LogiCORE IP AXI Interrupt Controller (INTC) v3.1

Product Guide for Vivado Design Suite

PG099 June 19, 2013

Table of Contents

IP Facts

Chapter 1: Overview	
Feature Summary	. 5
Licensing and Ordering Information	. 6
Chapter 2: Product Specification	
Performance	. 7
Resource Utilization	. 7
Port Descriptions	. 9
Register Space	14
Chapter 3: Designing with the Core	
Clocking	22
Resets	22
Programming Sequence	22
Cascade Mode Interrupt	23
Timing Diagrams	27
Chapter 4: Customizing and Generating the Core	
Vivado Integrated Design Environment	29
Chapter 5: Constraining the Core	
Appendix A: Debugging	
Finding Help on Xilinx.com	35
Debug Tools	37
Interface Debug	37
Appendix B: Additional Resources	
Xilinx Resources	38
References	38
Revision History	39
Revision History	39 39

www.xilinx.com

Introduction

The LogiCORE[™] IP AXI Interrupt Controller (INTC) core receives multiple interrupt inputs from peripheral devices and merges them to a single interrupt output to the system processor. The registers used for storing interrupt vector addresses, checking, enabling and acknowledging interrupts are accessed through the AXI4-Lite interface.

Features

- Register access through the AXI4-Lite interface.
- Fast Interrupt mode.
- Supports up to 32 interrupts. Cascadable to provide additional interrupt inputs.
- Single interrupt output.
- Priority between interrupt requests is determined by vector position. The least significant bit (LSB, in this case bit 0) has the highest priority
- Interrupt Enable Register for selectively enabling individual interrupt inputs
- Master Enable Register for enabling interrupts request output
- Each input is configurable for edge or level sensitivity
- Output interrupt request pin is configurable for edge or level generation
- Configurable Software Interrupt capability

LogiCORE IP Facts Table							
Core Specifics							
Supported Device Family ⁽¹⁾	Zynq®-7000, Virtex®-7, Kintex®-7, Artix®-7						
Supported User Interfaces	AXI4-Lite						
Resources	See Table 2-2 to Table 2-4.						
Provided with Core							
Design Files	RTL						
Example Design	Not Provided						
Test Bench	Not Provided						
Constraints File	Not Applicable						
Simulation Model	Not Applicable						
Supported S/W Driver ⁽²⁾	Standalone						
	Tested Design Flows ⁽³⁾						
Design Entry	Vivado® Design Suite						
Simulation	Mentor Graphics Questa® SIM Vivado Simulator						
Synthesis	Vivado Synthesis						
	Support						
Provided	by Xilinx @ www.xilinx.com/support						

Notes:

- 1. For a complete list of supported devices, see the Vivado IP catalog.
- Standalone driver details can be found in the SDK directory (*<install_directory>*/doc/usenglish/xilinx_drivers.htm). Linux OS and driver support information is available from wiki.xilinx.com.
- 3. For the supported versions of the tools, see the <u>Xilinx Design</u> <u>Tools: Release Notes Guide</u>.

Chapter 1

Overview

The LogiCORE[™] IP AXI Interrupt Controller (INTC) core concentrates multiple interrupt inputs from peripheral devices to a single interrupt output to the system processor. The registers used for checking, enabling, and acknowledging interrupts are accessed through the AXI4-Lite interface.

Figure 1-1 illustrates the top-level block diagram for the AXI INTC core. The three main blocks in the AXI INTC core are described in this section.

Figure 1-1: AXI INTC Core Block Diagram

- **Registers Block**: This block contains control and status registers. They are accessed through the AXI4-lite slave interface. For a detailed description of the AXI INTC core registers, see Register Space.
- **Interrupt Detection**: This block detects the interrupts input. It can be configured for either level or edge detection for each interrupt input.

www.xilinx.com

- Interrupt Generation: This block performs the following functions:
 - Generates the final output interrupt from the interrupt controller core.
 - Interrupt sensitivity is determined by the configuration parameters.
 - Checks for enable conditions in control registers (MER and IER) for interrupt generation.
 - Resets the interrupt after acknowledge.
 - Writes the vector address of the active interrupt in IVR register and enables the IPR register for pending interrupts.

Feature Summary

Interrupt conditions are captured by the AXI INTC core and retained until explicitly acknowledged. Interrupts can be enabled/disabled either globally or individually. The processor is signaled with an interrupt condition when all interrupts are globally enabled, and at least one captured interrupt is individually enabled.

Edge-Sensitive and Level-Sensitive Modes

Two modes of interrupts are supported.

- **Edge-sensitive**: Records a new interrupt condition when an active edge occurs on the interrupt input, and an interrupt condition does not already exist. (The polarity of the active edge, rising or falling, is a per-input option.)
- **Level-sensitive**: Records an interrupt condition any time the input is at the active level and the interrupt condition does not already exist. (The polarity of the active level, High or Low, is as per-input option.)

Figure 1-2: Schemes for Generating Edges

www.xilinx.com

Fast Interrupt Mode

Each device connected to the AXI INTC core can use either normal or fast interrupt mode, based on the latency requirement. Fast interrupt mode can be chosen for designs requiring lower latency. Fast interrupt mode is enabled by setting the corresponding bit in the Interrupt Mode register (IMR). The interrupt is acknowledged through processor_ack ports driven by the processor for interrupts configured in fast interrupt mode. The IRQ generated is cleared based on the processor_ack signal, and the corresponding IAR bit is updated after acknowledgement is received by processor_ack.

Cascade Mode

When the system requires more than 32 interrupts, it is necessary to expand the AXI INTC core capability to handle more interrupt. This can be achieved by setting the parameters related to Cascade Mode in the core. For more description, see Cascade Mode Interrupt in Chapter 3.

Software Interrupts

The core also supports a configurable number of software interrupts, which are primarily intended for inter-processor interrupts in multi-processor systems. These interrupts are triggered by software writing to the Interrupt Status Register.

Licensing and Ordering Information

This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado® Design Suite under the terms of the Xilinx End User License.

Information about this and other Xilinx LogiCORE[™] IP modules is available at the <u>Xilinx</u> <u>Intellectual Property</u> page. For information on pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your <u>local Xilinx sales representative</u>.

Product Specification

The AXI Interrupt Controller (INTC) core receives multiple interrupt inputs from peripheral devices and merges them to a single interrupt output to the system processor. The registers used for storing interrupt vector addresses, checking, enabling and acknowledging interrupts are accessed through the AXI4-Lite interface.

Performance

Performance characterization of this core has been done using the margin system methodology. The details of the margin system characterization methodology is described in Appendix A, IP Characterization and fMAX Margin System Methodology, of the *Vivado Design Suite User Guide: Designing With IP (UG896)* [Ref 5].

Maximum Frequencies

The maximum frequencies for AXI INTC are provided in Table 2-1.

Family	F _{max} (MHz)
Virtex®-7	180
Kintex®-7	150
Artix®-7	120

Table 2-1: Maximum Frequencies

Resource Utilization

The AXI INTC resource utilization for various parameter combinations were measured with Virtex-7 (Table 2-2), Kintex-7 (Table 2-3) and Artix-7 devices (Table 2-4).

Note: Resources numbers for Zynq®-7000 devices are expected to be similar to 7 series device numbers.

Parameter Values						Device Resources			
No. of Peripheral Interrupts	Enable Interrupt Pending Register	Enable Set Interrupt Pending Register	Enable Clear Interrupt Pending Register	Enable Interrupt Vector Register	LUTs	FFs	Slices	Fmax (MHz)	
16	1	1	1	1	247	250	163	508	
32	1	1	1	1	407	427	287	524	
8	1	1	1	1	167	161	84	524	
8	1	1	1	1	167	161	84	524	
32	1	1	1	1	407	427	287	524	
32	1	1	1	1	407	427	287	524	
32	1	1	1	1	407	427	287	524	
8	1	1	1	1	167	161	84	524	
8	1	1	1	1	167	161	84	524	
32	1	1	1	1	407	427	287	524	
8	1	1	1	1	167	161	84	524	
16	1	1	1	1	247	250	163	508	
16	1	1	1	1	247	250	163	508	

Table 2-2:	Resource Utilization	Values for	Virtex-7	FPGAs	(XC7VX485T	ffg1761-3)
------------	-----------------------------	------------	----------	-------	------------	------------

Table 2-3:	Resource	Utilization	Values	for Kintex-	7 FPGAs	(XC7K325T	ffg900-3)
------------	----------	-------------	--------	-------------	---------	-----------	-----------

Parameter Values						Device	Resource	s
No. of Peripheral Interrupts	Enable Interrupt Pending Register	Enable Set Interrupt Pending Register	Enable Clear Interrupt Pending Register	Enable Interrupt Vector Register	LUTs	FFs	Slices	Fmax (MHz)
8	1	1	1	1	166	161	77	531
16	1	1	1	1	248	250	165	500
16	1	1	1	1	248	250	165	500
8	1	1	1	1	166	161	77	531
32	1	1	1	1	407	427	287	538
8	1	1	1	1	166	161	77	531
32	1	1	1	1	407	427	287	538
32	1	1	1	1	407	427	287	538
32	1	1	1	1	407	427	287	538
8	1	1	1	1	166	161	77	531
8	1	1	1	1	166	161	77	531
32	1	1	1	1	407	427	287	538
16	1	1	1	1	248	250	165	500

Parameter Values						Device	Resource	S
No. of Peripheral Interrupts	Enable Interrupt Pending Register	Enable Set Interrupt Pending Register	Enable Clear Interrupt Pending Register	Enable Interrupt Vector Register	LUTs	FFs	Slices	Fmax (MHz)
16	1	1	1	1	267	250	155	320
8	1	1	1	1	176	161	78	360
16	1	1	1	1	267	250	155	320
8	1	1	1	1	176	161	78	360
32	1	1	1	1	406	427	280	320
32	1	1	1	1	406	427	280	320
32	1	1	1	1	406	427	280	320
32	1	1	1	1	406	427	280	320
8	1	1	1	1	176	161	78	360
32	1	1	1	1	406	427	280	320
8	1	1	1	1	176	161	78	360
16	1	1	1	1	267	250	155	320
8	1	1	1	1	176	161	78	360

Table 2-4:	Resource Utilization Values for Artix-7 FPGAs (XC7A100T fgg676-3)
	Resource of metalon values for Artix / Trocks (RefAtoor 1860/0.5)

Port Descriptions

This section describes both the input and output ports and the design parameters that are used to tailor the AXI INTC core for your design.

I/O Signals

The AXI INTC I/O signals are listed and described in Table 2-5.

Table 2-5:	I/O Signal Description	I
------------	------------------------	---

Signal Name	Interface	I/O	Initial State	Description					
AXI Global System Signals									
s_axi_aclk	S_AXI	Ι	-	AXI Clock					
s_axi_aresetn	AXI	Ι	-	AXI Reset, active-Low					
AXI Interface Signals									
s_axi_*	AXI	Ι	-	For a description of AXI4, AXI4-Lite and AXI Stream signals, see Appendix A of the AXI Reference Guide (UG 761) [Ref 3].					

Signal Name	Interface	I/O	Initial State	Description
	ΙΝΤΟ Ι	nterface	e Signals	
intr[No. of Peripheral Interrupts -1:0] ⁽¹⁾	INTC	Ι	-	Interrupt inputs
irq	INTC	0	0x1	Interrupt request output
interrupt_address[31:0] ⁽²⁾	INTC	0	0x0	Interrupt address output
processor_ack[1:0]	INTC	Ι	-	Interrupt acknowledgement input. 00 - No interrupt received 01 - Set when processor branches to interrupt routine 10 - Set when processor returns from interrupt routine by executing RTID 11 - Set when processor enables interrupts
processor_clk	INTC	Ι	-	MicroBlaze [™] processor clock
processor_rst	INTC	Ι	-	MicroBlaze processor reset, active-High
interrupt_address_in[31:0]	INTC	I	-	This port is applicable only when Enable Cascade Interrupt Mode and Enable Fast Interrupt Logic are selected in GUI. This port should be connected to the downstream AXI INTC instances <i>Interrupt_address</i> port and available only when Enable Fast Interrupt Logic is checked in GUI (for secondary instance(s) of AXI INTC.)
processor_ack_out[1:0]	INTC	0	0x0	This port is applicable to the instance of AXI INTC only when Enable Cascade Interrupt Mode and Enable Fast Interrupt Logic are selected in GUI. The main AXI INTC instance passes these port values obtained from the processor when the 31 st bit, which is the cascaded interrupt, is served by the processor (for a secondary instance of the AXI INTC.)

Table 2-5: I/O Signal Description (Cont'd)

Notes:

1. Intr(0) is always the highest priority interrupt and each successive bit to the left has a corresponding lower interrupt priority.

2. Interrupt_address always drives the vector address of highest priority interrupt.

Design Parameters

To allow you to obtain an AXI INTC that is uniquely tailored for the system, certain features can be parameterized in the AXI INTC design. This allows you to configure a design that utilizes the resources required by the system only and that operates with the best possible performance. The features that can be parameterized in the AXI INTC core are as shown in Table 2-6.

Table 2-6: Design Parameters

Generic	Feature/Description	Parameter Name	Allowable Values	Default Value	VHDL Type				
System Parameter									
G1	Target FPGA family	C_FAMILY	zynq, virtex7, kintex7, artix7	kintex7	string				
		AXI Parameters							
G2	AXI address bus width	C_S_AXI_ADDR_WIDTH	9	9	integer				
G3	AXI data bus width	C_S_AXI_DATA_WIDTH	32	32	integer				
		INTC Parameters							
G4	Number of interrupt inputs	C_NUM_INTR_INPUTS	1-32	1	integer				
G5	Type of interrupt for each input 1 = Edge 0 = Level	C_KIND_OF_INTR	See ⁽¹⁾	ALL 1s	std_logic_ vector				
G6	Type of each edge sensitive input 1 = Rising 0 = Falling Valid if C_KIND_OF_INTR = 1s	C_KIND_OF_EDGE	See ⁽¹⁾	ALL 1s	std_logic_ vector				
G7	Type of each level sensitive input 1 = High 0 = Low Valid if C_KIND_OF_INTR = 0s	C_KIND_OF_LVL	See ⁽¹⁾	ALL 1s	std_logic_ vector				
G8	Indicates the presence of IPR	C_HAS_IPR	0 = Not Present 1 = Present	1	integer				
G9	Indicates the presence of SIE	C_HAS_SIE	0 = Not Present 1 = Present	1	integer				
G10	Indicates the presence of CIE	C_HAS_CIE	0 = Not Present 1 = Present	1	integer				
G11	Indicates the presence of IVR	C_HAS_IVR	0 = Not Present 1 = Present	1	integer				
G12	Indicates level or edge active Irq	C_IRQ_IS_LEVEL	0 = Active Edge 1 = Active Level	1	integer				
G13	Indicates the sense of the Irq output	C_IRQ_ACTIVE	0 = Falling/Low 1 = Rising/High	1	std_logic				
G14	Indicates if processor clock is connected to INTC ⁽³⁾⁽⁴⁾	C_MB_CLK_NOT_ CONNECTED	0 = Connected 1 = Not Connected	1	integer				
G15	Indicates the presence of FAST INTERRUPT logic ⁽⁴⁾	C_HAS_FAST	0 = Not Present 1 = Present	0	integer				
G16	Use synchronizers in design ⁽⁵⁾	C_DISABLE_ SYNCHRONIZERS	1 = Not Used 0 = Used	1	integer				
G17	Enable Cascade mode interrupt ⁽⁶⁾	C_EN_CASCADE_MODE	0 = Default 1 = Enable Cascade Mode	0	integer				

Table 2-6: Design Parameters (Cont'd)

Generic	Feature/Description	Parameter Name	Allowable Values	Default Value	VHDL Type
G18	Make cascade mode interrupt core instance as primary ⁽⁷⁾	C_CASCADE_MASTER	0 = No Cascade Mode Master 1 = Cascade Mode Master	0	integer
G19	Number of software interrupts	C_NUM_SW_INTR	0-31	0	integer

Notes:

- 1. The interrupt input is a little-endian vector with the same width as the data bus and contains either a 0 or 1 in each position.
- 2. Synchronizers in the design can be disabled if the processor clock and AXI clock are identical. This reduces the core area and latencies introduced by the synchronizers in passing the IRQ to the processor.
- 3. C_MB_CLK_NOT_CONNECTED should be set to 1 in case the processor clock is not connected to INTC core. When processor clock is not connected, IRQ to the processor is generated on AXI clock. This flexibility is given for backward compatibility of the core. The synchronizers in the design are disabled when the processor clock is not connected.
- 4. When processor_clk is connected, a DRC error is generated if the same clock is not connected to both the processor and the AXI INTC core.
- 5. The C_DISABLE_SYNCHRONIZERS parameter, by default, adds the necessary synchronizer logic for internal signals.
- 6. C_EN_CASCADE_MODE should be set to 1 when there are more than 32 interrupts to handle in the system. For each successive addition of 32 more interrupts, one new AXI INTC core has to be instantiated. For each instance of AXI INTC this parameter should be set to 1. Only the last instance of AXI INTC (which has less than 32 interrupts to handle) should have this parameter set to 0.
- 7. C_CASCADE_MASTER should be set to 1, only with the master instance of the AXI INTC core. Setting of this parameter is applicable only when the C_EN_CASCADE_MODE parameter is set to 1. This instance directly interfaces with the processor. None of the other instances of the AXI INTC core interface with processor even though these are configured in the Cascade mode. See Cascade Mode Interrupt for more information.

Dependencies Between Parameters and I/O Signals

The dependencies between the AXI INTC core design parameters and I/O signals are described in Table 2-7. In addition, when certain features are parameterized out of the design, the related logic is no longer a part of the design. The unused input signals and related output signals are set to a specified value.

Generic or Port	Name	Affects	Depends	Relationship Description			
	Design Parameters						
G2	C_S_AXI_ADDR_WIDTH	P3, P13	-	Defines the width of the ports			
G3	C_S_AXI_DATA_WIDTH	P6, P7, P16	-	Defines the width of the ports			
G15	C_HAS_FAST	P22, P23, P26, P27	-	Ports are valid if the generic C_HAS_FAST = 1			
G15	C_HAS_FAST	G14	-	C_MB_CLK_NOT_CONNECTED has to be 0 when C_HAS_FAST is set to 1.			

Table 2-7: Parameter-I/O Signal Dependencies

Generic or Port	Name	Affects	Depends	Relationship Description
G17	C_EN_CASCADE_MODE	P26, P27	-	This parameter should be set only when the Cascade mode of interrupt is set.
G18	C_CASCADE_MASTER	P26, P27	-	This parameter should be set only for the master instance of AXI INTC core.
	I/O	Signals		
Р3	S_AXI_AWADDR[C_S_AXI_ADDR_WIDTH-1:0]	-	G2	Port width depends on the generic C_S_AXI_ADDR_WIDTH
P6	S_AXI_WDATA[C_S_AXI_DATA_WIDTH-1:0]	-	G3	Port width depends on the generic C_S_AXI_DATA_WIDTH
P7	S_AXI_WSTB[C_S_AXI_DATA_WIDTH/8-1:0]	-	G3	Port width depends on the generic C_S_AXI_DATA_WIDTH
P13	S_AXI_ARADDR[C_S_AXI_ADDR_WIDTH -1:0]	-	G2	Port width depends on the generic C_S_AXI_ADDR_WIDTH
P16	S_AXI_RDATA[C_S_AXI_DATA_WIDTH -1:0]	-	G3	Port width depends on the generic C_S_AXI_DATA_WIDTH
P22	Interrupt_address[31:0]	-	G15	Port is valid if the generic C_HAS_FAST = 1
P23	Processor_ack[1:0]	-	G15	Port is valid if the generic C_HAS_FAST = 1
P26	Interrupt_address_in[31:0]	-	G15, G17, G18	Port existence is depend upon the FAST Mode interrupt as well as Cascade mode interrupt
P27	Processor_ack_out[1:0]	-	G15, G17, G18	Port existence is depend upon the FAST Mode interrupt as well as Cascade mode interrupt

Table 2-7: Parameter-I/O Signal Dependencies (Cont'd)

Register Space

All AXI INTC registers listed in Table 2-8 are accessed through the AXI4-Lite interface. Each register is accessed on a 4-byte boundary. The AXI INTC registers are read as little-endian data.

Address Offset	Register Name	Description
00h	ISR	Interrupt Status Register (ISR)
04h	IPR	Interrupt Pending Register (IPR)
08h	IER	Interrupt Enable Register (IER)
0Ch	IAR	Interrupt Acknowledge Register (IAR)
10h	SIE	Set Interrupt Enables (SIE)
14h	CIE	Clear Interrupt Enables (CIE)
18h	IVR	Interrupt Vector Register (IVR)
1Ch	MER	Master Enable Register (MER)
20h	IMR	Interrupt Mode Register (IMR)
100h to 170h	IVAR	Interrupt Vector Address Register (IVAR)

Table 2-8: Register Address Mapping

Interrupt Status Register (ISR)

When read, the contents of this register indicate the presence or absence of an active interrupt signal. Bits that are 0 are not active. Each bit in this register that is set to a 1 indicates an active interrupt. This is an active interrupt signal on the corresponding hardware interrupt input for bits up to **Number of Peripheral Interrupts** defined in the Customize IP dialog box in the Vivado Design Suite (parameter C_NUM_INTR_INPUTS). The number of remaining bits is defined by **Number of Software Interrupts** in the Customize IP dialog box in the Vivado Design Suite (parameter C_NUM_SW_INTR). These bits provide the ability to generate software interrupts by writing to the ISR. The total number of bits in the register is **Number of Peripheral Interrupts** + **Number of Software Interrupts**.

The bits in the ISR are independent of the interrupt enable bits in the IER. See the Interrupt Enable Register (IER), page 16 for the interrupt status bits that are masked by disabled interrupts.

The ISR register bits up to **Number of Peripheral Interrupts** is writable by software until the Hardware Interrupt Enable (HIE) bit in the MER has been set, whereas the remaining bits (if any) can still be set by software. After that bit has been set, the software can no longer write to the ISR. Given these restrictions, when this register is written to, any data bits that are set to 1 activate the corresponding interrupt. For the bits up to **Number of Peripheral Interrupts**, this has the same effect as if a hardware input became active. Data bits that are zero have no effect. This allows the software to generate interrupt to test purposes until the HIE bit has been set and to generate software interrupts at any time. After HIE has been set (enabling the hardware interrupt inputs), then writing to the bits up to **Number of Peripheral Interrupts** in this register does nothing.

If there are fewer interrupt inputs than the width of the data bus, writing a 1 to a non-existing interrupt input does nothing and reading it returns 0. The Interrupt Status Register (ISR) is shown in Figure 2-1 and the bits are described in Table 2-9.

Note: w - width of Data Bus

Figure 2-1: Interrupt Status Register (ISR)

Table 2-9:	Interrupt Status	Register	Bit	Definitions
------------	------------------	----------	-----	-------------

Bits	Name	Reset Value	Access	Description
(w ⁽¹⁾ -1):0	INT(n)-INT(0) (n<= w-1)	0x0	Read / Write	Interrupt (n) - Interrupt (0) 0 - Not Active 1 - Active

Notes:

1. w - Width of Data Bus

Interrupt Pending Register (IPR)

This is an optional read-only register in the AXI INTC and can be set in Vivado Design Suite Customize IP dialog box by checking **Enable Interrupt Pending Register** (parameter C_HAS_IPR). Reading the contents of this register indicates the presence or absence of an active interrupt that is also enabled. This register is used to reduce interrupt processing latency by reducing the number of reads of the INTC by one.

Each bit in this register is the logical AND of the bits in the ISR and the IER. If there are fewer interrupt inputs than the width of the data bus, reading a non-existing interrupt returns zero. The Interrupt Pending Register (IPR) is shown in Figure 2-2 and the bits are described in Table 2-10.

Figure 2-2: Interrupt Pending Register

Table 2-10:	Interrupt Pending Register Bit Definitions
-------------	--

Bits	Name	Reset Value	Access	Description
(w ⁽¹⁾ -1):0	INT(n)-INT(0) (n<= w-1)	0x0	Read / Write	Interrupt (n) - Interrupt (0) 0 - Not Active 1 - Active

Notes:

1. w - Width of Data Bus

Interrupt Enable Register (IER)

This is a read/write register. Writing a 1 to a bit in this register enables the corresponding ISR bit to cause assertion of the INTC output. An IER bit set to 0 does not inhibit an interrupt condition for being captured, just reported. Writing a 0 to a bit disables, or masks, the generation of interrupt output for the corresponding interrupt.

Disabling an interrupt input is not the same as clearing an interrupt. *Disabling an interrupt* means the interrupt event occurs but does not pass to the processor. *Clearing an interrupt* means that after an interrupt has been generated and then passed to the processor, it reads the Interrupt Status Register and clears the interrupt bit to serve the interrupt. Disabling an active interrupt blocks that interrupt from reaching the Irq output, but as soon as it is re-enabled the interrupt immediately generates a request on the Irq output.

An interrupt must be cleared by writing to the Interrupt Acknowledge Register as described below. Reading the IER indicates which interrupt inputs are enabled, where a 1 indicates the input is enabled and a 0 indicates the input is disabled.

If there are fewer interrupt inputs than the width of the data bus, writing a 1 to a non-existing interrupt input does nothing and reading it returns 0. The Interrupt Enable Register (IER) is shown in Figure 2-3 and the bits are described in Table 2-11.

Note: w - width of Data Bus

Figure 2-3: Interrupt Enable Register

Bits	Name	Reset Value	Access	Description
(w ⁽¹⁾ -1):0	INT(n)-INT(0) (n<= w-1)	0x0	Read / Write	Interrupt (n) - Interrupt (0) 0 - Not Active 1 - Active

Notes:

1. w - Width of Data Bus

Interrupt Acknowledge Register (IAR)

The IAR is a write-only location that clears the interrupt request associated with selected interrupt. Writing 1 to a bit in IAR clears the corresponding bit in the ISR, and also clears the same bit itself in IAR.

In fast interrupt mode, bits in the IAR are cleared by the sensing the acknowledgement pattern over the processor_ack port. In normal interrupt mode, the IAR is cleared by the acknowledgement received over the AXI interface.

Writing a 1 to a bit location in the IAR clears the interrupt request that was generated by the corresponding interrupt input. An interrupt that is active and masked by writing a 0 to the corresponding bit in the IER remains active until cleared by acknowledging it. Unmasking an active interrupt causes an interrupt request output to be generated (if the ME bit in the MER is set).

Writing 0s does nothing as does writing a 1 to a bit that does not correspond to an active input or for which an interrupt does not exist. The IAR is shown in Figure 2-4 and the bits are described in Table 2-12.

Note: w - width of Data Bus

Figure 2-4: Interrupt Acknowledge Register

Table 2-12: Interrupt Acknowledge Register Bit Definitions

Bits	Name	Reset Value	Access	Description
(w ⁽¹⁾ -1):0	INT(n)-INT(0) (n<= w-1)	0x0	Read / Write	Interrupt (n) - Interrupt (0) 0 - Not Active 1 - Active

Notes:

1. w - Width of Data Bus

Set Interrupt Enables (SIE)

SIE is a location used to set the IER bits in a single atomic operation, rather than using a read / modify / write sequence. Writing a 1 to a bit location in SIE sets the corresponding bit in the IER. Writing 0s does nothing, as does writing a 1 to a bit location that corresponds to a non-existing interrupt. The SIE is optional in the AXI INTC core and can be set by selecting **Enable Set Interrupt Enable Register** in the Vivado Design Suite Customize IP dialog box (parameter C_HAS_SIE). The SIE register is shown in Figure 2-5 and the bits are described in Table 2-13.

Note: w - width of Data Bus

Figure 2-5: Set Interrupt Enable (SIE) Register

Table 2-13: Set Interrupt Enable (SIE) Register Bit Definitions

Bits	Name	Reset Value	Access	Description
(w ⁽¹⁾ -1):0	INT(n)-INT(0) (n<= w-1)	0x0	Read / Write	Interrupt (n) - Interrupt (0) 0 - Not Active 1 - Active

Notes:

1. w - Width of Data Bus

Clear Interrupt Enables (CIE)

CIE is a location used to clear IER bits in a single atomic operation, rather than using a read/modify/write sequence. Writing a 1 to a bit location in CIE clears the corresponding bit in the IER. Writing 0s does nothing, as does writing a 1 to a bit location that corresponds to a non-existing interrupt. The CIE is also optional in the AXI INTC core and can be set by selecting **Enable Clear Interrupt Enable Register** in the Vivado Design Suite Customize IP dialog box (parameter C_HAS_CIE). The Clear Interrupt Enables (CIE) register is shown in Figure 2-6 and the bits are described in Table 2-14.

Note: w - width of Data Bus

Figure 2-6:	Clear Interrupt	Enable (CIE) Register
-------------	-----------------	----------	---------------

Iddle 2-14: Clear Interrupt Enable Register Bit Definitions	Table 2-14:	Clear Interrupt Enable Register Bit Definitions
---	-------------	--

Bits	Name	Reset Value	Access	Description
(w ⁽¹⁾ -1):0	INT(n)-INT(0) (n<= w-1)	0x0	Read / Write	Interrupt (n) - Interrupt (0) 0 - Not Active 1 - Active

Notes:

1. w - Width of Data Bus

Interrupt Vector Register (IVR)

The IVR is a read-only register and contains the ordinal value of the highest priority, enabled, and active interrupt input. INTO (always the LSB) is the highest priority interrupt input and each successive input to the left has a correspondingly lower interrupt priority.

If no interrupt inputs are active then the IVR contains all 1s. This IVR acts as an index for giving the correct Interrupt Vector Address along with IRQ. The Interrupt Vector Register (IVR) is shown in Figure 2-7 and described in Table 2-15

w-1	0
	f

Interrupt Vector Number

Note: w - width of Data Bus

Figure 2-7: Interrupt Vector Register (IVR)

Table 2-15: Interrupt Vector Register (IVR) Bit Definitions

Bits	Name	Reset Value	Access	Description
(w ⁽¹⁾ -1):0	Interrupt Vector Number	0x0	Read	Ordinal of highest priority, enabled, active interrupt input

Notes:

1. w - Width of Data Bus

Master Enable Register (MER)

This is a 2-bit, read / write register. The two bits are mapped to the two least significant bits of the location. The least significant bit contains the Master Enable (ME) bit and the next bit contains the Hardware Interrupt Enable (HIE) bit. Writing a 1 to the ME bit enables the Irq output signal. Writing a 0 to the ME bit disables the Irq output, effectively masking all interrupt inputs.

The HIE bit is a write-once bit. At reset, this bit is reset to 0, allowing the software to write to the ISR to generate hardware interrupts for testing purposes, and disabling any hardware interrupt inputs. Writing a 1 to this bit enables the hardware interrupt inputs and disables the software generated inputs. However, any software interrupts configured with C_NUM_SW_INTR remain writable. Writing a 1 also disables any further changes to this bit until the device has been reset. Writing 1s or 0s to any other bit location does nothing. When read, this register reflects the state of the ME and HIE bits. All other bits read as 0s. All other bits read as 0. The Master Enable Register (MER) is shown in Figure 2-8 and is described in Table 2-16.

Note: w - width of Data Bus

Figure 2-8: Master Enable Register (MER)

Table 2-16: Master Enable Register Bit Definitions

Bits	Name	Reset Value	Access	Description
(w ⁽¹⁾ -1):2	Reserved	0x0	N/A	Reserved
1	HIE	0	Read / Write	Hardware Interrupt Enable 0 = Read - Generating HW interrupts from SW enabled Write - No effect 1 = Read - HW interrupts enabled Write - Enable HW interrupts
0	ME	0	Read / Write	Master IRQ Enable 0 = Irq disabled - All interrupts disabled 1 = Irq enabled - All interrupts can be enabled

Notes:

1. w - Width of Data Bus

Interrupt Mode Register (IMR)

This register exists only when **Enable Fast Interrupt Mode Logic** is selected in the Customize IP dialog box in the Vivado Design Suite (parameter C_HAS_IMR). IMR register is used to set the interrupt mode of the connected interrupts. All the interrupts can be set in any mode by setting the corresponding interrupt bit position in IMR. Writing 0 to any bit position processes the corresponding interrupt in normal interrupt mode. Writing 1 to any bit position processes the corresponding interrupt in fast interrupt mode. Unused bit positions in the IMR register return zero. The Interrupt Mode Register (IMR) is shown in Figure 2-9 and is described in Figure 2-17.

Figure 2-9: Interrupt Mode Register (IMR)

Note: w - width of Data Bus

Table 2-17: Interrupt Mode Register (IMR) Bit Definitions

Bits	Name	Reset Value	Access	Description
(w(1)-1):0	INT(n)-INT(0) (n<= w-1)	0x0	Read / Write	Interrupt (n) - Interrupt (0) 0 – Normal Interrupt mode 1 – Fast Interrupt mode

Notes:

1. w - Width of Data Bus

Interrupt Vector Address Register (IVAR)

These are 32-bit wide read/write registers and are specified by **Number of Peripheral Interrupts** + **Number of Software Interrupts** in the Customize IP dialog box in the Vivado Design Suite (parameters C_NUM_INTR_INPUTS and C_NUM_SW_INTR). The registers are only available when **Enable Fast Interrupt Logic** is selected (parameter C_HAS_FAST).

Each interrupt connected to the Interrupt controller has a unique Interrupt vector address that the processor jumps to for servicing that particular interrupt. In normal interrupt mode of operation (IMR(i) = 0), the interrupt vector addresses are taken by the drivers/ application. In fast interrupt mode (IMR(i) = 1), the service routine address is driven by the interrupt controller along with the IRQ. IVAR registers are programmed with the corresponding peripheral interrupt vector address during software initialization.

These registers store the interrupt vector addresses of all the **Number of Peripheral Interrupts** + **Number of Software Interrupts**. Address of the interrupt with highest priority is transmitted out along with IRQ.

If not all the 32 interrupts are used, any read on the unused register address returns zero. Writing 1s or 0s to any bit location does nothing. The IVAR can be accessed through the AXI interface. IVAR registers are in the AXI clock domain and are used in the processor clock domain to give the INTERRUPT_ADDRESS along with IRQ. These are not synchronized to the processor clock domain. So, it is expected that writing to these registers should be done when ME is 0 (MER(0) = 0).

The Interrupt Vector Address Register (IVAR) is shown in Figure 2-10 and is described in Table 2-18.

Interrupt Vector Number

Note: w - width of Data Bus

Figure 2-10: Interrupt Vector Address Register (IVAR)

Table 2-18:	Interrupt Vector Address Register (IVAR) Bit Definitions
-------------	--

Bits	Name	Reset Value	Access	Description
(w(1)-1):0	Interrupt Vector Address	0x0	Read / Write	Interrupt vector address of the active interrupt with highest priority

Notes:

1. w - Width of Data Bus

Designing with the Core

Clocking

The AXI INTC core uses the AXI clock in default mode. When the processor clock is connected, the interrupt output is synchronized to the processor clock.

Resets

The AXI INTC uses axi_aresetn, which is active-Low. When the processor clock is connected, part of the AXI INTC logic gets reset through the processor_rst input signal.

Programming Sequence

During power-up or reset, the AXI INTC core is put into a state where all interrupt inputs and the interrupt request output are disabled. In order for the AXI INTC core to accept interrupts and request service, the following steps are required:

- 1. Each bit in the IER corresponding to an interrupt must be set to 1. This allows the AXI INTC core to begin accepting interrupt input signals and software interrupts. INTO has the highest priority, and it corresponds to the least significant bit (LSB) in the IER.
- The MER must be programmed based on the intended use of the AXI INTC core. There
 are two bits in the MER: the Hardware Interrupt Enable (HIE) and the Master IRQ Enable
 (ME). The ME bit must be set to enable the interrupt request output.
- 3. If software testing of hardware interrupts is to be performed, the HIE bit must remain at its reset value of 0. Software testing can now proceed by writing a 1 to any bit position in the ISR that corresponds to an existing interrupt input. A corresponding interrupt request is generated if that interrupt is enabled, and interrupt handling proceeds normally.

- 4. After software testing of hardware interrupts has been completed, or if testing is not performed, a 1 is written to the HIE bit, which enables the hardware interrupt inputs and disables any further software generated hardware interrupts.
- 5. After 1 is written to the HIE bit, any further writes to this bit have no effect.

Cascade Mode Interrupt

This functionality is enabled when the system needs more than 32 interrupts. A single instance of the AXI INTC can handle a maximum of 32 interrupts. Both **Enable Cascade Interrupt Mode** and **Cascade Mode Master** (parameters C_EN_CASCADE_MODE and C_CASCADE_MASTER), need to be set in this mode. In cascade mode, there are two or more AXI INTC instances in the system.

IMPORTANT: The 31st interrupt bit of the main AXI INTC instance must be used to cascade to the lower order AXI INTC instance.

Table 3-1 shows the parameter combination used for cascade mode.

Enable Cascade Interrupt Mode	Cascade Mode Master	Mode of Operation for the AXI INTC Instances
	0	N/A.
0	0	In this mode, there is no cascade interrupt feature available. Only one instance is allowed in system.
		N/A.
0	1	Cascade Mode Master can be set only after Enable Cascade Interrupt Mode is set.
1	0	This is applicable only for the lower instance of the AXI INTC module. Based on the parameter settings for this instance, the ports are connected to the primary or upstream instance of AXI INTC core.
1		The bit 31 of INTR is considered as the cascaded interrupt bit. No other bits are considered valid to be connected for use in cascade mode. (In case of such connections, the particular INTR pin is treated as a general interrupt pin).
1	1	This is applicable only when cascade mode is enabled. The parameter settings are applicable to the primary instance of AXI INTC in the system. The bit 31 of INTR is considered as the cascaded interrupt bit. No other bits can be connected for use in cascade mode.

Table 3-1:	Parameter	Combination	and Use	in Cascade	Interrupt Mode
	i ululletel	comonación		in cascaac	interrupt mode

Figure 3-1 shows how Cascade Mode interacts in given system.

Figure 3-1: Cascade Mode

Based on the type of interrupt chosen, such as Standard Mode or Fast Interrupt Mode, additional signals are enabled with the core instances. These modes are defined as follows:

- **Cascade Mode with Standard Interrupt**: In this mode, there are no special ports enabled in the system.
- **Cascade Mode with Fast Interrupt**: In this mode, there are two new ports enabled with each instance of the core. These ports are interrupt_address_in and processor_ack_out.

See Port Descriptions for more information about these ports.

RECOMMENDED: For Cascade Mode interrupts, Xilinx recommends that all AXI INTC core instances are the same interrupt type, either Standard Mode or Fast Interrupt Mode.

Cascade Mode Interrupt Behavior

The cascade mode of interrupts can be set by using the Enable Cascade Interrupt Mode and Cascade Mode Master parameters. As described in Table 3-1, there are three types of AXI INTC instantiations possible when cascade mode is considered.

The master instance of AXI INTC first addresses all interrupts set between INTR(0) to INTR(30). Then, it only provides service to the INTR(31) bit in the case of cascade mode.

TIP: The combination of Enable Cascade Interrupt Mode=0 and Cascade Mode Master=1 is not permitted, and Design Rule Check (DRC) errors are issued.

Enable Cascade Interrupt Mode = 1 and Cascade Mode Master = 1

This parameter set is intended only when there are more than 32 interrupts present in the system. Use this parameter combination for the *first instance* of the AXI INTC core which directly communicates with the processor. No other instances of AXI INTC should be allowed to communicate with the processor directly.

The first instance of AXI INTC is considered as Cascade Mode Master that directly communicates with the processor. The remaining AXI INTC instances are considered secondary instances.

Enable Cascade Interrupt Mode = 1 and Cascade Mode Master = 0

This parameter set is intended only when there are more than 32 interrupts present in the system. Use this parameter combination for the *second and subsequent instances* of the AXI INTC core that still have lower-level instances of AXI INTC. This core instance communicates with the top-level master AXI INTC instance as well as lower level instances of the core.

Enable Cascade Interrupt Mode = 0 and Cascade Mode Master = 0

This parameter set is intended for use only for the last instance of the AXI INTC core.

Setting the Enable Fast Interrupt Mode and MicroBlaze Clock Connected Parameters

RECOMMENDED: Assign Disable Synchronizers when the processor clock and core clock are different. All AXI INTC instances should receive the same AXI clock.

AXI INTC Use in Cascade Mode

 \bigcirc

RECOMMENDED: Use the same parameter configurations for all AXI INTC instances when used in Cascade Mode.

Figure 3-2 shows how the fast interrupt of AXI INTC instances is configured in a given system. This is one of the reference modes for using the core in a system.

Figure 3-2: Fast Interrupt of AXI INTC Instances

www.xilinx.com

Timing Diagrams

The timing diagrams in this section depict the functionality of the core.

Configured Input Interrupt (Intr) for Edge sensitive (rising), Output Interrupt Request (Irq) to Level sensitive (active-High), disabled fast interrupt logic (Enable Fast Interrupt Logic = 0). Timing diagram is shown in Figure 3-3.

Figure 3-3: Input - Rising Edge Sensitive, Output - High Level Sensitive

Configured Input Interrupt (Intr) for Edge sensitive (rising), Output Interrupt Request (Irq) to Edge sensitive (Rising), disabled fast interrupt logic. Timing diagram is shown in Figure 3-4.

Figure 3-4: Input - Rising Edge Sensitive, Output - Rising Edge Sensitive, Fast Interrupt Logic Disabled

Configured Input Interrupt (Intr) for Edge sensitive (rising), Enable Fast Interrupt Logic and mode set to fast interrupt mode (IMR(i) = 1). Timing diagram is shown in Figure 3-5.

Figure 3-5: Input - Rising Edge Sensitive, Fast Interrupt Logic Enabled and IMR(i) = 1

Customizing and Generating the Core

This chapter includes information about how to customize and generate the core in the Vivado® Design Suite.

Vivado Integrated Design Environment

To access AXI INTC to customize and generate the core in the Vivado Integrated Design Environment:

- Open a project by selecting File > Open Project, or create a new project by selecting File > New Project.
- 2. Open the Vivado IP Catalog, and navigate to Embedded Processing > Low Speed Peripheral.
- 3. Double-click **AXI INTC**.
- 4. Customize AXI INTC using the parameters in the Basic Tab and the Advanced Tab.

For information on how to customize and generate the core in Vivado IP Integrator, see *Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)* [Ref 6].

Basic Tab

The parameters in the Basic tab are shown in Figure 4-1 and are described in this section.

Re-customize IP	×
AXI Interrupt Controller	(3.1)
🔴 Documentation 📄 IP Location	
Show disabled ports	Component Name design_1_axi_intc_1_0 Basic Advanced Interrupt Usage
- intr processor_clk processor_rst ∰-S_AXI irq s_axi_aclk s_axi_aresetn	Number of Peripheral Interrupts (Auto) Fast Interrupt Mode Enable Fast Interrupt Logic Interrupt Vector Address Register reset value (Auto) W00000010 Peripheral Interrupts Type Interrupts type - Edge or Level (Auto) Level type - High or Low (Auto)
< > ×	Edge type - Rising or Falling (Auto)
	OK Cancel

Figure 4-1: AXI INTC Basic Tab

Number of Peripheral Interrupts

This option enables selection of number of peripheral interrupt inputs. In IP Integrator, this value is automatically determined from the number of connected interrupt signals.

Enable Fast Interrupt Logic

This option enables AXI INTC to work in Fast Interrupt mode. In this mode, AXI INTC acknowledges an interrupt through Processor_ack signal.

Peripheral Interrupts Type

Interrupts type - Edge or Level

This option is used to set the input interrupts to be either Edge or Level type.

- 0 Level
- 1 Edge

Width of this field is equal to **Number of Peripheral Interrupts** selected. This 32-bit field is directly mapped to interrupt inputs. For example, bit0 setting affects Intr(0), bit31 setting affects Intr(31), and so on.

In IP Integrator, this value is automatically determined from the connected interrupt signals.

Level type - High or Low

This option is used to set the input Level type interrupts to be either High or Low.

- 0 Low
- 1 High

Width of this field is equal to **Number of Peripheral Interrupts** selected. This 32-bit field is directly mapped to interrupt inputs. For example, bit0 setting affects Intr(0), bit31 setting affects Intr(31), and so on.

In IP Integrator, this value is automatically determined from the connected interrupt signals.

Edge type - Rising or Falling

This option is used to set the input Edge type interrupts to be either Rising or Falling edge.

- 0 Falling edge
- 1 Rising edge

Width of this field is equal to **Number of Peripheral Interrupts** selected. This 32-bit field is directly mapped to interrupt inputs. For example, bit0 setting affects Intr(0), bit31 setting affects Intr(31), and so on.

Processor Interrupt Type

Interrupt type

This option is used to set the output interrupt to be either Edge or Level type.

- 0 Level
- 1 Edge

Level type

This option is used to set the output Level type interrupts to be either High or Low. It is shown when **Interrupt type** is set to Level.

- 0 Active-Low
- 1 Active-High

Edge type

This option is used to set the output Edge type interrupts to be either Rising or Falling edge. It is shown when **Interrupt type** is set to Edge.

- 0 Falling edge
- 1 Rising edge

Advanced Tab

The parameters in the Advanced tab are shown in Figure 4-2 and are described in this section.

🗜 Re-customize IP		×
AXI Interrupt Controller	(3.1)	R
🗑 Documentation 📄 IP Location		
Show disabled ports	Component Name design_1_axi_intc_1_0 Basic Advanced	
intr processor_clk processor_rst #PS_AXI s_axi_aclk s_axi_aresetn	Register Usage Image: Construct Enable Register Enable Clear Interrupt Enable Register Enable Interrupt Vector Register Enable Interrupt Pending Register Cascade Mode Enable Cascade Interrupt Mode Cascade Mode	
	Asynchronous Clocks	
	Software Interrupts Number of Software Interrupts	
	ОК Са	ncel

Figure 4-2: **AXI INTC Advanced Tab**

Enable Set Interrupt Enable Register

Setting this option includes Set Interrupt Enable Register.

Enable Clear Interrupt Enable Register

Setting this option includes Clear Interrupt Enable Register.

Enable Interrupt Vector Register

Setting this option includes Interrupt Vector Register.

Enable Interrupt Pending Register

Setting this option includes Interrupt Pending Register.

Enable Cascade Interrupt Mode

Setting this option enables AXI INTC in cascade mode.

Cascade Mode Master

Setting this option enables AXI INTC as a cascade mode master.

Enable Asynchronous Clock Operation

Enabling this option allows the AXI clock and processor clk to run asynchronously.

- Check box selected asynchronous mode
- Check box not selected synchronous mode

In IP Integrator, this value is automatically determined depending on the connected clocks, but the user can override the value if necessary.

Number of Software Interrupts

This option enables selection of number of software interrupts. The maximum number of interrupts, **Number of Peripheral Interrupts** + **Number of Software Interrupts**, is 32.

Chapter 5

Constraining the Core

There are no constraints associated with this core.

Appendix A

Debugging

This appendix includes details about resources available on the Xilinx Support website and debugging tools. In addition, this appendix provides a step-by-step debugging process to guide you through debugging the AXI INTC core.

The following topics are included in this appendix:

- Finding Help on Xilinx.com
- Debug Tools
- Interface Debug

Finding Help on Xilinx.com

To help in the design and debug process when using the AXI INTC, the <u>Xilinx Support web</u> <u>page</u> (www.xilinx.com/support) contains key resources such as product documentation, release notes, answer records, information about known issues, and links for opening a Technical Support WebCase.

Documentation

This product guide is the main document associated with the AXI INTC core. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page (www.xilinx.com/support) or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads page (<u>www.xilinx.com/download</u>). For more information about this tool and the features available, open the online help after installation.

Known Issues

Answer Records include information about commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most accurate information available.

Answer Records for this core are listed below, and can also be located using the Search Support box on the main <u>Xilinx support web page</u>. To maximize your search results, use proper keywords such as

- Product name
- Tool messages
- Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the AXI INTC

AR <u>54423</u>

Contacting Technical Support

Xilinx provides technical support at <u>www.xilinx.com/support</u> for this LogiCORE[™] IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support:

- 1. Navigate to <u>www.xilinx.com/support</u>.
- 2. Open a WebCase by selecting the <u>WebCase</u> link located under Support Quick Links.

When opening a WebCase, include:

- Target FPGA including package and speed grade.
- All applicable Xilinx Design Tools and simulator software versions.
- Additional files based on the specific issue might also be required. See the relevant sections in this debug guide for guidelines about which file (or files) to include with the WebCase.

Debug Tools

There are many tools available to debug AXI INTC design issues. This section indicates which tools are useful for debugging the various situations encountered.

Vivado Lab Tools

Vivado® Lab Tools inserts logic analyzer (ILA) and virtual I/O (VIO) cores directly into your design. Vivado Lab Tools allows you to set trigger conditions to capture application and integrated block port signals in hardware. Captured signals can then be analyzed. This feature represents the functionality in the Vivado Integrated Design Environment (IDE) that is used for logic debugging and validation of a design running in Xilinx FPGA devices in hardware.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores, including:

- ILA 2.0 (and later versions)
- VIO 2.0 (and later versions)

Interface Debug

AXI4-Lite Interfaces

Read from a register that does not have all 0s as a default to verify that the interface is functional. Output s_axi_arready asserts when the read address is valid, and output s_axi_rvalid asserts when the read data/response is valid. If the interface is unresponsive, ensure that the following conditions are met:

- The s_axi_aclk input is connected and toggling.
- The interface is not being held in reset, and s_axi_aresetn is an active-Low reset.
- The main core clocks are toggling and that the enables are also asserted.
- All required interrupts are connected to the INTR input of the core and the IRQ (and other Fast Mode signals) are tied to the interrupt interface of the processor.
- The AXI INTC core is configured properly for the target application.

To debug the AXI INTC core, read all the application registers of the core to verify that all are functioning correctly.

Appendix B

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support website at:

www.xilinx.com/support

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm

References

These documents provide supplemental material useful with this product guide:

- 1. AMBA AXI4-Stream Protocol Specification
- 2. LogiCORE IP AXI Lite IPIF Product Guide (PG155)
- 3. AXI Reference Guide (UG761)
- 4. 7 Series FPGAs Overview (DS180)
- 5. Vivado Design Suite User Guide: Designing With IP (UG896)
- 6. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
12/18/2012	1.0	 Initial product guide release. Replaces <i>LogiCORE IP AXI INTC Data Sheet</i> (<i>DS747</i>). Added Cascade Mode.
3/20/2013	2.0	 Updated for core v3.0 and Vivado Design Suite only support. Updated signal names, and timing diagrams.
6/19/2013	3.1	 Updated for core v3.1. Added description of software interrupt.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to varranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2012 - 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners.