
Zynq-7000 All
Programmable SoC
Software Developers Guide

UG821 (v12.0) September 30, 2015

Zynq-7000 AP SoC SWDG www.xilinx.com 2
UG821 (v12.0) September 30, 2015

Revision History
The following table shows the revision history for this document.

Date Version Revision

09/30/2015 12.0 Removed LibXil SKey and LibXil RSA. Added references to the library locations.

06/24/2015 11.0 Updated Appendix B, LibXil SKey for Zynq-7000 AP SoC Devices (v2.1).
Changed Vivado Device Programmer to Vivado hardware manager.
Changed Platform Reference Manual reference to Generating Software Platforms
(UG1138)
Updated Bootgen options to match -h in Vivado Tcl Console in Table A-3.

04/01/2015 10.1 Added miscellaneous references throughout the document.
Updated BIF File Attributes.
Added Bootgen Command Options.
Updated Partition Attribute Bits.

06/04/2014 9.0 Updated Bootgen to remove the -i option in Bootgen Command Options.
Throughout document, added cross-references and updated links in Appendix D,
Additional Resources and Legal Notices.
Added definitions for RSA and SHA-2.
Removed reference to UG652.
Changed AP to PS on page 23.

04/02/2014 8.0 Initial release for 2014.1.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=2

Table of Contents
Chapter 1: Introduction to Programming with Zynq-7000 AP SoC Devices

Overview. 5
Introduction . 5
Architectural Decisions . 6
Operating System (OS) Considerations . 7

Chapter 2: Software Application Development Flows
Introduction . 9
Software Tools Overview . 10
Bare-Metal Device Driver Architecture . 14
Bare-Metal Application Development . 17
Linux Application Development . 21
Additional Information . 26

Chapter 3: Boot and Configuration
Overview. 27
Boot Modes . 28
Boot Stages. 28
Boot Image Creation . 48
BootROM Header Format . 51

Chapter 4: Linux
Introduction . 52
Git Server and Gitk Command. 52
Linux BSP Contents . 53
U-Boot. 54

Appendix A: Using Bootgen
Introduction . 55
BIF File Syntax . 55
Initialization Pairs and the INT File Attribute. 58
Encryption Overview . 59
Authentication Overview . 60
Zynq-7000 AP SoC SWDG www.xilinx.com 3
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=3

Bootgen Command Options . 61
Image Header Table . 63
Partition Header Table. 64
Partition Attribute Bits . 65
Image Header . 66

Appendix B: Additional Resources and Legal Notices
Xilinx Resources . 67
Solution Centers. 67
References . 67
Please Read: Important Legal Notices . 68
Zynq-7000 AP SoC SWDG www.xilinx.com 4
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=4

Chapter 1

Introduction to Programming with
Zynq-7000 AP SoC Devices

Overview
This document summarizes the software-centric information required for designing with
Xilinx® Zynq®-7000 All Programmable SoC devices. It assumes that you are:

• Experienced with embedded software design

• Familiar with ARM® development tools

• Familiar with Xilinx FPGA devices, intellectual property (IP cores), development tools,
and tool environments.

Introduction
The addition of extensibility of the SoC for both hardware and software programmability
imposes new requirements on design flows for both hardware and software.

Certain hardware features are unique to Xilinx, such as hardware co-simulation and
co-debug functionality that make it possible to verify custom logic implemented on
Zynq-7000 AP SoC devices or in a logic simulation environment while applications execute
on a Zynq-7000 AP SoC processor on a physical board or an emulator.

For a step-by-step explanation on designing a Zynq-based embedded system, see the
following documents:

• Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940) [Ref 6]

• Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898) [Ref 5]

• Vivado Design Suite Tutorial: Zynq-7000 All Programmable SoC Embedded Design
(UG1165) [Ref 16]

VIDEO: See Enabling Smarter Systems for quick-take videos on the Zynq-7000 AP SoC devices.
Zynq-7000 AP SoC SWDG www.xilinx.com 5
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/smarter-system.html
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=5

Chapter 1: Introduction to Programming with Zynq-7000 AP SoC Devices
Architectural Decisions
You must make several architectural decisions before beginning embedded development
on applications to run on the Zynq-7000 AP SoC.

Because the Zynq-7000 AP SoC devices have dual-core ARM Cortex™-A9 processors, you
must determine whether to use Asymmetric Multiprocessing (AMP) or Symmetric
Multiprocessing (SMP).

The same decision must be made for all embedded software projects: which operating
system(s) to use (if any). This introduction defines both AMP and SMP, and provides an
assessment of the trade-offs and concerns with each method.

Multiprocessing Considerations
The following subsections describe the two multiprocessing considerations.

Asymmetric Multiprocessing

Asymmetric multiprocessing (AMP) is a processing model in which each processor in a
multiple-processor system executes a different operating system image while sharing the
same physical memory. Each image can be of the same operating system, but more
typically, each image is a different operating system, complementing the other OS with
different characteristics:

• A full-featured operating system, such as Linux, lets you connect to the outside world
through networking and user interfaces.

• A smaller, light-weight operating system can be more eff icient with respect to memory
and real-time operations.

A typical example is running Linux as the primary operating system along with a smaller,
light-weight operating system, such as FreeRTOS or a bare-metal system, which is described
in Chapter 4, Linux, as the secondary operating system.

The division of system devices (such as the UART, timer-counter, and Ethernet) between the
processors is a critical element in system design. In general:

• Most devices must be dedicated to their assigned processor.

• The interrupt controller is designed to be shared with multiple processors.

• One processor is designated as the interrupt controller master because it initializes the
interrupt controller.

Communication between processors is a key element that allows both operating systems to
be effective. It can be achieved in many different ways, including inter-processor interrupts,
shared memory, and message passing.
Zynq-7000 AP SoC SWDG www.xilinx.com 6
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=6

Chapter 1: Introduction to Programming with Zynq-7000 AP SoC Devices
Symmetric Multiprocessing

Symmetric multiprocessing (SMP) is a processing model in which each processor in a
multiple-processor system executes a single operating system image. The scheduler of the
operating system is responsible for scheduling processes on each processor.

This is an efficient processing model when the selected single operating system meets the
system requirements. The operating system uses the processing power of multiple
processors automatically and is consequently transparent to the end user. Programmers
can:

• Specify a specific processor to execute a process

• Handle interrupts with any available processor

• Designate one processor as the master for system initialization and booting other
processors

Operating System (OS) Considerations

Bare-Metal System
Bare-metal refers to a software system without an operating system. This software system
typically does not need many features (such as networking) that are provided by an
operating system. An operating system consumes some small amount of processor
throughput and tends to be less deterministic than simple software systems. Some system
designs might not allow the overhead and lack of determinism of an operating system. As
processing speed has continued to increase for embedded processing, the overhead of an
operating system has become mostly negligible in many system designs. Some designers
choose not to use an operating system due to system complexity.

Operating System: Linux
Linux is an open-source operating system used in many embedded designs. It is available
from many vendors as a distribution, or it can be built from the open-source repositories.
Linux is not inherently a real-time operating system, but it has taken on more real-time
characteristics.

It is a full-featured operating system that takes advantage of the memory management unit
(MMU) in the processor, and is consequently regarded as a protected operating system.
Linux also provides SMP capabilities to take advantage of multiple processors.
Zynq-7000 AP SoC SWDG www.xilinx.com 7
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=7

Chapter 1: Introduction to Programming with Zynq-7000 AP SoC Devices
Real-Time Operating System
Some system designers use a real-time operating system (RTOS) from Xilinx third-party
partners.

An RTOS offers the deterministic and predictable responsiveness required by timing
sensitive applications and systems. For information on the latest third party tools, contact
your nearest Xilinx off ice.

Zynq-7000 Operating Systems From Partners
You can choose you own favorite embedded solutions based on past experience, new
standards, unique requirements, and legacy designs, as well as corporate agreements.

For a detailed list of operating systems supported on Zynq-7000 devices from Xilinx
partners, see the Zynq-7000 Ecosystem page.
Zynq-7000 AP SoC SWDG www.xilinx.com 8
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/ecosystem/index.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=8

Chapter 2

Software Application Development Flows

Introduction
The Zynq®-7000 All Programmable (AP) SoC software application development flows let
you create software applications using a unif ied set of Xilinx® tools, and leverage a broad
range of tools offered by third-party vendors for the ARM® Cortex™-A9 processors.

This chapter focuses on Xilinx tools and flows; however, the concepts are generally
applicable to third party tools, and the Zynq-7000 AP SoC device solutions incorporate
familiar components such as an Eclipse-based integrated development environment (IDE)
and the GNU compiler toolchain.

This chapter also provides an overview of bare-metal and Linux software application
development flows using Xilinx tools, which mirror support available for other Xilinx
embedded processors, with differences as noted. This chapter also references boot, device
configuration, and OS usage within the context of application development flows. Those
topics are covered in-depth in other chapters and references to other material.
Zynq-7000 AP SoC SWDG www.xilinx.com 9
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=9

Chapter 2: Software Application Development Flows
The following figure shows a block diagram of the Zynq-7000 AP SoC device processor.

Software Tools Overview
The coupling of ARM-based Processing System (PS) and Programmable Logic (PL) creates
unique opportunities to add custom peripherals and co-processors. Custom logic
implemented in the PL can be used to accelerate time-critical software functions, reduce
application latency, reduce system power, or provide solution-specif ic hardware features.

The addition of hardware programmability to the hardware and software interface imposes
new requirements on design flows. Certain hardware features are unique to Xilinx, such as
hardware co-simulation and co-debug functionality that make it possible to verify custom
logic implemented on Zynq-7000 AP SoC devices or in a logic simulation environment while
applications execute on a Zynq-7000 AP SoC device processor on a physical board or an
emulator.

X-Ref Target - Figure 2-1

Figure 2-1: Zynq-7000 AP SoC Processing System High-Level Diagram
Zynq-7000 AP SoC SWDG www.xilinx.com 10
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=10

Chapter 2: Software Application Development Flows
Xilinx provides design tools for developing and debugging software applications for
Zynq-7000 AP SoC devices, that include:

• Software IDE

• GNU-based compiler toolchain

• JTAG debugger

• Associated utilities

These tools let you develop both:

• Bare-metal applications that do not require an OS

• Applications for the open source Linux OS

Custom logic and user software can run various combinations of physical hardware or
simulation, with the ability to monitor hardware events. For example:

• Custom logic running in hardware or in a simulation tool

• User software running on the target or in a software emulator

• PL and processor cross-triggering on events

Software solutions are also available from third-party sources that support Cortex-A9
processors, including, but not limited, to:

• Software IDEs

• Compiler toolchains

• Debug and trace tools

• Embedded OS and software libraries

• Simulators

• Models and virtual prototyping tools

Third party tool solutions vary in the level of integration and direct support for Zynq-7000
AP SoC devices. Xilinx does not provide tools that target Kernel development and debug,
but those tools can be obtained from third party vendors.

The following subsections provide a summary of the available Xilinx development tools.
Tools are available on 32- and 64-bit Windows and x86 Linux host computing platforms.
Zynq-7000 AP SoC SWDG www.xilinx.com 11
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=11

Chapter 2: Software Application Development Flows
Hardware Configuration Tool
Xilinx provides the Vivado IP integrator which lets you use a block diagram to configure IP
that is related to the PL and the Zynq-7000 AP SoC device processor.

The Vivado Design Suite IP integrator provides a block diagram for the Zynq-7000 AP SoC
wherein you can set Programmable Logic (PL) information in an XML file, INIT files
(.h,.c, and .tcl), which are then used by software design tools to create and configure
Board Support Package (BSP) libraries, infer compiler options, define JTAG settings, and
automate other operations that require information about the hardware.

For more information, see the following documents:

• Vivado Design User Guide: Embedded Processor Hardware Design (UG898) [Ref 5]

• Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940) [Ref 6]

• Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 7]

• Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
[Ref 8]

Software Development Kit
The Xilinx Software Development Kit (SDK) provides a complete environment for creating
software applications targeted for Xilinx embedded processors. It includes a GNU-based
compiler toolchain (GCC compiler, GDB debugger, utilities, and libraries), JTAG debugger,
flash programmer, drivers for Xilinx IPs and bare-metal board support packages,
middleware libraries for application-specif ic functions, and an IDE for C/C++ bare-metal
and Linux application development and debugging. Based upon the open source Eclipse
platform, SDK incorporates the C/C++ Development Toolkit (CDT). Features include:

• C/C++ code editor and compilation environment

• Project management

• Application build configuration and automatic makefile generation

• Error navigation

• Integrated environment for debugging and profiling embedded targets

• Additional functionality available using third-party plug-ins, including source code
version control

SDK Availability

SDK is available as a download with the Vivado Design Suite, and as a standalone
application. SDK also includes an application template for creating a First Stage Bootloader
(FSBL), as well as a graphical interface for building a boot image.
Zynq-7000 AP SoC SWDG www.xilinx.com 12
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=12

Chapter 2: Software Application Development Flows
SDK contains a complete help system that describes concepts, tasks, and reference
information. See the Xilinx Software Development Kit Help (UG782) [Ref 14], for more
information.

You can launch SDK from Vivado when you export a hardware definition, as shown in
Figure 2-2.

System Performance Analysis

The Xilinx Software Debugger (XSDB) uses a System Performance Monitor (SPM) for
debugging.

See the following links for more information regarding SPM [Ref 15]:

• “Chapter 3” in the Xilinx Software Development Kit (SDK): System Performance (UG1145)

• “Chapter 5” in the Xilinx Software Development Kit (SDK): System Performance (UG1145)

Also, see System Performance Analysis of an All Programmable SoC (XAPP1219) [Ref 17].

Sourcery CodeBench Lite Edition for Xilinx Cortex-A9 Compiler Toolchain

SDK includes the Sourcery CodeBench Lite Edition for Xilinx Cortex-A9 compiler toolchain
for bare-metal Embedded Application Binary Interface (EABI) and Linux application
development.

X-Ref Target - Figure 2-2

Figure 2-2: Export Hardware for SDK Dialog Box
Zynq-7000 AP SoC SWDG www.xilinx.com 13
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1145-sdk-system-performance.pdf;a=SystemPerformanceModelingProject
ttp://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1145-sdk-system-performance.pdf;a=MonitorFramework
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=13

Chapter 2: Software Application Development Flows
The Xilinx Sourcery CodeBench Lite toolchain in SDK contains the same GNU tools, libraries
and documentation as the standard Sourcery CodeBench Lite Edition EABI and Linux compiler
toolchains, but adds the following enhancements:

• Default toolchain settings for the Xilinx Cortex-A9 processors

• Bare-metal (EABI) start up support and default linker scripts for the Xilinx Cortex-A9
processors

• Vector Floating Point (VFP) and NEON™ optimized libraries

Analysis Tools

Vivado Lab Tool

The Vivado IDE has integrated debugging capability. See Vivado Design Suite User Guide:
Programming and Debugging (UG908) [Ref 11] for more information.

System Generator for DSP

The System Generator™ for DSP tool can be used to develop DSP and data flow-centric,
hardware-based coprocessors, working within the MATLAB®/Simulink® environment.

System Generator supports rapid simulation of the DSP hardware, reducing overall
development time, and automates the generation of co-processors that can be connected
to the PS. The SDK co-debug feature lets you run and debug programs running on the
processor in SDK, while retaining visibility and control over the hardware under
development in System Generator.

Bare-Metal Device Driver Architecture
The bare-metal device drivers are designed with a layered architecture as shown in
Figure 2-3, page 15. The layered architecture accommodates the many use cases of device
drivers while at the same time providing portability across operating systems, toolsets, and
processors.

The layered architecture provides seamless integration with:

• A Layer 2 (RTOS Adapter) an abstract device driver interface that is full-featured and
portable across operating systems

• Processors Layer 1 (Device Driver)

• A direct hardware interface for simple use cases or those wishing to develop a custom
device driver

The following subsections describe the layers.
Zynq-7000 AP SoC SWDG www.xilinx.com 14
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=14

Chapter 2: Software Application Development Flows
IMPORTANT: The direct hardware interface does not add additional overhead to the device driver
function call overhead, as it is typically implemented as a set of manifest constants and macros.

I
X-Ref Target - Figure 2-3

Figure 2-3: Bare-Metal Drivers Architecture
Zynq-7000 AP SoC SWDG www.xilinx.com 15
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=15

Chapter 2: Software Application Development Flows
Layer 2 (RTOS Adapter)
Layer 2 is an adapter between an RTOS and a device driver. It converts a Layer 1 device
driver to an interface that matches the requirements of the driver model for an RTOS.
Unique adapters might be necessary for each RTOS.

Adapters typically:

• Communicate directly to the RTOS as well as the Layer 1 interface of the device driver

• Reference functions and identif iers specific to the RTOS. This layer is therefore not
portable across operating systems

• Can use memory management

• Can use RTOS services such as threading and inter-task communication

• Can be simple or complex depending upon the RTOS interface and requirements for
the device driver

Layer 1 (Device Driver)
Layer 1 is an abstract device driver interface that shields you from potential changes to the
underlying hardware. It is implemented with macros and functions and designed to allow
you to use all features of a device. The device driver is independent of operating systems
and processors, making it highly portable.

This interface typically has:

• Consistent API that gives you an “out-of-the-box” solution. The abstract API helps
isolate the your project from hardware changes.

• Lack of RTOS or processor dependencies makes the device driver highly portable

• Run-time error checking such as assertion of input arguments that provides the ability
to compile away asserts

• Device feature support

• Support for device configuration parameters to handle FPGA-based parameterization
of hardware devices

• Support for multiple instances of a device while managing unique characteristics on a
per instance basis

• Polled and interrupt-driven I/O

• Non-blocking function calls to aid complex applications

• A potentially large memory footprint

• Buffer interfaces for data transfers as opposed to byte interfaces. This makes the API
easier to use for complex applications.

• No direct communication to Layer 2 adapters or application software, by using
asynchronous callbacks for upward communication
Zynq-7000 AP SoC SWDG www.xilinx.com 16
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=16

Chapter 2: Software Application Development Flows
Direct Hardware Interface
The interface that is contained within the Layer 1 device driver is a direct hardware
interface. It is typically implemented as macros and manifest constants, and is designed so
you can create a small applications or create a custom device driver. This interface typically
has:

• Constants that define the device register offsets and bit f ields

• Simple macros that provide access to the hardware registers

• A small memory footprint

• Little to no error checking

• Minimal abstraction so the API typically matches the device registers. The API is
therefore less isolated from hardware device changes.

• No support of device configuration parameters

• Support of multiple instances of a device with base address input to the API

• No, or minimal state

• Polled I/O only

• Blocking functions for simple use cases

• Byte interfaces typically provided

Bare-Metal Application Development
Xilinx software design tools facilitate the development of embedded software applications
for many runtime environments.

Xilinx embedded design tools create a set of hardware platform data f iles that include:

• An XML-based hardware description file describing processors, peripherals, memory
maps, and additional system data

• A bitstream file containing optional programmable logic (PL) programming data

• A block RAM memory map (BMM) file

• PS configuration data used by the Zynq-7000 AP SoC first stage bootloader (FSBL).

The bare-metal Board Support Package (BSP) is a collection of libraries and drivers that
form the lowest layer of your application.

The runtime environment is a simple, semi-hosted and single-threaded environment that
provides basic features, including boot code, cache functions, exception handling, basic f ile
I/O, C library support for memory allocation and other calls, processor hardware access
macros, timer functions, and other functions required to support bare-metal applications.
Zynq-7000 AP SoC SWDG www.xilinx.com 17
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=17

Chapter 2: Software Application Development Flows
Using the hardware platform data and bare-metal BSP, you can develop, debug, and deploy
bare-metal applications using SDK.

Figure 2-4 is an overview flowchart for bare-metal application development.

To develop bare-metal applications using SDK, typical steps include:

1. Importing Hardware Platform Information

2. Creating Bare-Metal BSP

3. Creating Bare-Metal Application

4. Building the Application Project

5. Programming the Device and Running the Application

6. Debugging the Application

7. Adding Custom IP Driver Support

8. Deploying the Application

The following subsections summarize these SDK development flow steps. See the SDK
online help, for more details and examples of SDK tool usage.

X-Ref Target - Figure 2-4

Figure 2-4: Bare-Metal Application Development Overview
Zynq-7000 AP SoC SWDG www.xilinx.com 18
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=18

Chapter 2: Software Application Development Flows
Importing Hardware Platform Information
Xilinx hardware configuration tools create hardware platform data you can export to SDK to
create a hardware platform project. In SDK, the project stores information about the
hardware system that includes, but is not limited to, the following:

• Processor and peripheral information for BSP generation

• Memory map information used to generate linker scripts

• Bitstream data used to program the PL with custom logic

• PS configuration data used in the FSBL and the debugger

Creating Bare-Metal BSP
After you create the hardware platform project, you can use SDK to create a bare-metal BSP
project. Source f iles for drivers and libraries are staged, parameterized based on the
hardware platform (processor, IP feature set, hardware configuration settings) to create
header f ile parameter definitions, and compiled. The BSP reflects IP enabled in the PS,
including Multiplexed I/O (MIO) configuration, and custom logic in the PL. You can modify
and re-generate BSP settings. See the Standalone BSP, which is included in the OS and
Libraries Document Collection (UG643) [Ref 3].

Creating Bare-Metal BSP Using Third-Party Tools
SDK supports BSP generation for other embedded OS environments and tools by specifying
the path to a software repository containing source and meta data f iles that enable it to
configure and build the associated drivers and libraries.

Creating Bare-Metal Application
SDK provides a template-based application generator for included sample programs, from
a basic “Hello World” or Dhrystone benchmark application to a FSBL or TCP/IP echo server.
A default linker script is created for these applications.

The application generator is invoked by the Xilinx C or C++ Application wizard. You can
either create an empty application or import existing applications to port to the bare-metal
BSP. Each application project is associated with a BSP project.

Code development tools include editors, search, refactoring, and features available in the
base Eclipse platform and CDT plug-in.
Zynq-7000 AP SoC SWDG www.xilinx.com 19
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=19

Chapter 2: Software Application Development Flows
Building the Application Project
SDK application projects can be user-managed (user-created makefiles) or automatically
managed (SDK-created makefiles). For user-managed projects, you must maintain the
makefile and initiate the application builds.

For automatically managed projects, SDK updates the makefile as needed when source
f iles are added or removed, source files are compiled when changes are saved and the ELF
is built automatically; in Eclipse CDT terminology, the application project is a managed
make project.

Where possible, SDK infers or sets default build options based on the hardware platform
and BSP used, including compiler, linker, and library path options.

Programming the Device and Running the Application
After building the bare-metal application, SDK can be used to configure the PS, program
the PL and run the application. SDK configures the PS using the system-level configuration
registers (SLCR) with configuration data also used in the FSBL.

Bitstream (BIT) and block memory map (BMM) data are downloaded to the Zynq-7000 AP
SoC to load any custom design logic into the PL, but this step can be omitted when running
applications that require only the PS.

Create an SDK configuration run to download and run the application ELF f ile. A terminal
view is available to interact with the application using STDIN and STDOUT.

Debugging the Application
When you use SDK to debug applications, the steps are similar to those for running an
application, except you create a debug configuration instead of a run configuration. A
collection of windows (views) provides a complete debugging environment. This debug
perspective should be familiar to those who have used Eclipse-based IDEs with the CDT
plug-in, and includes a debug window showing the state of the session with a call stack,
source viewers, disassembly, memory, register, other views, and console. You can set
breakpoints and control execution with familiar debugger commands.

Adding Custom IP Driver Support
The hardware platform data created by Xilinx hardware configuration tools captures the
Xilinx IP blocks used in the PL area, and the bare-metal BSP automatically includes driver
support for these blocks. Custom IP blocks that include hardware description metadata f iles
can also be captured as part of the hardware platform passed to SDK.

By specifying the path to a software repository containing custom drivers and metadata,
SDK can also include them in the bare-metal BSP.
Zynq-7000 AP SoC SWDG www.xilinx.com 20
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=20

Chapter 2: Software Application Development Flows
You can also create library projects to manage and build custom driver source files, and
build their applications using library projects together with the bare-metal BSP.

As the Hardware platform changes you might want to configure the custom IP driver. To
customize the software drivers, a Microprocessor Driver Definition (MDD) f ile along with a
Tcl f ile is used.

The driver parameters to be configured are specified in the MDD file. The procedure to
generate the .h or .c f iles is present in the Tcl f ile. For more information, see the
Generating Software Platforms Reference Guide, (UG1138) [Ref 4].

Deploying the Application
After developing and debugging the bare-metal application within SDK, you can create a
boot image for the application to be deployed on the board. SDK includes an application
template for the FSBL that can be modif ied to create and build the f inal FSBL. The FSBL,
bare-metal application, and bitstream for programming the PL (optional) are combined to
generate a boot image that can be programmed to supported devices using the SDK Flash
Writer.

For more information about boot image format, see Chapter 3, Boot and Configuration.

Linux Application Development
In addition to bare-metal applications, Xilinx software design tools facilitate the
development of Linux user applications. This section provides an overview of the
development flow for Linux application development.

Xilinx embedded design tools create a set of hardware platform data f iles that include:

• An XML-based hardware description file describing processors, peripherals, memory
maps and additional system data

• A bitstream file containing PL programming data (optional)

• A block RAM Memory f ile (BMM)

• PS configuration data used by the Zynq-7000 AP SoC first stage bootloader (FSBL).

Linux is an open-source operating system. The Xilinx open source solution includes support
for a single processor and Symmetric Multiprocessing (SMP). XIlinx provides drivers for the
peripherals in the Processor System (PS). (You can add drivers for custom logic in the PL.)

See the Standalone BSP (UG652) that is included in the OS and Libraries Document
Collection (UG643) [Ref 3]. See this document for information about the Bare-Metal BSP.
Zynq-7000 AP SoC SWDG www.xilinx.com 21
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=21

Chapter 2: Software Application Development Flows
See Chapter 4, Linux for a description of the Linux the U-Boot bootloader, and see the links
[Ref] to the Xilinx Open Source Wiki that provide more information.

Using the hardware platform data and Linux Kernel, programmers can develop, debug and
deploy Linux user applications with the Xilinx Software Development Kit (SDK). SDK does
not support Linux Kernel debug. Linux Kernel configuration and build processes are not
discussed in this section.

To develop Linux user applications using SDK, typical steps include:

1. Booting Linux

2. Creating an Application Project

3. Building the Application Project

4. Running the Application

5. Debugging the Application

6. Adding Driver Support for Custom IP in the PL

7. Profiling the Application

8. Adding Application to Linux File System

9. Modifying the Linux BSP (Kernel or File System)
Zynq-7000 AP SoC SWDG www.xilinx.com 22
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=22

Chapter 2: Software Application Development Flows
The flowchart in Figure 2-5 provides an overview of the flow for Linux application
development.

The following subsections describe the steps in this flow. See the SDK Help [Ref 14], for
more details and examples of SDK tool usage.

Booting Linux
You can boot Linux in multiple ways, depending on your preferred work flow:

• Program the boot image into flash and power up or reset the board

• Download and run the FSBL, followed by the U-Boot and then the Linux Kernel

• Use U-Boot to load and run images

With Linux running on the Zynq-7000 AP SoC, SDK can treat the PS platform as a remote
Linux host, with functionality that varies depending on the components included in the file
system.

Flash memory offsets differ for NAND, NOR, and Quad-SPI. Partitions can include FSBL,
U-boot, linux kernel, device tree, RAMdisk, and user application.

X-Ref Target - Figure 2-5

Figure 2-5: Linux Application Development
Zynq-7000 AP SoC SWDG www.xilinx.com 23
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=23

Chapter 2: Software Application Development Flows
During the boot process, FSBL is run to set up the PS, followed by U-Boot, which can be
used to load the Linux Kernel image and boot Linux. The actual boot sequence and flash
image creation process vary depending on the type of flash and other requirements. For
example, the FSBL can be used to configure the PL containing custom logic and it is
possible for a U-Boot image to include the FSBL.

Creating an Application Project
SDK provides a template-based application generator for included sample programs, from
a basic “Hello World” or Dhrystone bootloader, or an FSBL application to a benchmarking
application. The application generator is invoked by the Xilinx C or C++ Application wizard.

Users can also create an empty application or import existing Linux applications for porting.
Code development tools include editors, search, refactoring and features available in the
base Eclipse platform and CDT plug-in.

SDK provides a Bootgen utility to generate bootable images (.bin and .mcs). You need to
provide all the images and the load addresses to the bootgen tool to create the boot image.

SDK also provides a utility to flash images onto the flash device.

Building the Application
SDK application projects can be user-managed (user-created makefiles) or automatically
managed (SDK created makefiles). For user-managed projects, the user maintains the
makefile and initiates application builds. For automatically managed projects, SDK
updates the makefile as needed when source files are added or removed, source files are
compiled when changes are saved and the ELF is built automatically; in Eclipse CDT
terminology, the application project is a managed make project. Where possible, SDK infers
or sets default build options based on the hardware platform and BSP used, including
compiler, linker, and library path options.

Running the Application
You can create an SDK run configuration to copy the compiled application to the f ile system
and run the application. With Linux running on the Zynq-7000 AP SoC, the run
configuration copies the executable to the f ile system using sftp if the Linux environment
includes SSH. A terminal view is available to interact with the application using STDIN and
STDOUT.

You can also run the application using a command line shell. Use:

• sftp to copy the executable

• ssh in Linux to run the executable
Zynq-7000 AP SoC SWDG www.xilinx.com 24
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=24

Chapter 2: Software Application Development Flows
Debugging the Application
You can use SDK to debug applications; SDK creates a debug configuration that defines
options for the debugger session. A gdbserver runs the application on Linux, and the SDK
debugger communicates with it using a TCP connection. A collection of windows (views)
provides a complete debugging environment.

This debug perspective should be familiar if you have used Eclipse-based IDEs with the CDT
plug-in, and it includes a debug window showing the state of the session with a call stack,
source viewers, disassembly, memory, register and other views, and the console. You can set
breakpoints and control execution with standard debugger commands.

Adding Driver Support for Custom IP in the PL
SDK supports Linux BSP generation for peripherals in the PS as well as custom IP in the PL.
When generating a Linux BSP, SDK produces a device tree, which is a data structure
describing the hardware system that is passed to the Kernel at boot time. Device drivers are
available as part of the Kernel or as separate modules, and the device tree defines the set
of hardware functions available and features enabled.

Additionally, you can add dynamic, loadable drivers. The Linux driver supports these drivers.
See the OS and Libraries Document Collection (UG643) [Ref 3].

Custom IP in the PL are highly configurable, and the device tree parameters define both the
set of IP available in the system and the hardware features enabled in each IP.

See Chapter 4, Linux for additional details on the Linux Kernel and boot sequence.

Profiling the Application
To profile Linux user applications, use the -pg profiling option when building the
application. User application profiling is based on the gprof utility and an accompanying
viewer to display the call graph and other data.

For profiling all running code in the user application, the Kernel, interrupt handlers, and
other modules, SDK includes an OProfile plug-in that supports visualization of its call
profiling capabilities. OProfile is an open source system-wide profiler for Linux; it
requires a Kernel driver and daemon to collect sample data.
Zynq-7000 AP SoC SWDG www.xilinx.com 25
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=25

Chapter 2: Software Application Development Flows
Adding Application to Linux File System
The compiled user application and required shared libraries can be added to the Linux f ile
system, as follows:

• While Linux is running on the Zynq-7000 AP SoC, you can copy the files using sftp if
the Linux environment includes SSH.

• In SDK, a remote system explorer (RSE) plug-in lets you copy files using drag-and-drop.

• In workflows outside of SDK, add the application and libraries to the f ile system folder
before creating the f ile system image and programming it to flash.

Modifying the Linux BSP (Kernel or File System)
See Chapter 4, Linux, for a description of the Linux U-Boot bootloader.

Also, see the Xilinx Forums and Wiki Links, page 67 that provide more information.

Additional Information
For additional information related to topics mentioned in this chapter, consult the
references listed in the introduction. For further reading, review the following in the
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 13].

• “Embedded System Design Using the Zynq Processing System”

• “Adding IPs in Fabric to Zynq PS"
Zynq-7000 AP SoC SWDG www.xilinx.com 26
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=26

Chapter 3

Boot and Configuration

Overview
You can boot or configure Zynq®-7000 All Programmable SoC devices in secure mode
using static memories only (JTAG disabled) or in non-secure mode using either JTAG or
static memories.

• JTAG mode is primarily used for development and debug.

• NAND, parallel NOR, Serial NOR (Quad-SPI), and Secure Digital (SD) flash memories are
used for booting the device. The Zynq-7000 AP SoC Technical Reference Manual
(UG585) [Ref 13] provides the details of these boot modes.

The processor system boot is a two-stage process:

• An internal BootROM stores the stage-0 boot code, which configures one of the ARM®
processors and the necessary peripherals to start fetching the First Stage Bootloader
(FSBL) boot code from one of the boot devices. The programmable logic (PL) is not
configured by the BootROM. The BootROM is not writable.

• The FSBL boot code is typically stored in one of the flash memories, or can be
downloaded through JTAG. BootROM code copies the FSBL boot code from the chosen
flash memory to on-chip memory (OCM). The size of the FSBL loaded into OCM is
limited to 192 kilobyte. The full 256 kilobyte is available after the FSBL begins
executing.

• Another boot mode supported through FSBL is eMMC boot mode. This boot mode is
possible only when the primary boot mode (set through the boot mode pins) is QSPI.
This is used when you have a small QSPI flash and would like to store all the other
partitions on a larger flash memory like eMMC. In this case, place the FSBL on the QSPI
flash, and all the other partitions on eMMC flash.

• The FSBL source code is available from the git server; the link to the git server is listed
in Appendix B. Additional Resources and Legal Notices. You can build the FSBL from a
command line after you have downloaded the source f iles.

The FSBL boot code is completely under user control and is referred to as user boot code.
This provides you with the flexibility to implement whatever boot code is required for your
system. Xilinx® provides sample FSBL boot code that you can tailor to your own needs.
Zynq-7000 AP SoC SWDG www.xilinx.com 27
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=27

Chapter 3: Boot and Configuration
The FSBL boot code includes initialization code for the peripherals in the processing system
(PS), see the FSBL code provided with SDK for details on the FSBL initialization sequence of
the FSBL. The boot image can contain a bitstream for the programmable logic (PL).

The PL is not required to be configured at this stage, because the PS is fully operational
when the PL is not configured. You can customize the FSBL boot code to use other PS
peripherals such as Ethernet, USB, or STDIO to boot and/or configure the PL.

Note: DDR and SCU are not enabled by the BootROM. See the Zynq-7000 AP SoC Technical
Reference Manual (UG585) [Ref 13] for details.

Boot Modes
The following boot modes are available:

• PS Master Non-secure Boot

• PS Master Secure Boot

• JTAG/PJTAG Boot

For details on these boot modes, see “Boot and Configuration” in the Zynq-7000 AP SoC
Technical Reference Manual (UG585) [Ref 13].

Boot Stages
Zynq-7000 AP SoC devices support secure and non-secure boot processes, as follows:

• Stage-0 Boot (BootROM)

• First Stage Bootloader

• Second Stage Bootloader (Optional)

Stage-0 Boot (BootROM)
See the section on “BootROM” in the Zynq-7000 AP SoC Technical Reference Manual
(UG585) [Ref 13].

Figure 3-1, page 29 shows the flow of FSBL loading in OCM by the BootROM code.
Zynq-7000 AP SoC SWDG www.xilinx.com 28
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=28

Chapter 3: Boot and Configuration
FSBL Fallback Feature, page 34 contains more information on the BootROM flow when a
valid image is not found.

First Stage Bootloader
The First Stage Bootloader (FSBL) starts after the boot. The BootROM loads FSBL into the
OCM. The FSBL is responsible for:

• Initializing with the PS configuration data that Xilinx hardware configuration tools
provide (see Zynq PS Configuration, page 47).

• Programming the PL using a bitstream (if provided).

• Loading second stage bootloader or bare-metal application code into DDR memory.

• Handoff to the second stage bootloader or bare-metal application.

Note: Before handoff to the second stage bootloader or bare-metal application, the FSBL invalidates
the instruction cache and disables the cache and MMU, because U-Boot assumes it is disabled upon
start. See the FSBL code provided with SDK for details on the initialization sequence of the FSBL.

Figure 3-2, page 30 shows an example FSBL flow.

X-Ref Target - Figure 3-1

Figure 3-1: Boot Flow in Non-Secure Mode
Zynq-7000 AP SoC SWDG www.xilinx.com 29
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=29

Chapter 3: Boot and Configuration
X-Ref Target - Figure 3-2

Figure 3-2: Example FSBL Flow

System
Initialization

Boot device
Initialization

Read Partition Header

Authentication
Enabled ?

RSA Verify Partition

Partition Encrypted

No

Route Partition to AES-HMAC
Engine and then Destination

Last Partition ?

Yes

Route Partition to
the destination

No

No

Yes

PS partition
present?

Yes

JTAG exitNo

Handoff to the
PS partition

Yes
Zynq-7000 AP SoC SWDG www.xilinx.com 30
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=30

Chapter 3: Boot and Configuration
The bitstream for the PL and the second stage bootloader or bare-metal application data, as
well as other code and data used by the second stage bootloader, Linux (or other operating
system), or bare-metal application are grouped into partitions in the flash image. See
section Boot Image Format, page 48, for a description of how they are organized.

The FSBL traverses the partition header table to f ind the bitstream and second stage
bootloader or bare-metal application partition. See Appendix A. Using Bootgen, for details.
See Boot Image Creation, page 48, for details on how the boot image containing these
partitions is constructed.

You stitch the FSBL with the bitstream and an application using the Bootgen program. SDK
has a Create Boot Image wizard option, shown in the following f igure, to add the partition
images and create a bootable image that you can then flash.

X-Ref Target - Figure 3-3

Figure 3-3: Create Zynq-7000 AP SoC Boot Image Wizard
Zynq-7000 AP SoC SWDG www.xilinx.com 31
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=31

Chapter 3: Boot and Configuration
The rules are:

• The first partition must be the FSBL ELF followed by the bitstream partition and then
the application ELF.

• Bitstream is optional. FSBL does a handoff to the first application in the BIF order.

IMPORTANT: The order within the BIF file is important. Bitstream must be the partition after
FSBL. Bitstream is not mandatory. The bitstream is required only if the PL must be
programmed.

FSBL does not remap the DDR; consequently, DDR that is lower than 1Mb cannot be used.

IMPORTANT: The application ELF must have an execution address of greater than 1Mb.

The following figure shows a simple FSBL flow diagram:

X-Ref Target - Figure 3-4

Figure 3-4: FSBL Flow Diagram
Zynq-7000 AP SoC SWDG www.xilinx.com 32
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=32

Chapter 3: Boot and Configuration
eMMC Flash Devices

Zynq-7000 AP SoC devices support eMMC flash devices in MLC and SLC configuration as a
secondary boot source. FSBL supports loading the partitions from eMMC. This is possible
only when the primary boot mode (set through the boot mode pins) is QSPI.

Use this option when there is a small QSPI flash and you would like to store all the other
partitions on a larger flash memory like eMMC. In this case, place the FSBL on the QSPI flash
and all the other partitions are on eMMC flash.

To enable and use this boot mode:

1. Create a BSP with the library and set enable_mmc in the SDK options. For more details,
see the library documentation.

2. Enable the MMC_SUPPORT flag through SDK and build FSBL. The FSBL image build
(fsbl.elf) now has eMMC support.

3. Stitch the boot image with FSBL as the only partition (using Bootgen).

4. Place the boot image in the QSPI flash.

5. Stitch an image (using Bootgen) with all the other required partitions (like the bitstream
or the U-Boot) and place it in the eMMC flash.

6. Set the boot mode to QSPI.

7. Power cycle the board.

BootROM comes up, loads the FSBL from QSPI flash to OCM and does a hand-off to FSBL.
FSBL then picks all the other partitions from the eMMC device, loads them to DDR, then
hands over control to the application.

In this case, FSBL ignores the configured primary boot mode (configured through the boot
mode pins on the board) which is QSPI and loads the other partitions from eMMC.

To have FSBL and U-Boot on the QSPI flash, the MMC_SUPPORT flag need not be enabled in
FSBL; however, the U-Boot auto-configuration file must be updated to indicate to U-Boot to
load the rest of the partitions from eMMC flash.

In this case, FSBL loads U-Boot to DDR and hands over the control to U-Boot.

U-Boot handles loading the rest of the partitions from the eMMC flash. The limitation here
is that the partitions present on the eMMC flash cannot be RSA authenticated because
U-Boot does not support RSA authentication.

RSA is a cryptosystem, which is known as one of the f irst practicable public-key
cryptosystems and is widely used for secure data transmission. In such a cryptosystem, the
sender authenticates the image with the private key and the receiver validates and
authenticates using the public key.
Zynq-7000 AP SoC SWDG www.xilinx.com 33
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=33

Chapter 3: Boot and Configuration
Setting FSBL Compilation Flags
You can set compilation flags using the C/C++ settings in SDK FSBL project, as shown in the
following f igure.

Note: There is no need to change any of the FSBL source f iles or header f iles to include these flags.

Table 3-1 lists the FSBL compilation flags.

FSBL Fallback Feature

To recover from an error condition, FSBL does a Fallback and enables BootROM to load
another bootable image (the golden image that was originally present and in a known good
state) if that image is present in the flash memory. FSBL updates a multiboot register and
does a soft reset so that BootROM executes and loads the next present, valid image.

X-Ref Target - Figure 3-5

Figure 3-5: SDK FSBL Properties Settings

Table 3-1: Compilation Flags

Flag Description

FSBL_DEBUG Set this flag to enable the logs and message prints.

FSBL_DEBUG_INFO Set this flag to obtain more detailed logs like register and partition
header dumps.

FSBL_DEBUG_RSA Set this flag to print more detailed intermediate values used in RSA
functions.

NON_PS_INSTANTIATE
D_BITSTREAM

Set this flag when the bitstream does not have a PS component.
Then the FSBL does not enable level shifters.

RSA_SUPPORT Set this flag to enable authentication feature in FSBL.

MMC_SUPPORT Set this flag to enable MMC support in FSBL. When this flag is set,
FSBL reads all the partitions from the eMMC device, instead of the
primary boot device (which is set by the boot mode pins).
Zynq-7000 AP SoC SWDG www.xilinx.com 34
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=34

Chapter 3: Boot and Configuration
Note: In the case of a PL configuration error, FSBL does Fallback.

In the secure boot scenario, with the AES key stored in eFUSE, the Fallback scenario is
handled by FSBL without going through a soft reset. See Secure Fallback Flow with BBRAM,
page 39 and Secure Fallback Flow with eFUSE, page 41, and Secure Boot Support, page 46.

The following subsections describe the details.

For more information about eFUSE, see the LibXil SKey for Zynq-7000 AP SoC Devices in the
SDK Help [Ref 14] and in
<Installation_Directory>\SDK\<version>\data\embeddedsw\lib\sw_servi
ces\<library_name><version>\doc.

Fallback in Non-Secure Cases

In a FSBL non-secure flow, the following actions occur:

• After power on reset (POR), BootROM executes and validates the Image 1 Boot header.

° If there is no corruption, BootROM hands over control to the FSBL, which then loads
the other partitions in the image.

° If there is corruption in the boot header, BootROM does a fallback search to find
the next valid image. In the example shown in Figure 3-6, page 36, BootROM
validates the Image 2 boot header, and, if no corruption, hands over the Image 2 to
FSBL, which processes the rest of the partitions in Image 2.

° In non-secure images, corruption in FSBL and other images is not recognized.
Zynq-7000 AP SoC SWDG www.xilinx.com 35
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=35

Chapter 3: Boot and Configuration
X-Ref Target - Figure 3-6

Figure 3-6: Power on Reset Fallback
Zynq-7000 AP SoC SWDG www.xilinx.com 36
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=36

Chapter 3: Boot and Configuration
The following figure represents the Flash image format for non-secure cases.

X-Ref Target - Figure 3-7

Figure 3-7: Non-Secure Fallback Image Format
Zynq-7000 AP SoC SWDG www.xilinx.com 37
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=37

Chapter 3: Boot and Configuration
Fallback Flow for RSA Only

In the case of non-secure Fallback with RSA authentication enabled, the following actions
occur:

• After POR, BootROM executes and validates the Boot Header in Image 1.

• If there is no corruption in the Boot Header, BootROM hand over control to the FSBL,
which then authenticates the rest of the partitions and loads those partitions.

• If there is corruption in the Boot Header or the FSBL image, BootROM does a fallback
search to f ind the next valid image. In this example, in Image 2, the BootROM validates
the Image 2 boot header. If the boot header validation is successful, then BootROM
authenticates the FSBL in Image 2 and hands control over to FSBL.

• In this case, when there is corruption in the bitstream, U-Boot, or the OS, FSBL
authentication fails and does fallback by a soft reset of the system and BootROM
locates the golden image.

The following figure shows the Fallback flow for RSA only.

X-Ref Target - Figure 3-8

Figure 3-8: RSA-Only Fallback Flow
Zynq-7000 AP SoC SWDG www.xilinx.com 38
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=38

Chapter 3: Boot and Configuration
The following figure represents the Flash image format for non-secure cases.

Secure Fallback Flow with BBRAM

In the secure Fallback flow using BBRAM, the following actions occur:

• BootROM executes and decrypts the FSBL1 and authenticates if RSA is enabled.

° If the validation is successful, the BootROM hands over the control to FSBL, which
then loads, decrypts, and authenticates (if enabled) the other partitions, then hands
the control to the OS, U-Boot, and/or application.

° If the boot header of Image1 is corrupted, BootROM searches for the Image2,
decrypts the FSBL, and hands off the decryption to FSBL in Image2. Then the FSBL
does any required decryption and authentication (if enabled) of the rest of the
partitions and hands over to the U-Boot, OS, or Standalone application. In this
process, if FSBL f inds any image to be corrupted, then it initiates a Fallback.

X-Ref Target - Figure 3-9

Figure 3-9: Fallback Partitions for RSA Only
Zynq-7000 AP SoC SWDG www.xilinx.com 39
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=39

Chapter 3: Boot and Configuration
The following figure shows the secure Fallback flow with BBRAM.

X-Ref Target - Figure 3-10

Figure 3-10: BBRAM Secure Fallback
Zynq-7000 AP SoC SWDG www.xilinx.com 40
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=40

Chapter 3: Boot and Configuration
The following figure shows the Flash partitions for secure boot in BBRAM.

Secure Fallback Flow with eFUSE

The secure Fallback flow with eFUSE during power on reset (POR) is as follows: In this case
FSBL handles the Fallback without going through a soft reset.

• BootROM executes, decrypts the FSBL* (where *=FSBL Prime), authenticates (if
enabled), and passes control back to the FSBL*.

Note: (FSBL Prime) must be used for Fallback with Authentication.

• The FSBL* then:

° Handles the Encrypted Fallback scenario

° Finds no other partitions; consequently, does a Fallback, searching for the next valid
image.

- Finds Image 2, and validates the boot header of the Image 2.

- If valid, skips over the FSBL in Image2 and processes all the other partitions in
Image 2, then hands over control to the application in Image 2.

X-Ref Target - Figure 3-11

Figure 3-11: Flash BBRAM Partitions
Zynq-7000 AP SoC SWDG www.xilinx.com 41
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=41

Chapter 3: Boot and Configuration
If there is header corruption in Image 2:

• FSBL* to error out with a message to indicate that the Image 2 is corrupt. (FSBL in
Image 1 still controls the f iles and performs Fallback to search for the next Image.)

• FSBL* searches for loads Image 3, then:

° Validates the boot header

° Authenticates any f iles if RSA is enabled

° Skips over the FSBL in Image 3 and processes the rest of the partitions in Image 3.

RECOMMENDED: Use Authentication for secure images.

The following figure shows the secure Fallback flow with eFUSE.

Note: The Secure flow for Fallback when the AES keys are stored in the PL eFUSE is different than the
other flows. RSA authentication in optional.

X-Ref Target - Figure 3-12

Figure 3-12: Secure Fallback Flow with eFUSE
Zynq-7000 AP SoC SWDG www.xilinx.com 42
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=42

Chapter 3: Boot and Configuration
• If the FSBL* (FSBL in Image 1) fails authentication, the BootROM goes into a secure
lockdown; consequently, you must ensure that Image 1 is not corrupted.

• If the boot header of Image 1 is not valid, the BootROM jumps to Image 2 and the FSBL
in Image 2 executes.

RECOMMENDED: It is recommended in secure mode that you configure Watchdog timers for Interrupt
and not SRST. You can route the Watchdog Interrupt to do POR through a GPIO.

RECOMMENDED: In secure fallback with efuse as key source, it is recommended to have same FSBL in
all the images.

The following figure shows the FSBL* partitions for Secure Boot with eFUSE.

X-Ref Target - Figure 3-13

Figure 3-13: Flash Partitions for Secure Boot with eFUSE
Zynq-7000 AP SoC SWDG www.xilinx.com 43
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=43

Chapter 3: Boot and Configuration
FSBL Multiboot

Multiboot is the scenario where you want to load some other version of FSBL, other than the
one currently executing. For example, you might want to execute a version of FSBL; any
image that performs self test and diagnostics, and then jump to the actual application.

In this scenario, after executing the image which performs the diagnostics you can update
the multiboot register with the sequence number of the load file which contains the actual
application and issue a soft reset.

In the Multiboot scenerio:

• Several images can be used to setup the functionality of a part

• The images are user-selectable, based on what the function the part is supposed to
perform at certain times

While the system boots up through the soft reset, the BootROM reads the multiboot
register and jumps to that loadable image instead of the f irst loadable image.

In the secure boot scenario, with the AES key stored in eFUSE, the Multiboot scenario must
be handled by the user (without going through a soft reset).

NAND Boot Mode

In NAND boot mode, to use Multiboot, the user needs to implement the
calculate_multiboot() routine using the following steps. This API calculates the
MultiBoot address.

The sequence is:

1. Set the Boot mode to NAND using bootstrap pins.

2. Implement the calculate_multiboot() function in the user application (FSBL/any
other application).

3. From the application that is invoking MultiBoot, call the calculate_multiboot()
API to calculate the MultiBoot address.

4. Update the MultiBoot address to the MultiBoot address register, (which is described in
the Zynq-7000 AP SoC Technical Reference Manual, (UG585) [Ref 13] and trigger a soft
reset.

Calculate_multiboot API

1. Calculate the page size for the NAND part being used.

2. Calculate the bytes per page for the NAND.

3. Based upon the start address of the boot image, calculate the source block number
which is SourceAddress BytesPerBlock .
Zynq-7000 AP SoC SWDG www.xilinx.com 44
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=44

Chapter 3: Boot and Configuration
4. Calculate the number of bad blocks preceding the source block by checking if each of
the blocks is a good block or a bad block.
LOOP till SourceBlock
Check if the current block is BAD:
IF "Block is BAD" THEN
Increment the bad block count

ENDIF
LOOP END

5. Calculate the Multiboot_Address using the following equation:

Multiboot_Address = (SourceAddress - (BadBlocks * BytesPerBlock))/(32 * 1024);

QSPI Boot Mode

This QSPI boot mode is for x4 mode. The BootROM searches the f irst 256 Mb in x8 mode.
In QSPI boot mode (where the QSPI device is >128Mb), to use MultiBoot, place the multiple
images in such a way that they f it in memory locations less than 128Mb.

To effect this mode, the images should have only (FSBL+U-Boot) to fit in the <128Mb
memory. Then, the rest of the partitions, possibly residing in a portion of memory that is
>128Mb, must be handled by U-Boot. In this case, update the zynq_common.h f ile to add
the commands to load the required partitions. You can find further details on the usage,
along with an example, in the Xilinx Zynq-7000 AP SoC Solution Center [Ref 1].

FSBL Hooks

FSBL hooks provide an easy way to plug-in used defined functions, (for example, initializing
PL IPs after loading a bitstream). The FSBL hook functions are located in the fsbl_hook.c
f ile.

The fsbl_hook.c f ile contains the following functions:

• FsblHookBeforeBitstreamDload: This function is called before the PL bitstream
download. Any customized code. You can add customized code before the bitstream
download in this function.

• FsblHookAfterBitstreamDload: This function is called before the handoff to the
application. You can add any customized operations you want to perform before
handoff to the application to this function.

• FsblHookBeforeHandoff : This function is the hook to call before the FSBL does a
handoff to the application. You can add customized code to be executed before the
handoff to this routine.

• FsblHookFallback : This function is called when the FSBL does a Fallback. You can
add customized code, either to print a message, log an error, or do any other intended
operation, when Fallback occurs.
Zynq-7000 AP SoC SWDG www.xilinx.com 45
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=45

Chapter 3: Boot and Configuration
By using these hook functions you can plug-in any application-specif ic customized code
into the flow sequence of the FSBL.

DDR ECC Enable

This feature enables ECC support for the DDR.

• Enable the feature in the IP integrator.

• In the Vivado IP integrator Zynq-7000 AP SoC processor Block Diagram, use the DDR
configuration page.

After the feature is enabled, FSBL does the DDR initialization required to enable the ECC.

FSBL does not provide support for error handling for the ECC errors; you must account for
error handling within your program.

DDR starts from 1Mb because FSBL does not remap DDR; consequently, the application
program must consider using the DDR from 1Mb. If you need to use a DDR smaller than
1Mb, you must handle the DDR initialization required for supporting ECC.

Secure Boot Support

FSBL provides support for the following secure boot features:

• Advanced Encryption Standard

° AES-CBC with 256-bit key

° Encryption key stored on-chip in either eFuse or Battery-backed RAM (BBRAM)

• Keyed-hashed message authentication code (HMAC)

° SHA-256 authentication engine (FIPS180-2)

• RSA public key authentication

° 2048-bit public key

FSBL operates in the secure mode, based upon what secure features you enable.

If RSA authentication is enabled, the FSBL uses the public key to authenticate the FSBL
before it is decrypted or executed. You can enable the RSA authentication by providing this
as an option to Bootgen while generating the bootable image. Based upon the
configuration provided in the partition header (Authentication/Encryption/Both), the FSBL
performs the required authentication of the image and then the decryption.

SHA-2 is a set of cryptographic hash functions (SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, SHA-512/256) designed by the U.S. National Security Agency (NSA) and
published in 2001 by the NIST as a U.S. Federal Information Processing Standard (FIPS). SHA
stands for Secure Hash Algorithm. SHA-2 includes a significant number of changes from its
Zynq-7000 AP SoC SWDG www.xilinx.com 46
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=46

Chapter 3: Boot and Configuration
predecessor, SHA-1. SHA-2 currently consists of a set of six hash functions with digests that
are 224, 256, 384 or 512 bits.

For more details about RSA authentication, see the Zynq-7000 AP SoC Technical Reference
Manual (UG585) [Ref 13].

Zynq PS Configuration

Using the Zynq-7000 AP SoC configuration interface, the Xilinx hardware configuration tool
generates code for initialization of the DDR, MIO, and SLCR registers. See the SDK Help for
more information regarding the creation of ps7* f iles.

In the project directory, the f iles of interest are:

• ps7_init.c and ps7_init.h, which can be used to initialize CLK, DDR, and MIO. The
initialization performed by the ps7_init.tcl is the same as by the code in
ps7_init.c.

• ps7_init.tcl f ile, which can be used to initialize CLK, DDR, and MIO. The
initialization performed in the ps7_init.tcl is the same as the initialization
performed by the code in ps7_init.c.

Note: The Tcl f ile is helpful while debugging an application using XMD. For example, you can run
the ps7_init.tcl f ile and then can load your application to DDR and debug. There is no need
to run the FSBL in this case.

• ps7_init.html, which describes the initialization data.

When the PCFG_POR_CNT_4K (override) bit in the devcfg is set it cuts down the TPoR for
PL. This bit is set by FSBL when the corresponding checkbox is selected in Vivado PS-PL
configuration. For more details see the Vivado Design Suite User Guide: Embedded Processor
Hardware Design (UG898) [Ref 5].

Note: The Xilinx hardware configuration tools maintain synchronization between the PL bitstream
and this initialization data. It is not advisable to change these settings manually.

Second Stage Bootloader (Optional)
The second stage bootloader is optional and user-designed. U-Boot, page 54, is an example
of the second stage bootloader.
Zynq-7000 AP SoC SWDG www.xilinx.com 47
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/SDK_Doc/index.html
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=47

Chapter 3: Boot and Configuration
Boot Image Creation
A utility program called Bootgen is provided to create a single boot image file suitable for
ROM or flash memory programming. It creates the image by building the required boot
header, appending tables that describe the following partitions, and processing the input
data f iles (ELF f iles, FPGA bitstreams, and other binary files) to partitions. It has features for
assigning specif ic destination memory addresses or imposing alignment requirements for
each partition. It also supports the encryption, authentication, or performing checksums on
each partition.

The utility is driven by a configuration file known as the Boot Image Format (BIF) f ile with a
f ile extension of *.bif.

For advanced authentication flows, Bootgen can be used to output intermediate hash f iles
that can be signed offline. Otherwise, Bootgen uses the provided private keys to sign the
authentication certif icates included in the boot image.

The format of the boot image conforms to a hybrid of hardware and software requirements.
The boot image header is required by the Zynq-7000 AP SoC BootROM loader which loads
a single partition, typically the FSBL. The remainder of the boot image is loaded and
processed by the FSBL.

See Appendix A. Using Bootgen, for more information about the utility.

Bootgen Command Example
The following is a simple command line example:

bootgen –image myDesign.bif –o i myDesignImage.bin

In this example, Bootgen produces the f ile myDesignImage.bin that contains the boot
header followed by the data partitions created from the data f iles described in
myDesign.bif.

Boot Image Format
The boot image format consists of the following:

• BootROM header

• FSBL image

• One or more partition images

• Unused space, if available
Zynq-7000 AP SoC SWDG www.xilinx.com 48
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=48

Chapter 3: Boot and Configuration
Figure 3-14, page 49 shows the layout of the boot image format.

Note: Encryption is optional in the FSBL.
X-Ref Target - Figure 3-14

Figure 3-14: Zynq-7000 AP SoC Device Processor Secure Boot Image Format
Zynq-7000 AP SoC SWDG www.xilinx.com 49
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=49

Chapter 3: Boot and Configuration
Authentication Certificate
The Authentication Certif icate is appended to the end of each authenticated partition. An
optional header Authentication Certif icate can appear after all of the Image header and
Partition Headers, which authenticates the contents of these headers.

All integers are stored in little-endian order, including the 2048 bit modulus.

Table 3-2 lists the Offset, Size, Field, and Description for Authentication Certif icate.

To reduce overhead on the FSBL, Bootgen precalculates the modulus extenstion which is
used in the Montgomery reduction for modular exponentiation. These values are stored in
the certif icate after the modulus fields. Table 3-3 shows the authentication certif icate bits,
f ield, and values.

Table 3-2: Authentication Certificate

Offset Field Description

0x00 Authentication header 0x01010000 – See Table 3-3.

0x04 Certif icate size 0x6C0

0x08 User defined field 56 bytes

0x040 PPK modulus 256 bytes

0x140 PPK modulus extension 256 bytes

0x240 PPK exponent 4 bytes (Recommended to be 0x00010001)

0x244 Zero padding 60 bytes - (0x00000000)

0x280 SPK modulus 256 bytes

0x380 SPK modulus extension 256 bytes

0x480 SPK exponent 4 bytes (Recommended to be 0x00010001)

0x484 Zero padding 60 bytes - (0x00000000)

0x4C0 SPK signature 256 bytes

0x5C0 Partition signature 256 bytes

Table 3-3: Bit Authenticating Certificate Header

Bits Field Value
31:16 Reserved 0s
15:14 Authentication Certificate Format 00: PKCS #1 v1.5
13:12 Authentication Certificate Version 00: Current AC

11 PPK Key Type 0: Hash Key
10:9 PPK Key Source 0: eFUSE

8 SPK Enable 1: SPK Enable
7:4 Public Strength 0: 2048
3:2 Hash Algorithm 0: SHA256
1:0 Public Algorithm 1: RSA
Zynq-7000 AP SoC SWDG www.xilinx.com 50
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=50

Chapter 3: Boot and Configuration
The following figure shows an example of the Zynq-7000 AP SoC Linux boot image
partitions.

BootROM Header Format
See the “Boot and Configuration” chapter of the Zynq-7000 AP SoC Technical Reference
Manual, (UG585) [Ref 13] for the BootROM header format.

X-Ref Target - Figure 3-15

Figure 3-15: Zynq-7000 AP SoC Example Linux Boot Image Partitions
Zynq-7000 AP SoC SWDG www.xilinx.com 51
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=51

Chapter 4

Linux

Introduction
Xilinx® Zynq®-7000 AP SoC Linux is based upon open source software (the Kernel from
kernel.org). Xilinx provides support for Xilinx-specific parts of the Linux Kernel (drivers
and board support packages (BSPs).

Xilinx also supports Linux through the Embedded Linux forum. As with many open source
projects, Xilinx also expects customers to use the open source mailing lists for Linux in areas
that are not specif ic to Xilinx Zynq-7000 AP SoC.

More information about Xilinx Zynq-7000 AP SoC Linux and other Xilinx open source
projects is available on the Xilinx Zynq-7000 AP SoC Solution Center [Ref 1] or the most
current Linux information.

Xilinx provides a public git server that contains a Linux Kernel, a BSP for Xilinx boards, and
drivers for selected IP, which allows third parties to build embedded Linux distributions for
Xilinx hardware. In essence, the git server also allows companies who have Linux expertise
to develop their own Linux rather than buying a distribution.

Note: Not all Xilinx IP are supported.

Git Server and Gitk Command
Xilinx uses Git to allow easier interaction with the Linux open source community. For
example, patches can be pushed out to the Kernel mainline or patches can be received back
from users against the Git tree. Moreover, Git provides some configuration management
where the you can see each change to the Kernel.

• The public Git tree is located at http://git.xilinx.com, along with the directions for how
to snapshot the repository. You can browse the code from the website.

The main branch of the public repository is the master branch. This is considered the most
stable and tested code from Xilinx.

• General information on Git is available at http://git-scm.com
Zynq-7000 AP SoC SWDG www.xilinx.com 52
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://git.xilinx.com
http://git-scm.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=52

Chapter 4: Linux
• Git basics are documented at: http://git-scm.com/documentation

• Git can be downloaded from: http://git-scm.com/download

The gitk tool provides a graphical display of a git tree. It can be helpful for exploring the
branches in a tree. It is installed with git, and can be run using gitk from the command line.

Linux BSP Contents

Kernel
The Linux Kernel is the Kernel itself together with the Board Support Package (BSP) for
boards and the drivers for the system. The Kernel requires a f ile system, and you must
provide a file system to boot the Kernel.

Note: The directory containing the Kernel is referred to as a “Kernel tree.” It is assumed that the
reader is familiar with the Linux Kernel directory structure.

The following figure shows a high order Linux Kernel diagram to help visualize how the
different functions relate to the different layers.

X-Ref Target - Figure 4-1

Figure 4-1: Linux Kernel
Zynq-7000 AP SoC SWDG www.xilinx.com 53
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://git-scm.com/documentation
http://git-scm.com/download
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=53

Chapter 4: Linux
Drivers
See Xilinx SDK online driver documentation.

U-Boot
Microprocessors can execute code that reside in memory, while operating systems normally
reside in large-capacity devices such as hard disks, CD-ROMs, USB disks, network servers,
and other permanent storage media. When the processor is powered on, the memory does
not contain an operating system, so special software is needed to bring the OS into
memory from the media on which it resides. This software is normally a small piece of code
called the bootloader.

U-Boot is an open source bootloader that is frequently used in the Linux community, and
used by Xilinx for the MicroBlaze™ processor and the Zynq-7000 AP SoC processor for
Linux.

A bootloader initializes hardware that the Linux Kernel does not necessarily initialize (such
as the serial port and DDR). System providers often put U-Boot into flash memory. U-Boot
is an example of a Second Stage Bootloader.

This gives it many useful features, including the ability to load and execute images from
Ethernet, flash memory, SD/MMC, and USB the ability to start a Kernel image from memory,
and the availability of a command interpreter with many commands such as: reading and
writing to/from memory, and network operations, such as the ping command.

See the following for the most current information:

• Zynq U-boot

• Zynq Release Notes
Zynq-7000 AP SoC SWDG www.xilinx.com 54
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://wiki.xilinx.com/zynq-uboot
http://wiki.xilinx.com/zynq-uboot
http://www.wiki.xilinx.com/Zynq+Releases
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=54

Appendix A

Using Bootgen

Introduction
Bootgen is a standalone tool for creating a bootable image suitable for the Zynq®-7000 AP
SoC processor. The program assembles the boot image by prefixing a header block to a list
of partitions. Optionally, you can encrypt the bitstream, each partition and authenticate it
with Bootgen. The output is a single file that can be directly programmed into the boot
flash memory of the system. Other peripheral f iles can be generated by the tool to support
authentication and encryption as well.

The tool can be integrated into SDK for automatic image generation, or can be used in a
command-line oriented script.

BIF File Syntax
The BIF file specifies each component of the boot image, in order of boot, and allows
optional attributes to be applied to each image component. Each image component is
usually mapped to a partition, but in some cases an image component can be mapped to
more than one partition if the image component is not contiguous in memory.

BIF f ile syntax takes the following form:

name “:” “{“ "[“attributes”]” datafile... “}”

• The name and the {...} grouping brackets the f iles that are to be made into partitions in
the ROM image. One or more data f iles are listed in the {...} brackets.

• The type of image data (ELF, BIT, RBT, or INT - data f iles with the [init] attribute) is
inferred from the f ile extension, and any special preparations needed are applied based
on the f ile type.

• Data f iles can have an optional set of attributes preceding the data f ile name with the
syntax ["attributes"].

• Attributes apply some quality to the data f ile.
Zynq-7000 AP SoC SWDG www.xilinx.com 55
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=55

Appendix A: Using Bootgen
• Multiple attributes can be listed separated with a “,” as a separator. The order of
multiple attributes is not important. Some attributes are one keyword, some are
keyword equates.

• You can also add a filepath to the f ile name if the f ile is not in the current directory.
How you list the f iles is free form; either all on one line (separated by any white space,
and at least one space), or on separate lines.

• White space is ignored, and can be added for readability.

• You can use C-style block comments of /*...*/, or C++ line comments of //...

BIF File Examples
The following code snippet is an example of a simple BIF f ile:

// A simple BIF file example.

the_ROM_image:
 {
 [init]init_data.int
 [bootloader]myDesign.elf
 Partition1.bit
 Partition1.rbt
 Partition2.elf
 }

The following example is of a BIF f ile where partitions are encrypted and authenticated:

image {
[aeskeyfile]secretkey.nky /* this is the key file used for AES */
[pskfile]primarykey.pem /* primary secret key file for authen.*/
[sskfile]secondarykey.pem /* secondary secret key file for authen.*/
[bootloader,authentication=rsa] fsbl.elf /*first stage bootloader */
[authentication=rsa]uboot.elf /* second stage bootloader */
linux.gz /* OS image (compressed)*/
}

BIF File Attributes
The BIF has two attribute types:

• bootloader : Identif ies an ELF data f ile as the FSBL.

° Only ELF files can have these attributes

° Only one f ile can be designated as the FSBL

• init: Identif ies an INT - a data f ile with the [init] attribute, as a register
initialization f ile.
Zynq-7000 AP SoC SWDG www.xilinx.com 56
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=56

Appendix A: Using Bootgen
The following table lists BIF f ile attributes and attribute types.

:

Table A-1: BIF File Attributes

Identifier Description

aeskeyfile AES key f ile.

alignment = <value> Sets byte alignment of the package. Cannot be used with
offset. The partition is padded to be aligned to a multiple
of this value.

authentication = <value> Specifies the authentication for the partition.
The <value> can be none or RSA.

bootimage Loads the partition data from a previously generated boot
image.

bootloader Partition that contains FSBL.

checksum =<value> Specify checksum as md5.

headersignature = <filename> Imports header signature into header authentication
certif icate.

load = <value> Sets the load address for the partition to where it is written.

offset = <value> Sets absolute offset.

partition_owner = <fsbl | uboot> Specifies whether the partitions is loaded by FSBL or
U-Boot.

ppkfile Primary Public Key (PPK) file used to authenticate a
partition.

presign =<filename> Imports partition signature into authentication certif icate.

pskfile Primary secret key (PSK) used to sign the partition.

psksignature SPK signature created using the PSK.

reserve = <value> Reserves a total amount of memory for the partition. The
partition is padded to this amount.

spkfile Secondary Public Key (SPK) used to authenticate a
partition.

sskfile Secondary Secret Key (SSK) f ile using to sign partitions.

startup = <value> Sets the entry address for the partition, after it is loaded.
This is ignored for partitions that do not execute.

udf_data =<filename> Imports a f ile containing up to 56 bytes of data to be
copied to the User Defined Field record of the
authentication certif icate.

xip_mode Indicates the "eXecute In Place” mode is to be used.
Zynq-7000 AP SoC SWDG www.xilinx.com 57
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=57

Appendix A: Using Bootgen
The following table lists the Bootgen supported f iles.

Initialization Pairs and the INT File Attribute
There are 256 initialization pairs at the end of the f ixed portion of the boot image header.
Initialization pairs are designated as such because a pair consists of a 32-bit address value
and a 32-bit data value. When no initialization is to take place, all of the address values
contain 0xFFFFFFFF, and the data values contain 0x00000000.

Set initialization pairs with a text f ile that has a.int f ile extension by default, but can have
any f ile extension.

The [init] f ile attribute precedes the f ile name to identify it as the INIT f ile in the BIF f ile.

The data format consists of an operation directive followed by:

• an address value

• an = character

• a data value

The line is terminated with a semicolon (;). This is one .set. operation directive; for
example:

.set. 0xE0000018 = 0x00000411; // This is the 9600 uart setting.

Bootgen f ills the boot header initialization from the INT file up to the 256 pair limit. When
the BootROM runs, it looks at the address value. If it is not 0xFFFFFFFF, the BootROM uses
the next 32-bit value following the address value to write the value of address. The
BootROM loops through the initialization pairs, setting values, until it encounters a
0xFFFFFFFF address, or it reaches the 256th initialization pair.

Table A-2: Bootgen Supported Files

Extension Description Notes

.bin binary Raw binary f ile

.bit/.rbt bitstream Strips the BIT f ile header

.dtb binary Raw binary f ile

image.gz binary Raw binary f ile

.elf ELF Symbols and headers removed

.int Register init

.nky AES key

.pk1/.pub/.pem RSA key
Zynq-7000 AP SoC SWDG www.xilinx.com 58
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=58

Appendix A: Using Bootgen
Bootgen provides a full expression evaluator (including nested parenthesis to enforce
precedence) with the following operators:

* = multiply
/ = divide
% = modulo divide
+ = addition
- = subtraction
~ = negation
>> = shift right
<< = shift left
& = binary and
| = binary or
^ = binary nor

The numbers can be hex (0x), octal (0o), or decimal digits. Number expressions are
maintained as 128-bit f ixed-point integers. You can add white space around any of the
expression operators for readability.

The preprocessor allows parameterization of BIF and INT files, or BIF and INT files that
contain multiple configurations to be selectable from the command line. It would be
convenient to use an include f ile with INT files that would allow for symbolic usage instead
of naked values.

For example:

#include "register_defs.h"

.set. kBAUD_RATE_REG = (k9600BAUD | kDOUBLE_RATE) << BAUD_BITS;

Values can also be passed in to be used in BIT or INT f iles with #if-like directives to select
different configurations.

Encryption Overview
The encryption private key is stored in the eFUSE or block BRAM memory.

This key can be written to the eFUSE/Block RAM memory using the Standalone driver
provided along with SDK. For further details, see the Secure Boot of Zynq-7000 All
Programmable SoC (XAPP1175) [Ref 12].

The BootROM uses the encryption private key to decode the first FSBL partition boot image.
The actual decryption is done by the AES/HMAC engine of the Zynq-7000 AP SoC device
hardware.

To encrypt a partition:

1. Give the –encrypt option on the command line with either efuse or bbram
arguments.
Zynq-7000 AP SoC SWDG www.xilinx.com 59
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=59

Appendix A: Using Bootgen
2. List the key file with the [aeskeyfile] attribute in the BIF f ile.

3. Ensure that the [encryption=aes] attribute is present for each image f ile listed in the
BIF f ile that should be encrypted.

The following is an example command line:

Bootgen …. –encrypt efuse

Example BIF file:

image: {
 [aeskeyfile]secretkey.nky
 [bootloader,encryption=aes] fsbl.elf
 [encryption=aes]uboot.elf
 linux.gz
}

Authentication Overview
Zynq-7000 AP SoC device processor RSA authentication uses primary and secondary keys.
the primary keys authenticate the secondary keys. The secondary keys authenticate
partitions.

The f irst letter of the acronyms used to describe the keys is either P for primary or S for
secondary. The second letter of the acronym used to describe the keys is either P for public
or S for secret. There are four possible keys:

• PPK = Primary Public Key

• PSK = Primary Secret Key

• SPK = Secondary Public Key

• SSK = Secondary Secret Key

Bootgen can create a authentication certif icate in two ways.

• Supply the PSK and SSK. The SPK signature is calculated on-the-fly using these two
inputs.

• Supply the PPK and SSK and the SPK signature as inputs. This is used in cases where the
PSK is not known.

The primary key is hashed and stored in the eFUSE. This hash is compared against the hash
of the primary key stored in the boot image by the FSBL. This hash can be written to the PS
eFUSE memory using standalone driver provided along with SDK. See the Secure Boot of
Zynq-7000 All Programmable SoC (XAPP1175) [Ref 12] for more details.
Zynq-7000 AP SoC SWDG www.xilinx.com 60
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=60

Appendix A: Using Bootgen
The following is an example BIF f ile:

image {
 [aeskeyfile]secretkey.nky
 [pskfile]primarykey.pem
 [sskfile]secondarykey.pem
 [bootloader,authentication=rsa] fsbl.elf
 [authentication=rsa]uboot.elf
 linux.gz
}

Using Bootgen on the Command Line Example
bootgen -image bootimage.bif -o my.mcs -efuseppkbits efuseppkbits.txt -encrypt bbram
developer.nky -p xc7z020clg484 -w on

Bootgen Command Options
The following table describes the Bootgen command line options.

Table A-3: Bootgen Command Line Options

Argument Description

-arch [zynq | zynqmp |
fpga]

Xilinx architecture.

-bif_help Help on the BIF file options.

-debug Information messages.

-dual_qspi_mode
[parallel | stacked
<size>]

Generates two output f iles for dual QSPI configurations.
In the case of stacked configuration, size (in MB) of the flash needs to be
mentioned (16 or 32 or 64 or 128)
For example:
-dual_qspi_mode parallel generates two output files for independently
programming to both flashes in QSPI dual parallel configuration.
-dual_qspi_mode stacked 64 generates two output f iles for
independently programming to both flashes in QSPI dual stacked
configuration. The f irst 64 MB of the actual image is written to first f ile and
the remainder to the second file. In case the actual image itself is less than 64
MB, only one f ile is generated.

-efuseppkbits <filename> Specif ies the name of the eFuse f ile to be written to contain the PPK hash. This
option generates a direct 32-byte hash without any padding.
Zynq-7000 AP SoC SWDG www.xilinx.com 61
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=61

Appendix A: Using Bootgen
-encrypt [bbram | efuse]
[StartCBC=<hex_string>]
[Key0=<hex_string>]
[HMAC=<hex_string>]
[<filename>[.nky]]

Specif ies how to do encryption. Arguments in italics are not recommended for
new designs, as the key information is now specif ied in the BIF file, as follows:

° Key0: Is a Hexidecimal string that allows AES key to be specif ied. Allowed
characters are: 1-9, A, a, B, b, C, c, D, d, E, e, F, f.

° StartCBC: Is a hexidecimal string that allows the initial vector to be
specif ied. Allowed characters are: 1-9, A, a, B, b, C,c, D, d, E, e, F, f.

° HMAC: Is a hexidecimal string that allows the specification of the HMAC
key. Allowed characters are: 1-9, A, a, B, b, C, c, D, d, E, e, F, f.

-fill [<hex_byte>] Specif ies the byte to use for f ill.

-generate_keys auth [rsa
| pem]

Generates the Authentication keys in RSA or PEM format.
The BIF f ile must contain the path(s) for the individual keys.
Example: all.bif

the_ROM_image:
{
[ppkfile] <path/ppk.txt>

 [pskfile] <path/psk.txt>
[spkfile] <path/psk.txt>

 [sskfile] <path/psk.txt>
}
bootgen -image all.bif -generate_keys auth rsa

-generate_hashes Specif ies to outputting SHA256 hash files with padding in PKCS#1v1.5 format.
The format of these hash f iles: (256 bytes)

SHA256 Hash T-Padding 0x00 0xFF 0x01 0x00

32 Bytes (reversed) 19 Bytes 1 bytes 202 bytes 1 byte 1 byte

-h Prints out a help summary.

-image <filename>[.bif] Names the input Boot Image File (*bif).

-interface [smapx8|
smapx16 |smapx32 |spi|
bpix8| bpix16]

Interface to program flash (FPGA only).

-legacy For legacy operations.

-log [error |warning |
info| debug |trace]

Log is generated in a bootgen_log.txt file in the current working directory
with the specified level of log information.

-o <filename> Specif ies the output f ile.
The support output extensions are:
• bin
• mcs

If no extension is given, then bin is appended.

-p <partname> Specif ies the Xilinx part name. This is needed when generating a encryption
key, and the name is copied verbatim to the NKY f ile in the “Device” line. It is
otherwise not used by Bootgen.

-packagename <partname> Part name from BIT f ile (FPGA only)

-padheadertable=[0|1] Pads the Image Header table and the Partition Header table to 14 entries each,
to force alignment of following partitions. This feature is set to 1 (on) by
default. Specifying a 0 disables the feature.

Table A-3: Bootgen Command Line Options (Cont’d)

Argument Description
Zynq-7000 AP SoC SWDG www.xilinx.com 62
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=62

Appendix A: Using Bootgen
Image Header Table
Typically the Image Header Table appears immediately after the fixed size Boot Header and
Register Initialization Table, so it appears at address 0x000008A0. The Image Header Table
consists of a header, followed by a linked list of Image Headers.

The image header table does not need to be contiguous, but it is generated contiguously by
bootgen. Each Image header is linked to the next Image header through
NextEntryOffset.

Note: Offsets are specif ied in word, not byte offsets. To convert, multiply the word offset by 4 to get
the byte offset.

-process_bitstream
[mcs|bin]

Specif ies that the bitstream is processed and output as an MCS or a BIN f ile.
For example: If encryption is selected for bitstream in the BIF file, the output
is an encrypted bitstream.

-spksignature <filename> Specif ies the name of the spk signature file to write. Must be specif ied with
the pskfile and spkfile options in the BIF f ile.

-split [mcs|bin] This option outputs each data partition with headers as a new file in MCS or
BIN format.
Example:
the_ROM_image:

{
 [bootloader]myFSBL.elf
 myDesign.bit
 myDesign.elf
}

Three data f iles are output:
mybifile.mcs, containing the boot image header, the partition Header
Table, and the Partition data of myFSBL.elf.
myDesign.bit.mcs, contains the partition data of myDesign.bit.
myDesign.elf.mcs, contains the partition data of myDesign.elf.

-w Overwrite mode.

Table A-3: Bootgen Command Line Options (Cont’d)

Argument Description

Table A-4: Image Header Table Header

Offset Name Notes

0x0 Version 0x01020000

0x4 Count of Image Headers

0x8 Word Offset to the Partition Header

0xC Word Offset to first Image Header
Zynq-7000 AP SoC SWDG www.xilinx.com 63
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=63

Appendix A: Using Bootgen
The Image Header Table Header is followed by a sequential list of Image Headers when
generated by Bootgen, although the specification of the boot image can allow the Image
Headers to be scattered throughout the boot image.

Partition Header Table
Note: The partition header table is an array of structures containing the data described in the
following table. There is one structure for each partition, including the FSBL partition. The last
structure in the table is marked by all NULL values (except the checksum).

0x10 Word Offset to header authentication

0x1C Padding Filled with 0xFFFFFFFF to 64 byte boundary

Table A-5: Partition Header Table

Offset Name Notes

0x0 Partition Data Word Length Encrypted partition data length.

0x4 Extracted Data Word Length Unencrypted data length.

0x8 Total Partition Word Length (Includes
Authentication Certif icate)

The total encrypted + padding + expansion
+authentication length.

0x0C Destination Load Address The RAM address into which this partition is
to be loaded.

0x10 Destination Execution Address The executable address of this partition
after loading.

0x14 Data Word Offset in Image The position of the partition data relative to
the start of the boot image.

0x18 Attribute Bits See Table A-6.

0x1C Section Count The number of sections in a single partition.

0x20 Checksum Word Offset The location of the checksum word in the
boot image.

0x24 Image Header Word Offset The location of the Image Header in the
boot image

0x28 Authentication Certif ication Word Offset The location of the Authentication
Certif ication in the boot image.

0x2C unused Must be 0x00000000

0x30 unused Must be 0x00000000

Table A-4: Image Header Table Header (Cont’d)

Offset Name Notes
Zynq-7000 AP SoC SWDG www.xilinx.com 64
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=64

Appendix A: Using Bootgen
Partition Attribute Bits

0x34 unused Must be 0x00000000

0x38 unused Must be 0x00000000

0x3C Header Checksum An INVERTED sum of the previous words in
the Partition Header.

Table A-6: Partition Attribute Bits

Bit Field Description Notes

31:18 Data attributes Not implemented

17:16 Partition owner 0 - FSBL
1 - UBOOT
2 and 3 - reserved

15 RSA signature present 0 – no RSA authentication certif icate
1 – RSA authentication certif icate

14:12 Checksum type b000 = 0 = No checksum
b001 = 1 = RFU (reserved for future use)
b010 = 2 = RFU
b011 = 3 = RFU
b100 = 4 = RFU
b101 = 5 = RFU
b110 = 6 = RFU
b111 = 7 = RFU

11:8 Destination instance Not implemented

7:4 Destination device 0 - None
1 - PS
2 - PL
3 - INT
4 -15 – reserved

3:2 Head alignment Not Implemented

1:0 Tail alignment Not Implemented

Table A-5: Partition Header Table (Cont’d)

Offset Name Notes
Zynq-7000 AP SoC SWDG www.xilinx.com 65
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=65

Appendix A: Using Bootgen
Image Header
Table A-7: Image Header

Offset Name Notes

0x0 Word Offset to Next Image Header Link to next Image Header. 0 if last Image
Header.

0x4 Word Offset to First Partition Header Link to f irst associated PartitionHeader.

0x8 Partition Count Always 0

0xC Image Name Length Value of the actual partition count.

0x10 to N Image name Packed in big-endian order. To reconstruct
the string, unpack 4 bytes at a time, reverse
the order, and concatenated.
For example, the string “FSBL10.ELF” is
packed as
0x10: ‘L’,’B’,’S’,’F’,
0x14: ’E’,’.’,’0’,’1’,
0x18: ’\0’,’\0’,’F’,’L’
The packed image name is a multiple of 4
bytes.

varies 0x00000000 String terminator.

varies 0xFFFFFFFFF Repeated padding to 64 byte boundary.
Zynq-7000 AP SoC SWDG www.xilinx.com 66
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=66

Appendix B

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
Zynq-7000 AP SoC Product Page

Xilinx Forums and Wiki Links
• http://forums.xilinx.com

• http://wiki.xilinx.com

• http://wiki.xilinx.com/zynq-linux

• http://wiki.xilinx.com/zynq-uboot

• Embedded Linux Forum

Xilinx git Websites
https://github.com/xilinx
Zynq-7000 AP SoC SWDG www.xilinx.com 67
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm
http://forums.xilinx.com
http://wiki.xilinx.com
http://wiki.xilinx.com
http://wiki.xilinx.com/zynq-linux
http://wiki.xilinx.com/zynq-uboot
http://forums.xilinx.com/
https://github.com/xilinx
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=67

Appendix B: Additional Resources and Legal Notices
Vivado Documentation
1. Xilinx Zynq-7000 AP SoC Solution Center

2. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

3. OS and Libraries Document Collection (UG643)

4. Generating Basic Software Platforms (UG1138)

5. Vivado Design Suite User Guide: Embedded Hardware Design (UG898)

6. Vivado Design Suite Tutorial: Embedded Hardware Design (UG940)

7. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

8. Vivado Design Suite Tutorial: Designing IP Subsystems Using IP Integrator (UG995)

9. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

10. Embedded System Tools Reference Manual (UG1043)

11. Vivado Design Suite User Guide: Programming and Debugging (UG908)

12. Secure Boot of Zynq-7000 All Programmable SoC (XAPP1175)

13. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

14. Xilinx Software Development Kit Help (UG782)

15. Xilinx Software Development Kit (SDK) User Guide: System Performance (UG1145)

16. Zynq-7000 All Programmable SoC: Embedded Design Tutorial (UG1165)

17. System Performance Analysis of an All Programmable SoC (XAPP1219)

Vivado Design Suite QuickTake Video Tutorials

Vivado Design Suite Documentation

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent.
Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can
be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx.
Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you
assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which can
be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2012-2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, UltraScale, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM,
ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the
property of their respective owners.
Zynq-7000 AP SoC SWDG www.xilinx.com 68
UG821 (v12.0) September 30, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/answers/52512.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;d=oslib_rm.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1138-generating-basic-software-platforms.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;d=ug898-vivado-embedded-design.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;d=ug940-vivado-tutorial-embedded-design.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;d=ug893-vivado-ide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;d=ug995-vivado-ip-subsystems-tutorial.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;d=ug1043-sdk-embedded-system-tools.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1175_zynq_secure_boot.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_3/SDK_Doc/index.html
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1145-sdk-system-performance.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;d=ug1145-sdk-system-performance.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1219-system-performance-modeling.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/index.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.3;t=vivado+docs
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG821&Title=Zynq-7000%20All%20Programmable%20SoC%20Software%20Developers%20Guide&releaseVersion=12.0&docPage=68

	Zynq-7000 All Programmable SoC Software Developers Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction to Programming with Zynq-7000 AP SoC Devices
	Overview
	Introduction
	Architectural Decisions
	Multiprocessing Considerations
	Asymmetric Multiprocessing
	Symmetric Multiprocessing

	Operating System (OS) Considerations
	Bare-Metal System
	Operating System: Linux
	Real-Time Operating System
	Zynq-7000 Operating Systems From Partners

	Ch. 2: Software Application Development Flows
	Introduction
	Software Tools Overview
	Hardware Configuration Tool
	Software Development Kit
	SDK Availability
	System Performance Analysis
	Sourcery CodeBench Lite Edition for Xilinx Cortex-A9 Compiler Toolchain

	Analysis Tools
	Vivado Lab Tool
	System Generator for DSP

	Bare-Metal Device Driver Architecture
	Layer 2 (RTOS Adapter)
	Layer 1 (Device Driver)
	Direct Hardware Interface

	Bare-Metal Application Development
	Importing Hardware Platform Information
	Creating Bare-Metal BSP
	Creating Bare-Metal BSP Using Third-Party Tools
	Creating Bare-Metal Application
	Building the Application Project
	Programming the Device and Running the Application
	Debugging the Application
	Adding Custom IP Driver Support
	Deploying the Application

	Linux Application Development
	Booting Linux
	Creating an Application Project
	Building the Application
	Running the Application
	Debugging the Application
	Adding Driver Support for Custom IP in the PL
	Profiling the Application
	Adding Application to Linux File System
	Modifying the Linux BSP (Kernel or File System)

	Additional Information

	Ch. 3: Boot and Configuration
	Overview
	Boot Modes
	Boot Stages
	Stage-0 Boot (BootROM)
	First Stage Bootloader
	eMMC Flash Devices

	Setting FSBL Compilation Flags
	FSBL Fallback Feature
	Fallback in Non-Secure Cases
	Fallback Flow for RSA Only
	Secure Fallback Flow with BBRAM
	Secure Fallback Flow with eFUSE
	FSBL Multiboot

	NAND Boot Mode
	Calculate_multiboot API

	QSPI Boot Mode
	FSBL Hooks
	DDR ECC Enable
	Secure Boot Support

	Zynq PS Configuration

	Second Stage Bootloader (Optional)

	Boot Image Creation
	Bootgen Command Example
	Boot Image Format
	Authentication Certificate

	BootROM Header Format

	Ch. 4: Linux
	Introduction
	Git Server and Gitk Command
	Linux BSP Contents
	Kernel
	Drivers

	U-Boot

	Appx. A: Using Bootgen
	Introduction
	BIF File Syntax
	BIF File Examples
	BIF File Attributes

	Initialization Pairs and the INT File Attribute
	Encryption Overview
	Authentication Overview
	Using Bootgen on the Command Line Example

	Bootgen Command Options
	Image Header Table
	Partition Header Table
	Partition Attribute Bits
	Image Header

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Xilinx Forums and Wiki Links
	Xilinx git Websites
	Vivado Documentation

	Please Read: Important Legal Notices

