

DS797 October 19, 2011

Product Specification

Introduction

The LogiCORETM IP Aurora 8B/10B core supports the AMBA® protocol AXI4-Stream user interface. The core implements the Aurora 8B/10B protocol using the high-speed serial transceivers on the Virtex®-7 and KintexTM-7 families (including the -2L lower power devices); Virtex-6 LXT, SXT, CXT, HXT, and lower power families; and the Spartan®-6 LXT family.

The Aurora 8B/10B core is a scalable, lightweight, link-layer protocol for high-speed serial communication. The protocol is open and can be implemented using Xilinx® FPGA technology. The protocol is typically used in applications requiring simple, low-cost, high-rate, data channels.

The CORE GeneratorTM software produces source code for Aurora 8B/10B cores with variable datapath width. The cores can be simplex or full-duplex, and feature one of two simple user interfaces and optional flow control.

Features

- General-purpose data channels with throughput range from 480 Mbps to 84.48 Gbps
- Supports up to any 16 of 56 Virtex-7/Kintex-7 FPGA GTX transceivers, 16 of 36 Virtex-6 FPGA GTX transceivers or 4 of 8 Spartan-6 FPGA GTP transceivers
- Aurora 8B/10B protocol specification v2.2 compliant
- Low resource cost (see Resource Utilization)
- Easy-to-use framing and flow control
- Automatically initializes and maintains the channel
- Full-duplex or simplex operation
- AXI4-Stream (framing) or streaming user interface

	LogiCORE IP Facts Table					
	C	ore Sp	pecifics			
Supported Device Family ⁽¹⁾					x-7, Kintex-7 -6, Spartan-6	
Supported User Interfaces					AXI4-Stream	
		Reso	ources ⁽²⁾		Frequency	
Configuration	LUTs	FFs	DSP Slices	Block RAMs	Max. Freq. ⁽³⁾	
Config1	2076	2307	0	0	330 MHz	
	Pro	vided	with Co	re		
Documentation				Product	Specificatior User Guide	
Design Files				Veril	og and VHDL	
Example Design				Verile	og and VHDL	
Test Bench				Veril	og and VHDL	
Constraints File			Use	r Constrair	ts File (UCF	
Simulation Model					Not Provideo	
	Test	ted Des	sign Too	ols		
Design Entry Tools				CORE	enerator too	
Simulation ⁽⁴⁾	ISim 13.3, Mentor Graphics ModelSim, and Cadence Incisive Enterprise Simulator (IES)					
Synthesis Tools ⁽⁴⁾	XST 13.3, PlanAhead™ 13.3, and Synopsys Synplify Pro					
		Sup	port			
Provideo	d by Xili	nx @ <u>v</u>	ww.xilin	x.com/sup	oport	

1. For a complete listing of supported devices, see the release notes for this core.

2. For device performance numbers, see Table 2 through Table 13.

3. For more complete performance data, see Performance, page 13.

4. For the supported versions of the tools, see the <u>ISE Design Suite</u> <u>13: Release Notes Guide</u>.

www.xilinx.com

[©] Copyright 2010–2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners.

Functional Overview

The Aurora 8B/10B core is a lightweight, serial communications protocol for multi-gigabit links. It is used to transfer data between devices using one or many GTP/GTX transceivers. Connections can be *full-duplex* (data in both directions) or *simplex* (Figure 1).

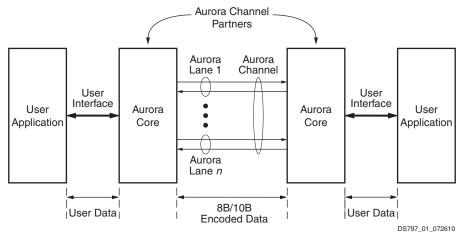


Figure 1: Aurora 8B/10B Channel Overview

Aurora 8B/10B cores automatically initialize a channel when they are connected to an Aurora channel partner. After initialization, applications can pass data freely across the channel as *frames* or *streams* of data. Aurora *frames* can be any size, and can be interrupted at any time. Gaps between valid data bytes are automatically filled with *idles* to maintain lock and prevent excessive electromagnetic interference. *Flow control* is optional in Aurora, and can be used to reduce the rate of incoming data, or to send brief, high-priority messages through the channel.

Streams are implemented in the Aurora 8B/10B core as a single, unending frame. Whenever data is not being transmitted, idles are transmitted to keep the link alive. The Aurora 8B/10B core detects single-bit and most multi-bit errors using 8B/10B coding rules. Excessive bit errors, disconnections, or equipment failures cause the core to reset and attempt to re-initialize a new channel.

Applications

Aurora 8B/10B cores can be used in a wide variety of applications because of their low resource cost, scalable throughput, and flexible data interface. Examples of Aurora 8B/10B core applications include:

- **Chip-to-chip links**: Replacing parallel connections between chips with high-speed serial connections can significantly reduce the number of traces and layers required on a PCB. The core provides the logic needed to use GTP/GTX transceivers, with minimal FPGA resource cost.
- **Board-to-board and backplane links**: The Aurora 8B/10B core uses standard 8B/10B encoding, making it compatible with many existing hardware standards for cables and backplanes. Aurora 8B/10B cores can be scaled, both in line rate and channel width, to allow inexpensive legacy hardware to be used in new, high-performance systems.
- **Simplex connections (unidirectional)**: In some applications, there is no need for a high-speed back channel. The Aurora protocol provides several ways to perform unidirectional channel initialization, making it possible to use the GTP/GTX transceivers when a back channel is not available, and to reduce costs due to unused full-duplex resources.
- **ASIC applications**: The Aurora protocol is not limited to FPGAs, and can be used to create scalable, high-performance links between programmable logic and high-performance ASICs. The simplicity of the Aurora protocol leads to low resource costs in ASICs as well as in FPGAs, and design resources like the Aurora bus functional model (ABFM 8B/10B) with compliance testing make it easy to get an Aurora channel up and running.

Note: Contact Xilinx Sales or Auroramkt@xilinx.com for information on licensing the Aurora 8B/10B core for ASIC applications.

Functional Blocks

Figure 2 shows a block diagram of the implementation of the Aurora 8B/10B core.

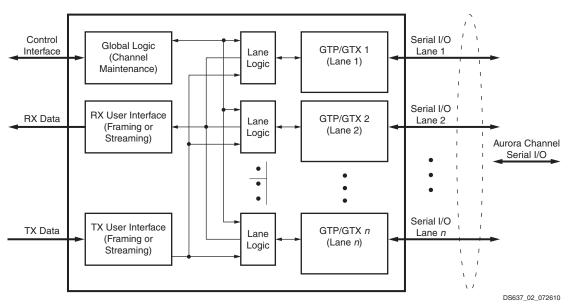


Figure 2: Aurora 8B/10B Core Block Diagram

The major functional modules of the Aurora 8B/10B core are:

- Lane logic: Each GTP/GTX transceiver is driven by an instance of the lane logic module, which initializes each individual GTP/GTX transceiver and handles the encoding and decoding of control characters and error detection.
- **Global logic**: The global logic module in each Aurora 8B/10B core performs the bonding and verification phases of channel initialization. While the channel is operating, the module generates the random idle characters required by the Aurora protocol and monitors all the lane logic modules for errors.
- **RX user interface**: The RX user interface moves data from the channel to the application. Streaming data is presented using a simple stream interface equipped with a data bus and a data valid signal. Frames are presented using a standard AXI4-Stream interface. This module also performs flow control functions.
- **TX user interface:** The TX user interface moves data from the application to the channel. A stream interface with a data valid and a ready signal is used for streaming data. A standard AXI4-Stream interface is used for data frames. The module also performs flow control TX functions. The module has an interface for controlling clock compensation (the periodic transmission of special characters to prevent errors due to small clock frequency differences between connected Aurora 8B/10B cores). This interface is normally driven by a standard clock compensation manager module provided with the Aurora 8B/10B core, but it can be turned off, or driven by custom logic to accommodate special needs.

Core Parameters

The users can customize Aurora 8B/10B cores by setting the parameters for the core using the CORE Generator software. Table 1 describes the customizable parameters. For examples of the GUI, see the *LogiCORE IP Aurora* 8B/10B v7.1 User Guide.

Parameter	Description	Values Supported
Aurora Lanes	The number of GTP/GTX transceivers used in the channel.	 Virtex-7/Kintex-7 devices GTX transceivers: 1 to 16 Virtex-6 devices GTX transceivers: 1 to 16 Spartan-6 devices GTP transceivers: 1, 2, and 4
Lane Width	The Virtex-7/Kintex-7 FPGA GTX transceivers, Virtex-6 FPGA GTX transceivers and Spartan-6 FPGA GTP transceivers in the core are set to use 2-byte and 4-byte user data.	 Virtex-7/Kintex-7 devices GTX transceivers: 2 or 4 bytes Virtex-6 devices GTX transceivers: 2 or 4 bytes Spartan-6 devices GTP transceivers: 2 or 4 bytes
Dataflow Mode	The type of channel to be generated by the CORE Generator software. Can be full-duplex, simplex in the TX direction, or simplex in the RX direction.	Full-Duplex Simplex-TX Simplex-RX
Back Channel	 There are two types of Simplex Aurora 8B/10B cores: Sidebands: Simplex TX state transition is through Sideband signals from the Simplex partner Timer: Simplex TX state transition during initialization is achieved through a built-in Timer instead of sidebands 	Sidebands Timer

Table 1: Core Parameters

Table 1: Core Parameters (Cont'd)

Parameter	Description	Values Supported
Flow Control	 Enables optional Aurora flow control. There are two types: Native Flow Control (NFC): NFC allows full-duplex receivers to control the rate of incoming data. Completion mode NFC forces idles when frames are complete. Immediate mode NFC forces idles as soon as the flow control message arrives. User Flow Control (UFC): UFC allows applications to send each other brief high priority messages through the channel. 	None NFC Immediate NFC Completion UFC UFC and NFC Immediate UFC and NFC Completion
Interface	 The user can specify one of two types of interfaces: Framing: The framing user interface is AXI4-Stream compliant. After initialization, it allows framed data to be sent across the Aurora channel. Framing interface cores tend to be larger because of their comprehensive word alignment and control character stripping logic. Streaming: The streaming user interface allows users to start a single, infinite frame. After initialization, the user writes words to the frame using a simple register style interface with a data valid signal. 	Framing (AXI4-Stream) Streaming
Line Rate	The line rate dictates the speed at which the transceiver works. This parameter relates to performance of the Aurora 8B/10B core. Choose the higher line rate for better performance. See the <i>LogiCORE IP Aurora 8B/10B v7.1 User Guide</i> for detailed instructions.	 Virtex-7/Kintex-7 Lower Power devices GTX transceiver: 500 Mbps to 5.0 Gbps for 2-byte 500 Mbps to 6.6 Gbps for 4-byte Virtex-7/Kintex-7 devices GTX transceiver: 500 Mbps to 6.6 Gbps Virtex-6 LXT/SXT devices GTX transceiver: 600 Mbps to 6.6 Gbps Virtex-6 CXT devices GTX transceiver: 675 Mbps to 3.75 Gbps Lower-power Virtex-6 devices GTX transceiver: 600 Mbps to 5.0 Gbps Spartan-6 devices GTP transceiver: 614 Mbps to 3.125 Gbps
GT REFCLK (MHz)	The CORE Generator software generates set of frequencies in MHz based on the given line rate to set the transceiver reference clock frequency for the selected Virtex-7, Kintex-7, Virtex-6, and Spartan-6 FPGA transceiver(s). See the <i>LogiCORE IP Aurora 8B/10B v7.1 User Guide</i> for detailed instructions.	 A selection of reference clock frequency based on the selected line rate and available clock multipliers in the: Virtex-7/Kintex-7 FPGA GTX transceivers Virtex-6 FPGA GTX transceivers Spartan-6 FPGA GTP transceivers

Table 1: Core Parameters (Cont'd)

Parameter	Description	Values Supported
GT REFCLK Source 1 and GT REFCLK Source 2	GTP/GTX transceivers can be fed a reference clock from a variety of dedicated and non-dedicated clock networks. See the <i>LogiCORE IP Aurora 8B/10B v7.1 User Guide</i> for instructions to select the best reference clock network for a given application.	 Virtex-7/Kintex-7 devices: GTXQ clocks Virtex-6 devices: GTXQ clocks Spartan-6 devices: GTPD clocks
Lane Assignment	The CORE Generator software provides a graphical interface that allows users to assign lanes to specific GTP/GTX transceivers. The 7 Series FPGAs GTX Transceivers User Guide, Virtex-6 FPGA GTX Transceivers User Guide, and Spartan-6 FPGA GTP Transceivers User Guide include guidelines for placing GTP/GTX transceivers for best timing results.	Any combination of GTP/GTX transceivers can be selected. It is recommended to select the transceivers consecutively to meet timing closure. See the <i>LogiCORE IP Aurora</i> <i>8B/10B v7.1 User Guide</i> for more information.

Core Interfaces

The parameters used to generate each Aurora 8B/10B core determine the interfaces available (Figure 3) for that specific core. The Aurora 8B/10B cores have four to six interfaces:

- User Interface, page 7
- User Flow Control Interface, page 7
- Native Flow Control Interface, page 8
- Transceiver Interface, page 8
- Clock Interface, page 8
- Clock Compensation Interface, page 8

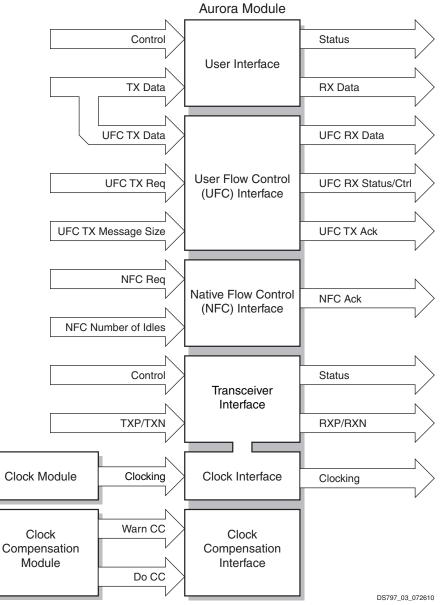


Figure 3: Top-Level Interface

User Interface

This interface includes all the ports needed to read and write *streaming* or *framed* data to and from the Aurora 8B/10B core. AXI4-Stream ports are used if the Aurora 8B/10B core is generated with a framing interface; for streaming modules, the interface consists of a simple set of data ports and data valid ports. Full-duplex cores include ports for both transmit and receive; simplex cores use only the ports they require to send data in the direction they support. The width of the data ports in all interfaces depends on the number of GTP/GTX transceivers in the core, and on the width selected for these transceivers.

User Flow Control Interface

If the core is generated with user flow control (UFC) enabled, a UFC interface is created. The TX side of the UFC interface consists of a request and an acknowledge port that are used to start a UFC message, and a 3-bit port to

specify the length of the message. The user supplies the message data to the data port of the user interface; immediately after a UFC request is acknowledged, the user interface indicates it is no longer ready for normal data, thereby allowing UFC data to be written to the data port.

The RX side of the UFC interface consists of a set of AXI4-Stream ports that allows the UFC message to be read as a frame. Full-duplex modules include both TX and RX UFC ports; simplex modules retain only the interface they need to send data in the direction they support.

Native Flow Control Interface

If the core is generated with native flow control (NFC) enabled, an NFC interface is created. This interface includes a request and an acknowledge port that are used to send NFC messages, and a 4-bit port to specify the number of idle cycles requested.

Transceiver Interface

This interface includes the serial I/O ports of the GTP/GTX transceivers, and the control and status ports of the Aurora 8B/10B core. This interface is the user's access to control functions such as reset, loopback, channel bonding, clock correction, and powerdown. Status information about the state of the channel, and error information is also available here.

Clock Interface

This interface is most critical for correct Aurora 8B/10B core operation. The clock interface has ports for the reference clocks that drive the GTP/GTX transceivers, and ports for the parallel clocks that the Aurora 8B/10B core shares with application logic.

Clock Compensation Interface

This interface is included in modules that transmit data, and is used to manage clock compensation. Whenever the DO_CC port is driven High, the core stops the flow of data and flow control messages, then sends clock compensation sequences. For modules with UFC and NFC, the WARN_CC port prevents UFC messages and CC sequences from colliding. Each Aurora 8B/10B core is accompanied by a clock compensation management module that is used to drive the clock compensation interface in accordance with the *Aurora 8B/10B Protocol Specification*. When the same physical clock is used on both sides of the channel, WARN_CC and DO_CC should be tied Low.

Resource Utilization

Table 2 through Table 13 show the number of look-up tables (LUTs) and flip-flops (FFs) used in selected Aurora modules. The Aurora 8B/10B core is also available in configurations not shown in the tables; the estimated resource usage for these other modules can be extrapolated from the tables. These tables do not include the additional resource usage for flow control. These tables do not include the additional resource usage for the example design modules such as FRAME_GEN and FRAME_CHECK.

Virtex-7/Virtex-7 Lower Power/			Streaming		
Kintex-7/Kintex-7 Lower Power Families		Duplex	Sim	plex	
Lanes	Lane Width	Resource Type	Full Duplex	TX Only	RX Only
1	2	FFs	245	158	123
I	2	LUTs	190	120	84
0		FFs	391	199	241
2	2	LUTs	338	158	176
4	0	FFs	633	262	417
4	2	LUTs	551	235	298
8	2	FFs	1119	386	769
	2	LUTs	1029	397	552
16	0	FFs	2086	642	1473
	2	LUTs	1922	670	1028

Table 2: Virtex-7 and Kintex-7 Famil	/ Resource Usage for Streamin	g with 2-Byte Lane Width
	riceeuree eeuge ier en eur	

	Virtex-7/Virtex-7 Lower Power/ Kintex-7/Kintex-7 Lower Power Families		Framing		
Lanaa	Lane Width		Duplex	Sim	plex
Lanes	Lane width	Resource Type	Full Duplex	TX Only	RX Only
1	2	FFs	266	168	136
I	2	LUTs	208	137	94
0	0	FFs	439	204	283
2	2	LUTs	352	164	195
4	0	FFs	711	267	489
4	2	LUTs	587	223	335
0	0	FFs	1253	393	899
8	2	LUTs	1052	373	622
16	0	FFs	2369	649	1752
16	2	LUTs	2003	608	1191

	Virtex-7/Virtex-7 Lower Power/ Kintex-7/Kintex-7 Lower Power Family		Streaming		
Lanaa	Lana Width	Deserves Trees	Duplex	Sim	plex
Lanes	Lane Width	Resource Type	Full-Duplex	TX Only	RX Only
1	4	FFs	308	158	180
I	4	LUTs	270	126	119
2	4	FFs	543	211	365
2	4	LUTs	492	191	272
4	4	FFs	940	294	665
4	4	LUTs	880	307	493
0		FFs	1734	452	1265
8	4	LUTs	1593	542	902
10	4	FFs	3325	780	2465
16	4	LUTs	3144	979	1723

Table 4: Virtex-7 and Kintex-7 Family Resource Usage for Streaming with 4-Byte Lane Width

Table 5: Virtex-7 and Kintex-7 Family Resource Usage for Framing with 4-Byte Lane Width

	Virtex-7/Virtex-7 Lower Power/ Kintex-7/Kintex-7 Lower Power Family			Framing		
		December Trees	Duplex	Sim	plex	
Lanes	Lane Width	Resource Type	Full Duplex	TX Only	RX Only	
1	4	FFs	361	166	223	
I	4	LUTs	279	137	148	
0	4	FFs	620	215	439	
2	4	LUTs	497	175	315	
4	4	FFs	1074	299	799	
4	4	LUTs	925	250	580	
0	4	FFs	2013	453	1552	
8	4	LUTs	1714	499	1125	
10		FFs	3863	773	3027	
16	4	LUTs	3334	822	2176	

Table 6: Virtex-6 LXT/SXT/CXT/HXT Family Resource Usage for Streaming with 2-Byte Lane Width

Virtex-6 LXT/SXT/CXT/HXT Family			Streaming		
VILLEX	VILLEX-O LATIONTICATIANT Failing			Sim	plex
Lanes	Lane Width	Resource Type	Full-Duplex	TX Only	RX Only
1	2	FFs	243	162	131
I		LUTs	209	134	102
2	2	FFs	405	218	262
2	2	LUTs	345	181	196

Virtex-6 LXT/SXT/CXT/HXT Family			Streaming		
			Duplex	Sim	plex
Lanes	Lane Width	Resource Type	Full-Duplex	TX Only	RX Only
4	2	FFs	678	319	438
4	2	LUTs	579	284	320
8	2	FFs	1219	516	789
0	2	LUTs	1112	505	573
10	2	FFs	2307	916	1493
16	2	LUTs	2070	820	1073

Table 6: Virtex-6 LXT/SXT/CXT/HXT Family Resource Usage for Streaming with 2-Byte Lane Width (Cont'd)

Table 7: Virtex-6 LXT/SXT/CXT/HXT Family Resource Usage for Framing with 2-Byte Lane Width

Virtov	Virtox-6 VT/SVT/CVT/HVT Family			Framing		
virtex-	Virtex-6 LXT/SXT/CXT/HXT Family		Duplex	Sim	plex	
Lanes	Lane Width	Resource Type	Full-Duplex	TX Only	RX Only	
1	2	FFs	265	170	145	
I	2	LUTs	225	140	RX Only	
2	2	FFs	457	227	305	
2	2	LUTs	375	191	227	
4	2	FFs	765	333	481	
4	2	LUTs	641	269	335	
8	2	FFs	1373	538	890	
0	2	LUTs	1124	459	628	
16	2	FFs	2627	954	1744	
16	2	LUTs	2200	750	1240	

Table 8: Virtex-6 LXT/SXT/CXT/HXT Family Resource Usage for Streaming with 4-Byte Lane Width

Virtov	Virtox-6 LVT/SYT/CYT/HYT Family			Streaming		
Virtex	Virtex-6 LXT/SXT/CXT/HXT Family		Duplex	Simplex		
Lanes	Lane Width	Resource Type	Full-Duplex	TX Only	RX Only	
1	4	FFs	321	176	173	
I	4	LUTs	271	148	123	
2	4	FFs	579	258	356	
2	4	LUTs	508	230	RX Only 173 123	
4	4	FFs	1034	407	656	
4	4	LUTs	927	376	469	
8	4	FFs	1945	706	1255	
0	4	LUTs	1659	626	RX Only 173 123 356 256 656 469 1255 892 2455	
16	4	FFs	3768	1305	2455	
16	4	LUTs	3273	1153	RX Only 173 123 356 256 656 469 1255 892 2455	

Virtox	Virtex-6 LXT/SXT/CXT/HXT Family			Framing		
Virtex-	VIREE O LATISATICATIANT FAMIly		Duplex	Sim	plex	
Lanes	Lane Width	Resource Type	Full-Duplex	TX Only	RX Only	
1	4	FFs	366	181	217	
I	4	LUTs	303	146	155	
2	4	FFs	663	269	431	
2	4	LUTs	549	209		
4	4	FFs	1180	422	791	
4	4	LUTs	960	308	580	
8	4	FFs	2249	729	1544	
0	4	LUTs	1778	531	1130	
16	4	FFs	4338	1344	3001	
16	4	LUTs	3543	927	2233	

Table 9: Virtex-6 LXT/SXT/CXT/HXT Family Resource Usage for Framing with 4-Byte Lane Width

Table 10: Spartan-6 LXT Famil	v Resource Usage for Streaming	g with 2-Byte Lane Width

Spartan-6 LXT Family			Streaming		
3			Duplex	Sim	plex
Lanes	Lane Width	Resource Type	Full-Duplex	TX Only	RX Only
1	1 2	FFs	243	157	126
I	2	LUTs	198	122	96
2	2 2	FFs	406	206	259
2		LUTs	340	171	191
4	2	FFs	677	299	435
4	2	LUTs	601	263	RX Only 126 96 259 191

Sporton 6 VT Family			Framing		
	Spartan-6 LXT Family		Duplex	Sim	plex
Lanes	Lane Width	Resource Type	Full-Duplex	TX Only	RX Only
1	1 2	FFs	264	166	142
1	2	LUTs	217	133	RX Only 142 105 302 220
2	2	FFs	454	217	302
2	2 2	LUTs	362	181	220
4	2	FFs	762	313	508
4	2	LUTs	648	266	363

Sporton 6 XT Family			Streaming		
Spartan-6 LXT Family		Duplex	Sim	plex	
Lanes	Lane Width	Resource Type	Full-Duplex	TX Only	RX Only
4	1 4	FFs	318	171	170
I	4	LUTs	263	137	117
2	0	FFs	583	246	383
2 4	LUTs	516	211	284	
4	4	FFs	1035	393	683
	4	LUTs	947	374	493

Table 12: Spartan-6 LXT Family Resource Usage for Streaming with 4-Byte Lane Width

Table 13: Spartan-6 LXT Family Resource Usage for Framing with 4-Byte Lane Width

Sporton 6 LVT Family			Framing		
	Spartan-6 LXT Family		Duplex	Sim	plex
Lanes	Lane Width	Resource Type	Full-Duplex	TX Only	RX Only
1	1 4	FFs	369	175	214
I		LUTs	312	139	149
2	4	FFs	666	256	458
2	4	LUTs	553	199	RX Only 214 149
4	4	FFs	1183	401	818
	4	LUTs	1004	300	RX Only 214 149 458 351 818

Performance

Config1 cited in the LogiCORE IP Facts table runs at 330 MHz in a Virtex-6 LX240T-FF1156 device with -2 speed grade. Config1 is a 16-lane Aurora 8B/10B core with Streaming interface, 2-byte lane width, Duplex dataflow, targeting a 6.6 Gbps line rate.

The Aurora 8B/10B cores listed in Table 2, page 9 through Table 13 run at 156.25 MHz in devices with speed grades ranging from -1 to -3. For more details about performance and core latency, see the *LogiCORE IP Aurora 8B*/10B v7.1 User Guide.

Verification

Aurora 8B/10B cores are verified for protocol compliance using an array of automated hardware and simulation tests. The core comes with an example design implemented using a linear feedback shift register (LFSR) for understanding/verification of the core features.

The Aurora 8B/10B core is verified using the Aurora 8B/10B BFM and proprietary custom test benches. The Aurora 8B/10B BFM verifies the protocol compliance along with interface level checks and error scenarios. An automated test system runs a series of simulation tests on the most widely used set of design configurations chosen at random. Aurora 8B/10B cores are also tested in hardware for functionality, performance, and reliability using Xilinx GTP/GTX transceiver demonstration boards. Aurora verification test suites for all possible modules are continuously being updated to increase test coverage across the range of possible parameters for each individual module.

The test boards used for verification are:

- ML623
- ML605
- SP605

Support

Xilinx provides technical support for this LogiCORE IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Ordering Information

This Xilinx LogiCORE IP module is included at no additional charge with the Xilinx ISE® Design Suite software and is provided under the terms of the Xilinx End User License Agreement. The core is generated using the Xilinx CORE Generator software, which is a standard component of the Xilinx ISE software.

For more information, visit the Aurora 8B/10B product page.

Contact your local Xilinx <u>sales representative</u> for pricing and availability of additional Xilinx LogiCORE IP modules and software. Information about additional Xilinx LogiCORE IP modules is available on the Xilinx <u>IP Center</u>.

References

The following documents provide additional information useful to this data sheet:

- 1. SP002, Aurora 8B/10B Protocol Specification
- 2. AMBA AXI4-Stream Protocol Specification
- 3. UG058, Aurora 8B/10B Bus Functional Model User Guide (Contact: auroramkt@xilinx.com)
- 4. UG766, LogiCORE IP Aurora 8B/10B v7.1 User Guide
- 5. DS180, 7 Series FPGAs Overview
- 6. DS150, Virtex-6 Family Overview
- 7. DS160, Spartan-6 Family Overview
- 8. UG476, 7 Series FPGAs GTX Transceivers User Guide
- 9. <u>UG366</u>, Virtex-6 FPGA GTX Transceivers User Guide
- 10. UG386, Spartan-6 FPGA GTP Transceivers User Guide

Revision History

Date	Version	Description of Revisions
09/21/10	1.0	First release of the core with AXI interface support. The previous release of this document was DS637.
03/01/11	1.1	Updated document with v6.2 core changes for the ISE software 13.1 release. Removed Virtex-5 device references.
10/19/11	1.2	Updated document with v7.1 core changes for the ISE software 13.3 release. Added support for Virtex-7 and Kintex-7 devices. Removed RX/TX simplex mode support.

The following table shows the revision history for this document:

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.