LogiCORE IP Clocking Wizard v5.0

Product Guide for Vivado Design Suite

PG065 March 20, 2013

Table of Contents

IP Facts

Chapter 1: Overview

About the Core	5
Recommended Design Experience	5
Feature Summary	6
Applications	6
Licensing and Ordering Information	7

Chapter 2: Product Specification

Performance	9
Resource Utilization	9
Port Descriptions	10

Chapter 3: Designing with the Core

General Design Guidelines	13
Clocking	13
Resets	13
Functional Overview	14
Core Architecture	17

Chapter 4: Customizing and Generating the Core

GUI	19
Clock Manager Type (Primitive Selection)	19
Clocking Features	20
Output Clock Settings	22
Primitive Overrides	29
Port Renaming	30
Summary	32
Parameter Values in the XCI File	32
Output Generation	39

E XILINX.

Chapter 5: Constraining the Core	
Required Constraints	40
Device, Package, and Speed Grade Selections	40
Clock Frequencies	40
Clock Management	40
Clock Placement	40
Banking	41
I/O Standard and Placement	41
Chapter 6: Detailed Example Design	
Directory and File Contents	42
Example Design	42
Demonstration Test Bench	43
Simulation	43
Appendix A: Verification, Compliance, and Interoperability	
Simulation	45
Hardware Testing	45
Appendix B: Migrating	
Differences between the Clocking Wizard and the Legacy DCM and PLL Wizards	46
Appendix C: Debugging	
Finding Help on Xilinx.com	48
Debug Tools	50
Hardware Debug	51
Appendix D: Additional Resources	
Xilinx Resources	52
References	52
Revision History	52
Notice of Disclaimer	53

IP Facts

Introduction

The LogiCORE[™] IP Clocking Wizard core v5.0 simplifies the creation of HDL source code wrappers for clock circuits customized to your clocking requirements. The wizard guides you in setting the appropriate attributes for your clocking primitive, and also allows you to override any wizard-calculated parameter. In addition to providing an HDL wrapper for implementing the desired clocking circuit, the Clocking Wizard also delivers a timing parameter summary generated by the Xilinx timing tools for the circuit.

Features

- Safe Clock Startup feature enables stable and valid clock at the output. Enabling Sequencing provides sequenced output clocks.
- Accepts up to two input clocks and up to seven output clocks per clock network.
- Automatically chooses correct clocking primitive for a selected device.
- Automatically configures clocking primitive based on user-selected clocking features.
- Automatically calculates Voltage Controlled Oscillator (VCO) frequency for primitives with an oscillator, and provides multiply and divide values based on input and output frequency requirements.
- Automatically implements overall configuration that supports phase shift and duty cycle requirements.

LogiCORE IP Facts Table		
Core Specifics		
Supported Device Family ⁽¹⁾	Zynq ™-7000, Artix ™-7, Virtex ®-7, Kintex ™-7	
Supported User Interfaces	Not Applicable	
Resources	See Table 2-2.	
Special Features	PLLE2, MMCME2, Spread Spectrum Clocking	
	Provided with Core	
Design Files	Verilog and VHDL	
Example Design	Verilog and VHDL	
Test Bench	Verilog and VHDL	
Constraints File	.xdc (Xilinx Design Constraints)	
Simulation Model	UNISIM/UNIFAST	
Instantiation Template	Verilog and VHDL Wrapper	
Supported S/W Driver	Not Applicable	
Tested Design Flows		
Design Entry Tools	Vivado™ Design Suite	
Simulation	Mentor Graphics Questa®SIM, Vivado Simulator	
Synthesis Tools	Synplify PRO E-2012.03, Vivado Synthesis	
Support		
Provide	d by Xilinx @ <u>www.xilinx.com/support</u>	

Notes:

1. For a complete listing of supported devices, see the Vivado IP Catalog.

Features (continued)

- Supports Spread Spectrum clocking for MMCME2 and allows users to select valid range of modulation frequency, mode and input/output clocks.
- Optionally buffers clock signals.
- Provides the ability to override the selected clock primitive and any calculated attribute.
- Provides timing estimates for the clock circuit and Xilinx® Power Estimator (XPE) parameters.
- Provides a synthesizable example design including the clocking network and a simulation test bench.
- Provides optional ports for the selected primitive.

Chapter 1

Overview

This chapter introduces the Clocking Wizard core and provides related information, including recommended design experience, additional resources, technical support, and ways of submitting feedback to Xilinx. The Clocking Wizard core generates source Register Transfer Level (RTL) code to implement a clocking network matched to your requirements. Both Verilog and VHDL design environments are supported.

About the Core

The Clocking Wizard v5.0 is a Xilinx IP core that can be generated using the Xilinx Vivado design tools, included with the latest Vivado release in the Xilinx[®] Download Center.

The core is licensed under the terms of the Xilinx End User License and no FLEX license key is required.

Recommended Design Experience

The Clocking Wizard is designed for users with any level of experience. Using the wizard automates the process of creating your clocking network and is highly recommended. The wizard guides users to the proper primitive configuration and allows advanced users to override and manually set any attribute. Although the Clocking Wizard provides a fully verified clocking network, understanding the Xilinx clocking primitives will aid you in making design trade-off decisions.

Feature Summary

Clocking features include:

- **Frequency synthesis.** This feature allows output clocks to have different frequencies than the active input clock.
- **Spread Spectrum**. This feature provides modulated output clocks which reduces the spectral density of the electromagnetic interference (EMI) generated by electronic devices. This feature is available for only MMCME2_ADV primitive. UNISIM simulation support for this feature is not available in current release.
- **Phase alignment**. This feature allows the output clock to be phase locked to a reference, such as the input clock pin for a device.
- **Minimize power**. This features minimizes the amount of power needed for the primitive at the possible expense of frequency, phase offset, or duty cycle accuracy.
- **Dynamic phase shift**. This feature allows you to change the phase relationship on the output clocks.
- **Dynamic reconfiguration**. This feature allows you to change the programming of the primitive after device configuration. When this option is chosen, the clocking wizard uses only integer values for M, D and CLKOUT[0:6]_DIVIDE.
- **Balanced**. Selecting Balanced results in the software choosing the correct BANDWIDTH for jitter optimization.
- **Minimize output jitter**. This feature minimizes the jitter on the output clocks, but at the expense of power and possibly output clock phase error. This feature is not available with 'Maximize input jitter filtering'.
- **Maximize input jitter filtering.** This feature allows for larger input jitter on the input clocks, but can negatively impact the jitter on the output clocks. This feature is not available with 'Minimize output jitter'.
- **Safe Clock Startup and Sequencing**. This feature is useful to get stable and valid clock at the output. It also enables Clocks in a particular sequence order as specified in the configuration.

Applications

- Creation of clock network having required frequency, phase and duty cycle with reduced jitter
- Electromagnetic Interference reduction in electronic devices using Spread Spectrum feature

Licensing and Ordering Information

This Xilinx LogiCORE[™] IP module is provided at no additional cost with the Xilinx Vivado[™] Design Suite under the terms of the <u>Xilinx End User License</u>. Information about this and other Xilinx LogiCORE IP modules is available at the <u>Xilinx Intellectual Property</u> page. For information about pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your <u>local Xilinx sales representative</u>.

Product Specification

Clocking Wizard helps create the clocking circuit for the required output clock frequency, phase and duty cycle using MMCME2 or PLLE2 primitive. It also helps verify the output generated clock frequency in simulation, providing a synthesizable example design which can be tested on the hardware. It also supports Spread Spectrum feature which is helpful in reducing Electromagnetic interference. Figure 2-1 shows a block diagram of the Clocking Wizard.

Figure 2-1: Clocking Wizard Block Diagram

Performance

Maximum Frequencies

Table 2-1 shows the max frequency for Virtex-7 devices.

Table 2-1:	Maximum	Frequency	Virtex-7	Devices
------------	---------	-----------	----------	---------

Clock		Speed Grade	
	-1	-2	-3
Input	800 MHz	933 MHz	1066 MHz
Output	800 MHz	933 MHz	1066 MHz

Power

- Minimize power feature minimizes the amount of power needed for the primitive at the possible expense of frequency, phase offset, or duty cycle accuracy.
- Power Down input pin when asserted, places the clocking primitive into low power state, which stops the output clocks.

Resource Utilization

Resource utilization is available in the Clocking Wizard GUI by clicking the Resource tab.

Customize IP <@xhdl226	8>
Clocking Wizard (5.0)	
<i>f</i> Documentation 📄 IP Location	I
IP Symbol Resource 1 MMCME2 1 IBUFG 2 BUFG	Component Name Clk_wiz_v5_0_0 Clocking Options Output Clocks M Primitive MMCME2 ADV O PLLE2 ADV Clocking Features
Figu	jure 2-2: Resource Tab

Port Descriptions

Table 2-2 describes the input and output ports provided from the clocking network. All ports are optional, with the exception being that at least one input and one output clock are required. The options selected determine which ports are actually available to be configured. For example, when Dynamic Reconfiguration is selected, these ports are exposed. Any port that is not exposed is appropriately tied off or connected to a signal labeled *unused* in the delivered source code.

Port ⁽⁵⁾	I/O	Description
		Input Clock Ports ⁽¹⁾
CLK_IN1	Input	Clock in 1 : Single-ended primary input clock port. Available when single-ended primary clock source is selected.
CLK_IN1_P	Input	Clock in 1 Positive and Negative : Differential primary input clock port pair.
CLK_IN1_N		Available when a differential primary clock source is selected.
CLK_IN2 ⁽²⁾	Input	Clock in 2: Single-ended secondary input clock port. Available when a single-ended secondary clock source is selected.
CLK_IN2_P ⁽²⁾	Input	Clock in 2 Positive and Negative: Differential secondary input clock port pair.
CLK_IN2_N ⁽²⁾	1	Available when a differential secondary clock source is selected.

Table 2-2: Clocking Wizard I/O

Table 2-2: Clocking Wizard I/O (Cont'd)

Port ⁽⁵⁾	I/O	Description
CLK_IN_SEL ⁽²⁾	Input	Clock in Select: When '1', selects the primary input clock; When '0', the secondary input clock is selected. Available when two input clocks are specified.
CLKFB_IN	Input	Clock Feedback in : Single-ended feedback in port of the clocking primitive. Available when user-controlled on-chip, user controller-off chip, or automatic control off-chip feedback option is selected.
CLKFB_IN_P	Input	Clock Feedback in: Positive and Negative: Differential feedback in port of the
CLKFB_IN_N	Input	differential feedback option is selected.
		Output Clock Ports
CLK_OUT1	Output	Clock Out 1: Output clock of the clocking network. CLK_OUT1 is not optional.
CLK_OUT1_CE	Input	Clock Enable: Chip enable pin of the output buffer. Available when BUFGCE or BUFHCE or BUFR buffers are used as output clock drivers.
CLK_OUT1_CLR	Input	Counter reset for divided clock output: Available when BUFR buffer is used as output clock driver.
CLK_OUT2-n ⁽³⁾	Output	Clock Out 2 - n: Optional output clocks of the clocking network that are user-specified. For an MMCM, up to seven are available. For a PLL or DCM, up to six are available. For a DCM_CLKGEN, up to three are available.
CLK_OUT[2-n]_CE (3)	Input	Clock Enable: Chip enable pin of the output buffer. Available when BUFGCE or BUFHCE or BUFR buffers are used as output clock drivers.
CLK_OUT[2-n]_CLR (3)	Input	Counter reset for divided clock output: Available when BUFR buffer is used as output clock driver.
CLKFB_OUT	Output	Clock Feedback Out: Single ended feedback port of the clocking primitive. Available when the user-controlled feedback or automatic control off chip with single ended feedback option is selected.
CLKFB_OUT_P	Output	Clock Feedback Out: Positive and Negative: Differential feedback output port
CLKFB_OUT_N	Output	and differential feedback option is selected.
	1	Dynamic Reconfiguration Ports for MMCME2
DADDR[6:0]	Input	Dynamic Reconfiguration Address: Address port for use in dynamic reconfiguration; active when DEN is asserted
DCLK	Input	Dynamic Reconfiguration Clock: Clock port for use in dynamic reconfiguration
DEN	Input	Dynamic Reconfiguration Enable: Starts a dynamic reconfiguration transaction
DI[15:0]	Input	Dynamic Reconfiguration Data in: Input data for a dynamic reconfiguration write transaction; active when DEN is asserted
DO[15:0]	Output	Dynamic Reconfiguration Data Out: Output data for a dynamic reconfiguration read transaction; active when DRDY is asserted
DRDY	Output	Dynamic Reconfiguration Ready: Completes a dynamic reconfiguration transaction

Port ⁽⁵⁾	I/O	Description
DWE	Input	Dynamic Reconfiguration Write Enable: When asserted, indicates that the dynamic reconfiguration transaction is a write; active when DEN is asserted
		Dynamic Phase Shift Ports ⁽²⁾
PSCLK	Input	Dynamic Phase Shift Clock: Clock for use in dynamic phase shifting
PSEN	Input	Dynamic Phase Shift Enable: Starts a dynamic phase shift transaction
PSINCDEC	Input	Dynamic Phase Shift increment/decrement: When '1'; increments the phase shift of the output clock, when '0', decrements the phase shift
PSDONE	Output	Dynamic Phase Shift Done: Completes a dynamic phase shift transaction
		Status and Control Ports ⁽⁴⁾
RESET/RESETN	Input	Reset (Active High)/Resetn (Active Low): When asserted, asynchronously clears the internal state of the primitive, and causes the primitive to re-initiate the locking sequence when released
POWER_DOWN	Input	Power Down: When asserted, places the clocking primitive into low power state, which stops the output clocks
INPUT_CLK_ STOPPED	Output	Input Clock Stopped: When asserted, indicates that the selected input clock is no longer toggling
LOCKED	Output	Locked: When asserted, indicates that the output clocks are stable and usable by downstream circuitry

Table 2-2: Clocking Wizard I/O (Cont'd)

Notes:

- 1. At least one input clock is required; any design has at least a CLK_IN1 or a CLK_IN1_P/CLK_IN1_N port.
- 2. Not available when Spread Spectrum is selected.
- 3. CLK_OUT3 and CLK_OUT4 are not available when Spread Spectrum is selected.
- 4. Exposure of every status and control port is individually selectable.
- 5. This version of clocking wizard supports naming of ports as per requirements. The list mentioned in Table 2-2 is the default port list.

Chapter 3

Designing with the Core

This chapter includes guidelines and additional information to make designing with the core easier.

General Design Guidelines

- Provide the available input clock information for Frequency and Jitter.
- If the same input clock is used by other logic in the design then provide No buffer (if the input clock is output of global buffer), or global buffer option for source type. If the input clock is used only by core, provide clock-capable pin as source type.

Clocking

Up to seven output clocks with different frequencies can be generated for required circuitry.

Resets

- Clocking Wizard has active high Asynchronous reset signal for clocking primitive.
- The core must be held in RESET during clock switch over.
- When the input clock or feedback clock is lost, the CLKINSTOPPED or CLKFBSTOPPED status signal is asserted. After the clock returns, the CLKINSTOPPED signal is unasserted and a RESET must be applied.

Functional Overview

The Clocking Wizard is an interactive Graphical User Interface (GUI) that creates a clocking network based on design-specific needs. The required clock network parameters are organized in a linear sequence so that you can select only the desired parameters. Using the wizard, experienced users can explicitly configure their chosen clocking primitive, while less experienced users can let the wizard automatically determine the optimal primitive and configuration - based on the features required for their individual clocking networks.

If you are already familiar with the Digital Clock Manager (DCM) and Phase-Locked Loop (PLL) wizards, refer to Appendix B, Migrating for information on usage differences.

Clocking Features

Major clocking-related functional features desired and specified can be used by the wizard to select an appropriate primitive. Incompatible features are automatically dimmed out to help the designer evaluate feature trade-offs.

Clocking features include

- Frequency synthesis
- Phase alignment
- Spread Spectrum
- Minimization of output jitter
- Allowance of larger input jitter
- Minimization of power
- Dynamic phase shift
- Dynamic reconfiguration
- Safe Clock Startup and Sequencing

Input Clocks

One input clock is the default behavior, but two input clocks can be chosen by selecting a secondary clock source. Only the timing parameters of the input clocks in their specified units is required; the wizard uses these parameters as needed to configure the output clocks.

Input Clock Jitter Option

The wizard allows you to specify the input clock jitter either in UI or PS units using a radio button.

Output Clocks

The number of output clocks is user-configurable. The maximum number allowed depends upon the selected device and the interaction of the major clocking features you specify. Simply input the desired timing parameters (frequency, phase, and duty cycle) and let the clocking wizard select and configure the clocking primitive and network automatically to comply with the requested characteristics. If it is not possible to comply exactly with the requested parameter settings due to the number of available input clocks, best-attempt settings are provided. When this is the case, the clocks are ordered so that CLK_OUT1 is the highest-priority clock and is most likely to comply with the requested timing parameters. The wizard prompts you for frequency parameter settings before the phase and duty cycle settings.

TIP: The port names in the generated circuit can differ from the port names used on the original primitive.

Clock Buffering and Feedback

In addition to configuring the clocking primitive within the device, the wizard also assists with constructing the clocking network. Buffering options are provided for both input and output clocks. If a clock output requires special buffers like BUFPLL which the wizard does not generate in the design, alert messages are flagged. Feedback for the primitive can be user-controlled or left to the wizard to automatically connect. If automatic feedback is selected, the feedback path is matched to timing for CLK_OUT1.

Optional Ports

All primitive ports are available for user-configuration. You can expose any of the ports on the clocking primitive, and these are provided as well in the source code.

Primitive Override

All configuration parameters are also user-configurable. In addition, should a provided value be undesirable, any of the calculated parameters can be overridden with the desired settings.

Summary

The Clocking Wizard provides a summary for the created network. Input and output clock settings are provided both visually and as constraint files. In addition, jitter numbers for the created network are provided along with a resource estimate. Lastly, the wizard provides the input setting for PLL and MMCM based designs for Xilinx Power Estimator (XPE) in an easy-to-use table.

Design Environment

Figure 3-1 shows the design environment provided by the wizard to assist in integrating the generated clocking network into a design. The wizard provides a synthesizable and downloadable example design to demonstrate how to use the network and allows you to place a very simple clocking network in your device. A sample simulation test bench, which simulates the example design and illustrates output clock waveforms with respect to input clock waveforms, is also provided.

Figure 3-1: Clocking Network and Support Modules

Core Architecture

The Clocking Wizard generates source code HDL to implement a clocking network. The generated clocking network typically consists of a clocking primitive (MMCME2_ADV or PLLE2_ADV) plus some additional circuitry which typically includes buffers and clock pins. The network is divided into segments as illustrated in Figure 3-2. Details of these segments are described in the following sections.

Figure 3-2: Provided Clocking Network

Input Clocks

Up to two input clocks are available for the clocking network. Buffers are optionally inserted on the input clock paths based on the buffer type that is selected.

Primitive Instantiation

The primitive, either user or wizard selected, is instantiated into the network. Parameters on primitives are set by the wizard, and can be overridden by you. Unused input ports are tied to the appropriate values. Unused output ports are labeled as such.

Feedback

If phase alignment is not selected, the feedback output port on the primitive is automatically tied to the feedback input port. If phase alignment with automatic feedback is selected, the connection is made, but the path delay is matched to that of CLK_OUT1. If user-controlled feedback is selected, the feedback ports are exposed.

Output Clocks

Buffers that are user-selected are added to the output clock path, and these clocks are provided.

I/O Signals

All ports are optional, with the exception that at least one input and one output clock are required. Availability of ports is controlled by user-selected parameters. For example, when Dynamic Reconfiguration is selected, only those ports related to Dynamic Reconfiguration are exposed. Any port that is not exposed is either tied off or connected to a signal labeled *unused* in the delivered source code.

IMPORTANT: Not all ports are available for all devices or primitives; for example, Dynamic Phase Shift is not available when Spread Spectrum is selected.

Customizing and Generating the Core

This chapter includes information about using Xilinx tools to customize and generate the core in the Vivado[™] Design Suite environment.

GUI

This chapter describes the Vivado tools Graphical User Interface (GUI) and follows the same flow required to set up the clocking network requirements. Tool tips are available in the GUI for most features; place your mouse over the relevant text, and additional information is provided in a pop-up dialog.

Clock Manager Type (Primitive Selection)

In Zynq^M-7000, Virtex^M-7, Kintex^{\mathbb{R}}-7, and Artix^M-7 devices MMCME2 and PLLE2 primitives are available for the clocking needs. You have the option to configure either of these by selecting the primitive. Features are enabled or disabled depending on the primitive selected.

Clocking Features

The first page of the GUI (Figure 4-1, Figure 4-2) allows you to identify the required features of the clocking network and configure the input clocks.

<u> </u>	ocking Options	Output Clocks MMCM Se	ttings Port Renaming	Summary				
	King Features Frequency Synth Phase Alignment Dynamic Phase S Safe Clock Startu	esis 📄 Spread Spectrum 📄 Minimize Power ihift 📄 Dynamic Reconfigu p	Jitter Optimi:	zation ed ze Output Jitter ze Input Jitter filterin	g			
Inpu	t Clock Informati	on Innut Frequency (MHz)		litter Options	Innut litter	Source		
	Primary	100.000	10.000 - 800.000		0.010	Single ended clock capable pin		
	1		=	1				

Figure 4-1: Clocking Options (Spread Spectrum Unselected)

	ocking Options		MCM Settings	Port Kenaming	Summary		
Prim	itive MMCME2 ADV	O PLLE2 ADV					
Cloc	king Features —			Jitter Optimiz	ation		
 Image: A start of the start of	Frequency Synthe Phase Alignment	sis 🗹 Spread Sper	trum wer	⊚ Balance ○ Minimiz	d e Output Jitter		
	Dynamic Phase Sr Safe Clock Startup	int 🔄 Dynamic Re	configuration	⊖ Maximi:	ze Input Jitter filtering		
npu	t Clock Informatio	n ———					
	Input Clock	Input Frequency(A	1Hz)		Jitter Options	Input Jitter	Source
	Primary	100.000	25.0	00 - 150.000	UI 👻	0.010	Single ended clock capable pin
		r					

Figure 4-2: Clocking Options (Spread Spectrum Selected)

Selecting Clocking Features

The available clocking features are shown for the selected target device. You can select as many features as desired; however, some features consume additional resources, and some can result in increased power consumption. Additionally, certain combinations of features are not allowed.

Clocking features include:

- **Frequency synthesis**. This feature allows output clocks to have different frequencies than the active input clock.
- **Spread Spectrum (SS)**. This feature provides modulated output clocks which reduces the spectral density of the electromagnetic interference (EMI) generated by electronic devices. This feature is available only for MMCME2 primitive.
- **Phase alignment**. This feature allows the output clock to be phase locked to a reference, such as the input clock pin for a device.
- **Minimize power**. This features minimizes the amount of power needed for the primitive at the possible expense of frequency, phase offset, or duty cycle accuracy. This feature is not available when Spread Spectrum feature is selected.
- **Dynamic phase shift**. This feature allows you to change the phase relationship on the output clocks. This feature is not available when Spread Spectrum feature is selected.
- **Dynamic reconfiguration**. This feature allows you to change the programming of the primitive after device configuration. When this option is chosen, the clocking wizard uses only integer values for M, D and CLKOUT[0:6]_DIVIDE.
- **Balanced**. Selecting Balanced results in the software choosing the correct BANDWIDTH for jitter optimization.
- **Minimize output jitter**. This feature minimizes the jitter on the output clocks, but at the expense of power and possibly output clock phase error. This feature is not available with 'Maximize input jitter filtering'.
- **Maximize input jitter filtering**. This feature allows for larger input jitter on the input clocks, but can negatively impact the jitter on the output clocks. This feature is not available with 'Minimize output jitter'.
- Safe Clock Startup and Sequencing. Safe Clock Startup feature enables stable and valid clock at the output using BUFGCE after Locked is sampled High for 32 input clocks. Sequencing feature enables Clocks in a sequence according to the number entered through GUI. Delay between two enabled output clocks in sequence is 32 cycles of feedback clock. This feature is useful for a system where modules need to be start operating one after the other.

Configuring Input Clocks

There are two input clocks available and depending on selection reference clock can be switched from one to another. GUI provides option to select the secondary input clock to enable the additional input clock. If Spread Spectrum feature is selected, secondary input clock is disabled in the Clocking wizard. Depending on the frequency of the secondary input clock, this can cause a less ideal network to be created than might be possible if just the primary input clock was present (more output jitter, higher power, etc.)

Valid input frequency ranges are:

Frequency when SS is unselected: 10 - 1066 MHz

Frequency when SS is selected: 25 – 150 MHz

Enter the frequency and peak-to-peak period (cycle) jitter for the input clocks. The wizard then uses this information to create the clocking network. Additionally, a XDC (Xilinx Design Constraints file) is created using the values entered. For the best calculated clocking parameters, it is best to fully specify the values. For example, for a clock requirement of 33 1/3 MHz, enter 33.333 MHz rather than 33 MHz.

You can select which buffer type drives your input clock, and this is then instantiated in the provided source code. If your input buffers are located externally, selecting "No buffer" leaves the connection blank. If Phase Alignment is selected, you do not have access to pins that are not dedicated clock pins, because the skew introduced by a non-clock pin is not matched by the primitive. You can choose the units for input clock jitter by selecting either the UI or PS radio button. The input jitter box accepts the values based on this selection.

Output Clock Settings

The second page of the GUI (Figure 4-3) configures requirements for the output clocks. Each selected output clock can be configured on this screen.

Requested Actual Requested Actual Requested Actual Requested Actual Prine cik_out1 100.000 100.000 0.000 0.000 50.0 50.0 BUFG Image: Standard Standar	itnut Clock	Output Freq (M	1Hz)	Phase (degre	es)	Duty Cycle (»	Drives	Use
cik_out1 100.000 100.000 0.000 0.000 50.0 50.0 BUFG<**		Requested	Actual	Requested	Actual	Requested	Actual		Fine PS
L clk_out2 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE L clk_out3 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE L clk_out4 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE L clk_out5 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE L clk_out6 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE L clk_out7 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE C use clocck sequence Number 0.000 N/A 0.000 N/A 50.000 N/A BUFGCE C clk_out1 1 0.000 N/A 0.000 - Chip Signaling Single-ended O Differential O Differential O Differential O Differential O Differential O Differential clk_out6 1 1 0 User-Controlled Off-Chip User-Controlled Off-Chip User-Controlled Off-Chip <td< td=""><td>clk_out1</td><td>100.000</td><td>100.000</td><td>0.000</td><td>0.000</td><td>50.0</td><td>50.0</td><td>BUFG</td><td></td></td<>	clk_out1	100.000	100.000	0.000	0.000	50.0	50.0	BUFG	
I clk_out3 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE I I clk_out4 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE I I clk_out5 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE I I clk_out6 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE I I clk_out7 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE I USE CLOCK SEQUENCING Sequence Number Clocking Feedback Source Signaling I	Clk_out2	100.000	N/A	0.000	N/A	50.000	N/A	BUFGCE	
Clk_out4 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE E Clk_out5 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE E Clk_out6 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE E Clk_out7 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE E USE CLOCK SEQUENCING Clocking Feedback Source Signaling E E Output Clock Sequence Number Clocking Feedback Source Signaling E Clk_out2 1 0 User-Control On-Chip O Liferential O Differential O Differential	□ clk_out3	100.000	N/A	0.000	N/A	50.000	N/A	BUFGCE	
Cik_out5 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE C Cik_out6 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE C Cik_out7 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE C Use cLock sequence Number	□ clk_out4	100.000	N/A	0.000	N/A	50.000	N/A	BUFGCE	
Image: cik_out5 100.000 N/A 0.000 N/A 50.000 N/A BUFGCE Image: cik_out7 Image: ci	🗌 clk_out5	100.000	N/A	0.000	N/A	50.000	N/A	BUFGCE	
Cik_out7 100.000 N/A 50.000 N/A BUFGCE E USE CLOCK SEQUENCING Clocking Feedback Source Signaling Signaling Signaling Cik_out1 1 Automatic Control On-Chip Automatic Control Off-Chip Differential Differential Differential Cik_out4 1 User-Controlled Off-Chip User-Controlled Off-Chip Differential I I Cik_out5 1 User-Controlled Off-Chip User-Controlled Off-Chip I	🗌 clk_out6	100.000	N/A	0.000	N/A	50.000	N/A	BUFGCE	
USE CLOCK SEQUENCING Clocking Feedback Output Clock Sequence Number clk_out1 1 clk_out2 1 clk_out3 1 clk_out4 1 clk_out5 1 clk_out6 1 clk_out7 1									
clk_out5 1 clk_out7 1	CIK_OUT7		N/A Clocki Sour	0,000 ng Feedback	N/A	S0.000	N/A	BUFGCE	
ck_out6 1 ck_out7 1	clk_out7	100.000 SEQUENCING	M/A Clocki Sour	0.000 ng Feedback	On-Chip Off-Chip In-Chip	50.000 Ignaling	N/A	BUFGCE	
clk_out7 1	clk_out7	100.000 SEQUENCING 1 1 1 1 1 1 1	mber	0.000 Ing Feedback rce Automatic Control Automatic Control User-Controlled O User-Controlled O	On-Chip Off-Chip In-Chip Iff-Chip	50.000 ignaling Single-ended Differential	N/A	BUFGCE	
	clk_out7	I00.000 SEQUENCING I		0.000 Ing Feedback rce Automatic Control Automatic Control User-Controlled O User-Controlled O	On-Chip Off-Chip In-Chip In-Chip	50.000 ignaling Single-ended Differential		BUFGCE	
	clk_out7	IO0.000 SEQUENCING I	mber	0.000 Ing Feedback rce Automatic Control Automatic Control User-Controlled O User-Controlled O	On-Chip Off-Chip In-Chip Iff-Chip	50.000 ignaling Single-ended Differential	N/A	BUFGCE	

Figure 4-3: Output Clocks (Spread Spectrum Unselected)

Configuring Output Clocks

To enable an output clock, click on the box located next to it. Output clocks must be enabled sequentially.

You can specify values for the output clock frequency, phase shift, and duty cycle assuming that the primary input clock is the active input clock. The clocking wizard attempts to derive a clocking network that meets your criteria exactly. In the event that a solution cannot be found, best attempt values are provided and are shown in the actual value column. Achieving the specified output frequency takes precedence over implementing the specified phase, and phase in turn takes higher precedence in the clock network derivation process than duty cycle. The precedence of deriving the circuits for the CLK_OUT signals is CLK_OUT1 > CLKOUT2 > CLKOUT3, and so on. Therefore, finding a solution for CLK_OUT1 frequency has a higher priority. Values are recalculated every time an input changes. Because of this, it is best to enter the requirements from top to bottom and left to right. This helps to pinpoint requested values that cannot be supported exactly. If phase alignment is not selected, phase shift is with respect to CLK_OUT1.

You can choose which type of buffer is instantiated to drive the output clocks, or "No buffer" if the buffer is already available in external code. The buffers available depend on your device family. For all outputs that have BUFR as the output driver, the "BUFR_DIVIDE" attribute is available as a generic parameter in the HDL. You can change the divide value of the BUFR while instantiating the design.

If you choose the Dynamic phase shift clocking, the 'Use Fine Ps' check boxes are available. 'Use Fine Ps' allows you to enable the Variable Fine Phase Shift on MMCME2. Select the appropriate check box for any clock that requires dynamic phase shift. The wizard resets the requested phase field to "0.000" when 'Use Fine Ps' is selected.

When **Safe Clock Startup** feature is enabled on the first tab of the GUI, the **Use Clock Sequencing** table is active and Sequence number for each enabled clock is available for the configuration. In this mode only BUFGCE is allowed as Drives of the clock outputs.

	Outnut Frea A	(Hz)	Phase (degre	PPS)	Duty Cycle 6	` ``		lise
utput Clock	Requested	Actual	Requested	Actual	Requested	Actual	Drives	Fine P
clk_out1	100.000	100.000	0.000	0.000	50.0	50.0	BUFGCE 👻	
🗹 clk_out2	200.000	200.000	0.000	0.000	50.000	50.0	BUFGCE 👻	
🗹 clk_out3	400.000	400.000	0.000	0.000	50.000	50.0	BUFGCE 👻	
🗹 clk_out4	800.000	100.000	0.000	0.000	50.000	50.0	BUFGCE 👻	
Clk_out5	100.000	N/A	0.000	N/A	50.000	N/A	BUFGCE -	
🗌 clk_out6	100.000	N/A	0.000	N/A	50.000	N/A	BUFGCE 👻	
USE CLOCK	100.000 SEQUENCING x Sequence Nu 1	N/A Clockin Sour	0,000 ng Feedback	I On-Chip	gnaling	N/A	BUFGCE	
CIK_OUT7	100.000 SEQUENCING Sequence Nu 1 4 2 3 1	Imber	0,000 ng Feedback ce) Automatic Control) Automatic Control) User-Controlled C) User-Controlled C	N/A	50.000 gnaling Single-ended Differential	V/A	BUFGCE	
☐ clk_out7 ✓ USE CLOCK Output Clock Clk_out1 clk_out2 clk_out3 clk_out4 clk_out5 clk_out6 clk_out7	100.000 SEQUENCING 1 4 2 3 1 1 1		0,000 ng Feedback ce) Automatic Control) Automatic Control) User-Controlled C	N/A	50.000 gnaling Single-ended Differential	V/A	BUFGCE	

Figure 4-4: Output Clocks (Spread Spectrum Selected)

You can configure the sequence number from 1 to the maximum number of clocks selected. Clocking Wizard does not allow any break in the sequence from one to maximum in the table.

For details of the clocking behavior in this mode, refer to Figure 4-5 and Figure 4-6.

Figure 4-5: Safe Clock Start Up

Figure 4-6: Safe Clock Start Up with Sequencing

When Spread Spectrum (SS) is selected, CLK_OUT<3> and CLK_OUT<4> are not available. Divide values of these outputs are used for SS modulation frequency generation.

ne priase is car	Output Freq (N		Phase (degre	AS)	Duty Cycle &	9	1	lise
utput Clock	Requested	Actual	Requested	Actual	Requested	Actual	Drives	Fine PS
clk_out1	100.000	100.000	0.000	0.000	50.0	50.0	BUFG	-
🗌 clk_out2	100.000	N/A	0.000	N/A	50.000	N/A	BUFG	-
Clk_out5	100.000	N/A	0.000	N/A	50.000	N/A	BUFG	-
🗌 clk_out6	100.000				F 0 0 0 0	N17.A	BLIEG	-
		N/A	0.000	N/A	50.000	IN/A	bord	
CIK_out7	100.000 SEQUENCING	N/A N/A Clockin	0.000 0.000 ng Feedback	N/A N/A	50.000 50.000 Signaling	N/A N/A	BUFG	

Figure 4-7: Output Clocks (Spread Spectrum Selected)

There are four modes available for SS Mode:

- DOWN_LOW
- DOWN_HIGH
- CENTER_LOW
- CENTER_HIGH

Available Modulation Frequency range is 25 – 250 KHz

Spread Spectrum calculation details are described in Figure 4-8 and Figure 4-9.

Figure 4-8: Spread Spectrum Mode (Center Spread)

Figure 4-9: Spread Spectrum Mode (Down Spread)

Note: Input_clock_frequency is in Hz unit.

For spread:

- If (SS_Mode = CENTER_HIGH) :=>
 - spread (ps) = +/- [1/(Input_clock_frequncy*(M-0.125*4)/D/O) 1/ (Input_clock_frequency*M/D/O)]
- If (SS_Mode = CENTER_LOW) :=>
 - spread (ps) = +/- [1/(Input_clock_frequncy*(M-0.125*4)/D/O) 1/ (Input_clock_frequency*M/D/O)]
- If (SS_Mode = DOWN_HIGH) :=>
 - spread (ps) = + [1/(Input_clock_frequncy*(M-0.125*4)/D/O) 1/ (Input_clock_frequency*M/D/O)]
- If (SS_Mode = DOWN_LOW) :=>

 spread (ps) = + [1/(Input_clock_frequncy*(M-0.125*4)/D/O) - 1/ (Input_clock_frequency*M/D/O)]

Where M is CLKFBOUT_MULT_F, D is DIVCLK_DIVIDE, and O is respective CLKOUTx_DIVIDE.

- For Modulation Frequency:
 - O2 and O3 are calculated by the bitgen in implementation. Same calculation is done in the wizard to get actual modulation frequency value.
 - Then based on what O2 and O3 is calculated, the actual modulation frequency is calculated:
- If (SS_Mode = CENTER_HIGH or SS_Mode = CENTER_LOW) Actual_modulation_frequency (average) = (Input_clock_frequency*M/D) / (O2 * O3) / 16
- If (SS_Mode = DOWN_HIGH) Actual_modulation_frequency (average) = 0.5 * [((Input_clock_frequency*M/D) / (O2 * O3) / 8) + ((Input_clock_frequency*(M-0.5)/D) / (O2 * O3) / 8)]
- If (SS_Mode = DOWN_LOW) Actual_modulation_frequency (average) = 0.5 * [((Input_clock_frequency*M/D) / (O2 * O3) / 8) + ((Input_clock_frequency*(M-0.25)/D) / (O2 * O3) / 8)]

IMPORTANT: Actual modulation frequency may deviate within +/- 10% of the requested modulation frequency for some settings.

Selecting Optional Ports

All other optional ports that are not handled by selection of specific clocking features are listed under Optional Inputs/Outputs. Click to select the ports that you wish to make visible; inputs that are unused are tied off appropriately, and outputs that are unused are labeled as such in the provided source code.

Reset Type

You can select Reset Type as Active High or Active Low when RESET is enabled. Default value is Active High.

RECOMMENDED: *Xilinx recommends using the Active High reset in the design.*

Choosing Feedback

Feedback selection is only available when phase alignment is selected. When phase alignment is not selected, the output feedback is directly connected to the input feedback. For designs with phase alignment, choose automatic control on-chip if you want the feedback path to match the insertion delay for CLK_OUT1. You can also select

user-controlled feedback if the feedback is in external code. If the path is completely on the FPGA, select on-chip; otherwise, select off-chip. For designs that require external feedback and related I/O logic, choose automatic control off-chip feedback. You can choose either single-ended or differential feedback in this mode. The wizard generates the core logic and logic required to route the feedback signals to the I/O.

The third GUI screen (Figure 4-7) provides information to configure the rest of the clocking network.

Primitive Overrides

One or more pages of device and primitive specific parameter overrides are displayed.

Overriding Calculated Parameters

The clocking wizard selects optimal settings for the parameters of the clocking primitive. You can override any of these calculated parameters if you wish. By selecting **Allow override mode**, the overridden values are used rather than the calculated values as primitive parameters. The wizard uses the settings as shown on this screen for any timing calculations, and any settings changed here are reflected in the summary pages.

IMPORTANT: It is important to verify that the values you are choosing to override are correct because the wizard implements what you have chosen even if it causes issues with the generated network.

Parameters listed are relevant for the physical clocks on the primitive, rather than the logical clocks created in the source code. For example, to modify the settings calculated for the highest priority CLK_OUT1, you actually need to modify CLKOUT0* parameters, and not the CLKOUT1* parameters for a MMCME2 or PLLE2.

The generated source code contains the input and output clock summaries shown in the next summary page, as shown in Figure 4-10.

mponent Name clk_w	viz_v5_0_0			
Clocking Options	Dutput Clocks MMCM S	ettings Port Renaming Summa	ry	
These are the settings I	based on inputs from pre	vious pages. Any update on this pa	age	
will override the optima	al settings calculated by th	ne wizard	-	
Allow Override Mod	le			
Attribute	Value			
BANDWIDTH	OPTIMIZED 👻			
CLKFBOUT_MULT_F	10.000			
CLKFBOUT_PHASE	0.000			
ELKIN1_PERIOD	10.0			
ELKIN2_PERIOD	10.0			
COMPENSATION	ZHOLD 👻			
DIVCLK_DIVIDE	1			
REF_JITTER1	0.010			
REF_JITTER2	0.010			
TARTUP_WAIT				
CLKFBOUT_USE_FINE_P3				
CLOCK_HOLD				
Clocks	Divide	Duty Cycle	Phase	Use Fine Ps
Clock 1	10.000	0.500	0.000	

Figure 4-10: Primitive Override Screen (Spread Spectrum Unselected)

Component Name	7 V5 0 0			
component Name Citywiz				
Clocking Options Ou	tput Clocks MMC	M Settings Port Renaming	Summary	
These are the settings ba will override the optimal	ased on inputs from settings calculated b	previous pages. Any update or vy the wizard	this page	
Attribute	Value			
BANDWIDTH	LOW			
CLKFBOUT_MULT_F	21.000			
CLKFBOUT_PHASE	0.000			
CLKIN1_PERIOD	10.0			
CLKIN2_PERIOD	10.0			
COMPENSATION	ZHOLD 👻			
DIVCLK_DIVIDE	3			
REF_JITTER1	0.010			
REF_JITTER2	0.010			
STARTUP_WAIT				
CLKFBOUT_USE_FINE_PS				
CLKOUT4_CASCADE				
CLOCK_HOLD				
Clocks	Divide	Duty Cycle	Phase	Use Fine Ps
Clock 1	7.000	0.500	0.000	

Figure 4-11: **Primitive Override Screen (Spread Spectrum Selected)**

Port Renaming

The first summary page (Figure 4-13) displays summary information about the input and output clocks. This information is also provided as comments in the generated source code, and in the provided XDC.

nponent Name	lk wiz v5 0 0					
Clocking Option	s Output Clocks	MMCM Settings Port	Renaming Summa	ny		
Clocking Option:		MMCM Settings Tore	Kenanning Dunnia	ry		
Input Clock						
Input Clock P	ort Name Fre	q (MHz) 🛛 Input Jitter (UD			
Primary (:lk_in1 100	0.000 0.010				
Quantum Claudy						
Output Clock ——						
VCO Fred = 100	0 000 MHz					
VCO Freq = 100	0.000 MHz					
VCO Freq = 100 Output Clock	0.000 MHz Port Name	Output Freq (MHz)	Phase (degrees)	Duty Cycle 🗞	Pk-to-Pk Jitter (ps)	Phase Error (ps)
VCO Freq = 100 Output Clock Clk_out1	0.000 MHz Port Name clk_out1	Output Freq (MHz)	Phase (degrees)	Duty Cycle (%) 50.0	Pk-to-Pk Jitter (ps) 130.958	Phase Error (ps) 98.575
VCO Freq = 100 Output Clock Clk_out1	0.000 MHz Port Name clk_out1	Output Freq (MHz)	Phase (degrees) 0.000	Duty Cycle (%) 50.0	Pk-to-Pk Jitter (ps) 130.958	Phase Error (ps) 98.575
VCO Freq = 100 Output Clock clk_out1 Optional Port Narr	0.000 MHz Port Name CIK_out1 nes	Output Freq (MHz) 100.000	Phase (degrees) 0.000	Duty Cycle (%) 50.0	PK-to-Pk Jitter (ps) 130.958	Phase Error (ps) 98.575
VCO Freq = 100 Output Clock clk_out1 Optional Port Nan Other Pins	0.000 MHz Port Name Clk_out1 nes tt Name	Output Freq (MHz) 100.000	Phase (degrees) 0.000	Duty Cycle Ø@ 50.0	Pk-to-Pk Jitter (ps) 130.958	Phase Error (ps) 98.575
VCO Freq = 100 Output Clock clk_out1 Optional Port Nam Other Pins Po	0.000 MHz Port Name CIK_out1 nes rt Name set	Output Freq (MHz)	Phase (degrees) 0.000	Duty Cycle Ø	PK-to-PK Jitter (ps) 130.958	Phase Error (ps) 98.575
VCO Freq = 100 Output Clock Clk_out1 Optional Port Nan Other Pins Po reset re	0.000 MHz Port Name CIK_out1 nes rt Name set	Output Freq (MHz)	Phase (degrees) 0.000	Duty Cycle Ø	PK-to-PK Jitter (ps) 130.958	Phase Error (ps) 98.575
VCO Freq = 100 Output Clock clk_out1 Optional Port Nam Other Pins Po reset re locked low	0.000 MHz Port Name Cik_out1 res rt Name set cked	Output Freq (MHz)	Phase (degrees) 0.000	Duty Cycle &	Pk-to-Pk Jitter (ps) 130.958	Phase Error (ps) 98.575

Figure 4-12: Port Renaming (Spread Spectrum Unselected)

Component Name	clk_wiz_v5_0_	0					
Clocking Opti	ons Output Clo	ocks MMCM Settings	Port Renaming S	ummary			
Input Clock —							
Input Clock	Port Name	Freq (MHz) Input	Jitter (UI)				
Primary	clk_in1	100.000 0.010					
		· · ·					
- Output Clock -							
VCO France 7	00.000 MU-		Madulatian Fuan	350 076 KU-			
vco rreq = 7	00.000 MH2		wodulation Freq =	258.876 NH2			
Output Clock	Port Name	Output Freq (MHz)	Phase (degrees)	Duty Cycle 🗞	Tspread (ps)	Pk-to-Pk Jitter (ps)	Phase Error (ps)
clk_out1	clk_out1	100.000	0.000	50.0	243.902	236.910	732.678
	1						
- Optional Port N	lames						
Dahan Bina	Prot Marrie						
Other Pins	Purt Name						
reset	reset						
locked	locked						

Figure 4-13: Port Renaming (Spread Spectrum Selected)

Input Clocking Summary

Information entered on the first page of the GUI is shown for the input clocks.

Output Clocking Summary

Derived timing information for the output clocks is shown. If the chosen primitive has an oscillator, the VCO frequency is provided as reference. If you have a secondary input clock enabled, you can choose which clock is used to calculate the derived values. When Spread Spectrum is enabled, actual modulation frequency is provided as reference.

Tspread is the actual spread as calculated in Configuring Output Clocks.

Port Names

The Wizard allows you to name the ports according to their needs. If you want to name the HDL port for primary clock input, simply type in the port name in the adjacent text box. The text boxes contain the default names. In the case of Primary clock input, the default name is CLK_IN1.

IMPORTANT: Be careful when changing the port names, as it could result in syntax errors if the port name entered is any reserved word of VHDL or Verilog or if that signal is already declared in the module.

Summary

The summary page (Figure 4-14) contains general summary information.

Component Name clk_wiz_v5_0_0	
Clocking Options Output Clocks MMCM Settings Port Renaming Sum	imary
Asserilation	histore
Input Clock (MHZ)	100.000
Phase Shift	None
Divide Counter	1
Mult Counter	10.000
CLKOUTO Divider	10.000
CLKOUT1 Divider	OFF
CLKOUT2 Divider	OFF
CLKOUT3 Divider	OFF
CLKOUT4 Divider	OFF
CLKOUT5 Divider	OFF
CLKOUT6 Divider	OFF

Resource Estimate Summary

A resource estimate is provided based on the chosen clocking features.

XPower Estimator Summary

Input parameters to the Xpower tool are provided.

Parameter Values in the XCI File

Table 4-1 defines valid entries for the XCI parameters.

Parameter	Value
COMPONENT_NAME	clk_wiz_v5_0
PRIMITIVE	MMCME2
PRIMTYPE_SEL	mmcm_adv
CLOCK_MGR_TYPE	auto
USE_FREQ_SYNTH	TRUE
USE_SPREAD_SPECTRUM	FALSE
USE_PHASE_ALIGNMENT	TRUE
USE_MIN_POWER	FALSE
USE_DYN_PHASE_SHIFT	FALSE
USE_DYN_RECONFIG	FALSE
JITTER_SEL	No_Jitter
PRIM_IN_FREQ	100
IN_FREQ_UNITS	Units_MHz
IN_JITTER_UNITS	Units_UI
RELATIVE_INCLK	REL_PRIMARY
USE_INCLK_SWITCHOVER	FALSE
SECONDARY_IN_FREQ	100
SECONDARY_PORT	CLK_IN2
SECONDARY_SOURCE	Single_ended_clock_capable_pin
JITTER_OPTIONS	UI
CLKIN1_UI_JITTER	0.01
CLKIN2_UI_JITTER	0.01
PRIM_IN_JITTER	0.01
SECONDARY_IN_JITTER	0.01
CLKIN1_JITTER_PS	100
CLKIN2_JITTER_PS	100
CLKOUT2_USED	FALSE
CLKOUT3_USED	FALSE
CLKOUT4_USED	FALSE
CLKOUT5_USED	FALSE
CLKOUT6_USED	FALSE
CLKOUT7_USED	FALSE
NUM_OUT_CLKS	1
CLK_OUT1_USE_FINE_PS_GUI	FALSE
CLK_OUT2_USE_FINE_PS_GUI	FALSE

Table 4-1: XCI Parameters

Parameter	Value
CLK_OUT3_USE_FINE_PS_GUI	FALSE
CLK_OUT4_USE_FINE_PS_GUI	FALSE
CLK_OUT5_USE_FINE_PS_GUI	FALSE
CLK_OUT6_USE_FINE_PS_GUI	FALSE
CLK_OUT7_USE_FINE_PS_GUI	FALSE
PRIMARY_PORT	CLK_IN1
CLK_OUT1_PORT	CLK_OUT1
CLK_OUT2_PORT	CLK_OUT2
CLK_OUT3_PORT	CLK_OUT3
CLK_OUT4_PORT	CLK_OUT4
CLK_OUT5_PORT	CLK_OUT5
CLK_OUT6_PORT	CLK_OUT6
CLK_OUT7_PORT	CLK_OUT7
DADDR_PORT	DADDR
DCLK_PORT	DCLK
DRDY_PORT	DRDY
DWE_PORT	DWE
DIN_PORT	DIN
DOUT_PORT	DOUT
DEN_PORT	DEN
PSCLK_PORT	PSCLK
PSEN_PORT	PSEN
PSINCDEC_PORT	PSINCDEC
PSDONE_PORT	PSDONE
CLKOUT1_REQUESTED_OUT_FREQ	100
CLKOUT1_REQUESTED_PHASE	0
CLKOUT1_REQUESTED_DUTY_CYCLE	50
CLKOUT2_REQUESTED_OUT_FREQ	100
CLKOUT2_REQUESTED_PHASE	0
CLKOUT2_REQUESTED_DUTY_CYCLE	50
CLKOUT3_REQUESTED_OUT_FREQ	100
CLKOUT3_REQUESTED_PHASE	0
CLKOUT3_REQUESTED_DUTY_CYCLE	50
CLKOUT4_REQUESTED_OUT_FREQ	100
CLKOUT4_REQUESTED_PHASE	0

Parameter	Value	
CLKOUT4_REQUESTED_DUTY_CYCLE	50	
CLKOUT5_REQUESTED_OUT_FREQ	100	
CLKOUT5_REQUESTED_PHASE	0	
CLKOUT5_REQUESTED_DUTY_CYCLE	50	
CLKOUT6_REQUESTED_OUT_FREQ	100	
CLKOUT6_REQUESTED_PHASE	0	
CLKOUT6_REQUESTED_DUTY_CYCLE	50	
CLKOUT7_REQUESTED_OUT_FREQ	100	
CLKOUT7_REQUESTED_PHASE	0	
CLKOUT7_REQUESTED_DUTY_CYCLE	50	
USE_MAX_I_JITTER	FALSE	
USE_MIN_O_JITTER	FALSE	
PRIM_SOURCE	Single_ended_clock_capable_pin	
CLKOUT1_DRIVES	BUFG	
CLKOUT2_DRIVES	BUFG	
CLKOUT3_DRIVES	BUFG	
CLKOUT4_DRIVES	BUFG	
CLKOUT5_DRIVES	BUFG	
CLKOUT6_DRIVES	BUFG	
CLKOUT7_DRIVES	BUFG	
FEEDBACK_SOURCE	FDBK_AUTO	
CLKFB_IN_SIGNALING	SINGLE	
CLKFB_IN_PORT	CLKFB_IN	
CLKFB_IN_P_PORT	CLKFB_IN_P	
CLKFB_IN_N_PORT	CLKFB_IN_N	
CLKFB_OUT_PORT	CLKFB_OUT	
CLKFB_OUT_P_PORT	CLKFB_OUT_P	
CLKFB_OUT_N_PORT	CLKFB_OUT_N	
PLATFORM	UNKNOWN	
SUMMARY_STRINGS	empty	
USE_LOCKED	TRUE	
CALC_DONE	empty	
USE_RESET	TRUE	
RESET_TYPE	ACTIVE_HIGH	
USE_POWER_DOWN	FALSE	

Parameter	Value
USE_STATUS	FALSE
USE_FREEZE	FALSE
USE_CLK_VALID	FALSE
USE_INCLK_STOPPED	FALSE
USE_CLKFB_STOPPED	FALSE
RESET_PORT	RESET
LOCKED_PORT	LOCKED
POWER_DOWN_PORT	POWER_DOWN
CLK_VALID_PORT	CLK_VALID
STATUS_PORT	STATUS
CLK_IN_SEL_PORT	CLK_IN_SEL
INPUT_CLK_STOPPED_PORT	INPUT_CLK_STOPPED
CLKFB_STOPPED_PORT	CLKFB_STOPPED
SS_MODE	CENTER_HIGH
SS_MOD_FREQ	250
OVERRIDE_MMCM	FALSE
MMCM_NOTES	None
MMCM_DIVCLK_DIVIDE	1
MMCM_BANDWIDTH	OPTIMIZED
MMCM_CLKFBOUT_MULT_F	10
MMCM_CLKFBOUT_PHASE	0
MMCM_CLKFBOUT_USE_FINE_PS	FALSE
MMCM_CLKIN1_PERIOD	10
MMCM_CLKIN2_PERIOD	10
MMCM_CLKOUT4_CASCADE	FALSE
MMCM_CLOCK_HOLD	FALSE
MMCM_COMPENSATION	ZHOLD
MMCM_REF_JITTER1	0.01
MMCM_REF_JITTER2	0.01
MMCM_STARTUP_WAIT	FALSE
MMCM_CLKOUT0_DIVIDE_F	10
MMCM_CLKOUT0_DUTY_CYCLE	0.5
MMCM_CLKOUT0_PHASE	0
MMCM_CLKOUT0_USE_FINE_PS	FALSE
MMCM_CLKOUT1_DIVIDE	1

Table 4-1: XCI Parameters (Cont'd)

Parameter	Value
MMCM_CLKOUT1_DUTY_CYCLE	0.5
MMCM_CLKOUT1_PHASE	0
MMCM_CLKOUT1_USE_FINE_PS	FALSE
MMCM_CLKOUT2_DIVIDE	1
MMCM_CLKOUT2_DUTY_CYCLE	0.5
MMCM_CLKOUT2_PHASE	0
MMCM_CLKOUT2_USE_FINE_PS	FALSE
MMCM_CLKOUT3_DIVIDE	1
MMCM_CLKOUT3_DUTY_CYCLE	0.5
MMCM_CLKOUT3_PHASE	0
MMCM_CLKOUT3_USE_FINE_PS	FALSE
MMCM_CLKOUT4_DIVIDE	1
MMCM_CLKOUT4_DUTY_CYCLE	0.5
MMCM_CLKOUT4_PHASE	0
MMCM_CLKOUT4_USE_FINE_PS	FALSE
MMCM_CLKOUT5_DIVIDE	1
MMCM_CLKOUT5_DUTY_CYCLE	0.5
MMCM_CLKOUT5_PHASE	0
MMCM_CLKOUT5_USE_FINE_PS	FALSE
MMCM_CLKOUT6_DIVIDE	1
MMCM_CLKOUT6_DUTY_CYCLE	0.5
MMCM_CLKOUT6_PHASE	0
MMCM_CLKOUT6_USE_FINE_PS	FALSE
OVERRIDE_PLL	FALSE
PLL_NOTES	None
PLL_BANDWIDTH	OPTIMIZED
PLL_CLKFBOUT_MULT	4
PLL_CLKFBOUT_PHASE	0
PLL_CLK_FEEDBACK	CLKFBOUT
PLL_DIVCLK_DIVIDE	1
PLL_CLKIN_PERIOD	10
PLL_COMPENSATION	SYSTEM_SYNCHRONOUS
PLL_REF_JITTER	0.01
PLL_CLKOUT0_DIVIDE	1
PLL_CLKOUT0_DUTY_CYCLE	0.5

Parameter	Value
PLL_CLKOUT0_PHASE	0
PLL_CLKOUT1_DIVIDE	1
PLL_CLKOUT1_DUTY_CYCLE	0.5
PLL_CLKOUT1_PHASE	0
PLL_CLKOUT2_DIVIDE	1
PLL_CLKOUT2_DUTY_CYCLE	0.5
PLL_CLKOUT2_PHASE	0
PLL_CLKOUT3_DIVIDE	1
PLL_CLKOUT3_DUTY_CYCLE	0.5
PLL_CLKOUT3_PHASE	0
PLL_CLKOUT4_DIVIDE	1
PLL_CLKOUT4_DUTY_CYCLE	0.5
PLL_CLKOUT4_PHASE	0
PLL_CLKOUT5_DIVIDE	1
PLL_CLKOUT5_DUTY_CYCLE	0.5
PLL_CLKOUT5_PHASE	0
USE_SAFE_CLOCK_STARTUP	false
USE_CLOCK_SEQUENCING	false
CLKOUT1_SEQUENCE_NUMBER	1
CLKOUT2_SEQUENCE_NUMBER	1
CLKOUT3_SEQUENCE_NUMBER	1
CLKOUT4_SEQUENCE_NUMBER	1
CLKOUT5_SEQUENCE_NUMBER	1
CLKOUT6_SEQUENCE_NUMBER	1
CLKOUT7_SEQUENCE_NUMBER	1

Output Generation

Vivado IP Catalog outputs the core as a netlist that can be inserted into a processor interface wrapper or instantiated directly in an HDL design. The output is placed in the <project directory>.

File Details

The IP is generated by the Vivado tool in <project_name>/<project_name>.srcs/ sources_1/ip/<component_name>. The file and directory structure is as follows:

```
<component_name>.v[hd]
<component_name>_clk_wiz.v[hd]
<component_name>.veo/vho
<component_name>.xdc
<component_name>.xci
<component_name>.xml
<component_name>.xml
<component_name>/
example_design/
<component_name>_exdes.v[hd]
<component_name>_exdes.vchd]
<component_name>_exdes.vchd]
```


Constraining the Core

Required Constraints

At least one clock constraint is required for period and jitter.

```
NET "CLK_IN1" TNM_NET = "CLK_IN1";
TIMESPEC "TS_CLK_IN1" = PERIOD "CLK_IN1" 10 ns HIGH 50% INPUT_JITTER 200 ps;
```

The core level XDC has early processing order so core level XDC constraints are applied first and then it are overridden by the user provided constraints.

Device, Package, and Speed Grade Selections

Supports all packages, speed grades and devices.

Clock Frequencies

See Maximum Frequencies in Chapter 2

Clock Management

The core can generate a maximum of seven output clocks with different frequencies.

Clock Placement

No clock placement constraint is provided.

Banking

Bank selection is not provided in xdc file.

I/O Standard and Placement

No I/O or placement constraints are provided.

Detailed Example Design

In Vivado design tools, the open_example_project [get_ips <component_name>] parameter in tcl console invokes a separate example design project where it creates <component_name>_exdes as top module for synthesis and <component_name>_tb as top module for simulation. You can run implementation or simulation of the example design from example project.

Directory and File Contents

The open_example_project [get_ips <component_name>] parameter creates example_project directory in the working area.

Example design contains the counters on all the output clocks and MSBs of these counters are used as output to observe on LEDs on board.

Example Design

The following files describe the example design for the Clocking Wizard core.

• VHDL

<project_name>/<project_name>.srcs/sources_1/ip/<component_name>/example_design/

• Verilog

<project_name>/<project_name>.srcs/sources_1/ip/<component_name>/example_design/<component_name>_exdes.v

The top-level example designs adds clock buffers where appropriate to all of the input and output clocks. All generated clocks drive counters, and the high bits of each of the counters are routed to a pin. This allows the entire design to be synthesized and implemented in a target device to provide post place-and-route gate-level simulation.

Demonstration Test Bench

The following files describe the demonstration test bench.

• VHDL

<project_name>/<project_name>.srcs/sources_1/ip/<component_name>/simulation/<component_name>_tb.vhd

Verilog

```
<project_name>/<project_name>.srcs/sources_1/ip/<component_name>/simulation/<component_name>_tb.v
```

The demonstration test bench is a simple VHDL or Verilog program to exercise the example design and the core. It does Frequency calculation and check of all the output clocks. It reports all the output clock frequency and if any of the output clocks is not generating the required frequency then it reports ERROR.

Simulation

You can simulate the example design using the <code>open_example_project</code> flow in Vivado design tools.

If you open an example project, then the simulation scripts are generated in the working directory in:

example_project/<component_name>_example/<component_name>_example.sim/sim_1/

You can run fast simulation using unifast_ver or unifast libraries of MMCME2_ADV and PLLE2_ADV. This improves simulation runtime by 100X.

Simulation Waveforms for the Safe Clock Startup Feature

Simulation when Safe Clock Startup is true is illustrated in Figure 6-1.

Figure 6-1: Simulation When Safe Clock Startup is True

Figure 6-2 illustrates simulation when Safe Clock Startup is true and Use Clock Sequencing is true with required sequence number in the table as indicted in Figure 4-4.

Figure 6-2: Simulation when Safe Clock Startup is true and Use Clock Sequencing is true

Appendix A

Verification, Compliance, and Interoperability

Simulation

Verified with all the supported simulators.

Hardware Testing

Hardware testing is performed for all the features on Kintex-7 KC705 Evaluation Kit using the provided example design.

Appendix B

Migrating

For information about migration from ISE Design Suite to Vivado Design Suite, see *Vivado Design Suite Migration Methodology Guide* (UG911) [Ref 1].

For a complete list of Vivado User and Methodology Guides, see the <u>Vivado Design Suite -</u> <u>User Guides web page</u>.

This information is provided to assist those designers who are experienced with the DCM and PLL Architecture Wizards. It highlights the differences between the old and new cores.

Differences between the Clocking Wizard and the Legacy DCM and PLL Wizards

There are several changes to the GUI and the wizard use model as described in the following subsections.

Primitive Selection

The old wizard required you to choose the correct GUI (DCM or PLL) before configuring the desired primitive.

The new wizard automatically selects the appropriate primitive and configures it based on desired parameters. You can choose to override this choice in the event that multiple primitives are available, as is the case for the Spartan®-6 device family.

Symbol Pin Activation

The old wizard had a symbol with clickable pins to enable a port.

For the new wizard, the symbol shows the ports that are currently active. To enable a port, enable the appropriate feature in the GUI. For example, enabling the secondary input clock enables the CLK_IN2 and CLK_IN_SEL ports and activates those ports in the symbol.

Parameter Override

The new wizard allows you to override any calculated parameter within the wizard by switching to override mode.

Port Display Conventions

The new wizard displays the superset of ports covering all device families. Ports that are not available for the selected target device are dimmed out. For example, if a Virtex®-6 device is selected, the STATUS port is dimmed out because it is not available for devices in that family. Information on the legal ports for a specific primitive can be found in the device family-specific FPGA or clocking resources User Guide at www.xilinx.com/support/documentation/index.htm.

Visibility of Clock Ports

The new wizard provides a clocking network that matches your requirements rather than making clock ports visible. As a result, your clock names will not match the exact names for the primitive. For example, while the "first" clock available for the Virtex-6 FPGA MMCM is CLKOUTO, the highest priority clock available to you is actually named CLK_OUT1.

IMPORTANT: This change in numbering is especially important to consider if parameter overriding is desired.

GUI Information Gathering Order

Some of the information-gathering ordering has changed. For the new wizard the general flow is:

- 1. Select the clocking features.
- 2. Configure the input clock parameters.
- 3. Configure the output clock parameters.
- 4. Choose feedback and optional ports
- 5. View (and optionally override) calculated parameters.
- 6. Final summary pages.

For cascading clocking components, non-buffered input and output clocks are available for easy connection.

Appendix C

Debugging

This appendix includes details about resources available on the Xilinx Support website and debugging tools. In addition, this appendix provides a step-by-step debugging process and a flow diagram to guide you through debugging the Clocking Wizard core.

The following topics are included in this appendix:

- Finding Help on Xilinx.com
- Debug Tools
- Hardware Debug

Finding Help on Xilinx.com

To help in the design and debug process when using the Clocking Wizard core, the <u>Xilinx</u> <u>Support web page</u> (www.xilinx.com/support) contains key resources such as product documentation, release notes, answer records, information about known issues, and links for opening a Technical Support WebCase.

Documentation

This product guide is the main document associated with the Clocking Wizard core. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page (<u>www.xilinx.com/support</u>) or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads page (<u>www.xilinx.com/download</u>). For more information about this tool and the features available, open the online help after installation.

Solution Centers

See the <u>Xilinx Solution Centers</u> for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

Known Issues

Answer Records include information about commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most accurate information available.

Answer Records for this core are listed below, and can also be located by using the Search Support box on the main <u>Xilinx support web page</u>. To maximize your search results, use proper keywords such as

- Product name
- Tool message(s)
- Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Answer Records for the Clocking Wizard core

AR 54102 http://www.xilinx.com/support/answers/54102.htm

Contacting Technical Support

Xilinx provides technical support at <u>www.xilinx.com/support</u> for this LogiCORE[™] IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Xilinx provides premier technical support for customers encountering issues that require additional assistance.

To contact Xilinx Technical Support:

- 1. Navigate to <u>www.xilinx.com/support</u>.
- 2. Open a WebCase by selecting the <u>WebCase</u> link located under Support Quick Links.

When opening a WebCase, include:

- Target FPGA including package and speed grade.
- All applicable Xilinx Design Tools and simulator software versions.
- Additional files based on the specific issue might also be required. See the relevant sections in this debug guide for guidelines about which file(s) to include with the WebCase.

Debug Tools

There are many tools available to address Clocking Wizard core design issues. It is important to know which tools are useful for debugging various situations.

Example Design

The Clocking Wizard core is delivered with an example design that can be synthesized, complete with functional test benches. Information about the example design can be found in *Chapter 6, Detailed Example Design*.

Vivado Lab Tools

Vivado inserts logic analyzer and virtual I/O cores directly into your design. Vivado Lab Tools allows you to set trigger conditions to capture application and integrated block port signals in hardware. Captured signals can then be analyzed. This feature represents the functionality in the Vivado IDE that is used for logic debugging and validation of a design running in Xilinx FPGA devices in hardware.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores, including:

- ILA 2.0 (and later versions)
- VIO 2.0 (and later versions)

License Checkers

If the IP requires a license key, the key must be verified. The Vivado design tools have several license check points for gating licensed IP through the flow. If the license check succeeds, the IP can continue generation. Otherwise, generation halts with error. License checkpoints are enforced by the following tools:

- RDS,
- RDI
- Bitgen

IMPORTANT: *IP license level is ignored at checkpoints. The test confirms a valid license exists. It does not check IP license level.*

Hardware Debug

Hardware issues can range from link bring-up to problems seen after hours of testing. This section provides debug steps for common issues. The ChipScope debugging tool is a valuable resource to use in hardware debug. The signal names mentioned in the following individual sections can be probed using the ChipScope debugging tool for debugging the specific problems.

Many of these common issues can also be applied to debugging design simulations. Details are provided on:

General Checks

General Checks

Ensure that all the timing constraints for the core were properly incorporated from the example design and that all constraints were met during implementation.

- Does it work in post-place and route timing simulation? If problems are seen in hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are active and clean.
- If using MMCMs in the design, ensure that all MMCMs have obtained lock by monitoring the LOCKED port.
- If your outputs go to 0, check your licensing.

Appendix D

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

References

These documents provide supplemental material useful with this user guide:

- 1. Vivado Design Suite Migration Methodology Guide (UG911)
- 2. Vivado Design Suite User Documentation
- 3. Vivado Design Suite User Guide: Designing with IP (UG896)

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
07/25/2012	1.0	Initial release of Product Guide, replacing DS709 and UG521.
10/16/2012	1.1	Updated for core version and Vivado GUI screens.

Date	Version	Revision
12/18/2012	1.2	Updated for core version, Active Low RESET support, and Vivado GUI screens.
03/20/2012	1.3	Updated for core version, added XCI parameters and Safe Clock Startup diagrams and waveforms.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the arranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: <u>http://www.xilinx.com/warranty.htm#critapps</u>.

© Copyright 2012-2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.