LogiCORE IP AXI to APB Bridge (v1.01.a)

Product Guide

PG073 July 25, 2012

Table of Contents

IP Facts

Chapter 1: Overview

Feature Summary	5
Unsupported Features	5
Licensing and Ordering Information	6

Chapter 2: Product Specification

Standards Compliance	8
Performance	8
Resource Utilization and Maximum Frequencies	8
Port Descriptions	11
Register Descriptions	14

Chapter 3: Designing with the Core

General Design Guidelines	15
Clocking	20
Resets	20
Timing Diagrams	20

Chapter 4: Customizing and Generating the Core

|--|

Appendix A: Migrating

Appendix B: Debugging

E XILINX.

Appendix C: Additional Resources

Xilinx Resources	26
Solution Centers	26
References	26
Technical Support	27
Revision History	27
Notice of Disclaimer	27

IP Facts

Introduction

The Advanced Microcontroller Bus Architecture (AMBA®) Advanced eXtensible Interface (AXI) to Advanced Peripheral Bus (APB) Bridge translates AXI4-Lite transactions into APB transactions. It functions as a slave on the AXI4-Lite interface and as a master on the APB interface. The AXI to APB Bridge main use model is to connect the APB slaves with AXI masters.

Features

The Xilinx AXI to APB Bridge is a soft IP core with these features:

- AXI interface is based on the AXI4-Lite specification
- APB interface is based on the APB3 specification, supports optional APB4 selection
- Supports 1:1 (AXI:APB) synchronous clock ratio
- Connects as a 32-bit slave on 32-bit AXI4-Lite interface
- Connects as a 32-bit master on 32-bit APB3/APB4 interface
- Supports optional data phase time out

LogiCORE IP Facts Table						
	Core Specifics					
Supported Device Family ⁽¹⁾	Zynq [™] -7000 ⁽²⁾ , Virtex®-7 ⁽³⁾ , Kintex [™] -7 ⁽³⁾ , Artix [™] -7 ⁽³⁾ , Virtex-6 ⁽⁴⁾ , Spartan®-6 ⁽⁵⁾					
Supported User Interfaces	AXI4-Lite, APB3, APB4					
Resources	See Table 2-1. through Table 2-5					
	Provided with Core					
Design Files	VHDL					
Example Design	Not Provided					
Test Bench	Not Provided					
Constraints File	None					
Simulation Model	None					
Supported S/W Driver	N/A					
	Tested Design Flows ⁽⁶⁾					
Design Entry	Xilinx Platform Studio (XPS) Vivado Design Suite v2012.2 ⁽⁷⁾					
Simulation	Mentor Graphics ModelSim					
Synthesis	Xilinx Synthesis Technology (XST) Vivado Synthesis					
Support						
Provided by Xilinx @ www.xilinx.com/support						

Notes:

- 1. For a complete list of supported derivative devices, see <u>Embedded Edition Derivative Device Support</u>.
- 2. Supported in ISE Design Suite implementations only.
- 3. For more information, see 7 Series FPGAs Overview [Ref 3].
- 4. For more information, see Virtex-6 Family Overview [Ref 3].
- 5. For more information, see Spartan-6 Family Overview [Ref 3].
- 6. For the supported versions of the tools, see the <u>Xilinx Design</u> <u>Tools: Release Notes Guide</u>.
- 7. Supports only 7 series devices.

Chapter 1

Overview

The main function of the LogiCORE[™] IP Advanced eXtensible Interface (AXI) to Advanced Peripheral Bus (APB) Bridge core is to connect APB slaves to AXI masters. It translates AXI4-Lite transactions into APB transactions.

This chapter contains these sections:

- Feature Summary
- Unsupported Features
- Licensing and Ordering Information

Feature Summary

The 32-bit AXI4-Lite interface on the AXI to APB Bridge core is based on the AMBA AXI and ACE Protocol Specification v2.0 [Ref 1]. The core functions as a 32-bit slave on this interface.

The core's 32-bit APB interface is based on the AP3 interface as described in the AMBA APB Protocol Specification v2.0 [Ref 1]. The core supports the optional APB4 interface as well. The core functions as a 32-bit master on the APB3/APB4 interface.

The AXI to APB Bridge core supports a 1:1 (AXI:APB) synchronous clock ratio as well as data phase timeout.

Unsupported Features

AXI4-Lite Slave Interface

These features are not supported in the AXI to APB Bridge core:

- 64-bit width is not supported
- When write and read transfers are both requested, the read request, which has higher priority, is accepted first.

Licensing and Ordering Information

This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado Design Suite and ISE Design Suite Embedded Edition tools under the terms of the <u>Xilinx End</u><u>User License</u>.

Information about this and other Xilinx LogiCORE IP modules is available at the <u>Xilinx</u> <u>Intellectual Property</u> page. For information on pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your <u>local Xilinx sales representative</u>.

Product Specification

XILINX

The AXI to APB Bridge translates AXI4-Lite transactions into APB transactions. The bridge functions as a slave on the AXI4-Lite interface and as a master on the APB interface.

The AXI to APB Bridge block diagram, shown in Figure 2-1, is described in subsequent sections.

Figure 2-1: AXI to APB Bridge Block Diagram

AXI4-Lite Slave Interface

The AXI4-Lite Slave Interface module provides a bidirectional slave interface to the AXI. The AXI address and data bus widths are always fixed to 32 bits. When both write and read transfers are simultaneously requested on AXI4-Lite, the read request is given more priority than the write request. This module also contains the data phase time out logic for generating an OK response on the AXI interface when an APB slave does not respond.

APB Master Interface

The APB Master module provides the APB master interface on the APB. This interface can be APB3 or APB4, which can be selected by setting the generic C_M_APB_PROTOCOL. When C_M_APB_PROTOCOL=apb4, the M_APB_PSTRB and M_APB_PPROT signals are driven at the APB interface. The APB address and data bus widths are fixed to 32 bits.

Standards Compliance

The AXI to APB Bridge core is based on the AMBA® AXI4-Lite specification and the APB3/ APB4 specification.

Performance

This section details the performance information for various core configurations.

Latency

The core is configured for the best possible configuration for calculating read latency. The read latency from read address valid (S_AXI_ARVALID) to the data beat (S_AXI_RVALID) of AXI to APB Bridge is three clock cycles.

Resource Utilization and Maximum Frequencies

Because the AXI to APB Bridge module used with other design pieces in the FPGA, the resource utilization and timing numbers reported in this section are estimates only. When the AXI to APB Bridge is combined with other pieces of the FPGA design, the utilization of FPGA resources and timing of the design varies from the results reported here.

The AXI to APB Bridge resource utilization benchmarks for a variety of parameter combinations measured with Virtex-6 FPGA as the target device using the ISE® tool are shown in Table 2-1.

Table 2-1:Performance and Resource Utilization Benchmarks on the Virtex-6 FPGA(xc6vlx130t-ff1156-1)

Parameter Values (other parameters at default value)			De	evice Resourc	es	Performance
C_APB_NUM_ SLAVES	C_M_APB _PROTOCOL	C_DPHASE _TIMEOUT	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
1	apb3	0	30	146	120	200
1	apb3	16	39	152	153	200
1	apb4	256	49	167	160	200

The AXI to APB Bridge resource utilization benchmarks for a variety of parameter combinations measured with Spartan-6 FPGA as the target device using the ISE tool are shown in Table 2-2.

Table 2-2:	Performance and Resource Utilization Benchmarks on the Spartan-6 FPGA
(xc6slx100	t-fgg900-2)

Parameter Values (other parameters at default value)			De	vice Resour	ces	Performance
C_APB_NUM_ SLAVES	C_M_APB PROTOCOL	C_DPHASE _TIMEOUT	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
1	apb3	0	40	146	138	150
1	apb3	16	47	152	158	150
1	apb4	256	52	168	164	150

The AXI to APB Bridge resource utilization benchmarks for a variety of parameter combinations measured with Virtex-7 FPGA as the target device using the ISE tool are shown in Table 2-3.

Table 2-3: Performance and Resource Utilization Benchmarks on the Virtex-7 FPGA (xc7v855tffg1157-3)

Parameter Values (other parameters at default value)			De	evice Resourc	ces	Performance
C_APB_NUM_ SLAVES	C_M_APB _PROTOCOL	C_DPHASE _TIMEOUT	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
1	apb3	0	35	145	133	200
1	apb3	16	39	151	143	200
1	apb4	256	44	166	169	200

The AXI to APB Bridge resource utilization benchmarks for a variety of parameter combinations measured with an Artix-7 FPGA as the target device using the ISE tool are shown in Table 2-4.

Table 2-4:	Performance and Resource Utilization Benchmarks on the Artix-7 and Zynq-7000 [Artix-7
Based Fabr	ic] Devices (xc7a350tfbg676-3)

Parameter Values (other parameters at default value)			De	evice Resourc	es	Performance
C_APB_NUM_ SLAVES	C_M_APB _PROTOCOL	C_DPHASE _TIMEOUT	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
1	apb3	0	36	145	135	200
1	apb3	16	40	151	153	200
1	apb4	256	41	165	154	200

The AXI to APB Bridge resource utilization benchmarks for a variety of parameter combinations measured with a Kintex-7 FPGA as the target device using the ISE tool are shown in Table 2-5.

Table 2-5:	Performance and Resource Utilization Benchmarks on the Kintex-7 and Zynq-7000 [Kintex-7
Based Fabr	ic] FPGA (xc7k410tffg676-3)

Parameter Values	(other parameters	s at default value)	De	evice Resourc	Performance	
C_APB_NUM_ SLAVES	C_M_APB _PROTOCOL	C_DPHASE _TIMEOUT	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
1	apb3	0	34	145	133	200
1	apb3	16	38	151	143	200
1	apb4	256	43	166	169	200

Port Descriptions

Table 2-6 shows the I/O signals of the AXI to APB Bridge.

Table 2-6: I/O Signal Description

Port	Signal Name	Interface	I/O	Initial State	Description
		AXI Int	erface S	System Si	gnals
P1	S_AXI_ACLK	System	Ι	-	AXI clock
P2	S_AXI_ARESETN	System	Ι	-	AXI reset, active low
		AXI Write	Addres	s Channe	l Signals
P3	S_AXI_AWADDR[C_S_AXI_ ADDR_WIDTH-1:0]	AXI4-Lite	Ι	-	AXI Write address. The write address bus gives the address of the first transfer in a write burst transaction
P4	S_AXI_AWPROT[2:0] ⁽¹⁾	AXI4-Lite	I	-	Protection type. This signal indicates the normal, privileged, or secure protection level of the write transaction and whether the transaction is a data access or an instruction access. The default value is normal non secure data access
P5	S_AXI_AWVALID	AXI4-Lite	Ι	-	Write address valid. This signal indicates that valid write address and control information are available
P6	S_AXI_AWREADY	AXI4-Lite	0	0	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals
		AXI Writ	e Data	Channel S	Signals
Ρ7	S_AXI_WDATA[C_S_AXI_ DATA_WIDTH-1:0]	AXI4-Lite	Ι	-	Write data bus
P8	S_AXI_WSTB[C_S_AXI_ DATA_WIDTH/8-1:0] ⁽¹⁾	AXI4-Lite	Ι	-	Write strobes. This signal indicates which byte lanes to update in memory
P10	S_AXI_WVALID	AXI4-Lite	Ι	-	Write valid. This signal indicates that valid write data and strobes are available
P11	S_AXI_WREADY	AXI4-Lite	0	0	Write ready. This signal indicates that the slave can accept the write data
	•	AXI Write F	Respons	se Chann	el Signals
P12	S_AXI_BRESP[1:0]	AXI4-Lite	0	0	Write response. This signal indicates the status of the write transaction
P13	S_AXI_BVALID	AXI4-Lite	0	0	Write response valid. This signal indicates that a valid write response is available
P14	S_AXI_BREADY	AXI4-Lite	Ι	-	Response ready. This signal indicates that the master can accept the response information

Table 2-6: I/O Signal Description (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description				
		AXI Read	Address	s Channe	l Signals				
P15	S_AXI_ARADDR[C_S_AXI_ ADDR_WIDTH -1:0]	AXI4-Lite	Ι	-	Read address. The read address bus gives the initial address of a read burst transaction				
P16	S_AXI_ARPROT[2:0] ⁽¹⁾	AXI4-Lite	Ι	-	Protection type. This signal provides protection unit information for the read transaction. The default value is normal non secure data access				
P17	S_AXI_ARVALID	AXI4-Lite	Ι	-	Read address valid. When High, this signal indicates that the read address and control information is valid and remains stable until the address acknowledgement signal, S_AXI_ARREDY, is High.				
P18	S_AXI_ARREADY	AXI4-Lite	0	0	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals.				
	AXI Read Data Channel Signals								
P19	S_AXI_RDATA[C_S_AXI_DAT A_WIDTH -1:0]	AXI4-Lite	0	0	Read data bus				
P20	S_AXI_RRESP[1:0]	AXI4-Lite	0	0	Read response. This signal indicates the status of the read transfer.				
P21	S_AXI_RVALID	AXI4-Lite	0	0	Read valid. This signal indicates that the required read data is available and the read transfer can complete				
P22	S_AXI_RREADY	AXI4-Lite	Ι	-	Read ready. This signal indicates that the master can accept the read data and response information				
			APB S	ignals					
P23	M_APB_PCLK	APB	0	0	APB Clock - S_AXI_ACLK is tied to M_APB_PCLK				
P24	M_APB_PRESETN	APB	0	0	APB Reset, active low - S_AXI_ARESETN is tied to M_APB_PRESETN				
P25	M_APB_PADDR[C_M_APB_ ADDR_WIDTH -1:0]	APB	0	0	Address. This is the APB address bus and is fixed to 32-bit.				
P26	M_APB_PPROT[2:0] ⁽¹⁾	АРВ	0	0	Protection type. This signal indicates the normal, privileged, or secure protection level of the transaction and whether the transaction is a data access or an instruction access.				
P27	M_APB_PSEL[C_APB_NUM_ SLAVES -1:0]	АРВ	0	0	Select. The AXI to APB bridge generates this signal to each peripheral bus slave. It indicates that the slave device is selected and that a data transfer is required. There is a M_APB_PSEL signal for each slave.				

Table 2-6: I/O Signal Description (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description
P28	M_APB_PENABLE	APB	0	0	Enable. This signal indicates the second and subsequent cycles of an APB transfer
P29	M_APB_PWRITE	АРВ	0	0	Direction. This signal indicates an APB write access when High and an APB read access when Low.
P30	M_APB_PWDATA[C_M_APB_ DATA_WIDTH -1:0]	АРВ	0	0	Write data. This bus is driven by the AXI to APB bridge during write cycles when M_APB_PWRITE is High. This bus is fixed to 32 bits wide.
P31	M_APB_PSTRB[C_M_APB_ DATA_WIDTH/8-1:0] ⁽¹⁾	АРВ	0	0	Write strobes. This signal indicates which byte lanes to update during a write transfer. Write strobes must not be active during a read transfer.
P32	M_APB_PREADY[C_APB_ NUM_SLAVES -1:0]	APB	Ι	-	Ready. The APB slave uses this signal to extend an APB transfer.
P33	M_APB_PRDATA[C_M_APB_ DATA_WIDTH -1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed to 32-bits wide.
P34	M_APB_PRDATA2[C_M_APB _DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P35	M_APB_PRDATA3[C_M_APB _DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P36	M_APB_PRDATA4[C_M_APB _DATA_WIDTH-1:0]	APB	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P37	M_APB_PRDATA5[C_M_APB _DATA_WIDTH-1:0]	APB	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P38	M_APB_PRDATA6[C_M_APB _DATA_WIDTH-1:0]	APB	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P39	M_APB_PRDATA7[C_M_APB _DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P40	M_APB_PRDATA8[C_M_APB _DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P41	M_APB_PRDATA9[C_M_APB _DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.

Table 2-6: I/O Signal Description (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description
P42	M_APB_PRDATA10[C_M_AP B_DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P43	M_APB_PRDATA11[C_M_AP B_DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P44	M_APB_PRDATA12[C_M_AP B_DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P45	M_APB_PRDATA13[C_M_AP B_DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P46	M_APB_PRDATA14[C_M_AP B_DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P47	M_APB_PRDATA15[C_M_AP B_DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P48	M_APB_PRDATA16[C_M_AP B_DATA_WIDTH-1:0]	АРВ	Ι	-	Read Data. The selected slave drives this bus during read cycles when M_APB_PWRITE is Low. This bus is fixed at 32 bits wide.
P49	M_APB_PSLVERR[C_APB_N UM_SLAVES-1:0]	APB	Ι	-	This signal indicates a transfer failure.

Notes:

1. This signal is only used when C_M_APB_PROTOCOL = apb4.

Register Descriptions

There are no registers in the AXI to APB Bridge.

Chapter 3

Designing with the Core

This chapter includes guidelines and additional information to make designing with the core easier. It contains these sections:

- General Design Guidelines
- Clocking
- Resets
- Timing Diagrams

General Design Guidelines

This section provides guidelines on the following topics:

- Design Parameters
- Parameter I/O Signal Dependencies
- Memory Mapping
- Read and Write Ordering
- AXI Response Signaling
- Endianness
- Address/Data Translation
- APB4 Operation
- Bridge Error Conditions
- Bridge Timeout Condition

EXILINX.

Design Parameters

Table 3-1 shows the design parameters of the AXI to APB Bridge.

Inferred Parameters

In addition to the parameters listed in Table 3-1, there are also parameters that are inferred for each AXI interface in the EDK tools. Through the design, these EDK-inferred parameters control the behavior of the AXI Interconnect. For a complete list of the interconnect settings related to the AXI interface, see DS768, *AXI Interconnect IP Data Sheet* [Ref 3].

Table 3-1: Design Parameters

Generic	Feature/Description	Parameter Name	Allowable Values	Default Values	VHDL Type
		System Parameter			
G1	Target FPGA family	C_FAMILY	virtex6, spartan6, virtex7, kintex7, artix7, zynq	virtex6	string
		AXI Parameters			
G2	AXI address bus width	C_S_AXI_ADDR_WIDTH	32	32	integer
G3	AXI data bus width	C_S_AXI_DATA_WIDTH	32	32	integer
G4	AXI interface type	C_S_AXI_PROTOCOL	axi4lite	axi4lite ⁽¹⁾	string
G5	AXI Base address	C_BASEADDR	Valid Address ⁽²⁾	0xFFFFFFFF ⁽⁴⁾	std_logic _vector
G6	AXI High address	C_HIGHADDR	Valid Address ⁽³⁾	0x00000000 ⁽⁴⁾	std_logic _vector
		APB Parameters			L
G7	APB address bus width	C_M_APB_ADDR_WIDTH	32	32	integer
G8	APB data bus width	C_M_APB_DATA_WIDTH	32	32	integer
G9	Number of APB slaves connected to AXI to APB Bridge	C_APB_NUM_SLAVES	1 to 16	1	integer
G10	APB interface type	C_M_APB_PROTOCOL	apb3,apb4	apb3	string
	АХ	(I to APB Bridge Parameter	S		
G11	Data phase time out value in AXI clocks	C_DPHASE_TIMEOUT	0,16,32,64, 128,256	0	integer
G12	Slave <i>x</i> Base Address ⁽⁵⁾	C_S_AXI_RNGx_BASEADDR	Valid address ⁽²⁾	0xFFFFFFFF ⁽⁴⁾	std_logic _vector

Table 3-1: Design Parameters (Cont'd)

Generic	Feature/Description	Parameter Name	Allowable Values	Default Values	VHDL Type
G13	Slave <i>x</i> High Address ⁽⁵⁾	C_S_AXI_RNGx_HIGHADDR	Valid address ⁽³⁾	0x00000000 ⁽⁴⁾	std_logic _vector

Notes:

- 1. This generic is needed by the system. Only AXI4-Lite interface is supported by AXI to APB Bridge.
- 2. The user must set the values. The C_BASEADDR must be a multiple of the range, where the range is C_HIGHADDR C_BASEADDR + 1.
- 3. The range specified by C_HIGHADDR C_BASEADDR must be a power of 2 and greater than or equal to 0xFFF.
- 4. An invalid default value is specified to ensure that the actual value is set; that is, if the value is not set, a compiler error is generated.
- 5. x is the APB slave number. Its value can range from 2 through 16.

Parameter - I/O Signal Dependencies

The dependencies between the AXI to APB Bridge core design parameters and I/O signals are described in Table 3-2. In addition, when certain features are parameterized out of the design, the related logic is no longer a part of the design. The unused input signals and related output signals are set to a specified value.

Generic or Port	Name	Affects	Depends	Relationship Description					
	Design Parameters								
G10	C_M_APB_PROTOCOL	P4, P16, P26, P31	-	When C_M_APB_PROTOCOL = apb4, the signals C_M_APB_PPROT and $C_M_APB_PWSTB$ are used.					
G9	C_APB_NUM_SLAVES	P27,P32, P34, P35, P36, P37, P38, P39, P40, P41, P42, P43, P44, P45, P46, P47, P48, P49	-	C_APB_NUM_SLAVES decides the width of the ports M_APB_PSEL, M_APB_PREADY and M_APB_PSLVERR. The existence of M_APB_PRDATA buses also depends on C_APB_NUM_SLAVES.					
		I/O	Signals						
P4	S_AXI_AWPROT[2:0]	-	G10	This signal is used when C_M_APB_PROTOCOL = apb4					
P16	S_AXI_ARPROT[2:0]	-	G10	This signal is used when C_M_APB_PROTOCOL = apb4					
P26	M_APB_PPROT[2:0]	-	G10	This signal is driven when C_M_APB_PROTOCOL = apb4					
P27	-	G9		The width of the signal is decided by C_APB_NUM_SLAVES					

Table 3-2: Parameter-I/O Signal Dependencies

E XILINX.

Generic or Port	Name	Affects	Depends	Relationship Description
P31	M_APB_PWSTB[3: 0]	-	G10	This signal is driven when C_M_APB_PROTOCOL = apb4
P32	-	G9		The width of the signal is decided by C_APB_NUM_SLAVES
P34	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 2
P35	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 3
P36	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 4
P37	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 5
P38	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 6
P39	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 7
P40	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 8
P41	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 9
P42	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 10
P43	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 11
P44	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 12
P45	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 13
P46	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 14
P47	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 15
P48	-	G9		The signal is valid only when C_APB_NUM_SLAVES = 16
P49	-	G9		The width of the signal is decided by C_APB_NUM_SLAVES

Table 3-2: Parameter-I/O Signal Dependencies (Cont'd)

Memory Mapping

The AXI memory map and the APB memory map are one single complete 32-bit (4 GB) memory space. The AXI to APB Bridge does not modify the address for APB; hence, the address that is presented on the APB is exactly as received on the AXI.

Read and Write Ordering

When a read request and a write request are issued simultaneously (S_AXI_AWVALID/ S_AXI_WVALID and S_AXI_ARVALID are asserted High) from the AXI4-Lite interface, the AXI to APB Bridge gives priority to the read request over the write request. When both write and read requests are always valid, the write request is initiated on the APB after the read is requested on the APB.

AXI Response Signaling

EXOKAY is never used.

Endianness

Both AXI and APB are little-endian.

Address/Data Translation

No address/data translation/conversion from AXI4-Lite to APB takes place inside AXI to APB Bridge. The write/read address from AXI4-Lite is passed to APB address. AXI4-Lite write data is passed on to APB and APB read data is passed on to AXI4-Lite read data.

APB4 Operation

When C_M_APB_PROTOCOL is set to apb4, the AXI to APB Bridge drives M_APB_PSTRB and M_APB_PPROT signals. S_AXI_WSTRB is passed to M_APB_PSTRB during write transfers. S_AXI_ARPROT is driven on M_APB_PPROT during a read transfer and S_AXI_AWPROT is driven on M_APB_PPROT during a write transfer.

Bridge Error Conditions

M_APB_PSLVERR on APB results with the response of SLVERR on the AXI4-Lite interface. The AXI to APB Bridge never generates DECERR.

Bridge Timeout Condition

A data phase timeout is implemented inside the AXI to APB Bridge, when C_DPHASE_TIMEOUT is not equal to 0. When a request is issued from AXI, the AXI to APB Bridge translates this request into corresponding APB transfer. If there is no response to the

request by the APB slave (M_APB_PREADY is not asserted), the AXI to APB bridge waits for the number of clock cycles mentioned in C_DPHASE_TIMEOUT, then responds to AXI with OK response (and drives zeroes on S_AXI_RDATA during read transfer).

Clocking

The AXI to APB Bridge is a synchronous design and uses S_AXI_ACLK at both AXI and APB interfaces. M_APB_PCLK is driven by the AXI to APB Bridge (tied to S_AXI_ACLK).

Resets

S_AXI_ARESETN is a synchronous, active-Low reset input that resets the AXI to APB Bridge upon assertion. The S_AXI_ARESETN signal is also used to reset the APB interface. M_APB_PRESETN is driven by the AXI to APB Bridge (tied to S_AXI_ARESETN).

Timing Diagrams

The timing diagram shown in Figure 3-1 illustrates the AXI to APB Bridge operation for various read and write transfers. This diagram shows that when both write and read requests are active, the read request is given higher priority.

s_axi_aclk	ותתתון	mmmm		սուսու	սուղուղ
s_axi_aresetn					
s_axi_awaddr	(682D76B0	(0000000)	(68 (00000000	(6AAFAF44	L X
s_axi_awvalid					
s_axi_awready	828				
s_axi_wdata	0000000	(685E (00000000	(9D)00000000		
s_axi_wvalid					
s_axi_wready					
s_axi_bresp	0				
s_axi_bvalid					
s_axi_bready					
s_axi_araddr	(8C (000000	100 (8C35BF7-	4 (0000 (8D53E0B4	X0000000	
s_axi_arvalid					
s_axi_arready				ļſī	
s_axi_rresp	0				
s_axi_rvalid					
s_axi_rdata	0000000	χ χοοσοσοο	<u> </u>		
s_axi_rready			Ш		
m_apb_pclk	עעעעע				տուրուղ
m_apb_presetn					
m_apb_paddr	00 (8C35F850) (682D76B0	(8C)(682D76B0	(8D53E0B4	
m_apb_pwrite					
m_apb_psel	0 (1		<u> /0 /1</u>	<u> </u>	<u>%</u>
m_apb_penable					
m_apb_pwdata	0000000)685E7250	(0000)(9D83CFDD	(00000000)	
m_apb_prdata	0000000	χ χαροσοσοσ	χ χοοοροοοο		<u> </u>
m_apb_pready	0	<u>(1)(1)</u> (1	(0 (1 (0	<u> </u>	11/0
m_apb_pslverr	0				
					D5788_02

Figure 3-1: Read and Write Transfers

www.xilinx.com

Customizing and Generating the Core

This chapter includes information on using the Vivado[™] Design Suite to customize and generate the core.

GUI

The AXI to APB Bridge can be found in AXI_Infrastructure\Interconnect in the Vivado Design Suite graphical user interface (GUI) View by Function pane.

To access the AXI to APB Bridge, do the following:

- Open a project by selecting File > Open Project or create a new project by selecting File > New Project.
- 2. With an open project, choose **AXI_Infrastructure** in the View by Function pane.
- 3. Double-click **AXI APB Bridge** to bring up the AXI APB Bridge GUI.

AXI APB Bridge GUI contains two pages for configuration of the core. The first page contains the basic configurations like number of APB slaves, APB protocol, and time-out value. The second page contains the APB slave base addresses and high addresses. Each slave base address/ high address need to be configured in the Slave addresses page.

Figure 4-1: AXI APB GUI Screenshot

Appendix A

Migrating

For information on migrating to the Vivado[™] Design Suite, see UG911, *Vivado Design Suite Migration Methodology Guide* [Ref 2].

Appendix B

Debugging

See Solution Centers in Appendix C for information helpful to the debugging progress.

Appendix C

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

Solution Centers

See the <u>Xilinx Solution Centers</u> for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

References

These documents provide supplemental material useful with this product guide:

- 1. ARM® AMBA® documentation (<u>infocenter.arm.com/help/index.jsp?topic=/</u> <u>com.arm.doc.ihi0051a/index.html</u>):
 - AMBA AXI and ACE Protocol Specification, AXI3, AXI4, and AXI4-Lite, v2.0
 - AMBA APB Protocol Specification v2.0
- 2. Vivado Design Suite documentation: <u>www.xilinx.com/cgi-bin/docs/</u> <u>rdoc?v=2012.2;t=vivado+userguides</u>
- 3. Xilinx Device and IP documentation (<u>www.xilinx.com/support</u>):
 - DS150, Virtex-6 Family Overview

- DS160, Spartan-6 Family Overview
- DS180, 7 Series FPGAs Overview
- DS768, LogiCORE IP AXI Interconnect Data Sheet

Technical Support

Xilinx provides technical support at <u>www.xilinx.com/support</u> for this LogiCORE[™] IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

See the Embedded Edition Derivative Device Support web page (<u>www.xilinx.com/ise/</u> <u>embedded/ddsupport.htm</u>) for a complete list of supported derivative devices for this core.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
07/25/12	1.0	Initial Xilinx release. This release supports Vivado Design Suite 2012.2 and Xilinx Platform Studio. This document replaces DS788, <i>LogiCORE</i> <i>IP AXI to APB Bridge Data Sheet</i> .

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.