
LogiCORE IP
Convolutional
Encoder v8.0
Product Guide

PG026 January 18, 2012

Convolutional Encoder v8.0 www.xilinx.com 1
PG026 January 18, 2012

Chapter 1: Overview
Standards Compliance . 4
Performance . 4
Resource Utilization. 5

Chapter 2: Core Interfaces
Port Descriptions. 6

Chapter 3: Customizing and Generating the Core
CORE Generator GUI and Parameters . 11
Parameter Values in the XCO File . 13
Output Generation . 13

Chapter 4: Designing with the Core
Puncturing . 14
AXI4-Stream Protocol . 15

Chapter 5: Detailed Example Design
Demonstration Test Bench . 17
System Generator for DSP Graphical User Interface . 18

Appendix 6: Migrating
Parameter Changes in the XCO File. 19
Port Changes . 20

Appendix 7: Additional Resources
Xilinx Resources . 21
Solution Centers . 21
References . 21
Technical Support. 21
Ordering Information . 22
Revision History . 22
Notice of Disclaimer . 22

Table of Contents

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 2
PG026 January 18, 2012

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 3
PG026 January 18, 2012 Product Specification

Introduction
The Convolution Encoder core can be used in a wide
variety of error correcting applications and is typically
used in conjunction with the Viterbi Decoder [Ref 4].

Features
• High-speed compact convolution encoder with

puncturing option

• Parameterizable constraint length from 3 to 9

• Parameterizable convolution codes

• Parameterizable puncture codes

• Puncturing rates from 2/3 to 12/23 available

• For use with Xilinx® CORE Generator™ Version
13.4

LogiCORE IP Convolutional
Encoder v8.0

LogiCORE™ IP Facts Table

Core Specifics

Supported
Device
Family(1)

Virtex®-7, Kintex™-7, Artix™-7, Zynq™-7000,
Virtex-6, Spartan®-6

Supported User
Interfaces AXI4-Stream

Resources See Table 1-2.

Provided with Core

Design Files Product Guide

Example
Design Not provided.

Test Bench See Demonstration Test Bench.

Constraints File N/A

Simulation
Model

VHDL behavioral model in the xilinxcorelib library
VHDL UNISIM structural model

Verilog UNISIM structural model

Supported S/W
Driver(2) N/A

Tested Design Tools

Design Entry
Tools

CORE Generator tool 13.4
System Generator for DSP 13.4

Simulation(3)

Mentor Graphics ModelSim
Cadence Incisive Enterprise Simulator (IES)

Synopsys VCS and VCS MX
ISim

Synthesis
Tools(3) N/A

Support

Provided by Xilinx @ www.xilinx.com/support

1. For a complete listing of supported devices, see the release notes
for this core.

2. Standalone driver details can be found in the EDK or SDK
directory (<install_directory>/doc/usenglish/
xilinx_drivers.htm). Linux OS and driver support information is
available from http://wiki.xilinx.com.

3. For the supported versions of the tools, see the ISE Design Suite
13: Release Notes Guide.

http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com
http://wiki.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/irn.pdf

Convolutional Encoder v8.0 www.xilinx.com 4
PG026 January 18, 2012 Product Specification

Chapter 1

Overview

The basic architecture of the Convolutional Encoder core is shown in Figure 1-1. The
incoming data is brought into the constraint register a bit at a time, and the output bits are
generated by modulo-2 addition of the required bits from the constraint register. The bits to
be XOR’d are selected by the convolution codes as shown in Figure 1-1.

Convolution encoding is used to encode data prior to transmission over a channel. The
received data is decoded by the classic Viterbi decoder. In a basic convolution encoder, two
or three bits (depending on the encoder output rate) are transmitted over the channel for
every input bit.

Standards Compliance
The Convolution Encoder IP core adheres to the AMBA® AXI4-Stream standard [Ref 2].

Performance

Latency
For this core, latency is defined as the number of rising clock edges from sampling
S_DATA to the sampled value appearing on M_DATA. The latency varies with the
puncture type and puncture rate. See Table 1-1 for some example latency figures.

X-Ref Target - Figure 1-1

Figure 1-1: Convolution Encoder Constraint Length 9

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 5
PG026 January 18, 2012 Product Specification

Chapter 1: Overview

Throughput
The maximum raw data input rate in Mb/s can be calculated as Fmax(MHz) for
non-punctured and dual decoder and Fmax(MHz) * n/m for the punctured non-dual
decoder where n is the input rate and m is the output rate of the punctured core.

Resource Utilization
The area of the core increases with the constraint length and the punctured input and
output rates if the core is punctured. Some example configurations are shown in Table 1-2.

Table 1-1: Latency

Convolution Encoder Type Latency

Non Puncture 3

Punctured dual rate 3/4 15

Punctured non-dual rate 3/4 10

Table 1-2: Examples of Convolution Encoder Implementations on Spartan-6 FPGAs

Rate 1/2 Rate 3/4 Rate 5/6 Rate 12/23

Constraint Length 7 7 7 7

Xilinx Part XC6SLX45T XC6SLX45T XC6SLX45T XC6SLX45T

LUT/FF Pairs 25 61 67 128

Maximum Clock Frequency(1)(2) 374 374 359 320

Notes:
1. Area and maximum clock frequencies are provided as a guide. They can vary with new releases of the

Xilinx implementation tools.
2. Maximum clock frequencies are shown in MHz for -2 parts. Clock frequency does not take jitter into

account and should be de-rated by an amount appropriate to the clock source jitter specification.

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 6
PG026 January 18, 2012

Chapter 2

Core Interfaces

This chapter provides detailed descriptions for each interface.

Port Descriptions
Symbols for the core with the AXI channels are shown in Figure 2-1 and Figure 2-2.

Table 2-1 summarizes the signal functions. They are described in more detail in the remain-
der of this section. Timing diagrams for the signals are shown throughout this section.

X-Ref Target - Figure 2-1

Figure 2-1: Core AXI Channels

X-Ref Target - Figure 2-2

Figure 2-2: Core Schematic Symbol

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 7
PG026 January 18, 2012

Chapter 2: Core Interfaces

aclken
The clock enable input (aclken) is an optional pin. When aclken is deasserted (low), all
the other synchronous inputs are ignored, except aresetn, and the core remains in its
current state. This pin should be used only if it is genuinely required because it has a high
fan out within the core and can result in lower performance. aclken is a true clock enable
and causes the entire core to freeze state when it is low.

An example of aclken operation is shown in Figure 2-3. In this case, the core ignores
symbol D4 as input to the block, and the current m_axis_data_tdata value remains
unchanged.

Table 2-1: Core Signal Pinout

Signal Direction Description

aclk Input Rising edge clock

aclken Input Active high clock enable (optional)

aresetn Input Active low synchronous clear (overrides aclken)

s_axis_data_tdata Input Input data

s_axis_data_tvalid Input tvalid for S_AXIS_DATA channel. See aclken for
protocol.

s_axis_data_tlast Input
Marks last symbol of input block. Only used to
generate event outputs. Can be tied low or high if
event outputs not used.

s_axis_data_tready Output

tready for S_AXIS_DATA. Indicates that the core
is ready to accept data. Always high, except after
a reset, in the non punctured and Dual Output
core if there is not a tready on the output.

m_axis_data_tdata Output

tdata for the output data channel, convolutionally
encoded data output in parallel for the non
punctured and Dual Output case. Serial output for
the punctured non-dual case.

m_axis_data_tvalid Output tvalid for M_AXIS_DATA channel

m_axis_data_tlast Output
tlast for the output data channel, indicates the last
element in the punctured group.

m_axis_data_tready Input
tready for M_AXIS_DATA channel. Tie high if
downstream slave is always able to accept data
from M_AXIS_DATA

event_s_data_tlast_missing Output
Flags that s_axis_data_tlast was not asserted
when expected. Leave unconnected if not
required.

event_s_data_tlast_unexpected Output Flags that s_axis_data_tlast was asserted when
not expected. Leave unconnected if not required.

All AXI4-Stream port names are lower case, but for ease of visualization, upper case is used in this
document when referring to port name suffixes, such as tdata or tlast.

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 8
PG026 January 18, 2012

Chapter 2: Core Interfaces

aresetn
The synchronous reset (aresetn) input can be used to re-initialize the core at any time,
regardless of the state of aclken. aresetn needs to be asserted low for at least two clock
cycles to initialize the circuit. The core becomes ready for normal operation two cycles after
aresetn goes high if aclken is high. The timing for the aresetn input is shown in
Figure 2-4.

S_AXIS_DATA Channel

s_axis_data_tdata

Data to be processed is passed into the core on this port. To ease interoperability with
byte-oriented buses, tdata is padded with zeros, for the convolutional encoder the bus is
always 8 bits. The padding bits are ignored by the core and do not result in additional
resource use. The structure is shown in Figure 2-5.

X-Ref Target - Figure 2-3

Figure 2-3: Clock Enable Timing

aclk

aclken

s_axis_data_tvalid

s_axis_data_tdata

m_axis_data_tdata

D0 D1 D2 D3 D4 D5 D6

X-Ref Target - Figure 2-4

Figure 2-4: Synchronous Reset Timing

aclk

aclken

aresetn

sclr_i

s_axis_data_tready

X-Ref Target - Figure 2-5

Figure 2-5: Input Channel TDATA Structure

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 9
PG026 January 18, 2012

Chapter 2: Core Interfaces

DATA_IN Field

This is the input bit for the incoming data. The width of the DATA_IN field is always 1.

s_axis_data_tlast

This input can be tied low or high if the event outputs (event_s_data_tlast_missing
and event_s_data_tlast_unexpected) are not used. It is present purely to provide a
check that the system and core are in sync with the applied puncturing. If the event
outputs are used then s_axis_data_tlast must be asserted high when the last symbol
of a punctured group is sampled on s_axis_data_tdata. The core maintains its own
internal count of the symbols, so it knows when the last symbol is being sampled. If
s_axis_data_tlast is not sampled high when the last input symbol is sampled then
event_s_data_tlast_missing is asserted until the next input sample is taken.
Similarly, if s_axis_data_tlast is sampled high when the core is not expecting it,
event_s_data_tlast_unexpected is asserted until the next input sample is taken. If
either of these events occurs then the system and the core are out of sync and the core, and
possibly the system, should be reset.

Single-Channel Output

For the single-channel output, after n input bits (puncture input rate) have been received,
the tready signal goes low for m-n (where m is the puncture output rate) clock periods.
The m_axis_data_tvalid signal is used to indicate that valid output data is available
which is output in a block of m bits (puncture output rate), as shown in Figure 2-8.

Dual-Channel Output

For the dual-channel punctured case, s_axis_data_tready is always high (unless
aresetn has been asserted or back pressure has been applied). The dual channel
puncturing works on two blocks of n bits of data. After 2n input bits have been received,
where n is the punctured input rate, m symbols are output on m_axis_data_tdata
(width 2) after a certain latency. The m_axis_data_tvalid signal indicates the valid
outputs. The data is output in blocks of m symbols (width 2) and the
m_axis_data_tvalid signal is high for m clock cycles and low for the next 2n-m. See
Figure 2-7 for the 3/4 rate dual-channel punctured encoder.

M_AXIS_DATA Channel

m_axis_data_tdata

Uncoded data sampled on s_axis_data_tdata is encoded and output from the core on
this port. All output data is padded with zeroes to fit a bit field which is always 8 bits. The
structure is shown in Figure 2-6.
X-Ref Target - Figure 2-6

Figure 2-6: Output Data Channel TDATA Structure

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 10
PG026 January 18, 2012

Chapter 2: Core Interfaces

DATA_OUT Field

This is the output field for the encoded bits. The width depends on the type of encoder. For
the case of unpunctured data the width is equal to the output rate. For punctured data with
serial output the width is 1 bit and for the dual channel encoder the output width is 2 bits.
Corrected symbols start to appear a number of clock cycles after the first symbol is
sampled on DATA_IN.

m_axis_data_tlast

This output is high when the last data_out of a punctured block is on
m_axis_data_tdata. The port is not present on the non-punctured core. In the dual
output case, m_axis_data_tlast is only asserted high when m output pairs have been
output, this corresponds to 2n data inputs. This is shown in Figure 2-7. For the serial case
the signal is asserted when m serial outputs have been output.This is shown in Figure 2-8.

X-Ref Target - Figure 2-7

Figure 2-7: Dual Output Timing for Rate 3/4 Puncturing

aclk

s_axis_data_tvalid

s_axis_data_tready

s_axis_data_tdata

s_axis_data_tlast

m_axis_data_tvalid

m_axis_data_tready

m_axis_data_tdata

m_axis_data_tlast

Di0 Di1 Di2 Di3 Di4 Di5 Di6 Di7

Do0 Do1 Do2 Do3

X-Ref Target - Figure 2-8

Figure 2-8: Serial Output Timing for Rate 3/4 Puncturing

aclk

s_axis_data_tvalid

s_axis_data_tready

s_axis_data_tdata

s_axis_data_tlast

m_axis_data_tvalid

m_axis_data_tready

m_axis_data_tdata

m_axis_data_tlast

Di0 Di1 Di2 Di3 Di4 Di5

Do0 Do1 Do2 Do3 Do4 Do5 Do6

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 11
PG026 January 18, 2012

Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx® tools to customize and generate the
core.

CORE Generator GUI and Parameters
Figure 3-1 illustrates the main CORE Generator™ screen. Each parameter is defined in the
following sections. To generate a core, click Generate.

Component Name
The component name is used as the base name of the output files generated for the core.
Names must begin with a letter and must be composed from the following characters: a to
z, 0 to 9 and “_”.

X-Ref Target - Figure 3-1

Figure 3-1: Convolution Encoder Graphical User Interface

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 12
PG026 January 18, 2012

Chapter 3: Customizing and Generating the Core

Data Rates and Puncturing

Punctured

This parameter determines whether the core is punctured.

Punctured Codes

The two puncture pattern codes used to remove bits from the encoded data prior to output.
The length of each puncture code must be equal to the puncture input rate, and the total
number of bits set to 1 in the two codes must equal the puncture output rate (m) for the
codes to be valid. A 0 in any position indicates that the output bit from the encoder is not
transmitted. See Figure 4-1 for an example of a rate 3/4 punctured encoder. For the punc-
turing case, the data can be output in a single bitstream or in the dual-channel mode where
the data is output in parallel two bits at a time.

Convolution

Constraint Length

The length of the constraint register plus 1 in the encoder. This value can be in the range 3
to 9, inclusive.

Convolution Codes

Convolution codes are used to generate the encoder outputs. For a punctured core, only
two are required, because the encoder internal to the punctured core is always rate 1/2.
The codes can be entered in binary, octal or decimal and have length equal to the constraint
length.

Optional Pins
Check the boxes of the optional pins that are required. Select only pins that are genuinely
required, as each selected pin uses more FPGA resources and can result in a
less-than-maximum operating frequency.

Not Punctured: Only the output rate can be modified. Its value can be integer values
from 2 to 7, resulting in a rate 1/2 to rate 1/7 encoder.

Punctured: Both the input rate and output rate can be modified. The input value can
range from 2 to 12, resulting in a rate n/m encoder where n is the input
rate and n<m<2n.

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 13
PG026 January 18, 2012

Chapter 3: Customizing and Generating the Core

Parameter Values in the XCO File

Output Generation
Several files are produced when a core is generated, and customized instantiation
templates for Verilog and VHDL design flows are provided in the.veo and .vho files,
respectively. For detailed instructions, see the CORE Generator software documentation

Table 3-1: XCO File Parameter Values

Gui Name Default Value Valid Range XCO parameter

Component Name convolution_v8_0 component_name

Constraint Length 7 3 to 9 constraint_length

Convolution Code0
1111001

Number of bits must equal
constraint length

convolution_code0

Convolution Code1 1011011 convolution_code1

Convolution Code2 0000000 convolution_code2

Convolution Code3 0000000 convolution_code3

Convolution Code4 0000000 convolution_code4

Convolution Code5 0000000 convolution_code5

Convolution Code6 0000000 convolution_code6

Convolution Code Radix Binary Binary/Octal/Decimal convolution_code_radix

Dual Output false false/true dual_output

Input Rate 1 1 to 12 input_rate

Output Rate
2

2 to 7 if not punctured
(2xinput_rate)-1 if punctured

output_rate

Puncture Code0 0 Number of bits equals the input rate puncture_code0

Puncture Code1

0

Number of bits equals the input rate.
Total number of non-zero bits summed
for both puncture codes equals the
output rate

puncture_code1

Punctured false false/true Punctured

TREADY true false/true tready

ACLKEN false false/true aclken

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 14
PG026 January 18, 2012

Chapter 4

Designing with the Core

This chapter includes guidelines and additional information to make designing with the
core easier.

Puncturing
The encoder can also puncture the data prior to transmission. In the punctured case, the
basic convolution encoder is always a rate 1/2 encoder, two bits output for every one bit
input. After the encoding, certain bits of the rate 1/2 encoded data are punctured (or
deleted) and not transmitted. Thus, for a rate 3/4 punctured encoder, for every three input
bits, only four of the six encoded bits generated by the encoder are actually transmitted, as
shown in Figure 4-1. The two bits output from the encoder are punctured according to a
pair of puncture codes. The puncture code is a bit pattern that identifies which bits from
the encoder are to be transmitted. The use of puncturing significantly reduces the number
of bits to be transmitted over the channel. For rate n/m puncturing, a puncture code of
length n is used and exactly m bits are transmitted where n<m<2n. For rate n/m
puncturing, the length of each puncture code must be n bits and the total number of
non-zero bits must be equal to m. Note that the order of application of the puncture code is
now left to right and matches the order of application of the convolution codes, see
Figure 4-1, puncture code 1.The value of n can range from 2 to 12.

For the punctured encoder, the data can be output as a single bitstream, as shown in
Figure 4-1. This single-channel output requires the use of the slave input tvalid and slave
output tready as there are more bits output than bits input. Also, in the single-channel
case, the tready signal is low for m-n clock cycles after receiving the n input bits, as
shown Figure 2-7.

X-Ref Target - Figure 4-1

Figure 4-1: Puncture Encoding with Single-Channel Output

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 15
PG026 January 18, 2012

Chapter 4: Designing with the Core

The data can also be output two bits at a time for the punctured encoder when the
dual-channel output mode is selected, as shown in Figure 4-2. In this situation, there is less
data output than input and the tready signal, if present, is only low if the master output
data stream has been halted or the core reset. The master tvalid signal indicates when the
output data is valid in both cases. For timing diagrams for the dual output case, see
Figure 2-7.

AXI4-Stream Protocol
The use of AXI4-Stream interfaces brings standardization and enhances interoperability of
Xilinx® IP LogiCORE™ solutions. Other than general control signals such as aclk,
aclken and aresetn, and event outputs, all inputs and outputs to the core are conveyed
via AXI4-Stream channels. A channel consists of tvalid and tdata always, plus several
optional ports and fields. In the Convolutional Encoder, the additional ports used are
tready and tlast. Together, tvalid and tready perform a handshake to transfer a
value, where the payload is tdata, and tlast. The payload is indeterminate when
tvalid is deasserted.

The Convolutional Encoder operates on the values contained in the S_AXIS_DATA
channel tdata fields and outputs the results in the tdata fields of the M_AXIS_DATA
channel. The Convolutional Encoder core does not use input tlast as such, tlast is
provided purely as a check that the core is in sync with the system and its use is optional.
For further details on AXI4-Stream Interfaces see [Ref 1] and [Ref 2].

Basic Handshake
Figure 4-3 shows the transfer of data in an AXI4-Stream channel. tvalid is driven by the
source (master) side of the channel and tready is driven by the receiver (slave). tvalid
indicates that the value in the payload fields (tdata and tlast) is valid. tready
indicates that the slave is ready to receive data. When both tvalid and tready are true in
a cycle, a transfer occurs. The master and slave set tvalid and tready respectively for
the next transfer appropriately.

X-Ref Target - Figure 4-2

Figure 4-2: Puncture Encoding with Dual-Channel Output

� �

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 16
PG026 January 18, 2012

Chapter 4: Designing with the Core

The full flow control of AXI4-Stream aids system design because the flow of data is
self-regulating. Data loss is prevented by the presence of back pressure (tready), so that
data is only propagated when the downstream datapath is ready to process it.

The core has one output channel: M_AXIS_DATA. If the output is prevented from
off-loading data because m_axis_data_tready is low then data accumulates in the core.
When the core’s internal buffers are full the core stops further operations. When the
internal buffers fill, the tready (s_axis_data_tready) is deasserted to prevent further
input. This is the normal action of back pressure.

X-Ref Target - Figure 4-3

Figure 4-3: Data Transfer in an AXI-Stream Channel

aclk

s_axis_data_tvalid

s_axis_data_tready

s_axis_data_tdata

s_axis_data_tlast

D0 D1 D2 D3 D4

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 17
PG026 January 18, 2012

Chapter 5

Detailed Example Design

Demonstration Test Bench
When the core is generated using CORE Generator™, a demonstration test bench is
created. This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: <component_name>/
demo_tb/tb_<component_name>.vhd in the CORE Generator output directory. The
source code is comprehensively commented.

Using the Demonstration Test Bench
The demonstration test bench instantiates the generated Convolutional Encoder core.
Either the behavioral model or the netlist can be simulated within the demonstration test
bench.

• Behavioral model: Ensure that the CORE Generator project options are set to generate
a behavioral model. After generation, this creates a behavioral model wrapper named
<component_name>.vhd. Compile this file into the work library (see your simulator
documentation for more information on how to do this).

• Netlist: If the CORE Generator project options were set to generate a structural model,
a VHDL or Verilog netlist named <component_name>.vhd or
<component_name>.v was generated. If this option was not set, generate a netlist
using the netgen program, for example:

netgen -sim -ofmt vhdl <component_name>.ngc <component_name>_netlist.vhd

Compile the netlist into the work library (see your simulator documentation for more
information on how to do this). Then compile and simulate the demonstration test bench.
View the test bench's signals in your simulator's waveform viewer to see the operations of
the test bench.

The Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiates the core

• Generates a clock signal

• Drives the core's input signals to demonstrate core features

• Checks that the core's output signals obey AXI protocol rules (data values are not
checked in order to keep the test bench simple)

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 18
PG026 January 18, 2012

Chapter 5: Detailed Example Design

• Provide signals showing the separate fields of AXI TDATA signals

The demonstration test bench drives the core input signals to demonstrate the features and
modes of operation of the core. The operations performed by the demonstration test bench
are appropriate for the configuration of the generated core and are a subset of the
following operations:

1. An initial phase where the core is initialized and no operations are performed.

2. Drive random data into the core to demonstrate convolutional encoding.

3. Demonstrate the use of AXI handshaking signals tvalid and tready.

4. Demonstrate the effect of asserting aresetn.

5. If aclken is present: demonstrate the effect of toggling aclken.

Customizing the Demonstration Test Bench
It is possible to modify the demonstration test bench to use different source data. Source
data is generated randomly and driven into the core by the procedures of the
s_data_stimuli process. The clock frequency of the core can be modified by changing
the CLOCK_PERIOD constant.

System Generator for DSP Graphical User Interface
The Convolutional Encoder core is available through Xilinx System Generator for DSP, a
design tool that enables the use of the model-based design environment Simulink® for
FPGA design. The Convolutional Encoder core is one of the DSP building blocks provided
in the Xilinx blockset for Simulink. The core can be found in the Xilinx Blockset in the
Communication section. The block is called “Convolutional Encoder 8.0." See the System
Generator User Manual for more information.

The controls in the System Generator GUI work identically to those in the CORE Generator
GUI, although the layout has changed slightly. See CORE Generator GUI and Parameters,
page 11.

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 19
PG026 January 18, 2012

Appendix 6

Migrating

This appendix describes migrating from older versions of the IP to the current IP release.

Parameter Changes in the XCO File
The CORE Generator™ core update functionality can be used to update an existing XCO
file from v7.0 to v8.0, but the update mechanism alone does not create a core compatible
with v7.1. Table 6-1 shows the changes to XCO parameters from v7.0 to v8.0.

Table 6-1: XCO Parameter Changes from v7.0 to v8.0

Version 7.0 Version 8.0 Notes

component_name component_name Unchanged

constraint_length constraint_length Unchanged

convolution_code0 convolution_code0 Unchanged

convolution_code1 convolution_code1 Unchanged

convolution_code2 convolution_code2 Unchanged

convolution_code3 convolution_code3 Unchanged

convolution_code4 convolution_code4 Unchanged

convolution_code5 convolution_code5 Unchanged

convolution_code6 convolution_code6 Unchanged

convolution_code_radix Added in V8 for ease of use in entering
convolutional codes.

dual_output dual_output Unchanged

 input_rate input_rate Unchanged

output_rate output_rate Unchanged

puncture_code0 puncture_code0 Unchanged

puncture_code1 puncture_code1 Unchanged

tready Added in v8 for AXI control signal
handshaking

ce aclken Renamed from ce to aclken for AXI
standardization

fd_in Replaced with AXI control signals

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 20
PG026 January 18, 2012

Appendix 6: Migrating

Port Changes

nd Replaced with AXI control signals

rdy Replaced with AXI control signals

rfd Replaced with AXI control signals

rfdd Replaced with AXI control signals

synchronous_clear aresetn always present on core

Table 6-1: XCO Parameter Changes from v7.0 to v8.0 (Cont’d)

Version 7.0 Version 8.0 Notes

Table 6-2: Port Changes from v7.0 to v8.0

Version 7.0 Version 8.0 Notes

clk aclk Rename only

ce aclken Rename only

sclr aresetn Rename and change on sense (now active Low).
Must now be asserted for at least 2 cycles

fd_in v8.0 does not require a pulse at the start of each block.
s_axis_data_tvalid is used to detect this automatically.

nd s_axis_data_tvalid

rfd s_axis_data_tready

rffd Input data stream can be sampled when
s_axis_data_tready is asserted

rdy m_axis_data_tvalid

http://www.xilinx.com

Convolutional Encoder v8.0 www.xilinx.com 21
PG026 January 18, 2012

Appendix 7

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx® Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
1. Xilinx AXI Design Reference Guide (UG761)

2. AMBA 4 AXI4-Stream Protocol Version: 1.0 Specification

3. Synthesis and Simulation Design Guide (UG626)

4. Viterbi Decoder data sheet (PG027)

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support of product if implemented in devices that are not defined
in the documentation, if customized beyond that allowed in the product documentation,
or if changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ipcommunicationnetwork_errorcorrect_viterbidecoder.htm
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com
www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
www.xilinx.com/support/documentation/dt_ise13-3_userguides.htm

Convolutional Encoder v8.0 www.xilinx.com 22
PG026 January 18, 2012

Appendix 7: Additional Resources

Ordering Information
Contact your local Xilinx sales representative for pricing and availability on Xilinx
LogiCORE products and software.

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS”
and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of
the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms and conditions of
the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other
trademarks are the property of their respective owners.

Date Version Revision

1/18/12 1.0 Initial Xilinx release for AXI interfaces; previous non-AXI
version of the data sheet is DS248.

http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

	LogiCORE IP Convolutional Encoder v8.0
	Table of Contents
	Overview
	Standards Compliance
	Performance
	Latency
	Throughput

	Resource Utilization

	Core Interfaces
	Port Descriptions
	aclken
	aresetn
	S_AXIS_DATA Channel
	M_AXIS_DATA Channel

	Customizing and Generating the Core
	CORE Generator GUI and Parameters
	Component Name
	Data Rates and Puncturing
	Convolution
	Optional Pins

	Parameter Values in the XCO File
	Output Generation

	Designing with the Core
	Puncturing
	AXI4-Stream Protocol
	Basic Handshake

	Detailed Example Design
	Demonstration Test Bench
	Using the Demonstration Test Bench
	The Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	System Generator for DSP Graphical User Interface

	Migrating
	Parameter Changes in the XCO File
	Port Changes

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Ordering Information
	Revision History
	Notice of Disclaimer

