXFIFOSIZ0, write this register to allocate the receive buffer for all
endpoints. Unless the packet sizes of the endpoints are application-specific, it is
recommended to use the default value.

10. In registers GEVNTADRn/ GEVNTSIZn/ GEVNTCOUNTn, depending on the number of
interrupts allocated, program the event buffer address and size registers to point to the
Zynq UltraScale+ Device TRM 908
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=908

Chapter 31: USB Controller
event buffer locations in system memory, the sizes of the buffers, and unmask the
interrupt.

IMPORTANT: USB operation stops if the event buffer memory is insufficient, because the block stops
receiving/transmitting packets.

11. In register GCTL, program this register to override scaledown, RAM clock select, and
clock gating parameters.

12. In register DCFG, program device speed and periodic frame interval.
13. In register DEVTEN, at a minimum, enable USB reset, connection done, and USB/link

state change events.
14. In register DEPCMD0, issue a DEPSTARTCFG command with DEPCMD0.XferRscIdx set

to 0 and CmdIOC set to 0 to initialize the transfer resource allocation. Poll CmdAct for
completion.

15. In registers DEPCMD0/ DEPCMD1, issue a DEPCFG command for physical endpoints 0
and 1 with the following characteristics, and poll CmdAct for completions.

° USB endpoint number = 0 or 1 (for physical endpoint 0 or 1)

° FIFONum = 0

° XferNRdyEn and XferCmplEn = 1

° Maximum packet size = 512

° Burst size = 0

° EPType = 2’b00 (Control)
16. In registers DEPCMD0/ DEPCMD1, issue a DEPXFERCFG command for physical

endpoints 0 and 1 with DEPCMDPAR0_0/1 set to 1, and poll CmdAct for completions.
17. In register DEPCMD0, prepare a buffer for a setup packet, initialize a setup TRB, and

issue a DEPSTRTXFER command for physical endpoint 0, pointing to the setup TRB. Poll
CmdAct for completion.
Note: The block attempts to fetch the setup TRB through the master interface after this
command completes.

18. In register DALEPENA, enable physical endpoints 0 and 1 by writing 0x3 to this register.
19. In register DCTL, set DCTL.RunStop to 1 to allow the device to attach to the host. The

device now is ready to receive start-of-file (SOF) packets, respond to control transfers on
control endpoint 0, and generate events.
Zynq UltraScale+ Device TRM 909
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=909

Chapter 31: USB Controller
Register Overview
The registers are classified into four groups. These registers are commonly used for various
modes of operations (USB 2.0 host, device, and OTG, and USB 3.0 host and device).

The base addresses of the controllers are listed.

For inst0: FE20xxxx

For inst1: FE30xxxx

The register address map is shown in Table 31-35. Further definition of these registers are
listed in Table 31-36 through Table 31-40.

• Global registers (Table 31-36)
• Device registers (Table 31-37)
• OTG and battery charger registers (Table 31-38)
• xHCI host registers (Table 31-39)
• Groups of register map (Table 31-40)
• MIO Pins (Table 31-41)
Table 31‐35: Register Address Map

Address Index Register Type

0x0_0000 to 0x0_7FFF
• 0 to CAPLENGTH – 1
• CAPLENGTH to RTSOFF – 1
• RTSOFF to DBOFF – 1
• DBOFF to (xECP*4 – 1)
• (xECP*4) to 0x0_7FFF

xHCI registers
• xHCI capability registers
• Host controller operational registers
• Controller run time registers
• Doorbell registers
• xHCI extended capabilities

0x0_C100 to 0x0_C6FF Global registers
0x0_C700 to 0x0_CBFF Device registers
0x0_CC00 to 0x0_CCFF OTG and battery charger registers
0x0CCD00 to 0x0_CFFF Unused
0x4_0000 to 0x7_FFFF Internal RAM#0 debug access (256 KB)
0x8_0000 to 0xB_FFFF Internal RAM#1 debug access (256 KB)
0xC_0000 to 0xF_FFFF Internal RAM#2 debug access (256 KB)
Zynq UltraScale+ Device TRM 910
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=910

Chapter 31: USB Controller
Table 31‐36: Global Registers

Register Name Address Width Type Reset Value Description

GSBUSCFG0 0x0000C100 32 Mixed 0x0000000E Global MPSoC bus configuration
register 0

GSBUSCFG1 0x0000C104 32 Mixed 0x00000300 Global MPSoC bus configuration
register 1

GTXTHRCFG 0x0000C108 32 Mixed 0x00000000 Global TX threshold control register
GRXTHRCFG 0x0000C10C 32 Mixed 0x00000000 Global RX threshold control register
GCTL 0x0000C110 32 Read/Write 0x00593004 Global common register
GPMSTS 0x0000C114 32 Mixed 0x00000000 Global power management status

register
GSTS 0x0000C118 32 Read only 0x3E800000 Global status register
GUCTL1 0x0000C11C 32 Read/Write 0x0000018A Global user control register 1
GSNPSID 0x0000C120 32 Read only 0x5533260A Global Synopsys ID register
GGPIO 0x0000C124 32 Mixed 0x00000000 Global general purpose I/O register
GUID 0x0000C128 32 Read/Write 0x12345678 Global user ID register
GUCTL 0x0000C12C 32 Read/Write 0x0F808010 Global user control register
GBUSERRADDRLO 0x0000C130 32 Read only 0x00000000 Register GBUSERRADDRLO
GBUSERRADDRHI 0x0000C134 32 Read only 0x00000000 Register GBUSERRADDRHI
GPRTBIMAPLO 0x0000C138 32 Mixed 0x00000000 Register R
GPRTBIMAPHI 0x0000C13C 32 Read only 0x00000000 Register R
GHWPARAMS0 0x0000C140 32 Read only 0x4020404A Global hardware parameters

register 0
GHWPARAMS1 0x0000C144 32 Read only 0x8262493B Global hardware parameters

register 1
GHWPARAMS2 0x0000C148 32 Read only 0x12345678 Global hardware parameters

register 2
GHWPARAMS3 0x0000C14C 32 Read only 0x0618C089 Global hardware parameters

register 3
GHWPARAMS4 0x0000C150 32 Read only 0x47822004 Global hardware parameters

register 4
GHWPARAMS5 0x0000C154 32 Read only 0x04204108 Global hardware parameters

register 5
GHWPARAMS6 0x0000C158 32 Read only 0x07BAAC20 Global hardware parameters

register 6
GHWPARAMS7 0x0000C15C 32 Read only 0x030807D6 Global hardware parameters

register 7
GDBGFIFOSPACE 0x0000C160 32 Mixed 0x00420000 Global debug queue/FIFO apace

available register
GDBGLTSSM 0x0000C164 32 Read only 0x01010442 Global debug LTSSM register
GDBGLNMCC 0x0000C168 32 Read only 0x00000000 Global debug LNMCC register
Zynq UltraScale+ Device TRM 911
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=911

Chapter 31: USB Controller
GDBGBMU 0x0000C16C 32 Read only 0x00000000 Global debug BMU register
GDBGLSPMUX_HST 0x0000C170 32 Mixed 0x003F0000 Internal global debug LSP MUX

register
GDBGLSP 0x0000C174 32 Read only 0x00000000 Global debug LSP register
GDBGEPINFO0 0x0000C178 32 Read only 0x00000000 Global debug endpoint information

register 0
GDBGEPINFO1 0x0000C17C 32 Read only 0x00800000 Global debug endpoint information

register 1
GPRTBIMAP_HSLO 0x0000C180 32 Mixed 0x00000000 High-speed port to bus instance

mapping
GPRTBIMAP_HSHI 0x0000C184 32 Read only 0x00000000 High-speed port to bus instance

mapping
GPRTBIMAP_FSLO 0x0000C188 32 Mixed 0x00000000 Register full-speed port to bus

instance mapping
GPRTBIMAP_FSHI 0x0000C18C 32 Read only 0x00000000 Register full-speed port to bus

instance mapping
Reserved_94 0x0000C194 32 Read/Write 0x00000000 Reserved register
Reserved_98 0x0000C198 32 Read/Write 0x00000000 Reserved register
GUSB2PHYCFG 0x0000C200 32 Mixed 0x00002410 Register Rs
GUSB2I2CCTL 0x0000C240 32 Read only 0x00000000 Reserved register
GUSB2PHYACC_ULPI 0x0000C280 32 Read only x Register PHYACC_ULPI
GUSB3PIPECTL 0x0000C2C0 32 Mixed 0x010C0002 Register GUSB3PIPECTL
GTXFIFOSIZ0 0x0000C300 32 Read/Write 0x00000042 Register GTXFIFOSIZ 0
GTXFIFOSIZ1 0x0000C304 32 Read/Write 0x00420184 Register GTXFIFOSIZ 1
GTXFIFOSIZ2 0x0000C308 32 Read/Write 0x01C60184 Register GTXFIFOSIZ 2
GTXFIFOSIZ3 0x0000C30C 32 Read/Write 0x034A0184 Register GTXFIFOSIZ 3
GTXFIFOSIZ4 0x0000C310 32 Read/Write 0x04CE0184 Register GTXFIFOSIZ 4
GTXFIFOSIZ5 0x0000C314 32 Read/Write 0x06520184 Register GTXFIFOSIZ 5
GRXFIFOSIZ0 0x0000C380 32 Read/Write 0x00000185 Register
GRXFIFOSIZ1 0x0000C384 32 Read/Write 0x01850000 Register
GRXFIFOSIZ2 0x0000C388 32 Read/Write 0x01850000 Register
GEVNTADRLO_0 0x0000C400 32 Read/Write 0x00000000 Register GEVNTADRLO instance 0 of

an array of four.
GEVNTADRHI_0 0x0000C404 32 Read/Write 0x00000000 Register GEVNTADRHI[0] instance 0

of an array of four.
GEVNTSIZ_0 0x0000C408 32 Mixed 0x00000000 Register instance 0 of an array of

four.

Table 31‐36: Global Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 912
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=912

Chapter 31: USB Controller
GEVNTCOUNT_0 0x0000C40C 32 Mixed 0x00000000 Register instance 0 of an array of
four.

GEVNTADRLO_1 0x0000C410 32 Read/Write 0x00000000 Register GEVNTADRLO instance 1 of
an array of four.

GEVNTADRHI_1 0x0000C414 32 Read/Write 0x00000000 Register GEVNTADRHI[0] instance 1
of an array of four.

GEVNTSIZ_1 0x0000C418 32 Mixed 0x00000000 Register instance 1 of an array of
four.

GEVNTCOUNT_1 0x0000C41C 32 Mixed 0x00000000 Register instance 1 of an array of
four.

GEVNTADRLO_2 0x0000C420 32 Read/Write 0x00000000 Register GEVNTADRLO instance 2 of
an array of four.

GEVNTADRHI_2 0x0000C424 32 Read/Write 0x00000000 Register GEVNTADRHI[0] instance 2
of an array of four.

GEVNTSIZ_2 0x0000C428 32 Mixed 0x00000000 Register instance 2 of an array of
four.

GEVNTCOUNT_2 0x0000C42C 32 Mixed 0x00000000 Register instance 2 of an array of
four.

GEVNTADRLO_3 0x0000C430 32 Read/Write 0x00000000 Register GEVNTADRLO instance 3 of
an array of four.

GEVNTADRHI_3 0x0000C434 32 Read/Write 0x00000000 Register GEVNTADRHI[0] instance 3
of an array of four.

GEVNTSIZ_3 0x0000C438 32 Mixed 0x00000000 Register instance 3 of an array of
four.

GEVNTCOUNT_3 0x0000C43C 32 Mixed 0x00000000 Register instance 3 of an array of
four.

GHWPARAMS8 0x0000C600 32 Read only 0x000007BA Global hardware parameters
register 8

GTXFIFOPRIDEV 0x0000C610 32 Mixed 0x00000000 Global device TX FIFO DMA priority
register

GTXFIFOPRIHST 0x0000C618 32 Mixed x Global host TX FIFO DMA priority
register

GRXFIFOPRIHST 0x0000C61C 32 Mixed x Global host RX FIFO DMA priority
register

GFIFOPRIDBC 0x0000C620 32 Read/Write x Global host debug capability DMA
priority register

GDMAHLRATIO 0x0000C624 32 Mixed 0x00000808 Global host FIFO DMA High-Low
priority ratio register

GFLADJ 0x0000C630 32 Read/Write 0x0F83F020 Global frame length adjustment
register

Table 31‐36: Global Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 913
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=913

Chapter 31: USB Controller
Table 31‐37: Device Registers

Register Name Address Width Type Reset Value Description

DCFG 0x0000C700 32 Read/Write 0x00080804 Device configuration register
DCTL 0x0000C704 32 Mixed 0x00000000 Device control register
DEVTEN 0x0000C708 32 Mixed x Device event enable register
DSTS 0x0000C70C 32 Mixed 0x00520004 Device status register
DGCMDPAR 0x0000C710 32 Read/Write 0x00000000 Device generic command parameter

register
DGCMD 0x0000C714 32 Mixed 0x00000000 Device generic command register
DALEPENA 0x0000C720 32 Read/Write 0x00000000 Device active USB endpoint enable

register
Rsvd0 0x0000C780 32 Read Only 0x00000000 Register reserved
Rsvd1 0x0000C784 32 Read Only 0x00000000 Register reserved
Rsvd2 0x0000C788 32 Read Only 0x00000000 Register reserved
Rsvd3 0x0000C78C 32 Read Only 0x00000000 Register reserved
Rsvd4 0x0000C790 32 Read Only 0x00000000 Register reserved
Rsvd5 0x0000C794 32 Read Only 0x00000000 Register reserved
Rsvd6 0x0000C798 32 Read Only 0x00000000 Register reserved
Rsvd7 0x0000C79C 32 Read Only 0x00000000 Register reserved
Rsvd8 0x0000C7A0 32 Read Only 0x00000000 Register reserved
Rsvd9 0x0000C7A4 32 Read Only 0x00000000 Register reserved
Rsvd10 0x0000C7A8 32 Read Only 0x00000000 Register reserved
Rsvd11 0x0000C7AC 32 Read Only 0x00000000 Register reserved
Rsvd12 0x0000C7B0 32 Read Only 0x00000000 Register reserved
Rsvd13 0x0000C7B4 32 Read Only 0x00000000 Register reserved
Rsvd14 0x0000C7B8 32 Read Only 0x00000000 Register reserved
Rsvd15 0x0000C7BC 32 Read Only 0x00000000 Register reserved
Rsvd16 0x0000C7C0 32 Read Only 0x00000000 Register reserved
Rsvd17 0x0000C7C4 32 Read Only 0x00000000 Register reserved
Rsvd18 0x0000C7C8 32 Read Only 0x00000000 Register reserved
Rsvd19 0x0000C7CC 32 Read Only 0x00000000 Register reserved
Rsvd20 0x0000C7D0 32 Read Only 0x00000000 Register reserved
Rsvd21 0x0000C7D4 32 Read Only 0x00000000 Register reserved
Rsvd22 0x0000C7D8 32 Read Only 0x00000000 Register reserved
Rsvd23 0x0000C7DC 32 Read Only 0x00000000 Register reserved
Rsvd24 0x0000C7E0 32 Read Only 0x00000000 Register reserved
Rsvd25 0x0000C7E4 32 Read Only 0x00000000 Register reserved
Zynq UltraScale+ Device TRM 914
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=914

Chapter 31: USB Controller
Rsvd26 0x0000C7E8 32 Read Only 0x00000000 Register reserved
Rsvd27 0x0000C7EC 32 Read Only 0x00000000 Register reserved
Rsvd28 0x0000C7F0 32 Read Only 0x00000000 Register reserved
Rsvd29 0x0000C7F4 32 Read Only 0x00000000 Register reserved
Rsvd30 0x0000C7F8 32 Read Only 0x00000000 Register reserved
Rsvd31 0x0000C7FC 32 Read Only 0x00000000 Register reserved
DEPCMDPAR2_0 0x0000C800 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 0 of an

array of 32.
DEPCMDPAR1_0 0x0000C804 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 0 of

an array of 32.
DEPCMDPAR0_0 0x0000C808 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 0 of

an array of 32.
DEPCMD_0 0x0000C80C 32 Read/Write 0x00000000 Register R instance 0 of an array of 32.
DEPCMDPAR2_1 0x0000C810 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 1 of an

array of 32.
DEPCMDPAR1_1 0x0000C814 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 1 of

an array of 32.
DEPCMDPAR0_1 0x0000C818 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 1 of

an array of 32.
DEPCMD_1 0x0000C81C 32 Read/Write 0x00000000 Register R instance 1 of an array of 32.
DEPCMDPAR2_2 0x0000C820 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 2 of an

array of 32.
DEPCMDPAR1_2 0x0000C824 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 2 of

an array of 32.
DEPCMDPAR0_2 0x0000C828 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 2 of

an array of 32.
DEPCMD_2 0x0000C82C 32 Read/Write 0x00000000 Register R instance 2 of an array of 32.
DEPCMDPAR2_3 0x0000C830 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 3 of an

array of 32.
DEPCMDPAR1_3 0x0000C834 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 3 of

an array of 32.
DEPCMDPAR0_3 0x0000C838 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 3 of

an array of 32.
DEPCMD_3 0x0000C83C 32 Read/Write 0x00000000 Register R instance 3 of an array of 32.
DEPCMDPAR2_4 0x0000C840 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 4 of an

array of 32.
DEPCMDPAR1_4 0x0000C844 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 4 of

an array of 32.
DEPCMDPAR0_4 0x0000C848 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 4 of

an array of 32.

Table 31‐37: Device Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 915
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=915

Chapter 31: USB Controller
DEPCMD_4 0x0000C84C 32 Read/Write 0x00000000 Register R instance 4 of an array of 32.
DEPCMDPAR2_5 0x0000C850 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 5 of an

array of 32.
DEPCMDPAR1_5 0x0000C854 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 5 of

an array of 32.
DEPCMDPAR0_5 0x0000C858 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 5 of

an array of 32.
DEPCMD_5 0x0000C85C 32 Read/Write 0x00000000 Register R instance 5 of an array of 32.
DEPCMDPAR2_6 0x0000C860 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 6 of an

array of 32.
DEPCMDPAR1_6 0x0000C864 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 6 of

an array of 32.
DEPCMDPAR0_6 0x0000C868 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 6 of

an array of 32.
DEPCMD_6 0x0000C86C 32 Read/Write 0x00000000 Register R instance 6 of an array of 32.
DEPCMDPAR2_7 0x0000C870 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 7 of an

array of 32.
DEPCMDPAR1_7 0x0000C874 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 7 of

an array of 32.
DEPCMDPAR0_7 0x0000C878 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 7 of

an array of 32.
DEPCMD_7 0x0000C87C 32 Read/Write 0x00000000 Register R instance 7 of an array of 32.
DEPCMDPAR2_8 0x0000C880 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 8 of an

array of 32.
DEPCMDPAR1_8 0x0000C884 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 8 of

an array of 32.
DEPCMDPAR0_8 0x0000C888 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 8 of

an array of 32.
DEPCMD_8 0x0000C88C 32 Read/Write 0x00000000 Register R instance 8 of an array of 32.
DEPCMDPAR2_9 0x0000C890 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 9 of an

array of 32.
DEPCMDPAR1_9 0x0000C894 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 9 of

an array of 32.
DEPCMDPAR0_9 0x0000C898 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 9 of

an array of 32.
DEPCMD_9 0x0000C89C 32 Read/Write 0x00000000 Register R instance 9 of an array of 32.
DEPCMDPAR2_10 0x0000C8A0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 10 of

an array of 32.
DEPCMDPAR1_10 0x0000C8A4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 10

of an array of 32.

Table 31‐37: Device Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 916
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=916

Chapter 31: USB Controller
DEPCMDPAR0_10 0x0000C8A8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 10
of an array of 32.

DEPCMD_10 0x0000C8AC 32 Read/Write 0x00000000 Register R instance 10 of an array of 32.
DEPCMDPAR2_11 0x0000C8B0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 11 of

an array of 32.
DEPCMDPAR1_11 0x0000C8B4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 11

of an array of 32.
DEPCMDPAR0_11 0x0000C8B8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 11

of an array of 32.
DEPCMD_11 0x0000C8BC 32 Read/Write 0x00000000 Register R instance 11 of an array of 32.
DEPCMDPAR2_12 0x0000C8C0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 12 of

an array of 32.
DEPCMDPAR1_12 0x0000C8C4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 12

of an array of 32.
DEPCMDPAR0_12 0x0000C8C8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 12

of an array of 32.
DEPCMD_12 0x0000C8CC 32 Read/Write 0x00000000 Register R instance 12 of an array of 32.
DEPCMDPAR2_13 0x0000C8D0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 13 of

an array of 32.
DEPCMDPAR1_13 0x0000C8D4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 13

of an array of 32.
DEPCMDPAR0_13 0x0000C8D8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 13

of an array of 32.
DEPCMD_13 0x0000C8DC 32 Read/Write 0x00000000 Register R instance 13 of an array of 32.
DEPCMDPAR2_14 0x0000C8E0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 14 of

an array of 32.
DEPCMDPAR1_14 0x0000C8E4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 14

of an array of 32.
DEPCMDPAR0_14 0x0000C8E8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 14

of an array of 32.
DEPCMD_14 0x0000C8EC 32 Read/Write 0x00000000 Register R instance 14 of an array of 32.
DEPCMDPAR2_15 0x0000C8F0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 15 of

an array of 32.
DEPCMDPAR1_15 0x0000C8F4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 15

of an array of 32.
DEPCMDPAR0_15 0x0000C8F8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 15

of an array of 32.
DEPCMD_15 0x0000C8FC 32 Read/Write 0x00000000 Register R instance 15 of an array of 32.
DEPCMDPAR2_16 0x0000C900 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 16 of

an array of 32.

Table 31‐37: Device Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 917
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=917

Chapter 31: USB Controller
DEPCMDPAR1_16 0x0000C904 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 16
of an array of 32.

DEPCMDPAR0_16 0x0000C908 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 16
of an array of 32.

DEPCMD_16 0x0000C90C 32 Read/Write 0x00000000 Register R instance 16 of an array of 32.
DEPCMDPAR2_17 0x0000C910 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 17 of

an array of 32.
DEPCMDPAR1_17 0x0000C914 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 17

of an array of 32.
DEPCMDPAR0_17 0x0000C918 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 17

of an array of 32.
DEPCMD_17 0x0000C91C 32 Read/Write 0x00000000 Register R instance 17 of an array of 32.
DEPCMDPAR2_18 0x0000C920 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 18 of

an array of 32.
DEPCMDPAR1_18 0x0000C924 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 18

of an array of 32.
DEPCMDPAR0_18 0x0000C928 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 18

of an array of 32.
DEPCMD_18 0x0000C92C 32 Read/Write 0x00000000 Register R instance 18 of an array of 32.
DEPCMDPAR2_19 0x0000C930 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 19 of

an array of 32.
DEPCMDPAR1_19 0x0000C934 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 19

of an array of 32.
DEPCMDPAR0_19 0x0000C938 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 19

of an array of 32.
DEPCMD_19 0x0000C93C 32 Read/Write 0x00000000 Register R instance 19 of an array of 32.
DEPCMDPAR2_20 0x0000C940 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 20 of

an array of 32.
DEPCMDPAR1_20 0x0000C944 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 20

of an array of 32.
DEPCMDPAR0_20 0x0000C948 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 20

of an array of 32.
DEPCMD_20 0x0000C94C 32 Read/Write 0x00000000 Register R instance 20 of an array of 32.
DEPCMDPAR2_21 0x0000C950 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 21 of

an array of 32.
DEPCMDPAR1_21 0x0000C954 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 21

of an array of 32.
DEPCMDPAR0_21 0x0000C958 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 21

of an array of 32.
DEPCMD_21 0x0000C95C 32 Read/Write 0x00000000 Register R instance 21 of an array of 32.

Table 31‐37: Device Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 918
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=918

Chapter 31: USB Controller
DEPCMDPAR2_22 0x0000C960 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 22 of
an array of 32.

DEPCMDPAR1_22 0x0000C964 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 22
of an array of 32.

DEPCMDPAR0_22 0x0000C968 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 22
of an array of 32.

DEPCMD_22 0x0000C96C 32 Read/Write 0x00000000 Register R instance 22 of an array of 32.
DEPCMDPAR2_23 0x0000C970 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 23 of

an array of 32.
DEPCMDPAR1_23 0x0000C974 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 23

of an array of 32.
DEPCMDPAR0_23 0x0000C978 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 23

of an array of 32.
DEPCMD_23 0x0000C97C 32 Read/Write 0x00000000 Register R instance 23 of an array of 32.
DEPCMDPAR2_24 0x0000C980 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 24 of

an array of 32.
DEPCMDPAR1_24 0x0000C984 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 24

of an array of 32.
DEPCMDPAR0_24 0x0000C988 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 24

of an array of 32.
DEPCMD_24 0x0000C98C 32 Read/Write 0x00000000 Register R instance 24 of an array of 32.
DEPCMDPAR2_25 0x0000C990 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 25 of

an array of 32.
DEPCMDPAR1_25 0x0000C994 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 25

of an array of 32.
DEPCMDPAR0_25 0x0000C998 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 25

of an array of 32.
DEPCMD_25 0x0000C99C 32 Read/Write 0x00000000 Register R instance 25 of an array of 32.
DEPCMDPAR2_26 0x0000C9A0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 26 of

an array of 32.
DEPCMDPAR1_26 0x0000C9A4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 26

of an array of 32.
DEPCMDPAR0_26 0x0000C9A8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 26

of an array of 32.
DEPCMD_26 0x0000C9AC 32 Read/Write 0x00000000 Register R instance 26 of an array of 32.
DEPCMDPAR2_27 0x0000C9B0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 27 of

an array of 32.
DEPCMDPAR1_27 0x0000C9B4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 27

of an array of 32.
DEPCMDPAR0_27 0x0000C9B8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 27

of an array of 32.

Table 31‐37: Device Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 919
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=919

Chapter 31: USB Controller
DEPCMD_27 0x0000C9BC 32 Read/Write 0x00000000 Register R instance 27 of an array of 32.
DEPCMDPAR2_28 0x0000C9C0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 28 of

an array of 32.
DEPCMDPAR1_28 0x0000C9C4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 28

of an array of 32.
DEPCMDPAR0_28 0x0000C9C8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 28

of an array of 32.
DEPCMD_28 0x0000C9CC 32 Read/Write 0x00000000 Register R instance 28 of an array of 32.
DEPCMDPAR2_29 0x0000C9D0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 29 of

an array of 32.
DEPCMDPAR1_29 0x0000C9D4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 29

of an array of 32.
DEPCMDPAR0_29 0x0000C9D8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 29

of an array of 32.
DEPCMD_29 0x0000C9DC 32 Read/Write 0x00000000 Register R instance 29 of an array of 32.
DEPCMDPAR2_30 0x0000C9E0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 30 of

an array of 32.
DEPCMDPAR1_30 0x0000C9E4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 30

of an array of 32.
DEPCMDPAR0_30 0x0000C9E8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 30

of an array of 32.
DEPCMD_30 0x0000C9EC 32 Read/Write 0x00000000 Register R instance 30 of an array of 32.
DEPCMDPAR2_31 0x0000C9F0 32 Read/Write 0x00000000 Register DEPCMDPAR2 instance 31 of

an array of 32.
DEPCMDPAR1_31 0x0000C9F4 32 Read/Write 0x00000000 Register DEPCMDPAR1[0] instance 31

of an array of 32.
DEPCMDPAR0_31 0x0000C9F8 32 Read/Write 0x00000000 Register DEPCMDPAR0[0] instance 31

of an array of 32.
DEPCMD_31 0x0000C9FC 32 Read/Write 0x00000000 Register R instance 31 of an array of 32

Table 31‐37: Device Registers (Cont’d)

Register Name Address Width Type Reset Value Description

Table 31‐38: OTG and Battery Charger Registers

Register Name Address Width Type Reset Value Description

OCFG 0x0000CC00 32 Mixed 0x00000000 OTG configuration register
OCTL 0x0000CC04 32 Mixed 0x00000040 OTG control register
OEVT 0x0000CC08 32 Mixed 0x00000000 OTG events register
OEVTEN 0x0000CC0C 32 Mixed 0x00000000 OTG events enable register
OSTS 0x0000CC10 32 Read only 0x00000819 OTG status register
ADPCFG 0x0000CC20 32 Mixed 0x00000000 ADP configuration register
ADPCTL 0x0000CC24 32 Mixed 0x00000000 ADP control register
Zynq UltraScale+ Device TRM 920
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=920

Chapter 31: USB Controller
ADPEVT 0x0000CC28 32 Mixed 0x00000000 ADP event register
ADPEVTEN 0x0000CC2C 32 Mixed 0x00000000 ADP event enable register

Table 31‐38: OTG and Battery Charger Registers (Cont’d)

Register Name Address Width Type Reset Value Description

Table 31‐39: xHCI Host Registers

Register Name Address Width Type Reset Value Description

CAPLENGTH 0x00000000 32 Read only 0x01000020 Capability registers Length
HCSPARAMS1 0x00000004 32 Read only 0x02000440 Host controller structural parameters 1
HCSPARAMS2 0x00000008 32 Read only 0x0C0000F1 Host controller structural parameters 2
HCSPARAMS3 0x0000000C 32 Read only 0x07FF000A Structural parameters 3 register
HCCPARAMS 0x00000010 32 Read only 0x0238F665 Capability parameters register
DBOFF 0x00000014 32 Read only 0x000004E0 Doorbell offset register
RTSOFF 0x00000018 32 Read only 0x00000440 Run time register space offset register
Rsvd_HC 0x0000001C 32 Read only 0x00000000 Register Rsvd_HC
USBCMD 0x00000020 32 Mixed 0x00000000 USB command register
USBSTS 0x00000024 32 Mixed 0x00000001 USB status register bit definitions.
PAGESIZE 0x00000028 32 Read only 0x00000001 Page size register bit definitions. This

register is used by software to enable or
disable the reporting of the reception
of specific USB device notification
transaction packets. A notification
enable (Nx, where x = 0 to 15) flag is
defined for each of the 16 possible
device notification types. If a flag is set
for a specific notification type, a device
notification event is generated when
the respective notification packet is
received. After reset, all notifications
are disabled.

DNCTRL 0x00000034 32 Mixed 0x00000000 Device notification register bit
definitions.

CRCR_LO 0x00000038 32 Mixed 0x00000000 Register CRCR_LO
CRCR_HI 0x0000003C 32 Read/Write 0x00000000 Register CRCR_HI
DCBAAP_LO 0x00000050 32 Mixed 0x00000000 Register DCBAAP_LO
DCBAAP_HI 0x00000054 32 Read/Write 0x00000000 Register DCBAAP_HI
CONFIG 0x00000058 32 Mixed 0x00000000 Configure register bit definitions. This

register is in the AUX power well. It is
only reset by the platform during a cold
reset or in response to a host controller
reset (HCRST).
Zynq UltraScale+ Device TRM 921
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=921

Chapter 31: USB Controller
PORTSC_0 0x00000420 32 Mixed 0x000002A0 Port status and control register bit
definitions. Instance 0 of an array of
two.

PORTPMSC_0 0x00000424 32 Mixed 0x00000000 USB3 port power management status
and control register bit definitions. This
register is in the AUX power well. It is
only reset by platform hardware during
a cold reset or in response to a host
controller reset (HCRST). Instance 0 of
an array of two.

PORTLI_0 0x00000428 32 Read only 0x00000000 Port link information register instance 0
of an array of two.

PORTHLPMC_0 0x0000042C 32 Mixed 0x00000000 USB2 port LPM control register bit
definitions. Instance 0 of an array of
two.

PORTSC_1 0x00000430 32 Mixed 0x000002A0 Port status and control register bit
definitions. Instance 1 of an array of
two.

PORTPMSC_1 0x00000434 32 Mixed 0x00000000 USB3 port power management status
and control register bit definitions. This
register is in the AUX power well. It is
only reset by platform hardware during
a cold reset or in response to a host
controller reset (HCRST). Instance 1 of
an array of two.

PORTLI_1 0x00000438 32 Read only 0x00000000 Port link information register instance 1
of an array of two.

PORTHLPMC_1 0x0000043C 32 Mixed 0x00000000 USB2 port hardware LPM control
register bit definitions. Instance 1 of an
array of two.

MFINDEX 0x00000440 32 Read only 0x00000000 Microframe index register bit
definitions.

RsvdZ 0x00000444 32 Read only 0x00000000 Register RsvdZ
IMAN_0 0x00000460 32 Mixed 0x00000000 Interrupter management register bit

definitions. Instance 0 of an array of
four.

Table 31‐39: xHCI Host Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 922
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=922

Chapter 31: USB Controller
IMOD_0 0x00000464 32 Read/Write 0x00000FA0 Interrupter moderation register.
Software can use this register to pace
(or even out) the delivery of interrupts
to the host CPU. This register provides
an inter-interrupt delay between
interrupts asserted by the xHCI,
regardless of USB traffic conditions. To
independently validate configuration
settings, software can use the
algorithms recommended by the xHCI
specification to convert the
inter-interrupt interval value to the
common interrupts/sec performance
metric: Instance 0 of an array of four.

ERSTSZ_0 0x00000468 32 Mixed 0x00000000 Event ring segment table size register
bit definitions. Instance 0 of an array of
four.

RsvdP_0 0x0000046C 32 Read only 0x00000000 Register RsvdP instance 0 of an array of
four.

ERSTBA_LO_0 0x00000470 32 Mixed 0x00000000 Register ERSTBA_LO instance 0 of an
array of four.

ERSTBA_HI_0 0x00000474 32 Read/Write 0x00000000 Register ERSTBA_HI instance 0 of an
array of four.

ERDP_LO_0 0x00000478 32 Read/Write 0x00000000 Register ERDP_LO instance 0 of an array
of four.

ERDP_HI_0 0x0000047C 32 Read/Write 0x00000000 Register ERDP_HI instance 0 of an array
of four.

IMAN_1 0x00000480 32 Mixed 0x00000000 Interrupter management register bit
definitions. Instance 1 of an array of
four.

IMOD_1 0x00000484 32 Read/Write 0x00000FA0 Interrupter moderation register.
Software can use this register to pace
(or even out) the delivery of interrupts
to the host CPU. This register provides
an inter-interrupt delay between
interrupts asserted by the xHCI,
regardless of USB traffic conditions. To
independently validate configuration
settings, software can use the
algorithms recommended by the xHCI
specification to convert the
inter-interrupt interval value to the
common interrupts/sec performance
metric: Instance 1 of an array of four.

ERSTSZ_1 0x00000488 32 Mixed 0x00000000 Event ring segment table size register
bit definitions. Instance 1 of an array of
four.

Table 31‐39: xHCI Host Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 923
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=923

Chapter 31: USB Controller
RsvdP_1 0x0000048C 32 Read only 0x00000000 Register RsvdP instance 1 of an array of
four.

ERSTBA_LO_1 0x00000490 32 Mixed 0x00000000 Register ERSTBA_LO instance 1 of an
array of four.

ERSTBA_HI_1 0x00000494 32 Read/Write 0x00000000 Register ERSTBA_HI instance 1 of an
array of four.

ERDP_LO_1 0x00000498 32 Read/Write 0x00000000 Register ERDP_LO instance 1 of an array
of four.

ERDP_HI_1 0x0000049C 32 Read/Write 0x00000000 Register ERDP_HI instance 1 of an array
of four.

IMAN_2 0x000004A0 32 Mixed 0x00000000 Interrupter management register bit
definitions. Instance 2 of an array of
four.

IMOD_2 0x000004A4 32 Read/Write 0x00000FA0 Interrupter moderation register.
Software can use this register to pace
(or even out) the delivery of interrupts
to the host CPU. This register provides
an inter-interrupt delay between
interrupts asserted by the xHCI,
regardless of USB traffic conditions. To
independently validate configuration
settings, software can use the
algorithms recommended by the xHCI
specification to convert the
inter-interrupt interval value to the
common interrupts/sec performance
metric: Instance 2 of an array of four.

ERSTSZ_2 0x000004A8 32 Mixed 0x00000000 Event ring segment table size register
bit definitions. Instance 2 of an array of
four.

RsvdP_2 0x000004AC 32 Read only 0x00000000 Register RsvdP instance 2 of an array of
four.

ERSTBA_LO_2 0x000004B0 32 Mixed 0x00000000 Register ERSTBA_LO instance 2 of an
array of four.

ERSTBA_HI_2 0x000004B4 32 Read/Write 0x00000000 Register ERSTBA_HI instance 2 of an
array of four.

ERDP_LO_2 0x000004B8 32 Read/Write 0x00000000 Register ERDP_LO instance 2 of an array
of four.

ERDP_HI_2 0x000004BC 32 Read/Write 0x00000000 Register ERDP_HI instance 2 of an array
of four.

IMAN_3 0x000004C0 32 Mixed 0x00000000 Interrupter management register bit
definitions. Instance 3 of an array of
four.

Table 31‐39: xHCI Host Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 924
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=924

Chapter 31: USB Controller
IMOD_3 0x000004C4 32 Read/Write 0x00000FA0 Interrupter moderation register.
Software can use this register to pace
(or even out) the delivery of interrupts
to the host CPU. This register provides
an inter-interrupt delay between
interrupts asserted by the xHCI,
regardless of USB traffic conditions. To
independently validate configuration
settings, software can use the
algorithms recommended by the xHCI
specification to convert the
inter-interrupt interval value to the
common interrupts/sec performance
metric: Instance 3 of an array of four.

ERSTSZ_3 0x000004C8 32 Mixed 0x00000000 Event ring segment table size register
bit definitions. Instance 3 of an array of
four.

RsvdP_3 0x000004CC 32 Read only 0x00000000 Register RsvdP instance 3 of an array of
four.

ERSTBA_LO_3 0x000004D0 32 Mixed 0x00000000 Register ERSTBA_LO instance 3 of an
array of four.

ERSTBA_HI_3 0x000004D4 32 Read/Write 0x00000000 Register ERSTBA_HI instance 3 of an
array of four.

ERDP_LO_3 0x000004D8 32 Read/Write 0x00000000 Register ERDP_LO instance 3 of an array
of four.

ERDP_HI_3 0x000004DC 32 Read/Write 0x00000000 Register ERDP_HI instance 3 of an array
of four.

DB0 0x000004E0 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB1 0x000004E4 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB2 0x000004E8 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB3 0x000004EC 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB4 0x000004F0 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB5 0x000004F4 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB6 0x000004F8 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB7 0x000004FC 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB8 0x00000500 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB9 0x00000504 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB10 0x00000508 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB11 0x0000050C 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB12 0x00000510 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB13 0x00000514 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB14 0x00000518 32 Mixed 0x00000000 Doorbell register bit field definitions.

Table 31‐39: xHCI Host Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 925
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=925

Chapter 31: USB Controller
DB15 0x0000051C 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB16 0x00000520 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB17 0x00000524 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB18 0x00000528 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB19 0x0000052C 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB20 0x00000530 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB21 0x00000534 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB22 0x00000538 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB23 0x0000053C 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB24 0x00000540 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB25 0x00000544 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB26 0x00000548 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB27 0x0000054C 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB28 0x00000550 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB29 0x00000554 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB30 0x00000558 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB31 0x0000055C 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB32 0x00000560 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB33 0x00000564 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB34 0x00000568 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB35 0x0000056C 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB36 0x00000570 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB37 0x00000574 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB38 0x00000578 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB39 0x0000057C 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB40 0x00000580 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB41 0x00000584 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB42 0x00000588 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB43 0x0000058C 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB44 0x00000590 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB45 0x00000594 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB46 0x00000598 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB47 0x0000059C 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB48 0x000005A0 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB49 0x000005A4 32 Mixed 0x00000000 Doorbell register bit field definitions.

Table 31‐39: xHCI Host Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 926
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=926

Chapter 31: USB Controller
DB50 0x000005A8 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB51 0x000005AC 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB52 0x000005B0 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB53 0x000005B4 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB54 0x000005B8 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB55 0x000005BC 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB56 0x000005C0 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB57 0x000005C4 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB58 0x000005C8 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB59 0x000005CC 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB60 0x000005D0 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB61 0x000005D4 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB62 0x000005D8 32 Mixed 0x00000000 Doorbell register bit field definitions.
DB63 0x000005DC 32 Mixed 0x00000000 Doorbell register bit field definitions.
USBLEGSUP 0x000008E0 32 Mixed 0x00000401 Register USBLEGSUP
USBLEGCTLSTS 0x000008E4 32 Mixed 0x00000000 Register USBLEGCTLSTS
SUPTPRT2_DW0 0x000008F0 32 Read only 0x02000402 Register SUPTPRT2_DW0
SUPTPRT2_DW1 0x000008F4 32 Read only 0x20425355 Register SUPTPRT2_DW1
SUPTPRT2_DW2 0x000008F8 32 Read only 0x00180101 xHCI supported protocol capability,

data word 2
SUPTPRT2_DW3 0x000008FC 32 Read only 0x00000000 Register SUPTPRT2_DW3
SUPTPRT3_DW0 0x00000900 32 Read only 0x03000002 Register SUPTPRT3_DW0
SUPTPRT3_DW1 0x00000904 32 Read only 0x20425355 Register SUPTPRT3_DW1
SUPTPRT3_DW2 0x00000908 32 Read only 0x00000102 Register SUPTPRT3_DW2
SUPTPRT3_DW3 0x0000090C 32 Read only 0x00000000 Register SUPTPRT3_DW3
DCID 0x00000910 32 Read only 0x000F000A Register DCID
DCDB 0x00000914 32 Mixed 0x00000000 Register DCDB
DCERSTSZ 0x00000918 32 Mixed 0x00000000 Register DCERSTSZ
DCERSTBA_LO 0x00000920 32 Mixed 0x00000000 Register DCERSTBA_LO
DCERSTBA_HI 0x00000924 32 Read/Write 0x00000000 Register DCERSTBA_HI
DCERDP_LO 0x00000928 32 Read/Write 0x00000000 Register DCERDP_LO
DCERDP_HI 0x0000092C 32 Read/Write 0x00000000 Register DCERDP_HI
DCCTRL 0x00000930 32 Mixed 0x000F0000 Register DCCTRL
DCST 0x00000934 32 Read only 0x00000000 Register DCST
DCPORTSC 0x00000938 32 Mixed 0x00000000 Register DCPORTSC

Table 31‐39: xHCI Host Registers (Cont’d)

Register Name Address Width Type Reset Value Description
Zynq UltraScale+ Device TRM 927
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=927

Chapter 31: USB Controller
The groups of register map is shown in Table 31-40.

Table 31‐41: USB MIO Pins

DCCP_LO 0x00000940 32 Mixed 0x00000000 Register DCCP_LO
DCCP_HI 0x00000944 32 Read/Write 0x00000000 Register DCCP_HI
DCDDI1 0x00000948 32 Read/Write 0x00000000 Register DCDDI1
DCDDI2 0x0000094C 32 Read/Write 0x00000000 Register DCDDI2

Table 31‐39: xHCI Host Registers (Cont’d)

Register Name Address Width Type Reset Value Description

Table 31‐40: Groups of Register Map

Register Description

0x04E0 Doorbell registers (default DBOFF = 0x4E0)
0x0460 Interrupt registers
0x0440 Run time register set (default RTSOFF = 0x440)
0x0420 Port register set
0x0020 xHCI operational registers (default CAPLENGTH = 0x20)
0x0000 xHCI base address
0x0000_0000 Capability registers length (CAPLENGTH)
0x0000_0014 Doorbell offset register (DBOFF)
0x0000_0018 Runtime register space offset register (RTSOFF)
0x0000_04E0 - 0x0000_05DC Doorbell register
0x0000_C100 - 0x0000_C630 Global registers
0x0000_C700 - 0x0000_C8BC Device registers
0x0000_CC00 - 0x0000_CC10 OTG registers

Signal Name MIO Pin/ net name in schematic ULPI PIN Description

USB-0 MIO Connections

ULPI0_CLK MIO52_ ULPI0_CLK 1 Reference clock
ULPI0_DATA0 MIO56_ ULPI0_DATA0 3 Data bit 0
ULPI0_DATA1 MIO57_ ULPI0_DATA1 4 Data bit 1
ULPI0_DATA2 MIO54_ ULPI0_DATA2 5 Data bit 2
UPLI0_DATA3 MIO59_ ULPI0_DATA3 6 Data bit 3
ULPI0_DATA4 MIO60_ ULPI0_DATA4 7 Data bit 4
ULPI0_DATA5 MIO61_ ULPI0_DATA5 9 Data bit 5
ULPI0_DATA6 MIO62_ ULPI0_DATA6 10 Data bit 6
ULPI0_DATA7 MIO63_ ULPI0_DATA7 13 Data bit 7
ULPI0_DIR MIO53_ ULPI0_DIR 31 Data bus direction
ULPI0_NXT MIO55_ ULPI0_NXT 2 Send next data byte
ULPI0_STP MIO58_ ULPI0_STP 29 Stop transmission, last data byte
ULPI0_RST_N PS_MODE1 27 Reset to USB PHY
Zynq UltraScale+ Device TRM 928
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=928

Chapter 31: USB Controller
USB_SSTX_P GT0_ USB0_SSTX_P Terminated and connected to USB
Connector

USB_SSTX_N GT0_ USB0_SSTX_N Terminated and connected to USB
Connector

USB_SSRX_P GT0_ USB0_SSRX_P

USB_SSRX_N
GT0_ USB0_SSRX_N

USB-1 MIO Connections

ULPI1_CLK MIO64_ ULPI1_CLK 1 Reference clock
ULPI1_DATA0 MIO68_ULPI1_DATA0 3 Data bit 0
ULPI1_DATA1 MIO69_ ULPI1_DATA1 4 Data bit 1
ULPI1_DATA2 MIO66_ULPI1_DATA2 5 Data bit 2
UPLI1_DATA3 MIO71_ULPI1_DATA3 6 Data bit 3
ULPI1_DATA4 MIO72_ ULPI1_DATA4 7 Data bit 4
ULPI1_DATA5 MIO73_ ULPI1_DATA5 9 Data bit 5
ULPI1_DATA6 MIO74 _ULPI1_DATA6 10 Data bit 6
ULPI1_DATA7 MIO75_ULPI1_DATA7 13 Data bit 7
ULPI1_DIR MIO65_ULPI1_DIR 31 Data bus direction
ULPI1_NXT MIO67_ ULPI1_NXT 2 Send next data byte
ULPI1_STP MIO70_ ULPI1_STP 29 Stop transmission, last data byte
ULPI1_RST_N PS_MODE2 27 Reset to USB PHY
USB_SSTX_P GT3_ USB1_SSTX_P Terminated and connected to USB

Connector
USB_SSTX_N GT3_ USB1_SSTX_N Terminated and connected to USB

Connector
USB_SSRX_P GT3_ USB1_SSTX_P

USB_SSRX_N GT3_ USB1_SSTX_N
Zynq UltraScale+ Device TRM 929
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=929

Chapter 32

SATA Controller

Introduction
The serial ATA (SATA) protocol was designed to replace the old parallel ATA (or IDE)
interface used mainly for storage devices. SATA uses the ATA/ATAPI command-set, but uses
serial communication over the differential wire pairs at rates of 1.5, 3.0, or 6.0 Gb/sec
corresponding to SATA generation 1, generation 2 or generation 3. The serial data is 8B/10B
encoded which ensures sufficient transition in the data pattern to ensure DC balancing and
enables the clock data recovery circuit to extract the clock from the incoming data pattern.

The SATA controller is a high-performance dual-port SATA host controller with an AHCI
compliant command layer which supports advanced features such as native command
queuing and frame information structure (FIS) based switching for systems employing port
multipliers.

Features

• SATA host port supporting two external devices.
• Designed to be compliant with SATA 3.1 specifications.
• Compliant with the advanced host controller interface (AHCI) version 1.3.
• Supports 1.5, 3.0, and 6.0 Gb/s data rates.
• 64-bit AXI master port with a built-in DMA with 40/44-bit addressing.
• Configuration done through register programming of these register sets:

° SATA_AHCI_HBA

° SATA_AHCI_VENDOR

° SATA_AHCI_PORTCNTRL

° SERDES (PS-GTR)

° FPD_GPV (AXI Interconnect)

° SIOU (clock)
• Power management features: support partial and slumber modes.
Zynq UltraScale+ Device TRM 930
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=930

Chapter 32: SATA Controller
• Supports hot-plug detect feature.

IMPORTANT: The current characterization of SATA Gen3 return loss shows a marginal violation of the
specification in the band of frequencies between 800MHz-1GHz.

Functional Description
The SATA host controller is responsible for implementing the physical, link, transport and
command layer functions as described in SATA rev 3.1 specification for a two port host
device.

System Viewpoint

Figure 32-1 shows the SATA host controller system.
X-Ref Target - Figure 32-1

Figure 32‐1: SATA System Block Diagram

SATA Block

SATA Host Controller

DMA

AXI Engine

STo
AXI

Switch

RAM

Port 0

Command
Layer

Transport
Layer Link Layer

PHY
 Control
Layer Se

rD
es

In

te
rfa

ce
AHCI
Regs

M

RAM

DMA

Port 1

Command
Layer

Transport
Layer Link Layer

PHY
 Control
Layer Se

rD
es

In

te
rfa

ce

To PS-GTR
MUX

To PS-GTR
MUX

X15503-022217
Zynq UltraScale+ Device TRM 931
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=931

Chapter 32: SATA Controller
Description

The SATA controller has the following primary interfaces.

• The AXI slave interface is a 64-bit AXI slave interface with a 12-bit AXI ID and a 46-bit
AXI address. This interface has a maximum burst length of one. A burst with a burst size
more than one results in an AXI error. This restriction does not affect performance
during normal operation.

• The interrupt interface is used to signal interrupts to the host CPU. The interrupt
controller has one bit assigned to the SATA block that is connected to the GIC. The
interrupt signal routed to the GIC is a WIRE-OR output of the PORT0 interrupt, the
PORT1 interrupt, and the command coalescing channel interrupt. In the interrupt
separate mode, each interrupt output from PORT0, PORT1, and the command
coalescing blocks are routed to the GIC. Refer to Table 13-4 for the interrupt ID of the
SATA host controller block. Software must not enable the interrupt separation mode
because it is not supported on the device.

• The AXI master interface is used by the block to perform DMA operations for moving
data between the host memory (example DDR) and SATA device (example hard drive).
This interface has ability to initiate burst between 1 and 16 cycles. The master interface
has 4-bit AXI ID buses that can take on one of four (programmable) ID values that are
out of reset default to 0, 1, 2, and 3. The IDs are configured through the
SATA_AHCI_VENDOR.PAXIC port register. The block can issue up to 16 read and write
transactions through the AXI master interface. Out of reset, the maximum number of
outstanding transactions (issuing ability) defaults to four reads and four writes, and it
can be changed through the port AXI CFG register. This port only generates
incremental bursts with lengths of 1, 4, 8, or 16 beats. The burst length is selected by
the block based on FIFO fill levels and is not controllable by user. The AxCACHE bits can
be controlled through the AXI cache control register. The AxPROT bits are controllable
through the FPD_SLCR_SECURE register set as well as through the security (TrustZone)
bus.

The SATA controller performs 8B/10B encoding and decoding functionality and uses 20-bit
parallel interface to the PS-GTR block. The following sections describe each of the layers
implemented as part of the SATA protocol stack.

Command Layer

The operation of the command layer is defined by the AHCI specification. The SATA
controller implements the following functionality in addition to what is required by the
AHCI specification.
Zynq UltraScale+ Device TRM 932
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=932

Chapter 32: SATA Controller
Local Port Context Management

When the AHCI controller is connected to a port multiplier supporting FIS-based switching
a local context store can be enabled to avoid the process of lookup of the related memory
addressing for data transactions. This feature facilitates quick context switching and allows
the AHCI to operate with multiple devices in a seamless manner. Each context stores
information about the memory address and SATA block address of any executing command
on the first four ports of a port multiplier.

Vendor Specific BIST Operation

As part of the host self-diagnostic operation, a vendor specific BIST mode is supported. This
mode, in conjunction with SIOU's serial loop-back, allow for the test of the host controller
operation. When programmed, the host fetches a command from the memory loop that
manages the FIS through the transport and link layers and then posts the payload to the
receive FIS area for checking. The mode exercises the following paths.

• DMA controller FIS transmission.
• Command layer FIS transmission.
• Transport layer TX FIFO FIS transmission.
• Link layer FIS transmission.
• PHY modes.
• Link layer FIS reception.
• Transport layer RXFIFO and FIS reception.
• Command layer FIS reception.
• Host DMA controller FIS reception.

When the host controller indicates the command is complete, the software examines the
contexts of the command descriptors statistics field. If the pre-programmed values are
present, the test has passed.
Zynq UltraScale+ Device TRM 933
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=933

Chapter 32: SATA Controller
The command list structure is shown in Figure 32-2. To support the vendor BIST operation,
the command header structure is modified. The reserved bit 11 of DW0 is now designated
as VBIST, setting this bit indicates the associated command used as the payload for a
vendor BIST operation.

Transport Layer

The function of the SATA transport layer is to interface between the command and link
layers in the transmission and reception of the frame information structures (FIS).

On transmit, the transport layer frames the FIS placed into the TX FIFO. The FISs are framed
based on a programmed length for non-data FIS and or a configurable length for data FIS.
When the transport layer is instructed to send a non-data FIS, it employs a retry policy until
the far end signals acceptance of the transmitted FIS.

On reception, the transport layer de-frames the FIS and places them into the RX FIFO. When
a FIS is received, the transport layer informs the command layer.

For a non-data FIS the FIS is considered received when the EOF is signaled by the link layer
and the FIS is received with a good CRC.

For a short vendor-specific FIS, the FIS is considered as a non-data FIS. For longer
vendor-specific FIS, the FIS reception is signaled when the RX FIFO reaches its watermark.

For a data FIS, the FIS is considered received when the first double word (header) is written
into the FIFO.

The transport layer is responsible for crossing the clock domain between the transport layer
txDouble word and rxDouble word clocks and command layer clock domain. The receive
FIFO is written to on the transport layer receive double-word clock with data contained in
the FIS sent by the link layer. Once the data is stable at the output of the receive FIFO, on the
command layer clock domain, the command layer can take the data. If the command layer
is not ready to accept the data, the data builds up in the receive FIFO. When the receive FIFO
exceeds its threshold, the transport layer stalls the link layer, which sends HOLD primitives
to the far end to stall it. This threshold takes into consideration the latency involved in

X-Ref Target - Figure 32-2

Figure 32‐2: Command List Structure

DW0
DW1
DW2
DW3
DW4
DW5
DW6
DW7

PRDTL
PRDBC: PRD Byte Count

CTBA0: Command Table Base Address
CTBA_U0: Command Table Base Adr Upper 32-bits

Reserved
Reserved
Reserved
Reserved

PMP V C B R P W A CFL

Reserved

Tag

Command
Header 0

Command
Header 1

Command
Header 2

00h

20h

40h

60h

31 23 15 7 0

X15504-092916
Zynq UltraScale+ Device TRM 934
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=934

Chapter 32: SATA Controller
getting the far end to stop transmitting the data. This threshold is programmable to allow
for the use of high latency repeaters or re-timers in between the host and device.

The transmit FIFO is written to on the command layer clock, with data to be sent in the FIS
transferred by the DMA controller. Once the data is stable at the output of the transmit FIFO
on the transmit double word clock domain, the link layer can take the data. If the transmit
FIFO cannot supply data to the link layer, the transport layer stalls the link layer, which sends
HOLD primitives to the far end to stall it.

Link Layer

The function of the SATA link layer is to interface between the transport and PHY control
layers in the transmission and reception of frames and primitives. The link layer utilizes the
two unidirectional links provided by the SATA interface to maintain coordinated
communication between the host and the device. Payload data can only be transmitted in
one direction at a time.

The link layer can work at SATA generation 1 (1.5 Gb/s), generation 2 (3.0 Gb/s) and
generation 3 (6.0 Gb/s) speeds. For 1.5 Gb/s operation it must be clocked with a 37.5 MHz
clock derived from the receive side of the SATA PHY, for 3.0 Gb/s operation it is clocked with
a similarly derived 75 MHz clock and for 6.0 Gb/s operation, this becomes 150 MHz.

The data flow for the transmit side is shown in Figure 32-3. The data flow for the receive
side is shown in Figure 32-4.
Zynq UltraScale+ Device TRM 935
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=935

Chapter 32: SATA Controller
X-Ref Target - Figure 32-3

Figure 32‐3: Transmit Side Data Flow

Link layer checks if the remote
partner is ready

Link layer receives data from
the transport layer

Insert SOF, CRC, and EOF
into the data link layer frame

Scramble data link packet
excluding SOF and EOF

Encode packet with 8B/10B
and send it to PS-GTR

Serialize and transmit data

X17811-092916
Zynq UltraScale+ Device TRM 936
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=936

Chapter 32: SATA Controller
X-Ref Target - Figure 32-4

Figure 32‐4: Receive Side Data Flow

Link layer acknowledges
readiness to the link partner

Wait for the SOF primitive

Perform 8B/10B decoding

Remove the SOF and EOF
primitives

Descramble data payload and
CRC

Calculate CRC, report CRC
error and disparity, and code

error to transport layer

Send received data payload
to transport layer

X17812-092916
Zynq UltraScale+ Device TRM 937
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=937

Chapter 32: SATA Controller
The link layer also partakes in flow control between the local and remote ends. The layer
supports flow control actions based on the local FIFO status (which is located in the
transport layer), or in response to receiving flow control messages from the remote end.

The transmit side of the link layer is also responsible for inserting a pair of ALIGN primitives
every 254 double words, or more frequently as you can program the frequency.

PHY Control Layer

The PHY control layer operates between the PS-GTR and link layers. The main functions of
the PHY control layer are listed.

• Data path operation.
• RX data path.
• TX data path.
• PHY initialization state machine.
• Out-of-band processing.
• Speed negotiation.

On receive, the PHY control layer converts the encoded 20-bit parallel data from the PS-GTR
to a 32-bit double word, which it presents to the link layer. The PHY control layer aligns the
control word of the SATA primitive to the lowest word position of the double word. The PHY
control contains an 8B/10B decoder function and decodes the incoming data into data,
control/data and code, or disparity error. The PHY controller sends data, control/data and
code, or disparity error to the PS-GTR.

On transmit, the PHY control layer takes in the 32-bit transmit data from the link layer and
converts the data into encoded 20-bit parallel data to the PS-GTR. The control/data bit from
the link layer (which is always assumed to be associated with the lowest byte position of the
transmit double word) is also passed onto the PS-GTR with the appropriate word. The PHY
control layer takes the transmit word clock output by the PS-GTR and converts it to a
double word transmit clock which it sends to the link layer.

TrustZone Support

The SATA block is capable of enforcing TrustZone security scheme on both AXI interfaces.
Zynq UltraScale+ Device TRM 938
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=938

Chapter 32: SATA Controller
AXI Master Port Security Features

The AXI Master port is capable of driving the AWPROT and ARPROT bits with a
programmable value controlled from the TrustZone configuration register,
FPD_SLCR_SECURE.slcr_sata. When the [tz_en] bit is set to 1, the TrustZone security for the
slave port is determined by the [tz_axidma{0, 1}] bits. A value of 1 indicates TrustZone is
enabled for the AHCI interface master port. A value of 0 indicates TrustZone is disabled for
the master port.

The value of AWPROT can be independently controlled for the following transfers.

• Status FIS transfers.
• Intermediate data burst of a data transfer.
• Final data burst of a data transfer.

The value of ARPROT can be independently controlled for the following transfers.

• Posting PRD read-address to memory controller.
• Posting header read address to the memory controller
• Posting command FIS read address to memory controller
• Posting data burst read address to the memory controller

AXI Slave Port Security Features

The security level of the slave port is controlled from the TrustZone register configuration
(fpd_slcr_secure.SLCR_SATA). A value of 1 in the [tz_en] bit means that the TrustZone
function is enabled for the AXI slave port. When [tz_en] is set to 1, the TrustZone security for
the slave port is determined by [tz_axis] bit. A value of 1 in [tz_axis] indicates TrustZone is
enabled for the AHCI interface slave port. A value of 0 indicates TrustZone is disabled for
the slave port.

If the AXI slave port is given a secure status by the security controller (source of the
TrustZone bus) and an AXI access targets the slave port with a non-secure security level, an
AXI slave error is reported and a maskable interrupt is signaled.
Zynq UltraScale+ Device TRM 939
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=939

Chapter 32: SATA Controller
SATA Clocking and Reset

The AXI interface clock can be configured using the crf_apb.SATA_REF_CTRL register. For
more details on AXI interface clocking, refer to Chapter 37, PS Clock Subsystem.

The clocks used between the SATA host controller and PS-GTR transceiver are derived from
the reference clock used in the serial input output unit (SIOU). For more details, refer to the
PS-GTR Transceivers in Chapter 29.

Follow these steps when generating the AXI interface clock for the SATA controller.

1. To avoid a performance impact when configuring for SATA generation 2 and
generation 3, choose a frequency around 200 MHz (lower than 250 MHz).

2. For other configurations, choose a frequency near 100 MHz.

The block level reset to the SATA block is controlled by the crf_apb.RST_FPD_TOP[sata_reset]
bit.

Register Overview
The SATA host controller implements control and configuration registers in the vendor
specific space starting offset 0x0A0. Table 32-1 summarizes the registers that have been
implemented in the SATA host bus adapter (SATA_AHCI_HBA register set).

Table 32‐1: SATA Host Bus Adapter Memory Registers

Register
Type

Register Name Address Description

SATA Host
Bus Adapter

CAP 0xFD0C0000 HBA capabilities.
GHC 0xFD0C0004 Global HBA control.

IS 0xFD0C0008 Interrupt status.
PI 0xFD0C000C Ports implemented.
VS 0xFD0C0010 AHCI version.

CCC_CTL 0xFD0C0014 Command completion coalescing control.
CCC_PORTS 0xFD0C0018 Command completion coalescing ports.

EM_LOC 0xFD0C001C Enclosure management location.
EM_CTL 0xFD0C0020 Enclosure management control.

CAP2 0xFD0C0024 HBA capabilities extended.
BOHC 0xFD0C0028 BIOS/OS handoff control and status.
Zynq UltraScale+ Device TRM 940
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=940

Chapter 32: SATA Controller
Table 32-2 shows SATA AHCI ports 0 and 1 control registers (SATA_AHCI_PORTCNTRL
register set).

Table 32‐2: SATA AHCI Ports 0 and 1 Registers

Register
Type

Register
Name Address Description

SATA AHCI
Port 0

PxCLB 0xFD0C0100
0xFD0C0180

Port 0 and 1 command list base address.

PxCLBU 0xFD0C0104
0xFD0C0184

Port 0 and 1 command list base address upper 32 bits.

PxFB 0xFD0C0108
0xFD0C0188

Port 0 and 1 FIS base address.

PxFBU 0xFD0C010C
0xFD0C018C

Port 0 and 1 FIS base address upper 32 bits.

PxIS 0xFD0C0110
0xFD0C0190

Port 0 and 1 interrupt status.

PxIE 0xFD0C0114
0xFD0C0194

Port 0 and 1 interrupt enable.

PxCMD 0xFD0C0118
0xFD0C0198

Port 0 and 1 command and status.

PxTFD 0xFD0C0120
0xFD0C01A0

Port 0 and 1 task file data.

PxSIG 0xFD0C0124
0xFD0C01A4

Port 0 and 1 signature.

PxSSTS 0xFD0C0128
0xFD0C01A8

Ports 0 and 1 serial ATA status (SCR0: Sstatus).

PxSCTL 0xFD0C012C
0xFD0C01AC

Ports 0 and 1 serial ATA control (SCR2: SControl).

PxSERR 0xFD0C0130
0xFD0C01B0

Ports 0 and 1 serial ATA error (SCR1: SError) and diagnostics.

PxSACT 0xFD0C0134
0xFD0C01B4

Ports 0 and 1 serial ATA active (SCR3: SActive).

PxCI 0xFD0C0138
0xFD0C01B8

Ports 0 and 1 command issue.

PxSNTF 0xFD0C013C
0xFD0C01BC

Ports 0 and 1 serial ATA notification (SCR4: SNotification).

PxFBS 0xFD0C0140
0xFD0C01C0

Ports 0 and 1 FIS-based switching control.

PxDEVSLP 0xFD0C0144
0xFD0C01C4

Ports 0 and 1 device sleep.

PxBERR 0xFD0C0170
0xFD0C01F0

Ports 0 and 1 BIST error.

PxCMDS 0xFD0C0174
0xFD0C01F4

Ports 0 and 1 command status error.
Zynq UltraScale+ Device TRM 941
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=941

Chapter 32: SATA Controller
Table 32-3 shows the vendor-specific registers of the SATA controller (SATA_AHCI_VENDOR
register set).

Table 32‐3: Vendor Specific Registers

Register Type
Register

Name Address Description

Vendor
specific
registers

PCTRL 0xFD0C00A0 Port PS-GTR control.

PCFG 0xFD0C00A4
Port configuration. Dual-lane port select, timer scalars,
interrupt separation.

PPCFG 0xFD0C00A8 Port PHY configuration: control layer.
PP2C 0xFD0C00AC Port PHY configuration 2 (Phy2Cfg): OOB timing for COMMINIT.

PP3C 0xFD0C00B0
Port PHY Configuration 3 (Phy3CFg): OOB timing for the
COMMINIT.

PP4C 0xFD0C00B4 Port PHY Configuration 4: burst timing in COM.
PP5C 0xFD0C00B8 Port PHY Configuration 5: retry, interval time.
AXICC 0xFD0C00BC AXI cache control.
PAXIC 0xFD0C00C0 AXI configuration.
AXIPC 0xFD0C00C4 AXI PROT control.
PTC 0xFD0C00C8 Port transfer configuration (TransCfg): transport layer.
PTS 0xFD0C00CC Port transport layer status (TransStatus).
PLC 0xFD0C00D0 Port link-layer configuration 0 (LinkCfg).

PLC1 0xFD0C00D4 Port link-layer configuration 1 (LinkCfg1).
PLC2 0xFD0C00D8 Port link-layer configuration 2 (LinkCfg2).
PLS 0xFD0C00DC Port link-layer status 0.

PLS1 0xFD0C00E0 Port link-layer status 1.
PCMDC 0xFD0C00E4 Port command configuration.

PPCS 0xFD0C00E8 Port Phy status: PhyControlStatus.
AMS 0xFD0C00EC AXI master status.
TCR 0xFD0C00F0 Timer control.
Zynq UltraScale+ Device TRM 942
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=942

Chapter 32: SATA Controller
Programming Considerations
This section defines the programming flow for SATA controller. Figure 32-5 shows the flow
diagram.

Figure 32‐5: SATA Controller Programming Flow

SATA Example

Set bus reference clock to 250 MHz:
Program the value 0x01000200 to CRF_APB.SATA_REF_CTRL.

Assert SATA reset by writing into RST_FPD_TOP register:
0xFD1A0100: RST_FPD_TOP (CRF_APB) bit 0x1 for sata_reset

Set GT lane properties (like ICM_CFG , PLL_REF_CLK …) PS-GTR configuration• L2_PLL_FBDIV_FRAC_3_MSB[tm_force_en_frac] = 1 (Turn off SSC for L2)• L2_PLL_SS_STEP_SIZE_3_MSB.[tm_force_en_ss] = 1 (Enable test mode forcing on enable spread spectrum)• SERDES.ICM_CFG0 [L0_icm_cfg] = 2 (SATA on Lane0) • SERDES.PLL_REF_SEL0 [pllrefsel0] = 0x11 (for 150 MHz)

Set SATA PM CLK using sata_misc_ctrl register (0xFD3D0100)

Bypass scrambler/de-scrambler & 8b/10b encoder/decoder in SERDES for GT LANE by writing
L*_TM_DIG_6 & L*TM_DIG_61 as SATA controller already has them

Bring SATA by de-asserting the reset:
0xFD1A0100: RST_FPD_TOP (CRF_APB) bit 0x1 for sata_reset

Wait for GT lane PLL to be locked by reading L*_PLL_STATUS_READ_1 (SERDES module)

Program SATA BUS width to 64 bits:
 (0xFD0C00C0) PAXIC (SATA_AHCI_VENDOR)

Program the [ADBW] bit to 1 in

Set OOB & timer settings using PP2C, PP3C, PP4C & PP5C (0xFD0C00A0 (SATA_AHCI_VENDOR)• Program SATA_AHCI_VENDOR.PP2C = ‘h28184616
• Program SATA_AHCI_VENDOR.PP3C = ‘h13081907
• Program SATA_AHCI_VENDOR.PP4C = ‘h064A0815
• Program SATA_AHCI_VENDOR.PP5C = ‘h00000B00
• Program SATA_AHCI_VENDOR.PPCFG = ‘h00000010

Start Issuing commands:• SATA_AHCI_PORTCNTRL.PxCI[CI] = 1 (Issuing command)
• Check SATA_AHCI_PORTCNTRL.PxIS (for command status)
• Enable interrupt is SATA_AHCI_PORTCNTRL.PxIE
• SATA_AHCI_HBA.GHC[IE] = 1 (global interrupt enable for HBA)
• Check SATA_AHCI_HBA.IS to handle pending interrupts

End
X24649-092820
Zynq UltraScale+ Device TRM 943
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=943

Chapter 32: SATA Controller
The following sections define the individual steps that need to be carried out.

SATA Clock Programming

SATA AXI Bus Configuration

PS-GTR Configuration

Table 32‐4: Program SATA Clock

Task CRF_APB
Register Set

Bit Field Register
Offset

Bits Value

Program for 250 MHz
IOPLL source SATA_REF_CTRL [CLKACT], [DIVISOR0],

[SRCSEL] 0xA0 24 | 13:8 | 2:0 0x010200

Table 32‐5: Configure SATA AXI Bus

Task
SATA_AHCI_VENDOR

Register Set Bit Field
Register
Offset Bits Value

Select 64-bit bus width PAXIC [ADBW] 0xC0 1:0 2b'01

Table 32‐6: Configure PS-GTR

Task SERDES Register Set Bit Field
Register
Offset Bits Value

SSC turn off for L0 L0_PLL_FBDIV_FRAC_3_MSB [tm_force_en_frac] 0x2360 6 1b'1

SSC turn off for L0 L0_PLL_SS_STEP_SIZE_3_MSB [tm_force_en_ss] 0x237C 7 1b'1

SSC turn off for L1 L1_PLL_FBDIV_FRAC_3_MSB [tm_force_en_frac] 0x6360 6 1b'1

SSC turn off for L1 L1_PLL_SS_STEP_SIZE_3_MSB [tm_force_en_ss] 0x637C 7 1b'1

SSC turn off for L2 L2_PLL_FBDIV_FRAC_3_MSB [tm_force_en_frac] 0xA360 6 1b'1

SSC turn off for L2 L2_PLL_SS_STEP_SIZE_3_MSB [tm_force_en_ss] 0xA37C 7 1b'1

SSC turn off for L3 L3_PLL_FBDIV_FRAC_3_MSB [tm_force_en_frac] 0xE360 6 1b'1

SSC turn off for L3 L3_PLL_SS_STEP_SIZE_3_MSB [tm_force_en_ss] 0xE37C 7 1b'1

For PORT0

Select lane0 for SATA0 ICM_CFG0 [L0_icm_cfg] 0x0010 2:0 3b'010

PM clock frequency
selection for 150 MHz

 PLL_REF_SEL0 [pllrefsel0]
0x0000 4:0 0x11

PM clock frequency
selection for 300 MHz 0x0000 4:0 0x01
Zynq UltraScale+ Device TRM 944
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=944

Chapter 32: SATA Controller
PHY Configuration

AHCI SATA Configuration

Table 32‐7: PHY Configuration

Task Register Bit Field
Register
Offset Bits Value

To select port 0 SATA_AHCI_VENDOR.PCFG [PAD] 0x00A4 5:0 5b'00010

PHY control OOB
timing for the
COMINIT parameters

SATA_AHCI_VENDOR.PP2C ALL 0X00AC 31:0 ‘h2818_4616

PHY control OOB
timing for the
COMWAKE
parameters

SATA_AHCI_VENDOR.PP3C ALL 0x00B0 31:0 ‘h1308_1907

PHY control burst
timing for the COM
parameters

SATA_AHCI_VENDOR.PP4C ALL 0x00B4 31:0 ‘h064A_0815

PHY control retry
Interval timing SATA_AHCI_VENDOR.PP5C [RCT] 0X00b8 31:20 ‘hB00

Set host target speed SATA_AHCI_PORTCNTRL.PxSCTL [IPM], [SPD] 0x012C 11:4 'h33

Clear errors SATA_AHCI_PORTCNTRL.PxSERR ALL 0x0130 31:0 'hFFFF_FFFF

Table 32‐8: AHCI SATA Configuration

Task Register Bit Field
Register
Offset

Bits Value

Program command list
base address SATA_AHCI_PORTCNTRL.PxCLB [CLB] 0x0100 31:10 Address of CLB

data structure
Program FIS base
address SATA_AHCI_PORTCNTRL.PxFB [FB] 0x0108 31:8 Address of FIS

data structure
Enable FIS receive SATA_AHCI_PORTCNTRL.PxCMD [FRE] 0x0118 4 'b1

Wait until [CR] (bit 15) bit set in register SATA_AHCI_PORTCNTRL.PxCMD to make sure no command list is
running.
Start command
processing SATA_AHCI_PORTCNTRL.PxCMD [ST] 0x0118 0 b'1
Zynq UltraScale+ Device TRM 945
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=945

Chapter 32: SATA Controller
Issuing Command

Basic Steps When Building a Command
When software builds a command for the HBA to execute, it first finds an empty command
slot by reading the PxCI and PxSACT registers for the port. An empty command slot has its
respective bit cleared to 0 in both the PxCI and PxSACT registers. After a free slot (pFreeSlot
notation), is found:

• Software builds a command frame information structure (FIS) in system memory at
location PxCLB[CH(pFreeSlot)]:CFIS with the command type.

• If it is an ATAPI command, the ACMD field is filled in with the ATAPI command.
• Software builds a command header at PxCLB[CH(pFreeSlot)] with:

° PRDTL containing the number of entries in the PRD table.

° CFL set to the length of the command in the CFIS area.

° A bit set if it is an ATAPI command.

° W (Write) bit set if data is going to the device.

° P (Prefetch) bit optionally set.

° If a port multiplier is attached, the PMP field is set to the correct port multiplier
port.

• If it is a queued command, software first sets PxSACT [DS (pFreeSlot)]. Software should
only write new bits to set to 1; the previous register content of PxSACT should not be
rewritten in the register write.

• Software sets PxCI [CI (pFreeSlot)] to indicate to the HBA that a command is active.
Software should only write new bits to set to 1; the previous register content of PxCI
should not be rewritten in the register write.

Table 32‐9: Issuing Command

Task
SATA_AHCI_PORTCNTRL

Register Set
Register

Field
Register
Offset Bits Value

Check if the command
slot is free PxCI [CI] 0x0138 31:0 Read operation

Wait until the required command slot bit becomes 0.
Set the slot bits PxCI [CI] 0x0138 31:0 Write 1'b1 (for

command slot0)
Check if the command
slot is free PxCI [CI] 0x0138 31:0 Read operation

Wait until the required command slot bit becomes 0 (to ensure the completion of the command).
Zynq UltraScale+ Device TRM 946
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=946

Chapter 32: SATA Controller
Command FIS (CFIS)
This is a software constructed FIS. For data transfer operations, this is the H2D Register FIS
format as specified in below sections. The HBA sets PxTFD [STS_BSY], and then sends this
structure to the attached port. If a port multiplier is attached, this field must have the port
multiplier port number in the FIS itself – it should not be added by the HBA. Valid CFIS
lengths are 2 to 16 Dwords and must be in Dword granularity.

FIS Types

The following sections define the structure of each individual FIS.

FIS Type Values

The value for the FIS type fields of all FISes has been selected to provide additional
robustness. In minimally buffered operations that might not buffer a complete FIS, the state
machines might begin acting on the received FIS type value prior to the ending CRC having
been checked.

Because the FIS type value might be acted upon prior to the integrity of the complete FIS
being checked against its ending CRC, the FIS type field values have been selected to
maximize the Hamming distance between them.

FIS type value assignments are listed in Table 32-10.

Table 32‐10: FIS Type Value Assignments

Type Field Value Type Field Value Description

27h Register FIS: Host to device.
34h Register FIS: Device to host.
39h DMA activate FIS: Device to host.
41h DMA setup FIS: Bidirectional.
46h Data FIS: Bidirectional.
58h BIST activate FIS: Bidirectional.
5Fh PIO setup FIS: Device to host.
A1h Set device bits FIS: Device to host.
A6h Reserved.
B8h Reserved.
BFh Reserved.
C7h Vendor specific.
D4h Vendor specific.
D9h Reserved.
Zynq UltraScale+ Device TRM 947
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=947

Chapter 33

DisplayPort Controller

Introduction
The DisplayPort controller implements a flexible display and audio pipeline architecture.
The DisplayPort controller can source data from memory (non-live input) or the (live input)
programmable logic (PL). The DisplayPort processes data, and sends it out through the
DisplayPort source-only controller block to external display devices or to the PL (live
output). The DisplayPort pipeline consists of the DisplayPort direct memory access (DMA)
for fetching data from memory, a centralized buffer manager, a display rendering block, an
audio mixer block, and the DisplayPort source controller, along with the PS-GTR block. The
DisplayPort pipeline supports an ultra-high definition (UHD) aggregate video bandwidth of
30 Hz.

The DisplayPort DMA controller (DPDMA) supports up to six input channels as non-live
input. Video/graphics, and audio streams can be sourced from the PL as live streams. The
video processing stage involves mixing video and graphics streams, color space conversion,
and chroma sub-sampling. The audio processing stage involves mixing two audio streams
and volume control. The output of the audio/video processing pipeline can be output to the
DisplayPort source controller or optionally be routed to the PL as live output.

Table 33-1 describes several DisplayPort usage scenarios. It assumes that the functions
listed in the table can be enabled or disabled in software. When enabled, a function is used.
When disabled, a function is bypassed. Although desirable, the ability to dynamically switch
between used and bypass without causing a video artifact is not required.
Zynq UltraScale+ Device TRM 948
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=948

Chapter 33: DisplayPort Controller
Table 33‐1: DisplayPort Usage

Usage
Video

Chroma
Upsampling

Video
Color
Space

Conversion

Graphics
Color Space
Conversion

Alpha Blend

Blended
Video and
Graphics

Color
Space

Conversion

Blended
Chroma
Down-

sampling

Notes

1 V: YUV444
G: RGBA8888
TX: RGB

Bypass Use Bypass Use Bypass Bypass

2 V: YUV422
G: RGBA8888
TX: RGB

Use Use Bypass Use Bypass Bypass

3 V: YUV444
G: RGBA8888
TX: YUV444

Bypass Use Bypass Use Use Bypass

4 V: YUV444
G: RGBA8888
TX: YUV422

Bypass Use Bypass Use Use Use

5 V: YUV422
G: none
TX: YUV422

Bypass Bypass X Use Bypass Bypass Output must
be equal to
the input
(bit-exact).

6 V: YUV422
G: none
TX: YUV422

Use Use X Use Use Use This mode
allows
dynamic
addition and
removal of
graphics.

7 V: none
G: YUV
TX: YUV422

X X Bypass Use Bypass Use Graphics can
be YUV.

8 V: none
G: RGB
TX: YUV422

X X Bypass Use Use Use

9 V: YUV422
G: YUV
TX: YUV422

Use Use Use Use Use Use Graphics can
be YUV.

Notes:
1. Chroma upsampling is not required in the graphics processing pipeline.
Zynq UltraScale+ Device TRM 949
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=949

Chapter 33: DisplayPort Controller
Features

• Based on the VESA DisplayPort v1.2a source-only specification.
• Video support for the following:

° Resolution up to 4K x 2K at 30Fps.

° Y-only, YCbCr444, YCbCr422, YCbCr420, and RGB video formats.

° 6, 8, 10, or 12 bits per color components.

° Progressive video.

° A 36-bit native video input interface to capture live video.

° Non-live video from frame buffers using local DPDMA.
• Graphics features:

° Non-live graphics from the frame buffer in DDR memory.

° 36-bit native video interface along with an 8-bit alpha channel to capture live
graphics.

° 2-plane, on-the-fly rendering of video and graphics.

° Chroma upsampling and chroma downsampling.

° Color space conversion from YCbCr to RGB and vice versa.

° Video blending.

° Chroma keying.
• Audio features:

° Two audio channel with up to 24-bit sampling size.

° Maximum sample rate of 48 KHz.

° Live 24-bit audio sampling from the PL.

° Non-live 16-bit audio from the frame buffer in DDR memory.
• Audio mixer and volume control.

° Mixing of two audio streams of the same sampling rate and channel count.

° Provides gain control for audio streams.
• Streaming A/V output to the PL via an AXI interface.
• Includes a system time clock (STC) that is compliant with the ISO/IEC 13818-1 standard.

Provides time stamping of the A/V presentation unit.
• Video timing controller used for non-live video.
• Built-in test pattern generator.
Zynq UltraScale+ Device TRM 950
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=950

Chapter 33: DisplayPort Controller
• Dedicated video PLL in the FPD with an optional alternate reference clock input.
• Glitch-free start-stop behavior.

The following features are not supported.

• Interlacing.
• Two or more partial graphics overlay (OSD) regions over video.
• Multi-stream transport.
• 5.1 or 7.1 channel audio.
• Audio mixing of different sample rates. The live audio interface does not support

sample rate conversion.
• FAUX channel support.
• No back-pressure support on the PS to PL audio interface.

° Information frame is not supported.

° No user selectable option for audio metadata for the live audio input.
Note: See Answer Record 68671 for information on Xilinx tested monitors.

System Viewpoint

Figure 33-1 shows the video, graphics, and audio processing pipeline stages in the
DisplayPort controller block.
Zynq UltraScale+ Device TRM 951
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/support/answers/68671.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=951

Chapter 33: DisplayPort Controller
Functional Description
This section describes the following functions.

• Video/Graphics
• Audio
• DisplayPort DMA
• DisplayPort Controller Clocking

X-Ref Target - Figure 33-1

Figure 33‐1: Data Flow in the DisplayPort Controller

Interrupt

High Level Address Decoder

APB

Display Port
Source

Controller

Link layer and PHY layer
logic. PS-GTR is at
the system level.

AX
I-S

 1
28

-b
it

Live Native Video Input
(36-bit Video +

36-bit Graphics +
8-bit Alpha)

Live Audio Input
(AXI-M 32-bit)

Video Stream 1

AUX + HPDNative Video
(Mapped to

48-bit)

APB Master

Lane0: 16-bit
Data + 2-bit

Lane1: 16-bit
Data + 2-bit

PS-GTR Status

32-bit AXI-S
(Audio)

Video Stream 2

Audio Stream 1

Audio Stream 2

Blended
Video to

PL

Mixed
Audio to

PL

External
VSYNC
Event

External
Custom
Event 1

External
Custom
Event 2

Audio/Video Buffer
 Manager

and
STC

Audio Mixer

Video Rendering
Pipeline

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

DPDMA

PS
-G

TR

AXI-M 128-bit

X16959-120518
Zynq UltraScale+ Device TRM 952
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=952

Chapter 33: DisplayPort Controller
Video/Graphics

Figure 33-2 shows an overview of the system.

Video Input Stage

Non-live Video/Graphics Input

When video/graphics data is sourced from memory using the DPDMA, the input stream is
called a non-live input. The DPDMA has six input channels that are capable of fetching data
from memory. Refer to the DisplayPort DMA section for more details about handling
non-live input from memory.

X-Ref Target - Figure 33-2

Figure 33‐2: DisplayPort Controller Video Rendering Pipeline Block Diagram

Test Pattern
Generator

Live Video
Interface DisplayPort DMA Live Graphics

Interface

MUX Split

4:2:0 or 4:2:2

CHROMA Up Sampling

Color Space
Conversion

Color Space
Conversion

Alpha Blending

Color Space
Conversion

Chroma
Sub-sampling

MUX

Pallete or Bypass

Video Rendering Pipeline

Video Graphics

To Display Port Core/PL

4:2:2 or 4:4:4

4:2:2 or 4:4:4

X15506-092516
Zynq UltraScale+ Device TRM 953
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=953

Chapter 33: DisplayPort Controller
Live Video/Graphics Input

In the live input example, video and graphics data can be sourced from the PL. The video
and graphics frame synchronization signals are input to the live input interface. The video
timing can be controlled either from the PS or from the PL. When a live video interface is
used, video timing signals can be generated internally by using the VTC block in the PS or
the video timing generator block in the PL. This is more clear when the live video interface
are segregated into input and output. For live video input, (for example, an HDMI input), the
video timing must be generated in the PL. However for live video output, video timing
signals can be generated in both PS (VTC) and PL. Refer to the Live Video Output section for
more details about the live input stream.

Audio/Video Buffer Manager

The A/V buffer manager manages audio/video data from memory and from the PL layer.
Data from memory is considered non-live and data from the PL is considered live. Data from
memory is written into channel buffers using the AXI4 stream interface. The maximum burst
allowed is 256 bytes for video channels and 64 bytes on audio channels.

The DisplayPort controller is capable of presenting the following.

• Live video/audio stream
• Non-live video/audio
• A mix/blend of live and non-live video/audio

Live Presentation Mode

In live presentation mode, A/V data is received through the PL interface and the A/V timing
is used to drive the DisplayPort controller. There are two live inputs: video and live graphics
from the PL, which can be mixed together using alpha blending or chroma keying.

Non-Live Presentation Mode

In non-live presentation mode, A/V data is fetched from memory through the AXI master
port using the local DMA controller (DPDMA). Because the data is not timed, A/V timing is
locally generated in the DisplayPort controller using the internal A/V timing generator. The
DPDMA is driven to fetch data so as to ensure continuous A/V data flow with no underflow
due to memory latency fluctuations (a suitably sized FIFO is included). Two non-live inputs
are supported: video and graphics, which can be mixed together using alpha blending or
chroma keying.

To assist in A/V synchronization, the A/V presentation time must be captured as a
timestamp relative to a system time clock, and associated with A/V presentation units (e.g.
video frames and audio buffers), and provided to software, for example, by storing the
timestamp in the DPDMA descriptor.
Zynq UltraScale+ Device TRM 954
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=954

Chapter 33: DisplayPort Controller
Mixed Presentation Mode

In mixed presentation mode, both live A/V and non-live A/V data is blended/mixed
together and presented using the live A/V timing. The internal audio mixer provides audio
mixing only (audio sample rate and other attributes of the two sources must be identical).
The internal video/graphics alpha blender is used to blend the two video streams. In the
mixed presentation mode, the following stream requirements must be fulfilled.

• The resolution of the video/graphics frames going to the mixer must be the same.
• The input streams to the audio mixer requires the audio sampling frequency to be the

same between two streams.

Video Rendering Pipeline

The video rendering pipeline performs image blending, chroma upsampling and pixel
scaling. It has two inputs (before blending) and one output (after blending). The two input
paths are not identical. One input is used for video and the other is used for graphics. The
graphics path has a color palette and does not have chroma upsampling block (converts
4:2:2 to 4:4:4), so graphics must be in the 4:4:4 format. The video path has a 4:2:0 to 4:2:2
converter, a test pattern generator, and a chroma upsampling block.

Chroma Re-sampling

Chroma sub-sampling converts the video to 4:2:2 format by horizontally sub-sampling the
Cb and Cr components by a factor of 2. This is a simple DSP sample rate conversion
operation, in which the new sample rate is exactly half the old sample rate. Up-sampling is
the process of converting 4:2:2 format back to 4:4:4 by over-sampling the chroma
components by a factor of 2.

The video rendering pipeline contains a pixel scaling block at the input and pixel descaling
and dithering at the output. Depending on the configuration, the pixel scaling block can
scale a lower bit-per-color (BPC) value to a higher BPC value. The pixel descaling block can
convert a higher BPC to a lower BPC at the output of the video blender block. The pixel
scaling block converts low-resolution pixels to high-resolution pixels after multiplying the
input padded pixels by a scale factor. Pixel descaling is done at the video blender output.
Dithering reduces the contouring artifacts that occur at low pixel resolutions. The dithering
operation consists of the following.

• Add a dithering value
• Saturate
• Truncate to the desired size

The video blender (Figure 33-3) takes two native video stream inputs and outputs blended
pixels. The blending operation converts two input streams into RGB. The final result is
converted to proper format per user-supplied programming. The final output video is also
forwarded to the PL layer.
Zynq UltraScale+ Device TRM 955
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=955

Chapter 33: DisplayPort Controller
Alpha Blending

Video Blending is defined for two RGB video streams. One of these streams will be graphics
that have an alpha value along with RGB stream. The alpha value available with the graphics
stream will define the transparency of the graphics. Alpha value defined for blending
function is always 8-bit. 1-bit alpha and 4-bit alpha are also supported, but these are scaled
to 8-bits before they are used for alpha blending.

Chroma Keying

A chroma-keying operation for two video streams is supported with a programmable
master select, a programmable color select with a programmable range, and an enable for
chroma keying. If chroma keying is selected, video blending is bypassed.

The programmable options supported include the following.

• A programmable color as key with a range minimum to maximum.
• A select to enable chroma keying.
• Master stream select.

Video/Graphics Output Stage

DisplayPort Source Controller

The DisplayPort source controller is responsible for managing the link and physical layer
functionality. The controller packs audio/video data into transfer units or micro packets and

X-Ref Target - Figure 33-3

Figure 33‐3: Video Blender Block Diagram

Chroma
Upsampling

Input Color
Space

Converter

input_video_color_format[3:0]

Chroma
Upsampling

Input Color
Space

Converter

graphics_color_
format [3:0]

Alpha
Blending
(RGB) or
Chroma
Keying

Output
Color Space

Converter

output_color_format[3:0]

Chroma
Subsampling Video Out

Video
1

Video
2

Alpha

X17915-092516
Zynq UltraScale+ Device TRM 956
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=956

Chapter 33: DisplayPort Controller
sends them over the main link. The link rate and lane counts can be selected based on the
application bandwidth requirements.

The DisplayPort v1.2 protocol supports up to four lanes at a 5.4G line rate and includes
audio support. The DisplayPort controller only supports up to two lanes at a 5.4G line rate.
It does not support multi-stream transport or other optional features.

The source core is partitioned into three blocks.

• Main link: Provides for the delivery of the primary video stream.
• Secondary link: Integrates the delivery of audio information into the main link

blanking period.
• AUX channel: Establishes the dedicated source-to-sink communication channel.

Figure 33-4 shows the blocks of the DisplayPort source controller.

Live Video Output

The output of the video rendering pipeline can optionally be routed to the PL through the
live video output interface. Refer to the Live Video Interface section for more information
about the live video output.

Live Video Interface

The live video input interface comprises these features.

• A 36-bit native video interface is referred to as the live video input in this manual.
• A second 36-bit native video interface is referred to as the live graphics input and it has

a corresponding 8-bit alpha channel.

X-Ref Target - Figure 33-4

Figure 33‐4: DisplayPort Source Controller

PLL

link_clk

SerDes link

TTL Input

Differential I/O

Main Link

AUX Channel

HPD

PS-GTR

AUX Channel

Main Link

Video Data

Secondary
Channel

Audio Data

APB
Transmitter

X17916-092516
Zynq UltraScale+ Device TRM 957
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=957

Chapter 33: DisplayPort Controller
• Both the video and graphics inputs are expected to be of same resolution and have the
same video timing.

• The live graphics and live video can be of different bits per component (BPC) or video
formats.

• Y-only, RGB, YUV444, YUV 422 formats are supported on live video and graphics inputs.
• A bits per component (BPC) of 6/8/10/12 is supported on live video/graphics inputs.

The live video output interface comprises these features.

• A blended 36-bit video output.
• BPC = 12 (always). To use only 8 BPC, truncate the four least significant bits (LSBs).
• Supports the RGB, YUV 444, YUV 422, and Y-Only video formats.
• When the output format is Y-only, the values on the Cb/Cr can be ignored.

Table 33-2 shows the PS-PL interface signals for live video interface.

Table 33‐2: PS-PL Signals for the Live Video Interface

Signal Name Type Initial Value Description

dp_live_video_in_vsync Input – Video VSYNC.
dp_live_video_in_hsync Input – Video HSYNC.
dp_live_video_in_de Input – Video data enable.
dp_live_video_in_pixel1 [35:0] Input – Video pixel data 1. Video data from the PL.
dp_live_gfx_pixel1_in[35:0] Input – Graphics pixel input: Graphics data from the PL.
dp_live_gfx_alpha_in[7:0] Input – Alpha corresponding to graphics input from the PL.

dp_video_in_clk Input – Live video pixel clock for the live video and graphics I/O
interfaces.

dp_video_out_pixel1 [35:0] Output 0 Blended output, video pixel 1. Always 12 BPC.
dp_video_out_vsync Output 0 Blended output, video VSYNC.
dp_live_video_de_out Output 0 Blended output, video data enable.
dp_video_out_hsync Output 0 Blended output, video HSYNC.

dp_external_custom_event1 Input - External user-defined event trigger to capture
timestamps. Rising edge is detected as event trigger.

dp_external_custom_event2 Input - External user-defined event trigger to capture
timestamps. Rising edge is detected as event trigger.

dp_external_vsync_event Input - External VSYNC event trigger to capture timestamps.
Rising edge is detected as event trigger.

dp_video_ref_clk Output - 27 MHz STC reference clock. This clock is provided from
PS.

Notes:
1. The PS-PL interface signals for the live video/graphics interface are synchronized with the dp_video_in_clk signal.
Zynq UltraScale+ Device TRM 958
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=958

Chapter 33: DisplayPort Controller
Figure 33-5 shows the live video timing on the PS-PL interface.

TIP: The PS-PL interface signals are synchronized to the dp_video_in_clk signal.

Video Timing Generation

When using the live video interface, the video timing signals can be generated internally by
using the VTC block in the PS or the video timing generator block in the PL. The VTC block
in the PS accepts the PL live video clock (dp_video_in_clk) as an input and can generate
HSYNC and VSYNC signals. The VTC accepts clock inputs from two sources.

• Live video clock input (dp_video_in_clk) from the PL.
• Video clock generated from the video PLL.

When using a live video input from an external interface (for example, an HDMI input), the
video timing must be generated in the PL. For a live video output, the VTC block in the PS
can be used to generate the video timing signals.

When using the video PLL for generating the reference clock for the DisplayPort controller,
the programming flow is the same as the other PS PLLs. The video PLL can accept input from
any of the available reference clock inputs (PS_REF_CLK, ALT_REF_CLK, AUX_REF_CLK, or
VIDEO_CLK). It requires the helper data (mentioned in Chapter 37, PS Clock Subsystem) to
program the appropriate values of the PLL attributes.

High Level Address Decoder

The high-level address decoder module takes care of decoding the addresses targeted for
the blocks described in the Audio/Video Buffer Manager and the DisplayPort Source
Controller sections.

Video Formats

The pixel data are stored in a packed format in memory. The pixel unpacker block reads
samples based on the specified format and presents it as single pixel-per-clock data to the

X-Ref Target - Figure 33-5

Figure 33‐5: Live Video Timing on the PS-PL Interface

dp_video_in_clk

dp_live_video_in_pixel1

dp_live_video_in_vsync
dp_live_video_in_hsync

dp_live_video_in_de

X15892-092516
Zynq UltraScale+ Device TRM 959
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=959

Chapter 33: DisplayPort Controller
next processing block in the DisplayPort controller block. The supported frame buffer color
formats for video and graphics are described in the following tables.

Live Video Format

The live video is expected to be in the format shown in Table 33-3.

For live video YCbCr 422, the first pixel can have Cb or Cr. There is a programmable option
to select whether Cb or Cr is received as the first pixel.

Video Packer Format

Table 33-4 shows the video packer format. The dp.AV_BUF_FORMAT[NL_VID_FORMAT]
register determines the input video format that can be fetched from memory. The request
interval depends on the burst length that is programmed in the dp.AV_CHBUF0[BURST_LEN]
and signifies the time interval between each sample of the packed video format.

Table 33‐3: Live Video Format

Format BPC/BPP R G B Cr Y Cb Cr/Cb Y

RGB 6/18 [35:30] [23:18] [11:6]
RGB 8/24 [35:28] [23:16] [11:4]
RGB 10/30 [35:26] [23:14] [11:2]
RGB 12/36 [35:24] [23:12] [11:0]

YCbCr444 6/18 [35:30] [23:18] [11:6]
YCbCr444 8/24 [35:28] [23:16] [11:4]
YCbCr444 10/30 [35:26] [23:14] [11:2]
YCbCr444 12/36 [35:24] [23:12] [11:0]
YCbCr422 8/16 [35:28] [23:16]
YCbCr422 10/20 [35:26] [23:14]
YCbCr422 12/24 [35:24] [23:12]

YONLY 8/8 [35:28]
YONLY 10/10 [35:26]
YONLY 12/12 [35:24]

Table 33‐4: Video Packer Format

Color Format dp.AV_BUF_FORMAT
[NL_VID_FORMAT]

Format
Description

BPP Number of pixels in
a beat

Request Interval

Video

Cb-Y0-Cr-Y1 0 Interleaved
422 16 8 8 x BL

Cr-Y0-Cb-Y1 1 Interleaved
422 16 8 8 x BL
Zynq UltraScale+ Device TRM 960
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=960

Chapter 33: DisplayPort Controller
Y0-Cr-Y1-Cb 2 Interleaved
422 16 8 8 x BL

Y0-Cb-Y1-Cr 3 Interleaved
422 16 8 8 x BL

YV16 (planar) 4 Planar 422 16
16 pixels from

Buffer 0; 32 from
Buffer 1 and 2.

16 x BL for channel 0
32 x BL for channel 1 and 2

YV24 (planar) 5 Planar 444 24 16 from 1 beats
from each buffer. 16 x BL on all 3 buffers

YV16ci
(semi-planar) 6 Semi-planar

422 16 16, from 2 buffers 16 x BL on 2 buffers

Monochrome
(Y-only) 7

Monochrome
Cb/Cr at the
output of the
unpacker =

2048 (signed
zero)

8 16 16 x BL

YV16ci2
(semi-planar) 8

Semi-planar
422 with

Cb/Cr
swapped

16 16, from 2 buffers 16 x BL on all 3 buffers

YUV444 9 Interleaved
444 24 16, from 3 beats

BL = 1: 5, 5, 6
BL = 2: 10, 11, 11
BL = 4: 21, 21, 22
BL = 8: 42, 43, 43

BL = 16: 85, 85, 86

RGB888 10 Interleaved
444 24 16, from 3 beats

BL = 1: 5, 5, 6
BL = 2: 10, 11, 11
BL = 4: 21, 21, 22
BL = 8: 42, 43, 43

BL = 16: 85, 85, 86

RGBA8880# 11 Interleaved
4440 32 4 4 x BL

RGB888_10BPC 12 Interleaved
444 30

4 pixels per beat.
Ignore 2 bits in

each 32 bits.
4 x BL

YUV444_10BPC 13 Interleaved
444 30

4 pixels per beat.
Ignore 2 bits in

each 32 bits.
4 x BL

Table 33‐4: Video Packer Format (Cont’d)

Color Format dp.AV_BUF_FORMAT
[NL_VID_FORMAT]

Format
Description

BPP Number of pixels in
a beat

Request Interval
Zynq UltraScale+ Device TRM 961
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=961

Chapter 33: DisplayPort Controller
Graphics Packer Format

Table 33-5 shows the graphics packer format. The
dp.AV_BUF_FORMAT[NL_GRAPHICS_FORMAT] register determines the input video format
that can be fetched from memory. The request interval depends on the burst length that is

YV16ci2_10BPC
(planar) 14

Semi-planar
422 with

Cb/Cr
swapped

20 12 pixels per beat.
Ignore MSB 8 bits. 12 x BL

YV16ci_10BPC
(planar) 15 Semi-planar

422 20 12 pixels per beat.
Ignore MSB 8 bits.

YV16_10BPC
(planar) 16 Planar 422 20

12 pixels per beat
from Y buffer.

24 pixels per beat
from each of Cb/Cr

buffers.
Ignore MSB 8 bits.

12 x BL for Y buffer
24 x BL for Cb and Cr

buffers

YV24_10BPC
(planar) 17 Planar 444 30 12 pixels per beat.

Ignore MSB 8 bits 12 x BL

Monochrome_
10BPC 18 Monochrome 10 12 pixels per beat

Ignore MSB 8 bits 12 x BL

YV16_420
(planar) 19 Planar 420 16 16 from Y buffer 32

from Cb/Cr buffers

16 x BL for Y buffer 32 x BL
for Cb and Cr buffers

(based on vertical filter
requirements)

YV16CI_420
(semi-planar) 20 Semi-planar

420 16 16, from 2 buffers
16 x BL for buffer 0 and 1

(based on vertical filter
requirements)

YV16CI2_420 21
Semi-planar

420 with
Cb/Cr

swapped
16

16, from 2 buffers
(with Cb/Cr
swapped)

16 x BL for buffer 0 and 1
(based on vertical filter

requirements)

YV16_420_
10BPC (planar) 22 Planar 420 20

12 from Y buffer 24
from Cb/Cr buffers

(together)

12 x BL for buffer 0 and
24 x BL for buffer 1 and 2

(based on vertical filter
requirements)

YV16CI_420_
10BPC

(semi-planar)
23 Semi-planar

420 20 12, from 2 buffers
12 x BL for buffer 0 and 1

(based on vertical filter
requirements)

YV16CI2_420_
10BPC 24

Semi-planar
420 with

Cb/Cr
swapped

20
12, from 2 buffers

(with Cb/Cr
swapped)

16 x BL for buffer 0 and 1
(based on vertical filter

requirements)

Table 33‐4: Video Packer Format (Cont’d)

Color Format dp.AV_BUF_FORMAT
[NL_VID_FORMAT]

Format
Description

BPP Number of pixels in
a beat

Request Interval
Zynq UltraScale+ Device TRM 962
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=962

Chapter 33: DisplayPort Controller
programmed in the dp.AV_CHBUF0[BURST_LEN] and signifies the time interval between
each sample of the packed video format.

RGB8880 looks just like RGBA8888, i.e., eight bits per color, three colors, alpha unused, so
pixels are 32-bit aligned. Data can be either RGB or YUV. For video, alpha is never used.

Supported Video Formats

The Figure 33-6 to Figure 33-13 show the supported video formats. The data on the left
side is from the memory and pixel unpacker formats the data as pixel data (as is shown in
the right side). The buffers are 128-bit organized. These figures show how the pixels are
mapped in the lower 8-bytes (0 to 63). The mapping of the upper 8-bytes is the same as the
lower bytes. The interface between the A/V buffer manager and the video blender is 48 bits.

Table 33‐5: Graphics Packer Format

Color Format
dp.AV_BUF_FORMAT

[NL_GRAPHX_FORMAT] Description Num Pixels in Beat Request Interval

Graphics
RGBA8888 0 4 4 x BL
ABGR8888 1 4 4 x BL

RGB888 2 For 3 beats, 16 pixels

BL = 1: 5, 5, 6
BL = 2: 10, 11, 11
BL = 4: 21, 21, 22
BL = 8: 42, 43, 43

BL = 16: 85, 85, 86

BGR888 3 For 3 beats, 16 pixels

BL = 1: 5, 5, 6
BL = 2: 10, 11, 11
BL = 4: 21, 21, 22
BL = 8: 42, 43, 43

BL = 16: 85, 85, 86
RGBA5551 4 8 8 x BL
RGBA4444 5 8 8 x BL

RGB565 6 8 8 x BL
8BPP 7 16 pixel addresses 16 x BL
4BPP 8 32 pixel addresses 32 x BL
2BPP 9 64 pixel addresses 64 x BL
1BPP 10 128 pixel addresses 128 x BL

YUV444 11 Unpacking same as
YUV444 video format For 3 beats, 16 pixels

BL = 1: 5, 5, 6
BL = 2: 10, 11, 11
BL = 4: 21, 21, 22
BL = 8: 42, 43, 43

BL = 16: 85, 85, 86
Zynq UltraScale+ Device TRM 963
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=963

Chapter 33: DisplayPort Controller
It supports 16 bits/component. The video path works on 12 bits/component, the extra bits
are dead bits.

X-Ref Target - Figure 33-6

Figure 33‐6: RBG Video Format

A B G R A B G R

63 0

RGBA8888
ABGR8888 mapping will be similar with colors swapped.

Color Formats (Input)

G R B G R B G R

63 0

R B G R B G R B

B G R B G R B G

R

R

For every 1 memory
read, 2 pixels are

generated at output

47 32

G

G

31 16

B

B

15 0

R

R

For every 3 memory
reads, 8 pixels are
generated at output

47 32

G

G

31 16

B

B

15 0

R G B

Pixel Formatted For DisplayPort

63 0

R

R

For every 1 memory
read, 4 pixels are

generated at output

47 32

G

G

31 16

B

B

15 0

R

R

G

G

B

B

RGBA5551

RGBA RGBA RGBA RGBA

A

A

0

0

0

7 0

A

7 0

Alpha

Alpha

7 0
Alpha

1

A

A

A

RGB888
BGR8888 mapping will be similar with colors swapped.

X16939-092516

X-Ref Target - Figure 33-7

Figure 33‐7: Interleaved RBG Video Format

R

R

For every 1 memory
read of ch0 buffer,

2 pixels are generated
at output (and 2 unused

bits in every 32 bits)

47 32

G

G

31 16

B

B

15 0

0

0

7 063 31

B B G R

0

Interleaved RGB 10 BPC

X16940-092516
Zynq UltraScale+ Device TRM 964
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=964

Chapter 33: DisplayPort Controller
X-Ref Target - Figure 33-8

Figure 33‐8: RGB444 Video Format

63 0

R

R

For every 1 memory
read, 4 pixels are

generated at output

47 32

G

G

31 16

B

B

15 0

R

R

G

G

B

B

RGBA4444

RGBA RGBA RGBA RGBA A

7 04

A

A

A

63 0

R

R

For every 1 memory
read, 4 pixels are

generated at output

47 32

G

G

31 16

B

B

15 0

R

R

G

G

B

B

RGB565

RGB RGB RGB RGBA

7 0

42

42

26

26

0

0

0

0

Alpha

Alpha

10

10

R

R

For every 1 memory
read, 8 pixels are

generated at output

47 32

G

G

31 16

B

B

15 0

R

R

G

G

B

B

7 042 26

0

0

0

0

Alpha

10

A palette based lookup
is provided to get color

output and re-mapped to
12-bits per color field.

P7 P1 P0

63 0

8BPP

Color Formats (Input)

P2

Pixel formatted for DisplayPort

X16941-092516
Zynq UltraScale+ Device TRM 965
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=965

Chapter 33: DisplayPort Controller
X-Ref Target - Figure 33-9

Figure 33‐9: BPP Video Format

P14 P15 P0 P1

63 0

4BPP

Color Formats (Input)

R

R

For every 1 memory
read, 16 pixels are
generated at output

47 32

G

G

31 16

B

B

15 0

R

R

G

G

B

B

Pixel Formatted For DisplayPort

0

0

0

0

7 0

Alpha

A palette-based lookup
is provided to get color
output and are mapped
to 12-bits per color field

P28 P31 P0 P1

63 0

2BPP

R

R

For every 1 memory
read, 32 pixels are
generated at output

47 32

G

G

31 16

B

B

15 0

R

R

G

G

B

B

0

0

0

0

7 0

Alpha

A palette-based lookup
is provided to get color
output and are mapped
to 12-bits per color field

56

P3

7

P56 P63 P0 P1

63 0

1BPP

R

R

For every 1 memory
read, 64 pixels are
generated at output

47 32

G

G

31 16

B

B

15 0

R

R

G

G

B

B

0

0

0

0

7 0

Alpha

A palette-based lookup
is provided to get color
output and are mapped
to 12-bits per color field

56

P7

7

X16942-092516
Zynq UltraScale+ Device TRM 966
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=966

Chapter 33: DisplayPort Controller
X-Ref Target - Figure 33-10

Figure 33‐10: YUV Video Format

Y3 Cr Y2 Cb Y1 Cr Y0 Cb

63 0

Cb-Y0-Cr-Y1
(8 Bits Per Pixel)

Cr-Y0-Cb-Y1/Y0-Cr-Y1-Cb / Y0-Cb-Y1-Cr / YV16 / YV16ci formats
will also be formatted for DisplayPort input

Color Formats (Input)

Cr Y Cb Cr Y Cb Cr Y

63 0

Y Cb Cr Y Cb Cr Y Cb

Cb Cr Y Cb Cr Y Cb Cr

Cb

Cr

For every 1 memory
read, 4 pixels are

generated at output

47 32

Y0

Y1

31 16 15 0

Cr

Cr

For every 3 memory
reads, 8 pixels are
generated at output

47 32

Y

Y

31 16

Cb

Cb

15 0

Cr Y Cb

Pixel Formatted For DisplayPort

0

0

0

7 0
Alpha

Cb

Cr

Y2

Y3

Y Y Y

63 0

Y

Y

For every 3 memory
reads, 8 pixels are
generated at output

47 32 31 16 15 0

0

0

7 0
Alpha

Y-Only

Y Y Y

63 0

Cr

Cr

For every 1 memory
read, 8 pixels are

generated at output

47 32

Y

Y

31 16

Cb

Cb

15 0

0

0

7 0

YUV 24 planar

Cr Cr Cr

Cb Cb Cb

0 G R

63 0

R

R

For every 1 memory
read, 2 pixels are

generated at output

47 32

G

G

31 16

B

B

15 0

0

0

7 0

0 BRB G

RGBA8880
Data can be RGB or YUV

Cr R B G R B G R

63 0

R B G R B G R B

B G R B G R B G

R

R

For every 3 memory
reads, 8 pixels are
generated at output

47 32

G

G

31 16

B

B

15 0

R G B

0

0

0

7 0

RGB888 video

Y 0

X16943-092516
Zynq UltraScale+ Device TRM 967
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=967

Chapter 33: DisplayPort Controller
X-Ref Target - Figure 33-11

Figure 33‐11: YV Video Format

63 31

Cr

Cb

For every 1 memory
read of each of the Cb,
Cr buffers, and 2 reads
of Y-buffer, 16 pixels

are generated

47 32

Y

Y

31 16 15 0

Cb Y

0

0

0

7 0

YV16 (Planar)
8 bits per color

Cb Cb Cb Cb Cb Cb Cb Y

Cr Cr Cr Cr Cr Cr Cr Cr

Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y

Cr

CbCb

Cr

Cb

For every 1 memory
read from 2 buffers, 8

pixels are generated at
output. 8 bits per color

47 32

Y0

Y1

31 16 15 0

Cr Y7

Y Y Y Y Y Y Y Y

YV16ci (Planar)
8 bits per color

Cb Cr Cb Cr Cb Cr Cb CrCr

Cr

Cb

For every 1 memory
read from 2 buffers, 8

pixels are generated at
output. 8 bits per color

47 32

Y0

Y1

31 16 15 0

Cr Y7

0

0

0

7 0

Y Y Y Y Y Y Y Y

YV16ci2 (Planar)
8 bits per color

Cr Cb Cr Cb Cr Cb Cr CbCb

63 0

X16944-092516
Zynq UltraScale+ Device TRM 968
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=968

Chapter 33: DisplayPort Controller
X-Ref Target - Figure 33-12

Figure 33‐12: YV24 Video Format

63

Planar YV24 10 BPC

Cr

Cb

For every 1 memory
read, 6 pixels are

generated at output.
(and 2 unused bits in

every 32 bits)

47 32

Y

Y

31 16

Cb

Cb

15 0

0

0

7 0
Y Y Y Y

0

63 31

Cr Cr Cr Cr

0

63 31

Cb Cb Cb Y

0

Cb

63

Planar YV16 10 BPC

Cr

Cb

For every 2 memory
reads of Y buffer and 1
read of Cb/Cr buffers,

12 pixels are generated
at output (and 2 unused

bits in every 32 bits).

47 32

Y

Y

31 16 15 0

0

0

7 0

Y Y Y Y

0

63 31

Cr Cr Cr Cr

0

63 31

Cb Cb Cb Cb

0

Cb

Cr

Cr

For every 1 memory
read of ch0 buffer,

2 pixels are generated
at output (and 2 unused

bits in every 32 bits).

47 32

Y

Y

31 16

Cb

Cb

15 0

0

0

7 0

63 31

Cb Cb Cr Y

0

Interleaved YUV444 10 BPC

Y

Y

For every 1 memory
read of ch0 buffer,

6 pixels are generated
at output (and 2 unused

bits in every 32 bits).

47 32

0

0

31 16

0

0

15 0

0

0

7

63 31

Y Y Y Y

0

Y Only 10 BPC

31

0

YV16CI 10 bits per color

Cr

Cb

For every 1 memory
read from 2 buffers, 8

pixels are generated at
output. 10 bits per color

47 32

Y0

Y1

31 16 15 0

Y Y Y Y Y Y Y Y

Cb Cr Cb Cr Cb Cr Cb CrCr

63 0

YV16CI2 10 bits per color

Cr

Cb

For every 1 memory
read from 2 buffers, 8

pixels are generated at
output. 10 bits per color

47 32

Y0

Y1

31 16 15 0

Y Y Y Y Y Y Y Y

Cr Cr Cr Cb Cr Cb Cr CbCb

63 0

X16945-092516
Zynq UltraScale+ Device TRM 969
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=969

Chapter 33: DisplayPort Controller
X-Ref Target - Figure 33-13

Figure 33‐13: Planar Video Format

Y Y Y

63 0

Cb

Cr

47 32

Y0

Y1

31 16 15 0

Y

Cr Cr Cb

63 0

Cb

YV16CI2 420

63

Planar YV16 _420 10 BPC

Cr

Cr

For every 2 memory
reads of Y buffer and 1
memory read of Cb/Cr

buffers, 6 pixels are
generated at output.

47 32

Y

Y

31 16

Cb

Cb

15 0

0

0

7 0

Y Y Y

0

63 31

Cr Cr Cr

0

63 31

Cb Cb Cb

0

Cb

Cr

Cr

Y

Y

Cb

Cb

0

0

31

31

1 read from Cb/Cr
buffers contain data for

2 lines. For Y-buffer,
each line has unique

value

Y Y Y

63 0

Cr

Cb

Same as YV16CI420, except
for swap in Cb and Cr

47 32

Y

Y

31 16 15 0

0

0

7 0
Y

Cr Cr Cb

63 0

Cb

Planar Y16CI2 420

31

31

Y Y Y

63 0

Cb

Cr

47 32

Y0

Y1

31 16 15 0

Y

Cb Cb Cr

63 0

Cr

YV16CI 420

31

31

Y Y Y

63 0

Cb

Cr

47 32

Y0

Y1

31 16 15 0

Y

Cr Cr Cb

63 0

Cb

YV16CI2 420 10 BPC

31

31

Y Y Y

63 0

Cb

Cr

47 32

Y0

Y1

31 16 15 0

Y

Cb Cb Cr

63 0

Cr

YV16CI 420 10 BPC

31

31

X16946-092516
Zynq UltraScale+ Device TRM 970
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=970

Chapter 33: DisplayPort Controller
Audio

The DisplayPort controller supports a non-live audio channel from memory and a live audio
channel from the PL. The audio mixer block is capable of mixing the two audio channels
based on predefined gain settings. The output of the mixer can either be sourced to the
DisplayPort source-only controller or to the PL.

Audio Input Stage

The audio can be sourced from memory or from the PL using a dedicated audio channel to
the DisplayPort controller. The following sections describe each of the interfaces for
sourcing audio.

Audio Non-live Input

Non-live audio input can be sourced from memory using the DPDMA. This interface
supports two non-live audio channels capable of fetching audio samples from memory.
Refer to the DisplayPort DMA section for further details.

Audio Live Input

Live audio can be sourced from PL. The A/V buffer manager handles multiplexing between
live and non-live audio input and provides two audio streams to audio mixer block. For
more details of live audio interface, please refer to PS-PL audio interface section.

Audio Processing Stage

The audio processing stage involves mixing two audio streams based on a predefined gain
setting. The processing pipeline contains volume control circuitry to control the volume of
the audio output.

Audio Mixer

Audio mixing uses two audio streams with the same audio sample rates. The audio mixer
block does not perform any upsampling or downsampling. Figure 33-14 shows the block
diagram of the audio mixer block.
Zynq UltraScale+ Device TRM 971
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=971

Chapter 33: DisplayPort Controller
The mixing is implemented using additive logic on 24-bit audio samples as shown in
Figure 33-14. Each audio stream is multiplied with a corresponding 16-bit volume control
and then added.

X-Ref Target - Figure 33-14

Figure 33‐14: Audio Mixer Block Diagram

Live Audio
Input

32-bit Live Audio

Non-Live
Audio

Stream 1

16-bit Non-Live Audio

No Audio
Source
(GND)

10
11

01

00

M
U

X

Audio Stream 1
Audio Mixer

32-bit AXI4 Streaming Audio Out

2-bit Audio Stream 1 Select
(from Registers)

Non-Live
Audio

Stream 2
16-Bit Non-Live Audio

Audio Stream 2

Volume Control per Stream (from Registers)

Meta Data (from Registers for Non-Live Audio)

X17906-092516

X-Ref Target - Figure 33-15

Figure 33‐15: Volume Control Block Diagram

32/24-Bit Audio Stream 1

16-Bit Volume Control for Stream 1
(from registers)

Saturation
Logic

Meta Data
Preamble
Insertion

Logic

32-Bit AXI4 Streaming
Audio Out

24-Bit Audio Stream 2

16-Bit Volume Control for Stream 2
(from registers)

Meta Data (CU)
(from registers)

24-bit
Audio Sample

24-bit
Audio Sample

X17909-092516
Zynq UltraScale+ Device TRM 972
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=972

Chapter 33: DisplayPort Controller
The mixed audio in AXI-S format is forwarded to the DisplayPort source controller and the
PL. A small holding buffer that supports AXI-S is used to handshake with the PL. The audio
channel does not accept any back pressure from the PL interface.

Audio Output Stage

Audio Output Stage from the DisplayPort Source Controller

The output of the pipeline stage is provided to the DisplayPort source controller. The
DisplayPort source controller inserts audio packets in the audio slots and transmits the
audio to the receiving device.

Audio Live Output

Optionally, the output of the audio mixer can be output to the PL. Refer to the PS-PL Audio
Interface section for details about the live audio output interface.

PS-PL Audio Interface

On the output interface, the data is at audio frequency, each sample separated by 1/ƒs
where ƒs = sampling frequency. Back pressure from PL to PS is not supported.

Table 33-6 shows the PS-PL interface signals for live audio interface. The audio_in group of
signals is called the S_AXIS_AUDIO interface. The audio_out group of signals is called the
M_AXIS_MIXED_AUDIO interface.

Table 33‐6: PS-PL Signals for the Live Audio Interface

Signal Name Type Initial
Value

Description

dp_s_axis_live_audio_tdata[31:0] Input –

Streaming data input.
[3:0] Preamble code (PR).
4'b0001  Subframe 1, start of audio block.
4'b0010  Subframe 1.
4'b0011  Subframe 2.

[27:4] Audio sample word.
[28] Validity bit (V).
[29] User bit (U).
[30] Channel status (C).
[31] Parity (P).

dp_s_axis_live_audio_tid Input – Audio channel ID.
dp_s_axis_live_audio_tvalid Input – Valid indicator for audio data from master.
dp_s_axis_live_audio_tready Output 0 Ready indicator from DisplayPort controller.
dp_s_axis_audio_aclk Input – Clock for AXI slave audio data input.
Zynq UltraScale+ Device TRM 973
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=973

Chapter 33: DisplayPort Controller
Non-Live Audio Format

A 16-bit audio format is supported by the non-live channel and samples are packed in a
128-bit AXI bus. The mapping for the lower 64-bits, upper 64-bits are shown below. There
is an option to swap left and right channels.

TIP: To swap left and right channels using the SW bit for both graphics and non-live audio. See the
register description: dp.AV_BUFFER_AUDIO_CH_CONFIG.

The maximum burst size supported on an audio channel is 4.

dp_m_axis_mixed_audio_tdata[31:0] Output 0

Streaming data input.
[3:0] Preamble code (PR).
4'b0001  Subframe 1, start of audio block.
4'b0010  Subframe 1.
4'b0011  Subframe 2.

[27:4] Audio sample word.
[28] Validity bit (V).
[29] User bit (U).
[30] Channel status (C).
[31] Parity (P).

dp_m_axis_mixed_audio_tid Output 0 Audio channel ID.
dp_m_axis_mixed_audio_tvalid Output 0 Valid indicator for audio data from master.
dp_m_axis_mixed_audio_tready Input – Ready indicator from PL

Notes:
1. The live audio interface needs to be synchronized with the dp_s_axis_audio_aclk signal.

Table 33‐6: PS-PL Signals for the Live Audio Interface (Cont’d)

Signal Name Type Initial
Value

Description

16-bit audio sample 4
(right channel sample)

16-bit audio sample 3
(left channel sample)

16-bit audio sample 2
(right channel sample)

16-bit audio sample 1
(left channel sample)
Zynq UltraScale+ Device TRM 974
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=974

Chapter 33: DisplayPort Controller
Live Audio Format

Audio data is written into memory in an AES3 standard format. The mapping for a 32-bit
sample is shown below.

The metadata (such as P, C, U, V and preamble code) is embedded along with the live data
input. For non-live data, registers are provided to input the metadata. The audio stream
selector picks two streams per your selection and forwards them to the output.

Audio Metadata

When live audio is selected on stream1, irrespective of stream2, the channel status (C), user
bit (U), and validity (V) metadata are considered from thelive data input. Because 16-bit
non-live audio does not carry the channel status (C) metadata, user bit (U) bits are used
from the registers. The parity bit (P) is internally calculated and inserted in the audio sample
as audio mixing can change the incoming data parity. The use-cases in Table 33-7 are
supported for metadata insertion.

DisplayPort DMA

The DisplayPort controller source system supports multiple video and audio channels which
are used to get video/audio data from system DDR memory. These are known as non-live
video/audio. To facilitate the data transfer from DDR to the DisplayPort controller, a
DisplayPort DMA (DPDMA) block is included in the DisplayPort subsystem to handle six
channels; three video channels, one graphics channel, and two audio channels. The DPDMA
fetches the frame buffer data from the DDR and hands it over to the audio video buffer (AV
buffer) inside the DisplayPort controller. The DPDMA uses an AXI stream interface with the
DisplayPort controller, while it is connected to the DDR through the AXI interconnect in the
PS. An AXI3 128-bit master interface is used by the DPDMA to connect with the PS
interconnect.

31 30 29 28 27:4 3:0

Parity
(P)

Channel Status
(C)

User Bit
(U)

Validity
(V) Audio Sample Word

Preamble Code:
• 4'b0001: Subframe1 start of

audio block.
• 4'b0010: Subframe1
• 4'b0011: Subframe2

Table 33‐7: Audio Metadata Use Cases

Stream1 Stream2 Metadata

Live OFF Live
Live Non-Live Live

Non-Live OFF Register
Non-Live Non-Live Register

OFF Non-Live Register
Zynq UltraScale+ Device TRM 975
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=975

Chapter 33: DisplayPort Controller
Each DPDMA channel has a configuration register for the QoS value. By default, the input of
the DisplayPort controller from the PL should have the QoS to set the video traffic class.
Otherwise, small latency may choke the DMA and end up cutting the display. Refer to Zynq
UltraScale+ Devices Register Reference (UG1087) [Ref 4].

The DPDMA supports the following features:

• Support for simultaneous read and write transactions.
• Six independent channels.
• Multiple outstanding transactions per channel.
• Fixed interval transaction scheduling.
• Simple memory buffer and 2-D buffer formats with line stride (for video).
• Memory-based descriptor task linked list with wrap option (a circular list of buffers).
• Support for autonomous operation with a circular task list.
• Each descriptor (per channel) provides programmable values to be programmed by

system software.
• Support for line/buffer size that is not an integer multiple of the AXI burst size/length.
• Support for the option to set/clear buffer done flag in the descriptor.
• Support for the option to store a timestamp in the descriptor.
• Support for optional interrupt generation at the end of each task.

DPDMA does not support the following features:

• Varying burst length for each channel.
• A CRC option on the DPDMA.
• Redundant pixel formats for video and graphics.
Zynq UltraScale+ Device TRM 976
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=976

Chapter 33: DisplayPort Controller
Figure 33-16 shows the DPDMA block in the Zynq UltraScale+ MPSoC. The following
section describes the descriptor structure of DPDMA.

The DPDMA block acts as an AXI master in the full-power domain (FPD) and has a 128-bit
AXI master port. This block is primarily used for fetching descriptor data and descriptor
updates. The DPDMA also implements the advanced peripheral bus (APB) port for register
access. Upon a data fetch request from software, the DPDMA initiates read transfers from
memory. This data is provided to the A/V buffer manager through the 128-bit data port.

The DPDMA block receives information regarding VSYNC, HSYNC, and active video time
from the DisplayPort subsystem. On video channels, the DPDMA can read 256 bytes of data
every burst (128 x 16) when the burst size is programmed as 16. The DisplayPort subsystem
takes 32 pixel clocks to consume this data (4B/pixel video format). The DisplayPort requests
data every 32 pixel clocks. The DPDMA block fetches 256 bytes of data on every AXI
transaction and receives information regarding stride and line size from the descriptor field.

X-Ref Target - Figure 33-16

Figure 33‐16: DPDMA Architectural Blocks

Address Write
Command

Write Data

FIFO

FIFO

FIFO

Address Read
Command

A
R
B

CMD

Video Channel 0

Video Channel 1

Video Channel 2

Graphics Channel

Audio Channel 0

Audio Channel 1

ARCMD

ARCMD

ARCMD

ARCMD

ARCMD

ARCMD

A
R
B

CMD

AWCMD

WDATA

AWCMD

WDATA

AWCMD

WDATA

AWCMD

WDATA

AWCMD

WDATA

AWCMD

WDATA

A
R
B

DATA

APB APB
Register

1

2

3

4

5
6

DATA

VALID

ID

DATA

VALID

ID

DATA

VALID

ID

DATA

VALID

ID

DATA

VALID

ID

DATA

VALID

ID

Read Response FIFO

V
A
L
I
D

GEN

Data

ID

Write Response FIFO

V
A
L
I
D

GEN

RESP

rvalid1
rresp RRESP

bvalid1
bresp BRESP

rvalid2
rresp RRESP

bresp BRESP

rvalid1
rresp RRESP

bresp BRESP

bvalid2

bvalid3

rvalid4
rresp RRESP

bresp BRESP
bvalid4

rvalid5
rresp RRESP

bresp BRESP
bvalid5

rvalid6
rresp RRESP

bresp BRESP
bvalid6

A/V
Buffer

Manager

VALID

M
U
X

Reg1

Reg2

Reg3

Reg5

Reg4

Reg6

ARCMD 0
.
.
.
.

ARCMD 5

CMD

AWCMD 0
.
.
.
.

AWCMD 5

CMD

DATA

AWDATA0
.
.
.
.

AWDATA5

RESP

X17914-092516
Zynq UltraScale+ Device TRM 977
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=977

Chapter 33: DisplayPort Controller
Based on line start, line end, frame start, and frame end signals, the DPDMA reads the frame
buffer from memory.

The DPDMA supports two descriptor payload formats, contiguous payload and fragmented
payload. The contiguous payload format is efficient for bare-metal applications where large
chunks of contiguous memory are available. On Linux systems, large chunks of contiguous
memory allocation are difficult to obtain. To support display applications on Linux systems,
the DPDMA implements a fragmented payload mode on the descriptor. It supports payload
sizes as small as 4KB. The descriptor format is explained in more details in a later section.

The DPDMA uses a descriptor-based architecture. This allows software to divide frame
buffers into data sets that are small as 4 KB. Software can maintain a circular chain of
descriptors per channel. The DPDMA goes through the chain and provides data to the
DisplayPort subsystem.

The DPDMA puts the following restrictions on size and alignment of the descriptor.

• Descriptor and data payload must start at a 256-byte aligned address.

° With this requirement, the DPDMA does not have to deal with a 4K crossing of an
AXI burst.

° The DPDMA generates a fixed number of transactions every fetch request.
• The data payload must end at a line boundary or frame boundary.

° The payload cannot end within the line.

° This restriction is necessary for QoS to work efficiently. By doing this, the DPDMA
ensures that it does not fetch a descriptor during active video time.

The DPDMA supports two descriptor formats to alleviate these restrictions.

Descriptor Fields

This section outlines the descriptor fields (Table 33-8).

TIP: If a descriptor update is required, the DPDMA only updates word 4 and 5. The other words are not
updated by the DPDMA.

PREAMBLE Field

DPDMA checks the validity of the descriptor by comparing the preamble with a predefined
preamble value (0xA5). If there is an error in the preamble, the DPDMA goes to an invalid
location to read the descriptor. This should result in a preamble mismatch. The DPDMA
generates an interrupt to indicate this error.
Zynq UltraScale+ Device TRM 978
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=978

Chapter 33: DisplayPort Controller
Table 33‐8: DPDMA Descriptor Fields

Word
Number Field Name Size (Bytes) Bits Description

0 control 4

[7:0] Descriptor (8).
[8] Enable completion interrupt (1).
[9] Enable descriptor update (1).

[10] Ignore done (1).
[11] AXI burst type INCR or FIXED (1).

[15:12] AXCACHE (4).
[17:16] AXPROT bits (2).

[18] Mode = descriptor mode.
0 = contiguous 1 = fragmented

[19] Last descriptor (1).
[20] Enable CRC (1).
[21] Last descriptor of frame (1).

[31:22] Reserved (3)

1 DSCR_ID 4
[15:0] Descriptor ID (16)

[31:16] Reserved(16)
2 XFER_SIZE 4 [31:0] Indicates transfer size in both modes (in bytes) (32).

3 LINE_SIZE_STRIDE 4
[17:0] Horizontal resolution (line size) (18).

[31:18] Stride (14).

4 Timestamp LSB 4 [31:0] If enabled, the DPDMA stores the LSB of the
timestamp here (32).

5 Timestamp MSB 4
[9:0] If enabled, the DPDMA stores the MSB of the

timestamp here (10).
[30:10] Reserved (21).

[31] Status/done (1).

6 ADDR_EXT 4
[15:0] Next descriptor extension (16).

[31:16] SRC address extension (16).
7 NEXT_DESR 4 [31:0] Address of the next descriptor (32).
8 SRC_ADDR 4 [31:0] Source address (32).

9 ADDR_EXT_23 4
[15:0] Address extension for SRC Addr2 (16).

[31:16] Address extension for SRC Addr3 (16).

10 ADDR_EXT_45 4
[15:0] Address extension for SRC Addr4 (16).

[31:16] Address extension for SRC Addr5 (16).
11 SRC_ADDR2 4 [31:0] Source address of 2nd page (32).
12 SRC_ADDR3 4 [31:0] Source address of 3rd page (32).
13 SRC_ADDR4 4 [31:0] Source address of 4th page (32).
Zynq UltraScale+ Device TRM 979
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=979

Chapter 33: DisplayPort Controller
EN_DSCR_DONE_INTR Field

If this bit is set, the DPDMA generates an interrupt to indicate that the processing of the
current descriptor is complete. If the descriptor update is enabled, the DPDMA updates
(writes back) the descriptor and waits for the BRESP (write response) to generate an
interrupt. This ensures the coherency of the IRQ generation.

In case the DSCR update is not requested, it generates an interrupt after it receives all
outstanding transaction responses, after the descriptor is processed.

EN_DSCR_UP Field

The DPDMA updates the descriptor by writing status and timestamp information back to
DDR memory. If this bit is not set, the DPDMA does not update the descriptor.

IGNR_DONE Field

If this bit is set, the DPDMA ignores the done bit and processes the descriptor even when
the done bit is set (Table 33-9).

BURST_TYPE Field

• 0: DPDMA uses the INCR type burst for a data read.
• 1: DPDMA uses the FIXED type burst for a data read.

ARCACHE Field

The DPDMA uses these bits during a data read. The DSCR read transaction gets ARCACHE
bits from the DPDMA APB register.

ARPROT Field

The DPDMA uses these bits to generate the ARPROT [2:0] bit during AXI command
generation for a data read (Table 33-10).

14 SRC_ADDR5 4 [31:0] Source address of 5th page (32).
15 CRC 4 [31:0] Reserved (32).

Table 33‐8: DPDMA Descriptor Fields (Cont’d)

Word
Number

Field Name Size (Bytes) Bits Description

Table 33‐9: IGNR_DONE Descriptor Field

IGNR_DONE DONE Action

1 x DPDMA processes the descriptor.
0 0 DPDMA processes the descriptor.
0 1 DPDMA does not process the descriptor and raises an interrupt to

indicate that it read the descriptor with DONE set.
Zynq UltraScale+ Device TRM 980
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=980

Chapter 33: DisplayPort Controller
For more information on the previous values, see the AXI3 specification.

MODE Field

The DPDMA supports two modes of operation (controlled by the mode bit (27) in the
descriptor).

• The contiguous mode is supported for systems where a large set of contiguous
memory is available. The transfer size must be an integer multiple of the frame or line
(the descriptor payload must end at a line or frame boundary). Software can choose to
have a whole frame descriptor payload. The DPDMA uses the stride information along
with the horizontal line resolution to determine the end of line and start of the next
line.

For a pixel resolution of 4-bytes, it can take up to 20 KB to store a single line in memory.
It is difficult to assign 20 KB of contiguous memory in the Linux environment. This
creates a support requirement for the fragmented descriptor mode.

° A contiguous descriptor cannot store more than a single frames worth of data.

° The transfer size should be an integer multiple of the line size.
• In fragmented mode, the maximum resolution line supported on the DisplayPort

subsystem is 20 KB. Under a Linux system, the smallest resolution of memory available
is 4 KB (MMU resolution). This mode is only used if the line size is more than 4 KB.
Software can divide a single line into multiple fragments to store the single line data
payload in a non-contiguous space.

In fragmented mode, each descriptor is divided in up to five fragments. Each fragment
can store up to 4 KB of data. Software can divide line payload (20 KB) in five
sub-payloads. Because it is possible to start and end a data payload on a non-4 KB
boundary, software can use up to five fragments to store a whole line, and the DPDMA
determines an end of fragment and an end of line.

° The fragment descriptor transfer size must be the same as the line size.
- The fragmented descriptor only holds one lines worth of data.
- This is used if a line size is more than 4k and software cannot allocate a

contiguous space.

° All fragmented addresses must be 256-byte aligned.

Table 33‐10: ARPROT Descriptor Field

AXI ARPROT[2:0] Value

0 ARPROT[0] from the descriptor.
1 TZ_SLCR_DPDMA
2 ARPROT[1] from the descriptor.
Zynq UltraScale+ Device TRM 981
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=981

Chapter 33: DisplayPort Controller
The example in Table 33-11 uses a line size of 10 KB with the largest set of contiguous
memory available set at 4 KB. The start of the line data pay load is not 4K aligned, (start
address is x0000_FF00) The source address for each fragment must be 256-byte
aligned. It is acceptable to use less than five fragments, the DPDMA knows this from the
line size (horizontal resolution) information provided in the descriptor.

LAST_DSCR Field

• 1: The current descriptor is the last descriptor in the chain. The next address is not valid
and the DPDMA should stop operation.

• 0: After the DPDMA is done processing the current descriptor, the DPDMA fetches the
next descriptor from the NEXT ADDR.

LAST DSCR OF FRAME Field

If this bit is set by software on the descriptor, it indicates that this is the last descriptor of
the frame. After the DPDMA is done processing this descriptor, it fetches the first descriptor
of the next frame.

EN_CRC_CHK Field

• 1: CRC information stored at the end of the descriptor is valid. The DPDMA should only
process the descriptor if the CRC is valid.

• 0: CRC information is invalid and the DPDMA should not check the CRC.

Table 33‐11: Fragmented Descriptor Example

Fragment Address Actual Address Size

SRC_ADDR 0000_AF00 256-bytes
SRC_ADDR2 0000_C000 4096
SRC_ADDR3 0000_D000 4096
SRC_ADDR4 0000_F000 1552
SRC_ADDR5 N/A
Zynq UltraScale+ Device TRM 982
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=982

Chapter 33: DisplayPort Controller
DONE Field

• 1:

° Read From DPDMA. If this bit is set upon a read, the DPDMA considers this as an
error condition (if the IGNR_DONE bit is not set) and generates an interrupt. This
indicates that software fell behind the DPDMA and the DPDMA reached end of the
chain unwillingly

° Write From DPDMA. The DPDMA writes a 1 to this bit after it is done processing the
descriptor, if the descriptor update is requested.

° Software uses the LAST_DSCR to indicate an end of the task.
• 0: This bit is 0 when software writes to the descriptor. If the descriptor update is

requested, the DPDMA updates the DONE and time stamp information.

TIME_STAMP_LSB and TIME_STAMP_MSB Fields

The DPDMA updates the 42-bit time stamp information after it is done processing the
descriptor. This functionally can be enabled by EN_DSCR_UP. The time stamp value is
captured when the DPDMA starts processing the descriptor.

XFER_SIZE Field

This field indicates the total payload size in bytes.

• The contiguous mode valid transfer size can be following one or more lines (must be
integer multiple of line) or the size of one frame. A frame example would use a 128 x 32
image resolution with pixel resolution 4-bytes, it should be 5'd16384.

• The fragmented mode must indicate line size in bytes, XFER_SIZE must be same as
LINE_SIZE.

LINE_SIZE Field

An 18-bit field indicates the size of the line in bytes.

STRIDE Field

A 14-bit field indicates the stride value in a 16-byte resolution. This field is only used in
contiguous mode when the transfer size is larger than the line size. It is not used in
fragmented mode, as it is always line wide. The stride value must be 256-byte aligned.

ADDR_EXT Field

The 16-bit address extension is used for the NEXT_ADDR_EXT and SRC_ADDR_EXT
addresses. This field is used with the NEXT DSCR and SRC ADDR field to generate 48-bit
address.
Zynq UltraScale+ Device TRM 983
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=983

Chapter 33: DisplayPort Controller
IMPORTANT: The following addresses must be 256-byte aligned.

• The DPDMA uses the NEXT_ADDR address for the next descriptor fetch if the
LAST_DSCR is not set.

• Start address (SRC_ADD) of the data payload.
• The 16-bit address extension (ADDR_EXT_23) is for the SRC_ADDR2_EXT and

SRC_ADDR3_EXT addresses. This field is used with the following fields to generate a
48-bit address.

• The 16-bit address extension (ADDR_EXT_45) is for the SRC_ADDR4_EXT and
SRC_ADDR5_EXT addresses. This field is used with the following fields to generate a
48-bit address.

Descriptor Identifier Fields

Software generates unique 16-bit IDs for each descriptor. This information can be used by
software to track the location of the DPDMA. Hardware does not check if ID values are
unique. The DPDMA provides a descriptor ID of the current descriptor under process in the
APB register. By reading this register, software can determine the location in the DPDMA
channel within a descriptor chain.

CRC Field

The CRC is calculated using a 128-bit sum. This field is only valid if EN_CRC_CHK is set.
Software generates the CRC and stores it, along with DSCR. When the CRC check is enabled,
the DPDMA uses the CRC field to verify the data integrity. To calculate the CRC, the
following steps are used.

1. Initialize CRC descriptor field to zero.
2. The descriptor size is 512 bits. The CRC is calculated using 32-bit addition of 16, 32-bit

words.
3. Any carry generated during an addition is not used.
4. CRC = word[0] + word[1] + ... + word[15].

The received descriptor is checked against the CRC using following scheme.

1. Calculated CRC = word[0] + word[1] + ... + word[14].
2. Word[15] == calculated CRC.

The DSCR registers reflect the current states from hardware. When the DMA channel is
running these multiple registers keep updating (some of these might have partial updates),
whereas some registers may still hold the previous status. In order to avoid partial reads:

1. The channel can be paused and read, however, this is not reasonable as it takes time to
pause and it disturbs the current streaming.
Zynq UltraScale+ Device TRM 984
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=984

Chapter 33: DisplayPort Controller
2. The channel can be read at specific timing. Once a new descriptor is scheduled there’s
an interrupt (sync) and the DMA channel operates on the descriptor. The descriptor
states stay the same for that period and they can be read in the beginning of the period
upon the interrupt. It’s unlikely to read partially, but the inner descriptor states such as
current payload address will keep on changing within a descriptor period.
Zynq UltraScale+ Device TRM 985
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=985

Chapter 33: DisplayPort Controller
DisplayPort Controller Clocking

The DisplayPort controller operates in different clock domains. Table 33-12 summarizes the
clocks.

Figure 33-17 shows the clock domains used in the controller.

Table 33‐12: DisplayPort Controller Clock Domains

Interface/Block Name Clock(s)

DPDMA to A/V manager AXI4 memory mapped clock
Live video and graphics Live video clock
Live audio Live audio clock
A/V manager Video master clock, APB clock, audio clock
Video rendering pipe Video master clock, APB clock
Audio mixer Audio clock, APB clock
DisplayPort source controller Video master clock, audio clock, link layer clock.
Live video output Live video clock
Live audio output Live audio clock
Zynq UltraScale+ Device TRM 986
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=986

Chapter 33: DisplayPort Controller
X-Ref Target - Figure 33-17

Figure 33‐17: Block Level Clocking

High Level Address Decoder

External
VSYNC
Event

Audio Video Buffer
Manager

+
STC

Video
Blender

Video Stream 1

Video Stream 2

Audio Mixer

Audio Stream 1

Audio Stream 2

DisplayPort
 Source

 Controller

(Link Layer + PHY
Layer Logic) GT is at

system level

Native Video
(Mapped to

48-bit)

32-bit AXI-S
(Audio)

128-bit AXI-S
Memory

Live Native Video Input
(36-bit Dual Pixel)

Live Audio Input
(AXI-S 32-bit)

External
Custom
Event 1

External
Custom
Event 2

AUX + HPD

DRP

Lane0: 16-bit Data
+ 2-bit K-Char

Lane1: 16-bit Data
+ 2-bit K-Char

GT Status

32-bit AXI-S
Mixed (Audio)

Output

36-bit Native
Blended (Video)

Output

Interrupt APB

AXI4 Clock

Video Clock (Live)

Audio AXIS Clock

Video Clock (Master Clock)

Link Layer Clock

APB Clock

Audio Sample Rate Clock

Audio Clock (Selected)
Glossary:

X17907-092516
Zynq UltraScale+ Device TRM 987
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=987

Chapter 33: DisplayPort Controller
PS-PL Clocking Interface

Figure 33-18 shows the PL live video clocking of the DisplayPort controller.

RECOMMENDED: When using live clock input from the PL, the VTC clock source selection must be
selected as live input from the PL. Since the live interface also interfaces with the video processing
pipeline, the same live clock is used by the rest of the pipeline in the PS.

Note: While using the live video interface, the user must select VPLL as the input reference clock for
the pixel clock or the live clock input from PL.

X-Ref Target - Figure 33-18

Figure 33‐18: Clocking for Live Video

Video PLL
Video CLK

Divide

DisplayPort Subsystem

DisplayPort
Controller

DisplayPort
DMA

Video

BUFG/MMCM

PL

Video Clock from PL

PS
dp_video_ref_clk

dp_live_video_out_pixel1
dp_live_video_out_de
dp_live_video_out_hsync
dp_live_video_out_vsync

dp_video_in_clk

dp_live_video_in_pixel1
dp_live_video_in_de
dp_live_video_in_hsync
dp_live_video_in_vsync

X15508-010919
Zynq UltraScale+ Device TRM 988
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=988

Chapter 33: DisplayPort Controller
Figure 33-19 shows the details of the live audio clocking interface.

X-Ref Target - Figure 33-19

Figure 33‐19: Clocking for Live Audio

Video PLL
Audio CLK

Divide

DisplayPort Subsystem

DisplayPort
Controller

DisplayPort
DMA

Video

BUFG/MMCM

PL

Audio Clock from PL

PS
dp_audio_ref_clk

dp_m_axis_mixed_audio_tdata
dp_m_axis_mixed_audio_tid
dp_m_axis_mixed_audio_tvalid
dp_m_axis_mixed_audio_tready (input)

dp_s_axis_audio_clk

dp_s_axis_audio_tdata
dp_s_axis_audio_tid
dp_s_axis_audio_tvalid
dp_s_axis_audio_tready (output)

M_AXIS_MIXED_AUDIO:

S_AXIS_AUDIO:

X15509-010919
Zynq UltraScale+ Device TRM 989
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=989

Chapter 33: DisplayPort Controller
Register Overview
Table 33-13 lists the DisplayPort configuration registers (DB register set).

Table 33‐13: DisplayPort Configuration Registers

Register Type Register Name Description

DisplayPort
configuration
(cont’d)

DP_LINK_BW_SET Sets the value of the main link bandwidth for the
sink device.

DP_LANE_COUNT_SET To set the lane count.
DP_ENHANCED_FRAME_EN To enable enhanced framing.
DP_TRAINING_PATTERN_SET To force training pattern.
DP_LINK_QUAL_PATTERN_SET To transmit the link quality pattern.
DP_SCRAMBLING_DISABLE
DP_DOWNSPREAD_CTRL For down-spreading control.
DP_SOFTWARE_RESET Soft reset of DisplayPort controller.

DP_COMP_PATTERN_80BIT_1
32 bits of a 80-bit custom pattern that is used for
the LINK quality test. These bits are valid when
bit 2 of DP_LINK_QUAL_PATTERN_SET register is
set to a 1.

DP_COMP_PATTERN_80BIT_2
32 bits of a 80-bit custom pattern that is used for
the LINK quality test. These bits are valid when
bit 2 of DP_LINK_QUAL_PATTERN_SET register is
set to a 1.

DP_COMP_PATTERN_80BIT_3
32 bits of a 80-bit custom pattern that is used for
the LINK quality test. These bits are valid when
bit 2 of DP_LINK_QUAL_PATTERN_SET register is
set to a 1.

DP_TRANSMITTER_ENABLE Enable the basic operations of the transmitter.

DP_MAIN_STREAM_ENABLE Enable the transmission of main link video
information.

DP_FORCE_SCRAMBLER_RESET Reads from this register always return 0x0.
DP_VERSION_REGISTER DisplayPort controller version register.

DP_CORE_ID
Returns the unique identification code of the
DisplayPort controller and the current revision
level.

DP_AUX_COMMAND_REGISTER

DP_AUX_WRITE_FIFO FIFO containing up to 16 bytes of write data for
the current AUX channel command.

DP_AUX_ADDRESS Specifies the address for the current AUX channel
command.
Zynq UltraScale+ Device TRM 990
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=990

Chapter 33: DisplayPort Controller
DisplayPort
configuration
(cont’d)

DP_AUX_CLOCK_DIVIDER

Contains the clock divider value for generating
the internal 1 MHz clock from the APB host
interface clock. The clock divider register provides
integer division only and does not support
fractional APB clock rates. For example, set to 75
for a 75 MHz APB clock.

DP_TX_USER_FIFO_OVERFLOW
Indicates an overflow in the user FIFO. The event
can occur if the video rate does not match the
transfer unit size programming.

DP_INTERRUPT_SIGNAL_STATE Contains the raw signal values for the conditions
that can cause an interrupt.

DP_AUX_REPLY_DATA

Maps to the internal FIFO which contains up to
16 bytes of information received during the AUX
channel reply. Reply data is read from the FIFO
starting with byte 0. The number of bytes in the
FIFO corresponds to the number of bytes
requested.

DP_AUX_REPLY_CODE
Reply code received from the most recent AUX
channel request. The AUX reply code corresponds
to the code from the DisplayPort specification.

DP_AUX_REPLY_COUNT
Provides an internal counter of the number of AUX
reply transactions received on the AUX channel.
Writing to this register clears the count.

DP_REPLY_DATA_COUNT
Returns the total number of data bytes actually
received during a transaction. This register does
not use the length byte of the transaction header.

DP_REPLY_STATUS AUX transaction read-only status register.
DP_HPD_DURATION Duration of the HPD pulse in microseconds.

DP_MAIN_STREAM_HTOTAL
Specifies the total number of clocks in the
horizontal framing period for the main stream
video signal.

DP_MAIN_STREAM_VTOTAL Provides the total number of lines in the main
stream video frame.

DP_MAIN_STREAM_POLARITY Provides the polarity values for the video sync
signals.

DP_MAIN_STREAM_HSWIDTH Sets the width of the horizontal sync pulse.
DP_MAIN_STREAM_VSWIDTH Sets the width of the vertical sync pulse.

DP_MAIN_STREAM_HRES Horizontal resolution of the main stream video
source.

DP_MAIN_STREAM_VRES Vertical resolution of the main stream video
source.

DP_MAIN_STREAM_HSTART Number of clocks between the leading edge of
the horizontal sync and the start of active data.

Table 33‐13: DisplayPort Configuration Registers (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 991
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=991

Chapter 33: DisplayPort Controller
DisplayPort
configuration
(cont’d)

DP_MAIN_STREAM_VSTART Number of lines between the leading edge of the
vertical sync and the first line of active data.

DP_MAIN_STREAM_MISC0
Miscellaneous stream attributes. Implements the
attribute information contained in the DisplayPort
MISC0 register described in section 2.2.4 of the
DisplayPort standard.

DP_MAIN_STREAM_MISC1
Miscellaneous stream attributes. Implements the
attribute information contained in the DisplayPort
MISC1 register described in section 2.2.4 of the
DisplayPort standard.

DP_MAIN_STREAM_M_VID
M value for the video stream as computed by the
source. If synchronous clocking mode is used, this
register must be written with the M value.

DP_MSA_TRANSFER_UNIT_SIZE Sets the size of a transfer unit in the framing logic
On reset, transfer size is set to 64.

DP_MAIN_STREAM_N_VID
N value for the video stream as computed by the
source. If synchronous clocking mode is used, this
register must be written with the N value.

DP_USER_PIX_WIDTH User pixel width size.

DP_USER_DATA_COUNT_PER_LANE
This register is used to translate the number of
pixels per line to the native internal 16-bit
datapath.

DP_MIN_BYTES_PER_TU
Programs source to use the minimum number of
bytes per transfer unit. The calculation should be
done based on the DisplayPort specification.

DP_FRAC_BYTES_PER_TU
Calculating minimum bytes per transfer unit is
often not a whole number. This register is used to
hold the fractional component.

DP_INIT_WAIT
This register defines the number of initial wait
cycles at the start of a new line by the framing
logic. This allows enough data to be buffered in
the input FIFO.

DP_PHY_RESET Reset the transmitter PHY.

DP_PHY_VOLTAGE_DIFF_LANE_0 Controls the differential voltage swing for lane 0
of the DisplayPort link.

DP_PHY_VOLTAGE_DIFF_LANE_1 Controls the differential voltage swing for lane 1
of the DisplayPort link.

DP_TRANSMIT_PRBS7 Enable the pseudo-random bit sequence 7
pattern transmission for link quality assessment.

DP_PHY_CLOCK_SELECT Instructs the PHY PLL to generate the proper clock
frequency for the required link rate.

DP_TX_PHY_POWER_DOWN Control PHY power down.

DP_PHY_PRECURSOR_LANE_0 Set the pre-cursor level (post cursor 1 for PS-GTR)
for lane 0 of the DisplayPort link.

Table 33‐13: DisplayPort Configuration Registers (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 992
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=992

Chapter 33: DisplayPort Controller
DisplayPort
configuration
(cont’d)

DP_PHY_PRECURSOR_LANE_1 Set the pre-cursor level for lane 1 of the
DisplayPort link.

DP_PHY_POSTCURSOR_LANE_0 Set the post-cursor level (post cursor 2) for lane 0
of the DisplayPort link.

DP_PHY_POSTCURSOR_LANE_1 Set the post-cursor level (post cursor 2) for lane 1
of the DisplayPort link.

DP_PHY_STATUS Provides the current status from the PHY.

DP_TX_AUDIO_CONTROL Enables audio stream packets in main link and
provides buffer control.

DP_TX_AUDIO_CHANNELS Used to input active channel count. Transmitter
collects audio samples based on this information.

DP_TX_AUDIO_INFO_DATA{0:7} Words formatted as per CEA 861-C info frame.

DP_TX_M_AUD M value of audio stream as computed by the
transmitter.

DP_TX_N_AUD N value of audio stream as computed by the
transmitter.

DP_TX_AUDIO_EXT_DATA0
Word formatted as per the extension packet
described in the protocol specification. Extended
packet is fixed to 32-byte length. The controller
has buffer space for only one extended packet.

DP_TX_AUDIO_EXT_DATA1 2nd word of the 9 words of the extended packet.
DP_TX_AUDIO_EXT_DATA2 3rd word of the 9 words of the extended packet.
DP_TX_AUDIO_EXT_DATA3 4th word of the 9 words of the extended packet.
DP_TX_AUDIO_EXT_DATA4 5th word of the 9 words of the extended packet.
DP_TX_AUDIO_EXT_DATA5 6th word of the 9 words of the extended packet.
DP_TX_AUDIO_EXT_DATA6 7th word of the 9 words of the extended packet.
DP_TX_AUDIO_EXT_DATA7 8th word of the 9 words of the extended packet.
DP_TX_AUDIO_EXT_DATA8 9th word of the 9 words of the extended packet.

DP_INT_STATUS
Interrupt status register for intrN. This is a sticky
register that holds the value of the interrupt until
cleared by a value of 1.

DP_INT_MASK
Interrupt mask register for intrN. This is a
read-only location and can be atomically altered
by either the IDR or the IER.

DP_INT_EN Interrupt enable register (IER). A write of to this
location unmasks the interrupt. (IMR: 0)

DP_INT_DS Interrupt disable register (IDR). A write of one to
this location masks the interrupt. (IMR: 1)

V_BLEND_BG_CLR_0 Sets background color of the layers.
V_BLEND_BG_CLR_1 Sets background color of the layers.

Table 33‐13: DisplayPort Configuration Registers (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 993
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=993

Chapter 33: DisplayPort Controller
DisplayPort
configuration
(cont’d)

V_BLEND_BG_CLR_2 Sets background color of the layers.
V_BLEND_SET_GLOBAL_ALPHA_REG To set the global alpha register.
V_BLEND_OUTPUT_VID_FORMAT
V_BLEND_LAYER0_CONTROL Layer 0 is always video pixel.
V_BLEND_LAYER1_CONTROL Layer 1 is always graphics.
V_BLEND_RGB2YCBCR_COEFF{0:8} Coefficient values from matrix. A total of 9 values

are needed to form a 3x3 matrix. The value is
scaled by 212 and stored in a 15-bit signed format,
(1-bit reserved). 12 bits out of the 15 represent a
fractional value and 2 bits for the decimal value
and one signed bit.
The order of programming values is from v0 - v8.

V_BLEND_IN1CSC_COEFF{0:8}

V_BLEND_LUMA_IN1CSC_OFFSET Offset values for Y before and after matrix
multiplication for input color space conversion.

V_BLEND_CR_IN1CSC_OFFSET Offset values for CR before and after matrix
multiplication for input color space conversion.

V_BLEND_CB_IN1CSC_OFFSET Offset values for CB before and after matrix
multiplication for input color space conversion.

V_BLEND_LUMA_OUTCSC_OFFSET Offset values for Y before and after matrix
multiplication for output color space conversion.

V_BLEND_CR_OUTCSC_OFFSET Offset values for CR before and after matrix
multiplication for output color space conversion.

V_BLEND_CB_OUTCSC_OFFSET Offset values for color CB before and after matrix
multiplication for output color space conversion.

V_BLEND_IN2CSC_COEFF0

Coefficient values from matrix. A total of 9 values
are needed to form a 3x3 matrix. The value is
scaled by 212 and stored in 15-bit signed format
(1-bit is reserved).
The order of programming values is same as
described in V_BLEND_RGB2YCBCR_COEFF.

V_BLEND_IN2CSC_COEFF1
V_BLEND_IN2CSC_COEFF2
V_BLEND_IN2CSC_COEFF3
V_BLEND_IN2CSC_COEFF4
V_BLEND_IN2CSC_COEFF5
V_BLEND_IN2CSC_COEFF6
V_BLEND_IN2CSC_COEFF7
V_BLEND_IN2CSC_COEFF8

V_BLEND_LUMA_IN2CSC_OFFSET Offset values for Y before and after matrix
multiplication for input color space conversion.

V_BLEND_CR_IN2CSC_OFFSET Offset values for CR before and after matrix
multiplication for input color space conversion.

V_BLEND_CB_IN2CSC_OFFSET Offset values for CB before and after matrix
multiplication for input color space conversion.

Table 33‐13: DisplayPort Configuration Registers (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 994
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=994

Chapter 33: DisplayPort Controller
DisplayPort
configuration
(cont’d)

V_BLEND_CHROMA_KEY_ENABLE
[11:0] B component of the key minimum value.
[27:16] B component of the key maximum value.

V_BLEND_CHROMA_KEY_COMP1
V_BLEND_CHROMA_KEY_COMP2
V_BLEND_CHROMA_KEY_COMP3

AV_BUF_FORMAT
This register should be programmed based on the
video/graphics packing format in memory.
DisplayPort unpacker works based on this.

AV_BUF_NON_LIVE_LATENCY
The memory fetch latency. This parameter is used
to offset the early VTC. The maximum latency
supported is 412.

AV_CHBUF0 Channel enable, flush, and burst length to be
programmed based on video formats. Each
channel can be programmed with independent
burst length.
Channel 0 must be always enabled for any video
mode.
Channel 1 and 2 should be enabled for planar
modes.
Channel 3 for graphics.
Channel 4 and 5 for audio modes.

AV_CHBUF1
AV_CHBUF2
AV_CHBUF3
AV_CHBUF4

AV_CHBUF5

AV_BUF_STC_CONTROL
AV_BUF_STC_INIT_VALUE0
AV_BUF_STC_INIT_VALUE1
AV_BUF_STC_ADJ A write to this register triggers STC adjust.
AV_BUF_STC_VIDEO_VSYNC_TS_REG0 STC TS with VSYNC event.
AV_BUF_STC_VIDEO_VSYNC_TS_REG1 STC TS with VSYNC event.
AV_BUF_STC_EXT_VSYNC_TS_REG0 STC TS with VSYNC event.
AV_BUF_STC_EXT_VSYNC_TS_REG1 STC TS with VSYNC event.
AV_BUF_STC_CUSTOM_EVENT_TS_REG0 STC TS with custom event 1.
AV_BUF_STC_CUSTOM_EVENT_TS_REG1 STC TS with custom event 1.
AV_BUF_STC_CUSTOM_EVENT2_TS_REG0 STC TS with custom event 2 (can be audio TS).
AV_BUF_STC_CUSTOM_EVENT2_TS_REG1 STC TS with custom event 2 (can be audio TS).
AV_BUF_STC_SNAPSHOT0
AV_BUF_STC_SNAPSHOT1
AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT Select the buffer manager outputs.
AV_BUF_HCOUNT_VCOUNT_INT0 If the early VTC timing values (VCOUNT and

HCOUNT) match the values programmed in this
register and the corresponding interrupt mask is
enabled, then an interrupt is generated.

AV_BUF_HCOUNT_VCOUNT_INT1

Table 33‐13: DisplayPort Configuration Registers (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 995
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=995

Chapter 33: DisplayPort Controller
DisplayPort
configuration
(cont’d)

AV_BUF_DITHER_CONFIG This register is used for configuring dither
functions.

DITHER_CONFIG_SEED0
To set seed for LFSR0.DITHER_CONFIG_SEED1

DITHER_CONFIG_SEED2

DITHER_CONFIG_MAX To set the maximum output value on video pixel
(at the blender output towards the DisplayPort)

DITHER_CONFIG_MIN To set the minimum output value on video pixel
(at the blender output towards the DisplayPort)

PATTERN_GEN_SELECT
AUD_PATTERN_SELECT1
AUD_PATTERN_SELECT2

AV_BUF_AUD_VID_CLK_SOURCE

When live video from the PL is absent, then the
internal clock is a video pipeline clock. If the live
video is present, then clock from PL is the video
pipe line clock. Similarly, for the audio you can
select from either the PS or PL clock.

AV_BUF_SRST_REG
AV_BUF_AUDIO_RDY_INTERVAL Debug register.
AV_BUF_AUDIO_CH_CONFIG
AV_BUF_GRAPHICS_COMP0_SCALE_FACTOR Scaling factor for graphics for component #.

For 4 bits, scale factor is 16/15 x 216 = 0x11111

For 5 bits, scale factor is 32/31 x 216 = 0x10842

For 6 bits, scale factor is 64/63 x 216 = 0x10410.
For 8 bits, scale factor is
256/255 x 216 = 0x10101

For 10 bits, scale factor is
1024/1023 x 216 = 0x10040

For BPC = 12, no scaling is done. This register is
unused and can be default.

AV_BUF_GRAPHICS_COMP1_SCALE_FACTOR
AV_BUF_GRAPHICS_COMP2_SCALE_FACTOR
AV_BUF_VIDEO_COMP0_SCALE_FACTOR
AV_BUF_VIDEO_COMP1_SCALE_FACTOR
AV_BUF_VIDEO_COMP2_SCALE_FACTOR
AV_BUF_LIVE_VIDEO_COMP0_SF
AV_BUF_LIVE_VIDEO_COMP1_SF
AV_BUF_LIVE_VIDEO_COMP2_SF

AV_BUF_LIVE_VID_CONFIG Programmable option to configure Cb or Cr first,
when YUV422 mode is enabled.

Table 33‐13: DisplayPort Configuration Registers (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 996
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=996

Chapter 33: DisplayPort Controller
DisplayPort
configuration
(cont’d)

AV_BUF_LIVE_GFX_COMP0_SF Scaling factor for live graphics color comp#.
For 4 bits, scale factor is 16/15 x 216 = 0x11111

For 5 bits, scale factor is 32/31 x 216 = 0x10842

For 6 bits, scale factor is 64/63 x 216 = 0x10410.
For 8 bits, scale factor is
256/255 x 216 = 0x10101

For 10 bits, scale factor is
1024/1023 x 216 = 0x10040

For BPC = 12, no scaling is done. This register is
unused and can be default.

AV_BUF_LIVE_GFX_COMP1_SF

AV_BUF_LIVE_GFX_COMP2_SF

AV_BUF_LIVE_GFX_CONFIG Programmable option to configure Cb or Cr first,
when YUV422 mode is enabled.

AUDIO_MIXER_VOLUME_CONTROL Setting value to 8192 means no volume change
(1.0 scaling factor).

AUDIO_MIXER_META_DATA
AUD_CH_STATUS_REG0 Audio channel status bits 31 to 0.
AUD_CH_STATUS_REG1 Audio channel status bits 63 to 32.
AUD_CH_STATUS_REG2 Audio channel status bits 95 to 64.
AUD_CH_STATUS_REG3 Audio Channel status bits 127 to 96.
AUD_CH_STATUS_REG4 Audio Channel status bits 159 to 128.
AUD_CH_STATUS_REG5 Audio Channel status bits 191 to 160.
AUD_CH_A_DATA_REG0 User data bits 31 to 0.
AUD_CH_A_DATA_REG1 User data bits 63 to 32.
AUD_CH_A_DATA_REG2 User data bits 95 to 64.
AUD_CH_A_DATA_REG3 User data bits 127 to 96.
AUD_CH_A_DATA_REG4 User data bits 159 to 128.
AUD_CH_A_DATA_REG5 User data bits 191 to 160.
AUD_CH_B_DATA_REG0 User data bits 31 to 0.
AUD_CH_B_DATA_REG1 User data bits 63 to 32.
AUD_CH_B_DATA_REG2 User data bits 95 to 64.
AUD_CH_B_DATA_REG3 User data bits 127 to 96.
AUD_CH_B_DATA_REG4 User data bits 159 to 128.
AUD_CH_B_DATA_REG5 User data bits 191 to 160.

PATGEN_CRC_R
16-bit CRC calculated on the first component of
video output from the internal test pattern
generator.

Table 33‐13: DisplayPort Configuration Registers (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 997
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=997

Chapter 33: DisplayPort Controller
Table 33-14 summarizes the DisplayPort DMA registers (DPDMA register set).

DisplayPort
configuration
(cont’d)

PATGEN_CRC_G
16-bit CRC calculated on the second component
of video output from the internal test pattern
generator.

PATGEN_CRC_B
16-bit CRC calculated on the third component of
video output from the internal test pattern
generator.

Table 33‐13: DisplayPort Configuration Registers (Cont’d)

Register Type Register Name Description

Table 33‐14: DisplayPort DMA Registers

Register Type Register Name Description

Error
response DPDMA_ERR_CTRL Enable/disable a error response.

Interrupts

DPDMA_ISR
Interrupt status register for intrN. This is a sticky register
that holds the value of the interrupt until cleared by a
value of 1.

DPDMA_IMR
Interrupt mask register for intrN. This is a read-only
location and can be atomically altered by either the IDR
or the IER.

DPDMA_IEN Interrupt enable register. A write of 1 to this location
unmasks the interrupt. (IMR: 0)

DPDMA_IDS Interrupt disable register. A write of 1 one to this
location masks the interrupt. (IMR: 1)

DPDMA_EISR
Interrupt status register for intrN. This is a sticky register
that holds the value of the interrupt until cleared by a
value of 1.

DPDMA_EIMR
Interrupt mask register for intrN. This is a read-only
location and can be atomically altered by either the IDR
or the IER.

DPDMA_EIEN Interrupt enable register. A write of 1 to this location
unmasks the interrupt. (IMR: 0)

DPDMA_EIDS Interrupt disable register. A write of one to this location
masks the interrupt. (IMR: 1)
Zynq UltraScale+ Device TRM 998
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=998

Chapter 33: DisplayPort Controller
DMA control
and status

DPDMA_CNTL DPDMA global control register, holds fields which
control all six channels.

DPDMA_GBL Global control register provides control to start or
redirect any channel.

DPDMA_ALC0_CNTL Global control register provides control to start or
redirect any channel.

DPDMA_ALC0_STATUS Status register.
DPDMA_ALC0_MAX ALC0 maximum latency register.
DPDMA_ALC0_MIN ALC0 minimum latency register.
DPDMA_ALC0_ACC ALC0 accumulated transaction latency register.
DPDMA_ALC0_ACC_TRAN ALC0 accumulated transaction count register.

DPDMA_ALC1_CNTL Global control register provides control to start or
redirect any channel.

DPDMA_ALC1_STATUS Status register.
DPDMA_ALC1_MAX ALC1 maximum latency register.
DPDMA_ALC1_MIN ALC1 minimum latency register.
DPDMA_ALC1_ACC ALC1 accumulated transaction latency register.
DPDMA_ALC1_ACC_TRAN ALC1 accumulated transaction count register.

DMA
channels

DPDMA_CH{0:5}_DSCR_STRT_ADDRE Channel x descriptor; start extended address (Hi).
DPDMA_CH{0:5}_DSCR_STRT_ADDR Channel x descriptor; start address (Lo).
DPDMA_CH{0:5}_DSCR_NEXT_ADDRE Channel x descriptor; next extended address (Hi).
DPDMA_CH{0:5}_DSCR_NEXT_ADDR Channel x descriptor; next address (Lo).

DPDMA_CH{0:5}_PYLD_CUR_ADDRE Channel x descriptor; current payload extended address
(Hi).

DPDMA_CH{0:5}_PYLD_CUR_ADDR Channel x descriptor; current payload address (Lo).
DPDMA_CH{0:5}_CNTL Channel x control.
DPDMA_CH{0:5}_STATUS Channel x status.
DPDMA_CH{0:5}_VDO Channel x video parameter.
DPDMA_CH{0:5}_PYLD_SZ Channel x descriptor; current payload size.
DPDMA_CH{0:5}_DSCR_ID Channel x descriptor; current 16-bit ID.

Table 33‐14: DisplayPort DMA Registers (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 999
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=999

Chapter 33: DisplayPort Controller
Programming Considerations
Note: The DisplayPort controller can sometimes report underflow and overflow status for the same
frame. This scenario can occur when the DDR memory responds to a requested burst slowly. Both
underflow and overflow flags can be set in the dp.DP_INT_STATUS register.

Source Controller Setup and Initialization

This section lists the procedural tasks required to achieve link communication. See Table 33-15.

Source Controller Setup

1. Place the PHY into reset. The PS-GTR reset bit in the PHY_reset [bit 1 of DP_PHY_RESET]
bit should be set to 1.

DP_PHY_RESET = 0x01

2. Disable the transmitter.

DP_TRANSMITTER_ENABLE = 0x00

3. Set the clock divider by programming the dp.DP_AUX_CLOCK_DIVIDER[clk_div] register.
4. Set DisplayPort clock speed. Program the dp.DP_PHY_CLOCK_SELECT[sel] register with

the desired link speed.
5. Bring the PHY out of reset. Write 0 to the DP.DP_PHY_RESET [GT_RESET] bit.

dp.DP_PHY_RESET = 0x00

6. Wait for the PHY reset done and PLL lock.

DP_PHY_STATUS bits [1:0] = 2'b11 and DP_PHY_STATUS bit [4] = 1'b1

7. Enable the transmitter.

DP_TRANSMITTER_ENABLE = 0x01

8. (Optional) Turn on the interrupt mask for the HPD.

INTERRUPT_MASK = 0x00
Zynq UltraScale+ Device TRM 1000
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1000

Chapter 33: DisplayPort Controller
Note: At this point, the source controller is initialized and ready to use. The link policy maker should
be monitoring the status of HPD and taking appropriate action for connect/disconnect events or
HPD interrupt pulses.

Although #DP_PHY_RESET has two bits (GT_RESET and PLL_RESET), use GT_RESET during
source controller setup.

To change the PS-GTR link rate dynamically (Table 33-16):

1. Disable the transmitter.

TRANSMITTER_ENABLE = 0x00

2. Set DisplayPort clock speed.

PHY_CLOCK_SELECT = desired link speed

3. Wait for the PHY rate change done and PLL lock.

Table 33‐15: Source Controller Setup and Initialization

Task DP Register Set Bit Field
Register
Offset Bits Value

Reset PHY. DP_PHY_RESET GT_RESET 0x200 1 1
Disable
transmitter. DP_TRANSMITTER_ENABLE TX_EN 0x0080 0 1b'0

Set the clock
divider. DP_AUX_CLOCK_DIVIDER AUX_SIGNAL_WIDTH_FILTER

| CLK_DIV 0x010C 15:0
Refer to the
register for
the value.

Set DisplayPort
clock. DP_PHY_CLOCK_SELECT SEL 0x0234 2:0

0x05 =
5.40 Gb/s link
0x03 =
2.70 Gb/s link
0x01 =
1.62 Gb/s link

Bring the PHY
out of reset. DP_PHY_RESET GT_RESET 0x200 1 1'b0

Wait for reset done by checking DP_PHY_STATUS register.

Check reset
done. DP_PHY_STATUS RESET_LANES_0_1 0x0280 1:0

2b'11
indicates
reset done for
lane 0 and
lane 1.

Check PLL
locked. DP_PHY_STATUS RESET_LANES_0_1 0x0280 4

1b'1
indicates PLL
is locked.

Enable
transmitter. DP_TRANSMITTER_ENABLE TX_EN 0x0080 0 1b'1
Zynq UltraScale+ Device TRM 1001
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1001

Chapter 33: DisplayPort Controller
a. PHY_STATUS bits [3:0] = 4'b1111 (for two lanes) or PHY_STATUS
bits [3:0] = 4'b0101 (for one lane)

b. PHY_STATUS bits [4] = 1'b1
4. Enable the transmitter.

TRANSMITTER_ENABLE = 0x01

Note: If the current PS-GTR rate is 1.62 Gb/s and you try to set it again to 1.62 Gb/s, the
DP.DP_PHY_STATUS [RATE_CHANGE_DONE_0_1] bits will not be set. The PS-GTR reset doesn’t need to
be explicitly issued from the software during a dynamic link rate change, it is handled inside the
PS-GTR. Therefore, unless the phy configuration changes the link rate from existing value to the
desired value, the RATE_CHANGE_DONE_0_1bits won’t be set.

Upon HPD Assertion

1. Read the DPCD capabilities fields out of the sink device (0x00000–0x0000B) through
the AUX channel. See Table 33-17.

2. Determine values for lane count, link speed, enhanced framing mode, downspread
control, and main link channel code based on each link partners' capability and needs.

3. Write the configuration parameters to the link configuration field (0x00100–0x00101)
of the DPCD through the AUX channel.
Note: Some sink devices' DPCD capability fields are unreliable. Many source devices start with
the maximum transmitter capabilities and scale back as necessary to find a configuration the
sink device can handle. This could be an advisable strategy instead of relying on DPCD values.

4. Equivalently, write the appropriate values to the source controller's local configuration
space.
a. LANE_COUNT_SET

Table 33‐16: PS-GTR Link Rate

Task Register Register Field Register
Offset

Bits Value

Disable
transmitter. DP_TRANSMITTER_ENABLE TX_EN 0x0080 0 1b'0

Set DisplayPort
clock. DP_PHY_CLOCK_SELECT SEL 0x0234 2:0

0x05 = 5.40 Gb/s link
0x03 = 2.70 Gb/s link
0x01 = 1.62 Gb/s link

Wait for the PHY rate change done and PLL lock by checking DP_PHY_STATUS register.
Check reset
done. DP_PHY_STATUS RESET_LANES_0_1 0x0280 3:0 4'b1111 (for 2 lanes)

4'b0101 (for 1 lane)
Check PLL
locked. DP_PHY_STATUS RESET_LANES_0_1 0x0280 4 1b'1 indicates PLL

has been locked.
Enable
transmitter. DP_TRANSMITTER_ENABLE TX_EN 0x0080 0 1b'1
Zynq UltraScale+ Device TRM 1002
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1002

Chapter 33: DisplayPort Controller
b. LINK_BW_SET
c. ENHANCED_FRAME_EN
d. PHY_CLOCK_SELECT

Training Pattern 1 Procedure (Clock Recovery)

1. Turn off scrambling and set training pattern 1 in the source through direct register
writes. See Table 33-18.

° SCRAMBLING_DISABLE = 0x01

° TRAINING_PATTERN_SET = 0x01
2. Turn off scrambling and set training pattern 1 in the sink DPCD (0x00102–0x00106)

through the AUX channel.
3. Wait 100 µs before reading status registers for all active lanes (0x00202–0x00203)

through the AUX channel.
4. If clock recovery failed, check for voltage swing or pre-emphasis level increase requests

(0x00206–0x00207) and react accordingly. Run this loop up to five times. If after five
iterations this has not succeeded, reduce the link speed, if at a high speed and try again.
If already at a low speed, training fails.

Table 33‐17: HPD Assertion

Task Register Register Field
Register
Offset Bits Value

To set lane
count. DP_LANE_COUNT_SET LANE_CNT 0x004 4:0

Possible values:
5b'00001

5b'00010

To set the
value of the
main link
bandwidth for
the sink
device.

DP_LINK_BW_SET BW 0x000 7:0
0x06 = 1.62 Gb/s
0x0A = 2.7 Gb/s
0x14 = 5.4 Gb/s

To enable
enhanced
framing.

DP_ENHANCED_FRAME_EN ENH_FRAMING_EN 0x008 0
Set to 1 by the source
to enable the enhanced
framing symbol
sequence.

Select PHY
clock. DP_PHY_CLOCK_SELECT SEL 0x0234 2:0

0x05 = 5.40 Gb/s link
0x03 = 2.70 Gb/s link
0x01 = 1.62 Gb/s link
Zynq UltraScale+ Device TRM 1003
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1003

Chapter 33: DisplayPort Controller
Training Pattern 2 Procedure (Symbol Recovery, Interlane Alignment)

1. Turn off scrambling and set training pattern 2 in the source through direct register
writes. See Table 33-19.

° SCRAMBLING_DISABLE = 0x01

° TRAINING_PATTERN_SET = 0x02

2. Turn off scrambling and set training pattern 2 in the sink DPCD (0x00102–0x00106)
through the AUX channel.

3. Wait 400 µs and then read status registers for all active lanes (0x00202–0x00203)
through the AUX channel.

4. Check the channel equalization, symbol lock, and interlane alignment status bits for all
active lanes (0x00204) through the AUX channel.

5. If any of these bits are not set, check for voltage swing or pre-emphasis level increase
requests (0x00206–0x00207) and react accordingly.

6. Run this loop up to five times. If after five iterations this has not succeeded, reduce the
link speed if at a high speed and return to the instructions for training pattern 1. If
already at a low speed, training fails.

7. Signal the end of training by enabling scrambling and setting training pattern to 0x00 in
the sink device (0x00102) through the AUX channel.

8. On the source side, re-enable scrambling and turn off training.

° TRAINING_PATTERN_SET = 0x00

° SCRAMBLING_DISABLE = 0x00

At this point, training has completed.

Table 33‐18: Clock Recovery

Task Register
Register

Field
Register
Offset Bits Value

Scrambling
disable. DP_SCRAMBLING_DISABLE SCR_DIS 0x014 0 1b'1

To force
training
pattern.

DP_TRAINING_PATTERN_SET TP_SET 0x00C 1:0

00 = Training off.
01 = Training pattern 1, used
for clock recovery.
10 = Training pattern 2, used
for channel equalization.
11 = Training pattern 3, used
for channel equalization for
controllers with DisplayPort
v1.2.
Zynq UltraScale+ Device TRM 1004
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1004

Chapter 33: DisplayPort Controller
Note: Training pattern 3 replaces training pattern 2 for 5.4 G link rate devices. See the DisplayPort
v1.2 specification for details.

Enabling Main Link Video

The main link video should not be enabled until a proper video source has been provided
to the source controller. Typically, the source device wants to read the EDID from the
attached sink device to determine its capabilities, most importantly its preferred resolution
and other resolutions that it supports should the preferred mode not be available. After a
resolution has been determined, set the main stream attributes in the source controller
(0x180–0x1B0). Enable the main stream (0x084) only when a reliable video source is
available.

Note: The scrambler/descrambler must be reset after enabling the main link video. Before starting
to transmit video, the source must initialize the scrambler and the link partner's descrambler. This is
done by forcing a scrambler reset (0x0C0) before the main link is enabled.
Note: The TRANSFER UNIT size of the DisplayPort transmit controller can be set to 32/64 or any
even number in between. This is system dependent (on RX buffer capabilities).

Accessing the Link Partner

The DisplayPort controller is configured through the APB host interface. The host processor
interface uses the DisplayPort AUX channel to read the register space of the attached sink
device and determines the capabilities of the link. Accessing DPCD and EDID information
from the sink is done by writing and reading from register space 0x100 through 0x144.

Before any AUX channel operation can be completed, you must first set the proper clock
divide value in 0x10C. This must be done only one time after a reset. The value held in this
register should be equal to the frequency of apb_clk. So, if apb_clk runs at 135 MHz, the
value of this register should be 135 ('h87). This register is required to apply a proper divide
function for the AUX channel sample clock, which must operate at 1 MHz. The act of writing
to the AUX_COMMAND initiates the AUX event. After an AUX request transaction is started,

Table 33‐19: Symbol Recovery, Interlane Alignment

Task Register Register
Field

Register
Offset

Bits Value

Scrambling
disable DP_SCRAMBLING_DISABLE SCR_DIS 0x014 0 1b'1

To force
training pattern DP_TRAINING_PATTERN_SET TP_SET 0x00C 1:0

00 = Training off.
01 = Training pattern 1, used
for clock recovery.
10 = Training pattern 2, used
for channel equalization.
11 = Training pattern 3, used
for channel equalization for
controllers with DisplayPort
v1.2.
Zynq UltraScale+ Device TRM 1005
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1005

Chapter 33: DisplayPort Controller
the host should not write to any of the control registers until the REPLY_RECEIVED bit is set
to a 1, indicating that the sink has returned a response.

Audio Management

This section contains the procedural tasks required to achieve audio communication.

Programming the DisplayPort Source

1. Disable audio by writing a 0x00 to the TX_AUDIO_CONTROL register. The disable bit
also flushes the buffers in DisplayPort source and sets MUTE bit in VB-ID.

2. Write the audio information frame. Based on your requirements, this could be optional
for some systems. The audio information frame consists of eight writes.

3. Write channel count to the TX_AUDIO_CHANNELS register (the value is actual count
minus 1).

4. If the system is using synchronous clocking, then write the MAUD and NAUD values into
the TX_AUDIO_MAUD and TX_AUDIO_NAUD registers.

5. Enable audio by writing a 0x01 to the TX_AUDIO_CONTROL register.

Reprogramming Source Audio

1. Wait a few ms (~1-2 ms) so that the DisplayPort source can complete any pending
secondary transmission.

2. Disable the audio in the DisplayPort TX.
3. Wait until the video/audio clock is recovered and stable.
4. Enable the audio in the DisplayPort TX.
5. Wait for some time (1 ms).
6. Start audio transfer.

Info Packet Management

The controller provides an option to program a single information packet. The packet is
transmitted to the sink after per video frame or 8192 cycles.

To change an information packet during transmission, follow these steps.

1. Disable audio, because new information packet means a new audio configuration. The
disable audio also flushes the internal audio buffers.

2. Follow steps in Programming the DisplayPort Source.
Zynq UltraScale+ Device TRM 1006
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1006

Chapter 33: DisplayPort Controller
Extension Packet Management

A single packet buffer is provided for the extension packet. If the extension packet is
available in the buffer, the packet is transmitted as soon as there is availability in the
secondary channel. The packet length is fixed to eight words (32 bytes).

Use these steps to write an extended packet in the DisplayPort source controller.

1. Write nine words (as required) into the TX_AUDIO_EXT_DATA buffer.
2. Wait for the EXT_PKT_TXD interrupt.
3. Write the new packet (follow step 1).
Zynq UltraScale+ Device TRM 1007
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1007

Chapter 33: DisplayPort Controller
AUX Write Transaction

An AUX write transaction (Figure 33-20) is initiated by setting up the AUX_ADDRESS, and
writing the data to the AUX_WRITE_FIFO followed by a write to the AUX_COMMAND
register with the code 0x08. Writing the command register begins the AUX channel
transaction. The host should wait until either a reply received event or reply time-out event
is detected. These events are detected by reading INTERRUPT_STATUS registers (either in
ISR or polling mode). When the reply is detected, the host should read the
AUX_REPLY_CODE register and look for the code 0x00 indicating that the AUX channel has
successfully acknowledged the transaction.

X-Ref Target - Figure 33-20

Figure 33‐20: AUX Write Transaction

AUX_Write

Write address to
DP_AUX_ADDRESS register

Write up to 16 bytes
DP_AUX_WRITE_FIFO register

Write command
DP_AUX_COMMAND register

Read DP_INIT_STATUS register

Reply
received?

Read
DP_AUX_REPLY_CODE register

AUX_ACK?

End

Reply time-
out?

End

End

Yes

No

No

Yes

Yes

No AUX_NACK/AUX_Differ?

X15510-022417
Zynq UltraScale+ Device TRM 1008
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1008

Chapter 33: DisplayPort Controller
AUX Read Transaction

The AUX read transaction (Figure 33-21) is prepared by writing the transaction address to
the AUX_ADDRESS register. After it is set, the command and the number of bytes to read are
written to the AUX_COMMAND register. After initiating the transfer, the host should wait for
an interrupt or poll the INTERRUPT_STATUS register to determine when a reply is received.
When the REPLY_RECEIVED signal is detected, the host can read the requested data bytes
from the AUX_REPLY_DATA register. This register provides a single address interface to a
byte FIFO which is 16 elements deep. Reading from this register automatically advances the
internal read pointers for the next access.

X-Ref Target - Figure 33-21

Figure 33‐21: AUX Read Transaction

Write AUX_ADDRESS

Write AUX_Command (0x09)

Read INTERRUPT_STATUS
Bit 2

Bit 2 = 1? (REPLY_RECEIVED)
Bit 3 = 1? (REPLY_TIMEOUT)

Read AUX_REPLY_CODE

Read up to 16 bytes to
AUX_REPLY_DATA

Transaction complete

Yes

ACK

REPLY_TIMEOUT

AUX_NACK/AUX_DEFER

No

X15511-092516
Zynq UltraScale+ Device TRM 1009
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1009

Chapter 33: DisplayPort Controller
Commanded I2C Transactions

The controller supports a special AUX channel command intended to make I2C over AUX
transactions faster and easier to perform. In this case, the host bypasses the external I2C
master/slave interface and initiates the command by directly writing to the register set. The
sequence for performing these transactions is exactly the same as a native AUX channel
transaction with a change to the command written to the AUX_COMMAND register. The
supported I2C commands are summarized in Table 33-20.

Table 33‐20: I2C Commands

Aux_Command[11:8] Command

0x0 I2C write
0x4 I2C write middle of transaction (MOT)
0x1 I2C read
0x5 I2C read MOT
0x6 I2C write status with MOT
0x2 I2C write status
Zynq UltraScale+ Device TRM 1010
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1010

Chapter 33: DisplayPort Controller
By using a combination of these commands, the host can emulate an I2C transaction. The
flow of commanded I2C transactions is shown in Figure 33-22.

Because I2C transactions can be significantly slower than AUX channel transactions, the
host should be prepared to receive multiple AUX_DEFER reply codes during the execution of
the state machines.

The AUX-I2C commands are as follows.

• MOT definition.

° Middle of transaction bit in the command field.

° This controls the stop condition on the I2C slave.

X-Ref Target - Figure 33-22

Figure 33‐22: Commanded I2C Transactions

Aux write device address
IIC_WRITE_MOT

Aux write device subaddress
IIC_WRITE_MOT

Aux write device data
IIC_WRITE_MOT

Last byte of data

Aux write device data
IIC_WRITE

Transaction complete

Yes

No

Aux write device address
IIC_WRITE_MOT

Aux write device subaddress
IIC_WRITE_MOT

Aux read device address
IIC_READ_MOT

Aux read device data
IIC_READ_MOT

Last byte of data

Aux read device data
IIC_READ

Transaction complete

No

Yes

X15512-092516
Zynq UltraScale+ Device TRM 1011
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1011

Chapter 33: DisplayPort Controller
° For a transaction with MOT set to 1, the I2C bus is not stopped, but left to remain in
the previous state.

° For a transaction with MOT set to 0, the I2C bus is forced to idle at the end of the
current command or in special abort cases.

• Partial ACK.

° For I2C write transactions, the sink controller can respond with a partial ACK (ACK
response followed by the number of bytes written to I2C slave).

Special AUX commands include the following.

• Write address only and read address only commands do not have any length field
transmitted over the AUX channel. The intent of these commands are as follows.

° Send address and RD/WR information to I2C slave. No data is transferred.

° End previously active transaction, either normally or through an abort.

The address-only write and read commands are generated from the source by using bit [12]
of the command register with command as I2C WRITE/READ.

The write status command does not have any length information. The intent of the
command is to identify the number of bytes of data that have been written to an I2C slave
when a partial ACK or defer response is received by the source on a AUX-I2C write. The write
status command is generated from the source by using bit [12] of the command register
with command as I2C WRITE STATUS.

The generation of AUX transactions is described in Table 33-21.

Table 33‐21: AUX Transactions

Transaction AUX Transaction IIC Transaction Usage Sequence

Write address
only with
MOT = 1.

START ->
CMD ->
ADDRESS ->
STOP

START ->
DEVICE_ADDR ->
WR ->
ACK/NACK

Setup I2C slave for write
to address defined.

Write AUX address
register (0x108) with
device address.
Issue command to
transmit transaction by
writing into AUX
command register
(0x100).
Bit [12] must be set to 1.

Read address
only with
MOT = 1.

START ->
CMD ->
ADDRESS ->
STOP

START ->
DEVICE_ADDR ->
RD ->
ACK/NACK

Setup I2C slave for read
to address defined.

Write AUX address
register with device
address.
Issue command to
transmit transaction by
writing into AUX
command register.
Bit [12] must be set to 1.
Zynq UltraScale+ Device TRM 1012
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1012

Chapter 33: DisplayPort Controller
Write/Read
address only
with MOT = 0.

START ->
ADDRESS ->
STOP

STOP
To stop the I2C slave,
used as abort or normal
stop.

Write AUX address
register (0x108) with
device address.
Issue command to
transmit transaction by
writing into AUX
command register
(0x100).
Bit [12] must be set to 1.

Write with
MOT = 1.

START ->
CMD ->
ADDRESS ->
LENGTH ->
D0 to DN ->
STOP

I2C bus is IDLE or
new device
address.
START ->
START/RS ->
DEVICE_ADDR ->
WR ->
ACK/NACK ->
DATA0 ->
ACK/NACK to
DATAN ->
ACK/NACK
I2C bus is in write
state and the same
device address
DATA0 ->
ACK/NACK to
DATAN ->
ACK/NACK

Setup I2C slave write
data.

Write AUX address
register (0x108) with
device address.
Write the data to be
transmitted into AUX
write FIFO register
(0x104).
Issue write command
and data length to
transmit transaction by
writing into AUX
command register
(0x100).
Bits [3:0] represent
length field.

Table 33‐21: AUX Transactions (Cont’d)

Transaction AUX Transaction IIC Transaction Usage Sequence
Zynq UltraScale+ Device TRM 1013
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1013

Chapter 33: DisplayPort Controller
Write with
MOT = 0.

START ->
CMD ->
ADDRESS ->
LENGTH ->
D0 to DN ->
STOP

I2C bus is IDLE or
different I2C device
address.
START ->
START/RS ->
DEVICE_ADDR ->
WR ->
ACK/NACK ->
DATA0 ->
ACK/NACK to
DATAN ->
ACK/NACK ->
STOP
I2C bus is in write
state and the same
I2C device address.
DATA0 ->
ACK/NACK to
DATAN ->
ACK/NACK ->
STOP

Setup I2C slave write data
and stop the I2C bus after
the current transaction.

Write the AUX address
register (0x108) with
device address.
Write the data to be
transmitted into AUX
write FIFO register
(0x104).
Issue write command
and data length to
transmit transaction by
writing into AUX
command register
(0x100).
Bits [3:0] represent
length field.

Read with
MOT = 1.

START ->
CMD ->
ADDRESS ->
LENGTH ->
STOP

I2C bus is IDLE or
different I2C device
address.
START ->
START/RS ->
DEVICE_ADDR ->
RD ->
ACK/NACK ->
DATA0 ->
ACK/NACK to
DATAN ->
ACK/NACK
I2C bus is in write
state and the same
I2C device address.
DATA0 ->
ACK/NACK to
DATAN ->
ACK/NACK

Setup I2C slave read data.

Write AUX address
register (0x108) with
device address.
Issue read command and
data length to transmit
transaction by writing
into AUX command
register (0x100).
Bits [3:0] represent the
length field.

Table 33‐21: AUX Transactions (Cont’d)

Transaction AUX Transaction IIC Transaction Usage Sequence
Zynq UltraScale+ Device TRM 1014
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1014

Chapter 33: DisplayPort Controller
Read with
MOT = 0.

START ->
CMD ->
ADDRESS ->
LENGTH ->
D0 to DN ->
STOP

I2C bus is IDLE or
different I2C device
address.
START ->
START/RS ->
DEVICE_ADDR ->
RD ->
ACK/NACK ->
DATA0 ->
ACK/NACK to
DATAN ->
ACK/NACK ->
STOP
I2C bus is in write
state and the same
I2C device address.
DATA0 ->
ACK/NACK to
DATAN ->
ACK/NACK ->
STOP

Setup I2C slave read data
and stop the I2C bus after
the current transaction.

Write AUX address
register (0x108) with
device address.
Issue read command and
data length to transmit
transaction by writing
into AUX command
register (0x100).
Bits [3:0] represent the
length field.

Write status
with MOT = 1.

START ->
CMD ->
ADDRESS ->
STOP

No transaction
Status of previous write
command that was
deferred or partially
ACKED.

Write AUX address
register (0x108) with
device address.
Issue status update
command to transmit
transaction by writing
into AUX command
register (0x100)
Bit [12] must be set to 1.

Write status
with MOT = 0.

START ->
CMD ->
ADDRESS ->
STOP

Forces a STOP and
the end of write
burst.

Status of previous write
command that was
deferred or partially
ACKED.
MOT = 0 ensures the bus
returns to IDLE at the end
of the burst.

Write AUX address
register (0x108) with
device address.
Issue status update
command to transmit
transaction by writing
into AUX command
register (0x100).
Bit [12] must be set to 1.

Table 33‐21: AUX Transactions (Cont’d)

Transaction AUX Transaction IIC Transaction Usage Sequence
Zynq UltraScale+ Device TRM 1015
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1015

Chapter 33: DisplayPort Controller
Handling I2C Read Defers/Timeout

The sink controller could issue a DEFER response for a burst read to I2C. The following are
the actions that can be taken by the source controller.

• Issue the same command (previously issued read, with same device address and length)
and wait for response. The sink controller on completion of the read from I2C (after
multiple defers) should respond with read data.

• Abort the current read using the following.

° Read to a different I2C slave.

° Write command.

° Address-only Read or write with MOT = 0.

Handling I2C Write Partial ACK

The sink could issue a partial ACK response for a burst write to I2C. The following are the
actions that can be taken by the source controller.

• Use the write status command to poll the transfers happening to the I2C. On successful
completion, the sink should issue an NACK response to these requests while
intermediate ones will get partial ACK.

• Issue the same command (previously issued with the same device address, length and
data) and wait for response. On completion of the write to I2C (after multiple NACK
deferments), the sink controller should respond with an ACK.

• Abort the current write using the following.

° Write to a different I2C slave.

° Read command.

° Address-only read or write with MOT = 0.

Handling I2C Write Defer/Timeout

The sink controller could issue a defer response for a burst write to I2C. The following are
the actions that can be taken by the source controller.

• Use the Write status command to poll the transfers happening to the I2C. On successful
completion, the sink controller should issue an ACK response to these request while
intermediate ones will get a partial ACK.

• Issue the same command (previously issued with the same device address, length and
data) and wait for response. The sink controller on completion of the write to I2C (after
multiple NACK deferments) should respond with an ACK.
Zynq UltraScale+ Device TRM 1016
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1016

Chapter 33: DisplayPort Controller
• Abort the current write using the following.

° Write to a different I2C slave.

° Read command.

° Address only read or write with MOT = 0.

Setting Up a DisplayPort System

The following steps are needed for a proper operation.

• Reset the complete system for initialization.
• Program the DisplayPort transmit with video resolution and lane/link rate

configuration.
• Program the video blender to select the proper input and output formats.
• Program the AV buffer manager as per stream requirements.
• Program the audio mixer to select proper volume gain and metadata information.
• Enable the DisplayPort transmitter as described in the step in previous sections.

AV Buffer Manager Sequence

The following steps are to be followed in the same order, to initialize the AV buffer manager.

For video from buffer manager.

1. Program the video/graphics mode using the DP.AV_BUF_FORMAT register. This register
applies only when using non-live modes.

2. Program the video clock source (0xB120).
3. Depending on the mode, enable the corresponding buffers in the below sequence

(registers 0xB010 to 0xB024).
a. Flush the buffer.
b. Enable and program burst length.

4. Configure the AV buffer outputs (0xB070). This should only be done after channel
enable (can be after any delay). This is because the register is gating planar and
interleaved buffers for them all to start from the same VSYNC boundary. This applies to
video planar buffers and does not apply to video+graphics buffer.

5. Program the scaling factors for the corresponding stream. For example, if the output
from the buffer is live+graphics, program the live scaling factor (0xB218 to 0xB220)
and the graphics scaling factor (0xB200 to 0xB208).

6. When changing the clock source on video/audio (register 0xB120), issue a soft reset
(0xB124).
Zynq UltraScale+ Device TRM 1017
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1017

Chapter 33: DisplayPort Controller
For audio from the buffer manager.

1. Update the ready interval for audio.
2. Enable the audio channel buffers.

AV Buffer Manager Programming Options

1. Each channel can be programmed with an independent burst length.
2. Channel 0: must be always enabled for any video mode.
3. Channel 1 and 2 should be enabled for planar modes.
4. Channel 3 for graphics.
5. Channel 4 and 5 for audio modes.

Key Points to Note in Programming

1. Changing the burst length (BL) in real time is not supported. It is expected that, after a
burst length is chosen it is kept unchanged. If you must change the BL, then the
previous programming sequence must be followed. The same applies to changing video
resolution and pixel format.

2. The suggested programming sequence (for DisplayPort and DPDMA together).
a. Program the DisplayPort source controller (see Source Controller Setup and

Initialization).
b. Program the AV buffer manager.
c. Program the DPDMA.

3. Follow this sequence for disabling the DPDMA channel.
a. Disable DPDMA (Table 33-22).
b. Disable channel and output stream in AV buffer manager.
c. Disable DisplayPort source controller.
d. This is a requirement from DPDMA. The DisplayPort controller is agnostic whether

DPDMA is enabled first.
Zynq UltraScale+ Device TRM 1018
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1018

Chapter 33: DisplayPort Controller
4. When blending is enabled, make sure to program the RGB_MODE bit of layer 0 and
layer 1 control registers (0xA018 and 0xA01C). If the blender output is RGB data, this
bit must be set to 1. For YUV, this bit should be 0. Whenever palette graphics are used,
this bit must be set to 1 (even if the palette is filled with YUV).

Retrigger

If the conventional descriptor update is used to feed the frame information to the DPDMA,
then the DPDMA takes one or two clock cycles to process the new frame based on when the
descriptor was updated by the software.

To solve this problem, DPDMA has a feature that allows the software to redirect or retrigger
the DPDMA at any frame boundary.

DPDMA has a retrigger bit per channel that allows the software to redirect one or more
channels. The flow of operations is as follows.

• The software triggers the channel.
• The channel waits for the first VSYNC to fetch the descriptor from the DSCR START

ADDR register.
• After the DPDMA channel is done processing the descriptor, it uses the NEXT ADDR

(from the descriptor) to fetch the next descriptor.
• The software can make the DPDMA channel loop on the same descriptor by giving the

NEXT ADDR the same as the current descriptor address and setting an ignore done flag
in the descriptor.

• After the GPU is done rendering a new frame, the software comes and writes the start
address, which points to the descriptor that holds a new frame and the software also
writes the retrigger bit.

Table 33‐22: Disable DPDMA

Task Register Register Field Register Offset Bits Value

Pause required
DPDMA channel
(CHx).

DPDMA_CHx_CNTL PAUSE 0x0218 (CH0) 1 1b'1

Wait until the
DPDMA transfers
over on the
channel.

DPDMA_ISR no_ostand_tran0 0x04 6 Read and write
to clear

Clear DPDMA
enable. DPDMA_CHx_CNTL EN 0x218 (CH0) 0 1b'0

Clear pause
required DPDMA
channel (CHx).

DPDMA_CHx_CNTL PAUSE 0x0218 (CH0) 1 1b'0
Zynq UltraScale+ Device TRM 1019
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1019

Chapter 33: DisplayPort Controller
• The DPDMA channel knows where the end of frame is (the descriptor flag that indicates
the current descriptor is the last descriptor of the frame.) The DPDMA uses the start
address to fetch the next descriptor if the software has provided a retrigger during the
current frame. If the software has not provided a retrigger, the DPDMA channel fetches
the next descriptor from the NEXT ADDR specified in the current descriptor.

MIO-EMIO Signals
The DisplayPort Aux interface signals are independently routed to the MIO pins or to a set
of EMIO interface signals as listed in Table 33-23.

Table 33‐23: DPAUX Interface Signals

DPAUX Interface Index(2)

MIO Pins EMIO Signals
O

p
ti

o
n

 1

O
p

ti
o

n
 2

I/O Name I/O

DPAUX_DATA_OUT 0 27 34 O dp_aux_data_out O
DPAUX_HPD 1 28 35 I dp_hot_plug_detect I
DPAUX_DATA_OE 2 29 36 O dp_aux_data_oe_n O
DPAUX_DATA_IN 3 30 37 I dp_aux_data_in I

Notes:
1. The polarity of DPAUX_DATA_OE is inverted between MIO and EMIO.
2. The index numbers are listed in Table 28-1.
Zynq UltraScale+ Device TRM 1020
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1020

Chapter 34

GEM Ethernet

Introduction
The gigabit Ethernet controller (GEM) implements a 10/100/1000 Mb/s Ethernet MAC that
is compatible with the IEEE Standard for Ethernet (IEEE Std 802.3-2008) and capable of
operating in either half or full-duplex mode in 10/100 mode and full-duplex in 1000 mode.
The processing system (PS) is equipped with four gigabit Ethernet controllers. Each
controller can be configured independently. Each controller uses a reduced gigabit media
independent interface (RGMII) v2.0.

Access to the programmable logic (PL) is through the EMIO which provides the gigabit
media independent interface (GMII). Other Ethernet communications interfaces can be
created in the PL using the GMII available on the EMIO interface. GEM supports the serial
gigabit media-independent interface (SGMII, 1000BASE-SX, and 1000BASE-LX) at 1000
Gb/s using the PS-GTR interface.

Registers are used to configure the features of the MAC, select different modes of
operation, and enable and monitor network management statistics. The DMA controller
connects to memory through the advanced eXtensible interface (AXI). It is attached to the
controller's FIFO interface of the MAC to provide a scatter-gather capability for packet data
storage in an embedded processing system.

Each GEM controller provides management data input/output (MDIO) interfaces for PHY
management.
Zynq UltraScale+ Device TRM 1021
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1021

Chapter 34: GEM Ethernet
GEM Features

Each gigabit Ethernet MAC controller has the following features:

• IEEE Standard 802.3-2008 compatible, supporting 10/100/1000 Mb/s transfer rates.
• Full and half duplex operation.
• Several I/O options:

° RGMII with external PHY attached to MIO pins.

° GMII/MII interface to PL (TBI, RGMII v2.0).

° SGMII to PS GTR transceivers (1000 Mb/s rate, only).

° 1000BASE-SX and 1000BASE-LX to PS GTR transceivers.
• MDIO interface for physical layer management of an external PHY device.
• 64-bit AXI DMA master with scatter-gather capability.
• APB slave interface for control register access.
• Interrupt generation to signal receive and transmit completion, or errors and wake-up.
• Automatic pad and cyclic redundancy check (CRC) generation on transmitted frames.
• Automatic discard of frames received with errors.
• Programmable inter-packet gap (IPG) stretch.
• Full duplex flow control with recognition of incoming pause frames and generation of

transmitted pause frames.
• Address checking logic for four specific 48-bit addresses, four type ID values,

promiscuous mode, hash matching of unicast and multicast destination addresses and
wake-on-LAN.

• IEEE Std 802.1Q VLAN tagging with recognition of incoming VLAN and priority tagged
frames.

• Ethernet loopback mode.
• IPv4 and IPv6 transmit and receive IP, TCP, and UDP checksum offload.

Note: Checksum offload means executing the checksum in the PL instead of the software
stack.

• Recognition of IEEE Precision Time Protocol (PTP) standard (IEEE Std 1588 rev. 2)
frames.

• Statistics counter registers for RMON/MIB.
• Jumbo frames up to 10,240 bytes.
• Priority (Q1) on transmit and receive.
Zynq UltraScale+ Device TRM 1022
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1022

Chapter 34: GEM Ethernet
Ethernet Controller Block Diagram

Figure 34-1 shows a block diagram of the GEM Ethernet controller.
X-Ref Target - Figure 34-1

Figure 34‐1: GEM Ethernet Controller Block Diagram

PCS

DMA
Controller

AXI Master AXI
FIFO

Interface

MAC
Transmitter

MAC
Receiver

GMII to RGMII
Adapter

Register
Interface

APB Slave Status and
Statistics
Registers

Control Registers

GMII to RGMII
Adapter

RGMII

EMIO PL
User

Defined

Device
Boundary

MDC, MDIO

Frame
Filtering

GMII/MII

EMIO

MIO
Pins

PL
Signals

MIO
Pins

FIFO Interface to PL
Ten-bit Interface

(SGMII, 1000BASE-SX,
or 1000BASE-LX)

to PS GTR

X15513-072618
Zynq UltraScale+ Device TRM 1023
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1023

Chapter 34: GEM Ethernet
System Viewpoint

Figure 34-2 shows the GEM system viewpoint.

Clock Domains

The gigabit Ethernet controller has the following clocks.

• AXI clock: AXI clock used by DMA controller.
• APB clock: APB clock used by MAC registers.
• TSU clock: Alternate clock source for the time stamp unit (TSU).
• TX clock (tx_clk): MAC transmit clock used by MAC transmit unit in

MII/RGMII/GMII/SGMII, 1000BASE-SX, or 1000BASE-LX mode.
• RX clock (rx_clk): MAC receive clock used by MAC receive synchronization in

MII/RGMII/GMII/SGMII, 1000BASE-SX, or 1000BASE-LX mode.
• Invert TX clock: Inverted TX clock used in loopback mode.

X-Ref Target - Figure 34-2

Figure 34‐2: GEM Ethernet System Viewpoint

Management
Interface

Gigabit Ethernet
Controllers

Control
Registers

TX RX

Time
Stamp
Unit

TX Clock RX Clock

MIO - EMIO

GMII to
RGMII

Adapter

Device
Boundary

RGMII
TX, RX

.

.

.

PTP

MDC, MDIO

GMII
TX, RX

MIO
Pins

PL
.
.
.

EMIO

RX Clock

TX, RX Clocks

MIO Clock
Source

EMIO Clock
Sources

APB

AXI

Slave
Port

Master
Port

Wakeup
Ethernet

IRQ ID#

Interconnect

Interconnect

GEM REF Clock
GEM AXI Reset

GEM RX Reset
GEM Ref Reset

GEM Ref Clock
Internal Clock Source

GMII TX, RX

PCS
Ten-bit
Interface (TBI)

X15514-101117
Zynq UltraScale+ Device TRM 1024
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1024

Chapter 34: GEM Ethernet
• PCS transmit clock: In all modes except SGMII, 1000BASE-SX, and 1000BASE-LX, this
clock can be sourced directly from tx_clk. In SGMII, 1000BASE-SX, or 1000BASE-LX
applications, this clock is sourced from the serializer/deserializer and fixed at 125 MHz
because the GEM PCS only operates at 1000 Mb/s.

• RBC0/RBC1 clock: Used in the PCS receive channel.

The following restrictions apply when generating a reference clock for GEM.

• Do not use fractional divisors in the PLL to generating the 125 MHz clock for the GEM
module.

• Any frequency variation should be within 100 PPM.

Functional Description
The controller comprises four main components.

• MAC controlling transmit, receive, address checking, and loopback.
• Control and status registers, statistics registers, and synchronization logic.
• DMA controlling data transmit and receive through an AXI master interface.
• Time stamp unit (TSU) for calculating the IEEE Std 1588 timer values.

10/100/1000 Operation

The gigabit enable bit in the network configuration register selects between 10/100 Mb/s
Ethernet operation and 1 Gb/s mode. The 10/100 Mb/s speed bit in the network
configuration register is used to select between 10 Mb/s and 100 Mb/s.

SGMII, 1000BASE-SX, or 1000BASE-LX

The physical coding sublayer (PCS) can be configured to operate in SGMII, 1000BASE-SX, or
1000BASE-LX mode (1 Gb/s only). This allows the GEM to be used as a building block to
support SGMII, 1000BASE-SX, or 1000BASE-LX as an interface to an external PHY, further
reducing the pin count.

When bit [27] (SGMII mode) in the network configuration register
(GEM{0:3}.network_config[sgmii_mode_enable]) is set, it changes the behavior of the
auto-negotiation advertisement and link partner ability registers to meet the requirements
of SGMII. Additionally, the time duration of the link timer is reduced from 10 ms to 1.6 ms.

Auto-negotiation is something that occurs between PHYs. SGMII is a MAC-PHY
interconnect and the auto-negotiation functionality (defined in Clause 37 of IEEE Std 802.3)
is used to transfer status information from the PHY to the MAC rather than to perform
Zynq UltraScale+ Device TRM 1025
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1025

Chapter 34: GEM Ethernet
auto-negotiation. In SGMII mode, bits [11:10] of the link partner ability register return the
data transfer rate of the link, which is previously negotiated by the PHY with its link partner
PHY. The line rate is 1 Gb/s as SGMII hardwired to function at 1 Gb/s only. However, the data
transfer rate can be forced down to 100 Mb/s or 10 Mb/s if the link partner is not capable.
The 1000BASE-SX/LX only works at 1 Gb/s (both the data transfer rate and line rate). This
information is used by configuration software to set bits [10] and [0] of the network
configuration register.

The MAC transmit and receive data paths are reconfigured by the network configuration
register bits [10, gigabit_mode_enable] and [11, pcs_select] for different modes and speeds
of operation.

Note: When using the PS-GTR, the configuration remains the same for 1000BaseX or SGMII i.e., the
external PHY will have to be configured for the required mode. However, in 1000BaseX mode, only a
fixed speed of 1G can be used.

Rx and Tx FIFO Interfaces to PL

FIFO Interface to PL

Data is transmitted and received via the GEM RXFIFO and TXFIFO. There are two ways to
access the FIFOs:

• GEM DMA engine as a master on the PS AXI interconnect (LPD) with a 32-bit data
access width.

• Slave interface in the PL via the external FIFO interface with an 8-bit data access width.

The access to the FIFOs is selected by the GEM.external_fifo_interface
[external_fifo_interface] register bit.

Interface Descriptions

Table 34-1 through Table 34-3 describe the signal names and the direction of the PL I/O for
the transmit and receive FIFO interfaces and interface status.

Note: The transmit FIFO interface inputs must be pre-synchronized to the tx_clk clock domain.

Table 34‐1: Transmit FIFO Interface to PL

Signal Name PL Fabric Description

tx_r_data_rdy Input When set to a logic 1, indicates enough data is present in the FIFO interface for
Ethernet frame transmission to commence on the current packet.

tx_r_rd Output
A single tx_clk clock-cycle wide active-High output requesting a word of
information from the external FIFO interface. Synchronous to the tx_clk clock
domain.

tx_r_valid Input
A single tx_clk clock-cycle wide active-High input indicating that the requested
FIFO data is now valid. Validates the following inputs: tx_r_data[7:0], tx_r_sop,
tx_r_eop, and tx_r_err.
Zynq UltraScale+ Device TRM 1026
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1026

Chapter 34: GEM Ethernet
tx_r_data[7:0] Input FIFO data for transmission. This input is only valid when tx_r_valid is High.

tx_r_sop Input Start of packet, indicates the word received from the FIFO interface is the first in
a packet. This input is only valid when tx_r_valid is High.

tx_r_eop Input End of packet, indicates the word received from the FIFO interface is the last in a
packet. This input is only valid when tx_r_valid is High.

tx_r_err Input
Error, active-High input indicating the current packet contains an error. This signal
is only valid when tx_r_valid is High. It can be set at any time during the packet
transfer.

tx_r_underflow Input

FIFO underflow, indicating the transmit FIFO was empty when a read was
attempted. This signal is only valid when the GEM has attempted a read by
asserting tx_r_rd and the tx_r_valid signal is not yet asserted. tx_r_flushed should
be asserted following this event to indicate to the GEM when it is safe to resume
reading.

tx_r_flushed Input
This signal must be driven High and then Low after a major error event to indicate
to the GEM that the FIFO interface is flushed. It enables the GEM to resume
reading data. Events that require this signal to be set are indicated by asserting
any bit of the tx_r_status.

tx_r_control Input
Set this input High at the start of a packet to indicate that the current frame is to
be transmitted without appending a crc (tx_no_crc). This input is only valid when
both tx_r_valid and tx_r_sop are High.

Table 34‐1: Transmit FIFO Interface to PL (Cont’d)

Signal Name PL Fabric Description

Table 34‐2: Transmit FIFO Interface to PL Status

Signal Name I/O Description

dma_tx_end_tog Output
Toggled to indicate that a frame is completed and status is now valid on the
tx_r_status and tx_r_timestamp outputs that can be read by a PL system
element. This signal is not activated when a frame is being retried due to a
collision.

dma_tx_status_tog Input This signal must be toggled each time either dma_tx_end_tog or
collision_occured are activated, to indicate that the status is acknowledged.

tx_r_status[3:0] Output

[3]: fifo_underrun
[2]: collision_occured
[1]: late_coll_occured
[0]: too_many_retries

Table 34‐3: Receive FIFO Interface to the PL

Signal Name I/O Description

rx_w_wr Output A single rx_clk clock-cycle wide active-High output indicating a write to the
FIFO interface.

rx_w_data[31:0] Output Received data for output to the FIFO interface. This output is only valid when
rx_w_wr is High.

rx_w_sop Output Start of packet, indicates the word output to the FIFO interface is the first in a
packet. This output is only valid when rx_w_wr is High.
Zynq UltraScale+ Device TRM 1027
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1027

Chapter 34: GEM Ethernet
The tx_r_data_rdy signal indicates to the MAC that there is sufficient data in the FIFO to
commence transmission. Once this signal becomes active, the transmit module initiates a
read cycle by asserting tx_r_rd for one tx_clk cycle. The FIFO indicates valid data at the FIFO
interface by asserting tx_r_valid for a single cycle. The latency between the read and valid
data is controlled using the tx_r_valid response, which can be returned during the same
cycle as the tx_r_rd request. Once a read commences, it must be terminated with tx_r_valid
or tx_r_underflow, even if tx_r_data_rdy is deasserted.

The MAC transmitter searches for start of packet (SOP), indicated by a tx_r_sop, and
transmission commences once this input becomes valid coincident with tx_r_valid. The MAC
continuously searches for tx_r_sop when tx_r_data_rdy is set. Once the SOP is read, data is

rx_w_eop Output End of packet, indicates the word output to the FIFO interface is the last in a
packet. This output is only valid when rx_w_wr is High.

rx_w_status[44:0] Output

Status signals:
[44]: rx_w_code_error indicates a code error.
[43]: rx_w_too_long indicates the frame is too long.
[42]: rx_w_too_short indicates the frame is too short.
[41]: rx_w_crc_error indicates the frame has a bad crc.
[40]: rx_w_length_error indicates the length field is checked and is incorrect.
[39]: rx_w_snap_match indicates the frame is SNAP encoded and has either no
VLAN tag or a VLAN tag with the CFI bit not set.
[38]: rx_w_checksumu indicates the UDP checksum is checked and is correct.
[37]: rx_w_checksumt indicates the TCP checksum is checked and is correct.
[36]: rx_w_checksumi indicates the IP checksum is checked and is correct.
[35]: rx_w_type_match4: received frame is matched on type ID register 4.
[34]: rx_w_type_match3: received frame is matched on type ID register 3.
[33]: rx_w_type_match2: received frame is matched on type ID register 2.
[32]: rx_w_type_match1: received frame is matched on type ID register 1.
[31]: rx_w_add_match4: received frame is matched on specific address reg 4.
[30]: rx_w_add_match3: received frame is matched on specific address reg 3.
[29]: rx_w_add_match2: received frame is matched on specific address reg 2.
[28]: rx_w_add_match1: received frame is matched on specific address reg 1.
[27]: rx_w_ext_match4: received frame is matched by ext_match4 input signal.
[26]: rx_w_ext_match3: received frame is matched by ext_match3 input signal.
[25]: rx_w_ext_match2: received frame is matched by ext_match2 input signal.
[24]: rx_w_ext_match1: received frame is matched by ext_match1 input signal.
[23]: rx_w_uni_hash_match: received frame is matched as a unicast hash frame.
[22]: rx_w_mult_hash_match: received frame matched as multicast hash frame.
[21]: rx_w_broadcast_frame: received frame is a broadcast frame.
[20]: rx_w_prty_tagged: VLAN priority tag detected with received packet.
[19:16]: rx_w_tci[3:0]: VLAN priority of a received packet.
[15]: rx_w_vlan_tagged: VLAN tag detected with a received packet.
[14]: rx_w_bad_frame: a received packet is bad.
[13:0]: rx_w_frame_length: number of bytes in a received packet.

rx_w_err Output Error, active-High output indicating the current packet contains an error.
rx_w_overflow Input FIFO overflow, indicates to the MAC that the RX FIFO has overflowed.
rx_w_flush Output FIFO flush, active-High output indicating that the RX FIFO should be cleared.

Table 34‐3: Receive FIFO Interface to the PL (Cont’d)

Signal Name I/O Description
Zynq UltraScale+ Device TRM 1028
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1028

Chapter 34: GEM Ethernet
extracted from the FIFO on the tx_r_data input every time the tx_r_valid is set. The MAC
continues to read the frame from memory using tx_r_rd and transmission takes place.

The end of frame is indicated by setting tx_r_eop coincident with tx_r_valid.

For frames smaller than the data width, both the SOP and end of packet (EOP) indicators
must be set in the same data transfer. If two SOPs occur with no intervening EOP, then there
is an underrun and both frames are lost, unless the second SOP occurs on the same cycle as
EOP in which case the second SOP is ignored. A properly configured system should not
generate two SOPs with no intervening EOP.

The tx_r_err signal can be asserted at any stage in the frame, it is driven coincident with
setting tx_r_valid.

IMPORTANT: The PL can assert the tx_r_err signal to flush the FIFOs when an error occurs. A
subsequent bit is set in the tx_r_status signal (assuming the error happens after the first four bytes of
the frame). When this bit set, a tx_r_flushed signal must be set to indicate the FIFO is flushed and is
ready to start running following the error.

In applications where the FIFO interface is required to operate in a half-duplex system, the
tx_r_status information is available to indicate where collisions, excess collisions, late
collisions, and under runs have occurred. Upon each of these conditions, it is necessary to
flush the FIFO and the MAC must wait for this operation to complete before commencing
further frames. A falling edge on the tx_r_flushed input signal indicates when the flush is
complete. If a collision occurs, it is necessary for the FIFO interface to repeat the transfer of
the current frame, so that the frame can be successfully retransmitted.

TIP: The tx_r_flushed input signal must be driven High and then Low after a major error event to
indicate to the GEM that the FIFO is flushed. This process enables the GEM to resume reading data.
Events that require the tx_r_flushed signal to be set are indicated by asserting any bit of the tx_r_status
signal. Before queuing a new frame, wait until the error is fully resolved. Set the tx_r_data_rdy signal
after the flush is complete to indicate to the GEM that there is a new frame to transmit. The tx_r_status
signal expects a new SOP with VALID after the GEM responds with the first tx_r_rd bit. If the tx_r_err
signal is set, avoid sending a new frame into the core until the cleaning process is completed. One
caveat to this process is that if a tx_r_err bit is set within the first four bytes of the frame, the tx_r_status
signal is not set and the frame is silently dropped by the GEM. To handle the lack of a tx_r_status signal,
continue without cleaning up and carry on with the next frame.

The tx_r_status information must be acknowledged by the TX packet FIFO interface by
toggling the tx_r_status_tog input to the MAC each time status is taken. This causes the
tx_r_status bus to be cleared until the next end-of-frame or collision occurs.

For reception, once it is determined that a frame should be written to memory, the MAC
receiver writes data to the FIFO using rx_w_wr and rx_w_data. SOP is indicated by rx_w_sop
and EOP uses rx_w_eop. Rx_w_sop and rx_w_eop are not asserted in the same cycle.
Zynq UltraScale+ Device TRM 1029
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1029

Chapter 34: GEM Ethernet
The rx_w_err signal is set when the MAC encounters a reception error, such as a frame too
short or a CRC error. An rx_w_status bus is available to give status about the frame being
received (such as the frame length, matched internally or in the I/O, broadcast, and/or
multi-cast).

The rx_w_eop signal is always asserted in the same cycle as rx_w_err. The rx_w_overflow
input signal can be asserted in the rx_clk domain when an the FIFO fails to receive a frame
from the FIFO interface to the PL. If rx_w_overflow is asserted sometime between the SOP
and EOP writes, the remainder of the packet continues to be written out, but at the end of
the packet, rx_w_err is asserted together with rx_w_eop.

Additionally, if rx_w_overflow is asserted, then the receive statistics registers do not count
the frame as good. The rx_w_overflow signal must be asserted no later than one cycle after
the rx_w_eop signal is asserted.

rx_w_flush is asserted when the GEM receive path is disabled in the network control register.
If you disable frame reception while a frame is being transferred on the FIFO interface, you
will not see an rx_w_eop indication. rx_w_flush is an rx_clk timed signal that is used to clear
the receive FIFO when receive is disabled.

FIFO Interface Timing Criteria

Figure 34-3 shows the detailed timing relationships for a frame on the FIFO interface (MAC
transmit) with one cycle between the read request and data valid.

X-Ref Target - Figure 34-3

Figure 34‐3: FIFO Interface (MAC Transmit) with One Cycle

X15905-101217
Zynq UltraScale+ Device TRM 1030
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1030

Chapter 34: GEM Ethernet
Figure 34-4 shows the detailed timing relationships for a frame on the FIFO interface (MAC
transmit) that incorporates a 2-byte frame with an SOP and an EOP in the same transfer.

Figure 34-5 shows the detailed timing relationships for a frame on the FIFO interface (MAC
transmit) with a frame error.

X-Ref Target - Figure 34-4

Figure 34‐4: FIFO Interface (MAC Transmit) with SOP and EOP in the Same Transfer

X15906-101217

X-Ref Target - Figure 34-5

Figure 34‐5: FIFO Interface (MAC Transmit) with a Frame Error

X15907-101217
Zynq UltraScale+ Device TRM 1031
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1031

Chapter 34: GEM Ethernet
Figure 34-6 shows a frame on the FIFO interface (MAC receive).

Figure 34-7 shows a frame on the external FIFO interface (MAC receive) with a frame error.

Note: A FIFO output signal (tx_r_fixed_lat) is generated by the FIFO adapter to signal to the 8-bit
FIFO interface when the latency on that internal interface is fixed. Only when the tx_r_fixed_lat signal
is asserted can the latency through the design be assumed as fixed, then used to insert the
correction field and/or timestamp fields into the datastream. For a 32-bit MAC datapath, the output
signal is asserted later than the 22nd read on the 8-bit FIFO interface (mapping to offset 22 in the
Ethernet frame). Only the assertion of this signal is of value, your design logic should detect the
rising edge of this signal to determine when latency is fixed and ignore the deassertion.

MDIO Interface

The management data input/output (MDIO) interface is for physical layer management. The
MDIO is a single bi-directional 3-state signal going between the GEM and one or more
PHYs. The GEM signals mdio_in, mdio_out, and mdio_en are provided to control a chip-level
3-state buffer.

X-Ref Target - Figure 34-6

Figure 34‐6: FIFO Interface (MAC Receive)

X15908-101217

X-Ref Target - Figure 34-7

Figure 34‐7: FIFO Interface (MAC Receive) with a Frame Error

X15909-101217
Zynq UltraScale+ Device TRM 1032
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1032

Chapter 34: GEM Ethernet
MAC Transmitter

The MAC transmitter can operate in either half-duplex or full-duplex mode, and transmits
frames in accordance with the Ethernet IEEE Std 802.3. In half-duplex mode, the CSMA/CD
protocol of the IEEE Std 802.3 specification is followed.

Frame assembly starts by adding the preamble and the start frame delimiter. Data is taken
from the transmit FIFO a word at a time. When the controller is configured for gigabit
operation, the data output to the PHY uses all eight bits of the txd[7:0] output. In
10/100 mode, transmit data to the PHY is nibble wide and the least significant nibble is first
using txd[3:0] with txd[7:4] tied to logic 0.

If necessary, padding is added to take the frame length to 60 bytes. CRC is calculated using
an order 32-bit polynomial. This is inverted and appended to the end of the frame taking
the frame length to a minimum of 64 bytes. If the no-CRC bit is set in the second word of
the last buffer descriptor of a transmit frame, neither pad nor CRC are appended. The
no-CRC bit can also be set through the FIFO.

In full-duplex mode (at all data rates), frames are transmitted immediately. Back-to-back
frames are transmitted at least 96-bit times apart to check the interframe gap.

In half-duplex mode, the transmitter checks carrier sense. If asserted, the transmitter waits
for the signal to become inactive, and then starts transmission after the interframe gap of
96-bit times. If the collision signal is asserted during transmission, the transmitter transmits
a jam sequence of 32 bits taken from the data register and then retries transmission after
the backoff time has elapsed. If the collision occurs during either the preamble or SFD, then
these fields are completed prior to generation of the jam sequence.

The backoff time is based on an XOR of the 10 least significant bits of the data coming from
the transmit FIFO and a 10-bit pseudo-random number generator. The number of bits used
depends on the number of collisions seen. After the first collision 1 bit is used, then the
second 2 bits, and up to the maximum of 10 bits. All 10 bits are used above ten collisions.
An error is indicated and no further attempts are made if 16 consecutive attempts cause a
collision. This operation is compatible with the description in clause 4.2.3.2.5 of the
IEEE Std 802.3 which refers to the truncated binary exponential backoff algorithm.

In 10/100 mode, both collisions and late collisions are treated identically, and backoff and
retry are performed up to 16 times. When operating in gigabit mode, late collisions are
treated as an exception and transmission is aborted, without retry. This condition is
reported in the transmit buffer descriptor word [1] (late collision, bit [26]) and also in the
transmit status register (late collision, bit [7]).

An interrupt can also be generated (if enabled) when this exception occurs, and bit [5] in
the interrupt status register is set.

When bit [28] is set in the network configuration register the IPG can be stretched beyond
96 bits depending on the length of the previously transmitted frame and the value written
to the stretch_ratio register. The least significant 8 bits of the stretch_ratio register multiply
Zynq UltraScale+ Device TRM 1033
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1033

Chapter 34: GEM Ethernet
the previous frame length (including preamble) and the next significant 8 bits (+1 so as not
to get a divide by zero) divide the frame length to generate the IPG. IPG stretch only works
in full-duplex mode and when bit [28] is set in the network configuration register. The
stretch_ratio register cannot be used to shrink the IPG below 96 bits.

MAC Receiver

All processing within the MAC receiver uses 16-bit datapaths. The MAC receiver checks for
valid preamble, FCS, alignment, and length. It then sends the received frames to the FIFO (to
either the DMA controller or interface to the PL) and stores the frames destination address
for use by the address checking unit.

If, during frame reception, the frame is found to be too long, a bad frame indication is sent
to the FIFO. The receiver logic ceases to send data to memory as soon as this condition
occurs.

At end of frame reception the receive unit indicates to the DMA controller whether the
frame is good or bad. The DMA controller recovers the current receive buffer if the frame is
bad.

Ethernet frames are normally stored in memory via the DMA unit or to the FIFO complete
with the FCS. Setting the FCS remove bit in the network configuration register (bit [17])
causes frames to be stored without their corresponding FCS. The reported frame length
field is reduced by four bytes to reflect this operation.

The receive block signals to the register block to increment the alignment, CRC (FCS), short
frame, long frame, jabber or receive symbol errors when any of these exception conditions
occur.

If bit [26] is set in the network configuration CRC, errors are ignored and frames with CRC
errors are not discarded, though the frame check sequence errors statistic register is still
incremented.

Bit [13] of the receiver descriptor word [1] is updated to indicate the FCS validity for the
particular frame. This is useful for applications where individual frames with FCS errors must
be identified. Received frames can be checked for length field error by setting the length
field error frame discard bit of the network configuration register (bit [16]). When this bit is
set, the receiver compares a frame's measured length with the length field (bytes 13 and 14)
extracted from the frame.

The frame is discarded if the measured length is shorter. This checking procedure is for
received frames between 64 bytes and 1,518 bytes in length. 1,536 bytes if bit [8] is set in
the network configuration register, 10,240 bytes if bit [3] is set in the network configuration
register. Each discarded frame is counted in the 10-bit length field error statistics register.
Zynq UltraScale+ Device TRM 1034
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1034

Chapter 34: GEM Ethernet
MAC Filtering

The MAC filter determines which frames should be written to the AXI interface FIFO and
onto the DMA controller. Whether a frame is passed depends on what is enabled in the
network configuration register, the state of the I/O matching signals, the contents of the
specific address, type, and hash registers and the frame's destination address and type
field.

If bit [25] of the network configuration register is not set, a frame is not copied to memory
if the gigabit Ethernet controller is transmitting in half-duplex mode at the time a
destination address is received.

Ethernet frames are transmitted a byte at a time, least significant bit first. The first six bytes
(48 bits) of an Ethernet frame make up the destination address. The first bit of the
destination address, which is the LSB of the first byte of the frame, is the group or individual
bit. This is one for multicast addresses and zero for unicast. The all-ones address is the
broadcast address and a special case of multicast.

The gigabit Ethernet controller supports recognition of four specific addresses. Each
specific address requires two registers, specific address register bottom and specific
address register top. Specific address register bottom stores the first four bytes of the
destination address and specific address register top contains the last two bytes. The
addresses stored can be specific, group, local, or universal.

The destination address of received frames is compared against the data stored in the
specific address registers once activated. The addresses are deactivated at reset or when
their corresponding specific address register bottom is written. They are activated when the
specific address register top is written. If a receive frame address matches an active address,
the frame is written to the FIFO and on to the DMA controller, if used.

Frames can be filtered using the type ID field for matching. Four type ID registers exist in
the register address space and each can be enabled for matching by writing a one to the
MSBs (bit [31]) of the respective register. When a frame is received, the matching is
implemented as an OR function of the various types of match.

The contents of each type ID registers (when enabled) are compared against the
length/type ID of the frame being received (for example, bytes 13 and 14 in non-VLAN and
non-SNAP encapsulated frames) and copied to memory if a match is found. The encoded
type ID match bits (word 1, bit [22] and bit [23]) in the receive buffer descriptor status are
set indicating which type ID register generated the match, if the receive checksum offload
is disabled. The reset state of the type ID registers is zero, for this reason, each is initially
disabled.
Zynq UltraScale+ Device TRM 1035
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1035

Chapter 34: GEM Ethernet
The following example illustrates the use of the address and type ID match registers for a
MAC address of 21:43:65:87:A9:CB.

Preamble 55
SFD D5
DA (Octet 0 - LSB) 21
DA (Octet 1) 43
DA (Octet 2) 65
DA (Octet 3) 87
DA (Octet 4) A9
DA (Octet 5 - MSB) CB
SA (LSB) 00*
SA 00*
SA 00*
SA 00*
SA 00*
SA (MSB) 00*
Type ID (MSB) 43
Type ID (LSB) 21
Note: * - contains the address of the transmitting device.

The sequence shows the beginning of an Ethernet frame. Byte order of transmission is from
top to bottom. For a successful match to specific address 1, the following address matching
registers must be set up.

• Specific address 1 bottom (address 0x088) 0x87654321.
• Specific address 1 top (address 0x08C) 0x0000CBA9.

And for a successful match to the type ID, the following type ID match 1 register must be set
up.

Type ID match 1 (address 0x0A8) 0x80004321.

Broadcast Address

Frames with the broadcast address of 0xFFFFFFFFFFFF are stored to memory only if the
no broadcast bit in the network configuration register is set to zero.
Zynq UltraScale+ Device TRM 1036
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1036

Chapter 34: GEM Ethernet
Hash Addressing

The hash address register is 64-bits long and takes up two locations in the memory map.
The least significant bits are stored in hash register bottom and the most significant bits in
hash register top.

The unicast hash enable and the multicast hash enable bits in the network configuration
register enable the reception of hash matched frames. The destination address is reduced
to a 6-bit index into the 64-bit hash register using the following hash function. The hash
function is an XOR of every sixth bit of the destination address.

hash_index[05] = da[05]°^°da[11]°^°da[17]°^°da[23]°^°da[29]°^°da[35]°^°da[41]°^°da[47]
hash_index[04] = da[04]°^°da[10]°^°da[16]°^°da[22]°^°da[28]°^°da[34]°^°da[40]°^°da[46]
hash_index[03] = da[03]°^°da[09]°^°da[15]°^°da[21]°^°da[27]°^°da[33]°^°da[39]°^°da[45]
hash_index[02] = da[02]°^°da[08]°^°da[14]°^°da[20]°^°da[26]°^°da[32]°^°da[38]°^°da[44]
hash_index[01] = da[01]°^°da[07]°^°da[13]°^°da[19]°^°da[25]°^°da[31]°^°da[37]°^°da[43]
hash_index[00] = da[00]°^°da[06]°^°da[12]°^°da[18]°^°da[24]°^°da[30]°^°da[36]°^°da[42]

Where da[0] represents the least significant bit of the first byte received, that is, the
multicast/unicast indicator, and da[47] represents the most significant bit of the last byte
received.

If the hash index points to a bit that is set in the hash register then the frame is matched
according to whether the frame is multicast or unicast.

A multicast match is signaled if the multicast hash enable bit is set, da[0] is a logic 1 and the
hash index points to a bit set in the hash register. A unicast match is signaled if the unicast
hash enable bit is set, da[0] is a logic 0 and the hash index points to a bit set in the hash
register. To receive all multicast frames, set the hash register with all ones and set the
multicast hash enable bit in the network configuration register.

Copy All Frames (or Promiscuous Mode)

If the copy all frames bit is set in the network configuration register, then all frames (except
those that are too long, too short, have FCS errors, or have rx_er asserted during reception)
are copied to memory. Frames with FCS errors are copied if bit [26] is set in the network
configuration register.

Disable Copy of Pause Frames

Pause frames can be prevented from being written to memory by setting the disable
copying of pause frames control bit [23] in the network configuration register. When set,
pause frames are not copied to memory regardless of the copy all frames bit, whether a
hash match is found, a type ID match is identified, or if a destination address match is
found.
Zynq UltraScale+ Device TRM 1037
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1037

Chapter 34: GEM Ethernet
VLAN Support

An Ethernet encoded IEEE Std 802.1Q VLAN tag is shown in Table 34-4.

The VLAN tag is inserted at the 13th byte of the frame adding an extra four bytes to the
frame. To support these extra four bytes, the gigabit Ethernet controller can accept frame
lengths up to 1,536 bytes by setting bit [8] in the network configuration register.

If the VLAN identifier (VID) is null (0x000) a priority-tagged frame is indicated.

The following bits in the receive buffer descriptor status word provide information about
VLAN tagged frames.

• Set bit [21] if the receive frame is VLAN tagged (that is, type ID of 0x8100).
• Set bit [20] if receive frame is priority tagged (that is, type ID of 0x8100 and null VID).

If bit [20] is set, bit [21] is also set.
• Set bits [19], [18], and [17] to priority if the bit [21] is set.
• Set bit [16] to CFI if bit [21] is set.

The controller can be configured to reject all frames except VLAN tagged frames by setting
the discard non-VLAN frames bit in the network configuration register.

Wake-on-LAN Support

The receive block supports wake-on-LAN (WOL) by detecting the following events on
incoming receive frames.

• Magic packets.
• Address resolution protocol (ARP) requests to the device IP address.
• Specific address 1 filter match.
• Multicast hash filter match.

If one of these events occurs, WOL detection is indicated by asserting the wake-up
interrupt. These events can be individually enabled through bits[19:16] of the wake-on-LAN
register.

Also, for WOL detection to occur, the receive enable must be set in the network control
register.

Table 34‐4: Ethernet Encoded IEEE Std 802.1Q VLAN Tag

16-bit Tag Protocol Identifier (TPID) 16-bit Tag Control Information (TCI)

0x8100 First 3 bits priority, then CFI bit, last 12 bits VID
Zynq UltraScale+ Device TRM 1038
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1038

Chapter 34: GEM Ethernet
IMPORTANT: A receive buffer does not have to be available, but the descriptor must be fetchable from
memory when the wake-up event occurs.

The wake-up interrupt is asserted due to multicast filter events, an ARP request, or a
specific address 1 match even in the presence of a frame error. For magic-packet events, the
frame must be correctly formed and error free.

A magic-packet event is detected when all of the following are true.

• Magic-packet events are enabled through bit [16] of the wake-on-LAN register.
• The frame's destination address matches the specific address 1 register.
• The frame is correctly formed with no errors.
• The frame contains at least 6 bytes of 0xFF for synchronization.
• There are 16 repetitions of the contents of the specific address 1 register immediately

following the synchronization.

An ARP request event is detected when all of the following are true.

• ARP request events are enabled through bit [17] of the wake-on-LAN register.
• Broadcasts are allowed by bit [5] in the network configuration register.
• The frame has a broadcast destination address (bytes 1 to 6).
• The frame has a type ID field of 0x0806 (bytes 13 and 14).
• The frame has an ARP operation field of 0x0001 (bytes 21 and 22).
• The least significant 16 bits of the frame's ARP target protocol address (bytes 41 and

42) match the value programmed in bits[15:0] of the wake-on-LAN register.

The decoding of the ARP fields adjusts automatically if a VLAN tag is detected within the
frame. The reserved value of 0x0000 for the wake-on-LAN target address value does not
cause an ARP request event, even if matched by the frame.

A specific address 1 filter match event occurs when all of the following are true.

• Specific address 1 events are enabled through bit [18] of the wake-on-LAN register.
• The frame's destination address matches the value programmed in the specific

address 1 registers.
• A multicast filter match event occurs when all of the following are true.
• Multicast hash events are enabled through bit [19] of the wake-on-LAN register.
• Multicast hash filtering is enabled through bit [6] of the network configuration register.
• The frame destination address matches against the multicast hash filter.
• The frame destination address is not a broadcast.
Zynq UltraScale+ Device TRM 1039
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1039

Chapter 34: GEM Ethernet
DMA Controller

The DMA controller is attached to the FIFO to provide a scatter-gather type capability for
packet data storage in the embedded processing system.

Packet Buffer DMA

The DMA uses separate transmit and receive lists of buffer descriptors, with each descriptor
describing a buffer area in memory. This allows Ethernet packets to be broken up and
scattered around the AXI memory space.

The controller uses a packet buffer with the following advantages.

• 64 data bus width support.
• Achieve the maximum line rate by storing multiple frames in the packet buffer.
• Efficient use of the AXI interface.
• Full store and forward.
• Support for transmit TCP/IP checksum offload.
• Support for priority queuing.
• When a collision on the line occurs during transmission, the packet is automatically

replayed directly from the packet buffer memory rather than having to re-fetch through
the AXI interface.

• Received error packets are automatically dropped before any of the packet is presented
to the AXI, reducing AXI activity.

• Supports manual RX packet flush capabilities.
• Optional RX packet flush when there is lack of AXI resources.

AXI Bus Master

Transfer size is set to 64-bit words using the AXI bus width select bits in the network
configuration register, and burst size can be programmed to single access or bursts of 4, 8,
16, or 256 words using the DMA configuration register.

The DMA memory transactions can be routed to the CCI for cache coherency with the APU
or bypass it. The route is selected by an iou_slcr.IOU_INTERCONNECT_ROUTE [GEMx] bit.
Zynq UltraScale+ Device TRM 1040
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1040

Chapter 34: GEM Ethernet
RX Buffers

Received frames, optionally including FCS, are written to receive AXI buffers stored in
memory. The start location for each receive AXI buffer is stored in memory in a list of
receive buffer descriptors at an address location pointed to by the receive-buffer queue
pointer. The base address for the receive-buffer queue pointer is configured in software
using the receive-buffer queue base address register.

The number of words in each buffer descriptor depends on the operating mode. Each buffer
descriptor word is defined as 32 bits. The first two words (word 0 and word 1) are used for
all buffer descriptor modes. In extended buffer descriptor modes (DMA configuration
register bit 28 = 1), two buffer descriptor words are added for 64-bit addressing mode and
two buffer descriptor words are added for timestamp capture. Therefore, there are either
two, four, or six buffer descriptor words in each buffer descriptor entry depending on
operating mode, and every buffer descriptor entry has the same number of words.

• Every descriptor is 64-bits wide when 64-bit addressing is disabled and the descriptor
timestamp capture mode is disabled.

• Every descriptor is 128-bits wide when 64-bit addressing is enabled and the descriptor
timestamp capture mode is disabled.

• Every descriptor is 128-bits wide when 64-bit addressing is disabled and the descriptor
timestamp capture mode is enabled.

• Every descriptor is 192-bits wide when 64-bit addressing is enabled and the descriptor
timestamp capture mode is enabled.

Table 34-5 includes details on the receive buffer descriptor list.

Each receive AXI buffer start location is a word address. The start of the first AXI buffer in a
frame can be offset by up to three bytes depending on the value written to bits [14] and [15]
of the network configuration register. If the start location of the AXI buffer is offset the
available length of the first AXI buffer is reduced by the corresponding number of bytes.

Table 34‐5: RX Buffer Descriptor Entry

Bit Function

Word 0

31:3 Address of beginning of buffer.
2 Address [2] of beginning of buffer, or in extended buffer descriptor mode (DMA configuration

register [28] = 1), indicates a valid timestamp in the buffer descriptor entry.
1 Wrap: Marks the last descriptor in the receive buffer descriptor list.
0 Ownership: This bit must be zero for the controller to write data to the receive buffer. The controller

sets this bit to 1 once the frame is written to memory. Software must clear this bit before the buffer
can be used again.

Word 1
Zynq UltraScale+ Device TRM 1041
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1041

Chapter 34: GEM Ethernet
31 Global all ones broadcast address detected.
30 Multicast hash match.
29 Unicast hash match.
28 I/O address match.
27 Specific address register match found, bit [25] and [26] indicate the specific address register that

caused the match.
26:25 Specific address register match. The encoded matches are listed.

00b: Specific address register 1 match
01b: Specific address register 2 match
10b: Specific address register 3 match
11b: Specific address register 4 match

If more than one specific address is matched, only one is indicated with priority 4 down to 1.
24 This bit indicates different information when the RX checksum offloading is enabled or disabled.

• With RX checksum offloading disabled, bit [24] is cleared and the network configuration type ID
register match is found. Bit [22] and bit [23] indicates which type ID register caused the match.

• With RX checksum offloading enabled, bit [24] is set in the network configuration.
0b: The frame is not SNAP encoded and/or has a VLAN tag with the CFI bit set.
1b: The frame is SNAP encoded and has either no VLAN tag or a VLAN tag without the CFI bit set.

23:22 These bits indicate different information when the RX checksum offloading is enabled or disabled.
• With RX checksum offloading disabled, bit [24] is cleared in the network configuration type ID

register match. The encoded matches are listed.
00b: Type ID register 1 match
01b: Type ID register 2 match
10b: Type ID register 3 match
11b: Type ID register 4 match

If more than one type ID is matched, only one is indicated with priority 4 down to 1.
• With RX checksum offloading enabled, bit [24] is set in the network configuration.
00b: Both the IP header checksum and the TCP/UDP checksum were not checked.
01b: The IP header checksum is checked and is correct. Both the TCP or UDP checksum were not
checked.
10b: Both the IP header and TCP checksum were checked and were correct.
11b: Both the IP header and UDP checksum were checked and were correct.

21 VLAN tag detected: Type ID of 0x8100. For packets incorporating the stacked VLAN processing
feature, this bit is set if the second VLAN tag has a type ID of 0x8100.

20 Priority tag detected: Type ID of 0x8100 and null VLAN identifier. For packets incorporating the
stacked VLAN processing feature, this bit is set if the second VLAN tag has a type ID of 0x8100
and a null VLAN identifier.

19:17 VLAN priority: Only valid if bit [21] is set.
16 Canonical format indicator (CFI) bit: Only valid if bit [21] is set.

Table 34‐5: RX Buffer Descriptor Entry (Cont’d)

Bit Function
Zynq UltraScale+ Device TRM 1042
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1042

Chapter 34: GEM Ethernet
Table 34-6 identifies the added descriptor words used when the 64-bit addressing mode is
enabled.

Table 34-7 identifies the added descriptor words used when the descriptor timestamp
capture mode is enabled.

15 End of frame: When set, the buffer contains the end of a frame. If end of frame is not set, then the
only valid status bit is start of frame bit [14].

14 Start of frame: When set, the buffer contains the start of a frame. If both bits [15] and [14] are set,
the buffer contains a whole frame.

13 This bit indicates different information when the ignore FCS mode is enabled or disabled.
• This bit is zero if ignore FCS mode is disabled.
• When ignore FCS mode is enabled, bit [26] is set in the network configuration register. The

per-frame FCS status indicates the following.
0b: Frame had good FCS.
1b: Frame had bad FCS and if the ignore FCS mode is enabled, the frame is copied to memory.

12:0 These bits represent the length of the received frame that could include FCS if the FCS discard
mode is enabled or disabled.
• FCS discard mode disabled: Bit [17] is cleared in the network configuration register. The least

significant 12 bits for length of frame include FCS.
• FCS discard mode enabled: Bit [17] is set in the network configuration register. The least

significant 12 bits for length of frame exclude FCS.

Table 34‐5: RX Buffer Descriptor Entry (Cont’d)

Bit Function

Table 34‐6: RX Descriptor Words: 64-bit Addressing Mode

Bit Function

Word 2 (64-bit Addressing)

31:0 Upper 32-bit address of the data buffer.
Word 3 (64-bit Addressing)

31:0 Unused

Table 34‐7: RX Descriptor Words: Descriptor Timestamp Capture Mode

Bit Function

Word 2 (32-bit Addressing) or Word 4 (64-bit Addressing)

31:30 Timestamp seconds [1:0]
29:0 Timestamp nanoseconds [29:0]

Word 3 (32-bit Addressing) or Word 5 (64-bit Addressing)

31:4 Unused
3:0 Timestamp seconds [5:2]
Zynq UltraScale+ Device TRM 1043
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1043

Chapter 34: GEM Ethernet
The start location of the receive-buffer descriptor list must be written with the
receive-buffer queue base address before reception is enabled (receive enable in the
network control register). Once reception is enabled, any writes to the receive-buffer queue
base address register are ignored.

When read, it returns the current pointer position in the descriptor list, though this is only
valid and stable when receive is disabled.

If the filter block indicates that a frame should be copied to memory, the receive data DMA
operation starts writing data into the receive buffer. If an error occurs, the buffer is
recovered.

An internal counter represents the receive-buffer queue pointer and it is not visible through
the CPU interface. The receive-buffer queue pointer increments by two words after using
each buffer. It re-initializes to the receive-buffer queue base address when any descriptor
has its wrap bit set.

As receive AXI buffers are used, the receive AXI buffer manager sets bit zero of the first
word of the descriptor to logic one, to indicate that the AXI buffer was used.

Software should search through the used bits in the AXI buffer descriptors to determine
how many frames are received by checking the start of frame and end of frame bits.

For low latency requirements, GEM supports receive partial store and forward in packet
buffer mode. The rx watermark or cut-thru is user defined.

When the receive partial store and forward mode is activated, the receiver will only begin to
forward the packet to the external AHB or AXI slave when enough packet data is stored in
the packet buffer. The amount of packet data required to activate the forwarding process is
programmable via watermark registers, which are located at the same address as the partial
store and forward enable bits.

Enabling partial store and forward is useful to reduce latency, but there are performance
implications. For example, the packet buffer DMA will start behaving in a similar way to the
internal FIFO DMA mode when partial store and forward is enabled.

Note: When partial store and forward is enabled, checksum offload is not supported.

Since the DMA is configured in the packet buffer partial store and forward mode, received
frames are written out to the AHB/AXI buffers as soon as sufficient frame data exists in the
packet buffer. Therefore, several full buffers are used before error conditions can be
detected. If a receive error is detected, the receive buffer currently being written will be
recovered, but the previous buffers will not be recovered. For example, when receiving
frames with CRC errors or excessive length, it is possible that a frame fragment may be
stored in a sequence of receive buffers. Software can detect these fragments by looking for
the start-of-frame bit set in a buffer, following a buffer with no-end-of frame bit set.

A properly working 10/100/1000 Ethernet system does not have excessive length frames or
frames greater than 128 bytes with CRC errors. When using a default value of 128 bytes for
Zynq UltraScale+ Device TRM 1044
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1044

Chapter 34: GEM Ethernet
the receive buffer, it is rare to find a frame fragment in a receive AXI buffer, because
collision fragments are less than 128 bytes long.

Only good received frames are written out of the DMA and no fragments exist in the AXI
buffers due to MAC receiver errors. However, there is still the possibility of fragments due to
DMA errors, for example, when a used bit is read on the second buffer of a multi-buffer
frame.

If bit zero of the receive buffer descriptor is already set when the receive buffer manager
reads the location of the receive AXI buffer, then the buffer is already used and cannot be
used again until the software has processed the frame and cleared bit zero. In this case, the
buffer not available bit in the receive status register is set and an interrupt is triggered. The
receive resource error statistics register is also incremented.

There is an option to automatically discard received frames when no AXI buffer resource is
available. Bit [24] of the DMA configuration register controls this option. By default, the
received frames are not automatically discarded. When this feature is off, the received
packets remain stored in the packet buffer until an AXI buffer resource becomes available.
This can lead to an eventual packet buffer overflow occurs when packets continue to be
received because the [0, used] bit of the receive-buffer descriptor is still set.

After a used bit is read, the receive-buffer manager re-reads the location of the receive
buffer descriptor every time a new packet is received.

When the DMA is configured in the packet buffer full store and forward mode, a receive
overrun condition occurs when the receive packet buffer is full, or if an AMBA AXI error
occurred.

For a receive overrun condition, the receive overrun interrupt is asserted and the buffer
currently being written is recovered. The next frame that is received whose address is
recognized reuses the buffer.

A write to bit [18] of the network control register forces a flush of the packet from the
receive packet buffer. This only occurs when the RX DMA is not currently writing packet data
out to the AXI (that is, it is in an IDLE state). If the RX DMA is active, a write to this bit is
ignored.

TX Buffers

Frames to transmit are stored in one or more transmit AXI buffers. Zero length AXI buffers
are allowed and the maximum number of buffers permitted for each transmit frame is 128.

The number of words in each buffer descriptor depends on the operating mode. The first
two words (word 0 and word 1) are used for all buffer descriptor modes. In extended buffer
descriptor mode, two buffer descriptor words are added for 64-bit addressing mode and
two buffer descriptor words are added for timestamp capture. Therefore, there are either
two, four, or six buffer descriptor words in each buffer descriptor entry depending on
operating mode, and every buffer descriptor entry has the same number of words.
Zynq UltraScale+ Device TRM 1045
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1045

Chapter 34: GEM Ethernet
• Every descriptor is 64-bits wide when 64-bit addressing is disabled and the descriptor
timestamp capture mode is disabled.

• Every descriptor is 128-bits wide when 64-bit addressing is enabled and the descriptor
timestamp capture mode is disabled.

• Every descriptor is 128-bits wide when 64-bit addressing is disabled and the descriptor
timestamp capture mode is enabled.

• Every descriptor is 196-bits wide when 64-bit addressing is enabled and the descriptor
timestamp capture mode is enabled.

To transmit frames, the buffer descriptors must be initialized by writing an appropriate byte
address to bits [31:0] in the first word of each descriptor list entry.

The second word of the transmit-buffer descriptor is initialized with control information
that indicates the length of the frame, whether the MAC is to append CRC, and whether the
buffer is the last buffer in the frame.

After transmission, the status bits are written back to the second word of the first buffer
along with the used bit. Bit [31] is the used bit that, if transmission is to take place, must be
zero when the control word is read. It is written to one once the frame is transmitted. Bits
[29:20] indicate various transmit error conditions. Bit [30] is the wrap bit, which can be set
for any buffer within a frame. When no wrap bit is encountered, the queue pointer
continues to increment.

The transmit-buffer queue base address register can only be updated while transmission is
disabled or halted; otherwise any attempted write is ignored. When transmission is halted,
the transmit-buffer queue pointer maintains its value. Therefore, when transmission is
restarted the next descriptor read from the queue is from immediately after the last
successfully transmitted frame. While transmit is disabled, bit [3] of the network control is
set Low, the transmit-buffer queue pointer resets to point to the address indicated by the
transmit-buffer queue base address register. Disabling receive does not have the same
effect on the receive-buffer queue pointer.

When the transmit queue is initialized, transmit is activated by writing a 1 to the transmit
start bit [9] of the network control register. Transmit is halted when the used bit of the
buffer descriptor is read, a transmit error occurs, or by writing to the transmit halt bit of the
network control register.

Transmission is suspended if a pause frame is received while the pause enable bit is set in
the network configuration register. Rewriting the start bit while transmission is active is
allowed. This is implemented with a transmit_go variable, which is read from the transmit
status register at bit [3].

The transmit_go variable is reset when the following occurs.

• Transmit is disabled.
• A buffer descriptor’s ownership bit set is read.
Zynq UltraScale+ Device TRM 1046
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1046

Chapter 34: GEM Ethernet
• Bit [10], tx_halt_pclk, of the network control register is written.
• There is a transmit error due to too many retries, late collision (gigabit mode only), or a

transmit under-run.

To set transmit_go, write to bit [9], tx_start_pclk of the network control register.

Transmit halt does not take effect until any ongoing transmit finishes.

The entire contents of the frame are read into the transmit packet buffer memory, any retry
attempt is replayed directly from the packet buffer memory rather than re-fetching it
through the AXI.

If a used bit is read mid-way through transmission of a multi-buffer frame, the bit is treated
as a transmit error. Transmission stops, tx_er is asserted, and the FCS is bad.

If transmission stops due to a transmit error or a used bit being read, transmission is
restarted from the first buffer descriptor of the frame being transmitted when the transmit
start bit is rewritten.

Table 34-8 includes details of the transmit buffer descriptor list.

Table 34‐8: TX Buffer Descriptor Entry

Bit Function

Word 0

31:0 Byte address of buffer.
Word 1

31 Used: Must be zero for the controller to read data to the transmit buffer. Once it is successfully
transmitted, the controller sets this bit to one for the first buffer of a frame. Software must clear
this bit before the buffer can be used again.

30 Wrap: Marks the last descriptor in the transmit buffer descriptor list. This can be set for any buffer
within the frame.

29 Retry limit exceeded, transmit error detected.
28 Always set to 0.
27 Transmit frame corruption due to AXI error: Set if an error occurs midway while reading through

the transmit frame from the AXI, including RESP errors, and buffers exhausted mid-frame. If the
buffers run out during transmission of a frame, then transmission stops, the FCS is incorrect, and
tx_er is asserted.

26 Late collision, transmit error detected. Late collisions force this status bit to be set in gigabit mode.
25:24 Reserved.

23 For extended buffer descriptor mode. This bit indicates a timestamp is captured in the buffer
descriptor. Otherwise the bit is reserved.
Zynq UltraScale+ Device TRM 1047
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1047

Chapter 34: GEM Ethernet
Table 34-9 identifies the added descriptor words used when the 64-bit addressing mode is
enabled.

22:20 Transmit IP/TCP/UDP checksum generation offload errors:
000b: No error.
001b: The packet is identified as a VLAN type, but the header is not fully complete, or has an
error in it.
010b: The packet is identified as a SNAP type, but the header is not fully complete, or has an
error in it.
011b: The packet is not of an IP type, or the IP packet was invalidly short, or the IP is not of type
IPv4/IPv6.
100b: The packet is not identified as VLAN, SNAP, or IP.
101b: Non-supported packet fragmentation occurred. For IPv4 packets, the IP checksum is
generated and inserted.
110b: Packet type detected is not TCP or UDP. TCP/UDP checksum is therefore not generated.
For IPv4 packets, the IP checksum is generated and inserted.
111b: A premature end of packet is detected and the TCP/UDP checksum cannot be generated.

19:17 Reserved.
16 No CRC to be appended by the MAC. When set this bit implies that the data in the buffers already

contains a valid CRC and no CRC or padding is appended to the current frame by the MAC.
This control bit must be set for the first buffer in a frame and is ignored for the subsequent buffers
of a frame. This bit must be clear when using the transmit IP/TCP/UDP checksum generation
offload, otherwise checksum generation and substitution does not occur.

15 Last buffer, this bit (when set) indicates that the last buffer in the current frame is reached.
14 Reserved.

13:0 Length of buffer.

Table 34‐8: TX Buffer Descriptor Entry (Cont’d)

Bit Function

Table 34‐9: TX Descriptor Words: 64-bit Addressing Mode

Bit Function

Word 2 (64-bit Addressing)

31:0 Upper 32-bit address of the data buffer.
Word 3 (64-bit Addressing)

31:0 Unused
Zynq UltraScale+ Device TRM 1048
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1048

Chapter 34: GEM Ethernet
Table 34-10 identifies the added descriptor words used when the descriptor timestamp
capture mode is enabled.

DMA Bursting on the AXI

The AXI DMA will always use INCR type accesses. When performing data transfers, the burst
length used can be programmed using bits [4:0] of the DMA configuration register. Either
single or fixed length incrementing bursts up to a maximum of 16 are used as appropriate.

DMA Packet Buffer

The DMA uses packet buffers for both transmit and receive paths. This mode allows
multiple packets to be buffered in both transmit and receive directions. This allows the DMA
to withstand far greater access latencies on the AXI and make more efficient use of the AXI
bandwidth.

Full packets are buffered, which allows the following.

• Discard packets with error on the receive path before they are partially written out of
the DMA. This saves AXI bus bandwidth and driver processing overhead.

• Retry collided transmit frames from the buffer. This saves AXI bus bandwidth.
• Process the transmit IP/TCP/UDP checksum generation offload.

With the packet buffers included, the structure of the controller datapaths is as shown in
Figure 34-8.

Table 34‐10: TX Descriptor Words: Descriptor Timestamp Capture Mode

Bit Function

Word 2 (32-bit Addressing) or Word 4 (64-bit Addressing)

31:30 Timestamp seconds [1:0]
29:0 Timestamp nanoseconds [29:0]

Word 3 (32-bit Addressing) or Word 5 (64-bit Addressing)

31:4 Unused
3:0 Timestamp seconds [5:2]
Zynq UltraScale+ Device TRM 1049
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1049

Chapter 34: GEM Ethernet
In the transmit direction, the DMA continues to fetch packet data up to a limit of 2048
packets, or until the buffer is full. The size of the buffer has a maximum usable size of 32 KB.

In the receive direction, if the buffer becomes full, then an overflow occurs. An overflow also
occurs if the limit of 2048 packets is breached. The size of the packet buffer has a maximum
usable size of 32 KB.

TX Packet Buffer

The transmitter packet buffer continues to attempt to fetch frame data from the AXI system
memory until the packet buffer itself is full, it then attempts to maintain the full level.

To accommodate the status and statistics associated with each frame, three words per
packet are reserved at the end of the packet data. If the packet was bad and it should be
dropped, the status and statistics are the only information held on that packet. Storing the
status in the DPRAM is required to decouple the DMA interface of the buffer from the MAC
interface, to update the MAC status/statistics, and to generate interrupts that are in the
order that the packets they represent were fetched from the AXI memory.

If any errors occur on the AXI while reading the transmit frame, the fetching of packet data
from AXI memory is halted. The MAC transmitter continues to fetch packet data, thereby
emptying the packet buffer, and allowing any good non-errored frames to be transmitted

X-Ref Target - Figure 34-8

Figure 34‐8: DMA Packet Buffer

Register
Interface

APB
Interconnect

Control
Registers

MDIO
MIO or EMIO

Status and
Statistic

Registers

TX Packet
Buffer

RX Packet
Buffer

TX
DMA

RX
DMA

AXI
DMA

MAC
Transmitter

MAC
Receive

Frame
Filtering

Gigabit
Ethernet
Controller

AXI
Interconnect

TX GMII
MIO or EMIO

RX GMII
MIO or EMIO

X15515-101217
Zynq UltraScale+ Device TRM 1050
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1050

Chapter 34: GEM Ethernet
successfully. When these are fully transmitted, the status/statistics for the errored frame is
updated and software is informed through an interrupt that an AXI error occurred. The error
is reported in the correct packet order.

The transmit packet buffer only attempts to read more frame data from the AXI when space
is available in the packet buffer memory. If space is not available, it must wait until the
packet fetched by the MAC completes transmission and is subsequently removed from the
packet buffer memory.

When full store and forward mode is active, and a single frame is fetched that is too large
for the packet buffer memory, the frame is flushed and the DMA is halted with an error
status. A complete frame must be written into the packet buffer before transmission can
begin, and therefore the minimum packet buffer memory size should be chosen to satisfy
the maximum frame to be transmitted in the application.

When the complete transmit frame is written into the packet buffer memory, a trigger is
sent across to the MAC transmitter, which then begins reading the frame from the packet
buffer memory. Because the whole frame is present and stable in the packet buffer memory,
an underflow of the transmitter is not possible.

In half-duplex mode, the frame is kept in the packet buffer until notification is received from
the MAC that the frame data has either been successfully transmitted or can no longer be
re-transmitted (too many retries in half-duplex mode). When this notification is received,
the frame is flushed from memory to make room for a new frame to be fetched from AXI
system memory.

In full-duplex mode, the frame is removed from the packet buffer in real time.

Other than underflow, the only MAC related errors that can occur are due to collisions
during half-duplex transmissions. When a collision occurs, the frame still exists in the packet
buffer memory, and can be retried directly from there. Only when the MAC transmitter has
failed to transmit after sixteen attempts is the frame finally flushed from the packet buffer.

RX Packet Buffer

The receive packet buffer stores frames from the MAC receiver along with their status and
statistics.

Frames with errors are flushed from the packet buffer memory, good frames are pushed
onto the DMA AXI interface.

The receiver packet buffer monitors the FIFO writes from the MAC receiver and translates
the FIFO pushes into packet buffer writes. At the end of the received frame, the status and
statistics are buffered to use the information when the frame is read out. When
programmed in full store and forward mode, if the frame has an error, the frame data is
immediately flushed from the packet buffer memory allowing subsequent frames to use the
newly opened space. The status and statistics for bad frames are still used to update the
controller's registers.
Zynq UltraScale+ Device TRM 1051
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1051

Chapter 34: GEM Ethernet
To accommodate the status and statistics associated with each frame, three words per
packet are reserved at the end of the packet data. When a packet is bad and is dropped, the
status and statistics are the only information held on that packet.

The receiver packet buffer can detect a full condition and an overflow condition can also be
detected. If this occurs, subsequent packets are dropped and an RX overflow interrupt is
raised.

The DMA only begins packet fetches when the status and statistics for a frame are available.
If the frame has a bad status due to a frame error, the status and statistics are passed onto
the controller's registers. If the frame has a good status, the information is used to read the
frame from the packet buffer memory and burst onto the AXI using the DMA buffer
management protocol. After the last frame data is transferred to the FIFO, the status and
statistics are updated to the controller's registers.

Checksum Offloading

The controller can be programmed to perform IP, TCP, and UDP checksum offloading in both
receive and transmit directions, enabled by setting bit [24] in the network configuration
register for receive, and bit [11] in the DMA configuration register for transmit.

IPv4 packets contain a 16-bit checksum field, which is the 16-bit 1's complement of the 1's
complement sum of all 16-bit words in the header. TCP and UDP packets contain a 16-bit
checksum field, which is the 16-bit 1's complement of the 1's complement sum of all 16-bit
words in the header, the data, and a conceptual IP pseudo header.

Calculating these checksums in software requires each byte of the packet to be processed.
For TCP and UDP a large amount of processing power can deter the process. Offloading the
checksum calculation to the GEM controller can result in significant performance
improvements.

For IP, TCP, or UDP checksum offload to be useful, the operating system containing the
protocol stack must be aware that this offload is available for the GEM controller to either
generate or verify the checksum.

Note: To enable the controller, compute the proper checksum needed by the system software to
ensure that the checksum fields are initialized to 0.

RX Checksum Offload

When receive checksum offloading is enabled, the IPv4 header checksum is checked per the
IETF Std RFC 791, where the packet meets the following criteria.

• If present, the VLAN header must be four octets long and the CFI bit must not be set.
• Encapsulation must be IETF Std RFC 894 Ethernet type encoding or IETF Std RFC 1042

SNAP encoding.
• It is a IPv4 packet.
Zynq UltraScale+ Device TRM 1052
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1052

Chapter 34: GEM Ethernet
• IP header is of a valid length.

The controller also checks the TCP checksum per IETF Std RFC 793, or the UDP checksum
per IETF Std RFC 768, if the following criteria are met.

• A IPv4 or IPv6 packet.
• Good IP header checksum (if IPv4).
• No IP fragmentation.
• A TCP or UDP packet.

When an IP, TCP, or UDP frame is received, the receive buffer descriptor provides an
indication if the controller was able to verify the checksums. There is also an indication if
the frame had LLC SNAP encapsulation. These indication bits replace the type ID match
indication bits when receive checksum offload is enabled.

If any of the checksums are verified to be incorrect by the controller, the packet is discarded
and the appropriate statistics counter is incremented.
Zynq UltraScale+ Device TRM 1053
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1053

Chapter 34: GEM Ethernet
TX Checksum Offload

The transmitter checksum offload is only available when the full store and forward mode is
enabled.

This is because the complete frame to be transmitted must be read into the packet buffer
memory before the checksum can be calculated and written back into the headers at the
beginning of the frame.

Transmitter checksum offload is enabled by setting bit [11] in the DMA configuration
register. When enabled, it monitors the frame as it is written into the transmitter packet
buffer memory to automatically detect the protocol of the frame. Protocol support is
identical to the receiver checksum offload.

For transmit checksum generation and substitution to occur, the protocol of the frame must
be recognized and the frame must be provided without the FCS field, by ensuring that
bit [16] of the transmit descriptor word [1] is clear. If the frame data already had the FCS
field, it would be corrupted by the substitution of the new checksum fields.

If these conditions are met, the transmit checksum offload engine calculates the IP, TCP, and
UDP checksums as appropriate. When the full packet is completely written into packet
buffer memory, the checksums are valid and the relevant DPRAM locations are updated for
the new checksum fields as per standard IP/TCP and UDP packet structures.

If the transmitter checksum engine is prevented from generating the relevant checksums,
bits [22:20] of the transmitter DMA writeback status are updated to identify the reason for
the error. The frame is still transmitted, but without the checksum substitution. Typically the
reason that the substitution does not occur is that the protocol is not recognized.

IEEE Std 1588 Time Stamp Unit

IEEE Std 1588 is a standard for precision time synchronization in local area networks. It
works with the exchange of special precision time protocol (PTP) frames. The PTP messages
can be transported over IEEE Std 802.3/Ethernet, over Internet Protocol Version 4, or over
Internet Protocol Version 6 as described in the annex of IEEE Std P1588.D2.1.

The controller detects when the PTP event messages sync, delay_req, pdelay_req, and
pdelay_resp are transmitted and received. Synchronization between master and slave clocks
is a two stage process.

• The offset between the master and slave clocks is corrected by the master sending a
sync frame to the slave with a follow-up frame containing the exact time the sync frame
was sent. The GEM controller assist modules on the master and slave side detect
exactly when the sync frame was sent by the master and received by the slave. The
slave then corrects its clock to match the master clock.
Zynq UltraScale+ Device TRM 1054
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1054

Chapter 34: GEM Ethernet
• The transmission delay between the master and slave is corrected. The slave sends a
delay request frame to the master, which sends a delay response frame in reply. The
GEM controller assist modules on the master and slave side detect exactly when the
delay request frame was sent by the slave and received by the master. The slave then
has enough information to adjust its clock to account for delay.

For example, if the slave was assuming zero delay the actual delay is half the difference
between the transmit and receive time of the delay request frame (assuming equal transmit
and receive times) because the slave clock is lagging the master clock by the delay time
already.

For GEM controller assist, it is necessary to timestamp when sync and delay_req messages
are sent and received. The timestamp is taken when the message timestamp point passes
the clock timestamp point. The message timestamp point is the SFD and the clock
timestamp point is the MII. The MAC samples the TSU timer value synchronous to MAC
TX/TX clock domains at the MII/GMII boundary. The MAC inserts the timestamp into the
transmitted PTP sync frames (if the one step sync feature is enabled) for capture in the
TSU_TIMER_MSB_SEC, TSU_TIMER_NSEC, TSU_TIME_SEC registers, or to pass to the DMA to
insert into TX or RX descriptors. For each of these, the SOF event, which is captured in the
tx_clk and rx_clk domains respectively, is synchronized to the tsu_clk domain, and the
resulting signal is used to sample the TSU count value. This value is kept stable for an entire
frame, or specifically for at least 64 TX/RX clock cycles, because the minimum frame size in
Ethernet is 64 bytes and worst case is a transfer rate of 1 byte per cycle. It is used as the
source for all the various components within the GEM that require the timestamp value. The
IEEE Std 1588 specification refers to sync and delay_req messages as event messages, as
these require timestamping. Follow up, delay response, and management messages do not
require timestamping and are referred to as general messages.

IEEE Std 1588 version 2 defines two additional PTP event messages. These are the peer
delay request (pdelay_Req) and peer delay response (pdelay_Resp) messages. These
messages are used to calculate the delay on a link. Nodes at both ends of a link send both
types of frames (regardless of whether they contain a master or slave clock). The
pdelay_resp message contains the time where a pdelay_req was received and is itself an
event message. The time at which a pdelay_resp message is received is returned in a
pdelay_resp_follow_up message.

The controller recognizes four different encapsulations for PTP event messages:

• IEEE Std 1588 version 1 (UDP/IPv4 multicast).
• IEEE Std 1588 version 2 (UDP/IPv4 multicast).
• IEEE Std 1588 version 2 (UDP/IPv6 multicast).
• IEEE Std 1588 version 2 (Ethernet multicast).
Note: Only multicast packets are supported.
Zynq UltraScale+ Device TRM 1055
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1055

Chapter 34: GEM Ethernet
The TSU consists of a timer and registers to capture the time at which PTP event frames
cross the message timestamp point. These are accessible through the APB interface. An
interrupt is issued when a capture register is updated.

The MAC provides timestamp registers that capture the departure time (for transmit) or
arrival time (for receive) of PTP event packets (sync and delay request), and peer event
packets (peer delay request or peer delay response). Interrupts are optionally generated
upon timestamp capture.

The MAC also provides an option to timestamp all received packets by replacing the
packet's FCS word with the nanoseconds portion of the timestamp. This eliminates the need
to respond to received timestamp interrupts and to associate the timestamps with the
correct received packets.

MAC 802.3 Pause Frame

TIP: See Clause 31, and Annex 31A and 31B of the IEEE Std 802.3 for a full description of pause
operation.

The start of an IEEE Std 802.3 pause frame is shown in Table 34-11.

The controller supports both hardware controlled pause of the transmitter upon reception
of a pause frame and hardware generated pause frame transmission.

IEEE Std 802.3 Pause Frame Reception

Bit [13] of the network configuration register is the pause enable control for reception. If
this bit is set and a non-zero pause quantum frame is received, transmission pauses.

If a valid pause frame is received, then the pause time register is updated with the new
frame's pause time regardless of whether a previous pause frame is active. An interrupt
(either bit [12] or bit [13] of the interrupt status register) is triggered when a pause frame is
received, but only if the interrupt is enabled (bit [12] and bit [13] of the interrupt mask
register). Pause frames received with non-zero quantum are indicated through the interrupt
bit [12] of the interrupt status register. Pause frames received with zero quantum are
indicated on bit [13] of the interrupt status register.

When the pause time register is loaded and the frame currently being transmitted is sent,
no new frames are transmitted until the pause time reaches zero. The loading of a new
pause time, and the pausing of transmission, only occurs when the controller is configured
for full-duplex operation. If the controller is configured for half-duplex there is no

Table 34‐11: Pause Frame Information

Destination Address Source Address Type
(MAC Control Frame)

Pause Opcode Pause Time

0x0180C2000001 6 bytes 0x8808 0x0001 2 bytes
Zynq UltraScale+ Device TRM 1056
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1056

Chapter 34: GEM Ethernet
transmission pause, but the pause frame received interrupt is still triggered. A valid pause
frame is defined as having a destination address that matches either the address stored in
specific address register 1 or if it matches the reserved address of 0x0180C2000001. It
must also have the MAC control frame type ID of 0x8808 and have the pause opcode of
0x0001.

Pause frames that have FCS or other errors are treated as invalid and are discarded.
IEEE Std 802.3 pause frames that are received after priority-based flow control (PFC) is
negotiated are also discarded. Valid pause frames received increment the pause frames
received statistic register.

The pause time register decrements every 512-bit times once transmission has stopped. For
test purposes, the retry test bit can be set (bit [12] in the network configuration register)
which causes the pause time register to decrement every tx_clk cycle when transmission has
stopped.

The interrupt (bit [13] in the interrupt status register) is asserted whenever the pause time
register decrements to zero (assuming it was enabled by bit [13] in the interrupt mask
register). This interrupt is also set when a zero quantum pause frame is received.

IEEE Std 802.3 Pause Frame Transmission

Automatic transmission of pause frames is supported through the transmit pause frame bits
of the network control register and from the external input signals tx_pause, tx_pause_zero,
and tx_pfc_sel. If either bit [11] or bit [12] of the network control register is written with a
logic 1, or if the input signal tx_pause is toggled when tx_pfc_sel is Low, an IEEE Std 802.3
pause frame is transmitted providing full duplex is selected in the network configuration
register and the transmit unit is enabled in the network control register.

Pause frame transmission occurs immediately if transmit is inactive or if transmit is active
between the current frame and the next frame due to be transmitted.

Transmitted pause frames comprise of the following:

• A destination address of 01-80-C2-00-00-01.
• A source address taken from specific address register 1.
• A type ID of 88-08 (MAC control frame).
• A pause opcode of 00-01.
• A pause quantum register.
• Fill of 00 to take the frame to the minimum frame length.
• A valid FCS.

The pause quantum used in the generated frame depends on the trigger source for the
frame.
Zynq UltraScale+ Device TRM 1057
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1057

Chapter 34: GEM Ethernet
• If bit [11] is written with a one, the pause quantum is taken from the transmit pause
quantum register. The transmit pause quantum register resets to a value of 0xFFFF
giving maximum pause quantum as the default.

• If bit [12] is written with a one, the pause quantum is zero.
• If the tx_pause input is toggled, tx_pfc_sel is Low and the tx_pause_zero input is held

Low until the next toggle, the pause quantum is taken from the transmit pause
quantum register.

• If the tx_pause input is toggled, tx_pfc_sel is Low and the tx_pause_zero input is held
High until the next toggle, the pause quantum is zero.

After transmission, a pause frame transmitted interrupt is generated (bit [14] of the
interrupt status register) and the only statistics register incremented is the pause frames
transmitted register. Pause frames can also be transmitted by the MAC using normal frame
transmission methods.

MAC PFC Priority-based Pause Frame Support

TIP: Refer to the IEEE Std 802.1Qbb for a full description of priority-based pause operation.

The controller supports PFC priority-based pause transmission and reception. Before PFC
pause frames can be received, bit [16] of the network control register must be set. The start
of a PFC pause frame is shown in Table 34-12.

PFC Pause Frame Reception

The ability to receive and decode priority-based pause frames is enabled by setting bit [16]
of the network control register. When this bit is set, the controller matches either classic
IEEE Std 802.3 pause frames or PFC priority-based pause frames. Once a priority-based
pause frame is received and matched, then from that moment on the controller only
matches on priority-based pause frames (this is an IEEE Std 802.1Qbb requirement, known
as PFC negotiation). Once a priority-based pause is negotiated, any received IEEE Std 802.3x
format pause frames are not acted upon. The state of PFC negotiation is identified using the
output pfc_negotiate.

If a valid priority-based pause frame is received, then the controller decodes the frame and
determines which, if any, of the eight priorities are require to be paused. Up to eight pause
time registers are then updated with the eight pause times extracted from the frame,
regardless of whether a previous pause operation is active or not. An interrupt (either bit
[12] or bit [13] of the interrupt status register) is triggered when a pause frame is received,

Table 34‐12: PFC Priority-based Pause Frame Information

Destination Address Source Address
Type

(MAC Control Frame)
Pause

Opcode
Priority Enable

Vector
Pause
Times

0x0180C2000001 6 bytes 0x8808 0x0101 2 bytes 8 x 2 bytes
Zynq UltraScale+ Device TRM 1058
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1058

Chapter 34: GEM Ethernet
but only if the interrupt is enabled (through bit [12] and bit [13] of the interrupt mask
register).

Pause frames received with non-zero quantum are indicated through the interrupt bit [12]
of the interrupt status register. Pause frames received with zero quanta are indicated on
bit [13] of the interrupt status register. The state of the eight pause time counters are
indicated through the outputs rx_pfc_paused. These outputs remain High for the duration
of the pause time quanta. The loading of a new pause time only occurs when the controller
is configured for full-duplex operation.

If the controller is configured for half-duplex operation, the pause time counters are not
loaded, but the pause frame received interrupt is still triggered.

A valid pause frame is defined as having a destination address that matches either the
address stored in specific address register 1 or if it matches the reserved address of
0x0180C2000001. It must also have the MAC control frame type ID of 0x8808 and have
the pause opcode of 0x0101.

Pause frames that have FCS or other errors are treated as invalid and are discarded. Valid
pause frames received increment the pause frames received statistic register.

The pause time registers decrement every 512-bit times immediately following the PFC
frame reception. For test purposes, the retry test bit can be set (bit [12] in the network
configuration register).

After transmission, a pause frame transmitted interrupt is generated (bit [14] of the
interrupt status register) and the only statistics register that is incremented is the pause
frames transmitted register.

PFC pause frames can also be transmitted by the MAC using normal frame transmission
methods.
Zynq UltraScale+ Device TRM 1059
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1059

Chapter 34: GEM Ethernet
I/O Signals
The I/O Ethernet signals connect to the MIO and EMIO interfaces as listed in Table 34-13.

MIO-EMIO Interface Routing

The I/O interface is routed to the MIO for RGMII, and to the EMIO for GMII/MII connectivity.
The PL can modify the GMII/MII interface from the MAC to construct other Ethernet
interfaces that connect to external devices via PL pins. The routing of the Ethernet
communications signals are shown in Figure 34-9. The Ethernet communications ports are
independently routed to the MIO pins (as RGMII) or to a set of EMIO interface signals (as
GMII). When using the EMIO interface, both the TX and RX clocks are inputs to the PS.

X-Ref Target - Figure 34-9

Figure 34‐9: Ethernet Interface Select Multiplexer

GMII Rx

MAC

Ethernet
Controller

GMII / RGMII
Adapter

GMII Tx

GMII / MII
(EMIO)

IOU_SLCR.GEM_CLK_CTRL[GEM{3:0}_RX_SRC_SEL]

RGMII
(MIO)

X21035-070218
Zynq UltraScale+ Device TRM 1060
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1060

Chapter 34: GEM Ethernet
RGMII Interface via MIO

An example Ethernet communications wiring connection is shown in Figure 34-10.

All Ethernet I/O pins routed through the MIO are on MIO Bank 1 and Bank 2 (see
Table 34-13).

X-Ref Target - Figure 34-10

Figure 34‐10: Ethernet MIO Wiring Connections

MIO
Multiplexer

Ethernet
Controller

Device Boundary

External
PHY

Device

RJ-45
Conn.

RGMII_TX_CLK

RGMII_TX_CTL

RGMII_RX_CLK

RGMII_TXD[3:0]

RGMII_RXD[3:0]

RGMII

MDC

MDIO

MD
RGMII_RX_CTL

MDI 0 P/N

MDI 1 P/N

MDI 2 P/N

MDI 3 P/N

X21036-070218

Table 34‐13: Ethernet RGMII Interface Signals via MIO Pins

Controller Signal MIO Pins

Signal Description

Default
Controller

Input
Value

GEM 0 GEM 1 GEM 2 GEM 3 Name I/O

Tx clock to PHY ~ 26 38 52 64 RGMII_TX_CLK O
Tx control to PHY ~ 31 43 57 69 RGMII_TX_CTL O
Tx data 0 to PHY ~ 27 39 53 65 RGMII_TXD[0] O
Tx data 1 to PHY ~ 28 40 54 66 RGMII_TXD[1] O
Tx data 2 to PHY ~ 29 41 55 67 RGMII_TXD[2] O
Tx data 3 to PHY ~ 30 42 56 68 RGMII_TXD[3] O
Rx clock from PHY 0 32 44 58 70 RGMII_RX_CLK I
Rx control from PHY 0 37 49 63 75 RGMII_RX_CTL I
Rx data 0 from PHY 0 33 45 59 71 RGMII_RXD[0] I
Rx data 1 from PHY 0 34 46 60 72 RGMII_RXD[1] I
Zynq UltraScale+ Device TRM 1061
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1061

Chapter 34: GEM Ethernet
GMII/MII Interface via EMIO

There are options to provide further external interface standard support by linking the GMII
signals on the EMIO interface to the PL. Logic can be designed and connected to generate
other interface standards on the PL pins. TBI support can be provided by connecting the
GMII to a TBI compatible logic core in the PL, which provides the PCS functions required for
ten-bit interfacing to an external PHY via the PL pins. SGMII or 1000 Base-X support can be
provided by connecting the GMII to an SGMII or 1000 Base-X compatible logic core, which
provides the required PCS functions and signal adaptation and drives an MGT for serial
interfacing to an external PHY.

An example illustrating the GMII interface connections through the PL to the PL pins is
shown in Figure 34-11. Ethernet GMII/MII interface signals routed through the EMIO are
identified in Table 34-14.

Rx data 2 from PHY 0 35 47 61 73 RGMII_RXD[2] I
Rx data 3 from PHY 0 36 48 62 74 RGMII_RXD[3] I
GEM TSU clock options ~ 50,51 50,51 50,51 50,51 GEM_TSU_CLK I

Table 34‐13: Ethernet RGMII Interface Signals via MIO Pins (Cont’d)

Controller Signal MIO Pins

Signal Description

Default
Controller

Input
Value

GEM 0 GEM 1 GEM 2 GEM 3 Name I/O
Zynq UltraScale+ Device TRM 1062
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1062

Chapter 34: GEM Ethernet
X-Ref Target - Figure 34-11

Figure 34‐11: GMII Interface via EMIO Connections

MAC

INTERRUPT

PS

TX
clock

PL

Zynq UltraScale+

PHY

1

0 Ethernet
2.5 or 25

MHz Clock

125 MHz
Clock

MDIO

PL_PS_Group{0:1}

MDIO

GMII: Tx Signals

Auto-negotiated Speed
Detection Logic

MDC

MDIO
emio_enet{0:3}+mdio_mdc

emio_enet{0:3}+mdio_{i,o,t} O
pt

io
na

l P
S7

 W
ra

pp
er

GIC

emio_enet{0:3}+gmii_tx_clk

Without Tx Clock

Tx Clock

GMII: Rx Signals

X21040-070218
Zynq UltraScale+ Device TRM 1063
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1063

Chapter 34: GEM Ethernet
Table 34‐14: Ethernet GMII/MII Interface Signals via EMIO Interface

Interface Signal Reference Clock
Default

Controller Input
Value

EMIO Interface Signals

Name I/O

Carrier sense ~ emio_enet{0:3}_gmii_crs I
Collision detect ~ emio_enet{0:3}_gmii_col I
Controller interrupt wake-up ~ emio_enet{0:3}_ext_int_in I
Speed mode (2:0)(3) ~ emio_enet{0:3}_speed_mode O
Tx Signals

Tx Clock ~ emio_enet{0:3}_gmii_tx_clk I
Tx Data (7:0) Tx Clk ~ emio_enet{0:3}_gmii_txd O
Tx Enable Tx Clk ~ emio_enet{0:3}_gmii_tx_en O
Tx Error Tx Clk ~ emio_enet{0:3}_gmii_tx_er O
Rx Signals

Rx Clock ~ emio_enet{0:3}_gmii_rx_clk I
Rx Data (7:0) Rx Clk emio_enet{0:3}_gmii_rxd I
Rx Data valid Rx Clk emio_enet{0:3}_gmii_rx_dv I
Rx Error Rx Clk emio_enet{0:3}_gmii_rx_er I
TSU

TSU increment control(1:0) TSU Clk emio_enet{0:3}_tsu_inc_ctrl(1) I
TSU clock source from PL ~ fmio_gem_tsu_clk_from_pl I
TSU timer compare value TSU Clk emio_enet{0:3}_tsu_timer_cmp_val O
TSU clock source from IP
Block in the PL ~ emio_enet_tsu_clk I

Notes:
1. The timer sync strobe registers (tsu_strobe_msb_sec, tsu_strobe_sec, and tsu_strobe_nsec) are loaded with the

value of the timer when the input signal emio_enet{0:3}_tsu_inc_ctrl[1:0] = 2'b00. However, the timer sync strobe
registers are updated only when emio_enet{0:3}_tsu_inc_ctrl signal toggles between 2b'11 and 2'b00.

2. If using MII, connect the RX[7:4] bits to logic zero.
3. See Table 34-15 for more information.
Zynq UltraScale+ Device TRM 1064
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1064

Chapter 34: GEM Ethernet
Precision Time Protocol via EMIO

The PTP signals connected to the Ethernet controller provide the capability to handle
IEEE-1588 precision time protocol (PTP) signaling.

Table 34‐15: Speed Mode Bits (2:0)

Speed Mode Bits (2:0) Function

11x 1000 Mb/s using TBI Interface
01x 1000 Mb/s using GMII Interface
001 100 Mb/s using MII Interface
000 10 Mb/s using MII Interface
101 100 Mb/s using SGMII Interface

Table 34‐16: IEEE 1588 PTP frame recognition and Time Stamp Unit

Signal Name I/O Description

sof_tx O Asserted high synchronous to tx_clk when the SFD is detected
on a transmit frame, deasserted at end of frame.

sync_frame_tx O O Asserted high synchronous to tx_clk if PTP sync frame is
detected on transmit.

delay_req_tx O Asserted high synchronous to tx_clk if PTP delay request frame
is detected on transmit.

pdelay_req_tx O Asserted high synchronous to tx_clk if PTP peer delay request
frame is detected on transmit.

pdelay_resp_tx O Asserted high synchronous to tx_clk if PTP peer delay response
frame is detected on transmit.

sof_rx O Asserted high synchronous to rx_clk when the SFD is detected
on a receive frame.

sync_frame_rx O Asserted high synchronous to rx_clk if PTP sync frame is
detected on receive.

delay_req_rx O Asserted high synchronous to rx_clk if PTP delay request frame
is detected on receive.

pdelay_req_rx O Asserted high synchronous to rx_clk if PTP peer delay request
frame is detected on receive.

pdelay_resp_rx O Asserted high synchronous to rx_clk if PTP peer delay response
frame is detected on receive.

tsu_clk I Alternative clock source for the time stamp unit. If gem_tsu_clk
is defined in the gem_defs.v file then the TSU is clocked by
tsu_clk rather than pclk. This clock must have a frequency
greater than 1/8th the frequency of tx_clk or rx_clk. Timestamp
accuracy improves with higher frequencies.
Zynq UltraScale+ Device TRM 1065
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1065

Chapter 34: GEM Ethernet
There are three different TSU clock sources allowed:

• Internal PLL

To enable clock source via internal, PLL GEM_CLK_CTRL bit[21:20] should be 0b00 and
TSU_REF_CLK_CTRL bit[24] should be 1, along with appropriate clock source and divisor
fields. This mode required no additional signal connections in the design and no
additional configuration in Vivado block.

• Via MIO 50 or 51

To enable clock source via internal, MIO 50/51 GEM_CLK_CTRL bit[21:20] should be 0b11
and TSU_REF_CLK_CTRL bit[24] should be 0. MIO_PIN_50/51 register should be
configured for tsu. The selected MIO signal should be connected on board to an
appropriate TSU clock source. The value of this should be specified in the Vivado clock
configuration.

• Via EMIO

To enable clock source via internal, PLL GEM_CLK_CTRL bit[21:20] should be 0b11 and
TSU_REF_CLK_CTRL bit[24] should be 0. MIO_PIN_50/51 register should NOT be
configured for tsu (so the clock is automatically picked from EMIO). Connect
emio_enet0_tsu_clk to the appropriate TSU clock source on board.

Additional TSU signal configuration:

• Whenever exposed in the Vivado design, it is recommended to loop the feedback
signals fmio_gem_tsu_clk_to_pl_bufg and fmio_gem_tsu_clk_from_pl.

• Whenever exposed, gem_tsu_inc_ctrl[1:0] SHOULD BE tied to 0b11 in order for GEM
TSU to increment normally and function as a PTP slave.

gem_tsu_ms I TSU master/slave. Used with gem_tsu_inc_ctrl to control
incrementing of the TSU and loading the sync strobe register.

gem_tsu_inc_ctrl[1:0] I Used to control incrementing of the TSU and synchronous to
tsu_clk or pclk. Drive high when not being used.

tsu_timer_cnt[93:0] O TSU timer count value, synchronized to tsu_clk or pclk.
Upper 48 bits are seconds value and lower 46 bits are
nanoseconds / sub-nanoseconds. Bit 46 toggles every second,
i.e. 1 pps.

tsu_timer_cmp_val O TSU timer comparison valid, synchronized to tsu_clk or pclk.
Asserted high when upper 70 bits of TSU timer count value is
equal to programmed comparison value.

Table 34‐16: IEEE 1588 PTP frame recognition and Time Stamp Unit

Signal Name I/O Description
Zynq UltraScale+ Device TRM 1066
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1066

Chapter 34: GEM Ethernet
1 PPS signal

The 1PPS signal can be obtained from the inverse of bit 45 in tsu_timer_cnt[93:0] signal. It
is essential to take care of feedback signals and inc_ctrl signal. This signal can be obtained
with any TSU clock source.
Zynq UltraScale+ Device TRM 1067
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1067

Chapter 34: GEM Ethernet
MDIO Interface Signals via MIO – EMIO

MDIO interface signals routed through the MIO and EMIO are identified in Table 34-17.

MAC Loopback

MAC local loopback can be enabled on MII/GMII by setting the
GEM{0:3}.network_control[loopback_local] = 1.

In MAC internal loopback mode, both transmit and receive clock are sourced from the
internal Ethernet reference clocks (see GEM Ref clock internal clock source in Figure
Figure 34-2).

IMPORTANT: Receive and transmit must be disabled when making the switch into and out of internal
loopback because the clocks provided might glitch while switching to the loopback reference clock.

Also, TBI mode must be disabled for internal loopback by setting
GEM{0:3}.network_config[pcs_select] = 0.

Table 34‐17: MDIO Interface Signals via MIO and EMIO

MDIO Interface
Default
Value

MIO Pins EMIO Interface Signals

GEM 0 GEM 1 GEM 2 GEM 3 I/O Name Name I/O

MD clock output ~ 76 50,76 76 76 O GEM{0:3}_MDC enet{0:3}_mdio_mdc O
MD data output ~

77 51,77 77 77 IO GEM{0:3}_MDIO
enet{0:3}_mdio_o O

MD data 3-state ~ enet{0:3}_mdio_t O
MD data input 0 enet{0:3}_mdio_i I
Zynq UltraScale+ Device TRM 1068
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1068

Chapter 34: GEM Ethernet
Programming Model
The controller functionality is described in detail in the Functional Description. All of the
controller registers are listed in Table 34-21 and Table 34-22. Figure 34-12 summarizes the
flow of programming model.

X-Ref Target - Figure 34-12

Figure 34‐12: Ethernet Controller Programming Model

Start

Initialize the controller

Configure the controller

I/O Configuration

Configure the buffer
descriptors

Configure interrupts

Enable controller

Any interrupt
activity?

RX interrupt handlerTX interrupt handler Error interrupt handler

Yes

No

X15516-092916
Zynq UltraScale+ Device TRM 1069
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1069

Chapter 34: GEM Ethernet
Example: Programming Steps

1. Initialize the controller
2. Configure the controller
3. I/O configuration
4. Configure the PHY
5. Configure the buffer descriptors
6. Configure interrupts
7. Enable the controller
8. Transmitting frames
9. Receiving frames
10. Debug guide

Initialize the Controller

1. Clear the network control register. Write 0x0 to the gem.network_control register.
2. Clear the statistics registers. Write a 1 to the gem.network_control [clear_all_stats_regs].
3. Clear the status registers. Write a 1 to the status registers. gem.receive_status = 0x0F

and gem.transmit_status = 0xFF.
4. Disable all interrupts. Write 0x7FF_FEFF to the gem. int_disable register.
5. Clear the buffer queues. Write 0x0 to the gem.receive_q{ , 1}_ptr and

gem.transmit_q{ , 1}_ptr registers.
Note: The GEM controller has two receive-buffer queue pointer registers (GEM{0:3}.receive_q_ptr,
GEM{0:3}.receive_q1_ptr) and two transmit-buffer queue pointer registers (GEM{0:3}.transmit_q_ptr,
GEM{0:3}.transmit_q1_ptr). Any combination of transmit-buffer and receive-buffer queues can be
used, but it is important to ensure that the unused queues are tied off properly with a dummy or
terminate descriptor, otherwise it does not work.

Priority Queuing

The DMA is configured to use packet buffer memories. The GEM_GXL can optionally select
two priority queues, q and q1. Each queue has an independent list of buffer descriptors
pointing to separate data streams.

In the transmit direction, higher priority queues are always serviced before lower priority
queues. This priority scheme requires the user to ensure that high priority traffic is
constrained so that lower priority traffic will have the required bandwidth.

The DMA determines the next queue to service by initiating a sequence of buffer descriptor
reads interrogating the ownership bits of each. The buffer descriptor corresponding to the
Zynq UltraScale+ Device TRM 1070
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1070

Chapter 34: GEM Ethernet
highest priority queue is read first. If the ownership bit of this descriptor is set, then the
DMA will progress to reading the second highest priority queue's descriptor.

If all the descriptors return an ownership bit set a resource error has occurred. An interrupt
is generated and transmission is automatically halted. Transmission can only be restarted by
setting the START bit in the network control register. The DMA will identify the highest
available queue to transmit from when the START bit in the network control register is
written to and the TX is in a halted state or when the last word of any packet has been
fetched from external AHB or AXI memory.

The following sequence illustrates how to route receive packets to q or q1.

Note: In this case, filtering received packets based on ether type value (in this case IPv4) and routing
matching packets to queue1 and rest of the packets to queue0.

Configure Rx queue pointers

1. Write Address to:

gem0_rm.receive_q_ptr

gem0_rm.receive_q1_ptr

2. Configure screening type2 register0 to check IPv4 ether type ID (0x0800).
3. Write ethertype_enable bit and queue number as 1 in gem. screening_type_2_register_0.
4. Write EtherType compare value for your type ID, say, 0x0800 in

gem.screening_type_2_ethertype_reg_0
5. Enable receive bit in the gem.network_control_register

Note: When a screener is matched, the received frame will be routed to a queue defined inside
bits 3:0 of the screener register. Unmatched frames are routed to queue 0.

In the receive direction, each data packet is written to external AHB/AXI data buffers in the
order that it is received. There are separate receive buffer queue base address registers for
each queue. Every received packet will pass through a programmable screening algorithm
which will allocate to that frame a queue to route it to.

The user interface to the screener is via two banks of programmable registers, screener type
match registers 1 and 2. Screener type 1 registers allow the user to route received frames
based on particular IP and UDP fields extracted from the received frame. These fields are
DS, TC, and/or the UDP destination port. These fields are compared against the values
stored in the each of the screener type 1 match registers.

If the result of this comparison is positive, then the received frame is routed to the priority
queue specified in that screener type 1 register. The number of type 1 screener is
determined by a define in the gem defines file. Screener Type 2 match registers operate
independently and offer additional match capabilities.
Zynq UltraScale+ Device TRM 1071
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1071

Chapter 34: GEM Ethernet
Configure the Controller

The following example describes a typical programming sequence for configuration of the
controller. Refer to register details for further details on the controller registers.

1. Program the network configuration register (gem.network_config). The network
configuration register is used to set the mode of operation.

Examples:

a. Enable full duplex. Write a 1 to the gem.network_config[full_duplex] bit.
b. Enable gigabit mode. Write a 1 to the gem.network_config[gigabit_mode_enable]

bit.
c. Enable reception of broadcast or multicast frames. Write a 0 to the

gem.network_config[no_broadcast] register to enable broadcast frames and write
a 1 to the gem.network_config[multicast_hash_en] bit to enable multicast frames.

d. Enable promiscuous mode. Write a 1 to the gem.network_config[copy_all_frames]
bit.

e. Enable TCP/IP checksum offload feature on receive. Write a 1 to the
gem.network_config[receive_checksum_offload_enable] bit.

f. Enable pause frames. Write a 1 to gem.network_config[pause_enable] bit.
g. Set the MDC clock divisor. Write the appropriate MDC clock divisor to the

gem.network_config[mdc_clock_division] bit.
2. Set the MAC address. Write to the gem.spec_add1_bottom and gem.spec_add1_top

registers.

The least significant 32 bits of the MAC address go to gem.spec_add1_bottom and the
most significant 16 bits go to gem.spec_add1_top.

3. Program the DMA configuration register (gem.dma_config).
a. Set the receive buffer size to 1,600 bytes. Write a value of 8'h19 to the

gem.dma_config[rx_buf_size] bit field.
Note: For Jumbo packet support set the receive buffer size to 10,304 bytes. Write a value of
8'h0A1 to the gem.dma_config[rx_buf_size] bit field.

b. Set the receiver packet buffer memory size to the full configured addressable space
of 32 KB. Write 2'b11 to the gem.dma_config[rx_pbuf_size] bit field.

c. Set the transmitter packet buffer memory size to the full configured addressable
space of 32 KB. Write a 1 to the gem.dma_config[tx_pbuf_size] bit.

d. Enable TCP/IP checksum generation offload on the transmitter. Write a 1 to the
gem.dma_config[tx_pbuf_tcp_en] bit.
Zynq UltraScale+ Device TRM 1072
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1072

Chapter 34: GEM Ethernet
e. Configure for a little endian system. Write a 0 to the
gem.dma_config[endian_swap_packet] bit.

f. Configure AXI fixed burst length. Write 5'h10 to the
gem.dma_config[amba_burst_length] bit field to use INCR16 AXI burst for higher
performance.

4. Program the network control register (gem.network_control).
a. Enable the MDIO. Write a 1 to the gem.network_control[man_port_en] bit.
b. Enable the transmitter. Write a 1 to the gem.network_control[enable_transmit] bit.
c. Enable the receiver. Write a 1 to the gem.network_control[enable_receive] bit.

I/O Configuration

The Ethernet Controller Block Diagram describes the connection details of the Ethernet.

GEM Ethernet using MIO

The controller provides an RGMII through the MIO pins.

TIP: The clock might have to be reprogrammed in the system level registers to provide the required
reference frequency to achieve the negotiated speed.

GEM Ethernet using EMIO

The EMIO interface allows for derivation of other physical MIIs using appropriate shim-logic
in the PL. The controller provides a GMII through the EMIO.

Note: If GEM is routed via EMIO to use MII, connect the RX[7:4] bits to logic zero.

Configure Clocks

When the reference clock frequency, GEM_REF_CLK is sourced from the PS clock unit, its
frequency is controlled by the CRL_APB.GEM_TSU_REF_CTRL register.

Note: The GEM_TSU_REF_CTRL register divisor fields are only applicable when the clock is set to
MIO.
Zynq UltraScale+ Device TRM 1073
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1073

Chapter 34: GEM Ethernet
Configure the PHY

The PHY connected to the controller is initialized through the available MDIO interface
using the PHY management register (gem.phy_management).

Writing to this register starts a shift operation and is signaled as complete when the bit
gem.network_status[man_done] is set.

The MDIO interface clock (MDC) for gigabit Ethernet is generated by dividing down the
IOU_SWITCH_CLK clock.

TIP: MDC is active only during MDIO read or write operations while the PHY registers are read or
written.

The MDC must not exceed 2.5 MHz as defined by IEEE Std 802.3. The
gem.network_config[mdc_clock_division] bit field is used to set the divisor for the
IOU_SWITCH_CLK clock.

Example: PHY Read/Write Operation

1. Check to see that no MDIO operation is in progress. Read until
gem.net_status[man_done] = 1.

2. Write data to the PHY management register (gem.phy_management). This initiates the
data shift operation over MDIO.

3. Wait for completion of operation. Read until gem.net_status[man_done] = 1.
4. Read data bits for a read operation.

The PHY register data is available in gem.phy_management [phy_write_read_data].

Example: PHY Initialization

1. Detect the PHY address. Read the PHY identifier fields in PHY registers 2 and 3 for all the
PHY addresses ranging from 1 to 32. The register contents are valid for a valid PHY
address.

2. Advertise the relevant speed/duplex settings. These bits can be set to suit the system.
Refer to the PHY vendor data sheet for more information.

3. Configure the PHY as applicable. This could include options to set PHY mode, timing
options in the PHY, or others as applicable to the system. Refer to the PHY vendor data
sheet for more information.

4. Wait for completion of auto-negotiation. Read the PHY status register. Refer to the PHY
vendor data sheet for more information.

5. Update the controller with auto-negotiated speed and duplex settings. Read the
relevant PHY registers to determine the negotiated speed and duplex. Set the speed in
Zynq UltraScale+ Device TRM 1074
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1074

Chapter 34: GEM Ethernet
gem.network_config[gigabit_mode_enable], gem.network_config[speed] bits, and the
duplex in gem.network_config[full_duplex] bit.

Configure the Buffer Descriptors

Receive Buffer Descriptor List

The data received by the controller is written to pre-allocated buffer descriptors in system
memory. These buffer descriptor entries are listed in the receive buffer queue. Refer to DMA
Controller and Table 34-5 for more information on implementation and structure of the RX
buffer descriptor.

The receive-buffer queue pointer registers (gem.receive_q{ , 1}_ptr) points to this data
structure as shown in Figure 34-13.

To create a list of buffers:

1. Allocate a number (N) of buffers of X bytes in system memory, where X is the DMA
buffer length programmed in the DMA configuration register.

Example: This controller assumes that the maximum size of an Ethernet packet without
jumbo frame support can reach up to x bytes. Allocate N number of buffers each with a
size of 1,536 bytes in system memory. The buffers typically need to be aligned to
cache-line boundaries to improve performance. Typical values of N can be 64 or 128.

2. Each buffer descriptor length is 8 bytes. Allocate an area of 8N bytes for the receive
buffer descriptor list in system memory. This creates N entries in this list.

X-Ref Target - Figure 34-13

Figure 34‐13: RX Buffer Queue Structure

RX Buffer
Queue Pointer

MAC Register

RX
Descripter List

RX Buffers

List in Main
Memory Buffer in Main

Memory
X15517-092916
Zynq UltraScale+ Device TRM 1075
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1075

Chapter 34: GEM Ethernet
RECOMMENDED: A single cache line for the APU L2 cache is 64 bytes and can contain 8 buffer
descriptors. This means flushing or invalidating a single buffer descriptor entry in the cache memory
results in flushing or invalidation of a cache line which in turn affects the adjacent buffer descriptors.
This can result in undesirable behavior. It is typical to allocate the buffer descriptor list in an un-cached
memory region.

3. Mark all entries in this list as owned by controller. Set bit [0] of word [0] of each buffer
descriptor to 0.

4. Mark the last descriptor in the buffer descriptor list with the wrap bit, (bit [1] in word [0])
set.

5. Write the base address of the receive buffer descriptor list to the controller register
gem.receive_q{ , 1}_ptr.

6. Fill the addresses of the allocated buffers in the buffer descriptors (bits [31-2], Word [0])
7. Write the base address of this buffer descriptor list to the gem.receive_q{ , 1}_ptr

registers.
Note: See the Q pointer note under Initialize the Controller.

Transmit Buffer Descriptor List

The data to be transmitted is read from buffers present in system memory. These buffers are
listed in the transmit buffer queue. Refer to DMA Controller and Table 34-5 for more
information on implementation and structure of the TX buffer descriptor. The transmit
buffer queue pointer registers (gem.transmit_q{ , 1}_ptr) points to this data structure.

To create a list of buffer descriptors with N entries:

1. Each buffer descriptor is 8 bytes in length. Allocate an area of 8N bytes for the transmit
buffer descriptor list in system memory which creates N entries in this list. It is advisable
to use un-cached memory for allocating the complete buffer descriptor list for the
reasons already described for the Receive Buffer Descriptor List.

2. Mark all entries in this list as owned by the controller. Set bit [31] of word [1] to 0.
3. Mark the last descriptor in the list with the wrap bit. Set bit [30] in word [1] to 1.
4. Write the base address of transmit buffer descriptor list to Controller registers

gem.transmit_q{ , 1}_ptr.
Note: See the Q pointer note under Initialize the Controller.
Zynq UltraScale+ Device TRM 1076
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1076

Chapter 34: GEM Ethernet
Status and Wakeup Interrupts

Each GEM Ethernet unit has 26 interrupt conditions that are detected and OR-ed together
to generate an IRQ system interrupt. Additionally there is a wake-on-LAN interrupt driven
from the Ethernet controller. Eight IRQ system interrupts (two from each GEM unit) are then
routed to the RPU, APU, and Proxy GIC interrupt controllers and outputs in the PL. Refer to
the gem.int_status register description for more information on the list of interrupt
conditions detected by the controller.

Example: Configure the Interrupts

An appropriate handler for the interrupt should be registered with the CPU for processing
an interrupt condition. The CPU suspends its normal activity, moves to interrupt processing
mode and executes the corresponding handler for an interrupt condition.

1. Register a handler. There are two interrupts generated by the controller: wake-on-LAN
and another interrupt for all other functions. Register the handler for each of these
interrupt types with the CPU.
Note: In a typical case, a single handler is used for both transmit and receive.

Once CPU execution reaches the handler, the software should read the gem.int_status
register to determine the interrupt source and perform the relevant function.

2. Enable the necessary interrupt conditions. The relevant bits in the gem.int_enable
register must be set. The interrupt conditions necessary are determined by the system
architecture.
Note: The read-only register gem.int_mask contains the current state of the interrupt mask each
interrupt. If an interrupt bit is asserted in the status register gem.int_status and the
corresponding mask bit is disabled, then the IRQ is activated.

Enable the Controller

The receiver and transmitter must be enabled after configuration.

1. Enable the transmitter. Write a 1 to gem.network_control[enable_transmit].
2. Enable the receiver. Write a 1 to gem.net_ctrl[enable_receive].
Zynq UltraScale+ Device TRM 1077
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1077

Chapter 34: GEM Ethernet
Transmitting Frames

Example: Transmitting a Frame

1. Allocate buffers in system memory to contain the Ethernet frame. Gigabit Ethernet
supports scatter-gather functionality; an Ethernet frame can be split into multiple
buffers with each buffer processed by a buffer descriptor.

2. Write the Ethernet frame data in the allocated buffers. These Ethernet frames should
have their header fields such as destination MAC address, source MAC address, and
type/length field set appropriately.

° The FCS field is added by the MAC in most cases. However, if there is a need to
append a custom FCS, bit [16] in word [1] of the corresponding buffer descriptor
must be set.

° The buffer that contains the Ethernet frame data should be flushed from cache if
cached memory is being used.

3. Allocate buffer descriptor(s) for the Ethernet frame buffers. This involves setting bits
[0-31] in the buffer descriptor word [0] with the address of the buffer and setting bits
[0-13] in word [1] with the length of the buffer to be transmitted.

° For single buffer Ethernet frames, bit [15] (last buffer bit) of the word [1] must also
be set.

° For Ethernet frames scattered across multiple buffers the buffer descriptors must be
allocated serially and the buffer descriptor containing the last buffer should have
the bit [15] of word [1] set.

Example: For an Ethernet frame of 1,000 bytes split across two buffers with the first
buffer containing the Ethernet header (14 bytes) and the next buffer containing the
remaining 986 bytes, the buffer descriptor with index N should be allocated for the
first buffer and the buffer descriptor with index N+1 should be allocated for the
second buffer. Bit [15] of word [1] of the N+1 buffer descriptor must also be set to
mark it as the last buffer in the scattered list of Ethernet frames.

4. Clear the used bit, (bit [31]), in the word [1] of the allocated buffer descriptors.

RECOMMENDED: Clear the used bit (bit[31]) of the first buffer descriptor after clearing all the
descriptors in the chain.

5. Enable transmission. Write a 1 to gem.network_control[tx_start_pclk].
6. Wait until the transmission is complete. An interrupt is generated by the controller upon

successful completion of the transmission. Successful transmission can be determined
by reading the gem.int_status [transmit_complete] bit as a 1. By reading this register, the
[transmit_complete] bit is cleared by the hardware. Also read and clear the
gem.transmit_status register by writing a 1 to gem.transmit_status[transmit_complete]
bit. Clear all bits in the buffer descriptor (BD) except the used and wrap bits.
Zynq UltraScale+ Device TRM 1078
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1078

Chapter 34: GEM Ethernet
TX Queue Sequence

1. Create two separate TX buffer description lists, one for each TX Q. The process for this
setup remains the same for TX Q0 and TX Q1.

2. Program the TX queue pointer registers transmit_q_ptr and transmit_q1_ptr registers
with start of respective buffer descriptor lists. The TX MSB address bits remain common
for both queues.

3. Enable transmission and queue data to the desired queue via its buffer descriptor list.
SW can queue a packet to either Q0 or Q1 based on the application and priority.

4. Both queues can be initialized and used. If not in use, a queue can be terminated using
a dummy buffer descriptor where WRAP and USED bit are set.

Receiving Frames

When a frame is received with the receive circuits enabled, the controller checks the address
and the frame is written to system memory in the following cases.

• The destination address matches one of the four specific address registers. This is
applicable for cases where the MAC address for the controller is set in the
gem.spec_add{1:4}_bottom and gem.spec_add{1:4}_top registers.

• The received frame's type/length field matches one of the four type ID registers. The
available type ID registers are gem.spec_type{1:4}. This is applicable for cases where
Ethernet type/length field based filtering is required.

• Unicast or multicast hash is enabled through gem.network_config[unicast_hash_enable]
or gem.network_config[multicast_hash_enable] register bits, then the received frame is
accepted, only if the hash is matched.

• The destination address is a broadcast address (0xFFFFFFFFFFFF) and broadcasts are
allowed.

This option is set using the gem.network_config[no_broadcast] bit.

• The controller is configured for promiscuous mode writing a 1 to the
gem.network_config[copy_all_frames] bit.

• A match is found in the I/O address filtering interface.

The register gem.receive_q{ , 1}_ptr points to the next entry in the receive buffer
descriptor list and the controller uses this as the address in system memory to write the
frame. When the frame is completely received and written to system memory, the
controller then updates the receive buffer descriptor entry with the reason for the
address match, marks the area as being owned by software, and sets the receive
complete interrupt (gem.int_status[receive_complete] = 1). Software is then responsible
for copying the data to the application area and releasing the buffer.
Zynq UltraScale+ Device TRM 1079
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1079

Chapter 34: GEM Ethernet
If the controller is unable to write the data at a rate to match the incoming frame, then
the receiver overrun interrupt is set (gem.int_status[receive_overrun] = 1). If no receive
buffer is available, (that is, the next buffer is still owned by software), a receive-buffer
not available interrupt is set. If the frame is not successfully received, a statistic register
is incremented and the frame is discarded without informing software.

Example: Handling a Received Frame

1. Wait for the controller to receive a frame. The receive complete interrupt,
gem.int_status[receive_complete], is generated when a frame is received.

2. Service the interrupt. Read and clear the gem.int_status[receive_complete] register bit
by writing a 1 to the bit in the interrupt handler. Also, read and clear the
gem.receive_status register by writing a 1 to gem.receive_status[frame_received] bit.

3. Process the data in the buffer. Scan the buffer descriptor list for the buffer descriptors
with the ownership bit, (bit [0], word [0]), set. When the DMA receive buffer size
programmed to 1,600 bytes (gem.dma_config[rx_buf_size] = 0x19), the packets on the
receive side are not scattered and always go into a single buffer. For a buffer descriptor
with the ownership bit set, process the buffer allocated in the corresponding buffer
descriptor and set the ownership bit to 0. Read other bit fields in the relevant buffer
descriptor word [1], take necessary action, and clear them.

Gigabit Ethernet Debug Guide

The gigabit Ethernet can encounter different kinds of errors while receiving or transmitting
Ethernet frames. Refer to Zynq UltraScale+ MPSoC Register Reference (UG1087) [Ref 4]
register details for more information on the transmit and receive error conditions listed in
the description for gem.transmit_status and gem.receive_status registers, respectively.

Some common errors and the action necessary are described in Table 34-18 and
Table 34-19.

Table 34‐18: RX Status Errors

Error Condition Necessary Action

RESP not OK This is a condition where it is not easy for the controller to recover. Re-initialize the controller
and buffer descriptors for receive and transmit paths after clearing the relevant register
status bits: gem.receive_status[resp_not_ok] and gem.int_status[resp_not_ok].

Receive overrun This condition implies that the packet is dropped because the packet buffer is full. It occurs
occasionally when the controller is unable to process the packets when they arrive very fast.
In most conditions, no action for error recovery needs to be taken. Ensure that the packet
buffer is configured for 32 KB (see Configure the Controller) and clear bits
gem.receive_status[receive_overrun] and gem.int_status[receive_overrun].

Notes:
On RX, there is no hard requirement to have multiple buffer descriptors, although it is recommended that you minimize the
chance of getting buffer resource errors (where the hardware has a frame to write to memory, but there is no free buffer(s)
to write to). Extreme overflow conditions in general are more likely when these buffer resource errors occur.
Zynq UltraScale+ Device TRM 1080
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1080

Chapter 34: GEM Ethernet
Register Overview

Clock Control Register

The clock control register drives the clocks for all GEM instances including the selection of
the TSU interface and source clocks, the FIFO interface clock, SGMII, 1000BASE-SX,
1000BASE-LX, non-SGMII mode, the gem{0:3}_ref_clk (used as the PLL reference clock, the
EMIO PLL clock, or the GTX clock), and the gem{0:3}_rx_clock (MIO/EMIO).

Table 34‐19: TX Status Errors

Error Condition Necessary Action

RESP not OK This is a condition where it is not easy for the controller to recover. Re-initialize the controller
and buffer descriptors for receive and transmit paths after clearing the relevant register
status bits: gem.transmit_status[resp_not_ok] and gem.int_status[resp_not_ok].

Transmit
underrun

This implies a severe error condition on the transmit side in processing of the transmit
buffers and buffer descriptors. For effective error recovery, the software must disable the
transmitter by writing a 0 to the network_control[enable_transmit] bit, then re-initialize the
buffer descriptors on the transmit side and enable the transmitter by writing a 1 to the
gem.network_control[enable_transmit] bit. The bit gem.transmit_status[transmit_under_run]
must be cleared in the interrupt handler.

Transmit buffer
exhausted

This is a severe error condition on the transmit side. For effective error recovery, the software
must disable the transmitter by writing a 0 to the network_control[enable_transmit] bit, then
re-initialize the transmit buffer descriptors and transmitter. The register bits
gem.transmit_status[amba_error] and gem.int_status[amba_error] must be cleared in the
interrupt handler.

Retry limit
exceeded

This implies there are a series of collisions for which an Ethernet frame could not be sent out
even with multiple retries in half-duplex communication. Ethernet frames are dropped at the
transmitter. The bits gem.transmit_status[retry_limit_exceeded] and
gem.int_status[retry_limit_exceeded_or_late_collision] must be cleared in the interrupt
handler. No drastic measures need to be taken for this error. However, it could also mean that
there is a duplex setting mismatch.

Collisions This error indicates that there are collisions for half duplex communication. Some collisions
are expected in half-duplex mode and can be ignored. When a collision occurs, the frame is
retransmitted after a while and the frame is not dropped. The register bit
gem.transmit_status[collision_occurred] must be cleared in the interrupt handler.

Notes:
On TX, GigE needs multiple descriptors with the last descriptor in the BD ring having the used bit set. It is needed to ensure
the GigE does not wrap and attempt to transmit the same frames more than once.

Table 34‐20: Ethernet Clock Control Register

Function Register Name Description

Clock control iou_slcr.GEM_CLK_CTRL GEM clock control.
Zynq UltraScale+ Device TRM 1081
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1081

Chapter 34: GEM Ethernet
Control Registers

Control registers (Table 34-21) drive the management data input/output (MDIO) interface,
set-up DMA activity, start frame transmission, and select the different modes of operation
such as full duplex, half duplex, and 10/100/1000 Mb/s operation.

Note: The timer sync strobe registers (tsu_strobe_msb_sec, tsu_strobe_sec, and tsu_strobe_nsec) are
loaded with the value of the timer when the input signal emio_enet{0:3}_tsu_inc_ctrl[1:0] = 00b.
However, the timer sync strobe registers get updated only when emio_enet{0:3}_tsu_inc_ctrl signal
toggles between 11b and 00b.

Table 34‐21: Ethernet Control Register Overview

Function Register Name Description

MAC configuration network_{config,control,status}
tx_pause_quantum
pause_time
tx_pfc_pause
stretch_ratio
stacked_vlan

Network control, configuration, and status.
RX and TX pause clocks.
IPG stretch.

DMA unit transmit_status
receive_status
transmit_q{ , 1}_ptr
receive_q{ , 1}_ptr
dma_config

Control.
Receive and transmit status.
Receive and transmit queue base address
control.

Interrupts int_{status,enable,disable, mask} Interrupt status, enable/disable, and mask.
PHY maintenance phy_management PHY maintenance.
MAC address filtering and
ID match

hash_{top,bottom}
spec_add{1:4}_{bottom,top}
mask_add1_{bottom,top}
spec_type{1:4}

Hash address.
Specific {4:1} addresses High/Low.
Match type.

IEEE Std 1588: Precision
time protocol

tsu_timer_ {sec,nsec}
tsu_timer_{adjust,incr}
tsu_strobe_{sec,nsec}[1]

IEEE Std 1588: second, nanosecond counter and
adjustment, increment.

tsu_ptp_tx_{sec,nsec}
tsu_peer_tx_{sec,nsec}

IEEE Std 1588: TX normal/peer second,
nanosecond counter.

tsu_ptp_rx_{sec,nsec}
tsu_peer_rx_{sec,nsec}

IEEE Std 1588: RX normal/peer second,
nanosecond counter.
Zynq UltraScale+ Device TRM 1082
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1082

Chapter 34: GEM Ethernet
Status and Statistics Registers

The statistics registers (Table 34-21) hold counts for various types of events associated with
transmit and receive operations. These registers, along with the status words stored in the
receive buffer list, enable software to generate network management statistics compatible
with IEEE Std 802.3.

Table 34‐22: Ethernet Status and Statistics Register Overview

Function Hardware Register Name Description

Frame TX statistics frames_txed_ok Error-free TX frame, pause frame counts, and bytes counts.
broadcast_frames_tx
multicast_txed
frames_txed_64
frames_txed_65
frames_txed_128
frames_txed_256
frames_txed_512
frames_txed_1024
frames_txed_1519

64-byte frames transmitted
65 to 127-byte frames transmitted
128 to 255-byte frames transmitted
256 to 511-byte frames transmitted
512 to 1023-byte frames transmitted
1024 to 1518-byte frames transmitted
Greater than 1518-byte frames transmitted

octets_txed_{top,bottom} Octets transmitted.
deferred_frames Deferred transmission frames
pause_frames_txed Pause and transmit under-run frames.
tx_underruns

Frame TX statistics for
half-duplex
transmission

{single,multiple}_collisions
excessive_collisions
late_collisions
crs_errors

Single/multiple frame, excessive/late collisions,
deferred TX frames, TX carrier sense error counters.
Zynq UltraScale+ Device TRM 1083
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1083

Chapter 34: GEM Ethernet
Frame RX Statistics frames_rxed_ok Error-free frames received: normal, broadcast,
multicast, pause.broadcast_rxed

multicast_rxed
frames_rxed_64
frames_rxed_65
frames_rxed_128
frames_rxed_256
frames_rxed_512
frames_rxed_1024
frames_rxed_1519

64-byte frames received
65 to 127-byte frames received
128 to 255-byte frames received
256 to 511-byte frames received
512 to 1023-byte frames received
1024 to 1518-byte frames received
1519 to maximum byte frames received

undersize_frames Undersize, oversize, and jabber frames.
excessive_rx_length
rx_jabbers
fcs_errors Frame sequence, length, symbol, alignment error counters.
rx_length_errors
octets_rxed_{top,bottom} Octets Received
rx_symbol_errors RX resource, overrun and last statistic clearing offset for

clearing.alignment_errors
rx_resource_errors
rx_overruns

Frame RX Checksum
Error Statistics

rx_ip_ck_errors
rx_tcp_ck_errors
rx_udp_ck_errors

Checksum error counters: IP Header, TCP, UDP

Table 34‐22: Ethernet Status and Statistics Register Overview (Cont’d)

Function Hardware Register Name Description
Zynq UltraScale+ Device TRM 1084
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1084

Chapter 35

PS-PL AXI Interfaces

Introduction
The Zynq® UltraScale+™ MPSoC integrates a feature-rich quad-core or dual-core Arm®
Cortex™-A53 MPCore™ based processing system (PS) and Xilinx programmable logic (PL) in
a single device.

The PS and PL can be tightly or loosely coupled using multiple interfaces and other signals.
This enables the designer to effectively integrate user-created hardware accelerators and
other functions in the PL logic that are accessible to the processors and can also access
memory resources in the PS. Using a Zynq UltraScale+ MPSoC in your design allows
end-product differentiation through customized applications in the PL.

The processors in the PS always boot first, allowing a software centric approach for PL
configuration. The PL can be configured as part of the boot process or configured at some
point in the future. A portion of the PL can be reconfigured while other parts of the PL
remain active using partial reconfiguration (PR). PR can be used to time-multiplex logic
functions and algorithms, update coefficients, and reconfigure I/O. This capability is
analogous to the dynamic loading and unloading of software modules. For more
information, see Chapter 11, Boot and Configuration.

The PL power domain can be powered down while the PS continues to operate. In this
mode, the PL consumes no static or dynamic power, thus significantly reducing the power
consumption of the device. The PL must be reconfigured after power-up. You will need to
account for the re-configuration time of the PL in your particular application as this varies
depending on the size of the bitstream.

The PS communicates with the PL using general-purpose interconnect blocks. They support
a variety of interfaces between the PL and PS and for data transfer between the PL and PS,
interrupt, clock, and reset, while also connecting PS peripherals to the PL for routing to
PL I/Os. Additionally, the debug cross-trigger and trace interface supports integrated
HW/SW code debugging.

This chapter provides details on the PS-PL interfaces, information on use-case
consideration for various interfaces, and other interface usage where appropriate.
Zynq UltraScale+ Device TRM 1085
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1085

Chapter 35: PS-PL AXI Interfaces
Block Diagram and Features

The entire system-level view with both the PL and PS shown Figure 35-1. The PS-PL AXI
interfaces are shown in the Programmable Logic (PL), upper right corner.

X-Ref Target - Figure 35-1

Figure 35‐1: PS-PL Interfaces

BRAM
(slave)

2-way Cache
Coherent Master

APU
MPCore

M

To all output
ports

CCI
Coherency

And
Bypass

RPU
GIC

TCMs OCM
Switch

USB0 w/DMA

USB1 w/DMA

LPD DMA

PS SysMon eFUSE

LPD SLCRs

IPI

RTC

IO
P

In
bo

un
d

IO
P

O
ut

bo
un

d

OCM Memory

DAP Controller

S

CSU Processor

PMU Processor

Quad-SPI
GEM x4

NAND
SDIO x2

UART x2

SPI x2

CAN x2 I2C x2S

S

TBU2

Programmable
Logic

FPD SLCRs

FPD configs

DDR Memory Controller

SMMU TCU

AIB

AIB

AIB

AI
B

AI
B

AIB

AI
B

AI
B

DisplayPort

FP
D

DM
A

TBU5

CoreSight

PCIe

SATA

AXI Stream

GPU PPs

AIB

ADB ADB

ADB

TBUx

AIB

LP
D

O
ut

bo
un

d

LP
D

In
bo

un
d

AIB

AIB

S

S
M 128-bit

M_AXI_HPM0_LPD

S_AXI_LPD

S_
AX

I_
HP

3_
FP

D

S_
AX

I_
HP

2_
FP

D
S_

AX
I_

HP
1_

FP
D

S_
AX

I_
HP

0_
FP

D

S_AXI_ACP_FPD

S_AXI_ACE_FPD

S_
AX

I_
HP

C0
_F

PD

S_
AX

I_
HP

C1
_F

PD

M
_A

XI
_H

PM
0_

FP
D

M
_A

XI
_H

PM
1_

FP
D

I/O Coherent
Master

AIB

AIB

AIB

AIB

GPU cfg

[a
fif

s0
]

[a
fif

s1
]

[afifs2]

[fpd_main]

[ocms]

[fpd_lpdibs]

[lpd_ddr]

[usb0s], [usb1s]

[rpus0], [rpus1]

[rpum0],
rpum1]

[ocms]

LPD Main
Switch

RPU
Switch

Full crossbar. Each
input to all output

ports.

Full crossbar.

GPIO x78, x96

S
M 64-bit

S
M 32-bit

AIB

AIB

FPD
Main

Switch

I/O
2-way 2-way

I/O

I/OAX
I S

tr
ea

m

SI
O

U
 O

ut
bo

un
d

QVN

Non-Coherent
Master

RPU

M

M

TTC x4 LPD SWDT

M M

TBU3 TBU4

TB
U

1
TB

U
0

VCU RF PCIe v3.1 100Gb

PL SysMon

ACP

X21030-060818
Zynq UltraScale+ Device TRM 1086
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1086

Chapter 35: PS-PL AXI Interfaces
The main features of the PS-PL interfaces are summarized in this section.

• AXI interfaces provide the following:

° High-performance AXI4 interface with FIFO support in the PS.
- Selectable native PL data bus width support (32/64/128).
- Independent read and write clocks.
- Three interfaces support I/O coherency through the cache-coherent

interconnect (CCI).

° System Memory Management Unit (SMMU) for PS bound transactions (virtual to
physical address translation).

° Dedicated low-latency path between the low-power domain (LPD) and PL.

° Accelerator coherency port (ACP) interface for I/O coherency and allocation into the
APU’s L2 cache.

° AXI coherency extensions (ACE) interface for full coherency. Usable as ACE-Lite
for I/O coherency.

• 32 bits for general-purpose input and 32 bits for output from the platform
management unit (PMU) for communication with the PL.

• 16 shared interrupts and four inter-processor interrupts.
• Dedicated interfaces from the gigabit Ethernet controller (GEM) and the DisplayPort

protocol.
• Other PS-PL interfaces, such as extended MIO and PL clocks.
Zynq UltraScale+ Device TRM 1087
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1087

Chapter 35: PS-PL AXI Interfaces
Functional Description
There are several types of PS-PL AXI interfaces and other PS-PL signals to support a
heterogeneous processing system.

The Zynq UltraScale+ MPSoC provides different types of datapath ports between the PS and
PL. Specific applications can use one or more of these ports.

Figure 35-2 provides a simplified top-level summary of the datapaths for the interfaces.

The Zynq UltraScale+ MPSoC supports a maximum of 40 bits of physical address space and
up to 49 bits of virtual address space.

X-Ref Target - Figure 35-2

Figure 35‐2: PS-PL AXI Interface Datapaths

PL

S_AXI_ACP_FPD

S_AXI_ACE_FPD

S_AXI_HPC0_FPD
S_AXI_HPC1_FPD

S_AXI_HP0_FPD
S_AXI_HP1_FPD
S_AXI_HP2_FPD
S_AXI_HP3_FPD
S_AXI_HPM0_FPD
S_AXI_HPM1_FPD

S_AXI_LPD

M_AXI_HPM0_LPD

APU MPCore

CCI

SMMU

LPD

SM
M

U

DD
R

M
em

or
y

Su
bs

ys
te

m

I/O Coherent

Two-way
Coherent

I/O Coherent
Zynq UltraScale+ Device TRM 1088
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1088

Chapter 35: PS-PL AXI Interfaces
Table 35-1 is a summary of the PS-PL AXI interfaces.

Table 35‐1: PS-PL Interface Summary

Interface Name Abbreviation
Data

Width

Master
ID

Width

Address
Width

Master Slave Description

S_AXI_ACP_FPD ACP 128 5 40 PL PS FPD
Accelerator coherency
port: I/O coherent
with CCI with L2 cache
allocation.

S_AXI_ACE_FPD ACE 128 6 40 PL PS FPD

AXI coherency
extensions: two-way
coherent path
between memory in
PL and CCI.

S_AXI_HPC{0,1}_FPD HPC{0,1} 128 6 49 PL PS FPD

High-performance
coherent interface
passing through the
CCI and SMMU
providing one way
(I/O) coherency
(AFI_{0,1}).

S_AXI_HP{0:3}_FPD HP{0:3} 32/64/128 6 49 PL PS FPD

High-performance
interface: I/O coherent
with CCI and no L2
cache allocation.
(AFI_{2:5}).

S_AXI_LPD PL_LPD 32/64/128 6 49 PL PS LPD

High-performance
non-coherent path
from PL to low-power
domain (LPD). Access
between the PL and
RPU is allowed even
when the full-power
domain (FPD) is
powered down
(AFI_6).

M_AXI_HPM{0,1}_FPD HPM{0,1} 32/64/128 16 40 PS FPD PL
High-performance
master from the FPD
into the PL.

M_AXI_HPM0_LPD LPD_PL 32/64/128 16 32 PS LPD PL
High-performance,
low-latency port from
the LPD into the PL.
Zynq UltraScale+ Device TRM 1089
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1089

Chapter 35: PS-PL AXI Interfaces
FPD-PL Interfaces

This section describes the PL to PS interfaces going into the full-power domain (FPD).

• Six high-performance interfaces provide the PL bus masters access to all PS slaves.
However, these are designed to provide high-bandwidth datapaths to the DDR
memory.

• Two high-performance masters from the FPD into the PL. Primarily these are used by
high-performance PS masters like the APU, FPD DMA, and PCIe.

PL-PS Interface Specifics

The PL-PS interfaces are designed to provide a high-throughput datapath between the PL
masters and PS memories, including the DDR and OCM memories. The main features of
these interfaces are outlined in this section.

• Support for AXI4. The conversion to AXI3 takes place in the PS.
Note: Even though the channels within the PS can be AXI4 (for example, SMMU TBU to DDR
memory controller) the transaction burst length is restricted to a maximum of 16, due to this
conversion to AXI3 in the AXI FIFO interface (AFI).

• 32, 64, or 128-bit data-wide master interfaces that are independently programmed for
read and write per port.

• Efficient dynamic upsizing for all full-width AXI INCR commands.
• Asynchronous clock frequency domain crossing for all AXI interfaces between the PL

and PS. Two PL clocks per interface, one for read and one for write.

TIP: Not all HP I/O ports have the exact same path to the various system resources especially the DDR
memory control AXI port interface (XPI).

The S_AXI_HP1_FPD and S_AXI_HP2_FPD interfaces share exclusive access to an AXI Port
Interface (XPI 4). This facilitates high throughput and relatively low-latency access from the
PL directly to the DDR memory. S_AXI_HP0_FPD shares an XPI port on the memory
controller with the DisplayPort master in the PL and S_AXI_HP3_FPD with the FPD DMA
controller.

In video-based systems, S_AXI_HP0_FPD is typically used for video-type traffic and
S_AXI_HP3_FPD is used for best-effort traffic.
Table 35‐2: AXI Interfaces and Associated Registers

Interface Name Register Name

M_AXI_HPM0_FPD FPD_SLCR
M_AXI_HPM1_FPD FPD_SLCR
M_AXI_HPM0_LPD LPD_SLCR
Zynq UltraScale+ Device TRM 1090
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1090

Chapter 35: PS-PL AXI Interfaces
S_AXI_HPC0_FPD AFIFM0
S_AXI_HPC1_FPD AFIFM1
S_AXI_HP0_FPD AFIFM2
S_AXI_HP1_FPD AFIFM3
S_AXI_HP2_FPD AFIFM4
S_AXI_HP3_FPD AFIFM5
S_AXI_LPD AFIFM6

Table 35‐2: (Cont’d)AXI Interfaces and Associated Registers

Interface Name Register Name
Zynq UltraScale+ Device TRM 1091
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1091

Chapter 35: PS-PL AXI Interfaces
APU Coherent Interfaces

S_AXI_HPC0_FPD and S_AXI_HPC1_FPD can optionally support I/O coherency to the APU’s
L1 and L2 caches as these interfaces connect to the cache coherent interconnect (CCI).
These ports can snoop APU caches through CCI provided ports. This avoids the need for
software to provide coherency by flushing APU caches when APU data is shared with the I/O
masters. Hardware managed I/O coherency simplifies software, improves system
performance, and reduces power. Because both the S_AXI_HPC0_FPD and S_AXI_HPC1_FPD
interfaces are routed through the CCI before reaching the DDR memory controller, these
two ports have a longer latency to DDR.

RECOMMENDED: Set the AxCACHE bits appropriately to enable snooping into APU caches. Drive any
non-zero value on AxCACHE[3:2] for coherency; AxCACHE[3:2] = 2’b00 indicates a non-coherent
transaction. Snooping should also be enabled by writing to the appropriate registers in the CCI. The
Snoop_Control_Register_S3[Enable_snoops] bit should be set to generate a snoop request to the APU
ACE interface.

For further details on coherency through CCI refer to Arm's CCI TRM.

Address Translation and Protection

All high-performance interfaces into the FPD pass through the system memory
management unit (SMMU).

SMMU translates the address of the incoming master requests to the physical memory
address and performs checks for permissions to access that physical address, based on the
information provided in the translation page-tables. Refer to SMMU Architecture in
Chapter 3 for further information.

SMMU in the path of these high-performance PL interfaces provides the following support.

• Support for the use of virtual addresses (same address as is used by the software
application) in the PL masters.

• Protection as SMMU performs access checks for a transaction

AXI FIFO Interface

The AXI FIFO interface (AFI) is included to provide high-throughput datapaths between the
PL masters and the PS DDR Memory Controller.

• The access latency through the multi-ported DDR memory controller in the PS is
expected to vary across a wide range and can vary under loaded conditions. The AXI
FIFO interface helps to smooth out this variable latency, allowing the ability to stream
data continuously between the DDR and corresponding PL master.

• This module also helps provide rate adjustment between the PL and PS clock domains.
Zynq UltraScale+ Device TRM 1092
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0470i/DDI0470I_cci400_r1p3_trm.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1092

Chapter 35: PS-PL AXI Interfaces
• The PL interface is AXI4 while the PS interface is AXI3-compliant. The AFI converts
between AXI4 and AXI3 formats.

The block diagram in Figure 35-3 shows the AXI FIFO interface. There are two sets of AXI
ports, one set connecting directly to the PL (blue) and the other (PS) connecting to the AXI
switch matrix (red), providing access to the PS DDR memory and other slaves.

TIP: The 32, 64, and 128-bit programmable logic interfaces are programmable; the PS-side AXI
interface is always 128 bits.

The level of the data FIFOs as well as the command queues for both read and write are
exported to the PL, to provide visibility to programmable logic applications.

TIP: The FIFO levels should be used as a relative level as opposed to an exact level, because clock
domain crossings are involved; that is, the read and write FIFO levels indicate a pessimistic count of
read/write data words when the FIFO interfaces are operating at an asynchronous clock frequency and
do not represent the actual words stored in the FIFO.

X-Ref Target - Figure 35-3

Figure 35‐3: AXI FIFO Interface for HP I/O Interface

128-BIT PS AXI3 Channels

RdAddr RDData WRAddr WRData BResp

RdChannel

RdAddr
Channel

Q

RdData
Channel

FIFO

WrChannel

WrAddr
Channel

Q

WrData
Channel

FIFO

BResp
Channel

Q

Registers

32/64/128-bit Programmable Logic AXI4 Channels

RdAddr RDData WRAddr WRData BResp

APB I/F

RdCmd
Q Level

RdData
FIFO Level

WrData
FIFO Level

WrCmd
Q Level

X15279-101217
Zynq UltraScale+ Device TRM 1093
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1093

Chapter 35: PS-PL AXI Interfaces
AXI Interface Programming

An advanced peripheral bus (APB) interface is provided to allow for control and monitoring
of the module's functions.

The FIFO interface contains the following features.

• 8-deep write and read command queue depths.
• Read and write command acceptance capability of eight.
• The maximum number of outstanding unique IDs issued to the PS is eight per port, per

channel.
• 128 x 128-bit deep read and write data FIFOs.
• Programmable release modes for write commands.
• Programmable issuing capability per port, per channel, up to a maximum of 16. This is

possible only if the limit of eight outstanding IDs is not exceeded and there is space
available in the data FIFO.

• Command and data FIFO fill-level exported to the programmable logic.
• The ability to write to the data FIFO without the writing the corresponding write

commands.
• Upsizing for full-width, aligned, and unaligned INCR-type bursts.
• Dynamic command upsizing translation supported between 32-bit or 64-bit PL

interfaces and 128-bit PS-side, controllable with the AxCACHE[1] bit.

TIP: Upsizing occurs for full-width, INCR burst-type commands when the AxCACHE[1] bit is set. All
other command-types are expanded. The process of upsizing involves modification of the AWSIZE field
to 128-bit, as well as adapting the AWLEN field appropriately.

Expansion or upsizing can be dynamically controlled, on a per-command basis, based on
AxCACHE[1] bit value.

Note: The write latency (i.e., the time from when the write request is sent to the reception of the
BRESP) is dependent on factors such as system load and DDR latency. The FIFO interface sends the
write command/data all the way to the destination slave. The slave responds with a BVALID and the
BVALID is returned to the FIFO interface and then to the PL. There is no capability for an early BRESP,
that is, an early response to the PL from the AFI is not sent, but the DDR controller has the capability
to send an early response to the AXI interface.
Zynq UltraScale+ Device TRM 1094
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1094

Chapter 35: PS-PL AXI Interfaces
Additional Per Port HP I/O PL Signals

The additional signals provided to the PL (in addition to the standard AXI4 signals) are listed
in Table 35-3. The QoS priority and FIFO occupancy management functions (read and write
data and command buffer counts) are discussed in the following sections.

QoS Priority

Quality of service (QoS) can be used to assign an arbitration priority to the read and write
commands. QoS can be controlled from physical PL signals or statically configured in the
AXI interface's APB registers (RDQoS or WRQoS registers in the AFIFM register set). Driving
the signals allows QoS values to be changed on a per transaction basis. The register control
is static for all commands.

Read and Write Data Buffers

The HP interfaces provide 128-entry deep data buffers for each read and write data
channel. The HP interfaces also provide buffer level information via count ports. The read
data buffer information level is used when the PL-master data consumer logic is decoupled
from the read request logic. Similarly, the write data buffer level information is used when
the PL-master write data producer logic streams out data before a write request is
generated.

The read data buffer is used as a pre-allocation or pre-fetch buffer, where the PL can issue
a large number of read requests without having its own read pre-allocation or pre-fetch
buffer. The write data buffer is used to stream the write data before a write request.

Based on the relative levels of the count values provided, a PL controller can dynamically
change the priority of the individual read and write requests into the high-performance AXI
interface block(s). The FIFO level count should be used as a relative level, as opposed to an
exact level, because clock domain crossing is involved.

Table 35‐3: Additional Per Port HP I/O Signals

Type
PS-PL Signal

Name I/O Description

FIFO
Occupancy

*_RCOUNT[7:0] O Fill level of read data channel FIFO.
*_WCOUNT[7:0] O Fill level of write data channel FIFO.
*_RACOUNT[3:0] O Fill level of read address channel FIFO.
*_WACOUNT[3:0] O Fill level of write address channel FIFO.

Quality of
Service

*_AWQOS[3:0] I Write address channel QOS input. Qualified by corresponding *_AWVALID.
*_ARQOS[3:0] I Read address channel QOS input. Qualified by corresponding *_ARVALID.
Zynq UltraScale+ Device TRM 1095
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1095

Chapter 35: PS-PL AXI Interfaces
Traffic Quality of Service

In general, traffic can be categorized into three traffic classes based on the quality of
service (QoS) value.

• High priority (low latency).
• Isochronous (regular, time sensitive, e.g., audio and video traffic).
• Best effort (bulk transfers).

The low-latency traffic class is primarily intended for CPU (or CPU like) latency critical
traffic, and is not recommended for use by transfers with an AXI interface that includes a
FIFO.

On each of the FIFO-enabled AXI interfaces, a traffic shaper (QoS controller) is implemented
that can be configured to shape the traffic. The S_AXI_HP{0:3}_FPD interfaces are designed
to provide a latency guarantee for DDR memory controller accesses. Details on traffic
categorization are described in Chapter 17, DDR Memory Controller. For details on
system-level QoS, refer to Chapter 15, PS Interconnect.

IMPORTANT: The [WR_RELEASE_MODE] bit in the AFIFM.WRCTRL register controls the write command
release mode. For example, when 1, a write command is released as available and when 0, the data is
buffered into the FIFO and a command is released when either 16-beats are enqueued or there is a
WLAST (whichever occurs first). When this bit is set to 1, ensure that any masters issuing write
transactions do not provide a command without data. Issuing a command without data can lead to
starvation and other system-level issues. In other words, before the [WR_RELEASE_MODE] bit is set to
1, choose masters that will only issue write transactions after data is present.

High Performance PS to PL AXI Interfaces

Two high-performance interfaces, M_AXI_HPM0_FPD and M_AXI_HPM1_FPD (data width
selectable to be 32/64/128-bit), are provided to allow the CPUs, DMAs, and PCIe to push
large amount of data from the PS to the PL. They are also AXI FIFO interfaces that enable the
following.

• Conversion from the AXI3 to AXI4 protocols as the PL interfaces are AXI4 compliant,
while the internal PS interfaces are AXI3 compliant. AXI4 access in the PL is limited to a
burst length of 16.

• Clock domain crossing between PS and PL interfaces. A single clock is available in the
PL interface for read and write operation.

The PS interconnect assigns the master ID bits and transfers these bits on the AxUSER bits
of the associated AXI transaction. The AxUSER[9:0] bits correspond to the master IDs listed
in Table 16-13. The AxUSER[15:10] bit might be used for other purposes by the system
including coherency and transaction poisoning.
Zynq UltraScale+ Device TRM 1096
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1096

Chapter 35: PS-PL AXI Interfaces
LPD-PL Interfaces

The high-performance interface port (S_AXI_LPD) from the PL to the LPD includes the
following features.

• Configurable to 32, 64, or 128-bit data widths on the PL side.
• Preferred interface for PL access to the OCM and TCMs with the lowest latency.
• Access to all of the global address map (especially to access the PS DDR memory).

This port can be used in physical or virtual mode by setting the AxUSER bit. In virtual mode,
it cannot directly access the LPD. Instead, virtual mode accesses are routed as follows.
AxUSER should be set to 1'b1 to select virtual mode or 1'b0 to select physical mode.

PL  LPD  FPD (SMMU/CCI)  LPD

The S_AXI_LPD is a PL interface that connects into the low-power domain. For situations
where the FP domain is powered down, this interface provides a high-performance
mastering capability from the PL. Due to the interconnect topology, this port has a relatively
long latency to DDR.

The low-latency interface port (M_AXI_HPM0_LPD) from the LPD to the PL includes the
following features.

• Configurable to 32, 64, or 128-bit data widths on the PL side.
• AXI4 access in the PL, but is limited to a burst length of 16.
• Responds to lowest 512 MB memory in LPD's 32-bit address space.
• Enables direct access to the PL (for example for block RAM, DDR) for the safety use

cases.

LPD bus masters can use the M_AXI_HPM0_LPD interface to access the PL without the FPD
being powered-up.

IMPORTANT: Exclusive access by the APU cannot be made to the M_AXI_HPM0_LPD signal due to an ID
converter in the path.
Zynq UltraScale+ Device TRM 1097
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1097

Chapter 35: PS-PL AXI Interfaces
PL ACE Interface to CCI

The AXI coherency extension (ACE) protocol extends the AXI4 protocol and provides
support for hardware coherent caches.

A Note About the ACE Protocol

The ACE is backwards compatible to AXI4 and supports coherent interconnects. In addition
to five AXI4 channels, ACE adds three additional snoop channels and some extra signals.
The ACADDR channel is a snoop-address input to the master. The CRRESP channel is used
by the master to signal the response to snoops to the interconnect. The CDDATA channel is
output from the master to transfer snoop data to the originating master and/or external
memory. ARSNOOP and AWSNOOP indicate the type of snoop transactions for shareable
transactions on the read and write channels, respectively. ARBAR and AWBAR are used for
barrier signaling. ARDOMAIN indicates the masters to snoop for snoop transactions and the
masters to be considered or the ordering of barrier transactions. RRESP has additional bits
for shared read transactions that are indirectly driven by the CRRESP outputs from a
snooped master. In addition to the full ACE interface, the AMBA-4 specification also defines
ACE-Lite, which has the additional signals on the existing channels but not the new
channels. ACE-Lite masters can snoop ACE-compliant masters, but cannot themselves be
snooped.

For more details on ACE signaling, refer to Arm ACE protocol specification.

The ACE interface connects to cache coherent interconnect (CCI) and is configurable to
support I/O and full coherency.

• I/O coherency though the use of ACE-Lite where I/O-coherent masters can snoop APU
caches.

• Full coherency though the use of ACE where fully-coherent masters can snoop each
other’s caches.

The two-way coherent S_AXI_ACE_FPD interface uses a 40-bit wide physical address. The
ACE port enables the PL-masters to have their caches in PL. The PL-ACE master cannot
allocate into the APU L2 cache however, it has coherent access to L2 cache.

If a PL ACE port is not used or used as ACE-Lite, then its snoop channels must be disabled
(using the CCI ACCHANNELEN input that is controlled by a LPD_SLCR.LPD_CCI register). This
ensures that the CCI does not generate snoop to the PL.

Note: Although the programmable logic (PL) ACE port can be used as an AXI4 interface, Xilinx
recommends against this usage.
Zynq UltraScale+ Device TRM 1098
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1098

Chapter 35: PS-PL AXI Interfaces
ACE-Lite Interface for I/O Coherency

The ACE-Lite interface is a defined subset of the full ACE interface. ACE-Lite is used by
master components that do not have hardware coherent caches, but can issue transactions
that could be held in the hardware coherent caches of other masters. ACE-Lite enables
uncached masters to snoop ACE coherent masters.

The S_AXI_ACE_FPD port can be used as ACE-Lite with some limitations. In addition to
providing one way coherency, ACE-Lite can be used to force flush or invalidate an APU
cache.

The following describes using S_AXI_ACE_FPD as ACE-Lite.

• An ACE slave needs RACK and WACK inputs. But ACE-Lite master does not have RACK
and WACK outputs. The PL must drive these signals because they are used to release
transactions from the internal trackers in the CCI.

• In the CCI, the ACE interface does not support burst splitting. The PL master must
ensure that any shareable transactions (ReadOnce, WriteUnique) do not cross a 64-byte
boundary. Furthermore, if using a fine-grained interleaving (<4 KB), then the PL master
must ensure that no transaction crosses the interleaving boundary.

• The ACE DVM [ACCHANNELEN] bit should be set Low (using the LPD_SLCR.LPD_CCI
register). This will ensure that requests are never sent on the AC channel of this ACE.

The I/O coherent masters only need to indicate the shareability of a read or write
transaction using AxDOMAIN. Other signals, such as AxSNOOP, AxBAR, and AxUNIQUE, can
be tied to zero.

ACE-Lite provides I/O coherency-like S_AXI_HPCx_FPD ports. However, ACE-Lite requires
physical address, additional signals, and ACE-related restrictions must be followed.
Comparably, S_AXI_HPCx_FPD uses a virtual address and is AXI compliant. When possible,
using S_AXI_HPCx_FPD is preferred for I/O coherency (instead of ACE-Lite).
Zynq UltraScale+ Device TRM 1099
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1099

Chapter 35: PS-PL AXI Interfaces
ACE Interface for Full Coherency

Full-coherent masters can snoop each other's caches. For fine-grain data sharing between
the APU and the PL, a system can have cache implemented in PL. Full coherency is provided
through the CCI ACE ports. ACE provides additional signals that allow CCI to request data
cached by various masters (APU or PL).

TIP: For full coherency, transactions can only have a 64-byte cache line size.

IMPORTANT: When using the PL-ACE as an ACE-lite or AXI4 port, you must ensure that the PL master
does not generate transactions with burst lengths greater than 16. From the ACE port to the DDR
controller, there is an AXI4 path without a mechanism to split longer burst lengths into smaller
transactions similar to how they are split by the FIFO-enabled AXI interfaces. Failure to limit
transaction burst lengths can lead to lockups on the bus for many cycles, starvation on other DDR
ports, and very high latencies observed on other masters in the system.

Note: A cached PL master connected to the PL-ACE interface, that is required to be in an
inner-shareable domain with the APU, should tie-off the BROADCASTINNER signal to 1. This can be
done by writing to the LPD_SLCR.LPD_APU register. This tie-off signal must be either High or Low
before the APU reset is deasserted.

ACP Interface

The accelerator coherency port (ACP) is a 128-bit AXI slave interface on the snoop control
unit (SCU) that provides an asynchronous cache-coherent access point directly from the PL
to the APU. Several PL masters can use this interface to access the caches and the memory
subsystem in the same way the APU processors use to simplify software, increase overall
system performance, or improve power consumption.

From a system perspective, the ACP interface has connectivity similar to the APU CPUs. Due
to this close connectivity, the ACP directly competes with them for resource access outside
of the APU MPCore.

TIP: All ACP transactions are considered coherent to the APU L1 data cache and L2 unified cache. There
is no option to mark a transaction as non-coherent through the side band signals (AxUSER and
AxCACHE).

Any read transactions through the ACP to a coherent region of memory interact with the
SCU to check whether the required information is stored within the processor L1 data
caches. If it is, the data is returned directly to the requesting component. If it misses in the
L1 cache, then there is also the opportunity to hit in L2 cache before finally being forwarded
to the DDR memory. For write transactions to any coherent memory region, the SCU
enforces coherency before the write is forwarded to the DDR memory system. The
transaction can also optionally allocate into the L2 cache, removing the power and
performance impact of writing through to the DDR memory.
Zynq UltraScale+ Device TRM 1100
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1100

Chapter 35: PS-PL AXI Interfaces
The ACP accesses do not go through either the APU's MMU or the System's SMMU, hence,
their request-address is a 40-bit physical address.

IMPORTANT: Since the PL-ACE does not have an AXI FIFO interface to regulate sending write data with
or before the write command, care must be taken when choosing a master. Failure to choose a master
that presents data before or along with the write command can lead to starvation and other system
level issues.

ACP Limitations

The ACP accepts only the following (cache-line friendly) transactions.

• 64-byte aligned (of 64-byte) read/write INCR transactions. All write-byte strobes must
be the same for all beats (either enabled or disabled). AxLEN must be 0x03 (four
beats).

• 16-byte aligned (of 16-byte) read/write INCR transactions. Write-byte strobes can have
any value. AxLEN must be 0x00 (one beat).

• ARCACHE and AWCACHE are restricted to the values 0b0111, 0b1011, and 0b1111.
• The value of 0b11 for AxUSER[1:0] is not allowed, other values (0b00, 0b01, 0b10) are

allowed.

For further details, see the Arm Cortex®-A53 MPCore Processor Technical Reference
Manual [Ref 46].

The ACP interface supports up to four outstanding transactions. These can be any
combination of reads and writes. However, there can only be one outstanding transaction
per AXI ID. The master must avoid sending more than one outstanding transaction on the
same AXI ID to prevent the second transaction from stalling the interface until the first is
complete.

ACP Usage

The ACP provides a low-latency path between the PS and the accelerators implemented in
the PL when compared with a legacy cache flushing and loading scheme. Steps that must
take place in an example of a PL-based accelerator are as follows.

1. The CPU prepares input data for the accelerator within its local cache space.
2. The CPU sends a message to the accelerator using one of the HPM AXI master interfaces

to the PL.
3. The accelerator fetches the data through the ACP, processes the data, and returns the

result through the ACP.
Zynq UltraScale+ Device TRM 1101
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1101

Chapter 35: PS-PL AXI Interfaces
4. The accelerator sets a flag by writing to a known location to indicate that the data
processing is complete. The status of this flag can be polled by the processor or can
generate an interrupt.

When compared to a tightly-coupled coprocessor, ACP access latencies are relatively long.
Therefore, ACP is not recommended for fine-grained instruction level acceleration. Instead,
for coarse-grain acceleration, such as video frame-level processing, ACP does not have a
clear advantage over traditional memory-mapped PL acceleration because the transaction
overhead is small relative to the transaction time, and can potentially cause undesirable
cache thrashing. Therefore, ACP is optimal for medium-grain acceleration, such as a
block-level crypto accelerator and video macro-block level processing.

The ACP port supports limited throughput (four outstanding transactions), two transaction
burst lengths (64-byte and 16-byte), and adversely affects CPU cluster performance (by
treating all ACP transactions as coherent).

RECOMMENDED: For the best power and performance, Xilinx recommends using either an
S_AXI_HPCx_FPD port or the ACE port to provide I/O coherency as the preferred approach over ACP.

CAUTION! Avoid the use of the ACP in security/safety critical applications requiring isolation within the
APU and/or between PS and PL. The ACP, if enabled, has unrestricted access to the entire L2 cache of
the APU and untrusted IP in the PL can make itself appear secure by modifying its AxPROT bits. If the
ACP is used in this system, two precautions are highly recommended. The first, is to wrap any IP in the
PL that has ACP access with trusted security logic that controls the AxPROT bits rather than allowing
the IP to do so. The second is to ensure that access to the entirety of L2 cache by this IP does not violate
the system security goals.

Table 35‐4: PS-PL AXI Interfaces

Interface Name Abbreviation Type Master Data Width Master
ID Width

Usage Description

S_AXI_HP{0:3}_FPD HP{0:3} AXI4 PL 128/64/32 6
Non-coherent paths from
PL to FPD main switch
and DDR.

S_AXI_HPM0_LPD PL_LPD AXI4 PL 128/64/32 6 Non-coherent path from
PL to IOP in LPD.

S_AXI_ACE_FPD ACE ACE PL 128 6
Two-way coherent path
between memory in PL
and CCI.

S_AXI_ACP_FPD ACP AXI4 PL 128 5 I/O coherent with CCI.
With L2 cache allocation.

S_AXI_HPC{0, 1}_FPD HPC{0, 1} AXI4 PL 128 6 I/O coherent with CCI.
No L2 cache allocation.

M_AXI_HPM{0, 1}_FPD HPM{0, 1} AXI4 PS 128/64/32 16 FPD masters to PL slaves.
M_AXI_HPM0_LPD LPD_PL AXI4 PS 128/64/32 16 LPD masters to PL slaves.
Zynq UltraScale+ Device TRM 1102
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1102

Chapter 35: PS-PL AXI Interfaces
Choosing a Programmable Logic Interface
This section discusses various options to connecting programmable logic (PL) to the
processing system (PS). A qualitative overview of data transfer use cases is shown in
Table 35-5 followed by a detailed discussion of certain use cases.

Table 35‐5: PL Interface Comparison

Method Benefits Considerations Application

APU/RPU
Programmed I/O

• Simple software.
• Least PL resources.
• Simple PL slaves.

Low bandwidth demand. Control functions.

FPD DMA
LPD DMA

• Least PL resources.
• Multiple channels.
• Simple PL slaves.
• Coherency (LPD DMA only).

FPD DMA is not coherent.
LPD DMA is optionally
coherent.

• FPD DMA for data
movement between
PS-DDR and PL.

• LPD DMA for data
movement between OCM
and PL and safety
use-cases.

S_AXI_HPC{0,1}_FPD
DMA

• High throughput.
• Multiple interfaces.
• AXI FIFO interface with

QoS-400 traffic shaping.
• Hardware assisted

coherency; no cache
flush/invalidate in software
driver.

• Virtualization support with
SMMU in path.

• More complex PL
master design.

• PL design to drive
AxCACHE as needed for
coherency.

• Impacts the CCI and
degrades APU and other
masters accessing
memory via the CCI.

Coherent, high-performance
DMA for large datasets.

S_AXI_HP{0:3}_FPD
DMA

• High throughput.
• Multiple interfaces.
• AXI FIFO interface with

QoS-400 traffic shaping.
• Virtualization support with

SMMU in path.

• Software driver to
handle cache
flush/invalidate.

• More complex PL
master design.

Non-coherent,
high-performance DMA for
large datasets.

S_AXI_ACP_FPD
DMA

• Lowest latency to L2 cache.
• Two-way cache coherency.
• Option to allocate into L2

cache.

• Limited to 16B and 64B
transactions; impacting
PL DMA design.

• Shares APU MPCore
interconnect bandwidth.

• More complex PL
master design.

• PL logic tightly coupled
with APU.

• Medium granularity CPU
offload.
Zynq UltraScale+ Device TRM 1103
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1103

Chapter 35: PS-PL AXI Interfaces
The data movement use-cases in Table 35-5 are described in the following sections.

APU Perspective

From the software perspective, the least intrusive method of programming the I/O is to use
a processor in the APU MPCore to move data between the PS and PL. As shown in
Figure 35-4, data is directly moved by the CPU, thus removing the need to handle events
from a separate DMA. Access to the PL is provided through the two M_AXI_HPMx_FPD
master ports, which target a memory address range in the PL. The PL design is also
simplified because a single AXI slave can be implemented to service the CPU requests.

Some drawbacks of using a CPU to move data is that a valuable CPU is spending cycles
performing simple data movement instead of complex control and computation tasks, and
the available throughput is limited.

S_AXI_ACE_FPD
DMA

• Optional cache coherency.
• APU can snoop into PL

cached masters (two-way
coherency).

• Burst length limited to
64B when CCI snoops PL
master.

• For ACE-Lite, long
bursts from PL to PS
may hang the APU
MPCore due to the
direct path from CCI to
DDR memory, impacting
others waiting for
memory.

• Complex PL design that
require support for ACE.

• Cached accelerators in PL.
• System cache in PL using

block RAM.

S_AXI_LPD DMA • Fastest, low latency path to
the OCM and TCM.

• Optional CCI coherency.
• SMMU in datapath provides

option for virtualization.
• PL access to LPD when FPD

is powered off.

Safety applications.

Table 35‐5: PL Interface Comparison (Cont’d)

Method Benefits Considerations Application
Zynq UltraScale+ Device TRM 1104
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1104

Chapter 35: PS-PL AXI Interfaces
X-Ref Target - Figure 35-4

Figure 35‐4: RPU and APU Masters

BRAM
(slave)

2-way Cache
Coherent Master

APU
MPCore

M

To all output
ports

CCI
Coherency

And
Bypass

RPU
GIC

TCMs OCM
Switch

USB0 w/DMA

USB1 w/DMA

LPD DMA

PS SysMon eFUSE

LPD SLCRs

IPI

RTC

IO
P

In
bo

un
d

IO
P

O
ut

bo
un

d

OCM Memory

DAP Controller

S

CSU Processor

PMU Processor

Quad-SPI
GEM x4

NAND
SDIO x2

UART x2

SPI x2

CAN x2 I2C x2S

S

TBU2

Programmable
Logic

FPD SLCRs

FPD configs

DDR Memory Controller

SMMU TCU

AIB

AIB

AIB

AI
B

AI
B

AIB

AI
B

AI
B

DisplayPort

FP
D

DM
A

TBU5

CoreSight

PCIe

SATA

AXI Stream

GPU PPs

AIB

ADB ADB

ADB

TBUx

AIB

LP
D

O
ut

bo
un

d

LP
D

In
bo

un
d

AIB

AIB

S

S
M128-bit

M_AXI_HPM0_LPD

S_AXI_LPD

S_
AX

I_
HP

3_
FP

D

S_
AX

I_
HP

2_
FP

D
S_

AX
I_

HP
1_

FP
D

S_
AX

I_
HP

0_
FP

D

S_AXI_ACP_FPD

S_AXI_ACE_FPD

S_
AX

I_
HP

C0
_F

PD

S_
AX

I_
HP

C1
_F

PD

M
_A

XI
_H

PM
0_

FP
D

M
_A

XI
_H

PM
1_

FP
D

I/O Coherent
Master

AIB

AIB

AIB

AIB

GPU cfg

[a
fif

s0
]

[a
fif

s1
]

[afifs2]

[fpd_main]

[ocms]

[fpd_lpdibs]

[lpd_ddr]

[usb0s], [usb1s]

[rpus0], [rpus1]

[rpum0],
rpum1]

[ocms]

LPD Main
Switch

RPU
Switch

Full crossbar. Each
input to all output

ports.

Full crossbar.

GPIO x78, x96

S
M64-bit

S
M32-bit

AIB

AIB

FPD
Main

Switch

I/O
2-way 2-way

I/O

I/OAX
I S

tr
ea

m

SI
O

U
 O

ut
bo

un
d

QVN

Non-Coherent
Master

RPU

M

M

TTC x4 LPD SWDT

M M

TBU3 TBU4

TB
U

1
TB

U
0

VCU RF PCIe v3.1 100Gb

PL SysMon

ACP

X19941-060818
Zynq UltraScale+ Device TRM 1105
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1105

Chapter 35: PS-PL AXI Interfaces
RPU Perspective

The RPU and LPD to PL interface are similar to the APU Perspective case. In Figure 35-4,
note that this data movement is purely limited to the LPD and PL and does not involve the
FPD. This is useful for systems where FPD might be powered down.

FPD and LPD DMAs

Figure 35-5 shows one use case of the LPD and FPD DMA units for the following scenarios.

• The FPD DMA unit for data movement between the DDR memory controller in the PS
FPD and block RAM in the PL where the APU manages the FPD DMA unit and the
M_AXI_HPM{0,1}_FPD interface is used for connectivity into the PL.

• The LPD DMA unit for data movement between the OCM memory in the PS LPD and
block RAM in the PL where the RPU manages the LPD DMA unit and HPM0_LPD
interface is used for connectivity with the PL.
Zynq UltraScale+ Device TRM 1106
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1106

Chapter 35: PS-PL AXI Interfaces
While the FPD DMA unit can be used for the OCM memory to PL block RAM transfers and
the LPD DMA unit can be used for the DDR memory controller to PL block RAM transfers,
the use case in this section is an example of how the LPD can operate independently when
the FPD is powered down.

X-Ref Target - Figure 35-5

Figure 35‐5: DMA Masters

BRAM
(slave)

2-way Cache
Coherent Master

APU
MPCore

M

To all output
ports

CCI
Coherency

And
Bypass

RPU
GIC

TCMs OCM
Switch

USB0 w/DMA

USB1 w/DMA

LPD DMA

PS SysMon eFUSE

LPD SLCRs

IPI

RTC

IO
P

In
bo

un
d

IO
P

O
ut

bo
un

d

OCM Memory

DAP Controller

S

CSU Processor

PMU Processor

Quad-SPI
GEM x4

NAND
SDIO x2

UART x2

SPI x2

CAN x2 I2C x2S

S

TBU2

Programmable
Logic

FPD SLCRs

FPD configs

DDR Memory Controller

SMMU TCU

AIB

AIB

AIB

AI
B

AI
B

AIB

AI
B

AI
B

DisplayPort

FP
D

DM
A

TBU5

CoreSight

PCIe

SATA

AXI Stream

GPU PPs

AIB

ADB ADB

ADB

TBUx

AIB

LP
D

O
ut

bo
un

d

LP
D

In
bo

un
d

AIB

AIB

S

S
M 128-bit

M_AXI_HPM0_LPD

S_AXI_LPD

S_
AX

I_
HP

3_
FP

D

S_
AX

I_
HP

2_
FP

D
S_

AX
I_

HP
1_

FP
D

S_
AX

I_
HP

0_
FP

D

S_AXI_ACP_FPD

S_AXI_ACE_FPD

S_
AX

I_
HP

C0
_F

PD

S_
AX

I_
HP

C1
_F

PD

M
_A

XI
_H

PM
0_

FP
D

M
_A

XI
_H

PM
1_

FP
D

I/O Coherent
Master

AIB

AIB

AIB

AIB

GPU cfg

[a
fif

s0
]

[a
fif

s1
]

[afifs2]

[fpd_main]

[ocms]

[fpd_lpdibs]

[lpd_ddr]

[usb0s], [usb1s]

[rpus0], [rpus1]

[rpum0],
rpum1]

[ocms]

LPD Main
Switch

RPU
Switch

Full crossbar. Each
input to all output

ports.

Full crossbar.

GPIO x78, x96

S
M 64-bit

S
M 32-bit

AIB

AIB

FPD
Main

Switch

I/O
2-way 2-way

I/O

I/OAX
I S

tr
ea

m

SI
O

U
O

ut
bo

un
d

QVN

Non-Coherent
Master

RPU

M

M

TTC x4 LPD SWDT

M M

TBU3 TBU4

TB
U1

TB
U0

VCU RF PCIe v3.1 100Gb

PL SysMon

ACP

X19942-060818
Zynq UltraScale+ Device TRM 1107
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1107

Chapter 35: PS-PL AXI Interfaces
PL DMA using the HP and HPC Interfaces

The HP and HPC interfaces provide a high-performance datapath to the PS-DDR and the
OCM memories. When using the HPC interface, requests from the PL to the PS-DDR go
through the CCI which manages the APU MPCore cache coherent environment. These
use-case topologies are shown in Figure 35-6 and are described in the following section.

X-Ref Target - Figure 35-6

Figure 35‐6: PL Coherent Masters

BRAM
(slave)

2-way Cache
Coherent Master

APU
MPCore

M

To all output
ports

CCI
Coherency

And
Bypass

RPU
GIC

TCMs OCM
Switch

USB0 w/DMA

USB1 w/DMA

LPD DMA

PS SysMon eFUSE

LPD SLCRs

IPI

RTC

IO
P

In
bo

un
d

IO
P

O
ut

bo
un

d

OCM Memory

DAP Controller

S

CSU Processor

PMU Processor

Quad-SPI
GEM x4

NAND
SDIO x2

UART x2

SPI x2

CAN x2 I2C x2S

S

TBU2

Programmable
Logic

FPD SLCRs

FPD configs

DDR Memory Controller

SMMU TCU

AIB

AIB

AIB

AI
B

AI
B

AIB

AI
B

AI
B

DisplayPort

FP
D

DM
A

TBU5

CoreSight

PCIe

SATA

AXI Stream

GPU PPs

AIB

ADB ADB

ADB

TBUx

AIB

LP
D

O
ut

bo
un

d

LP
D

In
bo

un
d

AIB

AIB

S

S
M 128-bit

M_AXI_HPM0_LPD

S_AXI_LPD

S_
AX

I_
HP

3_
FP

D

S_
AX

I_
HP

2_
FP

D
S_

AX
I_

HP
1_

FP
D

S_
AX

I_
HP

0_
FP

D

S_AXI_ACP_FPD

S_AXI_ACE_FPD

S_
AX

I_
HP

C0
_F

PD

S_
AX

I_
HP

C1
_F

PD

M
_A

XI
_H

PM
0_

FP
D

M
_A

XI
_H

PM
1_

FP
D

I/O Coherent
Master

AIB

AIB

AIB

AIB

GPU cfg

[a
fif

s0
]

[a
fif

s1
]

[afifs2]

[fpd_main]

[ocms]

[fpd_lpdibs]

[lpd_ddr]

[usb0s], [usb1s]

[rpus0], [rpus1]

[rpum0],
rpum1]

[ocms]

LPD Main
Switch

RPU
Switch

Full crossbar. Each
input to all output

ports.

Full crossbar.

GPIO x78, x96

S
M 64-bit

S
M 32-bit

AIB

AIB

FPD
Main

Switch

I/O
2-way 2-way

I/O

I/OAX
I S

tr
ea

m

SI
O

U
O

ut
bo

un
d

QVN

Non-Coherent
Master

RPU

M

M

TTC x4 LPD SWDT

M M

TBU3 TBU4

TB
U1

TB
U0

VCU RF PCIe v3.1 100Gb

PL SysMon

ACP

X19943-061418
Zynq UltraScale+ Device TRM 1108
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1108

Chapter 35: PS-PL AXI Interfaces
PL Accelerator Block and FPD Interaction

The DMA and the accelerator block are controlled by the APU through the
M_AXI_HPMx_FPD interfaces. The DMA can access the PS-DDR through the
S_AXI_HPCx_FPD or S_AXI_HPx_FPD interfaces. The difference is that the hardware assisted
cache coherency using the HPC ports helps the software driver avoid costly cache
flush/invalidate operations.

PL Accelerator Block and LPD Interaction

In the PL accelerator block to LPD interaction, there is no path through the FPD (no PS-DDR
access) to ensure functionality when FPD is powered down. The RPU controls the PL-based
DMA and the accelerator block through the M_AXI_HPM0_LPD interface. The DMA can
access the OCM through the S_AXI_LPD port.

PL DMA via ACP

The AXI ACP interface (S_AXI_ACP_FPD) provides a user IP topology similar to the
high-performance S_AXI_HPx_FPD interfaces.

The ACP differs from the HP performance ports due to connectivity inside the PS. The ACP
connects to the snoop control unit (SCU) that is also connected to the CPU L1 and the L2
cache.

This connectivity allows the ACP transactions to interact with the cache subsystems,
potentially decreasing total latency for data to be consumed by a CPU. These
cache-coherent operations can prevent the need to invalidate and flush cache lines. The
ACP also has the lowest memory latency to memory of the PL interfaces. The connectivity of
the ACP is similar to that of the CPUs.

The drawbacks from using the ACP include PL design complexity due to support of only two
burst length transactions. Memory accesses through the ACP utilize the same interconnect
paths as the APU, potentially decreasing CPU performance.

The ACP low-latency access allows opportunity for algorithm acceleration of medium
granularity.
Zynq UltraScale+ Device TRM 1109
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1109

Chapter 35: PS-PL AXI Interfaces
System Cache using ACE

In scenarios where the AXI interconnect in the PL does not support ACE, all ACE accesses go
to the system cache using a point-to-point interface instead of an AXI-ACE interconnect.
System cache uses block RAM in the PL to implement the memory cells of cache.

Figure 35-7 shows an example of the PL accelerator implementation with system cache
using ACE. The PL accelerator can write the data into system cache and the APU can access
the same data through ACE. This improves APU performance (as read latency is reduced
when compared to reading from DDR) and reduces the DDR bandwidth requirement as DDR
access is reduced.

X-Ref Target - Figure 35-7

Figure 35‐7: Use of PL Block RAM as System Cache

PS (APU) PL

CPU0
L1 Cache

MMU

CPUn
L1 Cache

MMU

SCU

L2 Cache

ACE Master I/F

Accelerator

System Cache

ACE Master I/F

Cache Coherent Interconnect

ACE ACE-Lite

ACE ACE

Memory
Controller Peripherals

PS PLLegend
X15283-100116
Zynq UltraScale+ Device TRM 1110
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1110

Chapter 35: PS-PL AXI Interfaces
Signal Overview

PS-PL Interrupts

The interrupts from the processing system I/O peripherals (IOP) are routed to the PL. In the
other direction, the PL can asynchronously assert 16 interrupts to the PS. These interrupts
are assigned a priority level routed to interrupt controllers which aggregate and route them
to appropriate processor. Additionally, FIQ/IRQ interrupts are available which are routed
directly to the private peripheral interrupt unit of the interrupt controller. Table 35-6
summarizes the interrupts.

For more information on interrupts, refer to Chapter 13, Interrupts.

Table 35‐6: PS-PL Interrupts Summary

Type
Number of
Interrupts

Start ID End ID Description

PL to PS
interrupts

8 89 96 PL to PS shared peripheral interrupts.
8 104 111 PL to PS shared peripheral interrupts.
1 29 29 PL to PS (RPU, APU) inter-processor interrupt.
1 30 30 PL to PS (RPU, APU) inter-processor interrupt.
1 31 31 PL to PS (RPU, APU) inter-processor interrupt.
1 32 32 PL to PS (RPU, APU) inter-processor interrupt.
4 PL to APU legacy FIQ
4 PL to APU legacy IRQ
2 nFIQ (PL to RPU0 and RPU1)
2 nIRQ (PL to RPU0 and RPU1)

PS to PL
interrupt
outputs

100 ~ ~ Interrupts generated by I/O peripherals in the LPD and
distributed to the GICs and PL. See Figure 13-1.

64 ~ ~ Interrupts generated by I/O peripherals in the FPD and
distributed to the GICs and PL. See Figure 13-1.
Zynq UltraScale+ Device TRM 1111
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1111

Chapter 35: PS-PL AXI Interfaces
Processor Event Signals

The PS supports processor events (Table 35-7) to and from the PL. These signals are
asynchronous to the PS and PS provided PL clocks.

For further details, refer to Chapter 3, Application Processing Unit and Chapter 4, Real-time
Processing Unit.

Register Overview
This section describes a few of the registers used for setting up options across various
PS-PL interfaces. The registers in Table 35-8 are available for every AXI FIFO interface
S_AXI_HPC{0, 1}_FPD, S_AXI_HP{0:3}_FPD, and S_AXI_LPD).

Table 35‐7: PL Event Signals

Type Signal Description

FPD events
APU event input Causes CPU to wake from the wait for event (WFE) state.
APU event output Asserted when one of the CPUs has executed a send event (SEV) instruction.

LPD events
RPU event input (2) Event input to the RPU (one event signal to each RPU).
RPU event output (2) Event output from the RPU (one event signal from each RPU).

Standby
(FPD)

APU WFE CPU standby mode. Asserted when CPU is waiting for an event.
APU WFI CPU standby mode. Asserted when a CPU is waiting for an interrupt.

Table 35‐8: PL Master Registers

Register Name Description

RDCTRL Read channel control.
RDISSUE Read issuing capability.
RDQoS QoS read channel.

RDDEBUG Read channel debug.
WRCTRL Write channel control.
WRISSUE Write issuing capability.
WRQoS QoS write channel.

I_STS, I_EN, I Interrupt status.
I_EN Interrupt enable.
I_DIS Interrupt disable.

I_MASK Interrupt mask.
CONTROL General control.

SAFETY_CHK Register access integrity test register.
Zynq UltraScale+ Device TRM 1112
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1112

Chapter 36

PL Peripherals

Introduction
The Xilinx® UltraScale™ architecture in the programmable logic (PL) provides an extensive
set of functions and resources. The processing system (PS) boots the system and includes
the real-time processing unit (RPU) and application processing unit (APU) MPCores as two
separate software processing structures in the low-power domain (LPD) and full-power
domain (FPD), respectively. The PL is a configurable hardware resource, and provides block
RAMs, gates, clock structures, standard and high-range I/O, DSPs, and LUTs. The Zynq®
MPSoC devices include several peripherals controllers and functional units.

• PCI Express Integrated
• 100G Ethernet
• DisplayPort Video and Audio Interfaces
• Interlaken
• GTH and GTY Transceivers
• PL System Monitor
• Video Codec Unit
• RFSoC
Zynq UltraScale+ Device TRM 1113
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1113

Chapter 36: PL Peripherals
PCI Express Integrated
The PL includes integrated blocks for PCIe technology that can be configured as an
Endpoint or Root Port, compliant to the PCI Express Base Specification Revision 3.1 for Gen3
and lower data rates and compatible with the PCI Express Base Specification Revision 4.0
(rev 0.5) for Gen4 data rates. The Root Port is used to build the basis for a compatible Root
Complex, to allow custom chip-to-chip communication via the PCI Express protocol, and to
attach ASSP Endpoint devices, such as Ethernet controllers or Fibre Channel HBAs, to the
MPSoC. This block is highly configurable to system design requirements and can operate on
1, 2, 4, 8, or 16 lanes at up to 2.5 Gb/s, 5.0 Gb/s, 8.0 Gb/s, or 16 Gb/s data rates. For
high-performance applications, advanced buffering techniques of the block offer a flexible
maximum payload size of up to 1,024 bytes. The integrated block interfaces to integrated
high-speed transceivers for serial connectivity and to block RAMs for data buffering.
Combined, these elements implement the physical layer, data-link layer, and transaction
layer of the PCI Express protocol.

Xilinx provides a light-weight, configurable, easy-to-use IP wrapper that ties the various
building blocks (the integrated block for PCIe, the transceivers, block RAM, and clocking
resources) into an Endpoint or Root Port solution. You have control over many configurable
parameters in your system: link width and speed, maximum payload size, MPSoC logic
interface speeds, reference clock frequency, and base address register decoding and
filtering.

The PCIe controller is documented in the UltraScale+ Devices Integrated Block for PCI
Express Product Guide (PG213) [Ref 28].
Zynq UltraScale+ Device TRM 1114
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1114

Chapter 36: PL Peripherals
100G Ethernet
The 100G Ethernet controllers are compliant to the IEEE Std 802.3ba, and provide low
latency 100 Gb/s Ethernet ports with a wide range of user customized solutions and
statistics gathering. With support for 10 x 10.3125 Gb/s (CAUI) and 4 x 25.78125 Gb/s
(CAUI-4) configurations, the integrated 100G Ethernet includes both the 100G MAC and
PCS logic with support for IEEE Std 1588v2 1-step and 2-step hardware time stamping.

The 100G Ethernet controllers contain a Reed-Solomon forward error correction (RS-FEC)
block, compliant to IEEE Std 802.3bj, that can be used with the Ethernet block or stand
alone in user applications. These families also support OTN mapping mode where the PCS
can be operated without using the MAC.

DisplayPort Video and Audio Interfaces
The DisplayPort controller implements a flexible display and audio pipeline architecture.
The DisplayPort controller can source data from memory (non-live input) or from the PL
(live input), process data, and send it out through the DisplayPort source-only controller
block to external display devices or to the PL (live output).

A brief introduction is included in this section. For additional information, see the Video
PHY Controller LogiCORE IP Product Guide (PG230) [Ref 29].

Live Video/Graphics Input

In the live input case, video and graphics data can be sourced from the PL. The video and
graphics frame synchronization signals are input to the live input interface. The video
timing can be controlled either from the PS or from the PL.

Live Video Output

The output of the video rendering pipeline can optionally be routed to the PL through the
live video output interface.

See Table 33-2 for PS-PL video interface signals and to Table 33-3 for live video timing on
the PS-PL interface.
Zynq UltraScale+ Device TRM 1115
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1115

Chapter 36: PL Peripherals
Audio

The DisplayPort controller supports a non-live audio channel from memory and a live audio
channel from the PL. The audio mixer block is capable of mixing the two audio channels
based on predefined gain settings. The output of the mixer can either be sourced to the
DisplayPort source-only controller or to the PL.

Audio Live Input

Live audio can be sourced from PL. The A/V buffer manager handles multiplexing between
live and non-live audio input and provides two audio streams to the audio mixer block. For
more details about the live audio interface, see the PS-PL Audio Interface in Chapter 33.

Audio Live Output

The audio processing stage involves mixing two audio streams based on a predefined gain
setting. The mixed audio in AXI-S format is forwarded to the DisplayPort source controller
and the PL. A small holding buffer that supports AXI-S is used to handshake with the PL. The
audio channel does not accept any back pressure from the PL interface. Refer to Table 33-6
for live audio interface signals.

Interlaken
The integrated Interlaken is a scalable chip-to-chip interconnect protocol designed to
enable transmission speeds from 10 Gb/s to 150 Gb/s. The integrated Interlaken unit is
compliant to revision 1.2 of the Interlaken specification with data striping and de-striping
across 1 to 12 lanes. Permitted configurations are: 1 to 12 lanes at up to 12.5 Gb/s and 1 to
6 lanes at up to 25.78125 Gb/s, enabling flexible support for up to 150 Gb/s per integrated
block. Multiple integrated Interlaken units in the PL can provide reliable Interlaken switches
and bridges.

The Interlaken controller is documented in the Integrated Interlaken 150G LogiCORE IP
Product Guide (PG169) [Ref 30].
Zynq UltraScale+ Device TRM 1116
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1116

Chapter 36: PL Peripherals
GTH and GTY Transceivers
Ultra-fast serial data transmission between devices on the same PCB over backplanes and
across even longer distances is becoming increasingly important for scaling to 100 Gb/s
and 400 Gb/s line cards. Specialized dedicated on-chip circuitry and differential I/O capable
of coping with the signal integrity issues are required at these high data rates. There are
three types of transceivers: GTH, GTY, and PS-GTR. All transceivers are arranged in groups of
four, known as a transceiver Quad. Each serial transceiver is a combined transmitter and
receiver. GTH and GTY Quads are PL peripherals and PS-GTR is a PS peripheral.

GTH serial gigabit transceivers are available in the CG and EG grade Zynq UltraScale+
devices except where noted in the Zynq UltraScale+ MPSoC Product Overview (DS891)
[Ref 1]. The GTH transceivers are power efficient, supporting line rates from 500 Mb/s to
16.375 Gb/s.

The GTY transceivers are power efficient, supporting line rates from 500 Mb/s to 30.5 Gb/s
in UltraScale FPGAs, and 32.75 Gb/s in UltraScale+ FPGAs.

The GTH and GTY transceivers are configured using the PS configuration wizard (PCW)
available in the Vivado® Integrated Design Environment (IDE).

Transmitter

The transmitter is fundamentally a parallel-to-serial converter with a conversion ratio of 16,
20, 32, 40, 64, or 80 for the GTH transceiver and 16, 20, 32, 40, 64, 80, 128, or 160 for the GTY
transceiver This allows a trade-off of datapath width against the timing margin in
high-performance designs. These transmitter outputs drive the PC board with a
single-channel differential output signal. TXOUTCLK is the appropriately divided serial data
clock and can be used directly to register the parallel data coming from the internal logic.
The incoming parallel data is fed through an optional FIFO and has additional hardware
support for the 8B/10B, 64B/66B, or 64B/67B encoding schemes to provide a sufficient
number of transitions. The bit-serial output signal drives two package pins with differential
signals. This output signal pair has a programmable signal swing, as well as programmable
pre- and post-emphasis to compensate for PC board losses and other interconnect
characteristics. For shorter channels, the swing can be reduced to reduce power
consumption.
Zynq UltraScale+ Device TRM 1117
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1117

Chapter 36: PL Peripherals
Receiver

The receiver is fundamentally a serial-to-parallel converter, changing the incoming bit-serial
differential signal into a parallel stream of words, each 16, 20, 32, 40, 64, or 80 bits in the
GTH transceiver or 16, 20, 32, 40, 64, 80, 128, or 160 for the GTY transceiver. This allows a
trade-off of internal datapath width against logic timing margin. The receiver takes the
incoming differential data stream, feeds it through the programmable DC automatic gain
control, linear and decision feedback equalizers (to compensate for PC board, cable, optical
and other interconnect characteristics), and uses the reference clock input to initiate clock
recognition. There is no need for a separate clock line. The data pattern uses
non-return-to-zero (NRZ) encoding and optionally ensures sufficient data transitions by
using the selected encoding scheme. Parallel data is then transferred into the device logic
using the RXUSRCLK clock. For short channels, the transceivers offer a special low-power
mode (LPM) to reduce power consumption by approximately 30%. The receiver DC
automatic gain control and linear and decision feedback equalizers can optionally
auto-adapt to automatically learn and compensate for different interconnect
characteristics. This enables even more margin for tough 10G+ and 25G+ backplanes.

Out-of-Band Signaling

The transceivers provide out-of-band (OOB) signaling, often used to send low-speed signals
from the transmitter to the receiver while high-speed serial data transmission is not active.
This is typically done when the link is in a powered-down state or has not yet been
initialized. This benefits PCIe and SATA/SAS and QPI applications.

For more details on GTH transceivers, see UltraScale Architecture GTH Transceiver User Guide
(UG576) [Ref 12] and for GTY transceivers, see UltraScale Architecture GTY Transceiver User Guide
(UG578) [Ref 13].

PL System Monitor
The PL SYSMON unit is used to enhance the overall safety, security, and reliability of the
system by monitoring the physical environment via on-chip power supply and temperature
sensors. The PL and PS SYSMON units are based on the Xilinx SYSMONE4 architecture. The
units have different sensor channels.

The PL SYSMON and PS SYSMON units are described in Chapter 9, System Monitors. For
more information, see UltraScale Architecture System Monitor User Guide (UG580) [Ref 6].
Zynq UltraScale+ Device TRM 1118
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1118

Chapter 36: PL Peripherals
Video Codec Unit
The video codec unit (VCU) provides multi-standard video encoding and decoding,
including support for the high-efficiency video coding (HEVC) H.265 and advanced video
coding (AVC) H.264 standards. The unit contains both encode (compress) and decode
(decompress) functions, and is capable of simultaneous encode and decode.

The VCU is an integrated block in the PL of selected Zynq UltraScale+ MPSoCs with no
direct connections to the PS.

A brief introduction is included in this section. For more information, see the H.264/H.265
Video Codec Unit LogiCORE IP Product Guide (PG252) [Ref 31].

Video Codec Unit Features

• H.264 and H.265 standards encoding/decoding.
• Up to eight simultaneous streams.
• 8K x 4K at a reduced frame rate.
• Progressive video only (no interlace support).
• I, IP, and IPB encoding/decoding.
• 8-bit and 10-bit color depth, YCbCr 4:2:2 and 4:2:0 video formats, and up to a

4K x 2K@60/8K x 2K@15 Hz rate.
• Low-latency mode.
• Low software overhead for slice-level management and multi-stream switching.
• Functions to queue tasks to eliminate dependency on CPU interrupt response time.
• Power management.

° Clock and Power Island Controls.

° Built-in power sequencing state machine or interface to an external one.
• Performance monitoring.

° Task execution time.

° Bandwidth and AXI transaction count.

° Min, max, and average AXI transaction latency.

The VCU contains encoder and decoder interfaces. The VCU also contains additional
functions that facilitate the interface between the VCU and the PL.

VCU operation requires a small amount of processor activity. Interrupt response time must
not be critical. The encoder is controlled by the CPU through a task list prepared in advance,
Zynq UltraScale+ Device TRM 1119
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1119

Chapter 36: PL Peripherals
and the CPU response time is not in the execution critical path. The VCU has no audio
support. Audio encoding and decoding is supported on the PS application processors.

Block Diagram

Figure 36-1 shows the VCU block diagram
X-Ref Target - Figure 36-1

Figure 36‐1: VCU Top-level Block Diagram

Encoder

Decoder

VCU AXI
Performance Monitor

(APM)

Clock PLL

Reset

AXI-Lite Slave

MCU

Encode
Buffer

(optional)

MCU

m_axi_encoder1

m_axi_encoder0

m_axi_mcu

pll_ref_clk

vcu_resetn

s_axi_lite

m_axi_decoder0

m_axi_decoder1

vcu_host_interrupt

Interconnect

Legend

Hard IP

General Programmable Logic

Interrupt controller

X21024-080318
Zynq UltraScale+ Device TRM 1120
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1120

Chapter 36: PL Peripherals
Video Encoder

The VCU encoder includes four interconnected HEVC/AVC encoders. It also contains global
registers, an interrupt controller, and a timer. The VCU encoder is controlled by a
microcontroller (MCU) subsystem. A 32-bit APB slave interface is used by the system CPU to
control the MCU (to configure encoder parameters). Two 128-bit AXI4 master interfaces are
used to fetch video input data and store video output data from/to the system memory.
Two 32-bit AXI4 master interfaces are used to fetch the MCU software (instruction cache
interface) and load/store additional MCU data (data cache interface).

Video Decoder

The VCU decoder includes two interconnected HEVC/AVC decoders. It also contains global
registers, an interrupt controller, and a timer.

The VCU decoder is controlled by a microcontroller (MCU) subsystem. A 32-bit APB slave
interface is used by the system CPU to control the MCU. Two 128-bit AXI4 master interfaces
are used to fetch video input data and store video output data from/to the system memory.
Two 32-bit AXI4 master interfaces are used to fetch the MCU software (instruction cache
interface) and load/store additional MCU data (data cache interface).

Each decoder includes control registers, a bridge unit and a set of internal memories. The
bridge unit manages the request arbitration, burst addresses, and burst lengths for all
external memory accesses required by the decoder. It also handles format conversion and
border extension.

The VCU has a direct access to the system data bus through a high-bandwidth master
interface to transfer video data to/from an external memory.

The VCU control software is partitioned into two layers. The application software runs on
the RPU or APU MPCores, and the low-level code is implemented in the MCU. The processor
communicates with the embedded MCU through a slave interface, which is also connected
to the system bus.
Zynq UltraScale+ Device TRM 1121
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1121

Chapter 36: PL Peripherals
RFSoC
The Zynq® UltraScale+™ RFSoC family integrates key subsystems for multiband,
multi-mode cellular radios and cable infrastructure (DOCSIS) into an SoC platform that
contains a feature-rich 64-bit quad-core Arm® Cortex™-A53 and dual-core Arm Cortex-R5F
based processing system.

A brief introduction is included in this section. For more information, see the Zynq
UltraScale+ RFSoC RF Data Converter LogiCORE IP Product Guide (PG252) [Ref 26].

Combining the processing system with UltraScale™ architecture programmable logic and
RF-ADCs, RF-DACs, and soft-decision FECs, the Zynq UltraScale+ RFSoC family is capable of
implementing a complete software-defined radio including direct RF sampling data
converters, enabling CPRI™ and gigabit Ethernet-to-RF on a single, highly programmable
SoC.

Zynq UltraScale+ RFSoCs integrate up to 16 channels of RF-ADCs and RF-DACs. The
RF-ADCs can sample input frequencies up to 4 GHz at 4.096 GSPS with excellent noise
spectral density. The RF-DACs generate output carrier frequencies up to 4 GHz using the
2nd Nyquist zone with excellent noise spectral density at an update rate of 6.554 GSPS. The
RF data converters also include power efficient digital down converters (DDCs) and digital
up converters (DUCs) that include programmable interpolation and decimation, NCO, and
complex mixer. The DDCs and DUCs can also support dual-band operation.

The soft-decision FEC (SD-FEC) is a highly flexible forward error correction engine capable
of operating in Turbo decoding mode for wireless applications such as LTE and LDPC
encode/decode mode used in 5G wireless, backhaul, and DOCSIS 3.1 cable modems.
Zynq UltraScale+ Device TRM 1122
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1122

Chapter 36: PL Peripherals
Figure 36-2 shows the key components of the Zynq UltraScale+ RFSoC devices.

RF Data Converter Subsystem Overview

Most Zynq UltraScale+ RFSoCs include an RF data converter subsystem, which contains
multiple radio frequency analog to digital converters (RF-ADCs) and multiple radio
frequency digital to analog converters (RF-DACs). The high-precision, high-speed, power
efficient RF-ADCs and RF-DACs can be individually configured for real data or can be
configured in pairs for real and imaginary I/Q data. The 12-bit RF-ADCs support sample
rates up to 2.058 GSPS or 4.096 GSPS, depending on the selected device. The 14-bit
RF-DACs support sample rates up to 6.554 GSPS.

RF-ADC Features

• Tile oriented

° Four RF-ADCs and one PLL per tile

° 12-bit resolution

° Implemented as either 4 channels of 2.058 GSPS, or 2 channels of 4.096 GSPS
(device dependent)

X-Ref Target - Figure 36-2

Figure 36‐2: Zynq UltraScale+ RFSoC

Processing System

Quad Arm Cortex-A53
Dual Arm Cortex-R5F

GTY
Transceiver SD-FEC

RF-DAC

RF-DAC

RF-DAC

RF-DAC

Up to 16 Channels

Up to 16 Channels

Programmable Logic
680K – 930K System Logic Cells

3,168 – 4,272 DSP Slices

CPRI
10/40/100 GE

X21066-090420
Zynq UltraScale+ Device TRM 1123
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1123

Chapter 36: PL Peripherals
• Decimation filters

° 1x, 2x, 4x, 8x

° Full bandwidth data-rate support

° 80% pass band, 89dB stop-band attenuation
• Mixer

° Full complex mixers

° 48-bit NCO per RF-ADC

° Fixed Fs/4, Fs/2 low-power mode
• Single/multiband flexibility

° 2x bands per 2.058 GSPS RF-ADC pair

° Can be configured for real or imaginary (I/Q) inputs
• Signal amplitude threshold

° Two programmable flags per RF-ADC
• Quadrature modulator correction

° Gain/phase/offset correction per RF-ADC pair
• Multi-chip synchronization
• Flexible interconnect logic interface

° N words x frequency selection
• RF-DAC Features

° Tile oriented

° Four RF-DACs and one PLL per tile

° 14-bit resolution

° Sampling speed 6.554 GSPS per RF-DAC

° 4GHz full power output bandwidth
• Interpolation

° 1x, 2x, 4x, 8x

° Full bandwidth data rate support

° 80% pass band, 89 dB stop band attenuation
• Mixing

° Full complex mixers

° 48-bit NCO per RF-DAC
Zynq UltraScale+ Device TRM 1124
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1124

Chapter 36: PL Peripherals
° Fixed Fs/4, Fs/2 low-power mode

° 1st/2nd Nyquist zone RF-DAC operation support
• Single/multiband flexibility

° 2x bands per RF-DAC pair

° Can be configured for real or imaginary (I/Q) outputs
• Quadrature modulator correction

° Gain/phase/offset correction per RF-DAC pair
• Sinx/x correction
• Sample delay correction
• Multi-chip synchronization
• Flexible interconnect logic interface

° N words x frequency selection

See the Zynq UltraScale+ RFSoC RF Data Converter LogiCORE IP Product Guide (PG269)
[Ref 26] for more information.

Soft Decision Forward Error Correction (SD-FEC)

The SD-FEC is a highly flexible soft-decision FEC decoder and LDPC encoder with the
following features.

LDPC Decoding/Encoding

• Highly configurable codes.

° A range of quasi-cyclic codes can be configured over an AXI4-Lite interface

° Code parameter memory can be shared across up to 128 codes

° Codes can be selected on a block-by-block basis

° Encoder can re-use suitable decoder codes
• Normalized min-sum decoding algorithm

° Normalization factor programmable (from 0.0625 to 1 in steps of 0.0625) for layers
• Number of iterations between 1 and 63

° Specified for each codeword
• Early termination

° Specified for each codeword to be none, one, or both of the following:
- Parity check passes
Zynq UltraScale+ Device TRM 1125
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1125

Chapter 36: PL Peripherals
- No change in hard information or parity bits since last iteration
• Soft or hard outputs

° Specified for each codeword to include information and optional parity

° 6-bit soft log likelihood ratio (LLR) input and 8-bit output (8-bit interface, 2
fractional bits, with external saturation before input to symmetric range –7.75 to
+7.75)

• In- or out-of-order execution of blocks, with user specified ID field to identify blocks

Turbo Decoding

• Max, Max Scale (scale factor is programmable as a multiple of 0.0625), or Max Star
• Number of iterations between 1 and 63

° Specified for each block via streaming control interface
• Early termination

° Specified for each codeword to be none, one, or both of the following:
- No change in hard decision since last iteration
- CRC pass

• Soft or hard outputs

° Specified for each codeword to include systematic and optionally parity 0 and
parity 1

° 8-bit soft LLR on input and output (8-bit interface, 2 fractional bits, with external
saturation before input to symmetric range –31.75 to +31.75)

Interfaces

• Separate clocks on each interface to ease integration
• Wide data interfaces on input and output with configurable support for 1, 2, or 4 lanes
• Ability to specify number of LLR values on each lane on either a block-by-block basis,

or transfer basis
• Separate inputs to specify control parameters and receive status output on a

block-by-block basis
Zynq UltraScale+ Device TRM 1126
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1126

Chapter 37

PS Clock Subsystem

Introduction
The PS clocking system generates clocks for the processors, peripherals, interconnect, and
other system elements. There are five system PLLs to generate high-frequency signals that
are used as clock sources for the several dozen clock generators in the LPD and FPD.

System PLL Clock Units

Two system PLL clock units are in the LPD and three are in the FPD power domain. Each PLL
unit has two clock dividers on its output; one in the LPD and one in the FPD. These clock
dividers can provide two different clocking frequencies from one PLL (in the two clock
domains). The PLL output and clock frequencies are specified in the Zynq UltraScale+
MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) [Ref 2]. The maximum clock
output frequencies are somewhat lower for clocks crossing power domains.

Each system PLL unit has a suggested usage, but the individual clock generators can select
from one of the three PLL clocks routed to it as defined by the registers listed in the Clock
Generator Control Registers section.

The system PLL units reside in the LPD and FPD power domains:.

• Low power domain system PLLs:

° I/O PLL (IOPLL): provides clocks for all low speed peripherals and part of the
interconnect.

° RPU PLL (RPLL): provides clocks for the RPU MPCore and part of the interconnect.
• Full-power domain system PLLs:

° APU PLL (APLL): provides clocks for the APU MPCore clock and part of the
interconnect.

° Video PLL (VPLL): provides clocks for the video I/O.

° DDR PLL (DPLL): provides clocks for the DDR controller and part of the interconnect.
Note: There are six DDR PHY PLLs in the DDR memory controller that are used for the DRAM address
and control output signals, and the data and ECC byte lanes. The PHY PLLs are dedicated to the DDR
I/O interface and cannot be used as a clock source for the clock generator units.
Zynq UltraScale+ Device TRM 1127
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1127

Chapter 37: PS Clock Subsystem
The five system PLLs (RPLL, IOPLL, APLL, DPLL, and VPLL) are powered by one voltage
supply, VCC_PSPLL. The six DDR PLLs for the DRAM address/control and I/O byte lanes are
powered by VCC_PSDDR_PLL.

It is possible to use the PLL output from one power domain in the other power domain. The
IOPLL and RPLL output in the low-power domain (LPD) can be an input to the full-power
domain (FPD) using a separate 6-bit programmable divider. Similarly, the APLL, DPLL, or
VPLL output clock can be an input clock to individual 6-bit programmable dividers in the
LPD. The 6-bit programmable divider are controlled using (for example) the
crf_apb.APLL_TO_LPD_CTRL register.

Clock Generators

Clock generators are needed for processors, peripherals, interconnect, and other system
elements in the LPD, FPD, and PL. The five system PLLs generate high-frequency signals that
are used as sources for the several dozen clock generators. Three of the PLL outputs are
routed to each clock generator.

The basic and the two special clock generator architectures are as follows:

• APU MPCore (unique).
• DDR memory controller (unique).
• RPU MPCore (basic clock generator with one divider and two clock enables).
• Basic clock generator (with two dividers).
• Basic clock generator (with one divider).

Basic Clock Generator Unit

The majority of the clock generators have the same basic circuit as shown in Figure 37-4
and use the same basic programming model shown in the Clock Generator Programming
Example section. The programming models for these system and peripheral units are
similar. Some of the basic clock generators have multiple clock enables controlling
sub-elements of a subsystem.

Clock System Overview

The PS subsystem clock unit has five PLL clock units and many clock generators for system
elements. The landscape of the system clock units are represented in Figure 37-1. Clock
generators have either one or two programmable divider units. Some clock generators have
more than one clock-active control. The RTC and PMU have standalone clock generators.
Zynq UltraScale+ Device TRM 1128
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1128

Chapter 37: PS Clock Subsystem
Real-time Clock Domain

The low-power 32 KHz clock unit is self-contained and used by the real-time clock (RTC) to
maintain an accurate time base. The RTC is described in Chapter 7, Real Time Clock.

X-Ref Target - Figure 37-1

Figure 37‐1: System Clocks Block Diagram

Real Time
Clock

Oscillator

BBRAM

System Pins

Five System
PLL Clocks

(LPD domain)

SysOsc

RPU MPCore

OCM

LPD DMA

USB

Bus 0 Bus 1

AXI APB IOP
Interconnect

[DIVISOR 0]

Pl{0:3}
GEM{0:3}

Rx ch

I/O Peripherals with
a single [CLKACT].

QSPI, SPIx, CANx, SDIOx,
UARTx, NAND.

[DIVISOR 0, 1]

RPLL

PS_REF_CLK (pin)
AUX_REF_CLK(PL)

ALT_REF_CLK(MIO)
VIDEO_REF_CLK(MIO)

PS GTR mux
IOPLL

APLL

VPLL

DPLL
Five System
PLL Clocks

(FPD domain)

csu [DIVISOR 0]

PCAP [DIVISOR 0]

RPU MPCore [DIVISOR 0]

OCM, AXI

Full Freq

APU MPCore

Half Freq

All FPD clock generators
have one programmable
divider, [DIVISOR0]
except DisplayPort.

SATA

[DIVISOR 0]

PCIe

FPD DMAAXI APB
Interconnect

[DIVISOR 0]

TOPSW_MAIN TOPSW_LSBUS

DDR PLLs (x6)

DDR I/O Buffers
DDR Memory

Controller [DIVISOR 0]

GPU pipeline

GPU PP0

GPU PP1

Audio
DisplayPort

[DIVISOR 0,1]

Video

STS

DMA

[DIVISOR 0,1]

[DIVISOR 0,1]

[DIVISOR 0]
Trace

Debug

TimeStampFPD

[DIVISOR 0]

BPD Clocks

SysOsc Clocks

LPD Clocks
- TOPSW_LSBUS_CLK
- LPD_LSBUS_CLK
- IOU_SWITCH_CLK

FPD Clocks
-TOPSW_MAIN_CLK
- TOPSW_LSBUS_CLK

PL Clocks

DDR Memory Controller PLLs

PMU

[DIVISOR 0]

[DIVISOR 0, 1]

X19873-120518
Zynq UltraScale+ Device TRM 1129
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1129

Chapter 37: PS Clock Subsystem
PMU Clock Domain

The PMU is clocked by the SysOsc clock unit. This clock is generated by an on-chip ring
oscillator circuit that is trimmed during production.

Clock Monitor

The clock monitor measures the frequency of one clock using another clock as a reference.
This monitor does not monitor duty cycle, jitter, or quality. The clock monitor uses a
reference clock that counts for a predetermined number of cycles set by the control register.
During that time, another counter in the second clock domain is counting. When the
reference clock counter is done, the second clock domain is signaled to stop counting and
then compares its count value to two pre-programmed registers. If the counted value is
within the bounds of the registers, then the clock being measured is within tolerable
parameters. If it is not, then an interrupt is provided to the interrupt controller.

Glitch-Free Clock Controls

The clock multiplexers and enable controls within the PS clock subsystem includes circuitry
to provide glitch-free output clocks that satisfy minimum high and low pulse widths.
Multiplexers and enables in other parts of the system do not usually include the glitch-free
control feature.

PL Clock Throttle

The PL clock generator has an optional feature to limit the number of clocks that are
generated from a start command. A PL fabric input can also be used to stop the PL output
clock from the PL clock generator.
Zynq UltraScale+ Device TRM 1130
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1130

Chapter 37: PS Clock Subsystem
System PLL Units
The five system PLLs provide a 750 to 1600 MHz clock to the clock generators. The
frequency and jitter specifications for the APLL, DPLL, RPLL, IOPLL, and VPLL system PLLs
are in the Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925)
[Ref 2].

PLL Source Clocks

The source clock for the PLL clock units is selected from one of five sources (see
Figure 37-2). All of these source clocks are inputs to each PLLs clock unit.

• PS_REF_CLK (device pin, normal source).
• ALT_REF_CLK (one of two MIO pins).
• VIDEO_REF_CLK (one of two MIO pins).
• AUX_REF_CLK (PL fabric source).
• GTR_REF_CLK (multiplexer output from GTR serial unit).

The GTR_REF_CLK clock is rarely used but can be sourced from a PS GTR peripheral selected
using the SIOU.CRX_CTRL [refclk_sel] bit field. The GTR clock specifications are listed in
Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) [Ref 2].

• 0: PCIe/USB
• 1: DisplayPort
• 2: SATA
• 3: SGMII

The PS_REF_CLK clock is always used for booting the system and is the default clock source
for the system PLLs. After the system boots, the other reference clock sources can be
selected to drive any of the PLL system clock units.

The PL clock throttle function is described in the Programmable Clock PL Throttle section.

Note: Actively used PLL units must be put into bypass mode (xPLL_CTRL [BYPASS]) before
reprogramming the clock frequency. After programming, wait for the PLL_STATUS [xPLL_LOCK] status
bit to assert, then select the PLL output by disabling bypass.
Zynq UltraScale+ Device TRM 1131
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1131

Chapter 37: PS Clock Subsystem
X-Ref Target - Figure 37-2

Figure 37‐2: PLL Clock Unit Block Diagram

Note: Not all hardware features in this reference manual may be implemented in Xilinx design tools.

PCIe3.0USB3.0

DisplayPort

SATA

SGMII

SIOU.CRX_CTRL (REFCLK_SEL)

AUX_REF_CLK
PL Fabric

PS_REF_CLK

MIO 28
MIO 51

PS REF CLK

ALT_REF_CLK

[PSS_ALT_CLK]

MIO 27
MIO 50

VIDEO_REF_CLK

MIO

VIDEO_PSS_CLK_SEL
[VIDEO_CLK]

MIO_PIN_xx

D
ev

ic
e

Bo
un

da
ry

PLL
[PRE_SRC]

[POST_SRC]

xPLL_CTRL
[BYPASS]

xPLL_CTRL
[RESET]

Glitch-free

Clk_ctrl_lpd.xPLL_CTRL

0xx: PS_REF_CLK
100: VIDEO_REF_CLK
101: ALT_REF_CLK
110: AUX_REF_CLK
111: GT_REF_CLK

Two Muxes for
Each System PLL.

Five System PLLs

RPLL_CLK
IOPLL_CLK
APLL_CLK
DPLL_CLK
VPLL_CLK

5

GTR_REF_CLK

X19868-120518
Zynq UltraScale+ Device TRM 1132
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1132

Chapter 37: PS Clock Subsystem
Power Domain Crossing of PLL Clocks

Each system PLL unit has a clock divider in its own power domain and one in the other
power domain. Both sets of dividers are represented as boxes in Figure 37-1 and the
controls for the power-domain crossed clocks are shown in Figure 37-3.

Basic Clock Generators
The basic clock generator is shown in Figure 37-4. The architecture is used for all system
elements except the special clock generators for the APU MPCore (Figure 37-5) and the
DDR memory controller (Figure 37-6). Variations of the basic clock generator include the
number of divider units, the three specific clock sources provided to the clock generator,
and the number of clock active controls.

The system PLL clock source is selected using the CRx_APB.xPLL_CTRL [SRCSEL] bit field. The
PLL is in bypass or active mode. The selected PLL output goes to a 6-bit clock divider in its
native power domain and a 6-bit divider in the other PS power domain.

The CSU BootROM (CBR) and PMU pre-boot ROM code modifies several clock control
registers, including divisor values and clock enables. The modifications are described in the
System PLL Control Registers and Clock Generator Control Registers sections.

IMPORTANT: All clock generator input multiplexers in Figure 37-4 have a default input clock selection
of 0. The selected source clock is listed in the register overview tables. Before downloading the first
stage boot loader (FSBL), all PLLs except for IOPLL and DPLL are held in reset. The system PLLs are
programmed by the FSBL and system software for the application.

X-Ref Target - Figure 37-3

Figure 37‐3: System PLL Clock Power Domain Crossing

6-bit
Programmable

divider

RPLL_CLK
IOPLL_CLK

6-bit
Programmable

divider
RPLL_CLK_TO_FPD
IOPLL_CLK_TO_FPD

RPLL_TO_FPD_CTRL [DIVISOR0]
IOPLL_TO_FPD_CTRL [DIVISOR0]

6-bit
Programmable

divider

APLL_CLK
VPLL_CLK
DPLL_CLK

6-bit
Programmable

divider

APLL_CLK_TO_LPD
VPLL_CLK_TO_LPD
DPLL_CLK_TO_LPD

APLL_TO_LPD_CTRL [DIVISOR0]
VPLL_TO_LPD_CTRL [DIVISOR0]
DPLL_TO_LPD_CTRL [DIVISOR0]

X19869-102017
Zynq UltraScale+ Device TRM 1133
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1133

Chapter 37: PS Clock Subsystem
Note: The clock multiplexers within the clock subsystem (system PLLs, basic, and special clock
generators) include de-glitching logic to enable changes while the system is operating. However,
clock multiplexers out in the system (e.g., I/O controllers) do not generally include this logic. In these
cases, clocks might need to be stopped before switching, or the controller needs to be held in reset
while switching. Refer to individual cases.

There are many basic clock generators. Their control registers are listed in the Clock
Generator Control Registers section.

• Interconnect
• RPU MPCore
• LPD and FPD DMA units
• LPD, FPD, Trace, and Timestamp Debug
• PS SYSMON unit
• PL
• DisplayPort Video, Audio, STC, DMA
• GPU
• PCIe
• SATA
• IOP Peripherals (GEM, USB, UART, SPI, Quad-SPI, NAND, SDIO, CAN, I2C)

Several of these clock generators are described in more detail.

X-Ref Target - Figure 37-4

Figure 37‐4: Basic LPD and FPD Clock Generator Block Diagram

Three

PLL

Clocks

6-bit
Programmable

divider

3 PLL docks are routed
to each peripheral
clock generator.

The clock sources for
each clock generator
are listed in UG1087.

xxx_CTRL [DIVISOR0]

LPD_SWITCH_CLK (LPD AXI)
IOU_SWITCH_CLK (LPD AXI)
LPD_LSBUS_CLK (LPD APB)
TOPSW_MAIN_CLK (FPD AXI)
TOPSW_LSBUS_CLK (FPD APB)
xxx_REF_CLK (I/O controllers)

xxx_CTRL [CLKACT]

Glitch-free
Clock Gate

[DIVISOR1]

6-bit
Programmable

divider

PS_REF_CLK

TIMESTAMP_REF_CLK
(only)

xxx_CTRL [SRCSEL, bits 0 & 1]

UART3_DUAL, GEMx
TSU, USBx, QSPI, SPIx,
12Cx, CAN, UART, SDIO
SysMon, PLx, DisplayPort
(only)

[SRCSEL, bit 2]

X19872-120518
Zynq UltraScale+ Device TRM 1134
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1134

Chapter 37: PS Clock Subsystem
Interconnect Clock Generators

There are five clock generators for the AMBA interconnect structure. Each clock generator
has a similar architecture with one divisor and one clock activate control as shown in
Figure 37-4. The control registers are listed in Table 37-4.

• LPD_LSBUS_CLK: clocks the slave switches and the APB interfaces in the LPD, including
LPD_SLCR, XMPU, CSU DMA, LPD DMA, DAP, eFUSE, RPU, IPI, OCM, and APM.

• IOU_SWITCH_CLK: clocks the AXI interfaces for the IOP peripherals in LPD.
• LPD_SWITCH_CLK: clocks the AXI interfaces for the non-IOP interfaces in LPD.
• TOPSW_LSBUS_CLK: clocks the slave switches and the APB interfaces in the FPD.
• TOPSW_MAIN_CLK: clocks the AXI interfaces in the FPD including the CCI, DDR ports,

SMMU ports, and the SIOU DMA masters. Also clocks the PS-PL AXI interfaces on the
FPD side.

RPU MPCore Clock Generator

The RPU MPCore reference clock reference is based on the basic clock generator design
with one divider and two clock enables. The extra clock enable is for the subsystem.

The clock gating behavior of the RPU clock is controlled by the clock and reset module in
the low power domain region. When the clock and reset module turns the clock gate enable
on, the RPU and its GIC receive the clock. When clock gating is turned off, the entire RPU
subsystem is not clocked.

Debug Clock Generators

There is a debug clock generator for each power domain, LPD and FPD and a separate clock
generators for the trace buffer and timestamp unit in the FPD.

FPD Debug Clock

The FPD debug clock is controlled by the DBG_FPD_CTRL register and is used by the
CoreSight-associated debug logic within the FPD.

LPD Debug Clock

The LPD debug clock is controlled by the DBG_LPD_CTRL register and is used by the
CoreSight-associated debug logic within the LPD.
Zynq UltraScale+ Device TRM 1135
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1135

Chapter 37: PS Clock Subsystem
Trace Debug Clock

The trace debug clock is controlled by the clk_ctrl_fpd.DBG_TRACE_CTRL register with a
single divisor. The clock should be programmed to twice the frequency of the desired trace
port clock because it is used to derive the trace port clock. The frequency of trace port clock
must be fast enough to allow the trace port to keep up with the amount of data being
traced.

Timestamp Debug Clock

The timestamp debug unit is clocked by its own clock generator.

PL Clock Generators

There are four clock outputs to the PL from independent clock generators. The PL clock
generators are based on the generic architecture with two clock dividers each plus the clock
throttle feature.

The clocks are individually controlled and are asynchronous to each other and all other
clocks.

Programmable Clock PL Throttle

The four generated clocks for the PL (PL_REF_CLKx) have clock throttling logic associated
with each clock. By default, clock throttling is off and there is continuous clock output. For
each of the clocks throttle logic, there are two registers.

• PL0_THR_CTRL: PL clock threshold control and status.
• PL0_THR_CNT: PL clock threshold count value.

The throttle behavior is controlled by indicating a desired number of clock pulses by writing
a 16-bit value to the PL0_THR_CNT register. For example, if PL0_THR_CNT is set to 0, then
the output is free running. If there is a programmed value, then the output is clocked using
the number indicated in this register.

The output clock counting can be started or triggered by writing to the CPU_START bit of
the PL0_THR_CTRL register. The output clock can also be halted by the PLx_THR_STOP signal
from the PL logic when the counting mechanism is turned on. This pin stops the PL clock
during PL logic debug.

The register PL0_THR_CTRL[CURR_VALUE] counts the amount of clocks produced since
CPU_START was initiated.
Zynq UltraScale+ Device TRM 1136
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1136

Chapter 37: PS Clock Subsystem
DisplayPort Clock Generators

The video reference clock, dp_video_ref_clk, is based on the basic clock generator design
with one divider and one clock enable as shown in Figure 37-3. The input video clock is
typically a 27 MHz base clock. The output clock frequency generated from the video clock
generation block can typically be 27 MHz, 81 MHz, 135 MHz, or 270 MHz depending on the
data rate or the fractional divide values of the PLL can be configured to generate the unique
frequencies needed for the DisplayPort controller. The fractional mode of the PLL can be
used to generate a specific video clock frequency.

Similarly, the audio reference clock, dp_audio_ref_clk, is generated using the basic clock
generator design but, with two divisors and one clock enable.

GPU Clock Generator

The GPU reference clock is used to clock the main logic of the GPU. Inside the GPU, the GPU
reference clock is distributed to the GPU and to the pixel processors.

SATA Clock Generator

The SATA reference clock is used to clock the internal logic of the SATA controller. The
AXI-side clock generation (determined by the crf_apb.SATA_REF_CTRL register) follows the
generic clock generation model with one divider. The SerDes interface clock for SATA is
generated using the PS-GTR reference clock option. For more details, see Chapter 29,
PS-GTR Transceivers.
Zynq UltraScale+ Device TRM 1137
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1137

Chapter 37: PS Clock Subsystem
Special Clock Generators
There are two special clock generator architectures:

• APU MPCore
• DDR Memory Controller

APU MPCore Clock Generator

The APU MPCore uses two related clocks: the main, full-frequency APU clock and the
half-speed clock. The clocks are shown in Figure 37-5.

X-Ref Target - Figure 37-5

Figure 37‐5: APU MPCore Clock Generator

APLL_CLK

VPLL_CLK

DPLL_CLK

6-bit
Programmable

divider

ACPU_CTRL [SRCSEL]

ACPU_CTRL [DIVISOR0]

Divide
By 2

ACU_REF_CLK

ACPU_CTRL [CLKACT_FULL]

ACPU_CTRL [CLKACT_HALF]

Glitch-free
Clock Gate

Glitch-free
Clock Gate ACU_HALF_REF_CLK

X19870-120518
Zynq UltraScale+ Device TRM 1138
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1138

Chapter 37: PS Clock Subsystem
DDR Memory Controller Clock Generator

The DDR clock is used for the majority of the DDR memory controller logic. The clock
generator has one 6-bit divider that connects to either the DPLL or VPLL. The DDR memory
subsystem also includes six PLLs for the DRAM I/O buffers that are described in Chapter 17,
DDR Memory Controller.

The DDR memory controller clock generator is shown in Figure 37-6.

Programming Examples
The programming sequence for the PLL units require careful consideration for the oscillator
based on the desired output frequency controlled by [FBDIV] and other parameters. Each
PLL unit has three control registers:

• xPLL_CTRL [RESET, BYPASS, FBDIV, DIV2, PRE_SRC, POST_SRC]
• xPLL_CFG [RES, CP, LFHF, LOCK_CNT, LOCK_DLY]
• xPLL_FRAC_CFG [DATA, ENABLED]

Helper data is programmed into the xPLL_CFG registers. See PLL Integer Divide Helper Data
Table for information on the helper data in the integer and fractional modes.

System PLL Operation

The voltage controlled oscillator (VCO) in the PLL synthesizes the output frequency based
on the feedback multiplier. The VCO supports both fractional and integer multipliers. The
fractional mode is enabled by setting xPLL_FRAC_CFG[ENABLED] to 1.

The VCO output frequency (FVCO) is determined using the following equation.

FVCO = FREFCLK x M.F

In this equation, the FREFCLK is an input reference clock frequency, M is the integer part of
the multiplier value, and F is the fractional part.

X-Ref Target - Figure 37-6

Figure 37‐6: DDR Memory Controller Clock Generator

DPLL_CLK

VPLL_CLK

6-bit
Programmable

divider

DDR_CTRL [SRCSEL]

DDR_CTRL [DIVISOR0]

DDR_REF_CLK

DDR_CTRL [CLKACT]

Glitch-free
Clock Gate

X19871-102017
Zynq UltraScale+ Device TRM 1139
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1139

Chapter 37: PS Clock Subsystem
The output frequency (FCLKOUT), after the divider stage, is determined by the following
equation.

FCLKOUT = FVCO/O

In this equation, O is the output divider that can be set to 1 or 2.

Jitter Considerations

PLL jitter performance is better in integer mode. Whenever possible, always use integer
mode. The fractional modulus of the PLL feedback divide is 16 bits wide, hence, 0.F can be
set to any value equal to n/216, where n = 1, 2, …, 216-1. In fractional mode, minimize jitter
by generating the highest possible VCO frequency that is with its operating range.

Video Clock Example

To generate a 296.703 MHz video clock from a 27 MHz source, use the following
parameters. The VCO frequency will be 2373.6 MHz and the VPLL clock output will be
1186.8 MHz.

• Program the multiplier. Set M = 87.
• Program the fractional modulus. Set F = 59775.
• Program VPLL to divide by 2. Set CRF_APB.VPLL_CTRL [DIV2] = 1.
• Program video clock generator to divide by 4. Set CRF_APB..DP_VIDEO_REF_CTRL

[DIVISOR0] = 4.

Clock Source Programming Example

The programming steps to use video_ref_clk as the clock source for IOPLL are used in this
example.

1. Program the PLL into bypass by setting IOPLL_CTRL[BYPASS] = 1.
2. Assert the reset to IOPLL by setting IOPLL_CTRL[RESET] = 1.
3. Set IOPLL_CTRL[PRE_SRC] = 100b, the VIDEO_REF_CLK.
4. Deassert the IOPLL reset by configuring IOPLL_CTRL[RESET] = 0.
5. Check for PLL lock by checking PLL_STATUS[IOPLL_LOCK] = 1.
6. Disable bypass mode by setting IOPLL_CTRL[BYPASS] = 0.

IMPORTANT: The following clocks should never be made inactive: LPD_SWITCH_CLK, LPD_LSB_CLK,
TOPSW_MAIN_CLK, and TOPSW_LSBUS_CLK. Whenever changing a CLK source, ensure that any
downstream clocks are prevented from exceeding their maximum clock frequency.
Zynq UltraScale+ Device TRM 1140
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1140

Chapter 37: PS Clock Subsystem
Integer Multiply and Divide Programming Example

This example assumes the input PS_REF_CLK frequency is 50 MHz, the [FBDIV] value is 40,
and the output divider is turned on. The output clock is calculated to be
50 MHz x 40/2 = 1000 MHz. For a new frequency of 1600 MHz, the [FBDIV] value is
switched to 32 and the output divider is turned off. This example uses the APLL.

Note: Before reprogramming the PLL clock output frequency, check that the downstream clocks are
in a safe state before releasing. For instance, if the APU DIVISOR is set to 2.
1. Program the new FBDIV, CLKOUT value (do not modify other values in the APLL_CTRL

register).

Set APLL_CTRL = 0000_2000h: [DIV2] = 0, [FBDIV] = 20h.

2. Program the helper data for APLL_CFG using the helper data in Table 37-1.
3. Program the bypass.

Set APLL_CTRL = 0000_2008h: [BYPASS] = 1.

4. Assert reset. This is when the new data is actually captured into the PLL.

Set APLL_CTRL = 0000_2009h: [RESET] = 1.

5. Deassert reset.

Set APLL_CTRL = 0000_2008h: [RESET] = 0.

6. Check for LOCK. Wait until: PLL_STATUS [APLL_LOCK] = 1
7. Deassert bypass.

Set APLL_CTRL = 0000_2000h: [BYPASS] = 20h.

The PLL output clock is set to 1600 MHz.

Fractional Multiply and Divide Programming Example

The following example assumes that the input clock to the PLL is PS_REF_CLK at 50 MHz, the
FBDIV value is 32, and the output divider is turned on. The output frequency is 1600 MHz.
To change to the VIDEO_REF_CLK, which is at 27 MHz and produce a final frequency of
1090.125 MHz, the FBDIV divider must be 40.375. Because 1090.125 MHz is below the VCO
operating range, a value of 80.75 is required and the div2 is used to produce 1090.125 MHz.
This example uses the VPLL.

1. Program the bypass mode by configuring VPLL_CTRL[BYPASS] = 1.
2. Program the new FBDIV, CLKOUT, and PRE_SRC values.

VPLL_CTRL[DIV2] = 1
Zynq UltraScale+ Device TRM 1141
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1141

Chapter 37: PS Clock Subsystem
VPLL_CTRL[FBDIV] = 50h
VPLL_CTRL[PRE_SRC] = 100b: VIDEO_REF_CLK

3. Program the VPLL_CFG register. Refer to the VPLL_CFG programming helper data in
Table 37-1.

4. Program the fractional data. A value of 0.75 = 0Bh.
VPLL_FRAC_CFG[ENABLED] = 1
VPLL_FRAC_CFG[DATA] = C000h
VPLL_FRAC_CFG = 8000_C000h

5. Assert the reset. This is required when the new data is actually captured into the PLL.
VPLL_CTRL[RESET] = 1

6. Deassert the reset.
VPLL_CTRL[RESET] = 0

7. Check for a locked signal.
8. Wait until: PLL_STATUS[VPLL_LOCK] = 1
9. Deassert the bypass.

VPLL_CTRL[BYPASS] = 0

Similar steps are followed to program DPLL, RPLL, IOPLL, and APLL.

Clock Generator Programming Example

This example shows the programming steps to enable an LPD main switch clock with the
IOPLL clock and to divide the result by four.

1. Set CRL_APB.LPD_SWITCH_CTRL[CLKACT] = 1.
2. Set CRL_APB.LPD_SWITCH_CTRL[SRCSEL] = 010b.
3. Program divider by writing to CRL_APB.LPD_SWITCH_CTRL[DIVISOR0] = 04h.
Zynq UltraScale+ Device TRM 1142
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1142

Chapter 37: PS Clock Subsystem
Clock Monitor Programming Example

This example shows the programming steps to program the clock monitors. The example
assumes that the PS_REF_CLK is 50 MHz and the APB LPD bus clock (LPD_LSB_CLK) is
100 MHz. All registers are in the CRL_APB register set. The clock sources are listed with the
definitions of the CHKRx_CTRL registers in the Zynq UltraScale+ MPSoC Register Reference
(UG1087) [Ref 4].

1. Program the clock sources:

Set CHKRx_CTRL [clka_mux_ctrl] = 011b (LPD_LSBUS_CLK).

Set CHKRx_CTRL [clkb_mux_ctrl] = 0 (PS_REF_CLK).

2. Program the counter values:

Set CHKRx_CLKB_CNT [value] = 0000_0000h.

Set CHKRx_CLKA_UPPER [thrshld] = 0001_028Ah.

Set CHKRx_CLKA_LOWER [thrshld} = 0000_FD76Fh.

3. Prime the pump:

Set CHKRx_CTRL [enable] = 1.

4. Start the clock monitor:

Set CHKRx_CTRL [start_single] = 1.
Zynq UltraScale+ Device TRM 1143
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1143

Chapter 37: PS Clock Subsystem
PLL Integer Divide Helper Data Table
For each unique value multiplier value, program the PLLs using registers in the CRL_APB and
CRF_APB register sets (LPD and FPD). Each of the five PLLs have a set of integer
programming parameters:

° {CRL, CRF}_APB.xPLL_CFG[CP]

° {CRL, CRF}_APB.xPLL_CFG[RES]

° {CRL, CRF}_APB.xPLL_CFG[LFHF]

° {CRL, CRF}_APB.xPLL_CFG[LOCK_DLY]

° {CRL, CRF}_APB.xPLL_CFG[LOCK_CNT]

Table 37-1 provides the PLL configuration register programming values when the PLL is in
integer mode. The frequency of the VCO must stay within the range specified in Zynq
UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) [Ref 2].

Table 37‐1: PLL Integer Feedback Divider Helper Data Values

FBDIV CP RES LFHF LOCK_DLY LOCK_CNT

25 3 10 3 63 1000
26 3 10 3 63 1000
27 4 6 3 63 1000
28 4 6 3 63 1000
29 4 6 3 63 1000
30 4 6 3 63 1000
31 6 1 3 63 1000
32 6 1 3 63 1000
33 4 10 3 63 1000
34 5 6 3 63 1000
35 5 6 3 63 1000
36 5 6 3 63 1000
37 5 6 3 63 1000
38 5 6 3 63 975
39 3 12 3 63 950
40 3 12 3 63 925
41 3 12 3 63 900
42 3 12 3 63 875
43 3 12 3 63 850
Zynq UltraScale+ Device TRM 1144
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1144

Chapter 37: PS Clock Subsystem
44 3 12 3 63 850
45 3 12 3 63 825
46 3 12 3 63 800
47 3 12 3 63 775
48 3 12 3 63 775
49 3 12 3 63 750
50 3 12 3 63 750
51 3 2 3 63 725
52 3 2 3 63 700
53 3 2 3 63 700
54 3 2 3 63 675
55 3 2 3 63 675
56 3 2 3 63 650
57 3 2 3 63 650
58 3 2 3 63 625
59 3 2 3 63 625
60 3 2 3 63 625

61 to 82 3 2 3 63 600
83 to 102 4 2 3 63 600

103 5 2 3 63 600
104 5 2 3 63 600
105 5 2 3 63 600
106 5 2 3 63 600

107 to 125 3 4 3 63 600

Table 37‐1: PLL Integer Feedback Divider Helper Data Values (Cont’d)

FBDIV CP RES LFHF LOCK_DLY LOCK_CNT
Zynq UltraScale+ Device TRM 1145
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1145

Chapter 37: PS Clock Subsystem
Register Overview
There are several register sets used to control system and peripheral clocks.

Table 37‐2: Clock Configuration Registers

Register Type Register Name Description

Low-Power Domain (LPD)

Interrupt and error
configuration
(CRL_APB)

ERR_CTRL Register address decode error on APB slave interface (SLVERR).

IR_STATUS
Interrupt status register for interrupt. This is a sticky register
that holds the value of the interrupt until cleared by a value of
1.

IR_MASK
Interrupt mask register for interrupt. This is a read-only
location and can be automatically altered by either the IDR or
the IER.

IR_ENABLE Interrupt enable register. A write of 1 to this location unmasks
the interrupt. (IMR: 0).

IR_DISABLE Interrupt disable register. A write of one to this location masks
the interrupt (IMR: 1).

 PLL configuration
(CRL_APB)

IOPLL_CTRL IOPLL clock control.
IOPLL_CFG IOPLL configuration.
IOPLL_FRAC_CFG IOPLL fractional control.
RPLL_CTRL RPLL clock control.
RPLL_CFG RPLL configuration.
RPLL_FRAC_CFG RPLL fractional control.
PLL_STATUS IOPLL and RPLL status.

IOPLL_TO_FPD_CTRL
Control for a clock that is generated in the IOPLL targeting
LPD, but used in the FPD as a clock source for the peripheral
clock multiplexer.

RPLL_TO_FPD_CTRL
Control for a clock that is generated in the RPU PLL in LPD, but
used in the FPD as a clock source for the peripheral clock
multiplexer.

Clock monitor
(CRL_APB)

CLKMON_STATUS Interrupt status. This is a sticky register that holds the value of
the interrupt until cleared by a value of 1.

CLKMON_MASK Interrupt mask. This is a read-only location and can be
automatically altered by either the IDR or the IER.

CLKMON_ENABLE Interrupt enable register. A write of 1 to this location unmasks
the interrupt.

CLKMON_DISABLE Interrupt disable register. A write of 1 to this location masks
the interrupt.

CLKMON_TRIGGER Interrupt trigger register. A write of 1 to this location sets the
interrupt status register related to this interrupt.
Zynq UltraScale+ Device TRM 1146
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1146

Chapter 37: PS Clock Subsystem
Full-Power Domain (FPD)

System controls
(CRF_APB)

ERR_CTRL Register address decode error on APB slave interface (SLVERR).

IR_STATUS Interrupt status register for intrN. This is a sticky register that
holds the value of the interrupt until cleared by a value of 1.

IR_MASK Interrupt mask register for intrN. This is a read-only location
and can be automatically altered by either the IDR or the IER.

IR_ENABLE Interrupt enable register. A write of 1 to this location unmasks
the interrupt. (IMR: 0).

IR_DISABLE Interrupt disable register. A write of one to this location masks
the interrupt (IMR: 1).

 PLL configuration
(CRF_APB)

APLL_CTRL APLL clock control.
APLL_CFG APLL configuration.
APLL_FRAC_CFG APLL fractional control.
DPLL_CTRL DPLL clock control.
DPLL_CFG DPLL configuration.
DPLL_FRAC_CFG DPLL fractional control.
VPLL_CTRL VPLL clock control.
VPLL_CFG VPLL configuration.
VPLL_FRAC_CFG VPLL fractional control.
PLL_STATUS APLL, DPLL, VPLL status.

Table 37‐2: Clock Configuration Registers (Cont’d)

Register Type Register Name Description
Zynq UltraScale+ Device TRM 1147
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1147

Chapter 37: PS Clock Subsystem
System PLL Control Registers

The PLL control registers are in the CRL_APB (LPD) and CRF_APB (FPD) register sets.

Table 37‐3: System PLL Clock Control Register Settings

Register Name
Reset value,

Address offset
(LPD, FPD)

Register
Parameter Reset State Pre-FSBL Comments

RPLL_CTRL 0001_2C09 h,
LPD 0x030

[RESET]
[BYPASS]
[FBDIV]
[DIV2]

[PRE_SRC]
[POST_SRC]

Held in reset.
Bypass enabled.

2C h.
Divide by 2.
PS_REF_CLK.
PS_REF_CLK.

IOPLL_CTRL 0001_3200 h,
LPD 0x020

[RESET]
[BYPASS]
[FBDIV]
[DIV2]

[PRE_SRC]
[POST_SRC]

Held in reset.
Bypass enabled.

2C h.
Divide by 2.
PS_REF_CLK.
PS_REF_CLK.

Released from reset.

APLL_CTRL 0001_2C09 h,
FPD 0x020

[RESET]
[BYPASS]
[FBDIV]
[DIV2]

[PRE_SRC]
[POST_SRC]

Held in reset.
Bypass enabled.

2C h.
Divide by 2.
PS_REF_CLK.
PS_REF_CLK.

DPLL_CTRL 0000_2C09 h,
FPD 0x02C.

[RESET]
[BYPASS]
[FBDIV]
[DIV2]

[PRE_SRC]
[POST_SRC]

Held in reset.
Bypass enabled.

2C h.
Pass-through.
PS_REF_CLK.
PS_REF_CLK.

Released from reset.

VPLL_CTRL 0000_2809 h,
FPD 0x038.

[RESET]
[BYPASS]
[FBDIV]
[DIV2]

[PRE_SRC]
[POST_SRC]

Held in reset.
Bypass enabled.

28 h.
Divide by 2.
PS_REF_CLK.
PS_REF_CLK.

IOPLL_TO_FPD_CTRL 0000_0400 h,
LPD 0x044. [DIVISOR0] 04 h
Zynq UltraScale+ Device TRM 1148
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1148

Chapter 37: PS Clock Subsystem
Clock Generator Control Registers

The clock generator control registers are divided into the following tables:

• AMBA interconnect clocks
• Processors, DDR, and DMA clocks
• LPD and FPD system clocks
• LPD peripheral clocks
• FPD peripheral clocks

RPLL_TO_FPD_CTRL 0000_0400 h,
LPD 0x048. [DIVISOR0] 04 h

APLL_TO_LPD_CTRL 0000_0400 h,
FPD 0x048. [DIVISOR0] 04 h

DPLL_TO_LPD_CTRL 0000_0400 h,
FPD 0x04C. [DIVISOR0] 04 h

VPLL_TO_LPD_CTRL 0000_0400 h,
FPD 0x050. [DIVISOR0] 04 h

Table 37‐3: System PLL Clock Control Register Settings (Cont’d)

Register Name
Reset value,

Address offset
(LPD, FPD)

Register
Parameter

Reset State Pre-FSBL Comments

Table 37‐4: AMBA Interconnect Clock Control

Register
Reset Value,
Register Set,

Address Offset

Register
Parameter

Reset
State

Pre-FSBL Clock Source Options

LPD_LSBUS_CTRL
(APB)

0100_1800 h,
LPD 0x0AC

[SRCSEL]:
[DIVISOR0]:
[CLKACT]:

RPLL.
18 h.

Enabled.

RPLL, IOPLL, or
DPLL_CLK_TO_LPD.

IOU_SWITCH_CTRL
(AXI LPD)

0000_1500 h,
LPD 0x09C

[SRCSEL]:
[DIVISOR0]:
[CLKACT]:

RPLL.
15 h.

Disabled.

RPLL, IOPLL, or
DPLL_CLK_TO_LPD.

LPD_SWITCH_CTRL
(AXI LPD)

0100_0500 h,
LPD 0x0A8

[SRCSEL]:
[DIVISOR0]:
[CLKACT]:

RPLL.
05 h.

Enabled.

RPLL, IOPLL, or
DPLL_CLK_TO_LPD.
Zynq UltraScale+ Device TRM 1149
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1149

Chapter 37: PS Clock Subsystem
TOPSW_LSBUS_CTRL
(APB LPD)

0100_0800 h,
FPD 0x0C4

[SRCSEL]:
[DIVISOR0]:
[CLKACT]:

APLL.
08 h.

Enabled.
APLL, VPLL, DPLL.

TOPSW_MAIN_CTRL
(AXI FPD)

0100_0400 h,
FPD 0x0C0

[SRCSEL]:
[DIVISOR0]:
[CLKACT]:

APLL.
04 h.

Enabled.
APLL, VPLL, DPLL.

Table 37‐4: AMBA Interconnect Clock Control (Cont’d)

Register
Reset Value,
Register Set,

Address Offset

Register
Parameter

Reset
State

Pre-FSBL Clock Source Options

Table 37‐5: Processors, DDR, and DMA Clock Control

Control Register
Reset Value,
Register Set,

Address Offset

Register
Parameter Reset State Pre-FSBL Comments

CPU_R5_CTRL
(RPU MPCore)

0200_0600 h,
0x090

[SRCSEL]
[DIVISOR0]
[CLKACT]

[CLKACT_CORE]

RPLL.
06 h.

Enabled.
Enabled.

ACPU_CTRL
(APU MPCore)

0300_0400 h,
0x060

[SRCSEL]
[DIVISOR0]

[CLKACT_FULL]
[CLKACT_HALF]

APLL.
04 h.

Enabled.
Enabled.

CSU_PLL_CTRL 0100_1500 h,
0x0A0

[SRCSEL]
[DIVISOR0]
[CLKACT]

IOPLL.
15 h.

Enabled.

DDR_CTRL 0100_0500 h,
0x0A0

[SRCSEL]
[DIVISOR0]

DPLL.
05 h.

FPD_DMA_REF_CTRL 0100_0500 h,
0x0B8

[SRCSEL]
[DIVISOR0]
[CLKACT]

APLL.
05 h.

Enabled.

LPD_DMA_REF_CTRL 0000_2000 h,
0x0B8

[SRCSEL]
[DIVISOR0]
[CLKACT]

RPLL.
20 h.

Disabled.
Zynq UltraScale+ Device TRM 1150
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1150

Chapter 37: PS Clock Subsystem
Table 37‐6: System Clock Control

Register Name
Reset Value,

Address Offset
Register

Parameter Reset State Pre-FSBL Comments

DBG_LPD_CTRL 0100_2000h,
LPD 0x068

[SRCSEL]
[DIVISOR0]
[CLKACT]

RPLL.
020 h.

Enabled.

DBG_FPD_CTRL 0100_2500 h,
FPD 0x068

[SRCSEL]
[DIVISOR0]
[CLKACT]

IOPLL_TO_FPD.
025 h.

Enabled.

DBG_TRACE_CTRL 0000_2500 h,
FPD 0x064

[SRCSEL]
[DIVISOR0]
[CLKACT]

IOPLL_TO_FPD.
025 h.

Clock stop.

DBG_TSTMP_CTRL
(Timestamp)

0000_0A00 h,
FPD 0x0F8

[SRCSEL]
[DIVISOR0]

IOPLL_TO_FPD.
0A h.

The clock
enable is
controlled by
DBG_FPD_CTRL
[CLKACT].

AMS_REF_CTRL
(PS SYSMON unit)

0100_1800 h,
LPD 0x108

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

RPLL.
18 h.
0 h.

Enabled.

DLL_REF_CTRL 0000_0000h,
LPD 0x104 [SRCSEL] IOPLL.

PCAP_CTRL 0000_1500 h,
LPD 0x0A4

[SRCSEL]
[DIVISOR0]
[CLKACT]

IOPLL.
15 h.

Disabled.

TIMESTAMP_REF_CTRL 0000_1800 h,
LPD 0x128

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
18 h.
0 h.

Disabled.

PL{0:3}_REF_CTR 0005_2000 h,
LPD 0x0C0 to 0x0CC

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
20 h.
25 h.

Disabled.
Zynq UltraScale+ Device TRM 1151
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1151

Chapter 37: PS Clock Subsystem
Table 37‐7: LPD Peripheral Clock Control

Register Name
Reset Value,

Address Offset
Register

Parameter Reset State Pre-FSBL Comments

GEM{0:3}_REF_CTRL 0000_2500 h,
0x050 - 0x05C

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

[RX_CLKACT]

IOPLL.
25 h.
00 h.

Disabled.
Disabled.

GEM_TSU_REF_CTRL 0005_1000 h,
0x100

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
10 h.
05 h.

Disabled.

USB{0,1}_BUS_REF_CTRL 0005_2000 h,
0x060 -0x064

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
20 h.
05 h.

Disabled.

UART{0,1}_REF_CTRL 0100_1800 h,
0x07C, 0x080

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
18 h.
00 h.

Enabled.

Same. N/A

SPI{0, 1}_REF_CTRL 0100_1800 h,
0x074, 0x078

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
18 h.
00 h.

Enabled.

Same. N/A

QSPI_REF_CTRL 0100_0800 h,
0x068

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
08 h.
00 h.

Enabled.

Same.
0F h.
01 h.
Same.

Quad-SPI boot:
CBR: 0101_0F00 h.

NAND_REF_CTRL 0005_2000 h,
0x0B4

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
20 h.
05 h.

Disabled.

Same.
h.
h.

Same.

NAND boot:
CBR: h.

SDIO{0, 1}_REF_CTRL 0100_0F00 h,
0x06C, 0x070

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
0F h.
00 h.

Enabled.

Same.
19h.
01 h.
Same.

SD card boot:
CBR: 0101_1900 h.
Zynq UltraScale+ Device TRM 1152
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1152

Chapter 37: PS Clock Subsystem
CAN{0, 1}_REF_CTRL 0100_1800 h,
0x084, 0x088

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
18 h.
00 h.

Enabled.

Same.
32 h.
00 h.
Same

POR reset:
PMU: 0100_3200 h.

I2C{0, 1}_REF_CTRL 0100_0500 h,
0x120, 0x124

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

IOPLL.
05 h.
00 h.

Enabled.

Same. N/A

Table 37‐7: LPD Peripheral Clock Control (Cont’d)

Register Name Reset Value,
Address Offset

Register
Parameter

Reset State Pre-FSBL Comments

Table 37‐8: FPD Peripheral Clock Control

Register Name Reset Value,
Address Offset

Register
Parameter

Reset State Pre-FSBL Comments

DP_VIDEO_REF_CTRL 0103_2300 h,
0x070

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

VPLL.
23 h.
0 h.

Enabled.

DP_AUDIO_REF_CTRL 0103_2300 h,
0x074

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

VPLL.
23 h.
0 h.

Enabled.

DP_STC_REF_CTRL 0120_3200 h,
0x07C

[SRCSEL]
[DIVISOR0]
[DIVISOR1]
[CLKACT]

VPLL.
32 h.
20 h.

Enabled.

DPDMA_REF_CTRL 0100_0500 h,
0x0BC

[SRCSEL]
[DIVISOR0]
[CLKACT]

APLL.
05 h.

Enabled.

GPU_REF_CTRL 0000_1500 h,
0x084

[SRCSEL]
[DIVISOR0]
[CLKACT]

[PP0_CLKACT]
[PP1_CLKACT]

IOPLL_TO_FPD.
15 h.

Disabled.
Disabled.
Disabled.

PCIE_REF_CTRL 0000_1500 h,
0x0B4

[SRCSEL]
[DIVISOR0]
[CLKACT]

IOPLL_TO_FPD.
15 h.

Disabled.

SATA_REF_CTRL 0100_1600 h,
0x0A0

[SRCSEL]
[DIVISOR0]
[CLKACT]

IOPLL_TO_FPD.
16 h.

Enabled.
Zynq UltraScale+ Device TRM 1153
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1153

Chapter 38

Reset System

Introduction
The PS reset subsystem is responsible for handling the external reset input to the device
and that all internal reset requirements are met for the system (as a whole) and for the
functional units.

The processing system (PS) reset sequences are divided into three functional areas.

• The power-on reset sequence.
• The management of other signals in the system to trigger system reset.
• The ability (in software) to reset each individual functional unit.

Due to transactional complexity, resetting of individual peripherals should not be
attempted without knowing that the system is quiet. Because the low-power domain (LPD)
always has power and the full-power domain (FPD) might not have power, the reset block in
the LPD contains most of the reset logic. The reset block in the FPD only contains the logic
for software to reset individual peripherals in the FPD, and all debug resets come from the
reset block in LPD as well. Every module used in the PS receives a reset signal generated
from the reset block in the LPD or FPD, which is synchronized into the clock domain of that
module and distributed throughout the module.

Features

• Power on reset and system reset.
• Independent PS reset capability while PL is still operating.
• Independent debug reset signals.
• Software identification of cause of reset from reset reason register.
Zynq UltraScale+ Device TRM 1154
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1154

Chapter 38: Reset System
Functional Description
The reset sequence is a two stage process. The first stage is handled by the reset controller
present in the LPD and the second stage is handled by the platform management unit
(PMU). The following sections discuss the resets.

Figure 38-1 shows how a reset is generated by the two reset controllers; one for each of the
power domains (LPD and FPD). The primary device-level reset inputs are from the PS_POR_B
and PS_SRST_B device pin, which must be asserted and deasserted based on specific
conditions. The Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics
[Ref 2] contains those specifications. The power-on reset (POR) unit in the PS deasserts the
reset signal to the LPD and the FPD clock and reset controllers when the PS power comes up
and is stable. The system-level reset signals are controlled using the SLCR registers. The
operation of the reset unit requires the PS_REF_CLK to be active.
X-Ref Target - Figure 38-1

Figure 38‐1: Top-level Reset Block Diagram

Clock and Reset Block in
LPD (CRL)

Clock and Reset Block in
FPD (CRF)

POR Block

PS_POR_B

PS_SRST_B

Reset Control
Registers in LPD

Reset Signals to LPD

Reset Signals to FPD

Reset Control
Registers in FPD

X17810-092117
Zynq UltraScale+ Device TRM 1155
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1155

Chapter 38: Reset System
POR Reset Sequence

The first stage is used to ensure that all the power rails are powered (up). The external
PS_POR_B signal is taken from the IOB and passed through an AND gate with a signal from
the power-on reset block. A glitch filter is used to ensure that the power is stable for
32 PS_REF_CLK cycles cycles. The sampling value from the boot mode pins are replicated
three times and a voter circuitry is used to select the appropriate boot mode sample value.
After releasing power-on reset (POR), the eFUSE is cached and scan clear starts up. The reset
controller in the LPD holds full control of the system until the LPD reset sequence is
completed. Post LPD reset sequence, the reset controller gives control to the PMU. See
Figure 38-2 for the flow.

The system reset is deasserted once the reset logic hands off control to the PMU and is
asserted back when an event, such as a debug system reset, occurs that needs to assert
system reset.

X-Ref Target - Figure 38-2

Figure 38‐2: Reset Flow Performed by Reset Controller and PMU

Gate (AND) External Reset with
POR Reset Signal

PS_POR_B

Reset Glitch Filter

Capture Boot Mode

Release Reset to PMU

vccpsint_por
vccpsaux_por

Validate PMU ROM

Initialize SYSMON

From Reset Block in LPD

{

X15257-092916
Zynq UltraScale+ Device TRM 1156
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1156

Chapter 38: Reset System
PS_SRST_B Reset Pin During Hardware Boot

The PS_SRST_B input pin is disabled after PS_POR_B is released and stays disabled during
the first part of CSU ROM execution.

• For non-secure boot, the PS_SRST_B input is enabled before loading the FSBL into OCM
memory.

• For secure boot, the PS_SRST_B input remains disabled (not enabled by CSU ROM).
Secure code can enable the PS_SRST_B reset input using the CRL_APB.RESET_CTRL
register.

Example

In this example, the PS_SRST_B reset input is held Low (asserted) while PS_POR_B is
deasserted and the CSU executes its ROM code. The CSU continues to execute the ROM
code (regardless of the PS_SRST_B state) until the CSU can verify if the boot is secure or
non-secure by reading the boot header. For non-secure boot and PS_SRTS_B asserted, the
CSU execution halts when it enables the PS_SRST_B input. For secure boot and PS_SRST_B
asserted, the CSU continues to execute and the FSBL is loaded into memory because the
PS_SRST_B pin remains disabled.

System Reset Conditions

The device resets are summarized in Table 38-1.

Table 38‐1: Resets

Reset Name Source Control System Effects(1)

Subject to
the

PROG_GATE
effect for

PL?

Reset Reason

External POR PS_POR_B pin
Deasserted after power up.
Assert at any time with
immediate affect.

Resets all logic, RAMs, and
registers.
Prepares device for
possible secure boot.
• Mode pins sampled.

No [external_por]

Internal POR System error PMU_Global.ERROR_POR_{1,2}.
Same as External POR
except:
• ERROR_STATUS_{1, 2}

registers unaffected.
No [internal_por]
Zynq UltraScale+ Device TRM 1157
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1157

Chapter 38: Reset System
External SRST PS_SRST_B pin(2)
Device pin that is usually
connected to the debugging
tool.
Disable RESET_CTRL [srst_dis]

Same as External POR
except:
Modes pins not sampled.
Several registers
unaffected (i.e., require a
POR to reset):
• System error enable.
• PMU global persistent.
• CSU_status, ENC_status
• LOC_PWR_STATE (power

state).
• RAMs not cleared.

Yes [srst]

Internal SRST

Register write CRL_APB.RESET_CTRL
[soft_reset]. Same as external SRST. Yes [soft]

System error PMU_GLOBAL.ERROR_SRST_{1,2}. Same as external SRST. Yes [pmu_sys_reset]

Register write
CRL_APB.RST_LPD_TOP
[fpd_reset].

Same as external SRST
except:
• PL and LPD unaffected.

N/A

Register write
PMU_GLOBAL.GLOBAL_RESET
[PS_ONLY_RST].

Same as external SRST
except:
• PL and LPD unaffected.

Yes [psonly_reset_req]

Debug SRST DAP controller Arm DAP.
Same as external SRST
except the debug logic
state is preserved.(3)

Yes [debug_sys]

Reset
Debugger DAP controller BLOCKONLY_RST [debug_only]. Resets the CoreSight

debug logic only. N/A No change.

Notes:
1. All resets have an immediate effect. Effects are driven by reset edges and levels.
2. The PS_SRST_B pin can be enabled and disabled by writing to the CRL_APB.RESET_CTRL [srst_dis] bit.
3. RPU debug logic is not preserved.

Table 38‐1: Resets (Cont’d)

Reset Name Source Control System Effects(1)

Subject to
the

PROG_GATE
effect for

PL?

Reset Reason
Zynq UltraScale+ Device TRM 1158
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1158

Chapter 38: Reset System
Reset Reason Register

The cause for each reset is stored in the crl_apb.RESET_REASON register. Table 38-2
summarizes the different values for the reset reason register.

PS Only Reset

When the PS must be reset without resetting the PL, the PMU (only the PMU) must manage
this reset sequence. Through the error mechanism in the PMU, all of the errors can be set to
cause a PS only reset. The PMU asserts a signal to the PL power domain that blocks
PS_PROG_B from assertion by the CSU. This bit is controlled by the PMU and can be set at
the beginning of time or during an interrupt routine. Once this bit is set in the PMU, the
only difference to the reset block in the LPD between a PS-only reset and a system-reset
request is that the reset block in the LPD marks a different bit in the reset reason register
when the PL is not reset.

System-level Software Reset

Each module in the PS has one or more software controlled resets that are asserted from the
reset module to the PS block residing in the low-power or full-power domain. The resets are
generated by the reset module that is in the same power domain as the consuming module.
For instance, the APU resets come from the reset block in the FPD, while the Cortex®-R5F
resets come from the reset block in the LPD. The reset block in the LPD is reset when there
is a system-level reset. A reset applied to the reset block in the FPD resets all the blocks in
the FPD.

Software can write to the FPD reset pin in register APB_CRL.RST_LPD_TOP [FPD_RESET] to
reset the FPD logic. The PMU also has the ability to reset the FPD.

The WARMRSTREQ signal from the APU is routed to the PMU. It can be used to trigger a
block reset to the APU system.

IMPORTANT: The system can hang when software reset control is asserted during a pending AXI/APB
transfer.

Table 38‐2: Reset Reason Register

Bit Field Bit Description

external_por 0 External POR; the PS_POR_B reset signal pin was asserted.
internal_por 1 Internal POR. A system error triggered a POR reset.
pmu_sys_reset 2 Internal system reset. A system error triggered a system reset.
psonly_reset_req 3 PS-only reset. Write to PMU_GLOBAL.GLOBAL_RESET [PS_ONLY_RST].
srst 4 External system reset; the PS_SRST_B reset signal pin was asserted.
soft 5 Software system reset. Write to RESET_CTRL [soft_reset].
debug_sys 6 Software debugger reset. Write to BLOCKONLY_RST [debug_only].
Zynq UltraScale+ Device TRM 1159
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1159

Chapter 38: Reset System
Table 38-3 summarizes the block-level reset register for each of the blocks in the LPD and
FPD.

Table 38‐3: Resets to System Elements

System Element Register Description

LPD System Elements (CRL_APB Register Set)

GEM RST_LPD_IOU0[gem<0-3>_reset] GEM Ethernet controllers.
GPIO RST_LPD_IOU2[gpio_reset] GPIO controller.
LPD DMA RST_LPD_IOU2[lpd_dma_reset] LPD DMA controller.
NAND RST_LPD_IOU2[nand_reset] NAND controller.
LPD SWDT RST_LPD_IOU2[swdt_reset] LPD watchdog timer (wdt1).
TTC RST_LPD_IOU2[ttc{0:3}_reset] TTC triple counter.
I2C RST_LPD_IOU2[i2c{0:1}_reset] I2C controller.
CAN RST_LPD_IOU2[can{0:1}_reset] CAN controller.
SDIO RST_LPD_IOU2[sdio{0:1}_reset] SDIO controller.
SPI RST_LPD_IOU2[spi{0:1}_reset] SPI controller.
UART RST_LPD_IOU2[uart{0:1}_reset] UART controller.
QSPI RST_LPD_IOU2[qspi_reset] Quad-SPI controller.
PS SYSMON RST_LPD_TOP[sysmon_reset] PS system monitor.
RTC RST_LPD_TOP[rtc_reset] Real-time clock.
APM RST_LPD_TOP[apm_reset] AXI performance monitor.
IPI RST_LPD_TOP[ipi_reset] Interprocessor interrupts (IPI).

USB
RST_LPD_TOP[usb{0:1}_apb_reset]
RST_LPD_TOP[usb{0:1}_hiberreset]
RST_LPD_TOP[usb{0:1}_corereset]

USB controller.

RPU
RST_LPD_TOP[rpu_pge_reset]
RST_LPD_TOP[rpu_amba_reset]
RST_LPD_TOP[rpu_r5{0:1}_reset]

RPU MPCore resets.
• Entire RPU power island.
• AXI interconnect.
• Core resets.

OCM RST_LPD_TOP[ocm_reset] OCM memory.
PL-LPD interface RST_LPD_TOP[s_axi_lpd_reset] Resets from LPD to PL fabric.
FPD System Elements (CRF_APB Register Set except where noted)

PCIe
RST_FPD_TOP[pcie_cfg_reset]
RST_FPD_TOP[pcie_bridge_reset]
RST_FPD_TOP[pcie_ctrl_reset]

PCIe controller:
• Configuration reset.
• Bridge reset (AXI interface).
• Controller reset.

DisplayPort RST_FPD_TOP[dp_reset] DisplayPort controller.
FPD SWDT RST_FPD_TOP[swdt_reset] FPD watchdog timer (wdt0).
Zynq UltraScale+ Device TRM 1160
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1160

Chapter 38: Reset System
Debug Reset

Power-on reset asserts all the debug resets and then returns them to their default state as
defined in the SLCR registers. During a debug reset, the PMU writes the APB register that
acts as a software reset and toggles the debug reset that needs to be reset. System reset
does not affect debug resets.

PL Reset

The Zynq UltraScale+ MPSoC has general-purpose output pins connected to the PMU block
that can be used to reset blocks in the PL. Refer to Chapter 6, Platform Management Unit
for more details.

PL Configuration Reset

PL configuration reset is the default (but optional) effect of the PS system reset. If enabled,
the PL configuration reset begins as de-assertion of the system reset (not immediately at
the assertion of the system reset). The Zynq UltraScale+ device has an independent PS reset
capability while the PL is still operating. To support the feature described in the PS Only
Reset section, the PL configuration reset triggers can be blocked. If enabled, the PL
configuration reset occurs optionally and does not begin until the de-assertion of the
system resets. When the PL configuration is reset, the PL I/O pins are tri-stated and the PL
configuration is cleared. The following table describes system reset input pins that can
optionally trigger a PL configuration reset.

FPD DMA RST_FPD_TOP[fpd_dma_reset] FPD DMA controller.
SATA RST_FPD_TOP[sata_reset] SATA controller.
PS-GTR RST_FPD_TOP[gt_reset] PS GTR transceivers.
GPU RST_FPD_TOP[gpu_pp{0:1}_reset] GPU pixel processors.

HP ports RST_FPD_TOP[s_axi_hp{0:3}_fpd_reset]
RST_FPD_TOP[s_axi_hpc{0:1}_fpd_reset PS to PL AXI interfaces.

Cortex-A53 CPU RST_FPD_APU[acpu{0:3}_pwron_reset] Individual resets to each APU core.
APU L2 cache
reset RST_FPD_APU[apu_l2_reset] L2 cache reset.

DDR PMU_GLOBAL.GLOBAL_RESET [FPD_RST] The DDR controller can only be
successfully reset using the FPD reset.

APM RST_DDR_SS[apm_reset] AXI performance monitors on DDR
interface ports.

Table 38‐3: Resets to System Elements (Cont’d)

System Element Register Description
Zynq UltraScale+ Device TRM 1161
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1161

Chapter 38: Reset System
When there is a need to reset and stop operation of the whole Zynq UltraScale+ device,
including the PL operation, Table 38-4 indicates that simply driving PS_POR_B Low is
insufficient to reset and stop the PL operation. Instead, multiple options exist for resetting
and stopping operation of the whole Zynq UltraScale+ device, including:

• Apply a High-Low-High pulse to PS_POR_B. Asserting PS_POR_B Low resets the PS, and
the Low-to-High transition of the pulse assures the PL configuration is also reset.

• Assert PS_SRST_B and PS_PROG_B, but do not assert PS_POR_B, to reset the PS and
reset the PL configuration.

• Assert PS_POR_B and use general output signals from the PMU to the PL to disable
desired portions of the PL logic.

Table 38‐4: System Reset Input Pins That Can Reset the PL Configuration

Reset Pin Name Description of Effect on PL Configuration

PS_POR_B Power-on reset signal that resets the PS when asserted. Tri-stating of the PL I/O
and clearing of PL configuration begins at the de-assertion of the PS_POR_B
signal.

PS_SRST_B System reset commonly used during debug to reset the PS. By default, but
optional, tri-stating of the PL I/O and clearing of the PL configuration begins at
the de-assertion of the PS_SRST_B signal.

PS_PROG_B Direct PL configuration reset signal that tri-states PL I/O pins and clears the PL
when asserted, except this input is blocked when PS_POR_B is asserted and
blocked when the PS is setup for PS Only Reset
Zynq UltraScale+ Device TRM 1162
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1162

Chapter 38: Reset System
Register Overview
Table 38-5 describes the registers that can be used to configure resets belonging to
different power domains.

Programming Model
The examples in this section show how to perform reset sequencing to different blocks
within the PS.

PS-only Reset Sequence

The PS-only reset requirement is to reset the PS while the PL remains active. The PS-only
reset can be triggered by a hardware error signal or a software register write. If the PS-only
reset is due to an error signal, then the error must also be indicated to the PL.

The PS-only reset can be implemented as a subset of the system-reset. However, it needs to
gracefully terminate the PS to PL AXI transactions before initiating a PS-only reset. A
PS-only reset sequence can be implemented as follows.

Table 38‐5: Reset System Registers

Register Type Register Name Description

Low-Power Domain

 LPD reset

RESET_CTRL Reset control register. Controls miscellaneous functions with
regards to triggers.

BLOCKONLY_RST Records the reason for the block-only reset.
RESET_REASON Records the reason for the reset in the RESET_REASON register.
RST_LPD_TOP Software control register for the LPD block.

RST_LPD_DBG
Debug register for both the LPD and FPD. Only the POR can
cause hardware to clear this register. During a debug_reset, the
PMU resets this register.

RST_LPD_IOU0 Software controlled reset for the GEM.
RST_LPD_IOU1 Power-on reset type register.

RST_LPD_IOU2 Software control register for the IOU block. Each bit causes a
single peripheral or part of the peripheral to be reset.

Full-Power Domain

 FPD reset
RST_FPD_TOP FPD block-level software controlled reset.
RST_FPD_APU APU block-level software controlled resets.
Zynq UltraScale+ Device TRM 1163
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1163

Chapter 38: Reset System
1. Set pmu_global.PS_CNTRL[prog_gate] to 1 to block the PL from being reset when the PS
is reset.

2. An error interrupt is asserted and the action requires a PS-only reset. This request is sent
to the PMU as an interrupt.

3. To indicate to the PL, set the PMU error (PS-only reset).
4. Block the FPD to PL and the LPD to PL interfaces with the help of the AMBA isolation

block (AIB).
5. If the AIB acknowledgment is not received, then the PMU should timeout and continue.
6. Block the PL to FPD and PL to LPD interfaces with the help of the AIB (in the PL design).
7. If the AIB acknowledgment is not received, then the PMU should timeout and continue.
8. Initiate a PS-only reset by writing to the PMU global reset request register.
9. Assert a PS-only reset by writing to the pmu_global.GLOBAL_RESET[ps_only_rst] bit. This

bit is self clearing and causes a PS only reset.
10. Release all signals from being isolated between the PS and PL.

FPD Reset Sequence

The FPD-reset resets all of the full-power domain (FPD). It can be triggered by errors or a
software register write. If the FPD reset is due to an error signal, then the error must also be
indicated to the LPD and the PL. The FPD reset can be primed by leveraging the FPD
power-up sequence. However, it needs to gracefully terminate the FPD ingress/egress AXI
transactions before initiating reset of the FPD. The FPD reset sequence can be produced as
follows.

• An error interrupt is asserted a FPD reset is required. This request is sent to the PMU as
an interrupt.

• Block the FPD to LPD interfaces with the help of the AIB.
• If an AIB acknowledgment is not received, then the PMU should timeout and continue.
• Block the FPD to PL interfaces with the help of the AIB (in the FPS).
• If the AIB acknowledgment is not received, then the PMU should timeout and continue.
• Block the LPD to FPD interfaces with the help of the AIB.
• Block the PL to FPD interfaces with the help of the AIB (in PL design). The PL wrapper

should provide a timeout between this AIB and the FPD.
• Assert the FPD reset (by writing to a PMU global register).
• Unblock the FPD to LPD and FPD to PL interfaces.
• Deassert the FPD reset (including CCI), which enables the LPD requests to go to the

FPD.
Zynq UltraScale+ Device TRM 1164
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1164

Chapter 38: Reset System
• Unblock the LPD to FPD and the PL to FPD interfaces.
• Deassert the APU L2/CPU resets, which results in an APU reboot.

RPU Reset Sequence

Each of the Arm Cortex-R5F real-time processors can be independently reset. In lock-step,
only the R5_0 needs to be reset to reset both Cortex-R5F processors. It can be triggered by
errors or a software register write. The Cortex-R5F reset can be triggered (due to a lock-step
error) to reset and restart the RPU. It needs to gracefully terminate the Cortex-R5F
ingress/egress transactions before initiating reset of the corresponding Cortex-R5F
processor. The following steps describe a special case RPU reset.

• An error is asserted which requires a Cortex-R5F processor reset. This request is sent to
the PMU as an interrupt.

• Block the Cortex-R5F processor master interfaces with the help of the AIB.
• If an AIB acknowledgment is not received, then the software should timeout and

continue.
• Block the Cortex-R5F processor slave interfaces with the help of the AIB.
• If an AIB acknowledgment is not received, then the software should timeout and

continue.
• Unblock the Cortex-R5F processor master interfaces.
• Assert the Cortex-R5F processor reset. Use the PMU global register.
• Deassert the Cortex-R5F processor reset, which will trigger a Cortex-R5F processor

reboot.
• Unblock the Cortex-R5F processor slave interfaces.
Note: While in lock-step mode the R5F’s will continue to run until either the PMU intervenes, the
error itself disrupts the R5F's operation or the normal operation causes a halt. There is no provision
within the RPU to specifically inhibit/alter operation of the R5F’s in response to a mismatch.
Zynq UltraScale+ Device TRM 1165
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1165

Chapter 39

System Test and Debug

Introduction
The system test and debug features provide intrusive and non-intrusive functionality of an
interconnected PS and PL system to debug RPU and APU application software. There are
other system elements in the PS and user-selected hardware elements in the PL that can be
included in the debug environment.

This chapter is divided between the JTAG interfaces with the Arm DAP, PS TAP, and PL TAP
controllers, and the CoreSight system debug functionality. The CoreSight debug functions
are accessible by the Arm DAP controller or by system masters accessing the
memory-mapped debug registers. The PS TAP controller is alway present and has system
functions. The PL TAP controller provides boundary scan (BSCAN) and PL programming
functions.

Features

JTAG Chain:

• Single JTAG chain: one, two, or all three TAP controllers.
• Split JTAG chain: PS/PL TAP controllers and Arm DAP controller.
• Triple redundant JTAG security controls.

PS TAP controller:

• IDCODE access.
• PL TAP and Arm DAP controller insertion.
• PS error-code read out.
• System JTAG controls.
Zynq UltraScale+ Device TRM 1166
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1166

Chapter 39: System Test and Debug
PL TAP controller:

• Boundary-scan.
• Legacy PL configuration.
• Legacy PL debug (Vivado logic analyzer).

Arm DAP controller:

• The DAP can be accessed directly in any non-secure boot mode. In secure boot mode,
the DAP is not accessible unless trusted software enables the JTAG connection for the
DAP controller.

• Arm DAP requires the VCC_PSINTLP power supply.
• Nonvolatile flash programming.
• PS CoreSight debug architecture support.
• PS eFUSE and BBRAM programming.
• Access to AXI interconnect.

Security:

• PSJTAG interface signal tamper detection.
• Always secure from reset to boot header processing.

JTAG state machines:

• Interfaces are compatible with the IEEE Std 1149 specification.
• All states transition on the positive edge of TCK.
• Interfaces are controlled by the TMS signal.

IDCODE instruction:

• Indicates the type of device: device ID codes are listed in Table 1-2.
• Requires LPD to be powered up, but not the PLPD or FPD.
• Always accessible regardless of security state.
Zynq UltraScale+ Device TRM 1167
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1167

Chapter 39: System Test and Debug
JTAG Functional Description
JTAG is the centerpiece of the debug features for software and PL development, and also
serves as a test port for board-level test. Consequently, it is critical to keep JTAG as simple
as possible with the least hardware dependency.

The JTAG architecture has three TAP controllers:

• PS TAP (main PS controller with IDCODE).
• PL TAP (PL configuration and boundary scan).
• DAP (Arm debug of RPU and APU using CoreSight).

After a POR reset (PS_POR_B or internal POR), only the dedicated PS JTAG signal pins are
activated and only the PS TAP controller is visible on the JTAG chain. The PS TAP controller
has limited functionality until the configuration security unit (CSU) has completed the PS
boot sequence and granted further functionality.

X-Ref Target - Figure 39-1

Figure 39‐1: JTAG Chain Block Diagram

Device Boundary

PJTAG
Interface

TDI

PS JTAG
Interface

M
IO

MIO pins.
(Select one of six
routes using the

IOU_SLCR.MIO_PIN_
xx registers)

PS TAP
Controller Se

cu
rit

y
G

at
e PMU MDM

Interface
en

Se
cu

rit
y

G
at

e

Dedicated PS pins.

en

TCK, TMS

TDO

TCK, TMS

PS TDO

TDI

TDO

Debug with
AXI Master

All Controllers

IDCODE
BYPASS
(disabled)

Arm DAP
ControllerSe

cu
rit

y
G

at
e

TDO

* Boundary Scan
* PL Functions
* PL SysMon Unit

* CoreSight Debug
* AXI Master

CSU.jtag_sec [ssss_dap_sec]

PL TAP
Controller

PS TDO

Arm DAP
Dummy Controller

en

en

Switch

CSU.jtag_sec [ssss_pltap_sec]

en

CSU.jtag_sec [ssss_pmu_sec]

JTAG_DIS eFuse. Read
at eFuse.SEC_CTRL
[JTAG_DIS].

PL TAP
Dummy

Controller

X19944-051118
Zynq UltraScale+ Device TRM 1168
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1168

Chapter 39: System Test and Debug
Full functionality of the PS TAP controller and access to the DAP and PL TAP controllers can
be made available after the boot sequence using a special command sent to the PS TAP
controller.

Boundary-Scan

Boundary-scan logic is supported through the PL TAP controller. The boundary-scan can
only be accessed after the system is booted and it requires PSJTAG interface access to the
PL TAP controller.

Security

The Zynq UltraScale+ MPSoC supports JTAG enable features to enable and disable JTAG to
support secure and non-secure boot. When the system comes out of reset, the PL access
and the Arm DAP are disabled. With non-secure boot, the CSU ROM enables the PL and DAP
access. With secure boot, trusted software must enable the full JTAG debug system.

JTAG Security Gates

The secure JTAG interconnect routes the JTAG signals between the three controllers and
controls three security gates (PMU MDM, PL TAP controller, and Arm DAP controller).

Access to the full JTAG chain, including the PS TAP and Arm DAP, can be granted by the
following.

• The CSU bootROM code, if the device is booted non-secure.
• Secure software running on the PS.

The security gates are controlled by individual 3-bit fields in the CSU.jtag_sec register.
Disabling the security gate does not automatically connect the PS TAP and Arm DAP to the
JTAG chain. After access has been granted, the rest of the JTAG chain can be connected
using the PS TAP. After adding or removing a controller from the JTAG chain, you must
return to test-logic reset (TLR) by holding TMS High for five TCK cycles. This ensures that all
TAP controller state machines on the chain are synchronized. The JTAG status can be
determined by reading the JTAG_STATUS instruction on the PS TAP.

Arm CoreSight components use four control signals, DBGEN, NIDEN, SPIDEN, and SPNIDEN
to authenticate invasive and non-invasive debug based on a TrustZone secure or
non-secure status. The debug authentication functionality is described in section Debug
Authentication.
Zynq UltraScale+ Device TRM 1169
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1169

Chapter 39: System Test and Debug
Toggle Detect on PSJTAG

The PSJTAG toggle detect is a security feature used to trigger a tamper response in the CSU.
The toggle detect sends an alert to the CSU if the TCK is toggled. The alert is sticky and
remains asserted until a POR is received. The alert to the CSU requires three cycles of TCK
to generate. This helps to prevent false detects from board power-up or other
circumstances.

The tamper response is only serviced by the CSU boot ROM when the tamper response
register is set in the CSU. The JTAG toggle detect is disabled in the CSU if any of the JTAG
security gates are disabled. This allows secure software to have a built-in debug mode.

The tamper sources originate external to the CSU (mostly) and are tied to the interrupts of
the Secure Processor Block (SPB). When an interrupt is triggered to the SPB, the CSU ROM
will read the tamper response register associated with that interrupt and execute the
instruction contained in the register. Tamper sources include:

1. AMS alarms (19-bits)
2. External pin via MIO
3. Register in CSU
4. eFuse indicating that the PS has been disabled (from PL)
5. JTAG toggle detect
6. PL SEU error indication
7. JTAG_TOGGLE_DETECT is tied to the interrupts of SPB.

JTAG Chain Configuration

The JTAG chain can be configured to have the PS TAP and the Arm DAP controllers, or all
three controllers on a single daisy chain. In each case, the instruction length remains fixed
at 16 bits. When a controller is not present, dummy bits are accepted.

The JTAG chain configuration is controlled by the JTAG_DAP_CFG register. This register can
be written to by an AXI master accessing a CSU register, by the PS TAP controller using the
JTAG_CTRL instruction, or by issuing the JTAG_CTRL instruction to the PS TAP and then
writing in the new configuration.

JTAG_CTRL register bits 1 and 0:

00: PS TAP controller

01: PS and PL TAP controllers

10: PS TAP and Arm DAP controllers

11: All three controllers: PS TAP, PL TAP, and Arm DAP
Zynq UltraScale+ Device TRM 1170
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1170

Chapter 39: System Test and Debug
IMPORTANT: Any time the number of controllers on the JTAG chain is switched, the PS TAP, PL TAP, and
Arm DAP controller state machines must be synchronized by holding the TMS High for five cycles of the TCK.

JTAG Chain Boot States

The JTAG chain is configured by the CSU BootROM during boot based on the security state
of the boot. The values for the JTAG chain configuration registers for each boot mode are
shown in Table 39-1 to Table 39-3. The state immediately after a POR is a secure state, but
the state changes for non-secure device and PJTAG boot modes.

Table 39‐1: POR Boot State and Secure Boot Mode

Register Value Description

JTAG_CHAIN_STATUS 0x0 Arm DAP and PL TAP are disabled.
JTAG_DAP_CFG 0x0 DAP debug disabled.
JTAG_SEC 0x0 Security gates enabled.

Table 39‐2: PJTAG Boot Mode

Register Value Description

JTAG_CHAIN_STATUS (ro) 0x1
Arm DAP is disabled.
PL TAP is enabled.

JTAG_DAP_CFG (r/w) 0xFF DAP debug enabled (invasive and non-invasive).
JTAG_SEC (r/w) 0x3F Security gates disabled.

Table 39‐3: Non-secure Boot Mode

Register Value Description

JTAG_CHAIN_STATUS 0x3 Arm DAP and PL TAP are enabled.
JTAG_DAP_CFG 0x3F DAP debug enabled (invasive and non-invasive).
JTAG_SEC 0x3F Security gates disabled.
Zynq UltraScale+ Device TRM 1171
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1171

Chapter 39: System Test and Debug
PJTAG Interface

An alternate option for communication with the Arm DAP is through the PJTAG signals.
There are six PJTAG interfaces specified in the MIO. Using the MIO SLCR, you can select one
of the PJTAG0-5 MIO interfaces to be the PJTAG interface. The PJTAG interface enters the
JTAG security gate circuit, which routes the JTAG chain around the device.

To use the PJTAG interface, the following conditions must be met.

• The JTAG security gate is disabled by writing to the correct register in the CSU.
• The Arm DAP is not on the JTAG chain.

To prevent security holes, the PJTAG is multiplexed into the JTAG signaling before the
security gate.

CAUTION! The PJTAG interface can be disabled by the PS TAP controller when the Arm DAP controller
is placed back on the JTAG chain using the JTAG_DAP_CFG register.

The JTAG interface signals are listed in Table 39-13.

JTAG Disable

The JTAG block can be permanently disabled by programming the appropriate eFUSE in the
efuse_pgm_addr (0xFFCC_000C) register. When this eFUSE is blown, the JTAG is restricted
to two commands, IDCODE and BYPASS. IDCODE is only available by resetting the JTAG
controller (going to the test-logic-reset state). All commands shifted into the IR are
converted to BYPASS. Also, when the JTAG disable eFUSE is blown, all security gates are
permanently enabled, making it impossible to reach the Zynq UltraScale+ MPSoC TAP or
the Arm DAP.

• IDCODE available by shifting JTAG to test-logic-reset state.
• BYPASS available by shifting in any other instruction to the IR.
• All security gates permanently enabled.
Zynq UltraScale+ Device TRM 1172
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1172

Chapter 39: System Test and Debug
Instruction Register

The instruction register allows instructions to be entered serially into the PS TAP controller
during the Shift-IR state. Table 39-4 lists the PS TAP instructions.

The PL TAP and PS TAP instruction registers are 6-bits each. If the PS TAP is not part of the
JTAG chain, the last six bits of the instruction register are dummy bits. The DAP controller is
daisy chained to the end of the JTAG when it is activated in the system.

Table 39‐4: PS TAP Controller Instructions

HEX Code Instruction Description

0x00 Reserved Reserved.

0x03 PMU_MDM Access the PMU MicroBlaze MDM
Security gate must allow access [ssss_pmu_sec].

0x08 USERCODE Access the USERCODE.
0x09 IDCODE Access the IDCODE, see Table 1-2.

0x0A HIGHZ Allows the GTS_USR_B signal from PL TAP controller to
enter the PS.

0x19 IP_DISABLE IP disable status register.
0x1F JTAG_STATUS JTAG status register read.
0x20 JTAG_CTRL Connect/disconnect the PL TAP and Arm DAP.
0x26 EXTEST Asserts the bscan_extest signal in the PS.
0x3E ERROR_STATUS ERROR status register read (46-bit from PMU).
0x3F BYPASS
Zynq UltraScale+ Device TRM 1173
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1173

Chapter 39: System Test and Debug
Figure 39‐2: PS and PL Tap

Instruction Availability

The PS TAP has two modes of operation. These modes change the available instruction set
to control what can be accessed by JTAG interface. During reset and pre-boot, only the

PS TAP IR [5:0] Dummy [5:0]

PL TAP IR [5:0]

ARM DAP IR [5:0]

TDI TDO

The following diagram shows the instruction register when only the PS TAP is active:

PS TAP IR [5:0] Dummy [5:0]

PL TAP IR [5:0]

ARM DAP IR [5:0]

TDI TDO

The following shows the instruction register when the PS and PL TAP are active:

PS TAP IR [5:0] Dummy [5:0]

PL TAP IR [5:0]

ARM DAP IR [5:0]

TDI
TDO

The following shows the instruction register when the PS TAP and ARM DAP are active in the system:

PS TAP IR [5:0] Dummy [5:0]

PL TAP IR [5:0]

ARM DAP IR [5:0]

TDI
TDO

The following shows the instruction register when the PS TAP and ARM DAP are active in the system:

X24600-091420
Zynq UltraScale+ Device TRM 1174
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1174

Chapter 39: System Test and Debug
IDCODE, IP_DISABLE, JTAG_STATUS, ERROR_STATUS, and BYPASS instructions are functional.
The rest of the instructions can become functional depending on the boot mode, eFUSE
states, and register settings.

When the PMU processes the boot header, it determines if the system remains in its secure
mode or transitions to a non-secure mode.
Zynq UltraScale+ Device TRM 1175
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1175

Chapter 39: System Test and Debug
Control Register

The JTAG control register, JTAG_CTRL, enables the PL TAP and Arm DAP controllers onto the
JTAG chain (the PS TAP controller is always present). The control bits are listed in Table 39-5.
This register is reset by a system and POR. Regardless of these bit settings, the chain length
remains at 12 bits.

Controller Status Register

The status register provides information about the PS hardware version, device boot mode,
BIST results, security gates, and controller connections to the JTAG chain as listed in
Table 39-6.

Table 39‐5: PS TAP Controller JTAG Control Register

Bit Value Description

31:2 Reserved Reads 0.
1 Arm DAP Write 1 to enable the Arm DAP controller.
0 PL TAP Write 1 to enable the PL TAP controller.

Table 39‐6: PS TAP Controller Status Register

Bit Name Description

31-28 PS_VERSION Indicates the PS version, same as csu.version [ps_version] register bit

27-24 PL_FABRIC_PIPE Indicates which of the PSTP fabric port access have a pipeline stage. See
Section 6.2.1 for details.

23-20 PSTP_CTRL Indicates the operating mode of the PSTP. See Section 6.2.1 for details.
19 MODE_IS_DFT Indicates that the part has successfully booted in DFT mode
18 Unused Constant 0 value.

17-14 BOOT_MODE Device boot mode

13 CBR_DONE Configuration BootROM (CBR) has finished running and the full JTAG
instruction set is available

12 SCAN_CLEAR_FAILED Pre-boot SCAN CLEAR function failed
11 LBIST_FAILED Pre-boot LBIST function failed
10 BISR_FAILED Pre-boot BISR function failed
9 PL_PWR_STS Power status of the PL, cannot connect to the PL TAP if this bit is 0
8 FUSE_MDM_DIS Indicates that the CSU MDM disable fuses are programmed.
7 DDR_PHY_SEC_GATE Indicates if the DDR_PHY Security Gate is disabled.
6 PMU_MDM_SEC_GATE PMU MDM security gate is disabled
5 PL_TAP_SEC_GATE PL TAP security gate is disabled
4 ARM_DAP_SEC_GATE Arm DAP security gate is disabled
3 ARM_DAP Arm DAP is connected in the JTAG chain
Zynq UltraScale+ Device TRM 1176
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1176

Chapter 39: System Test and Debug
Error Status Register

JTAG is the primary method for transmitting error codes out of the device. The error status
register connects the error status from the PMU to the JTAG. The data then shifts the status
serially out of the device. The error status register is 121-bits long and the output can be
masked with an eFUSE for security purposes.

The error status from the PMU is ORed with the eFUSE during the capture phase of the JTAG
state machine when the error status instruction is selected. The errors are only masked to
the JTAG error status register. The errors can still be read inside the device from the PMU or
the PL (depending on the error).

• 47 bits for hardware errors (these also go to the PL or can be read from the PMU).
• 74 bits for software errors (these can be read from PMU).

The bits for the error status register are described in Table 6-13.

Note: While reading the JTAG_ERROR register, if BISR_failed is asserted, the JTAG_ERROR register
must be read again. If it is still asserted after the second read, then this is a true error condition.
Otherwise, ignore the first read.

PS TAP Controller

The PS TAP controller can provide system access for itself, and the PL TAP and Arm DAP
controllers. The PS TAP controller also provides basic PS-related functions. The device
IDCODE is accessible using the PS TAP controller in most all device modes. Boundary-scan
requires access to the PL TAP controller, i.e., the device must boot and the security gate
must be disabled.

The PS TAP controller is designed to always be active in the system. To ensure security, the
PS TAP controller has a limited command set. Before the PS boot is complete (CSU ROM
code completes), the PS TAP can perform these instructions:

• BYPASS
• IDCODE

After the PS is booted, the PS TAP controller can be used to control the configuration of the
JTAG chain (PL and DAP access). Once access to the PL is established, boundary-scan
functions can be performed. The PL access and Arm DAP can only be connected to the JTAG

2 PL_TAP PL TAP is connected in the JTAG chain
1 0
0 1

Table 39‐6: PS TAP Controller Status Register (Cont’d)

Bit Name Description
Zynq UltraScale+ Device TRM 1177
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1177

Chapter 39: System Test and Debug
chain if the security gate has been disabled by either the CSU ROM (non-secure boots) or by
secure software running on the PS. With non-secure boots, the CSU ROM automatically
links the PL TAP and Arm DAP to the JTAG.

The PS TAP controller state machine is reset to the test-logic-reset state by power-cycling
the LPD.

• The JTAG_TOGGLE_DETECT register is reset by PS_POR_B. The JTAG toggle detect is a
security feature used to trigger a tamper response in the CSU when the JTAG signals are
toggled.

• The JTAG_DAP_CFG register is reset by a system reset.
• The rest of the registers are reset when the PS TAP controller state machine is in the

test-logic-reset state.
• Assert a reset to the PS TAP controller through the software.

PL TAP Controller

The PL TAP controller connects to the boundary scan logic and a PL configuration interface.

Arm DAP Controller
The DAP controller is based on the Arm debug interface version 5 (ADIv5) comprising a
number of components supplied in a single configuration. All the supplied components fit
into the various architectural components for the debug ports (DPs), which are used to
access the DAP from an external debugger, and access ports (APs), to access on-chip system
resources. The debug port and access ports together are referred to as the DAP. The DAP
controller supports the following features.

• Central controller for all CoreSight debug components with the PS.
• Interface to external Arm debug tool through the JTAG interface.
• Direct address space access without halting CPUs.
• Invasive/non-invasive debug control.
• Secure/non-secure debug support.
Zynq UltraScale+ Device TRM 1178
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1178

Chapter 39: System Test and Debug
Figure 39-3 shows the access port (AP) options.

Arm DAP Controller Functionality

External Flash Memory Programming

To program the non-volatile flash, the DAP controller must be enabled. After the DAP
controller is enabled, flash programming routines can be downloaded into the OCM and a
DAP initiated wake-up request for the RPU can be sent to the PMU to execute flash
programming routines in the OCM. Using the OCM as a data FIFO, continue pushing flash
programs into the OCM buffer through JTAG and the RPU, running flash programming
routines to program flash using data from the OCM buffer. When the network is enabled,
flash programming can be downloaded from the network as part of a flash programming
routine.

X-Ref Target - Figure 39-3

Figure 39‐3: Arm Debug Interface, Showing the Access Port Options

Debug Components
Register Sets

Processor Debug
Register Sets

ROM Table

AXI-AP

APB-AP

JTAG-AP

Debug Port

Physical
Connection

AP
Access

System Bus
Access

System
Memory

JTAG
Connections

Debug Bus
Access

System Reset
(SRST)

AXI Interconnect

Arm DAP

X15262-052918
Zynq UltraScale+ Device TRM 1179
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1179

Chapter 39: System Test and Debug
PS Software Debug

The DAP controller must be enabled to use the software debug features in the device. Once
enabled, the debug functionality described in the CoreSight Functional Description section
can be used to debug the RPU, APU, and PL.

PS-PL Debug

This mode requires PS software and PL logic debug at the same time. There are two
different methods to support this debug.

Xilinx Debug Tools

For a complete system debug environment, both the Arm DAP and PS TAP controllers must
be enabled. The processor software debug for the PS uses the DAP controller (CoreSight)
and the PL software debug process uses the PS TAP controller. These debug environments
are described in the CoreSight Functional Description section.

Third-Party Tool Support

A third-party debugger can connect to the Arm DAP controller using one of the following
methods.

1. Connect the PJTAG interface via the MIO pins. Enable the DAP controller onto the PJTAG
interface chain.

2. Connect to the PS JTAG interface using the dedicated pins. Enable the DAP controller
onto the PS JTAG interface chain (not the PJTAG chain).

The third party debugger connects to the Vivado Design Suite using a Xilinx virtual
cable (XVC) interface and can also connect to the DAP controller using a common cable
interface.

Arm DAP Reset Mechanism

DAP is reset by any of the following.

• POR
• LBIST scan clear
Zynq UltraScale+ Device TRM 1180
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1180

Chapter 39: System Test and Debug
CoreSight Functional Description

CoreSight Environment

The PS software debug system for the RPU and APU MPCores is built around the Arm®
CoreSight™ SOC-400 components conforming to the Arm CoreSight version 2.0
specification [Ref 42]. The debug functionality is complemented by additional components
from Xilinx that are documented in this chapter.

The CoreSight debug environment is accessed via JTAG to reach the Arm DAP and PS TAP
controllers. The PL software debug features and the device boundary scan functions are
controlled by the PL TAP controller.

The advanced trace bus (ATB) is an AMBA3 stream-like bus protocol used to transport trace
data. The ATB components, such as the funnel and the trace memory controller (TMC), are
used to manage trace data.

Debug Features

The CoreSight components provide the following capabilities.

• On-chip multicore debug including break point and single-step.
• For the APU MPCore, the embedded trace macrocell™ (ETM) is integrated into the

MPCore and captures all CPU waypoints.
• For the RPU MPCore, the ETM captures CPU traces and is external to the MPCore.
• CoreSight system trace macrocell (STM) captures software driven trace and PL events.
• Cross-trigger interface (CTI) and cross-trigger matrix (CTM) allows cross triggering

support among multiple trace-capture modules.
• Trace memory controller (TMC) with 8 KB ETF buffer captures and aggregates trace

data from individual components. ETF can be used as a trace buffer, which software can
read. It can also be used as a FIFO (to absorb bursts of trace traffic) for trace that is
output into DDR or the trace-port interface unit (TPIU).

• TPIU is output to MIO or EMIO with double data rate and configurable width, with clock
speed up to 125MHz.

• Arm CoreSight standard programming models for standard tool support.
• Standard bus interfaces for CoreSight compliant third-party cores.
• JTAG functionality:

° All trace capture modules are accessible from external JTAG interface via the Arm
DAP controller or an AXI bus master.
Zynq UltraScale+ Device TRM 1181
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1181

Chapter 39: System Test and Debug
° Low-power debug mode. JTAG, through the DAP, has direct memory-space
accessibility without stopping the CPU low-power debug mode.

• System debug:

° Debug and trace visibility of the whole system.

° On-chip and off-chip buffers and storage for trace data.

° Time stamping to co-relate events.

° Single debugger connecting point for entire system debug.
• Xilinx debug components:

° Dump trace from selected AXI interconnect channels.

° Packetized trace for compatibility with Arm tools.

° General purpose signals to and from the PL.

° Trigger signals to and from the PL.

System Test and Debug Overview

The DAP controller accesses system test and debug functions. It is a CoreSight component
of the access and control class, and connects to other components using the programming
bus. The DAP controller provides two interfaces to access the CoreSight infrastructure.

• External interface using JTAG, from the device pinout.
• Internal interface using the APB slave, from the slave interconnect.

A debugger can use JTAG to communicate with the CoreSight infrastructure, while software
running on a CPU uses the APB through memory-mapped addresses assigned to the
CoreSight infrastructure.

The DAP controller can forward system access requests arriving through either the JTAG or
APB slave interfaces to the requested CoreSight components. Also, the DAP controller has
an AHB master interface on the LPD AXI interconnect to access system elements in the PS
other than the CoreSight components.

The DAP controller can forward system memory requests from the JTAG interface to the
other system elements in the PS subject to authentication.

The debug system is spread across three power domains (LPD, FPD, and PLPD). Although all
power domains should be turned on for full functionality, the basic JTAG functions work as
long as the LPD and PLPD power is present. Power is discussed in Clocks, Reset, and Power
Domains.
Zynq UltraScale+ Device TRM 1182
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1182

Chapter 39: System Test and Debug
Debug Definition

Debug refers to features used to observe or modify the state of parts of the design.
Features used for debug include the ability to read and modify register values of processors
and peripherals. Debug also includes the use of complex triggering and monitoring
resources. Debug frequently involves halting execution after a failure is observed, and
collecting state information retrospectively to investigate the issue.

Trace Definition

CoreSight components provide features that allow for continuous collection of system
information for later off-line analysis. Execution trace generation macrocells exist for use
with processors, software can be implemented with dedicated trace generation, and some
peripherals can generate performance monitoring trace streams. Trace and debug are used
together at all stages in the design flow from initial platform bring-up, through software
development and optimization, and into in-field debug or failure analysis. Historically,
external JTAG and self-hosted internal monitor methods of debugging exist.

Conventional JTAG Debug (External Debug)

External debug is an invasive debug with the processor halted.

• Breakpoints and watch-points are used to halt the processor on a specific activity.
• A debug connection to examine and modify registers and memory, and provide

single-step execution

Conventional Monitor Debug (Self-hosted Debug)

Self-hosted debug is an invasive debug with the processor running using a debug monitor
that resides in memory.

Trace Debug

Trace debug is a non-invasive debug with the processor running at full speed.

• A collection of information on instruction execution and data transfers.
• Delivery off-chip in real-time, or capture in on-chip memory.
• Tools to merge data with source code on a development workstation for future analysis.
• The TPIU.EXTCTL_OUT_Port register must be set to output trace into the PL.

CoreSight technology addresses the requirement for a multi-processor debug and trace
solution with high bandwidth for entire systems beyond the processor, despite increased
complexity and clock speeds. Efficient use of pins made available for debug is crucial.
Zynq UltraScale+ Device TRM 1183
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1183

Chapter 39: System Test and Debug
The entire CoreSight debug circuit is distributed across the low and full-power domains.
Between these two domains, the low-power domain is the always-on power domain. To
support RPU MPCore debug in low-power mode, and minimize CoreSight power, the key
top-level debug components are allocated in the LPD.

For further information, see the CoreSight on-chip trace and debug [Ref 53]
documentation.

Security

CoreSight components using TrustZone provide security using four authentication signals:
DBGEN, NIDEN, SPIDEN, and SPNIDEN. Refer to Debug Authentication in the JTAG Resets
section.

For further information, see the CoreSight components [Ref 51] and the Arm CoreSight
architecture [Ref 52] documentation.

Debug Authentication

Arm CoreSight components use four control signals, DBGEN, NIDEN, SPIDEN, and SPNIDEN
to authenticate invasive and non-invasive debug based on a TrustZone secure or
non-secure status. An invasive debug is any debug operation that can cause the behavior of
the system to be modified. A non-invasive debug, such as trace, is unaffected.

Note: References to secure and non-secure state in this section refer to the TrustZone state and
have nothing to do with boot security.

The authentication rules are as follows.

• If DBGEN is Low, then no invasive debug must be permitted.
• If NIDEN is Low and DBGEN is Low, then no debug is permitted.
• If NIDEN is Low and DBGEN is High, then invasive and non-invasive debug are

permitted.
• If SPIDEN is Low, then no secure invasive debug must be permitted.
• If SPNIDEN is Low and SPIDEN is Low, then no secure debug is permitted.
• If SPNIDEN is Low and SPIDEN is High, then invasive and non-invasive secure debug is

permitted.
Zynq UltraScale+ Device TRM 1184
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1184

Chapter 39: System Test and Debug
Table 39-7 shows the debug authentication logic.

Components

Figure 39-4 shows where the debug infrastructure is located in the PS. It provides a conceptual
view. The four ETMs next to the APU MPCore CPUs and their four CTIs and one CTM are inside
the APU block; the two ETMs next to the RPU MPCore CPUs and their two CTIs and one CTM are
inside the RPU block. The debug infrastructure (Figure 39-4) is split into two power domains
(gray for low power). As mentioned above, this figure is intended to show a conceptual view of
the debug infrastructure. It is not detailed enough to provide exact connections. In particular,
JTAG connections have been abstracted. Please refer to Figure 39-1 for a more detailed diagram
of the JTAG Chain connectivity.

Table 39‐7: Debug Authentication

SPIDEN DBGEN SPNIDEN NIDEN
Invasive Non-invasive

Secure Non-secure Secure Non-secure

X 0 X 0 No No No No
0 0 0 1 No No No Yes
0 0 1 1 No No Yes Yes
0 1 0 X No Yes No Yes
0 1 1 X No Yes Yes Yes
1 0 X 1 No No Yes Yes
1 1 X X Yes Yes Yes Yes
Zynq UltraScale+ Device TRM 1185
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1185

Chapter 39: System Test and Debug
JTAG and DAP Overview

The JTAG chain is accessed using a standard IEEE Std 1149.1 JTAG interface. It is designed to
facilitate system debug software and PL development, and to serve as a test port for
boundary scan for board-level testing. The JTAG interfaces and controllers are described in
JTAG Chain:.

• Single JTAG port in the PS to support both PS and PL.
• Arm DAP for loading programs, system test, and PS debug.

X-Ref Target - Figure 39-4

Figure 39‐4: CoreSight Debug Block Diagram

PL
Configure

Arm DAP

ROM

Security
Gate

TD
I

PS TAP
CMD

PS
JT

AG
 D

ed
ic

at
ed

 P
in

s

PL
TAP

Debug
Interfaces

PL

Security
Gate

TDO TDI

TD
O

Trace Port
Output to MIO

Funnel2

32b

SRAM
(8 KB)

64b

ETR

TPIU
32b

AXI 32b

CTM

4

CTM

2x
 C

TI

Trace ATB

HW ev (2)

HW ev (2)

Main Switch

AX
I 3

2b

Switch

AXI 32b to
Top Switch

Events (60)

APB

APB-AP

AXI-AP

PJTAG
 Pins via M

IO

Timestamp

Replicator

2x

ET
M

2x CTI

2x
/4

x
ET

M

2x or 4x CTI

Control Registers

ETF

TDI TDO

CTM FTM Triggers (2x4)

GPIO (2x32)

Security
Gate

Funnel

ETF1

Peripheral Channel

PMU

2x
 o

r 4
x

C
or

te
x-

A5
3

2x

C
or

te
x-

R
5

soc_debug

STM

AH
B

32
b

Funnel0

Trace Port
Output to EMIO

X15258-052918
Zynq UltraScale+ Device TRM 1186
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1186

Chapter 39: System Test and Debug
Bus Structures

The CoreSight architecture employs the following buses to interact with each other within
the debug infrastructure, and with the rest of the PS.

Debug System Control and Access

This class of CoreSight components provides the capability to control and access the debug
infrastructure, in particular, from an off-chip debugger tool.

Debug Access Port

The debug access port (DAP) provides off-chip debug tools with the capability to access the
debug infrastructure and the PS, including all debug components and all memory-mapped
locations of the PS. For security, authentication requirements must be met to be granted
access rights. See Debug Authentication.

The DAP is divided into the following sub-components.

JTAG Four standard JTAG pins (without the optional TRST). These pins are used by debugger
tools to interact with the debug infrastructure.

ATB AMBA trace bus. This bus has 32-bit data and a 7-bit ID, with a ready/valid handshake.
The ATB also provides a flush mechanism.

Debug APB AMBA APB protocol. The DAP controller is the master of this bus. The DAP controller
uses this bus to access all other CoreSight components.

System APB AMBA APB protocol. The DAP is a slave of the system APB bus. It is on the system
memory map assigned to this APB bus.

AXI AMBA AXI protocol. The DAP is the master of this bus. The DAP controller uses the AXI
bus to access everything on the system map, subject to authentication.

JTAG-DP Processes JTAG requests, decodes to select an access port (***-AP), requests for power
on, and requests for debug reset.

AXI-AP Provides an AXI master port for access to system memory-mapped locations (subject
to authentication).

APB-AP Provides an APB master port for access to the debug APB.
JTAG-AP Provides eight JTAG master ports to control on-chip TAP controllers.
APBMUX Provides access to the debug APB from the system (internal).
DBGROM Provides pointers to other CoreSight components on the debug APB.
Zynq UltraScale+ Device TRM 1187
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1187

Chapter 39: System Test and Debug
Embedded Cross Trigger

The embedded cross trigger (ECT) provides coordination between CoreSight components.
This ECT consists of several cross-trigger interfaces (CTI) and cross-trigger matrices (CTM)
connected together. A single CTI can be operated without the requirement for a CTM. The
debug system enables debug support for multiple logic-based debug cores and cross
triggering between the cores and the processing system.

The main function of the ECT is to pass debug events from one debug component to
another. For example, the ECT can communicate debug state information from one core to
another, so that (if required) program execution on both processors can be stopped at the
same time. The ECT can (optionally) be used to allow an Arm CPU and the programmable
logic (PL) to cross-trigger each other, facilitating system-level software debug between the
PS and PL.

When performing ECT, allow the Arm CPU and FPGA interconnect to cross trigger each
other to improve system-level debug capability.

CTI

The CTI combines and maps the trigger requests, and broadcasts them to all other
interfaces on the ECT as channel events. When the CTI receives a channel event, it
maps it onto a trigger output. This enables subsystems to cross trigger with each
other. The receiving and transmitting of triggers is performed through the trigger
interface.

CTM The CTM controls the distribution of channel events. It provides channel interfaces for
connection to either CTIs or CTMs. This enables multiple CTIs to be linked together.
Zynq UltraScale+ Device TRM 1188
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1188

Chapter 39: System Test and Debug
Figure 39-5 shows how CTIs and CTM are used in a generic setup.

CTM forms an event broadcasting network with multiple channels. A CTI listens to one or
more channels for an event, maps a received event into a trigger, and sends the trigger to
one or more CoreSight components connected to the CTI. A CTI also combines and maps
the triggers from the connected CoreSight components and broadcasts them as events on
one or more channels. Through its register interface, each CTI can be configured to listen to
specific channels for events or broadcast triggers as events to specific channels.

In Figure 39-5, there are four channels. The CTI at the top is configured to propagate the
trigger event on Trigger Input 0 to Channel 0. Other CTIs can be configured to listen to this
channel for events and broadcast the events through trigger outputs, to the debug
components connected to these CTIs. CTIs also support channel gating such that selected
channels can be turned off, without having to disable the channel to trigger I/O mapping.

In Zynq UltraScale+ MPSoCs, ECT is configured with four broadcast channels, nine CTIs, and
a CTM. Table 39-8 shows the trigger input and trigger output connections of each CTI,
which are hard wired connections.

X-Ref Target - Figure 39-5

Figure 39‐5: Generic CTI and CTM Architecture

Channel
Interface

Channel
Interface

Channel Interface

CTI

Trigger Interface

Trigger Inputs[0:7]

Trigger Outputs[0:7]

CTI

Channel Interface
Channels[0:3]

Trigger
Interface

Trigger
Interface

CTI CTM CTI

X21039-080318
Zynq UltraScale+ Device TRM 1189
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1189

Chapter 39: System Test and Debug
Table 39‐8: CTI Connections

CTI Trigger Port CTI Signal CTI Trigger Port CTI Signal

ETF (CORESIGHT_SOC_CTI_0) R5-{0,1}
IN 0 ETF 1 FULL IN 0 DBGTRIGGER
IN 1 ETF 1 ACQCOMP IN 1 PMUIRQ
IN 2 ETF 2 FULL IN 2 ETM EXTOUT[0]
IN 3 ETF 2 ACQCOMP IN 3 ETM EXTOUT[1]
IN 4 ETR FULL IN 4 COMMRX
IN 5 ETR ACQCOMP IN 5 COMMTX
IN 6 - IN 6 ETM TRIGGER
IN 7 - IN 7 -

OUT 0 ETF 1 FLUSHIN OUT 0 EDBGRQ
OUT 1 ETF 1 TRIGIN OUT 1 ETM EXTIN[0]
OUT 2 ETF 2 FLUSHIN OUT 2 ETM EXTIN[1]
OUT 3 ETF 2 TRIGIN OUT 3 - -(CTIIRQ, not connected)
OUT 4 ETR FLUSHIN OUT 4 -
OUT 5 ETR TRIGIN OUT 5 -
OUT 6 TPIU FLUSHIN OUT 6 -
OUT 7 TPIU TRIGIN OUT 7 DBGRESTART

FTM-STM (CORESIGHT_SOC_CTI_1) A53-{0,1,2,3}
IN 0 FTM IN 0 DBGTRIGGER
IN 1 FTM IN 1 PMUIRQ
IN 2 FTM IN 2 -
IN 3 FTM IN 3 -
IN 4 STM TRIGOUTSPTE IN 4 ETM EXTOUT[0]
IN 5 STM TRIGOUTSW IN 5 ETM EXTOUT[1]
IN 6 STM TRIGOUTHETE IN 6 ETM EXTOUT[2]
IN 7 STM ASYNCOUT IN 7 ETM EXTOUT[3]

OUT 0 FTM OUT 0 EDBGRQ
OUT 1 FTM OUT 1 DBGRESTART
OUT 2 FTM OUT 2 CTIIRQ
OUT 3 FTM OUT 3 -
OUT 4 STM HWEVENTS OUT 4 ETM EXTIN[0]
OUT 5 STM HWEVENTS OUT 5 ETM EXTIN[1]
OUT 6 - OUT 6 ETM EXTIN[2]
OUT 7 HALT SYSTEM TIMER OUT 7 ETM EXTIN[3]
Zynq UltraScale+ Device TRM 1190
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1190

Chapter 39: System Test and Debug
PL to PS and PS to PL Cross Triggering

PL to PS and PS to PL are the most common use cases of cross triggering in Zynq
UltraScale+ MPSoCs. There are four trigger inputs on PL CTI, which can be configured to
halt (EDBGRQ) any of the CPUs. Similarly, the four PL CTI trigger outputs can be triggered
when a CPU is halted (DBGACK). The PL trigger inputs and outputs can be connected to ILA
cores so that an ILA trigger can halt the CPUs and the ILA can be triggered to capture the
signals it is monitoring when any of the CPUs are halted. For more information on setting
up cross triggers to the FTM in the Vivado tools, see the "Cross Trigger Design" section in
Vivado Design Suite: Embedded Processor Hardware Design (UG940) [Ref 24].

Trace Sources

This class of CoreSight components captures traces, implementing the non-invasive part of
the Arm CoreSight architecture. A trace source component normally compresses and
formats trace information into packets and sends onto an ATB.

• APU MPCore Embedded Trace Macrocell
• RPU MPCore Embedded Trace Macrocell
• System Trace Macrocell
• ATB Protocol
• PL Fabric Trigger Macrocell

APU MPCore Embedded Trace Macrocell

The APU MPCore embedded trace macrocell (ETM) is a module that performs real-time
instruction flow tracing for the APU MPCore, based on the program flow trace (PFT)
architecture. The APU MPCore ETM generates information used by the trace tools to
reconstruct the execution of all or part of a program. The PFT architecture assumes that the
trace tools can access a copy of the application code being traced. For this reason, the ETM
generates traces only at certain points in program execution, called waypoints. This reduces
the amount of trace data generated by the ETM. Waypoints are changes in the program flow
or events, such as an exception. The trace tools use waypoints to follow the flow of program
execution.

The APU MPCore ETMs can trace the following.

• Indirect branches, with target address and condition code.
• Direct branches with only the condition code.
• Instruction barrier instructions.
• Exceptions, with an indication of where the exception occurred.
• Changes in processor instruction set state.
Zynq UltraScale+ Device TRM 1191
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1191

Chapter 39: System Test and Debug
• Changes in the processor security state.
• Context-ID changes.
• Entry to and return from debug state when halting debug mode is enabled.
• Cycle count between traced waypoints.
• Global system timestamps (binary value of timestamp).
• Target addresses for taken direct branches.

RPU MPCore Embedded Trace Macrocell

The RPU MPCore ETM provides real-time instruction trace and data trace for the RPU
MPCore. The RPU MPCore ETM generates information used by the trace software tools to
reconstruct the execution of all or part of a program, with the following features. Each RPU
MPCore CPU includes its own ETM.

• All instructions, including condition code pass/fail and dual issue information.
• Load/store address and data values.
• Data values used in coprocessor register transfers.
• Values of context-ID changes.
• Target addresses of taken direct and indirect branch operations exceptions.
• Changes in processor instruction set state.
• Entry to and return from a debug state when the halting debug mode is enabled.
• Cycle counts between executed instructions.
Zynq UltraScale+ Device TRM 1192
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1192

Chapter 39: System Test and Debug
System Trace Macrocell

The system trace macrocell (STM) provides software trace instrumentation. The STM
(Figure 39-6) provides an APB interface for software and debugger access, and connects to
the ATB for trace output, along with authentication inputs, trigger events, and acknowledge.

The STM supports a trace stream that conforms to the MIPI System Trace Protocol version 2.
The STM block is a software application driven trace source to generate an application
software instrumentation trace (SWIT). The STM hardware event observation interface
enables monitoring and tracing of 64 hardware events, each of which is represented by a
single bit. This functionality can be used to monitor interrupts, cross-triggers, and other
signals in the system.

X-Ref Target - Figure 39-6

Figure 39‐6: STM Block Diagram

Packet
Generation FIFO

Register Set

Arbiter

Authentication
Interface

APB

Timestamp
Interface

ATB

AXI

Hardware
Events

X15259-092817
Zynq UltraScale+ Device TRM 1193
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1193

Chapter 39: System Test and Debug
STM bits [63:30] are rising edge trigger, where:

• 63:62 are inverted TRIGOUT[5:4] from cross-trigger interface (CTI)
• 61:60 are non-inverted TRIGOUT[5:4] from CTI
• 59:30 are PL events, stm_event[59:30]

STM bits [29:0] are level trigger, where:

• 29:0 are PL events, stm_event[29:0]

The STM supports the following functions.

• printf style debugging.
• Trace OS and application events.
• Emit diagnostic system information.
• Multiple channels for multiple processors to share without conflict with the other.
• Trace hardware events.
• Trace timestamp with global timestamp.
• Generates the MIPI STPv2.

The Arm CoreSight STM-500 System Trace Macrocell Technical Reference Manual, r0p0ARM
[Ref 44] contains more details on the STM.

STM can provide support for up to 128 MasterIDs with 64k channels. The 16 MB aligned
address space is allocated to the STM instrumentation trace for the channels. All of the
MasterIDs overlap to the same 16 MB of address space. The channels are allocated by the
software to the MasterID. The STM AXI slave is write-only. The reads to an STM AXI slave
always returns OKAY with all-0 data.

The AXI AWADDRS[31:0] is used in the STM as follows:

• Bits [31:30] are not used.
• Bits [29:24] defines bits [5:0] of MasterID.
• Bits [23:8] define the Channel ID.
• Bits [7:0] define the address space of a single stimulus port.

The Zynq UltraScale+ MPSoC maps the interconnect AXI to the STM AXI-slave as shown.

STM_AWADDRS[23:0] = AXI_AWADDR[23:0] //Channels
STM_AWADDRS[29:24] = function of MasterID //MasterID
Zynq UltraScale+ Device TRM 1194
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1194

Chapter 39: System Test and Debug
The MasterID can be mapped to the STM MasterID as listed in Table 39-9.

ATB Protocol

The ATB protocol is part of the AMBA 3 protocol family. The ATB protocol defines how trace
information transfers between components in a trace system. The ATB is a common bus
used by the trace components to pass format-independent trace data through a CoreSight
system. A trace component or platform that has trace capabilities requires an ATB interface.
The ATB interfaces are designated according to one of two functions.

• Master, an interface that generates trace data on the ATB interface.
• Slave, an interface that receives trace data on the ATB interface.

The ATB bus provides throughput to support the following debug conditions at typical trace
debug settings.

• 4x APU MPCore PTM
• 1x APU MPCore ETM
• System trace macrocell (STM)

PL Fabric Trigger Macrocell

The PL fabric trigger macrocell (FTM) is a feed-through module for the cross-trigger signals
to and from the PL. The FTM also provides a GPIO to/from the PL for simple communication.
The FTM has the following features.

• A CoreSight component that is compliant with the Arm specification.
• Four trigger inputs and four trigger outputs.
• 32-bit general purpose inputs from the PL
• 32-bit general purpose outputs to the PL.
• Topology detection for trigger signals using integration mode.

Table 39‐9: Zynq UltraScale+ MPSoC MasterID Mapped to the STM MasterID

MasterID
Indicates

STM_AWADDRS[29:24] Notes

APU-CPU<n> {MasterID[9:6], ACPU<n>} APU request must be mapped to the STM MasterID.
RPU-CPU<n> {MasterID[9:6], RCPU<n>} AWID needs to be mapped to RPU#
Others MasterID[9:4] Use the upper 4 bits of the MasterID to uniquely

identify the masters.
Zynq UltraScale+ Device TRM 1195
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1195

Chapter 39: System Test and Debug
Figure 39-7 shows the steps involved in FTM configuration.
X-Ref Target - Figure 39-7

Figure 39‐7: FTM Configuration Flowchart

Start

Check if
PADDRDBG31==0

Write OX
0xC5ACCE55 in the

LOCK_ACCESS
register

Write 0
the IT_CTRL register

Set the claim tag
bit in the

CLAIM_SET register

Read the device ID

Read the device type

Trigger the output register

Trigger the output/input
acknowledge register

Yes

No

X15973-092817
Zynq UltraScale+ Device TRM 1196
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1196

Chapter 39: System Test and Debug
Trace Links

Funnels

The funnels combine packetized traces from several debug components onto the ATB bus.
Each funnel includes memory-mapped registers for programming enable/disable, priority,
etc. (refer to the FUNNEL3P and FUNNEL4P register sets).

There are three funnels:

• Funnel 0 connects to RPU in LPD (routed to FPD, FUNNEL3P).
• Funnel 1 connects to the APU MPCore (FPD, FUNNEL4P).
• Funnel 2 connects to Funnel 0, funnel 1, and STM (FPD, FUNNEL4P).

Replicator

The replicator duplicates a single ATB trace onto two ATB traces, with independent
handshake (valid/ready) signals, so that the same trace can be fanned out to two trace sinks.

Trace Sinks

TPIU

The trace-port interface unit (TPIU) outputs packetized trace data to an off-chip analyzer.
TPIU adds another layer of framing (packetization). The framing format is designed to make
it easy for an analysis tool to re-synchronize to the frame boundary.

The TPIU acts as a bridge between the on-chip trace data with separate IDs to a data stream
encapsulating IDs where required that is then captured by a trace port analyzer (TPA). The
internal formatter inserts source ID signals into the data packet stream so that trace data
can be re-associated with its trace source. It contains an asynchronous FIFO that enables
trace data to be driven out at a speed that is not dependent on the on-chip bus clock. The
internal trace-out block serializes formatted data before it goes off-chip. The TPIU includes
a pattern generator unit that provides a simple set of defined bit sequences or patterns that
can be output over the trace port and be detected by the TPA or other associated trace
capture device (TCD). The TCD can use these patterns to indicate if it is possible to increase
or decrease the trace port clock speed.
Zynq UltraScale+ Device TRM 1197
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1197

Chapter 39: System Test and Debug
TMC

The trace memory controller (TMC) provides on-chip storage and buffering of trace data
using RAMs. When configured as an embedded trace FIFO (ETF), the TMC functions as a
FIFO to absorb bursts of traces, with the attached RAMs as the FIFO memory. When
configured as an embedded trace router (ETR), the TMC can route the trace data into the PS
interconnect, through an AXI bus, eventually reaching a large memory pool like external
DDR or internal OCM.

There are two ETFs, one in the APU and the other one in the full-power domain. The reason
for using an ETF in the APU is to absorb bursts of trace packets from the four CPUs, after
they are combined and after the funnel in the APU.

There is one ETR, placed on one replicator output.

CoreSight Address Map
This section describes the CoreSight register architecture.

• Each component in the RPU is allocated a 4 KB register space; outside the RPU, each
component is allocated a 64 KB register space.

• Within each component register space, there are fixed locations for fixed purposes.
• Address 0x0 on the debug APB is a ROM table, pointing to all other components.
• Each component can be accessed at two address locations on the debug APB.

° When accessed from internal using system map, paddr[31] is forced to 0.

° When accessed from external through JTAG, paddr[31] can be 1 or 0.
• paddr[31]=1 and paddr[31]=0 are subject to different authentications. This is useful for

preventing rogue software on the RPU or APU MPCore from interfering with CoreSight
components.
Zynq UltraScale+ Device TRM 1198
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1198

Chapter 39: System Test and Debug
CoreSight components are allocated 8 MB of address space from FE80_0000 to
FEFF_FFFF. Figure 39-8 shows the detailed address space assignment for each debug
component. References to the detailed address map within each component space are as
follows.

DAP Arm CoreSight SoC-400 Technical Reference Manual [Ref 39], chapter 3.
Timestamp Arm CoreSight SoC-400 Technical Reference Manual [Ref 39], chapter 3.

Funnel Arm CoreSight SoC-400 Technical Reference Manual [Ref 39], chapter 3.
TPIU Arm CoreSight SoC-400 Technical Reference Manual [Ref 39], chapter 3.

CTI Arm CoreSight SoC-400 Technical Reference Manual [Ref 39], chapter 3.

STM Arm CoreSight STM-500 System Trace Macrocell Technical Reference Manual [Ref 44],
chapter 3.

TMC CoreSight Trace Memory Controller Technical Reference Manual [Ref 45], chapter 3.
Cortex-A53 ETM Arm Cortex-A53 MPCore Processor Technical Reference Manual [Ref 46], chapter 13.

Cortex-R5 ETM CoreSight ETM-R5 Technical Reference Manual [Ref 48], chapter 3.
Zynq UltraScale+ Device TRM 1199
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1199

Chapter 39: System Test and Debug
X-Ref Target - Figure 39-8

Figure 39‐8: CoreSight System Debug Address Map

ROM
...

TSGEN
Funnel 0
Funnel 1
Funnel 2

ETF 1
ETF 2

REPLIC
ETR
TPIU
CTI 0
CTI 1
CTI 2
STM
FTM
…..
…..
…..
…..

Cortex-R5 ROM
…..

Cortex-R5 0 Debug
Cortex-R5 1 Debug

…..
Cortex-R5 0 CTI
Cortex-R5 1 CTI

…..
Cortex-R5 0 ETM
Cortex-R5 1 ETM

…..
…..
…..

Cortex-A53 ROM
Cortex-A53 0 Debug

Cortex-A53 0 CTI
Cortex-A53 0 PMU
Cortex-A53 0 ETM

Cortex-A53 1 Debug
Cortex-A53 1 CTI

Cortex-A53 1 PMU
Cortex-A53 1 ETM

Cortex-A53 2 Debug
Cortex-A53 2 CTI

Cortex-A53 2 PMU
Cortex-A53 2 ETM

Cortex-A53 3 Debug
Cortex-A53 3 CTI

Cortex-A53 3 PMU
Cortex-A53 3 ETM

CoreSight

Internal Access
(RPU and APU)

External Access
(e.g., Debugger)

00FE80_0000
 ……
00FEFF_FFFF

0000_0000
…..

0010_0000
0011_0000
0012_0000
0013_0000
0014_0000
0015_0000
0016_0000
0017_0000
0018_0000
0019_0000
001A_0000
001B_0000
001C_0000
001D_0000

…..
…..

003E_0000
…..

003F_0000
003F_2000

…..

0074_0000
0073_0000
0072_0000
0071_0000
0064_0000
0063_0000
0062_0000
0061_0000
0054_0000
0053_0000
0052_0000

003F_8000
003F_9000

…..
003F_C000
003F_D000

…..
…..
…..

0040_0000
0041_0000
0042_0000
0043_0000
0044_0000
0051_0000

8000_0000
…..

8010_0000
8011_0000
8012_0000
8013_0000
8014_0000
8015_0000
8016_0000
8017_0000
8018_0000
8019_0000
801A_0000
801B_0000
801C_0000
801D_0000

…..

8074_0000
8073_0000
8072_0000
8071_0000
8064_0000
8063_0000
8062_0000
8061_0000
8054_0000
8053_0000
8052_0000
8051_0000

…..
803E_0000

…..
803F_0000
803F_2000

…..
803F_8000
803F_9000

…..
803F_C000
803F_D000

…..
…..
…..

8040_0000
8041_0000
8042_0000
8043_0000
8044_0000

System Map

X15260-092817
Zynq UltraScale+ Device TRM 1200
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1200

Chapter 39: System Test and Debug
Clocks, Reset, and Power Domains

JTAG and Debug Clocks

Most of the components in the CoreSight debug logic have only one clock input. Power
domain crossings use APB asynchronous bridges, and ATB asynchronous bridges.
Table 39-10 lists the JTAG and debug clocks.

Debug Logic Resets

Table 39-11 lists the reset signals generated by the CRL_APB.RST_LPD_DBG register in the PS
reset subsystem.

JTAG Resets

The JTAG control unit is reset by a system (SRST) or a POR.

Table 39‐10: Clocks

Clock Name
Power

Domain
Source Where Used

JTAG test clock Aux TCK input pin JTAG-DP
AHB_CLK LPD SysOsc (internal ring oscillator) JTAG-DP, AXI-AP, APB-AP, and JTAG-AP
DBG_LPD_CLK LPD CRL_APB.DBG_LPD_CTRL RPU debug logic and funnel
DBG_FPD_CLK0 FPD

CRF_APB.DBG_FPD_CTRL
APU debug logic

DBG_FPD_CLK1 FPD STM, funnel, ETF, ETR, TPIU, CTIs, and CTMs
DBG_TSTMP_CLK FPD Timestamp network
DBG_TRACE_CLK FPD CRF_APB.DBG_TRACE_CTRL TPIU, double data rate
PL_PS_TRACE_CLK FPD PL input TPIU, double data rate

Table 39‐11: Debug Logic Resets

Bit Field Power Domain Description

rpu_dbg{0, 1}_reset LPD Reset debug logic in the RPU cores
dbg_lpd_reset LPD Reset debug logic in the LPD
dbg_fpd_reset FPD Reset debug logic in the FPD
Zynq UltraScale+ Device TRM 1201
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1201

Chapter 39: System Test and Debug
Power

Power-up Request and Acknowledge

The JTAG debug port (JTAG-DP) provides a few signals for conveniently requesting for
power-on from the debugger. Further details are provided in the CoreSight SoC-400 System
Design Guide [Ref 41]. The following is a summary.

Powering up both is required as the first step of debugging via CoreSight. Each pair consists
of a request and an acknowledgment, and can be used to communicate to the PMU.
Although they were originally intended to be used for debug power domain and system
power domain, they are used instead as follows.

• CDBGPWRUPREQ, CDBGPWRUPACK

° Controlled by CTRL/STAT[29:28] register bits of JTAG-DP

° Used to power up the two Cortex-R5F MPCore CPU islands
• CSYSPWRUPREQ, CSYSPWRUPACK

° Controlled by CTRL/STAT[31:30] register bits of JTAG-DP

° Used to power up the entire FPD

Power Domains

The debug module is supported in three power domains. Refer to Table 39-12: JTAG and
CoreSight Split Between Power Domains for more details. Whenever the DAP controller is
available, the system is ready to debug the LPD; because the DAP is in the LPD. If the LPD is
powered off, the DAP cannot be used.

A request needs to passed through the DAP (to the PMU_GLOBAL register) to power on the
FPD and start an FPD debug.
Zynq UltraScale+ Device TRM 1202
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1202

Chapter 39: System Test and Debug
JTAG and Debug Logic Power Supplies

The CoreSight debug system is spread across three power domains. Although all
power-domains should be turned on, the basic JTAG functions work as long as the
low-power domain (LPD) and PL power domain (PLPD) are active. The PL TAP controller is
required to run a boundary scan (BSCAN). The DAP controller has components in the
full-power domain (FPD) for APU debug. See Table 39-12.

I/O Signals
The JTAG test and TPIU debug signals are listed in Table 39-13 and Table 39-14.

JTAG Interface Signals on MIO

The PS JTAG interface is provided on a dedicated set of signals, which are listed in Table 2-3.
The PJTAG interface signals are listed in table Table 39-13.

Table 39‐12: JTAG and CoreSight Split Between Power Domains

LPD FPD PLPD

PS TAP controller
DAP controller
Cortex®-A53 CTI, CTM, and ETM
Debug APB (path to the
Cortex-A53 debug APB)
ATB and Funnel 0

All CTI/CTM except the Cortex-A53 CTI/CTM.
Debug APB except branch to the Cortex-A53.
All of trace related components:
• Cortex-A53 ETM
• STM
• ATB and Funnels 1 and 2
• TMC
• TPIU

PL TAP controller

Table 39‐13: PJTAG I/O Interface

MIO EMIO

Signal Name Index(1) Pins I/O
Default Input to

Controller
TBD

TCK 3 0, 12, 26, 38, 52, 58 I 0
TDI 0 1, 13, 27, 39, 53, 59 I 0
TDO 1 2, 14, 28, 40, 54, 60 O ~
TMS 2 3, 15, 29, 41, 55, 61 I 0

Notes:
1. The index numbers are shown in Table 28-1.
Zynq UltraScale+ Device TRM 1203
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1203

Chapter 39: System Test and Debug
TPIU Data Output on MIO and EMIO

The CoreSight TPIU data output signals are independently routed to the MIO using the
IOU_SLCR.MIO_PIN_xx registers. Unrouted signals default to the EMIO interface. The TPIU
output interface signals are listed in Table 39-14.

The MIO pins are described in the Chapter 28, Multiplexed I/O. The EMIO signals are
described in the Zynq UltraScale+ MPSoC Processing System: LogiCORE IP Product Guide
PG201 [Ref 5].

Table 39‐14: CoreSight TPIU I/O Interfaces

MIO EMIO

Signal Name Index(1) Pin I/O Signal Name I/O

dbg_trace_clk 0 0, 38, 52 O pl_ps_trace_clk I
dbg_ctl 1 1, 39, 53 O ps_pl_tracectl O
DQ[0] 2 2, 40, 54 O ps_pl_tracedata[0] O
DQ [1] 3 3, 41, 55 O ps_pl_tracedata[1] O
DQ [2] 4 4, 42, 56 O ps_pl_tracedata[2] O
DQ [3] 5 5, 43, 57 O ps_pl_tracedata[3] O
DQ [4] 6 6, 26, 58 O ps_pl_tracedata[4] O
DQ [5] 7 7, 27, 59 O ps_pl_tracedata[5] O
DQ [6] 8 8, 28, 60 O ps_pl_tracedata[6] O
DQ [7] 9 9, 29, 61 O ps_pl_tracedata[7] O
DQ [8] 10 10, 30, 62 O ps_pl_tracedata[8] O
DQ [9] 11 11, 31, 63 O ps_pl_tracedata[9] O
DQ [10] 12 12, 32, 64 O ps_pl_tracedata[10] O
DQ [11] 13 13, 33, 65 O ps_pl_tracedata[11] O
DQ [12] 14 14, 34, 66 O ps_pl_tracedata[12] O
DQ [13] 15 15, 35, 67 O ps_pl_tracedata[13] O
DQ [14] 16 16, 36, 68 O ps_pl_tracedata[14] O
DQ [15] 17 17, 37, 69 O ps_pl_tracedata[15] O
~ ~ ~ ~ ps_pl_tracedata[16:31] O

Notes:
1. The index numbers are shown in Table 28-1.
Zynq UltraScale+ Device TRM 1204
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1204

Chapter 39: System Test and Debug
MBIST, LBIST, and Scan Clear (Zeroization)
There are three low-level hardware test and clear mechanisms for system logic and
memory:

• Memory built-in self-test (MBIST) tests the RAM elements used to store values
• Logic BIST (LBIST) tests the logic used for control
• Scan clear removes system state

The MBIST always runs after the power-on rest (POR). The MBIST can also be initiated by the
system software calling the platform management unit user firmware (PMU FW). The LBIST
only runs after a POR and only if the LBIST_EN eFUSE is programmed. The PMU scan clear
only runs after a POR. The LPD and FPD scan clear only runs after a POR and during secure
lockdown if the LPD_SC and FPD_SC eFUSEs are programmed.

Running MBIST, LBIST, or scan clear will cause loss of state. Therefore, care must be taken
when initiating BIST and clear functions during system operation.

SEU Occurrences

When an errant single-event upset (SEU) causes a failure, the system can be rebooted, or
the system element can be tested again. If the element continues to fail, the fault is
permanent.

MBIST

The MBIST tests RAM memory arrays. The arrays are tested during the hardware boot time
and on demand using the PMU user firmware.

Hardware Boot Process

The PMU FW can initiate MBIST operations on the LPD and FPD; however, the LPD process
does not affect the PMU RAM in the LPD. When a memory is tested or cleared using an
MBIST operation, other parts of the system can be functioning.

MBIST Interfaces to System Elements

For most of the system elements, RAM is accessed directly by the MBIST hardware and it
keeps the functional RAM interfaces in their reset state while the RAM is accessed. For a few
system elements, including the APU core processors, the RAM is accessed by the MBIST
hardware through the RAM's functional paths used by system software. In these cases, the
functional units must be operational (clocked and not held in reset).
Zynq UltraScale+ Device TRM 1205
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1205

Chapter 39: System Test and Debug
PMU User Firmware Controls

Registers are used to control and set the status of the MBIST memory controllers via the
PMU global register set. This register set can be protected by a 64 KB aperture of the Xilinx
peripheral protection unit (XPPU). There are five control and status registers:

• MBIST_RST controls the reset signal (rw)
• MBIST_PG_EN controls the PG_EN signal (rw)
• MBIST_SETUP controls the SETUP signal (rw)
• MBIST_DONE indicates when the test is completed (ro)
• MBIST_GOOD indicates the results of the test (ro)

To initiate an MBIST operation, set the bit in all three trigger registers: MBIST_RST,
MBIST_PG_EN, and MBIST_SETUP. When the operation is finished, the software clears the
associated bits in all three trigger registers. The MBIST_DONE bit goes High when the
operation is finished. MBIST_GOOD provides the status of the operation: 0 (failure) or 1
(success). MBIST_DONE and MBIST_GOOD are read-only registers and cleared by the
hardware when the trigger registers are cleared.

Table 39-15 lists the system elements that are tested by the MBIST and the bit assignments
for the control and status registers.
Table 39‐15: MBIST Control Register Bit Fields

Bit Bit Field System Element

0:1 CAN{0,1} CAN {0,1} controller
2:5 GEM{0:3} GEM {0:3} controller
6 IOU IOP peripherals
7 RPU RPU cores
8 RPU_TIEOFF_WRAPPER LPD less RPU

9:10 USB{0,1} USB controller {0, 1}
11 AFI_LPD S_AXI_LPD interface with FIFO memory
12 OCM OCM memory
13 PSS_CORE_TOP PS top core (includes XPPU and APM)
14 FPD FPD(1)

15 AFI_0 S_AXI_HPC0_FPD interface with FIFO memory
16 AFI_1 S_AXI_HPC1_FPD interface with FIFO memory

17:20 AFI_{2:5} S_AXI_HP{0:3}_FPD interface with FIFO memory
21 APU APU MPCore

22:25 ACPU_{0:3} APU core {0:3}
26 DDR DDR controller
Zynq UltraScale+ Device TRM 1206
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1206

Chapter 39: System Test and Debug
LBIST

The LBIST covers more than 90% of the system units. The LBIST operations are run once
during the hardware boot. If an LBIST operation fails, a single status flag is raised in the
JTAG status register, and the system stalls. This failure can be detected by reading the JTAG
status [11] bit field; however, it cannot be determined which system element failed the
LBIST operation.

LBIST operations require approx. 250 mA supply (LPD+FPD). After the LBIST goes to the
scan clear (zeroization) state, the supply current is released back to the normal system.

For increased safety against an SEU, the LBIST trigger signal from the hardware can be
gated off during normal system operation using the PMU global register bit SAFETY_GATE
[LBIST_Enable].

The primary goal for the LBIST is to detect latent faults at boot time. Using the LBIST, these
blocks are checked for latent faults:

• Lock-step checkers such as the Cortex-R5F processor, PMU, and configuration security
unit (CSU)

• ECC generation and checking:

° On-chip memory (OCM), CSU, and PMU RAM

° Tightly coupled memory (TCM) and cache memory controllers
• Xilinx memory protection unit (XMPU)
• Common clock monitoring
• PS SYSMON interface
• PMU logic
• Error monitoring logic
• Critical-function blocks without hardware coverage:

° RPU GIC

° LPD interconnect

27 GPU GPU controller
28 M400_0 GPU pixel processor 0
29 M400_1 GPU pixel processor 1
30 SIOU High-speed serial I/O
31 PCIE PCIe controller

1. This bit is used to cover the rest of the memories in the FPD such as SMMU, debug, GDMA, and so on.

Table 39‐15: MBIST Control Register Bit Fields (Cont’d)

Bit Bit Field System Element
Zynq UltraScale+ Device TRM 1207
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1207

Chapter 39: System Test and Debug
• Reset controller

PL Configuration Signals

The PS_INIT_B and PS_PROG_B signals should be considered input/output during the LBIST
operation. These pins should be connected as open drain with a 4.7k pull-up resistor to
VCCO_PSIO [3] as described in the UltraScale Architecture PCB Design User Guide (UG583)
[Ref 15]. Driving these signals can cause LBIST failures.

LBIST Boot Sequence

1. The PS_POR_B reset signal must be asserted during the power-up sequence. Voltage
must remain stable during boot and normal operation.

2. To use the FPD, the VCC_PSINTFP power must be valid and stable before deasserting
PS_POR_B; otherwise, the LBIST disables the FPD during the boot process making it
unavailable. The FPD remains disabled until the next POR with valid FPD power.

3. The PS_MGTRAVCC power must be valid and stable during the LBIST operation for the
transceivers to be operational; otherwise they are disabled by the LBIST.

4. The LBIST controllers are in the LPD and operate before the FPD is enabled.
5. The PS_INIT_B signal is internally driven low during the LBIST operation and the signal

must not be externally driven high; otherwise, the LBIST operation fails.
6. The PS_PROG_B signal must remain high during the LBIST operation and must not be

externally driven low; otherwise, the LBIST operation fails.
7. The LBIST is activated when PS_POR_B is deasserted. Asserting PS_POR_B stops the

LBIST operations.

IMPORTANT: Care must be taken when initiating LBIST operations. The system element must be
powered-up, clocked, and held in reset. When the LBIST operation is completed, the logic is left in its
POR state.

The LBIST failure state recovers only after the power cycle or PS_POR_B is asserted. If the
LBIST error is not recoverable, there is no masking of the error or the LBIST eFUSE option
once it is enabled.

Scan Clear (Zeroization)

Zeroization is a process in which zeros are shifted through all of the storage elements and
then verified that the shift occurred correctly. This is achieved using the MBIST and scan
clear functionality. The scan clear engines can only be controlled by the PMU and CSU
processors through their direct interfaces to the engines. Other processors can request the
PMU through the LOGCLR_TRIG register to start any specific scan clear engines.
Zynq UltraScale+ Device TRM 1208
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1208

Chapter 39: System Test and Debug
Every power island and power domain have scan clear engines. The PMU and CSU blocks
have separate scan clear engines even though they are not power islands. The PMU scan
clear is triggered only on POR, and the CSU scan clear can only be triggered by the PMU.
The LPD and FPD scan clear operations only run after a POR and during secure lockdown if
the LPD_SC and FPD_SC eFUSE are programmed. The PMU scan clear is a mandatory
security operation in the boot flow, whereas the LPD and FPD scan clear operations are
optional. See Boot Flow in Chapter 11 for details on PMU security operations during boot
flow.

Control Registers

The scan clear control and status registers are in the PMU local register set and are only
accessible by the PMU processor. These control and status registers are used by the PMU
user firmware.

• LOGCLR_TRIG starts the scan clear operations (wo)
• LOGCLR_ACK indicates completion of the scan clear operation (ro)
• SERV_LOGCLR_ERR used by the PMU code to log scan clear errors (rw)

When a scan clear engine is started, the completion status signal from the engine
transitions from 1 to 0. This signal, which is routed directly to a PMU LOGCLR_ACK register,
communicates the completion status of the engine to the PMU. When a scan clear engine
finishes its operation, its completion status bit toggles from 0 to 1 generating an interrupt
to the PMU. The pass/fail status of the clearing operation can be checked by the bits in the
PMU LOGCLR_STATUS global register that are directly driven by the pass/fail status of the
engine.

The CSU only starts scan clear engines under a security lock-down scenario and there is no
functional requirement for the CSU to check the pass/fail status or the completion status of
the clearing operation.

For increased safety, the scan clear trigger signal from the hardware can be gated off during
normal system operation using the PMU_Global.SAFETY_GATE [Scan_Enable] register bit.

The PMU user firmware can accumulate failures in the PMU_Local.SERV_LOGCLR_ERR
register (reset only by a POR). This register is write protected using the
PMU_Global.SAFETY_GATE [PMU_LOGCLR_Enable] register bit.
Zynq UltraScale+ Device TRM 1209
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1209

Chapter 39: System Test and Debug
The bit assignments for the trigger and acknowledge registers are listed in Table 39-16.
Table 39‐16: Scan Clear TRIG and ACK Register Bit Fields

Bit Bit Field System Element

0 ACPU0 APU core 0
1 ACPU1 APU core 1
2 ACPU2 APU core 2
3 ACPU3 APU core 3
6 PP0 GPU pixel processor 0
7 PP1 GPU pixel processor 1

10 RPU RPU
12 USB0 USB controller 0
13 USB1 USB controller 1
16 LP LPD except PMU, RPU, and USBs
17 FP FPD except APU cores, and GPU
Zynq UltraScale+ Device TRM 1210
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1210

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

For a glossary of technical terms used in Xilinx documentation, see the Xilinx Glossary.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.Xilinx Design Hubs provide links to

documentation organized by design tasks and other topics, which you can use to learn
key concepts and address frequently asked questions. To access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
Zynq UltraScale+ Device TRM 1211
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/company/terms.htm
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1211

Appendix A: Additional Resources and Legal Notices
References
1. Zynq UltraScale+ MPSoC Product Overview (DS891)
2. Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925)
3. Zynq UltraScale+ MPSoC Software Developer’s Guide (UG1137)
4. Zynq UltraScale+ MPSoC Register Reference (UG1087)
5. Zynq UltraScale+ MPSoC Processing System: LogiCORE IP Product Guide (PG201)
6. UltraScale Architecture System Monitor User Guide (UG580)
7. Zynq UltraScale+ MPSoC Packaging and Pinout User Guide (UG1075)
8. UltraScale Architecture SelectIO Resources User Guide (UG571)
9. UltraScale Architecture Clocking Resources User Guide (UG572)
10. UltraScale Architecture Memory Resources User Guide (UG573)
11. UltraScale Architecture Configurable Logic Block User Guide (UG574)
12. UltraScale Architecture GTH Transceivers User Guide (UG576)
13. UltraScale Architecture GTY Transceivers User Guide (UG578)
14. UltraScale Architecture DSP Slice User Guide (UG579)
15. UltraScale Architecture PCB Design User Guide (UG583)
16. OS and Libraries Document Collection (UG643)
17. Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209)
18. AXI DMA v7.1 LogiCORE IP Product Guide: Vivado Design Suite (PG021)
19. System Management Wizard v1.3 LogiCORE IP Product Guide (PG185)
20. Programming BBRAM and eFUSEs Application Note (XAPP1319)
21. Zynq-7000 SoC: Technical Reference Guide (UG585)
22. AXI Performance Monitor LogiCORE IP Product Guide (PG037)
23. Xilinx Standalone Library Documentation: OS and Libraries Document Collection (UG643)
24. Vivado Design Suite: Embedded Processor Hardware Design (UG940)
25. Zynq UltraScale+ MPSoC - 64-bit DDR Access with ECC technical article
26. Zynq UltraScale+ RFSoC RF Data Converter LogiCORE IP Product Guide (PG269)
27. Zynq UltraScale+ MPSoC Processing System LogiCORE IP Product Guide (PG201)
28. UltraScale+ Devices Integrated Block for PCI Express Product Guide (PG213)
29. PHY Controller LogiCORE IP Product Guide (PG230)
Zynq UltraScale+ Device TRM 1212
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
www.xilinx.com/support/documentation/user_guides/ug571-ultrascale-selectio.pdf
www.xilinx.com/support/documentation/user_guides/ug572-ultrascale-clocking.pdf
www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
www.xilinx.com/support/documentation/user_guides/ug578-ultrascale-gty-transceivers.pdf
www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
www.xilinx.com/support/documentation/user_guides/ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com/html_docs/registers/ug1087/ug1087-zynq-ultrascale-registers.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_dma;v=latest;d=pg021_axi_dma.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=oslib_rm.pdf
www.xilinx.com/support/documentation/user_guides/ug580-ultrascale-sysmon.pdf
www.xilinx.com/support/documentation/user_guides/ug1075-zynq-ultrascale-pkg-pinout.pdf
www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-plus.pdf
www.xilinx.com/support/documentation/user_guides/ug1137-zynq-ultrascale-mpsoc-swdg.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e;v=latest;d=pg201-zynq-ultrascale-plus-processing-system.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=system_management_wiz;v=latest;d=pg185-system-management-wiz.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_perf_mon;v=latest;d=pg037_axi_perf_mon.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1319-zynq-usp-prog-nvm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug940-vivado-tutorial-embedded-design.pdf
http://www.wiki.xilinx.com/Zynq+UltraScale%EF%BC%8B+MPSoC+-+64-bit+DDR+access+with+ECC
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=usp_rf_data_converter;v=latest;d=pg269-rf-data-converter.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e;v=latest;d=pg201-zynq-ultrascale-plus-processing-system.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=vid_phy_controller;v=latest;d=pg230-vid-phy-controller.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1212

Appendix A: Additional Resources and Legal Notices
30. Integrated Interlaken 150G LogiCORE IP Product Guide (PG169)
31. H.264/H.265 Video Codec Unit LogiCORE IP Product Guide (PG252)
32. Developing Tamper-Resistant Designs with Zynq UltraScale+ Devices (XAPP1323)
33. UltraScale Architecture Configuration User Guide (UG570)
34. External Secure Storage Using the PUF Application Note (XAPP1333)
35. Internal Programming of BBRAM and eFUSEs Application Note (XAPP1283)
36. Bootgen User Guide (UG1283)
37. Accelerating Cryptographic Performance on the Zynq UltraScale+ MPSoC (WP512)
38. Isolation Methods in Zynq UltraScale+ MPSoCs (XAPP1320)

Arm References
39. Arm® CoreSight® SoC-400 Technical Reference Manual, r3p1ARM document number

DDI 0480F.
40. Arm CoreSight SoC-400 User Guide, r3p1ARM document number DUI 0563F.
41. Arm CoreSight SoC-400 System Design Guide, r3p1ARM document number DGI 0018E.
42. Arm CoreSight SoC-400 Implementation Guide, r3p1ARM document number DII 0267F.
43. Arm CoreSight SoC-400 Integration Manual, r3p1ARM document number DIT 0037E.
44. Arm CoreSight STM-500 System Trace Macrocell Technical Reference Manual, r0p0ARM

document number DDI 0528A.
45. CoreSight Trace Memory Controller Technical Reference Manual, r0p1ARM document

number DDI 0461B.
46. Arm Cortex®-A53 MPCore Processor Technical Reference Manual, r0p2ARM document

number DDI 0502D.
47. ARM Cortex-R5 and Cortex-R5F Technical Reference Manual, r1p1 document number DDI 0460C

(ID021511)
48. CoreSight ETM-R5 Technical Reference Manual, r0p0ARM document number DDI 0469A.
49. Arm CoreSight Architecture Specification, v2.0ARM document number IHI 0029D.
50. Arm System Memory Management Unit Architecture Specification, SMMU Architecture

version 2.0, Arm IHI 0062C (ID091613).
51. Arm CoreSight Components
52. Arm CoreSight Architecture
53. CoreSight Trace and Debug
Zynq UltraScale+ Device TRM 1213
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/DDI0314H_coresight_components_trm.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.coresight/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0029d/IHI0029D_coresight_architecture_spec_v2_0.pdf
https://www.xilinx.com/support/documentation/white_papers/wp512-accel-crypto.pdf
https://www.xilinx.com/support/documentation/white_papers/wp512-accel-crypto.pdf
https://www.xilinx.com/support/documentation/white_papers/wp512-accel-crypto.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=interlaken;v=v2_4;d=pg169-interlaken.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=vcu;v=v1_1;d=pg252-vcu.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1323-zynq-usp-tamper-resistant-designs.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1333-external-storage-puf.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1283-internalprogramming-bbram-efuses.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1213

Appendix A: Additional Resources and Legal Notices
54. Arm Mali GPU Application Optimization Guide

PCIe References

55. PCI-SIG ASPM Optionality ECN

Additional References

56. Recommendation for Applications Using Approved Hash Algorithms
57. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions
58. Zynq UltraScale MPSoC Cache Coherency

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms
contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx’s Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2015-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries.PCI,
PCIe, and PCI Express are trademarks of PCI-SIG and used under license.All other trademarks are the property of their respective
owners.
Zynq UltraScale+ Device TRM 1214
UG1085 (v2.2) December 4, 2020 www.xilinx.com

https://www.xilinx.com
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-107r1.pdf
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0555a/DUI0555A_mali_optimization_guide.pdf
https://pcisig.com/sites/default/files/specification_documents/ECN_ASPM_Optionality_2009-08-20.pdf
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842098/Zynq+UltraScale+MPSoC+Cache+Coherency
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1085&Title=Zynq%20UltraScale+%20Device&releaseVersion=2.2&docPage=1214

	Zynq UltraScale+ Device
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Introduction to the UltraScale Architecture
	Application Overview
	System Block Diagram
	Power Domains and Islands
	High-Speed Serial I/O
	GTR Transceivers
	GTY Transceivers

	MIO and EMIO
	Platform Management and Boot
	Functional Units and Peripherals
	Device ID Codes
	JTAG IDCODE

	IP Revisions
	System Software
	System Features Assigned by Software

	Documentation

	Ch. 2: Signals, Interfaces, and Pins
	Introduction
	Dedicated Device Pins
	Power Pins
	Clock, Reset, and Configuration Pins
	JTAG Interfaces
	MIO Pins
	DDR Memory Controller I/O
	PS GTR Serial Channel Device Pins

	PS-PL Signals and Interfaces
	PS-PL Voltage Level Shifters
	Processor Communications
	System Error Signals
	MIO-EMIO Signals and Interfaces
	Miscellaneous Signals and Interfaces
	Dedicated Stream Interfaces
	DisplayPort Media Interfaces
	Clock Signals
	Timer Signals
	System Debug Signals and Interfaces

	PS-PL AXI Interfaces

	Ch. 3: Application Processing Unit
	Introduction
	Cortex-A53 MPCore Processor Features

	Arm v8 Architecture
	Security State

	APU Functional Units
	Instruction Fetch Unit
	Data Processing Unit
	Advanced SIMD and Floating-point Extension
	Cryptography Extension
	Translation Lookaside Buffer
	Data-side Memory System
	Store Buffer
	Bus Interface Unit and SCU Interface
	Snoop Control Unit

	L2 Memory Subsystem
	Cache Protection
	Debug and Trace
	Generic Interrupt Controller
	Timers

	APU Memory Management Unit
	System Virtualization
	APU Virtualization
	Interrupt Virtualization
	Timer Virtualization

	System Coherency
	I/O Coherency
	Full Two-way Coherency

	ACE Interface
	ACP Interface
	APU Power Management
	Power Islands
	Power Modes
	Normal State
	Standby State
	MPCore Wait for Interrupt
	MPCore Wait for Event
	L2 Wait for Interrupt

	Individual MPCore Shutdown Mode
	Cluster Shutdown Mode with System Driven L2 Flush

	Clocks and Resets
	Performance Monitors
	System Registers
	System Memory Virtualization Using SMMU Address Translation
	Translation Buffer Unit
	Translation Control Unit
	TBU Entry Updates

	SMMU Architecture
	Stage 1 SMMU Translation
	Stage 2 SMMU Translation
	TLB Maintenance Operations

	SMMU Clocks and Resets

	Ch. 4: Real-time Processing Unit
	Introduction
	Real-time Processing Unit Features

	Cortex-R5F Processor Functional Description
	RPU Pin Configuration
	RPU CPU Configuration
	Split/Lock
	Lock-Step Operation

	Error Correction and Detection
	Interrupt Injection Mechanism

	Level2 AXI Interfaces
	Memory Protection Unit
	Events and Performance Monitor
	Power Management
	Exception Vector Pointers
	System Register Overview
	Tightly Coupled Memory
	Tightly Coupled Memory Functional Description
	Normal (Split) Operation
	Lock-step Operation

	Tightly Coupled Memory Address Map
	TCM Access from a Global Address Space

	Lock-step Sequence in Cortex-R5F Processors

	Ch. 5: Graphics Processing Unit
	Introduction
	Features
	Power Domains
	Clocking Domain
	Performance

	Graphics Processing Unit Functional Description
	Geometry Processor
	Vertex Processing
	Vertex Shader
	Vertex Loader
	Vertex Shader Core
	Vertex Storer

	Polygon List Builder
	Pixel Processor
	Pixel Processor Fragment Shader

	Graphics Processing Unit Level 2 Cache Controller
	Graphics Processing Unit Memory Management Unit
	Graphics Processing Unit Programming Model
	Power Management in GPU
	Programming the GPU

	Graphics Processing Unit Register Overview

	Ch. 6: Platform Management Unit
	Introduction
	Power Modes
	Battery Powered Mode
	Low-Power Operation Mode
	Full-Power Operation Mode

	PMU System-level View

	Functional Description
	PMU Processor
	PMU Processor Interfaces
	PMU Clocking
	PMU Reset
	PMU RAM
	PMU ROM
	MBIST Functionality
	Scan Clear Functionality
	PMU Interconnect
	PMU I/O Registers
	PMU Global Registers
	PMU GPIs and GPOs
	PMU Programmable Interval Timers
	PMU Interrupts
	MIO Pin Considerations
	PMU Error Handling and Propagation Logic

	Operation
	Interacting with the PMU
	Power Down
	Power Up
	Use Case for Power Down and Power Up by PMU
	APU Power Down
	Direct Power Down
	Requested Power Down

	APU Core Power Up

	PMU Operation After a Wake-up
	Wake-up Through MIO
	Wake-up on USB
	Wake-up on Ethernet
	Wake on Real-time Clock
	Wake through DAP
	Direct Wake by the APU or Cortex-R5F
	Wake through GIC Proxy
	Deep-sleep Mode
	Deep-sleep Mode Programming Model/Example
	System Configuration prior to Sleep
	System Configuration during Sleep

	Power Down Procedure
	Wake Procedure

	Isolation Request
	Reset Services

	Programming Model
	Register Overview
	MIO Signals

	Ch. 7: Real Time Clock
	Introduction
	Functional Description
	RTC Operation
	Block Diagram
	Interfaces and Signals
	Seconds Counter

	Calibration
	RTC Accuracy
	Calibration Algorithm
	Dynamic Oscillator Inaccuracy

	External Clock Crystal and Circuitry
	Battery Selection
	RTC Register List
	Programming Model
	Programming Notes
	Programming Sequences
	init rtc
	Set Time

	Programming Example – Periodic Alarm

	Ch. 8: Functional Safety
	Introduction
	Safety Features overview
	Single Point Fault Detection Measures
	Common Cause Failure Measures
	Latent Fault Measures
	Isolation Measures
	Additional Measures

	Safety Assessment and Safety Metrics
	Possible Sub-system Configuration for Safety Applications
	Device Safety
	Power Domain Separation
	Power Supply and Temperature Monitoring
	Built-In Self-Test
	Logic BIST
	Memory BIST (MBIST)

	Scan
	Error Management and Reporting

	Functional Safety Software Test Library
	Register Coverage
	GIC Coverage
	Timer Coverage
	Scrub
	LPD DMA Coverage
	Peripherals Coverage

	Ch. 9: System Monitors
	Introduction
	Features
	Unit Architectures
	Sensor Channels
	Alarms
	Block Diagrams

	PL SYSMON
	PS SYSMON
	Comparison of PS SYSMON and PL SYSMON
	On-chip Thermal Diode
	Safety Considerations
	Set Operating Limits
	Monitor Supply Voltages
	Monitor Temperature
	Safety User Manual

	Functional Description
	Sensor Channels
	Two Classes of Sensor Channels
	Sensor Channel Tables
	PS SYSMON Sensor Channels
	PL SYSMON Sensor Channels

	Measurement Registers
	Average Measurements
	Measurement Registers in AMS

	PS SYSMON Analog_Bus
	Temperature Sensors
	Minimum and Maximum Result Registers
	Sequencer Channel Control
	Low-Rate Sampling
	Long Acquisition Time
	Input Sampling Circuits
	Unipolar Mode
	Bipolar Mode

	Sensor Alarm Types
	Voltage Alarms
	Normal Temperature Alarms
	Upper Alarm Threshold
	Lower Alarm Threshold

	Over Temperature Alarms
	Alarm Interrupt Control

	Alarm Signal Routing
	Interrupts
	End of Sequence Event
	End of Conversion (EOC) Event
	Register Address Decode Error (APB)
	Interrupt Control Registers
	Status/Clear
	Enable, Disable Mask

	Debug Environment

	Operating Modes
	Single-channel Mode
	Default Sequence Mode
	Sequencer Modes

	Programming Examples
	Example – Continuous Loop Mode
	Example – Single Pass Sequence Mode
	Thermal Management
	Normal Temperature Alarm

	Critical Over-Temperature Shutdown
	OT Alarm

	Register Sets
	Register Access via APB Slave Interface
	AMS Register Set Access
	PSSYSMON Register Set Access
	PLSYSMON Register Set Access
	PL SYSMON Register Access Arbitration

	Register Access via PL Fabric and Serial Channels
	DRP Slave Interface in PL Fabric
	PL TAP Controller Interface via JTAG
	I2C Serial Interface via Device Pins
	PM Bus

	System Interfaces
	Clocks
	Reset Sources
	PL SYSMON
	PS SYSMON

	Reset States
	Measurement Registers
	Configuration Registers

	Power
	PS SYSMON Unit
	PL SYSMON Unit

	Control and Monitor Signals
	Alarms Signals
	IRQ Interrupt
	Sequence Triggers
	End-of-Conversion and End-of-Sequence Events

	Ch. 10: System Addresses
	Introduction
	Global Address Map
	32-bit (4 GB) Address Map
	36-bit (64 GB) Address Map
	40-bit (1 TB) Address Map
	System Address Map Interconnects

	System Address Map
	PL AXI Interface

	System Address Register Overview
	System-level Control Registers
	Private CPU Registers
	PS I/O Peripherals Registers
	PS System Registers

	Ch. 11: Boot and Configuration
	Introduction
	Boot Flow
	Boot Modes
	Golden Image Search
	Fallback

	Boot Image Format
	I/O Configuration Detection
	4-bit I/O Detection
	8-bit I/O Detection

	Functional Units
	Secure Stream Switch
	CSU DMA
	Loopback Mode
	PL Configuration
	PCAP Isolation Wall Control

	CSU BootROM Error Codes
	PL Bitstream
	Register Overview
	Configuration Programming Model
	Load the PL Bitstream
	Initialize PCAP Interface
	Write a Bitstream Through the PCAP
	Wait for the PL Done Status

	Programming the CSU DMA
	Trigger a CSU DMA Transfer
	Wait for CSU DMA Done

	Ch. 12: Security
	Introduction
	Device and Data Security
	Configuration Security Unit (CSU) Introduction
	Secure Processor Block
	Crypto Interface Block
	CSU Resets

	Tamper Monitoring and Response
	Lockdown
	Non-Secure Lockdown
	Secure Lockdown
	Emulating a Tamper Event
	Staged Response to a Tamper Event

	Key Management
	Battery-Backed RAM
	BBRAM Programming
	BBRAM Readback Protections
	BBRAM Zeroization
	BBRAM Key Agility

	eFUSE
	eFUSE Programming
	eFUSE Readback Protections
	eFUSE Zeroization

	Key Update Register
	Operational Key
	Storing Keys in Obfuscated Form
	Storing Keys in Encrypted Form (Black)
	PUF Helper Data
	PUF Operations
	PUF Control eFUSEs
	PUF Characterization, Testing, and Ordering

	Key Management Summary

	Protecting Test Interfaces
	JTAG Interface Protections

	PL Clearing
	Device DNA Identifiers
	Error Output Disable
	Cryptographic Acceleration
	AES-GCM
	Initialization Vector Register
	Programming AES-GCM Engine

	SHA-3/384
	Programming SHA-3 Engine

	RSA Accelerator
	Programming the RSA Engine

	Secure Non-Volatile Storage
	Security Related eFUSEs
	PS eFUSEs
	PL eFUSEs

	Secure Boot
	Secure Boot Introduction
	Secure Boot Summary
	Hardware Root Of Trust Secure Boot Details
	Device Provisioning
	Boot Operation
	System Configuration
	Systems with external DRAM
	Systems without external DRAM

	DPA Resistance
	Rolling Keys

	Integration and Test Support (BH RSA Option)
	Hardware Root of Trust Only Boot (Auth_Only Option)
	Key Revocation
	PPK Revocation
	Standard SPK Revocation
	Enhanced SPK Revocation
	Revocation as a Tamper Penalty

	Encrypt Only Secure Boot Details
	Loading Bitstreams
	Secure Boot Image Format
	Boot Options
	Minimizing Use of the AES Boot Key (OP Key Option)
	Protect Device Key in Development Environment with OP Key

	Ch. 13: Interrupts
	Introduction
	GIC Features
	RPU-specific GIC Features
	APU-specific GIC Features
	GIC Proxy Interrupts

	System Interrupts
	GIC Interrupt System Architecture
	Interrupt Block Diagram

	RPU GIC Interrupt Controller
	Software Generated Interrupts
	Shared Peripheral Interrupts
	SPI Interrupt Sensitivity
	Interrupt Prioritization

	APU GIC Interrupt Controller
	Peripheral Interrupts
	Software-generated Interrupts
	Virtualization Extensions
	Virtual Interrupt
	APU Interrupt Partitioning
	APU Interrupt Grouping and Virtualization

	IPI Interrupts and Message Buffers
	Interrupt Architecture
	Interrupt Register Descriptions
	Interrupt Register Channels
	Message Passing Architecture
	Register and Buffer Summary

	Programming
	Generate an Interrupt
	Determine the Source of Interrupt
	Send an IPI Communication
	Receive an IPI Communication
	Interrupt Registers

	GIC Proxy Interrupts
	Interrupt Status Register
	Interrupt Mask Register (IMR_REG)
	Interrupt Enable and Interrupt Disable Registers
	Interrupts to PMU

	CPU Private Peripheral Interrupts
	RPU Private Interrupts
	APU Private Interrupts
	GIC Address Map

	Register Overview
	Programming Examples
	Clearing Pending Interrupts from the APU GICv2
	Programming Model IPI
	Example: Initiate an IPI
	Example: Receive an IPI
	Enable the Interrupt
	Disable the Interrupt

	Ch. 14: Timers and Counters
	Introduction
	System Block Diagram

	APU MPCore System Counter
	Features
	Applications
	Event Streams

	Programming
	Generic Timer Programming

	Register Overview
	Register Access

	APU Core Private Physical and Virtual Timers
	System Timer
	Features
	Physical Timer
	Physical Counter
	Accessing the Physical Counter

	Virtual Timer
	Virtual Counter
	Accessing the Virtual Counter

	Register Access
	Accessing the Timer Registers
	EL1 Physical Timer
	Virtual Timer
	EL2 Physical Timer

	Register Overview

	Triple-timer Counters
	TTC Counter Features
	TTC Block Diagram
	TTC Functional Description
	Initialization
	Prescaler
	Counter Module
	Interrupt Module
	Modes of Operation
	Interval Mode
	Overflow Mode
	Event Control Timer Operation

	Register Overview
	TTC Programming Examples
	TTC Programming

	System Watchdog Timers
	SWDT Functional Description
	Interrupt to RPU and APU GIC Interrupt Controllers
	Watchdog Enabled on Reset
	CPU Debug

	SWDT I/O Control and Configuration Register Sets
	SWDT Register Overview
	SWDT Register Overview
	SWDT Programming Sequence
	Programming Model
	Enable Sequence

	SWDT Programming Examples
	Watchdog Timer Programming
	Watchdog Timer Flowcharts

	MIO - EMIO Signals

	Ch. 15: PS Interconnect
	Introduction
	Features

	Block Diagram
	FPD Main Switch
	Cache Coherent Interconnect
	Full Coherency
	I/O Coherency
	ACP Coherency

	Interconnect Submodules
	Xilinx Memory Protection Unit
	Xilinx Peripheral Protection Unit
	System Memory Management Unit
	AXI Timeout Block
	AXI and APB Isolation Block
	Quality of Service Block
	PS-PL AXI Interfaces
	IOP Bus Masters

	ATB Timeout Description
	Instances
	Programming

	AXI Performance Monitor
	Features
	Implementation
	PS Instances
	Event Metric List
	Register Overview
	Programming Example - Read Byte Count on DDR Port 3

	Programming Example – Metric Counter
	Quality of Service
	AXI Traffic Types
	Low Latency (High Priority) Masters
	High Throughput (Best Effort) Masters
	Isochronous (Video and Audio Class) Masters

	QoS Subsystems
	QoS Regulator
	Outstanding Command Issuing Control
	Command Issue Rate Control
	QoS Controller
	QoS Virtual Networks in CCI-400

	DDR Controller QoS

	Interconnect Register Overview

	Ch. 16: System Protection Units
	Introduction
	Secured Register Sets
	Write-Protected Registers
	Processor-only Accessible Registers
	TrustZone Security
	SMMU Protection
	XPPU and XMPU Protection Units
	Use Case Examples

	Terminology

	TrustZone
	Architecture
	Master and Slave Security Profiles
	TrustZone Profile Table
	TrustZone System-level Control Registers
	Register Write Protection Lock
	PL TrustZone Extension

	DDR TrustZone Protection
	APU MPCore TrustZone Model

	SMMU Protection on CCI Slave Ports
	Address Translation Isolation (Native, Non-Virtualized Scenario)
	Guest Domain Isolation (Virtualized Scenario)
	TBU Instances

	XMPU Protection of Slaves
	Architecture
	XMPU Regions
	Poison Attribute Signals
	Poison Address

	Region Checking Operation
	Master ID Validation
	Security Validation

	Instances
	Error Handling
	XMPU Error Handling

	Configuration
	Alignment and Poison Configuration
	Block Diagram

	XMPU Register Set Overview
	XPPU Protection of Slaves
	Features
	Instances
	XPPU Operation
	Master ID List
	Aperture Permission List
	Entry Format
	Aperture Permission List

	Protected Addresses

	Permission Checking
	Error Handling
	Sync and Async Abort
	XPPU Self-Protection
	Master ID Validation

	Master IDs List
	PS-PL AXI Interfaces

	XPPU Register Set Overview
	Lock Unused Memory Attribute

	Programming Example
	Use Cases
	Program the DDR XMPUs
	Program the FPD XMPU
	Program the OCM XMPU
	Program the XPPU

	Write-Protected Registers Table
	CRF APB Registers
	Other Write-Protected Registers

	Security and Safety Errors
	Security Error
	Safety Error

	AIB Isolation Functionality
	Instances
	Programming

	Ch. 17: DDR Memory Controller
	Introduction
	System Memories
	Features
	DDR PHY Features
	DDR Memory Types, Densities, and Data Widths
	DDR DRAM Pins
	Power and Reset

	System Block Diagram
	Xilinx Memory Protection Unit
	DDR QoS Controller
	Prevention of Head-of-Line Blocking
	Traffic Classes
	Type Register
	Control Registers
	Threshold Registers

	Interrupt Sources

	DDR Subsystem Overview
	AXI Port Interface
	Read Address Channel
	Write Address Channel
	Read Data and Response Channel
	Write Data Channel
	Write Response Channel
	Exclusive Access
	XMPU Poisoned Transaction
	Port Arbiter
	Read/Write Arbitration
	Read and Write Priorities
	Port Command Priority
	Round-Robin Arbitration
	Port Arbiter Masking

	DDR Controller Address Map
	Address Map

	SDRAM Address Mapping
	Address Collision Handling

	Error Correcting Code
	ECC Initialization
	ECC Error Behavior
	Data Mask During ECC Mode
	Encoding for Corrected Bit Number
	ECC Programming Model
	Monitoring ECC Status
	ECC Poisoning

	ECCSTAT Register DDRC for Encoding of ECC Corrected Bit Number

	Functional Description
	DDR PHY PLL Control
	PHY Utility Block
	PHY Description

	Controller Initialization
	PHY Initialization
	DRAM Initialization
	Data Training
	Dynamic DDR Configuration

	Programming Topics
	PHY General Status Register
	Impedance Calibration
	PLL Initialization
	Delay Line Calibration
	DRAM Initialization
	CA Training (LPDDR3 Only)
	Write Leveling
	Read Leveling
	Write DQS2DQ Training (LPDDR4 only)
	Write Latency Adjustment
	Data Eye Training
	Read Bit Deskew
	Write Bit Deskew
	Read Eye Centering
	Write Eye Centering

	VREF Training (DDR4 and LPDDR4 only)

	Register Overview
	DDR QoS Control Registers
	DDR Controller Registers
	DDRPHY Registers

	Programming Model
	Programming Modes
	Dynamic Registers
	Dynamic - Refresh Related Registers
	Quasi Dynamic Registers
	Group 1: Registers that can be written when no read/write traffic is present at the DFI
	Group 2: Registers that can be written in self-refresh, DPD, and MPSM modes
	Group 3: Registers that can be written when controller is empty
	Group 4: Registers that can be written depending on MSTR.frequency_mode

	Power Saving Features
	Automatic Low Power Modes
	Precharge Power Down
	Deep Power-Down
	Entering Deep Power-down
	Exiting Deep Power-down

	Self Refresh
	Maximum Power Saving
	Entering Maximum Power Saving Mode
	Exiting Maximum Power Saving Mode

	Asserting PWRCTL.en_dfi_dram_clk_disable to Disable the Clocks to DRAM

	DDR Initialization
	PHY Initialization
	DRAM Initialization
	Data Training

	Reading DRAM Configuration Mode Registers
	Mode Register Accesses
	Multi-Purpose Register (DDR4 Only)

	Ch. 18: On-chip Memory
	Introduction
	Features

	On-chip Memory Functional Description
	Address Mapping
	Mapping Summary
	64-bit ECC Support
	Low Power Operation

	On-chip Memory Register Overview
	On-chip Memory Programming Model
	Inject Fault
	Check for Error
	Read Correctable Error Register Set
	Read Uncorrectable Error Register Set

	Ch. 19: DMA Controller
	Introduction
	Features

	DMA Controller Functional Description
	DMA Architecture
	Common Buffer
	AXI Read Arbiter
	AXI Write Arbiter
	DMA Channel

	DMA Data Flow
	DMA Model
	DMA Modes
	Simple DMA Mode
	Scatter Gather DMA Mode
	Descriptor Format
	Linear Descriptor Use Case
	Linked-list Descriptor Use Case
	Hybrid Descriptor Use Case
	Buffer Descriptor Summary

	Buffer Descriptor Format

	DMA Performance Requirements
	DMA Interrupt Accounting
	DMA Over Fetch
	DMA Transaction Control
	Outstanding Transactions
	Rate Control
	Flow Control Interface
	FCI Considerations

	DMA Controller Register Overview
	DMA Programming for Data Transfer
	Simple Mode Programming
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Scatter Gather Mode Programming
	Linear Mode Use Case
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Linked List Mode Use Case
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Step 5:
	Step 6:
	Step 7

	Interrupt Handling

	DMA Programming Model for FCI
	Implementation Notes
	FCI Attached to the SRC
	DMA Channel Reading from a Flow Controlling the PL Slave
	DMA Channel Writing to a Flow Controlling the PL Slave

	Programming Model for Changing DMA Channel States
	Channel Enabled
	Channel Disabled

	Channel Paused
	Coming Out of Pause

	Security
	Error Conditions
	Software Programing Error
	DMA Implements Interrupt Accounting Support
	AXI Errors

	Ch. 20: CAN Controller
	Introduction
	Features

	Functional Description
	Block Diagram
	Clocks
	LPD_LSBUS_CLK Clock
	Reference Clock
	Example: Configure and Route Internal Clock for Reference Clock
	Programming Example – Assign MIO Pin as CAN Reference Clock Input

	Resets
	Example: Reset using Local CAN Reset
	Example: Reset using Reset Subsystem

	Configuration Registers
	Transmit and Receive Messages
	TX High Priority Buffer
	Acceptance Filters
	Controller Modes
	Configuration Mode
	Normal Mode
	Sleep Mode
	Loopback Mode (Diagnostics)
	Snoop Mode (Diagnostics)
	Mode Transitions

	Message Format
	Bit Field Details
	Writes
	Reads

	Message Buffering
	RX Messages
	TX Messages
	Reads from RXFIFO
	RX and TX Error Counters

	Interrupts
	List of Interrupts
	RXFIFO and TXFIFO Interrupts
	Example: Program RXFIFO Watermark Interrupt (12)
	Example: Program TXFIFO Watermark Interrupt (13)
	Example: Program TXFIFO Empty Interrupt (14)

	RX Message Filtering
	Acceptance Filter Enable
	Acceptance Filter Mask Register
	Acceptance Filter Identifier
	Example: Program Acceptance Filter

	Program the AFMR and AFIR Registers
	Example: Program the AFMR and AFIR for Standard Frames
	Example: Program the AFMR and AFIR for Extended Frames

	Protocol Engine
	RX/TX Bit Timing Logic
	Time Quanta Clock
	Bitstream Processor

	CAN0-to-CAN1 Connection
	I/O Interface
	MIO Programming
	Programming Example – Assign MIO Pin to CAN RX Input
	Programming Example – Assign MIO Pin to CAN TX Output

	MIO-EMIO Signals

	Register Overview
	Programming Model
	Flowchart
	Programming Guide Overview
	Configuration Mode State
	Start-up Controller
	Example: Start-up Sequence

	Change Operating Mode
	Example: Normal to Sleep Mode
	Example: Configuration to Sleep Mode

	Write Messages to TXFIFO
	Example: Write Message to TXFIFO Using Polling Method
	Example: Write Message to TXFIFO Using Interrupt Method

	Write Messages to TXHPB
	Example: Write Message to TXHPB

	Read Messages from RXFIFO
	Example: Read Message from RXFIFO Using Polling Method
	Example: Read Message from RXFIFO Using Interrupt Method

	Ch. 21: UART Controller
	Introduction
	Features

	UART Controller Functional Description
	UART Controller Block Diagram
	Control Logic
	Baud Rate Generator
	Transmit FIFO
	Transmitter Data Stream
	Receiver FIFO
	Receiver Data Capture
	Receiver Parity Error
	Receiver Framing Error
	Receiver Overflow Error
	Receiver Timeout Mechanism

	I/O Mode Switch
	Normal Mode
	Automatic Echo Mode
	Local Loopback Mode
	Remote Loopback Mode

	UART0-to-UART1 Connection
	Status and Interrupts
	Interrupt and Status Registers
	Interrupt Mask Register
	Channel Status
	Non-FIFO Interrupts
	FIFO Interrupts

	Modem Control

	UART Controller Register Overview
	Clocks
	LSBUS Clock
	Reference Clock
	Resets

	MIO – EMIO Signals
	UART Controller Programming Model
	UART Controller Programming

	Ch. 22: I2C Controllers
	Introduction
	I2C Controller Features

	Functional Description
	System Block Diagram
	I2C Module Block Diagram
	I2C Master Mode
	Slave Monitoring

	10-bit Addressing Mode
	I2C Slave Mode
	Glitch Filter

	I/O Signals
	I2C0-to-I2C1 Loopback Connection

	Register Overview
	Interrupt Mask Register
	Interrupt Enable Register

	Programming Model
	Reset Controller
	Configure I/O Signal Routing
	Configure Clocks
	Controller Configuration
	Configure Interrupts
	Initiate Data Transfers
	Master Read Using Polled Method
	Master Read Using Interrupt Method
	Master Write Using Interrupt Method
	Slave Monitor Mode

	I2C Controller Programming Sequence
	I2C Controller Programming Steps

	Ch. 23: SPI Controller
	Introduction
	Features

	Functional Description
	FIFOs
	RXFIFO
	TXFIFO

	Clocks
	Master Mode SCLK
	Slave Mode SCLK
	Resets

	SPI Controller Modes of Operation
	Master Mode
	Multi-master Mode

	SPI Data Transfers
	Data Transfer
	Auto/Manual Slave Select and Start
	Manual Start
	Enable
	Command
	Clocking
	Word Detection

	MIO-EMIO Signals
	MIO Signals
	EMIO Signals
	SPI0-to-SPI1 Loopback Connection

	Register Overview
	Programming Model

	Ch. 24: Quad-SPI Controllers
	Introduction
	Legacy Quad-SPI Controller Mode
	Linear Address Mode

	Generic Quad-SPI Controller Modes
	I/O Mode
	DMA Mode
	SPI Mode

	Architecture Overview

	System Control
	Controller Selection
	Legacy Controller to Generic Quad-SPI Controller
	Generic Quad-SPI Controller to Legacy Controller
	Clock Polarity, Phase, and Baud Rate Reconfiguration
	Dynamic Mode and Baud Rate Change Limitations
	Reference Clock Change Limitations

	Clocks and Resets
	Reference Clock and Quad-SPI Interface Clocks
	Quad-SPI Feedback Clock
	Resets

	Generic Quad-SPI Controller
	Controller Features
	Block Diagram
	DMA–AXI Master
	SPI Interface Logic
	Register Set
	APB Interface
	Command Generator
	RXFIFO
	Generic Command FIFO—20-bit Width and 32-bit Depth

	Generic Quad-SPI Commands
	Generic Controller I/O Wiring Diagrams

	Legacy Quad-SPI Controller
	Features
	System-level View
	Address Map and Device Matching For Linear Address Mode
	Legacy Quad-SPI Operating Restrictions
	Legacy Quad-SPI Functional Description
	Legacy Quad-SPI Linear Address Mode
	Linear Address Mode AXI Interface Operation

	Legacy Quad-SPI AXI Read Command Processing
	Legacy Quad-SPI AXI Interface Configuration and Read Modes
	Legacy Quad-SPI Controller Unsupported Devices
	4-byte Address Support
	3-Byte Address Support
	Legacy Linear Addressing
	Programming Requirements for Linear Mode

	Legacy Quad-SPI I/O Interface
	Legacy Quad-SPI Single Slave Select 4-bit I/O
	Legacy Quad-SPI Dual Slave Select 8-bit Parallel I/O
	Legacy Quad-SPI Dual Slave Select 4-bit Stacked I/O

	Register Overview
	Quad-SPI Tap Delay Values

	Programming and Usage Considerations
	DMA Mode Configuration Sequence
	Transfer Size Limitations

	Generic Quad-SPI Controller Programming
	Generic FIFO Programming
	Programming SPI Modes
	Programming Data Transfer Length and Usage of Exponent
	Programming Poll
	Use Case: Check Success of Page Program/Erase
	Terminating Poll

	Programming Stripe
	Transferring Odd Bytes

	Modes of Operation
	Generic Quad-SPI Controller in PIO Mode
	Generic Quad-SPI Controller in DMA Mode

	Flash Commands
	NOR Flash Commands
	Page Read Command
	Quad I/O Read Command
	Quad Page Program Command

	Two SPI Flash Memories with Separate Buses (Dual Parallel)
	Data Arrangement

	Two SPI Flash Memories with a Shared Bus (Stacked)
	Write Protect
	Controller Hold Signal
	Controller Interrupt
	Programming Examples

	Legacy Quad-SPI Controller Programming
	Linear Addressing Mode (Memory Reads)

	MIO Signals

	Ch. 25: NAND Memory Controller
	Introduction
	Features

	Functional Description
	NAND Flash Interface
	Dual-port RAM
	ECC
	Control Registers
	AXI Interface
	AXI Master Interface
	AXI Slave Interface

	Address Aliasing

	Register Overview
	Clocks and Resets
	LSBUS Clock
	Reference Clock
	Resets

	I/O Signal Pins
	Programming Model
	Flash Initialization
	Reset the Target Device (ONFI Reset)
	Read ONFI ID
	Read ONFI Parameters Page
	Change Read Column
	XNandPsu_SetEccAddrSize
	Erase Block
	Read Status
	Program Page
	Read Page
	Change Timing Mode for SDR and NV-DDR
	ONFI Set Feature

	Ch. 26: SD/SDIO/eMMC Controller
	Introduction
	Features
	System/Host Interfaces
	SD/SDIO Card Interface
	eMMC Card Interface
	FIFO Buffer

	Speed Modes

	Functional Description
	Host Interface (Master/Slave)
	Register Set
	PIO/DMA Controller
	Block Buffer
	Card Detect
	Timeout Control
	Command Controller
	SD Transmit Control
	SD Receive Control

	Clocks and Resets
	Resets
	Clocking Overview
	Reference Clock
	Tuning Unit
	Interface Controller
	RX Clock Delay Unit
	TXCLK Delay Unit
	Controller Clocking
	Non-DLL Clock Mode
	DLL Clock Mode
	Transmit CMD/DAT Delay
	Receive Clock Tap Delay
	SD Tap Delay Settings

	SD Interface Voltage Translation

	I/O Signals
	MIO-EMIO Signals

	Register Overview
	SD Command Generation

	Programming Examples
	DMA Data Transaction
	DMA Read Transfer
	DMA Write Transfer

	SD Configuration
	SD Card Initialize
	SD CMD Transfer
	SD Set Block Size
	Setup ADMA2 Descriptor Table
	SD Read Polled
	SD Write Polled
	SD Select Card
	eMMC Card Initialize
	SD Get Bus Width
	SD Change Bus Width
	SD Get Bus Speed
	SD Change Bus Speed
	SD Change Clock Frequency
	SD Send Pullup Command
	Get eMMC EXT CSD
	Resetting the DLL
	Manual Tuning
	SD/eMMC Example Flow Diagram
	Sequence Flowchart for Using DMA
	Non-DMA Data Transaction
	Steps for a Non-DMA Data Transaction
	Non-DMA Write Transfer
	Non-DMA Read Transfer
	Wait for Buffer Read Ready Interrupt

	Sequence Flowchart for Not Using DMA

	Ch. 27: General Purpose I/O
	Introduction
	Features
	SDK and Hardware Design

	Functional Description
	MIO Pin Configuration
	Basic GPIO Functions
	GPIO Channel Architecture
	Device Pin Channels
	MIO Signals
	Input Mode
	Output Mode

	EMIO Signals
	Interrupt Function
	System Interfaces
	Clock
	Reset

	Register Overview
	MIO Signals
	Programming Model
	Initialize the GPIO Driver
	Run Self-Test on the GPIO
	Setup Direction for Bank 0 as Inputs
	Setup Direction for Bank 1 as GPIO Outputs and Configure Output Enable
	Setup Interrupts for Bank 0 GPIO Inputs
	Wait for Interrupts from all the GPIO Inputs to Exit

	Ch. 28: Multiplexed I/O
	Introduction
	Overview of the Blocks Function
	PS and PL Pins
	Output Multiplexer
	Master 3-state Enables
	Default Logic Levels

	MIO Pin Assignment Considerations
	Interface Frequencies
	I/O Buffer Output Enable Control
	Boot from SD Card
	eMMC Mapping
	Quad-SPI Interface
	Drive Strength

	MIO Table at a Glance
	Register Overview
	Programming Model
	I2C Interface Programming Example

	Ch. 29: PS-GTR Transceivers
	Introduction
	Features
	Functionality
	Clocking
	Power
	PCIe v2.0 PHY Protocol
	USB3.0 PHY Protocol
	DisplayPort 1.2a PHY Protocol (Transmitter only)
	Gigabit Ethernet PHY Interfaces
	SATA v3.1 PHY Protocol

	Functional Description
	Interconnect Matrix
	Physical Coding Sublayer
	Transmit Path
	Receive Path

	Reference Clock Network
	Physical Medium Attachment Sublayer
	PLL Lock Status
	PMA Transmitter
	Serializer and Clock Divider
	TX Polarity Control
	Data Selection Multiplexer, Predriver, and Voltage Mode Driver
	TX Configurable Driver
	Electrical Idle

	Spread-Spectrum Clocking Transmitter Support
	PMA Receiver
	Receiver Termination
	Receiver Equalizer
	Spread-Spectrum Clocking Receiver
	Sampler and Realign
	Clock Processor
	Phase Interpolator
	RX Polarity Control
	CDRLF, Deserializer, and PI Controller
	EyeScan Module

	Sideband Receive Path
	Signal Detect
	LFPS Detect

	Register Overview
	PS-GTR Registers

	Configuration Program

	Ch. 30: PCI Express Controller
	Introduction
	Features

	Functional Description
	Clock Scheme
	Reset Scheme
	Integrated Block for PCI Express
	Configuration Control (APB Interface)
	Power Management
	Programmed Power Management

	AXI-PCI Express Bridge
	Accessing Bridge Internal Registers
	AXI Domain
	Integrated Block for PCIe Domain

	Address Translation
	Enhanced Configuration Access Mechanism
	Generation of Type-0 or Type-1 Configuration Transactions
	Configuration Request Retry Status

	Root Port Received Interrupt and Message Controller

	Interrupts
	PCIe Bus Interface Interrupts
	System Interrupts
	Transaction Handling
	Ingress Transactions
	PCIe to AXI Map
	Egress Transactions
	AXI-PCIe Transaction Mapping

	Endpoint Compliance
	Security Features
	DMA
	Suffice DMA Descriptors
	Status Updates
	Relationship between SRC-Q and STAS-Q
	Relationship between DST-Q and STAD-Q

	DMA Channel Flow Control
	DMA Error Detection
	DMA Error Handling
	DMA Operation
	Dual-CPU Control
	System to Card (Host Memory to EP Memory)
	Card to System Flow (EP Memory to Host Memory)

	Single CPU Control
	System to Card Flow (Host memory to EP)
	Card to System Flow (EP to Host Memory)

	I/O Signals
	MIO Signals

	Register Overview
	Bridge Core Registers
	Address Translation Registers
	DMA Channel Control and Status Registers

	Programming Topics
	Programming the PS-GTR Transceiver
	Programming Reset Pin
	Programming Controller
	Bridge Initialization
	Programmed I/O Transfers
	Ingress Transfers
	Driver on a Zynq UltraScale+ MPSoC Endpoint
	Driver on Host System

	Egress Transfers
	Egress Host Driver
	Egress Endpoint Driver

	Endpoint Mode DMA Operation
	Handshake between Host and AXI-CPU Driver
	Descriptor Setup
	Sequence for Enabling DMA Channel
	DMA Operation
	Descriptor Post-processing
	Disabling an Active DMA Channel

	Ch. 31: USB Controller
	Introduction
	USB 2.0/3.0 Controller Details
	USB Controller Features
	PHY Loopback

	Data Flow
	Data Structure Network
	Data Structure Network
	Device Context Data Structure
	Slot Context Data Structure and State Diagram
	Endpoint Context Data Structure and State Diagram
	Transfer TRBs
	Normal TRB
	Control TRB: Setup Stage
	Control TRB: Data Stage
	Control TRB: Status Stage
	ISOC TRB
	NoOp TRB

	Event TRBs
	Transfer Event TRB
	Command Completion Event TRB
	Port Status Change Event TRB
	Bandwidth Request Event TRB
	Doorbell Event TRB
	Host Controller Event TRB
	Device Notification Event TRB
	MFINDEX Wrap Event TRB

	Command TRB
	NoOp Command TRB
	Enable Slot Command TRB
	Disable Slot Command TRB
	Address Device Command TRB
	Configure Endpoint Command TRB
	Evaluate Context Command TRB
	Reset Endpoint Command TRB
	Stop Endpoint Command TRB
	Set TR Dequeue Pointer Command TRB
	Reset Device Command TRB
	Force Event Command TRB
	Negotiate Bandwidth Command TRB
	Set Latency Tolerance Command TRB
	Get Port Bandwidth Command TRB
	Force Header Command TRB

	Other TRBs
	Link TRB
	Event Data TRB

	Programming Guide
	Initial Commands to USB Controller
	Host Mode Initialization
	Device Detection, Enumeration
	Device Detach

	Device Programming
	Register Overview

	Ch. 32: SATA Controller
	Introduction
	Features

	Functional Description
	System Viewpoint
	Description
	Command Layer
	Local Port Context Management
	Vendor Specific BIST Operation
	Transport Layer
	Link Layer
	PHY Control Layer

	TrustZone Support
	AXI Master Port Security Features
	AXI Slave Port Security Features

	SATA Clocking and Reset

	Register Overview
	Programming Considerations
	SATA Clock Programming
	SATA AXI Bus Configuration
	PS-GTR Configuration
	PHY Configuration
	AHCI SATA Configuration
	Issuing Command

	Basic Steps When Building a Command
	Command FIS (CFIS)
	FIS Types
	FIS Type Values

	Ch. 33: DisplayPort Controller
	Introduction
	Features
	System Viewpoint

	Functional Description
	Video/Graphics
	Video Input Stage
	Non-live Video/Graphics Input
	Live Video/Graphics Input

	Audio/Video Buffer Manager
	Live Presentation Mode
	Non-Live Presentation Mode
	Mixed Presentation Mode

	Video Rendering Pipeline
	Chroma Re-sampling
	Alpha Blending
	Chroma Keying

	Video/Graphics Output Stage
	DisplayPort Source Controller
	Live Video Output

	Live Video Interface
	Video Timing Generation
	High Level Address Decoder
	Video Formats
	Live Video Format
	Video Packer Format
	Graphics Packer Format
	Supported Video Formats

	Audio
	Audio Input Stage
	Audio Non-live Input
	Audio Live Input

	Audio Processing Stage
	Audio Mixer

	Audio Output Stage
	Audio Output Stage from the DisplayPort Source Controller
	Audio Live Output

	PS-PL Audio Interface
	Non-Live Audio Format
	Live Audio Format
	Audio Metadata

	DisplayPort DMA
	Descriptor Fields
	PREAMBLE Field
	EN_DSCR_DONE_INTR Field
	EN_DSCR_UP Field
	IGNR_DONE Field
	BURST_TYPE Field
	ARCACHE Field
	ARPROT Field
	MODE Field
	LAST_DSCR Field
	LAST DSCR OF FRAME Field
	EN_CRC_CHK Field
	DONE Field
	TIME_STAMP_LSB and TIME_STAMP_MSB Fields
	XFER_SIZE Field
	LINE_SIZE Field
	STRIDE Field
	ADDR_EXT Field
	Descriptor Identifier Fields
	CRC Field

	DisplayPort Controller Clocking
	PS-PL Clocking Interface

	Register Overview
	Programming Considerations
	Source Controller Setup and Initialization
	Source Controller Setup
	To change the PS-GTR link rate dynamically (Table 33-16):

	Upon HPD Assertion
	Training Pattern 1 Procedure (Clock Recovery)
	Training Pattern 2 Procedure (Symbol Recovery, Interlane Alignment)
	Enabling Main Link Video
	Accessing the Link Partner

	Audio Management
	Programming the DisplayPort Source
	Reprogramming Source Audio
	Info Packet Management
	Extension Packet Management

	AUX Write Transaction
	AUX Read Transaction
	Commanded I2C Transactions
	Handling I2C Read Defers/Timeout
	Handling I2C Write Partial ACK
	Handling I2C Write Defer/Timeout

	Setting Up a DisplayPort System
	AV Buffer Manager Sequence
	AV Buffer Manager Programming Options
	Key Points to Note in Programming
	Retrigger

	MIO-EMIO Signals

	Ch. 34: GEM Ethernet
	Introduction
	GEM Features
	Ethernet Controller Block Diagram

	System Viewpoint
	Clock Domains

	Functional Description
	10/100/1000 Operation
	SGMII, 1000BASE-SX, or 1000BASE-LX
	Rx and Tx FIFO Interfaces to PL
	FIFO Interface to PL
	Interface Descriptions
	FIFO Interface Timing Criteria

	MDIO Interface
	MAC Transmitter
	MAC Receiver
	MAC Filtering
	Broadcast Address
	Hash Addressing
	Copy All Frames (or Promiscuous Mode)
	Disable Copy of Pause Frames
	VLAN Support

	Wake-on-LAN Support
	DMA Controller
	Packet Buffer DMA
	AXI Bus Master
	RX Buffers
	TX Buffers
	DMA Bursting on the AXI
	DMA Packet Buffer
	TX Packet Buffer
	RX Packet Buffer

	Checksum Offloading
	RX Checksum Offload
	TX Checksum Offload

	IEEE Std 1588 Time Stamp Unit
	MAC 802.3 Pause Frame
	IEEE Std 802.3 Pause Frame Reception
	IEEE Std 802.3 Pause Frame Transmission
	MAC PFC Priority-based Pause Frame Support
	PFC Pause Frame Reception

	I/O Signals
	MIO-EMIO Interface Routing
	RGMII Interface via MIO
	GMII/MII Interface via EMIO
	Precision Time Protocol via EMIO
	1 PPS signal

	MDIO Interface Signals via MIO – EMIO
	MAC Loopback

	Programming Model
	Example: Programming Steps
	Initialize the Controller
	Priority Queuing
	Configure Rx queue pointers

	Configure the Controller
	I/O Configuration
	GEM Ethernet using MIO
	GEM Ethernet using EMIO
	Configure Clocks

	Configure the PHY
	Example: PHY Read/Write Operation
	Example: PHY Initialization

	Configure the Buffer Descriptors
	Receive Buffer Descriptor List
	Transmit Buffer Descriptor List

	Status and Wakeup Interrupts
	Example: Configure the Interrupts

	Enable the Controller
	Transmitting Frames
	Example: Transmitting a Frame

	TX Queue Sequence
	Receiving Frames
	Example: Handling a Received Frame

	Gigabit Ethernet Debug Guide

	Register Overview
	Clock Control Register
	Control Registers
	Status and Statistics Registers

	Ch. 35: PS-PL AXI Interfaces
	Introduction
	Block Diagram and Features

	Functional Description
	FPD-PL Interfaces
	PL-PS Interface Specifics
	APU Coherent Interfaces
	Address Translation and Protection

	AXI FIFO Interface
	AXI Interface Programming
	Additional Per Port HP I/O PL Signals
	QoS Priority
	Read and Write Data Buffers
	Traffic Quality of Service

	High Performance PS to PL AXI Interfaces

	LPD-PL Interfaces
	PL ACE Interface to CCI
	A Note About the ACE Protocol
	ACE-Lite Interface for I/O Coherency
	ACE Interface for Full Coherency

	ACP Interface
	ACP Limitations
	ACP Usage

	Choosing a Programmable Logic Interface
	APU Perspective
	RPU Perspective
	FPD and LPD DMAs
	PL DMA using the HP and HPC Interfaces
	PL Accelerator Block and FPD Interaction
	PL Accelerator Block and LPD Interaction

	PL DMA via ACP
	System Cache using ACE

	Signal Overview
	PS-PL Interrupts
	Processor Event Signals

	Register Overview

	Ch. 36: PL Peripherals
	Introduction
	PCI Express Integrated
	100G Ethernet
	DisplayPort Video and Audio Interfaces
	Live Video/Graphics Input
	Live Video Output
	Audio
	Audio Live Input
	Audio Live Output

	Interlaken
	GTH and GTY Transceivers
	Transmitter
	Receiver
	Out-of-Band Signaling

	PL System Monitor
	Video Codec Unit
	Video Codec Unit Features
	Block Diagram
	Video Encoder
	Video Decoder

	RFSoC
	RF Data Converter Subsystem Overview
	RF-ADC Features
	Soft Decision Forward Error Correction (SD-FEC)
	LDPC Decoding/Encoding
	Turbo Decoding
	Interfaces

	Ch. 37: PS Clock Subsystem
	Introduction
	System PLL Clock Units
	Clock Generators
	Basic Clock Generator Unit

	Clock System Overview
	Real-time Clock Domain
	PMU Clock Domain
	Clock Monitor
	Glitch-Free Clock Controls
	PL Clock Throttle

	System PLL Units
	PLL Source Clocks
	Power Domain Crossing of PLL Clocks

	Basic Clock Generators
	Interconnect Clock Generators
	RPU MPCore Clock Generator
	Debug Clock Generators
	FPD Debug Clock
	LPD Debug Clock
	Trace Debug Clock
	Timestamp Debug Clock

	PL Clock Generators
	Programmable Clock PL Throttle

	DisplayPort Clock Generators
	GPU Clock Generator
	SATA Clock Generator

	Special Clock Generators
	APU MPCore Clock Generator
	DDR Memory Controller Clock Generator

	Programming Examples
	System PLL Operation
	Jitter Considerations
	Video Clock Example

	Clock Source Programming Example
	Integer Multiply and Divide Programming Example
	Fractional Multiply and Divide Programming Example
	Clock Generator Programming Example
	Clock Monitor Programming Example

	PLL Integer Divide Helper Data Table
	Register Overview
	System PLL Control Registers
	Clock Generator Control Registers

	Ch. 38: Reset System
	Introduction
	Features

	Functional Description
	POR Reset Sequence
	PS_SRST_B Reset Pin During Hardware Boot
	Example

	System Reset Conditions
	Reset Reason Register
	PS Only Reset
	System-level Software Reset
	Debug Reset
	PL Reset
	PL Configuration Reset

	Register Overview
	Programming Model
	PS-only Reset Sequence
	FPD Reset Sequence
	RPU Reset Sequence

	Ch. 39: System Test and Debug
	Introduction
	Features

	JTAG Functional Description
	Boundary-Scan
	Security
	JTAG Security Gates
	Toggle Detect on PSJTAG

	JTAG Chain Configuration
	JTAG Chain Boot States
	PJTAG Interface
	JTAG Disable
	Instruction Register
	Instruction Availability

	Control Register
	Controller Status Register
	Error Status Register
	PS TAP Controller
	PL TAP Controller

	Arm DAP Controller
	Arm DAP Controller Functionality
	External Flash Memory Programming
	PS Software Debug
	PS-PL Debug
	Xilinx Debug Tools
	Third-Party Tool Support

	Arm DAP Reset Mechanism

	CoreSight Functional Description
	CoreSight Environment
	Debug Features
	System Test and Debug Overview
	Debug Definition
	Trace Definition
	Conventional JTAG Debug (External Debug)
	Conventional Monitor Debug (Self-hosted Debug)
	Trace Debug
	Security
	Debug Authentication

	Components
	JTAG and DAP Overview
	Bus Structures
	Debug System Control and Access
	Debug Access Port
	Embedded Cross Trigger

	PL to PS and PS to PL Cross Triggering

	Trace Sources
	APU MPCore Embedded Trace Macrocell
	RPU MPCore Embedded Trace Macrocell
	System Trace Macrocell
	ATB Protocol
	PL Fabric Trigger Macrocell

	Trace Links
	Funnels
	Replicator

	Trace Sinks
	TPIU
	TMC

	CoreSight Address Map
	Clocks, Reset, and Power Domains
	JTAG and Debug Clocks
	Debug Logic Resets
	JTAG Resets
	Power
	Power-up Request and Acknowledge
	Power Domains

	JTAG and Debug Logic Power Supplies

	I/O Signals
	JTAG Interface Signals on MIO
	TPIU Data Output on MIO and EMIO

	MBIST, LBIST, and Scan Clear (Zeroization)
	SEU Occurrences
	MBIST
	Hardware Boot Process
	MBIST Interfaces to System Elements
	PMU User Firmware Controls

	LBIST
	PL Configuration Signals
	LBIST Boot Sequence

	Scan Clear (Zeroization)
	Control Registers

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Arm References
	PCIe References
	Additional References

	Please Read: Important Legal Notices

