LogiCORE IP FIFO
Generator v9.3

Product Guide

PG057 December 18, 2012

& XILINX.

& XILINX.

Table of Contents

SECTION I: SUMMARY
IP Facts

Chapter 1: Overview

Native Interface FIFOSottt ittt it ittt ie e e tetatasnsasansnsasasasnnns 8
AXId Interface FIFOS. v it ittt it ittt iiatnateesasansonsoesassnsansssssssossnns 9
Feature SUMMArY. ... ittt ittt ittt it iinnettennaasesosssnsessossnssssossosnnnans 11
1Y o o [Tt 1 T 4 V-3 60
Licensing and Ordering Information. ittt it iieiietnennnnnnnnns 63

Chapter 2: Product Specification

o= o) o 11 T= 12 (=S 64
Resource UtIlization. . .o v i ittt ittt ittt ittt ittt ittt eeeeneensnansnannnnnnnnnnns 64
o] o A 0 1LY ol] o] 4 o] 4 T 78

Chapter 3: Designing with the Core

General Design Guidelingsoiiiiiiiiiiie it e e ttetenransensnsennannnns 93
Initializingthe FIFO Generatorciiiiiiiitintietnereeresentsnssesassnssasanss 95
FIFOUsageand Control.ciiiiiiitiiiiiiineiinetnnerenersnasssnssonssanansnns 95
01 o ol (1 - 120
=T 125
Actual FIFO Depth i it it it ittt it ettnetnnnssnnssnassnnsssnnnsanns 133
I 1 = o T o 135

Chapter 4: Special Design Considerations

Resetting the FIFO ittt it it et ettt ietenransensnsensansansassnnnnnans 148
ContinUOUS ClOCKS ... vv ittt ittt ittt ittt iententstaneenssnsosensansanssnennsns 148
PessimisticFull and Empty ...ttt it iiieteineennesanesanesannnans 149
Programmable Full and EmMpty . ..ottt i et e ittt teeranenerneannannans 149
Simultaneous Assertion of Fulland Empty Flag.ciiiiiiiii i iiiiiiinennnnnns 150
Write DataCountand Read DataCount.oiiiiiiiiiiitnennennrnnsnennsnnsanns 151
FIFO Generator v9.3 www.xilinx.com 2

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Setupand Hold Time Violationsttt ittt ittt ietinenennenannnns 151

SECTION II: VIVADO DESIGN SUITE

Chapter 5: Customizing and Generating the Native Core

Chapter 7: Constraining the Core

Required Constraints. ocviiitiiniineiineienereneeenaseenseenesenesanesannnens 185
Device, Package, and Speed Grade Selections.ttt iiniinnrennnnns 185
CloCKk FreqUeNCIies ... v it iiiiiietiieeiieeteaesenansenosenasosassanssanssannssaness 185
Clock Managementitiitintiineeneenenneensnneneansansanensansanennens 185
Clock Placement.ottt ittt ittt intenteeeesansansonsossnsanssnsossnsnnsns 185

Chapter 8: Detailed Example Design

Directoryand File Contents.ciitiiiiiiiiiiiintientnotessssenssnsossssansansans 186
EXample Design i ittt ittt ittt et et ettt et et e e 186
Demonstration Test Benchottt it iiiirararatntnenesennansnnns 187
Implementationcoiiiiiii ittt ittt it ietentaateetosentantassosansansans 189
] 114 101 ' P 189
Messages and Warningsciittitintnernernrenennroesneensansonsasensansaneans 190

SECTION Ill: ISE DESIGN SUITE

Chapter 9: Customizing and Generating the Native Core

0 192
Parameter Valuesinthe XCO File.oot ittt ittt ittt ttennnnaneerennnnsernnnnns 206
OUtpUt GeneratioN.ttt ittt it iiiee et ttenenaeeeeenoanesseeesanassesannnnsssans 209

LU 214
Parameter Valuesinthe XCOFile.ciiiiiiiiiiiiiiiiiiteeeeneeeenennannennnnnnns 226
Output Generation. iiii ittt iii it et ittt tenetenasonasonasssnsssnsssanssnnsss 232
FIFO Generator v9.3 www.xilinx.com 3

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 11: Constraining the Core

Required Constraints.ciiiiiiii it ittt iieetenarenasenassonesanesannnans 233
Device, Package, and Speed Grade Selections.ttt 233
CloCK FreqUeNCIES .. v v ittt iietietieeeteneeeneeenaeenaseeaeeaaesanssaansnaness 233
ClockManagementociiiiiiietiieeineeseeneenesenososasssnssanssansssaness 233

Chapter 12: Detailed Example Design

Directoryand FileContents.ciiiii ittt ittt tenetenarsnnssnnesannnans 234
EXample DesigNn ittt i i e e it et e a et e a e a e a e 234
Demonstration TestBenchttt i i i ittt ittt inenennanannns 235
Implementation. ittt it ittt tenetenarenassanssanssannnans 237
L] 4T 5 T o 237
Messages and Warningsvvtiiettneeeneeeeaerenerenesenseenesenssenasenannans 238

SECTION IV: APPENDICES

Appendix A: Verification, Compliance, and Interoperability
] 113 101 T 240

Appendix B: Migrating

Migration OVerVIEW.ttt i iiii ittt iinetiaetaansesnsonnsenasssnssanssannnans 241
Differences from Legacy Coresiitiitintne e teneeneeeraeeneansansasensansans 241
Migrating @ DeSigN . . oot ittt ittt ittt iie et ettt e e 243
Manual Migration Processooiiiitiineiinetnnneennsenasesassanssanssaannans 245

Appendix C: Debugging

FindingHelpon Xilinx.com ittt it it e tinetnnernnessnnsannnans 276
DEbUE TOOIS . .ttt i i et ettt ie et a e et a e e e e e 278
Simulation DebUg. . ..o ittt it i i i i i e ettt et 279
Hardware Debugc ittt ittt it ittt et tietteansennsenasenassnassannnans 281
Interface DebUgottt i i i it ettt ettt ettt et e a e 281

Appendix D: Quick Start Example Design

Implementing the Example Design.coiiiiiiiiiniii it i teetenrnnrnnnneannnns 284
Simulatingthe Example Design. viiiiiiiiiiiiii it tinennennsentsessennsansnnss 284

Appendix E: Simulating Your Design
Simulation Models.ottt i i i i i i it i e e st 287

FIFO Generator v9.3 www.xilinx.com 4
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Appendix F: Comparison of Native and AXI4 FIFO XCO Parameters
Appendix G: DOUT Reset Value Timing
Appendix H: Supplemental Information

Appendix I: Additional Resources

XiliNX RESOUICES . . vttt ittt ittt ettt eeeeeeenaeeeaeaeeeeeesesssesssssssseseneennnns

3= =] =] 3 (ol =5

Technical SUPPOIt ... ittt ittt et et tieeeenaeeeneeenesenasenasenassennnans

ReVISION HIiStOryo it i ittt it ettt e tieeteansennsenasonassnansannnans

NOtiCe Of DiSClaimer. . . oo v i ittt ittt ittt et teennaneesennnnseseenennsensnnnnns

FIFO Generator v9.3 www.xilinx.com
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.

SECTION I. SUMMARY

IP Facts

Overview

Product Specification
Designing with the Core

Special Design Considerations

FIFO Generator v9.3 www.xilinx.com
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.

IP Facts

Introduction

The Xilinx LogiCORE™ IP FIFO Generator is a
fully verified first-in first-out (FIFO) memory
queue for applications requiring in-order
storage and retrieval. The core provides an
optimized solution for all FIFO configurations
and delivers maximum performance (up to 500
MHz) while utilizing minimum resources.
Delivered through the Xilinx CORE Generator™
software, the structure can be customized by
the user including the width, depth, status
flags, memory type, and the write/read port
aspect ratios.

The FIFO Generator core supports Native
interface FIFOs and AXI4 interface FIFOs. The
Native interface FIFO cores include the original
standard FIFO functions delivered by the
previous versions of the FIFO Generator (up to
v6.2). Native interface FIFO cores are optimized
for buffering, data width conversion and clock
domain decoupling applications, providing
in-order storage and retrieval.

AXI4 interface FIFOs are derived from the
Native interface FIFO. Three AXI4 interface
styles are available: AXI4-Stream, AXI4 and
AXI4-Lite.

For more details on the features of each
interface, see Feature Summary in Chapter 1.

LogiCORE IP Facts Table

Core Specifics

Supported Zynq™-70002), Artix-7, Virtex®-7, Kintex®-7,
Device Virtex-6, Virtex-5, Virtex-4, Spartan ®-6,
Family@) Spartan-3A/3AN/3A DSP, Spartan-3E, Spartan-3
Supported

Native, AXI4-Stream, AX14, AXI4-Lite
User Interfaces

Resources See Table 2-1 through Table 2-7.
Provided with Core
Design Files NGC
Example
. VHDL
Design
Test Bench VHDL
Constraints Vivado: XDC
File ISE: UCF
Simulation . .
Verilog and VHDL Behavioral® and Structural
Model
Supported
N/A
S/W Driver /

Tested Design Flows®

ISE Design Suite v14.4

Design Entry Vivado Design Suite v2012.405)

Mentor Graphics ModelSim

Cadence Incisive Enterprise Simulator
Vivado XSIM

ISE ISIM

Simulation

XST

Synthesis))
Vivado Synthesis

Support

Provided by Xilinx @ www.xilinx.com/support

Notes:

1. For a complete listing of supported devices, see Table 1-2,
page 15, Table 1-9, page 29 and the release notes for this
core.

2. Supported in ISE Design Suite implementations only.

3. Behavioral models do not model synchronization delay.
See Simulating Your Design in Appendix E for details.

4. For the supported versions of the tools, see the Xilinx Design
Tools: Release Notes Guide.

5. Vivado Design Suite supports only 7 series devices.

FIFO Generator v9.3

www.xilinx.com 7

PG0O57 December 18, 2012

Product Specification

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/irn.pdf

& XILINX.
Chapter 1

Overview

The FIFO Generator core is a fully verified first-in first-out memory queue for use in any
application requiring in-order storage and retrieval, enabling high-performance and
area-optimized designs. The core provides an optimized solution for all FIFO configurations
and delivers maximum performance (up to 500 MHz) while utilizing minimum resources.

The Xilinx FIFO Generator core supports Native interface FIFOs and AXI4 Interface FIFOs.
Native interface FIFO Generators (FIFOs) are the original standard FIFO functions delivered
by the previous versions of the FIFO Generator (up to v6.2). AXI4 Interface FIFOs are derived
from the Native interface FIFO. Three AXI4 interface styles are available: AXI4-Stream, AXI4
and AXI4-Lite.

This core can be customized using either the Vivado IP customizers in the IP Catalog or the
ISE CORE Generator system as a complete solution with control logic already implemented,
including management of the read and write pointers and the generation of status flags.

This chapter introduces the FIFO Generator and provides related information, including
recommended design experience, additional resources, technical support, and submitting
feedback to Xilinx.

Native Interface FIFOs

The Native interface FIFO can be customized to utilize block RAM, distributed RAM or
built-in FIFO resources available in some FPGA families to create high-performance,
area-optimized FPGA designs.

Standard mode and First Word Fall Through are the two operating modes available for
Native interface FIFOs.

FIFO Generator v9.3 www.xilinx.com 8
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Write Agent ¢

WR_CLK

RD_CLK

WREN |

FULL

ALMOST FULL

PROG_FULL

DIN[N:0]

WR_ACK

A

A

OVERFLOW

WR_DATA_COUNT[P:0]

A

PROG_FULL_THRESH_ASSERT

PROG_FULL _THRESH_NEGATE

A

PROG_FULL_THRESH

INJECTSBITERR

YVVVY

INJECTDBITERR

—» MANDATORY
——) OPTIONAL

— OPTIONAL SIDEBAND

Figure 1-1:

Write Clock Read Clock
Domain Domain

RD_EN

EMPTY

ALMOST_EMPTY

PROG_EMPTY

DOUT[MO] \l
b

VALID

AXI4 Interface FIFOs

» Read Agent

UNDERFLOW

RD_DATA_COUNT[Q:0]

vvyYy

PROG_EMPTY_THRESH

ASSERT

A

PROG_EMPTY_THRESH

NEGATE

A A

PROG_EMPTY_THRESH

SBITERR

DBITERR

A\ J

WR_RST RST

RD_RST

Native Interface FIFOs Signal Diagram

AXIl4 Interface FIFOs

AX14 interface FIFOs are derived from the Native interface FIFO, as shown in Figure 1-2.

Three AXI4 interface styles are available: AXI4-Stream, AXI4 and AXI4-Lite. In addition to
applications supported by the Native interface FIFO, AXI4 FIFOs can also be used in AX14
System Bus and Point-to-Point high speed applications.

AXI4 Interface FIFOs do not support built-in FIFO and Shift Register FIFO configurations.

Use the AXI4 FIFOs in the same applications supported by the Native Interface FIFO when
you need to connect to other AXI functions. AXI4 FIFOs can also be integrated into an EDK
embedded system IP by using the EDK Create/Import Peripheral (CIP) wizard. Refer to
Chapter 7: Creating Your Own Intellectual Property of the EDK Concepts, Tools and
Techniques Guide for details.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

http://www.xilinx.com

& XILINX. AXI4 Interface FIFOs

S_ARESETN
S_ACLK WR_CLK i ? RD_CLK M_ACLK
RST
V V
WALID WR_EN EMPTY >
*READY <—-<}— FULL
RD_EN
DATA —+— > “DATA
*STROBE ——————— > *STROBE
*LAST ——————» . WRITE CLOCK | READ CLOCK i » *LAST
DIN[N:0] e oo o DOUTN:0]
USER » | *USER
*ID ——m—» » *ID
P B E—— | -
AXI4 MASTER AXI4 SLAVE AXI4 MASTER AXI4 SLAVE
OVERFLOW UNDERFLOW
WR_DATA_COUNT[P:0] RD_DATA_COUNT[Q:0]
PROG_FULL PROG_EMPTY
PROG_FULL_THRESH PROG_EMPTY THRESH
INJECTSBITERR SBITERR
INJECTDBITERR DBITERR
MANDATORY
OPTIONAL SIDEBAND xize20

Figure 1-2: AXI4 FIFO Derivation

The AX14 interface protocol uses a two-way VALID and READY handshake mechanism. The
information source uses the VALID signal to show when valid data or control information is
available on the channel. The information destination uses the READY signal to show when
it can accept the data. Figure 1-3 shows an example timing diagram for write and read
operations to the AXI4-Stream FIFO, and Figure 1-4 shows an example timing diagram for
write and read operations to the AXI4/AXI4-Lite FIFO.

s 4 NN NN T NN N

M_aIE_TREADY

| | | | | | |
| | | [| | | |
INFORMATION] PR J I W o DiTy I I I I I
T T T]] I I T T T T
T L e I e S —
- | | T T) I T [| | | |
FANETREADY ————— | | | I I | | | I T
| | | | | I I [| | | |
INFORMATION T T T Ty T | 1i] T Ty T o7 1 Ty T
T T T T) T T T T T T T
) | | | If) T T T T T T |
M_AXIS_TWALID | T T T I I I | | | |
| | | | | I I |
T T T T) T T

|

INFORMATION 3 SIM_AXIS_TOATATIDITSTRETKEER TDESTITLASTTUSER

Figure 1-3: AXI4-Stream FIFO Timing Diagram

FIFO Generator v9.3 www.xilinx.com 10
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Feature Summary

sack — NN TN N N TN N

I [| I I I
! ! ! ! | | | | |
INFORMATION oo, i i T 0T, W : : ! ! |
I I [[[| | I I I
S_AX| "VALID _I—U’—:_\" | | ! | | | | | |
i I ! ! ! I ! I I I I I
s reany — o [[[| I\ | | } } |
I I [[[| | | | | | |
1 1 | |]]]]]]]]
INFORMATION 1 1 [I.l:(| I:H}] | .l:{ | 5] ! ! K !
| | | | I]]]] |] |

M_AX|_"VALID 1 1 L W [| | | | | [S E—
I I [[[| | | | |

M_AXI_'READY — I I I l | "'—:—_I—IJ{—:__I_

| | | | |

“WALID = AWNVALIDAYVALIDEVALIDARVALIDRVALID
"READY 2 AWREADYWREADY/BREADYARREADY/RREADY

INFORMATION = S0 _AXI AWAMWIB/ARR Chanral sigrals except VALID and READY

Figure 1-4: AXI14/AXI4-Lite FIFO Timing Diagram

In Figure 1-4 and Figure 1-3, the information source generates the VALID signal to indicate
when the data is available. The destination generates the READY signal to indicate that it
can accept the data, and transfer occurs only when both the VALID and READY signals are
high.

Because AXI4 FIFOs are derived from Native interface FIFOs, much of the behavior is
common between them. The READY signal is generated based on availability of space in the
FIFO and is held high to allow writes to the FIFO. The READY signal is pulled low only when
there is no space in the FIFO left to perform additional writes. The VALID signal is generated
based on availability of data in the FIFO and is held high to allow reads to be performed
from the FIFO. The VALID signal is pulled low only when there is no data available to be read
from the FIFO. The INFORMATION signals are mapped to the DIN and DOUT bus of Native
interface FIFOs. The width of the AXI4 FIFO is determined by concatenating all of the
INFORMATION signals of the AXI4 interface. The INFORMATION signals include all AX14
signals except for the VALID and READY handshake signals.

AXI4 FIFOs operate only in First-Word Fall-Through mode. The First-Word Fall-Through
(FWFT) feature provides the ability to look ahead to the next word available from the FIFO
without issuing a read operation. When data is available in the FIFO, the first word falls
through the FIFO and appears automatically on the output bus.

Feature Summary

Common Features

« Supports Native, AXI4-Stream, AXI4 and AXI4-Lite interfaces
« FIFO depths up to 4,194,304 words

FIFO Generator v9.3 www.xilinx.com 11
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Feature Summary

+ Independent or common clock domains

« VHDL example design and demonstration test bench demonstrating the IP core design
flow, including how to instantiate and simulate it

« Fully configurable using the Xilinx Vivado IP Catalog customizer or the ISE CORE
Generator

Native FIFO Specific Features
« FIFO data widths from 1 to 1024 bits

« Symmetric or Non-symmetric aspect ratios (read-to-write port ratios ranging from 1:8
to 8:1)

« Synchronous or asynchronous reset option
« Selectable memory type (block RAM, distributed RAM, shift register, or built-in FIFO)
« Option to operate in Standard or First-Word Fall-Through modes (FWFT)

« Full and Empty status flags, and Almost Full and Almost Empty flags for indicating
one-word-left

« Programmable Full and Empty status flags, set by user-defined constant(s) or dedicated
input port(s)

« Configurable handshake signals

« Hamming Error Injection and Correction Checking (ECC) support for block RAM and
Built-in FIFO configurations

+ Embedded register option for block RAM and built-in FIFO configurations

AXI4 FIFO Features

« FIFO data widths from 1 to 4096 bits
« Supports all three AXI4 interface protocols - AXI4, AXI4-Stream, and AXI4-Lite
« Symmetric aspect ratios
« Asynchronous active low reset
« Selectable configuration type (FIFO, Register Slice, or Pass Through Wire)
« Selectable memory type (block RAM, or distributed RAM)
« Selectable application type (Data FIFO, Packet FIFO, or low latency FIFO)
o Packet FIFO feature is available only for common clock AXI4-Stream and AXI4 FIFOs
» Operates in First-Word Fall-Through mode (FWFT)

« Configurable Interrupt signals

FIFO Generator v9.3 www.xilinx.com 12
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Feature Summary

« Auto-calculation of FIFO width based on AXI signal selections and data and address
widths

« Hamming Error Injection and Correction Checking (ECC) support for block RAM FIFO
configurations

« Configurable programmable Full/Empty flags as sideband signals

Native FIFO Feature Overview

Clock Implementation and Operation

The FIFO Generator enables FIFOs to be configured with either independent or common
clock domains for write and read operations. The independent clock configuration of the
FIFO Generator enables you to implement unique clock domains on the write and read
ports. The FIFO Generator handles the synchronization between clock domains, placing no
requirements on phase and frequency. When data buffering in a single clock domain is
required, the FIFO Generator can be used to generate a core optimized for that single clock.

Zynqg-7000, 7 Series, Virtex-6 and Virtex-5 FPGA Built-in FIFO Support

The FIFO Generator supports the Zynq™-7000, Virtex ®-6, Virtex-5, and 7 series (Artix™-7,
Virtex-7, and Kintex™-7) FPGA built-in FIFO modules, enabling large FIFOs to be created by
cascading the built-in FIFOs in both width and depth. The core expands the capabilities of
the built-in FIFOs by utilizing the FPGA fabric to create optional status flags not
implemented in the built-in FIFO macro. The built-in Error Correction Checking (ECC)
feature in the built-in FIFO macro is also available to the user.

See the appropriate FPGA user guide for frequency requirements.

Virtex-4 FPGA Built-in FIFO Support

Support of the Virtex-4 FPGA built-in FIFO allows generation of a single FIFO primitive
complete with fabric implemented flag patch, described in “Solution 1: Synchronous/
Asynchronous Clock Work-Arounds,” in the Virtex-4 FPGA User Guide [Ref 4]. This patch is
implemented in fabric. See Performance in Chapter 2 for resource utilization estimates.

First-Word Fall-Through (FWFT)

The first-word fall-through (FWFT) feature provides the ability to look-ahead to the next
word available from the FIFO without issuing a read operation. When data is available in the
FIFO, the first word falls through the FIFO and appears automatically on the output bus
(DOUT). FWFT is useful in applications that require low-latency access to data and to
applications that require throttling based on the contents of the data that are read. FWFT
support is included in FIFOs created with block RAM, distributed RAM, or built-in FIFOs in
the Zynq-7000, 7 series, Virtex-6 and Virtex-5 devices.

FIFO Generator v9.3 www.xilinx.com 13
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Feature Summary

See Table 1-3 for FWFT availability. The use of this feature impacts the behavior of many
other features, such as:

+ Read operations (see First-Word Fall-Through FIFO Read Operation, page 98).

+ Programmable empty (see Non-symmetric Aspect Ratio and First-Word Fall-Through,
page 115).

« Data counts (see First-Word Fall-Through Data Count, page 110 and Non-symmetric
Aspect Ratio and First-Word Fall-Through, page 115).

Supported Memory Types

The FIFO Generator implements FIFOs built from block RAM, distributed RAM, shift
registers, or the Zyng-7000, 7 series, Virtex-6 and Virtex-5 FPGA built-in FIFOs. The core
combines memory primitives in an optimal configuration based on the selected width and
depth of the FIFO. Table 1-1 provides best-use recommendations for specific design
requirements. The generator also creates single primitive Virtex-4 FPGA built-in FIFOs with
the fabric implemented flag patch described in “Solution 1: Synchronous/Asynchronous
Clock Work-Arounds,” in the Virtex-4 FPGA User Guide [Ref 4].

Table 1-1: Memory Configuration Benefits

Independent| Common | Small |Medium-Large High Minimal
Clocks Clock |Buffering Buffering |Performance | Resources

Zynq-7000, 7
Serles., Virtex-6, v v v v v
and Virtex-5 FPGA
with Built-in FIFO
Block RAM v v v v v
Shift Register v v v
Distributed RAM 4 v v v

Non-Symmetric Aspect Ratio Support

The core supports generating FIFOs with write and read ports of different widths, enabling
automatic width conversion of the data width. Non-symmetric aspect ratios ranging from
1:8 to 8:1 are supported for the write and read port widths. This feature is available for FIFOs
implemented with block RAM that are configured to have independent write and read
clocks.

Embedded Registers in block RAM and FIFO Macros

In Zyng-7000, 7 series, Virtex-6, Virtex-5 and Virtex-4 FPGA block RAM and FIFO macros,
embedded output registers are available to increase performance and add a pipeline
register to the macros. This feature can be leveraged to add one additional latency to the
FIFO core (DOUT bus and VALID outputs) or implement the output registers for FWFT FIFOs.
The embedded registers available in Zyng-7000, 7 series, and Virtex-6 FPGAs can be reset

FIFO Generator v9.3 www.xilinx.com 14
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

(DOUT) to a default or user programmed value for common clock built-in FIFOs. See
Embedded Registers in Block RAM and FIFO Macros (Zyng-7000, 7 Series, Virtex-6, Virtex-5
and Virtex-4 FPGAs), page 116 for more information.

Error Injection and Correction (ECC) Support

The block RAM and FIFO macros are equipped with built-in Error Correction Checking (ECC)
in the Virtex-5 FPGA architecture and built-in Error Injection and Correction Checking in the
Zynqg-7000, 7 series, and Virtex-6 FPGA architectures. This feature is available for both the
common and independent clock block RAM or built-in FIFOs.

Native FIFO Supported Devices

Table 1-2 shows the families and sub-families supported by the Native FIFO Generator. For
more details about device support, see the Release Notes.

Table 1-2: Supported FPGA Families and Sub-Families

FPGA Family Sub-Family
Zynq-7000
Virtex-7
Virtex-7 -2L
Virtex-7 -2G
Virtex-7 XT
Kintex-7
Kintex-7-2L
Artix-7
Virtex-6 XC CXT/LXT/SXT/HXT
Virtex-6 XQ LXT/SXT
Virtex-6 -1L XC LXT/SXT
Virtex-6 -1L XQ LXT/SXT
Spartan-6 XC LX/LXT
Spartan-6 XA LX/LXT
Spartan-6 XQ LX/LXT
Spartan-6 -1L XC LX
Spartan-6 -1L XQ LX
Virtex-5 XC LX/LXT/SXT/TXT/EXT
Virtex-5 XQ LX/LXT/SXT/FXT
Virtex-4 XC LX/SX/FX
Virtex-4 XQ LX/SX/FX
Virtex-4 XQR LX/SX/FX

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

15

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf

& XILINX

Table 1-2:

Supported FPGA Families and Sub-Families (Cont’d)

Feature Summary

FPGA Family

Sub-Family

Spartan-3 XC

Spartan-3 XA

Spartan-3A XC

3A /3A DSP/ 3AN

Spartan-3A XA

3A / 3A DSP

Spartan-3E XC

Spartan-3E XA

Native FIFO Configuration and Implementation

Table 1-3 defines the supported memory and clock configurations.

Table 1-3: FIFO Configurations
Clock Domain | Memory Type No:\l:s\zgner:tetrl F:;{S;h‘:’:l:gh SuI:)(p:a(c:)rt E:‘ebg?gtcti;:d
atios Support
Common Block RAM v v va
Common DistributedRAM 4
Common Shift Register
Common Built-in FIFOP ve v v @
Independent Block RAM v v v v (@
Independent Distributed RAM 4
Independent Built-in FIFO () d v (© v

a. Embedded register support is only available for Zyng-7000, 7 series, Virtex-6, Virtex-5 and Virtex-4 FPGA block
RAM-based FIFOs, as well as Zynqg-7000, 7 series, Virtex-6 and Virtex-5 FPGA common clock built-in FIFOs.

b. The built-in FIFO primitive is only available in the Virtex-6, Virtex-5 and Virtex-4 architectures.

(e}

. FWFT is supported for Built-in FIFOs in Zyng-7000, 7 series, Virtex-6 and Virtex-5 devices only.

d. For non-symmetric aspect ratios, use the block RAM implementation (feature not supported in built-in FIFO

primitive).

Common Clock: Block RAM, Distributed RAM, Shift Register

This implementation category allows you to select block RAM, distributed RAM, or shift
register and supports a common clock for write and read data accesses. The feature set
supported for this configuration includes status flags (full, almost full, empty, and almost
empty) and programmable empty and full flags generated with user-defined thresholds.

In addition, optional handshaking and error flags are supported (write acknowledge,
overflow, valid, and underflow), and an optional data count provides the number of words
in the FIFO. In addition, for the block RAM and distributed RAM implementations, you have
the option to select a synchronous or asynchronous reset for the core. For Zyng-7000, 7
series, Virtex-6 and Virtex-5 FPGA designs, the block RAM FIFO configuration also supports

ECC.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

16

http://www.xilinx.com

& XILINX. Feature Summary

Common Clock: Zyng-7000, 7 Series, Virtex-6, Virtex-5 or Virtex-4 FPGA
Built-in FIFO

This implementation category allows you to select the built-in FIFO available in the
Zynqg-7000, 7 series, Virtex-6, Virtex-5 or Virtex-4 FPGA architecture and supports a
common clock for write and read data accesses. The feature set supported for this
configuration includes status flags (full and empty) and optional programmable full and
empty flags with user-defined thresholds.

In addition, optional handshaking and error flags are available (write acknowledge,
overflow, valid, and underflow). The Zynq-7000, 7 series, Virtex-6 and Virtex-5 FPGA built-in
FIFO configuration also supports the built-in ECC feature.

Independent Clocks: Block RAM and Distributed RAM

This implementation category allows you to select block RAM or distributed RAM and
supports independent clock domains for write and read data accesses. Operations in the
read domain are synchronous to the read clock and operations in the write domain are
synchronous to the write clock.

The feature set supported for this type of FIFO includes non-symmetric aspect ratios
(different write and read port widths), status flags (full, almost full, empty, and almost
empty), as well as programmable full and empty flags generated with user-defined
thresholds. Optional read data count and write data count indicators provide the number of
words in the FIFO relative to their respective clock domains. In addition, optional
handshaking and error flags are available (write acknowledge, overflow, valid, and
underflow). For Zynq-7000, 7 series, Virtex-6 and Virtex-5 FPGA designs, the block RAM
FIFO configuration also supports ECC.

Independent Clocks: Zynq-7000, 7 Series, Virtex-6, Virtex-5 or Virtex-4 FPGA
Built-in FIFO

This implementation category allows you to select the built-in FIFO available in the
Zynq-7000, 7 series, Virtex-6, Virtex-5 or Virtex-4 FPGA architecture. Operations in the read
domain are synchronous to the read clock and operations in the write domain are
synchronous to the write clock.

The feature set supported for this configuration includes status flags (full and empty) and
programmable full and empty flags generated with user-defined thresholds. In addition,
optional handshaking and error flags are available (write acknowledge, overflow, valid, and
underflow). The Zynq-7000, 7 series, Virtex-6 and Virtex-5 FPGA built-in FIFO configuration
also supports the built-in ECC feature.

FIFO Generator v9.3 www.xilinx.com 17
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Feature Summary

Native FIFO Generator Feature Summary

Table 1-4 summarizes the supported FIFO Generator features for each clock configuration

a

nd memory type.

Table 1-4: FIFO Configurations Summary

Independent Clocks Common Clock
FIFO Feature cop . Distributed g
Block RAM | Distributed Built-in | b RAM RAM, Shift Built-in
RAM FIFO 4 FIFO
Register
Non-symmetric v
Aspect Ratios?
Symmetric. v v v v v v
Aspect Ratios
Almost Full v v v v
Almost Empty v v v v
Handshaking v v v v v v
Data Count v 4 v v
Programmable
Empty/Full v v vb v v v (b)
Thresholds
First-Word
v v v v v v
Fall-Through(©
Synchronous v v
Reset
Asynchronous vd AC) v v (d) v (d) v
Reset
DOUT Reset v v v v S@
Value
ECC v(® v v ® v (®
Emb_edded C) AC) v (@)
Register

Q o aon

FIFO Gen

. For applications with a single clock that require non-symmetric ports, use the independent clock configuration and
connect the write and read clocks to the same source. A dedicated solution for common clocks will be available in
a future release. Contact your Xilinx representative for more details.

. For built-in FIFOs, the range of Programmable Empty/Full threshold is limited to take advantage of the logic internal
to the macro.

First-Word-Fall-Through is not supported for the shift RAM FIFOs and Virtex-4 built-in FIFOs.

. Asynchronous reset is optional for all FIFOs built using distributed and block RAM.

DOUT Reset Value is supported only in Zyng-7000, 7 series, and Virtex-6 FPGA common clock built-in FIFOs.

ECC is only supported for the Zyng-7000, 7 series, Virtex-6 and Virtex-5 FPGAs and block RAM and built-in FIFOs.

. Embedded register option is only supported in Zynq-7000, 7 series, Virtex-6, Virtex-5 and Virtex-4 FPGA block RAM
FIFOs, as well as Zyng-7000, 7 series, Virtex-6 and Virtex-5 FPGA common clock built-in FIFOs. See <BL
Blue>Embedded Registers in block RAM and FIFO Macros.

erator v9.3 www.xilinx.com 18

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Feature Summary

Using Block RAM FIFOs Versus Built-in FIFOs

The Built-In FIFO solutions were implemented to take advantage of logic internal to the
Built-in FIFO macro. Several features, for example, non-symmetric aspect ratios, almost full,
almost empty, and so forth were not implemented because they are not native to the macro
and require additional logic in the fabric to implement.

Benchmarking suggests that the advantages the Built-In FIFO implementations have over
the block RAM FIFOs (for example, logic resources) diminish as external logic is added to
implement features not native to the macro. This is especially true as the depth of the
implemented FIFO increases. It is strongly recommended that users requiring features not
available in the Built-In FIFOs implement their design using block RAM FIFOs.

Native FIFO Interface Signals

The following sections define the FIFO interface signals. Figure 1-5 illustrates these signals
(both standard and optional ports) for a FIFO core that supports independent write and

read clocks.
DIN[N:0 DOUT[M:0
[N:0] > | [M:0] -
WR_EN RD_EN
WR_CLK RD_CLK
——_>> I <<_——
FULL EMPTY
- I -
|
@ AMOST_FULL Write Clock | Read Clock ALMOST_EMPTY o
Domain Domain
PROG_FULL PROG_EMPTY
- = I = -
WR_ACK VALID
- = I -
OVERFLOW UNDERFLOW
- I -
|
PROG_FULL_THRESH_ASSERT PROG_EMPTY_THRESH_ASSERT
FULL _ >—| | P _ _ _
PROG_FULL_THRESH_NEGATE PROG_EMPTY_THRESH_NEGATE
= = = - -l = = =
PROG_FULL_THRESH
_FULL > | < PROG_EMPTY_THRESH
WR_RST
| > - RD_RST

RST ﬁ

Figure 1-5: FIFO with Independent Clocks: Interface Signals

Note: Optional ports represented in italics

FIFO Generator v9.3 www.xilinx.com 19
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Interface Signals: FIFOs With Independent Clocks

The RST signal, as defined Table 1-5, causes a reset of the entire core logic (both write and
read clock domains. It is an asynchronous input synchronized internally in the core before
use. The initial hardware reset should be generated by the user.

Table 1-5: Reset Signal for FIFOs with Independent Clocks

Name

Direction

Description

RST

Input

Reset: An asynchronous reset signal that initializes all internal
pointers and output registers.

Table 1-6 defines the write interface signals for FIFOs with independent clocks. The write
interface signals are divided into required and optional signals and all signals are
synchronous to the write clock (WR_CLK).

Table 1-6: Write Interface Signals for FIFOs with Independent Clocks

Name

Direction

Description

Required

WR_CLK

Input

Write Clock: All signals on the write domain are synchronous to
this clock.

DIN[N:0]

Input

Data Input: The input data bus used when writing the FIFO.

WR_EN

Input

Write Enable: If the FIFO is not full, asserting this signal causes
data (on DIN) to be written to the FIFO.

FULL

Output

Full Flag: When asserted, this signal indicates that the FIFO is full.
Write requests are ignored when the FIFO is full, initiating a write
when the FIFO is full is not destructive to the contents of the FIFO.

Optional

WR_RST

Input

Write Reset: Synchronous to write clock. When asserted,
initializes all internal pointers and flags of write clock domain.

ALMOST_FULL

Output

Almost Full: When asserted, this signal indicates that only one
more write can be performed before the FIFO is full.

PROG_FULL

Output

Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the assert threshold.
It is deasserted when the number of words in the FIFO is less than
the negate threshold.

WR_DATA_COUNT [D:0]

Output

Write Data Count: This bus indicates the number of words written
into the FIFO. The count is guaranteed to never under-report the
number of words in the FIFO, to ensure you never overflow the
FIFO. The exception to this behavior is when a write operation
occurs at the rising edge of WR_CLK, that write operation will
only be reflected on WR_DATA_COUNT at the next rising clock
edge.

If D is less than log2(FIFO depth)-1, the bus is truncated by
removing the least-significant bits.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 20

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-6: Write Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name

Direction

Description

WR_ACK

Output

Write Acknowledge: This signal indicates that a write request
(WR_EN) during the prior clock cycle succeeded.

OVERFLOW

Output

Overflow: This signal indicates that a write request (WR_EN)
during the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the contents of the
FIFO.

PROG_FULL_THRESH

Input

Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

You can either choose to set the assert and negate threshold to
the same value (using PROG_FULL_THRESH), or you can control
these values independently (using PROG_FULL_THRESH_ASSERT
and PROG_FULL_THRESH_NEGATE).

PROG_FULL_THRESH_ASSERT

Input

Programmable Full Threshold Assert: This signal is used to set the
upper threshold value for the programmable full flag, which
defines when the signal is asserted. The threshold can be
dynamically set in-circuit during reset. Refer to the FIFO
Generator GUI for the valid range of values®.

PROG_FULL_THRESH_NEGATE

Input

Programmable Full Threshold Negate: This signal is used to set
the lower threshold value for the programmable full flag, which
defines when the signal is de-asserted. The threshold can be
dynamically set in-circuit during reset. Refer to FIFO Generator
GUI for the valid range of values®.

INJECTSBITERR

Input

Injects a single bit error if the ECC feature is used on a Kintex-7,
Virtex-7, and Virtex-6 FPGA block RAMs or built-in FIFO macros.

INJECTDBITERR

Input

Injects a double bit error if the ECC feature is used on a
Kintex-7, Virtex-7, and Virtex-6 FPGA block RAMs or built-in FIFO
macros.

a. Valid range of values shown in the GUI are the actual values even though they are grayed out for some selections.

Table 1-7 defines the read interface signals of a FIFO with independent clocks. Read
interface signals are divided into required signals and optional signals, and all signals are
synchronous to the read clock (RD_CLK).

Table 1-7: Read Interface Signals for FIFOs with Independent Clocks

Name Direction Description
Required

RD_RST Input Read Reset: Synchronous to read clock. When asserted,
initializes all internal pointers, flags and output registers of read
clock domain.

RD_CLK Input Read Clock: All signals on the read domain are synchronous to
this clock.

DOUT[M:0] Output | Data Output: The output data bus is driven when reading the

FIFO.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 21

http://www.xilinx.com

& XILINX. Feature Summary

Table 1-7: Read Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name Direction Description

RD_EN Input Read Enable: If the FIFO is not empty, asserting this signal
causes data to be read from the FIFO (output on DOUT).

EMPTY Output | Empty Flag: When asserted, this signal indicates that the FIFO is
empty. Read requests are ignored when the FIFO is empty,
initiating a read while empty is not destructive to the FIFO.

Optional

ALMOST_EMPTY Output | Almost Empty Flag: When asserted, this signal indicates that the
FIFO is almost empty and one word remains in the FIFO.

PROG_EMPTY Output | Programmable Empty: This signal is asserted when the number
of words in the FIFO is less than or equal to the programmable
threshold. It is de-asserted when the number of words in the
FIFO exceeds the programmable threshold.

RD_DATA_COUNT [C:0] Output | Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading, to
ensure that you do not underflow the FIFO. The exception to
this behavior is when the read operation occurs at the rising
edge of RD_CLK, that read operation is only reflected on
RD_DATA_COUNT at the next rising clock edge.

If Cis less than log2(FIFO depth)-1, the bus is truncated by
removing the least-significant bits.

VALID Output | Valid: This signal indicates that valid data is available on the
output bus (DOUT).
UNDERFLOW Output | Underflow: Indicates that the read request (RD_EN) during the

previous clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

PROG_EMPTY_THRESH Input Programmable Empty Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can
be dynamically set in-circuit during reset.

You can either choose to set the assert and negate threshold to
the same value (using PROG_EMPTY_THRESH), or you can
control these values independently (using
PROG_EMPTY_THRESH_ASSERT and
PROG_EMPTY_THRESH_NEGATE).

PROG_EMPTY_THRESH_ASSERT Input Programmable Empty Threshold Assert: This signal is used to
set the lower threshold value for the programmable empty flag,
which defines when the signal is asserted. The threshold can be
dynamically set in-circuit during reset. Refer to the FIFO
Generator GUI for the valid range of values(@.

PROG_EMPTY_THRESH_NEGATE Input Programmable Empty Threshold Negate: This signal is used to
set the upper threshold value for the programmable empty flag,
which defines when the signal is de-asserted. The threshold can
be dynamically set in-circuit during reset. Refer to the FIFO
Generator GUI for the valid range of values(@.

FIFO Generator v9.3 www.xilinx.com 22
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-7: Read Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name Direction Description
SBITERR Output | Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, Virtex-6 or
Virtex-5 FPGA block RAM or built-in FIFO macro.
DBITERR Output | Double Bit Error: Indicates that the ECC decoder detected a

double-bit error on a Kintex-7, Virtex-7, Virtex-6 or Virtex-5
FPGA block RAM or built-in FIFO macro and data in the FIFO
core is corrupted.

a. Valid range of values shown in the GUI are the actual values even though they are grayed out for some selections.

Interface Signals: FIFOs with Common Clock

Table 1-8 defines the interface signals of a FIFO with a common write and read clock and is
divided into standard and optional interface signals. All signals (except asynchronous reset)
are synchronous to the common clock (CLK). Users have the option to select synchronous or
asynchronous reset for the distributed or block RAM FIFO implementation.

Table 1-8: Interface Signals for FIFOs with a Common Clock

Name Direction Description
Required

RST Input Reset: An asynchronous reset that initializes all internal pointers
and output registers.

SRST Input | Synchronous Reset: A synchronous reset that initializes all
internal pointers and output registers.

CLK Input Clock: All signals on the write and read domains are
synchronous to this clock.

DIN[N:0] Input Data Input: The input data bus used when writing the FIFO.

WR_EN Input | Write Enable: If the FIFO is not full, asserting this signal causes
data (on DIN) to be written to the FIFO.

FULL Output | Full Flag: When asserted, this signal indicates that the FIFO is
full. Write requests are ignored when the FIFO is full, initiating a
write when the FIFO is full is not destructive to the contents of
the FIFO.

DOUT[M:0] Output | Data Output: The output data bus driven when reading the FIFO.

RD_EN Input Read Enable: If the FIFO is not empty, asserting this signal
causes data to be read from the FIFO (output on DOUT).

EMPTY Output | Empty Flag: When asserted, this signal indicates that the FIFO is
empty. Read requests are ignored when the FIFO is empty,
initiating a read while empty is not destructive to the FIFO.

Optional
DATA_COUNT [C:0] Output | Data Count: This bus indicates the number of words stored in

the FIFO. If C is less than log2(FIFO depth)-1, the bus is

truncated by removing the least-significant bits.

FIFO Generator v9.3

PG0O57 December 18, 2012

www.xilinx.com 23

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-8: Interface Signals for FIFOs with a Common Clock (Cont’d)

Name

Direction

Description

ALMOST_FULL

Output

Almost Full: When asserted, this signal indicates that only one
more write can be performed before the FIFO is full.

PROG_FULL

Output

Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the assert
threshold. It is deasserted when the number of words in the
FIFO is less than the negate threshold.

WR_ACK

Output

Write Acknowledge: This signal indicates that a write request
(WR_EN) during the prior clock cycle succeeded.

OVERFLOW

Output

Overflow: This signal indicates that a write request (WR_EN)
during the prior clock cycle was rejected, because the FIFO is
full. Overflowing the FIFO is not destructive to the FIFO.

PROG_FULL_THRESH

Input

Programmable Full Threshold: This signal is used to set the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

You can either choose to set the assert and negate threshold to
the same value (using PROG_FULL_THRESH), or you can control
these values independently (using PROG_FULL_THRESH_ASSERT
and PROG_FULL_THRESH_NEGATE).

PROG_FULL_THRESH_ASSERT

Input

Programmable Full Threshold Assert: This signal is used to set
the upper threshold value for the programmable full flag, which
defines when the signal is asserted. The threshold can be
dynamically set in-circuit during reset. Refer to the FIFO
Generator GUI for the valid range of values@.

PROG_FULL_THRESH_NEGATE

Input

Programmable Full Threshold Negate: This signal is used to set
the lower threshold value for the programmable full flag, which
defines when the signal is de-asserted. The threshold can be
dynamically set in-circuit during reset. Refer to the FIFO
Generator GUI for the valid range of values .

ALMOST_EMPTY

Output

Almost Empty Flag: When asserted, this signal indicates that the
FIFO is almost empty and one word remains in the FIFO.

PROG_EMPTY

Output

Programmable Empty: This signal is asserted after the number
of words in the FIFO is less than or equal to the programmable
threshold. It is de-asserted when the number of words in the
FIFO exceeds the programmable threshold.

VALID

Output

Valid: This signal indicates that valid data is available on the
output bus (DOUT).

UNDERFLOW

Output

Underflow: Indicates that read request (RD_EN) during the
previous clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 24

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-8: Interface Signals for FIFOs with a Common Clock (Cont’d)

Name

Direction

Description

PROG_EMPTY_THRESH

Input

Programmable Empty Threshold: This signal is used to set the
threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can be
dynamically set in-circuit during reset.

you can either choose to set the assert and negate threshold to
the same value (using PROG_EMPTY_THRESH), or you can
control these values independently (using
PROG_EMPTY_THRESH_ASSERT and
PROG_EMPTY_THRESH_NEGATE).

PROG_EMPTY_THRESH_ASSERT

Input

Programmable Empty Threshold Assert: This signal is used to
set the lower threshold value for the programmable empty flag,
which defines when the signal is asserted. The threshold can be
dynamically set in-circuit during reset.

PROG_EMPTY_THRESH_NEGATE

Input

Programmable Empty Threshold Negate: This signal is used to
set the upper threshold value for the programmable empty flag,
which defines when the signal is de-asserted. The threshold can
be dynamically set in-circuit during reset.

SBITERR

Output

Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, Virtex-6 or
Virtex-5 FPGA block RAM or built-in FIFO macro.

DBITERR

Output

Double Bit Error: Indicates that the ECC decoder detected a

double-bit error on a Kintex-7, Virtex-7, Virtex-6 or Virtex-5
FPGA block RAM or built-in FIFO macro and data in the FIFO
core is corrupted.

INJECTSBITERR

Input

Injects a single bit error if the ECC feature is used on a
Kintex-7, Virtex-7, or Virtex-6 FPGA block RAM or built-in FIFO
macro. For detailed information, see Chapter 3, "Designing with
the Core.”

INJECTDBITERR

Input

Injects a double bit error if the ECC feature is used on a Kintex-7,
Virtex-7, or Virtex-6 FPGA block RAM or built-in FIFO macro. For
detailed information, see Chapter 3, “Designing with the Core.”

a. Valid range of values shown in the GUI are the actual values even though they are grayed out for some selections.

AXIl4 FIFO Feature Overview

Easy Integration of Independent FIFOs for Read and Write Channels

For AX14 and AXI4-Lite interfaces, AXI4 specifies Write Channels and Read Channels. Write
Channels include a Write Address Channel, Write Data Channel and Write Response
Channel. Read Channels include a Read Address Channel and Read Data Channel. The FIFO
Generator provides the ability to generate either Write Channels or Read Channels, or both
Write Channels and Read Channels for AXI4. Three FIFOs are integrated for Write Channels
and two FIFOs are integrated for Read Channels. When both Write and Read Channels are
selected, the FIFO Generator integrates five independent FIFOs.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 25

http://www.xilinx.com

& XILINX

Feature Summary

For AXI4 and AXI4-Lite interfaces, the FIFO Generator provides the ability to implement
independent FIFOs for each channel, as shown in Figure 1-6. For each channel, the core can
be independently configured to generate a block RAM or distributed memory-based FIFO.
The depth of each FIFO can also be independently configured.

S_ARESETN
S_ACLK M_ACLK
Write Channels VALID . ~ VALID Write Channels
' 4 . N
Write READY Write Clock Read Clock READY Write
Address CHANNEL INFO Domain Domain g Address
Channel) CHANNEL INFO Channel
VALID N VALID
L4
Write Data |, | READY Write Clock Read Clock READY Write Data
Channel | CHANNEL INFO R Domain Domain CHANNEL INFO Channel
|4
4 VALID %%i VALID
— 14 .
Resch\)’r:';ee READY .| Readclock | write Clock READY ‘é"égzonse
Channel |¢_| CHANNEL INFO "| Domain Domain CHANNEL INFO Channel
Read Channels VALID R - VALID Read Channels
|4
A d(lj?rias‘i , | READY Write Clock Read Clock READY igggess
Channel | | CHANNEL INFO .| Domain Domain CHANNEL INFO Channel
) - -
4 VALID %%i VALID
Resp?)?lzg | rREADY .| Read Clock Write Clock READY Sgggonse
Channel |, | CHANNEL INFO "| Domain Domain CHANNEL INFO Channel
Al

— Mandatory ——p Optional

Clock and Reset Implementation and Operation

Figure 1-6: AXIl4 Block Diagram

DS317_09_081210

For the AXI4-Stream, AXI4 and AXI4-Lite interfaces, all instantiated FIFOs share clock and
asynchronous active low reset signals (as shown Figure 1-6). In addition, all instantiated
FIFOs can support either independent clock or common clock operation.

The independent clock configuration of the FIFO Generator enables you to implement
unique clock domains on the write and read ports. The FIFO Generator handles the

synchronization between clock domains, placing no requirements on phase and frequency.
When data buffering in a single clock domain is required, the FIFO Generator can be used to
generate a core optimized for a single clock by selecting the common clock option.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 26

http://www.xilinx.com

& XILINX. Feature Summary

Automatic FIFO Width Calculation

AXI4 FIFOs support symmetric widths for the FIFO Read and Write ports. The FIFO width for
the AXI4 FIFO is determined by the selected interface type (AXI4-Stream, AXI4 or AX14-Lite)
and user-selected signals and signal widths within the given interface. The AXI4 FIFO width
is then calculated automatically by the aggregation of all signal widths in a respective
channel.

Supported Configuration, Memory and Application Types

The FIFO Generator provides selectable configuration options: FIFO, Register Slice and Pass
Through Wire. The core implements FIFOs built from block RAM or distributed RAM
memory types. Depending on the application type selection (Data FIFO, Packet FIFO, or low
latency FIFO), the core combines memory primitives in an optimal configuration based on
the calculated width and selected depth of the FIFO.

Packet FIFO

The Packet FIFO configuration delays the start of packet (burst) transmission until the end
(LAST beat) of the packet is received. This ensures uninterrupted availability of data once
master-side transfer begins, thus avoiding source-end stalling of the AXI data channel. This
is valuable in applications in which data originates at a master device. Examples of this
include a real-time signal channels that operate at a lower data-rate than the downstream
AXI switch and/or slave destination, such as a high-bandwidth memory.

The Packet FIFO principle applies to both AXI4 memory-mapped burst transactions (both
write and read) and AXI4-Stream packet transmissions. This feature is sometimes referred to
as “store-and-forward”, referring to the behavior for memory-mapped writes and stream
transmissions. For memory-mapped reads, transactions are delayed until there are enough
vacancies in the FIFO to guarantee uninterrupted buffering of the entire read data packet,
as predicted by the AR-channel transaction. Read transactions do not actually rely on the
RLAST signal.

The Packet FIFO feature is supported for Common Clock AXI4 and AXI4-Stream
configurations. It is not supported for AXI4-Lite configurations.

AXI4-Stream Packet FIFO

The FIFO Generator uses AXI4-Stream Interface for the AXI4-Stream Packet FIFO feature.
The FIFO Generator indicates a TVALID on the AXI4-Stream Master side when a complete
packet (marked by TLAST) is received on the AXI4-Stream Slave side or when the
AXI4-Stream FIFO is FULL. Indicating TVALID on the Master side due to the FIFO becoming
FULL is an exceptional case, and in such case, the Packet FIFO acts as a normal FWFT FIFO
forwarding the data received on the Slave side to the Master side until it receives TLAST on
the Slave side.

FIFO Generator v9.3 www.xilinx.com 27
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Feature Summary

)

IMPORTANT: The depth of the FIFO should be set to at least twice of the maximum packet size. For
example, if the maximum size of a packet is 512, then the FIFO depth should be set to 1024.

AXl4 Packet FIFO

The FIFO Generator uses the AXI4 Interface for the AXI4 Packet FIFO feature (for both write
and read channels).

« Packet FIFO on Write Channels: The FIFO Generator indicates an AWVALID on the AXI4
AW channel Master side when a complete packet (marked by WLAST) is received on the
AXI4 W channel Slave side. The Write Channel Packet FIFO is coupled to the Write
Address Channel so that AW transfers are not posted to the AXI4 Write Address
Channel until all of the data needed for the requested transfer is received on the AXI4
W channel Slave side. The minimum depth of the W channel is set to 512 and enables
the Write Channel Packet FIFO to hold two packets of its maximum length.

« Packet FIFO on Read Channels: The FIFO Generator indicates an RVALID on the AXI4 R
channel Slave side when a complete packet (marked by RLAST) is received on the AXI4
R channel Master side. The Read Channel Packet FIFO is coupled to the Read Address
Channel so that AR transfers are not posted to the AXI4 Read Address Channel if there
is not enough space left in the Packet FIFO for the associated data. The minimum depth
of the R channel is set to 512, and enables the Read Channel Packet FIFO to hold two
packets of its maximum length.

Error Injection and Correction (ECC) Support

The block RAM macros are equipped with built-in Error Injection and Correction Checking
in the Zyng-7000, 7 series, and Virtex-6 FPGA architectures. This feature is available for both
the common and independent clock block RAM FIFOs.

For more details on Error Injection and Correction, see Built-in Error Correction Checking in
Chapter 3.

AXIl4 Slave Interface for Performing Writes

AX14 FIFOs provide an AXI4 Slave interface for performing Writes. In Figure 1-4, the AXI4
Master provides INFORMATION and VALID signals; the AXI4 FIFO accepts the
INFORMATION by asserting the READY signal. The READY signal will be de-asserted only
when the FIFO is full.

AXI4 Master Interface for Performing Reads

The AXI4 FIFO provides an AXI4 Master interface for performing Reads. In Figure 1-4, the
AXI4 FIFO provides INFORMATION and VALID signals; upon detecting a READY signal
asserted from the AXI4 Slave interface, the AXI4 FIFO will place the next INFORMATION on
the bus. The VALID signal will be de-asserted only when the FIFO is empty.

FIFO Generator v9.3 www.xilinx.com 28
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

AXI4 FIFO Supported Devices

Feature Summary

Table 1-9 shows the families and sub-families supported by the FIFO Generator. For more
details about device support, see the Release Notes.

Table 1-9: Supported FPGA Families and Sub-Families

FPGA Family Sub-Family
Zynq-7000?
Virtex-7
Virtex-7 -2L
Virtex-7 -2G
Virtex-7 XT
Kintex-7
Kintex-7 -2L
Artix-7
Virtex-6 XC CXT/LXT/SXT/HXT
Virtex-6 XQ LXT/SXT
Virtex-6 -1L XC LXT/SXT
Virtex-6 -1L XQ LXT/SXT
Spartan-6 XQ LX/LXT
Spartan-6 -1L XC LX
Spartan-6 -1L XQ LX

a. ISE Design Suite implementations only.

AXI4 FIFO Feature Summary

Table 1-10 summarizes the supported FIFO Generator features for each clock configuration

and memory type.

Table 1-10: AXI4 FIFO Configuration Summary

Common Clock Independent Clock
FIFO Options Block RAM D;jlt;;';'g:sd Block RAM D:jf;:g:sd

Full@ v v v v
Programable FullP v v v v
Empty (© v v v v
Programmable v v v v
Empty(b)
Data Counts v v v v

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

29

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf

& XILINX

Table 1-10: AXI4 FIFO Configuration Summary

Feature Summary

Common Clock

Independent Clock

FIFO Options R s .
Block RAM D;Sltrlbuted Block RAM Distributed
emory Memory
ECC v "
Interrupt Flags v v v v

a. Mapped to S_AXIS_TREADY/S_AXI_AWREADY/S_AXI_WREADY/M_AXI_BREADY/S_AXI_ARREADY/M_AXI_RREADY
depending on the Handshake Flag Options in the GUL

b. Provided as sideband signal depending on the GUI option.

¢. Mapped to M_AXIS_TVALID/M_AXI_AWVALID/M_AXI_WVALID/S_AXI_BVALID/M_AXI_ARVALID/S_AXI_RVALID
depending on the Handshake Flag Options in the GUL

AXI4 FIFO Interface Signals

The following sections define the AXI4 FIFO interface signals.

The value of S_AXI S _ TREADY, S_AXI _AWREADY, S_AXI WREADY, M_AXI _BREADY,
S_AXI _ARREADY and M_AXI _RREADY is 1 when S_ARESETN is 0. To avoid unexpected
behavior, do not perform any transactions while S_ARESETN is 0.

Global Signals

Table 1-11 defines the global interface signals for AX14 FIFO.

The S_ARESETN signal causes a reset of the entire core logic. It is an active low,
asynchronous input synchronized internally in the core before use. The initial hardware
reset should be generated by the user.

Table 1-11: AXI4 FIFO - Global Interface Signals

Name

Direction

Description

Global Clock and Reset Signals Mapped to FIFO Clock and Reset Inputs

M_ACLK Input Global Master Interface Clock: All signals on Master Interface
of AXI4 FIFO are synchronous to M_ACLK

S_ACLK Input Global Slave Interface Clock: All signals are sampled on the
rising edge of this clock.

S_ARESETN Input Global reset: This signal is active low.

Clock Enable Signals Gated with FIFO's WR_EN and RD_EN Inputs
S_ACLK_EN Input Slave Clock Enable signal gated with WR_EN signal of FIFO
M_ACLK_EN Input Slave Clock Enable signal gated with RD_EN signal of FIFO

FIFO Generator v9.3

PG0O57 December 18, 2012

www.xilinx.com

30

http://www.xilinx.com

& XILINX

Feature Summary

AXI4-Stream FIFO Interface Signals

Table 1-12 defines the AXI4-Stream FIFO interface signals.

Table 1-12: AXI4-Stream FIFO Interface Signals

Name

Direction

Description

AXI4-Stream Interface: Handshake Signals for FIFO Write Interface

S_AXIS_TVALID Input TVALID: Indicates that the master is driving a valid transfer. A
transfer takes place when both TVALID and TREADY are
asserted.

S_AXIS_TREADY Output | TREADY: Indicates that the slave can accept a transfer in the

current cycle.

AXI4-Stream Interface: Informati

on Signals Mapped to FIFO Data Input (DIN) Bus

S_AXIS_TDATA[m-1:0]

Input

TDATA: The primary payload that is used to provide the data
that is passing across the interface. The width of the data
payload is an integer number of bytes.

S_AXIS_TSTRB[m/8-1:0]

Input

TSTRB: The byte qualifier that indicates whether the content of
the associated byte of TDATA is processed as a data byte or a
position byte. For a 64-bit DATA, bit 0 corresponds to the least
significant byte on DATA, and bit 7 corresponds to the most
significant byte. For example:

« STROBE[0] = 1b, DATA[7:0] is valid

« STROBE[7] = Ob, DATA[63:56] is not valid

S_AXIS_TKEEP[m/8-1:0]

Input

TKEEP: The byte qualifier that indicates whether the content of
the associated byte of TDATA is processed as part of the data
stream. Associated bytes that have the TKEEP byte qualifier
deasserted are null bytes and can be removed from the data
stream. For a 64-bit DATA, bit 0 corresponds to the least
significant byte on DATA, and bit 7 corresponds to the most
significant byte. For example:

« KEEP[O] = 1b, DATA[7:0] is a NULL byte
« KEEP [7] = Ob, DATA[63:56] is not a NULL byte

S_AXIS_TLAST

Input

TLAST: Indicates the boundary of a packet.

S_AXIS_TID[m:0]

Input

TID: The data stream identifier that indicates different streams
of data.

S_AXIS_TDEST][

m:0]

Input

TDEST: Provides routing information for the data stream.

S_AXIS_TUSER]

m:0]

Input

TUSER: The user-defined sideband information that can be
transmitted alongside the data stream.

AXI4-Stream Interface: Handshake Signals for FIFO Read Interface

M_AXIS_TVALID Output | TVALID: Indicates that the master is driving a valid transfer. A
transfer takes place when both TVALID and TREADY are
asserted.

M_AXIS_TREADY Input TREADY: Indicates that the slave can accept a transfer in the

current cycle.

AXl4-Stream Interface: Information Signals Derived from FIFO Data Output (DOUT) Bus

FIFO Generator v9.3

PG0O57 December 18, 2012

www.xilinx.com 31

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-12: AXI4-Stream FIFO Interface Signals (Cont’d)

Name

Direction

Description

M_AXIS_TDATA[m-1:0]

Output

TDATA: The primary payload that is used to provide the data
that is passing across the interface. The width of the data
payload is an integer number of bytes.

M_AXIS_TSTRB[m/8-1:0]

Output

TSTRB: The byte qualifier that indicates whether the content of
the associated byte of TDATA is processed as a data byte or a
position byte. For a 64-bit DATA, bit 0 corresponds to the least
significant byte on DATA, and bit 7 corresponds to the most
significant byte. For example:

« STROBE[0] = 1b, DATA[7:0] is valid

« STROBE[7] = Ob, DATA[63:56] is not valid

M_AXIS_TKEEP[m/8-1:0]

Output

TKEEP: The byte qualifier that indicates whether the content of
the associated byte of TDATA is processed as part of the data
stream. Associated bytes that have the TKEEP byte qualifier
deasserted are null bytes and can be removed from the data
stream. For a 64-bit DATA, bit 0 corresponds to the least
significant byte on DATA, and bit 7 corresponds to the most
significant byte. For example:

« KEEP[O] = 1b, DATA[7:0] is a NULL byte
« KEEP [7] = Ob, DATA[63:56] is not a NULL byte

M_AXIS_TLAST

Output

TLAST: Indicates the boundary of a packet.

M_AXIS_TID[m:0]

Output

TID: The data stream identifier that indicates different streams
of data.

M_AXIS_TDEST[m:0]

Output

TDEST. Provides routing information for the data stream.

M_AXIS_TUSER[m:0]

Output

TUSER: The user-defined sideband information that can be
transmitted alongside the data stream.

AXIl4-Stream FIFO: Optional Sideband Signals

AXIS_PROG_FULL_THRESHI[D:0]

Input

Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXIS_PROG_EMPTY_THRESHI[D:0]

Input

Programmable Empty Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can be
dynamically set in-circuit during reset.

D = log2(FIFO depth)-1

AXIS_INJECTSBITERR

Input

Inject Single-Bit Error: Injects a single-bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA block
RAM FIFO.

AXIS_INJECTDBITERR

Input

Inject Double-Bit Error: Injects a double-bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO.

AXIS_SBITERR

Output

Single-Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 32

http://www.xilinx.com

& XILINX. Feature Summary

Table 1-12: AXI4-Stream FIFO Interface Signals (Cont’d)

Name Direction Description

AXIS_DBITERR Output | Double-Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO and data in the FIFO core is corrupted.

AXIS_OVERFLOW Output | Overflow: Indicates that a write request during the prior clock
cycle was rejected, because the FIFO is full. Overflowing the
FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional writes when the FIFO is full.

AXIS_WR_DATA_COUNT[D:0] Output | Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure you
never overflow the FIFO. The exception to this behavior is when
a write operation occurs at the rising edge of write clock; that
write operation will only be reflected on WR_DATA_COUNT at
the next rising clock edge.

D = log,(FIFO depth)+1

AXIS_UNDERFLOW Output | Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional reads when the FIFO is empty.

AXIS_RD_DATA_COUNTI[D:0] Output | Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading, to
ensure that you do not underflow the FIFO. The exception to
this behavior is when the read operation occurs at the rising
edge of read clock; that read operation is only reflected on
RD_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXIS_DATA_COUNT[D:0] Output | Data Count: This bus indicates the number of words stored in
the FIFO.
D = log,(FIFO depth)+1

AXIS_PROG_FULL Output | Programmable Full: This signal is asserted when the number of

words in the FIFO is greater than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO is less than the programmable threshold.

AXIS_PROG_EMPTY Output | Programmable Empty: This signal is asserted when the number
of words in the FIFO is less than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO exceeds the programmable threshold.

AXI4 FIFO Interface Signals

Write Channels

FIFO Generator v9.3 www.xilinx.com 33
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Feature Summary

Table 1-13 defines the AXI4 FIFO interface signals for Write Address Channel.

Table 1-13: AXI4 Write Address Channel FIFO Interface Signals

Name Direction Description

AXI4 Interface Write Address Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_AWID[m:0] Input Write Address ID: Identification tag for the write address
group of signals.
S_AXI_AWADDR[mM:0] Input Write Address: The write address bus gives the address of

the first transfer in a write burst transaction. The
associated control signals are used to determine the
addresses of the remaining transfers in the burst.

S_AXI_AWLEN[7:0] Input Burst Length: The burst length gives the exact number of
transfers in a burst. This information determines the
number of data transfers associated with the address.

S_AXI_AWSIZE[2:0] Input Burst Size: Indicates the size of each transfer in the burst.
Byte lane strobes indicate exactly which byte lanes to
update.

S_AXI_AWBURST[1:0] Input Burst Type: The burst type, coupled with the size

information, details how the address for each transfer
within the burst is calculated.

S_AXI_AWLOCK][2:0] Input Lock Type: This signal provides additional information
about the atomic characteristics of the transfer.
S_AXI_AWCACHEJ[4:0] Input Cache Type: Indicates the bufferable, cacheable,

write-through, write-back, and allocate attributes of the
transaction.

S_AXI_AWPROTI[3:0] Input Protection Type: Indicates the normal, privileged, or
secure protection level of the transaction and whether the
transaction is a data access or an instruction access.

S_AXI_AWQOS[3:0] Input Quality of Service (QoS): Sent on the write address
channel for each write transaction.

S_AXI_AWREGION][3:0] Input Region Identifier: Sent on the write address channel for
each write transaction.

S_AXI_AWUSER[m:0] Input Write Address Channel User

AXI4 Interface Write Address Channel: Handshake Signals for FIFO Write Interface

S_AXI_AWVALID Input Write Address Valid: Indicates that valid write address and
control information are available:

« 1 = Address and control information available.
* 0 = Address and control information not available.

The address and control information remain stable until
the address acknowledge signal, AWREADY, goes high.

S_AXI_AWREADY Output Write Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

« 1 = Slave ready.
« 0 = Slave not ready.

AXI4 Interface Write Address Channel: Information Signals Derived from FIFO Data Output (DOUT) Bus

FIFO Generator v9.3 www.xilinx.com 34
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-13: AXI4 Write Address Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

M_AXI_AWID[m:0]

Output

Write Address ID: This signal is the identification tag for
the write address group of signals.

M_AXI_AWADDR[m:0]

Output

Write Address: The write address bus gives the address of
the first transfer in a write burst transaction. The
associated control signals are used to determine the
addresses of the remaining transfers in the burst.

M_AXI_AWLEN[7:0]

Output

Burst Length: The burst length gives the exact number of
transfers in a burst. This information determines the
number of data transfers associated with the address.

M_AXI_AWSIZE[2:0]

Output

Burst Size: This signal indicates the size of each transferin
the burst. Byte lane strobes indicate exactly which byte
lanes to update.

M_AXI_AWBURST[1:0]

Output

Burst Type: The burst type, coupled with the size
information, details how the address for each transfer
within the burst is calculated.

M_AXI_AWLOCK][2:0]

Output

Lock Type: This signal provides additional information
about the atomic characteristics of the transfer.

M_AXI_AWCACHE[4:0]

Output

Cache Type: This signal indicates the bufferable,
cacheable, write-through, write-back, and allocate
attributes of the transaction.

M_AXI_AWPROT[3:0]

Output

Protection Type: This signal indicates the normal,
privileged, or secure protection level of the transaction
and whether the transaction is a data access or an
instruction access.

M_AXI_AWQOS[3:0]

Output

Quality of Service (QoS): Sent on the write address
channel for each write transaction.

M_AXI_AWREGIONT[3:0]

Output

Region Identifier: Sent on the write address channel for
each write transaction.

M_AXI_AWUSER[m:0]

Output

Write Address Channel User

AXI4 Interface Write Address Channel:

Handshake Signals for FIFO Read Interface

M_AXI_AWVALID

Output

Write Address Valid: Indicates that valid write address and
control information are available:

» 1 = address and control information available
« 0 = address and control information not available.

The address and control information remain stable until
the address acknowledge signal, AWREADY, goes high.

M_AXI_AWREADY

Input

Write Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

« 1 = Slave ready.
« 0 = Slave not ready.

AXI4 Write Address Channel FIFO: Optional Sideband Signals

FIFO Generator v9.3

www.xilinx.com 35

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-13: AXI4 Write Address Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_AW_PROG_FULL_THRESH[D:0]

Input

Programmable Full Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of
the programmable full (PROG_FULL) flag. The threshold
can be dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_AW_PROG_EMPTY_THRESH[D:0]

Input

Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty (PROG_EMPTY)
flag. The threshold can be dynamically set in-circuit
during reset.

D = log,(FIFO depth)-1

AXI_AW_INJECTSBITERR

Input

Inject Single-Bit Error: Injects a single bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA
block RAM FIFO.

AXI_AW_INJECTDBITERR

Input

Inject Double-Bit Error: Injects a double bit error if the
ECC feature is used on a Kintex-7, Virtex-7, or Virtex-6
block RAM FIFO.

AXI_AW_SBITERR

Output

Single Bit Error: Indicates that the ECC decoder detected
and fixed a single-bit error on a Kintex-7, Virtex-7, or
Virtex-6 block RAM FIFO.

AXI_AW_DBITERR

Output

Double Bit Error: Indicates that the ECC decoder detected
a double-bit error on a Kintex-7, Virtex-7, or Virtex-6
block RAM FIFO and data in the FIFO core is corrupted.

AXI_AW_OVERFLOW

Output

Overflow: This signal indicates that a write request during
the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because

the core does not allow additional writes when the FIFO is
full.

AXI_AW_WR_DATA_COUNT[D:0]

Output

Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure
you never overflow the FIFO. The exception to this
behavior is when a write operation occurs at the rising
edge of write clock, that write operation will only be
reflected on WR_DATA_COUNT at the next rising clock
edge.

D = log,(FIFO depth)+1

AXI_AW_UNDERFLOW

Output

Underflow: Indicates that the read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.

Note: This signal may have a constant value of 0 because
the core does not allow additional reads when the FIFO is
empty.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 36

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-13: AXI4 Write Address Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_AW_RD_DATA_COUNTI[D:0]

Output

Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed
to never over-report the number of words available for
reading, to ensure that you do not underflow the FIFO.
The exception to this behavior is when the read operation
occurs at the rising edge of read clock, that read
operation is only reflected on RD_DATA_COUNT at the
next rising clock edge.

D = log,(FIFO depth)+1

AXI_AW_DATA_COUNT[D:0]

Output

Data Count: This bus indicates the number of words
stored in the FIFO.

D = log,(FIFO depth)+1

AXI_AW_PROG_FULL

Output

Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal to
the programmable threshold. It is deasserted when the
number of words in the FIFO is less than the
programmable threshold.

AXI_AW_PROG_EMPTY

Output

Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO exceeds the programmable
threshold.

Table 1-14 defines the AXI4 FIFO interface signals for Write Data Channel.

Table 1-14: AXI4 Write Data Channel FIFO Interface Signals

Name

Direction

Description

AXI4 Interface Write Data Channel: Inform

ation Signals mapped to FIFO Data Input (DIN) Bus

S_AXI_WID[m:0]

Input

Write ID Tag: This signal is the ID tag of the write data
transfer. The WID value must match the AWID value of the
write transaction.

S_AXI_WDATA[m-1:0]

Input

Write Data: The write data bus can be 8, 16, 32, 64, 128, 256
or 512 bits wide.

S_AXI_WSTRB[m/8-1:0]

Input

Write Strobes: Indicates which byte lanes to update in
memory. There is one write strobe for each eight bits of the
write data bus. Therefore, WSTRB[n] corresponds to
WDATA[(8 x n) + 7:(8 x n)]. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and bit 7
corresponds to the most significant byte. For example:

. STROBE[O] = 1b, DATA[7:0] is valid
« STROBE[7] = Ob, DATA[63:56] is not valid

S_AXI_WLAST

Input

Write Last: Indicates the last transfer in a write burst.

S_AXI_WUSER[m:0]

Input

Write Data Channel User

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 37

http://www.xilinx.com

& XILINX

Table 1-14:

Feature Summary

AXI4 Write Data Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI4 Interface Write Data Channel:

Handshake Signals for FIFO Write Interface

S_AXI_WVALID Input Write Valid: Indicates that valid write data and strobes are
available:
« 1 = Write data and strobes available.
« 0 = Write data and strobes not available.
S_AXI_WREADY Output Write Ready: Indicates that the slave can accept the write

data:
« 1 = Slave ready.
« 0 = Slave not ready.

AXI4 Interface Write Data Channel:

Information Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_WID[m:0]

Output

Write ID Tag: This signal is the ID tag of the write data
transfer. The WID value must match the AWID value of the
write transaction.

M_AXI_WDATA[m-1:0]

Output

Write Data: The write data bus can be 8, 16, 32, 64, 128, 256
or 512 bits wide.

M_AXI_WSTRB[m/8-1:0]

Output

Write Strobes: Indicates which byte lanes to update in
memory. There is one write strobe for each eight bits of the
write data bus. Therefore, WSTRB[n] corresponds to
WDATA[(8 x n) + 7:(8 x n)]. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and bit 7
corresponds to the most significant byte. For example:

« STROBE[O] = 1b, DATA[7:0] is valid
« STROBE[7] = Ob, DATA[63:56] is not valid

M_AXI_WLAST

Output

Write Last: Indicates the last transfer in a write burst.

M_AXI_WUSER[m:0]

Output

Write Data Channel User

AXl4 Interface Write Data Channel:

Handshake Signals for FIFO Read Interface

M_AXI_WVALID Output Write valid: Indicates that valid write data and strobes are
available:
« 1 = Write data and strobes available .
« 0 = Write data and strobes not available.
M_AXI_WREADY Input Write ready: Indicates that the slave can accept the write

data:
« 1 = Slave ready.
« 0 = Slave not ready.

AXI4 Write Data Channel FIFO: Optional Sideband Signals

AXI_W_PROG_FULL_THRESHI[D:0] Input Programmable Full Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log,(FIFO depth)-1
FIFO Generator v9.3 www.xilinx.com 38

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-14: AXI4 Write Data Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_W_PROG_EMPTY_THRESHI[D:0]

Input

Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold
can be dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_W_INJECTSBITERR

Input

Inject Single-Bit Error: Injects a single bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA
block RAM FIFO.

AXI_W_INJECTDBITERR

Input

Inject Double-Bit Error: Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_W_SBITERR

Output

Single-Bit Error: Indicates that the ECC decoder detected
and fixed a single-bit error on a Kintex-7, Virtex-7, or
Virtex-6 block RAM FIFO.

AXI_W_DBITERR

Output

Double-Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_W_OVERFLOW

Output

Overflow: This signal indicates that a write request during
the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional writes when the FIFO is full.

AXI_W_WR_DATA_COUNTI[D:0]

Output

Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure you
never overflow the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_W_UNDERFLOW

Output

Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO

AXI_W_RD_DATA_COUNT[D:0]

Output

Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for
reading, to ensure that you do not underflow the FIFO. The
exception to this behavior is when the read operation occurs
at the rising edge of read clock, that read operation is only
reflected on RD_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_W_DATA_COUNTI[D:0]

Output

Data Count: This bus indicates the number of words stored
in the FIFO.

D = log,(FIFO depth)+1

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 39

http://www.xilinx.com

& XILINX

Table 1-14:

Feature Summary

AXI4 Write Data Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_W_PROG_FULL

Output

Programmable Full: This signal is asserted when the number
of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO is less than the programmable
threshold.

AXI_W_PROG_EMPTY

Output

Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO exceeds the programmable threshold.

Table 1-15 defines the AXI4 FIFO interface signals for Write Response Channel.

Table 1-15: AXI4 Write Response Channel FIFO Interface Signals

Name

Direction

Description

AXI4 Interface Write Response Ch

annel: Information Signals Mapped to FIFO Data Output (DOUT) Bus

S_AXI_BID[m:0]

Output

Response ID: The identification tag of the write response.
The BID value must match the AWID value of the write
transaction to which the slave is responding.

S_AXI_BRESP[1:0]

Output

Write Response: Indicates the status of the write transaction.
The allowable responses are OKAY, EXOKAY, SLVERR, and
DECERR.

S_AXI_BUSER[m:0]

Output

Write Response Channel User

AXl4 Interface Write Response Channel: Handshake Signals for FIFO Read Interface

S_AXI_BVALID Output Write Response Valid: Indicates that a valid write response is
available:
* 1 = Write response available.
» 0 = Write response not available.

S_AXI_BREADY Input Response Ready: Indicates that the master can accept the

response information.
» 1 = Master ready.
» 0 = Master not ready.

AXl4 Interface Write Response Channel: Infor

mation Signals Derived from FIFO Data Input (DIN) Bus

M_AXI_BID[m:0]

Input

Response ID: The identification tag of the write response.
The BID value must match the AWID value of the write
transaction to which the slave is responding.

M_AXI_BRESP[1:0]

Input

Write Response: Indicates the status of the write transaction.
The allowable responses are OKAY, EXOKAY, SLVERR, and
DECERR.

M_AXI_BUSER[m:0]

Input

Write Response Channel User

AXI4 Interface Write Response Channel: Handshake Signals for FIFO Write Interface

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

40

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-15: AXI4 Write Response Channel FIFO Interface Signals (Cont’d)

Name Direction Description
M_AXI_BVALID Input Write Response Valid: Indicates that a valid write response is
available:
+ 1 = Write response available.
* 0 = Write response not available.
M_AXI_BREADY Output Response Ready: Indicates that the master can accept the

response information.
+ 1 = Master ready.
» 0 = Master not ready.

AXl4 Write Response Channel FIFO: Optional Sideband Signals

AXI_B_PROG_FULL_THRESH[D:0] Input

Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_B_PROG_EMPTY_THRESHI[D:0] Input

Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold
can be dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_B_INJECTSBITERR

Input

Inject Single-Bit Error: Injects a single bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA
block RAM FIFO.

AXI_B_INJECTDBITERR

Input

Inject Double-Bit Error: Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO.

AXI_B_SBITERR

Output

Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6
block RAM FIFO.

AXI_B_DBITERR

Output

Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_B_OVERFLOW

Output

Overflow: This signal indicates that a write request during
the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional writes when the FIFO is full.

AXI_B_WR_DATA_COUNTI[D:0] Output

Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure you
never overflow the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

FIFO Generator v9.3

www.xilinx.com 41

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-15: AXI4 Write Response Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_B_UNDERFLOW

Output

Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional reads when the FIFO is empty.

AXI_B_RD_DATA_COUNTI[D:0]

Output

Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading,
to ensure that you do not underflow the FIFO. The exception
to this behavior is when the read operation occurs at the
rising edge of read clock, that read operation is only
reflected on RD_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_B_DATA_COUNTI[D:0]

Output

Data Count: This bus indicates the number of words stored
in the FIFO.

D = log,(FIFO depth)+1

AXI_B_PROG_FULL

Output

Programmable Full: This signal is asserted when the number
of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO is less than the programmable
threshold.

AXI_B_PROG_EMPTY

Output

Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO exceeds the programmable threshold.

Read Channels

Table 1-16 defines the AXI4 FIFO interface signals for Read Address Channel.

Table 1-16: AXI4 Read Address Channel FIFO Interface Signals

Name

Direction

Description

AXI4 Interface Read Address Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_ARID[m:0]

Input

Read Address ID: This signal is the identification tag for the
read address group of signals.

S_AXI_ARADDR[m:0]

Input

Read Address: The read address bus gives the initial
address of a read burst transaction.

Only the start address of the burst is provided and the
control signals that are issued alongside the address detail
how the address is calculated for the remaining transfers in
the burst.

S_AXI_ARLEN([7:0]

Input

Burst Length: The burst length gives the exact number of
transfers in a burst. This information determines the
number of data transfers associated with the address.

S_AXI_ARSIZE[2:0]

Input

Burst Size: This signal indicates the size of each transfer in
the burst.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

42

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-16: AXI4 Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

S_AXI_ARBURST[1:0] Input Burst Type: The burst type, coupled with the size
information, details how the address for each transfer
within the burst is calculated.

S_AXI_ARLOCK]2:0] Input Lock Type: This signal provides additional information
about the atomic characteristics of the transfer.

S_AXI_ARCACHE[4:0] Input Cache Type: This signal provides additional information
about the cacheable characteristics of the transfer.

S_AXI_ARPROT[3:0] Input Protection Type: This signal provides protection unit
information for the transaction.

S_AXI_ARQOSI3:0] Input Quality of Service (QoS): Sent on the read address channel
for each read transaction.

S_AXI_ARREGION]3:0] Input Region Identifier: Sent on the read address channel for
each read transaction.

S_AXI_ARUSER[m:0] Input Read Address Channel User

AXI4 Interface Read Address Channel:

Handshake Signals for FIFO Write Interface

S_AXI_ARVALID

Input

Read Address Valid: When high, indicates that the read
address and control information is valid and will remain
stable until the address acknowledge signal, ARREADY, is
high.

« 1 = Address and control information valid.

« 0 = Address and control information not valid.

S_AXI_ARREADY

Output

Read Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

« 1 = Slave ready.
« 0 = Slave not ready.

AXI4 Interface Read Address Chann

el: Informati

on Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_ARID[m:0]

Output

Read Address ID. This signal is the identification tag for the
read address group of signals.

M_AXI_ARADDR[m:0]

Output

Read Address: The read address bus gives the initial
address of a read burst transaction.

Only the start address of the burst is provided and the
control signals that are issued alongside the address detail
how the address is calculated for the remaining transfers in
the burst.

M_AXI_ARLEN[7:0]

Output

Burst Length: The burst length gives the exact number of
transfers in a burst. This information determines the
number of data transfers associated with the address.

M_AXI_ARSIZE[2:0]

Output

Burst Size: This signal indicates the size of each transfer in
the burst.

M_AXI_ARBURSTI1:0]

Output

Burst Type: The burst type, coupled with the size
information, details how the address for each transfer

within the burst is calculated.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

43

http://www.xilinx.com

& XILINX. Feature Summary

Table 1-16: AXI4 Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

M_AXI_ARLOCK[2:0] Output Lock Type: This signal provides additional information
about the atomic characteristics of the transfer.

M_AXI_ARCACHE[4:0] Output Cache Type: This signal provides additional information
about the cacheable characteristics of the transfer.

M_AXI_ARPROT([3:0] Output Protection Type: This signal provides protection unit
information for the transaction.

M_AXI_ARQOSI3:0] Output Quality of Service (QoS) signaling, sent on the read address
channel for each read transaction.

M_AXI_ARREGION][3:0] Output Region Identifier: Sent on the read address channel for
each read transaction.

M_AXI_ARUSER[mM:0] Output Read Address Channel User

AXIl4 Interface Read Address Channel: Handshake Signals for FIFO Read Interface

M_AXI_ARVALID Output Read Address Valid: Indicates, when HIGH, that the read
address and control information is valid and will remain
stable until the address acknowledge signal, ARREADY, is
high.

« 1 = Address and control information valid.

« 0 = Address and control information not valid.

M_AXI_ARREADY Input Read Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

« 1 = Slave ready.
« 0 = Slave not ready.

AXI4 Read Address Channel FIFO: Optional Sideband Signals

AXI_AR_PROG_FULL_THRESHI[D:0] Input Programmable Full Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of
the programmable full (PROG_FULL) flag. The threshold
can be dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_AR_PROG_EMPTY_THRESHID:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty (PROG_EMPTY)
flag. The threshold can be dynamically set in-circuit during
reset.

D = log,(FIFO depth)-1

AXI_AR_INJECTSBITERR Input Inject Single-Bit Error: Injects a single bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA
block RAM FIFO.

AXI_AR_INJECTDBITERR Input Inject Double-Bit Error: Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_AR_SBITERR Output Single Bit Error: Indicates that the ECC decoder detected

and fixed a single-bit error on a Kintex-7, Virtex-7, or
Virtex-6 block RAM FIFO.

FIFO Generator v9.3 www.xilinx.com a4
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-16: AXI4 Read Address Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_AR_DBITERR

Output

Double Bit Error: Indicates that the ECC decoder detected
a double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_AR_OVERFLOW

Output

Overflow: This signal indicates that a write request during
the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because

the core does not allow additional writes when the FIFO is
full.

AXI_AR_WR_DATA_COUNTI[D:0]

Output

Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure
you never overflow the FIFO. The exception to this behavior
is when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_AR_UNDERFLOW

Output

Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.
Note: This signal may have a constant value of 0 because
the core does not allow additional reads when the FIFO is
empty.

AXI_AR_RD_DATA_COUNTI[D:0]

Output

Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed
to never over-report the number of words available for
reading, to ensure that you do not underflow the FIFO. The
exception to this behavior is when the read operation
occurs at the rising edge of read clock, that read operation
is only reflected on RD_DATA_COUNT at the next rising
clock edge.

D = log,(FIFO depth)+1

AXI_AR_DATA_COUNTID:0]

Output

Data Count: This bus indicates the number of words stored
in the FIFO.

D = log,(FIFO depth)+1

AXI_AR_PROG_FULL

Output

Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO is less than the programmable
threshold.

AXI_AR_PROG_EMPTY

Output

Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO exceeds the programmable
threshold.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

45

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-17 defines the AXI4 FIFO interface signals for Read Data Channel.

Table 1-17: AXI4 Read Data Channel FIFO Interface Signals

Name

Direction

Description

AXl4 Interface Read Data Chan

nel: Information Signals Mapped to FIFO Data Output (DOUT) Bus

S_AXI_RID[m:0] Output Read ID Tag: ID tag of the read data group of signals. The RID
value is generated by the slave and must match the ARID
value of the read transaction to which it is responding.

S_AXI_RDATA[m-1:0] Output Read Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits wide.

S_AXI_RRESP[1:0] Output Read Response: Indicates the status of the read transfer. The
allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.

S_AXI_RLAST Output Read Last: Indicates the last transfer in a read burst.

S_AXI_RUSER[mM:0] Output Read Data Channel User

AXI4 Interface Read Data Channel: Handshake Signals for FIFO Read Interface

S_AXI_RVALID Output Read Valid: Indicates that the required read data is available
and the read transfer can complete:
» 1 = Read data available.
» 0 = Read data not available.

S_AXI_RREADY Input Read Ready: Indicates that the master can accept the read

data and response information:
» 1= Master ready.
* 0 = Master not ready.

AXI4 Interface Read Data Cha

nnel: Information Signals Derived from FIFO Data Input (DIN) Bus

M_AXI_RID[m:0] Input Read ID Tag: ID tag of the read data group of signals. The RID
value is generated by the slave and must match the ARID
value of the read transaction to which it is responding.

M_AXI_RDATA[m-1:0] Input Read Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits wide.

M_AXI_ RRESP[1:0] Input Read Response: Indicates the status of the read transfer. The
allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.

M_AXI_RLAST Input Read Last: Indicates the last transfer in a read burst.

M_AXI_RUSER[m:0] Input Read Data Channel User

AXIl4 Interface Read Data Channel

: Handshake Signals for FIFO Write Interface

M_AXI_RVALID Input Read Valid: Indicates that the required read data is available
and the read transfer can complete:
* 1 = Read data available.
* 0 = Read data not available.

M_AXI_RREADY Output Read Ready: Indicates that the master can accept the read

data and response information:
» 1= Master ready.
* 0 = Master not ready.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

46

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-17: AXI4 Read Data Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXl4 Read

Data Channel FIFO: Optional Sideband Signals

AXI_R_PROG_FULL_THRESH[D:0]

Input

Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_R_PROG_EMPTY_THRESH[D:0]

Input

Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can
be dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_R_INJECTSBITERR

Input

Injects a single bit error if the ECC feature is used on a
Kintex-7, Virtex-7, or Virtex-6 FPGA block RAM FIFO.

AXI_R_INJECTDBITERR

Input

Injects a double bit error if the ECC feature is used on a
Kintex-7, Virtex-7, or Virtex-6 block RAM FIFO.

AXI_R_SBITERR

Output

Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6
block RAM FIFO.

AXI_R_DBITERR

Output

Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_R_OVERFLOW

Output

Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional writes when the FIFO is full.

AXI_R_WR_DATA_COUNT[D:0]

Output

Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure you
never overflow the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_R_UNDERFLOW

Output

Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional reads when the FIFO is empty.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 47

http://www.xilinx.com

& XILINX. Feature Summary

Table 1-17: AXI4 Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

AXI_R_RD_DATA_COUNTI[D:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading,
to ensure that you do not underflow the FIFO. The exception
to this behavior is when the read operation occurs at the
rising edge of read clock, that read operation is only reflected
on RD_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_R_DATA_COUNTID:0] Output Data Count: This bus indicates the number of words stored in
the FIFO.
D = log,(FIFO depth)+1

AXI_R_PROG_FULL Output Programmable Full: This signal is asserted when the number

of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the number of
words in the FIFO is less than the programmable threshold.

AXI_R_PROG_EMPTY Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number of
words in the FIFO exceeds the programmable threshold.

AXI4-Lite FIFO Interface Signals

Write Channels
Table 1-18 defines the AXI4-Lite FIFO interface signals for Write Address Channel.

Table 1-18: AXl4-Lite Write Address Channel FIFO Interface Signals

Name Direction Description

AXIl4-Lite Interface Write Address Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_AWADDR[m:0] Input Write Address: Gives the address of the first transfer in a
write burst transaction. The associated control signals are
used to determine the addresses of the remaining transfers
in the burst.

S_AXI_AWPROTI[3:0] Input Protection Type: Indicates the normal, privileged, or secure
protection level of the transaction and whether the
transaction is a data access or an instruction access.

AXIl4-Lite Interface Write Address Channel: Handshake Signals for FIFO Write Interface

S_AXI_AWVALID Input Write Address Valid: Indicates that valid write address and
control information are available:

« 1 = Address and control information available.
» 0 = Address and control information not available.

The address and control information remain stable until the
address acknowledge signal, AWREADY, goes high.

FIFO Generator v9.3 www.xilinx.com 48
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-18: AXl4-Lite Write Address Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

S_AXI_AWREADY

Output

Write Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

« 1 = Slave ready.
+ 0 = Slave not ready.

AXl4-Lite Interface Write Address Cha

nnel: Inform

ation Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_AWADDR[m:0] Output Write Address: Gives the address of the first transfer in a
write burst transaction. The associated control signals are
used to determine the addresses of the remaining transfers
in the burst.

M_AXI_AWPROT[3:0] Output Protection Type: This signal indicates the normal, privileged,

or secure protection level of the transaction and whether
the transaction is a data access or an instruction access.

AXl4-Lite Interface Write A

ddress Channel: Handshake Signals for FIFO Read Interface

M_AXI_AWVALID

Output

Write Address Valid: Indicates that valid write address and
control information are available:

« 1 = Address and control information available.
* 0 = Address and control information not available.

The address and control information remain stable until the
address acknowledge signal, AWREADY, goes high.

M_AXI_AWREADY

Input

Write Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

« 1 = Slave ready.
« 0 = Slave not ready.

AXIl4-Lite Write Address Channel FIFO: Optional Sideband Signals

AXI_AW_PROG_FULL_THRESH[D:0]

Input

Programmable Full Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_AW_PROG_EMPTY_THRESH[D:0]

Input

Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold
can be dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_AW_INJECTSBITERR

Input

Inject Single-Bit Error: Injects a single bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA
block RAM FIFO.

AXI_AW_INJECTDBITERR

Input

Inject Double-Bit Error: Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_AW_SBITERR

Output

Single Bit Error: Indicates that the ECC decoder detected
and fixed a single-bit error on a Kintex-7, Virtex-7, or
Virtex-6 block RAM FIFO.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

49

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-18: AXl4-Lite Write Address Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_AW_DBITERR

Output

Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_AW_OVERFLOW

Output

Overflow: This signal indicates that a write request during
the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because

the core does not allow additional writes when the FIFO is
full.

AXI_AW_WR_DATA_COUNT[D:0]

Output

Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure you
never overflow the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_AW_UNDERFLOW

Output

Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.
Note: This signal may have a constant value of 0 because
the core does not allow additional reads when the FIFO is
empty.

AXI_AW_RD_DATA_COUNTI[D:0]

Output

Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for
reading, to ensure that you do not underflow the FIFO. The
exception to this behavior is when the read operation
occurs at the rising edge of read clock, that read operation
is only reflected on RD_DATA_COUNT at the next rising
clock edge.

D = log,(FIFO depth)+1

AXI_AW_DATA_COUNT[D:0]

Output

Data Count: This bus indicates the number of words stored
in the FIFO.

D = log,(FIFO depth)+1

AXI_AW_PROG_FULL

Output

Programmable Full: This signal is asserted when the number
of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO is less than the programmable
threshold.

AXI_AW_PROG_EMPTY

Output

Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO exceeds the programmable threshold.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 50

http://www.xilinx.com

& XILINX. Feature Summary

Table 1-19 defines the AXI4-Lite FIFO interface signals for Write Data Channel.

Table 1-19: AXl4-Lite Write Data Channel FIFO Interface Signals

Name Direction Description

AXl4-Lite Interface Write Data Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_WDATA[mM-1:0] Input Write Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits wide.

S_AXI_WSTRB[m/8-1:0] Input Write Strobes: Indicates which byte lanes to update in
memory. There is one write strobe for each eight bits of the
write data bus. Therefore, WSTRB[n] corresponds to
WDATA[(8 x n) + 7:(8 x n)]. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and bit
7 corresponds to the most significant byte. For example:

- STROBE[0] = 1b, DATA[7:0] is valid

- STROBE[7] = Ob, DATA[63:56] is not valid

AXIl4-Lite Interface Write Data Channel: Handshake Signals for FIFO Write Interface

S_AXI_WVALID Input Write Valid: Indicates that valid write data and strobes are
available:

« 1 = Write data and strobes available.
« 0 = Write data and strobes not available.

S_AXI_WREADY Output Write Ready: Indicates that the slave can accept the write
data:

« 1 = Slave ready.
« 0 = Slave not ready.

AXIl4-Lite Interface Write Data Channel: Information Signals Derived from FIFO Data Output (DOUT) Bus
M_AXI_WDATA[m-1:0] Output Write Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits wide.

M_AXI_WSTRB[m/8-1:0] Output Write Strobes: Indicates which byte lanes to update in
memory. There is one write strobe for each eight bits of the
write data bus. Therefore, WSTRB[n] corresponds to
WDATA[(8 x n) + 7:(8 x n)]. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and bit
7 corresponds to the most significant byte. For example:

« STROBE[O] = 1b, DATA[7:0] is valid
« STROBE[7] = Ob, DATA[63:56] is not valid

AXIl4-Lite Interface Write Data Channel: Handshake Signals for FIFO Read Interface

M_AXI_WVALID Output Write Valid: Indicates that valid write data and strobes are
available:

« 1 = Write data and strobes available.
« 0 = Write data and strobes not available.

M_AXI_WREADY Input Write Ready: Indicates that the slave can accept the write
data:

« 1 = Slave ready.
« 0 = Slave not ready.

AXIl4-Lite Write Data Channel FIFO: Optional Sideband Signals

FIFO Generator v9.3 www.xilinx.com 51
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Feature Summary

Table 1-19: AXl4-Lite Write Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

AXI_W_PROG_FULL_THRESHI[D:0] Input Programmable Full Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of
the programmable full (PROG_FULL) flag. The threshold can
be dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_W_PROG_EMPTY_THRESH[D:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and de-assertion
of the programmable empty (PROG_EMPTY) flag. The
threshold can be dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_W_INJECTSBITERR Input Injects a single bit error if the ECC feature is used on a
Kintex-7, Virtex-7, or Virtex-6 FPGA block RAM FIFO.

AXI_W_INJECTDBITERR Input Injects a double bit error if the ECC feature is used on a
Kintex-7, Virtex-7, or Virtex-6 block RAM FIFO.

AXI_W_SBITERR Output Single Bit Error: Indicates that the ECC decoder detected

and fixed a single-bit error on a Kintex-7, Virtex-7, or
Virtex-6 block RAM FIFO.

AXI_W_DBITERR Output Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_W_OVERFLOW Output Overflow: This signal indicates that a write request during
the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because
the core does not allow additional writes when the FIFO is
full.

AXI_W_WR_DATA_COUNTI[D:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure you
never overflow the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_W_UNDERFLOW Output Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.
Note: This signal may have a constant value of 0 because
the core does not allow additional reads when the FIFO is
empty.

FIFO Generator v9.3 www.xilinx.com 52
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-19: AXl4-Lite Write Data Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_W_RD_DATA_COUNT[D:0]

Output

Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed
to never over-report the number of words available for
reading, to ensure that you do not underflow the FIFO. The
exception to this behavior is when the read operation
occurs at the rising edge of read clock, that read operation
is only reflected on RD_DATA_COUNT at the next rising
clock edge.

D = log,(FIFO depth)+1

AXI_W_DATA_COUNTI[D:0]

Output

Data Count: This bus indicates the number of words stored
in the FIFO.

D = log,(FIFO depth)+1

AXI_W_PROG_FULL

Output

Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO is less than the programmable
threshold.

AXI_W_PROG_EMPTY

Output

Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO exceeds the programmable threshold.

Table 1-20 defines the AXI4-Lite FIFO interface signals for Write Response Channel.

Table 1-20: AXl4-Lite Write Response Channel FIFO Interface Signals

Name

Direction

Description

AXl4-Lite Interface Write Respons

e Channel: Information Signals Mapped to FIFO Data Output (DOUT)

Bus

S_AXI_BRESP[1:0]

Output

Write Response: Indicates the status of the write transaction.
The allowable responses are OKAY, EXOKAY, SLVERR, and
DECERR.

AXl4-Lite Interface Write Response Channel: Handshake Signals for FIFO Read Interface

S_AXI_BVALID

Output

Write Response Valid: Indicates that a valid write response is
available:

+ 1 = Write response available.
+ 0 = Write response not available.

S_AXI_BREADY

Input

Response Ready: Indicates that the master can accept the
response information.

+ 1 = Master ready.
* 0 = Master not ready.

AXl4-Lite Interface Write Response

Channel: Inf

ormation Signals Derived from FIFO Data Input (DIN) Bus

M_AXI_BRESP[1:0]

Input

Write response: Indicates the status of the write transaction.
The allowable responses are OKAY, EXOKAY, SLVERR, and
DECERR.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

53

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-20: AXl4-Lite Write Response Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXIl4-Lite Interface Write Response Cha

nnel: Handshake Signals for FIFO Write Interface

M_AXI_BVALID Input Write response valid: Indicates that a valid write response is
available:
+ 1 = Write response available.
« 0 = Write response not available.

M_AXI_BREADY Output Response ready: Indicates that the master can accept the

response information.
* 1 = Master ready.
« 0 = Master not ready.

AXl4-Lite Write

Response Channel FIFO: Optional Sideband Signals

AXI_B_PROG_FULL_THRESHI[D:0]

Input

Programmable Full Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_B_PROG_EMPTY_THRESH[D:0]

Input

Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold
can be dynamically set in-circuit during reset.

D is than log2(FIFO depth)-1

AXI_B_INJECTSBITERR

Input

Injects a single bit error if the ECC feature is used on a
Kintex-7, Virtex-7, or Virtex-6 FPGA block RAM FIFO.

AXI_B_INJECTDBITERR

Input

Injects a double bit error if the ECC feature is used on a
Kintex-7, Virtex-7, or Virtex-6 block RAM FIFO.

AXI_B_SBITERR

Output

Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6
block RAM FIFO.

AXI_B_DBITERR

Output

Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_B_OVERFLOW

Output

Overflow: This signal indicates that a write request during
the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional writes when the FIFO is full.

AXI_B_WR_DATA_COUNTI[D:0]

Output

Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure you
never overflow the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 54

http://www.xilinx.com

& XILINX. Feature Summary

Table 1-20: AXl4-Lite Write Response Channel FIFO Interface Signals (Cont’d)

Name Direction Description

AXI_B_UNDERFLOW Output Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional reads when the FIFO is empty.

AXI_B_RD_DATA_COUNTID:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for
reading, to ensure that you do not underflow the FIFO. The
exception to this behavior is when the read operation occurs
at the rising edge of read clock, that read operation is only
reflected on RD_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_B_DATA_COUNT[D:0] Output Data Count: This bus indicates the number of words stored
in the FIFO.
D = log,(FIFO depth)+1

AXI_B_PROG_FULL Output Programmable Full: This signal is asserted when the number

of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO is less than the programmable
threshold.

AXI_B_PROG_EMPTY Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO exceeds the programmable threshold.

Read Channels
Table 1-21 defines the AXI4-Lite FIFO interface signals for Read Address Channel.

Table 1-21: AXl4-Lite Read Address Channel FIFO Interface Signals

Name Direction Description

AXIl4-Lite Interface Read Address Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_ARADDR[m:0] Input Read Address: The read address bus gives the initial address
of a read burst transaction. Only the start address of the
burst is provided and the control signals that are issued
alongside the address detail how the address is calculated
for the remaining transfers in the burst.

S_AXI_ARPROT[3:0] Input Protection Type: This signal provides protection unit
information for the transaction.

AXl4-Lite Interface Read Address Channel: Handshake Signals for FIFO Write Interface

FIFO Generator v9.3 www.xilinx.com 55
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-21: AXl4-Lite Read Address Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

S_AXI_ARVALID

Input

Read Address Valid: When high, indicates that the read
address and control information is valid and will remain
stable until the address acknowledge signal, ARREADY, is
high.

« 1 = Address and control information valid.

« 0 = Address and control information not valid.

S_AXI_ARREADY

Output

Read Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

« 1 = Slave ready.
« 0 = Slave not ready.

AXl4-Lite Interface Read Address Channel: Inform

ation Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_ARADDR[m:0]

Output

Read Address: The read address bus gives the initial address
of a read burst transaction. Only the start address of the
burst is provided and the control signals that are issued
alongside the address detail how the address is calculated
for the remaining transfers in the burst.

M_AXI_ARPROT([3:0]

Output

Protection Type: This signal provides protection unit
information for the transaction.

AXIl4-Lite Interface Read Address Channel: Handshake Signals for FIFO Read Interface

M_AXI_ARVALID

Output

Read Address Valid: WHen high, indicates that the read
address and control information is valid and will remain
stable until the address acknowledge signal, ARREADY, is
high.

« 1 = Address and control information valid.

« 0 = Address and control information not valid.

M_AXI_ARREADY

Input

Read Address Ready: Indicates that the slave is ready to
accept an address and associated control signals:

« 1 = Slave ready.
« 0 = Slave not ready.

AXIl4-Lite Read Address Channel FIFO: Optional Sideband Signals

AXI_AR_PROG_FULL_THRESHI[D:0] Input Programmable Full Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_AR_PROG_EMPTY_THRESHID:0] Input Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold
can be dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_AR_INJECTSBITERR Input Inject Single-Bit Error: Injects a single-bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA
block RAM FIFO.

FIFO Generator v9.3 www.xilinx.com 56

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-21: AXl4-Lite Read Address Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_AR_INJECTDBITERR

Input

Inject Double-Bit Error: Injects a double-bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO.

AXI_AR_SBITERR

Output

Single Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6
block RAM FIFO.

AXI_AR_DBITERR

Output

Double Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_AR_OVERFLOW

Output

Overflow: This signal indicates that a write request during
the prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional writes when the FIFO is full.

AXI_AR_WR_DATA_COUNTI[D:0]

Output

Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure you
never overflow the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_AR_UNDERFLOW

Output

Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional reads when the FIFO is empty.

AXI_AR_RD_DATA_COUNTI[D:0]

Output

Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for
reading, to ensure that you do not underflow the FIFO. The
exception to this behavior is when the read operation occurs
at the rising edge of read clock, that read operation is only
reflected on RD_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_AR_DATA_COUNT[D:0]

Output

Data Count: This bus indicates the number of words stored
in the FIFO.

D = log,(FIFO depth)+1

AXI_AR_PROG_FULL

Output

Programmable Full: This signal is asserted when the number
of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO is less than the programmable
threshold.

AXI_AR_PROG_EMPTY

Output

Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number
of words in the FIFO exceeds the programmable threshold.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 57

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-22 defines the AXI4-Lite FIFO interface signals for Write Data Channel.

Table 1-22:

AXIl4-Lite Read Data Channel FIFO Interface Signals

Name

Direction

Description

AXl4-Lite Interface Read Data Ch

annel: Information Signals Mapped to FIFO Data Output (DOUT) Bus

S_AXI_RDATA[m-1:0] Output Read Data: The read data bus can be 8, 16, 32, 64, 128, 256 or
512 bits wide.
S_AXI_RRESP[1:0] Output Read Response: Indicates the status of the read transfer. The

allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.

AXl4-Lite Interface Rea

d Data Channel: Handshake Signals for FIFO Read Interface

S_AXI_RVALID Output Read Valid: Indicates that the required read data is available
and the read transfer can complete:
* 1 = Read data available.
* 0 = Read data not available.

S_AXI_RREADY Input Read Ready: indicates that the master can accept the read

data and response information:
» 1= Master ready.
« 0 = Master not ready.

AXl4-Lite Interface Read Data Channel: Infor

mation Signals Derived from FIFO Data Input (DIN) Bus

M_AXI_RDATA[m-1:0] Input Read Data: The read data bus can be 8, 16, 32, 64, 128, 256 or
512 bits wide.
M_AXI_ RRESP[1:0] Input Read Response: Indicates the status of the read transfer. The

allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.

AXIl4-Lite Interface Read Data Channel: Handshake Signals for FIFO Write Interface

M_AXI_RVALID Input Read Valid: Indicates that the required read data is available
and the read transfer can complete:
» 1 = Read data available.
» 0 = Read data not available.

M_AXI_RREADY Output Read ready: Indicates that the master can accept the read data

and response information:
» 1= Master ready.
* 0 = Master not ready.

AXl4-Lite Read Data Channel FIFO: Optional Sideband Signals

AXI_R_PROG_FULL_THRESH[D:0]

Input

Programmable Full Threshold: This signal is used to input the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

AXI_R_PROG_EMPTY_THRESH[D:0]

Input

Programmable Empty Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable empty (PROG_EMPTY) flag. The threshold can
be dynamically set in-circuit during reset.

D = log,(FIFO depth)-1

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

58

http://www.xilinx.com

& XILINX

Feature Summary

Table 1-22: AXl4-Lite Read Data Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_R_INJECTSBITERR

Input

Inject Single-Bit Error: Injects a single bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 FPGA block
RAM FIFO.

AXI_R_INJECTDBITERR

Input

Inject DOuble-Bit Error. Injects a double bit error if the ECC
feature is used on a Kintex-7, Virtex-7, or Virtex-6 block RAM
FIFO.

AXI_R_SBITERR

Output

Single-Bit Error: Indicates that the ECC decoder detected and
fixed a single-bit error on a Kintex-7, Virtex-7, or Virtex-6
block RAM FIFO.

AXI_R_DBITERR

Output

Double-Bit Error: Indicates that the ECC decoder detected a
double-bit error on a Kintex-7, Virtex-7, or Virtex-6 block
RAM FIFO and data in the FIFO core is corrupted.

AXI_R_OVERFLOW

Output

Overflow: This signal indicates that a write request during the
prior clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional writes when the FIFO is full.

AXI_R_WR_DATA_COUNTI[D:0]

Output

Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure you
never overflow the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of write
clock, that write operation will only be reflected on
WR_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_R_UNDERFLOW

Output

Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

Note: This signal may have a constant value of 0 because the
core does not allow additional reads when the FIFO is empty.

AXI_R_RD_DATA_COUNTI[D:0]

Output

Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed to
never over-report the number of words available for reading,
to ensure that you do not underflow the FIFO. The exception
to this behavior is when the read operation occurs at the
rising edge of read clock, that read operation is only reflected
on RD_DATA_COUNT at the next rising clock edge.

D = log,(FIFO depth)+1

AXI_R_DATA_COUNT[D:0]

Output

Data Count: This bus indicates the number of words stored in
the FIFO.

D = log,(FIFO depth)+1

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 59

http://www.xilinx.com

& XILINX

Applications

Table 1-22: AXl4-Lite Read Data Channel FIFO Interface Signals (Cont’d)

Name

Direction

Description

AXI_R_PROG_FULL

Output

Programmable Full: This signal is asserted when the number
of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the number of
words in the FIFO is less than the programmable threshold.

AXI_R_PROG_EMPTY

Output

Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the number of
words in the FIFO exceeds the programmable threshold.

Applications

Native FIFO Applications

In digital designs, FIFOs are ubiquitous constructs required for data manipulation tasks such
as clock domain crossing, low-latency memory buffering, and bus width conversion.
Figure 1-7 highlights just one of many configurations that the FIFO Generator supports. In
this example, the design has two independent clock domains and the width of the write
data bus is four times wider than the read data bus. Using the FIFO Generator, you are able
to rapidly generate solutions such as this one, that is customized for their specific
requirements and provides a solution fully optimized for Xilinx FPGAs.

= = = | = = =
| | FIFO Core | |
| |
| |
| | I
| IDATA IN DATA OUT I
| 1128 Bits 32 Bits I
| Clock 1 o | Clock 2 I
Domain | G e Domain |
I . Independent Clocks I .
Logic | Logic |
| | Aspect Ratio = 4:1 | |
| |
CLK 1 | CLK 1 CLK 2 | CcLK2
>> i | <<
| I |
| |
l | l |
| _ _— _ |- — _
Figure 1-7: FIFO Generator Application Example
FIFO Generator v9.3 www.xilinx.com 60

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Applications

AXI4 FIFO Applications

AXl4-Stream FIFOs

AXI14-Stream FIFOs are best for non-address-based, point-to-point applications. Use them
to interface to other IP cores using this interface (for example, AXI4 versions of DSP

functions such as FFT, DDS, and FIR Compiler).

Flash Controller Memory Controller AXIl4-Lite (Peripherals)

A A

AXI4 Interconnect
Switch \

Switch

Switch

\ 4 Data Mover l Data Mover
AXI4-Stream Processor AXl4-Stream
FIFO FIFO
T Real Time —) AXI4-Stream T
For example, Audio/Video/DSP < » AX4 For example, PCle/GMAC/USB
Modules Modules
<> AXl4-Lite

Figure 1-8: AXl4-Stream Application Diagram

Figure 1-8 illustrates the use of AXI4-Stream FIFOs to create a Data Mover block. In this
application, the Data Mover is used to interface PCI Express, Ethernet MAC and USB
modules which have a LocalLink to an AXI4 System Bus. The AXI4 Interconnect and Data
Mover blocks shown in Figure 1-8 are Embedded IP cores which are available in the Xilinx

Embedded Development Kit (EDK).

AXI4-Stream FIFOs support most of the features that the Native interface FIFOs support in
first word fall through mode. Use AXI4-Stream FIFOs to replace Native interface FIFOs to
make interfacing to the latest versions of other AXI4 LogiCORE IP functions easier.

FIFO Generator v9.3 www.xilinx.com 61
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Applications

AXIl4 FIFOs (Memory Mapped)

The full version of the AXI4 Interface is referred to as AXI4. It may also be referred to as AXI
Memory Mapped. Use AXI4 FIFOs in memory mapped system bus designs such as bridging
applications requiring a memory mapped interface to connect to other AXI4 blocks.

AXI14 156-MHz DRAM Controller AXl4-Lite 66-MHz
¢ Bridge i Bridge i Bridge
AXI14 AXl14 AXI4-Lite
Async FIFO Sync FIFO Async FIFO
A A A
AXI4 Interconnect
(200MHz) y
Switch
A
A 4
N\ Switch /
A
v \ 4 \4
AXI14 200-MHz AXI4 Async FIFO AXl4 200-MHz
<) AX4 i
AXI4-Lite AXI4 (Processor)

DS317_07_081210

Figure 1-9: AXIl4 Application Diagram

Figure 1-9 shows an example application for AXI4 FIFOs where they are used in
AXI4-to-AXI4 bridging applications enabling different AXI4 clock domains running at 200,
100, 66, and 156 MHz to communicate with each other. The AXI4-to-AXI4-Lite bridging is
another pertinent application for AXI4 FIFO (for example, for performing protocol
conversion). The AXI4 FIFOs can also used inside an IP core to buffer data or transactions
(for example, a DRAM Controller). The AXI4 Interconnect block shown in Figure 1-9 is an
Embedded IP core available in the EDK.

AXIl4-Lite FIFOs

The AXI4-Lite interface is a simpler AXI interface that supports applications that only need
to perform simple Control/Status Register accesses, or peripherals access.

FIFO Generator v9.3 www.xilinx.com 62
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Licensing and Ordering Information

Figure 1-10 shows an AXI4-Lite FIFO being used in an AXI4 to AXI4-Lite bridging
application to perform protocol conversion. The AXI4-Lite Interconnect in Figure 1-10 is
also available as an Embedded IP core in the EDK.

. . . Register Register Register
Perlllgf%%rals Pe;l_pherals Per(|3p|2leorals Access Access Access
Imers -UsB -GMAC -PCle
A A A A A A
VY
Switch
AXl4-Lite Interconnect
L Bridge
AXI4-Lite
Async FIFO
<> AXi4 i
> AXia-Lite AXI4 DS317_08_081210

Figure 1-10: AXl4-Lite Application Diagram

Licensing and Ordering Information

This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado
Design Suite and ISE Design Suite tools under the terms of the Xilinx End User License.
Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx
Intellectual Property page. For information about pricing and availability of other Xilinx
LogiCORE IP modules and tools, contact your local Xilinx sales representative.

For more information, please visit the FIFO Generator core page.

FIFO Generator v9.3 www.xilinx.com 63

PG0O57 December 18, 2012

http://www.xilinx.com
http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/ipcenter/FIFO_Generator.htm

& XILINX.
Chapter 2

Product Specification

This chapter includes details on performance and latency.

Performance

Performance and resource utilization for a FIFO varies depending on the configuration and
features selected during core customization. The following tables show resource utilization
data and maximum performance values for a variety of sample FIFO configurations.

See the Resource Utilization section for the performance and resource utilization numbers.

Latency

The latency of output signals of FIFO varies for different configurations. See Latency in
Chapter 3 for more details.

Resource Utilization

Native FIFO Resource Utilization and Performance

Performance and resource utilization for a Native interface FIFO varies depending on the
configuration and features selected during core customization. Table 2-1 through Table 2-4
show resource utilization data and maximum performance values for a variety of sample
FIFO configurations.

The benchmarks were performed while adding two levels of registers on all inputs (except
clock) and outputs having only the period constraints in the UCF. To achieve the
performance shown in the following tables, ensure that all inputs to the FIFO are registered
and that the outputs are not passed through many logic levels.

TIP: The Shift Register FIFO is more suitable in terms of resource and performance compared to the
O Distributed Memory FIFO, where the depth of the FIFO is around 16 or 32.

FIFO Generator v9.3 www.xilinx.com 64
PGO57 December 18, 2012 Product Specification

http://www.xilinx.com

& XILINX. Resource Utilization

Table 2-1 identifies the results for a FIFO configured without optional features. Benchmarks
were performed with the ISE Design Suite using the following devices:

» Artix-7 (XC7A350T- FFG1156-1)

+ Virtex-7 (XC7V2000T-FLG1925-1)

+ Kintex-7 (XC7K480T-FFG1156-1)

+ Virtex-6 (XC6VLX760-FF1760-1)

* Virtex-5 (XC5VLX330T-FF1738-1)

+ Virtex-4 (XC4VLX200-FF1513-10)

+ Spartan-6 (XC6SLX150T-FGG900-2)

Note: Zynq-7000 device benchmarks are similar to 7 series resource usage.

Table 2-1: Benchmarks: FIFO Configured without Optional Features

Resources
FIFO Tvoe Depth x FPGA |Performance - —
ypP Width Family (MHz) LUTs | FEs | Block Shift Distributed
RAM Register RAM

Artix-7 270 47 48 1 0 0

Kintex-7 325 114 | 48 1 0 0

Virtex-7 325 112 | 48 1 0 0

512 x 16 | Virtex-6 335 39 48 1 0 0

Virtex-5 320 45 53 1 0 0

Virtex-4 335 39 48 1 0 0

Common Spartan-6 275 79 | 48 1 0 0
Clock FIFO .

Kintex-7 350 121 | 60 2 0 0

Virtex-7 355 127 | 60 2 0 0

‘l‘g% X Virtex-6 325 61 | 60 2 0 0

Virtex-5 305 55 65 2 0 0

Virtex-4 325 6l 60 2 0 0

Spartan-6 245 91 60 4 0 0

FIFO Generator v9.3 www.xilinx.com 65

PGO57 December 18, 2012 Product Specification

http://www.xilinx.com

& XILINX. Resource Utilization

Table 2-1: Benchmarks: FIFO Configured without Optional Features (Cont’d)

Resources
FIFOType | DeRthX iy Permﬁza)nce LT Block | Shift | Distributed
s|FFs | RAM | Register RAM
Artix-7 250 254 | 68 0 0 176
Kintex-7 345 309 | 65 0 0 176
Virtex-7 350 324 | 65 0 0 176
512 x 16 | Virtex-6 380 252 | 68 0 0 176
Virtex-5 305 260 | 69 0 0 176
Common Virtex-4 380 252 | 68 0 0 176
Clock FIFO Spartan-6 230 257 | 73 0 0 176
(Distributed Artix-7 325 66 | 52 0 0 22
RAM) Kintex-7 420 109 | 52 0 0 22
Virtex-7 440 110 | 52 0 0 22
64 x 16 | Virtex-6 465 47 | 52 0 0 22
Virtex-5 380 49 | 57 0 0 22
Virtex-4 465 47 | 52 0 0 22
Spartan-6 265 55 | 53 0 0 22
Artix-7 265 82 |132 1 0 0
Kintex-7 335 141 | 132 1 0 0
Virtex-7 335 150 | 132 1 0 0
512 x 16 | Virtex-6 330 73 | 132 1 0 0
Virtex-5 320 77 |136 1 0 0
Virtex-4 330 73 | 132 1 0 0
Independent Spartan-6 277 114 |132 1 0 0
Clock FIFO
(Block RAM) Artix-7 275 100 | 172 2 0 0
Kintex-7 340 157 | 172 2 0 0
Virtex-7 350 187 | 172 2 0 0
‘11296 X | Virtex-6 325 61 | 60 2 0 0
Virtex-5 300 55 | 65 2 0 0
Virtex-4 325 61 | 60 2 0 0
Spartan-6 245 91 60 4 0 0
FIFO Generator v9.3 www.xilinx.com 66

PGO57 December 18, 2012 Product Specification

http://www.xilinx.com

& XILINX. Resource Utilization

Table 2-1: Benchmarks: FIFO Configured without Optional Features (Cont’d)

Resources
FIFOType | DeRthX iy Permﬁza)nce Luts | prs | Block | shift | Distributed
RAM Register RAM
Artix-7 275 279 | 148 0 0 176
Kintex-7 355 338 | 148 0 0 176
Virtex-7 370 354 | 148 0 0 176
512 x 16 | Virtex-6 350 293 | 148 0 0 176
Virtex-5 320 292 | 152 0 0 176
Independent Virtex-4 400 281 | 148 0 0 176
Clock FIFO Spartan-6 245 300 | 154 0 0 176
(Distributed Artix-7 365 67 | 110 0 0 22
RAM) Kintex-7 445 124 | 110 0 0 22
Virtex-7 475 145 | 110 0 0 22
64 x 16 | Virtex-6 485 64 | 110 0 0 22
Virtex-5 395 69 | 113 0 0 22
Virtex-4 475 65 | 110 0 0 22
Spartan-6 315 82 | 110 0 0 22
Artix-7 195 711 | 53 0 496 22
Kintex-7 250 768 | 53 0 497 0
Virtex-7 240 768 | 53 0 496 0
512 x 16 | Virtex-6 325 375 | 53 0 256 0
Virtex-5 290 389 | 56 0 256 0
Virtex-4 325 375 | 53 0 256 0
Shifting Spartan-6 190 422 | 67 0 256 0
Register FIFO Artix-7 300 126 | 44 0 64 0
Kintex-7 420 162 | 44 0 64 0
Virtex-7 410 179 | 44 0 64 0
64 x 16 Virtex-6 465 70 44 0 32 0
Virtex-5 425 83 47 0 32 0
Virtex-4 465 70 44 0 32 0
Spartan-6 275 89 | 45 0 32 0

Table 2-2 provides results for FIFOs configured with multiple programmable thresholds.
Benchmarks were performed using the following devices:

* Artix-7 (XC7A350T- FFG1156-1)
« Virtex-7 (XC7V2000T-FLG1925-1)

FIFO Generator v9.3 www.xilinx.com 67
PGO57 December 18, 2012 Product Specification

http://www.xilinx.com

& XILINX

Kintex-7 (XC7K480T-FFG1156-1)
Virtex-6 (XC6VLX760-FF1760-1)
Virtex-5 (XC5VLX330T-FF1738-1)
Virtex-4 (XC4VLX200-FF1513-10)
Spartan-6 (XC6SLX150T-FGG900-2)

Note: Zynq-7000 device benchmarks are similar to 7 series resource usage.

Resource Utilization

Table 2-2: Benchmarks: FIFO Configured with Multiple Programmable Thresholds
Resources
FIFOType | DERIhX iy Permm"ce LT Block| Shift |Distributed
s FFs ' RAM Register RAM
Artix-7 245 76 72 1 0 0
Kintex-7 325 130 | 72 1 0 0
Virtex-7 325 139 | 72 1 0 0
512 x 16 | Virtex-6 335 75 72 1 0 0
Virtex-5 320 74 77 1 0 0
Virtex-4 325 72 76 1 0 0
E?OTITFOII?O Spartan-6 270 99 | 72 | 1 0 0
(Block RAM) Artix-7 265 97 | 90 | 2 0 0
Kintex-7 340 152 | 90 2 0 0
Virtex-7 375 156 | 90 2 0 0
4096 x 16 | Virtex-6 330 91 90 2 0 0
Virtex-5 305 92 95 2 0 0
Virtex-4 330 91 90 2 0 0
Spartan-6 255 126 | 90 4 0 0
FIFO Generator v9.3 www.xilinx.com 68

PG0O57 December 18, 2012

Product Specification

http://www.xilinx.com

& XILINX

Resource Utilization

Table 2-2: Benchmarks: FIFO Configured with Multiple Programmable Thresholds (Cont’d)
Resources
FIFOType | DERthX i Permm"ce Luts | Fre Block| shift |Distributed
RAM | Register RAM
Artix-7 250 282 | 95 0 0 176
Kintex-7 355 345 | 88 0 0 176
Virtex-7 350 338 | 88 0 0 176
512 x 16 | Virtex-6 370 278 | 88 0 0 176
Virtex-5 300 289 | 93 0 0 176
Common Virtex-4 325 288 | 88 0 0 176
Clock FIFO Spartan-6 230 288 | 97 0 0 176
(Distributed Artix-7 290 83 |70 | 0 0 22
RAM) Kintex-7 400 136 | 70 0 0 22
Virtex-7 335 128 | 70 0 0 22
64 x 16 Virtex-6 455 69 70 0 0 22
Virtex-5 380 69 75 0 0 22
Virtex-4 425 63 70 0 0 22
Spartan-6 260 77 71 0 0 22
Artix-7 265 116 | 152 1 0 0
Kintex-7 325 168 | 152 1 0 0
Virtex-7 330 181 | 152 1 0 0
512 x 16 | Virtex-6 335 119 | 152 1 0 0
Virtex-5 320 105 | 156 1 0 0
Virtex-4 335 119 | 152 1 0 0
Independent Spartan-6 255 145 | 152 | 1 0 0
Clock FIFO
(Block RAM) Artix-7 285 144 1197 | 2 0 0
Kintex-7 350 202 | 197 2 0 0
Virtex-7 320 221 | 197 2 0 0
4096 x 16 | Virtex-6 330 91 90 2 0 0
Virtex-5 305 92 95 2 0 0
Virtex-4 320 153 | 197 2 0 0
Spartan-6 260 187 | 197 0 0 0
www.xilinx.com 69

FIFO Generator v9.3
PG0O57 December 18, 2012

Product Specification

http://www.xilinx.com

& XILINX

Resource Utilization

Table 2-2: Benchmarks: FIFO Configured with Multiple Programmable Thresholds (Cont’d)
Resources
FIFOType | DERthX i Permm"ce Luts | Fre Block| shift |Distributed
RAM | Register RAM
Artix-7 255 311 | 169 0 0 176
Kintex-7 355 376 | 169 0 0 176
Virtex-7 365 382 | 169 0 0 176
512 x 16 | Virtex-6 355 315 | 169 0 0 176
Virtex-5 320 320 | 172 0 0 176
Independent Virtex-4 355 315 | 169 0 0 176
Clock FIFO Spartan-6 255 324 | 174 0 0 176
(Distributed Artix-7 345 92 | 124 0 0 22
RAM) Kintex-7 450 136 | 124 0 0 22
Virtex-7 470 159 | 124 0 0 22
64 x 16 Virtex-6 485 90 | 124 0 0 22
Virtex-5 400 90 | 127 0 0 22
Virtex-4 485 90 | 124 0 0 22
Spartan-6 315 101 | 124 0 0 22
Artix-7 190 756 | 76 0 512 0
Kintex-7 245 814 | 76 0 512 0
Virtex-7 225 819 | 76 0 512 0
512 x 16 | Virtex-6 305 399 | 75 0 256 0
Virtex-5 285 416 | 78 0 256 0
Virtex-4 300 400 | 75 0 256 0
Shifting Spartan-6 215 433 | 81| 0 256 0
Register FIFO Artix-7 295 130 | 61| O 64 0
Kintex-7 400 177 | 61 0 64 0
Virtex-7 400 176 | 61 0 64 0
64 x 16 Virtex-6 435 88 60 0 32 0
Virtex-5 425 105 | 63 0 32 0
Virtex-4 435 88 60 0 32 0
Spartan-6 255 124 | 60 0 32 0

Table 2-3 provides results for FIFOs configured to use the Virtex-5 FPGA built-in FIFO. The
benchmarks were performed using the following devices:

Artix-7 (XC7A350T- FFG1156-1)
Virtex-7 (XC7V2000T-FLG1925-1)

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

70

Product Specification

http://www.xilinx.com

& XILINX

Kintex-7 (XC7K480T-FFG1156-1)
Virtex-6 (XC6VLX760-FF1760-1)

Virtex-5 (XC5VLX330T-FF1738-1)

Note: Zynq-7000 device benchmarks are similar to 7 series resource usage.

Resource Utilization

Table 2-3: Benchmarks: FIFO Configured with Virtex-5 and Virtex-6 FIFO36 Resources
Depth x FPGA Read Performance
FIFO Type Width Family Mode (MHz) LUTs FFs FIFO36
Standard 265 3 7 1
Artix-7
FWFT 255 3 9 1
Standard 320 2 7 1
Kintex-7
FWFT 310 3 9 1
Standard 215 2 7 1
512 x 72 | Virtex-7
FWFT 290 4 9 1
Standard 325 2 7 1
Virtex-6
FWFT 325 3 9 1
) Standard 305 2 7 1
Common Clock Virtex-5 FWFT 305 4 4 1
FIFO36
(Basic) Artix.7 Standard 225 8 11 4
FWFT 220 9 15 4
Standard 265 8 11 4
Kintex-7
FWFT 270 8 15 4
Standard 205 7 11 4
16k x 8 Virtex-7
FWFT 235 8 15 4
Standard 270 7 11 4
Virtex-6
FWFT 275 7 15 4
Standard 300 12 11 4
Virtex-5
FWEFT 280 15 15 4
FIFO Generator v9.3 www.xilinx.com 71

PG0O57 December 18, 2012

Product Specification

http://www.xilinx.com

& XILINX

Resource Utilization

Table 2-3: Benchmarks: FIFO Configured with Virtex-5 and Virtex-6 FIFO36 Resources (Cont’d)
Depth x FPGA Read Performance
FIFO Type Width Family Mode (MHz) LUTs FFs FIFO36
Standard 260 7 11 1
Artix-7
FWFT 250 6 12 1
Standard 320 6 11 1
Kintex-7
FWEFT 300 6 12 1
Standard 210 6 11 1
512 x 72 | Virtex-7
FWFT 300 6 12 1
Standard 320 6 11 1
Virtex-6
FWEFT 325 7 12 1
Standard 305 6 11 1
Common Clock Virtex-5
FIFO36 FWFT 305 8 12 1
(With . Standard 220 11 15 4
Handshaking) Artix-7
FWFT 225 14 18 4
Standard 250 11 15 4
Kintex-7
FWFT 270 12 18 4
Standard 250 10 15 4
16k x 8 Virtex-7
FWFT 215 11 18 4
Standard 260 10 15 4
Virtex-6
FWFT 280 9 18 4
Standard 250 14 15 4
Virtex-5
FWEFT 295 18 18 4
FIFO Generator v9.3 www.xilinx.com 72

PG0O57 December 18, 2012

Product Specification

http://www.xilinx.com

& XILINX

Resource Utilization

Table 2-3: Benchmarks: FIFO Configured with Virtex-5 and Virtex-6 FIFO36 Resources (Cont’d)
Depth x FPGA Read Performance
FIFO Type Width Family Mode (MHz) LUTs FFs FIFO36
Standard 300 3 7 1
Artix-7
FWFT 305 3 7 1
Standard 385 2 7 1
Kintex-7
FWFT 385 2 7 1
Standard 315 2 7 1
512 x 72 | Virtex-7
FWFT 315 2 7 1
Standard 325 3 7 1
Virtex-6
FWFT 325 3 9 1
) Standard 305 7 2 1
Independent Virtex-5 FWFT 305 9 4 1
Clock FIFO36
(Basic) Artix.7 Standard 255 6 7 4
FWFT 245 5 7 4
Standard 335 5 7 4
Kintex-7
FWFT 345 5 7 4
Standard 250 5 7 4
16k x 8 Virtex-7
FWFT 320 5 7 4
Standard 305 8 7 4
Virtex-6
FWFT 320 6 7 4
Standard 295 8 7 4
Virtex-5
FWFT 295 8 7 4
www.xilinx.com 73

FIFO Generator v9.3
PG0O57 December 18, 2012

Product Specification

http://www.xilinx.com

& XILINX

Resource Utilization

Table 2-3: Benchmarks: FIFO Configured with Virtex-5 and Virtex-6 FIFO36 Resources (Cont’d)
Depth x FPGA Read Performance
FIFO Type Width Family Mode (MHz) LUTs FFs FIFO36
Standard 280 7 18 1
Artix-7
FWFT 345 6 10 1
Standard 410 8 18 1
Kintex-7
FWFT 410 5 10 1
Standard 330 7 18 1
512 x 72 | Virtex-7
FWFT 400 5 10 1
Standard 405 8 18 1
Virtex-6
FWFT 325 5 12 1
Standard 450 8 18 1
Independent Virtex-5
Clock FIFO36 FWFT 450 6 10 1
(With) Standard 255 10 18 4
Handshaking) Artix-7
FWFT 265 8 10 4
Standard 315 10 18 4
Kintex-7
FWFT 315 8 10 4
Standard 220 9 18 4
16k x 8 | Virtex-7
FWFT 210 8 10 4
Standard 335 14 18 4
Virtex-6
FWFT 355 13 10 4
Standard 305 12 18 4
Virtex-5
FWFT 310 11 10 4

Table 2-4 provides results for FIFOs configured to use the Virtex-4 built-in FIFO with patch.

The benchmarks were performed using a Virtex-4 (XC4VLX200-FF1513-10) FPGA.

Table 2-4: Benchmarks: FIFO Configured with Virtex-4 FIFO16 Patch
FIFO Type va,?;:‘h" Clock Ratios Pe’m:‘za)“ce LUTs FFs FIFO16s
Built-in FIFO 512x36 | WR_CLK = RD_CLK 210 118 114 0
(basic) RD_CLK > WR_CLK 210 115 110 0
Built-in FIFO 512x36 | WR_CLK = RD_CLK 210 121 119 0
(Handshaking) RD_CLK > WR_CLK 210 117 115 0

AXI4 FIFO Resource Utilization and Performance

Table 2-5 provides the default configuration settings for the benchmarks data. Table 2-6
shows benchmark information for AXI4 and AXI4-Lite configurations. The benchmarks were
obtained using the following devices:

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

74

Product Specification

http://www.xilinx.com

& XILINX

« Artix-7 (XC7A350T- FFG1156-1)

+ Virtex-7 (XC7V2000T-FLG1925-1)

+ Kintex-7 (XC7K480T-FFG1156-1)

+ Virtex-6 (XC6VLX760-FF1760-1)

+ Spartan-6 (XC6SLX150T-FGG900-2)

Table 2-5: AXI4 and AXI4-Lite Default Configuration Settings

Resource Utilization

AXI Type FIFO Type Channel Type 'Db‘:‘fadm;tah“d Deptf"ngi dth
Distributed RAM Write Address 16 x 66
Block RAM Write Data ID = 4 1024 x 77
AX14 Distributed RAM Write Response Address = 32 16x6
Distributed RAM Read Address Data = 64° 16 x 66
Block RAM Read Data 1024 x 71
Distributed RAM Write Address 16 x 35
Block RAM Write Data ID =4 1024 x 36
AXI4-Lite Distributed RAM Write Response Address = 32 16x2
Distributed RAM Read Address Data = 32 16 x 35
Block RAM Read Data 1024 x 34
Table 2-6: AXI4 and AXIl4-Lite Resource Utilization
Resources
R,Fp% Clock Type FFa':fi’?y Permmnce LUTs | FFs | Block | Shift | Distributed
RAM | Register RAM
Artix-7 260 344 | 601 5 0 92
Kintex-7 315 231 | 601 2 0 92
Common Clock Virtex-7 179 326 | 601 5 0 92
Virtex-6 310 326 | 601 5 0 92
Spartan- 240 482 | 481 4 0 92
AX14 °
Artix-7 231 430 | 894 5 0 92
Kintex-7 335 394 | 768 2 0 92
Independent Virtex-7 194 453 | 895 5 0 92
Clock Virtex-6 290 411 895 | 5 0 92
Spartan- 245 535 | 768 4 0 92
6
FIFO Generator v9.3 www.xilinx.com 75

PG0O57 December 18, 2012

Product Specification

http://www.xilinx.com

& XILINX

Table 2-6: AXl4 and AXI4-Lite Resource Utilization (Cont’d)

Resource Utilization

Resources
'II:'\III:Z Clock Type FI;Pn?i?y Permmnce LuTs | Frs | Block | shift | Distributed
RAM | Register RAM
Artix-7 245 234 | 457 4 0 52
Kintex-7 350 194 | 457 2 0 52
Common Clock Virtex-7 214 238 | 457 4 0 52
Virtex-6 324 288 | 457 4 0 52
Spartan- 230 509 | 465 8 0 52
AXI4-Lit 6
e Artix-7 240 343 | 752 4 0 52
Kintex-7 350 273 | 650 2 0 52
Independent Virtex-7 190 394 | 752 4 0 52
Clock Virtex-6 325 358 | 752 | 4 0 52
Spartan- 252 635 | 756 8 0 52
6

Table 2-7 provides benchmarking results for AXI4-Stream FIFO configurations. The
benchmarks were obtained using the following devices:

Artix-7 (XC7A350T- FFG1156-1)

Virtex-7 (XC7V2000T-FLG1925-1)
Kintex-7 (XC7K480T-FFG1156-1)

Virtex-6 (XC6VLX760-FF1760-1)
Spartan-6 (XC6SLX150T-FGG900-2)

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

76

Product Specification

http://www.xilinx.com

& XILINX

Resource Utilization

Table 2-7: AXl4-Stream Resource Utilization
GA h ; Resources
FP Depth x | Performance
FIFO Type Family | Width (MHz) | |yTs | Frs | Block | shift Distributed
RAM | Register RAM
Artix-7 254 55 67 1 0 0
Kintex-7 355 116 67 1 0 0
512 x 16 Virtex-7 329 109 67 1 0 0
Virtex-6 334 55 67 1 0 0
Spartan- 277 86 67 1 0 0
Common Clock 6
FIFO _
Kintex-7 325 123 | 79 2 0 0
2096 x 16 Virtex-7 325 117 79 2 0 0
Virtex-6 335 73 79 2 0 0
Spartan- 276 124 | 79 2 0 0
6
Artix-7 259 262 87 0 0 176
Kintex-7 378 318 83 0 0 176
512 x 16 Virtex-7 349 321 83 0 0 176
Virtex-6 300 258 | 87 0 0 176
Spartan- 220 268 | 92 0 0 176
Common Clock 6
FIFO :
(DlStrlbUted RAM) Artix-7 308 61 71 0 0 22
Kintex-7 445 121 71 0 0 22
64 x16 Virtex-7 466 115 71 0 0 22
Virtex-6 475 53 71 0 0 22
Spartan- 301 63 72 0 0 22
6
FIFO Generator v9.3 www.xilinx.com 77

PG0O57 December 18, 2012

Product Specification

http://www.xilinx.com

& XILINX

Port Descriptions

PG0O57 December 18

,2012

Table 2-7: AXl4-Stream Resource Utilization (Cont’d)
h ; Resources
FPGA Depth x | Performance
FIFO Type Family | Width (MHz) Block | Shift | Distributed
LUTs | FFs .
RAM | Register RAM
Artix-7 266 87 | 151 1 0 0
Kintex-7 355 151 | 151 1 0 0
512 x 16 Virtex-7 325 159 | 151 1 0 0
Virtex-6 330 108 | 151 1 0 0
Spartan- 274 120 | 151 1 0 0
IndependentClock 6
FIFO
Kintex-7 355 171 | 190 2 0 0
4096 x 16 Virtex-7 350 201 | 190 2 0 0
Virtex-6 325 109 | 190 2 0 0
Spartan- 244 171 | 190 4 0 0
6
Artix-7 110 283 | 167 0 0 176
Kintex-7 375 351 | 167 0 0 176
512 x 16 Virtex-7 395 363 | 167 0 0 176
Virtex-6 415 293 | 167 0 0 176
Spartan- 239 310 | 171 0 0 176
IndependentClock 6
FIFO :
Kintex-7 485 154 | 128 0 0 22
64 x 16 Virtex-7 495 173 | 128 0 0 22
Virtex-6 476 95 | 128 0 0 22
Spartan- 280 127 | 128 0 0 22
6
Port Descriptions
Native FIFO Port Summary
Table 2-8 describes all the FIFO Generator ports.
FIFO Generator v9.3 www.xilinx.com 78

Product Specification

http://www.xilinx.com

& XILINX. Port Descriptions

Table 2-8: FIFO Generator Ports

. Port Available
Port Name 'Sﬁf;ftr Op;cl,c::al Independent Common
Clocks Clock

RST I Yes Yes Yes
SRST I Yes No Yes
CLK I No No Yes
DATA_COUNTIC:0] @) Yes No Yes
Write Interface Signals

WR_CLK I No Yes No
DIN[N:0] I No Yes Yes
WR_EN I No Yes Yes
FULL O No Yes Yes
ALMOST_FULL (0] Yes Yes Yes
PROG_FULL (0] Yes Yes Yes
WR_DATA_COUNTI[D:0] (0] Yes Yes No
WR_ACK (0] Yes Yes Yes
OVERFLOW O Yes Yes Yes
PROG_FULL_THRESH I Yes Yes Yes
PROG_FULL_THRESH_ASSERT I Yes Yes Yes
PROG_FULL_THRESH_NEGATE I Yes Yes Yes
WR_RST I Yes Yes No
INJECTSBITERR I Yes Yes Yes
INJECTDBITERR I Yes Yes Yes
Read Interface Signals

RD_CLK I No Yes No
DOUT[M:0] (0] No Yes Yes
RD_EN I No Yes Yes
EMPTY (0] No Yes Yes
ALMOST_EMPTY (0] Yes Yes Yes
PROG_EMPTY (0] Yes Yes Yes
RD_DATA_COUNT[C:0] o] Yes Yes No
VALID (0] Yes Yes Yes
UNDERFLOW O Yes Yes Yes
PROG_EMPTY_THRESH I Yes Yes Yes
PROG_EMPTY_THRESH_ASSERT I Yes Yes Yes
PROG_EMPTY_THRESH_NEGATE I Yes Yes Yes

FIFO Generator v9.3 www.xilinx.com 79

PGO57 December 18, 2012 Product Specification

http://www.xilinx.com

& XILINX

Port Descriptions

Table 2-8: FIFO Generator Ports (Cont’d)
. Port Available
Port Name I(';ﬁ:;t?tr Op;cl,c::al Independent | Common
Clocks Clock
SBITERR O Yes Yes Yes
DBITERR O Yes Yes Yes
RD_RST I Yes Yes No

AXI4 FIFO Port Summary

AXI4 Global Interface Ports

Table 2-9: AXI4 FIFO - Global Interface Ports

Port Name

Input or
Output

Optional Port

Port Available

Independent Clocks

Common Clock

Global Clock and Reset Signals Mapped to FIFO Clock and Reset Inputs

M_ACLK Input Yes Yes No
S_ACLK Input No Yes Yes
S_ARESETN Input No Yes Yes

AXl4-Stream FIFO Interface Ports

Table 2-10: AXl4-Stream FIFO Interface Ports

Port Name

Optional
Port

Input or
Output

Port Available

Independent Clocks

Common Clock

AXI4-Stream Interface: Handshake Signals for FIFO Read Interface

M_

AXIS_TVALID

Output No

Yes

Yes

M_

AXIS_TREADY

Input No

Yes

Yes

AXl4-Stream Interface: Information Signals Derived from FIFO Data Output (DOUT) Bus

M_AXIS_TDATA[m-1:0] Output No Yes Yes
M_AXIS_TSTRB[m/8-1:0] Output Yes Yes Yes
M_AXIS_TKEEP[m/8-1:0] Output Yes Yes Yes
M_AXIS_TLAST Output Yes Yes Yes
M_AXIS_TID[m:0] Output Yes Yes Yes
M_AXIS_TDEST[m:0] Output Yes Yes Yes
M_AXIS_TUSER[m:0] Output Yes Yes Yes
AXIl4-Stream Interface: Handshake Signals for FIFO Write Interface
S_AXIS_TVALID ‘ Input ‘ No Yes Yes

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

80
Product Specification

http://www.xilinx.com

& XILINX

Table 2-10: AXl4-Stream FIFO Interface Ports (Cont’d)

Port Descriptions

Port Available

Input or | Optional
Port Name Output Port Independent Clocks | Common Clock

S_AXIS_TREADY Output No Yes Yes

AXl4-Stream Interface: Information Signals Mapped to FIFO Data Input (DIN) Bus
S_AXIS_TDATA[m-1:0] Input No Yes Yes
S_AXIS_TSTRB[m/8-1:0] Input Yes Yes Yes
S_AXIS_TKEEP[m/8-1:0] Input Yes Yes Yes
S_AXIS_TLAST Input Yes Yes Yes
S_AXIS_TID[m:0] Input Yes Yes Yes
S_AXIS_TDEST[m:0] Input Yes Yes Yes
S_AXIS_TUSER[m:0] Input Yes Yes Yes

AXI4-Stream FIFO: Optional Sideband Signals

AXIS_PROG_FULL_THRESH[m:0] Input Yes Yes Yes
AXIS_PROG_EMPTY_THRESH[mM:0] Input Yes Yes Yes
AXIS_INJECTSBITERR Input Yes Yes Yes
AXIS_INJECTDBITERR Input Yes Yes Yes
AXIS_SBITERR Output Yes Yes Yes
AXIS_DBITERR Output Yes Yes Yes
AXIS_OVERFLOW Output Yes Yes Yes
AXIS_WR_DATA_COUNT[m:0] Output Yes Yes No
AXIS_UNDERFLOW Output Yes Yes Yes
AXIS_RD_DATA_COUNT[m:0] Output Yes Yes No
AXIS_DATA_COUNT[m:O0] Output Yes No Yes
AXIS_PROG_FULL Output Yes Yes Yes
AXIS_PROG_EMPTY Output Yes Yes Yes

AXI4 FIFO Interface Ports
Write Channels

Table 2-11:

AXl14 Write Address Channel FIFO Interface Ports

Port Name

Input

Output

or | Optional

Port Available

Port

Independent Clocks

Common Clock

AXI4 Interface Write Address Channel:
Information Signals Mapped to FIFO Data Input (DIN) bus

S_AXI_AWID[m:0]

Input No

Yes

Yes

S_AXI_AWADDR[m:0]

Input No

Yes

Yes

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

81

Product Specification

http://www.xilinx.com

& XILINX

Port Descriptions

Table 2-11: AXI4 Write Address Channel FIFO Interface Ports (Cont’d)
Port Name Input or | Optional Port Available
Output Port Independent Clocks | Common Clock
S_AXI_AWLEN[7:0] Input No Yes Yes
S_AXI_AWSIZE[2:0] Input No Yes Yes
S_AXI_AWBURST[1:0] Input No Yes Yes
S_AXI_AWLOCK][2:0] Input No Yes Yes
S_AXI_AWCACHE[4:0] Input No Yes Yes
S_AXI_AWPROTI[3:0] Input No Yes Yes
S_AXI_AWQOS[3:0] Input No Yes Yes
S_AXI_AWREGION[3:0] Input No Yes Yes
S_AXI_AWUSER[m:0] Input Yes Yes Yes
AXI4 Interface Write Address Channel: Handshake Signals for FIFO Write Interface
S_AXI_AWVALID Input No Yes Yes
S_AXI_AWREADY Output No Yes Yes
AXI4 Interface Write Address Channel:

Information Signals Derived from FIFO Data Output (DOUT) Bus
M_AXI_AWID[m:0] Output No Yes Yes
M_AXI_AWADDR[m:0] Output No Yes Yes
M_AXI_AWLEN([7:0] Output No Yes Yes
M_AXI_AWSIZE[2:0] Output No Yes Yes
M_AXI_AWBURST[1:0] Output No Yes Yes
M_AXI_AWLOCKI2:0] Output No Yes Yes
M_AXI_AWCACHE[4:0] Output No Yes Yes
M_AXI_AWPROT[3:0] Output No Yes Yes
M_AXI_AWQOS[3:0] Output No Yes Yes
M_AXI_AWREGION[3:0] Output No Yes Yes
M_AXI_AWUSER[m:0] Output Yes Yes Yes

AXI4 Interface Write Address Channel: Handshake Signals for FIFO Read Interface
M_AXI_AWVALID Output No Yes Yes
M_AXI_AWREADY Input No Yes Yes

AXI4 Write Address Channel FIFO: Optional Sideband Signals
AXI_AW_PROG_FULL_THRESH[m:0] Input Yes Yes Yes
AXI_AW_PROG_EMPTY_THRESH[m:0] Input Yes Yes Yes
AXI_AW_INJECTSBITERR Input Yes Yes Yes
AXI_AW_INJECTDBITERR Input Yes Yes Yes
AXI_AW_SBITERR Output Yes Yes Yes

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

82
Product Specification

http://www.xilinx.com

& XILINX. Port Descriptions

Table 2-11: AXI4 Write Address Channel FIFO Interface Ports (Cont’d)

Port Name Input or | Optional Port Available
Output Port Independent Clocks | Common Clock
AXI_AW_DBITERR Output Yes Yes Yes
AXI_AW_OVERFLOW Output Yes Yes Yes
AXI_AW_WR_DATA_COUNT[m:0] Output Yes Yes No
AXI_AW_UNDERFLOW Output Yes Yes Yes
AXI_AW_RD_DATA_COUNT[m:0] Output Yes Yes No
AXI_AW_DATA_COUNT[m:0] Output Yes No Yes
AXI_AW_PROG_FULL Output Yes Yes Yes
AXI_AW_PROG_EMPTY Output Yes Yes Yes

Table 2-12: AXl4 Write Data Channel FIFO Interface Ports

Port Available
Input or

Output

Port Name Optional Port

Independent Common
Clocks Clock

AXI4 Interface Write Data Channel: Information Signals Mapped to FIFO Data Input (DIN) Bus

S_AXI_WID[m:0] Input No Yes Yes
S_AXI_WDATA[m-1:0] Input No Yes Yes
S_AXI_WSTRB[m/8-1:0] Input No Yes Yes
S_AXI_WLAST Input No Yes Yes
S_AXI_WUSER[m:0] Input Yes Yes Yes

AXI4 Interface Write Data Channel: Handshake Signals for FIFO Write Interface
S_AXI_WVALID Input No Yes Yes
S_AXI_WREADY Output No Yes Yes

AXI4 Interface Write Data Channel:
Information Signals Derived from FIFO Data Output (DOUT) Bus

M_AXI_WID[m:0] Output No Yes Yes
M_AXI_WDATA[m-1:0] Output No Yes Yes
M_AXI_WSTRB[m/8-1:0] Output No Yes Yes
M_AXI_WLAST Output No Yes Yes
M_AXI_WUSER[m:0] Output Yes Yes Yes

AXI4 Interface Write Data Channel: Handshake Signals for FIFO Read Interface

M_AXI_WVALID Output No Yes Yes
M_AXI_WREADY Input No Yes Yes
AXI4 Write Data Channel FIFO: Optional Sideband Signals
AXI_W_PROG_FULL_THRESH[m:0] Input Yes Yes Yes
FIFO Generator v9.3 www.xilinx.com 83

PGO57 December 18, 2012 Product Specification

http://www.xilinx.com

& XILINX

Port Descriptions

Table 2-12: AXI4 Write Data Channel FIFO Interface Ports (Cont’d)
Port Available
Port Name Igﬂlt’;:tr Optional Port Independent Common
Clocks Clock

AXI_W_PROG_EMPTY_THRESH[m:0] Input Yes Yes Yes
AXI_W _INJECTSBITERR Input Yes Yes Yes
AXI_W _INJECTDBITERR Input Yes Yes Yes
AXI_W _SBITERR Output Yes Yes Yes
AXI_W_DBITERR Output Yes Yes Yes
AXI_W_OVERFLOW Output Yes Yes Yes
AXI_W_WR_DATA_COUNT[m:0] Output Yes Yes No
AXI_W_UNDERFLOW Output Yes Yes Yes
AXI_W_RD_DATA_COUNT[m:0] Output Yes Yes No
AXI_W_DATA_COUNT[m:0] Output Yes No Yes
AXI_W_PROG_FULL Output Yes Yes Yes
AXI_W_PROG_EMPTY Output Yes Yes Yes

Table 2-13: AXI4 Write Response Channel FIFO Interface Ports
Port Available
Port Name Igzgrtn?tr Optional Port Independent Ccommon Clock
Clocks
AXI4 Interface Write Response Channel:
Information Signals Derived from FIFO Data Output (DOUT) Bus
S_AXI_BID[m:0] Output No Yes Yes
S_AXI_BRESP[1:0] Output No Yes Yes
S_AXI_BUSER[m:0] Output Yes Yes Yes

AXl4 Interface Write Response Channel:

Handshake Signals for FIFO Read Interface

S_AXI_BVALID Output No Yes Yes
S_AXI_BREADY Input No Yes Yes
AXI4 Interface Write Response Channel:
Information Signals Mapped to FIFO Data Input (DIN) Bus
M_AXI_BID[m:0] Input No Yes Yes
M_AXI_BRESP[1:0] Input No Yes Yes
M_AXI_BUSER[m:0] Input Yes Yes Yes

AXIl4 Interface Write Response Channel:

Handshake Signals for FIFO Write Interface

M_AXI_BVALID

Input

No

Yes

Yes

M_AXI_BREADY

Output

No

Yes

Yes

AXI4 Write Response Channel FIFO: Optional Sideband Signals

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

84

Product Specification

http://www.xilinx.com

& XILINX. Port Descriptions

Table 2-13: AXI4 Write Response Channel FIFO Interface Ports (Cont’d)

Port Available
Port Name Igz:rt)&r Optional Port Independent Ccommon Clock
Clocks
AXI_B_PROG_FULL_THRESH[m:0] Input Yes Yes Yes
AXI_B_PROG_EMPTY_THRESH[m:0] Input Yes Yes Yes
AXI_B_INJECTSBITERR Input Yes Yes Yes
AXI_B_INJECTDBITERR Input Yes Yes Yes
AXI_B_SBITERR Output Yes Yes Yes
AXI_B_DBITERR Output Yes Yes Yes
AXI_B_OVERFLOW Output Yes Yes Yes
AXI_B_WR_DATA_COUNT[m:0] Output Yes Yes No
AXI_B_UNDERFLOW Output Yes Yes Yes
AXI_B_RD_DATA_COUNT[m:0] Output Yes Yes No
AXI_B_DATA_COUNT[m:0] Output Yes No Yes
AXI_B_PROG_FULL Output Yes Yes Yes
AXI_B_PROG_EMPTY Output Yes Yes Yes

Read Channels

Table 2-14: AXl4 Read Address Channel FIFO Interface Ports

Port Available
Port Name Igz;‘;l?tr Optional Port Independent Common
Clocks Clock
AXI4 Interface Read Address Channel:
Information Signals Mapped to FIFO Data Input (DIN) Bus
S_AXI_ARID[m:0] Input No Yes Yes
S_AXI_ARADDR[m:0] Input No Yes Yes
S_AXI_ARLEN([7:0] Input No Yes Yes
S_AXI_ARSIZE[2:0] Input No Yes Yes
S_AXI_ARBURSTI[1:0] Input No Yes Yes
S_AXI_ARLOCK]2:0] Input No Yes Yes
S_AXI_ARCACHE[4:0] Input No Yes Yes
S_AXI_ARPROTI[3:0] Input No Yes Yes
S_AXI_ARQOSI[3:0] Input No Yes Yes
S_AXI_ARREGION[3:0] Input No Yes Yes
S_AXI_ARUSER[m:0] Input Yes Yes Yes
AXI4 Interface Read Address Channel: Handshake Signals for FIFO Write Interface

FIFO Generator v9.3 www.xilinx.com 85
PGO57 December 18, 2012 Product Specification

http://www.xilinx.com

& XILINX. Port Descriptions

Table 2-14: AXIl4 Read Address Channel FIFO Interface Ports (Cont’d)

Port Available
Port Name Igf.:;ftr Optional Port Independent Common
Clocks Clock
S_AXI_ARVALID Input No Yes Yes
S_AXI_ARREADY Output No Yes Yes
AXI4 Interface, Read Address Channel:

Information Signals Derived from FIFO Data Output (DOUT) Bus
M_AXI_ARID[m:0] Output No Yes Yes
M_AXI_ARADDR[m:0] Output No Yes Yes
M_AXI_ARLENT[7:0] Output No Yes Yes
M_AXI_ARSIZE[2:0] Output No Yes Yes
M_AXI_ARBURST[1:0] Output No Yes Yes
M_AXI_ARLOCK][2:0] Output No Yes Yes
M_AXI_ARCACHE[4:0] Output No Yes Yes
M_AXI_ARPROT[3:0] Output No Yes Yes
M_AXI_ARQOS[3:0] Output No Yes Yes
M_AXI_ARREGION|[3:0] Output No Yes Yes
M_AXI_ARUSER[m:0] Output Yes Yes Yes

AXI4 Interface Read Address Channel: Handshake Signals for FIFO Read Interface
M_AXI_ARVALID Output No Yes Yes
M_AXI_ARREADY Input No Yes Yes

AXI4 Read Address Channel FIFO: Optional Sideband Signals
AXI_AR_PROG_FULL_THRESH[m:0] Input Yes Yes Yes
AXI_AR_PROG_EMPTY_THRESH[m:0] Input Yes Yes Yes
AXI_AR_INJECTSBITERR Input Yes Yes Yes
AXI_AR_INJECTDBITERR Input Yes Yes Yes
AXI_AR_SBITERR Output Yes Yes Yes
AXI_AR_DBITERR Output Yes Yes Yes
AXI_AR_OVERFLOW Output Yes Yes Yes
AXI_AR_WR_DATA_COUNT[m:0] Output Yes Yes No
AXI_AR_UNDERFLOW Output Yes Yes Yes
AXI_AR_RD_DATA_COUNT[m:0] Output Yes Yes No
AXI_AR_DATA_COUNT[m:0] Output Yes No Yes
AXI_AR_PROG_FULL Output Yes Yes Yes
AXI_AR_PROG_EMPTY Output Yes Yes Yes
FIFO Generator v9.3 www.xilinx.com 86

PGO57 December 18, 2012 Product Specification

http://www.xilinx.com

& XILINX

Table 2-15:

AXl4 Read Data Channel FIFO Interface Ports

Port Descriptions

Port Available

Input or .
Port Name OEtput Optional Port Common Clock |ndgr§£§ent
AXI4 Interface Read Data Channel:
Information Signals Derived from FIFO Data Output (DOUT) Bus
S_AXI_RID[m:0] Output No Yes Yes
S_AXI_RDATA[m-1:0] Output No Yes Yes
S_AXI_RRESP[1:0] Output No Yes Yes
S_AXI_RLAST Output No Yes Yes
S_AXI_RUSER[m:0] Output Yes Yes Yes

AXI4 Interface Read Data

Channel: Handshake Signals for FIFO Read Interface

S_AXI_RVALID

Output

No

Yes

Yes

S_AXI_RREADY

Input

No

Yes

Yes

AXI4 Interface Read Data Channel: Information

Signals Mapped

to FIFO Data Input (DIN) Bus

M_AXI_RID[m:0] Input No Yes Yes
M_AXI_RDATA[mM-1:0] Input No Yes Yes
M_AXI_ RRESP[1:0] Input No Yes Yes
M_AXI_RLAST Input No Yes Yes
M_AXI_RUSER[m:0] Input Yes Yes Yes
AXI4 Interface, Read Data Channel: Handshake Signals for FIFO Read Interface
M_AXI_RVALID Input No Yes Yes
M_AXI_RREADY Output No Yes Yes
AXl4 Read Data Channel FIFO: Optional Sideband Signals
AXI_R_PROG_FULL_THRESH[mM:0] Input Yes Yes Yes
AXI_R_PROG_EMPTY_THRESH[m:O0] Input Yes Yes Yes
AXI_R_INJECTSBITERR Input Yes Yes Yes
AXI_R_INJECTDBITERR Input Yes Yes Yes
AXI_R_SBITERR Output Yes Yes Yes
AXI_R_DBITERR Output Yes Yes Yes
AXI_R_OVERFLOW Output Yes Yes Yes
AXI_R_WR_DATA_COUNT[m:0] Output Yes Yes No
AXI_R_UNDERFLOW Output Yes Yes Yes
AXI_R_RD_DATA_COUNT[mM:0] Output Yes Yes No
AXI_R_DATA_COUNT[m:0] Output Yes No Yes
AXI_R_PROG_FULL Output Yes Yes Yes
AXI_R_PROG_EMPTY Output Yes Yes Yes

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

87

Product Specification

http://www.xilinx.com

& XILINX

AXl4-Lite FIFO Interface Ports

Write Channels

Table 2-16: AXl4-Lite Write Address Channel FIFO Interface Ports

Port Descriptions

Port Available

Input or .
Port Name Output Optional Port Independent Common
Clocks Clock
AXIl4-Lite Interface Write Address Channel:
Information Signals Mapped to FIFO Data Input (DIN) Bus
S_AXI_AWADDR[m:0] Input No Yes Yes
S_AXI_AWPROT[3:0] Input No Yes Yes

AXl4-Lite Interface Write Address Channel: Handshake Sig

nals for FIFO Write Interface

S_AXI_AWVALID Input No Yes Yes
S_AXI_AWREADY Output No Yes Yes
AXl4-Lite Interface Write Address Channel:

Information Signals Derived from FIFO Data Output (DOUT) Bus
M_AXI_AWADDR[m:0] Output No Yes Yes
M_AXI_AWPROT[3:0] Output No Yes Yes

AXIl4-Lite Interface Write Address Channel: Handshake Signals for FIFO Read Interface
M_AXI_AWVALID Output No Yes Yes
M_AXI_AWREADY Input No Yes Yes

AXIl4-Lite Write Address Channel FIFO: Optional Sideband Signals
AXI_AW_PROG_FULL_THRESH[m:0] Input Yes Yes Yes
AXI_AW_PROG_EMPTY_THRESH[m:0] Input Yes Yes Yes
AXI_AW_INJECTSBITERR Input Yes Yes Yes
AXI_AW_INJECTDBITERR Input Yes Yes Yes
AXI_AW_SBITERR Output Yes Yes Yes
AXI_AW_DBITERR Output Yes Yes Yes
AXI_AW_OVERFLOW Output Yes Yes Yes
AXI_AW_WR_DATA_COUNT[m:0] Output Yes Yes No
AXI_AW_UNDERFLOW Output Yes Yes Yes
AXI_AW_RD_DATA_COUNT[m:0] Output Yes Yes No
AXI_AW_DATA_COUNT[m:0] Output Yes No Yes
AXI_AW_PROG_FULL Output Yes Yes Yes
AXI_AW_PROG_EMPTY Output Yes Yes Yes

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

88
Product Specification

http://www.xilinx.com

& XILINX

Port Descriptions

Table 2-17: AXl4-Lite Write Data Channel FIFO Interface Ports

Port Available

Input or .
Port Name Output Optional Port Independent Common
Clocks Clock
AXIl4-Lite Interface Write Data Channel:
Information Signals Mapped to FIFO Data Input (DIN) Bus
S_AXI_WDATA[m-1:0] Input No Yes Yes
S_AXI_WSTRB[m/8-1:0] Input No Yes Yes

AXl4-Lite Interface Write Data Channel: Handshake Sign

als for FIFO Write Interface

S_AXI_WVALID Input No Yes Yes
S_AXI_WREADY Output No Yes Yes
AXI4-Lite Interface Write Data Channel:
Information Signals Derived from FIFO Data Output (DOUT) Bus
M_AXI_WDATA[m-1:0] Output No Yes Yes
M_AXI_WSTRB[m/8-1:0] Output No Yes Yes

AXl4-Lite Interface Write Data Channel: Handshake Signals for FIFO Read Interface

M_AXI_WVALID Output No Yes Yes
M_AXI_WREADY Input No Yes Yes
AXl4-Lite Write Data Channel FIFO: Optional Sideband Signals
AXI_W_PROG_FULL_THRESH[m:0] Input Yes Yes Yes
AXI_W_PROG_EMPTY_THRESH[m:0] Input Yes Yes Yes
AXI_W_INJECTSBITERR Input Yes Yes Yes
AXI_W_INJECTDBITERR Input Yes Yes Yes
AXI_W _SBITERR Output Yes Yes Yes
AXI_W _DBITERR Output Yes Yes Yes
AXI_W_OVERFLOW Output Yes Yes Yes
AXT_W_WR_DATA_COUNT[m:0] Output Yes Yes No
AXI_W_UNDERFLOW Output Yes Yes Yes
AXI_W_RD_DATA_COUNT[m:0] Output Yes Yes No
AXI_W_DATA_COUNT[m:0] Output Yes No Yes
AXI_W_PROG_FULL Output Yes Yes Yes
AXI_W_PROG_EMPTY Output Yes Yes Yes

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

89

Product Specification

http://www.xilinx.com

& XILINX. Port Descriptions

Table 2-18: AXl4-Lite Write Response Channel FIFO Interface Ports

Port Available

Input or

Port Name Output

Optional Port Independent

Clocks Common Clock

AXIl4-Lite Interface Write Response Channel:
Information Signals Derived from FIFO Data Output (DOUT) Bus

S_AXI_BRESP[1:0] Output No Yes Yes

AXl4-Lite Interface Write Response Channel: Handshake Signals for FIFO Read Interface
S_AXI_BVALID Output No Yes Yes
S_AXI_BREADY Input No Yes Yes

AXIl4-Lite Interface Write Response Channel:
Information Signals Mapped to FIFO Data Input (DIN) Bus

M_AXI_BRESP[1:0] Input No Yes Yes
AXIl4-Lite Interface Write Response Channel: Handshake Signals for FIFO Write Interface
M_AXI_BVALID Input No Yes Yes
M_AXI_BREADY Output No Yes Yes
AXl4-Lite Write Response Channel FIFO: Optional Sideband Signals
AXI_B_PROG_FULL_THRESH[m:0] Input Yes Yes Yes
AXI_B_PROG_EMPTY_THRESH[m:O0] Input Yes Yes Yes
AXI_B_INJECTSBITERR Input Yes Yes Yes
AXI_B_INJECTDBITERR Input Yes Yes Yes
AXI_B_SBITERR Output Yes Yes Yes
AXI_B_DBITERR Output Yes Yes Yes
AXI_B_OVERFLOW Output Yes Yes Yes
AXI_B_WR_DATA_COUNT[m:0] Output Yes Yes No
AXI_B_UNDERFLOW Output Yes Yes Yes
AXI_B_RD_DATA_COUNT[m:0] Output Yes Yes No
AXI_B_DATA_COUNT[m:0] Output Yes No Yes
AXI_B_PROG_FULL Output Yes Yes Yes
AXI_B_PROG_EMPTY Output Yes Yes Yes
FIFO Generator v9.3 www.xilinx.com 20

PGO57 December 18, 2012 Product Specification

http://www.xilinx.com

& XILINX

Read Channels

Port Descriptions

Table 2-19: AXl4-Lite Read Address Channel FIFO Interface Ports

Port Available

Port N Input or Optional
ort Name Output Port Independent Common
Clocks Clock
AXl4-Lite Interface Read Address Channel:
Information Signals Mapped to FIFO Data Input (DIN) Bus
S_AXI_ARADDR[m:0] Input No Yes Yes
S_AXI_ARPROTI[3:0] Input No Yes Yes

AXl4-Lite Interface Read Addres

s Channel: Handshake Signals for FIFO Write Interface

FIFO Generator v9.3
PG0O57 December 18, 2012

S_AXI_ARVALID Input No Yes Yes
S_AXI_ARREADY Output No Yes Yes
AXl4-Lite Interface Read Address Channel:

Information Signals Derived from FIFO Data Output (DOUT) Bus
M_AXI_ARADDR[m:0] Output No Yes Yes
M_AXI_ARPROT[3:0] Output No Yes Yes

AXl4-Lite Interface Read Address Channel: Handshake Signals for FIFO Read Interface
M_AXI_ARVALID Output No Yes Yes
M_AXI_ARREADY Input No Yes Yes

AXl4-Lite Read Address Channel FIFO: Optional Sideband Signals
AXI_AR_PROG_FULL_THRESH[m:0] Input Yes Yes Yes
AXI_AR_PROG_EMPTY_THRESH[m:0] Input Yes Yes Yes
AXI_AR_INJECTSBITERR Input Yes Yes Yes
AXI_AR_INJECTDBITERR Input Yes Yes Yes
AXI_AR_SBITERR Output Yes Yes Yes
AXI_AR_DBITERR Output Yes Yes Yes
AXI_AR_OVERFLOW Output Yes Yes Yes
AXI_AR_WR_DATA_COUNT[m:0] Output Yes Yes No
AXI_AR_UNDERFLOW Output Yes Yes Yes
AXI_AR_RD_DATA_COUNT[m:0] Output Yes Yes No
AXI_AR_DATA_COUNT[mM:0] Output Yes No Yes
AXI_AR_PROG_FULL Output Yes Yes Yes
AXI_AR_PROG_EMPTY Output Yes Yes Yes

www.xilinx.com

91
Product Specification

http://www.xilinx.com

& XILINX

Table 2-20: AXl4-Lite Read Data Channel FIFO Interface Ports

Port Descriptions

Port Available

Input or .
Port Name Output Optional Port Independent Common
Clocks Clock
AXl4-Lite Interface Read Data Channel:
Information Signals Derived from FIFO Data Output (DOUT) Bus
S_AXI_RDATA[m-1:0] Output No Yes Yes
S_AXI_RRESP[1:0] Output No Yes Yes

AXIl4-Lite Interface Read Data Channel: Handshake Signals for FIFO Read Interface

S_AXI_RVALID Output No Yes Yes
S_AXI_RREADY Input No Yes Yes
AXIl4-Lite Interface Read Data Channel:
Information Signals Mapped to FIFO Data Input (DIN) Bus
M_AXI_RDATA[mM-1:0] Input No Yes Yes
M_AXI_ RRESP[1:0] Input No Yes Yes

AXl4-Lite Interface Read Data Channel: Handshake Signals for FIFO Write Interface

PG0O57 December 18, 2012

M_AXI_RVALID Input No Yes Yes
M_AXI_RREADY Output No Yes Yes
AXIl4-Lite Read Data Channel FIFO: Optional Sideband Signals
AXI_R_PROG_FULL_THRESH[m:0] Input Yes Yes Yes
AXI_R_PROG_EMPTY_THRESH[m:0] Input Yes Yes Yes
AXI_R_INJECTSBITERR Input Yes Yes Yes
AXI_R_INJECTDBITERR Input Yes Yes Yes
AXI_R_SBITERR Output Yes Yes Yes
AXI_R_DBITERR Output Yes Yes Yes
AXI_R_OVERFLOW Output Yes Yes Yes
AXI_R_WR_DATA_COUNT[m:0] Output Yes Yes No
AXI_R_UNDERFLOW Output Yes Yes Yes
AXI_R_RD_DATA_COUNT[m:0] Output Yes Yes No
AXI_R_DATA_COUNT[m:0] Output Yes No Yes
AXI_R_PROG_FULL Output Yes Yes Yes
AXI_R_PROG_EMPTY Output Yes Yes Yes
FIFO Generator v9.3 www.xilinx.com 92

Product Specification

http://www.xilinx.com

& XILINX.

Chapter 3

Designing with the Core

)

This chapter describes the steps required to turn a FIFO Generator core into a fully
functioning design integrated with the user application logic.

IMPORTANT: Depending on the configuration of the FIFO core, only a subset of the implementation
details provided are applicable. For successful use of a FIFO core, the design guidelines discussed in this
chapter must be observed.

General Design Guidelines

Know the Degree of Difficulty

A fully-compliant and feature-rich FIFO design is challenging to implement in any
technology. For this reason, it is important to understand that the degree of difficulty can
be significantly influenced by:

« Maximum system clock frequency.
« Targeted device architecture.

« Specific user application.

Ensure that design techniques are used to facilitate implementation, including pipelining
and use of constraints (timing constraints, and placement and/or area constraints).
Understand Signal Pipelining and Synchronization

To understand the nature of FIFO designs, it is important to understand how pipelining is
used to maximize performance and implement synchronization logic for clock-domain
crossing. Data written into the write interface may take multiple clock cycles before it can be
accessed on the read interface.

Synchronization Considerations

FIFOs with independent write and read clocks require that interface signals be used only in
their respective clock domains. The independent clocks FIFO handles all synchronization

FIFO Generator v9.3 www.xilinx.com 93
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. General Design Guidelines

requirements, enabling you to cross between two clock domains that have no relationship
in frequency or phase.

ﬁ IMPORTANT: FIFO Full and Empty flags must be used to guarantee proper behavior.

Figure 3-1 shows the signals with respect to their clock domains. All signals are
synchronous to a specific clock, with the exception of RST, which performs an
asynchronous reset of the entire FIFO.

DIN[N:O] > | DOUTIM:0]
WR_EN > | < RD_EN
WR_CLK > , e RD_CLK
<Yt | EMPTY
|
<@ PLMOST_FULL witeClock | Read Glock ALMOST_EMPTY
< PROGFULL Domain | Domain PROG_EMPTY
<@ VRACK | VALID
<@ OVERFLOW | UNDERFLOW
PROG_FULL THRESH ASSERT _ \- I g PROG_ENPTY_THRESH ASSERT
PROG_FULL THRESH NEGATE o L1 | || @ PROG_EMPTY_THRESH NEGATE
PROG_FULL_THRESH » I < PROG_EMPTY_THRESH
WR RST - - RD_RST

RST f

Figure 3-1: FIFO with Independent Clocks: Write and Read Clock Domains

Note: Optional ports represented in italics

For write operations, the write enable signal (WR_EN) and data input (DI N) are synchronous
to WVR_CLK. For read operations, the read enable (RD_EN) and data output (DOUT) are
synchronous to RD_CLK. All status outputs are synchronous to their respective clock
domains and can only be used in that clock domain. The performance of the FIFO can be
measured by independently constraining the clock period for the WR_CLK and RD_CLK
input signals.

The interface signals are evaluated on their rising clock edge (WR_CLK and RD_CLK). They
can be made falling-edge active (relative to the clock source) by inserting an inverter
between the clock source and the FIFO clock inputs. This inverter is absorbed into the
internal FIFO control logic and does not cause a decrease in performance or increase in
logic utilization.

FIFO Generator v9.3 www.xilinx.com 94
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Initializing the FIFO Generator

Initializing the FIFO Generator

When designing with the built-in FIFO or common clock shift register FIFO, the FIFO must
be reset after the FPGA is configured and before operation begins. An asynchronous reset
pin (RST) is provided, which is an asynchronous reset that clears the internal counters and
output registers.

For FIFOs implemented with block RAM or distributed RAM, a reset is not required, and the
input pin is optional. For common clock configurations, users have the option of
asynchronous or synchronous reset. For independent clock configurations, users have the
option of asynchronous reset (RST) or synchronous reset (WR_RST/RD_RST) with respect to
respective clock domains.

When asynchronous reset is implemented (Enable Reset Synchronization option is
selected), it is synchronized to the clock domain in which it is used to ensure that the FIFO
initializes to a known state. This synchronization logic allows for proper reset timing of the
core logic, avoiding glitches and metastable behavior. The reset pulse and synchronization
delay requirements are dependent on the FIFO implementation types.

When WR_RST/RD_RST is implemented (Enable Reset Synchronization option is not
selected), the WR_RST/RD_RST is treated as a synchronous reset to the respective clock
domain. The write clock domain remains in reset state as long as WR_RST is asserted, and
the read clock domain remains in reset state as long as RD_RST is asserted. See Resets,
page 125.

FIFO Usage and Control

Write Operation

This section describes the behavior of a FIFO write operation and the associated status
flags. When write enable is asserted and the FIFO is not full, data is added to the FIFO from
the input bus (DIN) and write acknowledge (WR_ACK) is asserted. If the FIFO is continuously
written to without being read, it fills with data. Write operations are only successful when
the FIFO is not full. When the FIFO is full and a write is initiated, the request is ignored, the
overflow flag is asserted and there is no change in the state of the FIFO (overflowing the
FIFO is non-destructive).

ALMOST_FULL and FULL Flags

Note: The Built-in FIFO for Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGAs do not support
the ALMOST_FULL flag.

FIFO Generator v9.3 www.xilinx.com 95
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

The almost full flag (ALMOST_FULL) indicates that only one more write can be performed
before FULL is asserted. This flag is active high and synchronous to the write clock
(W\R_CLK).

The full flag (FULL) indicates that the FIFO is full and no more writes can be performed until
data is read out. This flag is active high and synchronous to the write clock (WR_CLK). If a
write is initiated when FULL is asserted, the write request is ignored and OVERFLOWis
asserted.

ﬁ IMPORTANT: for the Virtex-4 FPGA built-in FIFO implementation, the Full signal has an extra cycle of
latency. Use Write Acknowledge to verify success or Programmable Full for an earlier indication.

Example Operation

Figure 3-2 shows a typical write operation. The user asserts WR_EN, causing a write
operation to occur on the next rising edge of the WR_CLK. Because the FIFO is not full,
WR_ACK is asserted, acknowledging a successful write operation. When only one additional
word can be written into the FIFO, the FIFO asserts the ALMOST_FULL flag. When
ALMOST_FULL is asserted, one additional write causes the FIFO to assert FULL. When a
write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOWis asserted,
indicating an overflow condition. Once you perform one or more read operations, the FIFO
deasserts FULL, and data can successfully be written to the FIFO, as is indicated by the
assertion of WR_ACK and deassertion of OVERFLOW

Note: The Virtex-4 FPGA built-in FIFO implementation shows an extra cycle of latency on the FULL
flag.

vchw—_/—_/—_/—_/—_/—\/L/—_/—_r

| I | I
I I [|
! ! ! e !
WRENY T /B |
DIN | D1 I)(D2 I)(D3 I)(D4 X D5 X /'/' ')(D12 ')(D13 :
T T T T T v T T 1
CON e e ey /s W NN
ALMOST_FULL : : : : ; ; // ; : :
A pu— S S S A
gt S B A e s e S
))))
R e e e LA

Figure 3-2: Write Operation for a FIFO with Independent Clocks

Read Operation

This section describes the behavior of a FIFO read operation and the associated status flags.
When read enable is asserted and the FIFO is not empty, data is read from the FIFO on the
output bus (DOUT), and the valid flag (VALI D) is asserted. If the FIFO is continuously read
without being written, the FIFO empties. Read operations are successful when the FIFO is

not empty. When the FIFO is empty and a read is requested, the read operation is ignored,

FIFO Generator v9.3 www.xilinx.com 96
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

the underflow flag is asserted and there is no change in the state of the FIFO (underflowing
the FIFO is non-destructive).

ALMOST_EMPTY and EMPTY Flags

Note: The Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4 FPGAs built-in FIFO does not support
the ALMOST_EMPTY flag.

The almost empty flag (ALMOST_EMPTY) indicates that the FIFO will be empty after one
more read operation. This flag is active high and synchronous to RD_CLK. This flag is
asserted when the FIFO has one remaining word that can be read.

The empty flag (EMPTY) indicates that the FIFO is empty and no more reads can be
performed until data is written into the FIFO. This flag is active high and synchronous to the
read clock (RD_CLK). If a read is initiated when EMPTY is asserted, the request is ignored
and UNDERFLOWis asserted.

Common Clock Note

When write and read operations occur simultaneously while EMPTY is asserted, the write
operation is accepted and the read operation is ignored. On the next clock cycle, EMPTY is
deasserted and UNDERFLOWis asserted.

Modes of Read Operation

The FIFO Generator supports two modes of read options, standard read operation and
first-word fall-through (FWFT) read operation. The standard read operation provides the
user data on the cycle after it was requested. The FWFT read operation provides the user
data on the same cycle in which it is requested.

Table 3-1 details the supported implementations for FWFT.

Table 3-1: Implementation-Specific Support for First-Word Fall-Through

FIFO Implementation FWFT Support

Block RAM v
Independent Clocks Distributed RAM v

Built-in v

Block RAM v
Common Clock Distributed RAM v

Shift Register

Built-in vid

Notes:
1. Only supported in Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGAs.

FIFO Generator v9.3 www.xilinx.com 97
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Standard FIFO Read Operation

For a standard FIFO read operation, after read enable is asserted and if the FIFO is not
empty, the next data stored in the FIFO is driven on the output bus (DOUT) and the valid flag
(VALI D) is asserted.

Figure 3-3 shows a standard read access. Once the user writes at least one word into the
FIFO, EMPTY is deasserted — indicating data is available to be read. The user asserts RD_EN,
causing a read operation to occur on the next rising edge of RD_CLK. The FIFO outputs the
next available word on DOUT and asserts VALI D indicating a successful read operation.
When the last data word is read from the FIFO, the FIFO asserts EMPTY. If the user continues
to assert RD_EN while EMPTY is asserted, the read request is ignored, VALI D is deasserted,
and UNDERFLOWis asserted. Once the user performs a write operation, the FIFO deasserts
EMPTY, allowing the user to resume valid read operations, as indicated by the assertion of
VALI D and deassertion of UNDERFLOW

RD_EN :j ¥ (¥ —/— (i
] i] i 7o i |
DOUT ! X Do X D1 D2 X // X D3 !
) L) L) L) L) w L) L) Li
vaLp | | T T\ / | |
— | | |
UNDERFLOW | /—i—f_:
{ | |
EMPTY H f
| J

ALMOST_EMPTY H,

- e o o o -

- e o o o -

- o oy o o o - -
~

L

Figure 3-3: Standard Read Operation for a FIFO with Independent Clocks

First-Word Fall-Through FIFO Read Operation

The first-word fall-through (FWFT) feature provides the ability to look-ahead to the next
word available from the FIFO without issuing a read operation. When data is available in the
FIFO, the first word falls through the FIFO and appears automatically on the output bus
(DOUT). Once the first word appears on DOUT, EMPTY is deasserted indicating one or more
readable words in the FIFO, and VALI D is asserted, indicating a valid word is present on
DOUT.

Figure 3-4 shows a FWFT read access. Initially, the FIFO is not empty, the next available data
word is placed on the output bus (DOUT), and VALI Dis asserted. When you assert RD_EN,
the next rising clock edge of RD_CLK places the next data word onto DOUT. After the last
data word has been placed on DOUT, an additional read request causes the data on DOUT
to become invalid, as indicated by the deassertion of VALI D and the assertion of EMPTY.
Any further attempts to read from the FIFO results in an underflow condition.

Unlike the standard read mode, the first-word-fall-through empty flag is asserted after the
last data is read from the FIFO. When EMPTY is asserted, VALI D is deasserted. In the

FIFO Generator v9.3 www.xilinx.com 98
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

standard read mode, when EMPTY is asserted, VALI D is asserted for 1 clock cycle. The
FWFT feature also increases the effective read depth of the FIFO by two read words.

The FWFT feature adds two clock cycle latency to the deassertion of empty, when the first
data is written into a empty FIFO.

Note: For every write operation, an equal number of read operations is required to empty the FIFO
— this is true for both the first-word-fall-through and standard FIFO.

RD_CL y)’__/)’__/__/__/__/__/__/__‘
RD_EN /
DOUT DO X D1 1X D2 1X D3 IX
VALID \
UNDERFLOW [
EMPTY /
ALMOST_EMPTY /

Figure 3-4: FWFT Read Operation for a FIFO with Independent Clocks

Common Clock FIFO, Simultaneous Read and Write Operation

Figure 3-5 shows a typical write and read operation. A write is issued to the FIFO, resulting
in the deassertion of the EMPTY flag. A simultaneous write and read is then issued, resulting
in no change in the status flags. Once two or more words are present in the FIFO, the
ALMOST_EMPTY flag is deasserted. Write requests are then issued to the FIFO, resulting in
the assertion of ALMOST_FULL when the FIFO can only accept one more write (without a
read). A simultaneous write and read is then issued, resulting in no change in the status
flags. Finally one additional write without a read results in the FIFO asserting FULL,
indicating no further data can be written until a read request is issued.

A N\ N\
WR_EN I/ /[
RD_EN 1\ / 1\
EMPTY \ "//
ALMOST_EMPTY \ //
FULL "// /_ I
ALMOST_FULL // [

Figure 3-5: Write and Read Operation for a FIFO with Common Clocks

FIFO Generator v9.3 www.xilinx.com 99
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Handshaking Flags

Handshaking flags (valid, underflow, write acknowledge and overflow) are supported to
provide additional information regarding the status of the write and read operations. The
handshaking flags are optional, and can be configured as active high or active low through
the FIFO Generator GUL These flags (configured as active high) are illustrated in Figure 3-6.

Write Acknowledge

The write acknowledge flag (WR_ACK) is asserted at the completion of each successful write
operation and indicates that the data on the DIN port has been stored in the FIFO. This flag
is synchronous to the write clock (WR_CLK).

Valid

The operation of the valid flag (VALI D) is dependent on the read mode of the FIFO. This flag
is synchronous to the read clock (RD_CLK).

Standard FIFO Read Operation

For standard read operation, the VALI D flag is asserted at the rising edge of RD_CLK for
each successful read operation, and indicates that the data on the DOUT bus is valid. When
a read request is unsuccessful (when the FIFO is empty), VALI D is not asserted.

FWFT FIFO Read Operation

For FWFT read operation, the VALI D flag indicates the data on the output bus (DOUT) is
valid for the current cycle. A read request does not have to happen for data to be present
and valid, as the first-word fall-through logic automatically places the next data to be read
on the DOUT bus. VALI D is asserted if there is one or more words in the FIFO. VALI Dis
deasserted when there are no more words in the FIFO.

Example Operation

Figure 3-6 illustrates the behavior of the FIFO flags. On the write interface, FULL is not
asserted and writes to the FIFO are successful (as indicated by the assertion of WR_ACK).
When a write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOWis
asserted, indicating an overflow condition. On the read interface, once the FIFO is not
EMPTY, the FIFO accepts read requests. In standard FIFO operation, VALI Dis asserted and
DOUT is updated on the clock cycle following the read request. In FWFT operation, VALI D
is asserted and DOUT is updated prior to a read request being issued. When a read request
is issued while EMPTY is asserted, VALI Dis deasserted and UNDERFLOW:is asserted,
indicating an underflow condition.

FIFO Generator v9.3 www.xilinx.com 100
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Write Interface

| 1 \ | / | |

WR_EN 'J ! | ! 1 g ! |
D.Np<mXDzXD3x /i X '
| | : : ho : | |
WR_ACK i |/) | | | ' . .
Ful ! ! ! ! Y H H H
v L) L) L) L) w L) ' ' '
g I S T N A B e W
[}] [}]]]]]]

I I I) I) I | I
RO ek TN TN T)
]])])]]
RD EN | | I/ I 1 I 1 | |
- T T T) I) I
VALID ' ' ' !/])] ' '
s s GUN W S]
DoUT X_b1 X D2 X D3 X 1
L} L} L} v L} v L} L} L}
L L 1
EMPTY |'\ ! ! ! ! !/ i i i
L] L] L L] L
UNDERFLOW ! ! ! ! ! ! !/_:'_l
]]]]]]] \]
FWFT Read Interface
I I I) I) I | I
RD_CLK__www
]])])]]
RD EN I I |/ T T T l_:_l
- T T T 1 1 1 1
I 1 1 } 1 } I | I
o 4/ |) | i : :
DOUT X D1 X b2 X b3 X 1
L] L] L] L L] L L] L) L]
L L 1
EMPTY _:\ ! ! ' ! H H \ H
L] L] v L] v
UNDERFLOW ! ! ! ! ! ! !/_:_l
1 1 1) 1) 1 1 1

Figure 3-6: Handshaking Signals for a FIFO with Independent Clocks
Underflow

The underflow flag (UNDERFLOW is used to indicate that a read operation is unsuccessful.
This occurs when a read is initiated and the FIFO is empty. This flag is synchronous with the
read clock (RD_CLK). Underflowing the FIFO does not change the state of the FIFO (it is
non-destructive).

FIFO Generator v9.3 www.xilinx.com 101
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Overflow

The overflow flag (OVERFLOW is used to indicate that a write operation is unsuccessful. This
flag is asserted when a write is initiated to the FIFO while FULL is asserted. The overflow
flag is synchronous to the write clock (WR_CLK). Overflowing the FIFO does not change the
state of the FIFO (it is non-destructive).

Example Operation

Figure 3-7 illustrates the Handshaking flags. On the write interface, FULL is deasserted and
therefore writes to the FIFO are successful (indicated by the assertion of WR_ACK). When a
write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOWis asserted,
indicating an overflow condition. On the read interface, once the FIFO is not EMPTY, the
FIFO accepts read requests. Following a read request, VALI D is asserted and DOUT is
updated. When a read request is issued while EMPTY is asserted, VALI D is deasserted and
UNDERFLOWis asserted, indicating an underflow condition.

Write Interface

) i { i ({
WR_EN | L) ! L) | I
! ' [—— ! !

DIN D(oi X 02 X 03 X —/ X
wr Ack |]

L L} L ”w
t f b
I | I I
FuL | ! ! ! | ' ' '
L] L] L] L] L] w L] ' ' '
ovERFLOW | ' ! ! A !/_:'_:
L) L) L) L) L) ”w L) L)
' 1 1 1 1 1 1 ' 1

]
pout ' D1 X o2 X 13 X
v

evpry H\

| |
rp N | | I 1 1 1 T\ | |
- t t | | | |
vaup | : ! I i i i\ ' !

UNDERFLOW

Figure 3-7: Handshaking Signals for a FIFO with Common Clocks

Programmable Flags

The FIFO supports programmable flags to indicate that the FIFO has reached a user-defined
fill level.

FIFO Generator v9.3 www.xilinx.com 102
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

« Programmable full (PROG_FULL) indicates that the FIFO has reached a user-defined full
threshold.

« Programmable empty (PROG_EMPTY) indicates that the FIFO has reached a
user-defined empty threshold.

For these thresholds, you can set a constant value or choose to have dedicated input ports,
enabling the thresholds to change dynamically in circuit. Hysteresis is also optionally
supported, by providing unique assert and negate values for each flag. Detailed
information about these options are provided below. For information about the latency
behavior of the programmable flags, see Latency, page 135.

Programmable Full
The FIFO Generator supports four ways to define the programmable full threshold.

+ Single threshold constant

« Single threshold with dedicated input port

« Assert and negate threshold constants (provides hysteresis)

« Assert and negate thresholds with dedicated input ports (provides hysteresis)

Note: The built-in FIFOs only support single-threshold constant programmable full.

These options are available in the FIFO Generator GUI and accessed within the
programmable flags window (Figure 9-5, page 201).

The programmable full flag (PROG_FULL) is asserted when the number of entries in the
FIFO is greater than or equal to the user-defined assert threshold. When the programmable
full flag is asserted, the FIFO can continue to be written to until the full flag (FULL) is
asserted. If the number of words in the FIFO is less than the negate threshold, the flag is
deasserted.

Note: If a write operation occurs on a rising clock edge that causes the number of words to meet or
exceed the programmable full threshold, then the programmable full flag will assert on the next
rising clock edge. The deassertion of the programmable full flag has a longer delay, and depends on
the relationship between the write and read clocks.

Programmable Full: Single Threshold

This option enables you to set a single threshold value for the assertion and deassertion of
PROG_FULL. When the number of entries in the FIFO is greater than or equal to the
threshold value, PROG_FULL is asserted. The deassertion behavior differs between built-in
and non built-in FIFOs (block RAM, distributed RAM, and so forth).

For built-in FIFOs, the number of entries in the FIFO has to be less than the threshold value
-1 before PROG_FULL is deasserted. For non built-in FIFOs, if the number of words in the
FIFO is less than the negate threshold, the flag is deasserted.

FIFO Generator v9.3 www.xilinx.com 103
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Two options are available to implement this threshold:

« Single threshold constant. User specifies the threshold value through the FIFO
Generator GUL Once the core is generated, this value can only be changed by
re-generating the core. This option consumes fewer resources than the single threshold
with dedicated input port.

« Single threshold with dedicated input port (non-built-in FIFOs only). User specifies
the threshold value through an input port (PROG_FULL_THRESH) on the core. This
input can be changed while the FIFO is in reset, providing you the flexibility to change
the programmable full threshold in-circuit without re-generating the core.

Note: See the FIFO Generator GUI screen for valid ranges for each threshold.

Figure 3-8 shows the programmable full flag with a single threshold for a non-built-in FIFO.
The user writes to the FIFO until there are seven words in the FIFO. Because the
programmable full threshold is set to seven, the FIFO asserts PROG_FULL once seven words
are written into the FIFO.

TIP: Both write data count (WR_DATA_COUNT) and PROG_FULL have one clock cycle of delay. Once the
O FIFO has six or fewer words in the FIFO, PROG_FULL is deasserted.

WR_CLK j__)__)__)__]r__}WLlr__lr__lr__lr__l
L/ //

WR_EN \
WR_ACK / \ ,/,/
WR_DATA_COUNT 4 X s X s X 7 ,/',/' 8 L7 X 6
PROG_FULL / // | W

Figure 3-8: Programmable Full Single Threshold: Threshold Set to 7

Programmable Full: Assert and Negate Thresholds

This option enables you to set separate values for the assertion and deassertion of
PROG_FULL. When the number of entries in the FIFO is greater than or equal to the assert
value, PROG_FULL is asserted. When the number of entries in the FIFO is less than the
negate value, PROG_FULL is deasserted.

ﬁ IMPORTANT: This feature is not available for built-in FIFQOs.

Two options are available to implement these thresholds:

« Assert and negate threshold constants: User specifies the threshold values through the
FIFO Generator GUIL Once the core is generated, these values can only be changed by
re-generating the core. This option consumes fewer resources than the assert and
negate thresholds with dedicated input ports.

FIFO Generator v9.3 www.xilinx.com 104
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

« Assert and negate thresholds with dedicated input ports: User specifies the threshold
values through input ports on the core. These input ports can be changed while the
FIFO is in reset, providing you the flexibility to change the values of the programmable
full assert (PROG_FULL_THRESH_ASSERT) and negate
(PROG_FULL_THRESH_NEGATE) thresholds in-circuit without re-generating the core.

Note: The full assert value must be larger than the full negate value. Refer to the FIFO Generator GUI
for valid ranges for each threshold.

Figure 3-9 shows the programmable full flag with assert and negate thresholds. The user
writes to the FIFO until there are 10 words in the FIFO. Because the assert threshold is set to
10, the FIFO then asserts PROG_FULL. The negate threshold is set to seven, and the FIFO
deasserts PROG_FULL once six words or fewer are in the FIFO. Both write data count
(WR_DATA_COUNT) and PROG_FULL have one clock cycle of delay.

WJ:\JWV_H_\JZ/AWWWWW’

WR_ACK / \ //
WR_DATA_COUNT 8 X 9 X 10 /[(o s X 7 X 6
PROG_FULL / // : 1
|

Figure 3-9: Programmable Full with Assert and Negate Thresholds:
Assert Set to 10 and Negate Set to 7

Programmable Full Threshold Range Restrictions

The programmable full threshold ranges depend on several features that dictate the way
the FIFO is implemented, and include the following features.

» FIFO Implementation Type (Built-in FIFO or non Built-in FIFO, Common or Independent
Clock FIFOs, and so forth)

» Symmetric or Non-symmetric Port Aspect Ratio
+ Read Mode (Standard or First-Word-Fall-Through)

« Read and Write Clock Frequencies (Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4
FPGA Built-in FIFOs only)

The FIFO Generator GUI automatically parameterizes the threshold ranges based on these
features, allowing you to choose only within the valid ranges. Note that for the Common or
Independent Clock Built-in FIFO implementation type, you can only choose a threshold
range within 1 primitive deep of the FIFO depth, due to the core implementation. If a wider
threshold range is required, use the Common or Independent Clock Block RAM
implementation type.

Note: Refer to the FIFO Generator GUI for valid ranges for each threshold. To avoid unexpected
behavior, it is not recommended to give out-of-range threshold values.

FIFO Generator v9.3 www.xilinx.com 105
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Programmable Empty
The FIFO Generator supports four ways to define the programmable empty thresholds:

« Single threshold constant

« Single threshold with dedicated input port

« Assert and negate threshold constants (provides hysteresis)

« Assert and negate thresholds with dedicated input ports (provides hysteresis)

Note: The built-in FIFOs only support single-threshold constant programmable full.

These options are available in the FIFO Generator GUI and accessed within the
programmable flags window (Figure 9-5, page 201).

The programmable empty flag (PROG_EMPTY) is asserted when the number of entries in the
FIFO is less than or equal to the user-defined assert threshold. If the number of words in the
FIFO is greater than the negate threshold, the flag is deasserted.

Note: If a read operation occurs on a rising clock edge that causes the number of words in the FIFO
to be equal to or less than the programmable empty threshold, then the programmable empty flag
will assert on the next rising clock edge. The deassertion of the programmable empty flag has a
longer delay, and depends on the read and write clocks.

Programmable Empty: Single Threshold

This option enables you to set a single threshold value for the assertion and deassertion of
PROG_EMPTY. When the number of entries in the FIFO is less than or equal to the threshold
value, PROG_EMPTY is asserted. The deassertion behavior differs between built-in and non
built-in FIFOs (block RAM, distributed RAM, and so forth).

For built-in FIFOs, the number of entries in the FIFO must be greater than the threshold
value + 1 before PROG_EMPTY is deasserted. For non built-in FIFOs, if the number of entries
in the FIFO is greater than threshold value, PROG_EMPTY is deasserted.

Two options are available to implement this threshold:

« Single threshold constant: User specifies the threshold value through the FIFO
Generator GUI. Once the core is generated, this value can only be changed by
re-generating the core. This option consumes fewer resources than the single threshold
with dedicated input port.

« Single threshold with dedicated input port: User specifies the threshold value
through an input port (PROG_EMPTY_THRESH) on the core. This input can be changed
while the FIFO is in reset, providing the flexibility to change the programmable empty
threshold in-circuit without re-generating the core.

Note: See the FIFO Generator GUI for valid ranges for each threshold.

FIFO Generator v9.3 www.xilinx.com 106
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Figure 3-10 shows the programmable empty flag with a single threshold for a non-built-in
FIFO. The user writes to the FIFO until there are five words in the FIFO. Because the
programmable empty threshold is set to four, PROG_EMPTY is asserted until more than four
words are present in the FIFO. Once five words (or more) are present in the FIFO,
PROG_EMPTY is deasserted. Both read data count (RD_DATA_ COUNT) and PROG_EMPTY
have one clock cycle of delay.

ro_ctk S\ S\ A7
RD_EN / L‘ /
//

VALID [
RD_DATA_COUNT 4 X 5 // 7 X 6 X 5 X 4) 3
PROG_EMPTY \ //

Figure 3-10: Programmable Empty with Single Threshold: Threshold Set to 4

Programmable Empty: Assert and Negate Thresholds

This option lets you set separate values for the assertion and deassertion of PROG_EMPTY.
When the number of entries in the FIFO is less than or equal to the assert value,
PROG_EMPTY is asserted. When the number of entries in the FIFO is greater than the negate
value, PROG_EMPTY is deasserted. This feature is not available for built-in FIFOs.

Two options are available to implement these thresholds.

« Assert and negate threshold constants. The threshold values are specified through
the FIFO Generator GUIL Once the core is generated, these values can only be changed
by re-generating the core. This option consumes fewer resources than the assert and
negate thresholds with dedicated input ports.

« Assert and negate thresholds with dedicated input ports. The threshold values are
specified through input ports on the core. These input ports can be changed while the
FIFO is in reset, providing you the flexibility to change the values of the programmable
empty assert (PROG_EMPTY_THRESH_ASSERT) and negate
(PROG_EMPTY_THRESH_NEGATE) thresholds in-circuit without regenerating the core.

Note: The empty assert value must be less than the empty negate value. Refer to the FIFO Generator
GUI for valid ranges for each threshold.

Figure 3-11 shows the programmable empty flag with assert and negate thresholds. The
user writes to the FIFO until there are eleven words in the FIFO; because the programmable
empty deassert value is set to ten, PROG_EMPTY is deasserted when more than ten words
are in the FIFO. Once the FIFO contains less than or equal to the programmable empty
negate value (set to seven), PROG_EMPTY is asserted. Both read data count
(RD_DATA_COUNT) and PROG_EMPTY have one clock cycle of delay.

FIFO Generator v9.3 www.xilinx.com 107
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

RD_CLK “\J—\J—\J—_{?—_{V—_{V—\J—_{V—\J—_{%
RD_EN [\
VALID / | W
RD_DATA_COUNT ;x g X 9 X 10) 11 X 10 X 9 X 8) 7
PROG_EMPTY \ |

Figure 3-11: Programmable Empty with Assert and Negate Thresholds:
Assert Set to 7 and Negate Set to 10

Programmable Empty Threshold Range Restrictions

The programmable empty threshold ranges depend on several features that dictate the way
the FIFO is implemented, described as follows:

« FIFO Implementation Type (Built-in FIFO or non Built-in FIFO, Common or Independent
Clock FIFOs, and so forth)

» Symmetric or Non-symmetric Port Aspect Ratio
* Read Mode (Standard or First-Word-Fall-Through)

« Read and Write Clock Frequencies (Kintex-7, Virtex-7, Virtex-6, Virtex-5, and Virtex-4
FPGA Built-in FIFOs only)

The FIFO Generator GUI automatically parameterizes the threshold ranges based on these
features, allowing you to choose only within the valid ranges.

ﬁ IMPORTANT: For Common or Independent Clock Built-in FIFO implementation type, you can only
choose a threshold range within 1 primitive deep of the FIFO depth due to the core implementation. If
a wider threshold range is needed, use the Common or Independent Clock Block RAM implementation

type.

Note: Refer to the FIFO Generator GUI for valid ranges for each threshold. To avoid unexpected
behavior, do not use out-of-range threshold values.

Data Counts

DATA_COUNT tracks the number of words in the FIFO. You can specify the width of the data
count bus with a maximum width of log2 (FIFO depth). If the width specified is smaller than
the maximum allowable width, the bus is truncated by removing the lower bits. These
signals are optional outputs of the FIFO Generator, and are enabled through the FIFO
Generator GUL Table 3-2 identifies data count support for each FIFO implementation. For
information about the latency behavior of data count flags, see Latency, page 135.

FIFO Generator v9.3 www.xilinx.com 108
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Table 3-2: Implementation-specific Support for Data Counts

FIFO Implementation Data Count Support

Block RAM v
Independent Clocks Distributed RAM v

Built-in

Block RAM v
Common Clock Distributed RAM v

Shift Register v

Built-in

Data Count (Common Clock FIFO Only)

Data Count output (DATA_COUNT) accurately reports the number of words available in a
Common Clock FIFO. You can specify the width of the data count bus with a maximum width
of log2(depth). If the width specified is smaller than the maximum allowable width, the bus
is truncated with the lower bits removed.

For example, you can specify to use two bits out of a maximum allowable three bits
(provided a FIFO depth of eight). These two bits indicate the number of words in the FIFO
with a quarter resolution, providing the status of the contents of the FIFO for read and write
operations.

Note: If a read or write operation occurs on a rising edge of CLK, the data count port is updated at
the same rising edge of CLK.

Read Data Count (Independent Clock FIFO Only)

Read data count (RD_DATA_COUNT) pessimistically reports the number of words available
for reading. The count is guaranteed to never over-report the number of words available in
the FIFO (although it may temporarily under-report the number of words available) to
ensure that the user design never underflows the FIFO. You can specify the width of the read
data count bus with a maximum width of log2 (read depth). If the width specified is smaller
than the maximum allowable width, the bus is truncated with the lower bits removed.

For example, you can specify to use two bits out of a maximum allowable three bits
(provided a FIFO depth of eight). These two bits indicate the number of words in the FIFO,
with a quarter resolution. This provides a status of the contents of the FIFO for the read
clock domain.

Note: If a read operation occurs on a rising clock edge of RD_CLK, that read is reflected on the
RD_DATA_COUNT signal following the next rising clock edge. A write operation on the WR_CLK clock
domain may take a number of clock cycles before being reflected in the RD_DATA_COUNT.

FIFO Generator v9.3 www.xilinx.com 109
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Werite Data Count (Independent Clock FIFO Only)

Write data count (WR_DATA_COUNT) pessimistically reports the number of words written
into the FIFO. The count is guaranteed to never under-report the number of words in the
FIFO (although it may temporarily over-report the number of words present) to ensure that
you never overflow the FIFO. You can specify the width of the write data count bus with a
maximum width of log2 (write depth). If the width specified is smaller than the maximum
allowable width, the bus is truncated with the lower bits removed.

For example, you can only use two bits out of a maximum allowable three bits (provided a
FIFO depth of eight). These two bits indicate the number of words in the FIFO, with a quarter
resolution. This provides a status of the contents of the FIFO for the write clock domain.

Note: If a write operation occurs on a rising clock edge of WR_CLK, that write will be reflected on the
WR_DATA_COUNT signal following the next rising clock edge. A read operation, which occurs on the
RD_CLK clock domain, may take a number of clock cycles before being reflected in the
WR_DATA_COUNT.

First-Word Fall-Through Data Count

By providing the capability to read the next data word before requesting it, first-word
fall-through (FWFT) implementations increase the depth of the FIFO by 2 read words. Using
this configuration, the FIFO Generator enables you to generate data count in two ways:

» Approximate Data Count

* More Accurate Data Count (Use Extra Logic)

Approximate Data Count

Approximate Data Count behavior is the default option in the FIFO Generator GUI for
independent clock block RAM and distributed RAM FIFOs. This feature is not available for
common clock FIFOs. The width of the WR_DATA_ COUNT and RD_DATA_ COUNT is identical
to the non first-word-fall-through configurations (log2 (write depth) and log2 (read depth),
respectively) but the data counts reported is an approximation because the actual full depth
of the FIFO is not supported.

Using this option, you can use specific bits in WR_DATA_COUNT and RD_DATA_COUNT to
approximately indicate the status of the FIFO, for example, half full, quarter full, and so
forth.

For example, for a FIFO with a depth of 16, symmetric read and write port widths, and the
first-word-fall-through option selected, the actual FIFO depth increases from 15 to 17.
When using approximate data count, the width of WR_DATA_COUNT and RD_DATA_COUNT
is 4 bits, with a maximum of 15. For this option, you can use the assertion of the MSB bit of
the data count to indicate that the FIFO is approximately half full.

FIFO Generator v9.3 www.xilinx.com 110
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

More Accurate Data Count (Use Extra Logic)

This feature is enabled when Use Extra Logic for More Accurate Data Counts is selected in
the FIFO Generator GUL In this configuration, the width of WR_DATA_COUNT,
RD_DATA_COUNT, and DATA_COUNT is log2(write depth)+1, log2(read depth)+1, and
log2(depth)+1, respectively to accommodate the increase in depth in the
first-word-fall-through case and to ensure accurate data count is provided.

ﬁ IMPORTANT: When using this option, you cannot use any one bit of WR_DATA_COUNT,
RD_DATA_COUNT, and DATA_COUNT to indicate the status of the FIFO, for example, approximately
half full, quarter full, and so forth.

For example, for an independent FIFO with a depth of 16, symmetric read and write port
widths, and the first-word-fall-through option selected, the actual FIFO depth increases
from 15 to 17. When using accurate data count, the width of the WR_DATA_COUNT and
RD_DATA_COUNT is 5 bits, with a maximum of 31. For this option, you must use the
assertion of both the MSB and MSB-1 bit of the data count to indicate that the FIFO is at
least half full.

Data Count Behavior

For FWFT implementations using More Accurate Data Counts (Use Extra Logic),
DATA_COUNT is guaranteed to be accurate when words are present in the FIFO, with the
exception of when its near empty or almost empty or when initial writes occur on an empty
FIFO. In these scenarios, DATA_COUNT may be incorrect on up to two words.

Table 3-3 defines the value of DATA_COUNT when FIFO is empty.

From the point-of-view of the write interface, DATA_COUNT is always accurate, reporting
the first word immediately once its written to the FIFO. However, from the point-of-view of
the read interface, the DATA_COUNT output may over-report by up to two words until
ALMOST_EMPTY and EMPTY have both deasserted. This is due to the latency of EMPTY
deassertion in the first-word-fall-through FIFO (see Table 3-17). This latency allows
DATA_COUNT to reflect written words which may not yet be available for reading.

From the point-of-view of the read interface, the data count starts to transition from
over-reporting to accurate-reporting at the deassertion to empty. This transition completes
after ALMOST_EMPTY deasserts. Before ALMOST_EMPTY deasserts, the DATA_COUNT signal
may exhibit the following atypical behaviors:

« From the read-interface perspective, DATA_COUNT may over-report up to two words.

Write Data Count Behavior

Even for FWFT implementations using More Accurate Data Counts (Use Extra Logic),
VR_DATA_COUNT will still pessimistically report the number of words written into the FIFO.
However, the addition of this feature will cause WR_DATA_COUNT to further over-report up

FIFO Generator v9.3 www.xilinx.com 111
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

to two read words (and 1 to 16 write words, depending on read and write port aspect ratio)
when the FIFO is at or near empty or almost empty.

Table 3-3 defines the value of WR_DATA_COUNT when the FIFO is empty.

The WR_DATA_COUNT starts to transition out of over-reporting two extra read words at the
deassertion of EMPTY. This transition completes several clock cycles after ALMOST_EMPTY
deasserts. Note that prior to the transition period, WR_DATA_COUNT will always over-report
by at least two read words. During the transition period, the WR_DATA_COUNT signal may
exhibit the following strange behaviors:

« WR_DATA COUNT may decrement although no read operation has occurred.

« WR_DATA COUNT may not increment as expected due to a write operation.

Note: During reset, WR_DATA_COUNT and DATA_COUNT value is set to 0.

Table 3-3: Empty FIFO WR_DATA_COUNT/DATA_COUNT Value

Write Depth to Approximate More Accurate More Accurate
Read Depth Ratio WR_DATA_COUNT WR_DATA_COUNT DATA_COUNT
1:1 0 2 2
1:2 0 1 N/A
14 0 0 N/A
1:8 0 0 N/A
2:1 0 4 N/A
4:1 0 8 N/A
8:1 0 16 N/A

The RD_DATA_COUNT value at empty (when no write is performed) is 0 with or without Use
Extra Logic for all write depth to read depth ratios.

Example Operation

Figure 3-12 shows write and read data counts. When WR_EN is asserted and FULL is
deasserted, WR_DATA_COUNT increments. Similarly, when RD_EN is asserted and EMPTY is
deasserted, RD_DATA COUNT decrements.

Note: In the first part of Figure 3-12, a successful write operation occurs on the third rising clock
edge, and is not reflected on WR_DATA_COUNT until the next full clock cycle is complete. Similarly,
RD_DATA_COUNT transitions one full clock cycle after a successful read operation.

FIFO Generator v9.3 www.xilinx.com 112
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Write Interface

WR_CLK

wr En | I/

WR_DATA_COUNT

12

><
=
w
<
i
SN
><
[y A PN A p——
o

t
I
FuLL b
L}
[]

.--
-k -
- b -
=

- - -

Read Interface

RD_CLKJ__’__/__}'__/__}'—_/__I
]]]] I] I
RD_EN | I/ :

RD_DATA_COUNT

|

1

| |

I 1

empry | 1
I |

» 1

--_-

o —

i
b —

Figure 3-12: Write and Read Data Counts for FIFO with Independent Clocks

Non-symmetric Aspect Ratios

Table 3-4 identifies support for non-symmetric aspect ratios.

Table 3-4: Implementation-specific Support for Non-symmetric Aspect Ratios

Non-symmetric Aspect
Ratios Support

Block RAM v
Independent Clocks Distributed RAM

FIFO Implementation

Built-in

Block RAM
Common Clock Distributed RAM
Shift Register

Built-in

This feature is supported for FIFOs configured with independent clocks implemented with
block RAM. Non-symmetric aspect ratios allow the input and output depths of the FIFO to
be different. The following write-to-read aspect ratios are supported: 1:8, 1:4, 1:2, 1:1, 2:1,
4:1, 8:1. This feature is enabled by selecting unique write and read widths when customizing
the FIFO using the Vivado IP Catalog or CORE Generator. By default, the write and read
widths are set to the same value (providing a 1:1 aspect ratio); but any ratio between 1:8 to
8:1 is supported, and the output depth of the FIFO is automatically calculated from the
input depth and the write and read widths.

For non-symmetric aspect ratios, the full and empty flags are active only when one
complete word can be written or read. The FIFO does not allow partial words to be
accessed. For example, assuming a full FIFO, if the write width is 8 bits and read width is 2

FIFO Generator v9.3 www.xilinx.com 113
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

bits, you would have to complete four valid read operations before full deasserts and a write
operation accepted. Write data count shows the number of FIFO words according to the
write port ratio, and read data count shows the number of FIFO words according to the read
port ratio.

Note: For non-symmetric aspect ratios where the write width is smaller than the read width (1:8, 1:4,
1:2), the most significant bits are read first (refer to Figure 3-13 and Figure 3-14).

Figure 3-13 is an example of a FIFO with a 1:4 aspect ratio (write width = 2, read width = 8).
In this figure, four consecutive write operations are performed before a read operation can
be performed. The first write operation is 01, followed by 00, 11, and finally 10. The memory
is filling up from the left to the right (MSB to LSB). When a read operation is performed, the
received data is 01_00 11 10.

Write Read
Operation Operation
MSB LSB
01| —» |01 01 00 11 10

00| —» | 01|00
Time

11| —» | 01|00 | 11

10| —» | 01|00 |11 | 10

Figure 3-13: 1:4 Aspect Ratio: Data Ordering

Figure 3-14 shows DI N, DOUT and the handshaking signals for a FIFO with a 1:4 aspect ratio.
After four words are written into the FIFO, EMPTY is deasserted. Then after a single read
operation, EMPTY is asserted again.

WRek /T N\ \/ / /S

WR_EN i \
DIN[1:0] | X 1 X o X 3 X 2 X |
i 1S : : : r i i i
——
RD_CLK/__/__/__/__/__/PDQ_/__‘
RD_EN [I\
DOUTI[7:0] X e X
EMPTY W

Figure 3-14: 1:4 Aspect Ratio: Status Flag Behavior

Figure 3-15 shows a FIFO with an aspect ratio of 4:1 (write width of 8, read width of 2). In
this example, a single write operation is performed, after which four read operations are

FIFO Generator v9.3 www.xilinx.com 114
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

executed. The write operation is 11_00_01_11. When a read operation is performed, the
data is received left to right (MSB to LSB). As shown, the first read results in data of 11,
followed by 00, 01, and then 11.

Write Read
Operation Operation
MSB LSB
11 00 01 11 00 (01|11 |—> | 11

01|11 }—» | 00

Time
11 —» | 01

—» | 11

Figure 3-15: 4:1 Aspect Ratio: Data Ordering

Figure 3-16 shows DI N, DOUT, and the handshaking signals for a FIFO with an aspect ratio
of 4:1. After a single write, the FIFO deasserts EMPTY. Because no other writes occur, the
FIFO reasserts empty after four reads.

WRCLKA N\ /" \/ \/ / S/ _/J 1
WR_EN [1\
X

DIN[7:0]

><
[¢]
~

RD_EN [

=

>/

DOUT[L:0] |

\
X o X 1 X 3
/

EMPTY \

Figure 3-16: 4:1 Aspect Ratio: Status Flag Behavior
Non-symmetric Aspect Ratio and First-Word Fall-Through

A FWFT FIFO has 2 extra read words available on the read port when compared to a
standard FIFO. For write-to-read aspect ratios that are larger or equal to 1 (1:1, 2:1, 4:1, and
8:1), the FWFT implementation also increases the number of words that can be written into
the FIFO by depth_ratio*2 (depth_ratio = write depth / read depth). For write-to-read
aspect ratios smaller than 1 (1:2, 1:4 and 1:8), the addition of 2 extra read words only
amounts to a fraction of 1 write word. The creation of these partial words causes the
behavior of the PROG_EMPTY and WR_DATA_COUNT signals of the FIFO to differ in behavior
than as previously described.

FIFO Generator v9.3 www.xilinx.com 115
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Programmable Empty

In general, PROG_EMPTY is guaranteed to assert when the number of readable words in the
FIFO is less than or equal to the programmable empty assert threshold. However, when the
write-to-read aspect ratios are smaller than 1 (depending on the read and write clock
frequency) it is possible for PROG_EMPTY to violate this rule, but only while EMPTY is
asserted. To avoid this condition, set the programmable empty assert threshold to
3*depth_ratio*frequency_ratio (dept h_r ati o = write depth/read depth and
frequency_rati o = write clock frequency / read clock frequency). If the programmable
empty assert threshold is set lower than this value, assume that PROG_EMPTY may or can be
asserted when EMPTY is asserted.

Write Data Count

In general, WR_DATA_COUNT pessimistically reports the number of words written into the
FIFO and is guaranteed to never under-report the number of words in the FIFO, to ensure
that you never overflow the FIFO. However, when the write-to-read aspect ratios are smaller
than 1, if the read and write operations result in partial write words existing in the FIFO, it
is possible to under-report the number of words in the FIFO. This behavior is most crucial
when the FIFO is 1 or 2 words away from full, because in this state the WR_DATA_COUNT is
under-reporting and cannot be used to gauge if the FIFO is full. In this configuration, you
should use the FULL flag to gate any write operation to the FIFO.

Embedded Registers in Block RAM and FIFO Macros
(Zynq-7000, 7 Series, Virtex-6, Virtex-5 and Virtex-4 FPGAs)

The block RAM macros available in Zyng-7000, Kintex-7, Virtex-7, Virtex-6, Virtex-5 and
Virtex-4 devices, as well as built-in FIFO macros available in Zyng-7000, Kintex-7, Virtex-7,
Virtex-6 and Virtex-5 devices, have built-in embedded registers that can be used to pipeline
data and improve macro timing. Depending on the configuration, this feature can be
leveraged to add one additional latency to the FIFO core (DOUT bus and VALID outputs) or
implement the output registers for FWFT FIFOs. For built-in FIFOs configuration, this
feature is only available for common clock FIFOs.

Standard FIFOs

When using the embedded registers to add an output pipeline register to the standard
FIFOs, only the DOUT and VALI D output ports are delayed by one clock cycle during a read
operation. These additional pipeline registers are always enabled, as illustrated in

Figure 3-17.

FIFO Generator v9.3 www.xilinx.com 116
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

1

:

! /L ! |

RD_EN ! V4 : :

1 1]

DOUT X bo X b1 X b2 X/ X D3 !
VALID | S | | Ny | Y a—

T T T 1 1 1 // T T T 1

1 1 1 1 1 /L I I 1 1

UNDERFLOW 1 1 1 1 [(/4 [1\ | |
: : : : I Ly I : | |

EMPTY 1 1 1 |/ 1 /4 1 \ 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 /L 1

ALMOST EMPTY | | | | | /4 | | | |
T T T 1 1 1 1 1 1 1

Figure 3-17: Standard Read Operation for a Block RAM or built-in FIFO
with Use Embedded Registers Enabled

Block RAM Based FWFT FIFOs

When using the embedded output registers to implement the FWFT FIFOs, the behavior of
the core is identical to the implementation without the embedded registers.

Built-in Based FWFT FIFOs (Common Clock Only)

When using the embedded output registers with a common clock built-in based FIFO with
FWFT, the embedded registers add an output pipeline register to the FWFT FIFO. The DOUT
and VALID output ports are delayed by 1 clock cycle during a read operation. These pipeline
registers are always enabled, as illustrated in Figure 3-18, The DOUT reset value feature is
not supported in Virtex-4 and Virtex-5 FPGAs. For this configuration, the embedded output
register feature is only available for FIFOs that use only one FIFO macro in depth.

I
:
/L 1 !
RD_EN _/I 4 ! !
1 1 1
DOUT DO X D1 X D2 X D3 X// D3 X D4
VALID : : : : : : \/ : : : / |
1 1 1 1 1 Y/ T T T 1
1 1 1 1 L L/ L L 1 1
UNDERFLOW 1 1 1 ¥ [(/4 [1\ | |
: : : : I Ly I : I I
EMPTY | | ¥ I A I I \ | |
I I I I I I I I
1 /L 1 1 1
ALMOST_EMPTY | | | | | /i | i i |
T T T 1 1 1 1 1

/
Figure 3-18: FWFT Read Operation for a Synchronous Built-in
FIFO with User Embedded Registers Enabled

Note: Virtex-5 FPGA built-in FIFOs with independent clocks and FWFT always use the embedded
output registers in the macro to implement the FWFT registers.

When using the embedded output registers with a common clock built-in FIFO in
Kintex-7, Virtex-7, and Virtex-6 FPGAs, the DOUT reset value feature is supported, as
illustrated in Figure 3-19.

FIFO Generator v9.3 www.xilinx.com 117
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

CLK

v
[}

|
)
|
0 ==
. .
|
|

X

| |
))
| |
i i\
! !
| |

_—] = - -

| |
| |

| |

T q

| |

| |

1 1 1

| DOUT reset value
1 1

| |

|
1 1
DOUT | Previous value
1
|

Figure 3-19: DOUT Reset Value for Kintex-7, Virtex-7, and Virtex-6 Common Clock Built-in FIFO
Embedded Register

Built-in Error Correction Checking

Built-in ECC is supported for FIFOs configured with independent or common clock block
RAM and built-in FIFOs targeting Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGAs. In
addition, error injection is supported for FIFOs configured with independent or common
clock block RAM and built-in FIFOs targeting Kintex-7, Virtex-7, and Virtex-6 FPGAs. When
ECC is enabled, the block RAM and built-in FIFO primitive used to create the FIFO is
configured in the full ECC mode (both encoder and decoder enabled), providing two
additional outputs to the FIFO Generator core: SBI TERR and DBl TERR. These outputs
indicate three possible read results: no error, single error corrected, and double error
detected. In the full ECC mode, the read operation does not correct the single error in the
memory array, it only presents corrected data on DOUT.

Figure 3-20 shows how the SBI TERR and DBl TERR outputs are generated in the FIFO
Generator core. The output signals are created by combining all the SBI TERR and DBI TERR
signals from the FIFO or block RAM primitives using an OR gate. Because the FIFO
primitives may be cascaded in depth, when SBI TERR or DBl TERR s asserted, the error may
have occurred in any of the built-in FIFO macros chained in depth or block RAM macros. For
this reason, these flags are not correlated to the data currently being read from the FIFO
Generator core or to a read operation. For this reason, when the DBl TERR is flagged,
assume that the data in the entire FIFO has been corrupted and the user logic needs to take
the appropriate action. As an example, when DBl TERR s flagged, an appropriate action for
the user logic is to halt all FIFO operation, reset the FIFO, and restart the data transfer.

The SBI TERR and DBI TERR outputs are not registered and are generated combinatorially.
If the configured FIFO uses two independent read and write clocks, the SBI TERR and

DBl TERR outputs may be generated from either the write or read clock domain. The signals
generated in the write clock domain are synchronized before being combined with the
SBI TERR and DBI TERR signals generated in the read clock domain.

TIP: Due to the differing read and write clock frequencies and the OR gate used to combine the signals,
O the number of read clock cycles that the SBI TERR and DBl TERR flags assert is not an accurate
indicator of the number of errors found in the built-in FIFOs.

FIFO Generator v9.3 www.xilinx.com 118
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. FIFO Usage and Control

Write Domain 3 Read Domain
Cascaded Built-in FIFO Primitives
R DBITERR o
,_ — >
_f'\J
Y \\ SBITERR o
Hinnd]
 FULL | EMPTY o
¢ >
WR_EN
= P WE) RE RD_EN
Built-in FIFO/
block RAM
DIN
P Oin DOUT bout
[
Yy ‘ Yy
_ WR_ACK UNDERFLOW
¢ L
¢ OVERFLOW Logic for Optional Logic for Optional VALID >
Flags: Write Domain Flags: Read Domain
‘ PROG_FULL PROG_EWPTY

Figure 3-20: SBITERR and DBITERR Outputs in the FIFO Generator Core

Built-in Error Injection

Built-in Error Injection is supported for FIFOs configured with independent or common
clock block RAM and built-in FIFOs in Kintex-7, Virtex-7, and Virtex-6 FPGAs. When ECC and
Error Injection are enabled, the block RAM and built-in FIFO primitive used to create the
FIFO is configured in the full ECC error injection mode, providing two additional inputs to
the FIFO Generator core: | NJECTSBI TERR and | NJECTDBI TERR. These inputs indicate
three possible results: no error injection, single bit error injection, or double bit error
injection.

The ECC is calculated on a 64-bit wide data of Kintex-7, Virtex-7, and Virtex-6 FPGA ECC
primitives. If the data width chosen is not an integral multiple of 64 (for example, there are
spare bits in any ECC primitive), then a double bit error (DBl TERR) may indicate that one or
more errors have occurred in the spare bits. In this case, the accuracy of the DBl TERR signal
cannot be guaranteed. For example, if the data width is set to 16, then 48 bits of the ECC
primitive are left empty. If two of the spare bits are corrupted, the DBI TERR signal would be
asserted even though the actual user data is not corrupt.

When | NJECTSBI TERR is asserted on a write operation, a single bit error is injected and
SBI TERR is asserted upon read operation of a specific write. When | NJECTDBI TERR is
asserted on a write operation, a double bit error is injected and DBl TERR is asserted upon

FIFO Generator v9.3 www.xilinx.com 119
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Clocking

read operation of a specific write. When both | NJECTSBI TERR and | NJECTDBI TERR are
asserted on a write operation, a double bit error is injected and DBl TERR is asserted upon
read operation of a specific write. Figure 3-21 shows how the SBI TERR and DBI TERR
outputs are generated in the FIFO Generator core.

Note: Reset is not supported by the FIFO/BRAM macros when using the ECC option. Therefore,
outputs of the FIFO core (DOUT, DBITERR and SBITERR) will not be affected by reset, and they hold
their previous values. See Resets, page 125 for more details.

WR_EN

]
DIN :D(DO

RD_EN [\
I
l
DOUT : : : X___DO : X D1 : X D2x : X D3 : X D4x : X :
I I I I I \ \ A \ \
SBITERR ‘ ‘ ‘ TN 1 1 1 1
I I I I I I I I I
I I I I I I I
DBITERR | | | | 1/ } \ \/ } \ |
T T T T T
Corrupted Corrupted Corrupted
and Data Data
Corrected
Data

Figure 3-21: Error Injection and Correction in Kintex-7, Virtex-7, and Virtex-6 FPGAs

Clocking

Each FIFO configuration has a set of allowable features, as defined in Table 1-4, page 18.

Independent Clocks: Block RAM and Distributed RAM

Figure 3-22 illustrates the functional implementation of a FIFO configured with
independent clocks. This implementation uses block RAM or distributed RAM for memory,
counters for write and read pointers, conversions between binary and Gray code for
synchronization across clock domains, and logic for calculating the status flags.

FIFO Generator v9.3 www.xilinx.com 120
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Clocking

WRITE CLOCK DOMAIN

READ CLOCK DOMAIN

Binary to Gray

Read Flag
Logic

EMPTY

ALMOST_EMPTY)

PROG_EMPTY >
RD_DATA_COUNT)

Read Counter |

Converter

Gray to Binary
- Converter

MEM®RY
WRITE PORT READ PORT r————==-- -
: OPTIONAL: |
Write Counter = ADDRA DOUT _>|| First Word Fall l—»DOUT
\ Through Logic |
T S |
WR_EN »| wE -
ADDRB |<@— Read Counter <
DIN
P DIN
Gray to Binary - Binary to Gray
Converters Converters

Write Counter

-
ALMOST_FULL

" PROG_FULL

¢ WR_DATA_COUNT

Figure 3-22:

3 4

FULL

Write Flag
Logic

Functional Implementation of a FIFO with Independent Clock Domains

This FIFO is designed to support an independent read clock (RD_CLK) and write clock

(WR_CLK); in other words, there is no required relationship between RD_CLK and WR_CLK
with regard to frequency or phase. Table 3-5 summarizes the FIFO interface signals, which
are only valid in their respective clock domains.

Table 3-5: Interface Signals and Corresponding Clock Domains
WR_CLK RD_CLK
DIN DOUT
WR_EN RD_EN
FULL EMPTY
ALMOST_FULL ALMOST_EMPTY
PROG_FULL PROG_EMPTY

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

121

http://www.xilinx.com

& XILINX. Clocking

Table 3-5: Interface Signals and Corresponding Clock Domains (Cont’d)

WR_ACK VALID
OVERFLOW UNDERFLOW
WR_DATA_COUNT RD_DATA_COUNT
WR_RST SBITERR
INJECTSBITERR DBITERR
INJECTDBITERR RD_RST

For FIFO cores using independent clocks, the timing relationship between the write and
read operations and the status flags is affected by the relationship of the two clocks. For
example, the timing between writing to an empty FIFO and the deassertion of EMPTY is
determined by the phase and frequency relationship between the write and read clocks. For
additional information refer to the Synchronization Considerations, page 93.

Independent Clocks: Built-in FIFO

Figure 3-23 illustrates the functional implementation of FIFO configured with independent
clocks using the Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA built-in FIFO primitive. This
design implementation consists of cascaded built-in FIFO primitives and handshaking logic.
The number of built-in primitives depends on the FIFO width and depth requested.

The Virtex-4 FPGA built-in FIFO implementation allows generation of a single primitive. The
generated core includes a FIFO flag patch (defined in “Solution 1: Synchronous/
Asynchronous Clock Work-Arounds,” in the Virtex-4 FPGA User Guide [Ref 4].

WRITE DOMAIN ! READ DOMAIN
PROG FULL Cascaded Built-in FIFO Primitives
PROG_EMPTY
- = = -
FULL EMPTY
- -
WR_EN | we Built-In RE | RD _EN
DIN | DIN FIFO DOUT DOUT -
1
<—WR ACK Logic For Logic For —>UNDERFLOW
Optional Flags: Optional Flags:
M Write Domain Read Domain ﬁb

Figure 3-23: Functional Implementation of Built-in FIFO

This FIFO is designed to support an independent read clock (RD_CLK) and write clock
(WR_CLK); in other words, there is no required relationship between RD_CLK and WR_CLK

FIFO Generator v9.3 www.xilinx.com 122
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Clocking

with regard to frequency or phase. Table 3-6 summarizes the FIFO interface signals, which
are only valid in their respective clock domains.

Table 3-6: Interface Signals and Corresponding Clock Domains

WR_CLK RD_CLK
DIN DOUT
WR_EN RD_EN
FULL EMPTY
PROG_FULL PROG_EMPTY
WR_ACK VALID
OVERFLOW UNDERFLOW
INJECTSBITERR SBITERR
INJECTDBITERR DBITERR

For FIFO cores using independent clocks, the timing relationship between the write and
read operations and the status flags is affected by the relationship of the two clocks. For
example, the timing between writing to an empty FIFO and the deassertion of EMPTY s
determined by the phase and frequency relationship between the write and read clocks. For
additional information, see Synchronization Considerations, page 93.

For Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA built-in FIFO configurations, the built-in
ECC feature in the FIFO macro is provided. For more information, see “Built-in Error
Correction Checking,” page 118.

Note: When the ECC option is selected, the number of Built-in FIFO primitives in depth and all the
output latency will be different. For more information on latency, see Latency, page 135.

For example, if user depth is 4096, user width is 9 and ECC is not selected, then the number of Built-in
FIFO primitives in depth is 1. However, if ECC is selected for the same configuration, then the number
of Built-in FIFO primitives in depth is 4092/512 = 8.

Common Clock: Built-in FIFO

The FIFO Generator supports FIFO cores using the built-in FIFO primitive with a common
clock. This provides users the ability to use the built-in FIFO, while requiring only a single
clock interface. The behavior of the common clock configuration with built-in FIFO is
identical to the independent clock configuration with built-in FIFO, except all operations are
in relation to the common clock (CLK). See Independent Clocks: Built-in FIFO, page 122, for
more information.

Common Clock FIFO: Block RAM and Distributed RAM

Figure 3-24 illustrates the functional implementation of a FIFO configured with a common
clock using block RAM or distributed RAM for memory. All signals are synchronous to a
single clock input (CLK). This design implements counters for write and read pointers and

FIFO Generator v9.3 www.xilinx.com 123
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Clocking

logic for calculating the status flags. An optional synchronous (SRST) or asynchronous
(RST) reset signal is also available.

MEMORY
WRITE PORT READ PORT

DIN »| DIN DOUT DOUT ,,

WR_EN ol We
I_ Write »| ADDRA ADDRB | Read RD EN

Counter Counter

. FULL EMPTY
 ALMOST FULL EO'Z?C ALMOST EMPTY _
_ PROG_FULL PROG EMPTY
DATA COUNT _

Figure 3-24: Functional Implementation of a Common Clock FIFO using
Block RAM or Distributed RAM

Common Clock FIFO: Shift Registers

Figure 3-25 illustrates the functional implementation of a FIFO configured with a common
clock using shift registers for memory. All operations are synchronous to the same clock
input (CLK). This design implements a single up/down counter for both the write and read
pointers and logic for calculating the status flags.

FIFO Generator v9.3 www.xilinx.com 124
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Resets

MEMORY
WRITE PORT READ PORT
DIN .
»| DIN bOUT DOUT
WR_EN _
»| WE RE |« RD_EN
ADDR
- Pointer .
o Counter -
. FULL EMPTY
 ALMOST FULL LF(')Z?C ALMOST EMPTY _
_ PROG_FULL PROG _EMPTY _
DATA COUNT _

Figure 3-25: Functional Implementation of a Common Clock FIFO using Shift Registers

Resets

The FIFO Generator provides a reset input that resets all counters, output registers, and
memories when asserted. For block RAM or distributed RAM implementations, resetting the
FIFO is not required, and the reset pin can be disabled in the FIFO. There are two reset
options: asynchronous and synchronous.

Asynchronous Reset (Enable Reset Synchronization Option is Selected)

The asynchronous reset (RST) input asynchronously resets all counters, output registers,
and memories when asserted. When reset is implemented, it is synchronized internally to
the core with each respective clock domain for setting the internal logic of the FIFO to a
known state. This synchronization logic allows for proper timing of the reset logic within the
core to avoid glitches and metastable behavior.

Common/Independent Clock: Block RAM, Distributed RAM, and Shift RAM FIFOs

Table 3-7 defines the values of the output ports during power-up and reset state for block
RAM, distributed RAM, and shift RAM FIFOs. Note that the underflow signal is dependent

on RD_EN. If RD_EN is asserted and the FIFO is empty, underflow is asserted. The overflow
signal is dependent on WR_EN. If WE_EN is asserted and the FIFO is full, overflow is asserted.

FIFO Generator v9.3 www.xilinx.com 125
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Resets

There are two asynchronous reset behaviors available for these FIFO configurations: Full
flags reset to 1 and full flags reset to 0. The reset requirements and the behavior of the FIFO
is different depending on the full flags reset value chosen.

IMPORTANT: The reset is edge-sensitive and not level-sensitive. The synchronization logic looks for the
rising edge of RST and creates an internal reset for the core. Note that the assertion of asynchronous
reset immediately causes the core to go into a predetermine reset state - this is not dependent on any
clock toggling. The reset synchronization logic is used to ensure that the logic in the different clock
domains comes OUT of the reset mode at the same time - this is by synchronizing the deassertion of
asynchronous reset to the appropriate clock domain. By doing this glitches and metastability can be
avoided. This synchronization takes three clock cycles (write or read) after the asynchronous reset is
detected on the rising edge read and write clock respectively. To avoid unexpected behavior, it is not
recommended to drive/toggle WR_EN/RD_EN when RST or FULL s asserted/high.

Table 3-7: Asynchronous Reset Values for Block, Distributed, and Shift RAM FIFOs

signal Full Flags Riset Value of FuI\IIFIags Reset Power-up
alue of 0 Values
DOUT DOUT Reset Value or 0 | DOUT Reset Value or | Same as reset values
0
FULL 1@ 0 0
ALMOST FULL 1@ 0 0
EMPTY 1 1 1
ALMOST EMPTY 1 1 1
VALID 0 (active high) or 0 (active high) or 0 (active high) or
1 (active low) 1 (active low) 1 (active low)
WR_ACK 0 (active high) or 0 (active high) or 0 (active high) or
1 (active low) 1 (active low) 1 (active low)
PROG_FULL 1® 0 0
PROG_EMPTY 1 1 1
RD_DATA_COUNT 0 0 0
WR_DATA_COUNT 0 0 0

Notes:

1. When reset is asserted, the FULL flags are asserted to prevent writes to the FIFO during reset.

FIFO Generator v9.3

Full Flags Reset Value of 1

In this configuration, the FIFO requires a minimum asynchronous reset pulse of 1 write clock
period (WR_CLK/ CLK). After reset is detected on the rising clock edge of write clock, 3 write
clock periods are required to complete proper reset synchronization. During this time, the
FULL, ALMOST_FULL, and PROG_FULL flags are asserted. After reset is deasserted, these
flags deassert after three clock periods (WR_CLK/CLK) and the FIFO can then accept write
operations.

www.xilinx.com 126

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Resets

The FULL and ALMOST_FULL flags are asserted to ensure that no write operations occur
when the FIFO core is in the reset state. After the FIFO exits the reset state and is ready for
writing, the FULL and ALMOST_FULL flags deassert; this occurs approximately three clock
cycles after the deassertion of asynchronous reset. See Figure 3-26 and Figure 3-27 for
example behaviors. Note that the power-up values for this configuration are different from
the reset state value.

Figure 3-26 shows an example timing diagram for when the reset pulse is one clock cycle.

LLTCT'Y o N o N o W o N N o W o N o N N
I I
R3T | \

I [| | | | I
[[[[| [I [
[| | | | | | | |
FULL I I | | | I i [[
IJ [[[[! | | | | |
ALMOST FULL | I | | I | I i [[
- IJ | | | | \ T | T T |
PROG_FULL | I | | I | I i [[
- IJ I I | | \ T | T T |
I [Tn Redet Stale T I I Oul of ReselBSlate T |
I | | | | | J | | |
e e e e e S
PRy N T T A A T
[Write domiain In reset stats w Vinte domain out of reset state
I | |

Read domain in
reset state

Figure 3-26: Block RAM, Distributed RAM, Shift RAM with Full

Flags Reset Value of 1 for the Reset Pulse of One Clock

Figure 3-27 shows an example timing diagram for when the reset pulse is longer than one
clock cycle.

WR_CL S\ S\ T\
|

RETLT 1 L							
FULL L/							
L Il Il Il Il							
ALMOST_FULL :J : : : : : : : : ;\							
PROG_FULL ,_/ : : : : : : ! ! : —							
1 i i i No Wirite Zone	i i i X						
Figure 3-27: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 1 for the Reset Pulse of More Than One Clock
FIFO Generator v9.3 www.xilinx.com 127

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Resets

Full Flags Reset Value of 0

In this configuration, the FIFO requires a minimum asynchronous reset pulse of one write
clock cycle to complete the proper reset synchronization. At reset, FULL, ALMOST_FULL and
PROG_FULL flags are deasserted. After the FIFO exits the reset synchronization state, the
FIFO is ready for writing; this occurs approximately three clock cycles after the assertion of
asynchronous reset. See Figure 3-28 for example behavior.

WRCL ™\ TN TN TN T T T
| | |
RaT | f M I

1

|

|

|

|

|

—_—— —

FULL T}
|

ALMOST FULL Y
|

I

I

I

I

I

I I
il

I

e e e]] e] e s s

I I

I I

I | I
I I I
I I I
I I I
I I I
I I I
I | I I I
I | I
I I I
| I I
I I I
| I I
I I I

o o s B B B B B B

PROG_FULL T}
I In Retal slala b Qul of Hesatlstate
| I T
WR_EN : : / Ii : :
WR_ACK : :
|
|

Winte domain in reset state Yirite domain out of reset state
| | | I I [[

ST U W el g aWa aU aWaWaUaWaN i aWal i aWall
I | |

RD_EN |

|
|
VALID : :

I

I I

| I

I I

| I
| h{ Fead domain out of reset stale
| HEIEH:I l:I{I!I'l'lﬂil'I ir‘l | 1 1 | 1 I I I I |

rasal state

7

Figure 3-28: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 0

Common/Independent Clock: Built-in

Table 3-7 defines the values of the output ports during power-up and reset state for Built-in
FIFOs. The DOUT reset value is supported only for Kintex-7, Virtex-7 and Virtex-6 common
clock Built-In FIFOs with the embedded register option selected. The Kintex-7 and Virtex-7
FPGA Built-In FIFOs require an asynchronous reset pulse of at least 5 read and write clock
cycles. To be consistent across all built-in FIFO configurations, it is recommended to give an
asynchronous reset pulse of at least 5 read and write clock cycles for Kintex-7, Virtex-7,
Virtex-6, Virtex-5 and Virtex-4 FPGA Built-in FIFOs. However, the FIFO Generator core has a
built-in mechanism ensuring the reset pulse is high for five read and write clock cycles for
all Built-in FIFOs.

During reset, the RD_EN and WR_EN ports are required to be deasserted (no read or write
operation can be performed). Assertion of reset causes the FULL and PROG_FULL flags to

FIFO Generator v9.3 www.xilinx.com 128
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Resets

deassert and EMPTY and PROG_EMPTY flags to assert. After asynchronous reset is released,
the core exits the reset state and is ready for writing. See Figure 3-29 for example behavior.

Note that the underflow signal is dependent on RD_EN. If RD_EN is asserted and the FIFO

is empty, underflow is asserted. The overflow signal is dependent on WR_EN. If WE_EN is
asserted and the FIFO is full, overflow is asserted.

Table 3-8: Asynchronous Reset Values for Built-in FIFO

FIFO Generator v9.3

signal Built-in FIFO Reset Values Power-up

DOUT Last read value Content of memory at location 0
FULL 0 0

EMPTY 1 1

VALID 0 (active high) or 0 (active high) or

1 (active low) 1 (active low)

PROG_FULL 0 0

PROG_EMPTY 1 1

ok 4 /S S S S\
\

1 1 1 1						
			T T T T			
! ! ! ! ! ! ! !						
T T T T T T T T						
T T T T T T T T						
1 1 1 1 1 1 1 1						

|

|

|

L

|

|

|

|

|

‘ |
| |
PROG_FULL —%ﬁ‘ }
| T
|

|

T

|

|

|

1

|

|

|

Figure 3-29: Built-in FIFO, Asynchronous Reset Behavior
Synchronous Reset

The synchronous reset input (SRST or WR_RST/RD_RST synchronous to WR_CLK/RD_CLK
domain) is only available for the block RAM, distributed RAM, or shift RAM implementation
of the common/independent clock FIFOs.

Common Clock Block, Distributed, or Shift RAM FIFOs

The synchronous reset (SRST) synchronously resets all counters, output registers and
memories when asserted. Because the reset pin is synchronous to the input clock and there
is only one clock domain in the FIFO, no additional synchronization logic is necessary.

Figure 3-32 illustrates the flags following the release of SRST.

www.xilinx.com 129

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Resets

|
ST an D o N o D o VD o N o N o\

ALMOST_FULL \

[
I I
PROG_FULL | \
i T I
. InResetstate X Out of Reset state

|
l
|
:
|
FULLT 1\ |
|
|
I
|
|
|

Figure 3-32: Synchronous Reset: FIFO with a Common Clock

Independent Clock Block and Distributed RAM FIFOs (Enable Reset Synchronization Option
not Selected)

The synchronous reset (WR_RST/RD_RST) synchronously resets all counters, output
registers of respective clock domain when asserted. Because the reset pin is synchronous to
the respective clock domain, no additional synchronization logic is necessary.

If one reset (WR_RST/RD_RST) is asserted, the other reset must also be applied. The time at
which the resets are asserted/de-asserted may differ, and during this period the FIFO
outputs become invalid. To avoid unexpected behavior, do not perform write or read
operations from the assertion of the first reset to the de-assertion of the last reset.

Note: For FIFOs built with First-Word-Fall-Through and ECC configurations, the SBITERR and
DBITERR may be high until a valid read is performed after the de-assertion of both WR_RST and
RD_RST.

Figure 3-33 and Figure 3-34 detail the resets.

FIFO Generator v9.3 www.xilinx.com 130
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Resets
WRCLK /1 _f2 __/3 _/fa __fs 6\
WR_RST i Wr_eniwill not haveiany effect i \ i i
RD_CLK _f1 2 /3 fa /5 /6 {7 (8
RD_RST | i '/ rd_en will not have anyi effect | \ i
= No Write/Read Operation .
WRCLK /1 __/f2 _ /s _/f4 _ /5 _/e6 \L
WR_RST i wr_eniwill not haveiany effect i \ i i
RD_CLK _f1 2 /3 /4 /5 /6 {7 /s
RD_RST | i i i i/ rd_én will ndt have |\
! ! ! ! ! 1 any effect ?
= No Write/Read Operation >
Figure 3-33: Synchronous Reset: FIFO with Independent Clock -
WR_RST then RD_RST
FIFO Generator v9.3 www.xilinx.com 131

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Resets

RDCLK _ /1 _/J2 _ /3 _/4 _/5 _/f6 _
RD_RST | rd_en Will not have any effect | \ i i
WR_CLK _[1 [2 /3 /4 /5 /6 {7 /8
WR_RST _| i L wr_én will notihave any effect 1 \ i

= No Write/Read Operation >
RDCLK /1 _/J2 _ /3 _/4 _/5 _/f6 _
RD_RST | rd_en Will not have any effect | \ i i

[wr_enwill not have | \
1 any effect i

= No Write/Read Operation >

Figure 3-34: Synchronous Reset: FIFO with Independent Clock -
RD_RST then WR_RST

Table 3-9 defines the values of the output ports during power-up and the reset state. If you
do not specify a DOUT reset value, it defaults to 0. The FIFO requires a reset pulse of only 1
clock cycle. The FIFOs are available for transaction on the clock cycle after the reset is
released. The power-up values for the synchronous reset are the same as the reset state.

Note that the underflow signal is dependent on RD_EN. If RD_EN is asserted and the FIFO
is empty, underflow is asserted. The overflow signal is dependent on WR_EN. If WE_EN is
asserted and the FIFO is full, overflow is asserted.

Table 3-9: Synchronous Reset and Power-up Values
Block Memory and
Signal Distributed Memory Values of
Output Ports During Reset and Power-up

DOUT DOUT Reset Value or 0

FULL 0

ALMOST FULL 0

EMPTY 1

ALMOST EMPTY 1

VALID

0 (active high) or 1 (active low)

FIFO Generator v9.3

www.xilinx.com 132

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Actual FIFO Depth

Table 3-9: Synchronous Reset and Power-up Values (Cont’d)

WR_ACK 0 (active high) or 1 (active low)
PROG_FULL 0
PROG_EMPTY 0
RD_DATA_COUNT 0
WR_DATA_COUNT 0

Actual FIFO Depth

Of critical importance is the understanding that the effective or actual depth of a FIFO is not
necessarily consistent with the depth selected in the GUI, because the actual depth of the
FIFO depends on its implementation and the features that influence its implementation. In
the FIFO Generator GUI, the actual depth of the FIFO is reported: the following section
provides formulas or calculations used to report this information.

Block RAM, Distributed RAM and Shift RAM FIFOs

The actual FIFO depths for the block RAM, distributed RAM, and shift RAM FIFOs are
influenced by the following features that change its implementation:

« Common or Independent Clock
« Standard or FWFT Read Mode

» Symmetric or Non-symmetric Port Aspect Ratio
Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.
« Common Clock FIFO in Standard Read Mode
actual _wite depth=gui_wite_depth
actual _read_depth =gui _read_depth
« Common Clock FIFO in FWFT Read Mode
actual _wite_depth=gui_wite_depth +2
actual read _depth =gui _read _depth +2
+ Independent Clock FIFO in Standard Read Mode
actual _wite depth=qgqui_wite depth-1

actual _read_depth =gui _read_depth -1

FIFO Generator v9.3 www.xilinx.com 133
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Actual FIFO Depth

+ Independent Clock FIFO in FWFT Read Mode

actual _wite depth = (gui_wite depth-1)+
(2*round_down(gui _wri t e_dept h/gui _read_dept h))

actual _read_depth =gui _read _depth +1
Notes

1. Gui_write_depth = actual write (input) depth selected in the GUI
2. Gui_read_depth = actual read (output) depth selected in the GUI

3. Non-symmetric port aspect ratio feature (qui_write_depth not equal to gui_read_depth)
is only supported in block RAM based FIFOs.

Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA Built-In FIFOs

The actual FIFO depths for the Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA built-in FIFOs
are influenced by the following features, which change its implementation:

« Common or Independent Clock
« Standard or FWFT Read Mode

» Built-In FIFO primitive used in implementation (minimum depth is 512)
Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.
+ Independent Clock FIFO in Standard Read Mode

actual_write_depth = (primitive_depth+2)*(N-1) + (primitive_depth+1)

» Independent Clock FIFO in FWFT Read Mode

actual_write_depth = (primitive_depth+2)*N

« Common Clock FIFO in Standard Read Mode

actual_write_depth = (primitive_depth+1)*(N-1) + primitive_depth

« Common Clock FIFO in FWFT Read Mode

actual_write_depth = (primitive_depth+1)*N

Notes

1. primitive_depth = depth of the primitive used to implement the FIFO; this information is
reported in the GUI

2. N = number of primitive cascaded in depth or roundup (qui_write_depth/
primitive_depth)

FIFO Generator v9.3 www.xilinx.com 134
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Latency

Virtex-4 FPGA Built-In FIFOs

The actual FIFO depths for the Virtex-4 FPGA Built-in FIFOs are influenced by the following
features, which change its implementation:

+ Read and Write Clock Frequencies

+ Built-In FIFO primitive used in implementation (minimum depth is 512)
Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.

« Common/Independent Clock FIFO in Standard Read Mode and RD_CLK frequency >
WR_CLK frequency

actual_write_depth = primitive_depth+17

« Common/Independent Clock FIFO in Standard Read Mode and RD_CLK frequency <=
WR_CLK frequency

actual_write_depth = primitive_depth+17

Note: primitive_depth = depth of the primitive used to implement the FIFO. For more details, see
the Virtex-4 FPGA User Guide [Ref 4].

Latency

This section defines the latency in which different output signals of the FIFO are updated in
response to read or write operations.

Note: Latency is defined as the number of clock edges after a read or write operation occur before
the signal is updated. Example: if latency is O, that means that the signal is updated at the clock edge
in which the operation occurred, as shown in Figure 3-35 in which WR_ACK is getting updated in
which WR_EN is high.

Figure 3-35: Latency 0 Timing

Non-Built-in FIFOs: Common Clock and Standard Read Mode
Implementations

Table 3-10 defines the write port flags update latency due to a write operation for
non-Built-in FIFOs such as block RAM, distributed RAM, and shift RAM FIFOs.

FIFO Generator v9.3 www.xilinx.com 135
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Latency

Table 3-10: Non-Built-in FIFOs, Common Clock and Standard Read Mode Implementations:

Write Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)
FULL 0
ALMOST_FULL 0
PROG_FULL 1
WR_ACK 0
OVERFLOW 0

Table 3-11 defines the read port flags update latency due to a read operation.

Table 3-11: Non-Built-in FIFOs, Common Clock and Standard Read Mode Implementations:

Read Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)
EMPTY 0
ALMOST_EMPTY 0
PROG_EMPTY 1
VALID 0
UNDERFLOW 0
DATA_COUNT 0

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

136

http://www.xilinx.com

& XILINX

Latency

Table 3-12 defines the write port flags update latency due to a read operation.

Table 3-12: Non-Built-in FIFOs, Common Clock and Standard Read Mode Implementations:

Write Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)
FULL 0
ALMOST_FULL 0
PROG_FULL 1
WR_ACK? N/A
OVERFLOW? N/A

a. Write handshaking signals are only impacted by a write operation.

Table 3-13 defines the read port flags update latency due to a write operation.

Table 3-13: Non-Built-in FIFOs, Common Clock and Standard Read Mode Implementations:

Read Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)
EMPTY 0
ALMOST_EMPTY 0
PROG_EMPTY 1
VALID? N/A
UNDERFLOW? N/A
DATA_COUNT 0

a. Read handshaking signals are only impacted by a read operation.

Non-Built-in FIFOs: Common Clock and FWFT Read Mode

Implementations

Table 3-14 defines the write port flags update latency due to a write operation for
non-Built-in FIFOs such as block RAM, distributed RAM, and shift RAM FIFOs.

Table 3-14: Non-Built-in FIFOs, Common Clock and FWFT Read Mode Implementations: Write
Port Flags Update Latency due to Write Operation

Signals Latency (CLK)
FULL 0
ALMOST_FULL 0
PROG_FULL 1
WR_ACK 0
OVERFLOW 0

Table 3-15 defines the read port flags update latency due to a read operation.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

137

http://www.xilinx.com

& XILINX

Latency

Table 3-15: Non-Built-in FIFOs, Common Clock and FWFT Read Mode Implementations: Read
Port Flags Update Latency due to Read Operation

Signals Latency (CLK)
EMPTY 0
ALMOST_EMPTY 0
PROG_EMPTY 1
VALID 0
UNDERFLOW 0
DATA_COUNT 0

Table 3-16 defines the write port flags update latency due to a read operation.

Table 3-16: Non-Built-in FIFOs, Common Clock and FWFT Read Mode Implementations: Write
Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)
FULL 0
ALMOST_FULL 0
PROG_FULL 1
WR_ACK® N/A
OVERFLOW? N/A

a. Write handshaking signals are only impacted by a write operation.

Table 3-17 defines the read port flags update latency due to a write operation.

Table 3-17: Non-Built-in FIFOs, Common Clock and FWFT Read Mode Implementations: Read
Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)
EMPTY 2
ALMOST_EMPTY 1
PROG_EMPTY 1
VALID? N/A
UNDERFLOW? N/A
DATA_COUNT 0

a. Read handshaking signals are only impacted by a read operation.

Non-Built-in FIFOs: Independent Clock and Standard Read

Mode Implementations

Table 3-18 defines the write port flags update latency due to a write operation.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

138

http://www.xilinx.com

& XILINX. Latency

Table 3-18: Non-Built-in FIFOs, Independent Clock and Standard Read Mode Implementations:
Write Port Flags Update Latency Due to a Write Operation

Signals Latency (WR_CLK)
FULL 0
ALMOST_FULL 0
PROG_FULL 1
WR_ACK 0
OVERFLOW 0
WR_DATA_COUNT 1

Table 3-19 defines the read port flags update latency due to a read operation.

Table 3-19: Non-Built-in FIFOs, Independent Clock and Standard Read Mode Implementations:

Read Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)
EMPTY 0
ALMOST_EMPTY 0
PROG_EMPTY 1
VALID 0
UNDERFLOW 0
RD_DATA_COUNT 1

Table 3-20 defines the write port flags update latency due to a read operation.

Table 3-20: Non-Built-in FIFOs, Independent Clock and Standard Read Mode Implementations:

Write Port Flags Update Latency Due to a Read Operation

Signals Latency
FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)?
ALMOST_FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)?
PROG_FULL 1 RD_CLK + 5 WR_CLK (+1 WR_CLK)?
WR_ACKP N/A
OVERFLOWP N/A
WR_DATA_COUNT 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)?

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 WR_CLK uncertainty to the latency

calculation.

b. Write handshaking signals are only impacted by a write operation.

Table 3-21 defines the read port flags update latency due to a write operation.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

http://www.xilinx.com

& XILINX. Latency

Table 3-21: Non-Built-in FIFOs, Independent Clock and Standard Read Mode Implementations:
Read Port Flags Update Latency Due to a Write Operation

Signals Latency
EMPTY 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)?
ALMOST_EMPTY 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)?
PROG_EMPTY 1 WR_CLK + 5 RD_CLK (+1 RD_CLK)?
VALIDP N/A
UNDERFLOWP N/A
RD_DATA_COUNT 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)?

Note: Read handshaking signals only impacted by read operation.

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 RD_CLK uncertainty to the latency
calculation.

b. Read handshaking signals are only impacted by a read operation.

Non-Built-in FIFOs: Independent Clock and FWFT Read Mode
Implementations

Table 3-22 defines the write port flags update latency due to a write operation.

Table 3-22: Non-Built-in FIFOs, Independent Clock and FWFT Read Mode Implementations:
Write Port Flags Update Latency Due to a Write Operation

Signals Latency (WR_CLK)
FULL 0
ALMOST_FULL 0
PROG_FULL 1
WR_ACK 0
OVERFLOW 0
WR_DATA_COUNT 1

Table 3-23 defines the read port flags update latency due to a read operation.

Table 3-23: Non-Built-in FIFOs, Independent Clock and FWFT Read Mode Implementations:
Read Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)

EMPTY 0
ALMOST_EMPTY 0
PROG_EMPTY 1
VALID 0
0
1

UNDERFLOW
RD_DATA_COUNT

FIFO Generator v9.3 www.xilinx.com 140
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Latency

Table 3-24 defines the write port flags update latency due to a read operation.

Table 3-24: Non-Built-in FIFOs, Independent Clock and FWFT Read Mode Implementations:
Write Port Flags Update Latency Due to a Read Operation

Signals Latency
FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)?
ALMOST_FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)?
PROG_FULL 1 RD_CLK + 5 WR_CLK (+1 WR_CLK)?
WR_ACKP N/A
OVERFLOWP N/A
WR_DATA_COUNT 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)?

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 WR_CLK uncertainty to the latency
calculation.

b. Write handshaking signals are only impacted by a write operation.

Table 3-25 defines the read port flags update latency due to a write operation.

Table 3-25: Non-Built-in FIFOs, Independent Clock and FWFT Read Mode Implementations:
Read Port Flags Update Latency Due to a Write Operation

Signals Latency

EMPTY 1 WR_CLK + 6 RD_CLK (+1 RD_CLK)?
ALMOST_EMPTY 1 WR_CLK + 6 RD_CLK (+1 RD_CLK)?
PROG_EMPTY 1 WR_CLK + 5 RD_CLK (+1 RD_CLK)?
VALIDP N/A

UNDERFLOW® N/A

RD_DATA_COUNT 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)?

+ [2 RD_CLK (+1 RD_CLK)]¢

Note: Read handshaking signals only impacted by read operation.

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 RD_CLK uncertainty to the latency
calculation.

b. Read handshaking signals are only impacted by a read operation.

c. This latency is the worst-case latency. The addition of the [2 RD_CLK (+1 RD_CLK)] latency depends on the status of
the EMPTY and ALMOST_EMPTY flags.

Built-in FIFOs: Common Clock and Standard Read Mode
Implementations
Note: N is the number of primitives cascaded in depth. This can be calculated by dividing the GUI

depth by the primitive depth. For ECC, the primitive depth is 512. The term “Built-in FIFOs" refers to
the hard FIFO macros of Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
UG363, Virtex-6 FPGA Memory Resources User Guide, and UG473, 7 Series FPGAs Memory
Resources User Guide.

FIFO Generator v9.3 www.xilinx.com 141
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Table 3-26 defines the write port flags update latency due to a write operation.

Latency

Table 3-26: Common Clock Built-in FIFOs with Standard Read Mode Implementations: Write
Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)
FULL 0
PROG_FULL 1
WR_ACK 0
OVERFLOW 0

Table 3-27 defines the read port flags update latency due to a read operation.

Table 3-27: Common Clock Built-in FIFOs with Standard Read Mode Implementations: Read
Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)
EMPTY 0
PROG_EMPTY 1
VALID 0
UNDERFLOW 0

Table 3-28 defines the write port flags update latency due to a read operation.

Table 3-28: Common Clock Built-in FIFOs with Standard Read Mode Implementations: Write
Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)
FULL (N-1)
PROG_FULL N
WR_ACK® N/A
OVERFLOW? N/A

a. Write handshaking signals are only impacted by a write operation.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

142

http://www.xilinx.com

& XILINX

Latency

Table 3-29 defines the read port flags update latency due to a write operation.

Table 3-29: Common Clock Built-in FIFOs with Standard Read Mode Implementations: Read
Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)
EMPTY (N-1)*2
PROG_EMPTY (N-1)*2+1
VALID? N/A
UNDERFLOW? N/A

a. Read handshaking signals are only impacted by a read operation.

Built-in FIFOs: Common Clock and FWFT Read Mode

Implementations

Note: N is the number of primitives cascaded in depth. This can be calculated by dividing the GUI
depth by the primitive depth. For ECC, the primitive depth is 512. The term “Built-in FIFOs" refers to
the hard FIFO macros of Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
UG363, Virtex-6 FPGA Memory Resources User Guide, and UG473, 7 Series FPGAs Memory
Resources User Guide.

Table 3-30 defines the write port flags update latency due to a write operation.

Table 3-30: Common Clock Built-in FIFOs with FWFT Read Mode Implementations: Write Port
Flags Update Latency Due to Write Operation

Signals Latency (CLK)
FULL 0
PROG_FULL 1
WR_ACK 0
OVERFLOW 0

Table 3-31 defines the read port flags update latency due to a read operation.

Table 3-31: Common Clock Built-in FIFOs with FWFT Read Mode Implementations: Read Port
Flags Update Latency Due to a Read Operation

Signals Latency (CLK)
EMPTY 0
PROG_EMPTY 1
VALID 0
UNDERFLOW 0
FIFO Generator v9.3 www.xilinx.com 143

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Latency

Table 3-32 defines the write port flags update latency due to a read operation.

Table 3-32: Common Clock Built-in FIFOs with FWFT Read Mode Implementations: Write Port
Flags Update Latency Due to a Read Operation

Signals Latency (CLK)
FULL (N-1)
PROG_FULL?® N
WR_ACK® N/A
OVERFLOW N/A

a. Write handshaking signals are only impacted by a write operation.

Table 3-33 defines the read port flags update latency due to a write operation.

Table 3-33: Common Clock Built-in FIFOs with FWFT Read Mode Implementations: Read Port
Flags Update Latency Due to a Write Operation

Signals Latency (CLK)
EMPTY ((N-1)*2+1)
PROG_EMPTY ((N-1)*2+1)
VALID? N/A
UNDERFLOW? N/A

a. Read handshaking signals are only impacted by a read operation.

Built-in FIFOs: Independent Clocks and Standard Read Mode

Implementations

Note: N is the number of primitives cascaded in depth. This can be calculated by dividing the GUI
depth by the primitive. For ECC, the primitive depth is 512. Fast er _Cl k is the clock domain, either
RD_CLK or WR_CLK, that has a larger frequency. The term “Built-in FIFOs" refers to the hard FIFO
macros of Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGAs.

For more details for the write and read port flags update latency for a single primitive, see

UG363, Virtex-6 FPGA Memory Resources User Guide, and UG473, 7 Series FPGAs Memory

Resources User Guide.

Table 3-34 defines the write port flags update latency due to a write operation.

Table 3-34: Independent Clock Built-in FIFOs with Standard Read Mode Implementations:

Write Port Flags Update Latency Due to a Write Operation

Signals Latency (WR_CLK)
FULL 0
PROG_FULL 1
WR_ACK 0
OVERFLOW 0

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

144

http://www.xilinx.com

& XILINX. Latency

Table 3-35 defines the read port flags update latency due to a read operation.

Table 3-35: Independent Clock Built-in FIFOs with Standard Read Mode Implementations: Read
Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)
EMPTY 0
PROG_EMPTY 1
VALID 0
UNDERFLOW 0

Table 3-36 defines the write port flags update latency due to a read operation.

Table 3-36: Independent Clock Built-in FIFOs with Standard Read Mode Implementations:
Write Port Flags Update Latency Due to a Read Operation

Signals Latency
FULL? L1P RD_CLK + (N-1)*L2€ faster_clk + L34 WR_CLK
PROG_FULL? L4 RD_CLK + (N-1)*(L2€ -1) faster_clk + L5f WR_CLK
WR_ACKY N/A
OVERFLOWY N/A

Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one cycle later.
. L1 = 2 for Virtex-5 and Virtex-6, and L1 = 1 for 7 series devices.

L2 = 5 for Virtex-5, Virtex-6, and L2 = 4 for 7 series devices.

. L3 = 3 for Virtex-5, Virtex-6 and 7 series devices.

L4 = 1 for Virtex-5, Virtex-6 and 7 series devices.

L5 = 3 for Virtex-5, Virtex-6, and L5 = 4 for 7 series devices.

. Write handshaking signals are only impacted by a Write operation.

@ o o N T W

Table 3-37 defines the read port flags update latency due to a write operation.

Table 3-37: Independent Clock Built-in FIFOs with Standard Read Mode Implementations: Read
Port Flags Update Latency Due to a Write Operation

Signals Latency
EMPTY? L1P WR_CLK + (N-1)*L2€ faster_clk + L39 RD_CLK
PROG_EMPTY?® L4€ WR_CLK + (N—1)*(L5f -1) faster_clk + L69 RD_CLK
VALID" N/A
UNDERFLOW N/A
a. Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one cycle later.
b. L1 = 2 for Virtex-5 and Virtex-6, and L1 = 1 for 7 series devices.
c. L2 = 4 for Virtex-5, Virtex-6 and 7 series devices.
d. L3 = 4 for Virtex-5, Virtex-6 and 7 series devices.
e. L4 =1 for Virtex-5, Virtex-6 and 7 series devices.
f. L5 = 4 for Virtex-5, Virtex-6; and L5 = 5 for 7 series devices.
g. L6 = 3 for Virtex-5, Virtex-6; and L6 = 4 for 7 series devices.
h. Read handshaking signals are only impacted by a Read operation.
FIFO Generator v9.3 www.xilinx.com 145

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Latency

Built-in FIFOs: Independent Clocks and FWFT Read Mode
Implementations

Note: N is the number of primitives cascaded in depth, which can be calculated by dividing the GUI
depth by the primitive depth. For ECC, the primitive depth is 512. Fast er _Cl k is the clock domain,

either RD_CLK or WR_CLK, that has a larger frequency. The term “Built-in FIFOs" refers to the hard
FIFO macros of Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
UG363, Virtex-6 FPGA Memory Resources User Guide, and UG473, 7 Series FPGAs Memory
Resources User Guide.

Table 3-38 defines the write port flags update latency due to a write operation.

Table 3-38: Independent Clock Built-in FIFOs with FWFT Read Mode Implementations: Write
Port Flags Update Latency Due to a Write Operations

Signals Latency (WR_CLK)
FULL 0
PROG_FULL 1
WR_ACK 0
OVERFLOW 0

Table 3-39 defines the read port flags update latency due to a read operation.

Table 3-39: Independent Clock Built-in FIFOs with FWFT Read Mode Implementations: Read
Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)
EMPTY 0
PROG_EMPTY 1
VALID 0
UNDERFLOW 0

Table 3-40 defines the write port flags update latency due to a read operation.

Table 3-40: Independent Clock Built-in FIFOs with FWFT Read Mode Implementations: Write
Port Flags Update Latency Due to a Read Operation

Signals Latency
FULL® L1° RD_CLK + (N-1)*L2€ faster_clk + L39 WR_CLK
PROG_FULL? L4® RD_CLK + (N-1)*(L2¢ -1) faster_clk + L5f WR_CLK
WR_ACKY N/A
OVERFLOWY N/A

a. Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one cycle later.
b. L1 = 2 for Virtex-5 and Virtex-6, and L1 = 1 for 7 series devices.
c. L2 =5 for Virtex-5, Virtex-6, and L2 = 4 for 7 series devices.

FIFO Generator v9.3 www.xilinx.com 146
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Latency

Q -0 o

. L3 = 3 for Virtex-5, Virtex-6 and 7 series devices.

L4 = 1 for Virtex-5, Virtex-6 and 7 series devices.

L5 = 3 for Virtex-5, Virtex-6, and L5 = 4 for 7 series devices.

. Write handshaking signals are only impacted by a Write operation.

Table 3-41 defines the read port flags update latency due to a write operation.

Table 3-41: Independent Clock Built-in FIFOs with FWFT Read Mode Implementations: Read
Port Flags Update Latency Due to a Write Operation

Signals Latency
EMPTY? L1° WR_CLK + (N-1)*L2€ faster_clk + L39 RD_CLK
PROG_EMPTY? L4® WR_CLK + (N-1)*(L5f -1) faster_clk + L69 RD_CLK
VALID" N/A
UNDERFLOW N/A

Se *p o0 oo

Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one cycle later.
L1 = 2 for Virtex-5 and Virtex-6, and L1 = 1 for 7 series devices.

L2 = 5 for Virtex-5, Virtex-6 and 7 series devices.

L3 = 4 for Virtex-5, Virtex-6 and 7 series devices.

L4 = 1 for Virtex-5, Virtex-6 and 7 series devices.

L5 = 4 for Virtex-5, Virtex-6, and L5 = 5 for 7 series devices.

L6 = 3 for Virtex-5, Virtex-6, and L6 = 4 for 7 series devices.

Read handshaking signals are only impacted by a Read operation.

Virtex-4 FPGA Built-in FIFO

The Virtex-4 FPGA supports only one Built-in FIFO with a data width of 4, 9, 18 or 36. For
more details for the write and read port flags update latency, see the Virtex-4 FPGA User
Guide [Ref 4].

FIFO Gen

erator v9.3 www.xilinx.com 147

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 4

Special Design Considerations

This chapter provides additional design considerations for using the FIFO Generator core.

Resetting the FIFO

The FIFO Generator must be reset after the FPGA is configured and before operation begins.
Two reset pins are available, asynchronous (RST) and synchronous (SRST), and both clear
the internal counters and output registers.

« For asynchronous reset, internal to the core, RST is synchronized to the clock domain in
which it is used, to ensure that the FIFO initializes to a known state. This
synchronization logic allows for proper reset timing of the core logic, avoiding glitches
and metastable behavior. To avoid unexpected behavior, it is not recommended to
drive/toggle WR_EN/ RD_EN when RST is asserted/high.

» For common clock block and distributed RAM synchronous reset, because the reset pin
is synchronous to the input clock and there is only one clock domain in the FIFO, no
additional synchronization logic is needed.

« For independent clock block and distributed RAM synchronous reset, because the reset
pin (WR_RST/ RD_RST) is synchronous to the respective clock domain, no additional
synchronization logic is needed. However, it is recommended to follow these rules to
avoid unexpected behavior:

o If WR_RST is applied, then RD_RST must also be applied and vice versa.

- No write or read operations should be performed until both clock domains are
reset.

The generated FIFO core will be initialized after reset to a known state. For details about
reset values and behavior, see Resets in Chapter 3 of this guide.

Continuous Clocks

The FIFO Generator is designed to work only with free-running write and read clocks. Xilinx
does not recommend controlling the core by manipulating RD_CLK and WR_CLK. If this

FIFO Generator v9.3 www.xilinx.com 148
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Pessimistic Full and Empty

functionality is required to gate FIFO operation, we recommend using the write enable
(WR_EN) and read enable (RD_EN) signals.

Pessimistic Full and Empty

When independent clock domains are selected, the full flag (FULL, ALMOST_FULL) and
empty flag (EMPTY, ALMOST_EMPTY) are pessimistic flags. FULL and ALMOST_FULL are
synchronous to the write clock (WR_CLK) domain, while EMPTY and ALMOST_EMPTY are
synchronous to the read clock (RD_CLK) domain.

The full flags are considered pessimistic flags because they assume that no read operations
have taken place in the read clock domain. ALMOST_FULL is guaranteed to be asserted on
the rising edge of WR_CLK when there is only one available location in the FIFO, and FULL
is guaranteed to be asserted on the rising edge of WR_CLK when the FIFO is full. There may
be a number of clock cycles between a read operation and the deassertion of FULL. The
precise number of clock cycles for FULL to deassert is not predictable due to the crossing
of clock domains and synchronization logic. For more information see Simultaneous
Assertion of Full and Empty Flag

The EMPTY flags are considered pessimistic flags because they assume that no write
operations have taken place in the write clock domain. ALMOST_EMPTY is guaranteed to be
asserted on the rising edge of RD_CLK when there is only one more word in the FIFO, and
EMPTY is guaranteed to be asserted on the rising edge of RD_CLK when the FIFO is empty.
There may be a number of clock cycles between a write operation and the deassertion of
EMPTY. The precise number of clock cycles for EMPTY to deassert is not predictable due to
the crossing of clock domains and synchronization logic. For more information see
Simultaneous Assertion of Full and Empty Flag

See Chapter 3, "Designing with the Core,” for detailed information about the latency and
behavior of the full and empty flags.

Programmable Full and Empty

The programmable full (PROG_FULL) and programmable empty (PROG_EMPTY) flags
provide the user flexibility in specifying when the programmable flags assert and deassert.
These flags can be set either by constant value(s) or by input port(s). These signals differ
from the full and empty flags because they assert one (or more) clock cycle after the assert
threshold has been reached. These signals are deasserted some time after the negate
threshold has been passed. In this way, PROG_EMPTY and PROG_FULL are also considered
pessimistic flags. See Programmable Flags in Chapter 3 of this guide for more information
about the latency and behavior of the programmable flags.

FIFO Generator v9.3 www.xilinx.com 149
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Simultaneous Assertion of Full and Empty Flag

Simultaneous Assertion of Full and Empty Flag

For independent clock FIFO, there are delays in the assertion/deassertion of the full and
empty flags due to cross clock domain logic. These delays may cause unexpected FIFO
behavior like full and empty asserting at the same time. To avoid this, the following A and
B equations must be true.

A) Time it takes to update full flag due to read operation < time it takes to empty a full FIFO

B) Time it takes to update empty flag due to write operation < time it takes to fill an empty
FIFO

For example, assume the following configurations:

« Independent clock (non built-in), standard FIFO

« write clock frequency = 3MHz, wr_clk_period = 333 ns

« read clock frequency = 148 MHz, rd_clk_period = 6.75 ns
« write depth = read depth = 20

« actual_wr_depth = actual_rd_depth = 19 (as mentioned in Actual FIFO Depth in
Chapter 3)

Apply equation A:

Time it takes to update full flag due to read operation < time it takes to empty a full FIFO
= 1*rd_clk_period + 5*wr_clk_period < actual_rd_depth*rd_clk_period

1*6.75 + 5*333 < 19%6.75
1671.75 ns < 128.5 ns --> Equation VIOLATED!

Note: Left side equation is the latency of full flag updating due to read operation as mentioned in
Table 3-20, page 139.

Conclusion: Violation of this equation proves that for this design, when a FULL FIFO is read
from continuously, the empty flag asserts before the full flag deasserts due to the read
operations that occurred.

Apply Equation B:

Time it takes to update empty flag due to write operation < time it takes to fill an empty
FIFO

1*wr_clk_period + 5*rd_clk_period < actual_wr_depth*wr_clk_period

1*333 + 5*6.75 < 19*333

FIFO Generator v9.3 www.xilinx.com 150
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Write Data Count and Read Data Count

366.75 ns < 6327 ns --> Equation MET!

Note: Left side equation is the latency of empty flag updating due to write operation as mentioned
in Table 3-21, page 140.

Conclusion: Because this equation is met for this design, an EMPTY FIFO that is written into
continuously has its empty flag deassert before the full flag is asserted.

Write Data Count and Read Data Count

When independent clock domains are selected, write data count (WR_DATA_COUNT) and
read data count (RD_DATA_COUNT) signals are provided as an indication of the number of
words in the FIFO relative to the write or read clock domains, respectively.

Consider the following when using the WR_DATA_COUNT or RD_DATA_COUNT ports.

« The WR_DATA_COUNT and RD_DATA_COUNT outputs are not an instantaneous
representation of the number of words in the FIFO, but can instantaneously provide an
approximation of the number of words in the FIFO.

« WR_DATA COUNT and RD_DATA_ COUNT may skip values from clock cycle to clock cycle.

« Using non-symmetric aspect ratios, or running clocks which vary dramatically in
frequency, will increase the disparity between the data count outputs and the actual
number of words in the FIFO.

Note: The WR_DATA_COUNT and RD_DATA_COUNT outputs will always be correct after some period
of time where RD_EN=0 and WR_EN=0 (generally, just a few clock cycles after read and write activity
stops).

See Data Counts in Chapter 3 of this guide for details about the latency and behavior of the
data count flags.

Setup and Hold Time Violations

When generating a FIFO with independent clock domains (whether a DCM is used to derive
the write/read clocks or not), the core internally synchronizes the write and read clock
domains. For this reason, setup and hold time violations are expected on certain registers
within the core. In simulation, warning messages may be issued indicating these violations.
If these warning messages are from the FIFO Generator core, they can be safely ignored. The
core is designed to properly handle these conditions, regardless of the phase or frequency
relationship between the write and read clocks.

The FIFO Generator core provides an IP-level constraint that applies a MAXDELAY constraint
to avoid setup and hold violations on the cross-clock domain logic. In addition to the

FIFO Generator v9.3 www.xilinx.com 151
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Setup and Hold Time Violations

IP-level constraint, the FIFO Generator also provides an example design constraint that
applies a FALSE_PATH on the reset path.

FIFO Generator v9.3 www.xilinx.com 152
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.

SECTION II: VIVADO DESIGN SUITE

Customizing and Generating the Core
Constraining the Core

Detailed Example Design

FIFO Generator v9.3 www.xilinx.com 153
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 5

Customizing and Generating the Native
Core

This chapter includes information about using Xilinx tools to customize and generate the
FIFO Generator for Native FIFO Interfaces in the Vivado Design Suite.

GUI

The Native FIFO Interface GUI includes seven configuration screens.

Interface Type
FIFO Implementation
Performance Options and Data Port Parameters
Optional Flags, Handshaking, and Initialization
Initialization and Programmable Flags

+ Data Count

Summary

FIFO Generator v9.3 www.xilinx.com 154
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Interface Type

GUI

The main FIFO Generator screen is used to define the component name and provides the
Interface Options for the core.

s

Customize IP

£l

0 Customize FIFD Generator (9.3) by
specifying IP Options.

IP Options

[show Disabled Forts

Show Advanced Options

+ Component Name

| &

Component Name ‘flfnigeneratoriusjio |

Intf. Type Impl. Type Native Ports Flags RST./P.Flags Data Counts Summary

Interface Type

@ Native

O Axl4

Mative Interface FIFOs are the original standard FIFO functions delivered by the previous versions of the LogiCORE FIFO Gener,
are optimized for buffering, data-width corversion and clock domain de-coupling applications, providing in-order storage and
Mative Interface FIFO cores can be cuFstomized to utilize Block RAM, Distributed RAM, or Builtdn FIFOs. Twe primary operating
supported: Standard, and First Word Fall Through.

Choose the "Native" Interface Type option to generate a non-A¥ FIFO equivalent to one generated by FIFO Generator v6.2 al
for nan-processor systems.

| Ok | Cancel

Figure 5-1: Main FIFO Generator Screen

Base name of the output files generated for this core. The name must begin with a letter

and be composed of the following characters: a to z, 0 to 9, and

« Interface Type

- Native

u o

Implements a Native FIFO.

o AXI4

Implements an AXI4 FIFO in First-Word-Fall-Through mode.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

155

http://www.xilinx.com

& XILINX GUI

FIFO Implementation

The FIFO Implementation screen is used to define the configuration options for the core.

Customize IP

| Customize FIFQ Generator (9.3} by | "

specifying IP Options,
IP Options

FIFO Generator
[1Show Disabled Ports Compenent Name [fifo_generator w9_3_0 |
[+] Intf. Type (impl. Type Native Ports Flags RST./P.Flags Data Counts =Summary
FIFO Implemnentation H
Choose the FIFO implementation from one of the following:
Fifo Implementation Common Clock Block RAM B‘
Supported Features
Mermory
Type 1) (2) (3 (4 (3)
Common Clock {CLK} Block RAM X X X
Common Clock {CLK} Distributed RAM X
dout[17:0]p= Common Clock (CLK) shift Register

fulll= Common Clock {CLK} Built-in FIFO X X X X

Independent Clocks (RD_CLE, WR_CLK) Block RAM X X X 4
erfpty g= Independent Clocks (RD_CLE, WR_CLK) Distributed RAM X
Independent Clocks (RD_CLE, WR_CLK) Built-in FIFO X X X 4
(2) First-Word Fall-Through
(4) ECC support
(5) Dynarnic Error Injection
[1 £
Show Advanced Options
| Ok | Cancel

Figure 5-2: FIFO Implementation Screen

This screen of the GUI allows the user to select from a set of available FIFO implementations
and supported features. The key supported features that are only available for certain
implementations are highlighted by checks in the right-margin. The available options are
listed below, with cross-references to additional information.

« Common Clock (CLK), Block RAM

For details, see Common Clock FIFO: Block RAM and Distributed RAM, page 123. This
implementation optionally supports first-word-fall-through (selectable in the second
GUI screen, shown in Figure 5-3).

« Common Clock (CLK), Distributed RAM

For details, see Common Clock FIFO: Block RAM and Distributed RAM, page 123. This
implementation optionally supports first-word-fall-through (selectable in the second
GUI screen, shown in Figure 5-3).

« Common Clock (CLK), Shift Register

FIFO Generator v9.3 www.xilinx.com 156
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

GUI

For details, see Common Clock FIFO: Shift Registers, page 124. This implementation is
only available in Virtex-4 FPGA and newer architectures.

Common Clock (CLK), Built-in FIFO

For details, see Common Clock: Built-in FIFO, page 123. This implementation is only
available when using the Kintex-7, Virtex-7, Virtex-6, Virtex-5 or Virtex-4 FPGA
architectures. This implementation optionally supports first-word fall-through
(selectable in the second GUI screen, shown in Figure 5-3).

Independent Clocks (RD_CLK, WR_CLK), Block RAM

For details, see Independent Clocks: Block RAM and Distributed RAM, page 120. This
implementation optionally supports asymmetric read/write ports and first-word
fall-through (selectable in the second GUI screen, shown in Figure 5-3).

Independent Clocks (RD_CLK, WR_CLK), Distributed RAM

For more information, see Independent Clocks: Block RAM and Distributed RAM,
page 120. This implementation optionally supports first-word fall-through (selectable in
the second GUI screen, shown in Figure 5-3).

Independent Clocks (RD_CLK, WR_CLK), Built-in FIFO

For more information, see Independent Clocks: Built-in FIFO, page 122. This
implementation is only available when using Kintex-7, Virtex-7, Virtex-6, Virtex-5 or
Virtex-4 FPGA architectures. This implementation optionally supports first-word
fall-through (selectable in the second GUI screen, shown in Figure 5-3).

FIFO Generator v9.3 www.xilinx.com 157
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Performance Options and Data Port Parameters

This screen provides performance options and data port parameters for the core.

4

K3

Custermize FIFO Genarator (9.2) by
specifying IP Options.

IP Options
FIFO Generator

[Shew Disabled Ports

dout[17:0]

Show Advanced Options

(2]

Component Name |ﬁfu_gemeratur_v9_3_0

Intf, Type Impl. Type Mative Ports Flags RST./P.Flags Data Counts Summary

D

Fead Made

@ Standard FIFO

(O First Word Fall Through

»

Built-in FIFQ Options
The freguency relationship of WR_CLK and RD_CLK MUST he specified to generate the correct implementation.
; [| F
| R

Data Port Parameters
Write Width 1,2,3,.1024
Write Depth |1024 |z| Actual Write Depth: 1024

| Actusl Read Depth: 1024

»

Implementation Options
[Enable ECC

[] Use Embedded Registers in BRAM or FIFO fwhen possible)

L_oc JI

Cancel

FIFO

Figure 5-3:

« Read Mode

Performance Options and Data Port Parameters Screen

Available only when block RAM or distributed RAM FIFOs are selected. Support for
built-in FIFOs is only available for Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA
implementations.

- Standard FIFO

Implements a FIFO with standard latencies, and without using output registers.

- First-Word Fall-Through FIFO

Implements a FIFO with registered outputs. For more information about FWFT
functionality, see First-Word Fall-Through FIFO Read Operation, page 98.

« Built-in FIFO Options

- Read/Write Clock Frequencies

Generator v9.3

www.xilinx.com

PG0O57 December 18, 2012

158

http://www.xilinx.com

& XILINX GUI

The Read Clock Frequency and Write Clock Frequency fields can be any integer from
1 to 1000. They are used to determine the optimal implementation of the
domain-crossing logic in the core. This option is only available for built-in FIFOs with
independent clocks. If the desired frequency is not within the allowable range, scale
the read and write clock frequencies so that they fit within the valid range, while
maintaining their ratio relationship.

f IMPORTANT: [t is critical that Read Clock and Write Clock Frequency data is entered and accurate. If
this information is not provided, it can result in a sub-optimal solution with incorrect core behavior.

« Data Port Parameters

o Write Width

For Virtex-4 FPGA Built-in FIFO macro, the valid range is 4, 9, 18 and 36. For other
memory type configurations, the valid range is 1 to 1024.

o Write Depth

For Virtex-4 FPGA Built-in FIFO macro, the valid range automatically varies based on
write width selection. For Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA Built-in FIFO
macro, the valid range is 512 to 4194304. Only depths with powers of 2 are allowed.

For non Built-in FIFO, the valid range is 1 to 4194304. Only depths with powers of 2
are allowed.

- Read Width

Available only if independent clocks configuration with block RAM is selected. Valid
range must comply with asymmetric port rules. See Non-symmetric Aspect Ratios,
page 113.

- Read Depth
Automatically calculated based on Write Width, Write Depth, and Read Width.

+ Implementation Options

- Error Correction Checking in Block RAM or Built-in FIFO

The Error Correction Checking (ECC) feature enables built-in error correction in the
Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA block RAM and built-in FIFO macros.
When this feature is enabled, the block RAM or built-in FIFO is set to the full ECC
mode, where both the encoder and decoder are enabled.

FIFO Generator v9.3 www.xilinx.com 159
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

- Use Embedded Registers in Block RAM or FIFO

The block RAM macros available in Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4
FPGA, as well as built-in FIFO macros available in Kintex-7, Virtex-7, Virtex-6 and
Virtex-5 FPGA, have built-in embedded registers that can be used to pipeline data
and improve macro timing. This option enables users to add one pipeline stage to
the output of the FIFO and take advantage of the available embedded registers;
however, the ability to reset the data output of the Virtex-5 FPGA built-in FIFO is
disabled when this feature is used. For built-in FIFOs, this feature is only supported
for synchronous FIFO configurations that have only 1 FIFO macro in depth. See
Embedded Registers in Block RAM and FIFO Macros (Zynqg-7000, 7 Series, Virtex-6,
Virtex-5 and Virtex-4 FPGAs), page 116.

Optional Flags, Handshaking, and Initialization

This screen allows you to select the optional status flags and set the handshaking options.

Customize IP

e Customize FIFO Generator (9.3) by ‘ = |
~ specifying IP Options.

IP Options
FIFO Generator

[] Show Disakled Ports Component Name |f\fo_generator_v9_3_0 |

= Intf, Type Impl. Type Native Ports Flags RST.J/P.Flags Data Counts Summary

Optional Flags
[Jalmost Full Flag [Almest Empty Flag

Handshaking Options

Write Port Handshaking
[CIwrite Acknowledge Flag [Overflow Flag

»

lowe (ifrite Errar)

|
2 | [over

dout[17:0]

Read Port Handshaking
[Iwvalid Flag [underflow Flag

»
»

[4] [+1=] c a |

Show Advanced Options

‘ 0K | Cancel
Figure 5-4: Optional Flags, Handshaking, and Error Injection Options Screen
« Optional Flags

Refer to Latency in Chapter 3 for the latency of the Almost Full/Empty flags due to write/
read operation.

FIFO Generator v9.3 www.xilinx.com 160
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

GUI

- Almost Full Flag

Available in all FIFO implementations except those using Kintex-7, Virtex-7, Virtex-6,
Virtex-5 or Virtex-4 FPGA built-in FIFOs. Generates an output port that indicates the
FIFO is almost full (only one more word can be written).

- Almost Empty Flag

Available in all FIFO implementations except in those using Kintex-7, Virtex-7,
Virtex-6, Virtex-5 or Virtex-4 FPGA built-in FIFOs. Generates an output port that
indicates the FIFO is almost empty (only one more word can be read).

Handshaking Options

Refer to Latency in Chapter 3 for the latency of the handshaking flags due to write/read
operation.

- Write Port Handshaking

Write Acknowledge

Generates write acknowledge flag which reports the success of a write operation.
This signal can be configured to be active high or low (default active high).

Overflow (Write Error)

Generates overflow flag which indicates when the previous write operation was
not successful. This signal can be configured to be active high or low (default
active high).

- Read Port Handshaking

Valid (Read Acknowledge)

Generates valid flag which indicates when the data on the output bus is valid.
This signal can be configured to be active high or low (default active high).

Underflow (Read Error)

Generates underflow flag to indicate that the previous read request was not
successful. This signal can be configured to be active high or low (default active
high).

FIFO Generator v9.3 www.xilinx.com 161
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

« Error Injection

- Single Bit Error Injection

Available only in Virtex-6 FPGAs for both the common and independent clock block
RAM or built-in FIFOs, with ECC option enabled. Generates an input port to inject a
single bit error on write and an output port that indicates a single bit error occurred.

- Double Bit Error Injection

Available only in Virtex-6 FPGAs for both the common and independent clock block
RAM or built-in FIFOs, with ECC option enabled. Generates an input port to inject a
double bit error on write and an output port that indicates a double bit error
occurred.

FIFO Generator v9.3 www.xilinx.com 162
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Initialization and Programmable Flags

GUI

Use this screen to select the initialization values and programmable flag type when
generating a specific FIFO Generator configuration.

| Custemize FIFQ Generator (9.3} by
' specifying IP Options,

IP Options

[Show Disabled Perts

dout[17:0]
full

mpty

Show Advanced Options

FIFO Generator

(2]

Compenent Name ‘ﬁfc_generatcr_ugﬁ_fj

Intf, Type Impl. Type Native Ports Flags RST./P.Flags Data Counts Summary

Initialization

[¥] Reset Pin

»

Reset Type

@ Asynchronous Reset

O synchronous Reset

»

Full Flags Reset Yalue |1 Iz“

Use Dout Reset

Use Dout Reset value [0 | (Hesy

Programmable Flags

|No Programmable Full Threshold

Programmable Full Type

|No Programmable Empty Threshold

»

[ok || cancel

« Initialization

- Reset Pin

Figure 5-5:

Programmable Flags and Reset Screen

For FIFOs implemented with block RAM or distributed RAM, a reset pin is not
required, and the input pin is optional.

- Reset Type

- Enable Reset Synchronization

Optional selection only available for independent clock block RAM or
distributed RAM FIFOs. When unchecked, WR_RST/RD_RST is available. See
Resets in Chapter 3 for details.

- Asynchronous Reset

Optional selection for a common-clock FIFO implemented using distributed
or block RAM.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

163

http://www.xilinx.com

& XILINX

GUI

- Synchronous Reset

Optional selection for a a common-clock FIFO implemented using distributed
or block RAM.

- Full Flags Reset Value

For block RAM, distributed RAM, and shift register configurations, the user can
choose the reset value of the full flags (PROG_FULL, ALMOST_FULL, and FULL)
during reset.

Use Dout Reset

Available in Virtex-4 FPGA or newer architectures for all implementations using
block RAM, distributed RAM, shift register or Virtex-6 common clock built-in with
embedded register option. Only available if a reset pin option is selected. If selected,
the DOUT output of the FIFO will reset to the defined DOUT Reset Value (below)
when the reset is asserted. If not selected, the DOUT output of the FIFO will not be
effected by the assertion of reset, and DOUT will hold its previous value.

Disabling this feature for Spartan ®-3 devices may improve timing for the
distributed RAM and shift register FIFO.

- Use Dout Reset Value

Available only when Use Dout Reset is selected, this field indicates the
hexidecimal value asserted on the output of the FIFO when RST (SRST) is
asserted. See Appendix G, DOUT Reset Value Timing for the timing diagrams for
different configurations.

Programmable Flags

Refer to Latency in Chapter 3 for the latency of the programmable flags due to write/
read operation.

o

Programmable Full Type

Select a programmable full threshold type from the drop-down menu. The valid
range for each threshold is displayed and varies depending on the options selected
elsewhere in the GUL

- Full Threshold Assert Value

Available when Programmable Full with Single or Multiple Threshold Constants is
selected. Enter a user-defined value. The valid range for this threshold is
provided in the GUL When using a single threshold constant, only the assert
threshold value is used.

FIFO Generator v9.3 www.xilinx.com 164
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

- Full Threshold Negate Value

Available when Programmable Full with Multiple Threshold Constants is selected.
Enter a user-defined value. The valid range for this threshold is provided in the
GUL

- Programmable Empty Type

Select a programmable empty threshold type from the drop-down menu. The valid
range for each threshold is displayed, and will vary depending on options selected
elsewhere in the GUL

- Empty Threshold Assert Value

Available when Programmable Empty with Single or Multiple Threshold
Constants is selected. Enter a user-defined value. The valid range for this
threshold is provided in the GUL When using a single threshold constant, only
the assert value is used.

- Empty Threshold Negate Value

Available when Programmable Empty with Multiple Threshold Constants is
selected. Enter a user-defined value. The valid range for this threshold is
provided in the GUL.

FIFO Generator v9.3 www.xilinx.com 165
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Data Count

Use this screen to set data count options.

GUI

Note: Valid range of values shown in the GUI are the actual values even though they are grayed out

for some selection.

| &
IP Options
FIFO Generator

Customize FIFO Generator {8.2) by
~ specifying IP Options.

[show Disabled Ports
[=]

dout[17:0]
full

ampty

3] bT=1

Show Advanced Options

Component Name |f\foigemerator7v97370

Intf. Type Impl. Type Native Ports Flags RST./P.Flags Data Counts Summary

Data Count Options

[use

logic for more =

[Data Count (Synchronized with Clk)

Simulation Options

[Disable timing violations on cross clock demain registers

Figure 5-6: Data Count Screen

- Data Count Options

Refer to Latency in Chapter 3 for the latency of the data counts due to write/read

operation.

- Use Extra Logic For More Accurate Data Counts

Only available for independent clocks FIFO with block RAM or distributed RAM, and
when using first-word fall-through. This option uses additional external logic to
generate a more accurate data count. This feature is always enabled for common
clock FIFOs with block RAM or distributed RAM and when using
first-word-fall-through. See First-Word Fall-Through Data Count, page 110 for

details.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

166

http://www.xilinx.com

& XILINX

GUI

Data Count (Synchronized With Clk)

Available when a common clock FIFO with block RAM, distributed RAM, or shift
registers is selected.

- Data Count Width
Available when Data Count is selected. Valid range is from 1 to log, (input depth).
Write Data Count (Synchronized with Write Clk)

Available when an independent clocks FIFO with block RAM or distributed RAM is
selected.

- Write Data Count Width

Available when Write Data Count is selected. Valid range is from 1 to log; (input
depth).

Read Data Count (Synchronized with Read Clk)

Available when an independent clocks FIFO with block RAM or distributed RAM is
selected.

- Read Data Count Width

Available when Read Data Count is selected. Valid range is from 1 to log, (output
depth).

FIFO Generator v9.3 www.xilinx.com 167
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Output Generation

Summary

This screen displays a summary of the selected FIFO options, including the FIFO type, FIFO
dimensions, and the status of any additional features selected. In the Additional Features
section, most features display either Not Selected (if unused), or Selected (if used).

Note: Write depth and read depth provide the actual FIFO depths for the selected configuration.
These depths may differ slightly from the depth selected on screen three of the FIFO GUI

Customize FIFO Generator (9.3) by | L)

specifying IP Options,

IP Options
FIFO Generator
[Show Disabled Ports Component Mame \f\foigeneratoriue)j?o |

L Intf. Type Impl. Type MNative Ports Flags RST/P.Flags Data Counts Summary

»

Selected Simulation Model

Model Generated : Behavioral Model|
Notes : Model is cycle accurate
Flease refer to FIFO Generator User Guide generated with the core

FIFO Dimensions 2
write Width : 18

write Depth : 1024

Read Width : 18

rst dout[17:0]f=
dinl17:01 fullf-
wr_en emptyf- Read Depth : 1024

Block RAM resource(s) (18K BRAMs): 1

Block RAM resource(s) (36K BRAMs): 0

Additional Features 2 |
Almost FulliEmpty Flags : Mot Selected/Mot Selected
Programmable Full/Empty Flags Mot Selected/Mot Selected
Data Count Outputs : Mot Selected U
Handshaking : Mot Selected
Read Mode / Reset ! Standard FIFO / Asynchronous
i, =l Read Latency (From Rising Edge of Read Clock): 1 =
Show Advanced Options
|| 0K u | Cancel

Figure 5-7: Summary Screen

Output Generation

The output files generated from the Xilinx Vivado Design Suite are placed in the
<project_directory> top-level directory. Depending on the settings, the file output list may
include some or all of the following files:

|) <project_directory>/<project_name.data>
Contains constraints and file set details.

() <project directory>/<project_name>.src/sources_1/ip/<component name>
Contains the sources like XCI, XDC, TCL and document files.

() <component name>/synth
Contains the source file necessary to synthesize the FIFO Generator

FIFO Generator v9.3 www.xilinx.com 168
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Output Generation

] <component name>/sim
Contains the source file necessary to synthesize the FIFO Generator

) <component name>/example_design
Contains the source file necessary to synthesize the example design

] <component name>/simulation
Contains the source file necessary to simulate the example design

) <component name>/simulation/functional

Contains the scripts necessary to run functional simulation on the core including
example design

1 <component name>/simulation/timing

Contains the scripts necessary to run timing simulation on the core including
example design

The FIFO Generator core directories and their associated files are defined in the following
sections.

<project directory>/<project_name>.src/sources_1/ip/
<component name>

This directory contains templates for instantiation of the core, example design, synth, XML
and the XCI files.

Table 5-1: Component Name Directory

Name Description

<component_name>.xcCi Log file from VIVADO software describing which options
were used to generate the FIFO Generator core. An XCI file
can also be used as an input to the Vivado Design Suite.

<component_name>.{veo|vho} VHDL or Verilog instantiation template.

<component name>/synth

The synth directory contains the FIFO Generator synthesis file.

Table 5-2: Synth Directory

Name Description

<component_name>.vhd VHDL file from Vivado Design Suite used to synthesize the
FIFO Generator core.

<component name>/sim

The sim directory contains the FIFO Generator simulation wrapper file.

FIFO Generator v9.3 www.xilinx.com 169
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Output Generation

Table 5-3: Sim Directory

Name Description

<component_name>.vhd A VHDL file from VIVADO software to simulate the FIFO
Generator.

<component name>/example_design

The example design directory contains the example design files provided with the core.

Table 5-4: Example Design Directory

Name Description

<component_name>_exdes.vhd The VHDL top-level file for the example design. It
instantiates the FIFO Generator core. This file contains entity
with the IO's required for the core configuration.

<component_name>_exdes.xdc Provides an example clock constraint for processing the
FIFO Generator core using the Vivado Design Suite
implementation tools.

<component name>/simulation

The simulation directory contains the simulation files provided with the core.

Table 5-5: Simulation Directory

Name Description
<component_name>_dverif.vhd This VHDL file verifies the output data against the input data.
<component_name>_pctrl.vhd This VHDL file generates the control signals to the core.
<component_name>_dgen.vhd This VHDL file generates the random input data to the FIFO

Generator core.
<component_name>_tb_pkg.vhd This VHDL file has all the common functions used in stimulus
generation.
<component_name>_tb_synth.vhd This VHDL file instantiates the example design.
<component_name>_tb_rng.vhd This VHDL file has the random number generation used to

generate input data for FIFO Writes.

<component_name>_tb.vhd This VHDL file is the top-level test bench File.

<component name>/simulation/functional

The functional directory contains the scripts to launch XSIM/MTI Simulation with simulation
test bench set as top entity.

FIFO Generator v9.3 www.xilinx.com 170
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Output Generation

Table 5-6: Functional Directory

Name

Description

Simulate_xsim.sh

XSim macro file for Linux machines that compiles the example design
sources and the structural simulation model. The demonstration test
bench then runs the functional simulation to completion.

Simulate_xsim.bat

XSim macro file for Windows that compiles the example design
sources and the structural simulation model. The demonstration test
bench then runs the functional simulation to completion.

wave_xsim.tcl

XSim macro file that opens a Wave window with top-level signals.

simulate_mti.sh

Linux shell script that executes the ModelSim macro file.

simulate_mti.bat

Windows batch script that executes the ModelSim macro file.

simulate_mti.do

A ModelSim macro file that compiles the HDL sources and runs the
simulation.

<component name>/simulation/timing

The timing directory contains the scripts to launch XSIM/MTI Simulation with simulation

test bench set as top entity.

Table 5-7: Timing Directory

Name

Description

Simulate_xsim.sh

XSim macro file for Linux machines that compiles the example design
sources and the structural simulation model. The demonstration test
bench then runs the functional simulation to completion.

Simulate_xsim.bat

XSim macro file for Windows that compiles the example design
sources and the structural simulation model. The demonstration test
bench then runs the functional simulation to completion.

wave_xsim.tcl

XSim macro file that opens a Wave window with top-level signals.

simulate_mti.sh

Linux shell script that executes the ModelSim macro file.

simulate_mti.bat

Windows batch script that executes the ModelSim macro file.

simulate_mti.do

A ModelSim macro file that compiles the HDL sources and runs the
simulation.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com 171

http://www.xilinx.com

& XILINX.
Chapter 6

Customizing and Generating the AXI4
Core

This chapter includes information about using Xilinx tools to customize and generate the
FIFO Generator for AX14 FIFO Interfaces in the Vivado Design Suite.

GUI

For AXI4, the FIFO Generator GUI includes five configuration GUI pages:

« Interface Selection
« Width Calculation
« FIFO Configuration

« Common Page for FIFO Configuration

For AX14 and AXI4-Lite interfaces, FIFO Generator provides a separate page to configure
each FIFO channel. For more details, see Easy Integration of Independent FIFOs for Read
and Write Channels in Chapter 1.

* Summary

The configuration settings specified on the Page 2 of the GUI is applied to all selected
Channels of the AXI4 or AXI4-Lite interfaces

More details on these customization GUI pages are provided in the following sections.

AXl4 Interface Selection

Figure 6-1 shows the AXI4 interface selection screen.

FIFO Generator v9.3 www.xilinx.com 172
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

- Customize IP x|
Customize FIFO Generator (9.3) by |E
specifying IF Options.

IF Options
FIFO Generator
[Show Disablad Ports Component Name \flfuigenaraturivgjio |

=l Intf. Type AX14 Intf. Type AX|4 Stream Ports Config. Flags Summary

A4 Interface Options 2

AX Type 2

@ 214 stream O ax4 - O AX4 Lite

Clocking Options 2

Clock Type AX1

@ common Clock O Independent Clock

s aclk 2xl4straam_MASTER_M_axIS ||
5 aresetn

gqpaxms:ream_smus_s_ms

AX|4-Stream FIFOs

AX|4-Stream FIFOs are best for non-address-hased, point-to-point applications.
Use them when you need to interface to other IF cores using this interface
(e.g., 2314 version of DSP functions such as FFT, DDS, and FIR Cornpiler).

[D153

Show Advanced Options

‘. ok | ‘ Cancel

Figure 6-1: AXIl4 Interface Selection Screen

« AXI4 Interface Options
Three AXI4 interface styles are available: AXI4-Stream, AXI4 and AXI4-Lite.
+ Clocking Options

FIFOs may be configured with either independent or common clock domains for Write
and Read operations.

The Independent Clock configuration enables the user to implement unique clock
domains on the Write and Read ports. The FIFO Generator handles the synchronization
between clock domains, placing no requirements on phase and frequency. When data
buffering in a single clock domain is required, the FIFO Generator can be used to
generate a core optimized for a single clock by selecting the Common Clocks option.

For more details on Common Clock FIFO, see Common Clock FIFO: Block RAM and
Distributed RAM in Chapter 3.

For more details on Independent Clock FIFO, see Independent Clocks: Block RAM and
Distributed RAM in Chapter 3.

Performing Writes with Slave Clock Enable

FIFO Generator v9.3 www.xilinx.com 173
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

The Slave Interface Clock Enable allows the AXI4 Master to operate at fractional rates of
AXI4 Slave Interface (or Write side) of FIFO. The above timing diagram shows the AXI4
Master operating at half the frequency of the FIFO AXI4 Slave interface. The Clock
Enable in this case is Single Clock Wide, Synchronous and occurs once in every two
clock cycles of the AXI4 Slave clock.

Performing Reads with Master Clock Enable

The Master Interface Clock Enable allows AXI4 Slave to operate at fractional rates of
AX14 Master Interface (or Read side) of the FIFO. The above timing diagram shows the
AXI4 Slave operating at half the frequency of the FIFO AXI4 Master Interface. The Clock
Enable in this case is Single Clock Wide, Synchronous and occurs once in every two
clock cycles of the FIFO AXI4 Slave clock. the FIFO.

Width Calculation

The AXI4 FIFO Width is determined by aggregating all of the channel information signals in
a channel. The channel information signals for AXI4-Stream, AXI4 and AXI4-Lite interfaces
are listed in Table 6-1 and Table 6-2. GUI screens are available for configuring:

+ AXI4-Stream Width Calculation

« AXI4 Width Calculation
e AXI4-Lite Width Calculation

FIFO Generator v9.3 www.xilinx.com 174
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

AXl4-Stream Width Calculation

Customize FIFO Generator (8.2 by
© specifying IP Options.

IP Options

[show Disabled Ferts

s_aclk A4S tream_MASTER_M_ax13 k||

NI|sharaseream_siave_s_sas
5_aresetn

[bI=]

Show Advanced Options

Figure 6-2:

Customize IP

GUI

*®|

[(m]

FIFO Generator

Compeonent Name ‘ﬁfo?generato[\a’gﬁj

Intf. Type AX4 Intf. Type AXI4 Stream Ports Config. Flags Summary

Width Calculation H
FTDA th |54 [~] Range: 8.16..1024 O TD width | Range: 1to 32
CITDEST Width |4 | Range: 1 to 32 I TUSER Wicth |4 ll Range : 1 to 256
I TSTRE [| Range:1toB [TKEEF B | Range 1toB
[TREADY CITLasT
Calculated Width: 64
For more detailz, refer to the FIFO Generator User Guide, "Width Calculation” section

i 1 [+

| oK | Cancel

AXl4-Stream Width Calculation Screen

The AXI4-Stream FIFO allows the user to configure widths for TDATA, TUSER, TID and TDEST

signals. For TKEEP and TSTRB signals the width is determined by the configured TDATA
width and is internally calculated by using the equation (TDATA Width)/8.

For all the selected signals, the AXI4-Stream FIFO width is determined by summing up the
widths of all the selected signals.

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

175

http://www.xilinx.com

v
& XILINX. GUI
AXI4 Width Calculation
f‘_ Customize IP I_il
0 Custornize FIFO Generator (9.3) by | L)
specifying IF Options.
IP Options
FIFO Generator
[] Show Disabled Ports Component Name |f|fuigeneratur7v97370 |
Intf. Type AXI4 Intf. Type AXI14 Ports AW Config. W Config. B Config. AR Config. R Config. Flags Summary
Width Caleulation E
Cornmon Width Configuration Options A
D Wiclth | rRange1.s
Address Width Range: 1...32
Datawidth [54 [~] Range 8.16.1024
| Write channels 2
I Write Address Channel Width Calculation A
*
1[4 204 _sLave s axi]] AWrUSER Width |1 Calculated Width: 66
s aclk A4 MASTER M_axi 4 |||
Sichesetn Write Data Channel Width Calculation &
i [WUSER width |1 Calculated width: 77
Write Response Channel Width Calculation A
[BUSER Width |1 Calculated Width: 6
| Read Channels 2
Read Address Channel Width Calculation 2
[ARUSER Width Calculated width: 66
[
Show Advanced Options
ol | ‘ Cancel
Figure 6-3: AXI4 Width Calculation Screen

The AXI4 FIFO widths can be configured for ID, ADDR, DATA and USER signals. ID Width is
applied to all channels in the AXI4 interface. When both write and read channels are
selected, the same ADDR and DATA widths are applied to both the write channels and read
channels. The user signal is the only optional signal for the AXI4 FIFO and can be
independently configured for each channel.

For all the selected signals, the AXI4 FIFO width for the respective channel is determined by
summing up the widths of signals in the particular channel, as shown in Table 6-1.

Table 6-1: AXI4 Signals used in AXI FIFO Width Calculation
Write Address Read Address Write Data Read Data Write Resp

Channel Channel Channel Channel Channel

AWID[m:0] ARID[m:0] WID[m:0] RID[m:0] BID[m:0]

AWADDR[mM:0] ARADDR[m:0] WDATA[m-1:0] RDATA[m-1:0] BRESP[1:0]

AWLENT[7:0] ARLEN[7:0] WLAST RLAST BUSER[m:0]

AWSIZE[2:0] ARSIZE[2:0] WSTRB[m/8-1:0] RRESP[1:0]

AWBURST[1:0] ARBURST[1:0] WUSER[m:0] RUSER[mM:0]

AWLOCK][2:0] ARLOCK][2:0]

AWCACHE[4:0] ARCACHE[4:0]

FIFO Generator v9.3 www.xilinx.com 176

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

Table 6-1: AXI4 Signals used in AXI FIFO Width Calculation (Cont’d)

Write Address Read Address Write Data Read Data Write Resp
Channel Channel Channel Channel Channel
AWPROT[3:0] ARPROT[3:0]
AWREGION][3:0] ARREGION[3:0]
AWQOSI3:0] ARQOS[3:0]
AWUSER[mM:0] ARUSER[mM:0]

AXl4-Lite Width Calculation

(A

| = Customize IP 5
6 Customize FIFO Generator (9.3) by |E
 specifying IP Options.
IP Options
FIFO Generator
[Show Disabled Ports Component Name \flfoigeneratcrivgﬁio |

[Intf. Type AXI4 Intf. Type AXI4 Lite Ports AW Config. W Config. B Config. AR Config. R Config. Flags < » 8

width Calculation A

Common Width Configuration Options 2

Address Width Range: 1...32

Data Wicth 54 [=] Rrange: 32,64

For more details, refer to the FIFO Generator User Guide, "Wwidth Calculation” section

s aclk e

s_aresetn

[I|2k 2aaLite_sSLave s_ax
B8 AXl4Lite_MASTER_M_axi4 [||

] D=l

Show Advanced Options

% [concel]
Figure 6-4: AXl4-Lite Width Calculation Screen

The AXI14-Lite FIFO allows users to configure the widths for ADDR and DATA signals. When
both write and read channels are selected, the same ADDR and DATA widths are applied to
both the write channels and read channels.

AXI4-Lite FIFO width for the respective channel is determined by summing up the widths of
all the signals in the particular channel, as shown in Table 6-2.

FIFO Generator v9.3 www.xilinx.com 177
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. GUI
Table 6-2: AXl4-Lite Width Calculation
Write Address Read Address Write Data Read Data Write Resp
Channel Channel Channel Channel Channel
AWADDR[mM:0] ARADDR[mM:0] WDATA[mM-1:0] RDATA[mM:0] BRESP[1:0]
AWPROT(3:0] ARPROT(3:0] WSTRB[m/8-1:0] RRESP[1:0]
Default Settings
Table 6-3 shows the default settings for each AXI14 interface type.
Table 6-3: AXI4 FIFO Default Settings
Interface Type Channels Memory Type FIFO Depth
AXI4 Stream NA Block Memory 1024
AXI4 Write Address, Read Address, Write | Distributed Memory 16
Response
AX14 Write Data, Read Data Block Memory 1024
AXI4-Lite Write Address, Read Address, Write | Distributed Memory 16
Response
AXI4-Lite Write Data, Read Data Distributed Memory 16
FIFO Generator v9.3 www.xilinx.com 178

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

FIFO Configurations

A

~ customizerc =
6 Customize FIFO Generator (9.3) by ‘?
© specifying IF Options.
IP Options
FIFQ Generator
[J show Disabled Ports Component Name |ﬁfu_ganeratur_v9_3_0 ‘

[+ Intf, Type = AXI4 Intf. Type AX|4 Stream Ports Config. Flags Summary

@ FIFO O Register Slice O Pass Through Wire

FIFQ Options 2

FIFO Implementation Type |Cummtm Clock Block RAM |

! FIFO Application Type

FIFO Application Type |Data FIFD E‘

Latency: 2

»

s_aclk X1 45tream_MASTER_M_AXIS 3
s_aresatn

qumcms:ream_s LAVE_S_AXIS ?
I

ECC Options

»

[Ienable ECC [Single Bit Error Injection [Double Bit Error Injectior

Data Port Parameters

FIFO Wwidth: 64 FIFQ Depth |1024 B Actual FIFO Depth : 1028

»

Data Threshold Parameters

»

Programmable Full Type ‘Nc Programmahle Full Threshold Iz“
Programmable Empty Type ‘Nu Programmable Empty Threshold | =
=] [] Provide FIFQ Occupancy Data Counts =]

Show Advanced Options

| QK | Cancel

Figure 6-5: AXI4 FIFO Configurations Screen

The functionality of AXI4 FIFO is the same as the Native FIFO functionality in the first-word
fall-through mode. The feature set supported includes ECC (block RAM), Programmable
Ready Generation (full, almost full, programmable full), and Programmable Valid Generation
(empty, almost empty, programmable empty). The data count option tells you the number
of words in the FIFO, and there is also are optional Interrupt flags (Overflow and Underflow)
for the block RAM and distributed RAM implementations.

For more details on first-word fall-through mode, see First-Word Fall-Through FIFO Read
Operation in Chapter 3.

Memory Types

The FIFO Generator implements FIFOs built from block RAM or distributed RAM. The core
combines memory primitives in an optimal configuration based on the calculated width and
selected depth of the FIFO.

Error Injection and Correction (ECC)

The block RAM and FIFO macros are equipped with built-in Error Injection and Correction
Checking in the Virtex-6 FPGA architecture. This feature is available for both common and
independent clock block RAM FIFOs.

FIFO Generator v9.3 www.xilinx.com 179
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

For more details on Error Injection and Correction, see Built-in Error Correction Checking in
Chapter 3.

FIFO Width

AX14 FIFOs support symmetric Write and Read widths. The width of the AXI4 FIFO is
determined based on the selected Interface Type (AXI4-Stream, AXI4 or AXI4-Lite), and the
selected signals and configured signal widths within the given interface. The calculation of
the FIFO Write Width is defined in Width Calculation, page 174.

FIFO Depth

AXI4 FIFOs allow ranging from 16 to 4194304. Only depths with powers of 2 are allowed.

Programmable Flags

This section includes details about the available programmable flags.

Programmable Full Type

Select a programmable full threshold type from the drop-down menu. The valid range for
each threshold is displayed and varies depending on the options selected elsewhere in the
GUL

Full Threshold Assert Value

Available when Programmable Full with Single Threshold Constants is selected. Enter a
user-defined value. The valid range for this threshold is provided in the GUL

Programmable Empty Type
Select a programmable empty threshold type from the drop-down menu. The valid range

for each threshold is displayed, and will vary depending on options selected elsewhere in
the GUL

Empty Threshold Assert Value

Available when Programmable Empty with Single Threshold Constants is selected. Enter a
user-defined value. The valid range for this threshold is provided in the GUL

Data Threshold Parameters

This section includes details about data threshold parameters.

FIFO Generator v9.3 www.xilinx.com 180
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Occupancy Data Counts

GUI

DATA_COUNT tracks the number of words in the FIFO. The width of the data count bus will
be always be set to log,(FIFO depth)+1. In common clock mode, the AXI4 FIFO provides a
single “Data Count” output. In independent clock mode, it provides Read Data Count and
Write Data Count outputs.

For more details on Occupancy Data Counts, see First-Word Fall-Through Data Count in

Chapter 3 and More Accurate Data Count (Use Extra Logic) in Chapter 3.

Examples for Data Threshold Parameters

« Programmable Full Threshold can be used to restrict FIFO Occupancy to less than 16

« Programmable Empty Threshold can be used to drain a Partial AXI4 transfer based on

empty threshold

« Data Counts can be used to determine number of Transactions in the FIFO

Common Configurations

"
i

B, Customize FIFO Generator (9.3) by
© specifying IP Options,
IP Opticns

[] Show Disabled Ports
B

s aclk AXI4Stream_MASTER_M_axis ||

[lfsoctagtream_siave s axis
aresetn

Show Advanced Options

Customize IP

FIFO Generator

Component Name \fifo_generatcr_vg_a_o

Intf. Type AXI4 Intf. Type AXI4 Stream Ports Config. Flags = Summary

Interrupt Flag Options

[Underflow Flag [owerflow Flag

3

O Active Low O Active Low

Sirmulation Options

[Disable timing wislations en cross clock domain registers

[ok | cancal

Figure 6-6:

FIFO Generator v9.3
PG0O57 December 18, 2012

AXI4 FIFO Common Configurations Screen

www.xilinx.com

181

http://www.xilinx.com

& XILINX GUI

Interrupt Flags

The underflow flag (UNDERFLOW) is used to indicate that a Read operation is unsuccessful.
This occurs when a Read is initiated and the FIFO is empty. This flag is synchronous with the
Read clock (RD_CLK). Underflowing the FIFO does not change the state of the FIFO (it is
non-destructive).

The overflow flag (OVERFLOW) is used to indicate that a Write operation is unsuccessful.
This flag is asserted when a Write is initiated to the FIFO while FULL is asserted. The
overflow flag is synchronous to the Write clock (WR_CLK). Overflowing the FIFO does not
change the state of the FIFO (it is non-destructive).

For more details on Overflow and Underflow Flags, see Underflow in Chapter 3 and
Overflow in Chapter 3.

Summary

The summary screen displays a summary of the AXI4 FIFO options that have been selected
by the user, including the Interface Type, FIFO type, FIFO dimensions, and the selection
status of any additional features selected. In the Additional Features section, most features
display either Not Selected (if unused), or Selected (if used).

Note: FIFO depth provides the actual FIFO depths for the selected configuration. These depths may
differ slightly from the depth selected on screen 4 of the AX14 FIFO GUI

FIFO Generator v9.3 www.xilinx.com 182
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

AXlI4-Stream Summary

GUI

specifying IP Options,
IP Options

[Show Disabled Ports

0/' Customize FIFO Generator (8.3) by

s aclk
s _arssetn

[t dstream_sLave_s_axis

A AStream_MASTER_M_aXIS -k |

A

Show Advanced Options

(8]

FIFO Generator

Component Name |f\fofgenerator7v97370

Intf. Type = AXI4 Intf. Type AXI4 Stream Ports Config. Flags Summary

FIFD Generator Summary

Selected Simulation Moclel

Interface Type :
Model Generated :

AX| Stream
Behavioral Model

Clocking Sumrnary

Clocking Scheme:

Commaon Clock

£ Stream Summary
Configuration Type : FIFQ

Data FIFO
64 /1026

Application Type
Width/Dapth

Memory Type: Block RAM
BRAM Resource (s) (18K/36K) : 0/2
Latency : 2

31 Stream Additional Features Sumrmary

Occupancy Data Count

Interrupt Flag (UnderFlow/OverFlow)

Mot Selected
Not Selected / Not Selected

oK ‘ Cancel

Figure 6-7: AXl4-Stream Summary Screen

FIFO Generator v9.3

PG0O57 December

18, 2012

www.xilinx.com

183

http://www.xilinx.com

& XILINX. Output Generation

AXI4 and AXI4-Lite Summary

- Customize IP x|
Customnize FIFO Generator (8,3) by | w ‘
specifying IP Options.

IP Options
FIFO Generator
[] Show Disabled Ports Compeonent Name |ﬁfc_generatcr_v9_3_0 ‘
= Intf. Type AXI4 Intf, Type AXl4 Ports AW Config. W Config. B Config. AR Config. R Config. Flags Summary
=
FIFD Generator Summary 2| W
Interface Type : AX14
Model Generated ! Behavioral Model
Clocking Scheme: Common Clock
write Address Channel Summary 2
Configuration Type : FIFO Memory Type: Distributed RAM =|
I+ 4 Application Type Data FIFG E”F’:QM Resource (s) (18K/36K) :
[[[=Ax04_stave s axi (B el Width/Depth 66/18 Latency : 2
s_aclk A4 _MASTER_M_#xi = |||
=_aresetn
a Write Data Channel Summary 2
Configuration Type : FIFO Mermory Type: Block RamM
ARBcatlomTyEe DotalEiD ??;M Resource (s} {18K/356K] :
Width/Depth 771026 Latency : 2
Write Response Channel Summary 2
Configuration Type : FIFO Mermory Type: Distributed RaAM
AppleationiTion Data FIFO EJ?:M Resource (s} (18K/36K)
Wicth/Depth 5/18 Latency : 2
[« I3 E3} [.
Show Advanced Options
0K J ‘ Cancel

Figure 6-8: AXIl4 / AXlI4-Lite Summary Screen

Output Generation

See Output Generation in Chapter 5 for details about the files generated with the core.

FIFO Generator v9.3 www.xilinx.com 184
PGO57 December 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 7

Constraining the Core

This chapter contains details about any constraints for the FIFO Generator when
implemented with the Vivado Design Suite.

Required Constraints

The FIFO Generator core provides a sample clock constraint for synchronous and
asynchronous FIFOs, and TIG constraints for asynchronous FIFOs. These sample constraints
can be added to the user's design constraint file.

Device, Package, and Speed Grade Selections

See IP Facts for details about supported devices.

Clock Frequencies

There are no clock frequency constraints.

Clock Management

There are no additional clock management constraints for this core.

Clock Placement

There are no additional clock placement constraints for this core.

FIFO Generator v9.3 www.xilinx.com 185
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 8

Detailed Example Design

This chapter provides detailed information about the example design, including the
purpose and contents of the provided scripts, the contents of the example HDL wrappers,
and the operation of the demonstration test bench.

Directory and File Contents

See Output Generation in Chapter 9 for output directory and file details.

Example Design

Figure 8-1 shows the configuration of the example design.

FIFO Example Design

User | FIFO
Interface Generator
|IOBs Core

Figure 8-1: Example Design Configuration
The example design contains the following:
« Aninstance of the FIFO Generator core. During simulation, the FIFO Generator core is
instantiated as a black box and replaced during implementation with the structural

netlist model generated by the Vivado IP Catalog IP customizer for timing simulation or
a behavioral model for the functional simulation.

« Global clock buffers for top-level port clock signals.

FIFO Generator v9.3 www.xilinx.com 186
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Demonstration Test Bench

Demonstration Test Bench

Figure 8-2 shows a block diagram of the demonstration test bench.

Test Bench Top

Test Bench Wrapper
Clock -~
Generator Data > FIFO Example Design

Generator

Protocol | — User > FIFO
Interface Generator

Checker | | Controller

* I10Bs , Core
Data -
Checker

X12967

Figure 8-2: Demonstration Test Bench

Test Bench Functionality

The demonstration test bench is a straightforward VHDL file that can be used to exercise
the example design and the core itself. The test bench consists of the following:

« Clock Generators
« Data generator module
« Data verifier module

« Module to control data generator and verifier

Core with Native Interface

The demonstration test bench in a core with a Native interface performs the following tasks:

» Input clock signals are generated.
* Avresetis applied to the example design.

« Pseudo random data is generated and given as input to FIFO data input port.

FIFO Generator v9.3 www.xilinx.com 187
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Demonstration Test Bench

« Data on DOUT port of the FIFO generator core is cross checked using another pseudo
random generator with same seed as data input generator.

« Core is exercised for two full and empty conditions.

« Full/almost_full and empty/almost_empty flags are checked.

Core with AXI4 Interface
The demonstration test bench in a core with an AXI4 interface performs the following tasks:

« Input clock signals are generated.
« Avresetis applied to the example design.

« Pseudo random data is generated and given as input to FIFO AXI4 Interface input
signals. Each channel is independently checked for Valid-Ready handshake protocol.

» AXI4 output signals on read side are combined and cross checked with the pseudo
random generator data.

« For AXI4 Full/Lite interface five instances of data generator, data verifier and protocol
controller are used.

» For AXI4 Full Packet FIFO write address and read address channels valid/ready signals
are not checked.

Customizing the Demonstration Test Bench

This section describes the variety of demonstration test bench customization options that
can be used for individual system requirements.

Changing the Data/Stimulus

The random data/stimulus can be altered by changing the seed passed to FIFO generator
test bench wrapper module in test bench top file (fg_t b_t op. vhd).

Changing the Test Bench Run Time

The test bench iteration count (number of full/empty conditions before finish) can be
altered by changing the value passed to TB_STOP_CNT parameter. A '0' to this parameter
runs the test bench until the test bench timeout value set in test bench top file
(fg_tb_top. vhd).

It is also possible to decide whether to stop the simulation on error or on reaching the
count set by TB_STOP_CNT by using FREEZEON_ERROR parameter value (1(TRUE), O(FALSE))
of test bench wrapper file (fg_t b_synt h. vhd).

FIFO Generator v9.3 www.xilinx.com 188
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Implementation

Implementation

The implementation script is either a shell script (.sh) or batch file (.bat) that processes the
example design through the Xilinx tool flow. It is located at:

Linux

<proj ect _dir>/<conponent _name>/inmpl ement/inpl ement. sh
Windows

<pr oj ect _di r>/ <conponent _name>/i npl ement /i npl ement . bat
The implement script performs these steps:

» Synthesizes the HDL example design files using XST

* Runs NGDBuild to consolidate the core netlist and the example design netlist into the
NGD file containing the entire design

« Maps the design to the target technology

« Place-and-routes the design on the target device

« Performs static timing analysis on the routed design using Timing Analyzer (TRCE)
» Generates a bitstream

« Enables Netgen to run on the routed design to generate a VHDL or Verilog netlist (as
appropriate for the Design Entry project setting) and timing information in the form of
SDF files

The Xilinx tool flow generates several output and report files. These are saved in the
following directory which is created by the implement script:

<proj ect _di r>/ <conmponent _nanme>/i npl ement/results

Simulation

This section contains details about the test scripts included in the example design.

Functional Simulation

The test scripts are ModelSim macros that automate the simulation of the test bench. They
are available from the following location:

<proj ect _dir>/<conponent name>/si nmul ati on/functi onal/

FIFO Generator v9.3 www.xilinx.com 189
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Messages and Warnings

The test script performs these tasks:

« Compiles the behavioral model/structural UNISIM simulation model.
« Compiles HDL Example Design source code.

+ Compiles the demonstration test bench.

« Starts a simulation of the test bench.

« Opens a Wave window and adds signals of interest (wave_nmnt i . do).

« Runs the simulation to completion.

Timing Simulation

The test scripts are ModelSim macros that automate the simulation of the test bench. They
are located in:

<proj ect _dir>/<conmponent name>/simul ation/tim ng/
The test script performs these tasks:
« Compiles the SIMPRIM based gate level netlist simulation model.
+ Compiles the demonstration test bench.
« Starts a simulation of the test bench.

« Opens a Wave window and adds signals of interest (wave_nti . do).

* Runs the simulation to completion.

Messages and Warnings

When the functional or timing simulation has completed successfully, the test bench
displays the following message, and it is safe to ignore this message.

Failure: Test Conpleted Successfully

FIFO Generator v9.3 www.xilinx.com 190
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.

SECTION III: ISE DESIGN SUITE

Customizing and Generating the Native Core
Customizing and Generating the AXI4 Core
Constraining the Core

Detailed Example Design

FIFO Generator v9.3 www.xilinx.com 191
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 9

Customizing and Generating the Native
Core

This chapter includes information about using Xilinx tools to customize and generate the
FIFO Generator for Native FIFO Interfaces in the ISE® Design Suite environment.

GUI

The Native FIFO Interface GUI includes seven configuration screens.

« Interface Type

+ FIFO Implementation

« Performance Options and Data Port Parameters
« Optional Flags, Handshaking, and Initialization
« Initialization and Programmable Flags

+ Data Count

* Summary

FIFO Generator v9.3 www.xilinx.com 192
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.

Interface Type

GUI

The main FIFO Generator screen is used to define the component name and provides the
Interface Options for the core.

K3

View Documents
1P Symbol [E3]

&1

I T

FIFO Generator

MS'C?'RL FI Fo Generator xilinx.com:ip:fifo_generator:9.3

Component Name Hifc_generatcr_vg_B |

Interface Type

@ Native) AX14

Native Interface FIFOs are the original standard FIFO functions delivered by the previous versions of the

LogiCORE FIFO Generator. They are optimized for buffering, data-width conversion and clock domain

de-coupling applications, providing in-order storage and retrieval

Native Interface FIFO cores can be customized to utilize Block RAM, Distributed RAM, or Built-In FIFQs

Two primary operating modes are supported: Standard, and First Word Fall Through

Choose the "Native" Interface Type option to generate a non-AXI FIFQ equivalent to one generated by

| FIFO Generator v6.2 and earlier for non-processor systems.

[

D]

<Back |Pagel of7| Next = H Generate H Cancel ||

Help

Figure 9-1: Main FIFO Generator Screen

Component Name

Base name of the output files generated for this core. The name must begin with a letter
and be composed of the following characters: atoz, 0to 9, and "_".

Interface Type

- Native
Implements a Native FIFO.

- AXI4

Implements an AXI4 FIFO in First-Word-Fall-Through mode.

FIFO Generator v9.3
PGO57 December 18, 2012

www.Xilinx.com

193

http://www.xilinx.com

& XILINX

FIFO Implementation

The FIFO Implementation screen is used to define the configuration options for the core.

FIFO Generator

View Documents

IP Symbol

= logiC -\ F* FIFO Generator

xilinx.com:ip:fifo_generator:9.3

FIFO Implementation

Choose the FIFO implementation from one of the following

Supported Features

et Read/Write Clock Domains Memory Type (1) {2) (3) (4) (5)
@ Common Clock (CLK) Block RAM X X X
~1 Common Clock (CLK) Distributed RAM X
) Commen Clock (CLK) Shift Register
sLIEE]) Comman Clack (CLK) Built-in FIFQ X X X X
WR_EN
: RET Independent Clocks (RD_CLK, WR_CLK) Block RAM X X X X
N _ Independent Clocks (RD_CLK, WR_CLK) Distributed RAM X
DouT[17.0]
X X X X

RO_EN 1 Independent Clocks (RD_CLK, WR_CLK) Built-in FIFO

(1) Non-symmetric aspect ratios (different read and write data widths)
(2) First-Word Fall-Through

(3) Uses Built-in FIFQ primitives

;Mpw (4) ECC support

(5) Dynamic Error Injection

[a] D

< Back | Page 2 of 7 | Next = ‘ I Generate | ‘ Cancel | ‘ Help l

T [1+

GUI

Figure 9-2: FIFO Implementation Screen

This screen of the GUI allows the user to select from a set of available FIFO implementations
and supported features. The key supported features that are only available for certain
implementations are highlighted by checks in the right-margin. The available options are
listed below, with cross-references to additional information.

« Common Clock (CLK), Block RAM

For details, see Common Clock FIFO: Block RAM and Distributed RAM, page 123. This
implementation optionally supports first-word-fall-through (selectable in the second
GUI screen, shown in Figure 9-3).

« Common Clock (CLK), Distributed RAM

For details, see Common Clock FIFO: Block RAM and Distributed RAM, page 123. This
implementation optionally supports first-word-fall-through (selectable in the second
GUI screen, shown in Figure 9-3).

+ Common Clock (CLK), Shift Register

FIFO Generator v9.3 www.xilinx.com 194
PGO57 December 18, 2012

http://www.xilinx.com

& XILINX

GUI

For details, see Common Clock FIFO: Shift Registers, page 124. This implementation is
only available in Virtex-4 FPGA and newer architectures.

Common Clock (CLK), Built-in FIFO

For details, see Common Clock: Built-in FIFO, page 123. This implementation is only
available when using the Kintex-7, Virtex-7, Virtex-6, Virtex-5 or Virtex-4 FPGA
architectures. This implementation optionally supports first-word fall-through
(selectable in the second GUI screen, shown in Figure 9-3).

Independent Clocks (RD_CLK, WR_CLK), Block RAM

For details, see Independent Clocks: Block RAM and Distributed RAM, page 120. This
implementation optionally supports asymmetric read/write ports and first-word
fall-through (selectable in the second GUI screen, shown in Figure 9-3).

Independent Clocks (RD_CLK, WR_CLK), Distributed RAM

For more information, see Independent Clocks: Block RAM and Distributed RAM,
page 120. This implementation optionally supports first-word fall-through (selectable in
the second GUI screen, shown in Figure 9-3).

Independent Clocks (RD_CLK, WR_CLK), Built-in FIFO

For more information, see Independent Clocks: Built-in FIFO, page 122. This
implementation is only available when using Kintex-7, Virtex-7, Virtex-6, Virtex-5 or
Virtex-4 FPGA architectures. This implementation optionally supports first-word
fall-through (selectable in the second GUI screen, shown in Figure 9-3).

FIFO Generator v9.3 www.xilinx.com 195
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. GUI

Performance Options and Data Port Parameters

This screen provides performance options and data port parameters for the core.

K FIFO Generator bdlieills3
View Documents

IP Symbol

: lagiC P FIFO Generator

Read Mode

xilinx.com:ip:fifo_generator:9.3

@ Standard FIFO

_ First-Word Fall-Through

Built-in FIFO Options

The frequency relationship of WR_CLK and RD_CLK MUST be specified to generate the correct

implementation.
Dinfir]

WR_EN Read Clock Frequency (MHz) i]. i Range: 1..1000

Write Clock Frequency (MHz) |l | Range: 1..1000

Data Port Parameters

Write Width |18 | Range: 1.2,3 1024

Write Depth | 1024 Actual Write Depth: 1024

Read Width |18

PERT

S Read Depth |1024 | Actual Read Depth: 1024

Implementation Options
| Enable ECC

Use Embedded Registers in BRAM or FIFO (when possible)

Read Latency (From Rising Edge of Read Clock): 1

£ D

=< Back |Page 3of7 ‘ Next > H Generate || Cancel H Help

Figure 9-3: Performance Options and Data Port Parameters Screen

Kl D

« Read Mode

Available only when block RAM or distributed RAM FIFOs are selected. Support for
built-in FIFOs is only available for Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA
implementations.

- Standard FIFO
Implements a FIFO with standard latencies, and without using output registers.
- First-Word Fall-Through FIFO

Implements a FIFO with registered outputs. For more information about FWFT
functionality, see First-Word Fall-Through FIFO Read Operation, page 98.

* Built-in FIFO Options
- Read/Write Clock Frequencies

FIFO Generator v9.3 www.xilinx.com 196
PGO57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

The Read Clock Frequency and Write Clock Frequency fields can be any integer from
1 to 1000. They are used to determine the optimal implementation of the
domain-crossing logic in the core. This option is only available for built-in FIFOs with
independent clocks. If the desired frequency is not within the allowable range, scale
the read and write clock frequencies so that they fit within the valid range, while
maintaining their ratio relationship.

f IMPORTANT: [t is critical that Read Clock and Write Clock frequency data is entered and accurate. If
this information is not provided, it can result in a sub-optimal solution with incorrect core behavior.

« Data Port Parameters

o Write Width

For Virtex-4 FPGA Built-in FIFO macro, the valid range is 4, 9, 18 and 36. For other
memory type configurations, the valid range is 1 to 1024.

o Write Depth

For Virtex-4 FPGA Built-in FIFO macro, the valid range automatically varies based on
write width selection. For Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA Built-in FIFO
macros, the valid range is 512 to 4194304. Only depths with powers of 2 are allowed.

For non Built-in FIFO, the valid range is 1 to 4194304. Only depths with powers of 2
are allowed.

- Read Width

Available only if independent clocks configuration with block RAM is selected. Valid
range must comply with asymmetric port rules. See Non-symmetric Aspect Ratios,
page 113.

- Read Depth
Automatically calculated based on Write Width, Write Depth, and Read Width.

+ Implementation Options

- Error Correction Checking in Block RAM or Built-in FIFO

The Error Correction Checking (ECC) feature enables built-in error correction in the
Kintex-7, Virtex-7, Virtex-6 and Virtex-5 FPGA block RAM and built-in FIFO macros.
When this feature is enabled, the block RAM or built-in FIFO is set to the full ECC
mode, where both the encoder and decoder are enabled.

FIFO Generator v9.3 www.xilinx.com 197
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

GUI

Use Embedded Registers in Block RAM or FIFO

The block RAM macros available in Kintex-7, Virtex-7, Virtex-6, Virtex-5 and Virtex-4
FPGA, as well as built-in FIFO macros available in Kintex-7, Virtex-7, Virtex-6 and
Virtex-5 FPGA, have built-in embedded registers that can be used to pipeline data
and improve macro timing. This option enables users to add one pipeline stage to
the output of the FIFO and take advantage of the available embedded registers;
however, the ability to reset the data output of the Virtex-5 FPGA built-in FIFO is
disabled when this feature is used. For built-in FIFOs, this feature is only supported
for synchronous FIFO configurations that have only 1 FIFO macro in depth. See
Embedded Registers in Block RAM and FIFO Macros (Zyng-7000, 7 Series, Virtex-6,
Virtex-5 and Virtex-4 FPGAs), page 116.

Optional Flags, Handshaking, and Initialization

This screen allows you to select the optional status flags and set the handshaking options.

View Documents
IP Symbol @

WR_EN

DOUT[17:0]

RD_EN

[T T

FIFO Generator

logiC 17"
Optional Flags
Almost Full Flag

Handshaking Options

Write Port Handshaking

| Write Acknowledge Flag

Write Acknowledge
@ Active High

) Active Low

Read Port Handshaking

Valid Flag

Valid (Read Acknowledge) -

@ Active High

_) Active Low

Error Injection

Single Bit Error Injection

FIFO Generator

Almost Empty Flag

Overflow Flag

1 - Overflow (Write Error)

@ Active High

) Active Low

Underflow Flag

r Underflow (Read Error)

@ Active High

) Active Low

Double Bit Error Injection

xilinx.com:ip:fifo_generator:9.3

-

(4]

RO

Figure 9-4: Optional Flags, Handshaking, and Error Injection Options Screen

« Optional Flags

Help

< Back | Page 4 of 7 | MNext = | [Generate || Cancel ‘ |

Refer to Latency in Chapter 3 for the latency of the AlImost Full/Empty flags due to write/

read operation.

FIFO Generator v9.3
PGO57 December 18, 2012

www.xilinx.com

198

http://www.xilinx.com

& XILINX

GUI

- Almost Full Flag

Available in all FIFO implementations except those using Kintex-7, Virtex-7, Virtex-6,
Virtex-5 or Virtex-4 FPGA built-in FIFOs. Generates an output port that indicates the
FIFO is almost full (only one more word can be written).

- Almost Empty Flag

Available in all FIFO implementations except in those using Kintex-7, Virtex-7,
Virtex-6, Virtex-5 or Virtex-4 FPGA built-in FIFOs. Generates an output port that
indicates the FIFO is almost empty (only one more word can be read).

Handshaking Options

Refer to Latency in Chapter 3 for the latency of the handshaking flags due to write/read
operation.

- Write Port Handshaking

Write Acknowledge

Generates write acknowledge flag which reports the success of a write operation.
This signal can be configured to be active high or low (default active high).

Overflow (Write Error)

Generates overflow flag which indicates when the previous write operation was
not successful. This signal can be configured to be active high or low (default
active high).

- Read Port Handshaking

Valid (Read Acknowledge)

Generates valid flag which indicates when the data on the output bus is valid.
This signal can be configured to be active high or low (default active high).

Underflow (Read Error)

Generates underflow flag to indicate that the previous read request was not
successful. This signal can be configured to be active high or low (default active
high).

FIFO Generator v9.3 www.xilinx.com 199
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

« Error Injection

- Single Bit Error Injection

Available only in Virtex-6 FPGAs for both the common and independent clock block
RAM or built-in FIFOs, with ECC option enabled. Generates an input port to inject a
single bit error on write and an output port that indicates a single bit error occurred.

- Double Bit Error Injection

Available only in Virtex-6 FPGAs for both the common and independent clock block
RAM or built-in FIFOs, with ECC option enabled. Generates an input port to inject a
double bit error on write and an output port that indicates a double bit error
occurred.

FIFO Generator v9.3 www.xilinx.com 200
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.

Initialization and Programmable Flags

GUI

Use this screen to select the initialization values and programmable flag type when

generating a specific FIFO Generator configuration.

(8 FIFO Generator
View Documents
IP Symbol
Initialization
¥ Reset Pin
cLk Reset Type

_ Synchronous Reset

@ Asynchronous Reset

+ Use Dout Reset

Programmable Flags
Programmable Full Type
Full Thrashold Assert Value

Full Threshold Negate Valus

Programmable Empty Type

= 1ogiC P FIFO Generator

¥| Enable Reset Synchronization

Full Flags Reset Value |1 B ‘

Use Dout Reset Value ‘ 0

xilinx.com:ip:fifo_generator:9.3

[No Programmable Full Threshold

[No Programmable Empty Threshold

Empty Threshold Assert Value ‘ 2

Empty Thresheld Negate Value ‘ 3

[o

D]

G D

< Back ‘Page 5 cf7| Next = H Generate H Cancel || Help

Figure 9-5: Programmable Flags and Reset Screen

« Initialization

- Reset Pin

For FIFOs implemented with block RAM or distributed RAM, a reset pin is not

required, and the input pin is optional.
- Reset Type

- Enable Reset Synchronization

Optional selection only available for independent clock block RAM or
distributed RAM FIFOs. When unchecked, WR_RST/RD_RST is available. See

Resets in Chapter 3 for details.

FIFO Generator v9.3 www.Xilinx.com
PGO57 December 18, 2012

201

http://www.xilinx.com

& XILINX

GUI

- Asynchronous Reset

Optional selection for a common-clock FIFO implemented using distributed
or block RAM.

- Synchronous Reset

Optional selection for a a common-clock FIFO implemented using distributed
or block RAM.

- Full Flags Reset Value

For block RAM, distributed RAM, and shift register configurations, the user can
choose the reset value of the full flags (PROG_FULL, ALMOST_FULL, and FULL)
during reset.

Use Dout Reset

Available in Virtex-4 FPGA or newer architectures for all implementations using
block RAM, distributed RAM, shift register or Virtex-6 common clock built-in with
embedded register option. Only available if a reset pin option is selected. If selected,
the DOUT output of the FIFO will reset to the defined DOUT Reset Value (below)
when the reset is asserted. If not selected, the DOUT output of the FIFO will not be
effected by the assertion of reset, and DOUT will hold its previous value.

Disabling this feature for Spartan ®-3 devices may improve timing for the
distributed RAM and shift register FIFO.

- Use Dout Reset Value

Available only when Use Dout Reset is selected, this field indicates the
hexidecimal value asserted on the output of the FIFO when RST (SRST) is
asserted. See Appendix G, DOUT Reset Value Timing for the timing diagrams for
different configurations.

Programmable Flags

Refer to Latency in Chapter 3 for the latency of the programmable flags due to write/
read operation.

o

Programmable Full Type

Select a programmable full threshold type from the drop-down menu. The valid
range for each threshold is displayed and varies depending on the options selected
elsewhere in the GUL

FIFO Generator v9.3 www.xilinx.com 202
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

GUI

Full Threshold Assert Value

Available when Programmable Full with Single or Multiple Threshold Constants is
selected. Enter a user-defined value. The valid range for this threshold is
provided in the GUIL. When using a single threshold constant, only the assert
threshold value is used.

Full Threshold Negate Value

Available when Programmable Full with Multiple Threshold Constants is selected.
Enter a user-defined value. The valid range for this threshold is provided in the
GUL

Programmable Empty Type

Select a programmable empty threshold type from the drop-down menu. The valid
range for each threshold is displayed, and will vary depending on options selected
elsewhere in the GUL

Empty Threshold Assert Value

Available when Programmable Empty with Single or Multiple Threshold
Constants is selected. Enter a user-defined value. The valid range for this
threshold is provided in the GUL When using a single threshold constant, only
the assert value is used.

Empty Threshold Negate Value

Available when Programmable Empty with Multiple Threshold Constants is
selected. Enter a user-defined value. The valid range for this threshold is
provided in the GUIL.

FIFO Generator v9.3 www.xilinx.com 203
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.

Data Count

Use this screen to set data count options.

GUI

Note: Valid range of values shown in the GUI are the actual values even though they are grayed out

for some selection.

View Documents

IP Symbaol

RST

Dinfizo]

WR_EN

DOUT(L7g]

RO_EN

FULL:

EMPTY

FIFO Generator

2 logiC P FIFO Generator

Data Count Options
| Use extra logic for mere accurate Data Counts

Data Count
— (Synchronized With Clk)
Data Count Width [10 | Range: 1.10

Write Data Count
— (Synchronized With Write Clk)

Write Data Count Width |10 ‘ Range: 1..10

Read Data Count
— (Synchronized With Read Clk)

Read Data Count Width |10 ‘ Range: 1..10

Simulation Options

__| Disable timing violation on cross clock domain registers

xilinx.com:ip-fifo_generator:9.3

[

SO

< Back | Page 6 of 7 | Next > I { Generate || Cancel] l Help

G

D

« Data Count Options

Figure 9-6: Data Count Screen

Refer to Latency in Chapter 3 for the latency of the data counts due to write/read

operation.

- Use Extra Logic For More Accurate Data Counts

Only available for independent clocks FIFO with block RAM or distributed RAM, and
when using first-word fall-through. This option uses additional external logic to
generate a more accurate data count. This feature is always enabled for common

clock FIFOs with block RAM or distributed RAM and when using

first-word-fall-through. See First-Word Fall-Through Data Count, page 110 for

details.

FIFO Generator v9.3
PGO57 December 18, 2012

www.Xilinx.com

204

http://www.xilinx.com

& XILINX

GUI

Data Count (Synchronized With Clk)

Available when a common clock FIFO with block RAM, distributed RAM, or shift
registers is selected.

- Data Count Width
Available when Data Count is selected. Valid range is from 1 to log, (input depth).
Write Data Count (Synchronized with Write Clk)

Available when an independent clocks FIFO with block RAM or distributed RAM is
selected.

- Write Data Count Width

Available when Write Data Count is selected. Valid range is from 1 to log; (input
depth).

Read Data Count (Synchronized with Read Clk)

Available when an independent clocks FIFO with block RAM or distributed RAM is
selected.

- Read Data Count Width

Available when Read Data Count is selected. Valid range is from 1 to log, (output
depth).

FIFO Generator v9.3 www.xilinx.com 205
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Parameter Values in the XCO File

Summary

This screen displays a summary of the selected FIFO options, including the FIFO type, FIFO
dimensions, and the status of any additional features selected. In the Additional Features
section, most features display either Not Selected (if unused), or Selected (if used).

Note: Write depth and read depth provide the actual FIFO depths for the selected configuration.
These depths may differ slightly from the depth selected on screen three of the FIFO GUI

FIFO Generator

View Documents
IP Symbol

2 logiC P FIFO Generator

xilinx.com:ip-fifo_generator:9.3
FIFO Generator Summary
Selected FIFO Type

Clocking Scheme: Commeon Clock Memory Type: Block RAM

Selected Simulation Model
Model Generated : Unisim Structural Model

Notes : Model is cycle accurate

Please refer to FIFO Generator User Guide generated with the core

FIFQ Dimensions

Write Width 18 Read Width : 18
Write Depth 1024 Read Depth : 1024
Block RAM resource(s) (18K BRAMs): 1

Block RAM resource(s) (36K BRAMs): 0

Additional Features

Almost Full/Empty Flags Not Selected / Not Selected
Programmable Full/Empty Flags Not Selected / Not Selected
Data Count Outputs : Not Selected

Handshaking Not Selected

Read Mode / Reset Standard FIFO / Asynchronous

Read Latency (From Rising Edge of Read Clock): 1

Consult Data Sheet for Performance/Resource impact of each feature =

E1] [T+

q ‘] o | < Back |Page7uf7 Next > Generate H Cancel || Help 1
4 3 —

Figure 9-7: Summary Screen

Parameter Values in the XCO File

Table 9-1 describes the Native FIFO core parameters, including the XCO file value and the
default settings.

Table 9-1: Native Interface FIFO XCO Parameter Table

Native FIFO XCO . .
Parameter Name XCO File Values Default GUI Settings
interface_type Native, AX14 Native
almost_empty_flag True, False False
FIFO Generator v9.3 www.xilinx.com 206

PGO57 December 18, 2012

http://www.xilinx.com

& XILINX

Table 9-1:

Parameter Values in the XCO File

Native Interface FIFO XCO Parameter Table (Cont’d)

Native FIFO XCO
Parameter Name

XCO File Values

Default GUI Settings

almost_full_flag

True, False

False

component_name

instance_name

ASCII text starting with a letter and using the
following character set: a-z, 0-9, and _

fifo_generator_v9_3

data_count True, False False

data_count_width 1 - log,(output_depth) 10

disable_timing_violations True, False False

dout_reset_value Hex value in range of 0 to output data width - 1 0
For STD: 2 - 4194300

empty_threshold_assert_value For EWET: 4 - 4194302 2
For STD: 3 - 4194301

empty_threshold_negate_value For EWET: 5 - 4194303 3

enable_ecc True, False False

enable_reset_synchronization True, False True

fifo_implementation

Common_Clock_Block_RAM
Common_Clock_Distributed_RAM
Common_Clock_Shift_Register
Common_Clock_Builtin_FIFO
Independent_Clocks_Block_RAM
Independent_Clocks_Distributed_RAM
Independent_Clocks_Builtin_FIFO

Common_Clock_Block_RAM

full_flags_reset_value 0,1 1
For STD: 4 - 4194302

full_threshold_assert_value For EWET: 6 - 4194303 1022
full_threshold_negate_value :: IS:\TNDFTB 5_ ?rfl‘;g%m 1021
inject_dbit_error True, False False
inject_sbit_error True, False False
input_data_width 1-1024 18
input_depth 24222 1024
output_data_width 1-1024 18
output_depth 24 - 222 1024
overflow_flag True, False False
overflow_sense Active_High, Active_Low Active_High

performance_options

Standard_FIFO (STD), First_Word_Fall_Through
(FWFT)

Standard_FIFO

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

207

http://www.xilinx.com

& XILINX

Table 9-1: Native Interface FIFO XCO Parameter Table (Cont’d)

Parameter Values in the XCO File

Native FIFO XCO
Parameter Name

XCO File Values

Default GUI Settings

programmable_empty_type

No_Programmable_Empty_
Threshold
Single_Programmable_Empty_
Threshold_Constant
Multiple_Programmable_Empty_
Threshold_Constants
Single_Programmable_Empty_
Threshold_Input_Port
Multiple_Programmable_Empty_
Threshold_Input_Ports

No_Programmable_
Empty_Threshold

programmable_full_type

No_Programmable_Full_Threshold
Single_Programmable_Full_
Threshold_Constant

Multiple_Programmable_Full_
Threshold_Constants
Single_Programmable_Full_
Threshold_Input_Port
Multiple_Programmable_Full_
Threshold_Input_Ports

No_Programmable_
Full_Threshold

read_clock_frequency 1-1000 1
read_data_count True, False False
read_data_count_width 1 - log,(output_depth) 10
reset_pin True, False True
reset_type Synchronous_Reset, Asynchronous_Reset Asynchronous_Reset
underflow_flag True, False False
underflow_sense Active_High, Active_Low Active_High
use_dout_reset True, False False
use_embedded_registers True, False False
use_extra_logic True, False False
valid_flag True, False False
valid_sense Active_High, Active_Low Active_High
write_acknowledge_flag True, False False
write_acknowledge_sense Active_High, Active_Low Active_High
write_clock_frequency 1-1000 1
write_data_count True, False False
write_data_count_width 1 - log,(input_depth) 10

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

208

http://www.xilinx.com

& XILINX. Output Generation

Output Generation

This section provides a detailed description of files and the directory structure generated
by the Xilinx® CORE Generator™ software.

) <project_directory>
Top-level project directory; name is user-defined

) <project_directory>/<component_name>
Contains the FIFO Generator release notes text file

) <component_name>/example design
Verilog and VHDL design files

[7) <component_name>/implement
Implementation script files

) <component_name>/implement/results
Created after implementation scripts are run and contains implement script results

) <component_name>/simulation

Contains the test bench and other supporting source files used to create the
simulation model

) simulation/functional
Functional simulation scripts

) simulation/timing
Timing simulation scripts

<project_directory>
The proj ect directory contains all the CORE Generator tool project files.

Table 9-2: Project Directory

Name Description

<proj ect _directory>

<conponent _nanme>. ngc Top-level netlist.
<conponent _nane>. v[hd] Verilog or VHDL simulation model.
<conmponent _nane>. Xco CORE Generator software project-specific option file; can
be used as an input to the CORE Generator software.
<conponent _nane>_flist.txt List of files delivered with the core.
<conponent _nanme>. {veo| vho} VHDL or Verilog instantiation template.
Back to Top
FIFO Generator v9.3 www.xilinx.com 209

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Output Generation

<project_directory>/<component_name>

The conponent name directory contains the release notes in the readme file provided with
the core, which can include tool requirements, updates, and issue resolution.

Table 9-3: Component Name Directory

Name Description

<proj ect _di rectory>/ <component _name>

fifo_generator_v9_ 3 readne.txt Core name release notes file.

Back to Top

<component_name>/example design

The exanpl e desi gn directory contains the example design files provided with the core.

Table 9-4: Example Design Directory

Name Description

<proj ect _directory>/<conponent _nane>/ exanpl e_desi gn

<conponent _nane>_t op. ucf Provides example constraints necessary for processing
the FIFO Generator core using the Xilinx
implementation tools.

<conponent _nane>_t op. vhd The VHDL top-level file for the example design; it
instantiates the FIFO Generator core. This file contains
entity with the IO's required for the core configuration.

<conponent _nane>_t op_wr apper.v[hd] | The VHDL wrapper file for the example design
<component_name>_top.vhd file. This file contains
entity with all ports of FIFO Generator core.

Back to Top

<component_name>/implement
The i npl enent directory contains the core implementation script files.

Table 9-5: Implement Directory

Name Description

<proj ect _di rectory>/ <conponent _name>/i nmpl ement

i npl enent . {bat | sh} A Windows (.bat) or Linux script that processes the
example design.

Xst. prj The XST project file for the example design that lists all of
the source files to be synthesized. Only available when the
CORE Generator software project option is set to ISE or
Other.

FIFO Generator v9.3 www.xilinx.com 210
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Output Generation

Table 9-5: Implement Directory (Cont’d)

Name Description

Xst.scr The XST script file for the example design used to
synthesize the core. Only available when the CORE
Generator software Vendor project option is set to ISE or
Other.

Back to Top

<component_name>/implement/results

Theresul ts directory is created by the implement script. The implement script results are
placed in the resul t s directory.

Table 9-6: Results Directory

Name Description

<proj ect _di rectory>/ <conponent _name>/results

Implement script result files.

Back to Top
<component_name>/simulation
The si mul ati on directory contains the demo test bench files provided with the core.

Table 9-7: Simulation Directory

Name Description

<proj ect _directory>/<conmponent _nanme>/si mul ati on

fg_tb_pkg. vhd VHDL File provided with demonstration test bench. It
contains common functions required by the test bench.

fg_tb_rng.vhd VHDL File provided with demonstration test bench. It
contains logic for pseudo random number generation.

fg_tb_dgen. vhd VHDL File provided with demonstration test bench. It
contains logic for random data generation.

fg tb_dverif.vhd VHDL File provided with demonstration test bench. It
contains logic for verifying the correctness of the FIFO
Generator core data output.

fg tb_pctrl.vhd VHDL File provided with demonstration test bench. It
contains the test bench control logic and some checks.

fg tb_synth.vhd VHDL File provided with demonstration test bench. This
file has the instances and connections for the core and test
bench modules.

fg tb_top.vhd VHDL File provided with demonstration test bench.This is
the top file for the test bench which generates the clock
and reset signals. It also checks the test bench status.

Back to Top

FIFO Generator v9.3 www.xilinx.com 211
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Output Generation

simulation/functional
The functi onal directory contains functional simulation scripts provided with the core.

Table 9-8: Functional Directory

Name Description

<proj ect _di rectory>/ <conponent _name>/si nul ati on/ functi onal

sinulate_nti.do A ModelSim macro file that compiles the HDL sources and
runs the simulation.

wave_nti . do A ModelSim macro file that opens a wave window and
adds key signals to the wave viewer. This file is called by
the simulate_mti.do file and is displayed after the
simulation is loaded.

simul ate_i si m bat ISim macro file for Windows that compiles the example
design sources and the structural simulation model. The
demonstration test bench then runs the functional
simulation to completion.

sinul ate_i simsh ISim macro file for Linux machines that compiles the
example design sources and the structural simulation
model. The demonstration test bench then runs the
functional simulation to completion.

wave_isimtcl ISim macro file that opens a Wave window with top-level
signals.
simul at e_ncsi m sh Linux shell script that compiles the example design

sources and the structural simulation model then runs the
functional simulation to completion using the Cadence IES
simulator.

wave_ncsi m sv The Cadence IES simulator macro file that opens a wave
window and adds interesting signals to it. This macro is
called by the simulate_ncsim.sh script.

Back to Top
simulation/timing
The ti m ng directory contains functional simulation scripts provided with the core.

Table 9-9: Timing Directory

Name Description

<proj ect _di rectory>/ <conmponent _name>/sinmul ation/tim ng

sinulate_nti.do A ModelSim macro file that compiles the HDL sources and
runs the simulation.

wave_nti.do A ModelSim macro file that opens a wave window and
adds key signals to the wave viewer. This file is called by
the simulate_mti.do file and is displayed after the
simulation is loaded.

FIFO Generator v9.3 www.xilinx.com 212
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

Table 9-9: Timing Directory (Cont’d)

Output Generation

Name

Description

simul ate_i si m bat

ISim macro file for Windows that compiles the example
design sources and the structural simulation model. The
demonstration test bench then runs the functional
simulation to completion.

simul ate_i simsh

ISim macro file for Linux that compiles the example design
sources and the structural simulation model. The
demonstration test bench then runs the functional
simulation to completion.

wave_isimtcl

ISim macro file that opens a Wave window with top-level
signals.

simul ate_ncsi m sh

Linux shell script that compiles the example design
sources and the structural simulation model then runs the
functional simulation to completion using the Cadence IES
simulator.

wave_ncsim sv

The Cadence IES simulator macro file that opens a wave
window and adds interesting signals to it. This macro is
called by the simulate_ncsim.sh script.

Back to Top

FIFO Generator v9.3

www.xilinx.com 213

PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 10

Customizing and Generating the AXI4
Core

This chapter includes information about using Xilinx tools to customize and generate the
FIFO Generator for AX14 Interfaces in the ISE® Design Suite environment.

GUI

For AXI4, the FIFO Generator GUI includes five configuration GUI pages:

« Interface Selection
« Width Calculation
« FIFO Configuration

« Common Page for FIFO Configuration

For AX14 and AXI4-Lite interfaces, FIFO Generator provides a separate page to configure
each FIFO channel. For more details, see Easy Integration of Independent FIFOs for Read
and Write Channels in Chapter 1.

* Summary

The configuration settings specified on the Page 2 of the GUI is applied to all selected
Channels of the AXI4 or AXI4-Lite interfaces

More details on these customization GUI pages are provided in the following sections.

AXl4 Interface Selection

Figure 10-1 shows the AXI4 interface selection screen.

FIFO Generator v9.3 www.xilinx.com 214
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

GUI

FIFO Generator.

View Documents

IP Symbol = RET)

logiC P! FIFO Generator

xilinx.com:ip:fifo_generator:9.3
AXI4 Interface Options

® AXI4 Stream AXl4 AXI4 Lite

Clocking Optiens

@ Common Clock Independent Clock

AX|4-Stream FIFOs

AXl4-Stream FIFOs are best for non-address-based, point-to-point applications. Use them when you
need to interface to other IP cores using this interface (e.g., AXI4 version of DSP functions such as FFT,
DDS, and FIR Compiler.

s_actk—y8
S_ARESETH —3 = M_AXIS_TWALID
K— M_axIS_TREADY
S_AKIS_TVALID —H e 1 _AKIS_TDATA[3:0]

5_AXIS_TREADY €—]

S_AXIS_TOATA[30] s

=

4] D

| < Back | Page 2 of 6 | Next = ‘ | Generate | ‘ Cancel | ‘ Help |

[[

Figure 10-1: AXIl4 Interface Selection Screen

AXI4 Interface Options
Three AXI4 interface styles are available: AXI4-Stream, AXI4 and AXI4-Lite.
Clocking Options

FIFOs may be configured with either independent or common clock domains for Write
and Read operations.

The Independent Clock configuration enables the user to implement unique clock
domains on the Write and Read ports. The FIFO Generator handles the synchronization
between clock domains, placing no requirements on phase and frequency. When data
buffering in a single clock domain is required, the FIFO Generator can be used to
generate a core optimized for a single clock by selecting the Common Clocks option.

For more details on Common Clock FIFO, see Common Clock FIFO: Block RAM and
Distributed RAM in Chapter 3.

For more details on Independent Clock FIFO, see Independent Clocks: Block RAM and
Distributed RAM in Chapter 3.

FIFO Generator v9.3 www.xilinx.com 215
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

Performing Writes with Slave Clock Enable

The Slave Interface Clock Enable allows the AXI4 Master to operate at fractional rates of
AX14 Slave Interface (or Write side) of FIFO. The above timing diagram shows the AXI4
Master operating at half the frequency of the FIFO AXI4 Slave interface. The Clock
Enable in this case is Single Clock Wide, Synchronous and occurs once in every two
clock cycles of the AXI4 Slave clock.

Performing Reads with Master Clock Enable

The Master Interface Clock Enable allows AXI4 Slave to operate at fractional rates of
AXI4 Master Interface (or Read side) of the FIFO. The above timing diagram shows the
AXI4 Slave operating at half the frequency of the FIFO AXI4 Master Interface. The Clock
Enable in this case is Single Clock Wide, Synchronous and occurs once in every two
clock cycles of the FIFO AXI4 Slave clock. the FIFO.

Width Calculation

The AXI4 FIFO Width is determined by aggregating all of the channel information signals in
a channel. The channel information signals for AXI4-Stream, AXI4 and AXI4-Lite interfaces
are listed in Table 10-1 and Table 10-2. GUI screens are available for configuring:

e AXI4-Stream Width Calculation
+ AXI4 Width Calculation
e AXI4-Lite Width Calculation

FIFO Generator v9.3 www.xilinx.com 216
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

AXl4-Stream Width Calculation

FIFO Generator

View Documents
IP Symbol [=RET) S pr
W
'!ngc”' = FIFO Generator xilinx.com:ip:fifo_generator:9.3

AXl4 Stream Configuration

Width Calculation

| TDATA Width |64 | Range: 8.16.1024 TID Width |8 \ Range: 1.32
TDEST Width |4 | Range: 1..32 TUSER Width |4 \ Range: 1..256
TSTRB |e | Range: 1.8 TKEEP |8 | Range: 1.8

¥ TREADY TLAST

Calculated width: 64

For more details, refer to the FIFO Generator User Guide, "Width Calculation” section

5_ACLK
S_ARESETH M_AXIS_TUALID
M_AXIS_TREADY
S_AKIS_TVALID M_AXIS_TDATA[E3:0]
5_AXIE_TREADY

S_ANIS_TOATA[S2:0]

[l IND

< Back | Page 3 of 6 | Next = H Generate H Cancel H Help
(1 | 1) -

Figure 10-2: AXl4-Stream Width Calculation Screen

CORE Generator AXI4-Stream FIFO allows user to configure widths for TDATA, TUSER, TID
and TDEST signals. For TKEEP and TSTRB signals the width is determined by the configured
TDATA width and is internally calculated by using the equation (TDATA Width)/8.

For all the selected signals, the AXI4-Stream FIFO width is determined by summing up the
widths of all the selected signals.

FIFO Generator v9.3 www.xilinx.com 217
PGO57 December 18, 2012

http://www.xilinx.com

& XILINX

AXl14 Width Calculation

FIFO Generator

GUI

View Documents
IP Symbol

(=)

[H b _x1_sw_pout

M_AXI_AWVALID

W_AXI_AWREADY
b 1_sox1_w_cout

M_AXI_WWALID

W_AXI_WREADY
[1_sx1_B_Din

M_AXI_BVALID

W_AXI_BREADY
[E] b _sxi_ar_couT

M_AXI_ARVALID

W_AXI_ARREADY
[E] e _sxi_r_Din

M_AXI_RVALID

W_AXI_RREADY

T

(D

lagiC Pt

Width Calculation

FIFO Generator

AXI4 Configuration

Commeon Width Configuration Options

ID Width |4 |
Range: 1.8

Write Channels

Address Width |32

Range: 1.32

Write Address Channel Width Calculation

AWUSER Width 1

| Range: 1..256

Write Data Channel Width Calculation

WUSER Width |1

|Range 1.256

Write Response Channel Width Calculation

BUSER Width £

Read Channels

| Range: 1.256

Read Address Channel Width Calculation

| ARUSER Width 1

| Range: 1..256

Read Data Channel Width Calculation

RUSER Width 1

| Range: 1..256

Calculated Width: 66

Calculated width: 77

Calculated Width: 6

Calculated Width: 66

Calculated Width: 71

xilinx.com:ip:fifo_generator:9.3

Data Width Irsa |

Range: 8,16..1024

(4]

Ll

[Ty

< Back | Page 3 of 10 | Next = | [Generate | ‘ Cancel ||

Help

Figure 10-3: AXI4 Width Calculation Screen

The AXI4 FIFO widths can be configured for ID, ADDR, DATA and USER signals. ID Width is
applied to all channels in the AXI4 interface. When both write and read channels are
selected, the same ADDR and DATA widths are applied to both the write channels and read
channels. The user signal is the only optional signal for the AXI4 FIFO and can be
independently configured for each channel.

For all the selected signals, the AXI4 FIFO width for the respective channel is determined by
summing up the widths of signals in the particular channel, as shown in Table 10-1.

Table 10-1: AXI4 Signals used in AXI FIFO Width Calculation
Write Address Read Address Werite Data Read Data Werite Resp

Channel Channel Channel Channel Channel

AWID[m:0] ARID[m:0] WID[m:0] RID[m:0] BID[m:0]

AWADDR[m:0] ARADDR[m:0] WDATA[m-1:0] RDATA[m-1:0] BRESP[1:0]

AWLEN([7:0] ARLEN([7:0] WLAST RLAST BUSER[m:0]

AWSIZE[2:0] ARSIZE[2:0] WSTRB[m/8-1:0] RRESP[1:0]

AWBURST[1:0] ARBURST[1:0] WUSER[m:0] RUSER[mM:0]

AWLOCK][2:0] ARLOCK][2:0]

FIFO Generator v9.3 www.xilinx.com 218

PGO57 December 18, 2012

http://www.xilinx.com

& XILINX.

GUI
Table 10-1: AXI4 Signals used in AXI FIFO Width Calculation (Cont’d)
Write Address Read Address Write Data Read Data Write Resp
Channel Channel Channel Channel Channel
AWCACHE[4:0] ARCACHE[4:0]
AWPROT[3:0] ARPROT[3:0]
AWREGIONT[3:0] ARREGION[3:0]
AWQOSI3:0] ARQOS[3:0]
AWUSER[mM:0] ARUSER[m:0]

AXl4-Lite Width Calculation

[«
View Documents
IP Symbol

S_AX|_ARREADY

S_AXI_RVALIDS

S_AXI_RREADY

FIFO Generator

@& y
logiC . F*

AXI4 Lite Configuration

Width Calculation
Common Width Configuration Options
Address Width [32 |

Range: 1.32

FIFO Generator

Data Width 64

For more details, refer to the FIFO Generator User Guide. "Width Calculation® section

xilinx_.com:ip:fifo_generator: 9.3

«

Range: 32,64

T

: < Back | Page 3 of 10 | Next > ‘ | Generate

Cancel ‘ | Help

Figure 10-4: AXl4-Lite Width Calculation Screen

The AXI14-Lite FIFO allows users to configure the widths for ADDR and DATA signals. When

both write and read channels are selected, the same ADDR and DATA widths are applied to
both the write channels and read channels.

AXI4-Lite FIFO width for the respective channel is determined by summing up the widths of
all the signals in the particular channel, as shown in Table 10-2.

FIFO Generator v9.3
PGO57 December 18, 2012

www.Xilinx.com

219

http://www.xilinx.com

& XILINX. GUI
Table 10-2: AXl4-Lite Width Calculation
Write Address Read Address Write Data Read Data Write Resp
Channel Channel Channel Channel Channel
AWADDR[mM:0] ARADDR[mM:0] WDATA[mM-1:0] RDATA[mM:0] BRESP[1:0]
AWPROT(3:0] ARPROT(3:0] WSTRB[m/8-1:0] RRESP[1:0]
Default Settings
Table 10-3 shows the default settings for each AX14 interface type.
Table 10-3: AXI4 FIFO Default Settings
Interface Type Channels Memory Type FIFO Depth
AXI4 Stream NA Block Memory 1024
AXI4 Write Address, Read Address, Write | Distributed Memory 16
Response
AX14 Write Data, Read Data Block Memory 1024
AXI4-Lite Write Address, Read Address, Write | Distributed Memory 16
Response
AXI4-Lite Write Data, Read Data Distributed Memory 16
FIFO Generator v9.3 www.xilinx.com 220

PG0O57 December 18,

2012

http://www.xilinx.com

& XILINX GUI

FIFO Configurations

FIFO Generator

View Documents

IP Symbol @ ® o
L A
mgic % FIFO Generator xilinx.com:ip:fifo_generator:9.3
AXl4 Stream Configuration

Configuration Options
® FIFO Register Slice Pass Through Wire
FIFO Options
FIFO Implementation Type iCummun Clock Block RAM =
@ Data FIFO Packet FIFO Low Latency Data FIFO
Latency : 2

e .

- i ECC Options

S_ARESETN = b M_AXIS_TVALID
E— 1_sonS_TREADY Enable ECC Single Bit Error Injection Double Bit Error Injection
S_AXIS_TWALID =38 15061 S_TDATA[E3:0]
5_AXIS_TREADY ¢— ‘ Data Port Parameters
S_AK|S_TDATA[GS 0] s —_—
e FIFO Width : 65 FIFO Depth | 1024 2 Actual FIFO Depth : 1026
S_AXIS_TLAST =it
| Data Threshold Parameters

Programmable Full Type \ No Programmable Full Threshold =

Programmable Empty Type \ No Programmable Empty Threshold = |

Provide FIFO Occupancy Data Counts

For Example Usecases, refer to the FIFQ Generator User Guide, "Data Threshold Parameters” section

4] ED

‘ < Back |Page4of6| Next = H Generate H Cancel || Help

(T D

Figure 10-5: AXI4 FIFO Configurations Screen

The functionality of AXI4 FIFO is the same as the Native FIFO functionality in the first-word
fall-through mode. The feature set supported includes ECC (block RAM), Programmable
Ready Generation (full, almost full, programmable full), and Programmable Valid Generation
(empty, almost empty, programmable empty). The data count option tells you the number
of words in the FIFO, and there is also are optional Interrupt flags (Overflow and Underflow)
for the block RAM and distributed RAM implementations.

For more details on first-word fall-through mode, see First-Word Fall-Through FIFO Read
Operation in Chapter 3.

Memory Types

The FIFO Generator implements FIFOs built from block RAM or distributed RAM. The core
combines memory primitives in an optimal configuration based on the calculated width and
selected depth of the FIFO.

FIFO Generator v9.3 www.xilinx.com 221
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

Error Injection and Correction (ECC)

The block RAM and FIFO macros are equipped with built-in Error Injection and Correction
Checking in the Virtex-6 FPGA architecture. This feature is available for both common and
independent clock block RAM FIFOs.

For more details on Error Injection and Correction, see Built-in Error Correction Checking in
Chapter 3.

FIFO Width

AXI4 FIFOs support symmetric Write and Read widths. The width of the AXI4 FIFO is
determined based on the selected Interface Type (AXI4-Stream, AXI4 or AXI4-Lite), and the
selected signals and configured signal widths within the given interface. The calculation of
the FIFO Write Width is defined in Width Calculation, page 216.

FIFO Depth

AXI4 FIFOs allow ranging from 16 to 4194304. Only depths with powers of two are allowed.

Programmable Flags

This section includes details about the available programmable flags.

Programmable Full Type

Select a programmable full threshold type from the drop-down menu. The valid range for
each threshold is displayed and varies depending on the options selected elsewhere in the
GUL

Full Threshold Assert Value

Available when Programmable Full with Single Threshold Constants is selected. Enter a
user-defined value. The valid range for this threshold is provided in the GUL

Programmable Empty Type

Select a programmable empty threshold type from the drop-down menu. The valid range
for each threshold is displayed, and will vary depending on options selected elsewhere in
the GUL

Empty Threshold Assert Value

Available when Programmable Empty with Single Threshold Constants is selected. Enter a
user-defined value. The valid range for this threshold is provided in the GUL

FIFO Generator v9.3 www.xilinx.com 222
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

Data Threshold Parameters

This section includes details about data threshold parameters.

Occupancy Data Counts

DATA_COUNT tracks the number of words in the FIFO. The width of the data count bus will
be always be set to log,(FIFO depth)+1. In common clock mode, the AXI4 FIFO provides a
single “Data Count” output. In independent clock mode, it provides Read Data Count and
Write Data Count outputs.

For more details on Occupancy Data Counts, see First-Word Fall-Through Data Count in
Chapter 3 and More Accurate Data Count (Use Extra Logic) in Chapter 3.

Examples for Data Threshold Parameters

« Programmable Full Threshold can be used to restrict FIFO Occupancy to less than 16

¢ Programmable Empty Threshold can be used to drain a Partial AXI4 transfer based on
empty threshold

« Data Counts can be used to determine number of Transactions in the FIFO

FIFO Generator v9.3 www.xilinx.com 223
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX GUI

Common Configurations

FIFO Generator

View Documents

IP Symbol

(=)
£

logiC [F* FIFO Generator

xilinx.com:ip:fifo_generator:9.3

-

AXI4 Stream Common Configuration

Interrupt Flag Options

uUnderflow Flag Overflow Flag
Underflow (Read Error} QOverflow (Write Error)

@ Active High @ Active High

Active Low Active Low

Simulation Qptions
5_ACLK = X i X .
areseri— e D Disable timing viclations on cross clock domain register
K M_AXIS_TREADY
S_AXIS_TWALID —H e 11 _rx15_TDATAE3 0]
5_AXIS_TREADY =i
5_AXIS_TOATA[53:0] st

> M_axIS TLAST

=

(4] D)

‘ < Back | Page 5 of 6 | Next = ‘ | Generate | ‘ Cancel | ‘ Help

T)

Figure 10-6: AXIl4 FIFO Common Configurations Screen

Interrupt Flags

The underflow flag (UNDERFLOW) is used to indicate that a Read operation is unsuccessful.
This occurs when a Read is initiated and the FIFO is empty. This flag is synchronous with the
Read clock (RD_CLK). Underflowing the FIFO does not change the state of the FIFO (it is
non-destructive).

The overflow flag (OVERFLOW) is used to indicate that a Write operation is unsuccessful.
This flag is asserted when a Write is initiated to the FIFO while FULL is asserted. The
overflow flag is synchronous to the Write clock (WR_CLK). Overflowing the FIFO does not
change the state of the FIFO (it is non-destructive).

For more details on Overflow and Underflow Flags, see Underflow in Chapter 3 and

Overflow in Chapter 3.

Summary

The summary screen displays a summary of the AXI4 FIFO options that have been selected
by the user, including the Interface Type, FIFO type, FIFO dimensions, and the selection

FIFO Generator v9.3 www.xilinx.com 224
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX

GUI

status of any additional features selected. In the Additional Features section, most features
display either Not Selected (if unused), or Selected (if used).

Note: FIFO depth provides the actual FIFO depths for the selected configuration. These depths may
differ slightly from the depth selected on screen 4 of the AX14 FIFO GUI.

AXlI4-Stream Summary

[
VWiew Documents
IP Symbol
5 ACLE
S_ARESETN M_AXIS_TVALID
M_AXIS_TREADY
5_AXIS_TVALID. M_AXIS_TDATA[63:0]

S_AXIS_TREADY
S_AXIS_TDATA[53:0]:
M_AXIS_TLAST

S_AKIS_TLAST

FIFO Generator

: lagiC\F* FIFO Generator

AXI4 Stream Configuration Summary

FIFO Generator Summary
Selected Simulation Model

Interface Type : AX] Stream

Model Generated : Unisim Structural Model

Clocking Summary
Clocking Scheme: Common Clock

AXI| Stream Summary

Configuration Type FIFO Memary Type Block RAM
Application Type Data FIFO BRAM Resource (s) (L8K/36K) 042
Width/Depth 65 /1026 Latency : 2

AX] Stream Additional Features Summary

Programmable READY/VALID Flag Selected/UnSelected

Occupancy Data Count Not Selected

Interrupt Flag (UnderFlow/OverFlow) Mot Selected / Not Selected

xilinx.com:ip:fifo_generator:9.3

(o]

D

[E1 |

[})

< Back |Pagesof6 Next = I Generate H Cancel H Help

Figure 10-7: AXl4-Stream Summary Screen

FIFO Generator v9.3
PGO57 December 18, 2012

www.xilinx.com

225

http://www.xilinx.com

& XILINX

AXI4 and AXI4-Lite Summary

FIFO Generator

Parameter Values in the XCO File

View Documents
IP Symbol

= ye
| 2 :\-P[
[lec i FIFO Generator xilinx.com:ip:fifo_generator:9.3
FIFO Generator Summary (o]
Interface Type AX14
Clocking Scheme: Commoen Clock
Model Generated : Unisim Structural Model
Write Address Channel Summary
Configuration Type FIFO Memory Type Distributed RAM
Application Type Data FIFO BRAM Resource (s) (1L8K/36K) N/A
Width/Depth 66 /1026 Latency : 2
Write Data Channel Summary
Configuration Type FIFO Memory Type Block RAM
Application Type Data FIFO BRAM Resource (s) (1L8K/36K) 1/2
Width/Depth 77/1026 Latency : 2
Write Response Channel Summary
Configuration Type FIFO Memory Type Distributed RAM
Application Type Data FIFO BRAM Resource (s) (1L8K/36K) N/A
Width/Depth 6/1026 Latency : 2
Read Address Channel Summary
Configuration Type FIFO Memory Type Distributed RAM
Application Type Data FIFO BRAM Resource (s) (1L8K/36K) N/A
Width/Depth 66 /1026 Latency : 2
Read Data Channel Summary L
Configuration Type FIFO Memory Type Block RAM
Application Type Data FIFO BRAM Resource (s) (1L8K/36K) 0/2 =
-

]

T

] < Back | Page 10 of 10 Next = [Generate | ‘ Cancel H Help ‘
»

Figure 10-8: AXl4 / AXl4-Lite Summary Screen

Parameter Values in the XCO File

Table 10-4 describes the AXI4 FIFO core parameters, including the XCO file value and the

default settings.

Table 10-4: AXl4 FIFO XCO Parameter Table

Parameter Name

XCO File Values

Default GUI Settings

component_name

instance_name

ASCII text starting with a letter and
using the following character set: a-z,
0-9, and _

fifo_generator_v9_3

interface_type

Native

axi_type

AXI4_Stream
AXI4_Full, AXI4_Lite

AXI4_Stream

FIFO Generator v9.3
PGO57 December 18, 2012

www.xilinx.com

226

http://www.xilinx.com

& XILINX

Table 10-4: AXIl4 FIFO XCO Parameter Table (Cont’d)

Parameter Values in the XCO File

Parameter Name XCO File Values Default GUI Settings

True

enable_write_channel ru True
False
True

enable_read_channel ru True
False
Common_Clock

lock_t i - C Clock

clock type_axi Independent_Clock ommon_tioc
T

use_clock_enable?® rue False
False
Slave_Interface_Clock_Enable

lock ble_type? - - i Sl Interf Clock_Enabl

clock_enable_type Master_Interface_Clock_Enable ave_Intertace_Llock_tnable

id_width 1-8 8

axi_address_width 1-32 32

axi_data_width 23 .29 64
T

enable_awuser rue False
False
T

enable_wuser rue False
False
T

enable_buser rue False
False
T

enable_aruser rue False
False
T

enable_ruser rue False
False
T

enable_tuser rue False
False

awuser_width 1-256 1

wuser_width 1-256 1

buser_width 1-256 1

aruser_width 1-256 1

ruser_width 1-256 1

tuser_width 1-256 4
T

enable_tdata rue True
False
T

enable_tdest rue False
False
T

enable_tid rue False
False

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

227

http://www.xilinx.com

& XILINX

Table 10-4: AXIl4 FIFO XCO Parameter Table (Cont’d)

Parameter Values in the XCO File

Parameter Name

XCO File Values

Default GUI Settings

True

enable_tkeep False False
enable_tlast True False
False
enable_tready I;T:e True
enable_tstrobe True False
False
tdata_width 23-2° 64
tdest_width 1-4 4
tid_width 1-8 8
tkeep_width tdata_width/8 8
tstrb_width tdata_width/8 8
axis_type FIFO FIFO
wach_type FIFO FIFO
wdch_type FIFO FIFO
wrch_type FIFO FIFO
rach_type FIFO FIFO
rdch_type FIFO FIFO

fifo_implementation_type_axis

Common_Clock_Block_RAM
Common_Clock_Distributed_RAM
Independent_Clock_Block_RAM

Independent_Clock_Distributed_RA
M

Common_Clock_Block_RAM

fifo_implementation_type_rach

Common_Clock_Distributed_RAM

fifo_implementation_type_rdch

Common_Clock_Block_RAM

fifo_implementation_type_wach

Common_Clock_Distributed_RAM

fifo_implementation_type_wdch

Common_Clock_Block_RAM

fifo_implementation_type_wrch

Common_Clock_Distributed_RAM

fifo_application_type_axis Data_FIFO Data_FIFO
fifo_application_type_rach Data_FIFO Data_FIFO
fifo_application_type_rdch Data_FIFO Data_FIFO
fifo_application_type_wach Data_FIFO Data_FIFO
fifo_application_type_wdch Data_FIFO Data_FIFO
fifo_application_type_wrch Data_FIFO Data_FIFO
enable_ecc_axis True False
False

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

228

http://www.xilinx.com

& XILINX

Table 10-4: AXIl4 FIFO XCO Parameter Table (Cont’d)

Parameter Values in the XCO File

Parameter Name

XCO File Values

Default GUI Settings

True

enable_ecc_rach ru False
False
True

enable_ecc_rdch ru False
False
T

enable_ecc_wach rue False
False
T

enable_ecc_wdch rue False
False
T

enable_ecc_wrch rue False
False

.. . . True

inject_sbit_error_axis False
False
True

inject_sbit_error_rach ru False
False
T

inject_sbit_error_rdch rue False
False

.. . True

inject_sbit_error_wach False
False

. . True

inject_sbit_error_wdch False
False
True

inject_sbit_error_wrch u False
False
True

inject_dbit_error_axis . False
False

.. . True

inject_dbit_error_rach False
False

.. . True

inject_dbit_error_rdch False
False

.. . True

inject_dbit_error_wach False
False

.. . True

inject_dbit_error_wdch False
False

. . True

inject_dbit_error_wrch False
False

input_depth_axis 24 - 216 1024

input_depth_rach 24 - 216 16

input_depth_rdch 24 - 216 1024

input_depth_wach 24 - 216 16

input_depth_wdch 24 . 216 1024

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

229

http://www.xilinx.com

& XILINX

Parameter Values in the XCO File

Table 10-4: AXIl4 FIFO XCO Parameter Table (Cont’d)
Parameter Name XCO File Values Default GUI Settings

input_depth_wrch 24 - 216 16
T

enable_data_counts_axis rue False
False
T

enable_data_counts_rach rue False
False
True

enable_data_counts_rdch False
False
True

enable_data_counts_wach False
False
True

enable_data_counts_wdch False
False
True

enable_data_counts_wrch False
False

. .| True
enable_handshake_flag_options_axis False False

programmable_full_type_axis

No_Programmable_Full_Threshold
Single_Programmable_Full_
Threshold_Constant
Single_Programmable_Full_
Threshold_Input_Port

No_Programmable_Full_Threshol
d

programmable_full_type_rach

No_Programmable_Full_Threshol
d

programmable_full_type_rdch

No_Programmable_Full_Threshol

d
programmable_full_type wach No_Programmazle_FuII_ThreshoI
programmable_full_type_wdch No_ProgrammaZIe_FuII_ThreshoI
programmable_full_type_wrch No_ProgrammaZIe_FuII_ThreshoI
full_threshold_assert_value_axis 5 - 65535 1023
full_threshold_assert_value_rach 5 - 65535 1023
full_threshold_assert_value_rdch 5 - 65535 1023
full_threshold_assert_value_wach 5 - 65535 1023
full_threshold_assert_value_wdch 5 - 65535 1023
full_threshold_assert_value_wrch full_threshold_assert_value_wrch 1023

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

230

http://www.xilinx.com

& XILINX

Parameter Values in the XCO File

Table 10-4: AXIl4 FIFO XCO Parameter Table (Cont’d)
Parameter Name XCO File Values Default GUI Settings
No_Programmable_Full_Threshold
Single_Programmable_
programmable_empty_type_axis Empty _Threshold_Constant No_ProgrammaZIe_FuII_ThreshoI
Single_Programmable_
Empty _Threshold_Input_Port
No_Programmable_Full_Threshol
programmable_empty_type_rach d
programmable_empty_type._rdch No_ProgrammazIe_FuII_ThreshoI
No_Programmable_Full_Threshol
programmable_empty_type_wach d
programmable_empty_type_wdch No_ProgrammaZIe_FuII_ThreshoI
No_Programmable_Full_Threshol
programmable_empty_type_wrch d
empty_threshold_assert_value_axis 4 - 65534 1022
empty_threshold_assert_value_rach 4 - 65534 1022
empty_threshold_assert_value_rdch |4 - 65534 1022
empty_threshold_assert_value_wach |4 - 65534 1022
empty_threshold_assert_value_wdch | 4 - 65534 1022
empty_threshold_assert_value_wrch | 4 - 65534 1022
T
underflow_flag_axi rue False
False
Active_High
underflow_sense_axi ¢ !ve_ '9 Active_High
Active_Low
T
overflow_flag_axi rue False
False
Active_High
overflow_sense_axi ct!ve_ '9 Active_High
Active_Low
True
enable_common_overflow False
False
a True
enable_common_underflow False
False
. True
disable_timing_violations_axi False
False
. . True
add_ngc_constraint_axi? False
False

a. Feature presently not supported

FIFO Generator v9.3
PG0O57 December 18, 2012

www.xilinx.com

231

http://www.xilinx.com

& XILINX. Output Generation

Output Generation

See Output Generation in Chapter 9 for output directory and file details.

FIFO Generator v9.3 www.xilinx.com 232
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 11

Constraining the Core

This chapter contains details about constraints for the FIFO Generator core when
implemented with the ISE Design Suite. See Setup and Hold Time Violations in Chapter 4
for additional constraint details.

Required Constraints

The FIFO Generator core provides a sample clock constraint for synchronous and
asynchronous FIFOs, and TIG constraints for asynchronous FIFOs. These sample constraints
can be added to the user's design constraint file.

Device, Package, and Speed Grade Selections

See IP Facts for supported devices.

Clock Frequencies

There are no clock frequency constraints.

Clock Management

There are no additional clock management constraints for this core.

FIFO Generator v9.3 www.xilinx.com 233
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 12

Detailed Example Design

This chapter provides detailed information about the example design, including the
purpose and contents of the provided scripts, the contents of the example HDL wrappers,
and the operation of the demonstration test bench.

Directory and File Contents

See Output Generation in Chapter 9 for output directory and file details.

Example Design

Figure 12-1 shows the configuration of the example design.

FIFO Example Design

User > FIFO
Interface Generator
I0Bs < Core

X13157
Figure 12-1: Example Design Configuration
The example design contains the following:
« An instance of the FIFO Generator core. During simulation, the FIFO Generator core is
instantiated as a black box and replaced with the CORE Generator software netlist

model during implementation for timing simulation or XST netlist/behavioral model for
the functional simulation.

« Global clock buffers for top-level port clock signals.

FIFO Generator v9.3 www.xilinx.com 234
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Demonstration Test Bench

Demonstration Test Bench

Figure 12-2 shows a block diagram of the demonstration test bench.

Test Bench Top
Clock Test Bench Wrapper
Generator Data Generator FIFO Example Design
Checker Protocol User FIFO
Controller Interface Generator
IOBs Core
Data
Checker

X13156

Figure 12-2: Demonstration Test Bench

Test Bench Functionality

The demonstration test bench is a straightforward VHDL file that can be used to exercise
the example design and the core itself. The test bench consists of the following:

« Clock Generators
« Data generator module
« Data verifier module

¢ Module to control data generator and verifier

Core with Native Interface

The demonstration test bench in a core with a Native interface performs the following tasks:

» Input clock signals are generated.
» Avresetis applied to the example design.
« Pseudo random data is generated and given as input to FIFO data input port.

« Data on DOUT port of the FIFO generator core is cross checked using another pseudo
random generator with same seed as data input generator.

« Core is exercised for two full and empty conditions.

FIFO Generator v9.3 www.xilinx.com 235
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Demonstration Test Bench

« Full/almost_full and empty/almost_empty flags are checked.

Core with AXI4 Interface
The demonstration test bench in a core with an AXI4 interface performs the following tasks:

» Input clock signals are generated.
* Avresetis applied to the example design.

« Pseudo random data is generated and given as input to FIFO AXI4 Interface input
signals. Each channel is independently checked for Valid-Ready handshake protocol.

» AXI4 output signals on read side are combined and cross checked with the pseudo
random generator data.

« For AXI4 Full/Lite interface five instances of data generator, data verifier and protocol
controller are used.

« For AXI4 Full Packet FIFO write address and read address channels valid/ready signals
are not checked.

Customizing the Demonstration Test Bench

This section describes the variety of demonstration test bench customization options that
can be used for individual system requirements.

Changing the Data/Stimulus

The random data/stimulus can be altered by changing the seed passed to FIFO generator
test bench wrapper module in test bench top file (fg_t b_t op. vhd).

Changing the Test Bench Run Time

The test bench iteration count (number of full/empty conditions before finish) can be
altered by changing the value passed to TB_STOP_CNT parameter. A '0" to this parameter
runs the test bench until the test bench timeout value set in test bench top file
(fg_tb_top.vhd).

It is also possible to decide whether to stop the simulation on error or on reaching the
count set by TB_STOP_CNT by using FREEZEON_ERROR parameter value (1(TRUE), O(FALSE))
of test bench wrapper file (fg_t b_synt h. vhd).

FIFO Generator v9.3 www.xilinx.com 236
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Implementation

Implementation

The implementation script is either a shell script (.sh) or batch file (.bat) that processes the
example design through the Xilinx tool flow. It is located at:

Linux

<proj ect _dir>/<conponent _name>/inmpl ement/inpl ement. sh
Windows

<pr oj ect _di r>/ <conponent _name>/i npl ement /i npl ement . bat
The implement script performs these steps:

« Synthesizes the HDL example design files using XST.

* Runs NGDBuild to consolidate the core netlist and the example design netlist into the
NGD file containing the entire design.

« Maps the design to the target technology.

« Place-and-routes the design on the target device.

« Performs static timing analysis on the routed design using Timing Analyzer (TRCE).
» Generates a bitstream.

« Enables Netgen to run on the routed design to generate a VHDL or Verilog netlist (as
appropriate for the Design Entry project setting) and timing information in the form of
SDF files.

The Xilinx tool flow generates several output and report files. These are saved in the
following directory which is created by the implement script:

<proj ect _di r>/ <conmponent _nanme>/i npl ement/results

Simulation

This section contains details about the test scripts included in the example design.

Functional Simulation

The test scripts are ModelSim macros that automate the simulation of the test bench. They
are available from the following location:

<proj ect _dir>/<conponent name>/si nmul ati on/functi onal/

FIFO Generator v9.3 www.xilinx.com 237
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Messages and Warnings

The test script performs these tasks:

« Compiles the behavioral model/structural UNISIM simulation model.
« Compiles HDL Example Design source code.

+ Compiles the demonstration test bench.

« Starts a simulation of the test bench.

« Opens a Wave window and adds signals of interest (wave_nmnt i . do).

« Runs the simulation to completion.

Timing Simulation

The test scripts are ModelSim macros that automate the simulation of the test bench. They
are located in:

<proj ect _dir>/<conmponent name>/simul ation/tim ng/
The test script performs these tasks:
« Compiles the SIMPRIM based gate level netlist simulation model.
+ Compiles the demonstration test bench.
« Starts a simulation of the test bench.

« Opens a Wave window and adds signals of interest (wave_nti . do).

* Runs the simulation to completion.

Messages and Warnings

When the functional or timing simulation has completed successfully, the test bench
displays the following message, and it is safe to ignore this message.

Failure: Test Conpleted Successfully

FIFO Generator v9.3 www.xilinx.com 238
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.

SECTION IV: APPENDICES

Verification, Compliance, and Interoperability
Migrating

Debugging

Quick Start Example Design

Simulating Your Design

Comparison of Native and AXI4 FIFO XCO
Parameters

DOUT Reset Value Timing
Supplemental Information

Additional Resources

FIFO Generator v9.3 www.xilinx.com 239
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.
Appendix A

Verification, Compliance, and
Interoperability

Xilinx has verified the FIFO Generator core in a proprietary test environment, using an
internally developed bus functional model. Tens of thousands of test vectors were
generated and verified, including both valid and invalid write and read data accesses.

Simulation

The FIFO Generator has been tested with Xilinx ISE® software v14.4, Xilinx Vivado software
v2012.4, Xilinx ISIM/XSIM, Cadence Incisive Enterprise Simulator (IES), Synopsys VCS and
VCS MX and Mentor Graphics ModelSim simulator.

FIFO Generator v9.3 www.xilinx.com 240
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX.
Appendix B

Migrating

This appendix provides step-by-step instructions for migrating existing designs containing
instances of legacy FIFO cores (Synchronous FIFO v5.x and Asynchronous FIFO v6.x) to the
latest version of the FIFO Generator.

For information on migration from the ISE Design Suite to the Vivado Design Suite, see
UG911, Vivado Design Suite Migration Methodology Guide.

Note: For all new designs, Xilinx recommends that you use the most recent version of the FIFO
Generator core for your FIFO function requirements.

Migration Overview

The FIFO Generator Migration Kit, uses a perl script to automate the FIFO core migration
process. The Migration Kit can be obtained from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=151908&license=RefDesLicense

Differences from Legacy Cores

This section defines the feature differences between the older asynchronous and
synchronous FIFO cores, and the latest version of the FIFO Generator core. Before migrating
your existing designs, evaluate the differences, because they may affect the behavior of
your current design. In some cases, you may need to modify your design to compensate for
obsolete features.

The FIFO Generator core can generate synchronous and asynchronous FIFOs, and can also
leverage the built-in FIFOs in the Artix™-7. Kintex™-7, Virtex®-7, Virtex-6, Virtex-5 and
Virtex-4 FPGA device families. In addition, the FIFO Generator core benefits from the use of
the Block Memory Generator, which optimizes block memory resource utilization and
enhances the overall performance of the FIFO Generator.

FIFO Generator v9.3 www.xilinx.com 241
PG0O57 December 18, 2012

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
https://secure.xilinx.com/webreg/clickthrough.do?cid=151908&license=RefDesLicense

& XILINX. Differences from Legacy Cores

Core Compatibility

The FIFO Generator core is not backward-compatible with the Synchronous FIFO and
Asynchronous FIFO cores in the following ways:

« FIFO Generator uses different port names. For example, the names of the reset and
handshaking flags are different.

« The XCO files for the previous generation memory cores are NOT compatible with the
FIFO Generator.

« Behavioral differences between Synchronous FIFO cores generated by FIFO Generator
and those generated by Synchronous FIFO include the following:

o The maximum data count width for FIFO Generator is one bit less than that for
Synchronous FIFO and the behavior of DATA_COUNT is different. For example, for
the Synchronous FIFO, when the FIFO depth is 256, the maximum data count width
is 9 bits. However, for FIFO Generator, the maximum data count width is only 8 bits.
When the FIFO is full:

DATA_COUNT =1 0000 0000 in Synchronous FIFO
DATA_COUNT = 0000 0000 in FIFO Generator

o In this case, when using the maximum data count width, you can connect the full
flag as the most significant bit of DATA_COUNT to make the FIFO Generator
backward- compatible.

- If both data count widths are equal, the behavior of DATA COUNT is different. When
the FIFO is full, DATA_COUNT is 11111111 in Synchronous FIFO and DATA_COUNT
is 00000000 in FIFO Generator. In this case, the FIFO Generator is not backward
compatible.

« Behavioral differences between Asynchronous FIFO cores generated by FIFO Generator
and those generated by Asynchronous FIFO include the following:

- The falling edge of the EMPTY and ALMOST_EMPTY flags may occur one clock cycle
later in the FIFO Generator in response to a write operation.

o The falling edge of the FULL and ALMOST_FULL flags may occur one clock cycle
later in the FIFO Generator in response to a read operation.

- WR_COUNT takes longer to respond to a read, and RD_COUNT takes longer to
respond to a write in FIFO Generator.

- Reset requirements differ between the two cores.

o The default FULL reset value differs between the two cores—set the FULL reset value
to "1’ for backward-compatibility.

Differences in port names and XCO parameters for legacy cores (Synchronous and
Asynchronous FIFOs) are defined in Converting the XCO File, page 246 and Modifying the
Instantiations of the Old Core, page 261.

FIFO Generator v9.3 www.xilinx.com 242
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Migrating a Design

Obsolete Features for Legacy Cores

Create RPM

The FIFO Generator core does not support Relationally Placed Macros (RPMs), which were
supported in the Asynchronous FIFO core.

Migrating a Design

The Migration Kit provides a Perl script to help automate the process of converting existing
Synchronous or Asynchronous FIFO cores to the latest FIFO Generator core version.

The migration script automates all the manual steps, from converting the XCO file to
modifying the instantiation of the old core. In addition, this script can be used to only
automate specific steps, making it also useful when following the Manual Migration
Process, page 245.

Migration Script

Note: ISE® software v12.2 and later require a CGP file when CORE Generator is run in command line
mode. This version of the Migration Script comes with a sample CGP file (cor egen. cgp) which the
user can modify according to their requirements. The modified CGP file should be kept in the user
directory where the XCO file and instantiation files are located and must be named cor egen. cgp to
work with the migration script.

If you can provide a complete set of original design files (XCO files and instantiation
template files), the migration script (fi f o_m gr at e. pl) completely and seamlessly
automates the migration process by executing the following steps:

1. Converts old XCO files to new format XCO files.

2. Converts instantiations of old cores to new core instantiations including changing port
names.

3. Generates new netlist(s) by calling the CORE Generator™ software with the new XCO file.

About the Migration Script

The migration script, fi f o_m grat e. pl, can operate on various inputs and create a
variety of outputs based on user-specified command line options.

When using the script as part of the standard, fully-automated flow, you supply the script
with either of these two file types or both:

« Old XCO core configuration files (created by the GUI when the FIFO core was
generated)

FIFO Generator v9.3 www.xilinx.com 243
PG0O57 December 18, 2012

http://www.xilinx.com

& XILINX. Migrating a Design

« HDL source file(s) containing the core instantiations (VHDL or Verilog)

From the script options, choose one or more of the following migration steps. All selected
steps are automatically performed by the script.

« Old FIFO XCO files to FIFO Generator v9.3 XCO files (use -x option).

« Generate the new netlists and convert the instantiations of the Old FIFO cores in your
HDL source code to latest FIFO Generator core instances by running the CORE
Generator software (-x and -m options).

The script modifies and overwrites all input files so that the external project files and scripts
do not need to be updated with new file names or locations. Although the script also
automatically generates a backup of all files it modifies, it is strongly recommended that
you create a backup of all project files before running the migration script.

Output Products

Depending on the chosen command line option, the script overwrites the input XCO files,
modifies the input HDL files, and optionally generates FIFO Generator netlists (in the same
location as the XCO files).
