
LogiCORE IP AXI Bus
Functional Models
v4.1
Product Guide for Vivado
Design Suite

PG129 June 19, 2013

AXI BFM v4.1 www.xilinx.com 2
PG129 June 19, 2013

Table of Contents
IP Facts

Chapter 1: Overview
Configuration Options . 7
Applications . 7
Licensing and Ordering Information . 8

Chapter 2: Product Specification
Standards . 9

Chapter 3: Designing with the Core
AXI BFM Design Parameters . 10
Test Writing API . 25
Protocol Description . 52

Chapter 4: Customizing and Generating the Core
Vivado Integrated Design Environment . 53

Chapter 5: Detailed Example Design
Example Design . 57
Using AXI BFM for Standalone RTL Design . 58
Demonstration Test Bench . 59
Simulation . 65

Appendix A: Verification, Compliance, and Interoperability

Appendix B: Migrating

Appendix C: Debugging
Finding Help on Xilinx.com . 68
Debug Tools . 70
Interface Debug . 70

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 3
PG129 June 19, 2013

Appendix D: Additional Resources
Xilinx Resources . 71
References . 71
Revision History . 72
Notice of Disclaimer. 73

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 4
PG129 June 19, 2013 Product Specification

Introduction
The Xilinx LogiCORE™ IP AXI Bus Functional
Models (BFMs), developed for Xilinx by
Cadence® Design Systems, support the
simulation of customer-designed AXI-based IP.
AXI BFMs support all versions of AXI (AXI3,
AXI4, AXI4-Lite, and AXI4-Stream). The BFMs
are encrypted Verilog modules. BFM operation
is controlled by using a sequence of Verilog
tasks contained in a Verilog-syntax text f ile.

Features
• Supports all protocol data widths and

address widths, transfer types and
responses

• Transaction-level protocol checking (burst
type, length, size, lock type, cache type)

• Behavioral Verilog Syntax

• Verilog Task-based API

IP Facts

LogiCORE IP Facts Table

Core Specifics

Supported
Device Family(1) Zynq®-7000, Virtex®-7, Kintex®-7, Artix®-7

Supported User
Interfaces AXI4, AXI4-Lite, AXI4-Stream, AXI3

Resources N/A

Provided with Core
Design Files RTL

Example Design Verilog

Test Bench Verilog

Constraints File N/A

Simulation
Model Encrypted Verilog

Supported
S/W Driver N/A

Tested Design Flows(2)(3)

Design Entry Vivado® Design Suite

Simulation
Mentor Graphics Questa® SIM

Vivado Simulator

Synthesis N/A

Support
Provided by Xilinx @ www.xilinx.com/support

Notes:
1. For a complete list of supported derivative devices, see

the Vivado IP catalog.
2. Windows XP 64-bit is not supported.
3. For the supported versions of the tools, see the Xilinx

Design Tools: Release Notes Guide.
4. This IP does not deliver BFM for Zynq PS. It only delivers

the BFMs for AXI3, AXI4, AXI4-Lite, and AXI4-Stream
interfaces.

http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.2;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.2;t=vivado+release+notes
http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 5
PG129 June 19, 2013

Chapter 1

Overview
The general AXI Bus Functional Model (BFM) architecture is shown in Figure 1-1.

All of the AXI BFM consist of three main layers:

• Signal interface

• Channel API

• Function API

The signal interface includes the typical Verilog input/output ports and associated signals.
The channel API is a set of defined Verilog tasks (see Test Writing API) that operate at the
basic transaction level inherent in the AXI protocol, including:

• Read Address Channel

• Write Address Channel

• Read Data Channel

• Write Data Channel

• Write Response Channel

This split enables the tasks associated with each channel to be executed concurrently or
sequentially. This allows the test writer to control and implement out of order transfers,
interleaved data transfers, and other features.

The next level up in the API hierarchy is the function level API (see Test Writing API). This
level has complete transaction level control. For example, a complete AXI read burst process
is encapsulated in a single Verilog task.

X-Ref Target - Figure 1-1

Figure 1-1: AXI BFM Architecture

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 6
PG129 June 19, 2013

Chapter 1: Overview

An important component of the AXI BFM architecture is the configuration mechanism. This
is implemented using Verilog parameters and/or BFM internal variables and is used to set
the address bus width, data bus width, and other parameters. The reason Verilog
parameters are used instead of defines is so that each BFM can be configured separately
within a single test bench. For example, it is reasonable to have an AXI master that has a
different data bus width than one of the slaves it is attached to (in this case the interconnect
needs to handle this). BFM internal variables are used for configuration variables that
maybe changed during simulation. For a complete list of configuration options, see
Configuration Options.

The intended use of the AXI BFM is shown in Figure 1-2.

Figure 1-2 shows a single AXI BFM. However, the test bench can contain multiple instances
of AXI BFM. The DUT and the AXI BFM are instantiated in a test bench that also contains a
clock and reset generator. Then, the test writer instantiates the test bench into the test
module and creates a test program using the BFM API layers. The test program would call
API tasks either sequentially or concurrently using fork and join. See Example Design for
practical examples of test programs and test bench setups.

X-Ref Target - Figure 1-2

Figure 1-2: AXI BFM Use Case

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 7
PG129 June 19, 2013

Chapter 1: Overview

Configuration Options
In most cases, the configuration options are passed to the AXI BFM through Verilog
parameters. AXI BFM internal variables are used for options that can be dynamically
controlled by the test writer because Verilog parameters do not support run time
modifications.

To change the AXI BFM internal variables during simulation, the correct BFM API task should
be called. For example, to change the CHANNEL_LEVEL_INFO from 0 to 1, the
set_channel_level_info(1)task call should be made. For more information on the
API for changing internal variables, see Test Writing API.

Applications
The purpose of the AXI BFM is to verify connectivity and basic functionality of AXI masters
and AXI slaves. A basic level of protocol checking is included with the AXI BFM. For
comprehensive protocol checking, the Cadence AXI UVC [Ref 3] should be deployed.

The following aspects of the AXI3 and AXI4 protocol are checked by the AXI BFM:

• Reset conditions are checked:

° Reset values of signals

° Synchronous release of reset

• Inputs into the test writing API are checked to ensure they are valid to prevent protocol
violations.

• Signal inputs into master and slave BFM, respectively, are checked to ensure they are
valid to prevent protocol violations.

• Address ranges are checked in the Slave BFM.

This section describes the checkers that are implemented as Verilog tasks.

BFM Specific Checkers
Table 1-1 details the Verilog checking tasks added to each BFM for a specific check. These
checkers are only required for the BFM that they are located in; so, they are not included in
a common file.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 8
PG129 June 19, 2013

Chapter 1: Overview

Licensing and Ordering Information
This Xilinx LogiCORE IP module is provided under the terms of the Xilinx Core License
Agreement. The module is shipped as part of the Vivado Design Suite. For full access to all
core functionalities in simulation, you must purchase a license for the core. Contact your
local Xilinx sales representative for information on pricing and availability.

For more information, visit the AXI Bus Functional Model web page.

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual
Property page. For information on pricing and availability of other Xilinx LogiCORE IP
modules and tools, contact your local Xilinx sales representative.

IMPORTANT: When simulating AXI BFM, the license is checked out and held until the simulation is
completed.

Table 1-1: BFM Specific Checker Tasks

Checker Task Name Inputs Checker
Locations Description

check_address_range ADDRESS
BURST_TYPE
LENGTH

SLAVE BFM Checks to see if address is valid with respect to the
SLAVE configuration, the burst_type and length.

check_strobe STROBE
TRANSFER_NUMBER
ADDRESS
LENGTH
SIZE
BURST_TYPE

SLAVE BFM Checks to see if the input strobe is correct. This
check handles normal, narrow and unaligned
transfers.

http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/products/intellectual-property/DO-AXI-BFM.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 9
PG129 June 19, 2013

Chapter 2

Product Specification

Standards
The AXI BFM is AXI4, AXI4-Lite, AXI4-Stream, and AXI3 compliant.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 10
PG129 June 19, 2013

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

AXI BFM Design Parameters

AXI3 BFM
TIP: File name is the same as the module name as specified by you.

The AXI3 BFM modules and f iles are named as follows:

• MASTER BFM

° Module Name: cdn_axi_bfm_v4_0_0

° File Name: cdn_axi3_master_bfm.v

• SLAVE BFM

° Module Name: cdn_axi_bfm_v4_0_0

° File Name: cdn_axi3_slave_bfm.v

AXI3 Master BFM

Table 3-1 contains a list of parameters and configuration variables supported by the AXI3
Master BFM.

Table 3-1: AXI3 Master BFM Parameters

BFM Parameters Description

NAME String name for the master BFM. This is used in the messages coming
from the BFM. The default for the master BFM is “MASTER_0.”

DATA_BUS_WIDTH Read and write data buses can be 32, 64, 128, 256, 512, or 1,024 bits
wide.
Default is 32.

ADDRESS_BUS_WIDTH Default is 32.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 11
PG129 June 19, 2013

Chapter 3: Designing with the Core

ID_BUS_WIDTH Default is 4.

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any
attempt to generate more traffic while this limit has been reached is
handled by stalling until at least one of the outstanding transactions has
finished.
Default is 8.

EXCLUSIVE_ACCESS_SUPPORTED This parameter informs the master that exclusive access is supported by
the slave. A value of 1 means it is supported so the response check
expects an EXOKAY, or else give a warning, in response to an exclusive
access. A value of 0 means the slave does not support this so a response
of OKAY is expected in response to an exclusive access.
Default is 1.

WRITE_BURST_DATA_TRANSFER_GAP The configuration variable can be set dynamically during the run of a
test. It controls the gap between the write data transfers that comprise
a write data burst. This value is an integer number and is measured in
clock cycles.
Default is 0.

Note: If this is set to a value greater than zero and concurrent write
bursts are called. Then write data interleaving occurs. The depth of
this data interleaving depends on the number of parallel writes
being performed.

RESPONSE_TIMEOUT This value, measured in clock cycles, is the value used to determine if a
task that is waiting for a response should timeout.
Default is 500 clock cycles.
A value of zero means that the timeout feature is disabled.

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of the
simulation on an error condition.
The default (1) means stop on error.
This configuration variable can be changed during simulation for error
testing.

Note: This is not used for timeout errors; such errors always stop
simulation.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level
information messages. When set to 1 info messages are printed, when
set to zero no channel level information is printed.
Default (0) means channel level info messages are disabled.

FUNCTION_LEVEL_INFO This configuration variable controls the printing of function level
information messages. When set to 1 info messages are printed, when
set to zero no function level information is printed.
Default (1) means function level info messages are enabled.

CLEAR_SIGNALS_AFTER_HANDSHAKE This configuration value is used to enable/disable the setting of BFM
output signals to reset values between transfers.
Default is 0.

Table 3-1: AXI3 Master BFM Parameters (Cont’d)

BFM Parameters Description

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 12
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI3 Slave BFM

Table 3-2 contains a list of parameters and configuration variables supported by the AXI3
Slave BFM:

ERROR_ON_SLVERR This configuration value is used to enable/disable errors on SLVERR
responses to reads or writes.
Default is 0, which means these are reported as warnings instead of
errors.

ERROR_ON_DECERR This configuration value is used to enable/disable errors on SLVERR
responses to reads or writes.
Default is 0, which means these are reported as warnings instead of
errors.

Table 3-1: AXI3 Master BFM Parameters (Cont’d)

BFM Parameters Description

Table 3-2: AXI3 Slave BFM Parameters

BFM Parameters Description

NAME String name for the slave BFM. This is used in the messages coming from
the BFM. The default for the slave BFM is “SLAVE_0.”

DATA_BUS_WIDTH Read and write data buses can be 32, 64, 128, 256, 512, or 1,024 bits
wide.
Default is 32.

ADDRESS_BUS_WIDTH Default is 32.

ID_BUS_WIDTH Slaves can have different ID bus widths compared to the master. The
default is 4.

SLAVE_ADDRESS This is the start address of the slave memory range.

SLAVE_MEM_SIZE This is the size of the memory that the slave models. Starting from
address = SLAVE_ADDRESS.
This is measured in bytes therefore a value of 4,096 = 4 KB.
The default value is 4 bytes, meaning, one 32-bit entry.

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any
attempt to generate more traff ic while this limit has been reached is
handled by stalling until at least one of the outstanding transactions has
finished.
Default is 8.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 13
PG129 June 19, 2013

Chapter 3: Designing with the Core

MEMORY_MODEL_MODE The parameter puts the slave BFM into a simple memory model mode.
This means that the slave BFM automatically responds to all transfers
and does not require any of the API functions to be called by the test.
The memory mode is very simple and only supports aligned and normal
INCR transfers. Narrow transfers are not supported, and WRAP and
FIXED bursts are also not supported.
The size and address range of the memory are controlled by the
parameters SLAVE_ADDRESS and SLAVE_MEM_SIZE.
The value 1 enables this memory model mode. A value of 0 disables it.
Default is 0.
The slave channel level API and function level API should not be used
while this mode is active.

EXCLUSIVE_ACCESS_SUPPORTED This parameter informs the slave that exclusive access is supported. A
value of 1 means it is supported so the automatic generated response
is an EXOKAY to exclusive accesses. A value of 0 means the slave does
not support this so a response of OKAY is automatically generated in
response to exclusive accesses.
Default is 1.

READ_BURST_DATA_TRANSFER_GAP The configuration variable controls the gap between the read data
transfers that comprise a read data burst. This value is an integer
number and is measured in clock cycles.
Default is 0.

Note: If this is set to a value greater than zero and concurrent read
bursts are called, read data interleaving occurs. The depth of this
data interleaving depends on the number of parallel writes being
performed.

This configuration variable can be changed during simulation.

WRITE_RESPONSE_GAP This configuration variable controls the gap, measured in clock cycles,
between the reception of the last write transfer and the write response.
Default is 0.

Note: This configuration variable can be changed during
simulation.

READ_RESPONSE_GAP This configuration variable controls the gap, measured in clock cycles,
between the reception of the read address transfer and the start of the
first read data transfer.
Default is 0.

Note: This configuration variable can be changed during
simulation.

RESPONSE_TIMEOUT This configuration variable, measured in clock cycles, is the value used
to determine if a task that is waiting for a response should timeout.
Default = 500 clock cycles.
A value of zero means that the timeout feature is disabled. This
configuration variable can be changed during simulation.

Table 3-2: AXI3 Slave BFM Parameters (Cont’d)

BFM Parameters Description

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 14
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4 BFM
TIP: File name is the same as the module name as specified by you.

The AXI4 BFM modules and f iles are named as follows:

• Full Master BFM

° Module Name: cdn_axi_bfm_v4_0_0

° File Name: cdn_axi4_master_bfm.v

• Full Slave BFM

° Module Name: cdn_axi_bfm_v4_0_0

° File Name: cdn_axi4_slave_bfm.v

• Lite Master BFM

° Module Name: cdn_axi_bfm_v4_0_0

° File Name: cdn_axi4_lite_master_bfm.v

• Lite Slave BFM

° Module Name: cdn_axi_bfm_v4_0_0

° File Name: cdn_axi4_lite_slave_bfm.v

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of the
simulation on an error condition.
The default value of one stops the simulation on an error.
This configuration variable can be changed during simulation for error
testing.

Note: This is not used for timeout errors; such errors always stop
simulation.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level
information messages. When set to 1 info messages are printed; when
set to zero no channel level information is printed.
The default (0) disables the channel level info messages.

FUNCTION_LEVEL_INFO This configuration variable controls the printing of function level
information messages. When set to 1 info messages are printed; when
set to zero no function level information is printed.
The default (1) enables the function level info messages.

CLEAR_SIGNALS_AFTER_HANDSHAKE This configuration value is used to enable/disable the setting of BFM
output signals to reset values between transfers.
Default is 0.

Table 3-2: AXI3 Slave BFM Parameters (Cont’d)

BFM Parameters Description

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 15
PG129 June 19, 2013

Chapter 3: Designing with the Core

• Streaming Master BFM

° Module Name: cdn_axi_bfm_v4_0_0

° File Name: cdn_axi4_streaming_master_bfm.v

• Streaming Slave BFM

° Module Name: cdn_axi_bfm_v4_0_0

° File Name: cdn_axi4_streaming_slave_bfm.v

AXI4 Master BFM

Table 3-3 contains a list of parameters and configuration variables supported by the AXI4
Master BFM.

Table 3-3: AXI4 Master BFM Parameters

BFM Parameters Description

NAME String name for the master BFM. This is used in the messages coming
from the BFM. The default for the master BFM is “MASTER_0.”

DATA_BUS_WIDTH Read and write data buses can be 32, 64, 128, 256, 512, or 1,024 bits
wide.
Default is 32.

ADDRESS_BUS_WIDTH Default is 32.

ID_BUS_WIDTH Default is 4.

AWUSER_BUS_WIDTH Default is 1.

ARUSER_BUS_WIDTH Default is 1.

RUSER_BUS_WIDTH Default is 1.

WUSER_BUS_WIDTH Default is 1.

BUSER_BUS_WIDTH Default is 1.

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any
attempt to generate more traff ic while this limit has been reached is
handled by stalling until at least one of the outstanding transactions has
f inished.
Default is 8.

EXCLUSIVE_ACCESS_SUPPORTED This parameter informs the master that exclusive access is supported by
the slave. A value of 1 means it is supported so the response check
expects an EXOKAY, or else give a warning, in response to an exclusive
access. A value of 0 means the slave does not support this so a response
of OKAY is expected in response to an exclusive access.
Default is 1.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 16
PG129 June 19, 2013

Chapter 3: Designing with the Core

WRITE_BURST_DATA_TRANSFER_GAP The configuration variable can be set dynamically during the run of a
test. It controls the gap between the write data transfers that comprise
a write data burst. This value is an integer number and is measured in
clock cycles.
Default is 0.

Note: If this is set to a value greater than zero and concurrent read
bursts are called, then the BFM attempts to perform read data
interleaving.

WRITE_BURST_ADDRESS_DATA_
PHASE_GAP

This configuration variable can be set dynamically during the run of a
test. It controls the gap between the write address phase and the write
data burst inside the WRITE_BURST task. This value is an integer number
and is measured in clock cycles.
Default is 0.

WRITE_BURST_DATA_ADDRESS_
PHASE_GAP

This configuration variable can be set dynamically during the run of a
test. It controls the gap between the write data burst and the write
address phase inside the WRITE_BURST_CONCURRENT. This enables you
to start the address phase at anytime during the data burst. This value is
an integer number and is measured in clock cycles.
Default is 0.

RESPONSE_TIMEOUT This value, measured in clock cycles, is the value used to determine if a
task that is waiting for a response should timeout.
Default is 500 clock cycles.
A value of zero means that the timeout feature is disabled.

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of the
simulation on an error condition.
The default value of one stops the simulation on an error.
This configuration variable can be changed during simulation for error
testing.

Note: This is not used for timeout errors; such errors always stop
simulation.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level
information messages. When set to 1 info messages are printed, when
set to zero no channel level information is printed.
The default (0) disables the channel level info messages.

FUNCTION_LEVEL_INFO This configuration variable controls the printing of function level
information messages. When set to 1 info messages are printed, when
set to zero no function level information is printed.
The default (1) enables the function level info messages.

CLEAR_SIGNALS_AFTER_HANDSHAKE This configuration value is used to enable/disable the setting of BFM
output signals to reset values between transfers.
Default is 0.

Table 3-3: AXI4 Master BFM Parameters (Cont’d)

BFM Parameters Description

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 17
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4 Slave BFM

Table 3-4 contains a list of parameters and configuration variables supported by the AXI4
Slave BFM.

ERROR_ON_SLVERR This configuration value is used to enable/disable errors on SLVERR
responses to reads or writes.
Default is 0, which means these are reported as warnings instead of
errors.

ERROR_ON_DECERR This configuration value is used to enable/disable errors on SLVERR
responses to reads or writes.
Default is 0, which means these are reported as warnings instead of
errors.

Table 3-3: AXI4 Master BFM Parameters (Cont’d)

BFM Parameters Description

Table 3-4: AXI4 Slave BFM Parameters

BFM Parameters Description

NAME String name for the slave BFM. This is used in the messages coming from
the BFM. The default for the slave BFM is “SLAVE_0.”

DATA_BUS_WIDTH Read and write data buses can be 32, 64, 128, 256, 512, or 1,024 bits
wide.
Default is 32.

ADDRESS_BUS_WIDTH Default is 32.

ID_BUS_WIDTH Slaves can have different ID bus widths compared to the master.
Default is 4.

AWUSER_BUS_WIDTH Default is 1.

ARUSER_BUS_WIDTH Default is 1.

RUSER_BUS_WIDTH Default is 1.

WUSER_BUS_WIDTH Default is 1.

BUSER_BUS_WIDTH Default is 1.

SLAVE_ADDRESS This is the start address of the slave memory range.

SLAVE_MEM_SIZE This is the size of the memory that the slave models. Starting from
address = SLAVE_ADDRESS.
This is measured in bytes therefore a value of 4,096 = 4 KB.
The default value is 4 bytes (one 32-bit entry).

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any
attempt to generate more traffic while this limit has been reached is
handled by stalling until at least one of the outstanding transactions has
f inished.
Default is 8.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 18
PG129 June 19, 2013

Chapter 3: Designing with the Core

MEMORY_MODEL_MODE The parameter puts the slave BFM into a simple memory model mode.
This means that the slave BFM automatically responds to all transfers
and does not require any of the API functions to be called by the test.
The memory mode is very simple and only supports, aligned and normal
INCR transfers. Narrow transfers are not supported, and WRAP and
FIXED bursts are also not supported.
The size and address range of the memory are controlled by the
parameters SLAVE_ADDRESS and SLAVE_MEM_SIZE.
The value 1 enables this memory model mode. A value of 0 disables it.
Default is 0.
The slave channel level API and function level API should not be used
while this mode is active.

EXCLUSIVE_ACCESS_SUPPORTED This parameter informs the slave that exclusive access is supported. A
value of 1 means it is supported so the automatic generated response is
an EXOKAY to exclusive accesses. A value of 0 means the slave does not
support this so a response of OKAY is automatically generated in
response to exclusive accesses.
Default is 1.

READ_BURST_DATA_TRANSFER_GAP The configuration variable controls the gap between the read data
transfers that comprise a read data burst. This value is an integer
number and is measured in clock cycles.
Default is 0.

Note: If this is set to a value greater than zero and concurrent read
bursts are called, then AXI4 protocol is violated as the BFM attempts
to perform data interleaving.

WRITE_RESPONSE_GAP This configuration variable controls the gap, measured in clock cycles,
between the reception of the last write transfer and the write response.
Default is 0.
This configuration variable can be changed during simulation.

READ_RESPONSE_GAP This configuration variable controls the gap, measured in clock cycles,
between the reception of the read address transfer and the start of the
f irst read data transfer.
Default is 0.
This configuration variable can be changed during simulation.

RESPONSE_TIMEOUT This configuration variable, measured in clock cycles, is the value used
to determine if a task that is waiting for a response should timeout.
Default = 500 clock cycles.
A value of zero means that the timeout feature is disabled.
This configuration variable can be changed during simulation.

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of the
simulation on an error condition.
The default value of 1 stops the simulation on an error.
This configuration variable can be changed during simulation for error
testing.

Note: This is not used for timeout errors; such errors always stop
simulation.

Table 3-4: AXI4 Slave BFM Parameters (Cont’d)

BFM Parameters Description

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 19
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4-Lite Master BFM

Table 3-5 contains a list of parameters and configuration variables which are supported by
the AXI4-Lite Master BFM.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level
information messages. When set to 1 info messages are printed; when
set to zero no channel level information is printed.
The default (0) disables the channel level info messages.

FUNCTION_LEVEL_INFO This configuration variable controls the printing of function level
information messages. When set to 1 info messages are printed; when
set to zero no function level information is printed.
The default (1) enables the function level info messages.

CLEAR_SIGNALS_AFTER_HANDSHAKE This configuration value is used to enable/disable the setting of BFM
output signals to reset values between transfers.
Default is 0.

Table 3-4: AXI4 Slave BFM Parameters (Cont’d)

BFM Parameters Description

Table 3-5: AXI4-Lite Master BFM Parameters

BFM Parameters Description

NAME String name for the master BFM. This is used in the messages coming
from the BFM. The default for the master BFM is “MASTER_0.”

DATA_BUS_WIDTH Read and write data buses can 32 or 64 bits wide only.
Default is 32.

ADDRESS_BUS_WIDTH Default is 32.

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any
attempt to generate more traffic while this limit has been reached is
handled by stalling until at least one of the outstanding transactions has
f inished.
Default is 8.

RESPONSE_TIMEOUT This value, measured in clock cycles, is the value used to determine if a
task that is waiting for a response should timeout.
Default is 500 clock cycles.
A value of zero means that the timeout feature is disabled.

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of the
simulation on an error condition.
The default value of one stops the simulation on an error.
This configuration variable can be changed during simulation for error
testing.

Note: This is not used for timeout errors; such errors always stop
simulation.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level
information messages. When set to 1 info messages are printed, when
set to zero no channel level information is printed.
The default (0) disables the channel level info messages.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 20
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4-Lite Slave BFM

Table 3-6 contains a list of parameters and configuration variables which are supported by
the AXI4-Lite Slave BFM.

FUNCTION_LEVEL_INFO This configuration variable controls the printing of function level
information messages. When set to 1 info messages are printed, when
set to zero no function level information is printed.
The default (1) enables the function level info messages.

CLEAR_SIGNALS_AFTER_HANDSHAKE This configuration value is used to enable/disable the setting of BFM
output signals to reset values between transfers.
Default is 0.

ERROR_ON_SLVERR This configuration value is used to enable/disable errors on SLVERR
responses to reads or writes.
Default is 0, which means these are reported as warnings instead of
errors.

ERROR_ON_DECERR This configuration value is used to enable/disable errors on SLVERR
responses to reads or writes.
Default is 0, which means these are reported as warnings instead of
errors.

Table 3-5: AXI4-Lite Master BFM Parameters (Cont’d)

BFM Parameters Description

Table 3-6: AXI4-Lite Slave BFM Parameters

BFM Parameters Description

NAME String name for the slave BFM. This is used in the messages coming from
the BFM. The default for the slave BFM is “SLAVE_0.”

DATA_BUS_WIDTH Read and write data buses can be 32 or 64 bits wide only.
Default is 32.

ADDRESS_BUS_WIDTH Default is 32.

SLAVE_ADDRESS This is the start address of the slave memory range.

SLAVE_MEM_SIZE This is the size of the memory that the slave models. Starting from
address = SLAVE_ADDRESS.
This is measured in bytes therefore a value of 4,096 = 4 KB.
The default value is 4 bytes, that is, one 32-bit entry.

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any
attempt to generate more traff ic while this limit has been reached is
handled by stalling until at least one of the outstanding transactions has
f inished.
Default is 8.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 21
PG129 June 19, 2013

Chapter 3: Designing with the Core

MEMORY_MODEL_MODE The parameter puts the slave BFM into a simple memory model mode.
This means that the slave BFM automatically responds to all transfers
and does not require any of the API functions to be called by the test.
The memory mode is very simple and only supports, aligned and normal
INCR transfers. Narrow transfers are not supported, and WRAP and
FIXED bursts are also not supported.
The size and address range of the memory are controlled by the
parameters SLAVE_ADDRESS and SLAVE_MEM_SIZE.
The value 1 enables this memory model mode. A value of 0 disables it.
Default is 0.
The slave channel level API and function level API should not be used
while this mode is active.

WRITE_RESPONSE_GAP This configuration variable controls the gap, measured in clock cycles,
between the reception of the last write transfer and the write response.
Default is 0.
This configuration variable can be changed during simulation.

READ_RESPONSE_GAP This configuration variable controls the gap, measured in clock cycles,
between the reception of the read address transfer and the start of the
f irst read data transfer.
Default is 0.
This configuration variable can be changed during simulation.

RESPONSE_TIMEOUT This configuration variable, measured in clock cycles, is the value used
to determine if a task that is waiting for a response should timeout.
Default = 500 clock cycles.
A value of zero means that the timeout feature is disabled.
This configuration variable can be changed during simulation.

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of the
simulation on an error condition.
The default value of one stops the simulation on an error.
This configuration variable can be changed during simulation for error
testing.

Note: This is not used for timeout errors; such errors always stop
simulation.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level
information messages. When set to 1 info messages are printed, when
set to zero no channel level information is printed.
The default (0) disables the channel level info messages.

FUNCTION_LEVEL_INFO This configuration variable controls the printing of function level
information messages. When set to 1 info messages are printed, when
set to zero no function level information is printed.
The default (1) enables the function level info messages.

CLEAR_SIGNALS_AFTER_HANDSHAKE This configuration value is used to enable/disable the setting of BFM
output signals to reset values between transfers.
Default is 0.

Table 3-6: AXI4-Lite Slave BFM Parameters (Cont’d)

BFM Parameters Description

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 22
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4-Stream Master BFM

Table 3-7 contains a list of parameters and configuration variables which are supported by
the AXI4-Stream Master BFM.

Table 3-7: AXI4-Stream BFM Parameters

BFM Parameters Description

NAME String name for the master BFM. This is used in the messages coming
from the BFM. The default for the master BFM is “MASTER_0.”

DATA_BUS_WIDTH Read and write data buses can be 8 to 1,024, in multiples of 8 bits wide.
Default is 32.

ID_BUS_WIDTH Default is 8.

DEST_BUS_WIDTH Default is 4.

USER_BUS_WIDTH Default is 8.

MAX_PACKET_SIZE This parameter is an integer value that controls the maximum size of a
packet. It is used to size the packet data vector. The value must be
specified as an integer multiple of the DATA_BUS_WIDTH. For example,
if DATA_BUS_WIDTH = 32 bits and MAX_PACKET_SIZE = 2, then the
maximum packet size is 64 bits.
The default value is 10.

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any
attempt to generate more traffic while this limit has been reached is
handled by stalling until at least one of the outstanding transactions
has f inished.
Default is 8.

STROBE_NOT_USED Enables and disables the strobe signals.
• 0 = Strobe signals used
• 1 = Strobe signals not used
The default is 0. A value of 1 disables the associated checks.

KEEP_NOT_USED Enables and disables keeping unused signals.
• 0 = Keep signals used
• 1 = Keep signals not used
The default is 0. Changing the value to 1 disables the associated checks.

PACKET_TRANSFER_GAP The configuration variable controls the gap between the transfers in a
packet. This value is an integer number and is measured in clock cycles.
The default is 0.

Note: If this is set to a value greater than zero and concurrent
SEND_PACKET tasks are called, then the BFM attempts to perform
write data interleaving.

RESPONSE_TIMEOUT This value, measured in clock cycles, is the value used to determine if a
task that is waiting for a response should timeout.
Default is 500 clock cycles.
A value of zero means that the timeout feature is disabled.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 23
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4-Stream Slave BFM

Table 3-8 contains a list of parameters and configuration variables which are supported by
the AXI4-Stream Slave BFM.

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of
the simulation on an error condition.
The default value of 1 stops the simulation on an error.
This configuration variable can be changed during simulation for error
testing.

Note: This is not used for timeout errors; such errors always stop
simulation.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level
information messages. When set to 1, info messages are printed, when
set to zero no channel level information is printed.
The default (1) enables channel level info messages.

CLEAR_SIGNALS_AFTER_HANDSHAKE This configuration value is used to enable/disable the setting of BFM
output signals to reset values between transfers.
Default is 0.

ERROR_ON_SLVERR This configuration value is used to enable/disable errors on SLVERR
responses to reads or writes.
Default is 0, which means these are reported as warnings instead of
errors.

ERROR_ON_DECERR This configuration value is used to enable/disable errors on SLVERR
responses to reads or writes.
Default is 0, which means these are reported as warnings instead of
errors.

Table 3-7: AXI4-Stream BFM Parameters (Cont’d)

BFM Parameters Description

Table 3-8: AXI4-Stream Slave BFM Parameters

BFM Parameters Description

NAME String name for the slave BFM. This is used in the messages coming from
the BFM. The default for the slave BFM is “SLAVE_0.”

DATA_BUS_WIDTH Read and write data buses can be 8 to 1,024, in multiples of 8 bits wide.
Default is 32.

ID_BUS_WIDTH Default is 8.

DEST_BUS_WIDTH Default is 4.

USER_BUS_WIDTH Default is 8.

MAX_PACKET_SIZE This parameter is an integer value that controls the maximum size of a
packet. It is used to size the packet data vector. The value must be
specif ied as an integer multiple of the DATA_BUS_WIDTH. For example,
if DATA_BUS_WIDTH = 32 bits and MAX_PACKET_SIZE = 2, then the
maximum packet size is 64 bits.
The default value is 10.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 24
PG129 June 19, 2013

Chapter 3: Designing with the Core

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any
attempt to generate more traff ic while this limit has been reached is
handled by stalling until at least one of the outstanding transactions has
f inished.
Default is 8.

STROBE_NOT_USED Enables and disables the strobe signals.
• 0 = Strobe signals used
• 1 = Strobe signals not used
The default is 0. A value of 1 only disables the associated checks.

KEEP_NOT_USED Enables and disables keeping unused signals.
• 0 = Keep signals used
• 1 = Keep signals not used
The default is 0. Changing the value to 1 only disables the associated
checks.

RESPONSE_TIMEOUT This configuration variable, measured in clock cycles, is the value used
to determine if a task that is waiting for a response should timeout.
Default = 500 clock cycles.
A value of zero means that the timeout feature is disabled.
This configuration variable can be changed during simulation.

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of the
simulation on an error condition.
The default value of 1 stops the simulation on an error.
This configuration variable can be changed during simulation for error
testing.

Note: This is not used for timeout errors; such errors always stop
simulation.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level
information messages. When set to 1, info messages are printed, when
set to zero no channel level information is printed.
The default (1) enables the channel level info messages.

Table 3-8: AXI4-Stream Slave BFM Parameters (Cont’d)

BFM Parameters Description

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 25
PG129 June 19, 2013

Chapter 3: Designing with the Core

Test Writing API
The test writing API is layered to allow the designer to implement more complex protocol
features. This approach enables very complex test cases to be written. For a complete
overview of the general AXI BFM architecture, see Chapter 1, Overview.

For all functions in the API, the input and output values used for burst length and burst size
are encoded as specif ied in the AMBA® AXI Specifications [Ref 1]. For example, LEN = 0 as
an input means a burst of length 1.

Tasks and functions common to all BFM are described in Table 3-9.

Table 3-9: Utility API Tasks/Functions

API Task Name and Description Inputs Outputs

report_status
This function can be called at the end of a test
to report the f inal status of the associated BFM.

dummy_bit: The value of this
input can be 1 or 0 and does
not matter. It is only required
because a Verilog function
needs at least 1 input.

report_status: This is an
integer
number which is calculated as:

report_status =
error_count +
warning_count +
pending_transactions_count

report_config
This task prints out the current configuration as
set by the configuration parameters and
variables. This task can be called at any time.

None None

set_channel_level_info
This function sets the CHANNEL_LEVEL_INFO
internal control variable to the specified input
value.

LEVEL: A bit input for the info
level.

None

set_function_level_info
This function sets the FUNCTION_LEVEL_INFO
internal control variable to the specified input
value.

LEVEL: A bit input for the info
level.

None

set_stop_on_error
This function sets the STOP_ON_ERROR
internal control variable to the specified input
value.

LEVEL: A bit input for the info
level.

None

set_read_burst_data_transfer_gap
This function sets the SLAVE
READ_BURST_DATA_TRANSFER_GAP internal
control variable to the specif ied input value.

TIMEOUT: An integer value
measured in clock cycles.

None

set_write_response_gap
This function sets the SLAVE
WRITE_RESPONSE_GAP internal control
variable to the specif ied input value.

TIMEOUT: An integer value
measured in clock cycles.

None

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 26
PG129 June 19, 2013

Chapter 3: Designing with the Core

set_read_response_gap
This function sets the SLAVE
READ_RESPONSE_GAP internal control variable
to the specified input value.

TIMEOUT: An integer value
measured in clock cycles.

None

set_write_burst_data_transfer_gap
This function sets the MASTER
WRITE_BURST_DATA_TRANSFER_GAP internal
control variable to the specif ied input value.

TIMEOUT: An integer value
measured in clock cycles.

None

set_wrtie_burst_address_data_phase_gap
This function sets the AXI4 FULL MASTER
WRITE_BURST_ADDRESS_DATA_PHASE_GAP
internal control variable to the specified input
value.

GAP_LENGTH: An integer value
measured in clock cycles.

None

set_write_burst_data_address_phase_gap
This function sets the AXI4 FULL MASTER
WRITE_BURST_DATA_ADDRESS_PHASE_GAP
internal control variable to the specified input
value.

GAP_LENGTH: An integer value
measured in clock cycles.

None

set_packet_transfer_gap
This function sets the AXI4 Streaming MASTER
PACKET_TRANSFER_GAP internal control
variable to the specif ied input value.

GAP_LENGTH: An integer value
measured in clock cycles.

None

set_bfm_clk_delay
This task sets the internal variable
BFM_CLK_DELAY to the specif ied input value.
This is used to move the BFM internal clock off
the simulation clock edge if needed. The
default value is zero. If used it must be applied
to each BFM separately.

CLK_DELAY: An integer value
used for the #BFM_CLK_DELAY
on BFM internal clocking.

None

set_task_call_and_reset_handling
This task sets the TASK_RESET_HANDLING
internal variable to the specif ied input value:
0x0 = Ignore reset and continue to process task
(default)
0x1 = Stall task execution until out of reset and
print info message
0x2 = Issue an error and stop (depending on
STOP_ON_ERROR value)
0x3 = Issue a warning and continue

task_reset_handling: An
integer value used to define
BFM behavior during reset
when a channel level API task is
called.

None

Table 3-9: Utility API Tasks/Functions (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 27
PG129 June 19, 2013

Chapter 3: Designing with the Core

remove_pending_transaction
This task is only required if the test writer is
using the channel level API task
RECEIVE_READ_DATA instead of
RECEIVE_READ_BURST. The
RECEIVE_READ_DATA does not decrement the
pending transaction counter so this task must
be called manually after the full read data
transfer is complete.

None None

set_clear_signals_after_handshake
This task sets the
CLEAR_SIGNALS_AFTER_HANDSHAKE internal
variable to the specif ied input value:
0 = disabled
1 = enabled
When disabled the last driven value is left on
the output BFM signal until a new value is
transferred.

A simple bit value to enable/
disable driving signals to reset
values between transfers.

None

set_error_on_slverr
This task sets the ERROR_ON_SLVERR internal
variable to the specif ied input value:
0 = warning reported on slverr
1 = error reported on slverr

A simple bit value to enable/
disable errors on slverr
responses.

None

set_error_on_decerr
This task sets the ERROR_ON_DECERR internal
ariable to the specif ied input value:
0 = warning reported on decerr
1 = error reported on decerr

A simple bit value to enable/
disable errors on decerr
responses.

None

Table 3-9: Utility API Tasks/Functions (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 28
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI3 Master BFM Test Writing API
The channel level API for the AXI3 Master BFM is detailed in Table 3-10.

Table 3-10: Channel Level API for AXI3 Master BFM

API Task Name and Description Inputs Outputs

SEND_WRITE_ADDRESS
Creates a write address channel transaction. This task
returns after the write address has been acknowledged
by the slave.
This task emits a “write_address_transfer_complete”
event upon completion.

ID: Write Address ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type

None

SEND_WRITE_DATA
Creates a single write data channel transaction. The ID
tag should be the same as the write address ID tag it is
associated with. The data should be the same size as
the width of the data bus. This task returns after is has
been acknowledged by the slave. The data input is
used as raw bus data, that is, no realignment for narrow
or unaligned data.
This task emits a “write_data_transfer_complete” event
upon completion.

Note: Should be called multiple times for a burst
with correct control of the LAST flag

ID: Write ID tag
STOBE: Strobe signals
DATA: Data for transfer
LAST: Last transfer flag

None

SEND_READ_ADDRESS
Creates a read address channel transaction. This task
returns after the read address has been acknowledged
by the slave.
This task emits a “read_address_transfer_complete”
event upon completion.

ID: Read Address ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type

None

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 29
PG129 June 19, 2013

Chapter 3: Designing with the Core

RECEIVE_READ_DATA
This task drives the RREADY signal and monitors the
read data bus for read transfers coming from the slave
that have the specified ID tag. It then returns the data
associated with the transaction and the status of the
last flag. The data output here is raw bus data, that is,
no realignment for narrow or unaligned data.
This task emits a “read_data_transfer_complete” event
upon completion.

Note: This would need to be called multiple times
for a burst > 1.

Also, you must call the “remove_pending_transaction”
task when all data is received to ensure that the
pending transaction counter is decremented. This is
done automatically by the RECEIVE_READ_BURST and
RECEIVE_WRITE_RESPONSE channel level API tasks.

ID: Read ID tag DATA: Data transferred
by the slave
RESPONSE: The slave
read response from the
following:
[OKAY, EXOKAY, SLVERR,
DECERR]
LAST: Last transfer flag

RECEIVE_WRITE_RESPONSE
This task drives the BREADY signal and monitors the
write response bus for write responses coming from
the slave that have the specif ied ID tag. It then returns
the response associated with the transaction.
This task emits a “write_response_transfer_complete”
event upon completion.

ID: Write ID tag RESPONSE: The slave
write response from the
following:
[OKAY, EXOKAY, SLVERR,
DECERR]

RECEIVE_READ_BURST
This task receives a read channel burst based on the ID
input. The RECEIVE_READ_DATA from the channel level
API is used.
This task returns when the read transaction is
complete. The data returned by the task is the valid
only data, that is, re-aligned data. This task also checks
each response and issues a warning if it is not as
expected.
This task emits a “read_data_burst_complete” event
upon completion.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type

DATA: Valid Data
transferred by the slave
RESPONSE: This is a
vector that is created by
concatenating all slave
read responses together

SEND_WRITE_BURST
This task does a write burst on the write data lines. It
does not execute the write address transfer. This task
uses the SEND_WRITE_DATA task from the channel
level API.
This task returns when the complete write burst is
complete.
This task automatically supports the generation of
narrow transfers and unaligned transfers; that is, this
task aligns the input data with the burst so data
padding is not required.
This task emits a “write_data_burst_complete” event
upon completion.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
DATA: Data to send
DATASIZE: The size in bytes
of the valid data contained
in the input data vector

None

Table 3-10: Channel Level API for AXI3 Master BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 30
PG129 June 19, 2013

Chapter 3: Designing with the Core

The function level API for the AXI3 Master BFM is detailed in Table 3-11.

Table 3-11: Function Level API for AXI3 Master BFM

API Task Name and Description Inputs Outputs

READ_BURST
This task does a full read process. It is
composed of the tasks
SEND_READ_ADDRESS and
RECEIVE_READ_BURST from the channel level
API. This task returns when the read
transaction is complete.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type

DATA: Valid data transferred by the
slave
RESPONSE: This is a vector that is
created by concatenating all slave
read responses together

WRITE_BURST
This task does a full write process. It is
composed of the tasks
SEND_WRITE_ADDRESS,
SEND_WRITE_BURST and
RECEIVE_WRITE_RESPONSE from the channel
level API.
This task returns when the complete write
transaction is complete.
This task automatically supports the
generation of narrow transfers and
unaligned transfers.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes
of the valid data contained
in the input data vector

RESPONSE: The slave write
response from the following:
[OKAY, EXOKAY, SLVERR, DECERR]

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 31
PG129 June 19, 2013

Chapter 3: Designing with the Core

WRITE_BURST_CONCURRENT
This task does the same function as the
WRITE_BURST task; however, it performs the
write address and write data phases
concurrently.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes
of the valid data contained
in the input data vector

RESPONSE: The slave write
response from the following:
[OKAY, EXOKAY, SLVERR, DECERR]

WRITE_BURST_DATA_FIRST
This task does the same function as the
WRITE_BURST task; however, it sends the
write data burst before sending the
associated write address transfer on the
write address channel.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes
of the valid data contained
in the input data vector

RESPONSE: The slave write
response from the following:
[OKAY, EXOKAY, SLVERR, DECERR]

Table 3-11: Function Level API for AXI3 Master BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 32
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI3 Slave BFM Test Writing API
The channel level API for the AXI3 Slave BFM is detailed in Table 3-12.

Table 3-12: Channel Level API for AXI3 Slave BFM

API Task Name and Description Inputs Outputs

SEND_WRITE_RESPONSE
Creates a write response channel transaction. The ID
tag must match the associated write transaction. This
task returns after it has been acknowledged by the
master.
This task emits a “write_response_transfer_complete”
event upon completion.

ID: Write ID tag
RESPONSE: The chosen write
response from the following
[OKAY, EXOKAY, SLVERR,
DECERR]

None

SEND_READ_DATA
Creates a read channel transaction. The ID tag must
match the associated read transaction. This task
returns after it has been acknowledged by the master.
This task emits a “read_data_transfer_complete” event
upon completion.

Note: This would need to be called multiple times
for a burst > 1.

ID: Read ID tag
DATA: Data to send to the
master
RESPONSE: The read
response to send to the
master from the following:
[OKAY, EXOKAY, SLVERR,
DECERR]
LAST: Last transfer flag

None

RECEIVE_WRITE_ADDRESS
This task drives the AWREADY signal and monitors the
write address bus for write address transfers coming
from the master that have the specified ID tag (unless
the IDValid bit = 0). It then returns the data associated
with the write address transaction.
If the IDValid bit is 0 then the input ID tag is not used
and the next available write address transfer is
sampled.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine if the
address is valid.
This task emits a “write_address_transfer_complete”
event upon completion.

ID: Write Address ID tag
IDValid: Bit to indicate if the
ID input parameter is to be
used. When set to 1 the ID is
valid and used, when set to 0
it is ignored.

ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
IDTAG: Sampled ID tag

RECEIVE_READ_ADDRESS
This task drives the ARREADY signal and monitors the
read address bus for read address transfers coming
from the master that have the specified ID tag (unless
the IDValid bit = 0). It then returns the data associated
with the read address transaction.
If the IDValid bit is 0 then the input ID tag is not used
and the next available read address transfer is
sampled.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine if the
address is valid.
This task emits a “read_address_transfer_complete”
event upon completion.

ID: Write Address ID tag
IDValid: Bit to indicate if the
ID input parameter is to be
used. When set to 1 the ID is
valid and used, when set to 0
it is ignored.

ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
IDTAG: Sampled ID tag

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 33
PG129 June 19, 2013

Chapter 3: Designing with the Core

RECEIVE_WRITE_DATA
This task drives the WREADY signal and monitors the
write data bus for write transfers coming from the
master that have the specif ied ID tag (unless the
IDValid bit = 0). It then returns the data associated
with the transaction and the status of the last flag.

Note: This would need to be called multiple times
for a burst > 1.

If the IDValid bit is 0 then the input ID tag is not used
and the next available write data transfer is sampled.
This task emits a “write_data_transfer_complete”
event upon completion.

ID: Write ID tag
IDValid: Bit to indicate if the
ID input parameter is to be
used. When set to 1 the ID is
valid and used, when set to 0
it is ignored.

DATA: Data transferred
from the master
STRB: Strobe signals used
to validate the data
LAST: Last transfer flag
IDTAG: Sampled ID tag

RECEIVE_WRITE_BURST
This task receives and processes a write burst on the
write data channel with the specif ied ID (unless the
IDValid bit =0). It does not wait for the write address
transfer to be received. This task uses the
RECEIVE_WRITE_DATA task from the channel level API.
If the IDValid bit is 0 then the input ID tag is not used
and the next available write burst is sampled.
This task returns when the complete write burst is
complete.
This task automatically supports narrow transfers and
unaligned transfers; that is, this task aligns the output
data with the burst so the final output data should
only contain valid data (up to the size of the burst
data, shown by the output datasize).
This task emits a “write_data_burst_complete” event
upon completion.

ID: Write ID tag
IDValid: Bit to indicate if the
ID input parameter is to be
used. When set to 1 the ID is
valid and used, when set to 0
it is ignored.
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type

DATA: Data received from
the write burst
DATASIZE: The size in
bytes of the valid data
contained in the output
data vector
IDTAG: Sampled ID tag

RECEIVE_WRITE_BURST_NO_CHECKS
This task receives and processes a write burst on the
write data channel blindly, that is, with no checking of
length, size or anything else.
This task uses the RECEIVE_WRITE_DATA task from the
channel level API. This task returns when the complete
write burst is complete. This task automatically
supports narrow transfers and unaligned transfers;
that is, this task aligns the output data with the burst
so the f inal output data should only contain valid data
(up to the size of the burst data, shown by the output
datasize).

ID: Write ID tag DATA: Data received from
the write burst
DATASIZE: The size in
bytes of the valid data
contained in the output
data vector

Table 3-12: Channel Level API for AXI3 Slave BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 34
PG129 June 19, 2013

Chapter 3: Designing with the Core

SEND_READ_BURST
This task does a read burst on the read data lines. It
does not wait for the read address transfer to be
received. This task uses the SEND_READ_DATA task
from the channel level API.
This task returns when the complete read burst is
complete.
This task automatically supports the generation of
narrow transfers and unaligned transfers; that is, this
task aligns the input data with the burst so data
padding is not required.
This task emits a “read_data_burst_complete” event
upon completion.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
DATA: Data to be sent over
the burst

None

SEND_READ_BURST_RESP_CTRL
This task is the same as SEND_READ_BURST except
that the response sent to the master can be specified.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
DATA: Data to be sent over
the burst
RESPONSE: This is a vector
that should contain all of the
desired responses for each
read data transfer

None

Table 3-12: Channel Level API for AXI3 Slave BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 35
PG129 June 19, 2013

Chapter 3: Designing with the Core

The function level API for the AXI3 Slave BFM is detailed in Table 3-13.

Table 3-13: Function Level API for AXI3 Slave BFM

API Task Name and Description Inputs Outputs

READ_BURST_RESPOND
Creates a semi-automatic response to a read
request from the master. It checks if the ID tag for
the read request is as expected and then provides
a read response using the data provided. It is
composed of the tasks RECEIVE_READ_ADDRESS
and SEND_READ_BURST from the channel level
API. This task returns when the complete write
transaction is complete.
This task automatically supports the generation of
narrow transfers and unaligned transfers; that is,
this task aligns the input data with the burst so
data padding is not required.

ID: Read ID tag
DATA: Data to send in
response to the master read

None

WRITE_BURST_RESPOND
This is a semi-automatic task which waits for a
write burst with the specif ied ID tag and responds
appropriately. The data received in the write burst
is delivered as an output data vector.
This task is composed of the tasks
RECEIVE_WRITE_ADDRESS, RECEIVE_WRITE_BURST
and SEND_WRITE_RESPONSE from the channel
level API.
This task returns when the complete write
transaction is complete. This task automatically
supports the generation of narrow transfers and
unaligned transfers; that is, this task aligns the
input data with the burst so data padding is not
required.

ID: Write ID tag DATA: Data received by
slave
DATASIZE: The size in bytes
of the valid data contained
in the output data vector

WRITE_BURST_RESPOND_DATA_FIRST
This is a semi-automatic task which waits for a
write burst with the specif ied ID tag and responds
appropriately. It expects the write data to start
arriving before the write address phase. It returns
the data received in the write as a data vector. It is
composed of the tasks
RECEIVE_WRITE_BURST_NO_CHECKS,
RECEIVE_WRITE_ADDRESS and
SEND_WRITE_RESPONSE from the channel level
API. This task returns when the complete write
transaction is complete.

ID: Write ID tag DATA: Data received by
slave
DATASIZE: The size in bytes
of the valid data contained
in the output data vector

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 36
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4 Master BFM Test Writing API
The channel level API for the AXI4 Master BFM is detailed in Table 3-14.

READ_BURST_RESP_CTRL
This task is the same as READ_BURST_RESPONSE
except that the responses sent to the master can
be specif ied.

ID: Read ID tag
DATA: Data to send in
response to the master read.
RESPONSE: This is a vector
that should contain all of the
desired responses for each
read data transfer.

None

WRITE_BURST_RESP_CTRL
This task is the same as WRITE_BURST_RESPONSE
except that the response sent to the master can be
specified.

ID: Write ID tag
RESPONSE: The chosen write
response from the following
[OKAY, EXOKAY, SLVERR,
DECERR]

DATA: Data received by
slave
DATASIZE: The size in bytes
of the valid data contained
in the output data vector

Table 3-13: Function Level API for AXI3 Slave BFM (Cont’d)

API Task Name and Description Inputs Outputs

Table 3-14: Channel Level API for AXI4 Master BFM

API Task Name Inputs Outputs

SEND_WRITE_ADDRESS
Creates a write address channel transaction. This task
returns after the write address has been acknowledged
by the slave.
This task emits a “write_address_transfer_complete”
event upon completion.

ID: Write Address ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
REGION: Region Identif ier
QOS: Quality of Service
Signals
AWUSER: Address Write User
Defined Signals

None

SEND_WRITE_DATA
Creates a single write data channel transaction. The
data should be the same size as the width of the data
bus. This task returns after is has been acknowledged
by the slave. The data input is used as raw bus data;
that is, no realignment for narrow or unaligned data.
This task emits a “write_data_transfer_complete” event
upon completion.

Note: Should be called multiple times for a burst
with correct control of the LAST flag

STOBE: Strobe signals
DATA: Data for transfer
LAST: Last transfer flag
WUSER: Write User Defined
Signals

None

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 37
PG129 June 19, 2013

Chapter 3: Designing with the Core

SEND_READ_ADDRESS
Creates a read address channel transaction. This task
returns after the read address has been acknowledged
by the slave.
This task emits a “read_address_transfer_complete”
event upon completion.

ID: Read Address ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
REGION: Region Identif ier
QOS: Quality of Service
Signals
ARUSER: Address Read User
Defined Signals

None

RECEIVE_READ_DATA
This task drives the RREADY signal and monitors the
read data bus for read transfers coming from the slave
that have the specified ID tag. It then returns the data
associated with the transaction and the status of the
last flag. The data output here is raw bus data; that is,
no realignment for narrow or unaligned data.
This task emits a “read_data_transfer_complete” event
upon completion.

Note: This would need to be called multiple times
for a burst > 1.

Also, you must call the "remove_pending_transaction"
task when all data is received to ensure that the
pending transaction counter is decremented. This is
done automatically by the RECEIVE_READ_BURST and
RECEIVE_WRITE_RESPONSE channel level API tasks.

ID: Read ID tag DATA: Data transferred
by the slave
RESPONSE: The slave
read response from the
following: [OKAY,
EXOKAY, SLVERR,
DECERR]
LAST: Last transfer flag
RUSER: Read User
Defined Signals

RECEIVE_WRITE_RESPONSE
This task drives the BREADY signal and monitors the
write response bus for write responses coming from
the slave that have the specif ied ID tag. It then returns
the response associated with the transaction.
This task emits a “write_response_transfer_complete”
event upon completion.

ID: Write ID tag RESPONSE: The slave
write response from the
following: [OKAY,
EXOKAY, SLVERR,
DECERR]
BUSER: Write Response
User Defined Signals

Table 3-14: Channel Level API for AXI4 Master BFM (Cont’d)

API Task Name Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 38
PG129 June 19, 2013

Chapter 3: Designing with the Core

RECEIVE_READ_BURST
This task receives a read channel burst based on the ID
input. The RECEIVE_READ_DATA from the channel level
API is used.
This task returns when the read transaction is
complete. The data returned by the task is the valid
only data, that is, re-aligned data. This task also checks
each response and issues a warning if it is not as
expected.
This task emits a “read_data_burst_complete” event
upon completion.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type

DATA: Valid Data
transferred by the slave
RESPONSE: This is a
vector that is created by
concatenating all slave
read responses
together
RUSER: This is a vector
that is created by
concatenating all slave
read user signal data
together

SEND_WRITE_BURST
This task does a write burst on the write data lines. It
does not execute the write address transfer. This task
uses the SEND_WRITE_DATA task from the channel
level API.
This task returns when the complete write burst is
complete.
This task automatically supports the generation of
narrow transfers and unaligned transfers; that is, this
task aligns the input data with the burst so data
padding is not required.
This task emits a “write_data_burst_complete” event
upon completion.

ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
DATA: Data to send
DATASIZE: The size in bytes of
the valid data contained in
the input data vector
WUSER: This is a vector that is
created by concatenating all
write transfer user signal data
together

None

Table 3-14: Channel Level API for AXI4 Master BFM (Cont’d)

API Task Name Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 39
PG129 June 19, 2013

Chapter 3: Designing with the Core

The function level API for the AXI4 Master BFM is detailed in Table 3-15.

Table 3-15: Function Level API for AXI4 Master BFM

API Task Name and Description Inputs Outputs

READ_BURST
This task does a full read process. It is
composed of the tasks
SEND_READ_ADDRESS and
RECEIVE_READ_BURST from the channel
level API. This task returns when the read
transaction is complete.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
REGION: Region Identif ier
QOS: Quality of Service Signals
ARUSER: Address Read User
Defined Signals

DATA: Valid data transferred by the
slave
RESPONSE: This is a vector that is
created by concatenating all slave
read responses together
RUSER: This is a vector that is
created by concatenating all slave
read user signal data together

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 40
PG129 June 19, 2013

Chapter 3: Designing with the Core

WRITE_BURST
This task does a full write process. It is
composed of the tasks
SEND_WRITE_ADDRESS,
SEND_WRITE_BURST and
RECEIVE_WRITE_RESPONSE from the
channel level API.
This task returns when the complete
write transaction is complete.
This task automatically supports the
generation of narrow transfers and
unaligned transfers.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of
the valid data contained in the
input data vector
REGION: Region Identif ier
QOS: Quality of Service Signals
AWUSER: Address Write User
Defined Signals
WUSER: This is a vector that is
created by concatenating all
write transfer user signal data
together

RESPONSE: The slave write
response from the following:
[OKAY, EXOKAY, SLVERR, DECERR]
BUSER: Write Response Channel
User Defined Signals

WRITE_BURST_CONCURRENT
This task does the same function as the
WRITE_BURST task; however, it performs
the write address and write data phases
concurrently.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of
the valid data contained in the
input data vector
REGION: Region Identif ier
QOS: Quality of Service Signals
AWUSER: Address Write User
Defined Signals
WUSER: This is a vector that is
created by concatenating all
write transfer user signal data
together

RESPONSE: The slave write
response from the following:
[OKAY, EXOKAY, SLVERR, DECERR]
BUSER: Write Response Channel
User Defined Signals

Table 3-15: Function Level API for AXI4 Master BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 41
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4 Slave BFM Test Writing API
The channel level API for the AXI4 Slave BFM is detailed in Table 3-16.

Table 3-16: Channel Level API for AXI4 Slave BFM

API Task Name and Description Inputs Outputs

SEND_WRITE_RESPONSE
Creates a write response channel transaction. The
ID tag must match the associated write transaction.
This task returns after it has been acknowledged by
the master.
This task emits a
“write_response_transfer_complete” event upon
completion.

ID: Write ID tag
RESPONSE: The chosen write
response from the following
[OKAY, EXOKAY, SLVERR,
DECERR]
BUSER: Write Response User
Defined Signals

None

SEND_READ_DATA
Creates a read channel transaction. The ID tag
must match the associated read transaction. This
task returns after it has been acknowledged by the
master.
This task emits a “read_data_transfer_complete”
event upon completion.

Note: This would need to be called multiple
times for a burst > 1.

ID: Read ID tag
DATA: Data to send to the
master
RESPONSE: The read response
to send to the master from the
following: [OKAY, EXOKAY,
SLVERR, DECERR]
LAST: Last transfer flag
RUSER: Read User Defined
Signals

None

RECEIVE_WRITE_ADDRESS
This task drives the AWREADY signal and monitors
the write address bus for write address transfers
coming from the master that have the specif ied ID
tag (unless the IDValid bit = 0). It then returns the
data associated with the write address transaction.
If the IDValid bit is 0 then the input ID tag is not
used and the next available write address transfer
is sampled.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine if the
address is valid.
This task emits a
“write_address_transfer_complete” event upon
completion.

ID: Write Address ID tag
IDValid: Bit to indicate if the ID
input parameter is to be used.
When set to 1 the ID is valid
and used, when set to 0 it is
ignored.

ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
REGION: Region Identif ier
QOS: Quality of Service
Signals
AWUSER: Address Write
User Defined Signals
IDTAG: Sampled ID tag

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 42
PG129 June 19, 2013

Chapter 3: Designing with the Core

RECEIVE_READ_ADDRESS
This task drives the ARREADY signal and monitors
the read address bus for read address transfers
coming from the master that have the specif ied ID
tag (unless the IDValid bit = 0). It then returns the
data associated with the read address transaction.
If the IDValid bit is 0 then the input ID tag is not
used and the next available read address transfer is
sampled.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine if the
address is valid.
This task emits a “read_address_transfer_complete”
event upon completion.

ID: Read Address ID tag
IDValid: Bit to indicate if the ID
input parameter is to be used.
When set to 1 the ID is valid
and used, when set to 0 it is
ignored.

ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
REGION: Region Identif ier
QOS: Quality of Service
Signals
ARUSER: Address Read
User Defined Signals
IDTAG: Sampled ID tag

RECEIVE_WRITE_DATA
This task drives the WREADY signal and monitors
the write data bus for write transfers coming from
the master. It then returns the data associated with
the transaction and the status of the last flag.

Note: This would need to be called multiple
times for a burst > 1.

This task emits a “write_data_transfer_complete”
event upon completion.

None DATA: Data transferred
from the master
STRB: Strobe signals used
to validate the data
LAST: Last transfer flag
WUSER: Write User
Defined Signals

RECEIVE_WRITE_BURST
This task receives and processes a write burst on
the write data channel. It does not wait for the
write address transfer to be received. This task uses
the RECEIVE_WRITE_DATA task from the channel
level API. This task returns when the complete write
burst is complete.
This task automatically supports narrow transfers
and unaligned transfers; that is, this task aligns the
output data with the burst so the final output data
should only contain valid data (up to the size of the
burst data).
This task emits a “write_data_burst_complete”
event upon completion.

ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type

DATA: Data received from
the write burst
DATASIZE: The size in bytes
of the valid data contained
in the output data vector
WUSER: This is a vector
that is created by
concatenating all master
write user signal data
together

Table 3-16: Channel Level API for AXI4 Slave BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 43
PG129 June 19, 2013

Chapter 3: Designing with the Core

SEND_READ_BURST
This task does a read burst on the read data lines.
It does not wait for the read address transfer to be
received. This task uses the SEND_READ_DATA task
from the channel level API.
This task returns when the complete read burst is
complete.
This task automatically supports the generation of
narrow transfers and unaligned transfers; that is,
this task aligns the input data with the burst so
data padding is not required.
This task emits a “read_data_burst_complete” event
upon completion.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
DATA: Data to be sent over the
burst
RUSER: This is a vector that is
created by concatenating all
required slave read user signal
data together

None

SEND_READ_BURST_RESP_CTRL
This task does a read burst on the read data lines.
It does not wait for the read address transfer to be
received. This task uses the SEND_READ_DATA task
from the channel level API.
This task returns when the complete read burst is
complete.
This task automatically supports the generation of
narrow transfers and unaligned transfers; that is,
this task aligns the input data with the burst so
data padding is not required.
This task emits a “read_data_burst_complete” event
upon completion.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
DATA: Data to be sent over the
burst
RESPONSE: This is a vector
that should contain all of the
desired responses for each
read data transfer
RUSER: This is a vector that is
created by concatenating all
required slave read user signal
data together

None

Table 3-16: Channel Level API for AXI4 Slave BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 44
PG129 June 19, 2013

Chapter 3: Designing with the Core

The function level API for the AXI4 Slave BFM is detailed in Table 3-17.

Table 3-17: Function Level API for AXI4 Slave BFM

API Task Name and Description Inputs Outputs

READ_BURST_RESPOND
Creates a semi-automatic response to a read
request from the master. It checks if the ID tag
for the read request is as expected and then
provides a read response using the data
provided. It is composed of the tasks
RECEIVE_READ_ADDRESS and
SEND_READ_BURST from the channel level API.
This task returns when the complete write
transaction is complete.
This task automatically supports the generation
of narrow transfers and unaligned transfers;
that is, this task aligns the input data with the
burst so data padding is not required.

ID: Read ID tag
DATA: Data to send in
response to the master read
RUSER: This is a vector that is
created by concatenating all
required read user signal data
together

None

WRITE_BURST_RESPOND
This is a semi-automatic task which waits for a
write burst with the specified ID tag and
responds appropriately. The data received in
the write burst is delivered as an output data
vector.
This task is composed of the tasks
RECEIVE_WRITE_ADDRESS,
RECEIVE_WRITE_BURST and
SEND_WRITE_RESPONSE from the channel level
API.
This task returns when the complete write
transaction is complete. This task automatically
supports the generation of narrow transfers
and unaligned transfers; that is, this task aligns
the input data with the burst so data padding is
not required.

ID: Write ID tag
BUSER: Write Response
Channel User Defined Signals

DATA: Data received by slave
DATASIZE: The size in bytes of
the valid data contained in the
output data vector
WUSER: This is a vector that is
created by concatenating all
master write transfer user
signal data together

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 45
PG129 June 19, 2013

Chapter 3: Designing with the Core

READ_BURST_RESP_CTRL
Creates a semi-automatic response to a read
request from the master. It checks if the ID tag
for the read request is as expected and then
provides a read response using the data and
response vector provided. It is composed of the
tasks RECEIVE_READ_ADDRESS and
SEND_READ_BURST_RESP_CTRL from the
channel level API. This task returns when the
complete write transaction is complete.
This task automatically supports the generation
of narrow transfers and unaligned transfers;
that is, this task aligns the input data with the
burst so data padding is not required.

ID: Read ID tag
DATA: Data to send in
response to the master read
RESPONSE: This is a vector
that should contain all of the
desired responses for each
read data transfer
RUSER: This is a vector that is
created by concatenating all
required read user signal data
together

None

WRITE_BURST_RESP_CTRL
This is a semi-automatic task which waits for a
write burst with the specified ID tag and
responds appropriately using the specif ied
response. The data received in the write burst is
delivered as an output data vector.
This task is composed of the tasks
RECEIVE_WRITE_ADDRESS,
RECEIVE_WRITE_BURST and
SEND_WRITE_RESPONSE from the channel level
API.
This task returns when the complete write
transaction is complete. This task automatically
supports the generation of narrow transfers
and unaligned transfers; that is, this task aligns
the input data with the burst so data padding is
not required.

ID: Write ID tag
RESPONSE: The chosen write
response from the following
[OKAY, EXOKAY, SLVERR,
DECERR]
BUSER: Write Response
Channel User Defined Signals

DATA: Data received by slave
DATASIZE: The size in bytes of
the valid data contained in the
output data vector
WUSER: This is a vector that is
created by concatenating all
master write transfer user
signal data together

Table 3-17: Function Level API for AXI4 Slave BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 46
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4-Lite Master BFM Test Writing API
The channel level API for the AXI4-Lite Master BFM is detailed in Table 3-18.

Table 3-18: Channel Level API for AXI4-Lite Master BFM

API Task Name and Description Inputs Outputs

SEND_WRITE_ADDRESS
Creates a write address channel
transaction. This task returns after the
write address has been acknowledged by
the slave.
This task emits a
“write_address_transfer_complete” event
upon completion.

ADDR: Write Address
PROT: Protection Type

None

SEND_WRITE_DATA
Creates a single write data channel
transaction. The data should be the same
size as the width of the data bus. This task
returns after is has been acknowledged by
the slave.
This task emits a
“write_data_transfer_complete” event
upon completion.

STOBE: Strobe signals
DATA: Data for transfer

None

SEND_READ_ADDRESS
Creates a read address channel
transaction. This task returns after the read
address has been acknowledged by the
slave.
This task emits a
“read_address_transfer_complete” event
upon completion.

ADDR: Read Address
PROT: Protection Type

None

RECEIVE_READ_DATA
This task drives the RREADY signal and
monitors the read data bus for read
transfers coming from the slave. It returns
the data associated with the transaction
and the response from the slave.
This task emits a
“read_data_transfer_complete” event upon
completion.

None DATA: Data transferred by the
slave
RESPONSE: The slave read
response from the following:
[OKAY, SLVERR, DECERR]

RECEIVE_WRITE_RESPONSE
This task drives the BREADY signal and
monitors the write response bus for write
responses coming from the slave. It returns
the response associated with the
transaction.
This task emits a
“write_response_transfer_complete” event
upon completion.

None RESPONSE: The slave write
response from the following:
[OKAY, SLVERR, DECERR]

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 47
PG129 June 19, 2013

Chapter 3: Designing with the Core

The function level API for the AXI4-Lite Master BFM is detailed in Table 3-19.

Table 3-19: Function Level API for AXI4-Lite Master BFM

API Task Name and Description Inputs Outputs

READ_BURST
This task does a full read process. It is
composed of the tasks
SEND_READ_ADDRESS and
RECEIVE_READ_DATA from the channel
level API. This task returns when the read
transaction is complete.

ADDR: Read Address
PROT: Protection Type

DATA: Valid data transferred by the
slave
RESPONSE: The slave write
response from the following:
[OKAY, SLVERR, DECERR]

WRITE_BURST
This task does a full write process. It is
composed of the tasks
SEND_WRITE_ADDRESS,
SEND_WRITE_DATA and
RECEIVE_WRITE_RESPONSE from the
channel level API.
This task returns when the complete
write transaction is complete.

ADDR: Write Address
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of
the valid data contained in the
input data vector

RESPONSE: The slave write
response from the following:
[OKAY, SLVERR, DECERR]

WRITE_BURST_CONCURRENT
This task does the same function as the
WRITE_BURST task; however, it performs
the write address and data phases
concurrently.

ADDR: Write Address
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of
the valid data contained in the
input data vector

RESPONSE: The slave write
response from the following:
[OKAY, SLVERR, DECERR]

WRITE_BURST_DATA_FIRST
This task does the same function as the
WRITE_BURST task; however, it sends the
write data burst before sending the
associated write address transfer on the
write address channel.

ADDR: Write Address
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of
the valid data contained in the
input data vector

RESPONSE: The slave write
response from the following:
[OKAY, SLVERR, DECERR]

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 48
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4-Lite Slave BFM Test Writing API
The channel level API for the AXI4-Lite Slave BFM is detailed in Table 3-20.

Table 3-20: Channel Level API for AXI4-Lite Slave BFM

API Task Name and Description Inputs Outputs

SEND_WRITE_RESPONSE
Creates a write response channel
transaction. This task returns after it has
been acknowledged by the master.
This task emits a
“write_response_transfer_complete” event
upon completion.

RESPONSE: The chosen write
response from the following
[OKAY, SLVERR, DECERR]

None

SEND_READ_DATA
Creates a read channel transaction. This
task returns after it has been
acknowledged by the master.
This task emits a
“read_data_transfer_complete” event upon
completion.

DATA: Data to send to the master
RESPONSE: The read response to
send to the master from the
following: [OKAY, SLVERR,
DECERR]

None

RECEIVE_WRITE_ADDRESS
This task drives the AWREADY signal and
monitors the write address bus for write
address transfers coming from the master.
It returns the data associated with the write
address transaction.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine
if the address is valid.
This task emits a
“write_address_transfer_complete” event
upon completion.

ADDR: Write Address
ADDRValid: Bit to indicate if the
address input parameter is to be
used. When set to 1 the ADDR is
valid and used, when set to 0 it is
ignored.

PROT: Protection Type
SADDR: Sampled Write Address

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 49
PG129 June 19, 2013

Chapter 3: Designing with the Core

RECEIVE_READ_ADDRESS
This task drives the ARREADY signal and
monitors the read address bus for read
address transfers coming from the master.
It returns the data associated with the read
address transaction.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine
if the address is valid.
This task emits a
“read_address_transfer_complete” event
upon completion.

ADDR: Read Address
ADDRValid: Bit to indicate if the
address input parameter is to be
used. When set to 1 the ADDR is
valid and used, when set to 0 it is
ignored.

PROT: Protection Type
SADDR: Sampled Read Address

RECEIVE_WRITE_DATA
This task drives the WREADY signal and
monitors the write data bus for write
transfers coming from the master. It
returns the data associated with the
transaction.
This task emits a
“write_data_transfer_complete” event
upon completion.

None DATA: Data transferred from the
master
STRB: Strobe signals used to
validate the data

Table 3-20: Channel Level API for AXI4-Lite Slave BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 50
PG129 June 19, 2013

Chapter 3: Designing with the Core

The function level API for the AXI4-Lite Slave BFM is detailed in Table 3-21.

Table 3-21: Function Level API for AXI4-Lite Slave BFM

API Task Name and Description Inputs Outputs

READ_BURST_RESPOND
Creates a semi-automatic response to a read
request from the master. It is composed of
the tasks RECEIVE_READ_ADDRESS and
SEND_READ_DATA from the channel level API.
This task returns when the complete write
transaction is complete.
If ADDRVALID = 0 the input ADDR is ignored
and the first read request is used and
responded to.
If the ADDRVALID = 1 then the ADDR input is
used and the DATA input is used to respond
to the read burst with the specified address.

ADDR: Read Address
ADDRValid: Bit to indicate if the
address input parameter is to be
used. When set to 1 the ADDR is
valid and used, when set to 0 it is
ignored.
DATA: Data to send in response to
the master read

None

WRITE_BURST_RESPOND
This is a semi-automatic task which waits for
a write burst from the master and responds
appropriately. The data received in the write
burst is delivered as an output data vector.
This task is composed of the tasks
RECEIVE_WRITE_ADDRESS,
RECEIVE_WRITE_DATA and
SEND_WRITE_RESPONSE from the channel
level API.
This task returns when the complete write
transaction is complete.
If ADDRVALID = 0 the input ADDR is ignored
and the first write request is used for the
DATA output.
If the ADDRVALID = 1 then the ADDR input is
used and the DATA associated with that
transfer is output using the DATA output.

ADDR: Write Address
ADDRValid: Bit to indicate if the
address input parameter is to be
used. When set to 1 the ADDR is
valid and used, when set to 0 it is
ignored.

DATA: Data received by slave
DATASIZE: The size in bytes
of the valid data contained in
the output data vector

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 51
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4-Stream Master BFM Test Writing API
The channel level API for the AXI4-Stream Master BFM is detailed in Table 3-22.

READ_BURST_RESP_CTRL
This task is the same as
READ_BURST_RESPOND except that the
response sent to the master can be specif ied.

ADDR: Read Address
ADDRValid: Bit to indicate if the
address input parameter is to be
used. When set to 1 the ADDR is
valid and used, when set to 0 it is
ignored.
DATA: Data to send in response to
the master read
RESPONSE: The chosen write
response from the following
[OKAY, SLVERR, DECERR]

None

WRITE_BURST_RESP_CTRL
This task is the same as
WRITE_BURST_RESPOND except that the
response sent to the master can be specif ied.

ADDR: Write Address
ADDRValid: Bit to indicate if the
address input parameter is to be
used. When set to 1 the ADDR is
valid and used, when set to 0 it is
ignored.
RESPONSE: The chosen write
response from the following
[OKAY, SLVERR, DECERR]

DATA: Data received by slave
DATASIZE: The size in bytes
of the valid data contained in
the output data vector

Table 3-21: Function Level API for AXI4-Lite Slave BFM (Cont’d)

API Task Name and Description Inputs Outputs

Table 3-22: Channel Level API for AXI4-Stream Master BFM

API Task Name and Description Inputs Outputs

SEND_TRANSFER
Creates a single AXI4-Stream transfer.
This task emits a “transfer_complete” event
upon completion.

ID: Transfer ID Tag
DEST: Transfer Destination
DATA: Transfer Data
STRB: Transfer Strobe Signals
KEEP: Transfer Keep Signals
LAST: Transfer Last Signal
USER: Transfer User Signals

None

SEND_PACKET
This task sends a complete packet over the
streaming interface. It uses the
SEND_TRANSFER task from the channel level
API.
This task returns when the whole packet has
been sent, and emits a “packet_complete”
event upon completion.

ID: Transfer ID Tag
DEST: Transfer Destination
DATA: Vector of Transfer data to
send
DATASIZE: The size in bytes of the
valid data contained in the input
data vector (This must be aligned
to the multiples of the data bus
width)
USER: This is a vector that is
created by concatenating all
transfer user signal data together

None

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 52
PG129 June 19, 2013

Chapter 3: Designing with the Core

AXI4-Stream Slave BFM Test Writing API
The channel level API for the AXI4-Stream Slave BFM is detailed in Table 3-23.

Protocol Description
Fore more information on AXI specif ication, see the ARM® AMBA AXI4-Stream Protocol
Specification.

Table 3-23: Channel Level API for AXI4-Stream Slave BFM

API Task Name and Description Inputs Outputs

RECEIVE_TRANSFER
Receives a single AXI4-Stream transfer.
This task emits a “transfer_complete”
event upon completion.

ID: Transfer ID Tag
IDValid: Bit to indicate if the ID
input parameter is to be used.
When set to 1 the ID is valid and
used, when set to 0 it is ignored
DEST: Transfer Destination
DESTValid: Bit to indicate if the
DEST input parameter is to be used

ID: Transfer ID Tag
DEST: Transfer Destination
DATA: Transfer Data
STRB: Transfer Strobe Signals
KEEP: Transfer Keep Signals
LAST: Transfer Last Signal
USER: Transfer User Signals

RECEIVE_PACKET
This task receives and processes a
packet from the transfer channel. It
returns when the complete packet has
been sampled, and emits a
“packet_complete” event upon
completion.
This task uses the RECEIVE_TRANSFER
task from the channel level API.
If the IDValid or DESTValid bits are 0,
the input ID tag and the DEST values
are not used. In this case, the next
values from the f irst valid transfer are
sampled and used for the full packet
irrespective of the ID tag or DEST input
values.

ID: Packet ID Tag
IDValid: Bit to indicate if the ID
input parameter is to be used.
When set to 1, the ID is valid and
used; when set to 0, it is ignored
DEST: Packet Destination
DESTValid: Bit to indicate if the
DEST input parameter is to be used

PID: Packet ID Tag
PDEST: Packet Destination
DATA: Packet data vector
DATASIZE: The size in bytes of the
valid data contained in the output
packet data vector
USER: This is a vector that is
created by concatenating all
master user signal data together

http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html

AXI BFM v4.1 www.xilinx.com 53
PG129 June 19, 2013

Chapter 4

Customizing and Generating the Core
This chapter includes information about using Xilinx tools to customize and generate the
core in the Vivado® Design Suite environment.

Vivado Integrated Design Environment
The AXI BFM can be found in /AXI Infrastructure or /Debug & Verification in
the Vivado IP Catalog.

To access the core name, perform the following:

1. Open a project by selecting File then Open Project or create a new project by selecting
File then New Project in Vivado.

2. Open the IP catalog and navigate to any of the taxonomies.

3. Double-click AXI Bus Functional Model to bring up the AXI BFM Customize IP dialog
box.

Figure 4-1 and Figure 4-2 show the AXI BFM Customize IP dialog box with information
about customizing ports.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 54
PG129 June 19, 2013

Chapter 4: Customizing and Generating the Core

Basic
• Component Name – The base name of the output f iles generated for the core. Names

must begin with a letter and can be composed of any of the following characters: a to z,
0 to 9, and “_”.

• Protocol – Choose the specif ic AXI specif ication.

• Select the Master or Slave Mode – Select the Master or Slave mode.

Note: Based on the selection of Protocol and Mode, the next tab is updated accordingly. This guide
only shows the AXI4 Master tab.

X-Ref Target - Figure 4-1Vivado

Figure 4-1: Vivado Customize IP Dialog Box – Basic Tab

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 55
PG129 June 19, 2013

Chapter 4: Customizing and Generating the Core

AXI4 Master
• ID Width – ID Width default is 4.

• Data Width – Read and write data buses can be 8, 16, 32, 64, 128, 256, 512, or 1,024
bits wide. Default is 32.

• Read/Write Issuing Depth – Default is 8.

• Exclusive Access – This informs the master that exclusive access is supported by the
slave. A value of 1 means it is supported so the response check expects an EXOKAY, or
else give a warning, in response to an exclusive access. A value of 0 means the slave
does not support this so a response of OKAY is expected in response to an exclusive
access. Default is 1.

Write Channel Master

• Awuser Width – Range of 1 to 1,024 with default set to 1.

• Wuser Width – Range of 1 to 1,024 with default set to 1.

• Buser Width – Range of 1 to 1,024 with default set to 1.

X-Ref Target - Figure 4-2Vivado

Figure 4-2: Vivado Customize IP Dialog Box – AXI4 Master Tab

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 56
PG129 June 19, 2013

Chapter 4: Customizing and Generating the Core

Read Channel Master

• Aruser Width – Range of 1 to 1,024 with default set to 1.

• Ruser Width – Range of 1 to 1,024 with default set to 1.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 57
PG129 June 19, 2013

Chapter 5

Detailed Example Design
This chapter contains information about the provided example design in the Vivado®

Design Suite environment.

Example Design
This section describes the example test benches and example tests used to demonstrate the
abilities of each AXI BFM pair. Example tests are delivered either in VHDL or Verilog based
on the design entry while generating the core. These example designs are available in the
AXI_BFM installation area. Each AXI master is connected to a single AXI slave, and then
direct tests are used to transfer data from the master to the slave and from the slave to the
master.

RECOMMENDED: The AXI BFM is not fully autonomous. For example, the AXI Master BFM is only a
user-driven verification component that enables you to generate valid AXI protocol scenarios.
Furthermore, if tests are written using the channel level API it is possible that the AXI protocol can be
accidentally violated. For this reason, Xilinx recommends using the function level API for each BFM.

The AMBA® AXI Protocol Specification, Section 3.3, Dependencies between Channel
Handshake Signals, states that:

• Slave can wait for AWVALID or WVALID, or both, before asserting AWREADY

• Slave can wait for AWVALID or WVALID, or both, before asserting WREADY

This implies that the slave does not need to support all three possible scenarios. However,
if the AXI Master BFM operates in such a way that is not supported by the slave, then the
simulation stalls. Each scenario is handled by the function level API:

Scenario 1
Before the slave asserts AWREADY and/or WREADY, the slave can wait for AWVALID. This is
modeled using the function level API, WRITE_BURST.

http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022c/index.html

AXI BFM v4.1 www.xilinx.com 58
PG129 June 19, 2013

Chapter 5: Detailed Example Design

Scenario 2
Before the slave asserts AWREADY and/or WREADY, the slave can wait for WVALID. This is
modeled using the function level API, WRITE_BURST_DATA_FIRST.

Scenario 3
Before the slave asserts AWREADY and/or WREADY, the slave can wait for both AWVALID
and WVALID. This is modeled using the function level API, WRITE_BURST_CONCURRENT.

Using AXI BFM for Standalone RTL Design
The AXI BFM can be used to verify connectivity and basic functionality of AXI masters and
AXI slaves with the custom RTL design flow. The AXI BFM provides example test benches
and tests that demonstrate the abilities of AXI3, AXI4, AXI4-Lite, and AXI4-Stream Master/
Slave BFM pair. These examples can be used as a starting point to create tests for custom
RTL design with AXI3, AXI4, AXI4-Lite, and AXI4-Stream interface.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 59
PG129 June 19, 2013

Chapter 5: Detailed Example Design

Demonstration Test Bench

AXI3 BFM Example Test Bench and Test
The Verilog example test bench and example test for the AXI3 BFM is shown in Figure 5-1.

The example test bench has the master and slave BFM connected directly to each other. This
gives visibility into both sides of the code (master code and slave code) required to hit the
scenarios detailed in the example test.

cdn_axi3_example_test.v

The example test (simulation/cdn_axi3_example_test.v) contains the master and
slave test code to simulate the following scenarios:

1. Simple sequential write and read burst transfers example.

2. Looped sequential write and read transfers example.

3. Parallel write and read burst transfers example.

4. Narrow write and read transfers example.

5. Unaligned write and read transfers example.

X-Ref Target - Figure 5-1

Figure 5-1: Verilog Example Test Bench and Test Case Structure

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 60
PG129 June 19, 2013

Chapter 5: Detailed Example Design

6. Narrow and unaligned write and read transfers example.

7. Out of order write and read burst example.

8. Write Bursts performed in two different ways; Data before address and data with
address concurrently.

9. Write data interleaving example.

10. Read data interleaving example.

11. Outstanding transactions example.

12. Slave read and write bursts error response example.

13. Write and read bursts with different length gaps between data transfers example.

14. Write and Read bursts with different length gaps between channel transfers example.

15. Write burst that is longer than the data it is sending example.

AXI4 BFM Example Test Bench and Test
The AXI4 Verilog example test bench structure is identical to the one used for AXI3 shown
in Figure 5-1. The following section provides details about the example test available.

cdn_axi4_example_test.v

The example test (simulation/cdn_axi4_example_test.v) contains the master and
slave test code to simulate the following scenarios:

1. Simple sequential write and read burst transfers example.

2. Looped sequential write and read transfers example.

3. Parallel write and read burst transfers example.

4. Narrow write and read transfers example.

5. Unaligned write and read transfers example.

6. Narrow and unaligned write and read transfers example.

7. Write Bursts performed with address and data channel transfers concurrently.

8. Outstanding transactions example.

9. Slave read and write bursts error response example.

10. Write and read bursts with different length gaps between data transfers example.

11. Write and Read bursts with different length gaps between channel transfers example.

12. Write burst that is longer than the data it is sending example.

13. Read data interleaving example.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 61
PG129 June 19, 2013

Chapter 5: Detailed Example Design

AXI4-Lite BFM Example Test Bench and Test
The AXI4-Lite Verilog example test bench structure is identical to the one used for AXI3
shown in Figure 5-1. The following section provides details about the example test
available.

cdn_axi4_lite_example_test.v

The example test (simulation/cdn_axi4_lite_example_test.v) contains the
master and slave test code to simulate the following scenarios:

1. Simple sequential write and read burst transfers example.

2. Looped sequential write and read transfers example.

3. Parallel write and read burst transfers example.

4. Write Bursts performed in two different ways; Data before address and data with
address concurrently.

5. Outstanding transactions example.

6. Slave read and write bursts error response example.

7. Write and Read bursts with different length gaps between channel transfers example.

8. Unaligned write and read transfers example.

9. Write burst that has valid data size less than the data bus width.

AXI4-Stream BFM Example Test Bench and Test
The AXI4-Stream Verilog example test bench structure is identical to the one used for AXI3
shown in Figure 5-1. The following section provides details about the example test
available.

cdn_axi4_streaming_example_test.v

The example test (simulation/cdn_axi4_streaming_example_test.v) contains the
master and slave test code to simulate the following scenarios:

1. Simple master to slave transfer example.

2. Looped master to slave transfers example.

3. Simple master to slave packet example.

4. Looped master to slave packet example.

5. Ragged (less data at the end of the packet than can be supported) master to slave
packet example.

6. Packet data interleaving example.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 62
PG129 June 19, 2013

Chapter 5: Detailed Example Design

Useful Coding Guidelines and Examples

Loop Construct Simple Example

While coding directed tests, “for loops” are typically employed frequently to eff iciently
generate large volumes of stimulus for both the master and/or slave BFM. For example:

for (m=0;m<2;m =m+1) begin // Burst Type variable
 for (k=0;k<3;k=k+1) begin // Burst Size variable
 $display(“--”);
 $display(“EXAMPLE TEST LOCKED and NORMAL “);
 $display("--");

 for (i=0; i<16;i=i+1) begin // Burst Length variable
 tb.master_0.WRITE_BURST(mtestID+i, // Master ID
 mtestAddr, // Master Address
 i, // Master Burst Length
 k, // Master Burst Size
 m, // Master Access Type FIXED, INCR
 `LOCKED_TYPE_FIXED, // Use define
 4'b0000, // Buffer/Cachable Hardcoded
 3'b000, // Protection Type Hardcoded
 test_data[i],// Write Data from array
 response, // response from slave
 end
 end
end

This “for loop” cycles through the following stimulus:

• Access Type (m): FIXED, INCR

• Burst Size (k): 1_BYTE, 2_BYTES, 4_BYTES

• Burst Length (i): 1 to 16

Nested for loops can be used to generate numerous combinations of traff ic types, but care
must be taken to not violate protocol. The AXI BFM check the input parameters of the API
calls, but this does not prevent higher level protocol being violated.

Loop Construct Complex Example

In some cases, a nested for loop can lead to invalid stimulus if not used correctly. A good
example of this is WRAP bursts. The AXI Specification requires that WRAP bursts must be 2,
4, 8, or 16 transfers in length. For this type of burst, the nested for loop from the Loop
Construct Simple Example cannot be used because the nested for loop cycles through burst
lengths of 1 to 16. For exhaustive WRAP tests, another for loop declaration is widely used to
drive legal stimulus:

for (i=2; i <= 16; i=i*2) begin

Thus giving a burst length of 2, 4, 8 and 16 transfers.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 63
PG129 June 19, 2013

Chapter 5: Detailed Example Design

DUT Modeling Using the AXI BFM – Memory Model Example

In most cases, the behavior of a master or slave is more complicated than simple transfer
generation. For this reason, the AXI BFM API enables the end user to model higher level
DUT functionality. A simple example is a slave memory model. Such a memory model is
available as a configuration option in most of the AXI slave BFM. This example shows the
code used for the AXI3 Slave BFM memory model mode, starting with the write datapath.

//--// Write Path
//--
always @(posedge ACLK) begin : WRITE_PATH
 //--
 //- Local Variables
 //--
 reg [ID_BUS_WIDTH-1:0] id;
 reg [ADDRESS_BUS_WIDTH-1:0] address;
 reg [`LENGTH_BUS_WIDTH-1:0] length;
 reg [`SIZE_BUS_WIDTH-1:0] size;
 reg [`BURST_BUS_WIDTH-1:0] burst_type;
 reg [`LOCK_BUS_WIDTH-1:0] lock_type;
 reg [`CACHE_BUS_WIDTH-1:0] cache_type;
 reg [`PROT_BUS_WIDTH-1:0] protection_type;
 reg [ID_BUS_WIDTH-1:0] idtag;
 reg [(DATA_BUS_WIDTH*(`MAX_BURST_LENGTH+1))-1:0] data;
 reg [ADDRESS_BUS_WIDTH-1:0] internal_address;
 reg [`RESP_BUS_WIDTH-1:0] response;
 integer i;
 integer datasize;
 //--
 // Implementation Code
 //--
 if (MEMORY_MODEL_MODE == 1) begin
 // Receive the next available write address
 RECEIVE_WRITE_ADDRESS(id,`IDVALID_FALSE,address,length,size,
 burst_type,lock_type,cache_type,protection_type,idtag);
 // Get the data to send to the memory.
 RECEIVE_WRITE_BURST(idtag,`IDVALID_TRUE,address,length,size,
 burst_type,data,datasize,idtag);
 // Put the data into the memory array
 internal_address = address - SLAVE_ADDRESS;
 for (i=0; i < datasize; i=i+1) begin
 memory_array[internal_address+i] = data[i*8 +: 8];
 end
 // End the complete write burst/transfer with a write response
 // Work out which response type to send based on the lock type.
 response = calculate_response(lock_type);
 repeat(WRITE_RESPONSE_GAP) @(posedge ACLK);
 SEND_WRITE_RESPONSE(idtag,response);
 end
end

As shown in the code, it is possible to create the write datapath for a simple memory model
using three of the tasks from the slave channel level API. This is achieved in the following
four steps:

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 64
PG129 June 19, 2013

Chapter 5: Detailed Example Design

1. Wait for any write address request on the write address bus. This is done by calling
RECEIVE_WRITE_ADDRESS with IDVALID_FALSE. This ensures that the f irst detected and
valid write address handshake is recorded and the details passed back. This task is
blocking; so the WRITE_PATH process does not proceed until it has found a write
address channel transfer.

2. Get the write data burst that corresponds to the write address request in the previous
step. This is done by calling RECEIVE_WRITE_BURST with the ID tag output from the
RECEIVE_WRITE_ADDRESS call and with IDVALID_TRUE. This ensures that the entire write
data burst that has the specif ied id tag is captured before execution returns to the
WRITE_PATH process.

3. Take the data from the write data burst and put it into a memory array. In this case, the
memory array is an array of bytes.

4. Complete the AXI3 protocol is to send a response. The internal function
calculate_reponse is used to work out if the transfer was exclusive or not and to deliver
an EXOKAY or OK response (more code could be added here to support DECERR or
SLVERR response types). When the response has been calculated, the WRITE_PATH
process waits for the defined internal control variable WRITE_RESPONSE_GAP in clock
cycles before sending the response back to the slave with the same ID tag as the write
data transfer.

The following code illustrates the steps required to make the read datapath for a simple
slave memory model:

//---
// Read Path
//---always @(posedge
ACLK) begin : READ_PATH
 //---
 // Local Variables
 //---
 reg [ID_BUS_WIDTH-1:0] id;
 reg [ADDRESS_BUS_WIDTH-1:0] address;
 reg [`LENGTH_BUS_WIDTH-1:0] length;
 reg [`SIZE_BUS_WIDTH-1:0] size;
 reg [`BURST_BUS_WIDTH-1:0] burst_type;
 reg [`LOCK_BUS_WIDTH-1:0] lock_type;
 reg [`CACHE_BUS_WIDTH-1:0] cache_type;
 reg [`PROT_BUS_WIDTH-1:0] protection_type;
 reg [ID_BUS_WIDTH-1:0] idtag;
 reg [(DATA_BUS_WIDTH*(`MAX_BURST_LENGTH+1))-1:0] data;
 reg [ADDRESS_BUS_WIDTH-1:0] internal_address;
 integer i;
 integer number_of_valid_bytes;
 //---
 // Implementation Code
 //---
 if (MEMORY_MODEL_MODE == 1) begin
 // Receive a read address transfer
 RECEIVE_READ_ADDRESS(id,`IDVALID_FALSE,address,length,size,
 burst_type,lock_type,cache_type,protection_type,idtag);
 // Get the data to send from the memory.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 65
PG129 June 19, 2013

Chapter 5: Detailed Example Design

 internal_address = address - SLAVE_ADDRESS;
 data = 0;
 number_of_valid_bytes =
(decode_burst_length(length)*transfer_size_in_bytes(size))-(address %
(DATA_BUS_WIDTH/8));

 for (i=0; i < number_of_valid_bytes; i=i+1) begin
 data[i*8 +: 8] = memory_array[internal_address+i];
 end
 // Send the read data
 repeat(READ_RESPONSE_GAP) @(posedge ACLK);
 SEND_READ_BURST(idtag,address,length,size,burst_type,
 lock_type,data);
 end
end

As shown in the code, it is possible to create the read datapath for a simple memory model
using two of the tasks from the slave channel level API. This is achieved in the following two
steps:

1. Wait for any read address request on the read address bus. This is done by calling
RECEIVE_READ_ADDRESS with IDVALID_FALSE. This ensures that the f irst detected and
valid read address handshake is recorded and the details are passed back. This task is
blocking; so the READ_PATH process does not proceed until it has found a read address
channel transfer.

2. Take the requested data from the memory array and send it in a read burst. This is done
by extracting the data byte by byte into a data vector which is used as an input into the
SEND_READ_BURST task. Before sending the read data burst, the READ_PATH process
waits for the clock cycles determined in the internal control variable
READ_RESPONSE_GAP.

Simulation
The IP and its example design can be simulated directly from Vivado by clicking the Run
Simulation button.

This version does not deliver any scripts.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 66
PG129 June 19, 2013

Appendix A

Verification, Compliance, and
Interoperability

The AXI BFM is compliant to AXI3, AXI4, AXI4-Lite, and AXI4-Stream protocols.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 67
PG129 June 19, 2013

Appendix B

Migrating
This appendix describes migrating from older versions of the IP to the current IP release.

For information on migrating to the Vivado® Design Suite, see Vivado Design Suite
Migration Methodology Guide (UG911).

There is no special instructions for migration except that all of the wrappers are unified into
one AXI BFM IP.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf

AXI BFM v4.1 www.xilinx.com 68
PG129 June 19, 2013

Appendix C

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools. In addition, this appendix provides a step-by-step debugging process to
guide you through debugging the AXI BFM core.

Finding Help on Xilinx.com
To help in the design and debug process when using the AXI BFM, the Xilinx Support web
page (www.xilinx.com/support) contains key resources such as product documentation,
release notes, answer records, information about known issues, and links for opening a
Technical Support WebCase.

Documentation
This product guide is the main document associated with the AXI BFM. This guide, along
with documentation related to all products that aid in the design process, can be found on
the Xilinx Support web page (www.xilinx.com/support) or by using the Xilinx
Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads
page (www.xilinx.com/download). For more information about this tool and the features
available, open the online help after installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

http://www.xilinx.com
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/download
www.xilinx.com/support

AXI BFM v4.1 www.xilinx.com 69
PG129 June 19, 2013

Appendix C: Debugging

Answer Records for this core are listed below, and can also be located by using the Search
Support box on the main Xilinx support web page. To maximize your search results, use
proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the AXI BFM

AR: 54678

Contacting Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support:

1. Navigate to www.xilinx.com/support.

2. Open a WebCase by selecting the WebCase link located under Support Quick Links.

When opening a WebCase, include:

• Target FPGA including package and speed grade.

• All applicable Xilinx Design Tools and simulator software versions.

• Additional f iles based on the specif ic issue might also be required. See the relevant
sections in this debug guide for guidelines about which f ile(s) to include with the
WebCase.

http://www.xilinx.com
http://www.origin.xilinx.com/support/clearexpress/websupport.htm
www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com/support/answers/54678.htm
http://www.xilinx.com/support

AXI BFM v4.1 www.xilinx.com 70
PG129 June 19, 2013

Appendix C: Debugging

Debug Tools

Vivado Lab Tools
Vivado lab tools insert logic analyzer and virtual I/O cores directly into your design. Vivado
lab tools allows you to set trigger conditions to capture application and integrated block
port signals in hardware. Captured signals can then be analyzed. This feature represents the
functionality in the Vivado IDE that is used for logic debugging and validation of a design
running in Xilinx devices in hardware.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores,
including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

Interface Debug

AXI4-Lite Interfaces
Read from a register that does not have all 0s as a default to verify that the interface is
functional. If the interface is unresponsive, ensure that the following conditions are met:

• The S_AXI_ACLK and ACLK inputs are connected and toggling.

• The interface is not being held in reset, and S_AXI_ARESET is an active-Low reset.

• The interface is enabled, and s_axi_aclken is active-High (if used).

• The main core clocks are toggling and that the enables are also asserted.

• If the simulation has been run, verify in simulation and/or Vivado lab tools capture that
the waveform is correct for accessing the AXI4-Lite interface.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 71
PG129 June 19, 2013

Appendix D

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

References
These documents provide supplemental material useful with this product guide:

1. ARM® AMBA® AXI Protocol v2.0 Specification (ARM IHI 0022C)

2. AMBA AXI4-Stream Protocol v1.0 Specification (ARM IHI 0051A)

3. Cadence AXI UVC User Guide (VIPP 9.2/VIPP 10.2 releases)

4. LogiCORE IP AXI Interconnect Product Guide (PG059)

5. Vivado® Design Suite user documentation

6. Vivado Design Suite Getting Started Guide (UG814)

7. Vivado Design Suite User Guide, Designing with IP (UG896)

8. Vivado Design Suite Migration Methodology Guide (UG911)

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022c/index.html
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_interconnect;v=latest;d=pg059-axi-interconnect.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_sysace.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;t=vivado+userguides
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf

AXI BFM v4.1 www.xilinx.com 72
PG129 June 19, 2013

Appendix D: Additional Resources

Revision History
The following table shows the revision history for this document.

Date Version Revision

03/20/2013 1.0 Initial Xilinx release of the product guide and replaces DS824.

06/19/2013 4.1 • Revision number advanced to 4.1 to align with core version number.
• Updated DATA_BUS_WIDTH and added

CLEAR_SIGNALS_AFTER_HANDSHAKE, ERROR_ON_SLVERR, and
ERROR_ON_DECERR in Table 3-1 AXI3 Master BFM Parameters.

• Updated DATA_BUS_WIDTH and added
CLEAR_SIGNALS_AFTER_HANDSHAKE in Table 3-2 AXI3 Slave BFM
Parameters.

• Updated DATA_BUS_WIDTH and added
CLEAR_SIGNALS_AFTER_HANDSHAKE, ERROR_ON_SLVERR, and
ERROR_ON_DECERR in Table 3-3 AXI4 Master BFM Parameters.

• Updated DATA_BUS_WIDTH and added
CLEAR_SIGNALS_AFTER_HANDSHAKE in Table 3-4 AXI4 Slave BFM
Parameters.

• Added CLEAR_SIGNALS_AFTER_HANDSHAKE, ERROR_ON_SLVERR, and
ERROR_ON_DECERR in Table 3-5 AXI4-Lite Master BFM Parameters.

• Added CLEAR_SIGNALS_AFTER_HANDSHAKE in Table 3-6 AXI4-Lite Slave
BFM Parameters.

• Updated DATA_BUS_WIDTH and added
CLEAR_SIGNALS_AFTER_HANDSHAKE, ERROR_ON_SLVERR, and
ERROR_ON_DECERR in Table 3-7 AXI4-Stream BFM Parameters.

• Updated DATA_BUS_WIDTH in Table 3-8 AXI4-Stream Slave BFM
Parameters.

• Added set_clear_signals_after_handshake, set_error_on_slverr, and
set_error_on_decerr in Table 3-9 Utility API Tasks/Functions.

• Added Inputs description in Table 3-23 Channel Level API for
AXI4-Stream Slave BFM.

• Updated Figs. 4-1 to 4-2.

http://www.xilinx.com

AXI BFM v4.1 www.xilinx.com 73
PG129 June 19, 2013

Appendix D: Additional Resources

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.
© Copyright 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps

	LogiCORE IP AXI Bus Functional Models v4.1
	Table of Contents
	IP Facts
	Overview
	Configuration Options
	Applications
	BFM Specific Checkers

	Licensing and Ordering Information

	Product Specification
	Standards

	Designing with the Core
	AXI BFM Design Parameters
	AXI3 BFM
	AXI4 BFM

	Test Writing API
	AXI3 Master BFM Test Writing API
	AXI3 Slave BFM Test Writing API
	AXI4 Master BFM Test Writing API
	AXI4 Slave BFM Test Writing API
	AXI4-Lite Master BFM Test Writing API
	AXI4-Lite Slave BFM Test Writing API
	AXI4-Stream Master BFM Test Writing API
	AXI4-Stream Slave BFM Test Writing API

	Protocol Description

	Customizing and Generating the Core
	Vivado Integrated Design Environment
	Basic
	AXI4 Master

	Detailed Example Design
	Example Design
	Scenario 1
	Scenario 2
	Scenario 3

	Using AXI BFM for Standalone RTL Design
	Demonstration Test Bench
	AXI3 BFM Example Test Bench and Test
	AXI4 BFM Example Test Bench and Test
	AXI4-Lite BFM Example Test Bench and Test
	AXI4-Stream BFM Example Test Bench and Test
	Useful Coding Guidelines and Examples

	Simulation

	Verification, Compliance, and Interoperability
	Migrating
	Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Contacting Technical Support

	Debug Tools
	Vivado Lab Tools

	Interface Debug
	AXI4-Lite Interfaces

	Additional Resources
	Xilinx Resources
	References
	Revision History
	Notice of Disclaimer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

