
Introduction
The Xilinx® LogiCORE™ IP Divider Generator core
v4.0 creates a circuit for integer division based on
Radix-2 non-restoring division, or High-Radix division
with prescaling. The Radix-2 algorithm exploits fabric
to achieve a range of throughput options that includes
single cycle, and the high Radix algorithm exploits
XtremeDSP™ slices at lower throughput, but with reuse
to reduce resources.

Features
• AXI4-Stream-compliant interfaces

• Integer division with operands of up to 64 bits
wide.

• Performs Radix-2 integer division for fabric-only
implementation or High Radix division with
prescaling to take advantage of XtremeDSP slices.

• Optional operand widths, synchronous controls,
and selectable latency.

• For use with Xilinx CORE Generator™ and Xilinx
System Generator for DSP 13.2.

LogiCORE IP
Divider Generator v4.0

DS819 June 22, 2011 Product Specification

LogiCORE IP Facts

Core Specifics

Supported
Device Family(1)

 Virtex-7, Kintex-7, Artix™-7, Zynq™-7000,
Virtex-6, Spartan-6

Supported User
Interfaces AXI4-Stream

Configuration See Tables 8 to 15

Provided with Core

Documentation Product Specification

Design Files Netlist

Example Design Not Provided

Test Bench VHDL

Constraints File N/A

Simulation
Model VHDL and Verilog

Tested Design Tools

Design Entry
Tools

CORE Generator 13.2
System Generator for DSP 13.2

Simulation(2)

Mentor Graphics ModelSim
Cadence Incisive Enterprise Simulator (IES)

Synopsys VCS and VCS MX
ISim

Synthesis Tools XST 13.2

Support

Provided by Xilinx, Inc.

1. For the complete list of supported devices, see the release
notes for this core.

2. For the supported version of the tools, see the ISE Design Suite 13:
Release Notes Guide
DS819 June 22, 2011 www.xilinx.com 1
Product Specification

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in
the United States and other countries. ARM is a registered trademark of ARM in the EU and other countries. The AMBA trademark is a registered trademark of ARM
Limited. All other trademarks are the property of their respective owners.

http://www.xilinx.com
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf
www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf

LogiCORE IP Divider Generator v4.0
Functional Overview
Two implementations of division are supported by Divider Generator v4.0:

• Radix-2. Radix-2 non-restoring integer division using integer operands, allowing either a fractional or integer
remainder to be generated. This is recommended for operand widths less than around 16 bits or for
applications requiring high throughput. The implementation uses fabric primitives (registers and LUTs).

• High Radix. High Radix division with prescaling. This is recommended for operand widths greater than
around 16 bits. This implementation uses XtremeDSP slices.

A detailed explanation of each implementation is provided in Radix-2 Options and High Radix Options.

Applications
Division is the most complex of the four basic arithmetic operations. Because hardware solutions are
correspondingly larger and more complex than the solutions for other operations, it is best to minimize the number
of divisions in any algorithm. There are many forms of division implementation, each of which can offer the
optimal solution in different circumstances.

The Divider Generator core provides two division algorithms, offering solutions targeted at small operands and
large operands.

The Radix-2 non-restoring algorithm solves one bit of the quotient per cycle using addition and subtraction. The
design is fully pipelined, and can achieve a throughput of one division per clock cycle. If full throughput is not
required, the divisions per clock parameter can be set to 2, 4 or 8. This causes an iterative solution to be generated
which uses less resource by re-using the calculation engine. This algorithm naturally generates a remainder, so is
the choice for applications requiring integer remainders or modulus results.

The High Radix with prescaling algorithm resolves multiple bits of the quotient at a time. It is implemented as an
iterative engine and so throughput is a function of the number of iterations required. The prescaling prior to the
iterative operation causes an overhead of resource which makes this algorithm less suitable for smaller operands.
Although the iterative calculation is more complex than for Radix-2, taking more cycles to perform, the number of
bits of quotient resolved per iteration and its use of XtremeDSP slices makes this the preferred option for larger
operand widths.

Functional Description
The Divider Generator core uses one of two implementations as selected by the user. The Radix 2 solution is
recommended for smaller operand widths, for high throughput or situations where XtremeDSP slices use must be
minimized. The High Radix solution is recommended for larger operand widths. Because the two solutions differ in
so many aspects of parameter ranges, throughput, latency, etc. they are described in this section separately.

Radix-2 Feature Summary
• Provides quotient with integer or fractional remainder

• Pipelined, parallel architecture for increased throughput

• Pipeline reduction for size versus throughput selections

• Dividend width from 2 to 64 bits

• Divisor width from 2 to 64 bits

• Independent dividend, divisor and fractional bit widths

• Fully synchronous design using a single clock
DS819 June 22, 2011 www.xilinx.com 2
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
• Supports unsigned or two’s complement signed numbers

• Can implement 1/X (reciprocal) function

Radix-2 Solution Overview

This parameterized solution divides an M-bit-wide variable dividend by an N-bit-wide variable divisor. The output
consists of the quotient and either an integer remainder or fractional result (quotient continued past the binary
point). In the integer remainder case, the result of the division is an M-bit-wide quotient with an N-bit-wide integer
remainder (Equation 1). In the fractional case, the result is an M-bit-wide quotient with an F-bit-wide fractional
remainder (Equation 2). When signed operation is selected, all operands and results employ a two’s complement
sign bit, resulting in one less bit of magnitude result (Equation 3).

Integer remainder case:

Equation 1

F-bit-wide fractional remainder in the unsigned case:

Equation 2

F-bit-wide fractional remainder in the signed case:

Equation 3

For signed mode with integer remainder, the sign of the quotient and remainder correspond exactly to Equation 1.

Thus,

6/-4 = -1 REMD 2

whereas

-6/4 = -1 REMD –2

For signed mode with fractional remainder, the sign bit is present both in the quotient and the fractional remainder.
For example, for a five-bit dividend, divisor and fractional remainder we have:

-9/4 = 9/-4 = -(2 1/4)

This corresponds to:

10111/00100 or 01001/11100

Giving the result:

Quotient = 11110 (= -2)

Remainder = 11100 (= -1/4)

For division by zero, the quotient, remainder, and fractional results are undefined.

The core is highly pipelined. The throughput of the core is configurable and can be reduced from 1 clock cycle per
division to 2, 4 or 8 clock cycles per division to reduce resources.

Dividend = Quotient * Divisor + IntRmd

FractRmd=
IntRmd*2F

Divisor

FractRmd=
IntRmd*2(F-1)

Divisor
DS819 June 22, 2011 www.xilinx.com 3
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
The dividend and divisor bit widths can be set independently. The bit width of the quotient is equal to the bit width
of the dividend. The bit width of the integer remainder is equal to the width of the divisor. For fractional output, the
remainder bit width is independent of the dividend and divisor. The core handles data ranges of 2 to 64 bits for
dividend, divisor, and fractional outputs.

The divider can be used to implement the reciprocal of X; that is the 1/X function. To do this, the dividend bit width
is set to 2 and fractional mode is selected. The dividend input is then tied to 01 for both unsigned or signed
operation, and the X value is provided via the divisor input.

Following a power-on reset or aresetn, the core outputs zeros on QUOTIENT and FRACTIONAL (see TDATA
Structure for Output (DOUT) Channel) outputs until new results appear.

Radix-2 Latency and Throughput

The total latency (number of enabled clock cycles required before the core generates the first valid output) is a
function of the bit width of the dividend. If fractional output is required, the latency is also a function of the
fractional bit width. In general:

• Latency is of the order M for integer remainder dividers, where M is the width of the Quotient

• Latency is of the order M + F for fractional remainder dividers where F is the width of the Fractional output

Table 1 provides a list of the latency formula for divider selections.

The Clocks per Division parameter allows a range of choices of throughput versus resources. With Clocks per
Division set to 1, the core is fully pipelined, so it has maximal throughput of one division per clock cycle, but uses
the most resources. Clock per Division settings of 2, 4, and 8 reduce the throughput by those respective factors for
smaller core sizes.

AXI interfaces give an additional latency of 0 for Non-Blocking, 1 for Blocking with no Output TREADY and 3 for
Blocking with Output TREADY (M_AXIS_DOUT_TREADY). However, when Blocking mode is selected, latency
varies by run time.

High Radix Solution Feature Summary
• High Radix division enabled by prescaling

• Provides quotient and, optionally, fractional outputs

• Configurable widths, synchronous controls, selectable latency and detection of division by zero

• Uses XtremeDSP slices

Table 1: Latency of Radix-2 Solution Based on Divider Parameters

Signed Fractional Clocks Per Division Latency(1)

False False 1 M+A+2

False False >1 M+A+3

False True 1 M+F+A+2

False True >1 M+F+A+3

True False 1 M+A+4

True False >1 M+A+5

True True 1 M+F+A+4

True True >1 M+F+A+5

Notes:
1. M = Dividend and Quotient Width, F = Fractional Width, A = total Latency of AXI interfaces.
DS819 June 22, 2011 www.xilinx.com 4
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
High Radix Solution Overview

The High Radix implementation performs division by prescaling operands before employing an accelerated High
Radix division algorithm. The design is fully pipelined for maximum clock frequency. First, the divisor is
normalized, then an estimate of its reciprocal is made. Both operands are multiplied by this estimate to bring the
divisor closer to 1. The precision and accuracy of the prescale determines how many bits of quotient can be resolved
on each subsequent iteration. The fact that the prescaled divisor is close to one allows the estimate of new quotient
bits to be just the top bits of the residue left from the previous iteration. The iterative operation itself is performed
in carry-save notation, so that no long carry chains limit performance. Because only the top bits of the residue are
used as the estimate and the divisor is not exactly 1, errors do occur in the internal result of each iteration; thus, the
quotient bits resolved on each iteration overlap slightly with the previously resolved bits to allow correction of
errors in subsequent iterations.

Because the iteration calculation consists of a carry-save multiplication and subtraction, it is ideally suited to the
XtremeDSP (multiply-add) slices, providing an efficient, low-latency iteration.

Throughput Considerations

The iterative process is implemented as a loop rather than an unrolled data pipeline to reduce resources. This means
that new input must be held off until previous calculations are finished within the iterative circuit. The maximum
possible throughput is therefore 1/N divisions per clock, where N is the number of iterations required. However, to
achieve this maximum throughput the input might be required to be bursty. This is because the iterative engine can
be pipelined with each stage of the pipe offering a carousel place for interlaced divisions.

With the addition of AXI4-Stream interfaces, average throughput is unchanged. The Blocking modes provide an
element of FIFO buffering to the data, so it is not possible to make deterministic predictions of when the core is
ready to accept new data. For NonBlocking mode timing is more predictable. The GUI provides feedback of the rate
(1 in N) at which the divider can accept input on a continuous basis with a constant interval. This is expressed on the
“Throughput” field of the GUI and is expressed in terms of 1 input every N enabled clock cycles.

Tables 2 and 3 show latency for the High Radix solution. To this, add 0 for NonBlocking mode, 1 for Blocking mode
with no output TREADY and 3 for Blocking mode with output TREADY.

Table 2: Minimum Latency of High-Radix Solution Based on Divider Parameters

Dividend and Quotient Width + Fractional Width

4 to 12 13 to 26 27 to 40 41 to 54 55 to 68 69 to 82

2 3 4 5 6 7

Table 3: Maximum Latency of High-Radix Solution Based on Divider Parameters

Divisor Width
Dividend and Quotient Width + Fractional Width

4 to 12 13 to 26 27 to 40 41 to 54 55 to 68 69 to 82

4 to 8 16 20 24 29 33 37

9 to 18 17 21 25 30 34 38

19 to 32 18 22 26 31 35 39

33 to 35 19 23 27 32 36 40

36 to 48 20 24 28 33 37 41

49 to 52 22 26 30 35 39 43

53 to 54 23 27 31 36/ 40 44
DS819 June 22, 2011 www.xilinx.com 5
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Pinout
The core pinout and signal names are shown in Figure 1 and defined in Table 4
.
X-Ref Target - Figure 1

Figure 1: Core Pinout Diagram

Table 4: Signal Pinout

Signal Direction(1) Optional Description

aclk Input No Rising edge clock.

aclken Input Yes Active high clock enable.

aresetn Input Yes Active low synchronous clear (optional, always take priority over
aclken)
aresetn should be asserted or de-asserted for not less than two aclk
cycles.

s_axis_dividend_tvalid Input No TVALID for s_axis_dividend channel. See AXI4-Stream
Considerations for protocol.

s_axis_dividend_tready Output Yes TREADY for s_axis_dividend channel.

s_axis_dividend_tdata Input No TDATA for s_axis_dividend channel. See TDATA Packing for internal
structure and width.

s_axis_dividend_tuser Input Yes TUSER for s_axis_dividend channel.

s_axis_dividend_tlast Input Yes TLAST for s_axis_dividend channel.

s_axis_divisor_tvalid Input No TVALID for s_axis_divisor channel.

s_axis_divisor_tready Output Yes TREADY for s_axis_divisor channel.

s_axis_divisor_tdata Input No TDATA for s_axis_divisor channel. See TDATA Packing for internal
structure and width.

s_axis_divisor_tuser Input Yes TUSER for s_axis_divisor channel.

s_axis_divisor_tlast Input Yes TLAST for s_axis_divisor channel.
DS819 June 22, 2011 www.xilinx.com 6
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
CORE Generator Graphical User Interface
The Divider Generator core GUI provides one page split into sections to set parameter values for the particular
instantiation required. This section provides a description of each GUI field. These fields are grouped as follows:

• Component Name: The base name of the output files generated for the core. Names must begin with a letter
and be composed of any of the following characters: a to z, 0 to 9 and “_”.

Common Options

Describes parameters common to both implementations and allows the selection of the divider implementation.

• Algorithm Type: This selects between Radix-2 and High Radix division solutions.

• Operand Sign: Signed or unsigned. Determines the interpretation of the input and output buses. Operand
sign for the High Radix solution is always signed, and for this solution the FRACTIONAL field of the output
channel is always unsigned.

Dividend Channel
• Dividend Width: Specifies the number of integer bits provided on the DIVIDEND (S_AXIS_DIVIDEND_TDATA)

and QUOTIENT fields (subfield of M_AXIS_DOUT_TDATA). This must be set to satisfy the largest possible
quotient result. Due to the non-symmetry of two’s complement representation bit growth from the dividend to
quotient is possible, but only for the single combination of the most negative number divided by negative one
(that is, -2(M-1)/-1). The width of dividend (and hence quotient) can be extended by 1 bit should this situation
need to be accommodated

• Has TLAST: Specifies whether the this channel has a TLAST port. The Divider Generator core does not use
this information. The facility is provided to ease system design. TLAST information is conveyed to the output
channel with the same latency as the datapath.

• Has TUSER: Specifies whether this channel has a TUSER port. As with TLAST, the Divider Generator core
does not use this information. TUSER exists to ease system design. TUSER bits are conveyed to the output with
the same latency as the datapath.

• TUSER Width: Available when Has TUSER is true, this sets the width of the TUSER port for this channel.

Divisor Channel
• Divisor Width: Specifies the number of integer bits provided on the DIVISOR field of

s_axis_divisor_tdata. When the core is configured for Radix-2 with remainder output, the width of the
remainder is also equal to the value of this parameter.

m_axis_dout_tvalid Output No TVALID for m_axis_dout channel.

m_axis_dout_tready Input Yes TREADY for m_axis_dout channel.

m_axis_dout_tdata Output No TDATA for m_axis_dout channel. See TDATA Packing for internal
structure and width.

m_axis_dout_tuser Output Yes TUSER for m_axis_dout channel.

m_axis_dout_tlast Output Yes TLAST for m_axis_dout channel.

Notes:
1. Dividend and Quotient Width must be set to satisfy the largest possible quotient result. Due to the non-symmetry of two’s

complement representation bit growth from the dividend to quotient is possible, but only for the single combination of the most
negative number divided by negative one (that is, -2(M-1)/-1). The width of dividend and quotient can be extended by 1 bit should
this situation need to be accommodated.

Table 4: Signal Pinout (Cont’d)

Signal Direction(1) Optional Description
DS819 June 22, 2011 www.xilinx.com 7
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
• Has TLAST: Specifies whether the this channel has a TLAST port. The Divider Generator core does not use
this information. The facility is provided to ease system design. TLAST information is conveyed to the output
channel with the same latency as the datapath.

• Has TUSER: Specifies whether this channel has a TUSER port. As with TLAST, the Divider Generator core
does not use this information. TUSER exists to ease system design. TUSER bits are conveyed to the output with
the same latency as the datapath.

• TUSER Width: Available when Has TUSER is true, this sets the width of the TUSER port for this channel.

Output Channel
• Remainder Type: This selects between remainder types Fractional and Remainder presented on the

FRACTIONAL field of the output TDATA port (m_axis_dout_tdata). Fractional remainder type is the only
option for High Radix.

• Fractional Width: If Fractional remainder type is selected, this determines the number of bits provided on the
FRACTIONAL field of the output channel (m_axis_dout_tdata). When High Radix is selected, the total
output width (quotient part plus fractional part) is limited to 82.

The width of the quotient is equal to the width of the dividend and is set in the Dividend channel section.

The width of the TUSER port is the sum of the present input channel TUSER fields plus one if divide_by_zero detect
is active. See AXI4-Stream Considerations for the internal structure of the TUSER port.

This channel also has a TLAST port if either of the input channels has a TLAST port.

Radix-2 Options
• Clocks Per Division: Determines the throughput of the Radix 2 solution (interval in clocks between inputs (or

outputs)). A low value for this parameter results in high throughput, but also in greater resource use.

High Radix Options
• Detect Divide-by-Zero: Check box. Determines if the core has a DIVIDE_BY_ZERO field in the output TUSER

port (m_axis_dout_tuser) to signal when a division by zero has been performed.

• Number of iterations: Read-only text field that reports the number of iterations performed by the High-Radix
engine for each divide. This sets the maximum throughput of the divider. To achieve this throughput, the
operands must be supplied as soon as requested by the core S_AXIS_DIVIDEND_TREADY and
S_AXIS_DIVISOR_TREADY outputs.

• Throughput: Read-only text field that reports the maximum throughput that can be sustained by the divider
when operands are supplied at a constant rate. In AXI blocking modes, throughput might be slightly higher
due to buffering. This rate applies when FlowControl is set to NonBlocking and the output channel DOUT has
no TREADY.

AXI4-Stream Options
• Flow Control: Blocking or NonBlocking. This is more fully explained in AXI4-Stream Considerations.

NonBlocking mode provides an easier migration path from the previous version of Divider Generator core.
Blocking mode eases data flow management to/from other AXI4-Stream Blocking mode cores at the expense
of some additional resource and latency.

• Optimize Goal: This applies only to Blocking mode. When ACLKEN is selected and Optimize Goal is set to
Resources, performance might be reduced. See Performance and Resource Utilization.

• Output has TREADY: Selects whether the output channel has a TREADY signal. This is required to allow back
pressure from downstream, for example, if connected to another AXI4-Stream Blocking core. Without
OutTready, downstream circuitry cannot halt dataflow from the divider, but some resource is saved.
DS819 June 22, 2011 www.xilinx.com 8
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
• Output TLAST Behavior: Selects the source of the output channel TLAST signal. When neither or only one
input channel has a TLAST then the output TLAST is not present or derives from the input TLAST
appropriately. When both input channels have TLAST, the output channel TLAST can derive from either
alone, the logical OR of both inputs, or the logical AND of both inputs.

Latency Options
• Latency Configuration: Automatic (fully pipelined) or manual (determined by following field). Latency

Configuration for Radix-2 solution is always Automatic.

• Latency: When Latency Configuration is set to Automatic, this field provides the latency from input to output
in terms of clock enabled clock cycles. When Manual, this field is used to specify the latency required. When
high performance (clock frequency) is not required, a lower value in this field can save resources.

Control Signals
• ACLKEN: Determines if the core has a clock enable input (aclken).

• ARESETN: Determines if the core has an active low synchronous clear input (aresetn).

Note:

a. The signal aresetn always takes priority over aclken, that is, aresetn takes effect regardless of the state
of aclken.

b. The signal aresetn is active low.

c. The signal aresetn should be held active for at least 2 clock cycles. This is because, for performance,
aresetn is internally registered before being fed to the reset port of primitives.

System Generator For DSP Graphical User Interface
This section describes the System Generator for DSP GUI and details the parameters that differ from the CORE
Generator GUI.

The Divider Generator core can be found in the Xilinx Blockset in the Math section. The block is called “Divider
Generator 4.0.”

See the System Generator for DSP Help page for the “Divider Generator 4.0” block for more information on
parameters not mentioned here.

The System Generator for DSP GUI offers the same parameters as the CORE Generator GUI, with the exception that
the Operand Sign is inferred from the input operands.

Using the Divider Generator IP Core
The CORE Generator GUI performs error-checking on all input parameters. Optimum latency information is also
available.

Several files are produced when a core is generated, and customized instantiation templates for Verilog and VHDL
design flows are provided in the .veo and .vho files, respectively. For detailed instructions, see the CORE Generator
software documentation.
DS819 June 22, 2011 www.xilinx.com 9
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Simulation Models

The core has a number of options for simulation models:

• VHDL UNISIM-based structural simulation model

• Verilog UNISIM-based structural simulation model

The models required can be selected in the CORE Generator project options.

Xilinx recommends that simulations utilizing UNISIM-based structural models are run using a resolution of 1 ps.
Some Xilinx library components require a 1 ps resolution to work properly in either functional or timing simulation.
The UNISIM-based structural simulation models can produce incorrect results if simulated with a resolution other
than 1 ps. See the “Register Transfer Level (RTL) Simulation Using Xilinx Libraries” section in Chapter 6 of the
Synthesis and Simulation Design Guide [Ref 3]. This document is part of the ISE® Software Manuals set available at
www.xilinx.com/support/software_manuals.htm.

XCO Parameters

Table 5 defines the mapping between GUI parameters and XCO parameters.

Table 5: GUI and XCO Parameter Mapping

GUI Parameter Default Value XCO Values XCO Parameter

Common Parameters

Algorithm Type Radix2 Radix2, High_Radix algorithm_type

Operand Sign Signed Unsigned, Signed
Must be Signed for High_Radix operand_sign

Dividend Channel

Dividend Width(1)(2) 16 2 to 64 for Radix2,
4 to 64 for High_Radix dividend_and_quotient_width

Has TLAST false false, true dividend_has_tlast

Has TUSER false false, true dividend_has_tuser

TUSER Width 1 1 to 256 dividend_tuser_width

Divisor Channel

Divisor Width 16 2 to 64 for Radix2,
4 to 64 for High_Radix divisor_width

Has TLAST false false, true divisor_has_tlast

Has TUSER false false, true divisor_has_tuser

TUSER Width 1 1 to 256 divisor_tuser_width

Output Channel

Remainder Type Remainder Remainder, Fractional remainder _type

Fractional Width(2) 16 2 to 64 for Radix2
0 to 64 for High Radix fractional_width

Radix 2 Options

Clocks per Division 1 1, 2, 4, 8 clocks_per_division

High Radix Divider Parameter

Detect Divide-By-Zero false false, true divide_by_zero_detect
DS819 June 22, 2011 www.xilinx.com 10
Product Specification

http://www.xilinx.com
www.xilinx.com/support/software_manuals.htm

LogiCORE IP Divider Generator v4.0
Demonstration Test Bench
When the core is generated using CORE Generator, a demonstration test bench is created. This is a simple VHDL
test bench that exercises the core.

The demonstration test bench source code is one VHDL file: demo_tb/tb_<component_name>.vhd in the
CORE Generator output directory. The source code is comprehensively commented.

Using the Demonstration Test Bench

The demonstration test bench instantiates the generated Divider Generator core. Either the behavioral model or the
netlist can be simulated within the demonstration test bench.

• Behavioral model: Ensure that the CORE Generator project options are set to generate a behavioral model.
After generation, this creates a behavioral model wrapper named <component_name>.vhd. Compile this file
into the work library (see your simulator documentation for information on how to do this).

• Netlist: If the CORE Generator project options were set to generate a structural model, a VHDL or Verilog
netlist named <component_name>.vhd or <component_name>.v was generated. If this option was not set,
generate a netlist using the netgen program, for example:

netgen -sim -ofmt vhdl <component_name>.ngc <component_name>_netlist.vhd

Compile the netlist into the work library (see your simulator documentation for more information).

Compile the demonstration test bench into the work library. Then simulate the demonstration test bench. View the
test bench signals in your simulator's waveform viewer to see the operations of the test bench.

AXI4-Stream Options

Flow Control NonBlocking NonBlocking, Blocking FlowControl

Optimize Goal Resource Resources, Performance OptimizeGoal

Output has TREADY false false, true OutTready

Output TLAST Behavior null null, Pass_dividend_tlast, Pass_divisor_tlast,
Or_all_tlasts, And_all_Tlasts OutTLASTBehv

Latency Options

Latency Configuration Automatic Automatic, Manual
Must be Automatic for Radix2 latency_configuration

Latency 18 Range is a function of other parameters as
summarized in Table 1, Table 2 and Table 3. latency

Control Signals

ACLKEN false false, true aclken

ARESETN false false, true aresetn

Notes:
1. Dividend Width also determines the Quotient width. It must be set to satisfy the largest possible quotient result. Due to the

non-symmetry of two’s complement representation bit growth from the dividend to quotient is possible, but only for the single
combination of the most negative number divided by negative one (that is, -2(M-1)/-1). The width of dividend and quotient can be
extended by 1 bit should this situation need to be accommodated.

2. When High Radix the total output width (Quotient width plus Fractional Width) is limited to 82.

Table 5: GUI and XCO Parameter Mapping (Cont’d)

GUI Parameter Default Value XCO Values XCO Parameter
DS819 June 22, 2011 www.xilinx.com 11
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Demonstration Test Bench in Detail

The demonstration test bench performs the following tasks:

• Instantiates the core

• Generates two input data tables containing ramps of different frequencies

• Generates a clock signal

• Drives the core's clock enable and reset input signals (if present)

• Drives the core's input signals to demonstrate core features

• Checks that the core output signals obey AXI protocol rules (data values are not checked in order to keep the
test bench simple)

• Provides signals showing the separate fields of AXI TDATA and TUSER signals

The demonstration test bench drives the core's input signals to demonstrate the features and modes of operation of
the core. The Divider Generator core is driven with two simple data ramps of different periods to stimulate the core
with a wide range of positive and negative values, including zero. The input data is pre-generated and stored in
data tables, and the test bench drives the core data inputs with the ramp data throughout the operation of the test
bench.

The demonstration test bench drives the AXI handshaking signals in different ways, split into three phases. The
operations depend on whether Blocking Mode or NonBlocking Mode is selected:

• Blocking Mode:

• Phase 1: full throughput, all TVALID and TREADY signals are tied high

• Phase 2: apply increasing amounts of back pressure by deasserting the master channel's TREADY signal

• Phase 3: deprive slave dividend channel of valid transactions at an increasing rate by deasserting its
TVALID signal

• NonBlocking Mode:

• Phase 1: full throughput, all TVALID and TREADY signals are tied high

• Phase 2: deprive slave dividend channel of valid transactions at an increasing rate by deasserting its
TVALID signal

• Phase 3: deprive all slave channels of valid transactions at different rates by deasserting each of their
TVALID signals

Customizing the Demonstration Test Bench

It is possible to modify the demonstration test bench to drive the core's inputs with different data or to perform
different operations.

Input data is pre-generated in the create_ip_dividend_table and create_ip_divisor_table functions
and stored in the IP_dividend_DATA and IP_divisor_DATA constants. New input data frames can be added by
defining new functions and constants. Make sure that each input data frame is of an appropriate type, similar to the
T_IP_dividend_TABLE and T_IP_divisor_TABLE array types.

All operations performed by the demonstration test bench to drive the core's inputs are done in the stimuli
process. This process is comprehensively commented, to explain clearly what is being done. New input data or
different ways of driving AXI handshaking signals can be added by modifying sections of this process.

The total run time of the test can be modified by changing the TEST_CYCLES constant: this controls the number of
clock cycles before the simulation is stopped.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.
DS819 June 22, 2011 www.xilinx.com 12
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
AXI4-Stream Considerations
The conversion to AXI4-Stream interfaces brings standardization and enhances interoperability of Xilinx IP
LogiCORE solutions. Other than general control signals such as aclk, aclken and aresetn, all inputs and
outputs to the Divider Generator core are conveyed via AXI4-Stream channels. A channel consists of TVALID and
TDATA always, plus several optional ports and fields. In the Divider Generator core, the optional ports supported
are TREADY, TLAST and TUSER. Together, TVALID and TREADY perform a handshake to transfer a message,
where the payload is TDATA, TUSER and TLAST. The Divider Generator core operates on the operands contained
in the TDATA fields and outputs the result in the TDATA field of the output channel. The Divider Generator core
does not use inputs, TUSER and TLAST as such, but the core provides the facility to convey these fields with the
same latency as for TDATA. The Divider Generator core does use the output TUSER to hold the divide_by_zero
indication signal. This facility of passing TLAST and TUSER from input to output is intended to ease use of the
Divider Generator core in a system. For example, the Divider Generator core might operate on streaming
packetized data. In this example, the core could be configured to pass the TLAST of the packetized data channel,
thus saving the system designer the effort of constructing a bypass path for this information.

For further details on AXI4-Stream Interfaces see [Ref 4] and [Ref 5].

Basic Handshake

Figure 2 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the source (master) side of the
channel and TREADY is driven by the receiver (slave). TVALID indicates that the value in the payload fields
(TDATA, TUSER and TLAST) is valid. TREADY indicates that the slave is ready to receive data. When both TVALID
and TREADY are true in a cycle, a transfer occurs. The master and slave set TVALID and TREADY respectively for
the next transfer appropriately.

Non Blocking Mode

The Divider Generator core provides a mode intended to ease the migration from previous, non-AXI versions of
this core. The term ’Non-Blocking’ is used to indicate that lack of data on one input channel does not cause
incoming data on the other channel to be buffered. Also, back pressure from the output is not possible because in
NonBlocking mode the output channel does not have a TREADY signal. The full flow control of AXI4-Stream is not
always required. Blocking or Non-Blocking behavior is selected via the FlowControl parameter or GUI field. The
choice of Blocking or NonBlocking applies to the whole core, not each channel individually. Channels still have the
non-optional TVALID signal, which is analogous to the New Data (ND) signal on many cores prior to the adoption
of AXI4-Stream. Without the facility to block dataflow, the internal implementation is much simplified, so fewer

X-Ref Target - Figure 2

Figure 2: Data Transfer in an AXI-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4
DS819 June 22, 2011 www.xilinx.com 13
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
resources are required for this mode. This mode is recommended for users wishing to move to this version from a
pre-AXI version with minimal change.

When all of the present input channels receive an active TVALID (and TREADY, if present, is asserted), an operation
is validated and the output TVALID (suitably delayed by the latency of the core) is asserted to qualify the result.
This is to allow a minimal migration from v3.0. In the event that one channel receives TVALID and the other does
not, then an operation does not occur, even if TREADY is present and asserted. Hence, unlike Blocking mode which
is fully AXI4-Stream compliant, valid transactions on an individual channel can be ignored in NonBlocking mode.

For performance, aresetn is registered internally, which delays its action by a clock cycle. The effect is that the
cycle following the deassertion of ARESETN the core is still reset and does not accept input. TVALID is also inactive
on the output channel for this cycle.

Figure 3 shows the NonBlocking mode in operation. For simplicity of illustration, the latency of the core is zero. As
indicated by s_axis_dividend_tready and s_axis_divisor_tready, which are ultimately the same signal,
the core can accept data on every third cycle. Data A1 in the dividend channel is ignored because
s_axis_divisor_tvalid is de-asserted. Data inputs A2 and B1 are accepted because both TVALIDs and
TREADY are asserted.

Blocking Mode

The term ‘Blocking’ means that each channel with TREADY buffers data for use. The full flow control of
AXI4-Stream aids system design because the flow of data is self-regulating. Blocking or Non-Blocking behavior is
selected via the FlowControl parameter GUI field. Data loss is prevented by the presence of back pressure
(TREADY), so that data is only propagated when the downstream datapath is ready to process the data.

The Divider Generator core has two input channels and one output channel. When all input channels have
validated data available, an operation occurs and the result becomes available on the output. If the output is
prevented from off-loading data because m_axis_dout_tready is low then data accumulates in the output buffer
internal to the core. When this output buffer is nearly full the core stops further operations. This prevents the input
buffers from off-loading data for new operations so the input buffers fill as new data is input. When the input
buffers fill, their respective TREADYs (s_axis_divisor_tready and s_axis_dividend_tready) are
de-asserted to prevent further input. This is the normal action of back pressure.

The two input channels are tied in the sense that each must receive validated data before an operation can proceed.
Therefore, there is an additional blocking mechanism, where one input channel does not receive validated data

X-Ref Target - Figure 3

Figure 3: Non Blocking Mode
DS819 June 22, 2011 www.xilinx.com 14
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
while the other does. In this case, the validated data is stored in the input buffer of the channel. After a few cycles
of this scenario, the buffer of the channel receiving data fills and TREADY for that channel is de-asserted until the
starved channel receives some data. Figure 4 shows both blocking behavior and back pressure. The first data on
channel S_AXIS_DIVIDEND is paired with the first data on channel S_AXIS_DIVISOR, the second with the second
and so on. This demonstrates the ‘blocking’ concept. The channel names S_AXIS_DIVIDEND and
S_AXIS_DIVISOR are used conceptually. Either can be taken to mean the divisor or dividend channel. Figure 4
further shows how data output is delayed not only by latency, but also by the handshake signal
m_axis_dout_tready. This is ‘back pressure’. Sustained back pressure on the output along with data availability
on the inputs eventually leads to a saturation of the core’s buffers, leading the core to signal that it can no longer
accept further input by de-asserting the input channel TREADY signals. The minimum latency in this example is
two cycles, but it should be noted that in Blocking operation latency is not a useful concept. Instead, as the diagram
shows, the important idea is that each channel acts as a queue, ensuring that the first, second, third data samples on
each channel are paired with the corresponding samples on the other channels for each operation.
.

Note: This diagram is for illustration of the blocking behavior and handshake protocol. Latency of core is zero in diagram which
in reality will not be the case.

TDATA Packing

Fields within an AXI4-Stream interface follow a specific naming nomenclature. In this core the operands are both
passed to or from the core via the channel’s TDATA port. To ease interoperability with byte-oriented protocols, each
subfield within TDATA which could be used independently is first extended, if necessary, to fit a bit field which is
a multiple of 8 bits. For the output DOUT channel, result fields are sign extended to the byte boundary. The bits
added by byte orientation are ignored by the core and do not result in additional resource use.

TDATA Structure for Dividend and Divisor Channels

Input channels Dividend and Divisor carry their operands only in their TDATA field. For each, the operand
occupies the least significant bits. The TDATA port width itself is the minimum multiple of bytes wide required to
contain the operand. See Figure 5.

X-Ref Target - Figure 4

Figure 4: Blocking Mode
DS819 June 22, 2011 www.xilinx.com 15
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
TDATA Structure for Output (DOUT) Channel

The structure of m_axis_dout_tdata is more complex. This port contains both quotient and, if present,
remainder or fractional outputs. When the remainder type is set to remainder, the two outputs are considered
separate and so are byte-oriented before being concatenated to make the m_axis_dout_tdata signal. When
remainder type is fractional, the fractional part is considered an extension of the quotient so these two fields are
concatenated before being padded to the next byte boundary.

TLAST and TUSER Handling

TLAST in AXI4-Stream is used to denote the last transfer of a block of data. TUSER is for ancillary information
which qualifies or augments the primary data in TDATA. The Divider Generator core operates on a per-sample
basis where each operation is independent of any before or after. Because of this, there is no need for TLAST on a
divider. The TLAST and TUSER signals are supported on each input channel purely as an optional aid to system
design for the scenario in which the data stream being passed through the Divider Generator core does indeed have
some packetization or ancillary field, but which is not relevant to the divider. The facility to pass TLAST and/or
TUSER removes the burden of matching latency to the TDATA path, which can be variable, through the divider.

When Divide_by_zero detect is selected, the signal indicating a division by zero is output on the least significant bit
of the output channel TUSER port.

X-Ref Target - Figure 5

Figure 5: Input Data TDATA Structure

X-Ref Target - Figure 6

Figure 6: Data Out TDATA Structure
DS819 June 22, 2011 www.xilinx.com 16
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
TLAST Options

TLAST for each input channel is optional. Each, when present, can be passed via the divider, or, when more than
one channel has TLAST enabled, can pass a logical AND or logical OR of the TLASTs input. When no TLASTs are
present on any input channel, the output channel does not have TLAST either.

TUSER Options

TUSER for each input channel is optional. Each has user-selectable width. The Divider Generator core might also
generate a TUSER bit. This is when divide_by_zero detection is selected. These fields are concatenated, without any
byte-orientation or padding, to form the output channel TUSER field. The divide_by_zero bit occupies the least
significant position, followed by the TUSER field from the Divisor channel then TUSER from the Dividend channel
in the most significant position.

Migrating to Divider Generator v4.0 from Earlier Versions

XCO Parameter Changes

The CORE Generator core update functionality can be used to update an existing XCO file from v3.0 to Divider
Generator v4.0, but it should be noted that the update mechanism alone does not create a core compatible with v3.0.
See Instructions for Minimum Change Migration (v3.0 to v4.0).

Table 6 shows the changes to XCO parameters from version 3.0 to version 4.0.

X-Ref Target - Figure 7

Figure 7: Data Out TUSER Structure

Table 6: XCO Parameter Changes from v3.0 to v4.0

Version 3.0 Version 4.0 Notes

Component_Name Component_Name Unchanged

dividend_and_quotient_width dividend_and_quotient_width Unchanged

divisor_width divisor_width Unchanged

remainder_type remainder_type Unchanged

fractional_width fractional_width Unchanged

operand_sign operand_sign Unchanged

clocks_per_division clocks_per_division Unchanged

divide_by_zero_detect divide_by_zero_detect Unchanged

latency_configuration latency_configuration Unchanged

latency

latency Unchanged in function. Unchanged for AXI4-Stream
NonBlocking mode. Because AXI4-Stream Blocking modes
add latency, retaining the same value reduces pipelining in the
core and can reduce performance

ce ACLKEN Renamed only
DS819 June 22, 2011 www.xilinx.com 17
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Port Changes

Table 7 details the changes to port naming, additional or deprecated ports and polarity changes from v3.0 to v4.0.

sclr ARESETn Renamed only. While the sense of the aresetn signal has
changed, this XCO determined whether or not the signal exists
and has not changed. Note also that a minimum length of 2
cycles is recommended when aresetn is asserted.

SclrCEPriority Deprecated. aresetn always overrides aclken in accordance
with AXI4-Stream protocol.

dividend_has_tlast Introduced in version 4.0

dividend_has_tuser Introduced in version 4.0

dividend_tuser_width Introduced in version 4.0

divisor_has_tlast Introduced in version 4.0

divisor_has_tuser Introduced in version 4.0

divisor_tuser_width Introduced in version 4.0

FlowControl Introduced in version 4.0

OptimizeGoal Introduced in version 4.0

OutTready Introduced in version 4.0

OutTLASTBehv Introduced in version 4.0

For more information on this upgrade feature, see the CORE Generator software documentation.

Table 7: Port Changes from Version 3.0 to Version 4.0

Version 3.0 Version 4.0 Notes

CLK aclk Rename only

CE aclken Rename only

SCLR aresetn Rename and change of sense (now active low). Note recommendation
that aresetn should be asserted for a minimum of 2 cycles.

DIVIDEND s_axis_dividend_tdata(N-1:0)

DIVISOR s_axis_divisor_tdata(M-1:0)

QUOTIENT m_axis_dout_tdata(S-1:0) Both Quotient and Fractional (or remainder) map to m_axis_dout_tdata.
See TDATA Structure for Output (DOUT) Channel for details.

FRACTIONAL

ND Deprecated. However this is analogous to the TVALID signals. See
Instructions for Minimum Change Migration (v3.0 to v4.0).

RDY Deprecated. However, this is analogous to TVALID on the output
channel. See Instructions for Minimum Change Migration (v3.0 to v4.0).

RFD Deprecated. However, this is analogous to TREADY on the input
channels. See Instructions for Minimum Change Migration (v3.0 to v4.0)

DIVIDE_BY_ZERO m_axis_dout_tuser(0) When this signal is selected to appear, it occupies the LSB of the output
TUSER port. See TUSER Options for details.

s_axis_dividend_tvalid TVALID (AXI4-Stream channel handshake signal) for each channel

s_axis_divisor_tvalid

m_axis_dout_tvalid

Table 6: XCO Parameter Changes from v3.0 to v4.0 (Cont’d)

Version 3.0 Version 4.0 Notes
DS819 June 22, 2011 www.xilinx.com 18
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Latency Changes

With the addition of AXI4-Stream interfaces, the latency of the Divider Generator core v4.0 is different compared to
v3.0 for AXI Blocking mode. Latency is the same as v3.0 in v4.0 for AXI Non-Blocking mode.

Importantly, when in Blocking Mode, the latency of the core is variable due to the FIFO nature of the AXI4-Stream
protocol, so only the minimum possible latency can be determined. Relative to v3.0, with Blocking and Output
TREADY present, minimum latency is 3 cycles greater. With no output TREADY, minimum latency is increased by
one cycle only.

Instructions for Minimum Change Migration (v3.0 to v4.0)

To configure the Divider Generator core v4.0 to most closely mimic the behavior of v3.0 the translation is as follows:

Parameters
• Set FlowControl to NonBlocking.

All other new parameters default to false and can be ignored.

Ports
• Rename and map signals as detailed in Port Changes.

• Map ND to both s_axis_dividend_tvalid and s_axis_divisor_tvalid.

• Map RFD to s_axis_dividend_tready (s_axis_divisor_tready can be used equally).

• Map RDY to m_axis_dout_tvalid.

Performance and resource use is mostly unchanged compared with Divider Generator v3.0 other than small
changes due to the use of a different version of ISE tools.

s_axis_dividend_tready TREADY (AXI4-Stream channel handshake signal) for each channel.

s_axis_divisor_tready

m_axis_dout_tready

s_axis_dividend_tlast TLAST (AXI4-Stream packet signal indicating the last transfer of a data
structure) for each channel. The Divider Generator core does not use
TLAST, but provides the facility to pass TLAST with the same latency as
TDATA.

s_axis_divisor_tlast

m_axis_dout_tlast

s_axis_dividend_tluser TUSER (AXI4-Stream ancillary field for application-specific information)
for each channel. The Divider Generator core does not use TUSER, but
provides the facility to pass TUSER with the same latency as TDATA.s_axis_divisor_tuser

m_axis_dout_tuser

Table 7: Port Changes from Version 3.0 to Version 4.0 (Cont’d)

Version 3.0 Version 4.0 Notes
DS819 June 22, 2011 www.xilinx.com 19
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Performance and Resource Utilization
Tables 8 to 15 provide performance and resource usage information for a number of different Divider Generator
core configurations.

The maximum clock frequency results were obtained by double-registering input and output ports to reduce
dependence on I/O placement. The inner level of registers used a separate clock signal to measure the path from the
input registers to the first output register through the core.

The resource usage results do not include the aforementioned wrapping registers and hence represent the true logic
used by the core to implement a single Divider. LUT counts include SRL32s and LUTs used as route-throughs.

The map options used were: "map -ol high"

The par options used were: "par -ol high"

Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock
source jitter specification. Performance figures are achieved using default arguments to placement and route tools
(other than high effort), so as to obtain realistic rather than best-case results.

Radix 2 Performance tables

For all Radix 2 cases the Operand Sign is unsigned and ACLKEN and ARESETN are disabled.

Table 8 defines performance characteristics for Radix-2 cases on Virtex®-7 FPGA, speed grade -1 using speedfile
"ADVANCED 1.01h 2011-03-07"

Table 8: Radix-2 Solution Performance Characteristics on Virtex-7 FPGA (Part = xc7v285t)

Parameter/Result Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case9

Dividend and Quotient Width 8 8 8 8 8 8 8 32 64

Divisor Width 8 8 8 8 8 8 8 32 64

Remainder Type remd rem rem rem rem rem rem rem frac

Fractional Width 8 8 8 8 8 8 8 32 64

Clocks per Division 1 1 1 1 2 2 8 1 1

Flow Control
(NonBlocking/

Blocking)
NonBlock Blocking Blocking Blocking NonBlock NonBlock NonBlock NonBlock NonBlock

OutTready no yes yes no no no no no no

Optimize Goal(Speed/Area) either Speed Area either either either either either either

Input TUSER widths 0/0 0/0 0/0 0/0 0/0 8/8 0/0 0/0 0/0

LUT6-FF Pairs 170 216 223 187 161 194 87 2196 16473

LUTs 153 203 197 165 114 136 46 2068 16286

FFs 226 287 288 247 161 195 91 3202 26723

Block RAMs 0 0 0 0 0 0 0 0 0

DSP48 Blocks 0 0 0 0 0 0 0 0 0

Max Clock Freq(1)(2) 497 497 491 497 389 395 497 375 247

Notes:
1. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx implementation tools.
2. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be de-rated by an

amount appropriate to the clock source jitter specification.
3. Case 9 is approximately 8 times larger than case 8 due to 3 doubling factors: dividend width, divisor width and fractional output

rather than remainder output.
DS819 June 22, 2011 www.xilinx.com 20
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Table 9 defines performance characteristics for Radix-2 cases on Kintex™-7 FPGA, speed grade -1, using speedfile
"ADVANCED 1.01f 2011-03-23"

Table 9: Radix-2 Solution Performance Characteristics on Kintex-7 FPGA (Part = xc7k325t)

Parameter/Result Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Dividend and Quotient
Width 8 8 8 8 8 8 8 32

Divisor Width 8 8 8 8 8 8 8 32

Remainder Type remd rem rem rem rem rem rem rem

Fractional Width 8 8 8 8 8 8 8 32

Clocks per Division 1 1 1 1 2 2 8 1

Flow Control
(NonBlocking/Blocking)

NonBlock Blocking Blocking Blocking NonBlock NonBlock NonBlock NonBlock

OutTready no yes yes no no no no no

Optimize
Goal(Speed/Area) either Speed Area either either either either either

LUT6-FF Pairs 172 218 216 187 161 188 81 2209

LUTs 155 203 205 155 119 135 49 2060

FFs 226 287 288 247 161 195 91 3202

Block RAMs 0 0 0 0 0 0 0 0

DSP48 Blocks 0 0 0 0 0 0 0 0

Max Clock Freq(1)(2) >452 >452 >452 >452 410 438 >452 366

Notes:
1. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx implementation tools.
2. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be de-rated by an

amount appropriate to the clock source jitter specification.
DS819 June 22, 2011 www.xilinx.com 21
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Table 10 defines performance characteristics for Radix-2 cases on Virtex-6 FPGA, speed grade -1 using speedfile
"PRODUCTION 1.14a 2011-03-07".

Table 10: Radix-2 Solution Performance Characteristics on Virtex-6 FPGA (Part = XC6VLX75T-1)

Parameter/Result Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Dividend and Quotient
Width 8 8 8 8 8 8 8 32

Divisor Width 8 8 8 8 8 8 8 32

Remainder Type remd rem rem rem rem rem rem rem

Fractional Width 8 8 8 8 8 8 8 32

Clocks per Division 1 1 1 1 2 2 8 1

Flow Control
(NonBlocking/Blocking)

NonBlock Blocking Blocking Blocking NonBlock NonBlock NonBlock NonBlock

OutTready no yes yes no no no no no

Optimize
Goal(Speed/Area) either Speed Area either either either either either

LUT6-FF Pairs 168 216 217 184 148 185 81 2195

LUTs 150 202 203 152 124 139 52 2126

FFs 226 287 288 247 161 195 91 3202

Block RAMs 0 0 0 0 0 0 0 0

DSP48 Blocks 0 0 0 0 0 0 0 0

Max Clock Freq(1)(2) >491 >491 >491 >491 422 429 460 361

Notes:
1. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx implementation tools.
2. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be de-rated by an

amount appropriate to the clock source jitter specification.
DS819 June 22, 2011 www.xilinx.com 22
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Table 11 defines performance characteristics for Radix-2 cases on Spartan®-6 FPGA, speed grade 2, using speedfile
"PRODUCTION 1.18a 2011-03-07"

Table 11: Radix-2 Solution Performance Characteristics on Spartan-6 FPGA (Part = XC6SLX16-2)

Parameter/Result Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Dividend and Quotient
Width 8 8 8 8 8 8 8 32

Divisor Width 8 8 8 8 8 8 8 32

Remainder Type remd rem rem rem rem rem rem rem

Fractional Width 8 8 8 8 8 8 8 32

Clocks per Division 1 1 1 1 2 2 8 1

Flow Control
(NonBlocking/Blocking)

NonBlock Blocking Blocking Blocking NonBlock NonBlock NonBlock NonBlock

OutTready no yes yes no no no no no

Optimize
Goal(Speed/Area) either Speed Area either either either either either

LUT6-FF Pairs 163 211 215 191 156 171 77 2185

LUTs 149 197 189 149 118 132 56 2130

FFs 226 287 288 247 161 195 91 3202

Block RAMs 0 0 0 0 0 0 0 0

DSP48 Blocks 0 0 0 0 0 0 0 0

Max Clock Freq(1)(2) >334 313 329 >334 277 267 319 236

Notes:
1. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx implementation tools.
2. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be de-rated by an

amount appropriate to the clock source jitter specification.
DS819 June 22, 2011 www.xilinx.com 23
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
High Radix Performance Tables

Optional control signals aclken and aresetn are disabled. The High Radix treats inputs and outputs as signed
numbers.

Note: When the core does not have aresetn, use can be made of SRL16 primitives, leading to a substantial reduction in circuit
size. For this reason, the use of aresetn is not recommended.

Table 12 defines performance characteristics for cases run on a Virtex-7 FPGA, speed grade -1 using speedfile
"ADVANCED 1.01h 2011-03-07".

Table 12: High Radix Solution Performance Characteristics on Virtex-7 FPGA (Part = xc7v285t)

Parameter/Result Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Dividend and Quotient
Width 10 10 36 36 54 54 37 64

Divisor Width 14 14 36 36 50 50 24 64

Remainder Type frac frac frac frac frac frac frac frac

Fractional Width 2 2 2 2 28 28 0 2

Latency Configuration
(latency) Auto (17) 2 Auto (28) 4 Auto (43) 8 Auto (26) Auto(40)

LUT-FF Pairs 290 208 793 537 1156 798 603 1349

LUTs 263 206 748 506 1114 774 532 1303

FFs 392 58 1062 184 1594 261 795 1837

RAMB18E1 1 1 1 1 1 1 1 1

DSP48E1s 7 7 13 13 16 16 11 19

Max Clock Freq(1)(2) 395 79 395 59 355 59 263 323

Notes:
1. Resources and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx

implementation tools.
2. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be

de-rated by an amount appropriate to the clock source jitter specification.
DS819 June 22, 2011 www.xilinx.com 24
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Table 13 defines performance characteristics for cases run on a Kintex-7 FPGA, speed grade -1, using speedfile
"ADVANCED 1.01f 2011-03-23".

Table 14 defines performance characteristics for cases run on a Virtex-6 FPGA, speed grade -1 using speedfile
"PRODUCTION 1.14a 2011-03-07".

Table 13: High Radix Solution Performance Characteristics on Kintex-7 FPGA (Part = xc7k325t)

Parameter/Result Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Dividend and Quotient
Width 10 10 36 36 54 54 37 64

Divisor Width 14 14 36 36 50 50 24 64

Remainder Type frac frac frac frac frac frac frac frac

Fractional Width 2 2 2 2 28 28 0 2

Latency Configuration
(latency) Auto (17) 2 Auto (28) 4 Auto (43) 8 Auto (26) Auto(40)

LUT6-FF Pairs 290 209 797 536 1162 807 603 1354

LUTs 265 206 744 506 1110 769 532 1297

FFs 392 58 1062 184 1594 261 795 1837

RAMB16BWERs 1 1 1 1 1 1 1 1

DSP48A1s 7 7 13 13 16 16 11 19

Max Clock Freq(1)(2) 395 76 395 61 350 61 261 358

Notes:
1. Resources and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx

implementation tools.
2. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be

de-rated by an amount appropriate to the clock source jitter specification.

Table 14: High Radix Solution Performance Characteristics on Virtex-6 FPGA (Part = XC6VLX75T-1)

Parameter/Result Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case8

Dividend and Quotient
Width 10 10 36 36 54 54 37 64

Divisor Width 14 14 36 36 50 50 24 64

Remainder Type Frac Frac Frac Frac Frac Frac Frac frac

Fractional Width 2 2 2 2 28 28 0 2

Latency Configuration
(latency) Auto (17) 2 Auto (28) 4 Auto (43) 8 Auto (26) Auto(40)

LUT-FF Pairs 286 208 790 540 1162 807 594 1335

LUTs 271 207 745 502 1103 757 541 1305

FFs 392 58 1062 184 1594 261 795 1838

RAMB18E1 1 1 1 1 1 1 1 1

DSP48E1s 7 7 13 13 16 16 11 19

Max Clock Freq(1)(2) 399 78 399 62 399 62 262 377

Notes:
1. Resources and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx

implementation tools.
2. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be

de-rated by an amount appropriate to the clock source jitter specification.
DS819 June 22, 2011 www.xilinx.com 25
Product Specification

http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Table 15 defines performance characteristics for cases run on a Spartan-6 FPGA, speed grade 2, using speedfile
"PRODUCTION 1.18a 2011-03-07".

References
1. “Computer Arithmetic Algorithms and Hardware Designs,” Behrooz Parhami. Oxford Press © 2000.

2. “Proceedings 12th Symposium on Computer Arithmetic,” IEEE Computer Society Press © 1995.

3. Synthesis and Simulation Design Guide

4. Xilinx AXI Design Reference Guide (UG761)

5. AMBA 4 AXI4-Stream Protocol Version: 1.0 Specification

Support
Xilinx provides technical support for this LogiCORE IP product when used as described in the product
documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that
are not defined in the documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for further information on this core.

For each core, there is a master Answer Record that contains the Release Notes and Known Issues list for the core
being used. The following information is listed for each version of the core:

• New Features

• Bug Fixes

• Known Issues

Table 15: High Radix Solution Performance Characteristics on Spartan-6 FPGA (Part = XC6SLX16-2)

Parameter/Result Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Dividend and Quotient
Width 10 10 36 36 54 54 37 64

Divisor Width 14 14 36 36 50 50 24 64

Remainder Type Frac Frac Frac Frac Frac Frac Frac Frac

Fractional Width 2 2 2 2 28 28 0 2

Latency Configuration
(latency) Auto (17) 2 Auto (30) 4 Auto (45) 8 Auto (27) Auto(40)

LUT6-FF Pairs 279 189 798 528 1191 794 558 1371

LUTs 256 175 730 504 1075 749 510 1280

FFs 421 70 1138 184 1719 261 809 1997

RAMB16BWERs 1 1 1 1 1 1 1 1

DSP48A1s 7 7 15 15 18 18 11 22

Max Clock Freq(1)(2) 257 61 195 30 175 30 169 112

Notes:
1. Resources and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx

implementation tools.
2. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be

de-rated by an amount appropriate to the clock source jitter specification.
DS819 June 22, 2011 www.xilinx.com 26
Product Specification

www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
www.xilinx.com/support/documentation/dt_ise13-1_userguides.htm
http://www.xilinx.com

LogiCORE IP Divider Generator v4.0
Ordering Information
This LogiCORE IP module is included at no additional cost with the Xilinx ISE Design Suite software and is
provided under the terms of the Xilinx End User License Agreement. Use the CORE Generator software included
with the ISE Design Suite to generate the core. For more information, visit the core page.

Information about additional Xilinx LogiCORE IP modules is available at the Xilinx IP Center. For pricing and
availability of other Xilinx LogiCORE IP modules and software, contact your local Xilinx sales representative.

Revision History
The following table shows the revision history for this document:

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To
the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby
DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including
your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss
of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no
obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent.
Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at
http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to
you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.

Date Version Description of Revisions

06/22/11 1.0 Initial Xilinx release. Previous data sheet was DS530.
DS819 June 22, 2011 www.xilinx.com 27
Product Specification

www.xilinx.com/ise/license/license_agreement.htm
www.xilinx.com/products/ipcenter/Divider.htm
http://www.xilinx.com/ipcenter/
www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com
http://www.xilinx.com/warranty.htm#critapps

	LogiCORE IP Divider Generator v4.0
	Introduction
	Features
	Functional Overview
	Applications
	Functional Description
	Radix-2 Feature Summary
	Radix-2 Solution Overview
	Radix-2 Latency and Throughput
	High Radix Solution Feature Summary
	High Radix Solution Overview

	Pinout
	CORE Generator Graphical User Interface
	Common Options
	Dividend Channel
	Divisor Channel
	Output Channel
	Radix-2 Options
	High Radix Options
	AXI4-Stream Options
	Latency Options
	Control Signals

	System Generator For DSP Graphical User Interface
	Using the Divider Generator IP Core
	Simulation Models
	XCO Parameters

	Demonstration Test Bench
	Using the Demonstration Test Bench
	Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	AXI4-Stream Considerations
	Basic Handshake
	Non Blocking Mode
	Blocking Mode
	TDATA Packing
	TLAST and TUSER Handling

	Migrating to Divider Generator v4.0 from Earlier Versions
	XCO Parameter Changes
	Port Changes
	Latency Changes
	Instructions for Minimum Change Migration (v3.0 to v4.0)

	Performance and Resource Utilization
	Radix 2 Performance tables

	References
	Support
	Ordering Information
	Revision History
	Notice of Disclaimer

