

Designing FPGAs Using the Vivado Design Suite 1

FPGA 1

FPGA-VDES1 (v1.0)

Course Description

This course offers introductory training on the Vivado® Design Suite and demonstrates the FPGA design flow for those uninitiated to FPGA design.

The course provides experience with:

- Creating a Vivado Design Suite project with source files
- Simulating a design
- Performing pin assignments
- Applying basic timing constraints
- Synthesizing and implementing
- Debugging a design
- Generating and downloading a bitstream onto a demo board

What's New for 2021.1

- Introduction to FPGA Architecture, 3D IC, SoCs, ACAPs: Includes information about the Artix UltraScale+ FPGA family and Versal ACAP devices
- UltraFast Design Methodology: Board and Device Planning: Adds information about power constraints
- Vivado IP Flow: Adds description about block design containers in the Vivado IP integrator
- Basics of Clock Gating and Static Timing Analysis: Adds information for basic clock gating
- New "Power Estimation Using the XPE Tool for Versal ACAPs"
- All labs have been updated to the latest software versions

Level - FPGA 1

Course Details

- 2 days ILT or 16 hours OnDemand
 - 24 lectures
 - 12 labs
 - 7 demos

Course Part Number - FPGA-VDES1

Who Should Attend? – Digital designers new to FPGA design who need to learn the FPGA design cycle and the major aspects of the Vivado Design Suite

Prerequisites

- Basic knowledge of the VHDL or Verilog language
- Digital design knowledge

Software Tools

Vivado Design or System Edition 2021.1

Hardware

- Architecture: UltraScale™ family*
- Demo board: Zynq® UltraScale+™ MPSoC ZCU104 board*
- * This course focuses on the UltraScale architecture. Check with your local Authorized Training Provider for the specifics of the in-class lab board or other customizations.

After completing this comprehensive training, you will have the necessary skills to:

- Use the New Project Wizard to create a new Vivado IDE project
- Describe the supported design flows of the Vivado IDE

Course Specification

- Generate a DRC report to detect and fix design issues early in the flow
- Use the Vivado IDE I/O Planning layout to perform pin assignments
- Synthesize and implement the HDL design
- Apply clock and I/O timing constraints and perform timing analysis
- Describe the "baselining" process to gain timing closure on a design
- Use the Schematic and Hierarchy viewers to analyze and cross-probe a design
- Use the Vivado logic analyzer and debug cores to debug a design

Course Outline

Day 1

Xilinx Device Architectures

Introduction to FPGA Architecture, 3D ICs, SoCs, ACAPs Overview of FPGA architecture, SSI technology, and SoC device architecture. {Lecture}

UltraFast Design Methodology

 UltraFast Design Methodology: Board and Device Planning Introduces the methodology guidelines covered in this course and the UltraFast Design Methodology checklist. {Lecture}

HDL Techniques

HDL Coding Techniques

Covers basic digital coding guidelines used in an FPGA design. {Lecture}

Vivado Tool Flow

Introduction to Vivado Design Flows

Introduces the Vivado design flows: the project flow and non-project batch flow. {Lecture}

Vivado Design Suite Project-based Flow

Introduces the project-based flow in the Vivado Design Suite: creating a project, adding files to the project, exploring the Vivado IDE, and simulating the design. {Lecture, Lab}

Design Analysis

Basic Design Analysis in the Vivado IDE

Use the various design analysis features in the Vivado Design Suite. {Lab, Demo}

■ Vivado Design Rule Checks

Run a DRC report on the elaborated design to detect design issues early in the flow. Fix the DRC violations. {Lab}

Introduction to Vivado Reports

Generate and use Vivado timing reports to analyze failed timing paths. {Lecture, Demo}

Simulation

Behavioral Simulation

Describes the process of behavioral simulation and the simulation options available in the Vivado® IDE. {Lecture}

Power

Xilinx Power Estimator Spreadsheet

Estimate the amount of resources and default activity rates for a design and evaluate the estimated power calculated by XPE. {Lecture, Lab}

© 2021 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Designing FPGAs Using the Vivado Design Suite 1

FPGA 1

FPGA-VDES1 (v1.0)

Power Estimation Using the XPE Tool for Versal ACAPs

Describe how to use the Xilinx Power Estimator (XPE) spreadsheet tool for the Versal™ ACAP architecture {Lab}

Synthesis and Implementation

Vivado Synthesis and Implementation

Create timing constraints according to the design scenario and synthesize and implement the design. Optionally, generate and download the bitstream to the demo board. {Lecture, Lab}

Day 2

Vivado IP Catalog

Vivado IP Flow

Customize IP, instantiate IP, and verify the hierarchy of your design IP. {Lecture, Demo, Lab}

Pin Planning

Vivado Design Suite I/O Pin Planning

Use the I/O Pin Planning layout to perform pin assignments in a design. {Lecture, Lab}

Timing - Basics

Introduction to Clock Constraints

Apply clock constraints and perform timing analysis. {Lecture, Demo, Lab}

Generated Clocks

Use the report clock networks report to determine if there are any generated clocks in a design. {Lecture, Demo}

■ I/O Constraints and Virtual Clocks

Apply I/O constraints and perform timing analysis. {Lecture, Lab}

■ Timing Constraints Wizard

Use the Timing Constraints Wizard to apply missing timing constraints in a design. {Lecture, Lab}

Basics of Clock Gating and Static Timing Analysis

Describes the basics of clock gating and static timing analysis. {Lecture}

Calculating Setup and Hold Timing

Reviews setup and hold timing calculations. {Lecture}

Configuration

Introduction to FPGA Configuration

Describes how FPGAs can be configured. {Lecture}

Debugging

Introduction to the Vivado Logic Analyzer

Overview of the Vivado logic analyzer for debugging a design. {Lecture, Demo}

Introduction to Triggering

Introduces the trigger capabilities of the Vivado logic analyzer. {Lecture}

Debug Cores

Understand how the debug hub core is used to connect debug cores in a design. {Lecture}

Tcl

Introduction to the Tcl Environment

Introduces Tcl (tool command language). {Lecture, Lab}

Tcl Syntax and Structure

Understand the Tcl syntax and structure. {Lecture}

Course Specification

Using Tcl Commands in the Vivado Design Suite Project

Explains what Tcl commands are executed in a Vivado Design Suite project flow. {Lecture, Demo}

Register Today

Visit the Xilinx Customer Training Center to view schedules and register online