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Abstract—With Deep Learning algorithmic advances 
outpacing hardware advances, How do you ensure that algorithms 
of tomorrow are a good fit for existing AI chips under 
development? , Most of these AI chips are being designed for the 
AI algorithms of today, Given the rate and the magnitude of 
algorithm evolution, many of these AI chip designs may become 
obsolete even before their commercial releases. Algorithms of 
tomorrow demands overhaul of architecture, memory/data 
resources and capabilities. Dream architecture for Inference has 
to redefine some fundamental chip techniques that rewrite the 
rules in computing and delivers breakthrough AI acceleration and 
flexible compute capability beyond that of server-class CPUs and 
versatile than GPUs/ASICs to support breadth of applications and 
dynamic workloads. This Paper will discuss how these industry 
challenges can be addressed at various levels of hardware and 
software design using Xilinx VERSAL AI Core, the industry's first 
ACAP (Adaptable compute acceleration platform) device which 
leapfrogs the performance of CPU/GPU’s and FPGA’s. 

Keywords—DeepLearning,Inference,AI,Accelerated Computing 

I.  INTRODUCTION 

Modern technical challenges have forced the industry to explore 
options beyond the stereotypical “one size fits all” CPU scalar 
processing solution. Very large vector processing (DSP, GPU) 
solves some problems, but it runs into customary scaling 
challenges due to inflexible, inefficient memory bandwidth 
usage. Traditional FPGA solutions provide programmable 
memory hierarchy, but the traditional hardware development 
flow has been a barrier to broad, high-volume adoption in 
application spaces like the Data Center and Automotive markets. 
Industry needs a solution that can combine all three elements 
with a single software stack that offers a variety of different 
abstractions—from framework to C to RTL-level coding.  

Deep learning algorithms are coinciding with a breakdown in 
Moore's Law, the decades-old rule of thumb of progress in 
computer chips, forcing radical new computer designs. It’s not 
as if someone flipped a switch, and Moore’s Law suddenly 
vanished. Its validity has been in decline for a while now, but 
evidence of that is just now coming to the fore. That’s because 

of several activities that prolonged the performance curve. It is 
not just Moore’s Law that is coming to an end with respect to 
processor performance but also Dennard Scaling and Amdahl’s 
Law. Processor performance over the last 40 years and the 
decline of these laws is displayed in the graph below 

 
  Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018 

Computing technology is moving into a direction in which 
functionality has priority over physical specifications like clock 
speed or device feature sizes. When Dennard’s scaling rules 
became unsustainable around 2004, there was a sudden shift 
away from the GHz war between manufacturers. A similar 
phenomenon has occurred recently with advertised on-chip 
feature sizes, witness Semi-conductor giant (Intel’s) statement 
that there will be more focus on performance improvements 
rather than the underlying technology node. Such improvements 
will not necessarily be quantitative, e.g., more Floating-Point 
Operations per Second (FLOPS), but rather will emphasize 
energy efficiency (FLOPS per Watt), or quality in terms of how 
well applications will actually be served. Until around 2004 
Moore’s Law ran in conjunction with Dennard’s scaling rules, 
which provided a predictable scaling of design parameters. 
Dennard’s scaling rules had provided a free lunch for engineers 
for decades, as the decreased transistor sizes delivered by 
Moore’s Law automatically led to better performance in terms 
of speed and power consumption. An early sign that Moore’s 
law was in its final stages came with the end of Dennard’s 



 

   
 

scaling rules, when it became more difficult to decrease voltage 
at the same high pace due to increased leakage currents in 
devices. Thus came to an end the race between manufacturers 
for increasing clock speeds, only to be replaced by a race to 
manufacture chips by the most advanced technology node. 

Well, Enter Artificial Intelligence, and how it fixes the situation. 
Computer pioneer, Alan Turing in 1950 proposed:  

“Instead of trying to produce a programme to simulate the adult 
mind, why not rather try to produce one which simulates the 
child’s? If this were then subjected to an appropriate course of 
education, one would obtain the adult brain.”.  

This idea grew on to become Deep Learning. Fast forward to 
2018: we have, and are still gathering, massive amounts of data. 
We have and are still developing more and more advanced 
algorithms (Generative Adversarial Networks and Capsule 
Networks stand as strong examples.) But do we have the 
hardware to crunch all those calculations within a reasonable 
time? And if we do, can it be done without having all those 
GPUs? , As a result, the semiconductor industry is exploring 
alternate domain-specific architectures, such as vector-based 
processing (DSPs, GPUs) and fully parallel programmable 
hardware (FPGAs). The question becomes, Which architecture 
is best for which task?  

II. FUTURE OF COMPUTING IMPACTS AI 

REVOLUTION 

A. The reinforcing cycle 

Data is exploding at a massive pace across the globe and needs 
sophisticated algorithms, software, and powerful compute that 
can handle, manage, and provide real-time artificial intelligence 
(AI) inferencing. The tremendous growth in data and the need 
for better insights, has led to the rapid adoption of AI. A 
common approach to implement AI algorithms for enterprises is 
through using machine learning and it’s subset, deep learning. 
They both use huge quantities of data to train AI models and 
then deploy those models across various use cases, including 
image classification and recognition, object detection, and 
recommender systems among others. Right there, Artificial 
Intelligence is imposing a constraint: keep the power constant or 
decrease it, but increase performance… doesn’t that sound a bit 
familiar to some scaling rule we have just seen? Exactly, by 
forcing the tech industry to come up with new processors which 
can perform more calculations per unit time, while maintaining 
power consumption and price, Artificial Intelligence is imposing 
Dennard Scaling again, and hence forcing Moore’s Law back to 
life! 

 

 

B. Which Architecture is best for which task 

• Scalar processing elements (e.g., CPUs) are very efficient at 
complex algorithms with diverse decision trees and a broad set 
of libraries but are limited in performance scaling.  

• Vector processing elements (e.g., DSPs, GPUs) are more 
efficient at a narrower set of parallelizable compute functions 
but they experience latency and efficiency penalties because of 
inflexible memory hierarchy.  

• Programmable logic (e.g., FPGAs) can be precisely 
customized to a particular compute function, which makes them 
best at latency-critical real-time applications (e.g., automotive 
driver assist) and irregular data structures (e.g., genomic 
sequencing)—but algorithmic changes have traditionally taken 
hours to compile versus minutes. 

 

Algorithms of tomorrow demands architecture overhaul of the 
memory/data resources and capabilities. Industry demands a 
new heterogeneous compute architecture, which can deliver the 
best of all worlds. A World-class vector and scalar processing 
elements which can be tightly coupled to advanced 
programmable logic (PL), with a very high-bandwidth network 
on chip. With possibility of memory-map access to all 
processing element types. This tightly coupled hybrid 
architecture should allow more dramatic customization and 
performance increase than any one implementation alone. Such 
a dramatic increase in performance necessitates a similarly 
dramatic improvement in tools focusing on ease of use. Which 
demands a fully integrated, memory-mapped platform for 
programming through a unified toolchain. 

C. Solving for the bottleneck 

The reason why devices heat up, and the main problem with our 
current computer hardware designs, is the so called “von 
Neumann bottleneck”, classic computer architectures separate 
the processing from the data storage, which means that data need 
to be transferred back and forth from one place to the other 
overtime a calculation takes place. Parallelism solves part of this 
problem by breaking down calculations and distributing 
processing, but you still need to move data at the end, to 
reconcile everything into a desired output. So , what if there was 
a way to get rid of the hardware bottleneck altogether? What if 
processing and data resided in the same place and nothing had 
to be moved around and produce heat, and consume so much 
energy? After all, that is how our brains works we do not have 
separate areas for processing and data storage as computers do 
everything is happening at our neurons. 

 



 

www.embedded-world.eu 
   
 

III. ARCHITECTURE OF EXISTING ASIC’S 
Let’s take a look at the High-level architectures of some of the 
Inference accelerators currently being developed in the Industry 
and see why they are capable of tackling AI inference. 

 

Habana GOYA™ Deep learning Inference Platform 

 
      Source: Habana Goya™ Inference Platform Aug 2019 

 

The two main components of the chip are the TPC (Tensor 
Processor Core) and the GEMM (general matrix multiply) 
engine. The TPCs are the company ground up VLIW SIMD 
CPU/DSP design. Those cores are based on a custom VLIW ISA 
which features specialized AI SIMD vector instructions. An 
interesting aspect of the chip is that the TPCs do not have local 
caches. Instead, they have a local chunk of scratchpad memory 
along with a large shared memory which is shared by both the 
GEMM engine and the TPCs. 

Eyeriss — The Eyeriss team from MIT has been working on 
deep learning inference accelerators. Eyeriss is deep 
convolutional neural network (CNN) accelerator chip featuring 
a spatial array of multiple processing elements (PE) fed by a 
reconfigurable multicast on-chip network that handles many 
shapes and minimizes data movement by exploiting data reuse. 
Eyeriss uses a hierarchical mesh network (HM-NoC) & takes 
advantage of the all-to-all network. The all-to-all network is 
limited within the scope of a cluster at the lower level. 

 
                     Source: Eyerissv2 - Published in IEEE Journal on Emerging Circuits and Systems 2018 

 

Nvidia Deep Learning Accelerator (NVDLA) 

     Source: NVDLA Open Source Project 

 
 
The NVDLA instruction set differs from other DLAs by 
supporting four convolution modes: direct, Winograd, image 
direct, and batch. The direct mode is the most basic convolution 
operation, enabling parallelization up to the MAC-array width. 
Winograd transform to the input data boosts convolutional-
neural-network (CNN) performance and power efficiency by 
reducing the number of MAC operations. To reduce bandwidth 
for fully connected layers, the NVDLA has a batching feature 
that allows multiple sets of activations to run at the same time. 
By allowing multiple activation sets to share the same weight 
data, So performance and memory bandwidth are affected. 
Though NVDLA will accelerate many of today’s DL networks 
but what about tomorrows? 

 

Gyrfalcon argues that by surrounding each identical computing 
unit with memory, an approach it calls "AI Processing in 
Memory," or APiM, use of external memory can be greatly 
reduced, thereby lowering the power budget of AI chips 
drastically. 

 
        Source: Gyrfalcon AI accelerators Lightspeeur® 2803S 



 

   
 

Google TPU comprised of systolic data flow engine. Modern 
CPUs are strengthened by a massive cache, branch prediction 
and high clock rate on each of its cores. Which all contribute to 
a lower latency of the CPU.A GPU does the same thing but has 
thousands of ALU’s to perform its calculations. A calculation 
can be parallelized over all ALU’s. This is called a SIMD, A 
GPU does however not use the fancy features which lower the 
latency. In short, a GPU drastically increases its throughput by 
parallelizing its computation in exchange for an increase in its 
latency.  

 A TPU, on the other hand, operates very differently. Its ALU’s 
are directly connected to each other without using the memory. 
They can directly give pass information which will drastically 
decrease latency. TPU has almost no flexibility. It does one 
thing, inference in Tensorflow. 

 
    
   Source: Google TPU Custom Chip 2016 

Now building an ASIC isn’t for the faint of heart. First, an ASIC 
has limited functionality. For example, the Google TPU only 
supports TensorFlow, leaving the users of the other major AI 
frameworks, championed by Microsoft, Amazon, 
Facebook, etc., to run on GPUs. ASICs are also expensive to 
develop a complex design can cost in excess of $100M and take 
years to design and debug. Inference needs are specific and often 
extraordinarily specialized. After studying some of the above 
architectures its evident that most of these chips are massively 
parallel that keeps data close to the processing points and 
maximizes data reuse as much as possible deep learning 
inference accelerator. 

IV. DESIGN ASPECTS OF DNN PROCESSOR 
 

A. Key Components of DNN Processor 
 

Matrix multiplication Unit referred by different names like 
TPC (Tensor processing core), PE (Processing unit),etc. GEMM 
is the core computation involved in DNN’s.  
SRAM is the local memory used to store the weights or 
intermediate outputs/activations. 

 

 
 
To reduce energy consumption the memory should be located as 
close as possible to the processing unit and should be accessed 
as little as possible. 

Interconnect/Fabric This is the logic which connects all the 
different processing units and memory so that output from one 
layer or block can be transferred to the next block. Also referred 
to as Network on Chip (NoC).  
Interfaces (DDR, PCIE) These blocks are needed to connect to 
external memory (DRAM) and an external processor. 
Controller — This can be a RISC-V or ARM processor or 
custom logic which is used to control and communicate with all 
the other blocks and the external processor. 

B. Architecture and Instruction Set 

 

 
         Source: Facebook AI Inference with Kings Canyon 

If we look at all the architectures, we will see memory is always 
placed as close as possible to the compute. The reason is that 
moving data consumes more energy than compute. Let’s look at 
the computation and memory involved in AlexNet architecture. 

 

AlexNet consists of 5 Constitutional layers and 3 fully 
connected layers. The total number of parameters/weights for 
AlexNet is around 62 million. Let's say after weight 
quantization each weight is stored as an 8-bit value so if we want 
to keep all the weights in on-chip memory it would require at 
least 62 MB of SRAM or 62*8 Mega-bits = 496 Million SRAM 
cells. So while deciding HW architecture we have to keep in 
mind which DNN architectures we can support without keeping 
weights off-chip (which increases power consumption). 

Typical Instructions Set on Accelerators are domain-specific 
Instruction Set Architecture (ISA) for NN, which is a load-store 
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architecture that integrates scalar, vector, matrix, logical, data 
transfer, and control instructions. instruction set is simple: 
matrix multiply, linear algebra, convolutions. 

V. XILINX REINVENTS MULTI-CORE COMPUTE 
 

Dream architecture for Inference has to redefine some 
fundamental chip techniques that rewrite the rules in computing 
and delivers breakthrough AI acceleration and flexible compute 
capabilities. Getting 2X Performance from one process node to 
another is easier than getting it in the architecture, that’s where 
Xilinx took a leap forward to answer the question for dream 
architecture, Xilinx has spawned a revolutionary compute 
architecture designed to strike a balance between throughput, 
latency, and power consumption by introducing AI Engine in 
some of their Versal ACAP devices. The engine is capable of 
massive data crunching with low latency and high accuracy, as 
required by these workloads.   

 

  Traditional Multi-Core Architectures 

 

 

                 

 

GPUs are embedded with hundreds to thousands of arithmetic 
processing units on one die and have tremendous computing 
power. However, their realistic performance is often limited by 
the huge performance gap between the processors and the GPU 
memory system. For example, NVIDIA’s GTX980 has a raw 
computational power of 4,612 GFlop/s, but its theoretical 
memory bandwidth is only 224 GB/s. The realistic memory 
throughput is even lower. The memory bottleneck remains a 
significant challenge for these parallel computing chips. The 
GPU memory hierarchy is rather complex, and includes the 
GPU-unique shared, texture and constant memory. The 
theoretical bandwidths of both global memory and shared 

memory are difficult to saturate, and hardware resources are 
imbalanced with a low utilization rate. 

A. Memory Hierarchy a Potential Bottleneck for GPGPUs 

 

Nvidia V100 Claimed 6X Compute Performance (Tensor Cores) 
with respect to P100 and 25% More Memory B/W (more HBM 
perf) versus Pascal GP100. But the actual DNN benchmarks 
shows Only 2.5X V100 performance increase and ~50% Less 
device efficiency 

 
Memory hierarchy limitations - Data flow in a GPU is defined 
by software and is governed by the GPU’s rigid and complex 
memory hierarchy, if the compute and efficiency potential of the 
GPU is to be realized, a workload’s data flow must map 
precisely to the GPU memory hierarchy. In reality, very few 
workloads have sufficient data locality patterns to enable 
efficient mapping to GPUs. For such workloads, the realizable 
compute and efficiency are substantially reduced, and the 
latency of the solution is increased when implemented on a 
GPU. 
  Xilinx – Versal AI Engine Array. 

AI Engine is a new building block for Xilinx Versal 7nm 
devices. Xilinx AI Engines are an array of innovative very long 
instruction word (VLIW) and single instruction, multiple data 
(SIMD) processing engines and memories, all interconnected 
with 100s of terabits per second of interconnect and memory 
bandwidth. The AI Engine array Interface provide the required 
functionality to integrate with the rest of the Versal device 
through the PL and the Network-on Chip (NoC). AI Engine does 
not have cache memories in order to achieve predictable 
performance. So, there is no coherency issue in the tile-to-tile 
communication. 

 



 

   
 

Unique combinations of PL & AI Engine gives best of both 
worlds: Highly efficient, future proof, compute platform across 
a wide range of end applications and AI Engine data path 
flexibility. 

Let’s take a look at the AlexNet v2 1st layer mapping on AI 
Engine in Versal device (GEMM based), below tale shows the 
Layer 1 Input, Filter, Output matrices sizes required and 
compute ops. 

 

The Alexnet v2, 1st layer can be architected as shown in figure 
below and process the matrices 32x64 and 64x32 int16 tiles at a 
time per AI Engine core. 

 

The below figure shows the 1st layer mapping on multi-core 
inner product approach and how multiplications spread in six 
AI Engine arrays. 

 

Trace analysis for cascade of 6 AI Engines arrays, running in 
parallel. 

  

 

Partitioning the GEMM problem in space and time helps 
distribute sub-matrix multiplications across multiple cores in AI 
Engine array and complete the big matrix multiply operations in 
multiple iterations using the Versal compute resources. 

The key objectives for the AI Engine Architecture are: 

 Provide a highly-optimized DSP signal processing   
architecture optimized for functions in the following 
markets: like Machine Learning (ML) for Data Center 
acceleration and Automotive Driver Assistance (ADAS) , 
Embedded Vision , Wireless Radio/DFE, 5G/Baseband, 
and opportunistically wireless Backhaul. 

 Provide efficient performance improvements, power 
reduction and software programmability. Xilinx AI Engine 
architecture targets customer ASIC replacements  

 Provide a higher-level programming experience than a 
traditional RTL design flow with Languages such as C, 
C++ , Provide Predictable and guaranteed throughput and 
latency (e.g., no timing closure). From Flexibility 
perspective time needed to reconfigure a particular block 
(region or particular IP ) from one configuration to another 
in the order of minutes. 

B. VLIW Processor Advantages 

VLIW Processor Achieves multiple forms of Parallelism 
through instruction-level and data-level parallelism.  

a) Instruction-level Parallelism (ILP) Multiple operations 
issued in one cycle.  b) Data-level Parallelism (DLP) Vector 
datapath (SIMD approach). 

 

 

For each clock cycle the Xilinx AI Engine VLIW processor can 
perform two scalar instructions, two vector reads, a single vector 
write, and a single vector instruction executed 6-way VLIW. 
Other advantages are Simpler hardware (Less power hungry), 
More scalable (Allow more instructions per VLIW bundle).  

 

C. Scope of Deep Learning Inference 

School’s in session. That’s how to think about deep neural 
networks going through the “training” phase. Neural networks 
get an education for the same reason most people do to learn to 
do a job.  
 
More specifically, the trained neural network is put to work out 
in the digital world using what it has learned to recognize 
images, spoken words, a blood disease, or suggest the shoes 
someone is likely to buy next, you name it in the streamlined 
form of an application.  
 
This speedier and more efficient version of a neural network 
infers things about new data it’s presented with, based on its 
training. In the AI lexicon this is known as “inference.” 
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Inference can’t happen without training. Makes sense. That’s 
how we gain and use our own knowledge for the most part. And 
just as we don’t haul around all our teachers, a few overloaded 
bookshelves and a red-brick schoolhouse to read a Shakespeare 
sonnet, inference doesn’t require all the infrastructure of its 
training regimen to do its job well. 
 
Xilinx Versal devices are inherently designed for low latency, 
high throughput, power efficiency, and flexibility. ACAP's 
make real-time inference possible by providing completely 
customizable hardware acceleration while retaining the 
flexibility to evolve with rapidly changing machine learning 
(ML) and deep learning (DL) models and providing 
performance better than ASIC's. Versal AI Engine core 
architecture has many features which naturally fit with machine 
learning and deep learning applications like: 
 
Highly parallel architecture: Facilitates efficient low-batch 
stream processing and reduces latency.  
 
Configurable distributed floating-point blocks: Accelerates 
computation by tuning compute performance. Whatever you 
choose from lower precision integers to high precision floating 
point numerics, you can continue to adjust along the 
performance/power curve.  
 
Tightly-couple high-bandwidth memory: Aggregate 
bandwidth of 1Tb/s+ bandwidth, random access, reduces 
latency, minimizes external memory access.  
 
Programmable data path: Reduces unnecessary data 
movement, improving latency and efficiency.  
 
Adaptable and future proof: ACAPs provide customizable 
adaptable hardware acceleration that can be programmed and 
tuned again and again to achieve maximum performance.  

VI. DEEP LEARNING INFERENCE CHALLENGES 
 
Key challenges for AI Inference are:  

› Rate of AI Innovation   
› Performance at low latency  
› Low power Consumption   

As artificial intelligence starts to pervade modern life, the 
demand for enhanced compute efficiency has begun to drive 
innovation in the semiconductor space, but it is difficult for any 
single implementation to handle with maximum efficiency. This 
is one area where the tight coupling between vector processing 
and programmable hardware is invaluable. There are two trends 
in DNN research that are driving the adoption of FPGAs over 
GPUs: low precision data types and sparsity. 

 

There has been a lot of attention on the precision of the compute 
unit (FP32 versus FP16 versus INT16 versus INT8, etc.), but 
inattention to the divergence in memory hierarchy requirements 
between network types has caused many of the most recent ML 
chips to drop sharply in efficiency for different networks. For 
example, the current state-of-the-art machine learning inference 
engines require four HBM memories (7.2Tb/s of external 
memory bandwidth) to reach their peak performance—but their 
cache-based memory hierarchy only operates at around 25–30% 
efficiency and creates significant latency uncertainty for real-
time applications. The solution is to augment the vector 
processing performed by intelligent engines with a 
programmable memory hierarchy, precisely optimized for each 
network type and enabled by the massive parallelism of FPGA 
logic. Operands of 8-bit, 16-bit, 32-bit, and single-precision 
floating point (SPFP) are supported with different  operands-per-
clock cycle as shown in table below showcasing multi-precision 
support in Xilinx Versal device.  
 

 
  Versal ACAP Multi-Precision 
 
Industry trends in accelerated computing suggests that the 
workloads in machine learning are rapidly changing whether its 
Database analytics, Video Transcode, Machine Learning. Key 
point to observe is because it can take so long to develop an 
ASIC like the TPU, a chip’s design may miss the window of 
recent innovations in a fast-moving market like AI. This is why 
many datacenters, including Baidu, Amazon and Microsoft, 
prefer to accelerate key workloads with GPUs as well as FPGAs 
from Xilinx, which deliver high performance and power 
efficiency while retaining the flexibility to evolve the hardware 
on the fly as needed. And a talented design team can build a 
new FPGA in months, not years. 
 
 
Versal platform implementation of GoogLeNet enables 
extraordinarily high performance for latency insensitive 
applications, 43X more throughput than today's top-of-the-line 
Skylake Platinum CPU, and about 3X today's top-of-the-line 
GPU all at much lower power. See Figure below 
 

Operand 1 Operand 2 Output Number of GMACs @ 1 GHz

8 real 8 real 16b real 128
16 real 8 real 48 real 64
16 real 16 complex 48 complex 16

16 complex 16 complex 48 complex 8
16 real 32 real 48/80 real 16
16 real 32 complex 48/80 complex 8



 

   
 

 
GoogLeNet Performance (< 7ms Latency) = 43X Higher Than a High-End CPU.  

1. Measured on Xeon Platinum 8124 Skylake, c5.18xlarge AWS instance, Intel Caffe: 2. V100 numbers taken 
from Nvidia Technical Overview, "Deep Learning Platform, Giant Leaps in Performance and Efficiency for 
AI Services." 

As the number of real-time applications continues to increase, it 
is important for Data Center customers to choose a technology 
that can scale to keep up with their future needs.  

Two trends are emerging:  

• Deterministic latency is becoming increasingly important to 
improve software design efficiency  

• Neural network latency requirements continue to tighten as 
increasingly complex interactions are modeled (human 
interaction, financial trading), and safety-critical applications 
rise in importance (e.g., automotive, industrial).  

These two requirements necessitate the removal of batching, 
which causes the performance of fixed, cache-based memory 
hierarchy of CPU and GPU-based solutions to degrade 
significantly. Even a high-end CPU caps out at 5ms latency, and 
below 7ms, even high-end GPUs degrade significantly in 
performance. Only the Versal ACAP achieves sub-2ms latency 
with acceptable performance. See Figure 

 
Real-Time GoogLeNet Performance (< 2ms Latency) = 8X Higher Than High-
End GPU (Nvidia) 

1. Measured on Xeon Platinum 8124 Skylake, c5.18xlarge AWS instance, Intel Caffe: 2. V100 numbers taken 
from Nvidia Technical Overview, "Deep Learning Platform, Giant Leaps in Performance and Efficiency for 
AI Services." 

 

As a result, the unique programmable memory hierarchy of 
ACAP-based solutions offers both the highest performance for 

machine learning inference as well as unmatched scalability as 
future applications demand lower and more deterministic 
latency. 

A. AI is outpacing Moore’s Law 

 
Stanford University finds that AI is outpacing Moore’s Law. 
Every three months, the speed of artificial intelligence 
computation doubles, according to Stanford University’s 2019 
AI Index report.  
 

 
 
Following the structures of DL models in above diagram, Trend 
shows these networks are very diverse, DL models evolving to 
more complex in nature and the diversity is massive, changing 
every day , need a AI hardware solution which can scale with 
these solutions as they evolve in future with increased network 
complexities. In consideration of the fact that the range of 
applications for which CNNs offer state-of-the-art performance 
and accuracy is growing, it is likely that the divergence of the 
memory demands across these applications will also continue. 
As this gap widens, designing hardware accelerators that offer 
both performance and efficiency across a variety of CNN 
benchmarks will become more difficult. 
 
Hence the Fixed Silicon architectures are not the answer, 
Answer is Adaptable hardware where you can not only 
program your hardware minute by minute for broad range 
of different workloads, but which can also be updated with 
latest and greatest algorithms as industry trends and 
requirements change which provides a future proof system. 
 
The new Versal ACAP architecture also yields a dramatic 
improvement in ease of use. It provides a fully integrated, 
memory-mapped platform for programming through a unified 
toolchain. The Xilinx toolchain supports multiple entry methods 
for every type of developer. For example, certain applications 
(such as AI machine learning inference) can be coded at the 
framework level (e.g., Caffe, TensorFlow); others can be coded 
in C using pre-optimized libraries (e.g., filters for 5G radio). 
Traditional hardware developers can still port their existing RTL 
to ACAP via the traditional RTL entry flow. And to program 
ACAP Versal devices Xilinx has introduced Vitis AI 
development environment which is a specialized development 
environment for accelerating AI inference on Xilinx embedded 
platforms, Accelerator cards, or on the FPGA-instances in the 
cloud. Vitis AI development environment supports the 
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industry’s leading deep learning frameworks like Tensorflow 
and Caffe, and offers comprehensive APIs to prune, quantize, 
optimize, and compile your trained networks to achieve the 
highest AI inference performance for your deployed application. 
 
The four major advantages of  Versal ACAP include:  
 
1. Software Programmability - The ability to quickly develop 
optimized applications through software-abstracted toolchains. 
  
2. Acceleration - Metrics for a wide range of applications from 
artificial intelligence, smart network interface cards, high 
density storage, 5G wireless, self-driving cars, advanced 
modular radar, and terabit optical networks.  
 
3. Dynamically Adaptable Reconfiguration - The ability to 
reconfigure the hardware to accelerate new loads within 
milliseconds. When state of the art changes, platform can be re-
implement all of this without a Silicon Wrap.  
 
4. Infinite memory depth/width granularities – Combining 
blocks of URAMs, BRAMs that can be configured in a variety 
of data width/depth combinations to offer the most flexible way 
of building memories of different sizes at the lowest cost per bit 
of memory, A very unique advantage in Versal ACAP. 
 

 
 

B. Low Latency is Critical for Inference 

The basic principle of batch-size selection is to select a small 
batch-size for latency-sensitive services and a large batch-size 
for throughput-sensitive services. 
 

 
 
Performance with different batch-size on an Intel® Xeon® processor E5-2650v4 

 
Figure above shows the effect of choosing a different batch-size 
on inference service throughput and latency. Test results show 
that when the batch-size is small, increasing the batch-size 

appropriately (for example, batch-size from 1 to 2) has less 
impact on the latency, but can quickly improve the performance 
of the throughput; when the batch-size is large, increasing its 
value (for example, from 8 to 32) does not improve throughput, 
but greatly affects the service latency performance. Therefore, 
in practice, it is necessary to optimize the selection of batch-size 
according to the number of CPU cores and service performance 
requirements of the deployed service node. 
 
 One of the ways to achieve the highest performance in GPU 
computing is to hide the long latency and other computational 
overheads by high data-level parallelism to achieve a high 
throughput, for example by the high batch size values, which 
combines many (potentially tens) of input images to achieve 
optimal throughput. However, high batch size also comes with a 
latency penalty. So, for more real-time oriented usages, lower 
batch sizes (as low as a single input) are used. 

   
High Throughput OR Low Latency         High Throughput AND Low Latency 

Xilinx ACAP Achieves throughput using low-batch size. 
Processes each input as soon as it’s ready, resulting in low 
latency. 
 
C. Accelerate Your Whole Application 

 
AI tasks like inference are just a piece of the overall end-
product puzzle. AI is the new, buzz-worthy, not-so-secret 
ingredient that is being hot-glued to a bushel basket full of 
embedded applications to make them somehow “better”.  
 
From Xilinx’s perspective, it’s not enough to accelerate just the 
AI portion of the job. Real performance improvement comes 
from accelerating as many tasks as possible. 
 

  
 
Xilinx provides an optimized hardware acceleration of both AI 
inference and other performance-critical functions by tightly 
coupling custom accelerators into a dynamic architecture 
silicon device. This delivers end-to-end application 
performance that is significantly greater than a fixed-
architecture AI accelerator like a GPU because with a GPU, the 



 

   
 

other performance-critical functions of the application must 
still run in software, without the performance or efficiency of 
custom hardware acceleration. 

CONCLUSION AND SUMMARY 

 
Only Xilinx Versal Adaptable Devices Can: 
 

 Match the speed of AI innovation 
 Give the best performance at low latency 
 Give the best power results 
 Accelerate the whole application 

 
AI Engines represent a new class of high-performance 
compute. Integrated within a Versal-class device, the AI 
Engine can be optimally combined with PL and PS to 
implement high-complexity systems in a single Xilinx ACAP. 
AI Engines deliver three to eight times better silicon area 
compute density when compared with traditional 
programmable logic DSP and ML implementations, while 
reducing power consumption by nominally 50%. A C/C++ 
programming paradigm raises the level of abstraction and 
promises to significantly increase the developer's productivity 
and unmatchable hardware capability. A true hetrogenous 
platform in every sense with combnation of Adaptable 
Engines, Integrated DDR Memory Controllers , Intelligent 
Engines, Programmable Network on Chip, Scalar Engines. 

Xilinx ACAP Versal device has all key ingredients in adequate   
quantity to call itself a versatile multi-function accelerator 
device that allow maximum programming flexibility, and easier 
reconfiguration. This white paper reviews the needs driving the 
change from the traditional CPU-based compute model, 
explores the other options in detail, and how Xilinx Versal 
ACAP, the industry's first heterogeneous compute platform 
answers Industry Inference challenges.  
 
Summary here relies on two main key aspects  
 

 Programmability and Performance 
 AI Everywhere Means Inference Everywhere 

 
Programmability and Performance 
Efficient deep learning is about solving data delivery problems, 
and the Xilinx Versal ACAP programmability, flexibility, and 
performance capabilities are all built to move data rapidly. This 
dream architecture is able to deliver greater performance with 
less power, giving the it an important edge in overall cost of 
operation and ownership. Better results need not coincide with 
larger power bills, hotter server rooms, or strained capabilities 
on technological infrastructure. 
 
AI Everywhere Means Inference Everywhere  
As AI continues to proliferate in real-world deployments, 
inference performance will become more critical to delivering 
enterprise insights and results. The Xilinx Versal ACAP is built 
to accelerate those transformative applications, with an eye on 

ease-of-use and power consumption.  Algorithms of tomorrow 
demands ground-up architecture revamp of memory/data 
resources and capabilities. Xilinx has reformulated some 
fundamental chip techniques that rewrite the rules in computing 
and gave a disruptive dream architecture for Inference in Deep 
Learning Field to the Industry and Research Enthusiast.   
 
Please visit Xilinx Versal product page for the latest updates  
https://www.xilinx.com/products/silicon-devices/acap/versal.html. 
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