
LogiCORE IP
Aurora 8B/10B v8.2

Product Guide

PG046 July 25, 2012

Table of Contents
IP Facts

Chapter 1: Overview
Feature Summary. 6
Applications . 6
Licensing and Ordering Information . 7

Chapter 2: Product Specification
Standards Compliance . 9
Performance. 9
Resource Utilization. 10
Port Descriptions . 15

Chapter 3: Designing with the Core
General Design Guidelines . 26
Clocking. 28
User Interface. 37
Flow Control . 49
Status, Control, and the Transceiver Interface . 56
Reset and Power Down . 62

Chapter 4: Core Features
Using the Scrambler/Descrambler . 64
Using CRC . 64
Using ChipScope Pro Analyzer Cores . 64
Hot-Plug Logic. 65

Chapter 5: Customizing and Generating the Core
GUI . 66
Output Generation. 71

Chapter 6: Constraining the Core
Design Constraints . 78
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 2
PG046 July 25, 2012

http://www.xilinx.com

Chapter 7: Detailed Example Design
Directory and File Contents. 80
Example Design . 80
Implementation . 82

Appendix A: Verification, Compliance, and Interoperability
Simulation . 83

Appendix B: Migrating
Introduction . 85
Overview of Major Changes . 86
Block Diagram . 86
Migration Steps . 87

Appendix C: Debugging

Appendix D: Generating a Wrapper File from the Transceiver Wizard
Case 1: Virtex-7/Kintex-7 FPGA Wrapper Compatibility . 94
Case 2: Virtex-6 FPGA GTX Wrapper. 95
Case 3: Spartan-6 FPGA GTP Wrapper . 96

Appendix E: Handling Timing Errors

Appendix F: Additional Resources
Xilinx Resources . 98
Solution Centers. 98
References . 98
Technical Support . 99
Revision History . 99
Notice of Disclaimer. 99
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 3
PG046 July 25, 2012

http://www.xilinx.com

LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 4
PG046 July 25, 2012 Product Specification

Introduction
The LogiCORE™ IP Aurora 8B/10B core supports the
AMBA® protocol AXI4-Stream user interface. The
core implements the Aurora 8B/10B protocol using
the high-speed serial transceivers on the Virtex®-7
and Kintex™-7 families (including the -2L lower
power devices), Virtex-6 LXT, SXT, CXT, HXT, and
lower power families, and the Spartan®-6 LXT
family.

The Aurora 8B/10B core is a scalable, lightweight,
link-layer protocol for high-speed serial
communication. The protocol is open and can be
implemented using Xilinx® FPGA technology. The
protocol is typically used in applications requiring
simple, low-cost, high-rate, data channels.

The Vivado™ Design Suite tool produces source
code for Aurora 8B/10B cores with variable datapath
width. The cores can be simplex or full-duplex, and
feature one of two simple user interfaces and
optional flow control.

Features
• General-purpose data channels with throughput

range from 480 Mb/s to 84.48 Gb/s

• Supports up to any 16 of 56 Virtex-7/Kintex-7
FPGA GTX/GTH transceivers, 16 of 36 Virtex-6
FPGA GTX transceivers or 4 of 8 Spartan-6 FPGA
GTP transceivers

• Aurora 8B/10B protocol specif ication v2.2
compliant

• Low resource cost (see Resource Utilization,
page 10)

• Easy-to-use framing and flow control

• Automatically initializes and maintains the
channel

• Full-duplex or simplex operation

• AXI4-Stream (framing) or streaming user
interface

• 16-bit additive scrambler/descrambler

• 16-bit or 32-bit CRC for user data

• Hot-plug logic

IP Facts

LogiCORE IP Facts Table

Core Specifics
Supported
Device
Family(1)(2)

Virtex-7, Kintex-7, Virtex-6, Spartan-6

Supported
User Interfaces AXI4-Stream

Resources(3) LUTs FFs DSP
Slices

Block
RAMs

Max.
Frequency(4)

Config1 342 463 0 0 330 MHz

Provided with Core
Design Files Verilog and VHDL

Example
Design Verilog and VHDL

Test Bench Verilog and VHDL

Constraints
File XDC

Simulation
Model Not Provided

Supported
S/W Driver N/A

Tested Design Flows(5)

Design Entry Vivado™ Design Suite(6)

Simulation Vivado Simulator

Synthesis Vivado Synthesis

Support
Provided by Xilinx @ www.xilinx.com/support

Notes:
1. For a complete listing of supported devices, see the release

notes for this core.
2. This core release supports only 7 series devices. Spartan-6

and Virtex-6 families are listed for backward compatibility
with previous core releases. GTP references are associated
with GTP transceivers in Spartan-6 devices.

3. For device performance numbers, see Table 2-1 through
Table 2-12.

4. For more complete performance data, see Performance,
page 9.

5. For the supported versions of the tools, see the Xilinx Design
Tools: Release Notes Guide.

6. Supports only 7 series devices.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/irn.pdf

Chapter 1

Overview
Note: This core release supports only Kintex™-7 and Virtex™-7 devices. Spartan®-6 and Virtex-6
families are listed for backward compatibility with previous core releases.

This product guide describes how to generate a LogiCORE™ IP Aurora 8B/10B core using
Virtex-7/Kintex-7 FPGA GTX/GTH transceivers, Virtex-6 FPGA GTX transceivers, and
Spartan-6 FPGA GTP transceivers. The core implements the Aurora 8B/10B protocol using
the high-speed serial transceivers on the Virtex-7/Kintex-7 families (including lower
power), Virtex-6 LXT, SXT, CXT, HXT families (including lower power) and the Spartan-6 LXT
family. The LogiCORE IP Aurora 8B/10B v8.2 core supports the AMBA® protocol
AXI4-Stream user interface.

The Aurora 8B/10B core is a lightweight, serial communications protocol for multi-gigabit
links. It is used to transfer data between devices using one or many transceivers.
Connections can be full-duplex (data in both directions) or simplex (Figure 1-1).

Aurora 8B/10B cores automatically initialize a channel when they are connected to an
Aurora channel partner. After initialization, applications can pass data freely across the
channel as frames or streams of data. Aurora frames can be any size, and can be interrupted
at any time. Gaps between valid data bytes are automatically f illed with idles to maintain
lock and prevent excessive electromagnetic interference. Flow control is optional in Aurora.
It can be used to reduce the rate of incoming data or to send brief, high-priority messages
through the channel.

X-Ref Target - Figure 1-1

Figure 1-1: Aurora 8B/10B Channel Overview

Aurora
Core

Aurora
Channel

Aurora Channel
Partners

User
Application

User
Application

User
Interface

User
Interface

User Data User Data8B/10B
Encoded Data

Aurora
Core

Aurora
Lane 1

Aurora
Lane n
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 5
PG046 July 25, 2012

http://www.xilinx.com

Feature Summary
Streams are implemented in the Aurora 8B/10B core as a single, unending frame. Whenever
data is not being transmitted, idles are transmitted to keep the link alive. The Aurora 8B/10B
core detects single-bit and most multi-bit errors using 8B/10B coding rules. Excessive bit
errors, disconnections, or equipment failures cause the core to reset and attempt to
re-initialize a new channel.

Although the Aurora core is a fully verif ied solution, the challenge associated with
implementing a complete design varies depending on the configuration and functionality
of the application. For best results, experience building high-performance, pipelined FPGA
designs using Xilinx implementation tools and Xilinx Design Constraints f iles (XDC) with the
Vivado Design Suite is recommended. Read Status, Control, and the Transceiver Interface,
page 56, carefully.

Consult the PCB design requirements information in:

• 7 Series FPGAs GTX/GTH Transceivers User Guide [Ref 3]

• Virtex-6 FPGA GTX Transceivers User Guide [Ref 4]

• Spartan-6 FPGA GTP Transceivers User Guide [Ref 5]

Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

Feature Summary
Aurora 8B/10B is a scalable, lightweight, link-layer protocol for high-speed serial
communication. The LogiCORE IP Aurora 8B/10B core provides a user interface from which
designers can develop serial links. The core performs data transfers between devices using
Xilinx GTX, GTP, and GTH transceivers. Up to 16 transceivers can be implemented, running at
any supported line rate. The throughput is scalable from 480 Mb/s to over 84.48 Gb/s. Data
channels can be full-duplex or simplex.

The Aurora 8B/10B core is compliant with the Aurora 8B/10B Specification v2.2. It is
delivered as Verilog or VHDL source code.

Applications
Aurora 8B/10B cores can be used in a wide variety of applications because of their low
resource cost, scalable throughput, and flexible data interface. Examples of Aurora 8B/10B
core applications include:

• Chip-to-chip links: Replacing parallel connections between chips with high-speed
serial connections can signif icantly reduce the number of traces and layers required on
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 6
PG046 July 25, 2012

http://www.xilinx.com

Licensing and Ordering Information
a PCB. The core provides the logic needed to use GTP/GTX/GTH transceivers, with
minimal FPGA resource cost.

• Board-to-board and backplane links: The Aurora 8B/10B core uses standard 8B/10B
encoding, making it compatible with many existing hardware standards for cables and
backplanes. Aurora 8B/10B cores can be scaled, both in line rate and channel width, to
allow inexpensive legacy hardware to be used in new, high-performance systems.

• Simplex connections (unidirectional): In some applications, there is no need for a
high-speed back channel. The Aurora protocol provides several ways to perform
unidirectional channel initialization, making it possible to use the GTP/GTX/GTH
transceivers when a back channel is not available, and to reduce costs due to unused
full-duplex resources.

• ASIC applications: The Aurora protocol is not limited to FPGAs, and can be used to
create scalable, high-performance links between programmable logic and
high-performance ASICs. The simplicity of the Aurora protocol leads to low resource
costs in ASICs as well as in FPGAs, and design resources like the Aurora bus functional
model (ABFM 8B/10B) with compliance testing make it easy to get an Aurora channel
up and running.

Note: Contact Xilinx Sales or Auroramkt@xilinx.com for information on licensing the
Aurora 8B/10B core for ASIC applications.

Licensing and Ordering Information
This Xilinx® LogiCORE IP module is provided at no additional cost with the Xilinx Vivado™
Design Suite tools under the terms of the Xilinx End User License. Information about this
and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page.
For information about pricing and availability of other Xilinx LogiCORE IP modules and
tools, contact your local Xilinx sales representative.

To use the Aurora 8B/10B core with an application specific integrated circuit (ASIC), a
separate paid license agreement is required under the terms of the Xilinx Core License
Agreement. Contact Aurora Marketing at auroramkt@xilinx.com for more information.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 7
PG046 July 25, 2012

http://www.xilinx.com
http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf

Chapter 2

Product Specification
Figure 2-1 shows a block diagram of the implementation of the Aurora 8B/10B core.

The major functional modules of the Aurora 8B/10B core are:

• Lane logic: Each GTP/GTX/GTH transceiver is driven by an instance of the lane logic
module, which initializes each individual GTP/GTX/GTH transceiver and handles the
encoding and decoding of control characters and error detection.

• Global logic: The global logic module in each Aurora 8B/10B core performs the
bonding and verif ication phases of channel initialization. While the channel is
operating, the module generates the random idle characters required by the Aurora
protocol and monitors all the lane logic modules for errors.

• RX user interface: The RX user interface moves data from the channel to the
application. Streaming data is presented using a simple stream interface equipped with
a data bus and a data valid signal. Frames are presented using a standard AXI4-Stream
interface. This module also performs flow control functions.

• TX user interface: The TX user interface moves data from the application to the
channel. A stream interface with a data valid and a ready signal is used for streaming
data. A standard AXI4-Stream interface is used for data frames. The module also
performs flow control TX functions. The module has an interface for controlling clock

X-Ref Target - Figure 2-1

Figure 2-1: Aurora 8B/10B Core Block Diagram
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 8
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Standards Compliance
compensation (the periodic transmission of special characters to prevent errors due to
small clock frequency differences between connected Aurora 8B/10B cores). This
interface is normally driven by a standard clock compensation manager module
provided with the Aurora 8B/10B core, but it can be turned off, or driven by custom
logic to accommodate special needs.

Standards Compliance
The Aurora 8B/10B core is compliant with the Aurora 8B/10B Protocol Specification v2.2.

Performance

Maximum Frequencies
Config1 cited in the LogiCORE™ IP Facts table on page 4 runs at 330 MHz in a Virtex®-7
VX690T-FFG1761 device with -2 speed grade. Config1 is a single-lane Aurora 8B/10B core
with Streaming interface, 2-byte lane width, Duplex dataflow, targeting a 6.6 Gb/s line rate.

The Aurora 8B/10B cores listed in Table 2-1, page 10 through Table 2-12, page 15 run at
156.25 MHz in devices with speed grades ranging from -1 to -3.

Latency
Latency through an Aurora 8B/10B core is caused by pipeline delays through the protocol
engine (PE) and through the GTP/GTX/GTH transceivers. The PE pipeline delay increases as
the AXI4-Stream interface width increases. The GTP/GTX/GTH transceivers delays are f ixed
per the features of the GTP/GTX/GTH transceivers.

This section outlines expected latency for the Aurora 8B/10B core's AXI4-Stream user
interface in terms of USER_CLK cycles for 2-byte-per-lane and 4-byte-per-lane designs. For
the purposes of illustrating latency, the Aurora 8B/10B modules partitioned into GTP/GTX/
GTH transceivers logic and protocol engine (PE) logic implemented in the FPGA fabric.

Note: These f igures do not include the latency incurred due to the length of the serial connection
between each side of the Aurora 8B/10B channel.

Latency of the Frame Path

Figure 2-2 illustrates the latency of the frame path.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 9
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Resource Utilization
Maximum latency for a 2-byte designs from TX_SOF_N to RX_SOF_N is approximately 52
USER_CLK cycles in simulation.

Maximum latency for a 4-byte designs from TX_SOF_N to RX_SOF_N is approximately 61
USER_CLK cycles in simulation.

The pipeline delays are designed to maintain the clock speed.

Throughput
Aurora core throughput depends on the number of the transceivers and the target line rate
of the transceivers selected. Throughput varies from 0.4 Gb/s to 84.48 Gb/s for single lane
design to 16 lane design, respectively. The throughput was calculated using 25% overhead
of Aurora 8B/10B protocol encoding and 0.5 Gb/s to 6.6 Gb/s line rate range.

Resource Utilization
Table 2-1 through Table 2-12 show the number of look-up tables (LUTs) and flip-flops (FFs)
used in selected Aurora configurations. The Aurora 8B/10B core is also available in
configurations not shown in the tables. The estimated resource usage for other
configurations can be extrapolated from the tables. These tables do not include the
additional resource usage for flow control. They also do not include the additional resource
usage for the example design modules, such as FRAME_GEN and FRAME_CHECK.

X-Ref Target - Figure 2-2

Figure 2-2: Latency of the Frame Path

Table 2-1: Virtex-7 and Kintex-7 Family Resource Usage for Streaming with 2-Byte Lane Width

Virtex-7/Virtex-7 Lower Power/
Kintex-7/Kintex-7 Lower Power Families

Streaming

Duplex Simplex

Lanes Lane Width Resource Type Full Duplex TX Only RX Only

1 2
FFs 245 158 123

LUTs 190 120 84

2 2
FFs 391 199 241

LUTs 338 158 176

4 2
FFs 633 262 417

LUTs 551 235 298
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 10
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Resource Utilization
8 2
FFs 1119 386 769

LUTs 1029 397 552

16 2
FFs 2086 642 1473

LUTs 1922 670 1028

Table 2-1: Virtex-7 and Kintex-7 Family Resource Usage for Streaming with 2-Byte Lane Width

Virtex-7/Virtex-7 Lower Power/
Kintex-7/Kintex-7 Lower Power Families

Streaming

Duplex Simplex

Lanes Lane Width Resource Type Full Duplex TX Only RX Only

Table 2-2: Virtex-7 and Kintex-7 Family Resource Usage for Framing with 2-Byte Lane Width

Virtex-7/Virtex-7 Lower Power/
Kintex-7/Kintex-7 Lower Power Families Framing

Lanes Lane Width Resource Type
Duplex Simplex

Full Duplex TX Only RX Only

1 2
FFs 266 168 136

LUTs 208 137 94

2 2
FFs 439 204 283

LUTs 352 164 195

4 2
FFs 711 267 489

LUTs 587 223 335

8 2
FFs 1253 393 899

LUTs 1052 373 622

16 2
FFs 2369 649 1752

LUTs 2003 608 1191

Table 2-3: Virtex-7 and Kintex-7 Family Resource Usage for Streaming with 4-Byte Lane Width

Virtex-7/Virtex-7 Lower Power/
Kintex-7/Kintex-7 Lower Power Family Streaming

Lanes Lane Width Resource Type
Duplex Simplex

Full-Duplex TX Only RX Only

1 4
FFs 308 158 180

LUTs 270 126 119

2 4
FFs 543 211 365

LUTs 492 191 272

4 4
FFs 940 294 665

LUTs 880 307 493

8 4
FFs 1734 452 1265

LUTs 1593 542 902
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 11
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Resource Utilization
16 4
FFs 3325 780 2465

LUTs 3144 979 1723

Table 2-3: Virtex-7 and Kintex-7 Family Resource Usage for Streaming with 4-Byte Lane Width

Virtex-7/Virtex-7 Lower Power/
Kintex-7/Kintex-7 Lower Power Family Streaming

Lanes Lane Width Resource Type
Duplex Simplex

Full-Duplex TX Only RX Only

Table 2-4: Virtex-7 and Kintex-7 Family Resource Usage for Framing with 4-Byte Lane Width

Virtex-7/Virtex-7 Lower Power/
Kintex-7/Kintex-7 Lower Power Family Framing

Lanes Lane Width Resource Type
Duplex Simplex

Full Duplex TX Only RX Only

1 4
FFs 361 166 223

LUTs 279 137 148

2 4
FFs 620 215 439

LUTs 497 175 315

4 4
FFs 1074 299 799

LUTs 925 250 580

8 4
FFs 2013 453 1552

LUTs 1714 499 1125

16 4
FFs 3863 773 3027

LUTs 3334 822 2176

Table 2-5: Virtex-6 LXT/SXT/CXT/HXT Family Resource Usage for Streaming with 2-Byte Lane Width

Virtex-6 LXT/SXT/CXT/HXT Family
Streaming

Duplex Simplex

Lanes Lane Width Resource Type Full-Duplex TX Only RX Only

1 2
FFs 243 162 131

LUTs 209 134 102

2 2
FFs 405 218 262

LUTs 345 181 196

4 2
FFs 678 319 438

LUTs 579 284 320

8 2
FFs 1219 516 789

LUTs 1112 505 573

16 2
FFs 2307 916 1493

LUTs 2070 820 1073
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 12
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Resource Utilization
Table 2-6: Virtex-6 LXT/SXT/CXT/HXT Family Resource Usage for Framing with 2-Byte Lane Width

Virtex-6 LXT/SXT/CXT/HXT Family
Framing

Duplex Simplex

Lanes Lane Width Resource Type Full-Duplex TX Only RX Only

1 2
FFs 265 170 145

LUTs 225 140 111

2 2
FFs 457 227 305

LUTs 375 191 227

4 2
FFs 765 333 481

LUTs 641 269 335

8 2
FFs 1373 538 890

LUTs 1124 459 628

16 2
FFs 2627 954 1744

LUTs 2200 750 1240

Table 2-7: Virtex-6 LXT/SXT/CXT/HXT Family Resource Usage for Streaming with 4-Byte Lane Width

Virtex-6 LXT/SXT/CXT/HXT Family
Streaming

Duplex Simplex

Lanes Lane Width Resource Type Full-Duplex TX Only RX Only

1 4
FFs 321 176 173

LUTs 271 148 123

2 4
FFs 579 258 356

LUTs 508 230 256

4 4
FFs 1034 407 656

LUTs 927 376 469

8 4
FFs 1945 706 1255

LUTs 1659 626 892

16 4
FFs 3768 1305 2455

LUTs 3273 1153 1759

Table 2-8: Virtex-6 LXT/SXT/CXT/HXT Family Resource Usage for Framing with 4-Byte Lane Width

Virtex-6 LXT/SXT/CXT/HXT Family
Framing

Duplex Simplex

Lanes Lane Width Resource Type Full-Duplex TX Only RX Only

1 4
FFs 366 181 217

LUTs 303 146 155
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 13
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Resource Utilization
2 4
FFs 663 269 431

LUTs 549 209 314

4 4
FFs 1180 422 791

LUTs 960 308 580

8 4
FFs 2249 729 1544

LUTs 1778 531 1130

16 4
FFs 4338 1344 3001

LUTs 3543 927 2233

Table 2-8: Virtex-6 LXT/SXT/CXT/HXT Family Resource Usage for Framing with 4-Byte Lane Width

Virtex-6 LXT/SXT/CXT/HXT Family
Framing

Duplex Simplex

Lanes Lane Width Resource Type Full-Duplex TX Only RX Only

Table 2-9: Spartan-6 LXT Family Resource Usage for Streaming with 2-Byte Lane Width

Spartan-6 LXT Family
Streaming

Duplex Simplex

Lanes Lane Width Resource Type Full-Duplex TX Only RX Only

1 2
FFs 243 157 126

LUTs 198 122 96

2 2
FFs 406 206 259

LUTs 340 171 191

4 2
FFs 677 299 435

LUTs 601 263 308

Table 2-10: Spartan-6 LXT Family Resource Usage for Framing with 2-Byte Lane Width

Spartan-6 LXT Family
Framing

Duplex Simplex

Lanes Lane Width Resource Type Full-Duplex TX Only RX Only

1 2
FFs 264 166 142

LUTs 217 133 105

2 2
FFs 454 217 302

LUTs 362 181 220

4 2
FFs 762 313 508

LUTs 648 266 363
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 14
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
Port Descriptions
The parameters used to generate each Aurora 8B/10B core determine the interfaces
available (Figure 2-3) for that specif ic core. The Aurora 8B/10B cores have four to six
interfaces:

• User Interface, page 16

• User Flow Control Interface, page 18

• Native Flow Control Interface, page 19

• Transceiver Interface, page 23

• Clock Interface, page 24

• Clock Compensation Interface, page 25

Table 2-11: Spartan-6 LXT Family Resource Usage for Streaming with 4-Byte Lane Width

Spartan-6 LXT Family
Streaming

Duplex Simplex

Lanes Lane Width Resource Type Full-Duplex TX Only RX Only

1 4
FFs 318 171 170

LUTs 263 137 117

2 4
FFs 583 246 383

LUTs 516 211 284

4 4
FFs 1035 393 683

LUTs 947 374 493

Table 2-12: Spartan-6 LXT Family Resource Usage for Framing with 4-Byte Lane Width

Spartan-6 LXT Family
Framing

Duplex Simplex

Lanes Lane Width Resource Type Full-Duplex TX Only RX Only

1 4
FFs 369 175 214

LUTs 312 139 149

2 4
FFs 666 256 458

LUTs 553 199 351

4 4
FFs 1183 401 818

LUTs 1004 300 621
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 15
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
User Interface

This interface includes all the ports needed to read and write streaming or framed data to
and from the Aurora 8B/10B core. AXI4-Stream ports are used if the Aurora 8B/10B core is
generated with a framing interface; for streaming modules, the interface consists of a
simple set of data ports and data valid ports. Full-duplex cores include ports for both
transmit and receive; simplex cores use only the ports they require to send data in the
direction they support. The width of the data ports in all interfaces depends on the number
of GTP/GTX transceivers in the core, and on the width selected for these transceivers.

X-Ref Target - Figure 2-3

Figure 2-3: Top-Level Interface
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 16
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
Framing Interface Ports

Table 2-13 lists port descriptions for AXI4-Stream TX data ports. These ports are included
on full-duplex and simplex TX framing cores.

Table 2-14 lists port descriptions for Framing RX data ports. These ports are included on
full-duplex and simplex RX framing cores.

See Framing Interface, page 39 for more information.

Table 2-13: Framing User I/O Ports (TX)

Name Direction Description

S_AXI_TX_TDATA[0:(8n-1)] Input
Outgoing data (Ascending bit order).
• n is the number of bytes

S_AXI_TX_TREADY Output

Asserted (High) during clock edges when signals from
the source are accepted (if S_AXI_TX_TVALID is also
asserted).
Deasserted (Low) on clock edges when signals from the
source are ignored.

S_AXI_TX_TLAST Input Signals the end of the frame (active-High).

S_AXI_TX_TKEEP[0:(n-1)] Input

Specifies the number of valid bytes in the last data beat;
valid only while S_AXI_TX_TLAST is asserted.
S_AXI_TX_TKEEP is the byte qualif ier that indicates
whether the content of the associated byte of
S_AXI_TX_TDATA is valid or not.
The Aurora core expects the data to be filled
continuously from LSB to MSB. There cannot be invalid
bytes interleaved with the valid S_AXI_TX_TDATA bus.

S_AXI_TX_TVALID Input

Asserted (High) when AXI4-Stream signals from the
source are valid.
Deasserted (Low) when AXI4-Stream control signals
and/or data from the source should be ignored.

Table 2-14: Framing User I/O Ports (RX)

Name Direction Description

M_AXI_RX_TDATA[0:8(n-1)]] Output Incoming data from channel partner (Ascending bit
order).

M_AXI_RX_TLAST Output

Signals the end of the incoming frame (active-High,
asserted for a single user clock cycle).
Ignored when M_AXI_RX_TVALID is deasserted
(Low).

M_AXI_RX_TKEEP[0:(n-1)] Output Specif ies the number of valid bytes in the last data
beat; valid only when M_AXI_RX_TLAST is asserted.

M_AXI_RX_TVALID Output

Asserted (High) when data and control signals from an
Aurora 8B/10B core are valid.
Deasserted (Low) when data and/or control signals
from an Aurora 8B/10B core should be ignored.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 17
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
Streaming Interface Ports

Table 2-15 lists the streaming TX data ports. These ports are included on full-duplex and
simplex TX framing cores.

Table 2-16 lists the streaming RX data ports. These ports are included on full-duplex and
simplex RX framing cores.

See Streaming Interface, page 47 for more information.

User Flow Control Interface

If the core is generated with user flow control (UFC) enabled, a UFC interface is created. The
TX side of the UFC interface consists of a request and an acknowledge port that are used to
start a UFC message, and a 3-bit port to specify the length of the message. The user
supplies the message data to the data port of the user interface; immediately after a UFC
request is acknowledged, the user interface indicates it is no longer ready for normal data,
thereby allowing UFC data to be written to the data port.

The RX side of the UFC interface consists of a set of AXI4-Stream ports that allows the UFC
message to be read as a frame. Full-duplex modules include both TX and RX UFC ports;
simplex modules retain only the interface they need to send data in the direction they
support.

Table 2-17 describes the ports for the UFC interface.

Table 2-15: Streaming User I/O Ports (TX)

Name Direction Description

S_AXI_TX_TDATA[0:(8n-1)]] Input Outgoing data (ascending bit order).

S_AXI_TX_TREADY Output

Asserted (High) during clock edges when signals from the
source are accepted (if S_AXI_TX_TVALID is also
asserted).
Deasserted (Low) on clock edges when signals from the
source are ignored.

S_AXI_TX_TVALID Input

Asserted (High) when AXI4-Stream signals from the source
are valid.
Deasserted (Low) when AXI4-Stream control signals and/or
data from the source should be ignored.

Table 2-16: Streaming User I/O Ports (RX)

Name Direction Description

M_AXI_RX_TDATA[0:(8n-1)] Output Incoming data from channel partner (Ascending bit
order).

M_AXI_RX_TVALID Output

Asserted (High) when data and control signals from an
Aurora 8B/10B core are valid.
Deasserted (Low) when data from an Aurora 8B/10B
core should be ignored.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 18
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
See User Flow Control, page 51 for more information.

Native Flow Control Interface

If the core is generated with native flow control (NFC) enabled, an NFC interface is created.
This interface includes a request and an acknowledge port that are used to send NFC
messages, and a 4-bit port to specify the number of idle cycles requested.

Table 2-18 lists the ports for the NFC interface available only in full-duplex Aurora 8B/10B
cores.

Table 2-17: UFC I/O Ports

Name Direction Description

S_AXI_UFC_TX_REQ Input

Asserted to request a UFC message be sent to the channel
partner (active-High). Must be held until S_AXI_UFC_TX_ACK is
asserted. Do not assert this signal unless the entire UFC message
is ready to be sent; a UFC message cannot be interrupted after it
has started.

S_AXI_UFC_TX_MS[0:2] Input Specif ies the size of the UFC message that is sent. The SIZE
encoding is a value between 0 and 7. See Table 3-9, page 52.

S_AXI_UFC_TX_ACK Output

Asserted when an Aurora 8B/10B core is ready to read the
contents of the UFC message (active-High). On the cycle after the
S_AXI_UFC_TX_ACK signal is asserted, data on the
S_AXI_TX_TDATA port is treated as UFC data.
S_AXI_TX_TDATA data continues to be used to fill the UFC
message until enough cycles have passed to send the complete
message. Unused bytes from a UFC cycle are discarded.

M_AXI_UFC_RX_TDATA[0:(8n-1)] Output Incoming UFC message data from the channel partner (n =
16 bytes maximum).

M_AXI_UFC_RX_TVALID Output
Asserted when the values on the M_AXI_UFC_RX ports are valid.
When this signal is not asserted, all values on the
M_AXI_UFC_RX ports should be ignored (active-High).

M_AXI_UFC_RX_TLAST Output Signals the end of the incoming UFC message (active-High).

M_AXI_UFC_RX_TKEEP[0:(n-1)] Output

Specif ies the number of valid bytes of data presented on the
M_AXI_UFC_RX_TDATA port on the last word of a UFC message.
Valid only when M_AXI_UFC_RX_TLAST is asserted (n =
16 bytes maximum).

Table 2-18: NFC I/O Ports

Name Direction Description

S_AXI_NFC_ACK Output Asserted when an Aurora 8B/10B core accepts an NFC request
(active-High).

S_AXI_NFC_NB[0:3] Input
Indicates the number of PAUSE idles the channel partner must
send when it receives the NFC message. Must be held until
S_AXI_NFC_ACK is asserted.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 19
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
See Native Flow Control, page 49 for more information.

Status and Control Ports for Full-Duplex Cores

Table 2-19 describes the function of each of the status and control ports for full-duplex
cores.

S_AXI_NFC_REQ Input
Asserted to request an NFC message be sent to the channel
partner (active-High). Must be held until S_AXI_NFC_ACK is
asserted.

M_AXI_RX_SNF Output Indicates an NFC message is received from the partner. This
port is asserted for one USER_CLK cycle.

M_AXI_RX_FC_NB[0:3] Output Indicates the PAUSE value of the received NFC message. This
port should be sampled with M_AXI_RX_SNF.

Table 2-19: Status and Control Ports for Full-Duplex Cores

Name Direction Description

CHANNEL_UP Output
Asserted when Aurora 8B/10B channel initialization is
complete and channel is ready to send data. The Aurora
8B/10B core cannot receive data before CHANNEL_UP.

LANE_UP[0:m-1](1) Output

Asserted for each lane upon successful lane initialization,
with each bit representing one lane (active-High). The
Aurora 8B/10B core can only receive data after all
LANE_UP signals are High.

FRAME_ERR Output Channel frame/protocol error detected. This port is
active-High and is asserted for a single clock.

HARD_ERR Output
Hard error detected. (Active High, asserted until Aurora
8B/10B core resets). See Error Signals in Full-Duplex Cores,
page 57 for more details.

LOOPBACK[2:0] Input

The LOOPBACK[2:0] port selects between the normal
operation mode and the different loopback modes. See
the 7 Series FPGAs GTX Transceivers User Guide, Virtex-6
FPGA GTX Transceivers User Guide, or the Spartan-6 FPGA
GTP Transceivers User Guide for details about loopback.

POWER_DOWN Input Drives the power-down input of the GTP/GTX transceiver
(active-High).

RESET Input
Resets the Aurora 8B/10B core (active High). This signal
must be synchronous to USER_CLK and must be asserted
for at least one USER_CLK cycle.

SOFT_ERR Output
Soft error detected in the incoming serial stream. See Error
Signals in Full-Duplex Cores, page 57 for more details.
(Active-High, asserted for a single clock).

RXP[0:m-1] Input Positive differential serial data input pin.

RXN[0:m-1] Input Negative differential serial data input pin.

Table 2-18: NFC I/O Ports (Cont’d)

Name Direction Description
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 20
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
See Full-Duplex Cores, page 56 for more information.

Status and Control Ports for Simplex Cores

Table 2-20 describes the function of each of the status and control ports in the simplex TX
interface.

TXP[0:m-1] Output Positive differential serial data output pin.

TXN[0:m-1] Output Negative differential serial data output pin.

GT_RESET Input

The reset signal for the PMA modules in the transceivers
is connected to the top level through a debouncer. The
GT_RESET port should be asserted (active-High) when
the module is f irst powered up in hardware. This
systematically resets all PCS and PMA subcomponents of
the transceiver.
The signal is debounced using INIT_CLK_IN.
See the Reset section in the respective transceiver user
guide for further details.

INIT_CLK_IN Input

INIT_CLK_IN is used to register and debounce the
GT_RESET signal. INIT_CLK_IN is required because
USER_CLK stops when GT_RESET is asserted.
INIT_CLK_IN should be set to a slow rate, preferably
slower than the reference clock. INIT_CLK_IN is a board
clock. It is recommended to set this frequency lower than
the GT reference clock frequency. For example, the KC724
board has a 200 MHz crystal oscillator, and it is
constrained for the 50 MHz frequency by default in
<component name>_exdes.xdc. Users need to update
this clock constraint with respect to their board clock
frequency.

Notes:
1. m is the number of GTP/GTX/GTH transceivers.

Table 2-20: Status and Control Ports for Simplex TX Cores

Name Direction Description

TX_ALIGNED Input
Asserted when RX channel partner has completed lane
initialization for all lanes. Typically connected to
RX_ALIGNED.

TX_BONDED Input
Asserted when RX channel partner has completed
channel bonding. Not needed for single-lane
channels. Typically connected to RX_BONDED.

TX_VERIFY Input Asserted when RX channel partner has completed
verif ication. Typically connected to RX_VERIFY.

Table 2-19: Status and Control Ports for Full-Duplex Cores (Cont’d)

Name Direction Description
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 21
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
Table 2-21 describes the function of each of the status and control ports in the simplex RX
interface.

TX_RESET Input

Asserted when reset is required because of
initialization status of RX channel partner. This signal
must be synchronous to USER_CLK and must be
asserted for at least one USER_CLK cycle. Typically
connected to RX_RESET.

TX_CHANNEL_UP Output

Asserted when Aurora 8B/10B channel initialization is
complete and channel is ready to send data. The
Aurora 8B/10B core cannot receive data before
TX_CHANNEL_UP.

TX_LANE_UP[0:m-1] Output
Asserted for each lane upon successful lane
initialization, with each bit representing one lane
(active-High).

TX_HARD_ERR Output
Hard error detected. (Active-High, asserted until
Aurora 8B/10B core resets). See Error Signals in
Simplex Cores, page 59 for more details.

POWER_DOWN Input Drives the powerdown input of the GTP/GTX
transceiver (active-High).

TX_SYSTEM_RESET Input Resets the Aurora 8B/10B core (active-High).

TXP[0:m-1] Output Positive differential serial data output pin.

TXN[0:m-1] Output Negative differential serial data output pin.

Notes:
1. m is the number of GTP/GTX transceivers.

Table 2-21: Status and Control Ports for Simplex RX Cores

Name Direction Description

RX_ALIGNED Output Asserted when RX module has completed lane
initialization. Typically connected to TX_ALIGNED.

RX_BONDED Output
Asserted when RX module has completed channel
bonding. Not used for single-lane channels. Typically
connected to TX_BONDED.

RX_VERIFY Output Asserted when RX module has completed verif ication.
Typically connected to TX_VERIFY.

RX_RESET Output
Asserted when the RX module needs the TX module to
restart initialization. Typically connected to
TX_RESET.

RX_CHANNEL_UP Output

Asserted when Aurora 8B/10B channel initialization is
complete and channel is ready to send data. The
Aurora 8B/10B core cannot receive data before
RX_CHANNEL_UP.

Table 2-20: Status and Control Ports for Simplex TX Cores (Cont’d)

Name Direction Description
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 22
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
See Simplex Cores, page 59 for more information.

Transceiver Interface

This interface includes the serial I/O ports of the GTP/GTX/GTH transceivers, and the control
and status ports of the Aurora 8B/10B core. This interface is the user’s access to control
functions such as reset, loopback, channel bonding, clock correction, and power down.
Status information about the state of the channel, and error information is also available
here.

Table 2-22 describes the transceiver ports.

RX_LANE_UP[0:m-1] Output

Asserted for each lane upon successful lane
initialization, with each bit representing one lane
(active-High). The Aurora 8B/10B core can only
receive data after all RX_LANE_UP signals are High.

FRAME_ERR Output Channel frame/protocol error detected. This port is
active-High and is asserted for a single clock.

RX_HARD_ERR Output
Hard error detected. (Active-High, asserted until
Aurora 8B/10B core resets). See Error Signals in
Simplex Cores, page 59 for more details.

POWER_DOWN Input Drives the power-down input of the GTP/GTX
transceiver (active-High).

RX_SYSTEM_RESET Input Resets the Aurora 8B/10B core (active-High).

SOFT_ERR Output
Soft error detected in the incoming serial stream. See
Error Signals in Simplex Cores, page 59 for more
details. (Active-High, asserted for a single clock).

RXP[0:m-1] Input Positive differential serial data input pin.

RXN[0:m-1] Input Negative differential serial data input pin.

Notes:
1. m is the number of GTP/GTX transceivers.
2. RX_ALIGNED, RX_BONDED, RX_VERIFY, and RX_RESET are available as output signals even when the simplex

partner is timer based, but functionally these signals are not required.

Table 2-22: Transceiver Ports

Name Direction Description

RXP[0:m-1](1) Input Positive differential serial data input pin.

RXN[0:m-1] Input Negative differential serial data input pin.

TXP[0:m-1] Output Positive differential serial data output pin.

TXN[0:m-1] Output Negative differential serial data output pin.

Table 2-21: Status and Control Ports for Simplex RX Cores (Cont’d)

Name Direction Description
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 23
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
Clock Interface

This interface is most critical for correct Aurora 8B/10B core operation. The clock interface
has ports for the reference clocks that drive the GTP/GTX/GTH transceivers, and ports for
the parallel clocks that the Aurora 8B/10B core shares with application logic.

Table 2-23 describes the Aurora 8B/10B core clock ports.

POWER_DOWN Input Drives the power-down input of the GTP/GTX
transceiver (active-High).

Notes:
1. m is the number of GTP/GTX transceivers.

Table 2-23: Clock Ports for a GTP/GTX Aurora 8B/10B Core

Clock Ports Direction Description

PLL_NOT_LOCKED Input

If a PLL is used to generate clocks for the Aurora 8B/10B core,
the PLL_NOT_LOCKED signal should be connected to the
inverse of the PLL's LOCKED signal. The clock module
provided with the Aurora 8B/10B core uses the PLL for clock
division. The PLL_NOT_LOCKED signal from the clock
module should be connected to the PLL_NOT_LOCKED
signal on the Aurora 8B/10B core. If the PLL is not used to
generate clock signals for the Aurora 8B/10B core, tie
PLL_NOT_LOCKED to ground.

USER_CLK Input

Parallel clock shared by the Aurora 8B/10B core and the user
application. In Aurora 8B/10B cores, USER_CLK and
SYNC_CLK are the outputs of a PLL or BUFG whose input is
derived from TX_OUT_CLK. These clock generations are
available in <component name>_clock_module f ile. The
Spartan-6 FPGA uses the GTPCLKOUT port to derive
USER_CLK and SYNC_CLK outputs. USER_CLK goes as the
TXUSRCLK2 input to the transceiver. See the respective
transceiver user guide for more information.

SYNC_CLK Input

Parallel clock used by the internal synchronization logic of the
GTP/GTX/GTH transceivers in the Aurora 8B/10B core.
SYNC_CLK goes as the TXUSRCLK input to the transceiver.
See the respective transceiver user guide for more
information.

GT_REFCLK Input

GT_REFCLK (CLKP/CLKN) is a dedicated external clock
generated from an oscillator. This clock is fed through
IBUFDS. To minimize the number of oscillators, the
GTP/GTX/GTH transceiver architecture has a NORTH/SOUTH
clock routing matrix using CLKP/CLKN.

Table 2-22: Transceiver Ports (Cont’d)

Name Direction Description
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 24
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Port Descriptions
Clock Compensation Interface

This interface is included in modules that transmit data, and is used to manage clock
compensation. Whenever the DO_CC port is driven High, the core stops the flow of data and
flow control messages, then sends clock compensation sequences. For modules with UFC
and NFC, the WARN_CC port prevents UFC messages and CC sequences from colliding. Each
Aurora 8B/10B core is accompanied by a clock compensation management module that is
used to drive the clock compensation interface in accordance with the Aurora 8B/10B
Protocol Specification. When the same physical clock is used on both sides of the channel,
WARN_CC and DO_CC should be tied Low.

Table 2-24 describes the function of the clock compensation interface ports.

See Clock Compensation Interface, page 34 for more information.

Table 2-24: Clock Compensation I/O Ports

Name Direction Description

DO_CC Input
The Aurora 8B/10B core sends CC sequences on all lanes on every clock
cycle when this signal is asserted. Connects to the DO_CC output on the
CC module.

WARN_CC Input
The Aurora 8B/10B core does not acknowledge UFC requests while this
signal is asserted. It is used to prevent UFC messages from starting too
close to CC events. Connects to the WARN_CC output on the CC module.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 25
PG046 July 25, 2012 Product Specification

http://www.xilinx.com

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to make designing with the
core easier. It includes these sections:

• General Design Guidelines

• Clocking

• User Interface

• Flow Control

• Status, Control, and the Transceiver Interface

• Reset and Power Down

General Design Guidelines
This section describes the steps required to turn an Aurora 8B/10B core into a fully
functioning design with user-application logic. Not all implementations require all of the
design steps listed here. Follow the logic design guidelines in this manual carefully.

Use the Example Design as a Starting Point
Each instance of an Aurora 8B/10B core created by the Vivado™ IP catalog is delivered with
an example design that can be simulated and implemented in FPGA. This design can be
used as a starting point for your own design or can be used to troubleshoot the user
application, if necessary.

Know the Degree of Difficulty
Aurora 8B/10B design is challenging to implement in any technology, and the degree of
diff iculty is further influenced by:

• Maximum system clock frequency

• Targeted device architecture

• Nature of the user application
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 26
PG046 July 25, 2012

http://www.xilinx.com

General Design Guidelines
All Aurora 8B/10B implementations require careful attention to system performance
requirements. Pipelining, logic mappings, placement constraints and logic duplications are
all methods that help boost system performance.

Keep It Registered
To simplify timing and increase system performance in an FPGA design, keep all inputs and
outputs registered between the user application and the core. This means that all inputs
and outputs from user application should come from, or connect to a flip-flop. Registering
signals might not be possible for all paths, but doing so simplif ies timing analysis and
makes it easier for the Xilinx tools to place-and-route the design.

Recognize Timing Critical Signals
The XDC file provided with the example design for the core identif ies the critical signals and
the timing constraints that should be applied.

Use Supported Design Flows
The core is delivered as Verilog or VHDL source code. The example implementation scripts
provided currently use the Vivado synthesis tool for the example design that is delivered
with the core. Other synthesis tools can also be used.

Make Only Allowed Modifications
The Aurora 8B/10B core is not user modifiable. Any modifications might have adverse
effects on the system timings and protocol compliance. Supported user configurations of
the Aurora 8B/10B core can only be made by selecting options from the GUI.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 27
PG046 July 25, 2012

http://www.xilinx.com

Clocking
Clocking

Clock Interface and Clocking
Good clocking is critical for the correct operation of the Aurora 8B/10B core. The core
requires a high-quality, low-jitter reference clock to drive the high-speed TX clock and clock
recovery circuits in the GTP/GTX/GTH transceivers. It also requires at least one frequency
locked parallel clock for synchronous operation with the user application.

The Virtex®-7/Kintex™-7/Virtex-6 FPGA has four GTX/GTH transceivers in a Quad. The
Spartan ®-6 FPGA GTP architecture has a pair of transceivers in each GTPA1_DUAL tile.
Virtex-7/Kintex-7 FPGA GTX/GTH transceivers have a channel PLL (CPLL) per transceiver and
a Quad PLL (QPLL) per quad. The Virtex-6 FPGA GTX transceiver has individual PLLs for both
TX and RX portion of the transceivers. The Spartan-6 FPGA has individual PLLs for each
transceiver in a GTPA1_DUAL tile. The reference clock is used to produce the PLL clock,
which is divided to make individual TX and RX serial clocks and parallel clocks in each
GTP/GTX/GTH transceiver.

Each Aurora 8B/10B core is generated in the example_design directory that includes a
design called aurora_example. This design by instantiating the generated Aurora 8B/10B
core, demonstrates a working clock configuration of the core. First-time users should
examine the Aurora example design and use it as a template when connecting the clock
interface.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 28
PG046 July 25, 2012

http://www.xilinx.com

Clocking
Clock Interface Ports for the Aurora Core

See Table 2-23, page 24 for descriptions of the transceiver ports on the clock interface.

Clocking from a Neighboring GTX/GTH Transceiver for Virtex-7/Kintex-7 FPGA
Designs

The Xilinx implementation tools make necessary adjustments to the north-south routing
shown in Figure 3-2, page 31 as well as pin swapping necessary to GTXE2/GTHE2 clock
inputs to route clocks from one Quad to another when required.

The following rules must be observed when sharing a reference clock to ensure that jitter
margins for high-speed designs are met:

X-Ref Target - Figure 3-1

Figure 3-1: Top-Level Clocking
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 29
PG046 July 25, 2012

http://www.xilinx.com

Clocking
1. The number of GTX/GTH Quads above the sourcing Quad must not exceed one.

2. The number of GTX/GTH Quads below the sourcing Quad must not exceed one.

3. The total number of GTX/GTH Quads sourced by an external clock pin pair
(MGTREFCLKN/MGTREFCLKP) must not exceed three or 12
GTXE2_CHANNEL/GTHE2_CHANNEL transceivers.

The maximum number of GTX/GTH transceivers that can be sourced by a single clock pin
pair is 12. Designs with more than 12 transceivers require the use of multiple external clock
pins to ensure that the rules for controlling jitter are followed. When multiple clock pins are
used, an external buffer can be used to drive them from the same oscillator.

Note: Virtex-6 FPGA reference clock sharing guidelines are the same as the guidelines for
Virtex-7/Kintex-7 FPGAs.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 30
PG046 July 25, 2012

http://www.xilinx.com

Clocking
Reference Clocks for Spartan-6 FPGA GTP Transceiver Designs

In Spartan-6 FPGA transceiver designs, the reference clock is GTPD, which is a differential
input clock for each GTPA1_DUAL. The reference clock for GTPA1_DUAL is provided through

X-Ref Target - Figure 3-2

Figure 3-2: North-South Routing Adjustments in Virtex-7/Kintex-7 FPGAs
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 31
PG046 July 25, 2012

http://www.xilinx.com

Clocking
the CLK00 and CLK01 ports. The two possible use models for distributing a reference clock
to drive the CLK00 and CLK01 ports are:

• Clocking from an External Source

• Clocking from a Neighboring GTPA1_DUAL Tile

Clocking from an External Source

Each GTPA1_DUAL tile has a pair of dedicated pins that can be connected to an external
clock source. To use these pins, a IBUFDS primitive is instantiated. In the constraints f ile
(XDC), the IBUFDS input pins are set to the dedicated clock pins for the tile. In the design,
the output of the IBUFDS is connected to the CLK00 and CLK01 ports. Each GTPA1_DUAL
takes differential GTPD clock inputs, which are directly bonded to the FPGA pins. For
multilane Aurora 8B/10B designs, GTPD clock of any GTPA1_DUAL can be used as the
reference clock for the Aurora 8B/10B design. Using a low-jitter oscillator delivers a
high-quality clock suitable for top-speed operation. Figure 3-3 shows a differential
GTPA1_DUAL clock pin pair sourced by an external oscillator on the board. This clocking
mechanism is used for Spartan-6 FPGA single lane and 2-lane designs.

Clocking from a Neighboring GTPA1_DUAL Tile

The external clock from one tile can be used to drive the CLK00 and CLK01 ports of
neighboring tiles.

The example in Figure 3-4 uses the clock from one GTPA1_DUAL tile to clock neighboring
tiles. A GTPA1_DUAL tile shares its clock with its neighbors using dedicated clock routing
resources. This clocking mechanism is used for Spartan-6 FPGA 4-lane design.

X-Ref Target - Figure 3-3

Figure 3-3: Single GTPA1_DUAL Tile Clocked Externally

CLK00 CLK01

BUFDS

GTPA1_DUAL Tile
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 32
PG046 July 25, 2012

http://www.xilinx.com

Clocking
Clock Rates for GTP/GTX/GTH Transceiver Designs

GTP/GTX/GTH transceivers support a wide range of serial rates. The attributes used to
configure the GTP/GTX/GTH transceivers in the Aurora 8B/10B core for a specif ic line rate
are kept in the transceiver_wrapper module for simulation. These attributes are set
automatically by the IP catalog in response to the line rate and reference clock selections
made in the Configuration GUI window for the core. Manual edits of the attributes are not
recommended, but are possible using the recommendations in the 7 Series FPGAs GTX/GTH
Transceivers User Guide, Virtex-6 FPGA GTX Transceivers User Guide, and the Spartan-6 FPGA
GTP Transceivers User Guide.

Clock Compensation
Clock compensation is a feature that allows up to ± 100 ppm difference in the reference
clock frequencies used on each side of an Aurora 8B/10B channel. This feature is used in
systems where a separate reference clock source is used for each device connected by the
channel, and where the same USER_CLK is used for transmitting and receiving data.

The Aurora 8B/10B core’s clock compensation interface enables full control over the core's
clock compensation features. A standard clock compensation module is generated with the
Aurora 8B/10B core to provide Aurora 8B/10B-compliant clock compensation for systems
using separate reference clock sources; users with special clock compensation requirements
can drive the interface with custom logic. If the same reference clock source is used for both
sides of the channel, the interface can be tied to ground to disable clock compensation.

X-Ref Target - Figure 3-4

Figure 3-4: GTPA1_DUAL Tiles with Shared Reference Clock

CLK00 CLK01

BUFDS

GTPA1_DUAL Tile

CLK00 CLK01

GTPA1_DUAL Tile
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 33
PG046 July 25, 2012

http://www.xilinx.com

Clocking
Clock Compensation Interface

All Aurora 8B/10B cores include a clock compensation interface for controlling the
transmission of clock compensation sequences.

Figure 3-6 and Figure 3-7 are waveform diagrams showing how the DO_CC signal works.

X-Ref Target - Figure 3-5

Figure 3-5: Top-Level Clock Compensation

X-Ref Target - Figure 3-6

Figure 3-6: Streaming Data with Clock Compensation Inserted

TX Data

Control

Control

TXP/TXN

NFC Number of Idles

NFC Req

UFC TX Message Size

UFC TX Req

UFC TX Data

ClockingClock Module

GTP/GTX Interface

Clock Interface

User Interface

Aurora 8B/10B Module

Native Flow Control
(NFC) Interface

User Flow Control
(UFC) Interface

Do CC

Warn CCClock
Compensation

Module

Clock
Compensation

Status

Status

RXP/RXN

RX Data

NFC Ack

UFC RX Data

UFC RX Status/Ctrl

UFC TX Ack

Clocking
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 34
PG046 July 25, 2012

http://www.xilinx.com

Clocking
The Aurora 8B/10B protocol specifies a clock compensation mechanism that allows up to
± 100 ppm difference between reference clocks on each side of an Aurora 8B/10B channel.
To perform Aurora 8B/10B-compliant clock compensation, DO_CC must be asserted for
several cycles in every clock compensation period. The duration of the DO_CC assertion and
the length of time between assertions is determined based on the width of the GTP/GTX
transceiver data interface. While DO_CC is asserted, S_AXI_TX_TREADY on the user
interface for modules with TX while the channel is being used to transmit clock
compensation sequences. Table 3-1 shows the required durations and periods for 2-byte
and 4-byte wide lanes.

WARN_CC is for cores with user flow control (UFC) and/or native flow control (NFC). Driving
this signal before DO_CC is asserted prevents the UFC interface from acknowledging and
sending UFC messages too close to a clock correction sequence. This precaution is
necessary because data corruption occurs when CC sequences and UFC messages overlap.
The number of lookahead cycles required to prevent a 16-byte UFC message from colliding
with a clock compensation sequence depends on the number of lanes in the channel and
the width of each lane. Table 3-2 shows the number of lookahead cycles required for each
combination of lane width, channel width, and maximum UFC message size.

X-Ref Target - Figure 3-7

Figure 3-7: Data Reception Interrupted by Clock Compensation

Table 3-1: Clock Compensation Cycles

Lane Width USER_CLK Cycles
Between DO_CC

DO_CC Duration
(USER_CLK cycles)

2 5000 6

4 3000 3

Table 3-2: Lookahead Cycles

Data Interface Width Max UFC Size WARN_CC Lookahead

2 2 3

2 4 4

2 6 5

2 8 6

2 10 7

2 12 8

2 14 9
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 35
PG046 July 25, 2012

http://www.xilinx.com

Clocking
Native flow control message requests are not acknowledged during assertion of WARN_CC
and DO_CC signals. This helps to prevent the collision of an NFC message and the clock
compensation sequence.

To make Aurora 8B/10B compliance easy, a standard clock compensation module is
generated along with each Aurora 8B/10B core from the Vivado IP catalog in the
cc_manager subdirectory. It automatically generates pulses to create Aurora 8B/10B
compliant clock compensation sequences on the DO_CC port and sufficiently early pulses
on the WARN_CC port to prevent UFC collisions with maximum-sized UFC messages. This
module must always be connected to the clock compensation port on the Aurora 8B/10B
module, except in special cases. Table 3-3 shows the port description for the standard CC
module.

2 16 10

4 2-4 3

4 6-8 4

4 10-12 5

4 14-16 6

6 2-6 3

6 8-12 4

6 14-16 5

8 2-8 3

8 10-16 4

10 2-10 3

10 12-16 4

12 2-12 3

12 14-16 4

14 2-14 3

14 16 4

≥16 2-16 3

Table 3-3: Standard CC I/O Port

Name Direction Description

WARN_CC Output Connect this port to the WARN_CC input of the Aurora 8B/10B core
when using UFC.

DO_CC Output Connect this port to the DO_CC input of the Aurora 8B/10B core.

CHANNEL_UP Input Connect this port to the CHANNEL_UP output of a full-duplex core,
or to the TX_CHANNEL_UP output of a simplex TX port.

Table 3-2: Lookahead Cycles (Cont’d)

Data Interface Width Max UFC Size WARN_CC Lookahead
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 36
PG046 July 25, 2012

http://www.xilinx.com

User Interface
Clock compensation is not needed when both sides of the Aurora 8B/10B channel are being
driven by the same clock (see Figure 3-7, page 35) because the reference clock frequencies
on both sides of the module are locked. In this case, WARN_CC and DO_CC should both be
tied to ground. Additionally, the CLK_CORRECT_USE attribute can be set to false in the
transceiver interface module for the core. This can result in lower latencies for single lane
modules.

Other special cases when the standard clock compensation module is not appropriate are
possible. The DO_CC port can be used to send clock compensation sequences at any time,
for any duration to meet the needs of specif ic channels. The most common use of this
feature is scheduling clock compensation events to occur outside of frames, or at specif ic
times during a stream to avoid interrupting data flow. In general, customizing the clock
compensation logic is not recommended, and when it is attempted, it should be performed
with careful analysis, testing, and consideration of the following guidelines:

• Clock compensation sequences should last at least two cycles to ensure they are
recognized by all receivers

• Be sure the duration and period selected is sufficient to correct for the maximum
difference between the frequencies of the clocks that are used

• Do not perform multiple clock correction sequences within eight cycles of one another

• Replacing long sequences of idles (>12 cycles) with CC sequences results in increased
EMI

• DO_CC has no effect until after CHANNEL_UP; DO_CC should be asserted immediately
after CHANNEL_UP because no clock compensation can occur during initialization

User Interface
An Aurora 8B/10B core can be generated with either a framing or streaming user data
interface. In addition, flow control options are available for designs with framing interfaces.
See Flow Control, page 49.

The framing user interface complies with the AXI4-Stream Protocol Specification. It
comprises the signals necessary for transmitting and receiving framed user data. The
streaming interface allows users to send data without special frame delimiters. It is simple
to operate and uses fewer resources than framing.

Top-Level Architecture
Aurora 8B/10B top level (block level) f ile instantiates Aurora 8B/10B lane module, TX and RX
AXI4-Stream modules, global logic module, and wrapper for the GTX/GTH transceiver. This
top-level wrapper f ile is instantiated in the example design file together with clock, reset
circuit and frame generator and checker modules.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 37
PG046 July 25, 2012

http://www.xilinx.com

User Interface
Figure 3-8 shows Aurora 8B/10B top level for a duplex configuration. The top-level f ile is
the starting point for a user design.

The following sections describe the streaming and framing interface in details. User
interface logic should be designed to comply with the timing requirement of the respective
interface as explained in the subsequent sections.

X-Ref Target - Figure 3-8

Figure 3-8: Top-Level Architecture
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 38
PG046 July 25, 2012

http://www.xilinx.com

User Interface
Note: The user interface signals vary depending upon the selections made when generating an
Aurora 8B/10B core in the Vivado IP catalog.

Framing Interface
Figure 3-10 shows the framing user interface of the Aurora 8B/10B core, with AXI4-Stream
compliant ports for TX and RX data.

To transmit data, the user manipulates control signals to cause the core to do the following:

• Take data from the user on the S_AXI_TX_TDATA bus

X-Ref Target - Figure 3-9

Figure 3-9: Top-Level User Interface

X-Ref Target - Figure 3-10

Figure 3-10: Aurora 8B/10B Core Framing Interface (AXI4-Stream)

TX Data

Control

Control

TXP/TXN

NFC Number of Idles

NFC Req

UFC TX Message Size

UFC TX Req

UFC TX Data

ClockingClock Module

GTP/GTX Interface

Clock Interface

User Interface

Aurora 8B/10B Module

Native Flow Control
(NFC) Interface

User Flow Control
(UFC) Interface

Do CC

Warn CCClock
Compensation

Module

Clock
Compensation

Status

Status

RXP/RXN

RX Data

NFC Ack

UFC RX Data

UFC RX Status/Ctrl

UFC TX Ack

Clocking

M_AXI_RX_TDATA[0:(8n-1)]

M_AXI_RX_TKEEP[0:(n-1)]

M_AXI_RX_TLAST

M_AXI_RX_TVALID

S_AXI_TX_TDATA[0:(8n-1)]

S_AXI_TX_TKEEP[0:(n-1)]

S_AXI_TX_TLAST

S_AXI_TX_TVALID

S_AXI_TX_TREADY

AXI TX
Interface
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 39
PG046 July 25, 2012

http://www.xilinx.com

User Interface
• Encapsulate and stripe the data across lanes in the Aurora 8B/10B channel
(S_AXI_TX_TVALID, S_AXI_TX_TLAST)

• Pause data (that is, insert idles) (S_AXI_TX_TVALID)

When the core receives data, it does the following:

• Detects and discards control bytes (idles, clock compensation, SCP, ECP)

• Asserts framing signal (M_AXI_RX_TLAST)

• Recovers data from the lanes

• Assembles data for presentation to the user on the M_AXI_RX_TDATA bus

AXI4-Stream Bit Ordering

Aurora 8B/10B cores use ascending ordering. They transmit and receive the most signif icant
bit of the most significant byte f irst. Figure 3-11 shows the organization of an n-byte
example of the AXI4-Stream data interfaces of an Aurora 8B/10B core.

Transmitting Data

AXI4-Stream is a synchronous interface. The Aurora 8B/10B core samples the data on the
interface only on the positive edge of USER_CLK, and only on the cycles when both
S_AXI_TX_TREADY and S_AXI_TX_TVALID are asserted (High).

When AXI4-Stream signals are sampled, they are only considered valid if
S_AXI_TX_TVALID is asserted. The user application can deassert S_AXI_TX_TVALID on
any clock cycle; this causes the Aurora 8B/10B core to ignore the AXI4-Stream input for that
cycle. If this occurs in the middle of a frame, idle symbols are sent through the Aurora
8B/10B channel, which eventually result in a idle cycles during the frame when it is received
at the RX user interface.

AXI4-Stream data is only valid when it is framed. Data outside of a frame is ignored. To start
a frame, assert S_AXI_TX_TVALID while the f irst word of data is on the S_AXI_TX_TDATA
port. To end a frame, assert S_AXI_TX_TLAST while the last word (or partial word) of data
is on the S_AXI_TX_TDATA port.

Note: In the case of frames that are a single word long or less, S_AXI_TX_TVALID and
S_AXI_TX_TLAST are asserted simultaneously.

X-Ref Target - Figure 3-11

Figure 3-11: AXI4-Stream Interface Bit Ordering
Most significant bit transmitted first Least significant bit transmitted last

Byte 0 Byte 1 Byte n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n0 n2 n3 n4 n5 n6 n7n1TX_D

Most Significant Byte Least Significant Byte
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 40
PG046 July 25, 2012

http://www.xilinx.com

User Interface
Data Remainder

AXI4-Stream allows the last word of a frame to be a partial word. This lets a frame contain
any number of bytes, regardless of the word size. The S_AXI_TX_TKEEP bus is used to
indicate the number of valid bytes in the f inal word of the frame. The bus is only used when
S_AXI_TX_TLAST is asserted.

Aurora 8B/10B Frames

The TX submodules translate each user frame that it receives through the TX interface to an
Aurora 8B/10B frame. The 2-byte SCP code group is added to the beginning of the frame
data to indicate the start of frame, and a 2-byte ECP set is sent after the frame ends to
indicate the end of frame. Idle code groups are inserted whenever data is not available.
Code groups are 8B/10B encoded byte pairs. All data in Aurora 8B/10B is sent as code
groups, so user frames with an odd number of bytes have a control character called PAD
appended to the end of the frame to fill out the f inal code group. Table 3-4 shows a typical
Aurora 8B/10B frame with an even number of data bytes.

Length

The user controls the channel frame length by manipulation of the S_AXI_TX_TVALID and
S_AXI_TX_TLAST signals. The Aurora 8B/10B core responds with start-of-frame and
end-of-frame ordered sets, /SCP/ and /ECP/ respectively, as shown in Table 3-4.

Example A: Simple Data Transfer

Figure 3-12 shows an example of a simple data transfer on a AXI4-Stream interface that is
n-bytes wide. In this case, the amount of data being sent is 3n bytes and so requires three
data beats. S_AXI_TX_TREADY is asserted, indicating that the AXI4-Stream interface is
ready to transmit data. When the Aurora 8B/10B core is not sending data, it sends idle
sequences.

To begin the data transfer, the user asserts S_AXI_TX_TVALID and the first n bytes of the
user frame. Because S_AXI_TX_TREADY is already asserted, data transfer begins on the
next clock edge. An /SCP/ ordered set is placed on the f irst two bytes of the channel to
indicate the start of the frame. Then the f irst n-2 data bytes are placed on the channel.
Because of the offset required for the /SCP/, the last two bytes in each data beat are always
delayed one cycle and transmitted on the f irst two bytes of the next beat of the channel.

To end the data transfer, the user asserts S_AXI_TX_TLAST, the last data bytes, and the
appropriate value on the S_AXI_TX_TKEEP bus. In this example, S_AXI_TX_TKEEP is set
to N (in the waveform for demonstration) to indicate that all bytes are valid in the last data
beat. One clock cycle after S_AXI_TX_TLAST is asserted, the AXI4-Stream interface

Table 3-4: Typical Channel Frame

/SCP/1 /SCP/2
Data Byte

0
Data Byte

1
Data Byte

2 . . .
Data Byte

n -1
Data Byte

n /ECP/1 /ECP/2
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 41
PG046 July 25, 2012

http://www.xilinx.com

User Interface
deasserts S_AXI_TX_TREADY and uses the gap in the data flow to send the final offset
data bytes and the /ECP/ ordered set, indicating the end of the frame. S_AXI_TX_TREADY
is reasserted on the next cycle so that more data transfers can continue. As long as there is
no new data, the Aurora 8B/10B core sends idles.

Example B: Data Transfer with Pad

Figure 3-13 shows an example of a (3n-1)-byte data transfer that requires the use of a pad.
Because there is an odd number of data bytes, the Aurora 8B/10B core appends a pad
character at the end of the Aurora 8B/10B frame, as required by the protocol. A transfer of
3n-1 data bytes requires two full n-byte data words and one partial data word. In this
example, S_AXI_TX_TKEEP is set to N-1 to indicate n-1 valid bytes in the last data word.

Example C: Data Transfer with Pause

Figure 3-14 shows how a user can pause data transmission during a frame transfer. In this
example, the user is sending 3n bytes of data, and pauses the data flow after the f irst

X-Ref Target - Figure 3-12

Figure 3-12: Simple Data Transfer

X-Ref Target - Figure 3-13

Figure 3-13: Data Transfer with Pad
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 42
PG046 July 25, 2012

http://www.xilinx.com

User Interface
n bytes. After the f irst data word, the user deasserts S_AXI_TX_TVALID, causing the TX
Aurora 8B/10B core to ignore all data on the bus and transmit idles instead. The offset data
from the first data word in the previous cycle still is transmitted on lane 0, but the next data
word is replaced by idle characters. The pause continues until S_AXI_TX_TVALID is
deasserted.

Example D: Data Transfer with Clock Compensation

The Aurora 8B/10B core automatically interrupts data transmission when it sends clock
compensation sequences. The clock compensation sequence imposes 12 bytes of overhead
per lane every 10,000 bytes.

Figure 3-15 shows how the Aurora 8B/10B core pauses data transmission during the clock
compensation (1) sequence.

X-Ref Target - Figure 3-14

Figure 3-14: Data Transfer with Pause

1. Because of the need for clock compensation every 10,000 bytes per lane (5,000 clocks for 2-byte per lane designs; 2,500
clocks for 4-byte per lane designs), a user cannot continuously transmit data nor can data be continuously received.
During clock compensation, data transfer is suspended for six clock periods.

X-Ref Target - Figure 3-15

Figure 3-15: Data Transfer Paused by Clock Compensation
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 43
PG046 July 25, 2012

http://www.xilinx.com

User Interface
Receiving Data

When the Aurora 8B/10B core receives an Aurora 8B/10B frame, it presents it to the user
through the RX AXI4-Stream interface after discarding the framing characters, idles, and
clock compensation sequences.

The RX submodules has no built in elastic buffer for user data. As a result, there is no
M_AXI_RX_TREADY signal on the RX AXI4-Stream interface. The only way for the user
application to control the flow of data from an Aurora 8B/10B channel is to use one of the
core’s optional flow control features. In most cases, a FIFO should be added to the RX
datapath to ensure no data is lost while flow control messages are in transit.

The Aurora 8B/10B core asserts the M_AXI_RX_TVALID signal when the signals on its RX
AXI4-Stream interface are valid. Applications should ignore any values on the RX
AXI4-Stream ports sampled while M_AXI_RX_TVALID is deasserted (Low).

M_AXI_RX_TVALID is asserted concurrently with the f irst word of each frame from the
Aurora 8B/10B core. M_AXI_RX_TLAST is asserted concurrently with the last word or
partial word of each frame. The M_AXI_RX_TKEEP port indicates the number of valid bytes
in the final word of each frame.M_AXI_RX_TKEEP is only valid when M_AXI_RX_TLAST is
asserted.

The Aurora 8B/10B core can deassert M_AXI_RX_TVALID anytime, even during a frame.
The timing of the M_AXI_RX_TVALID deassertions is independent of the way the data was
transmitted. The core can occasionally deassert M_AXI_RX_TVALID even if the frame was
originally transmitted without pauses. These pauses are a result of the framing character
stripping and left alignment process, as the core attempts to process each frame with as
little latency as possible.

Example A: Data Reception with Pause shows the reception of a typical Aurora 8B/10B
frame.

Example A: Data Reception with Pause

Figure 3-16 shows an example of 3n bytes of received data interrupted by a pause. Data is
presented on the M_AXI_RX_TDATA bus. When the f irst n bytes are placed on the bus,
M_AXI_RX_TVALID is asserted to indicate that data is ready for the user. On the clock cycle
following the first data beat, the core deasserts M_AXI_RX_TVALID, indicating to the user
that there is a pause in the data flow.

After the pause, the core asserts M_AXI_RX_TVALID and continues to assemble the
remaining data on the M_AXI_RX_TDATA bus. At the end of the frame, the core asserts
M_AXI_RX_TLAST. The core also computes the value of M_AXI_RX_TKEEP bus and
presents it to the user based on the total number of valid bytes in the f inal word of the
frame.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 44
PG046 July 25, 2012

http://www.xilinx.com

User Interface
Framing Efficiency

There are two factors that affect framing eff iciency in the Aurora 8B/10B core:

• Size of the frame

• Width of the datapath

The CC sequence, which uses 12 bytes on every lane every 10,000 bytes, consumes about
0.12% of the total channel bandwidth.

All bytes in Aurora 8B/10B are sent in 2-byte code groups. Aurora 8B/10B frames with an
even number of bytes have four bytes of overhead, two bytes for SCP (start of frame) and
two bytes for ECP (end of frame). Aurora 8B/10B frames with an odd number of bytes have
f ive bytes of overhead, four bytes of framing overhead plus an additional byte for the pad
byte that is sent to fill the second byte of the code group carrying the last byte of data in
the frame.

The core transmits frame delimiters only in specific lanes of the channel. SCP is only
transmitted in the left-most (most-signif icant) lane, and ECP is only transmitted in the
right-most (least-signif icant) lane. Any space in the channel between the last code group
with data and the ECP code group is padded with idles. The result is reduced resource cost
for the design, at the expense of a minimal additional throughput cost. Though SCP and
ECP could be optimized for additional throughput, the single frame per cycle limitation
imposed by the user interface would make this improvement unusable in most cases.

Use the formula shown in Figure 3-17 to calculate the efficiency for a design of any number
of lanes, any width of interface, and frames of any number of bytes.

Note: This formula includes the overhead for clock compensation.

X-Ref Target - Figure 3-16

Figure 3-16: Data Reception with Pause
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 45
PG046 July 25, 2012

http://www.xilinx.com

User Interface
Example

Table 3-5 is an example calculated from the formula given in Figure 3-17. It shows the
eff iciency for an 8-byte, 4-lane channel and illustrates that the eff iciency increases as the
length of channel frames increases.

Table 3-6 shows the overhead in an 8-byte, 4-lane channel when transmitting 256 bytes of
frame data across the four lanes. The resulting data unit is 264 bytes long due to start and
end characters, and due to the idles necessary to fill out the lanes. This amounts to 3.03%
of overhead in the transmitter. In addition, a 12-byte clock compensation sequence occurs
on each lane every 10,000 bytes, which adds a small amount more to the overhead. The
receiver can handle a slightly more eff icient data stream because it does not require any
idle pattern.

X-Ref Target - Figure 3-17

Figure 3-17: Formula for Calculating Overhead

Table 3-5: Efficiency Example

User Data Bytes Efficiency

100 92.92%

1,000 99.14%

10,000 99.81%

Table 3-6: Typical Overhead for Transmitting 256 Data Bytes

Lane Clock Function
Character or Data Byte

Byte 1 Byte 2

0 1 Start of channel frame /SCP/1 /SCP/2

1 1 Channel frame data D0 D1

2 1 Channel frame data D2 D3

3 1 Channel frame data D4 D5

.

.

.

0 33 Channel frame data D254 D255

1 33 Transmit idles /I/ /I/

n = Number of user data bytes
E = The average efficiency of a specified PDU

12n/9,988 = Clock correction overhead
4 = The overhead of SCP + ECP

0.5 = Average PAD overhead
IDLEs = The overhead for IDLEs = (w/2)-1

(w = The interface width)

12n
9,988

E =
100n

n + 4 + 0.5 + IDLEs +

Where:
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 46
PG046 July 25, 2012

http://www.xilinx.com

User Interface
Table 3-7 shows the overhead that occurs with each value of S_AXI_TX_TKEEP.

Streaming Interface
Figure 3-18 shows an example of an Aurora 8B/10B core configured with a streaming user
interface.

Transmitting and Receiving Data

The streaming interface allows the Aurora 8B/10B channel to be used as a pipe. Words
written into the TX side of the channel are delivered, in order after some latency, to the RX
side. After initialization, the channel is always available for writing, except when the DO_CC
signal is asserted to send clock compensation sequences. Applications transmit data
through the S_AXI_TX_TDATA port, and use the S_AXI_TX_TVALID port to indicate
when the data is valid (asserted High). The Aurora 8B/10B core deasserts
S_AXI_TX_TREADY (Low) when the channel is not ready to receive data. Otherwise,
S_AXI_TX_TREADY remains asserted.

2 33 Transmit idles /I/ /I/

3 33 End of channel frame /ECP/1 /ECP/2

Table 3-7: S_AXI_TX_TKEEP Value and Corresponding Bytes of Overhead

S_AXI_TX_TKEEP Bus
Value (in Binary) SCP Pad ECP Idles Total

1000_0000

2

1

2

6
11

1100_0000 0 10

1110_0000 1
4

9

1111_0000 0 8

1111_1000 1
2

7

1111_1100 0 6

1111_1110 1
0

5

1111_1111 0 4

X-Ref Target - Figure 3-18

Figure 3-18: Aurora 8B/10B Core Streaming User Interface

Table 3-6: Typical Overhead for Transmitting 256 Data Bytes (Cont’d)

Lane Clock Function
Character or Data Byte

Byte 1 Byte 2

M_AXI_RX_TDATA[0:(8n-1)]

M_AXI_RX_TVALID

S_AXI_TX_TDATA[0:(8n-1)]

S_AXI_TX_TVALID
Streaming
Interface

S_AXI_TX_TREADY
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 47
PG046 July 25, 2012

http://www.xilinx.com

User Interface
When S_AXI_TX_TVALID is deasserted, gaps are created between words. These gaps are
preserved, except when clock compensation sequences are being transmitted. Clock
compensation sequences are replicated or deleted by the GTP/GTX transceiver to make up
for frequency differences between the two sides of the Aurora 8B/10B channel. As a result,
gaps created when DO_CC is asserted can shrink and grow. For details on the DO_CC signal,
see Clock Compensation, page 33.

When data arrives at the RX side of the Aurora 8B/10B channel it is presented on the
M_AXI_RX_TDATA bus and M_AXI_RX_TVALID is asserted. The data must be read
immediately or it is lost. If this is unacceptable, a buffer must be connected to the RX
interface to hold the data until it can be used.

Figure 3-19 shows a typical example of streaming data. The example begins with neither of
the ready signals asserted, indicating that both the user logic and the Aurora 8B/10B core
are not ready to transfer data. During the next clock cycle, the Aurora 8B/10B core indicates
that it is ready to transfer data by asserting S_AXI_TX_TREADY. One cycle later, the user
logic indicates that it is ready to transfer data by asserting the S_AXI_TX_TDATA bus and
the S_AXI_TX_TVALID signal. Because both ready signals are now asserted, data D0 is
transferred from the user logic to the Aurora 8B/10B core. Data D1 is transferred on the
following clock cycle. In this example, the Aurora 8B/10B core deasserts its ready signal,
S_AXI_TX_TREADY, and no data is transferred until the next clock cycle when, once again,
the S_AXI_TX_TREADY signal is asserted. Then the user deasserts S_AXI_TX_TVALID on
the next clock cycle, and no data is transferred until both ready signals are asserted.

Figure 3-20 shows the receiving end of the data transfer that is shown in Figure 3-19.

X-Ref Target - Figure 3-19

Figure 3-19: Typical Streaming Data Transfer

X-Ref Target - Figure 3-20

Figure 3-20: Typical Data Reception
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 48
PG046 July 25, 2012

http://www.xilinx.com

Flow Control
Flow Control
This section explains how to use Aurora 8B/10B flow control. Two flow control interfaces are
available as options on cores that use a framing interface. Native flow control (NFC) is used
for regulating the data transmission rate at the receiving end a full-duplex channel. User
flow control (UFC) is used to accommodate high priority messages for control operations.

Native Flow Control
Table 3-8 shows the codes for native flow control (NFC).

X-Ref Target - Figure 3-21

Figure 3-21: Top-Level Flow Control

Table 3-8: NFC Codes

S_AXI_NFC_NB Idle Cycles Requested

0000 0 (XON)

0001 2

0010 4

0011 8

TX Data

Control

Control

TXP/TXN

NFC Number of Idles

NFC Req

UFC TX Message Size

UFC TX Req

UFC TX Data

ClockingClock Module

Transceiver Interface

Clock Interface

User Interface

Aurora 8B/10 Module

Native Flow Control
(NFC) Interface

User Flow Control
(UFC) Interface

Do CC

Warn CCClock
Compensation

Module

Clock
Compensation

Status

Status

RXP/RXN

RX Data

NFC Ack

UFC RX Data

UFC RX Status/Ctrl

UFC TX Ack

Clocking
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 49
PG046 July 25, 2012

http://www.xilinx.com

Flow Control
The Aurora 8B/10B protocol includes native flow control (NFC) to allow receivers to control
the rate at which data is sent to them by specifying several idle data beats that must be
placed into the data stream. The data flow can even be turned off completely by requesting
that the transmitter temporarily send only idles (XOFF). NFC is typically used to prevent
FIFO overflow conditions. For detailed explanation of NFC operation and NFC codes, see
the Aurora 8B/10B Protocol Specification.

To send an NFC message to a channel partner, the user application asserts
S_AXI_NFC_REQ and writes an NFC code to S_AXI_NFC_NB. The NFC code indicates the
minimum number of idle cycles the channel partner should insert in its TX data stream. The
user application must hold S_AXI_NFC_REQ and S_AXI_NFC_NB until S_AXI_NFC_ACK is
asserted on a positive USER_CLK edge, indicating the Aurora 8B/10B core will transmit the
NFC message. Aurora 8B/10B cores cannot transmit data while sending NFC messages.
S_AXI_TX_TREADY is always deasserted on the cycle following an S_AXI_NFC_ACK
assertion.

Example A: Transmitting an NFC Message

Figure 3-22 shows an example of the transmit timing when the user sends an NFC message
to a channel partner.

Note: S_AXI_TX_TREADY is deasserted for one cycle (assumes that n is at least 2) to create the gap
in the data flow in which the NFC message is placed.

0100 16

0101 32

0110 64

0111 128

1000 256

1001 to 1110 Reserved

1111 Inf inite (XOFF)

Table 3-8: NFC Codes

S_AXI_NFC_NB Idle Cycles Requested
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 50
PG046 July 25, 2012

http://www.xilinx.com

Flow Control
Example B: Receiving a Message with NFC Idles Inserted

Figure 3-23 shows an example of the signals on the TX user interface when an NFC message
is received. In this case, the NFC message has a code of 0001, requesting two data beats of
idles. The core deasserts S_AXI_TX_TREADY on the user interface until enough idles have
been sent to satisfy the request. In this example, the core is operating in immediate NFC
mode. Aurora 8B/10B cores can also operate in completion mode, where NFC idles are only
inserted between frames. If a completion mode core receives an NFC message while it is
transmitting a frame, it f inishes transmitting the frame before deasserting
S_AXI_TX_TREADY to insert idles.

User Flow Control
The Aurora 8B/10B protocol includes user flow control (UFC) to allow channel partners to
send control information using a separate in-band channel. The user can send short UFC

X-Ref Target - Figure 3-22

Figure 3-22: Transmitting an NFC Message

X-Ref Target - Figure 3-23

Figure 3-23: Transmitting a Message with NFC Idles Inserted
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 51
PG046 July 25, 2012

http://www.xilinx.com

Flow Control
messages to the core's channel partner without waiting for the end of a frame in progress.
The UFC message shares the channel with regular frame data, but has a higher priority.

Transmitting UFC Messages

UFC messages can carry an even number of data bytes from 2 to 16. The user application
specifies the length of the message by driving a SIZE code on the S_AXI_UFC_TX_MS port.
Table 3-9 shows the legal SIZE code values for UFC.

To send a UFC message, the user application asserts S_AXI_UFC_TX_REQ while driving the
S_AXI_UFC_TX_MS port with the desired SIZE code. S_AXI_UFC_TX_REQ must be held
until the Aurora 8B/10B core asserts the S_AXI_UFC_TX_ACK signal, indicating that the
core is ready to send the UFC message. The data for the UFC message must be placed on
the S_AXI_TX_TDATA port of the data interface, starting on the f irst cycle after
S_AXI_UFC_TX_ACK is asserted. The core deasserts S_AXI_TX_TREADY while the
S_AXI_TX_TDATA port is being used for UFC data.

Figure 3-24 shows a useful circuit for switching TX_D from sending regular data to UFC
data.

Table 3-10, page 53 shows the number of cycles required to transmit UFC messages of
different sizes based on the width of the AXI4-Stream data interface. UFC messages should

Table 3-9: SIZE Encoding

SIZE Field Contents UFC Message Size

000 2 bytes

001 4 bytes

010 6 bytes

011 8 bytes

100 10 bytes

101 12 bytes

110 14 bytes

111 16 bytes

X-Ref Target - Figure 3-24

Figure 3-24: Data Switching Circuit

Regular Data

UFC Data

S_AXI_TX_TREADY

S_AXI_TX_TDATA

0

1

UFC Interface

Data Interface

Aurora 8B/10B Core
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 52
PG046 July 25, 2012

http://www.xilinx.com

Flow Control
never be started until all message data is available. Unlike regular data, UFC messages
cannot be interrupted after S_AXI_UFC_TX_ACK has been asserted.

Table 3-10: Number of Data Beats Required to Transmit UFC Messages

UFC Message S_AXI_UFC_TX_MS
Value

AXI4 Interface
Width

Number of
Data Beats

AXI4 Interface
Width

Number of
Data Beats

2 Bytes 0

2 Bytes

1

10 Bytes

1

4 Bytes 1 2

6 Bytes 2 3

8 Bytes 3 4

10 Bytes 4 5

12 Bytes 5 6

214 Bytes 6 7

16 Bytes 7 8

2 Bytes 0

4 Bytes

1

12 Bytes

1

4 Bytes 1

6 Bytes 2
2

8 Bytes 3

10 Bytes 4
3

12 Bytes 5

14 Bytes 6
4 2

16 Bytes 7

2 Bytes 0

6 Bytes

1

14 Bytes
1

4 Bytes 1

6 Bytes 2

8 Bytes 3

210 Bytes 4

12 Bytes 5

14 Bytes 6
3

16 Bytes 7 2

2 Bytes 0

8 Bytes

1

16 Bytes or
more 1

4 Bytes 1

6 Bytes 2

8 Bytes 3

10 Bytes 4

2
12 Bytes 5

14 Bytes 6

16 Bytes 7
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 53
PG046 July 25, 2012

http://www.xilinx.com

Flow Control
Example A: Transmitting a Single-Cycle UFC Message

The procedure for transmitting a single cycle UFC message is shown in Figure 3-25. In this
case, a 4-byte message is being sent on a 4-byte interface.

Note: S_AXI_TX_TREADY is deasserted for two cycles. Aurora 8B/10B cores use this gap in the data
flow to transmit the UFC header and message data.

Example B: Transmitting a Multicycle UFC Message

The procedure for transmitting a two-cycle UFC message is shown in Figure 3-26. In this
case the user application is sending a 4-byte message using a 2-byte interface.
S_AXI_TX_TREADY is asserted for three cycles: one cycle for the UFC header which is sent
during the S_AXI_UFC_TX_ACK cycle, and two cycles for UFC data.

Receiving User Flow Control Messages

When the Aurora 8B/10B core receives a UFC message, it passes the data from the message
to the user application through a dedicated UFC AXI4-Stream interface. The data is
presented on the M_AXI_UFC_RX_TDATA port; M_AXI_UFC_RX_TVALID indicates the
start of the message data and M_AXI_UFC_RX_TLAST indicates the end.

X-Ref Target - Figure 3-25

Figure 3-25: Transmitting a Single-Cycle UFC Message

X-Ref Target - Figure 3-26

Figure 3-26: Transmitting a Multicycle UFC Message
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 54
PG046 July 25, 2012

http://www.xilinx.com

Flow Control
M_AXI_UFC_RX_TKEEP is used to show the number of valid bytes on
M_AXI_UFC_RX_TDATA during the last cycle of the message (for example, while
M_AXI_UFC_RX_TLAST is asserted). Signals on the M_AXI_UFC_RX AXI4-Stream interface
are only valid when M_AXI_UFC_RX_TVALID is asserted.

Example C: Receiving a Single-Cycle UFC Message

Figure 3-27 shows an Aurora 8B/10B core with a 4-byte data interface receiving a 4-byte
UFC message. The core presents this data to the user application by asserting
M_AXI_UFC_RX_TVALID and M_AXI_UFC_RX_TLAST to indicate a single cycle frame.
M_AXI_UFC_RX_TKEEP is set to 4'hF, indicating only the four most signif icant bytes of
the interface are valid.

Example D: Receiving a Multicycle UFC Message

Figure 3-28 shows an Aurora 8B/10B core with a 4-byte interface receiving an 8-byte
message.

Note: The resulting frame is two cycles long, with M_AXI_UFC_RX_TKEEP set to 4'hF on the
second cycle indicating that all four bytes of the data are valid.

X-Ref Target - Figure 3-27

Figure 3-27: Receiving a Single-Cycle UFC Message

X-Ref Target - Figure 3-28

Figure 3-28: Receiving a Multicycle UFC Message
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 55
PG046 July 25, 2012

http://www.xilinx.com

Status, Control, and the Transceiver Interface
Status, Control, and the Transceiver Interface
The status and control ports of the Aurora 8B/10B core allow user applications to monitor
the Aurora 8B/10B channel and use built-in features of the GTP/GTX transceivers. Aurora
8B/10B cores can be configured as full-duplex or simplex modules. Full-duplex modules
provide high-speed TX and RX links. Simplex modules provide a link in only one direction
and are initialized using sideband ports or with a built-in timer. This section provides
diagrams and port descriptions for the Aurora 8B/10B core’s status and control interface,
along with the GTP/GTX transceiver serial I/O interface and the sideband initialization ports
that are used exclusively for simplex modules.

Full-Duplex Cores

Full-Duplex Status and Control Ports

Full-duplex cores provide a TX and an RX Aurora 8B/10B channel connection. Figure 3-30
shows the status and control interface for a full-duplex Aurora 8B/10B core.

X-Ref Target - Figure 3-29

Figure 3-29: Top-Level Transceiver Interface
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 56
PG046 July 25, 2012

http://www.xilinx.com

Status, Control, and the Transceiver Interface
Error Signals in Full-Duplex Cores

Equipment problems and channel noise can cause errors during Aurora 8B/10B channel
operation. 8B/10B encoding allows the Aurora 8B/10B core to detect all single bit errors and
most multi-bit errors that occur in the channel. The core reports these errors by asserting
the SOFT_ERR signal on every cycle they are detected.

The core also monitors each GTP/GTX transceiver for hardware errors such as buffer
overflow/underflow and loss of lock. The core reports hardware errors by asserting the
HARD_ERR signal. Catastrophic hardware errors can also manifest themselves as burst of
soft errors. The core uses the leaky bucket algorithm described in the Aurora 8B/10B
Protocol Specification to detect large numbers of soft errors occurring in a short period of
time, and asserts the HARD_ERR signal when it detects them.

Whenever a hard error is detected, the Aurora 8B/10B core automatically resets itself and
attempts to reinitialize. In most cases, this allows the Aurora 8B/10B channel to be
reestablished as soon as the hardware issue that caused the hard error is resolved. Soft
errors do not lead to a reset unless enough of them occur in a short period of time to
trigger the Aurora 8B/10B leaky bucket algorithm.

Aurora 8B/10B cores with a AXI4-Stream data interface can also detect errors in Aurora
8B/10B frames. Errors of this type include frames with no data, consecutive Start of Frame
symbols, and consecutive End of Frame symbols. When the core detects a frame problem, it
asserts the FRAME_ERR signal. This signal is usually asserted close to a SOFT_ERR
assertion, with soft errors being the main cause of frame errors.

Table 3-11 summarizes the error conditions the Aurora 8B/10B core can detect and the
error signals used to alert the user application.

X-Ref Target - Figure 3-30

Figure 3-30: Status and Control Interface for Full-Duplex Cores

HARD_ERR

SOFT_ERR

FRAME_ERR

LANE_UP[0:m-1]

CHANNEL_UP

LOOPBACK[2:0]

POWER_DOWN

RESET Full-Duplex
Status and

Control
Interface

GT_RESET

INIT_CLK

TXP[0:m-1]

TXN[0:m-1]

RXP[0:m-1]

RXN[0:m-1]
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 57
PG046 July 25, 2012

http://www.xilinx.com

Status, Control, and the Transceiver Interface
Full-Duplex Initialization

Full-duplex cores initialize automatically after power up, reset, or hard error. Full-duplex
modules on each side of the channel perform the Aurora 8B/10B initialization procedure
until the channel is ready for use. The LANE_UP bus indicates which lanes in the channel
have f inished the lane initialization portion of the initialization procedure. This signal can
be used to help debug equipment problems in a multi-lane channel. CHANNEL_UP is
asserted only after the core completes the entire initialization procedure.

Aurora 8B/10B cores cannot receive data before CHANNEL_UP is asserted. Only the
M_AXI_RX_TVALID signal on the user interface should be used to qualify incoming data.
CHANNEL_UP can be inverted and used to reset modules that drive the TX side of a
full-duplex channel, because no transmission can occur until after CHANNEL_UP. If user
application modules need to be reset before data reception, one of the LANE_UP signals
can be inverted and used. Data cannot be received until after all the LANE_UP signals are
asserted.

Table 3-11: Error Signals in Full-Duplex Cores

Signal Description

HARD_ERR

TX Overflow/Underflow: The elastic buffer for TX data overflows or underflows. This
can occur when the user clock and the reference clock sources are not running at
the same frequency.
RX Overflow/Underflow: The elastic buffer for RX data overflows or underflows.
This can occur when the clock source frequencies for the two channel partners are
not within ± 100 ppm.
Bad Control Character: The protocol engine attempts to send a bad control
character. This is an indication of design corruption or catastrophic failure.
Soft Errors: There are too many soft errors within a short period of time. The Aurora
8B/10B protocol defines a leaky bucket algorithm for determining the acceptable
number of soft errors within a given time period. When this number is exceeded,
the physical connection might be too poor for communication using the current
voltage swing and pre-emphasis settings.

SOFT_ERR

Invalid Code: The 10-bit code received from the channel partner was not a valid
code in the 8B/10B table. This usually means a bit was corrupted in transit, causing
a good code to become unrecognizable. Typically, this also results in a frame error
or corruption of the current channel frame.
Disparity Error: The 10-bit code received from the channel partner did not have the
correct disparity. This error is also usually caused by corruption of a good code in
transit, and can result in a frame error or bad data if it occurs while a frame is being
sent.

FRAME_ERR

Truncated Frame: A channel frame is started without ending the previous channel
frame, or a channel frame is ended without being started.
Invalid Control Character: The protocol engine receives a control character that it
does not recognize.
No Data in Frame: A channel frame is received with no data.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 58
PG046 July 25, 2012

http://www.xilinx.com

Status, Control, and the Transceiver Interface
Simplex Cores

Simplex TX Status and Control Ports

Simplex TX cores allow user applications to transmit data to a simplex RX core. They have no
RX connection. Figure 3-31 shows the status and control interface for a simplex TX core.

Simplex RX Status and Control Ports

Simplex RX cores allow user applications to receive data from a simplex TX core. Figure 3-32
shows the status and control interface for a simplex RX core.

Error Signals in Simplex Cores

The 8B/10B encoding allows RX simplex cores to detect all single bit errors and most
multi-bit errors in a simplex channel. The cores report these errors by asserting the
SOFT_ERR signal on every cycle an error is detected. The TX simplex cores do not include
a SOFT_ERR port. All transmit data is assumed correct at transmission unless there is an
equipment problem.

All simplex cores monitor their GTP/GTX transceivers for hardware errors such as buffer
overflow/underflow and loss of lock. Hardware errors on the TX side of the channel are
reported by asserting the TX_HARD_ERR signal; RX side hard errors are reported using the
RX_HARD_ERR signal. Simplex RX cores use the Aurora 8B/10B protocol's leaky bucket

X-Ref Target - Figure 3-31

Figure 3-31: Status and Control Interface for Simplex TX Core

X-Ref Target - Figure 3-32

Figure 3-32: Status and Control Interface for Simplex RX Core

Simplex TX
Status and

Control
Interface

TX_ALIGNED

TX_BONDED

TX_VERIFY

TX_RESET

TX_HARD_ERR

TX_LANE_UP[0:m-1]

TX_CHANNEL_UP

POWER_DOWN

TX_SYSTEM_RESET

TXP[0:m-1]

TXN[0:m-1]

Simplex RX
Status and

Control
Interface RX_ALIGNED

RX_BONDED

RX_VERIFY

RX_RESET

RX_HARD_ERR

SOFT_ERR

FRAME_ERR

RX_LANE_UP[0:m-1]

RX_CHANNEL_UP

POWER_DOWN

RX_SYSTEM_RESET

RXP[0:m-1]

RXN[0:m-1]
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 59
PG046 July 25, 2012

http://www.xilinx.com

Status, Control, and the Transceiver Interface
algorithm to evaluate bursts of soft errors. If too many soft errors occur in a short span of
time, RX_HARD_ERR is asserted.

Whenever a hard error is detected, the Aurora 8B/10B core automatically resets itself and
attempts to re-initialize. Resetting allows the Aurora 8B/10B channel to be re-established as
soon as the hardware issue that caused the hard error is resolved in most cases. Soft errors
do not lead to a reset unless enough of them occur in a short period of time to trigger the
Aurora 8B/10B leaky bucket algorithm.

Simplex RX cores with a AXI4-Stream data interface can also detect errors in Aurora 8B/10B
frames when they are received. Errors of this type include frames with no data, consecutive
Start of Frame symbols, and consecutive End of Frame symbols. When the core detects a
frame problem, it asserts the FRAME_ERR signal. This signal is usually asserted close to a
SOFT_ERR assertion, as soft errors are the main cause of frame errors. Simplex TX modules
do not use the FRAME_ERR port.

Table 3-12 summarizes the error conditions simplex Aurora 8B/10B cores can detect and the
error signals uses to alert the user application.

Table 3-12: Error Signals in Simplex Cores

Signal Description TX RX

HARD_ERR

TX Overflow/Underflow: The elastic buffer for TX data overflows or underflows. This
can occur when the user clock and the reference clock sources are not running at
the same frequency.

x

RX Overflow/Underflow: The elastic buffer for RX data overflows or underflows. This
can occur when the clock source frequencies for the two channel partners are not
within ± 100 ppm.

x

Bad Control Character: The protocol engine attempts to send a bad control
character. This is an indication of design corruption or catastrophic failure. x

Soft Errors: There are too many soft errors within a short period of time. The Aurora
8B/10B protocol defines a leaky bucket algorithm for determining the acceptable
number of soft errors within a given time period. When this number is exceeded, the
physical connection might be too poor for communication using the current voltage
swing and pre-emphasis settings.

x

SOFT_ERR

Invalid Code: The 10-bit code received from the channel partner was not a valid code
in the 8B/10B table. This usually means a bit was corrupted in transit, causing a good
code to become unrecognizable. Typically, this also results in a frame error or
corruption of the current channel frame.

x

Disparity Error: The 10-bit code received from the channel partner did not have the
correct disparity. This error is also usually caused by corruption of a good code in
transit, and can result in a frame error or bad data if it occurs while a frame is being
sent.

x

No Data in Frame: A channel frame is received with no data. x
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 60
PG046 July 25, 2012

http://www.xilinx.com

Status, Control, and the Transceiver Interface
Simplex Initialization

Simplex cores do not depend on signals from an Aurora 8B/10B channel for initialization.
Instead, the TX and RX sides of simplex channels communicate their initialization state
through a set of sideband initialization signals. The initialization ports are called ALIGNED,
BONDED, VERIFY, and RESET; one set for the TX side with a TX_ prefix, and one set for the
RX side with an RX_ prefix. The bonded port is only used for multi-lane cores.

There are two ways to initialize a simplex module using the sideband initialization signals:

• Send the information from the RX sideband initialization ports to the TX sideband
initialization ports

• Drive the TX sideband initialization ports independently of the RX sideband
initialization ports using timed initialization intervals

Both initialization methods are described in the following sections.

Using a Back Channel

If there is no communication channel available from the RX side of the connection to the TX
side, using a back channel is the safest way to initialize and maintain a simplex channel.
There are very few requirements on the back channel; it need only deliver messages to the
TX side to indicate which of the sideband initialization signals is asserted when the signals
change.

The Aurora example design included in the example_design directory with simplex Aurora
8B/10B cores shows a simple side channel that uses three or four I/O pins on the device.

Using Timers

For some systems a back channel is not possible. In these cases, serial channels can be
initialized by driving the TX simplex initialization with a set of timers. The timers must be
designed carefully to meet the needs of the system because the average time for
initialization depends on many channel specif ic conditions such as clock rate, channel
latency, skew between lanes, and noise. C_ALIGNED_TIMER, C_BONDED_TIMER, and
C_VERIFY_TIMER are timers used for assertion of TX_ALIGNED, TX_BONDED, and TX_VERIFY
signals, respectively. These timers use worst-case values obtained from corner case
functional simulations and implemented in the <component name> module.

FRAME_ERR

Truncated Frame: A channel frame is started without ending the previous channel
frame, or a channel frame is ended without being started. x

Invalid Control Character: The protocol engine receives a control character that it
does not recognize. x

Invalid UFC Message Length: A UFC message is received with an invalid length. x

Table 3-12: Error Signals in Simplex Cores (Cont’d)

Signal Description TX RX
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 61
PG046 July 25, 2012

http://www.xilinx.com

Reset and Power Down
Some of the initialization logic in the Aurora 8B/10B module uses watchdog timers to
prevent deadlock. These watchdog timers are used on the RX side of the channel, and can
interfere with the proper operation of TX initialization timers. If the RX simplex module goes
from ALIGNED, BONDED or VERIFY, to RESET, make sure that it is not because the TX logic
spend too much time in one of those states. If a particularly long timer is required to meet
the needs of the system, the watchdog timers can be adjusted by editing the lane_init_sm
module and the channel_init_sm module. For most cases, this should not be necessary and
is not recommended.

Aurora 8B/10B channels normally re-initialize only in the case of failure. When there is no
back channel available, event-triggered re-initialization is impossible for most errors
because it is usually the RX side that detects a failure and the TX side that must handle it.
The solution for this problem is to make timer-driven TX simplex modules re-initialize on a
regular basis. If a catastrophic error occurs, the channel is reset and running again after the
next re-initialization period arrives. System designers should balance the average time
required for re-initialization against the maximum time their system can tolerate an
inoperative channel to determine the optimum re-initialization period for their systems.

Reset and Power Down

Reset
The reset signals on the control and status interface are used to set the Aurora 8B/10B core
to a known starting state. Resetting the core stops any channels that are currently
operating; after reset, the core attempts to initialize a new channel.

On full-duplex modules, the RESET signal resets both the TX and RX sides of the channel
when asserted on the positive edge of USER_CLK. On simplex modules, the resets for the
TX and RX channels are separate. TX_SYSTEM_RESET resets TX channels;
RX_SYSTEM_RESET resets RX channels. The TX_SYSTEM_RESET is separate from the
TX_RESET and RX_RESET signals used on the simplex sideband interface.

Power Down
This is an active-High signal. When POWER_DOWN is asserted, the GTP/GTX transceivers in
the Aurora 8B/10B core are turned off, putting them into a non-operating low-power mode.
When POWER_DOWN is deasserted, the core automatically resets. Be careful when asserting
this signal on cores that use TX_OUT_CLK (see the Clock Interface and Clocking, page 28).
TX_OUT_CLK stops when the GTP/GTX transceivers are powered down. See the 7 Series
FPGAs GTX Transceivers User Guide, the Virtex-6 FPGA GTX Transceivers User Guide, or the
Spartan-6 FPGA GTP Transceivers User Guide for the device being used for details about
powering down GTP/GTX transceivers.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 62
PG046 July 25, 2012

http://www.xilinx.com

Reset and Power Down
Timing
Figure 3-33 shows the timing for the RESET and POWER_DOWN signals. In a quiet
environment, tCU is generally less than 800 clocks; in a noisy environment, tCU can be much
longer.

X-Ref Target - Figure 3-33

Figure 3-33: Reset and Power Down Timing

USER_CLK

RESET, POWER_DOWN

CHANNEL_UP

t1 t2 t3 t4 tcutcu-1
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 63
PG046 July 25, 2012

http://www.xilinx.com

Chapter 4

Core Features

Using the Scrambler/Descrambler
A 16-bit additive scrambler/descrambler, implemented for data, is available in the
<component name>_scrambler.v[hd] module. It ensures non-occurrence of repetitive
data over long periods of time. The scrambler and descrambler are synchronized based on
reception of the clock compensation characters. DO_CC must be transmitted to load the
seed value of the scrambler and descrambler simultaneously. Thus, the
standard_cc_module that comes with the Aurora example design should always be
used, if the Use Scrambler/Descrambler option is selected in the GUI.

Using CRC
A 16-bit or 32-bit CRC, implemented for user data, is available in the
<component name>_crc_top.v[hd] module. CRC16 is generated for 2-byte designs,
and CRC32 is generated for 4-byte designs. The CRC_VALID and CRC_PASS_FAIL_N
signals indicate the result of a received CRC with a transmitted CRC (see Table 4-1).

Using ChipScope Pro Analyzer Cores
The ICON and VIO cores in the ChipScope™ Pro Analyzer help to debug and validate the
design in boards. These cores are provided with the Aurora 8B/10B core. Select the Use
ChipScope Pro Analyzer checkbox from the core GUI to include it as a part of the example

Table 4-1: CRC Module Ports

Port Name Direction Description

CRC_VALID Output Active-High signal that samples the CRC_PASS_FAIL_N signal.

CRC_PASS_FAIL_N Output CRC_PASS_FAIL_N is asserted High when the received CRC
matches the transmitted CRC. This signal is not asserted if the
received CRC is not equal to the transmitted CRC. The
CRC_PASS_FAIL_N signal should always be sampled with the
CRC_VALID signal.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 64
PG046 July 25, 2012

http://www.xilinx.com

Hot-Plug Logic
design. Alternatively, the USE_CHIPSCOPE parameter in the <component name>_exdes
module can be set to 1 before running implementation.

Hot-Plug Logic
Hot-plug logic in Aurora 8B/10B designs with Virtex®-7, Kintex™-7, and Virtex-6 FPGAs is
based on the received clock compensation characters. If clock compensation characters are
not received in a predetermined time, the hot-plug logic resets the core and the transceiver.
The clock compensation module must be used for Aurora 8B/10B designs with Virtex-7,
Kintex-7, and Virtex-6 FPGAs. To disable hot-plug logic, set the ENABLE_HOTPLUG
parameter to 0 in the <component name>/<component name>_hotplug.v[hd]
module. Hot-plug logic then does not repeatedly reset the core when looking for clock
compensation characters in the received data.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 65
PG046 July 25, 2012

http://www.xilinx.com

Chapter 5

Customizing and Generating the Core
This chapter includes information on using Vivado™ Design Suite tools to customize and
generate the core.

GUI
The Aurora 8B/10B core can be customized to suit a wide variety of requirements using the
Vivado IP Catalog. This chapter details the available customization parameters and how
these parameters are specif ied within the IP catalog interface.

Using the IP Catalog
The Aurora 8B/10B IP Customizer is presented when you select the Aurora 8B/10B core in
the Vivado IP Catalog. Each numbered item in Figure 5-1 corresponds to its respective
section that describes the purpose of the feature.

IP Customizer

Figure 5-1 shows the customizer. The left side displays a representative block diagram of
the Aurora 8B/10B core as currently configured. The right side consists of user-configurable
parameters.

The second page of the GUI is shown in Figure 5-2, page 68 for Virtex®-7/Kintex™-7 FPGA
GTX/GTH transceivers.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 66
PG046 July 25, 2012

http://www.xilinx.com

GUI
X-Ref Target - Figure 5-1

Figure 5-1: Aurora 8B/10B IP Customizer
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 67
PG046 July 25, 2012

http://www.xilinx.com

GUI
Component Name

Enter the top-level name for the core in this text box. Illegal names are highlighted in red
until they are corrected. The core uses <Component Name>_exdes as the top-level
module.

Default: aurora_8b10b_v8_2

Lane Assignment

Refer to the diagram in the information area in Figure 5-2. Two rows or four boxes represent
a GTX/GTH Quad in Virtex-7 and Kintex-7 FPGAs. Each active box represents an available
GTX or GTH transceiver.

Aurora Lanes

Select the number of lanes (GTX/GTH transceivers) to be used in the core. The valid range is
from 1 to 16 and depends on the target device selected.

Default: 1

X-Ref Target - Figure 5-2

Figure 5-2: Second GUI Page for Virtex-7/Kintex-7 FPGA GTX/GTH Transceivers
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 68
PG046 July 25, 2012

http://www.xilinx.com

GUI
Lane Width

Select the byte width of the GTX/GTH transceivers used in the core. This parameter defines
the TXDATA/RXDATA width of the transceiver and the user interface data bus width as well.
Valid values are 2 and 4.

Default: 2

Interface

Select the type of datapath interface used for the core. Select Framing to use an
AXI4-Stream interface that allows encapsulation of data frames of any length. Select
Streaming to use a simple word-based interface with a data valid signal to stream data
through the Aurora 8B/10B channel. See User Interface, page 37 for more information.

Default: Framing

Dataflow Mode

Select the options for direction of the channel the Aurora 8B/10B core supports. Simplex
Aurora 8B/10B cores have a single, unidirectional serial port that connects to a
complementary simplex Aurora 8B/10B core. Available options are RX-only Simplex, TX-only
Simplex, and Duplex. See Status, Control, and the Transceiver Interface, page 56 for more
information.

Default: Duplex

Back Channel

Select the options for Back Channel only for Simplex Aurora cores; Duplex Aurora cores do
not require this option. The available options are:

• Sidebands

• Timer

Default: Sidebands

Note: There is no functionality difference between RX-only Simplex design with Sidebands option
and RX-only Simplex design with Timer option.

Flow Control

Select the required option to add flow control to the core. User flow control (UFC) allows
applications to send a brief, high-priority message through the Aurora 8B/10B channel.
Native flow control (NFC) allows full duplex receivers to regulate the rate of the data send
to them. Immediate mode allows idle codes to be inserted within data frames while
completion mode only inserts idle codes between complete data frames.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 69
PG046 July 25, 2012

http://www.xilinx.com

GUI
Available options are listed below (see Flow Control, page 69 for more information):

• None

• UFC

• Immediate Mode - NFC

• Completion Mode - NFC

• UFC + Immediate Mode - NFC

• UFC + Completion Mode - NFC

Default: None

Line Rate

Enter a floating-point value in gigabits per second within the valid range. This determines
the unencoded bit rate at which data is transferred over the serial link. The aggregate data
rate of the core is (0.8 x line rate) x Aurora 8B/10B lanes.

Default: 3.125 Gbps

GT REFCLK (MHz)

Select a reference clock frequency for the transceiver from the drop-down list. Reference
clock frequencies are given in megahertz (MHz), and depend on the line rate selected. For
best results, select the highest rate that can be practically applied to the reference clock
input of the target device.

Default: 156.250 MHz

GT REFCLK1 and GT REFCLK2

Select reference clock sources for the GTX or GTH Quad from the drop-down list in this
section.

• Default: GT REFCLK Source1 - GTXQ0; GT REFCLK Source2 - None for Virtex-7/Kintex-7
FPGA GTX transceivers

• Default: GT REFCLK Source1 - GTHQ0; GT REFCLK Source2 - None for Virtex-7/Kintex-7
FPGA GTH transceivers

• GTXQ0 and GTHQ0 change based on the selected device and package.

Column Used

Select the appropriate column of transceivers used from the drop-down list. The column
used is enabled only for Virtex-7 and Kintex-7 devices and is disabled for all other devices.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 70
PG046 July 25, 2012

http://www.xilinx.com

Output Generation
Default: left

Use Scrambler/Descrambler

Select to include the 16-bit additive scrambler/descrambler to the Aurora 8B/10B design.
See Using the Scrambler/Descrambler in Chapter 4 for more information.

Default: Unchecked

Use CRC

Select to include the CRC for user data. See Using CRC in Chapter 4 for more information.

Default: Unchecked

Use ChipScope Pro Analyzer

Select to add ChipScope™ Pro cores to the Aurora 8B/10B core. This option provides a
debugging interface that shows the core status signals in the ChipScope Pro analyzer tool.

Default: Unchecked

Generate

Click Generate to generate the core. The modules for the Aurora 8B/10B core are written to
the Vivado tool project directory using the same name as the top level of the core. See
Output Generation, page 71 for details about the example_design directory and files.

Output Generation
The customized Aurora 8B/10B core is delivered as a set of HDL source modules in the
language selected in the Vivado™ tool project with supporting script and documentation
f iles. These files are arranged in a predetermined directory structure under the project
directory name provided to the Vivado IP catalog when the project is created as shown in
this section.

Directory and File Structure
<project directory>topdirectory

Top-level project directory; name is user-defined.

 <project directory>/<component name>
Top-level core directory; contains the core deliverables and the readme file

 <component name>/doc
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 71
PG046 July 25, 2012

http://www.xilinx.com

Output Generation
Product documentation

 <component name>/example_design
Example design and user constraints f iles

/example_design/cc_manager
Verilog/VHDL design f ile for the clock compensation block

 /example_design/clock_module
Verilog/VHDL design f ile for the clocking blocks

 /example_design/gt
Verilog/VHDL wrapper f iles for the GTP/GTX transceivers

 /example_design/traffic_gen_check
Verilog/VHDL design f iles for the frame generator and checker

 <component name>/implement
Implementation scripts and support f iles

 <component name>/simulation
Simulation test bench and simulation script f iles

 /simulation/functional
Functional simulation f iles

 /simulation/timing
Timing simulation f ile

 <component name>/src
Verilog/VHDL files for the core

Directory and File Contents
The Aurora 8B/10B core directories and their associated files are defined in the following
sections.

<project directory>
The project directory contains the Vivado tool project f iles.

<project directory>/<component name>
This top-level core directory contains the core deliverables and the readme file.

Table 5-1: project Directory

Name Description

<project directory>

<component name>.v[hd] Aurora core top-level module

Back to Top
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 72
PG046 July 25, 2012

http://www.xilinx.com

Output Generation
<component name>/doc
The doc directory contains the product documentation.

<component name>/example_design
The example_design directory contains the example design and constraints f iles
provided with the core.

.

/example_design/cc_manager
The cc_manager directory contains the clock compensation source file.

Table 5-2: component name Directory

Name Description

<project directory>/<component name>

aurora_8b10b_v8_2_readme.txt Release notes f ile

Back to Top

Table 5-3: doc Directory

Name Description

<component name>/doc

aurora_8b10b_v8_2_vinfo.html Version information file

Back to Top

Table 5-4: example_design Directory

Name Description

<component name>/example_design

<component name>_exdes.v[hd] Example design top-level f ile

<component name>_exdes.xdc Aurora 8B/10B example design XDC
constraints

<component name>_reset_logic.v[hd] Aurora 8B/10B reset logic

v7_icon.ngc

v7_vio.ngc

Virtex-7/Kintex-7 FPGA NGC files for
the debug cores compatible with the
ChipScope™ Pro Analyzer tool

Back to Top
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 73
PG046 July 25, 2012

http://www.xilinx.com

Output Generation
/example_design/clock_module
The clock_module directory contains the clock module source f ile.

/example_design/gt
The gt directory contains the Verilog/VHDL wrapper files for the GTP/GTX transceivers.

/example_design/traffic_gen_check
The traffic_gen_check directory contains frame generator and frame checker modules
for Aurora 8B/10B core.

Table 5-5: cc_manager Directory

Name Description

<component name>/example_design/cc_manager

<component name>_standard_cc_module.v[hd] Clock compensation module source
file

Back to Top

Table 5-6: clock_module Directory

Name Description

<component name>/example_design/clock_module

<component name>_clock_module.v[hd] Clock module source f ile

Back to Top

Table 5-7: gt Directory

Name Description

<component name>/example_design/gt

<component name>_gtx.v[hd]

<component name>_transceiver_wrapper.v[hd]

Verilog/VHDL wrapper files for the
transceiver

Back to Top

Table 5-8: traffic_gen_check Directory

Name Description

<component name>/example_design/traffic_gen_check

<component name>_frame_check.v[hd]

<component name>_frame_gen.v[hd]

Example design traff ic generation
and checker f iles

Back to Top
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 74
PG046 July 25, 2012

http://www.xilinx.com

Output Generation
<component name>/implement
The implement directory contains scripts and support f iles for both Linux and Windows
operating systems. These scripts automate the process of synthesizing and implementing
the files needed for the example design.

<component name>/simulation
The simulation directory contains the test bench files for the example design.

/simulation/functional
The functional directory contains functional simulation scripts provided with the core.

Table 5-9: implement Directory

Name Description

<component name>/implement

synplify_pro.prj

implement_synplify.sh

implement_synplify.bat

Synplify Pro script f iles for Aurora 8B/10B example design

Back to Top

Table 5-10: simulation Directory

Name Description

<component name>/simulation

<component name>_tb.v[hd] Test bench f ile for simulating the
example design

Back to Top

Table 5-11: functional Directory

Name Description

<component name>/simulation/functional

simulate_isim.bat ISim macro f ile that compiles the example design sources and the
structural simulation model. The demonstration test bench then runs
the functional simulation to completion in the Microsoft Windows
operating system.

simulate_isim.sh ISim macro f ile that compiles the example design sources and the
structural simulation model. The demonstration test bench then runs
the functional simulation to completion in the Linux operating
system.

wave_isim.tcl ISim macro f ile that opens a Wave window with top-level signals.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 75
PG046 July 25, 2012

http://www.xilinx.com

Output Generation
/simulation/timing
The timing directory contains the timing simulation scripts provided with the core.

<component name>/src
The src directory contains the source files related to the Aurora 8B/10B example design.

simulate_mti.do

simulate_mti.sh

simulate_mti.bat

ModelSim macro f iles that compile the example design sources and
the structural simulation model. The demonstration test bench then
runs the functional simulation to completion.

wave_mti.do ModelSim macro file that opens a Wave window.

simulate_ncsim.sh

simulate_ncsim.bat

wave_ncsim.sv

Cadence IES simulator scripts that run functional simulation of the
example design.

Back to Top

Table 5-12: timing Directory

Name Description

<component name>/simulation/timing

simulate_mti.do

simulate_mti.sh

simulate_mti.bat

ModelSim macro files that compile the post place and route netlist
of the example design along with standard delay format (SDF) back
annotation then runs timing simulation to completion

Back to Top

Table 5-11: functional Directory

Name Description
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 76
PG046 July 25, 2012

http://www.xilinx.com

Output Generation
Table 5-13: src Directory

Name Description

<component name>/src

<component name>_aurora_lane.v[hd]

<component name>_aurora_pkg.vhd (VHDL Only)

<component name>_axi_to_ll.v[hd]

<component name>_channel_err_detect.v[hd]

<component name>_channel_init_sm.v[hd]

<component name>_chbond_count_dec.v[hd]

<component name>_err_detect.v[hd]

<component name>_global_logic.v[hd]

<component name>_idle_and_ver_gen.v[hd]

<component name>_lane_init_sm.v[hd]

<component name>_ll_to_axi.v[hd]

<component name>_rx_ll.v[hd]

<component name>_rx_ll_pdu_datapath.v[hd]

<component name>_sym_dec.v[hd]

<component name>_sym_gen.v[hd]

<component name>_tx_ll.v[hd]

<component name>_tx_ll_control.v[hd]

<component name>_tx_ll_datapath.v[hd]

Aurora 8B/10B
source f iles

Back to Top
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 77
PG046 July 25, 2012

http://www.xilinx.com

Chapter 6

Constraining the Core

Design Constraints
Aurora 8B/10B example design constraints can be grouped into any of these six categories:

1. GT reference clock constraint

The Aurora 8B/10B core uses one minimum reference clock and two maximum reference
clocks for the design. The number of GT reference clocks is derived based on transceiver
selection (that is, lane assignment in the second page XGUI). The GT REFCLK value
selected in the f irst page of the XGUI is used to constrain the GT reference clock. The
create_clock XDC command is used to constrain GT reference clocks.

2. TXOUTCLK clock constraint

TXOUTCLK is generated by the GT transceiver based on the applied reference clock and
the divider settings of the GT transceiver. The Aurora 8B/10B core calculates the
TXOUTCLK frequency based on the line rate and lane width. The create_clock XDC
command is used to constrain TXOUTCLK.

3. GT reference clock pins constraints

The positive differential clock input pin (ends with _P) and negative differential clock
input pin (ends with _N) are used as the GT reference clock. The set_property XDC
command is used to constrain the GT reference clock pins.

4. System clock constraint

The Aurora 8B/10B example design uses a debounce circuit to sample GT_RESET
asynchronously clocked by the system clock. It is recommended to have the system
clock frequency lower than the GT reference clock frequency. The create_clock XDC
command is used to constrain the system clock.

5. GT location constraint

The set_property XDC command is used to constrain the GT transceiver location. This is
provided as a tool tip on the second page of the XGUI.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 78
PG046 July 25, 2012

http://www.xilinx.com

Design Constraints
6. False paths

The system clock and user clock are not related to one another. No phase relationship
exists between those two clocks. Those two clocks domains need to set as false paths.
The set_false_path XDC command is used to constrain the false paths.

The generated example design is configured with a 2-byte lane width, 6.6 Gb/s line rate,
and a 660.0 MHz reference clock. The XDC file generated for the XC7VX690T-FFG1761-2
device is given below:

XDC generated for xc7vx690t-ffg1761-2 device
660.0MHz GT Reference clock constraint
create_clock -name GT_REFCLK1 -period 1.515 [get_pins IBUFDS_GTE2_CLK1/O]

####################### GT reference clock LOC #######################
set_property LOC AW9 [get_ports GTHQ1_N]
set_property LOC AW10 [get_ports GTHQ1_P]

TXOUTCLK Constraint: Value is selected based on the line rate (6.6 Gbps) and lane
width (2-Byte)
create_clock -name tx_out_clk_i -period 3.03 [get_pins aurora_module_i/
gt_wrapper_i/GTE2_INST/gthe2_i/TXOUTCLK]

USER_CLK Constraint : Value is selected based on the line rate (6.6 Gbps) and lane
width (2-Byte)
create_clock -name user_clk_i -period 3.03 [get_pins clock_module_i/user_clk_buf_i/
O]

50 MHz Board Clock Constraint
create_clock -name init_clk_i -period 20.000 [get_pins reset_logic_i/
init_clk_ibufg_i/O]

No cross clock domain analysis. Domains are not related ##############
set_false_path -from [get_clocks init_clk_i] -to [get_clocks user_clk_i]
set_false_path -from [get_clocks user_clk_i] -to [get_clocks init_clk_i]
set_false_path -from [get_clocks init_clk_i] -to [get_clocks tx_out_clk_i]
set_false_path -from [get_clocks tx_out_clk_i] -to [get_clocks init_clk_i]

############################### GT LOC ###################################
set_property LOC GTHE2_CHANNEL_X1Y4 [get_cells aurora_module_i/gt_wrapper_i/
GTE2_INST/gthe2_i]

LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 79
PG046 July 25, 2012

http://www.xilinx.com

Chapter 7

Detailed Example Design

Directory and File Contents
See Output Generation, page 71 for the directory structure and f ile contents of the example
design.

Example Design
Each Aurora 8B/10B core includes an example design (<component name>_exdes) that
uses the core in a simple data transfer system. For more details about the example_design
directory, see Output Generation, page 71.

Figure 7-1 illustrates the block diagram of the example design for a full-duplex core.
Table 7-1 describes the ports of the example design.

The example designs uses all the interfaces of the core. Simplex cores without a TX or RX
interface have no FRAME_GEN or FRAME_CHECK block, respectively. The frame generator
produces a constant stream of data for cores with a streaming interface.

X-Ref Target - Figure 7-1

Figure 7-1: Example Design

Demonstration
Test Bench

(<component name>_tb)

Aurora
8B/10B

TX

RX

FRAME_GEN

FRAME_CHECK

TX

RX

FRAME_GEN

FRAME_CHECK

Aurora Example Design

Aurora Example Design

Aurora
8B/10B
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 80
PG046 July 25, 2012

http://www.xilinx.com

Example Design
Using the scripts provided in the implement subdirectory, the example design can be used
to quickly get an Aurora 8B/10B design up and running on a board, or perform a quick
simulation of the module. The design can also be used as a reference for the connecting the
trickier interfaces on the Aurora 8B/10B core, such as the clocking interface.

When using the example design on a board, be sure to edit the
<component name>_exdes.xdc f ile in the example_design subdirectory to supply the
correct pins and clock constraints.

Table 7-1: Example Design I/O Ports

Port Direction Description

RXN[0:m-1] Input Negative differential serial data input pin.

RXP[0:m-1] Input Positive differential serial data input pin.

TXN[0:m-1] Output Negative differential serial data output pin.

TXP[0:m-1] Output Positive differential serial data output pin.

ERR_COUNT[0:7] Output Count of the number of data words received by the frame
checker that did not match the expected value.

RESET Input Reset signal for the example design. The reset is debounced
using a USER_CLK signal generated from the reference clock
input.

<reference clock(s)> Input The reference clocks for the Aurora 8B/10B core are brought
to the top level of the example design. See Clock Interface
and Clocking, page 28 for details about the reference clocks.

<core error signals> Output The error signals from the Aurora 8B/10B core's Status and
Control interface are brought to the top level of the example
design and registered. See Status, Control, and the
Transceiver Interface, page 56 for details.

<core channel up signals> Output The channel up status signals for the core are brought to the
top level of the example design and registered. Full-duplex
cores have a single channel up signal; simplex cores have one
for each channel direction supported. See Status, Control,
and the Transceiver Interface, page 56 for details.

<core lane up signals> Output The lane up status signals for the core are brought to the top
level of the example design and registered. Cores have a lane
up signal for each GTP/GTX transceiver they use. Simplex
cores have a separate lane up signal per GTP/GTX transceiver
they use for each channel direction supported. See Status,
Control, and the Transceiver Interface, page 56 for details.

<simplex initialization
signals>

Input/
Output

If the core is a simplex core, its sideband initialization ports
are registered and brought to the top level of the example
design. See Status, Control, and the Transceiver Interface,
page 56 for details.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 81
PG046 July 25, 2012

http://www.xilinx.com

Implementation
Implementation

Overview
The quick start example consists of the following components:

• An instance of the Aurora 8B/10B core generated using the default parameters

° Full-duplex with a single GTP/GTX transceiver

° AXI4-Stream interface

• A demonstration test bench to simulate two instances of the example design

The Aurora 8B/10B example design has been tested with the Vivado™ Design Suite for
synthesis and Mentor Graphics ModelSim for simulation.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 82
PG046 July 25, 2012

http://www.xilinx.com

Appendix A

Verification, Compliance, and
Interoperability

Aurora 8B/10B cores are verif ied for protocol compliance using an array of automated
hardware and simulation tests. The core comes with an example design implemented using
a linear feedback shift register (LFSR) for understanding/verif ication of the core features.

The Aurora 8B/10B core is verif ied using the Aurora 8B/10B Bus Functional Model (BFM)
and proprietary custom test benches. The Aurora 8B/10B BFM verif ies the protocol
compliance along with interface level checks and error scenarios. An automated test system
runs a series of simulation tests on the most widely used set of design configurations
chosen at random. Aurora 8B/10B cores are also tested in hardware for functionality,
performance, and reliability using Xilinx® GTX transceiver demonstration boards. Aurora
verif ication test suites for all possible modules are continuously being updated to increase
test coverage across the range of possible parameters for each individual module.

The test board used for verif ication is KC724.

Simulation
The Aurora 8B/10B core provides a quick way to simulate and observe the behavior of the
core using the provided example design. Prior to simulating the core, the functional
(gate-level) simulation models must be generated. You must compile all source f iles in the
following directories to a single library as shown in Table A-1. Refer to the Synthesis and
Verification Design Guide for the Vivado tool for instructions on how to compile simulation
libraries.

Table A-1: Required Simulation Libraries

HDL Library Source Directories

Verilog UNISIMS_VER
<Xilinx dir>/verilog/src/unisims
<Xilinx dir>/ secureip/<SIMULATOR>

VHDL UNISIM
<Xilinx dir>/vhdl/src/unisims
<Xilinx dir>/ secureip/<SIMULATOR>

Notes:
1. SIMULATOR can be ModelSim.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 83
PG046 July 25, 2012

http://www.xilinx.com

Simulation
The Aurora 8B/10B core provides a command line script to simulate the example design. To
run a VHDL or Verilog ModelSim simulation of the Aurora 8B/10B core, use the following
instructions:

1. Launch the ModelSim simulator and set the current directory to:

<project directory>/aurora_8b10b_v8_2/simulation/functional

2. Set the MTI_LIBS variable:

modelsim> setenv MTI_LIBS <path to compiled libraries>

3. Launch the simulation script:

modelsim> do simulate_mti.do

The ModelSim script compiles the example design and test bench, and adds the relevant
signals to the wave window. After the design is compiled and the wave window is displayed,
run the simulation to see the Aurora 8B/10B core power up, followed by Aurora 8B/10B
channel initialization and data transfer. Data transfer begins after the CHANNEL_UP signal
goes High.

Because cores are generated one at a time, simulating simplex cores requires additional
steps. To simulate a simplex TX or simplex RX core, perform these steps:

1. Generate the core for simulation.

2. Generate a complementary simplex core. Go to the implement directory of the first core
generated.

3. Set the environment variable SIMPLEX_PARTNER to point to the directory for the
complementary core.

4. Run the script according to the instructions in this section.

Note: The top-level module name of the simplex design and simplex partner design should be
similar. For example, if the top-level module name of the TX simplex design is simplex_201_tx,
then the top-level module name of the simplex partner should be rx_simplex_201_tx.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 84
PG046 July 25, 2012

http://www.xilinx.com

Appendix B

Migrating

Introduction
This appendix describes migrating legacy (LocalLink based) Aurora cores to the
AXI4-Stream Aurora core.

For information on migrating to the Vivado™ Design Suite, see UG911, Vivado Design Suite
Migration Methodology Guide [Ref 6].

Prerequisites
• Vivado v2012.2 tool build containing the Aurora 8B/10B v8.2 core supporting the

AXI4-Stream protocol

• Familiarity with the Aurora directory structure

• Familiarity with running the Aurora example design

• Basic knowledge of the AXI4-Stream and LocalLink protocols

• Latest product guide (PG046) of the core with the AXI4-Stream updates

• Legacy data sheet (DS637) and data sheet (UG353) for reference

• Migration guide (this appendix)

Limitations
This section outlines the limitations of the Aurora 8B/10B core for AXI4-Stream support. The
user has to take care of two limitations while interfacing the Aurora 8B/10B core with the
AXI4-Stream compliant interface core:

1. The Aurora 8B/10B core supports only continuous aligned streams and continuous
unaligned streams. The position bytes are valid only at the end of packet. In other words,
TKEEP is sampled only at TLAST assertion.

2. The AXI4-Stream protocol supports transfers with zero data at the end of packet, but the
Aurora 8B/10B core expects at least one byte to be valid at the end of packet. In other
words, TKEEP should contain a non-zero value during TLAST assertion.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 85
PG046 July 25, 2012

http://www.xilinx.com

Overview of Major Changes
Overview of Major Changes
The major change to the core is the addition of the AXI4-Stream interface:

• The user interface is modif ied from the legacy LocalLink (LL) to AXI4-Stream

• All AXI4-Stream signals are active High, whereas LocalLink signals are active Low

• The user interface in the example design and design top file is AXI4-Stream

• A new shim module is introduced in the AXI4-Stream Aurora core to convert
AXI4-Stream signals to LL and LL back to AXI4-Stream

° The AXI4-Stream to LL shim on the transmit converts all AXI4-Stream signals to LL

° The shim deals with active-High to active-Low conversions of signals between
AXI4-Stream and LocalLink

° Generation of SOF_N and REM bits mapping is handled by the shim

° The LL to AXI4-Stream shim on the receive converts all LL signals to AXI4-Stream

• Each interface (PDU, UFC, and NFC) has a separate AXI4-Stream to LL and LL to
AXI4-Stream shim instantiated from the design top file

• Frame generator and checker has respective LL to AXI4-Stream and AXI4-Stream to LL
shim instantiated in the Aurora example design to interface with the generated
AXI4-Stream design

Block Diagram
Figure B-1 shows an example Aurora design using the legacy LocalLink interface. Figure B-2
shows an example Aurora design using the AXI4-Stream interface.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 86
PG046 July 25, 2012

http://www.xilinx.com

Migration Steps
Migration Steps
Generate an AXI4-Stream Aurora core from the Vivado Design Suite v2012.2.

Simulate the Core
1. Run the vsim -do simulate_mti.do f ile from the /simulation/functional

directory.

2. ModelSim GUI launches and compiles the modules.

X-Ref Target - Figure B-1

Figure B-1: Legacy Aurora Example Design
X-Ref Target - Figure B-2

Figure B-2: AXI4-Stream Aurora Example Design

LL to AXI4_S

AXI4-Stream
Aurora Design

AXI4-Stream Aurora Design Top

AXI4_S to LL

Existing LL based
Design
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 87
PG046 July 25, 2012

http://www.xilinx.com

Migration Steps
3. The wave_mti.do f ile loads automatically and populates AXI4-Stream signals.

4. Allow the simulation to run. This might take some time.

a. Initially lane up is asserted.

b. Channel up is then asserted and the data transfer begins.

c. Data transfer from all flow control interfaces now begins.

d. Frame checker continuously checks the received data and reports for any data
mismatch.

5. A 'TEST PASS' or 'TEST FAIL' status is printed on the ModelSim console providing the
status of the test.

Implement the Core
1. Run ./implement.sh (for Linux) from the /implement directory.

2. The implement script compiles the core, runs through the Vivado tool, and generates a
bit f ile and netlist for the core.

Integrate to an Existing LocalLink-based Aurora Design
1. The Aurora core provides a light-weight 'shim' to interface to any existing LL based

interface. The shims are delivered along with the core from the aurora_8b10b_v8_2
version of the core.

2. See Figure B-2, page 87 for the emulation of an LL Aurora core from an AXI4-Stream
Aurora core.

3. Two shims <component name>_ll_to_axi.v[hd] and
<component name>_axi_to_ll.v[hd] are provided in the src directory of the
AXI4-Stream Aurora core.

4. Instantiate both the shims along with <component name>.v[hd] in the existing LL
based design top.

5. Connect the shim and AXI4-Stream Aurora design as shown in Figure B-2, page 87.

6. The latest AXI4-Stream Aurora core can be plugged into any existing LL design
environment.

GUI Changes
Figure B-3 shows the AXI4-Stream signals in the IP Symbol diagram.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 88
PG046 July 25, 2012

http://www.xilinx.com

Migration Steps

X-Ref Target - Figure B-3

Figure B-3: AXI4-Stream Signals
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 89
PG046 July 25, 2012

http://www.xilinx.com

Appendix C

Debugging
This appendix provides some useful debugging tips.

See Additional Resources in Appendix F for additional information helpful to the debugging
progress.

Lanes and Channel Do Not Come Up in Simulation

• The quickest way to debug these problems is to view the signals from one of the GT
instances that is not working.

• Make sure that the GT reference clock and user clocks are all toggling.

• Check that TXOUTCLK from the GT wrapper is toggling. If it is not toggling, you might
have to wait longer for the PMA to finish locking. You should typically wait about 6 µs
to 9 µs for lane up and channel up. The wait time is longer for simplex designs.

• Make sure that TXN and TXP are toggling. If they are not, make sure that your wait time
is long enough and that you are not driving the TX signal with another signal.

• Check the PLL_NOT_LOCKED signal on your design. If it is held active-High, your
Aurora module cannot initialize.

• Be sure the POWER_DOWN signal is not asserted.

• Make sure the TXN and TXP signals from each GT transceiver are connected to the
appropriate RXN and RXP signals from the corresponding GT transceiver on the other
side of the channel.

• When simulating Verilog, you need to instantiate the glbl module and use it to drive
the power_up reset at the beginning of the simulation to simulate the reset that
occurs after configuration. Hold this reset for a few cycles.

The following code provides an example:

//Simulate the global reset that occurs after configuration at
 //the beginning
 //of the simulation.
 assign glbl.GSR = gsr_r;
 assign glbl.GTS = gts_r;

 initial
 begin
 gts_r = 1'b0;
 gsr_r = 1'b1;
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 90
PG046 July 25, 2012

http://www.xilinx.com

 #(16*CLOCKPERIOD_1);
 gsr_r = 1'b0;
 end

• If you are using a multilane channel, make sure all the GT transceivers on each side of
the channel are connected in the correct order.

Channel Comes Up in Simulation But Not in Hardware

• Make sure the REFCLK, INIT CLK, RESETs (GT transceiver reset and Aurora reset), and
transceivers are constrained exactly matching to the hardware connections in the XDC
file.

• Both RESET inputs are active-Low. Make sure the hardware takes care of the RESET
polarity.

• Make sure the REFCLK frequency is exactly the same as for what the Aurora core is
generated.

• If the REFCLK is driven from a synthesizer, make sure the synthesizer is stable (locked).

• Make sure the cable connection from TXP/TXN to RXP/RXN is proper.

• If there are RXNOTINTABLE errors observed from the GT transceiver, validate the link
using IBERT. Make sure there is no BER in the channel. Use the sweep test in the IBERT
tool and use the same GT transceiver attributes that provide “Zero” bit error rate (BER)
in IBERT.

Channel Comes Up in Simulation but S_AXI_TX_TVALID is Never Asserted
(Never Goes High)

• If your module includes flow control but you are not using it, make sure the request
signals are not driven Low. S_AXI_NFC_REQ and S_AXI_UFC_TX_REQ are
active-High. If they are High, S_AXI_TX_TVALID stays Low because the channel is
allocated for flow control.

• Make sure WARN_CC and DO_CC are not being driven High continuously. When DO_CC
is High on a positive clock edge, the channel is used to send clock correction
characters, and S_AXI_TX_TVALID is deasserted.

• If NFC is enabled, make sure the design on the other side of the channel does not send
an NFC XOFF message. This cuts off the channel for normal data until the other side
sends an NFC XON message to turn the flow on again.

Bytes and Words Are Lost While Traveling Through the Aurora Channel

• If the AXI4-Stream interface is used, make sure data is written correctly. The most
common mistake is to assume words are written without looking at TVALID. Also
remember that the TKEEP signal must be used to indicate which bytes are valid when
TLAST is asserted. TKEEP is ignored when TLAST is not asserted (active-High).
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 91
PG046 July 25, 2012

http://www.xilinx.com

• Make sure you are reading correctly from the Rx interface. Data and framing signals are
only valid when TVALID is asserted.

Problems Occur While Compiling the Design

• Be sure to include all f iles from the src directory when compiling.

• When using VHDL, include the aurora_pkg.vhd f ile in your synthesis.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 92
PG046 July 25, 2012

http://www.xilinx.com

Appendix D

Generating a Wrapper File from the
Transceiver Wizard

The transceiver attributes play a vital role in the functionality of the Aurora 8B/10B core. Use
the latest Transceiver Wizard to generate the transceiver wrapper file.

Xilinx strongly recommends that you update the transceiver wrapper file in Design Suite
tool releases when the transceiver wizard has been updated but the Aurora core has not.

This appendix provides instructions to generate these transceiver wrapper files:

• Case 1: Virtex-7/Kintex-7 FPGA Wrapper Compatibility, page 94

• Case 2: Virtex-6 FPGA GTX Wrapper, page 95

• Case 3: Spartan-6 FPGA GTP Wrapper, page 96
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 93
PG046 July 25, 2012

http://www.xilinx.com

Case 1: Virtex-7/Kintex-7 FPGA Wrapper Compatibility
Case 1: Virtex-7/Kintex-7 FPGA Wrapper
Compatibility
Use these steps to generate the transceiver wrapper f ile using the 7 Series FPGAs
Transceivers Wizard:

1. Using the Vivado IP catalog, run the latest version of the 7 Series FPGAs Transceivers
Wizard. Make sure the Component Name of the transceiver wizard matches the
Component Name of the Aurora 8B/10B core.

2. Select the protocol template from the following based on the number of lane(s) and lane
width:

° Aurora 8B/10B single lane 2 byte

° Aurora 8B/10B single lane 4 byte

° Aurora 8B/10B multi lane 2 byte

° Aurora 8B/10B multi lane 4 byte

3. Change the Line Rate in both TX and RX based on the application requirement.

4. Select the Reference Clock from the drop-down box menu in both TX and RX based on
the application requirement.

5. Select transceiver(s) and the clock source(s) based on the application requirement.

6. Keep all other settings as default.

7. Generate the core.

8. Replace the <component name>_gt.v[hd] f ile in the example_design/gt
directory available in the Aurora 8B/10B core with the generated
<component name>_gt.v[hd] f ile generated from the 7 Series FPGAs Transceivers
Wizard.

The transceiver settings for the Aurora 8B/10B core are up to date now.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 94
PG046 July 25, 2012

http://www.xilinx.com

Case 2: Virtex-6 FPGA GTX Wrapper
Case 2: Virtex-6 FPGA GTX Wrapper
Use these steps to generate the transceiver wrapper f ile using the Virtex®-6 FPGA GTX
Transceiver Wizard.

1. Using the Vivado IP catalog, run the latest version of the Virtex-6 FPGA GTX Transceiver
Wizard. Make sure the Component Name of the transceiver wizard matches the
Component Name of the Aurora 8B/10B core.

2. Select the protocol template from the following based on number of lane(s) and lane
width:

° Aurora 2-byte single lane

° Aurora 4-byte single lane

° Aurora 2-byte multi-lane

° Aurora 4-byte multi-lane

3. Change the Line Rate in both TX and RX based on the application requirement.

4. Select the Reference Clock from the drop-down box menu in both TX and RX based on
the application requirement.

5. Select transceiver(s) and the clock source(s) based on the application requirement.

6. Keep all other settings as default.

7. Generate the core.

8. Replace the <component name>_gtx.v[hd] f ile in the example_design/gt
directory available in the Aurora 8B/10B core with the generated
<component name>_gtx.v[hd] f ile generated from the Virtex-6 FPGA GTX
Transceiver Wizard.

The transceiver settings for the Aurora 8B/10B core are up to date now.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 95
PG046 July 25, 2012

http://www.xilinx.com

Case 3: Spartan-6 FPGA GTP Wrapper
Case 3: Spartan-6 FPGA GTP Wrapper
Use these steps to generate the transceiver wrapper f ile using the Spartan®-6 FPGA GTP
Transceiver Wizard.

1. Using the Vivado IP catalog, run the latest version of Spartan-6 FPGA GTP Transceiver
Wizard. Make sure the Component Name of the transceiver wizard matches the
Component Name of the Aurora 8B/10B core.

2. Select transceiver(s) and the clock source(s) based on application requirement.

3. Select the protocol template to either aurora single lane or aurora multi lane based on
the number of lane(s).

4. Change the Target Line Rate in Gbps based on application requirement.

5. Select the Reference Clock from the drop-down box menu based on application
requirement.

6. Select RXCHARISCOMMA and RXCHARISK ports in 8B/10B Optional Ports, if not selected
by default.

7. Select TXBUFSTATUS port in Synchronization and Clocking, if not selected by default.

8. Keep all other settings as default.

9. Generate the core.

10. Replace the <component name>_tile.v[hd] f ile in the example_design/gt
directory available in the Aurora 8B/10B core with the generated
<component name>_tile.v[hd] f ile generated from the Spartan-6 FPGA GTP
Transceiver Wizard.

The transceiver tile settings for the Aurora 8B/10B core are up to date now.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 96
PG046 July 25, 2012

http://www.xilinx.com

LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 97
PG046 July 25, 2012

Appendix E

Handling Timing Errors
This appendix describes how to handle timing errors resulting from transceivers that are far
apart.

The Aurora 8B/10B core allows the user to select any combination of transceiver(s) during
core generation. The design parameters that affect the timing performance are:

• Line rate

• Transceiver datapath width (2/4 bytes) and

• Number of unused transceivers between two selected transceivers

As a result of one or more of these parameters, timing errors can occur because:

• CHBONDO does not meet timing

• RXCHARISCOMMA, RXCHARISK, and RXCHANISALIGNED do not meet timing

The following suggestions can be attempted to meet timing:

1. Select the transceivers consecutively.

Use the Lane Assignment in the Aurora 8B/10B GUI to select the transceivers during core
generation.

Note: Most of the timing errors are due to unused transceivers and channel bonding signals
connections among transceivers.

2. Use the Vivado™ tool Strategies options provided for implementation in the Vivado™
Design Suite.

See the Vivado tool documentation [Ref 6] for instructions on how to use Vivado
Strategies.

http://www.xilinx.com

Appendix F

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

See the Aurora Solutions Center for support specific to the Aurora 8B/10B core.

References
For detailed information and updates about the Aurora core, see the following document,
located on the Aurora product page at www.xilinx.com/aurora:

• UG058, Aurora 8B/10B Bus Functional Model User Guide
(Contact: auroramkt@xilinx.com)

These documents provide supplemental material useful with this product guide. Users
should be familiar with these documents prior to generating an Aurora 8B/10B core:

1. SP002, Aurora 8B/10B Protocol Specification

2. AMBA AXI4-Stream Protocol Specification
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 98
PG046 July 25, 2012

http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support/documentation/ipcommunicationnetwork_serialinterface_aurora8b10b.htm
http://www.xilinx.com/support
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/answers/21263.htm
mailto:auroramkt@xilinx.com
http://www.xilinx.com/aurora/

Technical Support
3. UG476, 7 Series FPGAs GTX/GTH Transceivers User Guide

4. UG366, Virtex-6 FPGA GTX Transceivers User Guide

5. UG386, Spartan-6 FPGA GTP Transceivers User Guide

6. Vivado™ tool documentation: www.xilinx.com/cgi-bin/docs/
rdoc?v=2012.2;t=vivado+docs

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,

Date Version Revision

07/25/12 1.0 Initial Xilinx release. This release supports core version 8.2
with Vivado Design Suite v2012.2. This document replaces
UG766 and DS797.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 99
PG046 July 25, 2012

http://www.xilinx.com/support/documentation/7_series_user_guides.htm
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/virtex-6_user_guides.htm
http://www.xilinx.com/support/documentation/spartan-6_user_guides.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+docs
http://www.xilinx.com

Notice of Disclaimer
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.
© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.
LogiCORE IP Aurora 8B/10B v8.2 www.xilinx.com 100
PG046 July 25, 2012

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

	LogiCORE IP Aurora 8B/10B v8.2
	Table of Contents
	IP Facts
	Overview
	Feature Summary
	Applications
	Licensing and Ordering Information

	Product Specification
	Standards Compliance
	Performance
	Maximum Frequencies
	Latency
	Throughput

	Resource Utilization
	Port Descriptions

	Designing with the Core
	General Design Guidelines
	Use the Example Design as a Starting Point
	Know the Degree of Difficulty
	Keep It Registered
	Recognize Timing Critical Signals
	Use Supported Design Flows
	Make Only Allowed Modifications

	Clocking
	Clock Interface and Clocking
	Clock Compensation

	User Interface
	Top-Level Architecture
	Framing Interface
	Streaming Interface

	Flow Control
	Native Flow Control
	User Flow Control

	Status, Control, and the Transceiver Interface
	Full-Duplex Cores
	Simplex Cores

	Reset and Power Down
	Reset
	Power Down
	Timing

	Core Features
	Using the Scrambler/Descrambler
	Using CRC
	Using ChipScope Pro Analyzer Cores
	Hot-Plug Logic

	Customizing and Generating the Core
	GUI
	Using the IP Catalog

	Output Generation
	Directory and File Structure
	Directory and File Contents
	<project directory>
	<project directory>/<component name>
	<component name>/doc
	<component name>/example_design
	/example_design/cc_manager
	/example_design/clock_module
	/example_design/gt
	/example_design/traffic_gen_check
	<component name>/implement
	<component name>/simulation
	/simulation/functional
	/simulation/timing
	<component name>/src

	Constraining the Core
	Design Constraints

	Detailed Example Design
	Directory and File Contents
	Example Design
	Implementation
	Overview

	Verification, Compliance, and Interoperability
	Simulation

	Migrating
	Introduction
	Prerequisites
	Limitations

	Overview of Major Changes
	Block Diagram
	Migration Steps
	Simulate the Core
	Implement the Core
	Integrate to an Existing LocalLink-based Aurora Design
	GUI Changes

	Debugging
	Generating a Wrapper File from the Transceiver Wizard
	Case 1: Virtex-7/Kintex-7 FPGA Wrapper Compatibility
	Case 2: Virtex-6 FPGA GTX Wrapper
	Case 3: Spartan-6 FPGA GTP Wrapper

	Handling Timing Errors
	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Revision History
	Notice of Disclaimer

