
Aurora 64B/66B v10.0

LogiCORE IP Product Guide

Vivado Design Suite

PG074 April 1, 2015

Aurora 64B/66B v10.0 www.xilinx.com 2
PG074 April 1, 2015

Table of Contents
IP Facts

Chapter 1: Overview
Applications . 6
Unsupported Features. 7
Licensing and Ordering Information . 7

Chapter 2: Product Specification
Performance. 9
Resource Utilization. 11
Port Descriptions . 13

Chapter 3: Designing with the Core
General Design Guidelines . 56
Clocking. 57
Reset and Power Down . 60
Shared Logic . 67
Using CRC . 70
Hot Plug Logic. 70
Clock Compensation Logic. 70
Using Little Endian Support . 72

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 73
Constraining the Core . 87
Simulation . 91
Synthesis and Implementation . 92

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=2

Aurora 64B/66B v10.0 www.xilinx.com 3
PG074 April 1, 2015

Chapter 5: Example Design
Directory and File Contents. 93
Quick Start Example Design . 93
Detailed Example Design. 95
Using Vivado Lab Tools . 98
Implementing the Example Design. 98
Hardware Reset FSM in the Example Design . 98

Chapter 6: Test Bench

Appendix A: Verification, Compliance, and Interoperability

Appendix B: Migrating and Upgrading
Device Migration . 105
Upgrading in the Vivado Design Suite . 106
Migrating Legacy (LocalLink based) Aurora 64B/66B Cores to the

AXI4-Stream Aurora 64B/66B Core. 108

Appendix C: Debugging
Finding Help on Xilinx.com . 114
Vivado Lab Edition . 116
Simulation Debug. 116
Hardware Debug . 118
Design Bring-Up on the KC705 Evaluation Board . 123
Interface Debug . 123

Appendix D: Generating a GT Wrapper File from the Transceiver Wizard

Appendix E: Additional Resources and Legal Notices
Xilinx Resources . 126
References . 126
Revision History . 127
Please Read: Important Legal Notices . 130

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=3

Aurora 64B/66B v10.0 www.xilinx.com 4
PG074 April 1, 2015 Product Specification

Introduction
The Xilinx® LogiCORE™ IP Aurora 64B/66B core
is a scalable, lightweight, high data rate,
link-layer protocol for high-speed serial
communication. The protocol is open and can
be implemented using Xilinx device
technology.

The Vivado® Design Suite produces source
code for Aurora 64B/66B cores. The cores can
be simplex or full-duplex, and feature one of
two simple user interfaces and optional flow
control.

Features
• Aurora 64B/66B cores supported in the

Vivado Design Suite
• General-purpose data channels with

throughput range from 500 Mb/s to over
254 Gb/s

• Supports up to any consecutive 16 bonded
GTX transceivers or 16 bonded Virtex®-7
FPGA GTH transceivers and 16 bonded
UltraScale™ device GTH transceivers.

• Aurora 64B/66B protocol specification v1.3
compliant (64B/66B encoding)

• Low resource cost with very low (3%)
transmission overhead

• Easy-to-use AXI4-Stream based framing
and flow control interfaces

• Automatically initializes and maintains the
channel

• Full-duplex or simplex operation
• 32-bit Cyclic Redundancy Check (CRC) for

user data
• Added support for the Simplex Auto Link

Recovery feature
• Supports RX polarity inversion
• Big endian/little endian AXI4-Stream user

interface
• Fully compliant AXI4-Lite DRP interface
• Configurable DRP, INIT clock
• Single/Differential clocking option for

GTREFCLK and core INIT_CLK

IP Facts

LogiCORE IP Facts Table

Core Specifics
Supported
Device
Family(1)

UltraScale architecture,
Zynq®-7000 All Programmable SoC,

Virtex-7(2), Kintex®-7(2)

Supported
User Interfaces AXI4-Stream

Resources(3) See Table 2-2 and Table 2-3.

Provided with Core
Design Files RTL

Example
Design Verilog(4)

Test Bench Verilog

Constraints
File Xilinx Design Constraints (XDC)

Simulation
Model Not Provided

Supported
S/W Driver N/A

Tested Design Flows(5)

Design Entry Vivado Design Suite

Simulation For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis

Support
Provided by Xilinx @ www.xilinx.com/support

Notes:
1. For a complete list of supported devices, see the Vivado IP

catalog.
2. For more information, see the 7 Series FPGAs Overview

(DS180) [Ref 1]. and the UltraScale Architecture and Product
Overview (DS890) [Ref 2]

3. For more complete performance data, see Performance,
page 9.

4. The core is delivered as open-source code and supports
Verilog design environments. Each core comes with an
example design and supporting modules.

5. For the supported versions of the tools, see the
Xilinx Design Tools: Release Notes Guide.

Send Feedback

http://www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.1;t=vivado+release+notes
www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.1;t=vivado+release+notes
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=4

Aurora 64B/66B v10.0 www.xilinx.com 5
PG074 April 1, 2015

Chapter 1

Overview
This product guide describes the function and operation of the LogiCORE™ IP Aurora
64B/66B core and provides information about designing, customizing, and implementing
the core.

Aurora 64B/66B is a lightweight, serial communications protocol for multi-gigabit links
(Figure 1-1). It is used to transfer data between devices using one or many GTX or GTH
transceivers. Connections can be full-duplex (data in both directions) or simplex (data in
either one of the directions).

The Aurora 64B/66B core supports the AMBA® protocol AXI4-Stream user interface. It
implements the Aurora 64B/66B protocol using the high-speed serial GTX or GTH
transceivers in applicable UltraScale™, Zynq®-7000, Virtex®-7, and Kintex®-7 devices. The
core can use up to 16 consecutive device GTX or GTH transceivers running at any supported
line rate to provide a low-cost, general-purpose, data channel with throughput from 500
Mb/s to over 254 Gb/s.

Aurora 64B/66B cores are verif ied for protocol compliance using an array of automated
simulation tests.

X-Ref Target - Figure 1-1

Figure 1-1: Aurora 64B/66B Channel Overview

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=5

Aurora 64B/66B v10.0 www.xilinx.com 6
PG074 April 1, 2015

Chapter 1: Overview

Aurora 64B/66B cores automatically initialize a channel when they are connected to an
Aurora 64B/66B channel partner. After initialization, applications can pass data across the
channel as frames or streams of data. Aurora 64B/66B frames can be of any size, and can be
interrupted any time by high priority requests. Gaps between valid data bytes are
automatically f illed with idles to maintain lock and prevent excessive electromagnetic
interference. Flow control is optional in Aurora 64B/66B, and can be used to throttle the link
partner transmit data rate, or to send brief, high-priority messages through the channel.

Streams are implemented in Aurora 64B/66B as a single, unending frame. Whenever data is
not being transmitted, idles are transmitted to keep the link alive. Excessive bit errors,
disconnections, or equipment failures cause the core to reset and attempt to initialize a new
channel. The Aurora 64B/66B core can support a maximum of two symbols skew in the
receipt of a multi-lane channel. The Aurora 64B/66B protocol uses 64B/66B encoding. The
64B/66B encoding offers improved performance because of its very low (3%) transmission
overhead, compared to 25% overhead for 8B/10B encoding.

RECOMMENDED:
1. Although the Aurora 64B/66B core is a fully-verified solution, the challenge associated with

implementing a complete design varies depending on the configuration and functionality of the
application. For best results, prior experience in building high-performance, pipelined FPGA designs
using Xilinx implementation tools and Xilinx® Design Constraints (XDC) user constraints files is
recommended.

2. Consult the PCB design requirements information in the UltraScale FPGAs GTH Transceivers User
Guide (UG576) [Ref 3] and 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 4].
Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

Applications
Aurora 64B/66B cores can be used in a wide variety of applications because of their low
resource cost, scalable throughput, and flexible data interface. Examples of Aurora 64B/66B
core applications include:

• Chip-to-chip links: Replacing parallel connections between chips with high-speed
serial connections can signif icantly reduce the number of traces and layers required on
a PCB.

• Board-to-board and backplane links: Aurora 64B/66B uses standard 64B/66B
encoding, which is the preferred encoding scheme for 10 Gigabit Ethernet, making it
compatible with many existing hardware standards for cables and backplanes. Aurora
64B/66B can be scaled, both in line rate and channel width, to allow inexpensive legacy
hardware to be used in new, high-performance systems.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=6

Aurora 64B/66B v10.0 www.xilinx.com 7
PG074 April 1, 2015

Chapter 1: Overview

• Simplex connections (unidirectional): The Aurora 64B/66B simplex protocol provides
unidirectional channel initialization, making it possible to use the GTX and GTH
transceivers when a back channel is not available, and to reduce costs due to unused
full-duplex resources.

• ASIC applications: Aurora 64B/66B is not limited to FPGAs, and can be used to create
scalable, high-performance links between programmable logic and high-performance
ASICs. The simplicity of the Aurora 64B/66B protocol leads to low resource costs in
ASICs as well as in FPGAs, and design resources like the Aurora 64B/66B bus functional
model (BFM) with automated compliance testing make it easy to get an Aurora 64B/66B
connection up and running. Contact Xilinx Sales or auroramkt@xilinx.com for
information on licensing Aurora 64B/66B for ASIC applications.

Unsupported Features
AXI4-Stream non-strict aligned mode is not supported in the Aurora 64B/66B core.

Licensing and Ordering Information
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado®
Design Suite under the terms of the Xilinx End User License. Information about this and
other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For
information about pricing and availability of other Xilinx LogiCORE IP modules and tools,
contact your local Xilinx sales representative.

To use the Aurora 64B/66B core with an application specif ic integrated circuit (ASIC), a
separate paid license agreement is required under the terms of the Xilinx Core License
Agreement. Contact Aurora Marketing at auroramkt@xilinx.com for more information.

For more information, visit the Aurora 64B/66B product page.

Send Feedback

http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/aurora
mailto:auroramktt@xilinx.com
mailto:auroramkt@xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=7

Aurora 64B/66B v10.0 www.xilinx.com 8
PG074 April 1, 2015

Chapter 2

Product Specification
Figure 2-1 shows a block diagram of the Aurora 64B/66B core.

The major functional modules of the Aurora 64B/66B core are:

• Lane logic: Each GTX and GTH transceiver is driven by an instance of the lane logic
module which initializes each individual transceiver, handles the encoding and
decoding of control characters, and performs error detection.

• Global logic: The global logic module in the core performs the channel bonding for
channel initialization. During operation, the channel keeps track of the Not Ready idle
characters defined by the Aurora 64B/66B protocol and monitors all the lane logic
modules for errors.

• RX user interface: The AXI4-Stream receive (RX) user interface moves data from the
channel to the application and also performs flow control functions.

• TX user interface: The AXI4-Stream transmit (TX) user interface moves data from the
application to the channel and also performs flow control TX functions. The standard
clock compensation module is embedded inside the core. This module controls
periodic transmission of the CC character.

X-Ref Target - Figure 2-1

Figure 2-1: Aurora 64B/66B Core Block Diagram

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=8

Aurora 64B/66B v10.0 www.xilinx.com 9
PG074 April 1, 2015

Chapter 2: Product Specification

Performance
This section details the performance information for various core configurations.

Maximum Frequencies
The maximum frequency of the core operation is dependent on the line rates supported
and the speed grade of the devices.

Latency
For a default single lane configuration, latency through an Aurora 64B/66B core is caused
by pipeline delays through the protocol engine (PE) and through the GTX and GTH
transceivers. The PE pipeline delay increases as the AXI4-Stream interface width increases.
The transceiver delays are determined by the transceiver features.

This section outlines a method of measuring the latency for the Aurora 64B/66B core
AXI4-Stream user interface in terms of user_clk cycles for UltraScale™, Zynq®-7000,
Virtex®-7, and Kintex®-7 device GTX and GTH transceiver-based designs. For the purposes
of illustrating latency, the Aurora 64B/66B modules are partitioned between logic in the
GTX and GTH transceivers and protocol engine (PE) logic implemented in the FPGA.

Figure 2-2 illustrates the latency of the datapath.

Note: Figure 2-2 does not include the latency incurred due to the length of the serial connection
between each side of the Aurora 64B/66B channel.

X-Ref Target - Figure 2-2

Figure 2-2: Latency of the Datapath

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=9

Aurora 64B/66B v10.0 www.xilinx.com 10
PG074 April 1, 2015

Chapter 2: Product Specification

The latency must be measured from the rising edge of the transmitter user_clk at the f irst
assertion of s_axi_tx_tvalid and s_axi_tx_tready to the rising edge of the receiver
user_clk at the f irst assertion of m_axi_rx_tvalid. Figure 2-3 shows the transmitter
and receiver path reference points between which the latency has been measured for the
default core configuration.

Table 2-1 shows the maximum latency and the individual latency values of the contributing
pipeline components for the default core configuration. Latency can vary with the addition
of flow controls.

The pipeline delays are designed to maintain the clock speed.

Throughput
Aurora 64B/66B core throughput depends on the number of the transceivers and the target
line rate of the transceivers selected. Throughput varies from 0.48 Gb/s to 254.06 Gb/s for
a single-lane design to a 16-lane design, respectively. The throughput was calculated using
3% overhead of Aurora 64B/66B protocol encoding and 0.5 Gb/s to 16.375 Gb/s line rate
range.

X-Ref Target - Figure 2-3

Figure 2-3: Latency Waveform with Reference Points

Table 2-1: Latency for the Default Aurora 64B/66B Core Configuration

Latency Component user_clk Cycles

Logic 46

Gearbox 1 or 2

Clock Compensation 7

Maximum (total) 54 or 55

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=10

Aurora 64B/66B v10.0 www.xilinx.com 11
PG074 April 1, 2015

Chapter 2: Product Specification

Resource Utilization
Table 2-2 through Table 2-3 show the number of look-up tables (LUTs) and flip-flops (FFs)
used in selected Aurora 64B/66B framing and streaming modules in the Vivado® Design
Suite implemented on the xc7vx485tffg1157-1 device. The Aurora 64B/66B core is also
available in configurations not shown in the tables. The tables do not include the additional
resource usage for flow controls. Resource utilization in the following tables does not
include the additional resource usage for the example design modules, such as FRAME_GEN
and FRAME_CHECK. Values provided are exact values for a given configuration. Values in
the following tables are for the default configuration (3.125G) with support logic included.

Table 2-2: Virtex-7 Family GTX Transceiver Resource Usage for Streaming

Virtex-7 Family (GTX Transceiver)
Streaming

Duplex Simplex

Lanes Resource Type Full-Duplex TX-Only RX-Only

1 LUTs 549 315 377

FFs 1359 476 957

2 LUTs 1044 467 686

FFs 2379 761 1721

4 LUTs 1971 711 1452

FFs 4347 1380 3139

8 LUTs 3610 1256 2805

FFs 8219 2539 5973

16 LUTs 6656 1949 5496

FFs 15966 4825 11641

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=11

Aurora 64B/66B v10.0 www.xilinx.com 12
PG074 April 1, 2015

Chapter 2: Product Specification

Note: UltraScale device utilization results are expected to be similar to 7 series devices.

Table 2-3: Virtex-7 Family GTX Transceiver Resource Usage for Framing

Virtex-7 Family (GTX Transceiver)
Framing

Duplex Simplex

Lanes Resource Type Full-Duplex TX-Only RX-Only

1 LUTs 873 315 597

FFs 1398 499 975

2 LUTs 1475 471 1106

FFs 2442 799 1748

4 LUTs 2628 764 2012

FFs 4444 1425 3182

8 LUTs 4997 1566 3896

FFs 8391 2623 6046

16 LUTs 9418 2874 7560

FFs 16273 5018 11771

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=12

Aurora 64B/66B v10.0 www.xilinx.com 13
PG074 April 1, 2015

Chapter 2: Product Specification

Port Descriptions
The parameters used to generate each Aurora 64B/66B core determine the interfaces
available for that specific core. Aurora 64B/66B cores can have four to eight interfaces.

Figure 2-4 shows the Aurora 64B/66B IP symbol for the default core configuration with all
flow control options and CRC enabled.

X-Ref Target - Figure 2-4

Figure 2-4: Aurora 64B/66B IP Symbol

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=13

Aurora 64B/66B v10.0 www.xilinx.com 14
PG074 April 1, 2015

Chapter 2: Product Specification

User Interface
The Aurora 64B/66B core can be generated with either a framing or streaming user data
interface. Data port width depends on the number of lanes selected. Table 2-4 lists
simplex/duplex port descriptions for the AXI4-Stream TX data ports.

Table 2-4: User Interface Ports

Name Direction Clock
Domain Description

USER_DATA_S_AXIS_TX

s_axi_tx_tdata[0:(64n–1)] or
s_axi_tx_tdata[(64n–1):0](1)(2) Input user_clk Outgoing data (ascending bit order).

s_axi_tx_tready(2) Output user_clk
Asserted when signals from the source are
accepted. Deasserted when signals from the
source are ignored.

s_axi_tx_tvalid(2) Input user_clk

Asserted when AXI4-Stream signals from the
source are valid. Deasserted when AXI4-Stream
control signals and/or data from the source
should be ignored.

s_axi_tx_tlast(2) Input user_clk
Indicates the end of the frame.
This port is not available if the Streaming
interface option is chosen.

s_axi_tx_tkeep[0:(8n–1)] or
s_axi_tx_tkeep[(8n–1):0](1)(2) Input user_clk

Specifies the number of valid bytes in the last
data beat (number of valid bytes = number of
1s in tkeep). s_axi_tx_tkeep is sampled only
when s_axi_tx_tlast is asserted.
The core supports continuous aligned and
continuous unaligned data streams and expects
data to be filled continuously from LSB to MSB.
There cannot be invalid bytes interleaved with
the valid s_axi_tx_tdata bus.
This port is not available if the Streaming
interface option is chosen.

USER_DATA_M_AXIS_RX

m_axi_rx_tdata[0:(64n–1)] or
m_axi_rx_tdata[(64n–1):0](1)(3) Output user_clk Incoming data from channel partner (ascending

bit order).

m_axi_rx_tvalid(3) Output user_clk
Asserted when data from core is valid.
Deasserted when data from the core should be
ignored.

m_axi_rx_tlast(3) Output user_clk
Indicates the end of the incoming frame.
This port is not available if the Streaming
interface option is chosen.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=14

Aurora 64B/66B v10.0 www.xilinx.com 15
PG074 April 1, 2015

Chapter 2: Product Specification

Top‐Level Interface

The Aurora 64B/66B top-level (block level) f ile contains the top-level interface definition
and is the starting point for a user design. The top-level f ile instantiates the Aurora 64B/66B
lane module, the TX and RX AXI4-Stream modules, the global logic module, and the GTX or
GTH transceiver wrapper. This top-level wrapper file is instantiated in the example design
f ile together with the clock, reset circuit, and frame generator and checker modules.

Figure 2-5 shows the Aurora 64B/66B top level for a duplex configuration.

The timing requirements for the streaming and framing interfaces are described in Framing
Interface and Streaming Interface.

m_axi_rx_tkeep[0:(8n–1)] or
m_axi_rx_tkeep[(8n–1):0](1)(3) Output user_clk

Specifies the number of valid bytes in the last
data beat.
This port is not available if the Streaming
interface option is chosen.

Notes:
1. n is the number of lanes.
2. This port is not available in RX-only simplex mode.
3. This port is not available in TX-only simplex mode

X-Ref Target - Figure 2-5

Figure 2-5: Aurora 64B/66B Duplex Top-Level Architecture

Table 2-4: User Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=15

Aurora 64B/66B v10.0 www.xilinx.com 16
PG074 April 1, 2015

Chapter 2: Product Specification

Figure 2-6 shows an n-byte example of the Aurora 64B/66B AXI4-Stream data interface bit
ordering.

Framing Interface

The framing user interface (Figure 2-7) complies with the AXI4-Stream Protocol Specification
[Ref 22] and comprises the signals necessary for transmitting and receiving framed user
data. A detailed description of the framing interface follows.

Transmitting Data

The Aurora 64B/66B core samples the data only if both s_axi_tx_tready and
s_axi_tx_tvalid are asserted. The user application can deassert s_axi_tx_tvalid on
any clock cycle (Figure 2-9, page 19) to ignore the AXI4-Stream input for that cycle. If this
occurs in the middle of a frame, idle symbols are sent through the Aurora 64B/66B channel.

The AXI4-Stream data is only valid when it is framed. Data outside of a frame is ignored. To
end a frame, assert s_axi_tx_tlast while the last word (or partial word) of data is on the
s_axi_tx_tdata port and use s_axi_tx_tkeep to specify the number of valid bytes in
the last data beat.

High priority is assigned to these requests for any type of transfer:

• TXDATAVALID deasserted from the transceiver TX interface (1 cycle)

• CC transmission (8 cycles)

X-Ref Target - Figure 2-6

Figure 2-6: AXI4-Stream Interface Bit Ordering

X-Ref Target - Figure 2-7

Figure 2-7: Aurora 64B/66B Framing User Interface (AXI4-Stream)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=16

Aurora 64B/66B v10.0 www.xilinx.com 17
PG074 April 1, 2015

Chapter 2: Product Specification

Aurora 64B/66B Frames

All Aurora 64B/66B data is sent as part of a data block or a separator block. A separator
block (SEP) consists of a count field indicating how many bytes are valid in that particular
block. In framing, each frame begins with data blocks and ends with a separator block
containing the last bytes of the frame. Idle blocks are inserted whenever data is not
available. Blocks are eight bytes of scrambled data or control information with a two-bit
control header (a total of 66 bits).

Table 2-5 shows a typical Aurora 64B/66B frame with an even number of data bytes.

To transmit data, the user application configures the control signals causing the core to
perform these steps:

1. Accept data from the user application on the s_axi_tx_tdata bus.

2. Indicate the end of frame when s_axi_tx_tlast is asserted along with
s_axi_tx_tkeep and stripe data across lanes in the Aurora 64B/66B channel.

3. Insert idle or pause cycles on the serial line when the user application deasserts
s_axi_tx_tvalid.

When the core receives data, it performs these steps:

1. Detects and discards control bytes (idles, clock compensation).

2. Recovers data from the lanes.

3. Assembles data for presentation to the user application on the m_axi_rx_tdata bus
including providing the number of valid bytes on m_axi_rx_tkeep and asserts
m_axi_rx_tvalid during the m_axi_rx_tlast cycle.

Table 2-5: Typical Channel Frame

Data Byte
0

Data Byte
1

Data Byte
2

Data Byte
3 . . . Data Byte

n–2
Data Byte

n–1
Data Byte

n

SEP (1E) Count (4) Data Byte
0

Data Byte
1

Data Byte
2

Data Byte
3 x x

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=17

Aurora 64B/66B v10.0 www.xilinx.com 18
PG074 April 1, 2015

Chapter 2: Product Specification

Example A: Simple Data Transfer

Figure 2-8 shows an example of a simple n byte wide data transfer. 3n bytes of data are sent
requiring three data beats. s_axi_tx_tready is asserted indicating that the AXI4-Stream
interface is ready to transmit data.

To begin the data transfer, the user application asserts s_axi_tx_tvalid and provides
the f irst n bytes of the user frame. Because s_axi_tx_tready is already asserted, data
transfer begins on the next clock edge. The data bytes are placed in data blocks and
transferred through the Aurora 64B/66B channel.

To end the data transfer, the user application asserts s_axi_tx_tlast,
s_axi_tx_tvalid, the last data bytes, and the appropriate TKEEP value (0xFF) on the
s_axi_tx_tkeep bus. The core sends the f inal data word in blocks, and must send an
empty separator block on the next cycle to indicate the end of the frame.
s_axi_tx_tready is reasserted on the next cycle so that more data transfers can
continue. If there is no new data, the Aurora 64B/66B core sends idles.

X-Ref Target - Figure 2-8

Figure 2-8: Simple Data Transfer

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=18

Aurora 64B/66B v10.0 www.xilinx.com 19
PG074 April 1, 2015

Chapter 2: Product Specification

Example B: Data Transfer with Pause

Figure 2-9 shows the user application pausing data transmission during a frame transfer.
The application sends 3n bytes of data and pauses the data flow after the f irst n bytes. After
the f irst data word, the application deasserts s_axi_tx_tvalid causing the TX to ignore
all data on the bus and transmit idle blocks. The pause continues until s_axi_tx_tvalid
is asserted.

Example C: Data Transfer with Clock Compensation

Figure 2-10 shows the core automatically interrupting data transmission when clock
compensation sequences are sent.

X-Ref Target - Figure 2-9

Figure 2-9: Data Transfer with Pause

X-Ref Target - Figure 2-10

Notes:
1. When clock compensation is transmitted, uninterrupted data transmission is not possible. See Clock Compensation Logic for

more information about when clock compensation is required.

Figure 2-10: Data Transfer Paused by Clock Compensation

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=19

Aurora 64B/66B v10.0 www.xilinx.com 20
PG074 April 1, 2015

Chapter 2: Product Specification

Receiving Data

Because the core has no built-in buffer for user data, there is no m_axi_rx_tready signal
on the RX AXI4-Stream interface. User application control of the flow of data from an Aurora
64B/66B channel is limited to one of the optional core flow control features.

The m_axi_rx_tvalid signal is asserted concurrently with the f irst word of each frame
from the core. The m_axi_rx_tlast signal is asserted concurrently with the last word or
partial word of each frame. The m_axi_rx_tkeep port indicates the number of valid bytes
in the f inal word of each frame using the same byte indication procedure as
s_axi_tx_tkeep. All bytes valid is indicated (all 1s) when m_axi_rx_tlast is not
asserted and the exact number of bytes valid is specif ied when m_axi_rx_tlast is
asserted.

If the CRC option is selected, the received data stream is computed for the expected CRC
value. The CRC block re-calculates the m_axi_rx_tkeep value and correspondingly
asserts m_axi_rx_tlast.

The core can deassert m_axi_rx_tvalid anytime, even during a frame.

Example A: Data Reception with Pause

Figure 2-11 shows an example of 3n bytes of received data interrupted by a pause. Data is
presented on the m_axi_rx_tdata bus. When the first n bytes are placed on the bus, the
m_axi_rx_tvalid output is asserted to indicate that data is ready for the user
application.

After the pause, the core asserts m_axi_rx_tvalid and continues to assemble the
remaining data on the m_axi_rx_tdata bus. At the end of the frame, the core asserts
m_axi_rx_tlast. The core also computes the value of the m_axi_rx_tkeep bus and
presents it to the user application based on the total number of valid bytes in the final word
of the frame.

X-Ref Target - Figure 2-11

Figure 2-11: Data Reception with Pause

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=20

Aurora 64B/66B v10.0 www.xilinx.com 21
PG074 April 1, 2015

Chapter 2: Product Specification

Framing Efficiency

There are two factors that affect framing eff iciency in the Aurora 64B/66B core:

1. The size of the frame.

2. A data invalid request from the gearbox that occurs after every 32 user_clk cycles.

The clock compensation (CC) sequence, which uses three user_clk cycles on every lane
every 10,000 user_clk cycles, consumes about 0.03% of the total channel bandwidth.

The gearbox in GTX and GTH transceivers requires a periodic pause to account for the clock
divider ratio and 64B/66B encoding. This appears as a back pressure in the AXI4-Stream
interface and the user data needs to be stopped for one cycle after every 32 cycles
(Figure 2-12). The s_axi_tx_tready signal in the user interface from the Aurora 64B/66B
core is deasserted for one cycle, once after every 32 cycles. The pause cycle is used to
compensate the gearbox for the 64B/66B encoding.

For more information on gearbox pause in GTX and GTH transceivers, see the 7 Series FPGAs
GTX/GTH Transceivers User Guide (UG476) [Ref 4] or UltraScale FPGAs GTH Transceivers User
Guide (UG576) [Ref 3].

The Aurora 64B/66B core implements the Strict Aligned option of the Aurora 64B/66B
protocol. No data blocks are placed after idle blocks or SEP blocks on a given cycle.
Table 2-6 is an example calculated after including overhead for clock compensation and
shows the efficiency for a single-lane channel while illustrating that the eff iciency increases
as frame length increases.

X-Ref Target - Figure 2-12

Figure 2-12: Framing Efficiency

Table 2-6: Framing Efficiency Example

User Data Bytes Percent Framing Efficiency

100 96.12

1,000 99.18

10,000 99.89

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=21

Aurora 64B/66B v10.0 www.xilinx.com 22
PG074 April 1, 2015

Chapter 2: Product Specification

Table 2-7 shows the overhead in a single-lane channel when transmitting 256 bytes of
frame data. The resulting data unit is 264 bytes long due to the end-of-frame SEP block.
This results in a 3.03% transmitter overhead. Also, the clock compensation blocks must be
transmitted for three cycles every 10,000 cycles resulting in an additional 0.03% overhead in
the transmitter.

Streaming Interface

The streaming interface (Figure 2-13) allows data transmission without frame delimiters
thus making it simple to operate while using less resources than for the framing interface.

Transmitting and Receiving Data

In streaming, the Aurora 64B/66B channel is used as a pipe. The streaming Aurora 64B/66B
interface expects data to be filled for the entire s_axi_tx_tdata port width (integral
multiple of eight bytes). When s_axi_tx_tvalid is deasserted, gaps are created between
words that are preserved except when clock compensation sequences are being
transmitted.

When data arrives at the RX side of the Aurora 64B/66B channel, it must be read
immediately or it is lost. If this is unacceptable, a buffer must be connected to the RX
interface to hold the data until it can be used.

Table 2-7: Typical Overhead for Transmitting 256 Data Bytes

Lane Clock Function

[D0:D7] 1 Channel frame data

[D8:D15] 2 Channel frame data

.

.

.

[D248:D255] 32 Channel frame data

Control block 33 SEP0 block

X-Ref Target - Figure 2-13

Figure 2-13: Aurora 64B/66B Streaming User Interface (AXI4-Stream)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=22

Aurora 64B/66B v10.0 www.xilinx.com 23
PG074 April 1, 2015

Chapter 2: Product Specification

Example A: TX Streaming Data Transfer

Figure 2-14 shows a typical streaming data transfer beginning with neither of the ready
signals asserted to indicate that both the user logic and the core are not ready to transfer
data. During the next clock cycle, the core indicates that it is ready to transfer data by
asserting s_axi_tx_tready. One cycle later, the user logic asserts the
s_axi_tx_tvalid signal and places data on the s_axi_tx_tdata bus indicating that it
is ready to transfer data. Because both signals are now asserted, data D0 is transferred from
the user logic to the core. Data D1 is transferred on the following clock cycle. In this
example, the core deasserts its ready signal, s_axi_tx_tready, and no data is transferred
until the next clock cycle when, again, the s_axi_tx_tready signal is asserted. Then the
user application deasserts s_axi_tx_tvalid on the next clock cycle and no data is
transferred until both signals are asserted.

Example B: RX Streaming Data Transfer

Figure 2-15 shows a typical streaming data reception example.

X-Ref Target - Figure 2-14

Figure 2-14: Typical Streaming Data Transfer

X-Ref Target - Figure 2-15

Figure 2-15: Typical Streaming Data Reception

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=23

Aurora 64B/66B v10.0 www.xilinx.com 24
PG074 April 1, 2015

Chapter 2: Product Specification

Clock Interface
Table 2-8 describes the core clock ports. In GTX and GTH transceiver designs, the reference
clock can be taken from the GTXQ/GTHQ signal, which is a differential input clock for each
GTX or GTH transceiver. The reference clock for GTX/GTH transceivers is provided through
the clkin port. For more details on the clock interface, see Clocking, page 57.

IMPORTANT: This interface is most critical for correct Aurora 64B/66B core operation. The clock
interface has ports for the reference clocks that drive the GTX or GTH transceivers and ports for the
parallel clocks that the core shares with application logic.

Table 2-8: Aurora 64B/66B Core Clock Ports

Name Direction Clock
Domain Description

init_clk/init_clk_p/init_clk_n Input -

The init_clk signal is used to register and
debounce the pma_init signal. The preferred
init_clk range is 50 to 200 MHz. The default
init_clk frequency set by the core is 50 MHz for
7 series designs and line_rate/64 for UltraScale
architecture designs. init_clk frequency is a
user-configurable parameter. With the Include
Shared Logic in core option, the init_clk signal is
differential. The Single Ended INIT CLK option
provides single-ended init_clk input.

For UltraScale architecture designs:
The init_clk frequency should be ≤ TXUSERCLK
frequency and the value should not exceed
200 MHz. Refer to the UltraScale Architecture GTH
Transceivers User Guide (UG576) [Ref 3] for more
details. init_clk is also connected to the DRPCLK
port of the GTHE3_CHANNEL DRP interface.

init_clk_out(2) Output init_clk Init clock output. Not available for Single Ended
INIT CLK option.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=24

Aurora 64B/66B v10.0 www.xilinx.com 25
PG074 April 1, 2015

Chapter 2: Product Specification

mmcm_not_locked Input init_clk

If MMCM is used to generate clocks for the
Aurora 64B/66B core, the mmcm_not_locked
signal should be connected to the inverse of the
serial transceiver PLL locked signal. The clock
modules provided with the core use the PLL for
clock division. The mmcm_not_locked signal from
the clock module should be connected to the core
mmcm_not_locked signal. The mmcm_not_locked
signal is available when shared logic is included in
the example design.
For UltraScale devices:
mmcm_not_locked is connected to gtwiz_
userclk_tx_active_out driven from the
<user_component_name>_ultrascale_
tx_userclk module. The signal is driven based on
the clocking helper core status and signifies that
the helper core is out of reset. Active High signal.
The mmcm_not_locked_out signal is available
when shared logic is included in the core. The
mmcm_not_locked is part of the CORE_CONTROL
interface. mmcm_not_locked_out is part of the
CORE_STATUS interface.

mmcm_not_locked_out Output init_clk

user_clk
Input

Parallel clock shared by the core and the user
application. The user_clk signal is a BUFG
output deriving its input from tx_out_clk. The
clock generators are available in the <component
name>_clock_module f ile. user_clk serves as
the txusrclk2 input to the transceiver. See the
related transceiver user guide/data sheet for
rate-related information. user_clk is available
when shared logic is included in the example
design. user_clk_out is the user clock output
which is available when shared logic is included in
the core.

user_clk_out(2) Output user_clk

tx_out_clk Output tx_out_clk

Generated from the GTX or GTH transceiver
reference clock based on the transceiver PLL
frequency setting. Should be buffered and used
to generate the user clock for the logic connected
to the core.

Table 2-8: Aurora 64B/66B Core Clock Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=25

Aurora 64B/66B v10.0 www.xilinx.com 26
PG074 April 1, 2015

Chapter 2: Product Specification

sync_clk
Input -

Parallel clock used by the serial transceiver
internal synchronization logic. Provided as the
txusrclk signal to the transceiver interface. The
sync_clk is twice the rate of user_clk. See the
related transceiver user guide/data sheet for
rate-related information. sync_clk is available
when shared logic is included in the example
design. sync_clk_out is the sync clock output. This
port is not available in RX-only_Simplex mode.

sync_clk_out(2) Output sync_clk

gt_refclk1_p/gt_refclk1_n
gt_refclk2_p/gt_refclk2_n
refclk1_in
refclk2_in

Input -

gt_refclk (clkp/clkn) is a dedicated external
clock generated from an oscillator and fed
through a dedicated IBUFDS.
• gt_refclk1_p/gt_refclk1_n = Differential

Transceiver Reference Clock 1(2).
• gt_refclk2_p/gt_refclk2_n = Differential

Transceiver Reference Clock 2(3)

• refclk1_in = Single Ended Transceiver Reference
Clock 1(4).

• refclk2_in = Single Ended Transceiver Reference
Clock 2(5).

• gt_refclk1_out = Single Ended Transceiver
Reference Clock 1(2).

• gt_refclk2_out = Single Ended Transceiver
Reference Clock 1(3). Not available for the
Single Ended GT REFCLK option.

gt_refclk1_out
gt_refclk2_out Output -

Table 2-8: Aurora 64B/66B Core Clock Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=26

Aurora 64B/66B v10.0 www.xilinx.com 27
PG074 April 1, 2015

Chapter 2: Product Specification

Flow Control Interface
The flow control interface consists of three configurations: the native flow control, the user
flow control, and the USER-K flow control interfaces.

Native Flow Control Interface

The Aurora 64B/66B protocol includes Native Flow Control (NFC) allowing receivers to
control the rate at which data is sent by specifying the number of cycles during which the
channel partner cannot send data. The data flow can even be turned off completely (XOFF)
by requesting that the transmitter temporarily send only idles. NFC is typically used to
prevent FIFO overflow conditions. Figure 2-16 and Table 2-9 detail the NFC port interface.

gt_qpllclk_quad<quad_no>_in,
gt_qpllrefclk_quad<quad_no>_in(1) Input -

Clock inputs generated by
GTXE2_COMMON/GTHE2_COMMON/GTHE3_
COMMON.

gt_qpllclk_quad<quad_no>_out,
gt_qpllrefclk_quad<quad_no>_out(1) Output -

Clock outputs generated by
GTXE2_COMMON/GTHE2_COMMON/
GTHE3_COMMON. If the line rate is < 6.6 Gb/s in
the GTX transceivers and < 8.0 Gb/s in 7 series
and UltraScale FPGAs GTH transceivers, the
gt_qpllclk_quad<quad_no>_out signal is tied
High.

Notes:
1. In 7 series, quad_no varies from 1 to the number of active transceiver quads –1. In UltraScale FPGAs, varies from 1 to the

number of active transceiver quads.
2. Enabled when Include Shared Logic in Core is selected.
3. Enabled when Include Shared Logic in Core is selected and more than one reference clock is required.
4. Enabled when Include Shared Logic in Example Design is selected or enabled when Include Shared Logic in Core is

selected and if the single-ended option is selected.
5. Enabled when Include Shared Logic in Example Design is selected and more than one reference clock is required or

enabled when Include Shared Logic in Core is selected and more than one reference clock is required and if the
single-ended option is selected.

Table 2-8: Aurora 64B/66B Core Clock Ports (Cont’d)

Name Direction Clock
Domain Description

X-Ref Target - Figure 2-16

Figure 2-16: NFC Port Interface

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=27

Aurora 64B/66B v10.0 www.xilinx.com 28
PG074 April 1, 2015

Chapter 2: Product Specification

For a detailed explanation of NFC operation, see the Aurora 64B/66B Protocol Specification
(SP011) [Ref 5].

Note: NFC completion mode is not applicable to streaming designs.

Figure 2-17 and Figure 2-18 show the NFC message format in big endian (default) and little
endian modes.

Note:

1. [n:0] bus format is used when the Little Endian support option is selected. [0:n] bus format is used when the Big
Endian support option is selected. The core has an option to configure the AXI4-Stream User I/O as little endian
from the Vivado IDE. The default is big endian.

2. Ports are active-High unless specif ied otherwise.

NFC Message in Default Mode

To send an NFC message to a channel partner, the user application asserts
s_axi_nfc_tx_tvalid and writes an 8-bit pause count to
s_axi_nfc_tx_tdata[8:15]. The pause code indicates the minimum number of cycles
the channel partner must wait after receiving an NFC message prior to resuming data send.
The number of user_clk cycles without data is equal to s_axi_nfc_tx_tdata + 1.

Table 2-9: Native Flow Control (NFC) Interface Ports

Name Direction Clock
Domain Description

NFC_S_AXIS_TX

s_axi_nfc_tx_tvalid Input user_clk
Asserted (High) to request sending an NFC
message to the channel partner. Must be held until
s_axi_nfc_tx_tready is asserted.

s_axi_nfc_tx_tready Output user_clk Asserted (High) when an Aurora 64B/66B core
accepts an NFC request.

s_axi_nfc_tx_tdata[0:15]
or
s_axi_nfc_tx_tdata[15:0]

Input user_clk Incoming NFC message data from the channel
partner.

X-Ref Target - Figure 2-17

Figure 2-17: NFC Message in Default Big Endian Mode
X-Ref Target - Figure 2-18

Figure 2-18: NFC Message in Little Endian Mode

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=28

Aurora 64B/66B v10.0 www.xilinx.com 29
PG074 April 1, 2015

Chapter 2: Product Specification

When asserted, the s_axi_nfc_tx_tdata[7] signal indicates nfc_xoff, requesting
that the channel partner stop sending data until it receives a non-XOFF NFC message or
reset. When a request is transmitted with PAUSE and XOFF both set to 0, NFC is set to XON
mode. To cancel XOFF mode, all 0s (XON) should be transmitted. After reception of this
XON request, any new NFC request is honored by the core. The user application must hold
s_axi_nfc_tx_tvalid, s_axi_nfc_tx_tdata[8:15], and
s_axi_nfc_tx_tdata[7] (nfc_xoff, if used) until s_axi_nfc_tx_tready is asserted
on a positive user_clk edge indicating that the core can transmit the NFC message.

Aurora 64B/66B cores cannot transmit data while sending NFC messages.
s_axi_tx_tready is always deasserted on the cycle following an
s_axi_nfc_tx_tready assertion. NFC Completion mode is available only for the framing
Aurora 64B/66B interface.

Example A: Transmitting an NFC Message

Figure 2-19 shows an example of the transmit timing when the user application sends an
NFC message to a channel partner using an AXI4-Stream interface.

Note: Signal s_axi_tx_tready is deasserted for one cycle to create the gap in the data flow in
which the NFC message is placed.

X-Ref Target - Figure 2-19

Figure 2-19: Transmitting an NFC Message

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=29

Aurora 64B/66B v10.0 www.xilinx.com 30
PG074 April 1, 2015

Chapter 2: Product Specification

Example B: Receiving a Message with NFC Idles Inserted

Figure 2-20 shows an example of the TX user interface signals in immediate NFC mode
when an NFC message is received. The NFC message sends 8'b01, requesting two cycles
without data transmission. The core deasserts s_axi_tx_tready to prevent data
transmission for two cycles.

Aurora 64B/66B cores can also operate in completion mode where NFC idles are only
inserted before the f irst data bytes of a new frame. If a completion mode core receives an
NFC message while it is transmitting a frame, the core finishes transmitting the frame
before deasserting s_axi_tx_tready to insert idles.

User Flow Control Interface

The Aurora 64B/66B protocol includes user flow control (UFC) to allow channel partners to
send control information using a separate in-band channel. Applications send short UFC
messages to the channel partner without waiting for the frame in progress to end. The
higher priority UFC message shares the channel with lower-priority regular frame data. UFC
messages are interruptible by high-priority control blocks such as CC/NR/CB/NFC blocks.
UFC message interruption is visible when the UFC option is selected.

Figure 2-21 shows the UFC port interface. Table 2-10 describes the UFC interface ports.

X-Ref Target - Figure 2-20

Figure 2-20: Transmitting a Message with NFC Idles Inserted

X-Ref Target - Figure 2-21

Figure 2-21: UFC Port Interface

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=30

Aurora 64B/66B v10.0 www.xilinx.com 31
PG074 April 1, 2015

Chapter 2: Product Specification

Table 2-10: User Flow Control (UFC) Interface Ports

Name Direction Clock
Domain Description

UFC_S_AXIS_TX

ufc_tx_req(2) Input user_clk

 ufc_tx_req indicates a UFC message request
to send by the channel partner. After a
request, the s_axi_ufc_tx_tdata bus is ready to
send data after two cycles unless interrupted
by a higher priority event. The
s_axi_ufc_tx_tvalid must be asserted when you
want to send a UFC request.

ufc_tx_ms[0:7] or
ufc_tx_ms[7:0](2) Input user_clk

Specifies the number of bytes in the UFC
message (message size). The maximum UFC
message size is 256 bytes. The value specif ied
is one less than the actual number of bytes
transferred (a value of 3 transmits 4 bytes of
data).

s_axi_ufc_tx_tready Output user_clk

Indicates the Aurora 64B/66B core is ready to
accept UFC data on s_axi_ufc_tx_tdata. This
signal is asserted two clock cycles after
ufc_tx_req when no high-priority requests are
in progress. s_axi_ufc_tx_tready continues to
be asserted while the core waits for data for
the most recently requested UFC message.
The signal is deasserted for CC, CB, and NFC
requests which are higher priority. While
s_axi_ufc_tx_tready is asserted, s_axi_tx_tready
is deasserted.

s_axi_ufc_tx_tdata[0:(64n–1)] or
s_axi_ufc_tx_tdata[(64n–1):0](1) Input user_clk

Input bus for Aurora 64B/66B channel UFC
message data. Sampled only if
s_axi_ufc_tx_tvalid and s_axi_ufc_tx_tready are
asserted. If the number of message bytes is
not an integer multiple of the bus width in
bytes, the only bytes used are those needed
on the last cycle to f inish the message starting
from the leftmost byte of the bus.

s_axi_ufc_tx_tvalid Input user_clk

Indicates valid UFC data on s_axi_ufc_tx_tdata.
If deasserted while s_axi_ufc_tx_tready is
asserted, Idle blocks are sent in the UFC
message.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=31

Aurora 64B/66B v10.0 www.xilinx.com 32
PG074 April 1, 2015

Chapter 2: Product Specification

Transmitting UFC Messages

To send a UFC message, the application asserts ufc_tx_req while driving ufc_tx_ms
with the desired SIZE code for a single cycle. After a request, a new request cannot be made
until s_axi_ufc_tx_tready is asserted for the f inal cycle of the previous request. The
UFC message data must be placed on s_axi_ufc_tx_tdata and the
s_axi_ufc_tx_tvalid signal must be asserted whenever the bus contains valid
message data.

The core deasserts s_axi_tx_tready while sending UFC data and keeps
s_axi_ufc_tx_tready asserted until it has enough data to complete the requested
message. If s_axi_ufc_tx_tvalid is deasserted during a UFC message, idles are sent,
s_axi_tx_tready remains deasserted, and s_axi_ufc_tx_tready remains asserted. If
a CC, CB, or NFC request is made, s_axi_ufc_tx_tready is deasserted while the
requested operation is performed because CC, CB, and NFC requests have higher priority.

Note: The s_axi_tx_tready and s_axi_ufc_tx_tready signals are deasserted for one cycle
before the core accepts message data to allow the UFC header to be sent.

UFC_M_AXIS_RX

m_axi_ufc_rx_tdata[0:(64n–1)]
or
m_axi_ufc_rx_tdata[(64n–1):0](1)

Output user_clk Incoming UFC message data from the channel
partner.

m_axi_ufc_rx_tvalid Output user_clk

Indicates valid UFC data on the
m_axi_ufc_rx_tdata port. When not asserted,
all values on the m_axi_ufc_rx_tdata port
should be ignored.

m_axi_ufc_rx_tlast Output user_clk Indicates the end of the incoming UFC
message.

m_axi_ufc_rx_tkeep[0:(8n–1)] or
m_axi_ufc_rx_tkeep[(8n–1):0](1) Output user_clk

Specifies the number of valid data bytes
presented on the m_axi_ufc_rx_tdata port on
the last word of a UFC message. Valid only
when m_axi_ufc_rx_tlast is asserted. Each bit
indicates one valid byte. Maximum size of the
UFC message is 256 bytes.

ufc_in_progress(3) Output user_clk

Specifies the status of the current UFC
transmission. This is an active-Low signal. A
Low on this port indicates that UFC reception
is in progress.

Notes:
1. n is the number of lanes.
2. ufc_tx_req and ufc_tx_ms are available just below the UFC_S_AXIS_TX interface.
3. ufc_in_progres is available just below the UFC_M_AXIS_RX interface.

Table 2-10: User Flow Control (UFC) Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=32

Aurora 64B/66B v10.0 www.xilinx.com 33
PG074 April 1, 2015

Chapter 2: Product Specification

Example A: Transmitting a Single-Cycle UFC Message

Figure 2-22 shows the procedure for transmitting a single-cycle UFC message. This example
shows a 4-byte message being sent on an 8-byte interface.

Example B: Transmitting a Multicycle UFC Message

Figure 2-23 shows the procedure for transmitting a two-cycle UFC message. This example
shows a 16-byte message being sent on an 8-byte interface.

X-Ref Target - Figure 2-22

Figure 2-22: Transmitting a Single-Cycle UFC Message

X-Ref Target - Figure 2-23

Figure 2-23: Transmitting a Multi-Cycle UFC Message

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=33

Aurora 64B/66B v10.0 www.xilinx.com 34
PG074 April 1, 2015

Chapter 2: Product Specification

Example C: Receiving a Single-Cycle UFC Message

Figure 2-24 shows an Aurora 64B/66B core with an 8-byte data interface receiving a 4-byte
UFC message. The core presents this data to the application by asserting
m_axi_ufc_rx_tvalid and m_axi_ufc_rx_tlast indicating a single-cycle frame. The
m_axi_ufc_rx_tkeep bus is set to 0xF, indicating only the four most signif icant
interface bytes are valid (each bit in TKEEP indicates a valid byte in the UFC data).

Example D: Receiving a Multicycle UFC Message

Figure 2-25 shows an Aurora 64B/66B core with an 8-byte interface receiving a 15-byte
message. The resulting frame is two cycles long, with m_axi_ufc_rx_tkeep set to 8’hFF
for the f irst cycle indicating that all bytes are valid and 8’hFE for the second cycle
indicating that seven of the bytes are valid.

X-Ref Target - Figure 2-24

Figure 2-24: Receiving a Single-Cycle UFC Message

X-Ref Target - Figure 2-25

Figure 2-25: Receiving a Multi-Cycle UFC Message

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=34

Aurora 64B/66B v10.0 www.xilinx.com 35
PG074 April 1, 2015

Chapter 2: Product Specification

USER‐K Block Interface

Figure 2-26 shows the USER-K interface ports for a single-lane design with the USER-K
interface enabled.

USER-K blocks are special, single-block codes that include control blocks passed directly to
the user application without being decoded by the Aurora 64B/66B interface. These blocks
can be used to implement application-specific control functions and have a lower priority
than UFC blocks but higher than user data blocks.

Table 2-11 lists the USER-K interface ports.

X-Ref Target - Figure 2-26

Figure 2-26: USER-K Port Interface

Table 2-11: USER-K Interface Ports

Name Direction Clock
Domain Description

USER_K_S_AXIS_TX

s_axi_user_k_tx_tdata[0:(64n–1)] or
s_axi_user_k_tx_tdata[(64n–1):0](1) Input user_clk

USER-K block data is 64-bit aligned.
Signal Mapping per lane:
Default:
s_axi_user_k_tx_tdata={{4'h0,user_k_blk_no[0:3],user_
k_data[55:0]}*n}
Little endian format:
s_axi_user_k_tx_tdata={{user_k_data[55:0],4'h0,user_k
_blk_no[3:0]}*n}.

s_axi_user_k_tx_tvalid Input user_clk Indicates valid User-K data on the
s_axi_user_k_tx_tdata port.

s_axi_user_k_tx_tready Output user_clk Indicates the Aurora 64B/66B core is ready to accept
data on the s_axi_user_k_tx_tdata interface.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=35

Aurora 64B/66B v10.0 www.xilinx.com 36
PG074 April 1, 2015

Chapter 2: Product Specification

The USER-K block is not differentiated for streaming or framing designs. Each USER-K block
is eight-bytes wide and is encoded with a USER-K BTF value as specified in Table 2-12. The
BTF value is indicated by the user application in the s_axi_user_k_tx_tdata port as a
USER-K block number. The USER-K block is a single block code and is always delineated by
a USER-K block number. Provide the USER-K block number as specified in Figure 2-27 and
Figure 2-28. The USER-K block data is limited to the specif ied seven bytes of the
s_axi_user_k_tx_tdata port.

USER_K_M_AXIS_RX

m_axi_rx_user_k_tvalid Output user_clk Indicates valid User-K data on the
m_axi_user_k_tx_tdata port.

m_axi_rx_user_k_tdata or
m_axi_rx_user_k_tdata[(64n–1):0](1) Output user_clk

Received USER-K blocks from the Aurora 64B/66B
lane are 64-bit aligned.
Signal Mapping per lane:
Default:
m_axi_rx_user_k_tdata=
{{4'h0,user_k_blk_no[0:3],user_k_data[55:0]}*n}
Little endian format:
m_axi_rx_user_k_tdata=
{{user_k_data[55:0],4'h0,user_k_blk_no[3:0]}*n}.

Notes:
1. n is the number of lanes.

Table 2-11: USER-K Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Table 2-12: USER-K Block Valid Block Type Field (BTF) Values

USER-K Block Number USER-K Block BTF

USER-K Block 0 0xD2

USER-K Block 1 0x99

USER-K Block 2 0x55

USER-K Block 3 0xB4

USER-K Block 4 0xCC

USER-K Block 5 0x66

USER-K Block 6 0x33

USER-K Block 7 0x4B

USER-K Block 8 0x87

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=36

Aurora 64B/66B v10.0 www.xilinx.com 37
PG074 April 1, 2015

Chapter 2: Product Specification

Figure 2-27 shows the USER-K format in default (big-endian) mode.

Figure 2-28 shows the USER-K format in little-endian mode.

Transmitting USER-K Blocks

The s_axi_user_k_tx_tready signal is asserted by the core and is prioritized by CC, CB,
NFC, and UFC messages. After asserting s_axi_user_k_tx_tdata, the USER-K block
number and s_axi_user_k_tx_tvalid is asserted. If required, the user application can
change s_axi_user_k_tx_tdata when s_axi_user_k_tx_tready is asserted
(Figure 2-29). This action enables the Aurora 64B/66B core to select the appropriate USER-K
BTF from the nine USER-K blocks. The data available during assertion of
s_axi_user_k_tx_tready is always serviced.

X-Ref Target - Figure 2-27

Figure 2-27: USER-K Format in Default Mode

X-Ref Target - Figure 2-28

Figure 2-28: USER-K Format in Little-Endian Mode

X-Ref Target - Figure 2-29

Figure 2-29: Transmitting USER-K Data and USER-K Block Number

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=37

Aurora 64B/66B v10.0 www.xilinx.com 38
PG074 April 1, 2015

Chapter 2: Product Specification

Receiving USER-K Blocks

The receive BTF is decoded and the block number for the corresponding BTF is passed to
the user application (Figure 2-30). The user application can validate the data available on
m_axi_rx_user_k_tdata when m_axi_rx_user_k_tvalid is asserted.

Status, Control and the Transceiver Interface
The status and control ports of the Aurora 64B/66B core allow user applications to monitor
the channel and use built-in features of the GTX and GTH transceivers. This section provides
diagrams and port descriptions for the status and control interface, and the transceiver
serial I/O interfaces.

Status Control and Transceiver Ports

Table 2-13 describes the function of the Aurora 64B/66B core status and control ports
allowing user applications to monitor the Aurora 64B/66B channel and access built-in
features of the serial transceiver interface. The DRP interface allows reading and updating
of the serial transceiver parameters and settings through the AXI4-Lite protocol-compliant
or native DRP interfaces.

X-Ref Target - Figure 2-30

Figure 2-30: Receiving USER-K Data and USER-K Block Number

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=38

Aurora 64B/66B v10.0 www.xilinx.com 39
PG074 April 1, 2015

Chapter 2: Product Specification

Table 2-13: Transceiver Control and Status Interface Ports

Name Direction Clock
Domain Description

reset_pb/
tx_reset_pb/
rx_reset_pb

Input async

Push Button Reset. The top-level reset input at the
example design level. Required to drive the
Support Reset logic inside the core.
• reset_pb is available in Duplex,

TX-only_simplex and RX-only_simplex modes.
• tx_reset_pb is available in TX/RX_simplex

mode.
• rx_reset_pb is available in TX/RX_simplex

mode.

gt_reset_out Output init_clk Output of de-bouncer for gt_reset. Enabled when
Include Shared Logic in Core is selected.

sys_reset_out Output user_clk System reset output to be used by the example
design level logic.

 reset2fg Output user_clk

This port is used to reset the Frame generator in
the example design only. This port is available in
the TX-only_Simplex and TX/RX_Simplex
configurations only.

 reset2fc Output user_clk

This port is used to reset the Frame checker in the
example design only. This port is available in the
RX-only_Simplex and TX/RX_Simplex configurations
only.

link_reset_out Output init_clk Driven High if hot-plug count expires.

pma_init Input async

The transceiver pma_init reset signal is connected
to the top level through a debouncer.
Systematically resets all Physical Coding Sublayer
(PCS) and Physical Medium Attachment (PMA)
subcomponents of the transceiver. The signal is
debounced using init_clk_in for at least six init_clk
cycles. See the Reset section in the related
transceiver user guide for more details.

GT_SERIAL_RX

rxp[0:m–1](1) Input
RX

serial
clk

Positive differential serial data input pin.
This input is not available in the TX-only_simplex
configuration.

rxn[0:m–1](1) Input
RX

serial
clk

Negative differential serial data input pin.
This input is not available in the TX-only_simplex
configuration.

GT_SERIAL_TX

txp[0:m–1](1) Output
TX

serial
clk

Positive differential serial data output pin.
This output is not available in the RX-only_simplex
configuration.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=39

Aurora 64B/66B v10.0 www.xilinx.com 40
PG074 April 1, 2015

Chapter 2: Product Specification

txn[0:m–1](1) Output
TX

serial
clk

Negative differential serial data output pin.
This output is not available in the RX-only_simplex
configuration.

CORE_STATUS

channel_up/
tx_channel_up/
rx_channel_up

Output user_clk

Asserted when the Aurora 64B/66B channel
initialization is complete and the channel is ready
to send/receive data.
• channel_up is available in duplex mode.
• tx_channel_up is available in TX-only_simplex

and TX/RX_simplex mode.
• rx_channel_up is available in RX-only_simplex

and TX/RX_simplex mode.

lane_up[0:m–1]/
tx_lane_up[0:m–1]/
rx_lane_up[0:m–1](1)

Output user_clk

Asserted for each lane upon successful lane
initialization with each bit representing one lane.
The Aurora 64B/66B core can only receive data
after all lane_up signals are asserted.
• lane_up is available in duplex mode.
• tx_lane_up is available in TX-only_simplex and

TX/RX_simplex mode.
• rx_lane_up is available in RX-only_simplex and

TX/RX_simplex mode.

soft_err/
tx_soft_err/
rx_soft_err

Output user_clk

Indicates that a soft error is detected in the
incoming serial stream (asserted for a single
user_clk period).
• soft_err is available in duplex mode.
• tx_soft_err is available in TX-only_simplex

and TX/RX_simplex mode.
• rx_soft_err is available in RX-only_simplex

and TX/RX_simplex mode.

hard_err/
tx_hard_err/
rx_hard_err

Output user_clk

Hard error detected (asserted until the core resets).
• hard_err is available in duplex mode.
• tx_hard_err is available in TX-only_simplex

and TX/RX_simplex mode.
• rx_hard_err is available in RX-only_simplex

and TX/RX_simplex mode.

gt_to_common_qpllreset_out Output async QPLL common reset output used by the slave
partner shared logic.

gt_pll_lock Output init_clk
Asserted when tx_out_clk is stable. When
deasserted (Low), circuits using tx_out_clk should
be held in reset.

Table 2-13: Transceiver Control and Status Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=40

Aurora 64B/66B v10.0 www.xilinx.com 41
PG074 April 1, 2015

Chapter 2: Product Specification

CORE_CONTROL

loopback[2:0] Input async

See the 7 Series FPGAs GTX/GTH Transceivers User
Guide (UG476) [Ref 4] or UltraScale Architecture
GTH Transceivers User Guide (UG576) [Ref 3] for
details about loopback.

gt_rxcdrovrden_in Input async RXCDR Override. Configures the transceiver in
loopback mode.

power_down Input init_clk Drives the Aurora 64B/66B core to reset.

QPLL_CONTROL_IN

gt_qplllock_quad<quad_no>_in,
gt_qpllrefclklost_quad<quad_no>_
in(3)

Input init_clk

QPLL lock and reference clock lost signal slave
partner inputs. Should be connected to the master
partner shared logic output ports
gt_qplllock_quad<quad_no>_out and
gt_qpllrefclklost_quad<quad_no>_out respectively.

QPLL_CONTROL_OUT

gt_qplllock_quad<quad_no>_out,
gt_qpllrefclklost_quad<quad_no>_
out(3)

Output init_clk QPLL lock and reference clock lost signal master
partner shared logic outputs.

CHANNEL_DRP_IF(6)(17)

drp_clk_in Input -

A user-configurable parameter only applicable to 7
series FPGA designs. The default value is 100 MHz.
The drp_clk frequency can be set from 50 MHz to
x MHz where x is device and speed grade
dependent. In UltraScale devices, init_clk is
connected to the DRPCLK port of the
GTHE3_CHANNEL DRP interface and in the
axi_to_drp sub module.

drpaddr_in/
gt<lane>_drpaddr(14)(8) Input drp_clk_

in
DRP address bus. The drpaddress bus is available
on a per lane basis.

drpdi_in/
gt<lane>_drpdi(14)(8) Input drp_clk_

in

Data bus for reading configuration data from the
transceiver to the FPGA logic resources.The DRP
data input bus is available on a per lane basis.

drpen_in_lane_<lane>/
gt<lane>_drpen(14)(8) Input drp_clk_

in

DRP enable signal.
0: No read or write operation performed.
1: Enables a read or write operation.
For write operations, drpwe and drpen should be
driven High concurrently for one drp_clk_in cycle
only.
For read operations, drpen should be driven High
for one drp_clk_in cycle.
The DRP enable is available on a per lane basis.

Table 2-13: Transceiver Control and Status Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=41

Aurora 64B/66B v10.0 www.xilinx.com 42
PG074 April 1, 2015

Chapter 2: Product Specification

drpwe_in_lane_<lane>/
gt<lane>_drpwe(8)(14) Input drp_clk_

in

DRP write enable.
0: Read operation when drpen is 1.
1: Write operation when drpen is 1.
For write operations, drpwe and drpen should be
driven High for one drpclk cycle only. The DRP
write enable is available on a per lane basis.

drpdo_out_lane_<lane>/
gt<lane>_drpdo(8)(14) Output drp_clk_

in

Data bus for reading configuration data from the
GTX or GTH transceiver to the FPGA logic
resources. The DRP data out bus is available on a
per lane basis.

drprdy_out_lane_<lane>/
gt<lane>_drprdy(8)(14) Output drp_clk_

in

Indicates that the write operation is complete and
read data is valid. The drprdy signal is available on
a per lane basis.

AXILITE_DRP_IF(6)

s_axi_awaddr_lane_<lane_no>(2)(9) Input drp_clk_
in AXI4-Lite Write address for DRP.

s_axi_awvalid_lane_<lane_no>(2)(9) Input drp_clk_
in Write address valid.

s_axi_awready_lane_<lane_no>(2)(9) Output drp_clk_
in Write address ready.

s_axi_araddr_lane_<lane_no>(2)(9) Input drp_clk_
in AXI4-Lite Read address for DRP.

s_axi_arvalid_lane_<lane_no>(2)(9) Input drp_clk_
in Read address valid.

s_axi_arready_lane_<lane_no>(2)(9) Output drp_clk_
in Read address ready.

s_axi_wdata_lane_<lane_no>(2)(9) Input drp_clk_
in Write data for DRP.

s_axi_wvalid_lane_<lane_no>(2)(9) Input drp_clk_
in Write data valid.

s_axi_wready_lane_<lane_no>(2)(9) Output drp_clk_
in Write data ready.

s_axi_wstrb_lane_<lane_no>(2)(9) Input drp_clk_
in Write data strobe.

s_axi_bvalid_lane_<lane_no>(2)(9) Output drp_clk_
in Write response valid.

s_axi_bresp_lane_<lane_no>(2)(9) Output drp_clk_
in Write response.

s_axi_rdata_lane_<lane_no>(2)(9) Output drp_clk_
in Read data.

s_axi_rvalid_lane_<lane_no>(2)(9) Output drp_clk_
in Read data valid.

Table 2-13: Transceiver Control and Status Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=42

Aurora 64B/66B v10.0 www.xilinx.com 43
PG074 April 1, 2015

Chapter 2: Product Specification

s_axi_rresp_lane_<lane_no>(2)(9) Output drp_clk_
in Read response.

s_axi_rready_lane_<lane_no>(2)(9) Output drp_clk_
in Read data ready.

s_axi_bready_lane_<lane_no>(2)(9) Input drp_clk_
in Write data ready.

TRANSCEIVER_DEBUG(11)

gt<lane>_cplllock_out/
gt_cplllock(4)(5)(10)(14) Output init_clk

Active-High PLL frequency lock signal indicating
that PLL frequency is within the predetermined
tolerance. The transceiver and its clock outputs are
not reliable until this condition is met.

gt<lane>_dmonitorout_out[j:0]/
gt_dmonitorout(4)(5)(10)(12)(14) Output async

Digital Monitor Output Bus.
j = 7 for GTX transceivers.
j = 14 for GTH transceivers.

gt<lane>_eyescandataerror_out/
gt_eyescandataerror(4)(5)(10)(12)(14) Output async

Asserted High for one rec_clk cycle when an
(unmasked) error occurs while in the COUNT or
ARMED state.

gt<lane>_eyescanreset_in/
gt_eyescanreset(4)(5)(10)(12)(14) Input async Driven High, then deasserted to start the EYESCAN

reset process.

gt<lane>_eyescantrigger_in/
gt_eyescantrigger(4)(5)(10)(12)(14) Input user_clk Causes a trigger event.

 gt_pcsrsvdin(4)(10)(11)(13)(14) Input async

PCSRSVDIN[2] is the DRP reset pin. For read-only
registers, if a DRPRDY is not seen within 500
DRPCLK cycles after initiating a DRP transaction,
reset the DRP interface using the port
PCSRSVDIN[2]. This is available only in UltraScale
device-based designs

gt<lane>_rxbufreset_in/
gt_rxbufreset(4)(5)(10)(12)(14) Input async

Driven High, then deasserted to start the RX elastic
buffer reset process. In either single or sequential
mode, activating rxbufreset resets the RX elastic
buffer only.

gt<lane>_rxbufstatus_out/
gt_rxbufstatus(4)(5)(10)(12)(14) Output rxoutclk

RX buffer status.
000b: Nominal condition.
001b: Number of bytes in the buffer are less than
CLK_COR_MIN_LAT.
010b: Number of bytes in the buffer are greater
than CLK_COR_MAX_LAT.
101b: RX elastic buffer underflow.
110b: RX elastic buffer overflow.

gt<lane>_rxcdrhold_in/
gt_rxcdrhold(4)(5)(10)(12)(14) Input async Holds the CDR control loop frozen.

Table 2-13: Transceiver Control and Status Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=43

Aurora 64B/66B v10.0 www.xilinx.com 44
PG074 April 1, 2015

Chapter 2: Product Specification

gt<lane>_rxdfeagchold_
in(5)(10)(12)(13)(14) Input rxoutclk

HOLD RX DFE
2'b00: Automatic gain control (AGC) loop adapt.
2'b10: Freeze current AGC adapt value.
2'bx1: Override AGC value according to the
attribute. RX_DFE_GAIN_CFG

gt<lane>_rxdfeagcovrden_
in(5)(10)(12)(13)(14) Input rxoutclk

OVRDEN RX DFE
2'b00: Automatic gain control (AGC) loop adapt.
2'b10: Freeze current AGC adapt value.
2'bx1: Override AGC value according to attribute.
RX_DFE_GAIN_CFG

gt<lane>_rxdfelfhold_
in(5)(10)(12)(13)(14) Input rxoutclk

When set to 1'b1, the current low-frequency
boost value is held. When set to 1'b0, the
low-frequency boost is adapted.

gt<lane>_rxdfelpmreset_in/
gt_rxdfelpmreset(4)(5)(10)(12)(14) Input async Driven High, then deasserted to start the DFE reset

process.

gt<lane>_rxlpmen_in/
gt_rxplmen(4)(5)(10)(12)(14) Input async

RX datapath
0: DFE
1: LPM

gt<lane>_rxlpmhfovrden_
in(5)(10)(12)(13)(14) Input rxoutclk

OVRDEN RX LPM
2'b00: KH high frequency loop adapt value.
2'b10: Freeze current adapt value.
2'bx1: Override KH value according to the
RXLPM_HF_CFG attribute.

gt<lane>_rxlpmlfklovrden_
in(5)(10)(12)(13)(14) Input rxoutclk

OVRDEN RX LPM
2'b00: KL low frequency loop adapt value.
2'b10: Freeze current adapt value.
2'bx1: Override KL value according to the
RXLPM_LF_CFG attribute.

gt<lane>_rxmonitorout_
out(5)(10)(12)(13)(14) Output async

GTX transceiver:
• RXDFEVP[6:0] = RXMONITOROUT[6:0]
• RXDFEUT[6:0] = RXMONITOROUT[6:0]
• RXDFEAGC[4:0] = RXMONITOROUT[4:0]
GTH transceiver:
• RXDFEVP[6:0] = RXMONITOROUT[6:0]
• RXDFEUT[6:0] = RXMONITOROUT[6:0]
• RXDFEAGC[3:0] = RXMONITOROUT[4:1]

gt<lane>_rxmonitorsel_
in(5)(10)(12)(13)(14) Input async

Select signal for rxmonitorout[6:0]
2'b00: Reserved.
2'b01: Select AGC loop.
2'b10: Select UT loop.
2'b11: Select VP loop.

Table 2-13: Transceiver Control and Status Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=44

Aurora 64B/66B v10.0 www.xilinx.com 45
PG074 April 1, 2015

Chapter 2: Product Specification

gt<lane>_rxpcsreset_in/
gt_rxpcsreset(4)(5)(10)(12)(14) Input async

Driven High, then deasserted to start the RX PMA
reset process. The rxpcsreset signal does not start
the reset process until rxuserrdy is High.

gt<lane>_rxpmareset_in/
gt_rxpmareset(4)(5)(10)(12)(14) Input async Driven High, then deasserted to start the RX PMA

reset process.

gt<lane>_rxpmaresetdone_out/
gt_rxpmaresetdone(4)(5)(10)(12)(14) Output async

Indicates that the RX PMA reset is complete. Driven
Low when GTRXRESET or RXPMARESET is asserted.
Available for duplex and RX-only simplex
configurations. Available only with GTH
transceivers.

gt<lane>_rxprbscntreset_in/
gt_rxprbscntreset(4)(5)(10)(12)(14) Input rxoutclk Resets the PRBS error counter.

gt<lane>_rxprbserr_out/
gt_rxprbserr(4)(5)(10)(12)(14) Output rxoutclk Non-sticky status output indicates that PRBS errors

have occurred.

gt<lane>_rxprbssel_in/
gt_rxprbssel(4)(5)(10)(12)(14) Input rxoutclk

Receiver PRBS checker test pattern control. Valid
settings:
000: Standard operation (PRBS check off).
001: PRBS-7.
010: PRBS-15.
011: PRBS-23.
100: PRBS-31.
No checking is done for non-PRBS patterns.
Single-bit errors cause bursts of PRBS errors
because the PRBS checker uses data from the
current cycle to generate expected data for the
next cycle.

gt_rxrate(4)(10)(12) Input rxoutclk

Dynamic pins to automatically change effective PLL
dividers in the GTH transceiver RX. These ports are
used for PCI Express® and other standards.
Available only with UltraScale FPGAs.

gt<lane>_rxresetdone_out/
gt_rxresetdone(4)(5)(10)(12)(14) Output rxoutclk

When asserted, indicates the GTX/GTH transceiver
RX has f inished reset and is ready for use. Driven
Low when gtrxreset is driven High. Not driven High
until rxuserrdy goes High.

gt<lane>_txbufstatus_out/
gt_txbufstatus(4)(5)(10)(11)(14) Output user_clk

txbufstatus[1]: TX buffer overflow or
underflow status. When txbufstatus[1] is set High,
the signal remains High until the TX buffer is reset.
1: TX FIFO has overflow or underflow.
0: No TX FIFO overflow or underflow error.
txbufstatus[0]: TX buffer fullness.
1: TX FIFO is at least half full.
0: TX FIFO is less than half full.

gt<lane>_txdiffctrl_in/
gt_txdiffctrl(4)(5)(10)(11)(14) Input async Driver Swing Control. Available for duplex and

TX-only simplex configurations.

Table 2-13: Transceiver Control and Status Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=45

Aurora 64B/66B v10.0 www.xilinx.com 46
PG074 April 1, 2015

Chapter 2: Product Specification

gt<lane>_txinhibit_in/gt_txinhibit
(4)(5)(10)(11)(14) Input user_clk

When High, this signal blocks transmission of
TXDATA and forces the serial data output pin TXP
to 0 and TXN to 1.

gt<lane>_txmaincursor_in
(5)(10)(11)(13)(14) Input async

Allows the main cursor coeff icients to be set
directly if the TX_MAINCURSOR_SEL attribute is set
to 1'b1.

gt<lane>_txpcsreset_in/
gt_txpcsreset(4)(5)(10)(11)(14) Input async

Resets the TX PCS. Driven High, then deasserted to
start the PCS reset process. Activating this port
only resets the TX PCS.

gt<lane>_txpmareset_in/
gt_txpmareset(4)(5)(10)(11)(14) Input async

Resets the TX PMA. Driven High, then deasserted to
start the TX PMA reset process. Activating this port
resets both the TX PMA and the TX PCS.

gt<lane>_txpolarity_in/
gt_txpolarity(4)(5)(10)(11)(14) Input user_clk

Inverts the polarity of outgoing data.
0: Not inverted. TXP is positive, and TXN is
negative.
1: Inverted. TXP is negative, and TXN is positive.

gt<lane>_txpostcursor_in/
gt_txpostcursor(4)(5)(10)(11)(14) Input async Transmitter post-cursor TX pre-emphasis control.

gt<lane>_txprbsforceerr_in/
gt_txprbsforceerr(4)(5)(10)(11)(14) Input user_clk

When driven High, errors are forced into the PRBS
transmitter. While asserted, the output data
pattern contains errors. When txprbssel is set to
000, this port does not affect TXDATA.

Table 2-13: Transceiver Control and Status Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=46

Aurora 64B/66B v10.0 www.xilinx.com 47
PG074 April 1, 2015

Chapter 2: Product Specification

gt<lane>_txprbssel_in/
gt_txprbssel(4)(5)(10)(11)(14) Input user_clk

Transmitter PRBS generator test pattern control.
For 7 series devices:
000: Standard mode (pattern generation off).
001: PRBS-7.
010: PRBS-15.
011: PRBS-23.
100: PRBS-31.
101: PCI Express compliance pattern. Only works
with 20-bit and 40-bit modes.
110: Square wave with 2 UI (alternating 0s/1s).
111: Square wave with 16 UI, 20 UI, 32 UI, or 40 UI
period (based on data width).
For UltraScale devices:
4'b0000: Standard mode (pattern generation off).
4'b0001: PRBS-7.
4'b0010: PRBS-9.
4'b0011: PRBS-15.
4'b0100: PRBS-23.
4'b0101: PRBS-31.
4'b1000: PCI Express compliance pattern. Only
works with internal data width 20 bit and 40 bit
modes.
4'b1001: Square wave with 2 UI (alternating
0s/1s).
4'b1010: Square wave with 16 UI, 20 UI, 32 UI, or
40 UI period (based on internal data width).

gt<lane>_txprecursor_in/
gt_txprecusor(4)(5)(10)(11)(14) Input async Transmitter pre-cursor TX pre-emphasis control.

gt<lane>_txresetdone_out/
gt_txresetdone(4)(5)(10)(11)(14) Output user_clk

Indicates the GTX/GTH transceiver TX has finished
reset and is ready for use. Driven Low when
gttxreset goes High and not driven High until the
GTX/GTH transceiver TX detects txuserrdy High.

Table 2-13: Transceiver Control and Status Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=47

Aurora 64B/66B v10.0 www.xilinx.com 48
PG074 April 1, 2015

Chapter 2: Product Specification

IMPORTANT: The ports in the Transceiver Control and Status interface must be driven in accordance
with the appropriate GT user guide. Using the input signals listed in Table 2-13 improperly might result
in unpredictable behavior of the IP core.

gt_qplllock_quad<quad_no>/
gt_qplllock(3)(4)(5)(11)(10) Output init_clk

Active-High PLL frequency lock signal. Indicates
that the PLL frequency is within predetermined
tolerance. The transceiver and its clock outputs are
not reliable until this condition is met.

Notes:
1. m is the number of GTX or GTH transceivers.
2. lane_no varies from 1 to (number of lanes –1).
3. In 7 series FPGAs, quad_no varies from 1 to (number of active transceiver quads –1). In UltraScale FPGAs, quad_no varies from

1 to the number of active transceiver quads.
4. Refer to the UltraScale FPGAs GTH Transceivers User Guide (UG576) [Ref 3] for more information about debug ports.
5. Refer to the 7 series FPGAs Transceivers User Guide (UG476) [Ref 4] for more information about debug ports.
6. In UltraScale devices, all DRP and AXI4-Lite ports are sampled on init_clk .
7. The Transceiver_Debug ports are enabled if the Additional transceiver control and status ports option is selected in the

Debug and Control section of the Vivado Integrated Design Environment (IDE) Core Options page. For designs using
UltraScale devices, the prefixes of the optional transceiver debug ports for single-lane cores are changed from gt<lane> to
gt, and the postf ixes _in and _out are removed. For multi-lane cores, the prefixes of the optional transceiver debug ports
gt(n) are aggregated into a single port.

8. This port is available if the Native option is selected in the DRP Mode section of the Vivado IDE Core Options page.
9. This port is available if the AXI4LITE option is selected in the DRP Mode section of the Vivado IDE Core Options page.
10.This port is available if the Additional transceiver control and status ports option is selected in the DRP Mode section of

the Vivado IDE Core Options page.
11.Available for duplex, TX-Only simplex and TX/RX_simplex configurations.
12.Available for duplex, RX-Only simplex and TX/RX_simplex configurations.
13.Not available with UltraScale devices.
14.lane varies from 0 to (number of lanes –1).
15.quad varies from 0 to (number of active transceiver quads –1).
16.Not available in 7 series devices.
17.Refer to the relevant UG Transceiver guide for more information on DRP ports.

Table 2-13: Transceiver Control and Status Interface Ports (Cont’d)

Name Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=48

Aurora 64B/66B v10.0 www.xilinx.com 49
PG074 April 1, 2015

Chapter 2: Product Specification

Figure 2-31 shows the status and control interface for an Aurora 64B/66B duplex core.

Figure 2-32 shows the status and control interface for an Aurora 64B/66B TX-only simplex
core.

Figure 2-33 shows the status and control interface for an Aurora 64B/66B RX-only simplex
core.

X-Ref Target - Figure 2-31

Figure 2-31: Aurora 64B/66B Duplex Status and Control Interface

X-Ref Target - Figure 2-32

Figure 2-32: Aurora 64B/66B TX-Only Simplex Status and Control Interface

X-Ref Target - Figure 2-33

Figure 2-33: Aurora 64B/66B RX-Only Simplex Status and Control Interface

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=49

Aurora 64B/66B v10.0 www.xilinx.com 50
PG074 April 1, 2015

Chapter 2: Product Specification

Figure 2-34 shows the status and control interface for an Aurora 64B/66B TX/RX Simplex
core.

Error Signals in Aurora 64B/66B Cores

Equipment problems and channel noise can cause errors during Aurora 64B/66B channel
operation. The 64B/66B encoding method allows the Aurora 64B/66B core to detect some
bit errors that can occur in the channel. The core reports these errors by asserting the
soft_err signal on every cycle in which they are detected.

The core also monitors each high-speed serial GTX and GTH transceiver for hardware errors
such as buffer overflow and loss of lock. Hardware errors are reported by asserting the
hard_err signal. Catastrophic hardware errors can also manifest themselves as a burst of
soft errors. The Block Sync algorithm described in the Aurora 64B/66B Protocol Specification
v1.3 (SP011) [Ref 5] determines whether to treat a burst of soft errors as a hard error.

Whenever a hard error is detected, the core automatically resets itself and attempts to
re-initialize. In most cases, this permits reestablishing the Aurora 64B/66B channel when the
hardware issue causing the hard error is resolved. Soft errors do not lead to a reset unless
enough occur in a short period of time to trigger the block sync state machine.

Table 2-14 describes the core error signals.

X-Ref Target - Figure 2-34

Figure 2-34: Aurora 64B/66B TX/RX Simplex Status and Control Interface

Table 2-14: Aurora 64B/66B Core Error Signals

Signal Description TX RX

hard_err

TX Overflow/Underflow: An overflow or underflow condition exists
in the TX data elastic buffer. This condition can occur when the user
clock and the reference clock sources are not operating at the same
frequency.

X

RX Overflow/Underflow: An overflow or underflow condition exists
in the RX data clock correction and channel bonding FIFO. This
condition can occur when the clock source frequencies for the two
channel partners are not within ±100 ppm.

X

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=50

Aurora 64B/66B v10.0 www.xilinx.com 51
PG074 April 1, 2015

Chapter 2: Product Specification

Initialization

The cores initialize automatically after power-up, reset, or hard error (Figure 2-35). Core
modules on each side of the channel perform the Aurora 64B/66B initialization procedure
until the channel is ready for use. The lane_up bus indicates which lanes in the channel
have f inished the lane initialization portion of the procedure. The lane_up signal can be
used to help debug equipment problems in a multi-lane channel. channel_up is asserted
only after the core completes the entire initialization procedure.

soft_err

Soft Errors: Too many soft errors occurred within a short period of
time. The alignment block sync state machine automatically attempts
to realign if too many invalid sync headers are detected. Soft errors are
not transformed into hard errors.

X

Invalid SYNC Header : The 2-bit header on the 64-bit block was not a
valid control or data header. X

Invalid BTF: The block type f ield (BTF) of a received control block
contained an unrecognized value. This condition usually results from a
bit error.

X

X-Ref Target - Figure 2-35

Figure 2-35: Initialization Overview

Table 2-14: Aurora 64B/66B Core Error Signals (Cont’d)

Signal Description TX RX

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=51

Aurora 64B/66B v10.0 www.xilinx.com 52
PG074 April 1, 2015

Chapter 2: Product Specification

Aurora 64B/66B cores can receive data before channel_up is asserted. Only the user
interface m_axi_rx_tvalid signal should be used to qualify incoming data. Because no
transmission can occur until after channel_up is asserted, channel_up can be inverted
and used to reset modules that drive the TX side of a full-duplex channel. If user application
modules need to be reset before data reception, an inverted lane_up signal can be used
for this purpose. Data cannot be received until all of the lane_up signals are asserted.

Aurora 64B/66B Simplex Operation

Simplex Aurora 64B/66B cores have no sideband connection and use timers to declare that
the partner is out of initialization and, thus, ready for data transfer. Simplex TX/RX cores
have both transmit and receive portions of the transceiver configured to operate
independently. However, the simplex TX/RX cores have reset and pma_init signals in
common between the transmit and receive path of the core.

The BACKWARD_COMP_MODE3 TX/RX_simplex core parameter can be used to prevent
unintentional hot plug events from inhibiting channel up assertion. This parameter is
available in the <user_component_name>_core.v f ile and is available for all core
configurations.

• BACKWARD_COMP_MODE3 = 0 clears the hot plug counter only on reception of CC
characters

• BACKWARD_COMP_MODE3 = 1 clears the hot plug counter on reception of any valid
BTF characters

RECOMMENDED: Follow the reset sequence given in Chapter 3.

Auto Link Recovery for Simplex

The simplex Aurora 64b/66b core must follow a predefined reset sequence for the simplex
cores to link up and work as expected. The simplex TX core needs to be in reset until the RX
side is up.

The simplex auto link recovery feature in the core eliminates this requirement, thereby
removing any reset sequence requirement between simplex TX and simplex RX cores.

Auto Link Recovery in Aurora 64b/66b simplex designs is based on the reception of Channel
Bonding (CB) patterns. Reception of the pattern allows the RX simplex core to come up
independently of the TX Simplex core bring-up. The parameter PERIODIC_CB_COUNT
denotes in user_clk cycles the time from the start of one periodic CB pattern to the start
of the next successive CB pattern. The minimum value is 6,080. The maximum value is
163,839.

Bandwidth occupancy = No. of user_clk cycles required by CB pattern/ Total no. of user_clk
cycles)*100.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=52

Aurora 64B/66B v10.0 www.xilinx.com 53
PG074 April 1, 2015

Chapter 2: Product Specification

You can increase the count based on the following formula:

PERIODIC_CB_COUNT = Minimum {1048570, INTEGER part of
[{16777215*INIT_CLK_PERIOD}/{4*USER_CLK_PERIOD}]}

where,

 INIT_CLK_PERIOD is init_clk time-period in ns

 USER_CLK_PERIOD is user_clk time-period in ns.

IMPORTANT: Xilinx highly recommends that the maximum value be fixed at 163,839 and a change in
the value should be performed with careful analysis and testing.

DRP Interface

The DRP interface allows user applications to monitor and modify the transceiver status.
The native interface provides the native transceiver DRP interface ports. The AXI4-Lite
interface (fully compliant with the AXI4-Lite protocol) is the default interface.

For native DRP sequences, the read and write operations are as specified in the respective
FPGA Transceivers User Guides. For AXI4-Lite DRP sequences, the read and write operations
from the user interface are specif ied in the AXI4-Lite protocol. The Aurora 64B/66B core
does not use the wstrb signal (refer to the Vivado AXI Reference Guide, (UG1037) [Ref 18]).
The axi_to_drp module is used to translate between the transceiver DRP and AXI4-Lite
protocols.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=53

Aurora 64B/66B v10.0 www.xilinx.com 54
PG074 April 1, 2015

Chapter 2: Product Specification

Transceiver Debug Interface

Figure 2-36 and Figure 2-37 show the additional available transceiver debugging control
and status ports when the TRANSCEIVER DEBUG interface is selected for 7 series and
UltraScale devices, respectively.

X-Ref Target - Figure 2-36

Figure 2-36: 7 Series Devices Transceiver Debug Interface Ports
X-Ref Target - Figure 2-37

Figure 2-37: UltraScale Devices Transceiver Debug Interface Ports

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=54

Aurora 64B/66B v10.0 www.xilinx.com 55
PG074 April 1, 2015

Chapter 2: Product Specification

CRC Interface
CRC is an optional interface. The crc_valid and crc_pass_fail_n signals (Table 2-15)
indicate the result of a received frame transmitted with CRC. See Using CRC, page 70 for
more information.

Figure 2-38 illustrates checking CRC at the core level. The f igure shows 6n bytes of
received data of a frame. At the end of the frame, the core asserts m_axi_rx_tlast and
crc_valid. In the same clock cycle the transmitted and computed CRCs are compared. If
the values match, the crc_pass_fail_n signal is asserted.

Table 2-15: CRC Interface Ports

Name Direction Clock
Domain Description

CORE_STATUS

crc_valid Output user_clk Samples the crc_pass_fail_n signal.

crc_pass_fail_n Output user_clk

The crc_pass_fail_n signal is asserted High when the
received CRC matches the transmitted CRC. This signal is
not asserted if the received CRC is not equal to the
transmitted CRC. The crc_pass_fail_n signal should always be
sampled with the crc_valid signal.

X-Ref Target - Figure 2-38

Figure 2-38: A 6n Data Beats Frame with CRC

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=55

Aurora 64B/66B v10.0 www.xilinx.com 56
PG074 April 1, 2015

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

General Design Guidelines
All Aurora 64B/66B core implementations require careful attention to system performance
requirements. Pipelining, logic mappings, placement constraints, and logic duplications are
all methods that help boost system performance.

Keep It Registered
To simplify timing and increase system performance in an FPGA design, keep all inputs and
outputs registered with a flip-flop between the user application and the core. While
registering signals might not be possible for all paths, it simplif ies timing analysis and
makes it easier for the Xilinx tools to place-and-route the design.

Recognize Timing Critical Signals
The XDC file provided with the example design for the core identif ies the critical signals and
the timing constraints that should be applied.

Make Only Allowed Modifications
The Aurora 64B/66B core is not user modif iable. Any modif ications might have adverse
effects on the system timings and protocol compliance. Supported user configurations of
the Aurora 64B/66B core can only be made by selecting options from the IP catalog.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=56

Aurora 64B/66B v10.0 www.xilinx.com 57
PG074 April 1, 2015

Chapter 3: Designing with the Core

Clocking
Good clocking is critical for the correct operation of the Aurora 64B/66B core. The core
requires a low-jitter reference clock to drive the high-speed TX clock and clock recovery
circuits in the GTX or GTH transceiver. The core also requires at least one frequency-locked
parallel clock for synchronous operation with the user application.

Each Aurora 64B/66B core is generated in the example_project directory which includes
a design called aurora_example. This design instantiates the generated core and
demonstrates a working clock configuration for the core. First-time users should examine
the Aurora 64B/66B example design for use as a template when connecting the clock
interface.

Aurora 64B/66B Clocking Architecture
Figure 3-1 shows the clocking architecture in the Aurora 64B/66B core for GTX or GTH
transceivers.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=57

Aurora 64B/66B v10.0 www.xilinx.com 58
PG074 April 1, 2015

Chapter 3: Designing with the Core

The following paragraphs describe connecting user_clk , sync_clk , and tx_out_clk .

The Aurora 64B/66B cores use three phase-locked parallel clocks. The first is user_clk ,
which synchronizes all signals between the core and the user application. All logic touching
the core must be driven by user_clk , which in turn must be the output of a global clock
buffer (BUFG).

The user_clk signal is used to drive the txusrclk2 port of the serial transceiver. The
tx_out_clk is selected such that the data rate of the parallel side of the module matches
the data rate of the serial side of the module, taking into account 64B/66B encoding and
decoding.

The third phase-locked parallel clock is sync_clk . This clock must also come from a BUFG
and is used to drive txusrclk port of the serial transceiver. It is also connected to the
Aurora 64B/66B core to drive the internal synchronization logic of the serial transceiver.

X-Ref Target - Figure 3-1

Figure 3-1: Aurora 64B/66B Clocking for GTX or GTH Transceivers

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=58

Aurora 64B/66B v10.0 www.xilinx.com 59
PG074 April 1, 2015

Chapter 3: Designing with the Core

To make it easier to use the two parallel clocks, a clock module is provided in a subdirectory
called clock_module under example_design/support or under src based on shared
logic settings. The ports for this module are described in Table 2-13. If the clock module is
used, the mmcm_not_locked signal should be connected to the mmcm_not_locked
output of the clock module; tx_out_clk should connect to the clock module clk port,
and pll_lock should connect to the clock module pll_not_locked port. If the clock
module is not used, connect the mmcm_not_locked signal to the inverse of the locked
signal from any PLL used to generate either of the parallel clocks, and use the pll_lock
signal to hold the PLLs in reset during stabilization if tx_out_clk is used as the PLL source
clock. The txusrclk could be unreliable during assertion of pma_init; hence, the core
uses a stable clock (init_clk) for MMCM synchronization. Using a stable clock to sample
adds more robustness to the link.

If MMCM is used to generate a stable clock (init_clk), pma_init needs to be applied to
the Aurora 64B/66B core until MMCM lock is established. This ensures that the core remains
in a known state before a stable clock is available for the core.

Usage of BUFG in the Aurora 64B/66B Core
The Aurora 64B/66B core uses four BUFGs as shown in Figure 3-1 for a given core
configuration using GTX or GTH transceivers. Aurora 64B/66B is an eight-byte-aligned
protocol, and the datapath from the user interface is 8-bytes aligned. For GTX or GTH
transceivers, the core configures the transmit path as eight bytes and the receive path as
four bytes.

The CB/CC logic is internal to the core, which is primarily based on the received recovered
clock from the serial transceiver. The BUFG usage is constant for any core configuration and
does not increase with any core feature.

Reference Clocks for FPGA Designs
Aurora 64B/66B cores require low-jitter reference clocks for generating and recovering
high-speed serial clocks in the GTX and GTH transceivers. Each reference clock can be set to
the reference clock input ports: gtxq/gthq. Reference clocks should be driven with
high-quality clock sources whenever possible to decrease jitter and prevent bit errors.
DCMs should never be used to drive reference clocks, because they introduce too much
jitter.

For UltraScale™ architecture devices, the Xilinx implementation tools make necessary
adjustments to the north-south routing and the pin swapping necessary to the GTHE3
transceiver clock inputs to route clocks from one quad to another, when required.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=59

Aurora 64B/66B v10.0 www.xilinx.com 60
PG074 April 1, 2015

Chapter 3: Designing with the Core

IMPORTANT: The following rules must be observed when sharing a reference clock to ensure that jitter
margins for high-speed designs are met:
1. In 7 series FPGAs, the total number of GTX or GTH transceiver quads sourced by an external clock

pin pair must not exceed three quads (one quad above and one quad below), or 12
GTXE2_CHANNEL/GTHE2_CHANNEL transceivers. Designs in 7 series FPGAs with more than 12
transceivers or more than three quads should use multiple external clock pins.

2. In UltraScale FPGAs, the total number of transceiver quads sourced by an external clock pin pair
must not exceed five quads (two quads above and two quads below), or twenty GTHE3_CHANNEL
transceivers.

See the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 4] and UltraScale FPGAs GTH
Transceivers User Guide (UG576) [Ref 3] for more details on transceiver reference clocks. Manual
editing of the transceiver attributes is not recommended but can be performed following the
recommendations in the aforementioned guides.

Reset and Power Down

Reset
The reset_pb signal is used to restore the Aurora 64B/66B core to a known starting state.
Upon reset, the core stops the current operation and re-initializes the channel. It is
expected that user_clock is stable when the reset_pb signal is applied. When the
reset_pb signal to the Aurora 64B/66B channel partner1 is asserted, channel partner2 also
loses lock. Channel partner2 regains lock when channel partner1 is out of reset and begins
transmitting valid patterns. On full-duplex cores the reset_pb signal resets both the TX
and RX sides of the channel. simplex Aurora 64B/66B cores have similar reset_pb ports for
both partners and require a different reset sequence. Asserting pma_init resets the entire
serial transceiver which eventually resets the Aurora 64B/66B core as well. Also, it is
assumed init_clk is always stable and the ref_clk is stable at the time of deassertion
of the pma_init signal.

Reset Sequence
The following are recommended reset sequences for the Aurora 64B/66B core at the
example design level for the available dataflow configurations.

Note: In the reset sequence diagrams the init_clk is added for illustration; both reset_pb and
pma_init are asynchronous resets to the core.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=60

Aurora 64B/66B v10.0 www.xilinx.com 61
PG074 April 1, 2015

Chapter 3: Designing with the Core

Aurora 64B/66B Duplex

During the board power-on sequence, both the pma_init and reset_pb signals are
expected to be High. INIT_CLK and GT_REFCLK are expected to be stable during
power-on for the proper functioning of the Aurora 64B/66B core. When both clocks are
stable, pma_init is deasserted followed by the deassertion of reset_pb.

Aurora 64B/66B Duplex Power On Sequence

Aurora 64B/66B Duplex Normal Operation Reset Sequence

Reset Sequencing

1. Assert reset. Wait for a minimum time equal to 128*user_clk's time-period.

2. Assert pma_init. Keep pma_init and reset asserted for at least one second to prevent
the transmission of CC characters and ensure that the remote agent detects a hot plug
event.

3. Deassert pma_init.

4. Deassert reset_pb.

X-Ref Target - Figure 3-2

Figure 3-2: Aurora 64B/66B Duplex Power On Reset Sequence

X-Ref Target - Figure 3-3

Figure 3-3: Aurora 64B/66B Duplex Normal Operation Reset Sequence

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=61

Aurora 64B/66B v10.0 www.xilinx.com 62
PG074 April 1, 2015

Chapter 3: Designing with the Core

Aurora 64B/66B Simplex

During power-on for both TX simplex and RX simplex cores, the pma_init and reset_pb
signals are expected to be High. INIT_CLK and GT_REFCLK are expected to be stable
during the power-on sequence. Due to the auto simplex recovery feature, both boards can
be brought up independently. If the RX board is brought up f irst then when the TX board is
brought up, data transmission can start immediately. However, if the TX board is brought up
f irst then no data transmission should take place until the RX board comes up based on the
periodic CB pattern sent by TX.

Aurora 64B/66B Simplex Power On Sequence

Aurora 64B/66B Simplex Normal Operation Reset Sequence

For simplex configurations, because the TX and RX can be powered on independently, data
transmission must begin only after rx_channel_up is seen (that is, after a minimum of 45
ms of tx_channel_up), to avoid loss of data., Before asserting pma_init, the reset_pb
must be asserted for a minimum time equal to 128*user_clk time period to ensure that
the portion of the core in programmable logic goes to a known reset state before the
user_clk is held Low during pma_init assertion. The assertion time of pma_init must
be a minimum of six INIT_CLK cycle time period to satisfy the requirements of the core
de-bouncing circuit.

X-Ref Target - Figure 3-4

Figure 3-4: Aurora 64B/66B Simplex Power On Sequence

X-Ref Target - Figure 3-5

Figure 3-5: Aurora 64B/66B Simplex Normal Operation Reset Sequence

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=62

Aurora 64B/66B v10.0 www.xilinx.com 63
PG074 April 1, 2015

Chapter 3: Designing with the Core

Aurora 64B/66B Simplex TX and RX

After the pma_init signal is deasserted, both tx_reset_pb and rx_reset_pb can be
deasserted at the same time. For proper functioning of the link, it is recommended that the
data transmission must begin only after partner rx_channel_up is seen to avoid loss of
data.

For normal operation, follow the Aurora 64B/66B simplex normal operation reset sequence.

pma_init Staging in the Example Design
The top level pma_init input at the example design level is delayed for 128 init_clk
cycles (pma_init_stage). This signal is pulse-stretched for the duration of a 24-bit
counter (pma_init_assertion). An aggregate signal from the instantiating logic is
provided to the core as the pma_init input. This ensures that the assertion of the
pma_init signal to the core results in reset assertion to the entire core.

Inside the <user_component_name>_support_reset_logic.v source file, the
debouncer logic (reset_debounce_r) remains in reset state until the gt_reset_in signal
(pma_init_assertion) is High ensuring an internally generated reset whenever the top
level pma_init is asserted. Figure 3-7 illustrates this behavior.

X-Ref Target - Figure 3-6

Figure 3-6: Aurora 64B/66B Simplex TX and RX Power On Sequence

X-Ref Target - Figure 3-7

Figure 3-7: pma_init Signal Staging

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=63

Aurora 64B/66B v10.0 www.xilinx.com 64
PG074 April 1, 2015

Chapter 3: Designing with the Core

Assertion of the pma_init signal to the core results in hot-plug reset assertion in the
channel partner core. The reset sequence after hot-plug reset assertion is shown in
Figure 3-8.

Reset Flow
The top-level RESET input (example design level) is debounced and connected to the core
(reset_pb). This signal is aggregated with the serial transceiver reset status and the
hot-plug reset from within the core reset logic (sys_reset_out) to generate a reset to the
core. This signal is expected to connect to the core reset input. Figure 3-9 illustrates this
behavior.

Single Reset Use Cases

Use Case 1: reset_pb assertion in the duplex core

The reset assertion in the duplex core should be for a minimum time equal to
128*user_clk's time_period. As a result, channel_up is deasserted as shown in the
Figure 3-10.

X-Ref Target - Figure 3-8

Figure 3-8: pma_init Signal Used to Reset Remote System

X-Ref Target - Figure 3-9

Figure 3-9: Reset Flow

X-Ref Target - Figure 3-10

Figure 3-10: Assertion of reset in the Duplex Core

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=64

Aurora 64B/66B v10.0 www.xilinx.com 65
PG074 April 1, 2015

Chapter 3: Designing with the Core

Use Case 2: pma_init Assertion in the Duplex Core

Figure 3-11 shows the pma_init assertion in the duplex core which should be a minimum
of 128 init_clk cycles. As a result, user_clk is stopped after a few clock cycles because
there is no txoutclk from the transceiver and channel_up is deasserted.

Use Case 3: Assertion of reset_pb in the Simplex Core

Figure 3-12 shows the simplex-TX core and simplex-RX core connected in a system.
CONFIG1 and CONFIG2 can be in same or multiple device(s).

Following is the recommended procedure of TX cores reset and RX cores reset assertion in
the simplex core (see Figure 3-13).

1. The TX cores reset_pb is asserted for a duration not less than 128* user_clk time
period followed by reset_pb on the RX simplex core asserted for a duration not less
than 128*user_clk time period.

2. tx_channel_up and rx_channel_up are deasserted after a minimum of f ive
user_clk clock cycles.

3. The signal reset_pb in the RX simplex core is deasserted (or) released before
reset_pb in the TX simplex core is deasserted. This sequence occurs because, while the
auto simplex recovery feature allows both boards to be brought up independently, this
ensures that TX transmits the Aurora 64B/66B initialization sequence when the
simplex-RX core is ready.

X-Ref Target - Figure 3-11

Figure 3-11: pma_init Assertion in the Duplex Core

X-Ref Target - Figure 3-12

Figure 3-12: System with Simplex Cores

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=65

Aurora 64B/66B v10.0 www.xilinx.com 66
PG074 April 1, 2015

Chapter 3: Designing with the Core

4. rx_channel_up is asserted before tx_channel_up assertion. This condition must be
satisfied by the simplex-RX core and the simplex timer parameters
(SIMPLEX_TIMER_VALUE) in the simplex-TX core need to be adjusted to meet this
criteria. The SIMPLEX_TIMER_VALUE parameter can be updated in
<user_component_name>_core.v.

5. tx_channel_up is asserted after the simplex-TX core completes the Aurora 64B/66B
protocol channel initialization sequence transmission for the configured time. Asserting
tx_channel_up last ensures that the simplex-TX core transmits an Aurora 64B/66B
initialization sequence when the simplex-RX core is ready.

6. For TX/RX simplex cores, the reset sequence in duplex cores for reset_pb and
pma_init assertions can be followed. However, the SIMPLEX_TIMER_VALUE needs to
be tuned based on the use model of the core.

Power Down
When power_down is asserted, only the Aurora 64B/66B core logic is reset. This does not
turn off the GTX or GTH transceivers used in the design.

CAUTION! Be careful when asserting this signal on cores that use tx_out_clk (see Reference Clocks
for FPGA Designs). tx_out_clk stops when the GTX and GTH transceivers are powered down. See the
7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 4] and the UltraScale Architecture GTH
Transceivers User Guide (UG576) [Ref 3] for details.

X-Ref Target - Figure 3-13

Figure 3-13: Reset Assertion in Simplex Cores

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=66

Aurora 64B/66B v10.0 www.xilinx.com 67
PG074 April 1, 2015

Chapter 3: Designing with the Core

Timing
Figure 3-14 shows the timing for the reset signal. In a quiet environment, tCU is generally
less than 500 clock cycles. In a noisy environment, tCU can be much longer.

Shared Logic
The Include Shared Logic in core option on the Vivado® Integrated Design Environment
(IDE) Shared Logic page can be used to configure the core to include sharable resources
such as the transceiver quad PLL (QPLL), the transceiver differential refclk buffer
(IBUFDS_GTE2), and including clocking and reset logic either in the core or in the example
design. When the Include Shared Logic in core option is selected, all sharable resources
are available to multiple instances of the core which might not include them. This minimizes
the amount of HDL modif ications required while retaining core flexibility.

Note: The Single Ended option when share logic is in the core will exclude respective differential
clock buffers from the core.

The shared logic hierarchy is called <user_component_name>_support. Figure 3-15
and Figure 3-16 show two hierarchies where the shared logic block is contained either in
the core or in the example design. In these f igures, <user_component_name> is the name
of the generated core. The difference between the two hierarchies is the boundary of the
core. The hierarchy is controlled using the Shared Logic options in the Vivado IDE. (The xci
top is highlighted in gray.)

X-Ref Target - Figure 3-14

Figure 3-14: Reset and Power Down Timing

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=67

Aurora 64B/66B v10.0 www.xilinx.com 68
PG074 April 1, 2015

Chapter 3: Designing with the Core

The contents of the shared logic depend upon the physical interface and the target device.
Shared logic contains one or more instances of the transceiver differential buffer, support
reset logic and instantiations of <user_component_name>_clock_module. Shared
logic also contains either the GTXE2_COMMON or the GTHE2_COMMON block which is
instantiated based on the selected transceiver type (GTX or GTH). Support reset logic
contains the de-bouncer logic for the reset and gt_reset ports.

X-Ref Target - Figure 3-15

Figure 3-15: Shared Logic Included in Core
X-Ref Target - Figure 3-16

Figure 3-16: Shared Logic Included in Example Design

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=68

Aurora 64B/66B v10.0 www.xilinx.com 69
PG074 April 1, 2015

Chapter 3: Designing with the Core

In the Vivado IP integrator, the connections between the two modes are shown for
CPLL-based designs. As can be seen in Figure 3-17, the master gt_reset signal affects
slave operation. For QPLL-based designs, gt_qpllrefclklost and gt_qplllock need
to be connected. In Figure 3-17, the master core includes shared logic in the core and the
slave core includes shared logic in the example design.

See Table 2-8, page 24 and Table 2-13 for details about the port changes resulting from the
setting of the shared logic option.

Table 3-1 shows the available shared resources based on the transceiver type.

X-Ref Target - Figure 3-17

Figure 3-17: Shareable Resource Connection Example Using IP Integrator

Table 3-1: Aurora 64B/66B Core Available Shared Resources by Transceiver Type

Transceiver Type Available Shared Resources

Zynq-7000 and 7 series devices
GTX/GTH transceivers

IBUFDS_GTE2: transceiver reference clock
GTXE2_COMMON: GTX transceiver clocking
GTHE2_COMMON: GTH transceiver clocking
BUFG: clocking
IBUFDS: init_clk

UltraScale architecture
GTH Transceivers

IBUFDS_GTE3: transceiver reference clock
BUFG_GT: clocking

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=69

Aurora 64B/66B v10.0 www.xilinx.com 70
PG074 April 1, 2015

Chapter 3: Designing with the Core

Using CRC
CRC is included in the core if the CRC mode option is selected. A framing user data interface
with 32-bit CRC is available in the <user_component_name>_crc_top.v f ile. The
crc_valid and crc_pass_fail_n signals (see Table 2-15, page 55) indicate the result of
a received frame transmitted with CRC.

Hot Plug Logic
Hot-plug logic in Aurora 64B/66B designs is based on the received clock compensation
characters. Reception of clock compensation characters at the RX interface of Aurora
64B/66B infers that the communication channel is active and not broken. If clock
compensation characters are not received in a predetermined time, the hot-plug logic
resets the core and the transceiver. The clock compensation module must be used for
Aurora 64B/66B designs.

IMPORTANT: It is highly recommended to keep hot plug logic enabled for predictable operation of the
link.

The description of the hot-plug sequence follows.

1. Requirements: Before replacing the card, powering down a specific system, or
reprogramming the bit f ile, it is required to assert reset before performing a hot plug
sequence so that the remote agent channel goes down gracefully and gets ready when
the link is removed and reconnected.

2. How it works: When reset is asserted for a time equal to 128*user_clk
time_period before performing a hot plug sequence, enough NA_IDLES are
generated for the remote link to deassert Channel Up without errors.

3. Limitations: If the preceding sequence is not followed, SOFT/DATA errors are possible so
that the link does not have a graceful shutdown.

Clock Compensation Logic
The Aurora 64B/66B core includes a clock compensation module that is used to generate
periodic clock compensation sequences in accordance with the Aurora 64B/66B Protocol
Specification (SP011) [Ref 5].

The clock compensation feature allows up to ±100 ppm difference in the reference clock
frequencies used on each side of an Aurora 64B/66B channel.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=70

Aurora 64B/66B v10.0 www.xilinx.com 71
PG074 April 1, 2015

Chapter 3: Designing with the Core

To perform Aurora 64B/66B-compliant clock compensation, the clock compensation
sequence is sent every 4,992 user_clk cycles. The CC sequence consists of a maximum of
8 CC characters. The signal s_axi_tx_tready is deasserted on the TX user interface while
the channel is being used to transmit clock compensation sequences.

The most common use of this feature is scheduling clock compensation events to occur
outside of frames, or at specif ic times during a stream to avoid interrupting data flow.

IMPORTANT: The parameter CC_FREQ_FACTOR determines the frequency of the CC sequence. It is fixed
at 24. Any attempt to increase or decrease this parameter should be done with careful analysis and
testing.

Following are the clock compensation logic customizing guidelines:

• Ensure that the duration and period selected are suff icient to correct for the maximum
difference between the frequencies of the clocks used.

• Do not perform multiple clock compensation sequences within eight cycles of one
another.

X-Ref Target - Figure 3-18

Figure 3-18: Streaming Data with Clock Compensation Inserted

X-Ref Target - Figure 3-19

Figure 3-19: Data Reception Interrupted by Clock Compensation

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=71

Aurora 64B/66B v10.0 www.xilinx.com 72
PG074 April 1, 2015

Chapter 3: Designing with the Core

Using Little Endian Support
The Aurora 64B/66B core supports the user interfaces in big endian format by default. The
core also supports little endian format allowing easy connection to AXI4-Stream compliant
IP designs.

Note:
1. [n:0] bus format is used when the little endian support option is selected. [0:n] bus format is used

when the big endian support option is selected. The core has an option to configure the
AXI4-Stream User I/O as little endian from the Vivado IDE. The default is big endian.

2. Ports are active-High unless specif ied otherwise.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=72

Aurora 64B/66B v10.0 www.xilinx.com 73
PG074 April 1, 2015

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 6]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7]

• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 8]

• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 9]

Customizing and Generating the Core
This section includes information about using Xilinx tools to customize and generate the
core in the Vivado Design Suite.

When customizing and generating the core in the Vivado IP integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 6] for
detailed information. The IP integrator might auto-compute certain configuration values
when validating or generating the design. To check whether the values change, see the
description of the parameter in this chapter. To view the parameter value, run the
validate_bd_design command in the Tcl Console.

Use the following steps to customize the IP for use in your design by specifying values for
the various parameters associated with the IP core:

1. Select the IP from the Vivado IP catalog (IP Catalog -> Aurora 64B66B).

2. Double-click the selected IP or select Customize IP from the toolbar or right-click
menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 8].

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=73

Aurora 64B/66B v10.0 www.xilinx.com 74
PG074 April 1, 2015

Chapter 4: Design Flow Steps

The Aurora 64B/66B core can be customized to suit a wide variety of requirements using the
IP catalog. This chapter details the customization parameters and how these parameters are
specified within the Vivado Integrated Design Environment (IDE).

Figure 4-1 through Figure 4-4 show the features described in the corresponding sections.
The left side displays a representative block diagram of the Aurora 64B/66B core as
currently configured. The right side consists of user-configurable parameters.

Figure 4-1 shows the Core Options tab of the Customize IP interface with the default
options for Zynq®-7000 and 7 series devices.

Figure 4-2 shows the Core Options tab for UltraScale™ devices. Details on the customizing
options are provided in the following subsections, starting with Component Name.

Note: Figures in this chapter are illustrations of the Vivado IDE. This layout depicted here might vary
from the current version.

Core Options Tab for 7 Series FPGAs
X-Ref Target - Figure 4-1

Figure 4-1: Aurora 64B/66B IP Catalog Core Options Tab for 7 Series FPGAs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=74

Aurora 64B/66B v10.0 www.xilinx.com 75
PG074 April 1, 2015

Chapter 4: Design Flow Steps

Component Name

Enter the top-level name for the core in this text box. Illegal names are highlighted in red
until they are corrected. All f iles for the generated core are placed in a subdirectory using
this name. The top-level module for the core also use this name.

Default: aurora_64b66b_0

Line Rate

Enter the line rate value in gigabits per second. The value entered must be within the valid
range shown. This value determines the unencoded bit rate at which data is transferred over
the serial link. Calculations based on line rate use enhanced precision.

Default: 3.125 Gb/s for 7 series FPGA transceivers, 10.3125 Gb/s for UltraScale™ FPGA GTH
transceivers

GT Reference Clock Frequency

Select a reference clock frequency in MHz from the list box which provides options based
on the selected line rate. For best results, select the highest rate that can be practically
applied to the reference clock input of the target device.

Default: 156.25 MHz

INIT clk (MHz)

Enter a valid INIT clock frequency in the text box.

Default: 50 MHz for 7 series FPGAs and Zynq® AP SoCs, line_rate/datapath_width for
UltraScale™ devices.

GT DRP clk (MHz)

Enter a valid DRP clock frequency in the text box. Available only with 7 series FPGA
transceivers.

Default: 100 MHz

Dataflow Mode

Select the options for the direction of the channel that the Aurora 64B/66B core supports.
Simplex cores have a single, unidirectional serial port that connects to a complementary
simplex core. Three simplex options are provided to select the channel direction supported
by the core: RX-only_simplex, TX-only_simplex or TX/RX_simplex.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=75

Aurora 64B/66B v10.0 www.xilinx.com 76
PG074 April 1, 2015

Chapter 4: Design Flow Steps

Duplex or TX/RX_simplex specify that the core has both TX and the corresponding RX
communication channels.

Default: Duplex

Interface

Select the type of datapath interface used for the core. Select Framing to use a complete
AXI4-Stream interface that allows encapsulation of data frames of any length. Select
Streaming to use a simple AXI4-Stream interface to stream data through the Aurora
64B/66B channel.

Default: Framing

Flow Control

Select the required option to add flow control to the core. User flow control (UFC) allows
applications to send each other brief, high-priority messages through the Aurora 64B/66B
channel. Native flow control (NFC) allows full-duplex receivers to regulate the rate of the
data sent to them. Immediate mode allows idle codes to be inserted within data frames
while completion mode only inserts idle codes between complete data frames.

Available options are:

• None

• UFC only

• Immediate NFC

• Completion NFC

• UFC + Immediate NFC

• UFC + Completion NFC

For the streaming interface, only immediate mode is available. For the framing interface,
both immediate and completion modes are available.

Default: None

USER K

Select to add a USER K interface to the core. USER-K blocks are special single-block codes
passed directly to the user application. These blocks are used to implement
application-specific control functions.

Default: Unchecked

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=76

Aurora 64B/66B v10.0 www.xilinx.com 77
PG074 April 1, 2015

Chapter 4: Design Flow Steps

Little Endian Support

Select to change all of the interface(s) to little endian format. See Using Little Endian
Support in Chapter 3 for more information, By default the core uses big endian format.

Default: Unchecked

CRC

Select the option to insert CRC32 in the data stream.

Default: Unchecked

DRP Mode

Select the required interface to control or monitor the transceiver interface using the
Dynamic Reconfiguration Port (DRP).

Available options are:

• Native

• AXI4_Lite

Default: AXI4_Lite

Additional Transceiver Control and Status Ports

Select to include transceiver control and status ports in core top level.

Default: Unchecked

Vivado Lab Tools

Select to add Vivado lab tools to the Aurora 64B/66B core. (See Using Vivado Lab Tools,
page 98.) This option provides a debugging interface that shows the core status signals.

Default: Unchecked

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=77

Aurora 64B/66B v10.0 www.xilinx.com 78
PG074 April 1, 2015

Chapter 4: Design Flow Steps

Core Options Tab for UltraScale Devices

The following four customization options are shown only in the Core Options tab for
UltraScale devices. See Figure 4-2.

Lanes

Select the number of lanes (UltraScale device GTH transceivers) to be used in the core. The
valid range depends on the target device selected.

Default: 1

Starting GT Quad

Select the GT Quad from the drop down list. The selected GT Quad has the starting lane
from which the lane assignment begins.

Default: Quad X0Y0

X-Ref Target - Figure 4-2

Figure 4-2: Aurora 64B/66B IP Catalog UltraScale Core Options Tab

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=78

Aurora 64B/66B v10.0 www.xilinx.com 79
PG074 April 1, 2015

Chapter 4: Design Flow Steps

Starting GT Lane

Select the starting lane of the core from the drop-down list that is generated based on the
selected GT Quad. With Lanes, Starting GT Quad and Starting GT lane, the core gets
generated with a consecutive number of lanes.

Default: X0Y0

Note: Channel bonding across SLR boundaries is not supported by the core and restricted from the
Vivado IDE.

GT Refclk Selection

Select reference clock sources for the UltraScale transceivers from the drop-down list.

Default: MGTREFCLK0 of Quad X0Y0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=79

Aurora 64B/66B v10.0 www.xilinx.com 80
PG074 April 1, 2015

Chapter 4: Design Flow Steps

GT Selections Tab for 7 Series FPGA

Columns

Select appropriate GT column from the drop-down list.

Default: left

Lanes

Select the number of lanes (GTX or GTH transceivers) to be used in the core. The valid range
depends on the target device selected.

Default: 1

X-Ref Target - Figure 4-3

Figure 4-3: Aurora 64B/66B IP Catalog GT Selections Tab for 7 Series FPGAs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=80

Aurora 64B/66B v10.0 www.xilinx.com 81
PG074 April 1, 2015

Chapter 4: Design Flow Steps

GT_TYPE

Select the type of serial transceiver from the drop-down list. This option is applicable only
for Virtex®-7 XT devices. For other devices, the drop-down box is not visible.

Available options are:

• gtx

• v7gth

Default: gtx

Lane Assignment

See the diagram in the information area in Figure 4-3. Each numbered row represents a
serial transceiver tile and each active box represents an available GTX or GTH transceiver.
For each Aurora 64B/66B lane in the core, starting with Lane 1, select a GTX or GTH
transceiver and place the lane by selecting its number in the GTX or GTH transceiver
placement box.

• X in the drop-down menu means that lane is not selected.

• <1—16> selected from the drop-down menu means that particular lane is selected. It
does not assign that number to the physical lane.

RECOMMENDED: Always select consecutive/physically adjacent lanes for a multi-GT design.

Note: The core generates transceiver placement (LOC) constraints in ascending fashion. Move the
cursor in the Vivado IDE to see the transceiver being selected in the 7 series and Zynq®-7000
family-based design. Lane numbering serves only to enable the lanes and not to assign numbers to
the lanes. The Lane Assignment is not available for UltraScale architecture-based designs. It is
strongly recommended that lane selection should be continuous for timing closure.

GT REFCLK1 and GT REFCLK2

Select reference clock sources for the GTX and GTH transceiver tiles from the drop-down list
in this section.

Default: GT REFCLK Source 1: GTXQn/ GTHQn; GT REFCLK Source 2: None;

Note: n depends on the serial transceiver (GTX or GTH) position.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=81

Aurora 64B/66B v10.0 www.xilinx.com 82
PG074 April 1, 2015

Chapter 4: Design Flow Steps

Shared Logic

Select to include transceiver common PLL and its logic in the IP core or in the example
design.

Available options:

• Include Shared Logic in core

• Include Shared Logic in example design

Default: Include Shared Logic in example design

If the Include Shared Logic in core option is selected, two additional options are available:

• Single Ended INIT CLK - If selected, init_clk becomes a single-ended clock input.
Available only in 7 series devices.

• Single Ended GTREF CLK - If selected, the GT reference clock becomes a single-ended
clock input.

X-Ref Target - Figure 4-4

Figure 4-4: Aurora 64B/66B IP Catalog Shared Logic Tab for 7 Series FPGAs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=82

Aurora 64B/66B v10.0 www.xilinx.com 83
PG074 April 1, 2015

Chapter 4: Design Flow Steps

OK

Click OK to generate the core. (See Generating the Core with Quick Start, page 94.) The
modules for the Aurora 64B/66B core are written to the IP catalog tool project directory
using the same name as the top level of the core.

Notes:
1. In the IP integrator the core gives the expected frequency values in long format as per the IP integrator guidelines;

however, internally the precision is the same as shown in Vivado IDE.
2. In the IP integrator the clock and reset ports are grouped into the single-clock port and single-reset port interfaces

respectively. Data and AXI4-Stream flow control ports are grouped into AXI4-Stream interfaces. The other input and
output ports are grouped into display interfaces.

3. For the ports grouped in display interfaces the connections need to be made port-to-port.
4. The non-AXI UFC ports are listed below the UFC interfaces.
5. Based on the configuration chosen, the expected frequency values are shown for the clock inputs to the core.

User Parameters
Table 4-1 shows the relationship between the f ields in the Vivado IDE and the User
Parameters in the XCI f iles (which can be viewed in the Tcl Console). Use the information in
the tables for batch-driven Tcl flows to set Vivado IDE parameters and generate the Aurora
64B/66B core.

Table 4-1: Vivado IDE Parameter to User Parameter Mapping(1)

Vivado IDE Parameter/Value User Parameter/Value Default
Value(1)

Core Options

Physical Layer

Line Rate (Gb/s) C_LINE_RATE 3.125/
10.3125

Column Used(11) C_UCOLUMN_USED right

Starting GT Quad(11) C_START_QUAD Quad X0Y0

Starting GT Lane(11) C_START_Lane X0Y0

GT Refclk Selection(11) C_REFCLK_SOURCE MGTREFCLK0
of Quad X0Y0

GT Refclk (MHz) C_REFCLK_FREQUENCY 156.250

INIT clk (MHz) C_INIT_CLK 50.0/
161.1328125

GT DRP clk (MHz)(9) DRP_FREQ 100.0000

Link Layer

Dataflow Mode Dataflow_Config Duplex

Interface Interface_Mode Framing

Flow Control Flow_Mode None

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=83

Aurora 64B/66B v10.0 www.xilinx.com 84
PG074 April 1, 2015

Chapter 4: Design Flow Steps

USER-K C_USER_K false

Little Endian Support C_USE_BYTESWAP false

Error Reduction

CRC CRC_MODE NONE

DRP Mode

AXI4-Lite (default mode)
drp_mode AXI4_LITE

Native

Vivado lab tools C_USE_CHIPSCOPE false

Additional transceiver control and status ports TransceiverControl false

GT Selections(9)

Columns C_COLUMN_USED right(3)

Lanes(10) C_AURORA_LANES 1

GT Type(10) C_GT_TYPE gtx(4)

Lane Assignment

Select transceiver to include GTXE2_CHANNEL_X1Y4 in your design(5) C_GT_LOC_5(6) 1

Select transceiver to include GTXE2_CHANNEL_X1Y5 in your design C_GT_LOC_6 X

Select transceiver to include GTXE2_CHANNEL_X1Y5 in your design C_GT_LOC_7 X

Select transceiver to include GTXE2_CHANNEL_X1Y7 in your design C_GT_LOC_8 X

Select transceiver to include GTXE2_CHANNEL_X1Y8 in your design C_GT_LOC_9 X

Select transceiver to include GTXE2_CHANNEL_X1Y9 in your design C_GT_LOC_10 X

Select transceiver to include GTXE2_CHANNEL_X1Y10 in your design C_GT_LOC_11 X

Select transceiver to include GTXE2_CHANNEL_X1Y11 in your design C_GT_LOC_12 X

Select transceiver to include GTXE2_CHANNEL_X1Y12 in your design C_GT_LOC_13 X

Select transceiver to include GTXE2_CHANNEL_X1Y13 in your design C_GT_LOC_14 X

Select transceiver to include GTXE2_CHANNEL_X1Y14 in your design C_GT_LOC_15 X

Select transceiver to include GTXE2_CHANNEL_X1Y15 in your design C_GT_LOC_16 X

Select transceiver to include GTXE2_CHANNEL_X1Y16 in your design C_GT_LOC_17 X

Select transceiver to include GTXE2_CHANNEL_X1Y17 in your design C_GT_LOC_18 X

Select transceiver to include GTXE2_CHANNEL_X1Y18 in your design C_GT_LOC_19 X

Select transceiver to include GTXE2_CHANNEL_X1Y19 in your design C_GT_LOC_20 X

GT Refclk (MHz)

GT Refclk1 C_GT_CLOCK_1 GTXQ1

GT Refclk2 C_GT_CLOCK_2 None

Table 4-1: Vivado IDE Parameter to User Parameter Mapping(1) (Cont’d)

Vivado IDE Parameter/Value User Parameter/Value Default
Value(1)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=84

Aurora 64B/66B v10.0 www.xilinx.com 85
PG074 April 1, 2015

Chapter 4: Design Flow Steps

RECOMMENDED:

1. Do not alter any default locations, unless otherwise absolutely needed after the design
is generated, or else the design functionality cannot be guaranteed.

2. For UltraScale devices based designs when a line rate of less than 8.0 Gb/s is chosen, the
CPLL becomes part of the GT Wizard hierarchical core.

Shared Logic

Include Shared Logic in core
SupportLevel(8) 0

Include Shared Logic in example design (default mode)

Single Ended INIT CLK(9)(12) SINGLEEND_INITCLK false

Single Ended GTREF CLK(12) SINGLEEND_GTREFCLK false

Notes:
1. The values in this table reflect the default device (xc7vx485tffg1157-1). Default values for UltraScale architecture devices are

denoted with a slash (/) where appropriate.
2. X0Y0 GT selection is based upon columns.
3. If a device has transceivers on both sides, left is the default value.
4. If a 7 series device has GTX transceivers, gtx is the default value. If GTH transceivers, v7gth is the default value.
5. Numbering for the default device starts from GTXE2_CHANNEL_X1Y4. Otherwise, numbering starts from

GTXE2_CHANNEL_X0Y0.
6. C_GT_LOC_i where i varies from 1 to 48.
7. By default, the lowest i C_GT_LOC_i is assigned.
8. If Shared Logic in Core option is selected, SupportLevel is 1.
9. Not available in UltraScale devices.
10.The Lanes and GT Type options for UltraScale devices are available on the Core Options page in the Vivado IDE.
11.Not available in 7 series devices.
12.Available if Include Shared Logic in core option is selected.

Table 4-1: Vivado IDE Parameter to User Parameter Mapping(1) (Cont’d)

Vivado IDE Parameter/Value User Parameter/Value Default
Value(1)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=85

Aurora 64B/66B v10.0 www.xilinx.com 86
PG074 April 1, 2015

Chapter 4: Design Flow Steps

Output Generation
The customized Aurora 64B/66B core is delivered as a set of HDL source modules in Verilog.
These f iles are arranged in a predetermined directory structure under the project directory
name provided to the IP catalog when the project is created as shown in Figure 4-5.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7].

X-Ref Target - Figure 4-5

Figure 4-5: Aurora 64B/66B Project Directory Structure

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=86

Aurora 64B/66B v10.0 www.xilinx.com 87
PG074 April 1, 2015

Chapter 4: Design Flow Steps

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Device, Package, and Speed Grade Selections
Not Applicable

Clock Frequencies
Aurora 64B/66B example design clock constraints can be grouped into the following three
categories:

• GT reference clock constraint

The Aurora 64B/66B core uses one minimum reference clock and two maximum
reference clocks for the design. The number of GT reference clocks is derived based on
transceiver selection (that is, lane assignment in the second page of the Vivado IDE). The
GT REFCLK value selected in the f irst page of the Vivado IDE is used to constrain the GT
reference clock.

Note: The GT reference clock location constraint should be added to the
<user_component_name>_example.srcs/constrs_1/imports/
<user_component_name>_example.xdc f ile.

• CORECLK clock constraint

CORECLKs are the clock signals on which the core functions. CORECLKS such as
USER_CLK and SYNC_CLK are derived from the TXOUTCLK signal which is generated by
the transceiver based on the applied reference clock and the transceiver divider
settings. The Aurora 64B/66B core calculates the USER_CLK/SYNC_CLK frequency based
on the line rate and transceiver interface width. The create_clock XDC command is
used to constrain all CORECLKs.

• INIT CLK constraint

The Aurora 64B/66B example design uses a debounce circuit to sample PMA_INIT
asynchronously clocked by the init_clk clock. The create_clock XDC command is
used to constrain the init_clk clock. The init_clk frequency value in Vivado IDE is
restricted to six decimal places.

RECOMMENDED: It is recommended to have the system clock frequency lower than the transceiver
reference clock frequency and in the range of 50 to 200 MHz for 7 series and Zynq devices. For
UltraScale devices, the recommended range is 6.25 MHz to line_rate/64 or 200 MHz whichever is less.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=87

Aurora 64B/66B v10.0 www.xilinx.com 88
PG074 April 1, 2015

Chapter 4: Design Flow Steps

Clock Management
Not Applicable

Clock Placement
Not Applicable

Banking
Not Applicable

Transceiver Placement
The set_property XDC command is used to constrain the transceiver location. This is
provided as a tooltip on the GT Selections tab of the Vivado IDE. A sample XDC is provided
for reference.

I/O Standard and Placement
The positive differential clock input pin (ends with _P) and negative differential clock input
pin (ends with _N) are used as the transceiver reference clock. The set_property XDC
command is used to constrain the transceiver reference clock pins.

False Paths

The False Path constraint is defined on the f irst stage of the flip-flop of the CDC module.

Example Design

The generated example design including support logic has a 3.125 Gb/s line rate and a
156.25 MHz reference clock. The XDC file is generated for the xc7vx485tffg1157-1; the
default device, follows:

################################ CLOCK CONSTRAINTS #########################
User Clock Constraint: the value is selected based on the line rate of the module
#create_clock -period 20.48 [get_pins

aurora_64b66b_0_block_i/clock_module_i/user_clk_net_i/I]

SYNC Clock Constraint
#create_clock -period 10.240 [get_pins

aurora_64b66b_0_block_i/clock_module_i/sync_clock_net_i/I]

################################ IP LEVEL CONSTRAINTS START ################
Following constraints present in aurora_64b66b_0.xdc
Create clock constraint for TXOUTCLK from GT

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=88

Aurora 64B/66B v10.0 www.xilinx.com 89
PG074 April 1, 2015

Chapter 4: Design Flow Steps

#create_clock -period 10.240 [get_pins -hier -filter
{name=~*aurora_64b66b_0_wrapper_i*aurora_64b66b_0_multi_gt_i*aurora_64b66b_0_gtx_in
st/gtxe2_i/TXOUTCLK}]
Create clock constraint for RXOUTCLK from GT
#create_clock -period 10.240 [get_pins -hier -filter

{name=~*aurora_64b66b_0_wrapper_i*aurora_64b66b_0_multi_gt_i*aurora_64b66b_0_gtx_in
st/gtxe2_i/RXOUTCLK}]
################################ IP LEVEL CONSTRAINTS END ##################
Reference clock constraint for GTX
create_clock -period 6.400 [get_ports GTXQ1_P]

 ### DRP Clock Constraint
create_clock -period 10.000 [get_ports DRP_CLK_IN]

50MHz board Clock Constraint
create_clock -period 20.000 [get_ports INIT_CLK_P]

No cross clock domain analysis. Domains are not related
set_false_path -from [get_clocks init_clk] -to [get_clocks user_clk]
set_false_path -from [get_clocks user_clk] -to [get_clocks init_clk]
set_false_path -from [get_clocks init_clk] -to [get_clocks sync_clk]
set_false_path -from [get_clocks sync_clk] -to [get_clocks init_clk]

set_false_path -from init_clk -to [get_clocks -of_objects [get_pins
aurora_64b66b_0_block_i/clock_module_i/mmcm_adv_inst/CLKOUT0]]
##
set_false_path -from [get_clocks -of_objects [get_pins

aurora_64b66b_0_block_i/clock_module_i/mmcm_adv_inst/CLKOUT0]] -to init_clk
##
set_false_path -from init_clk -to [get_clocks -of_objects [get_pins

aurora_64b66b_0_block_i/clock_module_i/mmcm_adv_inst/CLKOUT1]]
##
set_false_path -from [get_clocks -of_objects [get_pins

aurora_64b66b_0_block_i/clock_module_i/mmcm_adv_inst/CLKOUT1]] -to init_clk
##
set_false_path -from [get_clocks -of_objects [get_pins

aurora_64b66b_0_block_i/clock_module_i/initclk_bufg_i/O]] -to [get_clocks
-of_objects [get_pins -hier -filter
{name=~*aurora_64b66b_0_i*inst*aurora_64b66b_0_wrapper_i*aurora_64b66b_0_multi_gt_i
*aurora_64b66b_0_gtx_inst/gtxe2_i/RXOUTCLK}]]
##
set_false_path -from [get_clocks -of_objects [get_pins -hier -filter

{name=~*aurora_64b66b_0_i*inst*aurora_64b66b_0_wrapper_i*aurora_64b66b_0_multi_gt_i
*aurora_64b66b_0_gtx_inst/gtxe2_i/RXOUTCLK}]] -to [get_clocks -of_objects [get_pins
aurora_64b66b_0_block_i/clock_module_i/initclk_bufg_i/O]]
##
set_false_path -from [get_clocks -of_objects [get_pins -hier -filter

{name=~*aurora_64b66b_0_i*inst*aurora_64b66b_0_wrapper_i*aurora_64b66b_0_multi_gt_i
*aurora_64b66b_0_gtx_inst/gtxe2_i/RXOUTCLK}]] -to [get_clocks -of_objects [get_pins
aurora_64b66b_0_block_i/clock_module_i/mmcm_adv_inst/CLKOUT0]]
##
set_false_path -from [get_clocks -of_objects [get_pins

aurora_64b66b_0_block_i/clock_module_i/mmcm_adv_inst/CLKOUT0]] -to [get_clocks
-of_objects [get_pins -hier -filter
{name=~*aurora_64b66b_0_i*inst*aurora_64b66b_0_wrapper_i*aurora_64b66b_0_multi_gt_i
*aurora_64b66b_0_gtx_inst/gtxe2_i/RXOUTCLK}]]

GT CLOCK Locations
Differential SMA Clock Connection

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=89

Aurora 64B/66B v10.0 www.xilinx.com 90
PG074 April 1, 2015

Chapter 4: Design Flow Steps

set_property LOC AH6 [get_ports GTXQ1_P]
set_property LOC AH5 [get_ports GTXQ1_N]

 set_property LOC GTXE2_CHANNEL_X1Y4 [get_cells
aurora_64b66b_0_block_i/aurora_64b66b_0_i/inst/aurora_64b66b_0_wrapper_i/aurora_64b
66b_0_multi_gt_i/aurora_64b66b_0_gtx_inst/gtxe2_i]

 # false path constraints to the example design logic
 set_false_path -to [get_pins -hier *aurora_64b66b_0_cdc_to*/D]

###
##################
 ##Note: User should add LOC based upon the board
 # Below LOC's are place holders and need to be changed as per the device and
board
 #set_property LOC D17 [get_ports INIT_CLK_P]
 #set_property LOC D18 [get_ports INIT_CLK_N]
 #set_property LOC G19 [get_ports RESET]
 #set_property LOC K18 [get_ports PMA_INIT]

 #set_property LOC A20 [get_ports CHANNEL_UP]
 #set_property LOC A17 [get_ports LANE_UP]
 #set_property LOC Y15 [get_ports HARD_ERR]
 #set_property LOC AH10 [get_ports SOFT_ERR]
 #set_property LOC AD16 [get_ports DATA_ERR_COUNT[0]]
 #set_property LOC Y19 [get_ports DATA_ERR_COUNT[1]]
 #set_property LOC Y18 [get_ports DATA_ERR_COUNT[2]]
 #set_property LOC AA18 [get_ports DATA_ERR_COUNT[3]]
 #set_property LOC AB18 [get_ports DATA_ERR_COUNT[4]]
 #set_property LOC AB19 [get_ports DATA_ERR_COUNT[5]]
 #set_property LOC AC19 [get_ports DATA_ERR_COUNT[6]]
 #set_property LOC AB17 [get_ports DATA_ERR_COUNT[7]]

 #set_property LOC AG29 [get_ports DRP_CLK_IN]
 #// DRP CLK needs a clock LOC

 ##Note: User should add IOSTANDARD based upon the board
 # Below IOSTANDARDs are place holders and need to be changed as per the device
and board
 #set_property IOSTANDARD DIFF_HSTL_II_18 [get_ports INIT_CLK_P]
 #set_property IOSTANDARD DIFF_HSTL_II_18 [get_ports INIT_CLK_N]
 #set_property IOSTANDARD LVCMOS18 [get_ports RESET]
 #set_property IOSTANDARD LVCMOS18 [get_ports PMA_INIT]

 #set_property IOSTANDARD LVCMOS18 [get_ports CHANNEL_UP]
 #set_property IOSTANDARD LVCMOS18 [get_ports LANE_UP]
 #set_property IOSTANDARD LVCMOS18 [get_ports HARD_ERR]
 #set_property IOSTANDARD LVCMOS18 [get_ports SOFT_ERR]
 #set_property IOSTANDARD LVCMOS18 [get_ports DATA_ERR_COUNT[0]]
 #set_property IOSTANDARD LVCMOS18 [get_ports DATA_ERR_COUNT[1]]
 #set_property IOSTANDARD LVCMOS18 [get_ports DATA_ERR_COUNT[2]]
 #set_property IOSTANDARD LVCMOS18 [get_ports DATA_ERR_COUNT[3]]
 #set_property IOSTANDARD LVCMOS18 [get_ports DATA_ERR_COUNT[4]]
 #set_property IOSTANDARD LVCMOS18 [get_ports DATA_ERR_COUNT[5]]
 #set_property IOSTANDARD LVCMOS18 [get_ports DATA_ERR_COUNT[6]]
 #set_property IOSTANDARD LVCMOS18 [get_ports DATA_ERR_COUNT[7]]

 #set_property IOSTANDARD LVCMOS18 [get_ports DRP_CLK_IN]
 #// DRP CLK needs a clock IOSTDLOC

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=90

Aurora 64B/66B v10.0 www.xilinx.com 91
PG074 April 1, 2015

Chapter 4: Design Flow Steps

The preceding example XDC is for reference only. This XDC is created automatically when
the core is generated from the Vivado design tools.

Simulation
For details, see the Vivado Design Suite User Guide - Logic Simulation (UG900) [Ref 9].

IMPORTANT: For cores targeting 7 series, Zynq-7000, and UltraScale devices, UNIFAST libraries are not
supported. Xilinx IP is tested and qualified with UNISIM libraries only.

The Aurora 64B/66B core provides a demonstration test bench for the example design.
Simulation status is reported through messages. The TEST COMPLETED SUCCESSFULLY
message signif ies the completion of the example design simulation.

Note: The message Reached max. simulation time limit means that simulation was not
successful. See Appendix C, Debugging for more information.

Simulating the duplex core is a single-step process after generating the example design.
Simplex core simulation requires partner generation. The partner core is generated
automatically and the synthesized netlist is available under the simulation f ile set when
clicking Open IP Example Design. Due to the synthesizing of the partner core, opening an
example design of a simplex core takes more time than the duplex example design
generation.

Simulation speed up:

The C_EXAMPLE_SIMULATION parameter has been introduced to speed up post
synthesis/implementation netlist functional simulations.

1. If core generation is through batch mode, include this command as part of the core
generation:

set c_example_simulation true

2. Run the Tcl Console command to speed up simulation. The generated core with the
preceding command is only for simulation.

3. If core generation is through the Vivado IDE, change the EXAMPLE_SIMULATION
parameter in the generated RTL code to 1 in these f iles to speed up simulation:

° <USER_COMPONENT_NAME>_exdes.v

° <USER_COMPONENT_NAME>_core.v

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=91

Aurora 64B/66B v10.0 www.xilinx.com 92
PG074 April 1, 2015

Chapter 4: Design Flow Steps

Synthesis and Implementation
For information on generating a core and implementing an example design using Quick
Start, see Quick Start Example Design in Chapter 5.

For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 7].

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=92

Aurora 64B/66B v10.0 www.xilinx.com 93
PG074 April 1, 2015

Chapter 5

Example Design
This chapter contains information about the quick start and detailed example designs
provided in the Vivado® Design Suite.

Directory and File Contents
See Output Generation, page 86 for the directory structure and f ile contents of the example
design.

Quick Start Example Design
The quick start instructions provide a step-by-step procedure for generating an Aurora
64B/66B core, implementing the core in hardware using the accompanying example design,
and simulating the core with the provided demonstration test bench (demo_tb). For
detailed information about the example design provided with the Aurora 64B/66B core, see
Detailed Example Design.

The quick start example design consists of these components:

• An instance of the Aurora 64B/66B core generated using the default parameters

° Full-duplex with a single GTX transceiver

° AXI4-Stream user interface

• A top-level example design (<user_component name>_exdes) with an XDC file to
configure the core for simple data transfer operation

• A demonstration test bench to simulate two instances of the example design

The Aurora 64B/66B example design has been tested with the Vivado Design Suite for
synthesis and the Mentor Graphics Questa Simulator (QuestaSim) for simulation.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=93

Aurora 64B/66B v10.0 www.xilinx.com 94
PG074 April 1, 2015

Chapter 5: Example Design

Generating the Core with Quick Start
To generate an Aurora 64B/66B core with default values using the Vivado design tools:

1. Launch the Vivado design tools. For help starting and using the Vivado design tools, see
the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7].

2. Under Quick Start, click Create New Project and click Next.

3. Enter the new project name and the project location, then Click Next.

4. Select RTL Project and click Next.

5. Click Next to accept the default part number (xc7vx485tffg1157–1).

6. Click Finish.

7. After creating the project, click IP catalog in the Project Manager panel.

8. Locate the Aurora 64B/66B core in the IP catalog.

9. Double-click the core name.

10. Click OK.

11. Click Generate.

For more detailed information on generating an Aurora 64B/66B core, see Designing a
System Using the Aurora 64B66B Core (Duplex) on the KC705 Evaluation Kit (XAPP1192)
[Ref 24]

Implementing the Example Design
The example design must be generated from the IP core.

1. Under Sources, Right-click the generated Design Sources file and click Open IP
Example Design...

2. Enter the path to the directory in which to create the example design and click OK.

3. To run synthesis followed by implementation, in the Flow Navigator panel under
Implementation, click Run Implementation.

4. To generate a bitstream, under Program and Debug, click Generate Bitstream.

Note: LOC and IO standards must be specif ied in the XDC file for all input and output ports of the
design. The XDC file contains standard LOC and IO constraints in the comments for reference.

For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 7].

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=94

Aurora 64B/66B v10.0 www.xilinx.com 95
PG074 April 1, 2015

Chapter 5: Example Design

Detailed Example Design
Each Aurora 64B/66B core includes an example design
(<user_component_name>_exdes) that uses the core in a simple data transfer system.
For more details about the example_design directory, see Output Generation in
Chapter 4.

The example design based on the selected configurations consists of the following:

• Frame generator (FRAME_GEN) connected to the TX interface

• Frame checked (FRAME_CHECK) connected to the RX user interface

• VIO/ILA instance for debug and testing

• Hardware-based reset fsm to perform repeat reset and channel integrity testing (only
for duplex mode)

Figure 5-1 shows a block diagram of the example design for a full-duplex core. Table 5-1,
page 96 describes the ports of the example design.

The example design uses all the interfaces of the core. There are separate AXI4-Stream
interfaces for optional flow control. Simplex cores without a TX or RX interface have no
FRAME_GEN or FRAME_CHECK block, respectively.

X-Ref Target - Figure 5-1

Figure 5-1: Example Design

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=95

Aurora 64B/66B v10.0 www.xilinx.com 96
PG074 April 1, 2015

Chapter 5: Example Design

FRAME_GEN
This module is used to generate user traff ic to each of the AXI4-Stream data, UFC, NFC and
USER-K interfaces. The module contains pseudo-random data generated using a linear
feedback shift register (LFSR) with a known seed value. The FRAME_CHECK module can use
the same configuration to check the data integrity of the aurora channel. The inputs for this
module are user_clk , reset and channel_up. The FRAME_GEN module follows the
AXI4-Stream protocol and transmits the user traff ic.

FRAME_CHECK
This module is used to check the RX data integrity. As the FRAME_GEN module uses an LFSR
with a known seed value, the same LFSR and seed value are used in the FRAME_CHECK
module to compute the expected frame RX data. The received user data is validated against
the expected data and any errors are reported as per the AXI4-Stream protocol. The
FRAME_CHECK module is applicable to the AXI4-Stream data, UFC, NFC and USER-K
interfaces.

The design can also be used as a reference for connecting the more complex interfaces on
the Aurora 64B/66B core, such as the clocking interface.

When using the example design on a board, be sure to edit the
<component name>_exdes f ile in the example_design subdirectory to supply the
correct pins and clock constraints. Table 5-1 describes the ports available in the example
design.

Table 5-1: Example Design I/O Ports

Port Direction Clock
Domain Description

rxn[0:m–1] Input Serial
Clock Negative differential serial data input pin.

rxp[0:m–1] Input Serial
Clock Positive differential serial data input pin.

txn[0:m–1] Output Serial
Clock Negative differential serial data output pin.

txp[0:m–1] Output Serial
Clock Positive differential serial data output pin.

reset Input user_clk Reset signal for the example design.

<reference clock(s)> Input user_clk

The reference clocks for the Aurora 64B/66B core are
brought to the top level of the example design. See
Reference Clocks for FPGA Designs in Chapter 3 for
details about the reference clocks.

<core error signals>(1) Output user_clk
The error signals from the Aurora 64B/66B core Status
and Control interface are brought to the top level of
the example design and registered.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=96

Aurora 64B/66B v10.0 www.xilinx.com 97
PG074 April 1, 2015

Chapter 5: Example Design

<core channel up signals>(1) Output user_clk The channel up status signals for the core are brought
to the top level of the example design and registered.

<core lane up signals>(1) Output user_clk

The lane up status signals for the core are brought to
the top level of the example design and registered.
Cores have a lane up signal for each GTX and GTH
transceiver they use.

pma_init Input init_clk

The reset signal for the PCS and PMA modules in the
GTX and GTH transceivers is connected to the top level
through a debouncer. The signal is debounced using
the init_clk. See the Reset section in the 7 Series FPGAs
GTX/GTH Transceivers User Guide (UG476) [Ref 4] for
further details on GT RESET.

init_clk_p/
init_clk_n

Input -

The init_clk signal is used to register and debounce the
PMA_INIT signal. The init_clk signal must not come
from a GTX or GTH transceiver, and should be set to a
low rate, preferably lower than the reference clock. The
init_clk port in the example design is differential-ended
for UltraScale™ devices.

data_err_count[0:7] Output user_clk
Count of the number of frame data words received by
the FRAME_CHECK that did not match the expected
value.

ufc_err Output user_clk
Asserted (active-High) when UFC data words received
by the FRAME_CHECK that did not match the expected
value.

user_k_err Output user_clk
Asserted (active-High) when USER-K data words
received by the FRAME_CHECK that did not match the
expected value.

Notes:
1. See Status, Control and the Transceiver Interface in Chapter 2 for details.

Table 5-1: Example Design I/O Ports (Cont’d)

Port Direction Clock
Domain Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=97

Aurora 64B/66B v10.0 www.xilinx.com 98
PG074 April 1, 2015

Chapter 5: Example Design

Using Vivado Lab Tools
The ILA and VIO cores aid in debugging and validating the design in the board and are
provided with the Aurora 64B/66B core. The Aurora 64B/66B core connects the relevant
signals to the VIO to facilitate easier bring-up or debug of the design. Select the Vivado
Lab Tools option from the Core Options tab in the Vivado Integrated Design Environment
(IDE) (see Figure 4-1, page 74) to include it as a part of the example design.

Cores generated with the Vivado lab tools option enabled have three VIO interfaces and
one ILA interface.

• vio1_inst – contains core Lane Up, Channel Up, Data Error count, Soft Error count,
Channel Up transition count along with System Reset, GT Reset and Loopback ports

• vio2_inst – contains status of reset quality counters

• vio3_inst – contains test pass/fail status for repeat reset test

Implementing the Example Design
The example design must be generated from the IP core. See Implementing the Example
Design earlier in this chapter.

Hardware Reset FSM in the Example Design
The Aurora 64B/66B core example design for duplex mode incorporates a hardware reset
FSM to perform repeated resets and monitoring robustness of the link. This FSM also
contains an option to set different time periods between reset assertions. Also continuous
channel_up and link_reset transition counters are monitored and the test status is
reported through VIO.

The following signals are added in to the default ILA and VIOs for probing the link:

i_ila:

• tx_d_i[0:15]: TX Data from the LocalLink Frame Gen module

• rx_d_i[0:15]: RX Data to the LocalLink Frame check module

• data_err_count_o: 8-bit Data error count value, it is expected to be 'd0 in normal
operations

• lane_up_vio_usrclk : lane_up signal

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=98

Aurora 64B/66B v10.0 www.xilinx.com 99
PG074 April 1, 2015

Chapter 5: Example Design

• channel_up_i: channel_up signal

• soft_err_i: Soft error monitor

• hard_err_i: Hard error monitor

vio1_inst:

• sysreset_from_vio_i: Reset input to example design

• gtreset_from_vio_i: pma_init to example design

• vio_probe_in2: Quality counters for Link status

• rx_cdrovrden_i: Used while enabling loopback mode

• loopback_i: Used while enabling loopback mode

vio2_inst:

• reset_quality_cntrs: Used to reset all the quality counters in the example design

• reset_test_fsm_from_vio: Used to reset the hardware reset test FSM

• reset_test_enable_from_vio: Used to enable/start the repeat reset test from the
vio ports on the hardware.

• iteraion_cnt_sel_from_vio: Number of repeat reset iterations to be initiated.
This is a 4-bit encoded value for a f ixed number of iterations that can be seen in the
example design when Vivado lab tools is enabled.

• lnk_reset_in_initclk : Input probe to monitor the assertion of link_reset

• soft_err_in_initclk : Input probe to monitor the soft_err status

• chan_up_transcnt_20bit_i [15:8]: Number of channel_up transaction counts;
this can be used to monitor the number of reset iterations that have been completed.

Note:

a. chan_up_transcnt_20bit_i is probed only [15:8] bits; hence, this probe takes
some time to update the status.

b. To change the number of reset iterations, modify the respective value for
iteration_cnt_sel_from_vio and correspondingly select
chan_up_transcnt_20bit_i to probe the status.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=99

Aurora 64B/66B v10.0 www.xilinx.com 100
PG074 April 1, 2015

Chapter 5: Example Design

vio3_inst:

• test_passed_r : Test pass status is asserted after the respective iteration count if
resets are done successfully.

• test_failed_r : Test fail status is asserted if there is either a lack of channel_up or
some data errors have occurred.

• lnkrst_cnt_20bit_vio_i: Probe to monitor the number of times the link_reset
is asserted.

• reset_test_fsm_chk_time_sel: 3-bit encoded value probe to select the hardware
reset_fsm check time for channel_up assertions after reset is deasserted.

Hardware FSM Operation:

In the example design (<user_component_name>_exdes.v), a hardware initiated repeat
reset FSM has been added to test the robustness of the link when subject to repeat reset.
The FSM consists of IDLE, ASSERT_RST, DASSERT_RST, WAIT, WAIT1, CHECK, FAIL and DONE
states.

1. In IDLE state, test_passed_r indicates reset test passed, test_failed_r indicates
reset test fail, and timer_r provides an iteration count of resets. Defaults to 0.

2. When the reset_test_enable_from_vio signal is asserted, the hardware FSM
traverses to the ASSERT_RST state where pma_init is asserted for a pre-determined
time (28-bit count time).

3. This pma_init assertion ensures that a hot plug sequence is detected by the link
partner. The hardware FSM then traverses to the DEASSERT_RST state where the
pma_init is deasserted and the timer is loaded with a default value that can be
configured using the reset_test_fsm_chk_time_sel vio signal.

4. The FSM then moves to the WAIT state until the selected time has expired. In this state,
all checks such as for data errors and soft error occurrences are performed and the
channel_up signal is verif ied to be asserted High and not toggled more than once for
this iteration of pma_init.

5. If this condition is not met, the FSM moves to FAIL state and the repeat reset run is
stopped. Otherwise, the FSM moves to WAIT1 state where a few data packets are
transmitted and received.

6. The FSM then moves to the CHECK state, in which the channel_up transitions are
checked again. If there is not more than one transition, the FSM returns to the IDLE state
until the requested iterations are completed. This ensures that the link is robust and
recovers reliably across multiple repeat resets of the link.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=100

Aurora 64B/66B v10.0 www.xilinx.com 101
PG074 April 1, 2015

Chapter 6

Test Bench
The Aurora 64B/66B core delivers a demonstration test bench for the example design. This
chapter describes the Aurora 64B/66B test bench and its functionality. The test bench
consist of the following modules:

• Device Under Test (DUT)

• Clock and reset generator

• Status monitor

The Aurora 64B/66B test bench components can change based on the selected Aurora 64B/
66B core configurations, but the basic functionality remains the same for all of the core
configurations.

X-Ref Target - Figure 6-1

Figure 6-1: Aurora 64B/66B Test Bench for Duplex Configuration

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=101

Aurora 64B/66B v10.0 www.xilinx.com 102
PG074 April 1, 2015

Chapter 6: Test Bench

The Aurora 64B/66B test bench environment connects the Aurora 64B/66B duplex/TX/RX
simplex core in loopback using a high-speed serial interface. Figure 6-1 shows the Aurora
64B/66B test bench for the duplex/TX/RX simplex configuration.

The test bench looks for the state of the channel, then the integrity of the user data, UFC
data, and user-K blocks for a predetermined simulation time. The channel_up assertion
message indicates that link training and channel bonding (in case of multi-lane designs) are
successful. The counter is maintained in the FRAME_CHECK module to track the reception of
erroneous data. The test bench flags an error when erroneous data is received.

The Aurora 64B/66B test bench environment connects the Aurora 64B/66B simplex core to
the partner simplex Aurora 64B/66B core using the high-speed serial interface. Figure 6-2
shows the Aurora 64B/66B test bench for the simplex configuration where DUT1 is
configured as TX-only simplex and DUT2 is configured as RX-only simplex.

The test bench looks for the state of the transmitter and receiver channels and then checks
the integrity of the user data for a predetermined simulation time. The tx_channel_up
and rx_channel_up assertion messages indicate that link training and channel bonding
(in case of multi-lane designs) are successful.

X-Ref Target - Figure 6-2

Figure 6-2: Aurora 64B/66B Test Bench for Simplex Configuration

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=102

Aurora 64B/66B v10.0 www.xilinx.com 103
PG074 April 1, 2015

Appendix A

Verification, Compliance, and
Interoperability

This appendix provides details about how this IP core was tested for compliance.

Aurora 64B/66B cores are verif ied for protocol compliance using an array of automated
hardware and simulation tests. The core comes with an example design implemented using
a linear feedback shift register (LFSR) for understanding and verif ication of the core
features.

Aurora 64B/66B cores are tested in hardware for functionality, performance, and reliability
using Xilinx evaluation boards. Aurora 64B/66B verif ication test suites for all possible
modules are continuously being updated to increase test coverage across the range of
possible parameters for each individual module.

A series of test scenarios are validated using various Xilinx development boards which are
listed in Table A-1. These boards can be used to prototype system designs and the core can
be used to communicate with other systems.

To achieve interoperability among different versions of Aurora 64B/66B cores for 7 series
FPGA transceivers, a user-level parameter is provided which must be set to achieve proper
interoperability between cores as shown in Table A-2. Table A-3 shows the interoperability
between 2015.1 (7 series FPGAs) with 2015.1 (UltraScale™ FPGAs) of the Aurora 64B/66B
core.

Table A-1: Xilinx Development Boards

Target Device Evaluation Boards Characterization boards

7 series FPGAs KC705, VC707, VC709, ZC706 KC724, VC7203, ZC723, VC7215

UltraScale™ architecture VCU107, KCU105 UC1283

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=103

Aurora 64B/66B v10.0 www.xilinx.com 104
PG074 April 1, 2015

Appendix A: Verification, Compliance, and Interoperability

To handle backward compatibility with earlier core versions, three parameters,
BACKWARD_COMP_MODE1, BACKWARD_COMP_MODE2 and BACKWARD_COMP_MODE3
are included in the <user_component_name>_core.v module. These parameters allow
2014.1 (7 series FPGAs) core versions to provide the characteristics and functionality of
previous versions of the core. These parameters were created to conveniently handle the
condition where updates to the previous core versions are not practical. Hence, the overall
stability of the linked system (new <-> old) is equivalent to the stability of links achievable
between previous core versions (old <-> old) as shown in Table A-2.

BACKWARD_COMP_MODE1 /BACKWARD_COMP_MODE2

• Default value is 0. This ensures compatibility between 2014.1 (7 series FPGAs) core and
2013.4 (7 series FPGAs) core and between 2014.1 (7 series FPGAs) core and 2013.3 (7
series FPGAs) core.

• Set both these parameters to 1 to make the 2014.1 (7 series FPGAs) core compatible
with the 2013.2 (7 series FPGAs) core or with the ISE 14.7 (6 series) core.

BACKWARD_COMP_MODE3

• Default value is 0. Set this parameter to 1 (from 2014.3 (7 series FPGAs) core) if the core
needs to clear the hot plug counter on reception of any valid BTF. When this parameter
is 0, the hot-plug counter is only cleared by reception of CC blocks.

Table A-2: Aurora 64B/66B Interoperability

2014.1 (7 series FPGAs) Interoperability with 2013.2 (7 series FPGAs) of Aurora 64B/66B

2014.1\2013.2 2013.2 (7 series) GTX Transceivers 2013.2 (7 series) GTH Transceivers

2014.1 (7 series)
GTX transceivers √ √

2014.1 (7 series)
GTH transceivers √ √

2014.1 (7 series) Interoperability with ISE 14.7 (6 series) of Aurora 64B/66B

2014.1\ISE 14.7 ISE 14.7 (6 series) GTX Transceivers ISE 14.7 (6 series) GTH Transceivers

2014.1 (7 series)
GTX transceivers √ x

2014.1 (7 series)
GTH transceivers √ x

Table A-3: 2015.1 Aurora 64B/66B Interoperability

2015.1 (7-series FPGAs) Interoperability with 2015.1 (UltraScale FPGAs) of Aurora 64B66B

2015.1 GTH UltraScale Transceivers

2015.1 (7-series) GTH Transceivers √

2015.1 (7-series) GTX Transceivers √

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=104

Aurora 64B/66B v10.0 www.xilinx.com 105
PG074 April 1, 2015

Appendix B

Migrating and Upgrading
This appendix contains information about upgrading to a more recent version of the IP core
and migrating legacy (LocalLink based) Aurora 64B/66B Cores to the AXI4-Stream Aurora
64B/66B Core.

For customers upgrading in the Vivado® Design Suite, important details (where applicable)
about any port changes and other impacts to user logic are included.

Device Migration
If migrating from a 7 series device with GTX or GTH transceivers to an UltraScale™ device
with GTH transceivers, the prefixes of the optional transceiver debug ports for single-lane
cores are changed from “gt0”, “gt1” to “gt”, and the suff ix “_in” and “_out” are
dropped. For multi-lane cores, the prefixes of the optional transceiver debug ports gt(n) are
aggregated into a single port. For example: gt0_gtrxreset and gt1_gtrxreset now
become gt_gtrxreset [1:0]. This is true for all ports, with the exception of the DRP
buses which follow the convention of gt(n)_drpxyz.

IMPORTANT: It is important that designs are updated to use the new transceiver debug port names. For
more information about migration to UltraScale devices, see the UltraScale Architecture Migration
Methodology Guide (UG1026) [Ref 12]

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=105

Aurora 64B/66B v10.0 www.xilinx.com 106
PG074 April 1, 2015

Appendix B: Migrating and Upgrading

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

In the latest revision of the core, there have been several changes which make the core
pin-incompatible with previous versions. These changes were required as part of the general
one-off hierarchical changes to enhance the customer experience.

Shared Logic
As part of the hierarchical changes to the core, it is now possible to have the core itself
include all of the logic which can be shared between multiple cores, which was previously
exposed in the example design for the core.

RECOMMENDED: If upgrading to a later core version with shared logic, there is no simple upgrade path
and it is recommended that you consult the Shared Logic sections of this document for more guidance.

Updates from v9.3 Core
Table B-1 explains the interfaces and ports updating (addition and removal) in v10.0 of the
Aurora 64B/66B core and provides guidance on the impact of these port additions on
designs using pre v10.0 cores.

Table B-1: New Ports Added to Aurora 64B/66B in 2015.1

Port Direction Clock
Domain Description

reset/ tx_reset/
rx_reset Input user_clk This is used internally in the core.

reset2fg Output user_clk Available in simplex cores. Used to reset the Frame
Generator only.

reset2fx Output user_clk Available in simplex cores. Used to reset the Frame
Checker only.

gt_pcsrsvdin Input async Optional Transceiver Debug port added.

gt<lane>_txinhibit/
gt_txinhibit Input user_clk Optional Transceiver Debug port added.

do_cc Input user_clk This port is now removed because the standard CC
module is part of the core.

Notes:
1. Flow control AXI ports are grouped into respective AXI4-Stream interfaces; control and status ports are grouped

into display interfaces.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=106

Aurora 64B/66B v10.0 www.xilinx.com 107
PG074 April 1, 2015

Appendix B: Migrating and Upgrading

When IP is upgraded, critical warnings occur due to these port additions. As Ease of Use
enhancements to the core the reset/ tx_reset/ rx_reset ports are now connected
inside the core. Similarly the do_cc port is removed because the standard cc module is now
part of the core. The removal of these two ports does not interfere with basic functionality.

Updates in the v9.0 Core
• In the TX Startup FSM, the prior counting mechanism for mmcm_lock_count was

based on txuserclk . Limitations resulted because this was a recovered clock.
stable_clock is now used for the MMCM Lock synchronization.

• The RX datapath is now 32 bits up to the CBCC module, thus avoiding width conversion
logic and clk_en generation. These functions are handled in the CBCC module before
writing data to the FIFO.

• Logic added to detect polarity inversion and to invert polarity while lane init is enabled.

• The core internally generates tx_channel_up for Aurora 64B/66B TX logic and
rx_channel_up for Aurora 64B/66B RX logic. This action ensures that the RX logic is
active and ready to receive before the TX logic begins sending. rx_channel_up is
presented as channel_up.

• Reset and controls are common across all lanes.

• The RX CDR lock time was increased from 50 KUI to 37 MUI as suggested by the
transceiver user guide.

• The Block Sync header max count was increased from 64 to 60,000 to improve the
robustness of the link.

• Allowed transmission of more idle characters during channel initialization to improve
robustness of the link.

• Removed the scrambler reset making it free running to achieve faster CDR lock. The
default pattern sent by the scrambler is the scrambled value of NA idle character.

• Updated the GTH transceiver QPLL attributes - See AR 56332.

• Added shared logic and optional transceiver control and status debug ports.

• Updated clock domain crossing synchronizers to increase Mean Time Between Failures
(MTBF) from meta-stability. Currently using a common synchronizer module and
applying false path constraints only for the f irst stage of the flops.

• Added support for Cadence IES and Synopsys VCS simulators.

• Added Vivado lab tools support for debug.

• Added quality counters in the example design to increase the test quality.

• Added a hardware reset state machine in the example design to perform repeat reset
testing.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/answers/56332.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=107

Aurora 64B/66B v10.0 www.xilinx.com 108
PG074 April 1, 2015

Appendix B: Migrating and Upgrading

Migrating Legacy (LocalLink based) Aurora 64B/66B
Cores to the AXI4-Stream Aurora 64B/66B Core

Prerequisites
• Vivado design tools build containing the Aurora 64B/66B v9.x core supporting the

AXI4-Stream protocol

• Familiarity with the Aurora 64B/66B directory structure

• Familiarity with running the Aurora 64B/66B example design

• Basic knowledge of the AXI4-Stream and LocalLink protocols

• Latest product guide (PG074) of the core with the AXI4-Stream updates

• Legacy documents: LogiCORE IP Aurora 64B/66B 64B/66B v4.2 Data Sheet (DS528)
[Ref 14], LogiCORE IP Aurora 64B/66B v4.1 Getting Started Guide (UG238) [Ref 15], and
LogiCORE IP Aurora 64B/66B v4.2 User Guide (UG237) [Ref 16] for reference.

• Migration guide (this Appendix)

Overview of Major Changes
The major changes to the core is the addition of the AXI4-Stream interface:

• Max line rate support of 16.375G added for UltraScale device GTH transceivers.

• GT location selection option for UltraScale device added to the core.

• Added support for simplex auto recovery.

• Flow control ports grouped into AXI4-Stream interfaces.

• Control and Status ports are grouped into display interfaces.

• Single-ended clock option added to the core for init_clk and gt_refclk .

• Both reset inputs pma_init and reset_pb made asynchronous. The reset,
tx_reset and rx_reset input ports were removed.

• CRC resource utilization optimized.

• Standard CC module made part of the IP. The do_cc port was removed.

• Line rate value restricted to four decimal digits for UltraScale devices.

• INIT clock frequency value can take up to six decimal digits.

.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=108

Aurora 64B/66B v10.0 www.xilinx.com 109
PG074 April 1, 2015

Appendix B: Migrating and Upgrading

Block Diagrams
Figure B-1 shows an example Aurora 64B/66B design using the legacy LocalLink interface.
Figure B-2 shows an example Aurora 64B/66B design using the AXI4-Stream interface.

Signal Changes

X-Ref Target - Figure B-1

Figure B-1: Legacy Aurora 64B/66B Example Design
X-Ref Target - Figure B-2

Figure B-2: AXI4-Stream Aurora 64B/66B Example Design

Table B-2: Interface Changes

LocalLink Name AXI4-S Name Difference

TX_D s_axi_tx_tdata Name change only

TX_REM s_axi_tx_tkeep
Name change.
For functional differences, see Table 2-4, page 14

TX_SOF_N Generated Internally

TX_EOF_N s_axi_tx_tlast Name change; Polarity

TX_SRC_RDY_N s_axi_tx_tvalid Name change; Polarity

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=109

Aurora 64B/66B v10.0 www.xilinx.com 110
PG074 April 1, 2015

Appendix B: Migrating and Upgrading

TX_DST_RDY_N s_axi_tx_tready Name change; Polarity

UFC_TX_REQ_N ufc_tx_req Name change; Polarity

UFC_TX_MS ufc_tx_ms No Change

UFC_TX_D s_axi_ufc_tx_tdata Name change only

UFC_TX_SRC_RDY_N s_axi_ufc_tx_tvalid Name change; Polarity

UFC_TX_DST_RDY_N s_axi_ufc_tx_tready Name change; Polarity

NFC_TX_REQ_N s_axi_nfc_tx_tvalid Name change; Polarity

NFC_TX_ACK_N s_axi_nfc_tx_tready Name change; Polarity

NFC_PAUSE
s_axi_nfc_tx_tdata

Name change.
For signal mapping, see Table 2-9, page 28NFC_XOFF

USER_K_DATA
s_axi_user_k_tdata

Name change.
For signal mapping, see Table 2-11, page 35 USER_K_BLK_NO

USER_K_TX_SRC_RDY_N s_axi_user_k_tx_tvalid Name change; Polarity

USER_K_TX_DST_RDY_N s_axi_user_k_tx_tready Name change; Polarity

RX_D m_axi_rx_tdata Name change only

RX_REM m_axi_rx_tkeep
Name change.
For functional difference, see Table 2-4, page 14

RX_SOF_N Removed

RX_EOF_N m_axi_rx_tlast Name change; Polarity

RX_SRC_RDY_N m_axi_rx_tvalid Name change; Polarity

UFC_RX_DATA m_axi_ufc_rx_tdata Name change only

UFC_RX_REM m_axi_ufc_rx_tkeep
Name change
For functional difference, see Table 2-10, page 31

UFC_RX_SOF_N Removed

UFC_RX_EOF_N m_axi_ufc_rx_tlast Name change; Polarity

UFC_RX_SRC_RDY_N m_axi_ufc_rx_tvalid Name change; Polarity

RX_USER_K_DATA
m_axi_rx_user_k_tdata

Name change
For functional difference, see Table 2-11, page 35 RX_USER_K_BLK_NO

RX_USER_K_SRC_RDY_N m_axi_rx_user_k_tvalid Name change; Polarity

Table B-2: Interface Changes (Cont’d)

LocalLink Name AXI4-S Name Difference

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=110

Aurora 64B/66B v10.0 www.xilinx.com 111
PG074 April 1, 2015

Appendix B: Migrating and Upgrading

Migration Steps
Generate an AXI4-Stream Aurora 64B/66B core from the Vivado design tools.

Simulate the Core

1. Run simulation from the Vivado IDE. Select simulation type to launch.

2. QuestaSim launches and compiles the modules.

3. The wave_mti.do f ile loads automatically and populates AXI4-Stream signals.

4. Allow the simulation to run. This might take some time.

a. Initially lane up is asserted.

b. Channel up is then asserted and the data transfer begins.

c. Data transfer from all flow control interfaces now begins.

d. Frame checker continuously checks the received data and reports for any data
mismatch.

5. A 'TEST PASS' or 'TEST FAIL' status is printed on the QuestaSim console providing the
status of the test.

Implement the Core

1. Click Run Implementation to run synthesis and implementation consecutively.

Integrate to an Existing LocalLink‐based Aurora 64B/66B Design

1. The Aurora 64B/66B core provides a lightweight 'shim' to interface to any existing LL
based interface. The shims are delivered along with the core from the
aurora_64b66b_v8_0 version of the core.

2. See Figure B-2, page 109 for the emulation of a LL Aurora 64B/66B core from a
AXI4-Stream Aurora 64B/66B core.

3. Two shims <user_component_name>_ll_to_axi.v and
<user_component_name>_axi_to_ll.v are provided in the src directory of the
AXI4-Stream Aurora 64B/66B core.

4. Instantiate both the shims along with <user_component_name>.v in the existing LL
based design top.

5. Connect the shim and AXI4-Stream Aurora 64B/66B design as shown in Figure B-2,
page 109.

6. The latest AXI4-Stream Aurora 64B/66B core is now usable in any existing LL design
environment.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=111

Aurora 64B/66B v10.0 www.xilinx.com 112
PG074 April 1, 2015

Appendix B: Migrating and Upgrading

Vivado IDE Changes
Figure B-3 shows the AXI4-Stream signals in the IP Symbol diagram.

Limitations
This section outlines the limitations of the Aurora 64B/66B core for AXI4-Stream support.

IMPORTANT: Be aware of the following limitations while interfacing the Aurora 64B/66B core with the
AXI4-Stream compliant interface core.

X-Ref Target - Figure B-3

Figure B-3: AXI4-Stream Signals

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=112

Aurora 64B/66B v10.0 www.xilinx.com 113
PG074 April 1, 2015

Appendix B: Migrating and Upgrading

Limitation 1:

The AXI4-Stream specif ication supports four types of data stream:

• Byte stream

• Continuous aligned stream

• Continuous unaligned stream

• Sparse stream

The Aurora 64B/66B core supports only continuous aligned stream and continuous
unaligned stream. The position bytes are valid only at the end of packet.

Limitation 2:

The AXI4-Stream protocol supports transfer with zero data at the end of packet, but the
Aurora 64B/66B core expects at least one byte should be valid at the end of packet.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=113

Aurora 64B/66B v10.0 www.xilinx.com 114
PG074 April 1, 2015

Appendix C

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the Aurora 64B/66B core, the Xilinx
Support web page (www.xilinx.com/support) contains key resources such as product
documentation, release notes, answer records, information about known issues, and links
for obtaining further product support. Also see the Aurora home page.

Documentation
This product guide is the main document associated with the Aurora 64B/66B core. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page (www.xilinx.com/support) or by using the Xilinx
Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads
page (www.xilinx.com/download). For more information about this tool and the features
available, open the online help after installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

Send Feedback

http://www.xilinx.com
www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
www.xilinx.com/support
www.xilinx.com/download
www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=114

Aurora 64B/66B v10.0 www.xilinx.com 115
PG074 April 1, 2015

Appendix C: Debugging

A filter search is available after results are returned to further target the results.

To use the Answers Database Search:

1. Navigate to www.xilinx.com/support. The Answers Database Search is located at the top
of this web page.

2. Enter keywords in the provided search f ield and select Search.

° Examples of searchable keywords are product names, error messages, or a generic
summary of the issue encountered.

° To see all answer records directly related to the Aurora 64B/66B core, search for the
phrase "Aurora 64B66B"

Master Answer Record for the Aurora 64B/66B Core

AR: 54368

Xilinx provides premier technical support for customers encountering issues that require
additional assistance.

Contacting Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support:

1. Navigate to www.xilinx.com/support.

2. Open a WebCase by selecting the WebCase link located under Additional Resources.

When opening a WebCase, include:

• Target FPGA including package and speed grade.

• All applicable Xilinx Design Tools and simulator software versions.

• The XCI f ile created during Aurora 64B/66B core generation

• Additional f iles based on the specif ic issue might also be required. See the relevant
sections in this debug guide for guidelines about which f ile(s) to include with the
WebCase.

Note: Access to WebCase is not available in all cases. Log in to the WebCase tool to see your specif ic
support options.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/answers/54368.htm
http://www.xilinx.com/support/answers/52313.htm
http://www.xilinx.com/support
www.xilinx.com/support
http://www.origin.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=115

Aurora 64B/66B v10.0 www.xilinx.com 116
PG074 April 1, 2015

Appendix C: Debugging

Vivado Lab Edition
Vivado® Lab Edition (formerly known as Vivado lab tools) inserts logic analyzer and virtual
I/O cores directly into your design. Vivado Lab Edition also allows you to set trigger
conditions to capture application and integrated block port signals in hardware. Captured
signals can then be analyzed. This feature in the Vivado IDE is used for logic debugging and
validation of a design running in Xilinx.

Simulation Debug

Lanes and Channel Do Not Come Up in Simulation
• The quickest way to debug this issue is to view the signals from one of the GTX or GTH

transceiver instances that is not working.

• Ensure that the reference clock and user clocks are all toggling.

Note: Only one of the reference clocks should be toggling, The rest are tied Low.

• Check to see that recclk and txoutclk are toggling. If they are not toggling, it
might be necessary to wait longer for the PMA to finish locking. Wait for lane up and
channel up. It might be necessary to wait longer for simplex/7 series FPGA designs.

• Ensure that txn and txp are toggling. If they are not, make sure to wait long enough
(see the previous bulleted item) and make sure that another signal is not driving the
txn/txp signal.

• Check in the <user_component_name>_support module whether the
pll/mmcm_not_locked signal and the reset signals are present in the design. If
these are being held active, the Aurora 64B/66B module cannot initialize.

• Ensure that the power_down signal is not being asserted.

• Ensure that the txn and txp signals from each GTX or GTH transceiver are connected
to the appropriate rxn and rxp signals from the corresponding GTX or GTH transceiver
on the other side of the channel

• Instantiate the "glbl" module and use it to drive the power_up reset at the beginning
of the simulation to simulate the reset that occurs after configuration. Hold this reset
for a few cycles. The following code can be used an example:

//Simulate the global reset that occurs after configuration at the beginning
//of the simulation.
assign glbl.GSR = gsr_r;
assign glbl.GTS = gts_r;

initial
begin

gts_r = 1'b0;
gsr_r = 1'b1;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=116

Aurora 64B/66B v10.0 www.xilinx.com 117
PG074 April 1, 2015

Appendix C: Debugging

#(16*CLOCKPERIOD_1);
gsr_r = 1'b0;

end

• If using a multilane channel, make sure all of the transceivers on each side of the
channel are connected in the correct order.

Channel Comes Up in Simulation But s_axi_tx_tready is Never
Asserted (Never Goes High)
• If the module includes flow control but it is not being used, make sure the request

signals are not currently driven High. s_axi_nfc_tx_tvalid and ufc_tx_req are
active-High: if they are High, s_axi_tx_tready stays Low because the channel is
allocated for flow control.

• If the module includes USER-K blocks but they are not being used, make sure the
s_axi_user_k_tx_tvalid is not driven High. If it is High, s_axi_tx_tready stays
Low as channel is allocated for USER-K Blocks.

• If NFC is enabled, make sure the design on the other side of the channel did not send
an NFC XOFF message. This cuts off the channel for normal data until the other side
sends an NFC XON message to turn the flow on again.

Bytes and Words Are Being Lost As They Travel Through the
Aurora 64B/66B Channel
• If using the AXI4-Stream interface, make sure to write data correctly. The most common

mistake is to assume words are written without looking at s_axi_tx_tready. Also
remember that the s_axi_tx_tkeep signal must be used to indicate which bytes are
valid when s_axi_tx_tlast is asserted.

• Ensure to read correctly from the RX interface. Data and framing signals are only valid
when m_axi_rx_tvalid is asserted.

Problems While Compiling the Design
Ensure to include all the files from the src directory when compiling. Check if the simulator
and libraries are set up properly. Check if the simulator language is set to mixed.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=117

Aurora 64B/66B v10.0 www.xilinx.com 118
PG074 April 1, 2015

Appendix C: Debugging

Next Step
Open a support case to have the appropriate Xilinx expert assist with the issue.

To create a technical support case in WebCase, see the Xilinx website at:
www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

• Detailed description of the issue

• Results of the steps listed previously

• Attach a VCD or WLF dump of the observation

Hardware Debug
Most f ields in the Vivado® Integrated Design Environment (IDE) have tool tips serving as
guidelines to properly configure and generate the core.

Observe and follow all RECOMMENDED and IMPORTANT notes in product guides.

As the transceiver is the critical building block in the Aurora 64B/66B core, debugging and
ensuring proper operation of the transceiver is extremely important. Figure C-1 shows the
steps involved for debugging transceiver-related issues.

IMPORTANT: Ensure that the serial transceiver attributes are updated. See Appendix D, Generating a
GT Wrapper File from the Transceiver Wizard for information regarding updating the serial transceiver
attribute settings.

This section provides a debug flow diagram for resolving some of the most common issues.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=118

Aurora 64B/66B v10.0 www.xilinx.com 119
PG074 April 1, 2015

Appendix C: Debugging

X-Ref Target - Figure C-1

Figure C-1: Transceiver Debug Flow Chart

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=119

Aurora 64B/66B v10.0 www.xilinx.com 120
PG074 April 1, 2015

Appendix C: Debugging

1. Transceiver Attribute Check

Transceiver attributes must match with the silicon version of the device being used on
the board. Apply all the applicable workarounds and Answer Records given for the
relevant silicon version.

2. GT REFCLK and GT PLL LOCK Check

A low-jitter differential clock must be provided as the transceiver reference clock. Ensure
that REFCLK location constraints are correct with respect to the board schematics.
REFCLK should be active and should meet the phase noise requirements of the
transceiver. Ensure that the transceiver locks into the incoming GT REFCLK and asserts
the gt_pll_lock signal. This signal is available in the Aurora 64B/66B example design.
If the gt_pll_lock signal is toggling periodically, check if FSM_RESETDONE is also
toggling. Ensure that the GT PLL attributes are set correctly and that the transceiver
generates txoutclk with the expected frequency for the given line rate and datapath
width options. Note that the Aurora 64B/66B core uses channel PLL/Quad PLL
(CPLL/QPLL) in the generated core for GTX or GTH transceivers.

3. GT TX/RX RESETDONE Check

The Aurora 64B/66B core uses the sequential reset mode; all of the transceiver
components are reset sequentially, one after another. txresetdone and rxresetdone
signals should be asserted at the end of the transceiver initialization. In general,
rxresetdone assertion takes longer compared to the txresetdone assertion. Ensure
the gt_reset signal pulse width duration matches with the respective transceiver
guideline. Probe the signals and FSM states from the RX/TX STARTUP FSM module.

4. USER_CLK Generation Check

The transceiver generates txoutclk based on the line rate parameter. The user_clk
signal is generated from txoutclk and the Aurora 64B/66B core uses it as an FPGA
logic clock. Check that user_clk is generated properly with the expected frequency
from txoutclk . If the user_clk frequency is not in the expected range, check the
frequency of the transceiver reference clock and PLL attributes.

5. MMCM Lock Check

Aurora 64B/66B cores expect all clocks to be stable. If clocks are generated using an
MMCM, ensure the reset inputs are held High until the generated clock is stable. It is
recommended to stop the output clock from the MMCM until it is locked. This can be
accomplished by using a BUFGCE with the output clock where CE is driven by the MMCM
lock output. If the MMCM_LOCK signal is toggling periodically, check if the
TX_STARTUP_FSM is restarting and probe the signals and states of the FSM.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=120

Aurora 64B/66B v10.0 www.xilinx.com 121
PG074 April 1, 2015

Appendix C: Debugging

6. BLOCK SYNC Check

See the block sync algorithm described in the Aurora 64B/66B Protocol Specification
(SP011) [Ref 5] for block sync done.

7. LANE_UP Assertion Check

Assertion of the lane_up signal indicates the communication between the transceiver
and its channel partner is established and link training is successful. Enable loopback
mode and check for lane_up assertions. Bring the LANE_INIT_SM module FSM state
signals to debug if lane_up is not asserted. See the Lane Initialization Procedure in the
Aurora 64B/66B Protocol Specification (SP011) [Ref 5] for lane_up assertion details.

Single Lane:

8. CHANNEL_UP Assertion Check

The criteria for channel_up signal assertion are the verif ication sequence (defined in
the Aurora 64B/66B protocol) being transferred between channel partners, and the
successful reception of four verif ication sequences. Enable loopback mode and check for
lane_up assertions. Bring the CHANNEL_INIT_SM module FSM state signals to debug if
channel_up is not asserted. For a simplex link, the simplex TX partner might have
already achieved channel_up status. See the Channel Verif ication Procedure in the
Aurora 64B/66B Protocol Specification (SP011) [Ref 5] for channel_up assertion details.

9. Periodic Channel Failures Check

If the Aurora 64B/66B core asserts and deasserts the channel_up signal, enable
internal loopback and check for a stable channel up condition. Probe RXBUFSTATUS of
the transceiver. If there is overflow or underflow, the CLK_COR_MIN_LAT and
CLK_COR_MAX_LAT transceiver values need to be adjusted.

Multiple Lane:

8. Channel Bonding Assertion Check

Channel bonding is necessary for a multi-lane Aurora 64B/66B design. Channel bonding
is performed by the transceiver and the required logic is present in the
transceiver_wrapper module. Ensure that channel bonding level, master and slave
connections are correct. Check that the transceiver CLK_COR_MIN_LAT and
CLK_COR_MAX_LAT attributes are set as per the recommendation. See the channel
bonding procedure in the Aurora 64B/66B Protocol Specification (SP011) [Ref 5] for
channel_up assertion details.

9. CHANNEL_UP Assertion Check

(See Single Lane, step 8)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=121

Aurora 64B/66B v10.0 www.xilinx.com 122
PG074 April 1, 2015

Appendix C: Debugging

10. Periodic Channel Failures Check

(See Single Lane, step 9)

11. Data Transfer Check

After channel_up is asserted, the Aurora 64B/66B core is ready to transfer data (wait
for tready assertion). Data errors can be monitored with VIO. The tx_d and rx_d
signals are connected to monitor the data transfer. Also, soft_err and hard_err are
connected to VIO. If data_err_count is incrementing, perform a loopback test as
described in step 12. If the loopback test passes, check the transmitted data and cable
for channel integrity. Run the integrated bit error ratio test (IBERT) to confirm link
connectivity and SI on the channel. If IBERT runs are unsuccessful, monitor the power
supplies and termination circuit, then run SI simulations on the transceiver.

12. LOOPBACK Testing Check

Loopback modes are specialized configurations of the transceiver datapath. The
loopback port of the Aurora 64B/66B example design controls the loopback modes.
Four loopback modes are available. Figure C-2 illustrates a loopback test configuration
with four different loopback modes. Refer to the respective transceiver user guide for
guidelines and additional information.

X-Ref Target - Figure C-2

Figure C-2: Loopback Testing Overview

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=122

Aurora 64B/66B v10.0 www.xilinx.com 123
PG074 April 1, 2015

Appendix C: Debugging

Design Bring-Up on the KC705 Evaluation Board
For detailed procedures to set up and operate the Aurora 64B/66B core on the KC705
evaluation board, see Designing a System Using the Aurora 64B66B Core (Duplex) on the
KC705 Evaluation Kit Application Note (XAPP1192) [Ref 24].

Interface Debug
If data is not being transmitted or received for the AXI4-Stream Interfaces, check the
following conditions:

• If transmit s_axi_tx_tready is stuck Low following the s_axi_tx_tvalid input
being asserted, the core cannot send data.

• If the receive s_axi_tx_tvalid is stuck Low, the core is not receiving data.

• Check that the user_clk inputs are connected and toggling.

• Check that the AXI4-Stream waveforms are being followed. See Figure 2-8, page 18.

• Check core configuration.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=123

Aurora 64B/66B v10.0 www.xilinx.com 124
PG074 April 1, 2015

Appendix D

Generating a GT Wrapper File from the
Transceiver Wizard

The transceiver attributes play a vital role in the functionality of the Xilinx® LogiCORE™ IP
Aurora 64B/66B core. Use the latest transceiver wizard to generate the transceiver wrapper
f ile.

RECOMMENDED: Xilinx strongly recommends updating the transceiver wrapper file in the Vivado®
Design Suite tool releases when the transceiver wizard has been updated but the Aurora 64B/66B core
has not.

Use these steps to generate the transceiver wrapper f ile using the 7 series FPGAs
Transceivers Wizard:

1. Using the Vivado IP Catalog, run the latest version of the 7 series FPGAs Transceivers
Wizard. Ensure the Component Name of the transceiver wizard matches the Component
Name of the Aurora 64B/66B core.

2. Select the protocol template: Aurora 64B/66B.

3. Set the Line Rate for both the TX and RX transceivers based on the application
requirement.

4. Select the Reference Clock from the drop-down menu for both the TX and RX
transceivers based on the application requirement.

5. Select transceiver(s) and the clock source(s) based on the application requirement.

6. On Page 3, select External Data Width of the RX transceiver to be 32 Bits and Internal
Data Width to be 32 bits. Ensure that the TX transceiver is configured with 64-bit
external data width and 32-bit internal data width.

7. Keep all other settings as default.

8. Generate the core.

9. Replace the <user_component_name>_gtx.v f ile in the example_design/gt/
directory available in the Aurora 64B/66B core with the generated
<user_component_name>_gt.v f ile generated from the 7 series FPGAs Transceivers
Wizard.

The transceiver settings for the Aurora 64B/66B core are now up to date.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=124

Aurora 64B/66B v10.0 www.xilinx.com 125
PG074 April 1, 2015

Appendix D: Generating a GT Wrapper File from the Transceiver Wizard

Note: The UltraScale™ architecture Aurora 64B/66B core uses the hierarchical core calling method
to call the UltraScale device GTWizard IP core. In this way, all the transceiver attributes, parameters,
and required workarounds are up to date. Manual editing of the UltraScale device transceiver f iles
are not required in most cases.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=125

Aurora 64B/66B v10.0 www.xilinx.com 126
PG074 April 1, 2015

Appendix E

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

References
These documents provide supplemental material useful with this product guide:

1. 7 Series FPGAs Overview (DS180)

2. UltraScale Architecture and Product Overview (DS890)

3. UltraScale Architecture GTH Transceivers User Guide (UG576)

4. 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)

5. Aurora 64B/66B Protocol Specification (SP011)

6. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

7. Vivado Design Suite User Guide: Designing with IP (UG896)

8. Vivado Design Suite User Guide: Getting Started (UG910)

9. Vivado Design Suite User Guide - Logic Simulation (UG900)

10. 7 Series GTZ Transceiver User Guide (UG478)

11. UltraScale FPGAs Transceivers Wizard Product Guide (PG182)

12. UltraScale Architecture Migration Methodology Guide (UG1026)

13. ISE to Vivado Design Suite Migration Guide (UG911)

14. LogiCORE IP Aurora 64B/66B v4.2 Data Sheet (DS528)

15. LogiCORE IP Aurora 64B/66B v4.1 Getting Started Guide (UG238)

16. LogiCORE IP Aurora 64B/66B v4.2 User Guide (UG237)

17. Vivado Design Suite User Guide: Programming and Debugging (UG908)

18. Vivado AXI Reference Guide (UG1037)

Send Feedback

http://www.xilinx.com/support/documentation/ip_documentation/ug1037-vivado-axi-reference.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=gtwizard_ultrascale;v=latest;d=pg182-gtwizard-ultrascale.pdf
www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1026-ultrascale-migration-guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug1037-vivado-axi-reference.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v4_2/aurora_64b66b_ds528.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_gsg238.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v4_2/aurora_64b66b_ug237.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug1037-vivado-axi-reference.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=126

Aurora 64B/66B v10.0 www.xilinx.com 127
PG074 April 1, 2015

Appendix E: Additional Resources and Legal Notices

19. Virtex-7 FPGAs Data Sheet: DC and Switching Characteristics (DS183)

20. Kintex-7 FPGAs Data Sheet: DC and Switching Characteristics (DS182)

21. Synthesis and Simulation Design Guide (UG626)

22. ARM AMBA 4 AXI4-Stream Protocol v1.0 Specification (ARM IHI 0051A)

23. Packaging Custom AXI IP for Vivado IP Integrator Application Note (XAPP1168)

24. Designing a System Using the Aurora 64B66B Core (Duplex) on the KC705 Evaluation Kit
Application Note (XAPP1192)

Revision History
The following table shows the revision history for this document

Date Version Revision

04/01/2015 10.0 General changes
• Updated Max line rate information.
• Updated information for GT location selection option for Ultrascale devices
• Grouped Flow control AXI ports into AXI4 Stream interface.
• Added as a single row entry the interface to which a port belongs.
• Updated single ended clock option information.
• Added support for the Simplex Auto Link Recovery feature
• Updated Reset section.
• Moved all of the material in the Core Features chapter to the end of Chapter 3,

Designing with the Core. Deleted Chapter 4.
• Added Single/Differential clocking option for GTREFCLK and core INIT_CLK
• Removed data strobe information.
• Removed do_cc information.
Chapter 2, Product Specification
• Updated TX user interface description
• Updated Figure 2-4, Figure 2-12, Figure 22-14.
• Added reset2fg, reset2fc, gt_pcsrsvdin, gt<lane>_txinhibit_in/gt_txinhibit to Table

2-13: Transceiver Control and Status Interface Ports table.
• Added the CORE_STATUS, GT_SERIAL_RX, GT_SERIAL_TX, CORE_CONTROL,

QPLL_CONTROL_OUT, and QPLL_CONTROL_IN headings to Table 2-13.
• Removed reset/tx_reset/rx_reset from Table 2-14.
• Added Checking CRC at Core Level subsection to CRC Interface section.

Send Feedback

http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest+ise;d=sim.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_Sheet.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1168-axi-ip-integrator.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1192-aurora-64b66b-on-kc705.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=127

Aurora 64B/66B v10.0 www.xilinx.com 128
PG074 April 1, 2015

Appendix E: Additional Resources and Legal Notices

04/01/2015 10.0 Chapter 3, Designing with the Core

(continued) • Moved all of the material from the Core Features chapter to this chapter. Removed
the Core Features chapter.

• Added a note to Figure 3-1. Updated Figure 3-2, Figure, 3-3, Figure 3-6, Figure
3-17.

• Revised the following sections: Reset Sequencing, Aurora 64B/66B Simplex Power
On Sequence, Aurora 64B/66B Simplex Normal Operation Reset Sequence, Aurora
64B/66B Simplex TX and RX, and Reset Flow.

• Added a Single Ended option note to the Shared Logic section.
• Revised Clock Compensation section and moved to this chapter.
• Updated Figure 3-6, Figure 4-3, Figure 5-1, Figure B-3.

Chapter 4, Design Flow Steps (previously, Chapter 5)
• Updated all screen captures.
• Added four options to the Core Options tab: Lanes, Starting GT Quad, Starting GT

Lane, and GT Refclk Selection.
• Added two parameters to Table 4-1: Single Ended INIT CLK and Single Ended

GTREF CLK
• Removed Transceiver Channel Locations section.
• Deleted Figure 4-4.
• Replaced code in Example Design section.
• Added six rows to User Parameters table: Column Used, Starting GT Quad, Starting

GT Lane, GT Refclk Selection, Single Ended INIT CLK, and Single Ended GTREF CLK.
• Added notes 11 and 12 to Table 4-1.
• Removed Transceiver Channel Locations section.
• Deleted Figure 4-4 and the text following the f igure.
Appendix A: Verification, Compliance, and Interoperability
• Added Table A-3: 2015.1 Aurora 64B/66B Interoperability.
• Updated the release numbers in the bulleted items under

BACKWARD_COMP_MODE1 /BACKWARD_COMP_MODE2 and
BACKWARD_COMP_MODE3

Appendix B: Migrating and Upgrading
• Removed existing rows from Table B-1 and added six new rows.
• Modif ied Overview of Major Changes section.
• Updated Figure B-3.
Appendix C: Debugging
Changed “Vivado lab tools” to “Vivado Lab Edition.”

10/01/2014 9.3 • Added new v9.3 core features and attributes
• Rearranged content to consolidate topics and better conform to template

06/04/2014 9.2 • Added User Parameter information.

Date Version Revision

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=128

Aurora 64B/66B v10.0 www.xilinx.com 129
PG074 April 1, 2015

Appendix E: Additional Resources and Legal Notices

04/02/2014 9.2 • Added C_EXAMPLE_SIMULATION parameter for post synthesis/implementation
simulation speedup.

• Added support for UltraScale™ devices.
• Enhanced support for IP integrator.
• Added Little endian support for data and flow control interfaces as non-default

Vivado® IDE selectable option.
• Provided interoperability guidance.
• Resolved functional issue seen with specific frame lengths in certain scenarios.

12/18/2013 9.1 • Added default information to init_clk_p, initclk_n, and INIT_CLK description.
• Updated reset sequencing steps and waveform.
• Added information about pma_init staging.
• Updated screen captures.
• Added sequence of steps describing hardware FSM reset

10/02/2013 9.0 • Added new chapters: Simulation, Test Bench and Synthesis and Implementation.
• Added shared logic and transceiver debug features.
• Updated directory and file structure.
• Changed signal and port names to lowercase.
• Added Zynq®-7000 device support.
• Updated RX datapath architecture.
• Updated Aurora Simplex Operation description.
• Updated Figure 3-2 and screen captures in Chapter 4.
• Updated Hot-Plug Logic description.
• Added IP integrator support.
• Updated XDC file for the example design.
• Added design bring-up on evaluation board information.

06/19/2013 8.1 • Revision number advanced to 8.1 to align with core version number.
• Updated for 2013.2 release and core version 8.1.
• Fixed a NFC transmit failure scenario when Clock Correction is transmitted in

conjunction with the second NFC request. NFC state machine is updated to handle
such scenarios.

03/20/2013 2.0 • Updated for 2013.1 release and core version 8.0.
• Removed all ISE® design tools and Virtex®-6 related device information.
• Added Reset waveforms
• Updated debug guide with core and transceiver debug details
• Created lowercase ports for Verilog
• Added Simplex TX/RX support
• Enhanced protocol to increase Channel Init time
• Included TXSTARTUPFSM and RXSTARTUPFSM modules to control GT reset

sequence

Date Version Revision

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=129

Aurora 64B/66B v10.0 www.xilinx.com 130
PG074 April 1, 2015

Appendix E: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2012–2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM,
ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the
property of their respective owners.

12/18/2012 1.0.1 • Updated for 14.4 and 2012.4 release.
• Added TKEEP description
• Updated Debugging appendix.

10/16/2012 1.0 Initial Xilinx release as a product guide. This document replaces UG775, LogiCORE IP
Aurora 64B/66B User Guide and DS815, LogiCORE IP Aurora 64B/66B Data Sheet.
• Added section explaining constraining of the core.
• Added section explaining core debugging.

Date Version Revision

Send Feedback

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=Aurora%2064B%2F66B%20v10.0&releaseVersion=10.0&docPage=130

	Aurora 64B/66B v10.0
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Applications
	Unsupported Features
	Licensing and Ordering Information

	Ch. 2: Product Specification
	Performance
	Maximum Frequencies
	Latency
	Throughput

	Resource Utilization
	Port Descriptions
	User Interface
	Top‐Level Interface
	Framing Interface
	Streaming Interface

	Clock Interface
	Flow Control Interface
	Native Flow Control Interface
	User Flow Control Interface
	USER-K Block Interface

	Status, Control and the Transceiver Interface
	Status Control and Transceiver Ports
	Error Signals in Aurora 64B/66B Cores
	Initialization
	Aurora 64B/66B Simplex Operation
	Auto Link Recovery for Simplex
	DRP Interface
	Transceiver Debug Interface

	CRC Interface
	Figure 2-38 illustrates checking CRC at the core level. The figure shows 6n bytes of received data of a frame. At the end of the frame, the core asserts m_axi_rx_tlast and crc_valid. In the same clock cycle the transmitted and computed CRCs are compa...

	Ch. 3: Designing with the Core
	General Design Guidelines
	Keep It Registered
	Recognize Timing Critical Signals
	Make Only Allowed Modifications

	Clocking
	Aurora 64B/66B Clocking Architecture
	Usage of BUFG in the Aurora 64B/66B Core
	Reference Clocks for FPGA Designs

	Reset and Power Down
	Reset
	Reset Sequence
	Aurora 64B/66B Duplex
	Aurora 64B/66B Simplex
	Aurora 64B/66B Simplex TX and RX

	pma_init Staging in the Example Design
	Reset Flow
	Single Reset Use Cases
	Use Case 1: reset_pb assertion in the duplex core
	Use Case 2: pma_init Assertion in the Duplex Core
	Use Case 3: Assertion of reset_pb in the Simplex Core

	Power Down
	Timing

	Shared Logic
	Using CRC
	Hot Plug Logic
	Clock Compensation Logic
	Using Little Endian Support

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Core Options Tab for 7 Series FPGAs
	Component Name
	Line Rate
	GT Reference Clock Frequency
	INIT clk (MHz)
	GT DRP clk (MHz)
	Dataflow Mode
	Interface
	Flow Control
	USER K
	Little Endian Support
	CRC
	DRP Mode
	Additional Transceiver Control and Status Ports
	Vivado Lab Tools

	Core Options Tab for UltraScale Devices
	Lanes
	Starting GT Quad
	Starting GT Lane
	GT Refclk Selection
	Columns
	Lanes
	GT_TYPE
	Lane Assignment
	GT REFCLK1 and GT REFCLK2

	Shared Logic
	OK

	User Parameters
	Output Generation

	Constraining the Core
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement
	False Paths
	Example Design

	Simulation
	Synthesis and Implementation

	Ch. 5: Example Design
	Directory and File Contents
	Quick Start Example Design
	Generating the Core with Quick Start
	Implementing the Example Design

	Detailed Example Design
	FRAME_GEN
	FRAME_CHECK

	Using Vivado Lab Tools
	Implementing the Example Design
	Hardware Reset FSM in the Example Design

	Ch. 6: Test Bench
	Appx. A: Verification, Compliance, and Interoperability
	Appx. B: Migrating and Upgrading
	Device Migration
	Upgrading in the Vivado Design Suite
	Shared Logic
	Updates from v9.3 Core
	Updates in the v9.0 Core

	Migrating Legacy (LocalLink based) Aurora 64B/66B Cores to the AXI4-Stream Aurora 64B/66B Core
	Prerequisites
	Overview of Major Changes
	Block Diagrams
	Signal Changes
	Migration Steps
	Simulate the Core
	Implement the Core
	Integrate to an Existing LocalLink-based Aurora 64B/66B Design

	Vivado IDE Changes
	Limitations
	Limitation 1:
	Limitation 2:

	Appx. C: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Contacting Technical Support

	Vivado Lab Edition
	Simulation Debug
	Lanes and Channel Do Not Come Up in Simulation
	Channel Comes Up in Simulation But s_axi_tx_tready is Never Asserted (Never Goes High)
	Bytes and Words Are Being Lost As They Travel Through the Aurora 64B/66B Channel
	Problems While Compiling the Design
	Next Step

	Hardware Debug
	Design Bring-Up on the KC705 Evaluation Board
	Interface Debug

	Appx. D: Generating a GT Wrapper File from the Transceiver Wizard
	Appx. E: Additional Resources and Legal Notices
	Xilinx Resources
	References
	Revision History
	Please Read: Important Legal Notices

