
LogiCORE IP Aurora
64B/66B v9.2

Product Guide

Vivado Design Suite

PG074 June 4, 2014

Aurora 64B/66B v9.2 www.xilinx.com 2
PG074 June 4, 2014

Table of Contents

IP Facts

Chapter 1: Overview

Feature Summary. 6

Applications . 7

Unsupported Features. 7

Licensing and Ordering Information . 8

Chapter 2: Product Specification

Standards . 10

Performance. 10

Resource Utilization. 12

Port Descriptions . 13

Detailed Functional Description . 38

Chapter 3: Designing with the Core

General Design Guidelines . 71

Shared Logic . 72

Clocking. 75

Core Features . 81

Chapter 4: Design Flow Steps

Customizing and Generating the Core . 85

Core Customization Options for UltraScale Architecture Specific Designs 95

Constraining the Core . 100

Simulation . 103

Synthesis and Implementation . 104

Chapter 5: Detailed Example Design

Directory and File Contents. 106

Quick Start Example Design . 106

Detailed Example Design. 107

Implementing the Example Design. 120

Hardware Reset FSM in the Example Design . 121

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=2

Aurora 64B/66B v9.2 www.xilinx.com 3
PG074 June 4, 2014

Chapter 6: Test Bench

Appendix A: Verification, Compliance, and Interoperability

Appendix B: Migrating and Upgrading

Device Migration . 129

Migrating to the Vivado Design Suite. 129

Upgrading in the Vivado Design Suite . 129

Migrating Legacy (LocalLink based) Aurora Cores to the AXI4‐Stream Aurora Core. 133

Appendix C: Debugging

Finding Help on Xilinx.com . 140

Debug Tools . 142

Simulation Debug. 143

Hardware Debug . 145

Design Bring‐Up on Evaluation Board . 147

Interface Debug . 149

Appendix D: Generating a GT Wrapper File from the Transceiver Wizard

Appendix E: Additional Resources and Legal Notices

Xilinx Resources . 151

References . 151

Revision History . 152

Please Read: Important Legal Notices . 153

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=3

Aurora 64B/66B v9.2 www.xilinx.com 4
PG074 June 4, 2014 Product Specification

Introduction

The Xilinx® LogiCORE™ IP Aurora 64B/66B core
is a scalable, lightweight, high data rate,
link-layer protocol for high-speed serial
communication. The protocol is open and can
be implemented using Xilinx device
technology.

The Vivado® Design Suite produces source
code for Aurora 64B/66B cores. The cores can
be simplex or full-duplex, and feature one of
two simple user interfaces and optional flow
control.

Features

• Aurora 64B/66B cores supported on the
Vivado Design Suite

• General-purpose data channels with
throughput range from 500 Mb/s to over
200 Gb/s

• Supports up to any consecutive 16 GTX
transceivers
or 16 Virtex®-7 FPGA GTH transceivers and
16 UltraScale™ device GTH transceivers.

• Aurora 64B/66B protocol specification v1.2
compliant (64B/66B encoding)

• Low resource cost with very low (3%)
transmission overhead

• Easy-to-use AXI4-Stream (framing) or
streaming interface and optional flow
control

• Automatically initializes and maintains the
channel

• Full-duplex or simplex operation

• 32-bit Cyclic Redundancy Check (CRC) for
user data

• Supports RX polarity inversion

• Big Endian/Little Endian AXI4-Stream user
interface

IP Facts

LogiCORE IP Facts Table

Core Specifics

Supported
Device
Family(1)

UltraScale architecture,
Zynq®-7000 All Programmable SoC,

Virtex-7(2), Kintex®-7(2)

Supported
User Interfaces AXI4-Stream

Resources(3) See Table 2-1 and Table 2-2.

Provided with Core

Design Files RTL

Example
Design Verilog

Test Bench Verilog

Constraints
File Xilinx Design Constraints (XDC)

Simulation
Model Not Provided

Supported
S/W Driver N/A

Tested Design Flows(4)

Design Entry Vivado Design Suite
Vivado IP Integrator

Simulation For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis

Support

Provided by Xilinx @ www.xilinx.com/support

Notes:
1. For a complete list of supported devices, see the Vivado IP

catalog.
2. For more information, see 7 Series FPGAs Overview (DS180)

[Ref 1]. and UltraScale Architecture and Product Overview
(DS890) [Ref 2]

3. For more complete performance data, see Performance,
page 10.

4. For the supported versions of the tools, see the
Xilinx Design Tools: Release Notes Guide.

Send Feedback

http://www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.2;t=vivado+release+notes
www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.2;t=vivado+release+notes
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=4

Aurora 64B/66B v9.2 www.xilinx.com 5
PG074 June 4, 2014

Chapter 1

Overview
This product guide describes the function and operation of the LogiCORE™ IP Aurora
64B/66B v9.2 core and provides information about designing, customizing, and
implementing the core.

Aurora 64B/66B is a lightweight, serial communications protocol for multi-gigabit links
(Figure 1-1). It is used to transfer data between devices using one or many GTX or GTH
transceivers. Connections can be full-duplex (data in both directions) or simplex (data in
either one of the directions).

The LogiCORE IP Aurora 64B/66B core supports the AMBA ® protocol AXI4-Stream user
interface. It implements the Aurora 64B/66B protocol using the high-speed serial GTX or
GTH transceivers in applicable UltraScale™, Zynq®-7000, Virtex®-7 and Kintex®-7 devices.
The core can use up to 16 consecutive device GTX or GTH transceivers running at any
supported line rate to provide a low-cost, general-purpose, data channel with throughput
from 500 Mb/s to over 200 Gb/s.

Aurora 64B/66B cores are verif ied for protocol compliance using an array of automated
simulation tests.

Note: Version 9.2 of the Aurora 64B/66B core supports UltraScale, Zynq-7000, Virtex-7 and Kintex-7
devices.

X-Ref Target - Figure 1-1

Figure 1‐1: Aurora 64B/66B Channel Overview

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=5

Aurora 64B/66B v9.2 www.xilinx.com 6
PG074 June 4, 2014

Chapter 1: Overview

Aurora 64B/66B cores automatically initialize a channel when they are connected to an
Aurora 64B/66B channel partner. After initialization, applications can pass data across the
channel as frames or streams of data. Aurora 64B/66B frames can be of any size, and can be
interrupted any time by high priority requests. Gaps between valid data bytes are
automatically f illed with idles to maintain lock and prevent excessive electromagnetic
interference. Flow control is optional in Aurora 64B/66B, and can be used to throttle the link
partner transmit data rate, or to send brief, high-priority messages through the channel.

Streams are implemented in Aurora 64B/66B as a single, unending frame. Whenever data is
not being transmitted, idles are transmitted to keep the link alive. Excessive bit errors,
disconnections, or equipment failures cause the core to reset and attempt to initialize a new
channel. The Aurora 64B/66B core can support a maximum of two symbols skew in the
receive of a multi-lane channel. The Aurora 64B/66B protocol uses 64B/66B encoding. The
64B/66B encoding offers improved performance because of its very low (3%) transmission
overhead, compared to 25% overhead for 8B/10B encoding.

RECOMMENDED: Although the Aurora 64B/66B core is a fully-verified solution, the challenge
associated with implementing a complete design varies depending on the configuration and
functionality of the application. For best results, prior experience in building high-performance,
pipelined FPGA designs using Xilinx implementation tools and user constraints files Xilinx® Design
Constraints (XDC) is recommended.

Read Status, Control, and the Transceiver Interface in Chapter 2 carefully. Consult the PCB
design requirements information in the UltraScale FPGAs GTH Transceivers User Guide
(UG576) [Ref 3] and 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 4].
Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

Feature Summary
The LogiCORE IP Aurora 64B/66B core implements the Aurora 64B/66B protocol using the
high-speed serial transceivers on the UltraScale, Zynq-7000, Virtex-7, and Kintex-7 devices.
The core supports the AMBA® protocol AXI4-Stream user interface.

The Aurora 64B/66B core is based on the Aurora 64B/66B Protocol Specification (SP011)
[Ref 5] and uses the high-speed serial GTX or GTH transceivers. The core is delivered as
open-source code and supports Verilog design environments. Each core comes with an
example design and supporting modules.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=6

Aurora 64B/66B v9.2 www.xilinx.com 7
PG074 June 4, 2014

Chapter 1: Overview

Applications
Aurora 64B/66B cores can be used in a wide variety of applications because of their low
resource cost, scalable throughput, and flexible data interface. Examples of Aurora 64B/66B
core applications include:

• Chip-to-chip links: Replacing parallel connections between chips with high-speed
serial connections can signif icantly reduce the number of traces and layers required on
a PCB. The Aurora 64B/66B core provides the logic needed to use GTX and GTH
transceivers, with minimal FPGA resource cost.

• Board-to-board and backplane links: Aurora 64B/66B uses standard 64B/66B
encoding, which is the preferred encoding scheme for 10-Gigabit Ethernet making it
compatible with many existing hardware standards for cables and backplanes. Aurora
64B/66B can be scaled, both in line rate and channel width, to allow inexpensive legacy
hardware to be used in new, high-performance systems.

• Simplex connections (unidirectional): In some applications there is no need for a
high-speed back channel. The Aurora 64B/66B simplex protocol provides several ways
to perform unidirectional channel initialization, making it possible to use the GTX and
GTH transceivers when a back channel is not available, and to reduce costs due to
unused full-duplex resources.

• ASIC applications: Aurora 64B/66B is not limited to FPGAs, and can be used to create
scalable, high-performance links between programmable logic and high-performance
ASICs. The simplicity of the Aurora 64B/66B protocol leads to low resource costs in
ASICs as well as in FPGAs, and design resources like the Aurora 64B/66B bus functional
model (BFM) with automated compliance testing make it easy to get an Aurora 64B/66B
connection up and running. Contact Xilinx Sales or auroramkt@xilinx.com for
information on licensing Aurora for ASIC applications.

Unsupported Features
There are no unsupported features in Aurora 64B/66B.

Send Feedback

http://www.xilinx.com
mailto:auroramkt@xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=7

Aurora 64B/66B v9.2 www.xilinx.com 8
PG074 June 4, 2014

Chapter 1: Overview

Licensing and Ordering Information
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado®
Design Suite under the terms of the Xilinx End User License. Information about this and
other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For
information about pricing and availability of other Xilinx LogiCORE IP modules and tools,
contact your local Xilinx sales representative.

To use the Aurora 64B/66B core with an application specif ic integrated circuit (ASIC), a
separate paid license agreement is required under the terms of the Xilinx Core License
Agreement. Contact Aurora Marketing at auroramkt@xilinx.com for more information.

For more information, visit the Aurora 64B/66B product page.

Send Feedback

http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/aurora
mailto:auroramktt@xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=8

Aurora 64B/66B v9.2 www.xilinx.com 9
PG074 June 4, 2014

Chapter 2

Product Specification
Figure 2-1 shows a block diagram of the implementation of the Aurora 64B/66B core.

The major functional modules of the Aurora 64B/66B core are:

• Lane logic: Each GTX and GTH transceiver is driven by an instance of the lane logic
module, which initializes each individual GTX and GTH transceiver and handles the
encoding and decoding of control characters and error detection.

• Global logic: The global logic module in the Aurora 64B/66B core performs the
channel bonding for channel initialization. While the channel is operating, it keeps
track of the Not Ready idle characters defined by the Aurora 64B/66B protocol and
monitors all the lane logic modules for errors.

• RX user interface: The receive (RX) user interface moves data from the channel to the
application. Streaming data is presented using a simple stream interface equipped with
a data bus and valid and ready signals for flow control operation. Frames are presented
using a standard AXI4-Stream interface. This module also performs flow control
functions.

X-Ref Target - Figure 2-1

Figure 2‐1: Aurora 64B/66B Core Block Diagram

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=9

Aurora 64B/66B v9.2 www.xilinx.com 10
PG074 June 4, 2014

Chapter 2: Product Specification

• TX user interface: The transmit (TX) user interface moves data from the application to
the channel. A stream interface with valid and ready signals are used for streaming
data. A standard AXI4-Stream interface is used for data frames. The module also
performs flow control TX functions. The module has an interface for controlling clock
compensation (the periodic transmission of special characters to prevent errors due to
small clock frequency differences between connected Aurora 64B/66B cores). Normally,
this interface is driven by a standard clock compensation manager module provided
with the Aurora 64B/66B core, but it can be turned off, or driven by custom logic to
accommodate special needs.

Standards
The Aurora 64B/66B core is compliant with the Aurora 64B/66B Protocol Specification v1.2
(SP011) [Ref 5].

Performance
This section details the performance information for various core configurations.

Maximum Frequencies

The maximum frequency of the core operation is dependent on the line rates supported
and the speed grade of the devices.

Latency

For a default single lane configuration, latency through an Aurora 64B/66B core is caused
by pipeline delays through the protocol engine (PE) and through the GTX and GTH
transceivers. The PE pipeline delay increases as the AXI4-Stream interface width increases.
The GTX and GTH transceivers delays are f ixed per the features of the GTX and GTH
transceivers.

This section outlines method of measuring the latency for the Aurora 64B/66B core
AXI4-Stream user interface in terms of user_clk cycles for UltraScale™, Zynq®-7000,
Virtex®-7, and Kintex®-7 device GTX and GTH transceiver-based designs. For the purposes
of illustrating latency, the Aurora 64B/66B modules are partitioned into GTX and GTH
transceivers logic and protocol engine (PE) logic implemented in the FPGA logic.

Figure 2-2 illustrates the latency of the frame path.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=10

Aurora 64B/66B v9.2 www.xilinx.com 11
PG074 June 4, 2014

Chapter 2: Product Specification

Note: Figure 2-2 does not include the latency incurred due to the length of the serial connection
between each side of the Aurora 64B/66B channel.

Maximum latency for designs using GTX or GTH transceivers from the f irst assertion on
s_axi_tx_tvalid and s_axi_tx_tready to m_axi_rx_tvalid is approximately 53
user_clk cycles in simulation.

The pipeline delays are designed to maintain the clock speed.

Throughput

Aurora 64B/66B core throughput depends on the number of the transceivers and the target
line rate of the transceivers selected. Throughput varies from 0.48 Gb/s to 203.3 Gb/s for a
single-lane design to a 16-lane design, respectively. The throughput was calculated using
3% overhead of Aurora 64B/66B protocol encoding and 0.5 Gb/s to 13.1 Gb/s line rate
range.

X-Ref Target - Figure 2-2

Figure 2‐2: Latency of the Frame Path

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=11

Aurora 64B/66B v9.2 www.xilinx.com 12
PG074 June 4, 2014

Chapter 2: Product Specification

Resource Utilization
Table 2-1 through Table 2-2 show the number of look-up tables (LUTs) and flip-flops (FFs)
used in selected Aurora 64B/66B framing and streaming modules in the Vivado® Design
Suite implemented on a xc7vx485tffg1157-1 device. The Aurora 64B/66B core is also
available in configurations not shown in the tables. The tables do not include the additional
resource usage for flow controls. Resource utilization in the following tables do not include
the additional resource usage for the example design modules, such as FRAME_GEN and
FRAME_CHECK. Values provided are exact values for a given configuration. Values in the
following tables are for the default configuration (3.125G) with support logic included.

Table 2‐1: Virtex‐7 Family GTX Transceiver Resource Usage for Streaming

Virtex‐7 Family (GTX Transceiver)
Streaming

Duplex Simplex

Lanes Resource Type Full‐Duplex TX‐Only RX‐Only

1 LUTs 549 315 377

FFs 1359 476 957

2 LUTs 1044 467 686

FFs 2379 761 1721

4 LUTs 1971 711 1452

FFs 4347 1380 3139

8 LUTs 3610 1256 2805

FFs 8219 2539 5973

16 LUTs 6656 1949 5496

FFs 15966 4825 11641

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=12

Aurora 64B/66B v9.2 www.xilinx.com 13
PG074 June 4, 2014

Chapter 2: Product Specification

Note: UltraScale device utilization results are expected to be similar to 7 series devices.

Port Descriptions
The parameters used to generate each Aurora 64B/66B core determine the interfaces
available (Figure 2-3) for that specif ic core. The Aurora 64B/66B cores have four to eight
interfaces:

• User Interface, page 14

• User Flow Control Interface, page 17

• Native Flow Control Interface, page 20

• User K-Block Interface, page 20

• GTX and GTH Transceiver Interface, page 27

• Clock Interface, page 37

• DRP Interface, page 68

• Clock Compensation Interface, page 70

Table 2‐2: Virtex‐7 Family GTX Transceiver Resource Usage for Framing

Virtex‐7 Family (GTX Transceiver)
Framing

Duplex Simplex

Lanes Resource Type Full‐Duplex TX‐Only RX‐Only

1 LUTs 873 315 597

FFs 1398 499 975

2 LUTs 1475 471 1106

FFs 2442 799 1748

4 LUTs 2628 764 2012

FFs 4444 1425 3182

8 LUTs 4997 1566 3896

FFs 8391 2623 6046

16 LUTs 9418 2874 7560

FFs 16273 5018 11771

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=13

Aurora 64B/66B v9.2 www.xilinx.com 14
PG074 June 4, 2014

Chapter 2: Product Specification

User Interface

This interface includes all the ports needed to read and write streaming or framed data to
and from the Aurora 64B/66B core. AXI4-Stream ports are used if the Aurora 64B/66B core
is generated with a framing interface; for streaming modules, the interface consists of a
simple set of data ports with data valid and ready ports. Full-duplex cores include ports for
both transmit (TX) and receive (RX); simplex cores use only the ports they require in the
direction they support. The width of the data ports in all interfaces depends on the number
of GTX and GTH transceivers used by the core. CRC is computed on the data interface for
every frame in the framing interface, if the CRC option is selected.

X-Ref Target - Figure 2-3

Figure 2‐3: Top‐Level Interface

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=14

Aurora 64B/66B v9.2 www.xilinx.com 15
PG074 June 4, 2014

Chapter 2: Product Specification

Framing Interface Ports (AXI4‐Stream)

Table 2-3 lists the AXI4-Stream TX data ports and their descriptions. See Framing Interface,
page 41 for more information. The core has an option to configure the AXI4-Stream User
I/O as Little Endian from the Vivado® IDE. Default is Big Endian.

Table 2‐3: AXI4‐Stream User I/O Ports (TX)

Name Direction Description

s_axi_tx_tdata[0:(64n–1)] or
s_axi_tx_tdata[(64n–1):0] (1) Input

Outgoing data (Ascending bit order).
s_axi_tx_tdata[(64n–1):0] is used when the Little Endian
Support option is selected.

s_axi_tx_tready Output

Asserted (active-High) during clock edges when signals from the
source are accepted (if s_axi_tx_tvalid is also asserted).
Deasserted (active-Low) on clock edges when signals from the
source are ignored.

s_axi_tx_tlast Input Signals the end of the frame (active-High).

s_axi_tx_tkeep[0:(8n–1)] or
s_axi_tx_tkeep[(8n–1):0] (1) Input

Specifies the number of valid bytes in the last data beat (number of
valid bytes = number of 1s in tkeep.
s_axi_tx_tkeep[(8n–1):0] is used when the Little Endian
Support option is selected.
Example: s_axi_tx_tkeep = FF indicates 8 bytes are valid); valid
only while s_axi_tx_tlast is asserted.
The Aurora core supports continuous aligned stream and continuous
unaligned stream of data and expects the data to be f illed
continuously from LSB to MSB. There cannot be invalid bytes
interleaved with the valid s_axi_tx_tdata bus.

s_axi_tx_tvalid Input

Asserted (active-High) when AXI4-Stream signals from the source
are valid.
Deasserted (active-Low) when AXI4-Stream control signals and/or
data from the source should be ignored.

1. n is number of lanes.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=15

Aurora 64B/66B v9.2 www.xilinx.com 16
PG074 June 4, 2014

Chapter 2: Product Specification

Table 2-4 lists the AXI4-Stream RX data ports and their descriptions. See Framing Interface,
page 41 for more information.

Streaming Ports

Table 2-5 lists the streaming TX data ports.

Table 2-6 lists the streaming RX data ports. These ports are included on full-duplex and
simplex RX framing cores. See Streaming Interface, page 49 for more information.

Table 2‐4: AXI4‐Stream User I/O Ports (RX)

Name Direction Description

m_axi_rx_tdata[0:(64n–1)] or
m_axi_rx_tdata[(64n–1):0](1) Output

Incoming frame data from channel partner (Ascending bit
order). m_axi_rx_tdata[(64n–1):0] is used when the
Little Endian Support option is selected.

m_axi_rx_tkeep[0:8n–1] or
m_axi_rx_tkeep[8n–1:0](1) Output

Specif ies the number of valid bytes in the last data beat.
Valid only when m_axi_rx_tlast is asserted.
m_axi_rx_tkeep[8n–1:0] is used when the Little
Endian Support option is selected.

m_axi_rx_tvalid Output

Asserted (active-High) when data and control signals from
an Aurora core are valid.
Deasserted (Low) when data and/or control signals from an
Aurora core should be ignored.

m_axi_rx_tlast Output Signals the end of the incoming frame (active-High,
asserted for a single user_clk cycle).

1. n is number of lanes.

Table 2‐5: Streaming User I/O Ports (TX)

Name Direction Description

s_axi_tx_tdata[0:(64n–1)]
or
s_axi_tx_tdata[(64n–1):0]

Input
Outgoing data (Ascending bit order).
s_axi_tx_tdata[(64n–1):0] is used when the Little
Endian Support option is selected.

s_axi_tx_tready Output

Asserted (active-High) during clock edges when signals from the
source are accepted (if s_axi_tx_tvalid is also asserted).
Deasserted (active-Low) on clock edges when signals from the
source are ignored.

s_axi_tx_tvalid Input

Asserted (active-High) when AXI4-Stream signals from the
source are valid.
Deasserted (active-Low) when AXI4-Stream control signals
and/or data from the source should be ignored.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=16

Aurora 64B/66B v9.2 www.xilinx.com 17
PG074 June 4, 2014

Chapter 2: Product Specification

Notes:

High Priority request for any type of flow controls are:

• TXDATAVALID deassertion from the GT TX interface (1 cycle)

• CC transmission (6 cycles)

User Flow Control Interface

If the core is generated with User Flow Control (UFC) enabled, a UFC interface is created.
The TX side of the UFC interface consists of a request, valid, and ready ports that are used
to start a UFC message, and a port to specify the length of the message. You supply the
message data to the UFC data port immediately after a UFC request, depending on valid
and ready ports of the UFC interface; this in turn deasserts the ready port of the user data
interface indicating that the core is no longer ready for normal data, thereby allowing UFC
data to be written to the UFC data port.

The RX side of the UFC interface consists of a set of AXI4-Stream ports that allows the UFC
message to be read as a frame. Full-duplex modules include both TX and RX UFC ports;
simplex modules retain only the interface they need to send data in the direction they
support. Table 2-7 describes the ports for the UFC interface. See User Flow Control, page 54
for more information.

Table 2‐6: Streaming User I/O Ports (RX)

Name Direction Description

m_axi_rx_tdata[0:(64n–1)]
or
m_axi_rx_tdata[(64n–1):0]

Output
Incoming data from channel partner (Ascending bit order).
m_axi_rx_tdata[(64n–1):0] is used when the Little
Endian Support option is selected.

m_axi_rx_tvalid Output

Asserted (active-High) when data and control signals from an
Aurora 64B/66B core are valid.
Deasserted (active-Low) when data and/or control signals
from an Aurora 64B/66B core should be ignored.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=17

Aurora 64B/66B v9.2 www.xilinx.com 18
PG074 June 4, 2014

Chapter 2: Product Specification

Table 2‐7: UFC I/O Ports

Name Direction Description

ufc_tx_req Input

Asserted (active-High) to request a UFC message be sent to
the channel partner. Requests are processed after a single
cycle, unless another UFC message is in progress and not on
its last cycle. After a request, the s_axi_ufc_tx_tdata bus
is ready to send data within two cycles unless interrupted by
a higher priority event.

ufc_tx_ms[0:7] or
ufc_tx_ms[7:0]

Input

Specifies the number of bytes in the UFC message (the
message size). The maximum UFC message size is 256. The
value specif ied at ufc_tx_ms is one less than the actual
amount of bytes transferred. For example, a value of 3 will
transmit 4 bytes of data; and a value of 0 will transfer 1 byte.
ufc_tx_ms[7:0] is used when the Little Endian Support
option is selected.

s_axi_ufc_tx_tready Output

Asserted (active-High) when an Aurora 64B/66B core is ready
to read data from the s_axi_ufc_tx_tdata interface. This
signal is asserted one clock cycle after ufc_tx_req is
asserted and no high priority requests in progress.
s_axi_ufc_tx_tready continues to be asserted while the
core waits for data for the most recently requested UFC
message. The signal is deasserted for CC, CB, and NFC
requests, which are higher priority. While
s_axi_ufc_tx_tready is asserted, s_axi_tx_tready is
deasserted.

s_axi_ufc_tx_tdata[0:(64n–1)] or
s_axi_ufc_tx_tdata[(64n–1):0] Input

Input bus for UFC message data to the Aurora channel. Data is
read from the bus into the channel only when both
s_axi_ufc_tx_tvalid and s_axi_ufc_tx_tready are
asserted on a positive user_clk edge. If the number of bytes
in the message is not an integer multiple of the bytes in the
bus, on the last cycle, only the bytes needed to finish the
message starting from the left of the bus are used.
s_axi_ufc_tx_tdata[(64n–1):0] is used when the
Little Endian Support option is selected.

s_axi_ufc_tx_tvalid Input
Asserted (active-High) when data on s_axi_ufc_tx_tdata
is valid. If deasserted while s_axi_ufc_tx_tready is
asserted, Idle blocks are inserted in the UFC message.

m_axi_ufc_rx_tdata[0:(64n–1)] or
m_axi_ufc_rx_tdata[(64n–1):0](1) Output

Incoming UFC message data from the channel partner.
m_axi_ufc_rx_tdata[(64n–1):0] is used when the
Little Endian Support option is selected.

m_axi_ufc_rx_tvalid Output

Asserted (active-High) when the values on the
m_axi_ufc_rx_tdata port is valid. When this signal is not
asserted, all values on the m_axi_ufc_rx_tdata port
should be ignored.

m_axi_ufc_rx_tlast Output Signals (active-High) the end of the incoming UFC message.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=18

Aurora 64B/66B v9.2 www.xilinx.com 19
PG074 June 4, 2014

Chapter 2: Product Specification

m_axi_ufc_rx_tkeep[0:(8n–1)] or
m_axi_ufc_rx_tkeep[(8n–1):0](1) Output

Specifies the number of valid bytes of data presented on the
m_axi_ufc_rx_tdata port on the last word of a UFC
message. Valid only when m_axi_ufc_rx_tlast is asserted.
Maximum size of UFC is 256 bytes.
m_axi_ufc_rx_tkeep[(8n–1):0] is used when the Little
Endian Support option is selected.

1. n is number of lanes.

Table 2‐7: UFC I/O Ports (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=19

Aurora 64B/66B v9.2 www.xilinx.com 20
PG074 June 4, 2014

Chapter 2: Product Specification

Native Flow Control Interface

If the core is generated with native flow control (NFC) enabled, an NFC interface is created.
This interface includes a request and an acknowledge port that are used to send NFC
messages.

Note: NFC completion mode is not applicable to streaming designs.

See Native Flow Control, page 51 for more information.

Table 2-8 lists the ports for the NFC interface.

User K‐Block Interface

If the core is generated with the User K-block feature enabled, a User K interface is created.
User K-blocks are special single block codes that include control blocks that are not
decoded by the Aurora interface, but are instead passed directly to the user application.
These blocks can be used to implement application specif ic control functions. The TX side
consists of valid and ready ports that are used to start a User K transmission along with the
block number port to indicate which of the nine User K-blocks needs to be transmitted. The
User K data is transmitted after the core provides a ready for the User K interface. It also
indicates to the user interface that it is no longer ready for normal data, thereby allowing
User K data to be written to the User K data port. The User K blocks are single block codes.

The receive side of the User K interface consists of an RX valid signal to indicate the
reception of User K-block. Full-duplex modules include both TX and RX User K ports;
simplex modules retain only the interface they need to send data in the direction they
support.

Table 2-9 lists the ports for the User K-block interface. See User K-Block Interface, page 20
for more information.

Table 2‐8: NFC I/O Ports

Name Direction Description

s_axi_nfc_tx_tvalid Input
Asserted (active-High) to request an NFC message be sent to
the channel partner. Must be held until
s_axi_nfc_tx_tready is asserted.

s_axi_nfc_tx_tready Output Asserted (active-High) when an Aurora 64B/66B core accepts
an NFC request.

s_axi_nfc_tx_tdata[0:15] or
s_axi_nfc_tx_tdata[15:0] Input

Incoming NFC message data from the channel partner.
s_axi_nfc_tx_tdata[15:0] is used when the Little
Endian Support option is selected.
See Native Flow Control for more information.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=20

Aurora 64B/66B v9.2 www.xilinx.com 21
PG074 June 4, 2014

Chapter 2: Product Specification

Status and Control Ports

Table 2-10 describes the function of the status and control ports for full-duplex cores.

Table 2‐9: User K‐Block I/O Ports

Name Direction Description

s_axi_user_k_tx_tdata[0:(64n–1)] or
s_axi_user_k_tx_tdata[(64n–1):0](1) Input

User K-block data is 64-bit aligned.
s_axi_user_k_tx_tdata[(64n–1):0] is used when
the Little Endian Support option is selected.
Signal Mapping per lane:
Default:
s_axi_user_k_tx_tdata={4'h0,user_k_blk_no[0:4n
–1], s_axi_user_k_tdata[0:56n–1]}.
Little Endian format:
s_axi_user_k_tx_tdata={s_axi_user_k_tdata[56
n–1:0],4'h0,user_k_blk_no[4n–1:0]}.

s_axi_user_k_tx_tvalid Input Asserted (active-High) when User K data on
s_axi_user_k_tx_tdata port is valid.

s_axi_user_k_tx_tready Output
Asserted (active-High) when the Aurora 64B/66B core is
ready to read data from the
s_axi_user_k_tx_tdata interface.

m_axi_rx_user_k_tvalid Output Asserted (active-High) when User K data on
m_axi_rx_user_k_tdata port is valid.

m_axi_rx_user_k_tdata or
m_axi_rx_user_k_tdata[(64n–1):0](1) Output

Receive User K-blocks from the Aurora lane is 64-bit aligned.
m_axi_rx_user_k_tdata[(64n–1):0] is used when
the Little Endian Support option is selected.
Signal Mapping per lane:
Default:
m_axi_rx_user_k_tdata={4'h0,rx_user_k_blk_no[0
:4n–1],m_axi_rx_user_k_tdata[0:56n–1]}.
Little Endian format:
m_axi_rx_user_k_tdata={m_axi_rx_user_k_tdata
[56n–1:0],4'h0,rx_user_k_blk_no[4n–1:0]}.

1. n is number of lanes.

Table 2‐10: Status and Control Ports for Full‐Duplex Cores

Name Direction Description

channel_up Output Asserted (active-High) when Aurora channel initialization is complete
and channel is ready to send/receive data.

lane_up[0:m–1] (1) Output
Asserted (active-High) for each lane upon successful lane initialization,
with each bit representing one lane. The Aurora 64B/66B core can only
receive data after all lane_up signals are asserted.

hard_err Output Hard error detected (active-High, asserted until Aurora 64B/66B core
resets). See Table 2-21, page 61 for more details.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=21

Aurora 64B/66B v9.2 www.xilinx.com 22
PG074 June 4, 2014

Chapter 2: Product Specification

loopback[2:0] Input
See the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)
[Ref 4] or UltraScale Architecture GTH Transceivers User Guide (UG576)
[Ref 3] for details about loopback. See References in Appendix E.

power_down Input Drives Aurora 64B/66B core to reset (active-High).

reset Input

Resets the Aurora 64B/66B core (active-High) is connected to top level
through a debouncer. This port systematically resets all of the Aurora
core logic. This signal is debounced using user_clk for at least 6
user_clk cycles. See Reset and Power Down in this product guide for
more details.

soft_err Output
Soft error detected in the incoming serial stream. See Table 2-21,
page 61 for more details (active-High, asserted for a single user_clk
period).

rxp[0:m-1] Input Positive differential serial data input pin.

rxn[0:m-1] Input Negative differential serial data input pin.

txp[0:m-1] Output Positive differential serial data output pin.

txn[0:m-1] Output Negative differential serial data output pin.

pma_init Input

The pma_init (active-High) reset signal for the serial transceiver is
connected to the top level through a debouncer. This port
systematically resets all Physical Coding Sublayer (PCS) and Physical
Medium Attachment (PMA) subcomponents of the transceiver.
The signal is debounced using init_clk_in for at least 6 init_clk
cycles.
See the Reset section in the user guide of the related transceiver for
more details.

Table 2‐10: Status and Control Ports for Full‐Duplex Cores (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=22

Aurora 64B/66B v9.2 www.xilinx.com 23
PG074 June 4, 2014

Chapter 2: Product Specification

Table 2-11 describes the function of the status and control ports for simplex-TX cores.

Note: The Aurora 64B/66B Channel requires more time to accept any user-initiated request after
assertion of the CHANNEL_UP signal. The time taken varies depending on the core configuration. The
core however will not assert the respective TREADY for any of the interface until the channel is good
for data transfer.

RECOMMENDED: Monitor the assertion of the s_axi_tx_tready signal of the data interface before
initiating any request through the Aurora channel. Any flow control request initiated before assertion
of the s_axi_tx_tready signal will be not be processed by the core.

init_clk Input

The init_clk signal is used to register and debounce the pma_init
signal. The init_clk signal is used by the GT TX/RX Reset FSMs to
initialize and execute the reset mode and handle MMCM reset for
user_clk generation. The rate of init_clk is preferred to be in the
range of 50 to 200 MHz. The default init_clk frequency set by the
core is 50 MHz. You need to update this with respect to your system in
the XDC.

For designs with Zynq-7000 and 7 series devices: init_clk is
constrained as 200 MHz in the example design xdc, <component
name>_clocks.xdc and <component name>_ooc.xdc. In
addition, the STABLE_CLOCK_PERIOD parameter is set as 5 ns to reflect
the same in the <component name>_core f ile. The
INIT_CLOCKPERIOD parameter in <component name>_TB is set to
generate init_clk set as 5 ns. The init_clk frequency should be
constrained between 50 MHz to 200 MHz. Any change in the
init_clk period should be made in the example xdc, <component
name>_clocks. xdc, <component name>_ooc. xdc,
<component name>_core and <component name>_TB for proper
operation of the IP core. When the core is generated with the shared
logic in core option, the init_clk port becomes differential
(init_clk_p, init_clk_n)

For UltraScale architecture designs: The init_clk frequency should
be equal to the TXUSERCLK frequency and the value should not
exceed 200 MHz. The TXUSERCLK frequency depends on the line rate
and the internal datapath width. Refer to the UltraScale FPGAs GTH
Transceivers User Guide (UG576) [Ref 3] for more details. The Aurora
64B/66B core configures 32 bits as the internal datapath width for the
GT. This init_clk is connected to DRPCLK of the DRP ports of
GTHE3_CHANNEL as well. Any change in the init_clk period should
be made in the example xdc f ile, <component name>_clocks.xdc,
<component name>_ooc.xdc, and <component name>_TB for
proper operation of the IP core.

Notes:
1. m is the number of GTX or GTH transceivers.

Table 2‐10: Status and Control Ports for Full‐Duplex Cores (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=23

Aurora 64B/66B v9.2 www.xilinx.com 24
PG074 June 4, 2014

Chapter 2: Product Specification

Table 2‐11: Status and Control Ports for Simplex‐TX or TX/RX Simplex Cores

Name Direction Description

tx_channel_up Output Asserted (active-High) when Aurora channel initialization is complete
and channel is ready to send data.

tx_lane_up[0:m–1](1) Output

Asserted (active-High) for each lane upon successful lane
initialization, with each bit representing one lane. The Aurora 64B/66B
core can only transmit data after all tx_lane_up signals are
asserted.

tx_hard_err Output Hard error detected (active-High, asserted until Aurora 64B/66B core
resets). See Table 2-21, page 61 for more details.

power_down Input Drives Aurora 64B/66B core to reset (active-High).

reset Input
Resets the Aurora 64B/66B core (active-High). This signal must be
synchronous to user_clk and must be asserted for at least six
user_clk cycles.

tx_soft_err Output Soft error detected in the transmit logic. See Table 2-21, page 61 for
more details (active-High, asserted for a single user_clk period).

txp[0:m–1] Output Positive differential serial data output pin.

txn[0:m–1] Output Negative differential serial data output pin.

pma_init Input

The pma_init (active-High) reset signal for the serial transceiver is
connected to the top level through a debouncer. This port
systematically resets all Physical Coding Sublayer (PCS) and Physical
Medium Attachment (PMA) subcomponents of the transceiver.
The signal is debounced using init_clk_in for at least 6
init_clk cycles. See the Reset section in the user guide of relevant
transceiver for more details.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=24

Aurora 64B/66B v9.2 www.xilinx.com 25
PG074 June 4, 2014

Chapter 2: Product Specification

Table 2-12 describes the function of the status and control ports for simplex-RX cores. See
Status and Control Ports, page 21 for more information.

init_clk Input

The init_clk signal is used to register and debounce the
pma_init signal. The init_clk signal is used by the GT TX Reset
FSMs to initialize and execute the reset mode and handle MMCM
reset for user_clk generation. The rate of init_clk is preferred to
be in the range of 50 to 200 MHz. The default init_clk frequency
set by the core is 50 MHz. You need to update this with respect to your
system in the XDC.

For designs with Zynq-7000 and 7 series devices: init_clk is
constrained as 200 MHz in the example design xdc, <component
name>_clocks.xdc and <component name>_ooc.xdc. In
addition, the STABLE_CLOCK_PERIOD parameter is set as 5 ns to
reflect the same in the <component name>_core f ile. The
INIT_CLOCKPERIOD parameter in <component name>_TB is set to
generate init_clk set as 5 ns. The init_clk frequency should be
constrained between 50 MHz to 200 MHz. Any change in the
init_clk period should be made in the example xdc, <component
name>_clocks. xdc, <component name>_ooc. xdc,
<component name>_core and <component name>_TB for proper
operation of the IP core. When the core is generated with the shared
logic in core option, the init_clk port becomes differential
(init_clk_p, init_clk_n)

For UltraScale architecture designs: The init_clk frequency should
be equal to the TXUSERCLK frequency and the value should not
exceed 200 MHz. The TXUSERCLK frequency depends on the line rate
and the internal datapath width. Refer to the UltraScale FPGAs GTH
Transceivers User Guide (UG576) [Ref 3] for more details. The Aurora
64B/66B core configures 32 bits as the internal datapath width for the
GT. This init_clk is connected to DRPCLK of the DRP ports of
GTHE3_CHANNEL as well. Any change in the init_clk period should
be made in the example xdc file, <component name>_clocks.xdc,
<component name>_ooc.xdc, and <component name>_TB for
proper operation of the IP core.

Notes:
1. m is the number of GTX and GTH transceivers.

Table 2‐11: Status and Control Ports for Simplex‐TX or TX/RX Simplex Cores (Cont’d)

Name Direction Description

Table 2‐12: Status and Control Ports for Simplex‐RX or TX/RX Simplex Cores

Name Direction Description

rx_channel_up Output Asserted (active-High) when Aurora channel initialization is complete
and the channel is ready to receive data.

rx_lane_up[0:m–1](1) Output
Asserted (active-High) for each lane upon successful lane
initialization, with each bit representing one. The Aurora 64B/66B
core can only receive data after all rx_lane_up signals are asserted.

rx_hard_err Output Hard error detected (active-High, asserted until Aurora 64B/66B core
resets). See Table 2-21, page 61 for more details.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=25

Aurora 64B/66B v9.2 www.xilinx.com 26
PG074 June 4, 2014

Chapter 2: Product Specification

power_down Input Drives Aurora 64B/66B core to reset (active-High).

reset Input
Resets the Aurora 64B/66B core (active-High). This signal must be
synchronous to user_clk and must be asserted for at least six
user_clk cycles.

rx_soft_err Output Soft error detected in the receive logic. See Table 2-21, page 61 for
more details. (active-High, asserted for a single user_clk period).

rxp[0:m–1] Input Positive differential serial data input pin.

rxn[0:m–1] Input Negative differential serial data input pin.

pma_init Input

The pma_init (active-High) reset signal for the serial transceiver is
connected to the top level through a debouncer. This port
systematically resets all Physical Coding Sublayer (PCS) and Physical
Medium Attachment (PMA) subcomponents of the transceiver.
The signal is debounced using init_clk_in for at least 6
init_clk cycles.

init_clk Input

The init_clk signal is used to register and debounce the
pma_init signal. The init_clk signal is used by the GT TX Reset
FSMs to initialize and execute the reset mode and handle MMCM
reset for user_clk generation. The rate of init_clk is preferred to
be in the range of 50 to 200 MHz.

For designs with Zynq-7000 and 7 series devices: init_clk is
constrained as 200 MHz in the example design xdc, <component
name>_clocks.xdc and <component name>_ooc.xdc. In
addition, the STABLE_CLOCK_PERIOD parameter is set as 5 ns to
reflect the same in the <component name>_core f ile. The
INIT_CLOCKPERIOD parameter in <component name>_TB is set to
generate init_clk set as 5 ns. The init_clk frequency should be
constrained between 50 MHz to 200 MHz. Any change in the
init_clk period should be made in the example xdc, <component
name>_clocks. xdc, <component name>_ooc. xdc,
<component name>_core and <component name>_TB for proper
operation of the IP core. When the core is generated with the shared
logic in core option, the init_clk port becomes differential
(init_clk_p, init_clk_n)

For UltraScale architecture designs: The init_clk frequency should
be equal to the TXUSERCLK frequency and the value should not
exceed 200 MHz. The TXUSERCLK frequency depends on the line rate
and the internal datapath width. Refer to the UltraScale FPGAs GTH
Transceivers User Guide (UG576) [Ref 3] for more details. The Aurora
64B/66B core configures 32 bits as the internal datapath width for the
GT. This init_clk is connected to DRPCLK of the DRP ports of
GTHE3_CHANNEL as well. Any change in the init_clk period
should be made in the example xdc f ile, <component
name>_clocks.xdc, <component name>_ooc.xdc, and
<component name>_TB for proper operation of the IP core.

Notes:
1. m is the number of GTX and GTH transceivers.

Table 2‐12: Status and Control Ports for Simplex‐RX or TX/RX Simplex Cores (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=26

Aurora 64B/66B v9.2 www.xilinx.com 27
PG074 June 4, 2014

Chapter 2: Product Specification

CAUTION! The default init_clk frequency set by the core for 7 series devices is 50 MHz. You need to
update this with respect to your system in the XDC.

GTX and GTH Transceiver Interface

This interface includes the serial I/O ports of the GTX and GTH transceivers and the control
and status ports of the Aurora 64B/66B core. This interface is your access to control
functions such as reset, loopback, and power down. The DRP interface can be used to
access or update the serial transceiver parameters and settings through the AXI4-Lite or
Native DRP interface.

Table 2‐13: Transceiver DRP Ports

Name Direction Description

rxp[0:m–1](1) Input Positive differential serial data input pin.

rxn[0:m–1] Input Negative differential serial data input pin.

txp[0:m–1] Output Positive differential serial data output pin.

txn[0:m–1] Output Negative differential serial data output pin.

loopback[2:0] Input Loopback port of the transceiver. See the related transceiver user
guide for loopback test mode configurations

pma_init Input Asynchronous reset signal for the transceiver. See the related
transceiver user guide for more information.

tx_lock Output
Indicates incoming serial transceiver refclk is locked by the
transceiver PLL. See the related transceiver user guide for more
information.

7 Series and UltraScale FPGA Transceiver DRP Ports(2)

drpaddr_in Input DRP address bus.

drp_clk_in Input DRP interface clock.

drpdi_in Input Data bus for writing configuration data from the FPGA logic
resources to the transceiver

drpdo_out Output Data bus for reading configuration data from the transceiver to the
FPGA logic resources.

drpen_in Input DRP enable signal.

drprdy_out Output Indicates operation is complete for write operations and data is valid
for read operations.

drpwe_in Input DRP write enable.
1. m is the number of GTX and GTH transceivers
2. See the related transceiver user guide for more information on DRP operation
3. Transceiver debug ports will get enabled if you select the Additional transceiver control and status ports check

box option in the Vivado IDE.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=27

Aurora 64B/66B v9.2 www.xilinx.com 28
PG074 June 4, 2014

Chapter 2: Product Specification

In Table 2-14 ports are visible only when the Transceiver Control Additional transceiver
control and status ports option is selected through the dialog box while configuring the
Aurora 64B/66B core. More details can be found at 7 Series FPGAs GTX/GTH Transceivers
User Guide (UG476) [Ref 4] and UltraScale Architecture GTH Transceivers User Guide (UG576)
[Ref 3].

Table 2‐14: 7 Series and Zynq‐7000 Device Transceiver Debug Ports

Name Direction Description

gt<lane>_eyescandataerror_out Output

Asserts High for one rec_clk cycle when an
(unmasked) error occurs while in the COUNT or
ARMED state.
Available for Duplex and RX-Only Simplex
configuration. See the relevant transceiver user
guide for more information.

gt<lane>_eyescanreset_in Input

This port is driven High and then deasserted to start
the EYESCAN reset process.
Available for Duplex and RX-Only Simplex
configuration. See the relevant transceiver user
guide for more information.

gt<lane>_eyescantrigger_in Input

Causes a trigger event.
Available for Duplex and RX-Only Simplex
configuration. See the relevant transceiver user
guide for more information.

gt<lane>_rxcdrhold_in Input

Hold the CDR control loop frozen.
Available for Duplex and RX-Only Simplex
configuration and applicable for Zynq-7000 and 7
series device GTX and GTH transceivers only. See the
relevant transceiver user guide for more information

gt<lane>_rxlpmhfovrden_in Input

OVRDEN RX LPM
• 2'b00: KH High frequency loop adapt
• 2'b10: Freeze current adapt value
• 2'bx1: Override KH value according to attribute

RXLPM_HF_CFG
Available for Duplex and RX-Only Simplex
configuration and applicable for Zynq-7000 and 7
series device GTX and GTH transceivers only. See the
relevant transceiver user guide for more information

gt<lane>_rxdfeagchold_in Input

HOLD RX DFE
• 2'b00: Automatic gain control (AGC) loop adapt
• 2'b10: Freeze current AGC adapt value
• 2'bx1: Override AGC value according to attribute

RX_DFE_GAIN_CFG
Available for Duplex and RX-Only Simplex
configuration and applicable for Zynq-7000 and 7
series device GTX and GTH transceivers only. See the
relevant transceiver user guide for more information

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=28

Aurora 64B/66B v9.2 www.xilinx.com 29
PG074 June 4, 2014

Chapter 2: Product Specification

gt<lane>_rxdfeagcovrden_in Input

OVRDEN RX DFE
• 2'b00: Automatic gain control (AGC) loop adapt
• 2'b10: Freeze current AGC adapt value
• 2'bx1: Override AGC value according to attribute

RX_DFE_GAIN_CFG
Available for Duplex and RX-Only Simplex
configuration and applicable for Zynq-7000 and 7
series device GTX and GTH transceivers only. See the
relevant transceiver user guide for more information

gt<lane>_rxdfelfhold_in Input

When set to 1'b1, the current value of the
low-frequency boost is held. When set to 1'b0, the
low-frequency boost is adapted.
Available for Duplex and RX-Only Simplex
configuration and applicable for 7 series device GTP
transceivers only. See the relevant transceiver user
guide for more information.

gt<lane>_rxdfelpmreset_in Input

This port is driven High and then deasserted to start
the DFE reset process.
Available for Duplex and RX-Only Simplex
configuration and applicable for Zynq-7000 and 7
series device GTX and GTH transceivers only. See the
relevant transceiver user guide for more information.

gt<lane>_rxlpmlfklovrden_in Input

OVRDEN RX LPM
• 2'b00: KL Low frequency loop adapt
• 2'b10: Freeze current adapt value
• 2'bx1: Override KL value according to attribute

RXLPM_LF_CFG
Available for Duplex and RX-Only Simplex
configuration and applicable for Zynq-7000 and 7
series device GTX and GTH transceivers only. See the
relevant transceiver user guide for more information.

gt<lane>_rxlpmen_in Input

RX datapath
•0: DFE
•1: LPM
Available for Duplex and RX-Only Simplex
configuration and applicable for Zynq-7000 and 7
series device GTX and GTH transceivers only. See the
relevant transceiver user guide for more information.

Table 2‐14: 7 Series and Zynq‐7000 Device Transceiver Debug Ports (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=29

Aurora 64B/66B v9.2 www.xilinx.com 30
PG074 June 4, 2014

Chapter 2: Product Specification

gt<lane>_rxmonitorout_out Input

GTX transceiver:
• RXDFEVP[6:0] = RXMONITOROUT[6:0]
• RXDFEUT[6:0] = RXMONITOROUT[6:0]
• RXDFEAGC[4:0] = RXMONITOROUT[4:0]
GTH transceiver:
• RXDFEVP[6:0] = RXMONITOROUT[6:0]
• RXDFEUT[6:0] = RXMONITOROUT[6:0]
• RXDFEAGC[3:0] = RXMONITOROUT[4:1]
Available for Duplex and RX-Only Simplex
configuration and applicable for Zynq-7000 and 7
series device GTX and GTH transceivers only. See the
relevant transceiver user guide for more information.

gt<lane>_rxmonitorsel_in Input

Select signal for rxmonitorout[6:0]
• 2'b00: Reserved
• 2'b01: Select AGC loop
• 2'b10: Select UT loop
• 2'b11: Select VP loop
Available for Duplex and RX-Only Simplex
configuration and applicable for Zynq-7000 and 7
series device GTX and GTH transceivers only. See the
relevant transceiver user guide for more information.

gt<lane>_txpostcursor_in Input

Transmitter post-cursor TX pre-emphasis control.
Available for Duplex and TX-Only Simplex
configuration.
See the relevant transceiver user guide for more
information.

gt<lane>_txdiffctrl_in Input

Driver Swing Control.
Available for Duplex and TX-Only Simplex
configuration.
See the relevant transceiver user guide for more
information.

gt<lane>_txmaincursor_in Input

Allows the main cursor coeff icients to be directly set
if the TX_MAINCURSOR_SEL attribute is set to 1'b1.
Available for Duplex and TX-Only Simplex
configuration.
See the relevant transceiver user guide for more
information.

gt<lane>_txpolariry_in Input

The txpolarity port is used to invert the polarity of
outgoing data.
• 0: Not inverted. TXP is positive, and TXN is

negative.
• 1: Inverted. TXP is negative, and TXN is positive.
Available for Duplex and TX-Only Simplex
configuration.
See the relevant transceiver user guide for more
information.

Table 2‐14: 7 Series and Zynq‐7000 Device Transceiver Debug Ports (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=30

Aurora 64B/66B v9.2 www.xilinx.com 31
PG074 June 4, 2014

Chapter 2: Product Specification

gt<lane>_txpmareset_in Input

This port is used to reset the TX PMA. It is driven High
and then deasserted to start the TX PMA reset
process. Activating this port resets both the TX PMA
and the TX PCS.

gt<lane>_txpcsreset_in Input
This port is used to reset the TX PCS. It is driven High
and then deasserted to start the PCS reset process.
Activating this port only resets the TX PCS.

gt<lane>_txresetdone_out Output

This active-High signal indicates the GTX/GTH
transceiver TX has finished reset and is ready for use.
This port is driven Low when gttxreset goes High
and is not driven High until the GTX/GTH transceiver
TX detects txuserrdy High.

gt<lane>_rxpmareset_in Input

This port is driven High and then deasserted to start
RX PMA reset process. Refer to the 7 Series FPGAs
GTX/GTH Transceivers User Guide [Ref 4] for more
details

gt<lane>_rxpcsreset_in Input

This port is driven High and then deasserted to start
RX PMA reset process. Refer to the 7 Series FPGAs
GTX/GTH Transceivers User Guide [Ref 4] for more
details. The rxpcsreset signal does not start the
reset process until rxuserrdy is High.

gt<lane>_rxbufreset_in Input
This port is driven High and then deasserted to start
the RX elastic buffer reset process. Activating
rxbufreset resets the RX elastic buffer only.

gt<lane>_rxresetdone_out Output

When asserted, this active-High signal indicates the
GTX/GTH transceiver RX has finished reset and is
ready for use. This port is driven Low when
gtrxreset is driven High. This signal is not driven
High until rxuserrdy goes High.

gt<lane>_txbufstatus_out[1:0] Output

txbufstatus[1]: TX buffer overflow or
underflow status. When txbufstatus[1] is set
High, it remains High until the TX buffer is reset.
• 1: TX FIFO has overflow or underflow.
• 0: No TX FIFO overflow or underflow error.
txbufstatus[0]: TX buffer fullness.

• 1: TX FIFO is at least half full.
• 0: TX FIFO is less than half full.

gt<lane>_rxbufstatus_out[2:0] Output

RX buffer status.
• 000b: Nominal condition.
• 001b: Number of bytes in the buffer are less than

CLK_COR_MIN_LAT
• 010b: Number of bytes in the buffer are greater

than CLK_COR_MAX_LAT
• 101b: RX elastic buffer underflow
• 110b: RX elastic buffer overflow

Table 2‐14: 7 Series and Zynq‐7000 Device Transceiver Debug Ports (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=31

Aurora 64B/66B v9.2 www.xilinx.com 32
PG074 June 4, 2014

Chapter 2: Product Specification

gt<lane>_cplllock_out Output

Active-High PLL frequency lock signal indicates that
the PLL frequency is within predetermined tolerance.
The transceiver and its clock outputs are not reliable
until this condition is met.

gt_qplllock<quad> Output

Active-High PLL frequency lock signal indicates that
the PLL frequency is within predetermined tolerance.
The transceiver and its clock outputs are not reliable
until this condition is met.

gt<lane>_precursor_in Input

Transmitter pre-cursor TX pre-emphasis control.
Available for duplex and TX-Only simplex
configuration. See the relevant transceiver user
guide for more information.

gt<lane>_txprbsforceerr_in Input

When this port is driven High, errors are forced in the
PRBS transmitter. While this port is asserted, the
output data pattern contains errors. When
txprbssel is set to 000, this port does not affect
TXDATA.

gt<lane>_txprbssel_in[2:0] Input

Transmitter PRBS generator test pattern
control.
• 000: Standard operation mode (test pattern

generation is off)
• 001: PRBS-7
• 010: PRBS-15
• 011: PRBS-23
• 100: PRBS-31
• 101: PCI® Express compliance pattern. Only works

with 20-bit and 40-bit modes
• 110: Square wave with 2 UI (alternating 0s/1s)
• 111: Square wave with 16 UI, 20 UI, 32 UI, or 40 UI

period (based on data width)

gt<lane>_rxprbssel_in[2:0] Input

Receiver PRBS checker test pattern
control. Only these settings are valid:
• 000: Standard operation mode. (PRBS check is off)
• 001: PRBS-7
• 010: PRBS-15
• 011: PRBS- 23
• 100: PRBS-31
No checking is done for non-PRBS patterns. Single
bit errors cause bursts of PRBS errors because the
PRBS checker uses data from the current cycle to
generate the next cycle expected data.

gt<lane>_rxprbserr_out Output This non-sticky status output indicates that PRBS
errors have occurred.

Table 2‐14: 7 Series and Zynq‐7000 Device Transceiver Debug Ports (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=32

Aurora 64B/66B v9.2 www.xilinx.com 33
PG074 June 4, 2014

Chapter 2: Product Specification

Notes:
1. <lane> takes values from 0 to AURORA_LANES.
2. For designs using UltraScale™devices, the prefixes of the optional transceiver debug ports for single-lane cores are

changed from gt<lane> to gt, and the postf ixes _in and _out are removed. For multi-lane cores, the prefixes of the
optional transceiver debug ports gt(n) are aggregated into a single port.

gt<lane>_rxprbscntreset_in Input Resets the PRBS error counter.

GTX transceiver:
gt<lane>_dmonitorout_out[7:0]
GTH transceiver:
gt<lane>_dmonitorout_out [14:0]

Output Digital Monitor Output Bus

Table 2‐14: 7 Series and Zynq‐7000 Device Transceiver Debug Ports (Cont’d)

Name Direction Description

Table 2‐15: UltraScale Architecture Transceiver Debug Ports (1)

Name Direction Description

gt_cplllock Output

This active-High PLL frequency lock signal indicates that the
PLL frequency is within predetermined tolerance. The
transceiver and its clock outputs are not reliable until this
condition is met.

gt_dmonitorout Output
Digital Monitor Output Bus
Available for Duplex and RX-Only Simplex configuration.

gt_eyescandataerror Output
Asserts High for one REC_CLK cycle when an (unmasked)
error occurs while in the COUNT or ARMED state.
Available for Duplex and RX-Only Simplex configuration

gt_eyescanreset Input
This port is driven High and then deasserted to start the
EYESCAN reset process.
Available for Duplex and RX-Only Simplex configuration

gt_eyescantrigger Input
Causes a trigger event.
Available for Duplex and RX-Only Simplex configuration

gt_gtrxreset This is assigned to PMA_INIT in gtx_wrapper

gt_gttxreset This is assigned to PMA_INIT in gtx_wrapper

gt_loopback Connected to LOOPBACK in gtx_wrapper

gt_rxbufreset Input

This port is driven High and then deasserted to start the RX
elastic buffer reset process. In either single mode or
sequential mode, activating RXBUFRESET resets the RX
elastic buffer only.
Available for Duplex and RX-Only Simplex configuration

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=33

Aurora 64B/66B v9.2 www.xilinx.com 34
PG074 June 4, 2014

Chapter 2: Product Specification

gt_rxbufstatus Output

RX buffer status.
• 000b: Nominal condition.
• 001b: Number of bytes in the buffer are less than

CLK_COR_MIN_LAT
• 010b: Number of bytes in the buffer are greater than
• CLK_COR_MAX_LAT
• 101b: RX elastic buffer underflow
• 110b: RX elastic buffer overflow
Available for Duplex and RX-Only Simplex configuration

gt_rxcdrhold Input
Hold the CDR control loop frozen.
Available for Duplex and RX-Only Simplex configuration

gt_rxdfelpmreset Input
This port is driven High and then deasserted to start the
DFE reset process. Available for Duplex and RX-Only
Simplex configuration

gt_rxlpmen Input

RX datapath
0: DFE
1: LPM
Available for Duplex and RX-Only Simplex configuration

gt_rxpcsreset Input
This port is driven High and then deasserted to start the RX
PCS reset process.
Available for Duplex and RX-Only Simplex configuration.

gt_rxpmareset Input
This port is driven High and then deasserted to start the RX
PMA reset process.
Available for Duplex and RX-Only Simplex configuration

gt_rxpmaresetdone Output

This active-High signal indicates RX PMA reset is complete.
This port is driven Low when GTRXRESET or RXPMARESET
is asserted.
Available for Duplex and RX-Only Simplex configuration.

gt_rxpolarity Used internally

gt_rxprbscntreset Input
Resets the PRBS error counter.
Available for Duplex and RX-Only Simplex configuration.

gt_rxprbserr Output
This non-sticky status output indicates that PRBS errors
have occurred.
Available for Duplex and RX-Only Simplex configuration.

gt_rxprbssel Input Connects to RXPRBSSEL on transceiver channel primitives.
Available for Duplex and RX-Only Simplex configuration.

gt_rxrate Input

Dynamic pins to automatically change effective PLL dividers
in the GTH transceiver RX. These ports are used for PCI®
Express and other standards.
Available for Duplex and RX-Only Simplex configuration

Table 2‐15: UltraScale Architecture Transceiver Debug Ports (Cont’d)(1)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=34

Aurora 64B/66B v9.2 www.xilinx.com 35
PG074 June 4, 2014

Chapter 2: Product Specification

gt_rxresetdone Output

When asserted, this active-High signal indicates the GTH
transceiver RX has f inished reset and is ready for use. In
sequential mode, this port is driven Low when GTRXRESET
is driven High. This signal is not driven High until
RXUSERRDY goes High. In single mode, this port is driven
Low when any of the RX resets are asserted. This signal is
not asserted until all RX resets are deasserted and
RXUSERRDY is asserted.
Available for Duplex and RX-Only Simplex configuration.

gt_txbufstatus Output

TXBUFSTATUS provides the status for the TX Buffer or the TX
asynchronous gearbox. When using the TX asynchronous
gearbox, the port status is as follows.
Bit 1:
• 0: No TX asynchronous gearbox FIFO overflow.
• 1: TX asynchronous gearbox FIFO overflow.
Bit 0:
• 0: No TX asynchronous gearbox FIFO underflow.
• 1: TX asynchronous gearbox FIFO underflow.
After the port is set High, it remains High until the TX
asynchronous gearbox is reset.
Available for Duplex and TX-Only Simplex configuration.

gt_txdiffctrl Input
Driver Swing Control. The default is user specified.
Available for Duplex and TX-Only Simplex configuration.

gt_txpcsreset Input

This port is used to reset the TX PCS. It is driven High and
then deasserted to start the PCS reset process. In sequential
mode, activating this port only resets the TX PCS.
Available for Duplex and TX-Only Simplex configuration.

gt_txpmareset Input

This port is used to reset the TX PMA. It is driven High and
then deasserted to start the TX PMA reset process. In
sequential mode, activating this port resets both the TX
PMA and the TX PCS.
Available for Duplex and TX-Only Simplex configuration.

gt_txpolarity Input

The TXPOLARITY port is used to invert the polarity of
outgoing data.
• 0: Not inverted. TXP is positive, and TXN is negative.
• 1: Inverted. TXP is negative, and TXN is positive.
Available for Duplex and TX-Only Simplex configuration.

gt_txpostcursor Input
Transmitter post-cursor TX pre-emphasis control. The
default is user specif ied.
Available for Duplex and TX-Only Simplex configuration.

Table 2‐15: UltraScale Architecture Transceiver Debug Ports (Cont’d)(1)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=35

Aurora 64B/66B v9.2 www.xilinx.com 36
PG074 June 4, 2014

Chapter 2: Product Specification

gt_txprbsforceerr Input

When this port is driven High, errors are forced in the PRBS
transmitter. While this port is asserted, the output data
pattern contains errors. When TXPRBSSEL is set to 4'b0000,
this port does not affect TXDATA.
Available for Duplex and TX-Only Simplex configuration.

gt_txprbssel Input

Transmitter PRBS generator test pattern control. 4'b0000:
Standard operation mode (test pattern generation is off)
• 4'b0001: PRBS-7
• 4'b0010: PRBS-9
• 4'b0011: PRBS-15
• 4'b0100: PRBS-23
• 4'b0101: PRBS-31
• 4'b1000: PCI Express compliance pattern. Only works with

internal data width 20 bit and 40 bit modes
• 4'b1001: Square wave with 2 UI (alternating 0s/1s)
• 4'b1010: Square wave with 16 UI, 20 UI, 32 UI, or 40 UI

period (based on internal data width)
Available for Duplex and TX-Only Simplex configuration.

gt_txprecursor Input
Transmitter pre-cursor TX pre-emphasis control. The default
is user specified.
Available for Duplex and TX-Only Simplex configuration.

gt_txresetdone Output

This active-High signal indicates the GTH transceiver TX has
finished reset and is ready for use. This port is driven Low
when GTTXRESET goes High and is not driven High until
the GTH transceiver TX detects TXUSERRDY High.
Available for Duplex and TX-Only Simplex configuration.

gt_dmonitorout Output
Digital Monitor Output Bus
Available for Duplex and RX-Only Simplex configuration.

gt_qplllock Output

Active-High PLL frequency lock signal indicates that the PLL
frequency is within predetermined tolerance. The
transceiver and its clock outputs are not reliable until this
condition is met.

1. Refer to the UltraScale FPGAs GTH Transceivers User Guide (UG576) [Ref 3] for more information about these debug ports.

Table 2‐15: UltraScale Architecture Transceiver Debug Ports (Cont’d)(1)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=36

Aurora 64B/66B v9.2 www.xilinx.com 37
PG074 June 4, 2014

Chapter 2: Product Specification

Clock Interface

IMPORTANT: This interface is most critical for correct Aurora 64B/66B core operation. The clock
interface has ports for the reference clocks that drive the GTX or GTH transceivers and ports for the
parallel clocks that the Aurora 64B/66B core shares with application logic.

Table 2-16 describes Aurora 64B/66B core clock ports. In GTX and GTH transceiver designs,
the reference clock can be from GTXQ/GTHQ, which is a differential input clock for each GTX
or GTH transceiver. The reference clock for a GTX or GTH transceiver is provided through the
clkin port. For more details on the clock interface, see Clocking, page 75.

Table 2‐16: Clock Ports for a GTX or GTH based Aurora 64B/66B Core

Name Direction Description

mmcm_not_locked Input

For 7 series and Zynq-7000 devices: If a MMCM is used to generate
clocks for the Aurora 64B/66B core, the mmcm_not_locked signal
should be connected to the inverse of the PLL locked signal of the
serial transceiver PLL. The clock modules provided with the Aurora
64B/66B core use the PLL for clock division. The mmcm_not_locked
signal from the clock module should be connected to the
mmcm_not_locked signal on the Aurora 64B/66B core.

For UltraScale devices: mmcm_not_locked is connected to
gtwiz_userclk_tx_active_out driven from
<=:USER_COMPONENT_NAME:>_ultrascale_tx_userclk
module. This is driven based on the clocking helper core status and
signifies that the helper core is out of reset. This port should be
asserted High for the clock module to generate the user_clk and
sync_clk for the core. This ports functionality differs with that of 7
series device generated design.
• 1: on this port means clocking helper core is active
• 0: on this port means clocking helper core is not active and not

ready for normal operation

user_clk Input

Parallel clock shared by the Aurora 64B/66B core and the user
application. The user_clk is the output of a BUFG whose input is
derived from tx_out_clk . The clock generations are available in
the <component name>_clock_module f ile. The user_clk goes
as the txusrclk2 input to the transceiver. See the related
transceiver user guide/data sheet for rate related information.

tx_out_clk Output

The GTX or GTH transceiver generates tx_out_clk from its
reference clock based on its PLL speed setting. This clock should be
buffered and used to generate the user clock for logic connected to
the Aurora 64B/66B core.

sync_clk Input

Parallel clock used by internal synchronization logic of the serial
transceivers in the Aurora 64B/66B core. This clock is provided as the
txusrclk to the transceiver interface. The sync_clk is double the
rate of user_clk . See the related transceiver user guide/data sheet
for rate related information.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=37

Aurora 64B/66B v9.2 www.xilinx.com 38
PG074 June 4, 2014

Chapter 2: Product Specification

Detailed Functional Description
An Aurora 64B/66B core can be generated with either a framing or streaming user data
interface. In addition, flow control options are available for designs with framing interfaces.
See Flow Control.

The framing user interface complies with the AXI4-Stream Protocol Specification (AMBA
AXI4-Stream Protocol Specification). It comprises the signals necessary for transmitting and
receiving framed user data. The streaming interface allows you to send data without frame
delimiters. It is simple to operate and uses fewer resources than framing

Top‐Level Architecture

The Aurora 64B/66B top-level (block level) f ile instantiates the Aurora lane module, the TX
and RX AXI4-Stream modules, the global logic module, and the wrapper for the GTX or GTH
transceiver. This top-level wrapper f ile is instantiated in the example design f ile together
with clock, reset circuit, and frame generator and checker modules.

Figure 2-4 shows the Aurora 64B/66B top level for a duplex configuration. The top-level f ile
is the starting point for a user design.

gt_pll_lock Output
Active-High, asserted when tx_out_clk is stable. When this signal
is deasserted (Low), circuits using tx_out_clk should be held in
reset.

gt_refclk Input
The gt_refclk (clkp/clkn) port is a dedicated external clock
generated from an oscillator. This clock is fed through a dedicated
IBUFDS.

Table 2‐16: Clock Ports for a GTX or GTH based Aurora 64B/66B Core (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=38

Aurora 64B/66B v9.2 www.xilinx.com 39
PG074 June 4, 2014

Chapter 2: Product Specification

The following sections describe the streaming and framing interfaces in detail. User
interface logic should be designed such that it complies with timing requirements of the
respective interface as explained in the subsequent sections.

X-Ref Target - Figure 2-4

Figure 2‐4: Top‐Level Architecture

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=39

Aurora 64B/66B v9.2 www.xilinx.com 40
PG074 June 4, 2014

Chapter 2: Product Specification

Note: The user interface signals vary depending upon the selections made when generating an
Aurora 64B/66B core using the IP catalog.

X-Ref Target - Figure 2-5

Figure 2‐5: Top‐Level User Interface

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=40

Aurora 64B/66B v9.2 www.xilinx.com 41
PG074 June 4, 2014

Chapter 2: Product Specification

Framing Interface

Figure 2-6 shows the framing user interface of the Aurora 64B/66B core, with AXI4-Stream
compliant ports for TX and RX data. The core provides an option to configure the
AXI4-Stream user I/O as little endian from the Vivado IDE. The default is big endian.

Note: User interface widths will be Big Endian or Little Endian based on settings for the Aurora
64B/66B Vivado IDE

To transmit data, the user application should manipulate the control signals to cause the
core to do the following:

• Take data from the user application on the s_axi_tx_tdata bus

• Indicates end of frame when s_axi_tx_tlast is asserted and stripes data across
lanes in the Aurora Channel.

• User application can deassert s_axi_tx_tvalid to insert idle or pause cycles on the
serial line

When the core receives data, it does the following:

• Detects and discards control bytes (idles, clock compensation)

• Asserts framing signals (m_axi_rx_tlast)

• Recovers data from the lanes

• Assembles data for presentation to the user application on the m_axi_rx_tdata bus
along with valid number of bytes (m_axi_rx_tkeep) and m_axi_rx_tvalid is
asserted during the m_axi_rx_tlast cycle

The AXI4-Stream user interface of Aurora 64B/66B cores uses ascending ordering. The cores
transmit and receive the most significant bit of the least signif icant byte first. Figure 2-7
shows the organization of an n-byte example of the AXI4-Stream data interfaces of an
Aurora 64B/66B core.

X-Ref Target - Figure 2-6

Figure 2‐6: Aurora 64B/66B Core Framing Interface (AXI4‐Stream)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=41

Aurora 64B/66B v9.2 www.xilinx.com 42
PG074 June 4, 2014

Chapter 2: Product Specification

Transmitting Data

AXI4-Stream is a synchronous interface. The Aurora 64B/66B core samples the data on the
interface only on the positive edge of user_clk , and only on the cycles when both
s_axi_tx_tready and s_axi_tx_tvalid are asserted (active-High).

When AXI4-Stream signals are sampled, they are only considered valid if
s_axi_tx_tvalid and s_axi_tx_tready signals are asserted. The user application can
deassert s_axi_tx_tvalid on any clock cycle; this causes the Aurora core to ignore the
AXI4-Stream input for that cycle. If this occurs in the middle of a frame, idle symbols are
sent through the Aurora channel, which eventually results idle cycles during the frame when
it is received at the RX user interface.

AXI4-Stream data is only valid when it is framed. Data outside of a frame is ignored. To end
a frame, assert s_axi_tx_tlast while the last word (or partial word) of data is on the
s_axi_tx_tdata port. If the CRC option is selected, CRC is calculated and inserted into
the data stream after the last data word. This re-calculates s_axi_tx_tkeep based on the
number of valid CRC bytes and asserts s_axi_tx_tlast accordingly.

Data Strobe

AXI4-Stream allows the last word of a frame to be a partial word. This lets a frame contain
any number of bytes, regardless of the word size. The s_axi_tx_tkeep bus is used to
indicate the number of valid bytes in the f inal word of the frame. The bus is only used when
s_axi_tx_tlast is asserted. TKEEP is the number of valid bytes in the s_axi_tx_tdata
bus. TKEEP associates validity to a particular byte in the last data beat of a frame. If TKEEP
is “0F” in the last beat of data with s_axi_tx_tlast asserted High, then 4 (LSB bytes) out
of 8 bytes are valid and byte4 to byte7 are not valid. All 1s in the s_axi_tx_tkeep value
indicate all bytes in the s_axi_tx_tdata port are valid. s_axi_tx_tkeep does not
specify the position of the valid bytes, but is the number of valid bytes on the last beat of
data with s_axi_tx_tlast asserted. Core expects TKEEP to be left aligned from LSB. See
Appendix B, Migrating and Upgrading for limitations on the types of data stream supported
by the core.

X-Ref Target - Figure 2-7

Figure 2‐7: AXI4‐Stream Interface Bit Ordering

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=42

Aurora 64B/66B v9.2 www.xilinx.com 43
PG074 June 4, 2014

Chapter 2: Product Specification

Aurora 64B/66B Frames

The TX submodule translates each user frame that it receives through the TX interface to an
Aurora 64B/66B frame. The core starts an Aurora 64B/66B frame by sending a data block
with the f irst word of data, and ends the frame by sending a separator block containing the
last bytes of the frame. Idle blocks are inserted whenever data is not available. Blocks are
eight bytes of scrambled data or control information with a two-bit control header (a total
of 66 bits). All data in Aurora 64B/66B is sent as part of a data block or a separator block (a
separator block consists of a count f ield, indicating how many bytes are valid in that
particular block).

Table 2-17 shows a typical Aurora 64B/66B frame with an even number of data bytes.

Length

The user application controls the channel frame length by manipulating the
s_axi_tx_tvalid and s_axi_tx_tlast signals. The Aurora 64B/66B core converts
these to data blocks, idle blocks, and separator blocks, as shown in Table 2-17.

Example A: Simple Data Transfer

Figure 2-8 shows an example of a simple data transfer on a AXI4-Stream interface that is n
bytes wide. In this case, the amount of data being sent is 3n bytes and so requires three data
beats. s_axi_tx_tready is asserted, indicating that the AXI4-Stream interface is ready to
transmit data. When the Aurora 64B/66B is not sending data, it sends idle blocks.

To begin the data transfer, the user application asserts s_axi_tx_tvalid and provides
the first n bytes of the user frame. Because s_axi_tx_tready is already asserted, data
transfer begins on the next clock edge. The data bytes are placed in data blocks and
transferred through the Aurora channel.

To end the data transfer, the user application asserts s_axi_tx_tlast,
s_axi_tx_tvalid, the last data bytes, and the appropriate value on the
s_axi_tx_tkeep bus. In this example, s_axi_tx_tkeep is set to FF to indicate that all
bytes are valid in the last data beat. The Aurora 64B/66B core sends the final word of data
in data blocks, and must send an empty separator block on the next cycle to indicate the
end of the frame. s_axi_tx_tready is reasserted on the next cycle so that more data
transfers can continue. As long as there is no new data, the Aurora 64B/66B core sends
idles.

Table 2‐17: Typical Channel Frame

Data Byte
0

Data Byte
1

Data Byte
2

Data Byte
3 . . . Data Byte

n –2
Data Byte

n –1
Data Byte

n

SEP (1E) Count (4) Data Byte
0

Data Byte
1

Data Byte
2

Data Byte
3 x x

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=43

Aurora 64B/66B v9.2 www.xilinx.com 44
PG074 June 4, 2014

Chapter 2: Product Specification

Example B: Data Transfer with Pause

Figure 2-9 shows how the user application can pause data transmission during a frame
transfer. In this example, the user application is sending 3n bytes of data, and pauses the
data flow after the f irst n bytes. After the f irst data word, the user application deasserts
s_axi_tx_tvalid, causing the TX Aurora 64B/66B core to ignore all data on the bus and
transmit idle blocks instead. The pause continues until s_axi_tx_tvalid is deasserted.

Example C: Data Transfer with Clock Compensation

The Aurora 64B/66B core automatically interrupts data transmission when it sends clock
compensation sequences. The clock compensation sequence imposes three cycles of PAUSE
every 10,000 cycles.

Figure 2-10 shows how the Aurora 64B/66B core pauses data transmission during the clock
compensation sequence.

X-Ref Target - Figure 2-8

Figure 2‐8: Simple Data Transfer

X-Ref Target - Figure 2-9

Figure 2‐9: Data Transfer with Pause

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=44

Aurora 64B/66B v9.2 www.xilinx.com 45
PG074 June 4, 2014

Chapter 2: Product Specification

TX Interface Example

This section illustrates a simple example of an interface between a transmit FIFO and the
AXI4-Stream interface of an Aurora 64B/66B core.

To review, to transmit data, the user application asserts s_axi_tx_tvalid,
s_axi_tx_tready indicates that the data on the s_axi_tx_tdata bus is transmitted on
the next rising edge of the clock, assuming s_axi_tx_tvalid remains asserted.

Figure 2-11 is a diagram of a typical connection between an Aurora 64B/66B core and the
data source (in this example, a FIFO), including the simple logic needed to generate,
s_axi_tx_tvalid and s_axi_tx_tlast from typical FIFO buffer status signals. While
reset is FALSE, the example application waits for a FIFO to f ill, then generates the
s_axi_tx_tvalid signal. These signals cause the Aurora 64B/66B core to start reading
the FIFO by asserting the s_axi_tx_tready signal.

The Aurora 64B/66B core encapsulates the FIFO data and transmits it until the FIFO is
empty. Now the example application tells the Aurora 64B/66B core to end the transmission
using the s_axi_tx_tlast signal.

X-Ref Target - Figure 2-10

Notes:
1. When clock compensation is used, uninterrupted data transmission is not possible. See Clock Compensation Interface,

page 70 for more information about when clock compensation is required.

Figure 2‐10: Data Transfer Paused by Clock Compensation

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=45

Aurora 64B/66B v9.2 www.xilinx.com 46
PG074 June 4, 2014

Chapter 2: Product Specification

Receiving Data

When the Aurora 64B/66B core receives an Aurora 64B/66B frame, it presents it to the user
application through the RX AXI4-Stream interface after discarding the control information,
idle blocks, and clock compensation blocks.

The Aurora 64B/66B core has no built-in buffer for user data. As a result, there is no
m_axi_rx_tready signal on the RX AXI4-Stream interface. The only way for the user
application to control the flow of data from an Aurora channel is to use one of the core
optional flow control features. In most cases, a FIFO should be added to the RX datapath to
ensure no data is lost while flow control messages are in transit.

The Aurora 64B/66B core asserts the m_axi_rx_tvalid signal when the signals on its RX
AXI4-Stream interface are valid. Applications should ignore any values on the RX
AXI4-Stream ports sampled while m_axi_rx_tvalid is deasserted (active-Low).

The m_axi_rx_tvalid signal is asserted concurrently with the f irst word of each frame
from the Aurora 64B/66B core, The m_axi_rx_tlast signal is asserted concurrently with
the last word or partial word of each frame. The m_axi_rx_tkeep port indicates the
number of valid bytes in the final word of each frame. It uses the same byte indication
procedure as s_axi_tx_tkeep and indicates all bytes valid (all 1s) when
m_axi_rx_tkeep is not asserted and specif ies exact number of bytes valid when
m_axi_rx_tkeep is asserted (active-High).

X-Ref Target - Figure 2-11

Figure 2‐11: Transmitting Data

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=46

Aurora 64B/66B v9.2 www.xilinx.com 47
PG074 June 4, 2014

Chapter 2: Product Specification

If the CRC option is selected, the received data stream is computed for the expected CRC
value. This block re-calculates the m_axi_rx_tkeep value and asserts m_axi_rx_tlast
correspondingly.

The Aurora 64B/66B core can deassert m_axi_rx_tvalid anytime, even during a frame.

Example A: Data Reception with Pause shows the reception of a typical Aurora 64B/66B
frame.

Example A: Data Reception with Pause

Figure 2-12 shows an example of 3n bytes of received data interrupted by a pause. Data is
presented on the m_axi_rx_tdata bus. When the f irst n bytes are placed on the bus, the
m_axi_rx_tvalid output is asserted to indicate that data is ready for the user
application. On the clock cycle following the first data beat, the core deasserts
m_axi_rx_tvalid, indicating to the user application that there is a pause in the data flow.

After the pause, the core asserts m_axi_rx_tvalid and continues to assemble the
remaining data on the m_axi_rx_tdata bus. At the end of the frame, the core asserts
m_axi_rx_tlast. The core also computes the value of m_axi_rx_tkeep bus and
presents it to the user application based on the total number of valid bytes in the final word
of the frame.

RX Interface Example

The RX AXI4-Stream interface of an Aurora 64B/66B core can be implemented with a simple
FIFO. To receive data, the FIFO monitors the m_axi_rx_tvalid signal. When valid data is
present on the m_axi_rx_tdata port, m_axi_rx_tvalid is asserted. Because
m_axi_rx_tvalid is connected to the FIFO WE port, the data and framing signals are
written to the FIFO.

Framing Efficiency

There are two factors that affect framing eff iciency in the Aurora 64B/66B core:

• Size of the frame

• Data invalid request from gear box that occurs after every 32 user_clk cycles

X-Ref Target - Figure 2-12

Figure 2‐12: Data Reception with Pause

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=47

Aurora 64B/66B v9.2 www.xilinx.com 48
PG074 June 4, 2014

Chapter 2: Product Specification

The clock compensation (CC) sequence, which uses three user_clk cycles on every lane
every 10,000 user_clk cycles, consumes about 0.03% of the total channel bandwidth.

The gear box in GTX and GTH transceivers requires periodic pause to account for the clock
divider ratio and 64B/66B encoding. This appears as a back pressure in the AXI4-Stream
interface and user data needs to be stopped for one cycle after every 32 cycles
(Figure 2-13). The User Interface has the s_axi_tx_tready signal from the Aurora core
being deasserted (active-Low) for one cycle once every 32 cycles. The pause cycle is used to
compensate the Gearbox for the 64B/66B encoding.

For more information on gear box pause in GTX and GTH transceivers, see the 7 Series
FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 4] or UltraScale FPGAs GTH
Transceivers User Guide (UG576) [Ref 3].

The Aurora 64B/66B core implements the Strict Aligned option of the Aurora 64B/66B
protocol. No data blocks are placed after Idle blocks or SEP blocks on a given cycle. The
restriction of not placing data blocks after SEP blocks reduces framing eff iciency in a
multilane Aurora 64B/66B core.

Table 2-18 is an example calculated after including overhead for clock compensation. It
shows the eff iciency for a single-lane channel and illustrates that the eff iciency increases as
frame length increases.

Table 2-19 shows the overhead in single-lane channel when transmitting 256 bytes of frame
data. The resulting data unit is 264 bytes long due to the SEP block used to end the frame.
This results in 3.03% overhead in the transmitter. In addition, clock compensation blocks
must be transmitted for three cycles every 10,000 cycles, resulting in an additional 0.03%
overhead in the transmitter.

X-Ref Target - Figure 2-13

Figure 2‐13: Framing Efficiency

Table 2‐18: Efficiency Example

User Data Bytes Framing Efficiency %

100 96.12

1,000 99.18

10,000 99.89

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=48

Aurora 64B/66B v9.2 www.xilinx.com 49
PG074 June 4, 2014

Chapter 2: Product Specification

Streaming Interface

Figure 2-14 shows an example of an Aurora 64B/66B core configured with a streaming user
interface.

Note: Width of s_axi_tx_tdata and m_axi_rx_tdata depends on Little Endian or Big Endian
support from the Vivado IDE.

Transmitting and Receiving Data

The streaming interface allows the Aurora channel to be used as a pipe. Words written into
the TX side of the channel are delivered, in order after some latency, to the RX side. After
initialization, the channel is always available for writing, except when the do_cc signal is
asserted to send clock compensation sequences. Applications transmit data through the
s_axi_tx_tdata port, and use the s_axi_tx_tvalid port to indicate when the data is
valid (asserted active-High). The streaming Aurora interface expects data to be filled for the
entire s_axi_tx_tdata port width (integral multiple of eight bytes). The Aurora 64B/66B
core deasserts s_axi_tx_tready (active-Low) when the channel is not ready to receive
data. Otherwise, s_axi_tx_tready remains asserted.

When s_axi_tx_tvalid is deasserted, gaps are created between words. These gaps are
preserved, except when clock compensation sequences are being transmitted. Clock
compensation sequences are replicated or deleted by the CC logic to make up for frequency
differences between the two sides of the Aurora channel. As a result, gaps created when
DO_CC is asserted can shrink and grow. For details on the do_cc signal, see Clock
Compensation Interface, page 70.

Table 2‐19: Typical Overhead for Transmitting 256 Data Bytes

Lane Clock Function

[D0:D7] 1 Channel frame data

[D8:D15] 2 Channel frame data

.

.

.

[D248:D255] 32 Channel frame data

Control block 33 SEP0 block

X-Ref Target - Figure 2-14

Figure 2‐14: Aurora 64B/66B Core Streaming User Interface

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=49

Aurora 64B/66B v9.2 www.xilinx.com 50
PG074 June 4, 2014

Chapter 2: Product Specification

When data arrives at the RX side of the Aurora channel it is presented on the
m_axi_rx_tdata bus and m_axi_rx_tvalid is asserted. The data must be read
immediately or it will be lost. If this is unacceptable, a buffer must be connected to the RX
interface to hold the data until it can be used.

Figure 2-15 shows a typical example of a streaming data transfer. The example begins with
neither of the ready signals asserted, indicating that both the user logic and the Aurora
64B/66B core are not ready to transfer data. During the next clock cycle, the Aurora 64B/66B
core indicates that it is ready to transfer data by asserting s_axi_tx_tready. One cycle
later, the user logic indicates that it is ready to transfer data by asserting the
s_axi_tx_tvalid signal and placing data on the s_axi_tx_tdata bus. Because both
ready signals are now asserted, data D0 is transferred from the user logic to the Aurora
64B/66B core. Data D1 is transferred on the following clock cycle.

In this example, the Aurora 64B/66B core deasserts its ready signal, s_axi_tx_tready,
and no data is transferred until the next clock cycle when, once again, the
s_axi_tx_tready signal is asserted. Then the user application deasserts
s_axi_tx_tvalid on the next clock cycle, and no data is transferred until both ready
signals are asserted.

Figure 2-16 shows a typical example of streaming data reception.

X-Ref Target - Figure 2-15

Figure 2‐15: Typical Streaming Data Transfer

X-Ref Target - Figure 2-16

Figure 2‐16: Typical Streaming Data Reception

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=50

Aurora 64B/66B v9.2 www.xilinx.com 51
PG074 June 4, 2014

Chapter 2: Product Specification

Flow Control

This section explains how to use Aurora flow control. Two optional flow control interfaces
are available. Native flow control (NFC) is used for regulating the data transmission rate at
the receiving end of a full-duplex channel. User flow control (UFC) is used to accommodate
high-priority messages for control operations.

Native Flow Control

The Aurora 64B/66B protocol includes native flow control (NFC) to allow receivers to control
the rate at which data is sent to them by specifying a number of cycles that the channel
partner cannot send data. The data flow can even be turned off completely by requesting
that the transmitter temporarily send only idles (XOFF). NFC is typically used to prevent
FIFO overflow conditions. For detailed explanation of NFC operation, see the Aurora
64B/66B Protocol Specification v1.2 (SP011) [Ref 5].

X-Ref Target - Figure 2-17

Figure 2‐17: Top‐Level Flow Control

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=51

Aurora 64B/66B v9.2 www.xilinx.com 52
PG074 June 4, 2014

Chapter 2: Product Specification

Figure 2-18 and Figure 2-19 shows the NFC message format in default (Big Endian) mode
and in Little Endian mode.

NFC Message in Default Mode

To send an NFC message to a channel partner, the user application asserts
s_axi_nfc_tx_tvalid and writes an 8-bit Pause count to
s_axi_nfc_tx_tdata[8:15]. The pause code indicates the minimum number of cycles
the channel partner must wait after receiving an NFC message before it can resume sending
data. The number of user_clk cycles without data is equal to s_axi_nfc_tx_tdata + 1.

The signal s_axi_nfc_tx_tdata[7] indicates NFC_XOFF. Assert to send an NFC_XOFF
message, requesting that the channel partner stop sending data until it receives a
non-XOFF NFC message or reset. When a request is transmitted with PAUSE and XOFF both
set to 0, NFC is set to XON mode. To turn off XOFF mode, a XON message (all 0s) should be
transmitted; after reception of this XON request, any new NFC request will be honored by
the core. The user application must hold s_axi_nfc_tx_tvalid,
s_axi_nfc_tx_tdata[8:15], and s_axi_nfc_tx_tdata[7](nfc_xoff) (if used)
until s_axi_nfc_tx_tready is asserted on a positive user_clk edge, indicating the
Aurora 64B/66B core will transmit the NFC message.

Aurora 64B/66B cores cannot transmit data while sending NFC messages.
s_axi_tx_tready is always deasserted on the cycle following an
s_axi_nfc_tx_tready assertion. NFC Completion mode is available only for the framing
Aurora 64B/66B interface.

Example A: Transmitting an NFC Message

Figure 2-20 shows an example of the transmit timing when the user application sends an
NFC message to a channel partner using a AXI4-Stream interface.

Note: Signal s_axi_tx_tready is deasserted for one cycle to create the gap in the data flow in
which the NFC message is placed.

X-Ref Target - Figure 2-18

Figure 2‐18: NFC Message Format in Default Mode

X-Ref Target - Figure 2-19

Figure 2‐19: NFC Message Format in Little Endian Mode

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=52

Aurora 64B/66B v9.2 www.xilinx.com 53
PG074 June 4, 2014

Chapter 2: Product Specification

Example B: Receiving a Message with NFC Idles Inserted

Figure 2-21 shows an example of the signals on the TX user interface when an NFC message
is received. In this case, the NFC message sends the number 8'b01, requesting two cycles
without data transmission. The core deasserts s_axi_tx_tready on the user interface to
prevent data transmission for two cycles. In this example, the core is operating in
Immediate NFC mode. Aurora 64B/66B cores can also operate in completion mode, where
NFC Idles are only inserted before the first data bytes of a new frame. If a completion mode
core receives an NFC message while it is transmitting a frame, it f inishes transmitting the
frame before deasserting s_axi_tx_tready to insert idles.

X-Ref Target - Figure 2-20

Figure 2‐20: Transmitting an NFC Message

X-Ref Target - Figure 2-21

Figure 2‐21: Transmitting a Message with NFC Idles Inserted

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=53

Aurora 64B/66B v9.2 www.xilinx.com 54
PG074 June 4, 2014

Chapter 2: Product Specification

User Flow Control

The Aurora 64B/66B protocol includes user flow control (UFC) to allow channel partners to
send control information using a separate in-band channel. The user application can send
short UFC messages to the channel partner of the core without waiting for the end of a
frame in progress. The UFC message shares the channel with regular frame data, but has a
higher priority than frame data. UFC messages are interruptible by high-priority control
blocks such as CC/NR/CB/NFC blocks.

Transmitting UFC Messages

UFC messages can carry from 1 to 256 data bytes. The user application specif ies the length
of the message by driving the number of bytes required minus one on the ufc_tx_ms port.
For example, a value of 3 will transmit 4 bytes of data; and a value of 0 will transfer 1 byte.

To send a UFC message, the user application asserts ufc_tx_req while driving the
ufc_tx_ms port with the desired SIZE code for a single cycle. After a request, a new
request cannot be made until s_axi_ufc_tx_tready is asserted for the f inal cycle of the
previous request. The data for the UFC message must be placed on the
s_axi_ufc_tx_tdata port and the s_axi_ufc_tx_tvalid signal must be asserted
whenever the bus contains valid message data.

The core deasserts s_axi_tx_tready while sending UFC data, and keeps
s_axi_ufc_tx_tready asserted until it has enough data to complete the message that
was requested. If s_axi_ufc_tx_tvalid is deasserted during a UFC message, Idles are
sent in the channel, s_axi_tx_tready remains deasserted, and s_axi_ufc_tx_tready
remains asserted. If a CC request, CB request, or NFC request is made to the core,
s_axi_ufc_tx_tready is deasserted while the requested operation is performed,
because CC, CB, and NFC have higher priority.

Example A: Transmitting a Single-Cycle UFC Message

The procedure for transmitting a single cycle UFC message is shown in Figure 2-22. In this
case a 4-byte message is being sent on an 8-byte interface.

Note: Signals s_axi_tx_tready and s_axi_ufc_tx_tready are deasserted for a cycle before the
core accepts message data: this cycle is used to send the UFC header.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=54

Aurora 64B/66B v9.2 www.xilinx.com 55
PG074 June 4, 2014

Chapter 2: Product Specification

Example B: Transmitting a Multicycle UFC Message

The procedure for transmitting a two-cycle UFC message is shown in Figure 2-23. In this
case the user application is sending a 16-byte message using an 8-byte interface.

The s_axi_ufc_tx_tready signal is asserted for two cycles to transmit UFC data.

Receiving User Flow Control Messages

When the Aurora 64B/66B core receives a UFC message, it passes the data from the
message to the user application through a dedicated UFC AXI4-Stream interface. The data
is presented on the m_axi_ufc_rx_tdata port; assertion of m_axi_ufc_rx_tvalid
indicates the start of the message data and m_axi_ufc_rx_tlast indicates the end.
m_axi_ufc_rx_tkeep is used to show the number of valid bytes on
m_axi_ufc_rx_tdata during the last cycle of the message (for example, while

X-Ref Target - Figure 2-22

Figure 2‐22: Transmitting a Single‐Cycle UFC Message

X-Ref Target - Figure 2-23

Figure 2‐23: Transmitting a Multi‐Cycle UFC Message

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=55

Aurora 64B/66B v9.2 www.xilinx.com 56
PG074 June 4, 2014

Chapter 2: Product Specification

m_axi_ufc_rx_tlast is asserted). Signals on the ufc_rx AXI4-Stream interface are only
valid when m_axi_ufc_rx_tvalid is asserted.

Example C: Receiving a Single-Cycle UFC Message

Figure 2-24 shows an Aurora 64B/66B core with an 8-byte data interface receiving a 4-byte
UFC message. The core presents this data to the user application by asserting
m_axi_ufc_rx_tvalid and m_axi_ufc_rx_tlast to indicate a single cycle frame. The
m_axi_ufc_rx_tkeep bus is set to 4, indicating only the four most significant bytes of
the interface are valid.

Example D: Receiving a Multicycle UFC Message

Figure 2-25 shows an Aurora 64B/66B core with an 8-byte interface receiving a 15-byte
message.

Note: The resulting frame is two cycles long, with m_axi_ufc_rx_tkeep set to 7 on the second
cycle indicating that all seven bytes of the data are valid.

User K‐Block Interface

This section describes short single block data transmission and reception.

X-Ref Target - Figure 2-24

Figure 2‐24: Receiving a Single‐Cycle UFC Message

X-Ref Target - Figure 2-25

Figure 2‐25: Receiving a Multi‐Cycle UFC Message

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=56

Aurora 64B/66B v9.2 www.xilinx.com 57
PG074 June 4, 2014

Chapter 2: Product Specification

User K-blocks are special single block codes which include control blocks that are not
decoded by the Aurora interface, but are instead passed directly to the user application.
These blocks can be used to implement application-specific control functions. There are
nine available User K-blocks (Table 2-20). Their priority is lower than UFC but higher than
user data.

X-Ref Target - Figure 2-26

Figure 2‐26: Top‐Level User K‐Block Interface

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=57

Aurora 64B/66B v9.2 www.xilinx.com 58
PG074 June 4, 2014

Chapter 2: Product Specification

The User K-block is not differentiated for streaming or framing designs. Each block code of
User K is eight bytes wide and is encoded with a User K BTF, which is indicated by the user
application in s_axi_user_k_tx_tdata as User K Block No. The User K-block is a single
block code and is always delineated by User K Block No. You should provide the User K
Block No as specif ied in Table 2-9, page 21. It can have only seven bytes of
s_axi_user_k_tdata.

Figure 2-27 and Figure 2-28 shows the User K format in default (Big Endian) mode and in
Little Endian mode.

Table 2‐20: Valid Block Type Field (BTF) Values for User K‐Block

User K‐Block Name User K‐Block BTF

User K-Block 0 0xD2

User K-Block 1 0x99

User K-Block 2 0x55

User K-Block 3 0xB4

User K-Block 4 0xCC

User K-Block 5 0x66

User K-Block 6 0x33

User K-Block 7 0x4B

User K-Block 8 0x87

X-Ref Target - Figure 2-27

Figure 2‐27: User K format in Default Mode

X-Ref Target - Figure 2-28

Figure 2‐28: User K format in Little Endian Mode

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=58

Aurora 64B/66B v9.2 www.xilinx.com 59
PG074 June 4, 2014

Chapter 2: Product Specification

Transmitting User K‐Blocks

The s_axi_user_k_tx_tready signal is asserted by Aurora and is prioritized by CC, CB,
NFC, and UFC. After placing s_axi_user_k_tx_tdata and along with User K Block No
and s_axi_user_k_tx_tvalid is asserted, the user application can change
s_axi_user_k_tx_tdata if required when s_axi_user_k_tx_tready is asserted
(Figure 2-29). This enables the Aurora core to select appropriate User K BTF among the nine
User K-blocks. The data available during assertion of s_axi_user_k_tx_tready is
always serviced.

Receiving User K‐Blocks

The receive BTF is decoded and the block number for the corresponding BTF is passed on to
the user application as such (Figure 2-30). The user application can validate the
m_axi_rx_user_k_tdata available on the bus when m_axi_rx_user_k_tvalid is
asserted.

Status, Control, and the Transceiver Interface

The status and control ports of the Aurora 64B/66B core allow user applications to monitor
the Aurora channel and use built-in features of the serial transceiver interface. This section
provides diagrams and port descriptions for the Aurora 64B/66B core status and control
interface, along with the GTX and GTH serial I/O interface.

X-Ref Target - Figure 2-29

Figure 2‐29: Transmitting User K Data and User K‐Block Number

X-Ref Target - Figure 2-30

Figure 2‐30: Receiving User K Data and User K‐Block Number

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=59

Aurora 64B/66B v9.2 www.xilinx.com 60
PG074 June 4, 2014

Chapter 2: Product Specification

Status and Control Ports

Aurora 64B/66B cores are full-duplex/simplex, and provide a TX and an RX Aurora channel
connection. The Aurora 64B/66B core does not require any sideband signals for simplex
mode of operation. Figure 2-32 shows the status and control interface for an Aurora
64B/66B core.

X-Ref Target - Figure 2-31

Figure 2‐31: Top‐Level GTX Interface

X-Ref Target - Figure 2-32

Figure 2‐32: Status and Control Interface for the Aurora 64B/66B Core

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=60

Aurora 64B/66B v9.2 www.xilinx.com 61
PG074 June 4, 2014

Chapter 2: Product Specification

Error Signals in Aurora 64B/66B Cores

Equipment problems and channel noise can cause errors during Aurora channel operation.
The 64B/66B encoding allows the Aurora 64B/66B core to detect some bit errors that occur
in the channel. The core reports these errors by asserting the soft_err signal on every
cycle they are detected.

The core also monitors each high-speed serial GTX and GTH transceiver for hardware errors
such as buffer overflow and loss of lock. The core reports hardware errors by asserting the
hard_err signal. Catastrophic hardware errors can also manifest themselves as burst of
soft errors. The core uses the Block Sync algorithm described in the Aurora 64B/66B
Protocol Specification v1.2 (SP011) [Ref 5] to determine whether to treat a burst of soft
errors as a hard error.

Whenever a hard error is detected, the Aurora 64B/66B core automatically resets itself and
attempts to re-initialize. In most cases, this allows the Aurora channel to be reestablished as
soon as the hardware issue that caused the hard error is resolved. Soft errors do not lead to
a reset unless enough of them occur in a short period of time to trigger the block sync state
machine.

Table 2‐21: Error Signals in Full Duplex Cores

Signal Description

hard_err/
tx_hard_err/
rx_hard_err

TX Overflow/Underflow: The elastic buffer for TX data overflows or underflows.
This can occur when the user clock and the reference clock sources are not
running at the same frequency.

RX Overflow/Underflow: The clock correction and channel bonding FIFO for RX
data overflows or underflows. This can occur when the clock source frequencies
for the two channel partners are not within ±100 ppm.

soft_err/
tx_soft_err/
rx_soft_err

Soft Errors: There are too many soft errors within a short period of time. The
block sync state machine used for alignment automatically attempts to realign if
too many invalid sync headers are detected. Soft Errors will not be transformed into
Hard Errors.

Invalid SYNC Header: The 2-bit header on the 64-bit block was not a valid
control or data header.

Invalid BTF: A control block was received with an unrecognized value in the
block type field (BTF). This is usually the result of a bit error.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=61

Aurora 64B/66B v9.2 www.xilinx.com 62
PG074 June 4, 2014

Chapter 2: Product Specification

Initialization

Aurora 64B/66B cores initialize automatically after power-up, reset, or hard error. Aurora
64B/66B core modules on each side of the channel perform the Aurora initialization
procedure until the channel is ready for use. The lane_up bus indicates which lanes in the
channel have f inished the lane initialization portion of the initialization procedure. This
signal can be used to help debug equipment problems in a multi-lane channel.
channel_up is asserted only after the core completes the entire initialization procedure.

Aurora 64B/66B cores can receive data before channel_up is asserted. Only the
m_axi_rx_tvalid signal on the user interface should be used to qualify incoming data.
channel_up can be inverted and used to reset modules that drive the TX side of a
full-duplex channel, because no transmission can occur until after channel_up. If user
application modules need to be reset before data reception, one of the lane_up signals
can be inverted and used. Data cannot be received until after all the lane_up signals are
asserted.

X-Ref Target - Figure 2-33

Figure 2‐33: Initialization Overview

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=62

Aurora 64B/66B v9.2 www.xilinx.com 63
PG074 June 4, 2014

Chapter 2: Product Specification

Aurora Simplex Operation

Simplex Aurora 64B/66B cores do not have any sideband connection and use timers to
declare that the partner is out of initialization and is ready for data transfer.

Simplex TX/RX cores are that which have both transmit and receive portions of the GT
configured to operate independently. However, the Simplex TX/RX cores have reset and
pma_init common between the transmit and receive path of the core.

The user application can modify the timer value based on the channel requirement. For
Simplex links, it is expected that rx_channel_up is asserted before tx_channel_up is
asserted. This will ensure that Simplex RX is ready to receive before Simplex TX is
operational.

TX Lane Up is asserted based on a 24-bit counter to account for Block Lock and CDR lock
times of the Simplex RX link. Depending on deassertion time delta between TX/RX RESET or
PMA_INITs, the SIMPLEX_TIMER_VALUE parameter in Simplex TX has to be adjusted to meet
the preceding criteria. The SIMPLEX_TIMER_VALUE parameter can be updated in
<user_component_name>_core.v.

• If tx_reset is deasserted after rx_reset, the default value of 12 bits is sufficient for
the link to be operational.

• If tx_reset is deasserted before rx_reset, the SIMPLEX_TIMER_VALUE parameter in
Simplex TX has to accommodate the delay in the reset deassertion time.

Reset and Power Down

Reset

The reset signals on the control and status interface are used to set the Aurora 64B/66B
core to a known starting state. Resetting the core stops any channels that are currently
operating; after reset, the core attempts to initialize a new channel. When Reset on Aurora
channel partner1 is asserted, channel partner2 will also lose lock. Channel Partner2 will
regain lock when partner1 is out of reset and transmits valid patterns.

On full-duplex modules, the reset signal resets both the TX and RX sides of the channel
when asserted on the positive edge of user_clk . Simplex Aurora cores have respective
reset ports. Asserting pma_init will reset the entire serial transceiver which will eventually
reset Aurora core also.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=63

Aurora 64B/66B v9.2 www.xilinx.com 64
PG074 June 4, 2014

Chapter 2: Product Specification

Reset Sequencing

Following is the recommended reset sequence for the Aurora 64B/66B core at the example
design level. See Figure 2-34.

1. Assert reset. Wait for a minimum of 128 user_clk clock cycle times.

2. Assert pma_init. Keep pma_init and reset asserted for at least one second; this
ensures that there is no transmission of CC characters, making sure the remote agent
will detect a hot plug event. See Hot-Plug Logic in Chapter 3.

3. Deassert pma_init.

4. Deassert reset.

Notes:

1. The preceding reset sequence is implemented in
<user_component_name>_exdes.v for reference.

2. For Simplex use cases, TX reset has to be asserted first then followed by RX reset. This
ensures that whenever TX reset is asserted, Simplex-TX will send NA idle characters. The
Channel partner (Simplex-RX) will receive these characters and the link will shut down
gracefully.

3. For TX/RX Simplex cores, assertion of reset and pma_init input ports will reset both
the TX and RX portions of the core and GT respectively. The reset and pma_init
connection is similar to that of duplex cores.

pma_init Staging

The top level pma_init input at the example design level is delayed for 128 cycles
(pma_init_stage). This signal is pulse stretched for a 24-bit counter time
(pma_init_assertion). An aggregated signal from above is provided to the core as the
pma_init input. This is to make sure that pma_init assertion to the core will result in
reset assertion to the entire core also.

Inside the <user_component_name>_support_reset_logic.v, the debouncer logic
(reset_debounce_r) will remain in the reset state until the gt_reset_in signal
(pma_init_assertion) signal is High. This ensures that there is an internally generated
reset whenever the top level pma_init is asserted.

X-Ref Target - Figure 2-34

Figure 2‐34: Reset Sequencing

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=64

Aurora 64B/66B v9.2 www.xilinx.com 65
PG074 June 4, 2014

Chapter 2: Product Specification

Figure 2-35 shows the behavior.

Assertion of pma_init to the core will result in hot-plug reset assertion in the channel
partner core. The reset sequence after hot-plug reset assertion is shown in Figure 2-36.

Reset Flow

The top level reset input at the example design level is debounced and connected to the
core (reset_pb). This signal is aggregated along with the serial transceiver reset status and
the hot-plug reset from the core in the core reset logic to generate a reset to the core
(sys_reset_out). This signal is expected to be connected to the core reset input.
Figure 2-37 shows the behavior.

Note:

1. reset_pb and reset at the input of the core should not be tied together, to account for the preceding
requirement.

2. sys_reset_out should be used to drive the reset input to the core, along with additional system specif ic resets,
if any.

X-Ref Target - Figure 2-35

Figure 2‐35: pma_init Staging

X-Ref Target - Figure 2-36

Figure 2‐36: pma_init to Remote System Reset

X-Ref Target - Figure 2-37

Figure 2‐37: Reset Flow

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=65

Aurora 64B/66B v9.2 www.xilinx.com 66
PG074 June 4, 2014

Chapter 2: Product Specification

Power Down

When power_down is asserted, only the Aurora 64B/66B core logic will be in reset. This
does not turn off the GTX or GTH transceivers used in the design.

Timing

Figure 2-38 shows the timing for the reset signal. In a quiet environment, tCU is generally
less than 500 clocks; In a noisy environment, tCU can be much longer.

Reset Use Cases

Use Case 1: reset assertion in duplex core

The reset assertion in the duplex core should be a minimum of 128 user_clk cycles. In
effect to this, channel_up will be deasserted as shown in the Figure 2-39.

X-Ref Target - Figure 2-38

Figure 2‐38: Reset and Power Down Timing

X-Ref Target - Figure 2-39

Figure 2‐39: Assertion of reset in the Duplex Core

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=66

Aurora 64B/66B v9.2 www.xilinx.com 67
PG074 June 4, 2014

Chapter 2: Product Specification

Use Case 2: PMA_INIT assertion in duplex core

Figure 2-40 shows the pma_init assertion in the duplex core and should be a minimum of
128 init_clk cycles. As a result, user_clk will be stopped after a few clock cycles
because there is no txoutclk from the transceiver and channel_up will be deasserted.

Use Case 3: Assertion of reset in the Simplex Core

Figure 2-41 shows the Simplex-TX core and Simplex-RX core connected in a system.
CONFIG1 and CONFIG2 can be in same or multiple device(s).

Following is the recommended procedure of TX cores reset and RX cores reset assertion in
the Simplex core.

1. The signal RX cores reset is asserted for 128 user_clk cycles followed by reset on
the RX Simplex core asserted for 128 user_clk cycles.

2. tx_channel_up and rx_channel_up are deasserted after a minimum of f ive
user_clk clock cycles.

3. The signal reset in the RX Simplex core is deasserted (or) released before reset in the
TX Simplex core is deasserted. This will ensure that transceiver in the Simplex-RX core
will have suff icient transitions for CDR lock before the Simplex-TX core achieves
TX_CHANNELUP.

X-Ref Target - Figure 2-40

Figure 2‐40: pma_init Assertion in the Duplex Core

X-Ref Target - Figure 2-41

Figure 2‐41: System with Simplex Cores

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=67

Aurora 64B/66B v9.2 www.xilinx.com 68
PG074 June 4, 2014

Chapter 2: Product Specification

4. rx_channel_up is asserted before tx_channel_up assertion. This condition must be
satisfied by Simplex-RX core and simplex timer parameters (SIMPLEX_TIMER_VALUE) in
Simplex-TX core needs to be adjusted to meet this criteria. The SIMPLEX_TIMER_VALUE
parameter can be updated in <user_component_name>_core.v.

5. tx_channel_up is asserted after Simplex-TX core completes the Aurora protocol
channel initialization sequence transmission for configured time. Assertion of
tx_channel_up last will ensure that the Simplex-TX core will transmit an Aurora
initialization sequence when Simplex-RX core is ready.

6. In the case of TX/RX Simplex cores, the reset sequence in duplex cores for reset and
pma_init assertions can be followed. However, the SIMPLEX_TIMER_VALUE needs to
be tuned based on the use model of the core.

DRP Interface

The DRP interface controls or monitors the status of the transceiver block. The user
application can access or update the serial transceiver settings by writing/reading the
values through the DRP ports. The Native interface provides the native transceiver DRP
interface. The AXI4-Lite interface can also be selected to access the DRP ports through it.

X-Ref Target - Figure 2-42

Figure 2‐42: Reset Assertion in Simplex Cores

Table 2‐22: AXI4‐Lite Signal Definitions

Name Direction Description

s_axi_awaddr Input AXI4-Lite Write address for DRP

s_axi_awvalid Input Write address valid

s_axi_awready Output Write address ready

s_axi_araddr Input Read address

s_axi_arvalid Input Read address valid

s_axi_arready Output Read address ready

s_axi_wdata Input Write data

s_axi_wvalid Input Write valid

s_axi_wready Output Write ready

s_axi_bvalid Output Write response valid

s_axi_rdata Output Read data

s_axi_rvalid Output Read valid

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=68

Aurora 64B/66B v9.2 www.xilinx.com 69
PG074 June 4, 2014

Chapter 2: Product Specification

Note: The core expects the user AXI4-Lite interface to be ready to take the data when the DRP read
operation is initiated.

Note: For UltraScale devices the DRP port names starts with gt<lane>_drp*. where lane =
number of lanes.

The DRP interface will assert drpen when the Write Address or Read Address channel from
the AXI4-Lite interface is active with the respective Valid/Ready signals asserted. The drpwe
signal for write operation is enabled when the Write Data channel from the AXI4-Lite
interface is active. When the Read Data channel from AXI4-Lite is enabled, drpdo will have
the data requested for the address specified through drpaddr.

s_axi_rready Input Read ready

s_axi_bready Input Write response ready

Table 2‐23: DRP Port Signal Definitions

Port Direction Clock Domain Description

drpaddr[8:0] Input DRPCLK DRP address bus

drpclk Input N/A DRP interface clock

drpen Input DRPCLK

DRP enable signal
0: No read or write operation performed
1: Enables a read or write operation
For write operations, drpwe and drpen should be
driven High for one drpclk cycle only. See
Figure 2-31 for correct operation.

drpdi[15:0] Input DRPCLK Data bus for writing configuration data from the FPGA
logic resources to the transceiver.

drprdy Output DRPCLK Indicates operation is complete for write operations
and data is valid for read operations.

drpdo[15:0] Output
DRPCLK Data bus for reading configuration data from the GTX

or GTH transceiver to the FPGA logic resources.

drpwe Input DRPCLK

DRP write enable
0: Read operation when drpen is 1.
1: Write operation when drpen is 1.
For write operations, drpwe and drpen should be
driven High for one drpclk cycle only.

Table 2‐22: AXI4‐Lite Signal Definitions (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=69

Aurora 64B/66B v9.2 www.xilinx.com 70
PG074 June 4, 2014

Chapter 2: Product Specification

Clock Compensation Interface

This interface is included in modules that transmit data, and is used to manage clock
compensation. Whenever the do_cc port is driven High, the core stops the flow of data and
flow control messages, then sends clock compensation sequences. Each Aurora 64B/66B
core is accompanied by a clock compensation management module that is used to drive the
clock compensation interface in accordance with the Aurora 64B/66B Protocol Specification
v1.2 (SP011) [Ref 5]. When the same physical clock is used on both sides of the channel and
hot-plug logic is disabled, do_cc should be tied Low. However it is highly recommended to
have CC logic enabled for reliable operation of the link.

All Aurora 64B/66B cores include a clock compensation interface for controlling the
transmission of clock compensation sequences. Table 2-24 describes the function of the
clock compensation interface ports.

Table 2‐24: Clock Compensation I/O Ports

Name Direction Description

do_cc Input
The Aurora 64B/66B core sends CC sequences on all lanes on every clock
cycle when this signal is asserted. Connects to the do_cc output on the CC
module.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=70

Aurora 64B/66B v9.2 www.xilinx.com 71
PG074 June 4, 2014

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to make designing with the
core easier.

General Design Guidelines
All Aurora 64B/66B core implementations require careful attention to system performance
requirements. Pipelining, logic mappings, placement constraints and logic duplications are
all methods that help boost system performance.

Keep It Registered

To simplify timing and increase system performance in an FPGA design, keep all inputs and
outputs registered between the user application and the core. This means that all inputs
and outputs from user application should come from or connect to a flip-flop. While
registering signals might not be possible for all paths, it simplif ies timing analysis and
makes it easier for the Xilinx tools to place-and-route the design.

Recognize Timing Critical Signals

The XDC file provided with the example design for the core identif ies the critical signals and
the timing constraints that should be applied.

Use Supported Design Flows

The core is delivered as Verilog source code. The example implementation scripts provided
currently use XST as synthesis tool for the example design that is delivered with the core.
Other synthesis tools can be used.

Make Only Allowed Modifications

The Aurora 64B/66B core is not user modif iable. Any modif ications might have adverse
effects on the system timings and protocol compliance. Supported user configurations of
the Aurora 64B/66B core can only be made by selecting options from the IP catalog.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=71

Aurora 64B/66B v9.2 www.xilinx.com 72
PG074 June 4, 2014

Chapter 3: Designing with the Core

Shared Logic
Up to version 8.1 of the core, the RTL hierarchy for the core was fixed. This resulted in some
diff iculties because shareable clocking and reset logic needed to be extracted from the core
example design for use with a single instance or multiple instances of the core.

Shared logic is a new feature that provides a more flexible architecture that works both as
a standalone core and as a part of a larger design with one or more core instances. This
minimizes the amount of HDL modif ications required, but at the same time retains the
flexibility to address more use cases.

The new level of hierarchy is called <user_component_name>_support. Figure 3-1 and
Figure 3-2 show two hierarchies where the shared logic block is contained either in the core
or in the example design. In these figures, <user_component_name> is the name of the
generated core. The difference between the two hierarchies is the boundary of the core. It
is controlled using the Shared Logic option in the Vivado® IDE.

X-Ref Target - Figure 3-1

Figure 3‐1: Shared Logic Included in Core (highlighted in gray is the xci top)

X-Ref Target - Figure 3-2

Figure 3‐2: Shared Logic Included in Example Design (highlighted in gray is the xci top)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=72

Aurora 64B/66B v9.2 www.xilinx.com 73
PG074 June 4, 2014

Chapter 3: Designing with the Core

The contents of the shared logic depend upon the physical interface and the target device.
Shared logic will contain instance(s) of the GT differential buffer, support reset logic and
instantiation of <=: USER_COMPONENT_NAME:>_CLOCK_MODULE. In addition to these
blocks, shared logic will also contain an instance of transceiver common. The transceiver
common is instantiated based on the selected transceiver type (GTX or GTH). Support reset
logic contains the de-bouncer logic for the reset and gt_reset ports.

Table 3-1 provides the details about the port changes due to Shared Logic option.

Table 3‐1: Port Changes Due to Shared Logic Option

NAME Direction Description Remarks

gt_refclk1_p
gt_refclk1_n

Input Differential Transceiver
Reference Clock 1

Enabled when Shared Logic in
Core is selected.

gt_refclk2_p
gt_refclk2_n

Input Differential Transceiver
Reference Clock 2

Enabled when Shared Logic in
Core is selected and more than
one reference clock is required.

refclk1_in Input Single Ended Transceiver
Reference Clock 1

Enabled when Shared Logic in
Example Design is selected.

refclk2_in Input Single Ended Transceiver
Reference Clock 2

Enabled when Shared Logic in
Example Design is selected
and more than one reference
clock is required.

user_clk_out Output User Clock output Enabled when Shared Logic in
Core is selected

init_clk_out output INIT Clock output
Enabled when Shared Logic in
Core is selected. Available only
for 7 series devices.

sync_clk Input Sync clock input from the
support logic

Enabled when Shared Logic in
Example Design is selected

sync_clk_out Output Sync clock output to be
used by the support logic

Enabled when Shared Logic in
Core is selected.

reset_pb Input

Push Button Reset, the top
level reset input at the
Example Design Level, This
is required in the core as
the Support Reset logic is
now inside the core

gt_reset_out Output Output of de-bouncer for
gt_reset

Enabled when Shared Logic in
Core is selected.

gt_refclk1_out Output Single Ended Transceiver
Reference clock

Enabled when Shared Logic in
Core is selected.

gt_refclk2_out Output Single Ended Transceiver
Reference clock

Enabled when Shared Logic in
Core is selected.

mmcm_not_locked_out Output
The mmcm_not_locked
signal from the clock
module.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=73

Aurora 64B/66B v9.2 www.xilinx.com 74
PG074 June 4, 2014

Chapter 3: Designing with the Core

gt_rxcdrovrden_in Input
RXCDR Override used to
configure GT in loopback
mode

gt_qpllclk_quad<quad>_in
gt_qpllrefclk_quad<quad>_in Input

Clock inputs generated by
GTXE2_COMMON/
GTHE2_COMMON/
GTHE3_COMMON

<quad> refers to the active
transceiver quad and starts
from 1 to 12.
Enabled when Shared Logic in
Example Design is selected.
Applicable for GTX or GTH
transceiver designs. These
ports are enabled for each
quad that you select in the
Vivado IDE during core
configuration in the Vivado
Design Suite.

gt_qpllclk_quad<quad>_out
gt_qpllrefclk_quad<quad>_out Output

Clock outputs generated
by GTXE2_COMMON/
GTHE2_COMMON/
GTHE3_COMMON

<quad> refers to the active
transceiver quad and starts
from 1 to 12.
Enabled when Shared Logic in
Core is selected. Applicable for
GTX or GTH transceiver
designs. These ports are
enabled for each quad that you
select in the Vivado IDE during
core configuration in the
Vivado Design Suite.

gt_to_common_qpllreset_out Output
QPLL common reset out to
be used by the slave
shared logic

Enabled when Shared Logic in
Example Design is selected
and when QPLL is being used.

gt_qplllock_quad<quad>_in
gt_qpllrefclklost_quad<quad>_in

Input
QPLL lock and refclock lost
signal inputs from the
master shared logic

Enabled when Shared Logic in
Example Design is selected
and when QPLL is being used.
<quad> refers to the active
transceiver quad and starts
from 1 to 12

gt_qplllock_quad<quad>_out
gt_qpllrefclklost_quad<quad>_out

Output
QPLL lock and refclock lost
signal outputs to the slave
shared logic

Enabled when Shared Logic in
Core is selected and when
QPLL is being used. <quad>
refers to the active transceiver
quad and starts from 1 to 12,

init_clk_p
init_clk_n

Input
Differential Free running
system/board
clock

Enabled when Shared Logic in
Core is selected. Available only
for 7 series devices.

sys_reset_out Output
Output system reset to be
used by the logic in the
example design level

init_clk Input Free running
system/board clock

Available only for 7
series devices

Table 3‐1: Port Changes Due to Shared Logic Option (Cont’d)

NAME Direction Description Remarks

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=74

Aurora 64B/66B v9.2 www.xilinx.com 75
PG074 June 4, 2014

Chapter 3: Designing with the Core

Clocking
Good clocking is critical for the correct operation of the UltraScale™, Zynq®-7000,
Virtex®-7, and Kintex®-7 device Aurora 64B/66B core. The core requires a low-jitter
reference clock to drive the high-speed TX clock and clock recovery circuits in the GTX or
GTH transceiver. It also requires at least one frequency-locked parallel clock for
synchronous operation with the user application.

Each Aurora 64B/66B core is generated in the example_project directory that includes a
design called aurora_example. This design instantiates the Aurora 64B/66B core that was
generated and demonstrates a working clock configuration for the core. First-time users
should examine the aurora example design and use it as a template when connecting the
clock interface.

X-Ref Target - Figure 3-3

Figure 3‐3: Top‐Level Clocking

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=75

Aurora 64B/66B v9.2 www.xilinx.com 76
PG074 June 4, 2014

Chapter 3: Designing with the Core

Clock Interface and Clocking

Aurora 64B/66B Clocking Architecture

Figure 3-4 shows the clocking architecture in the Aurora 64B/66B core for Zynq-7000,
Virtex-7, and Kintex-7 device GTX or GTH transceivers.

X-Ref Target - Figure 3-4

Figure 3‐4: Aurora 64B/66B Clocking for Zynq‐7000, Virtex‐7, and Kintex‐7
Device GTX or GTH Transceivers

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=76

Aurora 64B/66B v9.2 www.xilinx.com 77
PG074 June 4, 2014

Chapter 3: Designing with the Core

Connecting user_clk, sync_clk, and tx_out_clk

The Aurora 64B/66B cores use three phase-locked parallel clocks. The first is user_clk ,
which synchronizes all signals between the core and the user application. All logic touching
the core must be driven by user_clk , which in turn must be the output of a global clock
buffer (BUFG).

The user_clk signal is used to drive the txusrclk2 port of the serial transceiver. The
tx_out_clk is selected such that the data rate of the parallel side of the module matches
the data rate of the serial side of the module, taking into account 64B/66B encoding and
decoding.

The third phase-locked parallel clock is sync_clk . This clock must also come from a BUFG
and is used to drive txusrclk port of the serial transceiver. It is also connected to the
Aurora 64B/66B core to drive the internal synchronization logic of the serial transceiver.

To make it easier to use the two parallel clocks, a clock module is provided in a subdirectory
called clock_module under example_design/support or under src based on shared
logic settings. The ports for this module are described in Table 2-16, page 37. If the clock
module is used, the mmcm_not_locked signal should be connected to the
mmcm_not_locked output of the clock module; tx_out_clk should connect to the clock
module clk port, and pll_lock should connect to the clock module pll_not_locked
port. If the clock module is not used, connect the mmcm_not_locked signal to the inverse
of the locked signal from any PLL used to generate either of the parallel clocks, and use
the pll_lock signal to hold the PLLs in reset during stabilization if tx_out_clk is used as
the PLL source clock. The txusrclk could be unreliable during assertion of pma_init;
hence, the core will use a stable clock (init_clk) for MMCM synchronization. Using a
stable clock to sample adds more robustness to the link.

If MMCM is used to generate a stable clock (init_clk), pma_init needs to be applied to
the Aurora core until MMCM lock is established. This ensures that the core remains in a
known state before a stable clock is available for the core.

Usage of BUFG in the Aurora 64B/66B Core

The Aurora 64B/66B core uses four BUFGs for a given core configuration using GTX or GTH
transceivers. Aurora 64B/66B is an eight-byte-aligned protocol, and the datapath from the
user interface is 8-bytes aligned. For GTX or GTH transceivers, the core configures the
transmit path as eight bytes and the receive path as four bytes.

The CB/CC logic is internal to the core, which is primarily based on the received recovered
clock from the serial transceiver. The BUFG usage is constant for any core configuration and
does not increase with any core feature.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=77

Aurora 64B/66B v9.2 www.xilinx.com 78
PG074 June 4, 2014

Chapter 3: Designing with the Core

Reference Clocks for FPGA Designs

Aurora 64B/66B cores require low-jitter reference clocks for generating and recovering
high-speed serial clocks in the GTX and GTH transceivers. Each reference clock can be set to
the reference clock input ports: gtxq/gthq. Reference clocks should be driven with
high-quality clock sources whenever possible to decrease jitter and prevent bit errors.
DCMs should never be used to drive reference clocks, because they introduce too much
jitter.

For multi-lane designs in Zynq-7000, Virtex-7, and Kintex-7 devices, the Aurora 64B/66B
wizard allows selecting clocks one Quad above and one Quad below the selected Quad per
north-south clocking criteria. A second reference clock source can be selected if the quad
selection exceeds the 3-Quad boundary. For details on north-south clocking, see the 7
Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 4].

For UltraScale devices, the Xilinx implementation tools make necessary adjustments to the
north-south routing and the pin swapping necessary to the GTHE3 transceiver clock inputs
to route clocks from one quad to another, when required.

The maximum number of GTH transceivers that can be sourced by a single clock pin pair is
20.

IMPORTANT: The following rules must be observed when sharing a reference clock to ensure that jitter
margins for high-speed designs are met: The number of GTH transceiver quads above the sourcing
quad must not exceed two. The number of GTX or GTH transceiver quads below the sourcing quad must
not exceed two.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=78

Aurora 64B/66B v9.2 www.xilinx.com 79
PG074 June 4, 2014

Chapter 3: Designing with the Core

Clock Compensation

The clock compensation feature allows up to ± 100 ppm difference in the reference clock
frequencies used on each side of an Aurora channel. This feature is used in systems where
a separate reference clock source is used for each device connected by the channel, and
where the same user_clk is used for transmitting and receiving data.

The Aurora 64B/66B core clock compensation interface enables full control over the core
clock compensation features. A standard clock compensation module is generated with the
Aurora 64B/66B core to provide Aurora-compliant clock compensation for systems using
separate reference clock sources; users with special clock compensation requirements can
drive the interface with custom logic. If the same reference clock source is used for both
sides of the channel, the interface can be tied to ground to disable clock compensation.

Figure 3-6 and Figure 3-7 are waveform diagrams showing how the do_cc signal works.

X-Ref Target - Figure 3-5

Figure 3‐5: Top‐Level Clock Compensation Interface

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=79

Aurora 64B/66B v9.2 www.xilinx.com 80
PG074 June 4, 2014

Chapter 3: Designing with the Core

The Aurora protocol specif ies a clock compensation mechanism that allows up to
± 100 ppm difference between reference clocks on each side of an Aurora channel. To
perform Aurora-compliant clock compensation, do_cc must be asserted for three
user_clk cycles every 10,000 cycles. While do_cc is asserted, s_axi_tx_tready is
deasserted on the TX user interface while the channel is being used to transmit clock
compensation sequences.

A standard clock compensation module is generated along with each Aurora 64B/66B core
from the Vivado® design tools, in the cc_manager subdirectory under example_design.
It automatically generates pulses to create Aurora compliant clock compensation
sequences on the do_cc port. This module should always be connected to the clock
compensation port on the Aurora module, except in special cases. Table 3-2 shows the port
description for the standard CC module.

Clock compensation is not needed when both sides of the Aurora channel are being driven
by the same clock (see Figure 3-7, page 80) because the reference clock frequencies on
both sides of the module are locked. In this case, do_cc should be tied to ground.

X-Ref Target - Figure 3-6

Figure 3‐6: Streaming Data with Clock Compensation Inserted

X-Ref Target - Figure 3-7

Figure 3‐7: Data Reception Interrupted by Clock Compensation

Table 3‐2: Standard CC I/O Port

Name Direction Description

do_cc Output Connect this port to the do_cc input of the Aurora 64B/66B core.

channel_up Input Connect this port to the channel_up output of a full-duplex core, or to
the tx_channel_up output of a TX-only simplex port.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=80

Aurora 64B/66B v9.2 www.xilinx.com 81
PG074 June 4, 2014

Chapter 3: Designing with the Core

Other special cases when the standard clock compensation module is not appropriate are
possible. The do_cc port can be used to send clock compensation sequences at any time,
for any duration to meet the needs of specif ic channels. The most common use of this
feature is scheduling clock compensation events to occur outside of frames, or at specif ic
times during a stream to avoid interrupting data flow.

IMPORTANT: In general, customizing the clock compensation logic is not recommended, and when it is
attempted, it should be performed with careful analysis, testing, and consideration of these guidelines:

• Clock compensation sequences should last at least three user_clk cycles to ensure
they are recognized by all receivers.

• Be sure the duration and period selected are suff icient to correct for the maximum
difference between the frequencies of the clocks that will be used.

• Do not perform multiple clock compensation sequences within eight cycles of one
another.

• Clock Compensation should not be disabled when hot-plug logic is enabled.

Core Features
This section describes the following features of the Aurora 64B/66B core.

• CRC

• Using Vivado Lab Tools

• Hot-Plug Logic

• Little Endian Support

CRC

A 32-bit CRC, implemented for framing user data interface, is available in the <component
name>_crc_top.v module. The crc_valid and crc_pass_fail_n signals indicate the
result of a received CRC with a transmitted CRC (see Table 3-3).

Table 3‐3: CRC Module Ports

Port Name Direction Description

crc_valid Output Active-High signal that samples the crc_pass_fail_n
signal.

crc_pass_fail_n Output

The crc_pass_fail_n signal is asserted High when the
received CRC matches the transmitted CRC. This signal is not
asserted if the received CRC is not equal to the transmitted
CRC. The crc_pass_fail_n signal should always be
sampled with the crc_valid signal.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=81

Aurora 64B/66B v9.2 www.xilinx.com 82
PG074 June 4, 2014

Chapter 3: Designing with the Core

Using Vivado Lab Tools

The ILA and VIO cores aid in debugging and validating the design in the board and are
provided with the Aurora 64B/66B core. The Aurora 64B/66B core connects the relevant
signals to the VIO to facilitate easier bring-up or debug of the design. Select the Vivado lab
tools option from the core Vivado Integrated Design Environment (IDE) (see Figure 4-1,
page 86) to include it as a part of the example design.

Cores generated with Vivado lab tools enabled will have three VIO interfaces and one ILA
interface.

• vio1_inst – contains core Lane Up, Channel Up, Data Error count, Soft Error count,
Channel Up transition count along with System Reset, GT Reset and Loopback ports

• vio2_inst – contains status of reset quality counters

• vio3_inst – contains test pass/fail status for repeat reset test

Hot‐Plug Logic

Hot-plug logic in Aurora 64B/66B designs is based on the received clock compensation
characters. Reception of clock compensation characters at the RX interface of Aurora infers
that the communication channel is active and not broken. If clock compensation characters
are not received in a predetermined time, the hot-plug logic resets the core and the
transceiver. The clock compensation module must be used for Aurora 64B/66B designs.

To disable hot-plug logic, set the ENABLE_HOTPLUG parameter to 0 in the <component
name>_cbcc_gtx_6466.v module. With hot-plug logic disabled, the core does not get
repeatedly reset when looking for clock compensation characters in duplex and any valid
BTF characters for Simplex RX in the received data.

IMPORTANT: It is highly recommended to keep hot plug logic enabled for predictable operation of the
link.

Following is the description of the hot-plug sequence.

1. Requirements: Before replacing the card or powering down a specif ic system or
reprogramming the bit f ile, it is required to assert reset before doing hot plug so that
the remote agent channel goes down gracefully and gets ready when you remove and
plug in the link.

2. How it works: When reset is asserted at least for 128 cycles before doing hot plug, this
will generate enough NA_IDLES for the remote link to deassert Channel Up without any
errors.

3. Limitations: If the preceding sequence is not followed, it is possible that SOFT/DATA
errors will be observed and the link will not have a graceful shutdown.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=82

Aurora 64B/66B v9.2 www.xilinx.com 83
PG074 June 4, 2014

Chapter 3: Designing with the Core

Little Endian Support

The Aurora 64B/66B IP core supports the user interfaces in big endian format by default. It
also supports little endian format to enable it to connect to AXI4-Stream compliant IP
designs seamlessly. Select the Little Endian Support in the Vivado IDE to select little
endian format. It applies to the User Data, UFC, NFC and User K interfaces. Refer to the
relevant interface for changes in ports.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=83

Aurora 64B/66B v9.2 www.xilinx.com 84
PG074 June 4, 2014

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows in the IP Integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 6]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7]

• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 8]

• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 9]

If you are customizing and generating the core in the Vivado IP Integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 6] for
detailed information. The IP Integrator might auto-compute certain configuration values
when validating or generating the design. To check whether the values change, see the
description of the parameter in this chapter. To view the parameter value, run the
validate_bd_design command in the Tcl console.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals_j/xilinx2013_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=84

Aurora 64B/66B v9.2 www.xilinx.com 85
PG074 June 4, 2014

Chapter 4: Design Flow Steps

Customizing and Generating the Core
This section includes information on using Vivado Design Suite to customize and generate
the LogiCORE™ IP Aurora 64B/66B core.

Note: This core provides basic support for IP Integrator, but no parameter propagation is
supported.

Vivado Integrated Design Environment

You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog (IP Catalog -> Communication & Networking ->
Serial Interfaces ->Aurora 64B66B).

2. Double-click the selected IP or select the Customize IP command from the toolbar or
right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 8].

The Aurora 64B/66B core can be customized to suit a wide variety of requirements using the
IP catalog. This chapter details the available customization parameters and how these
parameters are specified within the IP catalog interface.

Using the IP Catalog

The Aurora 64B/66B IP catalog displays when you select the Aurora 64B/66B core in the
Vivado IP catalog. Figure 4-1, page 86 and Figure 4-2, page 87 show features that are
described in corresponding sections.

IP Catalog

Figure 4-1 and Figure 4-2 show the catalog. The left side displays a representative block
diagram of the Aurora 64B/66B core as currently configured. The right side consists of
user-configurable parameters. Details on the customizing options are provided in the
following subsections, starting with Component Name, page 87.

Note: Figures in this chapter are illustrations of the Vivado IDE. This layout might vary from the
current version.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=85

Aurora 64B/66B v9.2 www.xilinx.com 86
PG074 June 4, 2014

Chapter 4: Design Flow Steps

X-Ref Target - Figure 4-1

Figure 4‐1: Aurora 64B/66B IP Catalog Page 1 for 7 Series FPGAs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=86

Aurora 64B/66B v9.2 www.xilinx.com 87
PG074 June 4, 2014

Chapter 4: Design Flow Steps

Component Name

Enter the top-level name for the core in this text box. Illegal names are highlighted in red
until they are corrected. All f iles for the generated core are placed in a subdirectory using
this name. The top-level module for the core also use this name.

Default: aurora_64b66b_0

Line Rate

Enter a floating-point value in gigabits per second. The value entered must be within the
valid range shown. This determines the unencoded bit rate at which data is transferred over
the serial link.

Default: 3.125 Gb/s for GTX transceivers and Virtex®-7 FPGA GTH transceivers

X-Ref Target - Figure 4-2

Figure 4‐2: Aurora 64B/66B IP Catalog Page 2 for 7 Series FPGAs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=87

Aurora 64B/66B v9.2 www.xilinx.com 88
PG074 June 4, 2014

Chapter 4: Design Flow Steps

GT Reference Clock Frequency

Select a reference clock frequency from the drop-down list. Reference clock frequencies are
given in Megahertz, and depend on the line rate selected. For best results, select the
highest rate that can be practically applied to the reference clock input of the target device.

Default: 156.25 MHz

Data Flow Mode

Select the options for the direction of the channel that the Aurora 64B/66B core supports.
Simplex Aurora 64B/66B cores have a single, unidirectional serial port that connects to a
complementary simplex Aurora 64B/66B core. Two options are provided as RX-only simplex
or TX-only simplex. These options select the direction of the channel that the Aurora
64B/66B core supports.

Duplex – Aurora 64B/66B cores have both TX and the corresponding RX on the other side
for communication.

Default: Duplex

Interface

Select the type of datapath interface used for the core. Select Framing to use a complete
AXI4-Stream interface that allows encapsulation of data frames of any length. Select
Streaming to use a simple word-based interface with a data valid signal to stream data
through the Aurora channel.

Default: Framing

Flow Control

Select the required option to add flow control to the core. User flow control (UFC) allows
applications to send each other brief, high-priority messages through the Aurora channel.
Native flow control (NFC) allows full-duplex receivers to regulate the rate of the data sent to
them. Immediate mode allows idle codes to be inserted within data frames while
completion mode only inserts idle codes between complete data frames.

Available options are:

• None

• UFC only

• Immediate Mode – NFC

• Completion Mode – NFC

• UFC + Immediate Mode – NFC

• UFC + Completion Mode – NFC

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=88

Aurora 64B/66B v9.2 www.xilinx.com 89
PG074 June 4, 2014

Chapter 4: Design Flow Steps

For the streaming interface, only immediate mode is available. For the framing interface,
both immediate and completion modes are available.

Default: None

User K

Select to add User K interface to the core. User K-blocks are special single-block codes
passed directly to the user application. These blocks are used to implement
application-specific control functions.

Default: Unchecked

CRC

Select the option to insert CRC32 in the data stream.

Default: Unchecked

Little Endian Support

Select to change all of the interface(s) to little endian format. See Little Endian Support in
Chapter 3 for more information, By default the core uses Big Endian format.

Default: Unchecked

DRP

Select the required interface to control or monitor the transceiver interface using the
Dynamic Reconfiguration Port (DRP).

Available options are:

• Native

• AXI4_Lite

Default: Native

Columns

Select appropriate GT column from the drop-down list.

Default: left

Lanes

Select the number of lanes (GTX and GTH transceivers) to be used in the core. The valid
range depends on the target device selected.

Default: 1

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=89

Aurora 64B/66B v9.2 www.xilinx.com 90
PG074 June 4, 2014

Chapter 4: Design Flow Steps

GT_TYPE

Select the type of serial transceiver from the drop-down list. This option is applicable only
for Virtex-7 XT devices. For other devices, the drop-down box is not visible.

Available options are:

• GTX

• V7GTH

Default: gtx

Lane Assignment

See the diagram in the information area in Figure 4-2. Each numbered row represents a
serial transceiver tile and each active box represents an available GTX or GTH transceiver.
For each Aurora lane in the core, starting with Lane 1, select a GTX or GTH transceiver and
place the lane by selecting its number in the GTX or GTH placement box.

• "X" in the drop-down menu means that lane is not selected.

• "<1 - 16>" selected from the drop-down menu means that particular lane is selected. It
does not assign that number to the physical lane.

RECOMMENDED: Always select consecutive/physically adjacent lanes for a multi-GT design.

Note: The Aurora core implements the transceiver placement in a predefined way. The core
generates transceiver placement (LOC) constraints in ascending fashion. Move the cursor in the
Vivado IDE to see the transceiver being selected in the 7 series and Zynq®-7000 family-based
design. The manner in which numbers are entered in the lane selection will not change the
transceiver LOC or core implementation in any way. The Lane Assignment is not available for
UltraScale™ architecture-based designs. It is strongly recommended that lane selection should be
continuous for timing closure.

GT REFCLK1 and GT REFCLK2

Select reference clock sources for the GTX and GTH transceiver tiles from the drop-down list
in this section.

Default: GT REFCLK Source 1: GTXQn/ GTHQn; GT REFCLK Source 2: None;

Note: n depends on the serial transceiver (GTX or GTH) position.

Vivado Lab Tools

Select to add Vivado lab tools to the Aurora 64B/66B core. (See Using Vivado Lab Tools,
page 82.) This option provides a debugging interface that shows the core status signals.

Default: Unchecked

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=90

Aurora 64B/66B v9.2 www.xilinx.com 91
PG074 June 4, 2014

Chapter 4: Design Flow Steps

Shared Logic

Select to include transceiver common PLL and its logic in the IP core or in the example
design.

Available options:

• include shared logic in core

• include shared logic in example design

Default: include shared logic in example design

Additional Transceiver Control and Status Ports

Select to include transceiver control and status ports to core top level

Default: Unchecked

OK

Click OK to generate the core. (See Generating the Core, page 86.) The modules for the
Aurora 64B/66B core are written to the IP catalog tool project directory using the same
name as the top level of the core.

X-Ref Target - Figure 4-3

Figure 4‐3: Shared Logic for 7 Series FPGAs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=91

Aurora 64B/66B v9.2 www.xilinx.com 92
PG074 June 4, 2014

Chapter 4: Design Flow Steps

User Parameters

Table 4-1 (7 Series devices) and Table 4-2 (UltraScale™ architecture-based devices) show
the relationship between the GUI f ields in the Vivado IDE and the User Parameters in XCI
f iles (which can be viewed in the Tcl console). Use the information in the tables for
batch-driven Tcl flows to set GUI parameters and generate the Aurora 64B/66B core.

Table 4‐1: 7 Series(1) GUI Parameter to User Parameter Mapping

GUI Parameter/Value User Parameter/Value Default Value

Core Options

Line Rate (Gbps) C_LINE_RATE 3.125

GT Refclk (MHz) C_REFCLK_FREQUENCY 156.250

Dataflow Mode Dataflow_Config Duplex

Interface Interface_Mode Framing

Flow Control Flow_Mode None

User K C_USER_K false

Vivado Lab Tools C_USE_CHIPSCOPE false

Little Endian Support C_USE_BYTESWAP false

Error Reduction

CRC CRC_MODE NONE

DRP Mode

AXI4 Lite (default mode)
drp_mode AXI4_LITE

Native

Additional transceiver control and status ports TransceiverControl false

GT Selections(2)

Columns C_COLUMN_USED right(3)

Lanes C_AURORA_LANES 1

GT Type C_GT_TYPE gtx(4)

Lane Assignment(5)(6)

Select transceiver to include GTXE2_CHANNEL_X1Y4 in
your design (7)

C_GT_LOC_5 (8) 1

Select transceiver to include GTXE2_CHANNEL_X1Y5 in
your design

C_GT_LOC_6 X

Select transceiver to include GTXE2_CHANNEL_X1Y5 in
your design

C_GT_LOC_7 X

Select transceiver to include GTXE2_CHANNEL_X1Y7 in
your design

C_GT_LOC_8 X

Select transceiver to include GTXE2_CHANNEL_X1Y8 in
your design

C_GT_LOC_9 X

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=92

Aurora 64B/66B v9.2 www.xilinx.com 93
PG074 June 4, 2014

Chapter 4: Design Flow Steps

Lane Assignment (cont’d)

Select transceiver to include GTXE2_CHANNEL_X1Y9 in
your design

C_GT_LOC_10 X

Select transceiver to include GTXE2_CHANNEL_X1Y10 in
your design

C_GT_LOC_11 X

Select transceiver to include GTXE2_CHANNEL_X1Y11 in
your design

C_GT_LOC_12 X

Select transceiver to include GTXE2_CHANNEL_X1Y12 in
your design

C_GT_LOC_13 X

Select transceiver to include GTXE2_CHANNEL_X1Y13 in
your design

C_GT_LOC_14 X

Select transceiver to include GTXE2_CHANNEL_X1Y14 in
your design

C_GT_LOC_15 X

Select transceiver to include GTXE2_CHANNEL_X1Y15 in
your design

C_GT_LOC_16 X

Select transceiver to include GTXE2_CHANNEL_X1Y16 in
your design

C_GT_LOC_17 X

Select transceiver to include GTXE2_CHANNEL_X1Y17 in
your design

C_GT_LOC_18 X

Select transceiver to include GTXE2_CHANNEL_X1Y18 in
your design

C_GT_LOC_19 X

Select transceiver to include GTXE2_CHANNEL_X1Y19 in
your design

C_GT_LOC_20 X

GT Refclk (MHz)

GT Refclk1 C_GT_CLOCK_1 GTXQ1

GT Refclk2 C_GT_CLOCK_2 None

Shared Logic

Include Shared Logic in core
SupportLevel(9) 0

Include Shared Logic in example design (default mode)

Notes:
1. The values in this table reflect the default device (xc7vx485tffg1157-1).
2. X0Y0 GT selection is based on column.
3. If a device has GTs on both sides, left is the default value.
4. If the device has GTX transceivers, gtx is default value. If it has GTH transceivers, v7gth is the default value.
5. Lane number selection is for enabling the lane only and not for assigning numbers to the lane.
6. Lane selection is applicable only for 7 Series FPGAs and not for UltraScale devices.
7. In the default device, GT starts from GTXE2_CHANNEL_X1Y4. Otherewise, it starts from GTXE2_CHANNEL_X0Y0.
8. C_GT_LOC_i where, i varies from 1 to 48. By default, the lowest i C_GT_LOC_i is assigned.
9. If Shared Logic in Core option is selected, SupportLevel is 1.

Table 4‐1: 7 Series(1) GUI Parameter to User Parameter Mapping (Cont’d)

GUI Parameter/Value User Parameter/Value Default Value

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=93

Aurora 64B/66B v9.2 www.xilinx.com 94
PG074 June 4, 2014

Chapter 4: Design Flow Steps

Table 4‐2: UltraScale GUI Parameter to User Parameter Mapping

GUI Parameter/Value User Parameter/Value Default Value

Core Options

Physical Layer

Line Rate (Gbps) C_LINE_RATE 10.3125

Lanes C_AURORA_LANES 1

GT Type C_GT_TYPE gth

GT Refclk (MHz) C_REFCLK_FREQUENCY 156.250

Link Layer

Dataflow Mode Dataflow_Config Duplex

Interface Interface_Mode Framing

Flow Control Flow_Mode None

User K C_USER_K false

CRC CRC_MODE NONE

Little Endian Support C_USE_BYTESWAP false

Debug and Control

DRP Mode

AXI4 Lite (default mode)
drp_mode AXI4_LITE

Native

Additional transceiver control and status ports TransceiverControl false

Vivado Lab Tools C_USE_CHIPSCOPE false

Shared Logic

Include Shared Logic in core
SupportLevel(1) 0

Include Shared Logic in example design (default mode)

Notes:
1. If Shared Logic in Core option is selected, SupportLevel is 1.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=94

Aurora 64B/66B v9.2 www.xilinx.com 95
PG074 June 4, 2014

Chapter 4: Design Flow Steps

Core Customization Options for UltraScale
Architecture Specific Designs
The section describes core customization options for UltraScale architecture-specific
designs provided through the Vivado IDE.

Figure 4-4 shows the Vivado IDE of the Aurora 64B/66B core when targeted for UltraScale
devices. In this mode, the GT configurations are set through the Customize IP window. The
core supports line rate from 0.5 Gb/s to 13.0 Gb/s. The configurable parameters for the GT
are Line Rate, Lanes, and GT Refclk . Based upon the line rate, the choice of the GT
reference clock will be auto-updated. Based upon the line rate, the range of GT Refclk values
will be made available for configuration. Based upon the user configuration, the parameter
list is generated in the XCI f ile. This XCI f ile is used as a basis for further Aurora 64B/66B and
GT Wizard configurations.

X-Ref Target - Figure 4-4

Figure 4‐4: Aurora 64B/66B IP Catalog Page 1 for UltraScale Devices

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=95

Aurora 64B/66B v9.2 www.xilinx.com 96
PG074 June 4, 2014

Chapter 4: Design Flow Steps

UltraScale Device GT Implementation

UltraScale device GT implementation support is through the dynamic configuration call,
which is known as the hierarchical design methodology flow. See the 7 Series GTZ
Transceiver User Guide (UG478) [Ref 10]. The user configurations related to the GT are
passed at the time of Aurora core configuration through the Vivado IDE. Refer to the
UltraScale FPGAs Transceivers Wizard Product Guide (PG182) [Ref 11] for more information
about the usage of the UltraScale device GT Wizard. In the Aurora 64B/66B core design, the
UltraScale device GT Wizard is referred through sub core reference calls. With the updates
in the UltraScale architecture, the GT Wizard own submodules, for example, reset controller,
and data width sizing, are designed to reside in the GT Wizard itself, while the transmit and
receive user clocking module helper cores are designed to always reside outside of the GT
Wizard. The GT common location is based upon the lane configuration speed and the
targeted UltraScale device. For speeds above 8.0 Gb/s, the GT common resides outside of
the GT Wizard. The GT common will be part of the Aurora 64B/66B example design when
the core is configured in the non-shared mode, while it will be part of the core when the
core is configured in the shared mode through the Vivado IDE options. The Aurora 64B/66B
core configures CPLL for line rates from 0.5 Gb/s to 8.0 Gb/s and QPLL1 for line rates from
8.1 Gb/s to 13.0 Gb/s.

UltraScale Device GT Channel Instance in the Core

The GT parameters like lane speed, number of lanes, reference clock, choice of CPLL/QPLL1
(based upon the choice of lane rate) and GT locations are automatically passed to the GT
Wizard through the hierarchical IP flow. Based upon these parameters, the GT configuration
is completed and the GT instance is generated in the Aurora 64B/66B core. As mentioned
previously the GT Wizard contains the reset controller and user data-width sizing module in
the GT Wizard.

UltraScale Device GT Clocking Structure in the Core

The main clocking module of the core generates the user clock, sync clock and initialization
clock. The sync clock and user clock are the reference clocks to the GT channel interface as
well as in the core logic. The core will always instantiate the transmitter user clocking
module, while inclusion of the receive clocking module is based upon the core
configuration. When the Aurora 64B/66B core is configured in shared mode, the clocking
module becomes part of the core and its ports are available as output ports for sharing. In
case of non-shared mode configuration, the clocking module will be part of the example
design and the core will have these ports as input ports.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=96

Aurora 64B/66B v9.2 www.xilinx.com 97
PG074 June 4, 2014

Chapter 4: Design Flow Steps

UltraScale Device GT Common Instance in the Core

The GT common from the UltraScale architecture GT Wizard is part of the shared logic of
the Aurora 64B/66B core. This is applicable only when the lane speeds above 8.0 Gb/s are
chosen. Based upon the number of lanes, the core will auto-insert the number of GT
common quads. Each GT quad provides reference clocks up to four GT channels. The core
provides the interface for clock, reset and lock signals to the GT common module. By
default, the core provides the consecutive GT locations.

The clock module provides the reference clock to the GT common, while GT common
provides the clock, reference clock, clock lock and reference clock lost signals for each GT
channel located in each quad.

When the Aurora 64B/66B core is configured in shared mode, the GT common becomes
part of the core and its ports are available as output ports. In the case of non-shared mode
configuration (speed above 8 Gb/s), the GT common will be part of the Aurora 64B/66B
example design and the core will have these ports as input ports.

When lane speeds below 8 Gb/s are chosen, the GT common resides in the GT Wizard IP
core and only its ports are available at the core periphery in shared mode. In non-shared
mode, these ports are internally contained within the core.

Note: For all the speeds less than 8 Gb/s, the GT common will not be part of actual shared or
non-shared mode of the core.
X-Ref Target - Figure 4-5

Figure 4‐5: Reset Sequence Logic implementation (Representation Purpose Only)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=97

Aurora 64B/66B v9.2 www.xilinx.com 98
PG074 June 4, 2014

Chapter 4: Design Flow Steps

The extended reset active signals ensure the faithful reset sequencing between the GT
channel and GT common.

GT Channel Locations

In UltraScale architecture GT implementation for the Aurora 64B/66B core, it is expected
that the GT locations are consecutive. Based upon the number of lanes selected and the
targeted UltraScale device, the core provides consecutive GT channel locations which are by
default set by the GT Wizard. In QPLL1 (line rate above 8.0 Gb/s) based designs, the GT
common becomes part of the shared or non-shared logic choice for the core. The
connection between the GT common and the GT channel is based upon number of lanes.

RECOMMENDED: Do not alter any default locations, unless otherwise absolutely needed after the
design is generated, else the design functionality cannot not be guaranteed. In the case when the line
rate is less than 8.0 Gb/s is chosen, the CPLL becomes part of GT Wizard hierarchical core.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=98

Aurora 64B/66B v9.2 www.xilinx.com 99
PG074 June 4, 2014

Chapter 4: Design Flow Steps

X-Ref Target - Figure 4-6

Figure 4‐6: Pictorial Representation of the UltraScale Architecture GT Common Interface with
GT Channels (Aurora 64B/66B Configuration: 9 Gb/s and 8 lanes)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=99

Aurora 64B/66B v9.2 www.xilinx.com 100
PG074 June 4, 2014

Chapter 4: Design Flow Steps

How GT Locations are Mapped By the Aurora 64B/66B Core

Through the Aurora 64B/66B core Vivado IDE, you can configure the Line Rate, number of
Lanes and Data Flow mode and so forth. Internally, these inputs are communicated back to
the GT Wizard through the hierarchical IP calling mechanism. For a selected UltraScale
device, for both the CPLL or QPLL1 based designs, the GT Wizard provides the correct
information of the range of the reference clock and the default GT locations available for
the device. Refer to Figure 4-6 to see how GT Channels are interfaced with each other. These
default locations are available in the XDC provided by the UltraScale device GT Wizard
instance. You can refer to these locations for any further updates. It is recommended not to
alter these locations. However, based upon your design requirements, you can choose
different channel locations. The selected GT channel location should be consecutive and
assigned in such a way that it uses a minimum number of quads. For example, if you want
to configure two Aurora designs each of three lanes, then it is required that these two
Aurora designs be located in two different quads. Each quad group consists of one GT
common and four GT channels and other logic. See the UltraScale FPGAs GTH Transceivers
User Guide (UG576) [Ref 3] for detailed information about how the quad structure is
organized. In the present implementation of the Aurora 64B/66B core for UltraScale
devices, each GT common provides a clock, reference clock, clock lock and reference clock
lost signal interface up to four GT channels located in the same quad. Based upon the
number of channels needed, the core infers another quad and provides the correct interface
to the GT channels allocated for that particular quad.

In the case of CPLL based implementation, where the line rate is chosen between 0.5 Gb/s
to 8.0 Gb/s, the CPLL resides in the GT Wizard core instance and provides all the internal
connections by default.

Output Generation

The customized Aurora 64B/66B core is delivered as a set of HDL source modules in Verilog.
These f iles are arranged in a predetermined directory structure under the project directory
name provided to the IP catalog when the project is created as shown in this section.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7].

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Device, Package, and Speed Grade Selections

Not Applicable

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=100

Aurora 64B/66B v9.2 www.xilinx.com 101
PG074 June 4, 2014

Chapter 4: Design Flow Steps

Clock Frequencies

Aurora 64B/66B example design clock constraints can be grouped into the following three
categories:

• GT reference clock constraint

The Aurora 64B/66B core uses one minimum reference clock and two maximum
reference clocks for the design. The number of GT reference clocks is derived based on
transceiver selection (that is, lane assignment in the second page of the Vivado IDE). The
GT REFCLK value selected in the f irst page of the Vivado IDE is used to constrain the GT
reference clock. The create_clock XDC command is used to constrain GT reference
clocks.

• CORECLK clock constraint

CORECLKs are the clock based on which the core functions. CORECLKS such as
USER_CLK and SYNC_CLK are derived out of TXOUTCLK generated by the GT transceiver
based on the applied reference clock and the divider settings of the GT transceiver. The
Aurora 64B/66B core calculates the USER_CLK/SYNC_CLK frequency based on the line
rate and GT interface width. The create_clock XDC command is used to constrain all
CORECLKs.

• INIT_CLK constraint

The Aurora 64B/66B example design uses a debounce circuit to sample PMA_INIT
asynchronously clocked by the init_clk clock. The create_clock XDC command is
used to constrain the init_clk clock.

RECOMMENDED: It is recommended to have the system clock frequency lower than the GT reference
clock frequency and in the range of 50 to 200 MHz for 7 series and Zynq devices. For UltraScale devices,
the recommended range is 6.25 MHz to line_rate/64 or 200 MHz whichever is less.

Notes

• The default init_clk frequency for 7 series FPGAs set by the core is 50 MHz. Update
this with respect to your system in the XDC file and STABLE_CLOCK_PERIOD in the
<user_component_name>_core.v f ile.

• For CPLL-based UltraScale architecture-based designs, if the init_clk frequency is
other than line_rate/64, update the C_FREERUN_FREQUENCY parameter with the exact
frequency in the
<user_component_name>_gt/synth/<user_component_name>_gt.v f ile inside
the ip folder.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=101

Aurora 64B/66B v9.2 www.xilinx.com 102
PG074 June 4, 2014

Chapter 4: Design Flow Steps

False Paths

The False Path constraint is defined on the f irst stage of the flip-flop of the CDC module.

Example Design

The generated example design with support logic in the example design is a 10.3125 Gb/s
line rate and a 156.25 MHz reference clock. The XDC file generated for the
XC7K325T-FFG900–2 device on the KC724 board follows:

<user_component_name>_exdes.xdc

####################### CLOCK CONSTRAINTS #####################
##User Clock Constraint: the value is selected based on the line rate of the module
 create_clock -name TS_user_clk_i -period 6.206 [get_pins
<user_component_name>_block_i/clock_module_i/user_clk_net_i/O]

##SYNC Clock Constraint
 create_clock -name TS_sync_clk_i -period 3.103 [get_pins
<user_component_name>_block_i/clock_module_i/sync_clock_net_i/O]

##Reference clock constraint for GTX
 create_clock -name GTXQ0_left_i -period 6.400 [get_ports GTXQ0_P]
 create_clock -name GTXQ0_left_i -period 6.400 [get_ports GTXQ0_N]

##INIT_CLK board Clock Constraint
create_clock -name TS_INIT_CLK -period 20 [get_ports INIT_CLK_P]
create_clock -name TS_INIT_CLK -period 20 [get_ports INIT_CLK_N]

##False path constraint to the first D input pin of the synchronizer stages
set_false_path -to [get_pins -hier *<user_component_name>_cdc_to*/D]

##PIN LOCATION CONSTRAINTS
set_property LOC C25 [get_ports INIT_CLK_P]
set_property LOC B25 [get_ports INIT_CLK_N]
set_property LOC G19 [get_ports RESET]
set_property LOC K18 [get_ports PMA_INIT]
set_property LOC A20 [get_ports CHANNEL_UP]
set_property LOC A17 [get_ports LANE_UP]

################################ GT CLOCK Locations ##############
##Differential SMA Clock Connection
set_property LOC R8 [get_ports GTXQ0_P]
set_property LOC R7 [get_ports GTXQ0_N]

set_property LOC GTXE2_CHANNEL_X0Y0 [get_cells
<user_component_name>_block_i/<user_component_name>_i/inst/<user_component_name>_wr
apper_i/<user_component_name>_multi_gt_i/<user_component_name>_GTX_INST/gtxe2_i]

The preceding example XDC is for reference only. This XDC is created automatically when
the core is generated from the Vivado design tools.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=102

Aurora 64B/66B v9.2 www.xilinx.com 103
PG074 June 4, 2014

Chapter 4: Design Flow Steps

Clock Management

Not Applicable

Clock Placement

Not Applicable

Banking

Not Applicable

Transceiver Placement

The set_property XDC command is used to constrain the GT transceiver location. This is
provided as a tooltip on the second page of the Vivado IDE. A sample XDC is provided for
reference.

I/O Standard and Placement

The positive differential clock input pin (ends with _P) and negative differential clock input
pin (ends with _N) are used as the GT reference clock. The set_property XDC command
is used to constrain the GT reference clock pins.

Simulation
This section contains information about simulating in the Vivado Design Suite. For details,
see the Vivado Design Suite User Guide - Logic Simulation (UG900) [Ref 9].

Aurora IP core delivers the demonstration test bench for the example design. Simulation
status is reported through messages. The TEST COMPLETED SUCCESSFULLY message
signif ies the completion of the example design simulation.

Note: The Reached max. simulation time limit message means that simulation was not
successful See Appendix C, Debugging for more information.

Simulating the Duplex core is a single-step process after generating the example design.
Simplex core simulation requires partner generation. The partner core is generated
automatically and the synthesized netlist is available under the simulation f ile set when
clicking Open IP Example Design. Due to the synthesizing of the partner core, opening an
example design of a Simplex core takes more time than the Duplex example design
generation.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=103

Aurora 64B/66B v9.2 www.xilinx.com 104
PG074 June 4, 2014

Chapter 4: Design Flow Steps

Simulation speed up:

The C_EXAMPLE_SIMULATION parameter has been introduced to speed up post
synthesis/implementation netlist functional simulations.

1. If core generation is through batch mode, include this command,
set c_example_simulation true as part of the core generation.

2. Run the Tcl command to speed up simulation. The generated core with the preceding
command is only for simulation.

3. If core generation is through the Vivado IDE, change the EXAMPLE_SIMULATION
parameter to 1 in the generated RTL in the following files
<USER_COMPONENT_NAME>_exdes.v and <USER_COMPONENT_NAME>_core.v to
speed up simulation.

Synthesis and Implementation
This section contains information about synthesis and implementation in the Vivado Design
Suite.

For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 7].

Implementation

The quick start example consists of the following components:

Overview

• An instance of the Aurora 64B/66B core generated using the default parameters

° Full-duplex with a single GTX or GTH transceiver

° AXI4-Stream interface

• A demonstration test bench to simulate two instances of the example design

The Aurora 64B/66B example design has been tested with the Vivado Design Suite for
synthesis and Mentor Graphics Questa® SIM for simulation.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=104

Aurora 64B/66B v9.2 www.xilinx.com 105
PG074 June 4, 2014

Chapter 4: Design Flow Steps

Generating the Core

To generate an Aurora 64B/66B core with default values using the Vivado design tools:

1. Start the Vivado design tools from a required directory. For help starting and using the
Vivado design tools, see the Vivado Design Suite User Guide: Designing with IP (UG896)
[Ref 7].

2. Choose Create New Project New > Project > Next.

3. Type the new project name and enter the project location.

4. Select Project Type as RTL Project and click Next.

5. Select the part as xc7vx485tffg1157–1.

6. After creating the project, click IP catalog in the Project Manager panel.

7. Locate the Aurora 64B/66B v9.2 core in the IP catalog taxonomy tree under:
/ Communication_&_Networking/Serial_Interfaces.

8. Double-click the core.

9. Click OK.

Implementing the Example Design

The example design needs to be generated from the IP core.

1. Right-click the generated IP. Click Open Example Design on the menu displayed for the
right-click operation. This action opens an example design for the generated IP core.

2. Click Run Implementation to run the synthesis followed by implementation.
Additionally you can also generate a bitstream by clicking Generate Bitstream.

Note: You need to specify LOC and IO standards in XDC for all input and output ports of the design.

For details about synthesis and implementation, see “Synthesizing IP” and “Implementing
IP” in the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7].

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=105

Aurora 64B/66B v9.2 www.xilinx.com 106
PG074 June 4, 2014

Chapter 5

Detailed Example Design
This chapter contains information about the example design provided in the Vivado®
Design Suite.

Directory and File Contents
See Output Generation, page 100 for the directory structure and f ile contents of the
example design.

Quick Start Example Design
The quick start instructions provide a step-by-step procedure for generating an Aurora
64B/66B core, implementing the core in hardware using the accompanying example design,
and simulating the core with the provided demonstration test bench (demo_tb). For
detailed information about the example design provided with the Aurora 64B/66B core, see
Detailed Example Design.

The quick start example design consists of these components:

• An instance of the Aurora 64B/66B core generated using the default parameters

° Full-duplex with a single GTX transceiver

° AXI4-Stream user interface

• A top-level example design (<component name>_exdes) with an XDC file to
configure the core for simple data transfer operation

• A demonstration test bench to simulate two instances of the example design

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=106

Aurora 64B/66B v9.2 www.xilinx.com 107
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Detailed Example Design
Each Aurora 64B/66B core includes an example design (<component name>_exdes) that
uses the core in a simple data transfer system. For more details about the
example_design directory, see Output Generation in Chapter 4.

The example design consists of two main components:

• Frame generator (FRAME_GEN) connected to the TX interface

• Frame checked (FRAME_CHECK) connected to the RX user interface

Figure 5-1 shows a block diagram of the example design for a full-duplex core. Table 5-1,
page 108 describes the ports of the example design.

The example design uses all the interfaces of the core. There are separate AXI4-Stream
interfaces for optional flow control. Simplex cores without a TX or RX interface have no
FRAME_GEN or FRAME_CHECK block, respectively. The frame generator produces a random
stream of data for cores with a streaming/framing interface.

The design can also be used as a reference for connecting the trickier interfaces on the
Aurora 64B/66B core, such as the clocking interface.

When using the example design on a board, be sure to edit the
<component name>_exdes f ile in the example_design subdirectory to supply the
correct pins and clock constraints. Table 5-1 describes the ports available in the example
design.

X-Ref Target - Figure 5-1

Figure 5‐1: Example Design

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=107

Aurora 64B/66B v9.2 www.xilinx.com 108
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Table 5‐1: Example Design I/O Ports

Port Direction Description

rxn[0:m–1] Input Negative differential serial data input pin.

rxp[0:m–1] Input Positive differential serial data input pin.

txn[0:m–1] Output Negative differential serial data output pin.

txp[0:m–1] Output Positive differential serial data output pin.

reset Input
Reset signal for the example design. The active-High reset is
debounced using a user_clk signal generated from the reference
clock input.

<reference clock(s)> Input
The reference clocks for the Aurora 64B/66B core are brought to the
top level of the example design. See Clock Interface and Clocking in
Chapter 3 for details about the reference clocks.

<core error signals> Output

The error signals from the Aurora 64B/66B core Status and Control
interface are brought to the top level of the example design and
registered. See Status, Control, and the Transceiver Interface in
Chapter 2 for details.

<core channel up signals> Output
The channel up status signals for the core are brought to the top
level of the example design and registered. See Status, Control, and
the Transceiver Interface in Chapter 2 for details.

<core lane up signals> Output

The lane up status signals for the core are brought to the top level of
the example design and registered. Cores have a lane up signal for
each GTX and GTH transceiver they use. See Status, Control, and the
Transceiver Interface in Chapter 2 for details.

pma_init Input

The reset signal for the PCS and PMA modules in the GTX and GTH
transceivers is connected to the top level through a debouncer. The
signal is debounced using the init_clk . See the Reset section in
the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 4]
for further details on GT RESET.

init_clk_p/
init_clk_n

Input

The init_clk signal is used to register and debounce the PMA_INIT
signal. The init_clk signal must not come from a GTX or GTH
transceiver, and should be set to a slow rate, preferably slower than
the reference clock. The init_clk signal is single-ended for
UltraScale™ devices.

data_err_count[0:7] Output Count of the number of frame data words received by the
FRAME_CHECK that did not match the expected value.

ufc_err Output Asserted (active-High) when UFC data words received by the
FRAME_CHECK that did not match the expected value.

user_k_err Output Asserted (active-High) when User K data words received by the
FRAME_CHECK that did not match the expected value.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=108

Aurora 64B/66B v9.2 www.xilinx.com 109
PG074 June 4, 2014

Chapter 5: Detailed Example Design

FRAME_GEN

Framing TX Data Interface

To transmit the user data, the FRAME_GEN user data state machine manipulates control
signals to do the following:

• After the Aurora interface is out of RESET and reaches CHANNEL_UP state,
pseudo-random data is generated using the user data linear feedback shift register
(LFSR) and connected to s_axi_tx_tdata bus.

• Generates the s_axi_tx_tlast for the current frame based on two counters. An 8-bit
counter is used to determine the size of the frame and another 8-bit counter to keep
track of number of user data bytes sent. Frame size counter is initialized and
incremented by one for every frame.

• The s_axi_tx_tkeep bus is connected to lower bits of user data LFSR to generate
SEP and SEP7 conditions.

• The s_axi_tx_tvalid signal is asserted according to AXI4-Stream protocol
specification.

• User data state machine state transitions are controlled by s_axi_tx_tready
provided by the Aurora AXI4-Stream interface.

• Various kinds of frame traffic are generated including single cycle frame.

Figure 5-2 shows the FRAME_GEN framing user interface of the Aurora 64B/66B core, with
AXI4-Stream compliant ports for TX data.

X-Ref Target - Figure 5-2

Figure 5‐2: Aurora 64B/66B Core Framing TX Data Interface (FRAME_GEN)

user_clk

Framing TX
Data Interface

reset

s_axi_tx_tready

channel_up

s_axi_tx_tdata[0:(64n-1)]

s_axi_tx_tkeep

s_axi_tx_tlast

s_axi_tx_tvalid

UG775_c10_02_050211

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=109

Aurora 64B/66B v9.2 www.xilinx.com 110
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Table 5-2 lists the FRAME_GEN framing TX data ports and their descriptions.

Streaming TX Data Interface

Streaming TX data interface is similar to framing TX data interface without framing
delimiters, s_axi_tx_tlast, and s_axi_tx_tkeep. To transmit the user data, the
FRAME_GEN user data state machine manipulates control signals to do the following:

• After the Aurora interface is out of RESET and reaches CHANNEL_UP state,
pseudo-random data is generated using LFSR and connected to s_axi_tx_tdata
bus.

• LFSR generates new data for every assertion of s_axi_tx_tready.

• The s_axi_tx_tvalid signal is always asserted.

Table 5‐2: FRAME_GEN Framing User I/O Ports (TX)

Name Direction Description

s_axi_tx_tdata[0:(64n–1)] Output User frame data. Width is 64*n where n is the number of lanes.

s_axi_tx_tkeep[0:n–1)] Output Specifies the number of valid bytes in the last data beat; Valid only
while s_axi_tx_tlast is asserted High.

s_axi_tx_tvalid Output
Asserted (active-High) when AXI4-Stream signals from the source are
valid. Deasserted (Low) when AXI4-Stream control signals and/or
data from the source should be ignored.

s_axi_tx_tlast Output Signals the end of the frame data (active-High).

s_axi_tx_tready Input

Asserted (active-High) during clock edges when signals from the
source are accepted (if s_axi_tx_tvalid is also asserted).
Deasserted (Low) on clock edges when signals from the source are
ignored.

channel_up Input Asserted when Aurora channel initialization is complete and channel
is ready to send data.

user_clk Input Parallel clock shared by the Aurora 64B/66B core and the user
application.

reset Input Resets the Aurora core (active-High).

X-Ref Target - Figure 5-3

Figure 5‐3: Aurora 64B/66B Core Streaming TX Data Interface (FRAME_GEN)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=110

Aurora 64B/66B v9.2 www.xilinx.com 111
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Table 5-3 lists the FRAME_GEN streaming TX data ports and their descriptions.

UFC TX Interface

To transmit the UFC data, the FRAME_GEN UFC state machine manipulates control signals to
do the following:

• Asserts ufc_tx_req after CHANNEL_UP indication from the Aurora TX interface.

• ufc_tx_ms is also transmitted along with ufc_tx_req. The ufc_tx_ms signal
transmits zero initially for the f irst UFC frame and is incremented by one for the
following UFC frames until it reaches 255 (maximum value).

• The s_axi_ufc_tx_tvalid signal is asserted after placing the ufc_tx_req.

• The s_axi_ufc_tx_tdata signal is transmitted after receiving
s_axi_ufc_tx_tready from the Aurora TX interface.

• UFC frame transmission frequency is controlled by the UFC_IFG parameter

Figure 5-4 shows the FRAME_GEN UFC TX interface of the Aurora 64B/66B core, with
AXI4-Stream compliant ports for UFC TX data.

Table 5‐3: FRAME_GEN Streaming User I/O Ports (TX)

Name Direction Description

s_axi_tx_tdata[0:(64n–1)] Output Outgoing frame data. Width is 64*n where n is the number of
lanes.

s_axi_tx_tvalid Output
Asserted (active-High) when AXI4-Stream signals from the source
are valid. Deasserted (Low) when AXI4-Stream control signals
and/or data from the source should be ignored.

s_axi_tx_tready Input

Asserted (active-High) during clock edges when signals from the
source are accepted (if s_axi_tx_tvalid is also asserted).
Deasserted (Low) on clock edges when signals from the source are
ignored.

channel_up Input Asserted when Aurora channel initialization is complete and
channel is ready to send data.

user_clk Input Parallel clock shared by the Aurora 64B/66B core and the user
application.

reset Input Resets the Aurora core (active-High).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=111

Aurora 64B/66B v9.2 www.xilinx.com 112
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Table 5-4 lists the FRAME_GEN UFC TX data ports and their descriptions.

X-Ref Target - Figure 5-4

Figure 5‐4: Aurora 64B/66B Core UFC TX Interface (FRAME_GEN)

Table 5‐4: FRAME_GEN UFC User I/O Ports (TX)

Name Direction Description

ufc_tx_req Output

Asserted to request a UFC message to be sent to the channel
partner (active-High). Requests are processed after a single
cycle, unless another UFC message is in progress and not on
its last cycle. After a request, the s_axi_ufc_tx_tdata bus
is ready to send data within two cycles unless interrupted by
a higher priority event.

ufc_tx_ms[0:7] Output

Specifies the number of bytes in the UFC message (the
Message Size). The max UFC Message Size is 256. The value
specified at ufc_tx_ms is one less than the actual amount of
bytes transferred. For example, a value of 3 will transmit 4
bytes of data.

s_axi_ufc_tx_tdata [0:(64n–1)] Output

Output bus for UFC message data to the Aurora channel. Data
is read from the bus into the channel only when both
s_axi_ufc_tx_tvalid and s_axi_ufc_tx_tready are
asserted on a positive user_clk edge. If the number of bytes
in the message is not an integer multiple of the bytes in the
bus, on the last cycle, only the bytes needed to finish the
message starting from the left of the bus are used.

s_axi_ufc_tx_tvalid Output
Assert (active-High) when data on s_axi_ufc_tx_tdata is
valid. If deasserted while s_axi_ufc_tx_tready is
asserted, Idle blocks are inserted in the UFC message.

s_axi_ufc_tx_tready Input

Asserted (active-high) when an aurora 64B/66B core is ready
to read data from the s_axi_ufc_tx_tdata interface. this
signal is asserted one clock cycle after ufc_tx_req is
asserted and no high priority requests in progress.
s_axi_ufc_tx_tready continues to be asserted while the
core waits for data for the most recently requested ufc
message. the signal is deasserted for cc and nfc requests,
which are higher priority. while s_axi_ufc_tx_tready is
asserted, s_axi_tx_tready is deasserted.

channel_up Input Asserted when Aurora channel initialization is complete and
channel is ready to send data.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=112

Aurora 64B/66B v9.2 www.xilinx.com 113
PG074 June 4, 2014

Chapter 5: Detailed Example Design

NFC TX Interface

To transmit the NFC frame, the FRAME_GEN NFC state machine manipulates control signals
to do the following:

• NFC state machine waits until TX user data transmission and enters into NFC XON
mode.

• The s_axi_nfc_tx_tdata value is transmitted along with s_axi_nfc_tx_tvalid.

• After predefined period of time, NFC state machine enters into NFC XOFF mode.

• NFC state transitions are governed by s_axi_nfc_tx_tready.

• NFC frame transmission frequency is controlled by NFC_IFG parameter.

Figure 5-5 shows the FRAME_GEN NFC TX interface of the Aurora 64B/66B core, with
AXI4-Stream compliant ports for NFC TX data.

Table 5-5 lists the FRAME_GEN NFC TX data ports and their descriptions.

user_clk Input Parallel clock shared by the Aurora 64B/66B core and the user
application.

reset Input Resets the Aurora core (active-High).

Table 5‐4: FRAME_GEN UFC User I/O Ports (TX) (Cont’d)

Name Direction Description

X-Ref Target - Figure 5-5

Figure 5‐5: Aurora 64B/66B Core NFC TX Interface (FRAME_GEN)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=113

Aurora 64B/66B v9.2 www.xilinx.com 114
PG074 June 4, 2014

Chapter 5: Detailed Example Design

User K TX Interface

To transmit the User K data, FRAME_GEN manipulates control signals to do the following:

• The s_axi_user_k_tx_tvalid signal is asserted after User K inter-frame gap.

• Pre-defined User K data is transmitted along with User K Block No. User K Block No is
set as zero for the first User K-block and is incremented by one for the following User
K-blocks until it reaches 8.

• User K transmission frequency is controlled by USER_K_IFG parameter.

Figure 5-6 shows the FRAME_GEN User K TX interface of the Aurora 64B/66B core, with
AXI4-Stream compliant ports for User K TX data.

Table 5‐5: FRAME_GEN NFC User I/O Ports (TX)

Name Direction Description

s_axi_nfc_tx_tvalid Output
Asserted to request an NFC message to be sent to the channel
partner (active-High). Must be held until s_axi_nfc_tx_tready
is asserted.

s_axi_nfc_tx_tdata [0:15] Output

Indicates how many user_clk cycles the channel partner must
wait before it can send data when it receives the NFC message.
Must be held until s_axi_nfc_tx_tready is asserted. The
number of user_clk cycles without data is equal to
s_axi_nfc_tx_tdata[8:15] + 1.
s_axi_nfc_tx_tdata[7] (active-High) is mapped to
nfc_xoff, which requests the channel partner to stop sending
data until it receives a non-XOFF NFC message or is reset.
Signal Mapping:
s_axi_nfc_tx_tdata = {7'h0, NFC XOFF bit, NFC Data}

s_axi_nfc_tx_tready Input Asserted when an Aurora core accepts an NFC request
(active-High).

channel_up Input Asserted when Aurora channel initialization is complete and
channel is ready to send data.

user_clk Input Parallel clock shared by the Aurora 64B/66B core and the user
application.

reset Input Resets the Aurora core (active-High).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=114

Aurora 64B/66B v9.2 www.xilinx.com 115
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Table 5-6 lists the FRAME_GEN User K TX data ports and their descriptions.

FRAME_CHECK

Framing RX Data Interface

The expected frame RX data is computed by LFSR. The received user data is validated by
checking against following AXI4-Stream protocol rules:

Start the frame when m_axi_rx_tvalid is asserted

1. The m_axi_rx_tkeep bus is valid during m_axi_rx_tlast assertion.

2. The m_axi_rx_tvalid signal should be asserted during comparison of expected to
actual data:

X-Ref Target - Figure 5-6

Figure 5‐6: Aurora 64B/66B Core User K TX Interface (FRAME_GEN)

Table 5‐6: FRAME_GEN User K User I/O Ports (TX)

Name Direction Description

s_axi_user_k_tdata [0: (n*64–1)] Output User K-block data. s_axi_user_k_tx_tdata = {4'h0,
USER K BLOCK NO, USER K DATA[0:56n–1]}

s_axi_user_k_tx_tvalid Output Asserted (active-High) when User K data on
s_axi_user_k_tdata port is valid.

s_axi_user_k_tx_tready Input
Asserted (active-High) when the Aurora 64B/66B core is
ready to read data from the s_axi_user_k_tx_tdata
interface.

channel_up Input Asserted (active-High) when Aurora channel initialization is
complete and channel is ready to send data.

user_clk Input Parallel clock shared by the Aurora 64B/66B core and the
user application.

reset Input Resets the Aurora core (active-High).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=115

Aurora 64B/66B v9.2 www.xilinx.com 116
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Incoming RX data through m_axi_rx_tdata port is registered and compared with
calculated RX data internal to FRAME_CHECK. If the incoming RX data does not match with
expected RX data, an 8-bit counter is incremented. This error counter is indicated to the
user application through data_err_count port. The Error counter freezes counting when
it reaches 255.

Note: The counter can be cleared by applying reset.

Figure 5-7 shows the FRAME_CHECK framing user interface of the Aurora 64B/66B core,
with AXI4-Stream compliant ports for RX data.

Table 5-7 lists the FRAME_CHECK framing RX data ports and their descriptions.

X-Ref Target - Figure 5-7

Figure 5‐7: Aurora 64B/66B Core Framing RX Data Interface (FRAME_CHECK)

Table 5‐7: FRAME_CHECK Framing User I/O Ports (RX)

Name Direction Description

m_axi_rx_tdata[0:(64n–1)] Input Incoming frame data from channel partner (Ascending bit
order).

m_axi_rx_tkeep[0:n–1] Input Specif ies the number of valid bytes in the last data beat. Valid
only when m_axi_rx_tlast is asserted.

m_axi_rx_tvalid Input
Asserted (active-High) when data and control signals from an
Aurora core are valid. Deasserted (Low) when data and/or
control signals from an Aurora core should be ignored.

m_axi_rx_tlast Input Signals the end of the incoming frame (active-High, asserted
for a single user_clk cycle).

data_err_count[0:7] Output Count of the number of RX frame data words received by the
frame checker that did not match the expected value.

channel_up Input Asserted (active-High) when Aurora channel initialization is
complete and channel is ready to send data.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=116

Aurora 64B/66B v9.2 www.xilinx.com 117
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Streaming RX Data Interface

• In streaming mode, the incoming RX data is compared against calculated RX data.

• The RX data is compared only when m_axi_rx_tvalid is asserted.

Figure 5-8 shows the FRAME_CHECK streaming user interface of the Aurora 64B/66B core
ports for RX data.

Table 5-8 lists the FRAME_CHECK streaming RX data ports and their descriptions.

user_clk Input Parallel clock shared by the Aurora 64B/66B core and the user
application.

reset Input Resets the Aurora core (active-High).

X-Ref Target - Figure 5-8

Figure 5‐8: Aurora 64B/66B Core Streaming RX Data Interface (FRAME_CHECK)

Table 5‐8: FRAME_CHECK Streaming User I/O Ports (RX)

Name Direction Description

m_axi_rx_tdata[0:(64n–1)] Input Incoming frame data from channel partner (ascending bit
order).

m_axi_rx_tvalid Input
Asserted (active-High) when data and control signals from
an Aurora core are valid. Deasserted (Low) when data and/or
control signals from an Aurora core should be ignored.

data_err_count[0:7] Output Count of the number of RX data words received by the frame
checker that did not match the expected value.

channel_up Input Asserted (active-High) when Aurora channel initialization is
complete and channel is ready to send data.

user_clk Input Parallel clock shared by the Aurora 64B/66B core and the
user application.

reset Input Resets the Aurora core (active-High).

Table 5‐7: FRAME_CHECK Framing User I/O Ports (RX) (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=117

Aurora 64B/66B v9.2 www.xilinx.com 118
PG074 June 4, 2014

Chapter 5: Detailed Example Design

UFC RX Interface

• Expected UFC RX data is computed by LFSR.

• Error checking and counter logic is similar to that of Framing RX Data Interface.

• If the incoming m_axi_ufc_rx_tdata does not match with expected RX UFC data, an
8-bit error counter is incremented.

• The error counter is indicated to the user application through the ufc_err_count
port.

Figure 5-9 shows the FRAME_CHECK UFC RX interface of the Aurora 64B/66B core, with
AXI4-Stream compliant ports for UFC RX data.

X-Ref Target - Figure 5-9

Figure 5‐9: Aurora 64B/66B Core UFC RX Interface (FRAME_CHECK)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=118

Aurora 64B/66B v9.2 www.xilinx.com 119
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Table 5-9 lists the FRAME_CHECK UFC RX data ports and their descriptions.

User K RX Interface

• The m_axi_rx_user_k_tvalid is asserted during comparison of expected to actual
User K data

• Incoming m_axi_rx_user_k_tdata is compared against predefined User K data.

• 8-bit user_k_err_count is incremented if the comparison fails.

• The error counter is indicated to the user application through user_k_err_count
port.

Figure 5-10 shows the FRAME_CHECK User K RX interface of the Aurora 64B/66B core, with
AXI4-Stream compliant ports for User K RX data.

Table 5‐9: FRAME_CHECK UFC User I/O Ports (RX)

Name Direction Description

m_axi_ufc_rx_tdata [0: (64n–1)] Input Incoming UFC message data from the channel partner.

m_axi_ufc_rx_tkeep [0: n–1] Input

Specif ies the number of valid bytes of data presented on
the m_axi_ufc_rx_tdata port on the last word of a UFC
message. Valid only when m_axi_ufc_rx_tlast is
asserted. n = 256 bytes maximum.

m_axi_ufc_rx_tvalid Input

Asserted (active-High) when the values on the
m_axi_ufc_rx_tdata port is valid. When this signal is
not asserted, all values on the m_axi_ufc_rx_tdata
port should be ignored.

m_axi_ufc_rx_tlast Input Signals the end of the incoming UFC message.

ufc_err_count[0:7] Output Count of the number of RX UFC data words received by the
frame checker that did not match the expected value.

channel_up Input Asserted (active-High) when Aurora channel initialization is
complete and channel is ready to send data.

user_clk Input Parallel clock shared by the Aurora 64B/66B core and the
user application.

reset Input Resets the Aurora core (active-High).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=119

Aurora 64B/66B v9.2 www.xilinx.com 120
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Table 5-10 lists the FRAME_CHECK User K RX data ports and their descriptions.

The Aurora 64B/66B example design has been tested with XST for synthesis and Mentor
Graphics Questa® SIM for simulation.

Implementing the Example Design
The example design needs to be generated from the IP core. To do that, right-click the
generated IP. Click Open Example Design on the menu displayed for the right-click
operation. This action opens an example design for the generated IP core. You can click Run
Implementation to run the Synthesis followed by implementation. Additionally you can
also generate a bitstream by clicking Generate Bitstream.

Note: You need to specify LOC and IO standards in XDC for all input and output ports of the design.

X-Ref Target - Figure 5-10

Figure 5‐10: Aurora 64B/66B Core User K RX Interface (FRAME_CHECK)

Table 5‐10: FRAME_CHECK User K User I/O Ports (RX)

Name Direction Description

m_axi_rx_user_k_tvalid Input Asserted (active-High) when User K data on
m_axi_rx_user_k_tdata port is valid.

m_axi_rx_user_k_tdata[0:(64n–1)] Input

Receive User K-blocks from the Aurora lane.
Signal Mapping per lane:
m_axi_rx_user_k_tdata={4'h0, User K Block No,
User K Data}

user_k_err_count[0:7] Output Count of the number of RX User K data words received by
the frame checker that did not match the expected value.

channel_up Input Asserted when Aurora channel initialization is complete
and channel is ready to send data.

user_clk Input Parallel clock shared by the Aurora 64B/66B core and the
user application.

reset Input Resets the Aurora core (active-High).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=120

Aurora 64B/66B v9.2 www.xilinx.com 121
PG074 June 4, 2014

Chapter 5: Detailed Example Design

Hardware Reset FSM in the Example Design
The Aurora 64B/66B v9.2 core example design incorporates a hardware reset FSM to
perform repeated resets and monitoring robustness of the link. This FSM also contains an
option to set different time periods between reset assertions. Also continuous
channel_up and link_reset transition counters are monitored and the test status is
reported through VIO.

The following signals are added in to the default ILA and VIOs for probing the link:

i_ila

• tx_d_i[0:15]: TX Data from the LocalLink Frame Gen module

• rx_d_i[0:15]: RX Data to the LocalLink Frame check module

• data_err_count_o: 8-bit Data error count value, it is expected to be 'd0 in normal
operations

• lane_up_vio_usrclk : lane_up signal

• channel_up_i: channel_up signal

• soft_err_i: Soft error monitor

• hard_err_i: Hard error monitor

vio1_inst:

• sysreset_from_vio_i: reset input to example design

• gtreset_from_vio_i: pma_init to example design

• vio_probe_in2: Quality counters for Link status

• rx_cdrovrden_i: Used while enabling loopback mode

• loopback_i: Used while enabling loopback mode

vio2_inst:

• reset_quality_cntrs: Used to reset all the quality counters in the example design

• reset_test_fsm_from_vio: Used to reset the hardware reset test FSM

• reset_test_enable_from_vio: Used to enable/start the repeat reset test from the
vio ports on the hardware.

• iteraion_cnt_sel_from_vio: Number of repeat reset iterations to be initiated.
This is a 4-bit encoded value for a f ixed number of iterations that can be seen in the
example design when Vivado lab tools are enabled.

• lnk_reset_in_initclk : Input probe to monitor the assertion of link_reset

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=121

Aurora 64B/66B v9.2 www.xilinx.com 122
PG074 June 4, 2014

Chapter 5: Detailed Example Design

• soft_err_in_initclk : Input probe to monitor the soft_err status

• chan_up_transcnt_20bit_i [15:8]: Number of channel_up transaction counts;
this can be used to monitor the number of reset iterations that have been completed.

Note:

a. chan_up_transcnt_20bit_i is probed only [15:8] bits; hence, this probe will
take some time to update the status.

b. If you want to change the number of reset iterations, it can be done through
modifying the respective value for iteraion_cnt_sel_from_vio and
correspondingly select chan_up_transcnt_20bit_i for probing the status.

vio3_inst:

• test_passed_r : Test pass status is asserted after the respective iteration count if
resets are done successfully.

• test_failed_r : Test fail status is asserted if there is either a lack of channel_up or
some data errors have occurred.

• lnkrst_cnt_20bit_vio_i: Probe to monitor the number of times the link_reset
is asserted.

• reset_test_fsm_chk_time_sel: 3-bit encoded value probe to select the hardware
reset_fsm check time for channel_up assertions after reset is deasserted.

Hardware FSM Operation:

In the example design (<user_component_name>_exdes.v), a new hardware initiated
repeat reset FSM has been added to test the robustness of the link when subject to repeat
reset. The FSM consists of IDLE, ASSERT_RST, DASSERT_RST, WAIT, WAIT1, CHECK, FAIL and
DONE states.

1. In IDLE state, test_passed_r indicating reset test passed, test_failed_r indicating reset
test fail, and timer_r providing iteration count of reset will default to 0.

2. When the reset_test_enable_from_vio signal from vio is asserted, the hardware
FSM traverses to the ASSERT_RST state where the pma_init is asserted for a
pre-defined time (28-bit count time).

3. This pma_init assertion ensures that there is a hot plug detected by the link partner.
Then the hardware FSM traverses to the DEASSERT_RST state where the pma_init is
deasserted and the timer is pre-loaded with a default value that can be configured using
the reset_test_fsm_chk_time_sel vio signal.

4. Then the FSM moves to the WAIT state until the selected time is expired. In this state, all
the checks like data errors and occurrences of soft errors are checked and it makes sure
that the channel-up is asserted High and has not toggled more than once for this
iteration of pma_init.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=122

Aurora 64B/66B v9.2 www.xilinx.com 123
PG074 June 4, 2014

Chapter 5: Detailed Example Design

5. If this condition is not met, the FSM moves to fail state and the repeat reset run is
stopped, else the FSM moves to WAIT1 state where few data packets are transmitted
and received.

6. In the next state, the CHECK state, the channel-up transitions are checked again. If there
is not more than one transition, the FSM returns to the IDLE state until the requested
iterations are completed. This ensures that the link is robust and recovers reliably across
multiple repeat resets of the link.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=123

Aurora 64B/66B v9.2 www.xilinx.com 124
PG074 June 4, 2014

Chapter 6

Test Bench
The Aurora core delivers a demonstration test bench for the example design. This chapter
describes the Aurora test bench and its functionality. The test bench consist of the following
modules:

• Device Under Test (DUT)

• Clock and reset generator

• Status monitor

The Aurora test bench components can change based on the selected Aurora core
configurations, but the basic functionality remains the same for all of the core
configurations.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=124

Aurora 64B/66B v9.2 www.xilinx.com 125
PG074 June 4, 2014

Chapter 6: Test Bench

The Aurora test bench environment connects the Aurora Duplex /TX/RX Simplex core in
loopback using a high-speed serial interface. Figure 6-1 shows the Aurora test bench for
the Duplex /TX/RX Simplex configuration.

The test bench looks for the state of the channel, then the integrity of the user data, UFC
data and User-K for a predetermined simulation time. The channel_up assertion message
indicates that link training and channel bonding (in case of multi-lane designs) are
successful. The counter is maintained in the FRAME_CHECK module to track the reception of
the erroneous data. The test bench flags an error when erroneous data is received.

X-Ref Target - Figure 6-1

Figure 6‐1: Aurora Test Bench for Duplex Configuration

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=125

Aurora 64B/66B v9.2 www.xilinx.com 126
PG074 June 4, 2014

Chapter 6: Test Bench

The Aurora test bench environment connects the Aurora Simplex core to the partner
Simplex Aurora core using the high-speed serial interface. Figure 6-2 shows the Aurora test
bench for the Simplex configuration where DUT1 is configured as TX-only Simplex and
DUT2 is configured as RX-only Simplex.

The test bench looks for the state of the transmitter channel and receiver channel and then
the integrity of the user data for a predetermined simulation time. The tx_channel_up
and rx_channel_up assertion messages indicate that link training and channel bonding
(in case of multi-lane designs) are successful.

X-Ref Target - Figure 6-2

Figure 6‐2: Aurora Test Bench for Simplex Configuration

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=126

Aurora 64B/66B v9.2 www.xilinx.com 127
PG074 June 4, 2014

Appendix A

Verification, Compliance, and
Interoperability

This appendix provides details about how this IP core was tested for compliance.

Aurora 64B/66B cores are verif ied for protocol compliance using an array of automated
hardware and simulation tests. The core comes with an example design implemented using
a linear feedback shift register (LFSR) for understanding and verif ication of the core
features.

The Aurora 64B/66B core is verif ied using the Aurora 64B/66B Bus Functional Model (BFM)
and proprietary custom test benches. The Aurora 64B/66B BFM verif ies the protocol
compliance along with interface level checks and error scenarios. An automated test system
runs a series of simulation tests on the most widely used set of design configurations
chosen at random. Aurora 64B/66B cores are also tested in hardware for functionality,
performance, and reliability using Xilinx® GTX transceiver demonstration boards. Aurora
verif ication test suites for all possible modules are continuously being updated to increase
test coverage across the range of possible parameters for each individual module.

The boards used for hardware testing of the Aurora 64B/66B core are KC724, KC705,
VC7203, and ZC723. A series of test scenarios are validated using these platforms.

To achieve interoperability among different versions of Aurora 64B/66B cores for 7 series
FPGA GT transceivers, a new user-level parameter has been introduced in v9.2 version of the
core. This parameter must be set to inter-operate the core as shown in Table A-1.

Table A‐1: Aurora 64B/66B Interoperability

V9_2 Interoperability with V8_1 of Aurora 64B/66B

V9_2\V8_1 V8_1 GTX V8_1 GTH

V9_2 GTX √ √

V9_2 GTH √ √

V9_2 Interoperability with V7_3 of Aurora 64B/66B

V9_2\V7_3 V7_3 GTX V7_3 GTH

V9_2 GTX √ x

V9_2 GTH √ x

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=127

Aurora 64B/66B v9.2 www.xilinx.com 128
PG074 June 4, 2014

Appendix A: Verification, Compliance, and Interoperability

To handle backward compatibility with earlier core versions, two parameters,
BACKWARD_COMP_MODE1 and BACKWARD_COMP_MODE2, are included in the
<user_component_name>_core.v module.

BACKWARD_COMP_MODE1 /BACKWARD_COMP_MODE2

• Default value is set to 0. This will ensure interoperability between v9.2 core and v9.1
core and between v9.2 core and v9.0 core.

• Set both these parameters to 1 to make the v9.2 core interoperate with the v8.1 core or
with the v7.3 core.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=128

Aurora 64B/66B v9.2 www.xilinx.com 129
PG074 June 4, 2014

Appendix B

Migrating and Upgrading
This appendix contains information about migrating a design from ISE® to the Vivado®
Design Suite, upgrading to a more recent version of the IP core, and migrating legacy
(LocalLink based) Aurora Cores to the AXI4-Stream Aurora Core.

For customers upgrading in the Vivado Design Suite, important details (where applicable)
about any port changes and other impact to user logic are included.

Device Migration
If you are migrating from a 7 series GTX or GTH device to an UltraScale™ GTH device, the
prefixes of the optional transceiver debug ports for single-lane cores are changed from
“gt0”, “gt1” to “gt”, and the suff ix “_in” and “_out” are dropped. For multi-lane cores,
the prefixes of the optional transceiver debug ports gt(n) are aggregated into a single port.
For example: gt0_gtrxreset and gt1_gtrxreset now become gt_gtrxreset [1:0].
This is true for all ports, with the exception of the DRP buses which follow the convention
of gt(n)_drpxyz.

It is important to update your design to use the new transceiver debug port names. For
more information about migration to UltraScale devices, see the UltraScale Architecture
Migration Methodology Guide (UG1026) [Ref 12].

Migrating to the Vivado Design Suite
For information about migrating to the Vivado Design Suite, see the ISE to Vivado Design
Suite Migration Guide (UG911) [Ref 13].

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=129

Aurora 64B/66B v9.2 www.xilinx.com 130
PG074 June 4, 2014

Appendix B: Migrating and Upgrading

In the latest revision of the core, there have been several changes which make the core
pin-incompatible with the previous version (s). These changes were required as part of the
general one-off hierarchical changes to enhance the customer experience and are not likely
to occur again.

Shared Logic

As part of the hierarchical changes to the core, it is now possible to have the core itself
include all of the logic which can be shared between multiple cores, which was previously
exposed in the example design for the core.

RECOMMENDED: If you are updating a previous version to a new one with shared logic, there is no
simple upgrade path and it is recommended to consult the Shared Logic sections of this document for
more guidance.

Updates from v9.1 Core

Table B-1 explains the new ports that are added in v9.2 of Aurora 64B/66B core and provides
guidance on the impact of these port additions on the existing v9.1-based designs.

Table B‐1: New Ports added for Aurora 64B/66B in 2014.1

New Ports Direction Reason for Adding

gt_refclk1_out
gt_refclk2_out

Output (master)

In shared logic designs, the master (shared logic in core)
which has the differential GT input will instantiate the
IBUFDS and will pass on the single-ended refclk to the
GT. However, the slave (shared logic in the example design)
will be expecting a single-ended refclk input which is not
readily available from the master in the V9.1 version. This
might result in an additional differential GT refclk and an
IBUFDS instantiated outside and gives it as an input to the
slave or manually bring out the gt_refclk[1,2] from
the master; hence in v9.2 these two new output ports are
added.

gt_reset_out Output (master)
Provides gt_reset_out that connects to the slave
pma_init input port to ensure the proper GT reset
sequencing of master and slave designs

mmcm_not_locked_out Output (master)

The slave design has the mmcm_not_locked port as an
input, which is being used in the TX startup FSM. The
master design will have an instance of MMCM and will drive
mmcm_not_locked as output.
The Aurora 64B/66B v9.1 core did not have this output port
from the core.

s_axi_bready
s_axi_bready_lane[1..15]

Input
(DRP mode is AXI4-Lite)

To ensure AXI4-Lite compatibility, this new port has been
added when the DRP mode is AXI4-Lite. To ensure a
smooth upgrade, this new input is tied to a default value of
1 and need not be driven by user logic.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=130

Aurora 64B/66B v9.2 www.xilinx.com 131
PG074 June 4, 2014

Appendix B: Migrating and Upgrading

When IP is upgraded, critical warnings occur due to these port additions. All these critical
warnings can be safely ignored if the design does not use the functionality provided with
the new ports.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=131

Aurora 64B/66B v9.2 www.xilinx.com 132
PG074 June 4, 2014

Appendix B: Migrating and Upgrading

Updates from v9.0 Core

• In TX Startup FSM, the counting mechanism for mmcm_lock_count used to be done
on txuserclk ; this was a limitation as this was a recovered clock, now using
stable_clock for the MMCM Lock synchronization.

• RX datapath is now made 32-bit until the CBCC module, Width conversion logic and
clk_en generation is avoided; this is handled in the CBCC module before writing data
in to FIFO.

• Lane skew tolerance enhancement; now able to tolerate more lane to lane skew.

• Logic to detect Polarity inversion and to invert polarity while lane init is enabled.

• Internally the core generates tx_channel_up for Aurora TX logic and
rx_channel_up for Aurora RX logic; this ensures that RX logic will be active and ready
to receive before TX logic. rx_channel_up is given out as channel_up.

• Common reset and controls across all lanes.

• Increased the RX CDR lock time from 50 KUI to 37 MUI as suggested by the transceiver
user guide.

• Increased the Block sync header max count from 64 to 60K to increase the robustness of
the link.

• Allowed transmission of more idle characters to add more robustness to link during
channel initialization.

• Removed the reset to scrambler and made it free running to achieve faster CDR lock;
the default pattern sent by scrambler is the scrambled value of NA idle character.

• Updated GTH transceiver QPLL attributes - See AR 56332.

• Shared logic and optional transceiver control and status debug ports are added.

• Updated synchronizers for clock domain crossing to reduce "Mean Time Between
Failures" (MTBF) from meta-stability, currently using a common synchronizer module,
and applying false path constraints only for the first stage of the flops.

• Added support for Cadence IES and Synopsys VCS simulators.

• Added Vivado lab tools support for debug.

• Added quality counters in the example design to increase the test quality.

• Added hardware reset state machine in example design to perform repeat reset testing.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/answers/56332.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=132

Aurora 64B/66B v9.2 www.xilinx.com 133
PG074 June 4, 2014

Appendix B: Migrating and Upgrading

Migrating Legacy (LocalLink based) Aurora Cores to
the AXI4‐Stream Aurora Core

Prerequisites

• Vivado design tools build containing the Aurora 64B/66B v9.x core supporting the
AXI4-Stream protocol

• Familiarity with the Aurora directory structure

• Familiarity with running the Aurora example design

• Basic knowledge of the AXI4-Stream and LocalLink protocols

• Latest product guide (PG074) of the core with the AXI4-Stream updates

• Legacy documents: LogiCORE IP Aurora 64B/66B v4.2 Data Sheet (DS528) [Ref 14],
LogiCORE IP Aurora 64B/66B v4.1 Getting Started Guide (UG238) [Ref 15], and LogiCORE
IP Aurora 64B/66B v4.2 User Guide (UG237) [Ref 16] for reference.

• Migration guide (this Appendix)

Overview of Major Changes

The major change to the core is the addition of the AXI4-Stream interface:

• The user interface is modif ied from the legacy LocalLink (LL) to AXI4-Stream.

• All AXI4-Stream signals are active-High, whereas LocalLink signals are active-Low.

• The user interface in the example design and design top f ile is AXI4-Stream.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=133

Aurora 64B/66B v9.2 www.xilinx.com 134
PG074 June 4, 2014

Appendix B: Migrating and Upgrading

• A new shim module is introduced in the AXI4-Stream Aurora core to convert
AXI4-Stream signals to LL and LL back to AXI4-Stream,

° The AXI4-Stream to LL shim on the transmit converts all AXI4-Stream signals to LL.

° The shim deals with active-High to active-Low conversion of signals between
AXI4-Stream and LocalLink.

° Generation of SOF_N and REM bits mapping are handled by the shim.

° The LL to AXI4-Stream shim on the receive converts all LL signals to AXI4-Stream.

• Each interface (PDU, UFC, and NFC) has a separate AXI4-Stream to LL and LL to
AXI4-Stream shim instantiated from the design top file.

• Frame generator and checker have respective LL to AXI4-Stream and AXI4-Stream to LL
shim instantiated in the Aurora example design to interface with the generated
AXI4-Stream design.

Block Diagrams

Figure B-1 shows an example Aurora design using the legacy LocalLink interface. Figure B-2
shows an example Aurora design using the AXI4-Stream interface.

X-Ref Target - Figure B-1

Figure B‐1: Legacy Aurora Example Design

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=134

Aurora 64B/66B v9.2 www.xilinx.com 135
PG074 June 4, 2014

Appendix B: Migrating and Upgrading

Signal Changes

X-Ref Target - Figure B-2

Figure B‐2: AXI4‐Stream Aurora Example Design

Table B‐2: Interface Changes

LocalLink Name AXI4‐S Name Difference

TX_D s_axi_tx_tdata Name change only

TX_REM s_axi_tx_tkeep
Name change.
For functional differences, see Table 2-3, page 15

TX_SOF_N Generated Internally

TX_EOF_N s_axi_tx_tlast Name change; Polarity

TX_SRC_RDY_N s_axi_tx_tvalid Name change; Polarity

TX_DST_RDY_N s_axi_tx_tready Name change; Polarity

UFC_TX_REQ_N ufc_tx_req Name change; Polarity

UFC_TX_MS ufc_tx_ms No Change

UFC_TX_D s_axi_ufc_tx_tdata Name change only

UFC_TX_SRC_RDY_N s_axi_ufc_tx_tvalid Name change; Polarity

UFC_TX_DST_RDY_N s_axi_ufc_tx_tready Name change; Polarity

NFC_TX_REQ_N s_axi_nfc_tx_tvalid Name change; Polarity

NFC_TX_ACK_N s_axi_nfc_tx_tready Name change; Polarity

NFC_PAUSE
s_axi_nfc_tx_tdata

Name change.
For signal mapping, see Table 2-8, page 20NFC_XOFF

USER_K_DATA
s_axi_user_k_tdata

Name change.
For signal mapping, see Table 2-9, page 21 USER_K_BLK_NO

USER_K_TX_SRC_RDY_N s_axi_user_k_tx_tvalid Name change; Polarity

USER_K_TX_DST_RDY_N s_axi_user_k_tx_tready Name change; Polarity

RX_D m_axi_rx_tdata Name change only

RX_REM m_axi_rx_tkeep
Name change.
For functional difference, see Table 2-3, page 15

RX_SOF_N Removed

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=135

Aurora 64B/66B v9.2 www.xilinx.com 136
PG074 June 4, 2014

Appendix B: Migrating and Upgrading

RX_EOF_N m_axi_rx_tlast Name change; Polarity

RX_SRC_RDY_N m_axi_rx_tvalid Name change; Polarity

UFC_RX_DATA m_axi_ufc_rx_tdata Name change only

UFC_RX_REM m_axi_ufc_rx_tkeep
Name change
For functional difference, see Table 2-7, page 18

UFC_RX_SOF_N Removed

UFC_RX_EOF_N m_axi_ufc_rx_tlast Name change; Polarity

UFC_RX_SRC_RDY_N m_axi_ufc_rx_tvalid Name change; Polarity

RX_USER_K_DATA
m_axi_rx_user_k_tdata

Name change
For functional difference, see Table 2-9, page 21 RX_USER_K_BLK_NO

RX_USER_K_SRC_RDY_N m_axi_rx_user_k_tvalid Name change; Polarity

Table B‐2: Interface Changes (Cont’d)

LocalLink Name AXI4‐S Name Difference

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=136

Aurora 64B/66B v9.2 www.xilinx.com 137
PG074 June 4, 2014

Appendix B: Migrating and Upgrading

Migration Steps

Generate an AXI4-Stream Aurora core from the Vivado design tools.

Simulate the Core

1. Run the vsim -do simulate_mti.do f ile from the /simulation/functional
directory.

2. Questa® SIM launches and compiles the modules.

3. The wave_mti.do f ile loads automatically and populates AXI4-Stream signals.

4. Allow the simulation to run. This might take some time.

a. Initially lane up is asserted.

b. Channel up is then asserted and the data transfer begins.

c. Data transfer from all flow control interfaces now begins.

d. Frame checker continuously checks the received data and reports for any data
mismatch.

5. A 'TEST PASS' or 'TEST FAIL' status is printed on the Questa SIM console providing the
status of the test.

Implement the Core

1. Run ./implement.sh (for Linux) from the /implement directory.

2. The implement script compiles the core and runs through the Vivado design tool and
generates a bit f ile and netlist for the core.

Integrate to an Existing LocalLink‐based Aurora Design

1. The Aurora core provides a lightweight 'shim' to interface to any existing LL based
interface. The shims are delivered along with the core from the aurora_64b66b_v8_0
version of the core.

2. See Figure B-2, page 135 for the emulation of a LL Aurora core from a AXI4-Stream
Aurora core.

3. Two shims <user_component_name>_ll_to_axi.v and
<user_component_name>_axi_to_ll.v are provided in the src directory of the
AXI4-Stream Aurora core.

4. Instantiate both the shims along with <user_component_name>.v in the existing LL
based design top.

5. Connect the shim and AXI4-Stream Aurora design as shown in Figure B-2, page 135.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=137

Aurora 64B/66B v9.2 www.xilinx.com 138
PG074 June 4, 2014

Appendix B: Migrating and Upgrading

6. The latest AXI4-Stream Aurora core can be plugged into any existing LL design
environment.

Vivado IDE Changes

Figure B-3 shows the AXI4-Stream signals in the IP Symbol diagram.

X-Ref Target - Figure B-3

Figure B‐3: AXI4‐Stream Signals

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=138

Aurora 64B/66B v9.2 www.xilinx.com 139
PG074 June 4, 2014

Appendix B: Migrating and Upgrading

Limitations

This section outlines the limitations of the Aurora 64B/66B core for AXI4-Stream support.

IMPORTANT: Be aware of the following limitations while interfacing the Aurora 64B/66B core with the
AXI4-Stream compliant interface core.

Limitation 1:

The AXI4-Stream specif ication supports four types of data stream:

• Byte stream

• Continuous aligned stream

• Continuous unaligned stream

• Sparse stream

The Aurora 64B/66B core supports only continuous aligned stream and continuous
unaligned stream. The position bytes are valid only at the end of packet.

Limitation 2:

The AXI4-Stream protocol supports transfer with zero data at the end of packet, but the
Aurora 64B/66B core expects at least one byte should be valid at the end of packet.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=139

Aurora 64B/66B v9.2 www.xilinx.com 140
PG074 June 4, 2014

Appendix C

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the Aurora 64B/66B core, the Xilinx
Support web page (www.xilinx.com/support) contains key resources such as product
documentation, release notes, answer records, information about known issues, and links
for obtaining further product support. Also see the Aurora home page.

Documentation

This product guide is the main document associated with the Aurora 64B/66B core. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page (www.xilinx.com/support) or by using the Xilinx
Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads
page (www.xilinx.com/download). For more information about this tool and the features
available, open the online help after installation.

Answer Records

Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/download
www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=140

Aurora 64B/66B v9.2 www.xilinx.com 141
PG074 June 4, 2014

Appendix C: Debugging

A filter search is available after results are returned to further target the results.

To use the Answers Database Search:

1. Navigate to www.xilinx.com/support. The Answers Database Search is located at the top
of this web page.

2. Enter keywords in the provided search f ield and select Search.

° Examples of searchable keywords are product names, error messages, or a generic
summary of the issue encountered.

° To see all answer records directly related to the Aurora 64B/66B core, search for the
phrase "Aurora 64B66B"

Master Answer Record for the Aurora 64B/66B Core

AR: 54368

Xilinx provides premier technical support for customers encountering issues that require
additional assistance.

Contacting Technical Support

Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support:

1. Navigate to www.xilinx.com/support.

2. Open a WebCase by selecting the WebCase link located under Additional Resources.

When opening a WebCase, include:

• Target FPGA including package and speed grade.

• All applicable Xilinx Design Tools and simulator software versions.

• The XCI f ile created during Aurora 64B/66B core generation

• Additional f iles based on the specif ic issue might also be required. See the relevant
sections in this debug guide for guidelines about which f ile(s) to include with the
WebCase.

Note: Access to WebCase is not available in all cases. Log in to the WebCase tool to see your specif ic
support options.

Send Feedback

http://www.xilinx.com
http://www.origin.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/support/answers/54368.htm
http://www.xilinx.com/support/answers/52313.htm
www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=141

Aurora 64B/66B v9.2 www.xilinx.com 142
PG074 June 4, 2014

Appendix C: Debugging

Debug Tools
There are many tools available to address Aurora 64B/66B core design issues. It is important
to know which tools are useful for debugging various situations.

Vivado Lab Tools

Vivado® lab tools insert logic analyzer and virtual I/O cores directly into your design.
Vivado lab tools also allow you to set trigger conditions to capture application and
integrated block port signals in hardware. Captured signals can then be analyzed. This
feature in the Vivado IDE is used for logic debugging and validation of a design running in
Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

• ILA 3.0 (and later versions)

• VIO 3.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 17].

Reference Boards

Various Xilinx development boards support the Aurora 64B/66B core. These boards can be
used to prototype designs and establish that the core can communicate with the system.

• 7 series FPGA evaluation boards

° KC705

° KC724

° VC7203

° ZC723

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=142

Aurora 64B/66B v9.2 www.xilinx.com 143
PG074 June 4, 2014

Appendix C: Debugging

Simulation Debug

Lanes and Channel do not come up in simulation

• The quickest way to debug these problems is to view the signals from one of the GTX or
GTH transceiver instances that are not working.

• Make sure that the reference clock and user clocks are all toggling.

Note: Only one of the reference clocks should be toggling, The rest will be tied Low.

• Check to see that recclk and txoutclk are toggling. If they are not toggling, you
might have to wait longer for the PMA to finish locking. You should typically wait about
6–9 µs for lane up and channel up. You might need to wait longer for simplex/ 7 series
FPGA designs.

• Make sure that txn and txp are toggling. If they are not, make sure you have waited
long enough (see the previous bullet) and make sure you are not driving the tx signal
with another signal.

• Check in the <user_component_name>_support module whether the
pll/mmcm_not_locked signal and the reset signals are on your design. If these are
being held active, your Aurora module will not be able to initialize.

• Be sure you do not have the power_down signal asserted.

• Make sure the txn and txp signals from each GTX or GTH transceiver are connected to
the appropriate rxn and rxp signals from the corresponding GTX or GTH transceiver
on the other side of the channel

• You will need to instantiate the "glbl" module and use it to drive the power_up reset at
the beginning of the simulation to simulate the reset that occurs after configuration.
You should hold this reset for a few cycles. The following code can be used an example:

//Simulate the global reset that occurs after configuration at the beginning
//of the simulation.
assign glbl.GSR = gsr_r;
assign glbl.GTS = gts_r;

initial
begin

gts_r = 1'b0;
gsr_r = 1'b1;
#(16*CLOCKPERIOD_1);
gsr_r = 1'b0;

end

• If you are using a multilane channel, make sure all the GTs on each side of the channel
are connected in the correct order.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=143

Aurora 64B/66B v9.2 www.xilinx.com 144
PG074 June 4, 2014

Appendix C: Debugging

Channel comes up in simulation but S_AXI_TX_TREADY is never
asserted (never goes High)

• If your module includes flow control but you are not using it, make sure the request
signals are not currently driven High. s_axi_nfc_tx_tvalid and ufc_tx_req are
active-High: if they are High, s_axi_tx_tready will stay Low because the channel
will be allocated for flow control.

• Make sure do_cc is not being driven High continuously. Whenever do_cc is High on a
positive clock edge, the channel is used to send clock correction characters, so
s_axi_tx_tready is deasserted.

• If your module includes USER K Blocks but you are not using it, make sure the
s_axi_user_k_tx_tvalid is not driven High. If it is High, s_axi_tx_tready will
stay Low as channel will be allocated for USER K Blocks.

• If you have NFC enabled, make sure the design on the other side of the channel did not
send an NFC XOFF message. This will cut off the channel for normal data until the other
side sends an NFC XON message to turn the flow on again. See ug775.pdf for more
details.

Bytes and words are being lost as they travel through the
Aurora channel

• If you are using the AXI4-Stream interface, make sure you are writing data correctly. The
most common mistake is to assume words are written without looking at
s_axi_tx_tready. Also remember that the s_axi_tx_tkeep signal must be used
to indicate which bytes are valid when s_axi_tx_tlast is asserted.

• Make sure you are reading correctly from the RX interface. Data and framing signals are
only valid when m_axi_rx_tvalid is asserted.

Problems while compiling the design

Make sure you include all the f iles from the src directory when compiling.

Next Step

Open a support case to have the appropriate Xilinx expert assist with the issue.

To create a technical support case in WebCase, see the Xilinx website at:
www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

• Detailed description of the issue

• Results of the steps listed previously

• Attach a VCD or WLF dump of the observation

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=144

Aurora 64B/66B v9.2 www.xilinx.com 145
PG074 June 4, 2014

Appendix C: Debugging

Hardware Debug
As the transceiver is the critical building block in aurora core, debugging and ensuring
proper operation of the transceiver is extremely important. Figure C-1 shows the steps
involved for debugging transceiver related issues.

X-Ref Target - Figure C-1

Figure C‐1: Transceiver Debug Flow Chart

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=145

Aurora 64B/66B v9.2 www.xilinx.com 146
PG074 June 4, 2014

Appendix C: Debugging

1. Attribute updates with respect to the device silicon version transceiver attributes must
match with the silicon version of the device being used in the board. Apply all the
applicable workarounds and Answer Records given for the relevant silicon version.

2. GT REFCLK Check

A low jitter differential clock must be provided to the transceiver reference clock.
Connecting the onboard differential clock to the transceiver will narrow down the issue
to the external clock generation and/or external clock cables connected to transceiver.

3. GT PLL Lock Check

Transceiver locks into the incoming GT REFCLK and asserts the plllock signal. This
signal is available as the tx_lock signal in Aurora example design. Make sure that the
GT PLL attributes are set correctly and that the transceiver generates txoutclk with
expected frequency for the given line rate and datapath width options. It must be noted
that the Aurora core uses Channel PLL/Quad PLL (CPLL/QPLL) in the generated core for
GTX or GTH transceivers.

4. GT Initialization Sequence

The Aurora core uses the sequential mode as the reset mode and all of the transceiver
components are being reset sequentially one after another. txresetdone and
rxresetdone signals are asserted at the end of the transceiver initialization. In general,
rxresetdone assertion will take longer time compare to txresetdone assertion.
Make sure, gt_reset signal pulse width duration matches with respective transceiver
guideline. txresetdone and rxresetdone signals are available in the Aurora example
design to monitor.

5. LOOPBACK Configuration Testing

Loopback modes are specialized configurations of transceiver datapath. The loopback
port at Aurora example design will control the loopback modes. Four loopback modes
are available and refer respective transceiver UG for guidelines and more information.
Figure C-2 illustrates a loopback test configuration with four different loopback modes.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=146

Aurora 64B/66B v9.2 www.xilinx.com 147
PG074 June 4, 2014

Appendix C: Debugging

Design Bring‐Up on Evaluation Board

Aurora Validation on the KC705 Board

Setup Requirements:

• Software: Vivado Design Suite

• Hardware Components required:

° Kintex-7 FPGA KC705 Evaluation Kit Base Board

° Two KC705 boards with power adapters

Validation and core generation steps:

1. Open the Vivado Design Suite and create a new project with a part number, typically,
xc7k325tffg900-2 (or alternately you can select the boards option and in it the Kintex-7
KC705 Evaluation platform) and select Finish.

2. In the Project Manager window of Vivado, select IP catalog, and search for Aurora
64b66b in Communication & Networking => Serial Interfaces.

3. While customizing the Aurora 64B/66B core, in the tab Core Option, check the Vivado
Lab Tools option. Then in the tab GT Selections, select GTXE2_X0Y8 in GTXQ2.

4. Generate and Open IP Example Design for the project.

X-Ref Target - Figure C-2

Figure C‐2: Loopback Testing Overview

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=147

Aurora 64B/66B v9.2 www.xilinx.com 148
PG074 June 4, 2014

Appendix C: Debugging

5. Open <user_component_name>_exdes.xdc and make sure that pin locations of all
the ports of the Aurora core are proper. As hard_err, soft_err and
data_err_count are not being used in the evaluation board setup, you can add the
following line in this f ile:

set_property BITSTREAM.General.UnconstrainedPins {Allow} [current_design]

6. Save the f ile.

7. Run Synthesis, Implementation and generate the bitstream.

8. The procedure to connect the boards follows:

a. txp from board 1 should be connected to rxp in board 2 and txn from board 1
should be connected to rxn in board 2.

b. Similarly, txp from board 2 should be connected to rxp in board 1 and txn from
board 2 should be connected to rxn in board 1.

9. Program the boards with the bit f iles, and with the help of ila/vio you can monitor
lane_up, channel_up, data_err_count.

Table C‐1: Pin Locations

Pin Name Location onboard Remarks

init_clk_p AD12

init_clk_n AD11

reset AG5

pma_init AC6

lane_up A8

channel_up AA8

hard_err Not LOC constrained

soft_err Not LOC constrained

data_err_count Not LOC constrained

refclk_p J8 GTXQ2_P

refclk_n J7 GTXQ2_N

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=148

Aurora 64B/66B v9.2 www.xilinx.com 149
PG074 June 4, 2014

Appendix C: Debugging

Interface Debug
If data is not being transmitted or received for the AXI4-Stream Interfaces, check the
following conditions:

• If transmit s_axi_tx_tready is stuck Low following the s_axi_tx_tvalid input
being asserted, the core cannot send data.

• If the receive s_axi_tx_tvalid is stuck Low, the core is not receiving data.

• Check that the user_clk inputs are connected and toggling.

• Check that the AXI4-Stream waveforms are being followed. See. Figure 2-8.

• Check core configuration.

• Add appropriate core specif ic checks.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=149

Aurora 64B/66B v9.2 www.xilinx.com 150
PG074 June 4, 2014

Appendix D

Generating a GT Wrapper File from the
Transceiver Wizard

The transceiver attributes play a vital role in the functionality of the Aurora 64B/66B core.
Use the latest transceiver wizard to generate the transceiver wrapper f ile.

RECOMMENDED: Xilinx strongly recommends that you update the transceiver wrapper file in the
Design Suite tool releases when the transceiver wizard has been updated but the Aurora core has not.

This appendix provides instructions to generate the transceiver wrapper f iles:

Use these steps to generate the transceiver wrapper f ile using the 7 series FPGAs
Transceivers Wizard:

1. Using the IP catalog, run the latest version of the 7 series FPGAs Transceivers Wizard.
Make sure the Component Name of the transceiver wizard matches the Component
Name of the Aurora 64B/66B core.

2. Select the protocol template: Aurora 64B/66B.

3. Change the Line Rate in both TX and RX based on the application requirement.

4. Select the Reference Clock from the drop-down box menu in both TX and RX based on
the application requirement.

5. Select transceiver(s) and the clock source(s) based on the application requirement.

6. On Page 3, select External Data Width of RX to be 32 Bits and Internal Data Width to be
32 bits. Ensure Tx is configured with 64-bit external data width and 32-bit internal data
width.

7. Keep all other settings as default.

8. Generate the core.

9. Replace the <component name>_gtx.v f ile in the example_design/gt/
directory available in the Aurora 64B/66B core with the generated <component
name>_gt.v f ile generated from the 7 series FPGAs Transceivers Wizard.

The transceiver settings for the Aurora 64B/66B core are up to date now.

Note: The UltraScale™ architecture Aurora 64B/66B IP core uses the hierarchical core calling method
to call the UltraScale device GTWizard IP core. In this way, all the transceiver attributes, parameters,
and required workarounds are up to date. Manual editing of the UltraScale device transceiver f iles
are not required in most of the cases.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=150

Aurora 64B/66B v9.2 www.xilinx.com 151
PG074 June 4, 2014

Appendix E

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

For a glossary of technical terms used in Xilinx documentation, see the Xilinx Glossary.

References
These documents provide supplemental material useful with this product guide:

1. 7 Series FPGAs Overview (DS180)

2. UltraScale Architecture and Product Overview (DS890)

3. UltraScale Architecture GTH Transceivers User Guide (UG576)

4. 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)

5. Aurora 64B/66B Protocol Specification v1.2 (SP011)

6. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

7. Vivado Design Suite User Guide: Designing with IP (UG896)

8. Vivado Design Suite User Guide: Getting Started (UG910)

9. Vivado Design Suite User Guide - Logic Simulation (UG900)

10. 7 Series GTZ Transceiver User Guide (UG478)

11. UltraScale FPGAs Transceivers Wizard Product Guide (PG182)

12. UltraScale Architecture Migration Methodology Guide (UG1026)

13. ISE to Vivado Design Suite Migration Guide (UG911)

14. LogiCORE IP Aurora 64B/66B v4.2 Data Sheet (DS528)

15. LogiCORE IP Aurora 64B/66B v4.1 Getting Started Guide (UG238)

16. LogiCORE IP Aurora 64B/66B v4.2 User Guide (UG237)

Send Feedback

http://www.xilinx.com/company/terms.htm
http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=gtwizard_ultrascale;v=latest;d=pg182-gtwizard-ultrascale.pdf
www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1026-ultrascale-migration-guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v4_2/aurora_64b66b_ds528.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_gsg238.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v4_2/aurora_64b66b_ug237.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=151

Aurora 64B/66B v9.2 www.xilinx.com 152
PG074 June 4, 2014

Appendix E: Additional Resources and Legal Notices

17. Vivado Design Suite User Guide: Programming and Debugging (UG908)

18. Vivado AXI Reference Guide (UG1037)

19. Virtex-7 FPGAs Data Sheet: DC and Switching Characteristics (DS183)

20. Kintex-7 FPGAs Data Sheet: DC and Switching Characteristics (DS182)

21. Synthesis and Simulation Design Guide (UG626)

22. ARM® AMBA® 4 AXI4-Stream Protocol v1.0 Specification (ARM IHI 0051A)

Revision History
The following table shows the revision history for this document.

Date Version Revision

06/04/2014 9.2 (Rev 1) • Added User Parameter information.

04/02/2014 9.2 • Added C_EXAMPLE_SIMULATION parameter for post
synthesis/implementation simulation speedup.

• Added support for UltraScale™ devices.
• Enhanced support for IP Integrator.
• Added Little endian support for data and flow control interfaces as

non-default Vivado® IDE selectable option.
• Provided interoperability guidance.
• Resolved functional issue seen with specific frame lengths in certain

scenarios.

12/18/2013 9.1 • Added default information to init_clk_p, initclk_n, and INIT_CLK
description.

• Updated reset sequencing steps and waveform.
• Added information about pma_init staging.
• Updated screen captures.
• Added sequence of steps describing hardware FSM reset

10/02/2013 9.0 • Added new chapters: Simulation, Test Bench and Synthesis and
Implementation.

• Added shared logic and transceiver debug features.
• Updated directory and file structure.
• Changed signal and port names to lowercase.
• Added Zynq®-7000 device support.
• Updated RX datapath architecture.
• Updated Aurora Simplex Operation description.
• Updated Figure 3-2 and screen captures in Chapter 4.
• Updated Hot-Plug Logic description.
• Added IP Integrator support.
• Updated XDC file for the example design.
• Added design bring-up on evaluation board information.

Send Feedback

http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest+ise;d=sim.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_Sheet.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug1037-vivado-axi-reference.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=152

Aurora 64B/66B v9.2 www.xilinx.com 153
PG074 June 4, 2014

Appendix E: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2012–2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM,
ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the
property of their respective owners.

06/19/2013 8.1 • Revision number advanced to 8.1 to align with core version number.
• Updated for 2013.2 release and core version 8.1.
• Fixed a NFC transmit failure scenario when Clock Correction is transmitted

in conjunction with the second NFC request. NFC state machine is updated
to handle such scenarios.

03/20/2013 2.0 • Updated for 2013.1 release and core version 8.0.
• Removed all ISE® design tools and Virtex®-6 related device information.
• Added Reset waveforms
• Updated debug guide with core and transceiver debug details
• Created lowercase ports for Verilog
• Added Simplex TX/RX support
• Enhanced protocol to increase Channel Init time
• Included TXSTARTUPFSM and RXSTARTUPFSM modules to control GT reset

sequence

12/18/2012 1.0.1 • Updated for 14.4 and 2012.4 release.
• Added TKEEP description
• Updated Debugging appendix.

10/16/2012 1.0 Initial Xilinx release as a product guide. This document replaces UG775,
LogiCORE IP Aurora 64B/66B User Guide and DS815, LogiCORE IP Aurora
64B/66B Data Sheet.
• Added section explaining constraining of the core.
• Added section explaining core debugging.

06/04/2014

Date Version Revision

Send Feedback

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG074&Title=LogiCORE%20IP%20Aurora%2064B%2F66B%20v9.2&releaseVersion=9.2&docPage=153

	LogiCORE IP Aurora 64B/66B v9.2
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Feature Summary
	Applications
	Unsupported Features
	Licensing and Ordering Information

	Ch. 2: Product Specification
	Standards
	Performance
	Maximum Frequencies
	Latency
	Throughput

	Resource Utilization
	Port Descriptions
	User Interface
	Framing Interface Ports (AXI4-Stream)
	Streaming Ports
	Notes:

	User Flow Control Interface
	Native Flow Control Interface
	User K-Block Interface
	Status and Control Ports
	GTX and GTH Transceiver Interface
	Clock Interface

	Detailed Functional Description
	Top-Level Architecture
	Framing Interface
	Streaming Interface
	Transmitting and Receiving Data

	Flow Control
	Native Flow Control
	User Flow Control

	User K-Block Interface
	Transmitting User K-Blocks
	Receiving User K-Blocks

	Status, Control, and the Transceiver Interface
	Status and Control Ports
	Error Signals in Aurora 64B/66B Cores
	Initialization
	Aurora Simplex Operation

	Reset and Power Down
	Reset
	Reset Sequencing
	pma_init Staging
	Reset Flow
	Power Down
	Timing
	Reset Use Cases

	DRP Interface
	Clock Compensation Interface

	Ch. 3: Designing with the Core
	General Design Guidelines
	Keep It Registered
	Recognize Timing Critical Signals
	Use Supported Design Flows
	Make Only Allowed Modifications

	Shared Logic
	Clocking
	Clock Interface and Clocking
	Aurora 64B/66B Clocking Architecture
	Usage of BUFG in the Aurora 64B/66B Core
	Reference Clocks for FPGA Designs

	Clock Compensation

	Core Features
	CRC
	Using Vivado Lab Tools
	Hot-Plug Logic
	Little Endian Support

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Vivado Integrated Design Environment
	Using the IP Catalog
	IP Catalog

	User Parameters

	Core Customization Options for UltraScale Architecture Specific Designs
	UltraScale Device GT Implementation
	UltraScale Device GT Channel Instance in the Core
	UltraScale Device GT Clocking Structure in the Core
	UltraScale Device GT Common Instance in the Core
	GT Channel Locations
	How GT Locations are Mapped By the Aurora 64B/66B Core
	Output Generation

	Constraining the Core
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Notes
	False Paths
	Example Design

	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Synthesis and Implementation
	Implementation
	Overview
	Generating the Core
	Implementing the Example Design

	Ch. 5: Detailed Example Design
	Directory and File Contents
	Quick Start Example Design
	Detailed Example Design
	FRAME_GEN
	Framing TX Data Interface
	Streaming TX Data Interface
	UFC TX Interface
	NFC TX Interface
	User K TX Interface

	FRAME_CHECK
	Framing RX Data Interface
	Streaming RX Data Interface
	UFC RX Interface
	User K RX Interface

	Implementing the Example Design
	Hardware Reset FSM in the Example Design

	Ch. 6: Test Bench
	Appx. A: Verification, Compliance, and Interoperability
	Appx. B: Migrating and Upgrading
	Device Migration
	Migrating to the Vivado Design Suite
	Upgrading in the Vivado Design Suite
	Shared Logic
	Updates from v9.1 Core
	Updates from v9.0 Core

	Migrating Legacy (LocalLink based) Aurora Cores to the AXI4-Stream Aurora Core
	Prerequisites
	Overview of Major Changes
	Block Diagrams
	Signal Changes
	Migration Steps
	Simulate the Core
	Implement the Core
	Integrate to an Existing LocalLink-based Aurora Design

	Vivado IDE Changes
	Limitations
	Limitation 1:
	Limitation 2:

	Appx. C: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Contacting Technical Support

	Debug Tools
	Vivado Lab Tools
	Reference Boards

	Simulation Debug
	Lanes and Channel do not come up in simulation
	Channel comes up in simulation but S_AXI_TX_TREADY is never asserted (never goes High)
	Bytes and words are being lost as they travel through the Aurora channel
	Problems while compiling the design
	Next Step

	Hardware Debug
	Design Bring-Up on Evaluation Board
	Aurora Validation on the KC705 Board

	Interface Debug

	Appx. D: Generating a GT Wrapper File from the Transceiver Wizard
	Appx. E: Additional Resources and Legal Notices
	Xilinx Resources
	References
	Revision History
	Please Read: Important Legal Notices

