
FIR Compiler v7.2

LogiCORE IP Product Guide

Vivado Design Suite
PG149 January 21, 2021

FIR Compiler v7.2 www.xilinx.com 2
PG149 January 21, 2021

Table of Contents
IP Facts

Chapter 1: Overview
Navigating Content by Design Process . 5
Filter Types . 5
Feature Summary. 6
Licensing and Ordering . 8

Chapter 2: Product Specification
Performance. 9
Resource Utilization. 9
Port Descriptions . 10

Chapter 3: Designing with the Core
Clocking. 13
Resets . 13
AXI4-Stream Considerations . 14
Core Features . 22
Input and Output Sample Rate . 69
Resource Considerations . 72

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 75
System Generator for DSP. 89
Constraining the Core . 91
Simulation . 91
Synthesis and Implementation . 92

Chapter 5: C Model
Unpacking and Model Contents . 93
Installation . 95
C Model Interface. 95
MATLAB Interface . 111

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=2

FIR Compiler v7.2 www.xilinx.com 3
PG149 January 21, 2021

Dependent Libraries . 114

Chapter 6: Test Bench
Demonstration Test Bench . 115
Simulation . 117

Appendix A: Upgrading
Migrating to the Vivado Design Suite from ISE . 118
Upgrading within the Vivado Design Suite. 126

Appendix B: Debugging
Finding Help on Xilinx.com . 127
Debug Tools . 128
Simulation Debug. 129
AXI4-Stream Interface Debug . 130

Appendix C: Additional Resources and Legal Notices
Xilinx Resources . 131
Documentation Navigator and Design Hubs . 131
References . 131
Revision History . 133
Please Read: Important Legal Notices . 134

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=3

FIR Compiler v7.2 4
PG149 January 21, 2021 www.xilinx.com Product Specification

Introduction
The Xilinx® LogiCORE ™ IP FIR Compiler core
provides a common interface to generate
highly parameterizable, area-efficient
high-performance FIR filters.

Features
• AXI4-Stream-compliant interfaces
• High-performance finite impulse response

(FIR), polyphase decimator, polyphase
interpolator, half-band, half-band
decimator and half-band interpolator,
Hilbert transform and interpolated filter
implementations

• Support for up to 256 sets of coefficients,
with 2 to 2048 coefficients per set when
handling more than one set.

• Input data up to 49-bit precision
• Filter coefficients up to 49-bit precision
• Support for up to 1024 interleaved data

channels
• Support for advanced interleaved data

channel sequences
• Support for multiple parallel data channels

with shared control logic
• Interpolation and decimation factors of up

to 64 generally and up to 1024 for single
channel filters

• Support for sample frequency greater than
clock frequency

• Online coefficient reload capability
• User-selectable output rounding
• Efficient multi-column structures for all

filter implementations and optimizations

IP Facts

LogiCORE IP Facts Table
Core Specifics

Supported
Device Family(1)

Versal™ ACAP, UltraScale+™, UltraScale™,
Zynq-7000 SoC

7 Series
Supported User
Interfaces AXI4-Stream

Resources Performance and Resource Utilization web
page

Provided with Core
Design Files Encrypted RTL
Example Design Not Provided
Test Bench VHDL
Constraints File Not Provided
Simulation
Model Encrypted VHDL

Supported
S/W Driver N/A

Tested Design Flows(2)

Design Entry Vivado® Design Suite
System Generator for DSP

Simulation For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis

Support
Release Notes
and Known
Issues

Master Answer Record: 54502

All Vivado IP
Change Logs Master Vivado IP Change Logs: 72775

 Xilinx Support web page

Notes:
1. For a complete listing of supported devices, see the Vivado IP

catalog.
2. For the supported versions of third-party tools, see the

Xilinx Design Tools: Release Notes Guide.

Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=fir-compiler.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=fir-compiler.html
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+release+notes
https://www.xilinx.com/support/answers/54502.htm
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+release+notes
https://www.xilinx.com/support/answers/72775.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=4

FIR Compiler v7.2 5
PG149 January 21, 2021 www.xilinx.com

Chapter 1

Overview

Navigating Content by Design Process
Xilinx documentation is organized around a set of standard design processes to help you
find relevant content for your current development task. This document covers the
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the
Vivado timing, resource and power closure. Also involves developing the hardware
platform for system integration. Topics in this document that apply to this design
process include:

° Port Descriptions in Chapter 2

° Clocking in Chapter 3

° Resets in Chapter 3

° Customizing and Generating the Core in Chapter 4

Filter Types
A wide range of filter types can be implemented in the Vivado® Integrated Design
Environment (IDE): single-rate, polyphase decimators and interpolators and half-band
decimators and interpolators. Structure in the coefficient set is exploited to produce
area-efficient FPGA implementations. Sufficient arithmetic precision is employed in the
internal datapath to avoid the possibility of overflow.

The conventional single-rate FIR version of the core computes the convolution sum defined
in Equation 1-1, where N is the number of filter coefficients.

Equation 1-1
y k() a n()x k n–()

n 0=

N 1–

= k 0 1 …, ,=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=5

FIR Compiler v7.2 6
PG149 January 21, 2021 www.xilinx.com

Chapter 1: Overview

Figure 1-1 shows the conventional tapped delay line realization of this inner-product
calculation, and although the illustration is a useful conceptualization of the computation
performed by the core, the actual FPGA realization is quite different.

One or more time-shared multiply-accumulate (MAC) functional units are used to service
the N sum-of-product calculations in the filter. The core automatically determines the
minimum number of MAC engines required to meet user-specified throughput.

Feature Summary

Table 1-1 and Table 1-2 show the features and filter configuration support for the FIR
Compiler.

Feature Support Matrix

X-Ref Target - Figure 1-1

Figure 1-1: Conventional Tapped Delay Line FIR Filter Representation

Table 1-1: Feature Support Matrix

Feature Systolic
Multiply-Accumulate

Transpose
Multiply-Accumulate

Number of Coefficients(1) 2–2048 2–2048
Coefficient Width(2) 2–49 2–49
Data Width(2)(4) 2–49 2–49
Number of Interleaved Channels 1–1024(5) 1
Number of Parallel Data Channels(4) 1-16 1-16
Maximum Rate Change

Single Channel
Multiple Channels

1024
512

1024
N/A

Fractional Rate Support Yes No
Coefficient Reload Yes Yes
Coefficient Sets 1–256 1–256
Output Rounding Yes Yes

Z
-1

Z
-1x(n)

a(0) a(1) a(2) a(3) a(4)

Z
-1

Z
-1

Z
-1

a(N-1)

y(n)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=6

FIR Compiler v7.2 7
PG149 January 21, 2021 www.xilinx.com

Chapter 1: Overview

Table 1-2 shows the classes of filters that are supported for the FIR Compiler core.

The supported filter configurations are described in separate sections within this
document.

Notable Limitations

In conjunction with Table 1-1 and Table 1-2, it is important to note some further limitations
inherent in the core.

When selecting the Systolic Multiply-Accumulate architecture, the limitations are as follows:

• Fractional Rate filters do not currently exploit coefficient symmetry.
• Non Half-band rate change filters utilizing the advanced channel sequence feature do

not exploit coefficient symmetry.

When selecting the Transpose Multiply-Accumulate architecture, the limitations are as
follows:

Super Sample Rate(6) Yes No

Notes:
1. The upper limit on the number of coefficients exists only when the FIR Compiler is configured with more than one

coefficient set.
2. Maximum Coefficient Width reduces by one when the Coefficients are signed. Similarly for Maximum Data Width

when the Data values are signed.
3. The allowable range for the Data Width field in the Vivado IDE might reduce further to ensure that the

accumulator width does not exceed the maximum.
4. Maximum Parallel Datapaths reduces to 8 when Coefficient Width or Data Width is greater than 25-bits.
5. Continuous 1 to 256, plus 512 and 1024.
6. Sample frequency greater than clock frequency.

Table 1-2: Filter Configuration Support Matrix
Filter Configuration Supported

Conventional Single-rate FIR Yes
Half-band FIR Yes
Hilbert Transform [Ref 1] Yes
Interpolated FIR [Ref 2] [Ref 5] Yes
Polyphase Decimator Yes
Polyphase Interpolator Yes
Half-band Decimator Yes
Half-band Interpolator Yes

Table 1-1: Feature Support Matrix (Cont’d)

Feature Systolic
Multiply-Accumulate

Transpose
Multiply-Accumulate

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=7

FIR Compiler v7.2 8
PG149 January 21, 2021 www.xilinx.com

Chapter 1: Overview

• Symmetry is not exploited.
• Multiple interleaved channels are not supported.

Super sample rate filters (sample frequency greater than clock frequency) have the
following limitations:

• Polyphase decimator and polyphase interpolator filters do not exploit symmetry
beyond a range of coefficient/data width. This is determined by the device selected.

• Fractional rate filters are not supported.
• Half-band optimizations are not exploited.
• Hilbert transforms are not supported.

Licensing and Ordering
This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado
Design Suite under the terms of the Xilinx End User License. Information about this and
other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For
information about pricing and availability of other Xilinx LogiCORE IP modules and tools,
contact your local Xilinx sales representative.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=8

FIR Compiler v7.2 9
PG149 January 21, 2021 www.xilinx.com

Chapter 2

Product Specification

Performance
Maximum Frequencies
For details about frequency, visit Performance and Resource Utilization.

Latency
The core latency is dependent on many of the core parameters. The Implementation Details
Tab on the core GUI displays the core latency value, in clock cycles, given the current
configuration.

Throughput
The core throughput is completely configurable; from full throughput, one clock cycle per
input sample, through to a completely over-sampled implementation. Refer to Hardware
Oversampling Specification on the Channel Specification Screen of the core GUI for details.

Resource Utilization
For details about resource utilization, visit Performance and Resource Utilization.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=fir-compiler.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=fir-compiler.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=9

FIR Compiler v7.2 10
PG149 January 21, 2021 www.xilinx.com

Chapter 2: Product Specification

Port Descriptions
Figure 2-1 shows the schematic symbol for the interface pins for the FIR Compiler core.

Table 2-1 defines the FIR filter port names and port functional descriptions.

X-Ref Target - Figure 2-1

Figure 2-1: FIR Compiler Core Pinout

Table 2-1: Core Signal Pinout
Name I/O Optional Description
aclk I No Rising-edge clock
aclken I Yes Active-High clock enable (optional).

aresetn I Yes
Active-Low synchronous clear (optional, always
take priority over aclken). A minimum aresetn
active pulse of two cycles is required

s_axis_config_tvalid I Yes tvalid for CONFIG channel. Asserted by external
master to indicate data is available for transfer.

s_axis_config_tready O Yes tready for CONFIG channel. Asserted by core to
indicate core is ready to accept data.

s_axis_config_tdata[A-1:0] I Yes tdata for CONFIG channel. See TDATA of CONFIG
Channel for internal structure and width.

s_axis_config_tlast I Yes tlast for CONFIG channel. Indicates the last
transfer of a reconfiguration packet.

X12179

aclk

aclken

aresetn

s_axis_config_tvalid
s_axis_config_tready
s_axis_config_tdata
s_axis_config_tlast

s_axis_reload_tvalid
s_axis_reload_tready
s_axis_reload_tdata
s_axis_reload_tlast

s_axis_data_tvalid
s_axis_data_tready
s_axis_data_tdata
s_axis_data_tuser
s_axis_data_tlast

event_s_data_tlast_missing
event_s_data_tlast_unexpected
event_s_data_chanid_incorrect

event_s_config_tlast_missing
event_s_config_tlast_unexpected

event_s_reload_tlast_missing
event_s_reload_tlast_unexpected

m_axis_data_tvalid
m_axis_data_tready
m_axis_data_tdata
m_axis_data_tuser
m_axis_data_tlast

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=10

FIR Compiler v7.2 11
PG149 January 21, 2021 www.xilinx.com

Chapter 2: Product Specification

s_axis_reload_tvalid I Yes tvalid for RELOAD channel. Asserted by external
master to indicate data is available for transfer.

s_axis_reload_tready O Yes tready for RELOAD channel. Asserted by core to
indicate core is ready to accept data.

s_axis_reload_tdata I Yes
tdata for RELOAD channel. Conveys the coefficient
data stream. See TDATA of the RELOAD Channel
for internal structure and width.

s_axis_reload_tlast I Yes tlast for RELOAD channel. Indicates the last
transfer of a packet of coefficients.

s_axis_data_tvalid I No tvalid for input DATA channel. Asserted by external
master to indicate data is available for transfer.

s_axis_data_tready O No tready for input DATA channel. Asserted by core to
indicate core is ready to accept data.

s_axis_data_tdata I No
tdata for input DATA channel. Conveys the data
stream to be filtered. See TDATA Structure for
internal structure.

s_axis_data_tuser I Yes

tuser for input DATA channel. Conveys ancillary
data to be passed through the core with latency
equal to the input DATA to output DATA datapath
and or a chan ID field to identify which Time
Division Multiplexed (TDM) channel the current
sample belongs to.

s_axis_data_tlast I Yes

tlast for input DATA channel.This optionally
indicates the last of a cycle of TDM channels or can
indicate the end of an arbitrary packet in which
case it is conveyed to the output with latency
equal to the main data stream.

m_axis_data_tvalid O No tvalid for output DATA channel. Asserted by core
to indicate data is available for transfer.

m_axis_data_tready I Yes
tready for output DATA channel. Asserted by
external slave to indicate the slave is ready to
accept data.

m_axis_data_tdata O No
tdata for the output DATA channel. This is the
filtered data stream. See TDATA Structure for
internal structure.

m_axis_data_tuser O Yes
tuser for the output DATA channel. Optionally
conveys a user field from the input DATA tuser
port and/or a chan ID field to identify which TDM
channel the current sample belongs to.

m_axis_data_tlast O Yes

tlast for the output DATA channel. Optionally
indicates the last sample of a cycle of TDM
channels (vector framing) or the tlast passed
through the core from the input DATA channel
(packet framing)

Table 2-1: Core Signal Pinout (Cont’d)

Name I/O Optional Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=11

FIR Compiler v7.2 12
PG149 January 21, 2021 www.xilinx.com

Chapter 2: Product Specification

event_s_data_tlast_missing O Yes
Indicates that the input DATA tlast was not
asserted when expected by an internal channel
counter.

event_s_data_tlast_unexpected O Yes Indicates that the input DATA tlast was asserted
when not expected by an internal channel counter.

event_s_data_chanid_incorrect O Yes
Indicates that the chan ID field of the input DATA
tuser port did not match the value of an internal
counter.

event_s_reload_tlast_missing O Yes Indicates that the RELOAD tlast was not asserted
when expected by an internal counter.

event_s_reload_tlast_unexpected O Yes Indicates that the RELOAD tlast was asserted when
not expected by an internal counter.

event_s_config_tlast_missing O Yes Indicates that the CONFIG tlast was not asserted
when expected by an internal counter.

event_s_config_tlast_unexpected O Yes Indicates that the CONFIG tlast was asserted when
not expected by an internal counter.

Table 2-1: Core Signal Pinout (Cont’d)

Name I/O Optional Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=12

FIR Compiler v7.2 13
PG149 January 21, 2021 www.xilinx.com

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

Clocking
The core uses a single clock, aclken, which is common to all the AX4-Stream interfaces
and event signals.

The optional clock enable signal, aclken, is used to qualify aclk. When aclken is
de-asserted the core state and outputs are halted. Asserting aclken allows the core to
continue processing.

Resets
The aresetn port is an optional active-Low input port which, when asserted for a
minimum of two cycles, forces the internal control logic to the initialized condition and
optionally clears the data vector of the core. Selecting data vector reset can result in the
core using more FPGA logic resources.

When data vector reset has not been selected no internal data is cleared from the filter
memories during the reset process. The filter output remains dependent on the prior input
samples. The data_valid field of the m_axis_data_tuser bus, see TUSER Options,
indicates when the filter data memory has been completely flushed and can be used as
additional qualification of the m_axis_data_tdata bus. When the Blank Output
option is selected, the filter output is forced to zero until the data_valid field of
m_axis_data_tuser is set (the filter output can be generated from a complete data
vector).

When using the RELOAD Channel, no coefficient data is cleared upon reset; only the control
logic of the RELOAD channel is reset. As a result, it is possible to clear the data vector after
new coefficients have been loaded, but before they have been applied to coefficient
memory through a Synchronization Event (see CONFIG Channel).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=13

FIR Compiler v7.2 14
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

AXI4-Stream Considerations
The AXI4-Stream interfaces brings standardization and enhances interoperability of Xilinx®
LogiCORE™ IP solutions. Other than general control signals such as aclk, aclken and
aresetn and the event outputs, all inputs and outputs to the FIR Compiler are conveyed on
AXI4-Stream channels. A channel consists of tvalid and tdata always, plus several
optional ports. In the FIR Compiler, the optional ports supported are tready, tlast and
tuser. Together, tvalid and tready perform a handshake to transfer a message, where
the payload is tdata, tuser and tlast. The FIR Compiler operates on the data contained
in the input DATA channel tdata port (s_axis_data_tdata) and outputs the result in
the tdata field of the output DATA channel (m_axis_data_tdata). The FIR Compiler
optionally uses the tuser and tlast fields to indicate the phase of a cycle of
time-multiplexed channels. The core also provides the facility to convey a user field within
tuser and the tlast signal from input DATA channel to the output DATA channel with the
same latency as for tdata. This facility is intended to ease the use of the FIR Compiler in a
system. For example, the FIR Compiler can be used to filter packetized data. In this example,
the tlast has no bearing on the FIR, but the core can be configured to pass the tlast of
the packetized data channel, saving the system designer the effort of constructing a bypass
path for this information.

For further details on AXI4-Stream Interfaces see the Xilinx 7.2 (UG1037) [Ref 6] and the
AMBA® AXI4-Stream Protocol Specification (Arm IHI 0051A) [Ref 7].

Basic Handshake
Figure 3-1 shows the transfer of data in an AXI4-Stream channel. tvalid is driven by the
source (master) side of the channel and tready is driven by the receiver (slave). tvalid
indicates that the value in the payload fields (tdata, tuser and tlast) is valid. tready
indicates that the slave is ready to receive data. When both tvalid and tready are TRUE
in a cycle, a transfer occurs. The master and slave set tvalid and tready respectively for
the next transfer appropriately. Some channels can be configured to have no tready, in
which case the channel behaves as through there was an implicit, permanently asserted
tready.
X-Ref Target - Figure 3-1

Figure 3-1: Data Transfer in an AXI4-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=14

FIR Compiler v7.2 15
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Input and Output DATA Channels
The basic operation of the FIR is for samples to enter through the input DATA channel
(s_axis_data_t*) and exit through the output DATA channel (m_axis_data_t*) duly
filtered. The output channel optionally supports tready which allows a resource/behavior
trade-off. In circumstances where downstream slave can be guaranteed to accept the
maximum bandwidth of the FIR, tready can be deselected to save resources. The input
DATA channel always supports tready.

TREADY and TVALID

All AXI4-Stream channels support tvalid. The input DATA channel also always supports
tready. The output channel optionally supports tready. Back-pressure from the output
channel eventually propagates to the input DATA channel to ensure that no data is dropped.

TDATA Structure

The input DATA and output DATA channels share a common tdata structure format,
though can have different bit widths. All parallel data paths (Parallel Data Channel Filters)
and parallel data samples (Super Sample Rate Filters) are contained in the tdata bus, with
each path being sign extended to an 8-bit boundary. The extra bits on the input tdata are
not used by the core.

Figure 3-2 shows the tdata structure for a case with 2 parallel paths (data streams). In this
case, bit growth is experienced between input and output—a path width of 11 bits on the
input grows to 13 bits on the output.

Note: The AXI4-Port Structure pane on the Implementation Details Tab of the customization GUI
displays the bus structure of all AXI channels for the specified configuration.

TLAST Options

On the input DATA channel and output DATA channel, tlast can optionally be used to
indicate the last sample in a cycle of interleaved data channels. This use is termed
‘vector-based’. The input DATA and output DATA channels also support a mode in which the

X-Ref Target - Figure 3-2

Figure 3-2: Tdata Structure for Input and Output DATA Channels

X12180

Input DATA Channel

Unused Path1 Unused Path0

31 26 15 10 0

31 28 15 12 0

Output DATA Channel

Path1 Path0<<<<<< <<<<<<

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=15

FIR Compiler v7.2 16
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

tlast is passed from input to output with latency equivalent to the tdata samples. This
mode is termed ‘packet-based’ and is intended to ease system design.

TUSER Options

The input DATA channel and output DATA channels optionally support a tuser field. For
each, the tuser field can be used to convey a User Field and/or a Channel ID field. When
both are selected, they are concatenated, with Channel ID in the least significant bit
positions. When User Field is selected on the input channel it is automatically selected for
the output channel, as this User Field, like ‘packet-based’ tlast is a facility whereby the
User Field is passed through the core, but subject to the same latency delay as the tdata
path from input to output. This is intended to ease system design. The User Field has
user-selected width.

The Channel ID field has the minimum width required to describe the number of channels
in a time-division multiplex cycle (log2roundup(number_of_channels)), for example, with 13
channels, channel ID is 4 bits wide.

The output DATA channel also includes a Data Valid field when aresetn has been selected
without Data vector reset being selected. This field can be used for additional validation of
the m_axis_data_tdata bus. See Resets for more details. The Data Valid field occupies
the LSB of m_axis_data_tuser with the other tuser fields, when selected, being shifted
up the bus.

When the core has been configured to implement a rate change the following rules are
applied to tuser and tlast.

• When the core is configured with no rate change tuser and tlast propagate through
the core unmodified.

• When the core is configured to up convert by X the input tuser and tlast are
duplicated on the last sample of the corresponding block of X output samples. tuser
is undefined for the other X-1 output samples.

• When the core is configured to down convert by X the tuser value for a given output
sample is taken from the tuser value of the first input sample of the corresponding X
input samples. tlast is OR’d over X input samples with the result being used for the
tlast of the corresponding output sample.

X-Ref Target - Figure 3-3

Figure 3-3: tuser

X12181

User field
User specified width

Optional CHANNEL_ID field
Log2roundup (NUM_CHANNELS)

TUSER (MSB : LSB)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=16

FIR Compiler v7.2 17
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

CONFIG Channel
This control channel specifies the filter select value for each (or all) interleaved data
channels and the current channel sequence value. It also activates reloaded filter
coefficients.

• When the core has been specified to support multiple filter coefficients, the filter
select value selects which filter should be used for each of the interleaved data
channels.

• When the core has been specified to support advanced channel sequences, the channel
pattern value specifies which channel sequence is to be used.

• When the core is specified to support reloadable filter coefficients, receipt of a filter
configuration packet updates to (or switches in) any reloaded filter coefficient sets
since the previous update.
Note: When the core is specified to full rate and no rate change, care must be taken to give the
filter an opportunity to acknowledge/store the reloaded filters. If the Filter Configuration
Channel is continuously updated, there is no opportunity to store the reloaded filters and the
RELOAD channel is blocked when all the reload slots are full. The time required to process a
single input vector (block of interleaved channels) is sufficient to update the reload filters.

• The channel can be configured to have a packet of length of Number of Channels where
each transaction in the packet specifies the filter select value of the corresponding
interleaved channel. The first transaction in the packet also includes the channel
sequence ID, if required for the core configuration. If the core is configured to support
configurable channel sequences but not multiple filter sets, then the packet length is 1.

• The channel can also be configured to have a packet length of 1 where the single
transaction specifies the filter select value for all of the interleaved channels. This
transaction also includes the channel pattern value, if required for the core
configuration.

Blocking Behavior

• The channel is non-blocking to the data channel. The data channel is not halted if no
new configuration data is present.

• The channel is blocking to the RELOAD channel. When all the reload slots are full the
RELOAD channel is blocked until a configuration packet is received and processed.

Packet Consumption Rate and Synchronization

When a complete packet has been received you can specify the core to synchronize the
CONFIG channel to the input Data channel in two methods:

• Vector Synchronization (On Vector): Configuration packets, when available, are
consumed and their contents used when the first sample of an interleaved data channel

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=17

FIR Compiler v7.2 18
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

sequence is processed by the core. When the core is configured to process a single
data channel configuration, packets are consumed every processing cycle of the core.

° For down sampling (decimation) implementations configuration packets are only
consumed on the first phase of a down sampling period.

• Packet Synchronization (On Packet): Further qualifies the consumption of
configuration packets. Packets are only consumed when the core has received a
transaction on the S_AXIS_DATA channel where s_axis_data_tlast has been
asserted or following power up and reset. This option ties the rate at which
configuration packets are consumed to the input DATA channel rather than to the rate
at which the configuration packets are provided to the core, that is, configuration
packets can be queued in advance and then used at a rate controlled by the input DATA
channel.

TREADY

Inputs to the CONFIG channel are stored in a buffer until consumed. When this buffer is
almost full, tready is deasserted in accordance with AXI4-Stream protocol.

TLAST Options

tlast must be asserted to indicate the last transaction in the configuration packet. If the
packet is of length 1 then tlast is not required and is disabled. In this case each
transaction is considered to be a complete packet. If tlast last is incorrectly asserted a
warning is reported on the event interface.

TDATA

Each field of the tdata bus is zero padded to an 8-bit boundary.

Field A = Filter Select; size log2roundup(NUM_FILTS)

Field B = Channel pattern; log2roundup(NUM_PATTERNS).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=18

FIR Compiler v7.2 19
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

RELOAD Channel
This channel is used to sequentially load a new filter set using a reload packet. A reload
packet defines the coefficients of the new filter set and, when multiple filter sets have been
selected, the index of the filter set being updated. The filter set index is specified in the
range 0 to Number of Coefficients Set - 1. The Reload Slots user parameter specifies how
many reload packets can be supplied to the core (the packet queue depth) before a
synchronization event occurs. A synchronization event is when the core applies all pending
reload packets to the coefficient memory. A synchronization event occurs on the
consumption of a configuration packet on the CONFIG channel (S_AXIS_CONFIG).
Figure 3-7 shows the transaction sequence.

The RELOAD channel packet length is derived from the number of coefficients specified at
core generation time and the filter implementation used. See sections Coefficient Reload
and Coefficient Reload Tab for details on how to generate the content for the channel. As
with the CONFIG channel, the last sample of the packet must be qualified by an asserted
tlast. The set of data loaded into the RELOAD channel does not take action until triggered
by a reconfiguration synchronization event as described in CONFIG Channel.

TREADY

When all the reload filter slots are nearly full, tready is deasserted in accordance with
AXI4-Stream protocol to prevent data loss.

TLAST

As with the CONFIG channel, tlast on the RELOAD channel is associated with two event
ports (event_s_reload_tlast_missing and event_s_reload_tlast_unexpected)
which likewise indicate for a single cycle tlast missing or tlast asserted when not
expected anomalies respectively.

X-Ref Target - Figure 3-4

Figure 3-4: tdata structure for CONFIG channel
X12182

MSB

LSB

TDATA

Packet transaction number

NUM_CHANNEL-10 1

B

A A A A

n
/
a

n
/
a

n
/
a

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=19

FIR Compiler v7.2 20
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

TDATA

The tdata bus is zero padded to an 8-bit boundary. As this is an input, the pad bits are
ignored.

The following diagrams show the format and example timing of tdata into the RELOAD
channel. When multiple filter sets have been specified Transaction 0 defines the index of
the filter set being reloaded (zero indexed). When a single filter set has been specified this
field/transaction is not present in the reload packet. In Figure 3-6 the filter set index
(Transaction 0) is labeled as “filt” with the remaining coefficient content labeled “cn”. When
a single filter set has been specified the “filt” transaction is not present. See Coefficient
Reload and Coefficient Reload Tab for details on how to generate the reload packet
coefficient content.

Event Interface
The event interface is a collection of individual pins, each of which is asserted for a single
clock cycle to give external notice of an internal event. These events can be considered as
errors or ignored by the external system. The individual event signals are:

• event_s_data_tlast_missing: Enabled when tlast is set to vector-based for the
input DATA channel; this event signal is asserted on the last transaction of an incoming
vector when s_axis_data_tlast is not asserted.

X-Ref Target - Figure 3-5

Figure 3-5: tdata Format
X-Ref Target - Figure 3-6

Figure 3-6: tdata Example Timing

X12183

Pad

Pad

Log2roundup (NUM_FILTS) Transaction 0 (when multi filter set)

Transaction NCoefficient_Width

TDATA (MSB:LSB)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=20

FIR Compiler v7.2 21
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

• event_s_data_tlast_unexpected: Enabled when tlast is set to vector-based or
packet-based when down converting for the input DATA channel; this event signal is
asserted on any transaction when s_axis_data_tlast is asserted unexpectedly.

• event_s_data_chanid_incorrect: Enabled when the tuser mode selects tuser
to have a chan ID field; this is asserted on every transaction when the
s_axis_data_tuser Channel ID field does not match the value expected by the core.

• event_s_config_tlast_missing: Enabled when the CONFIG channel is enabled;
this signal is asserted on the last transaction of an incoming vector if
s_axis_config_tlast is not seen asserted.

• event_s_config_tlast_unexpected: Enabled when the CONFIG channel is
enabled, this signal is asserted when s_axis_config_tlast is seen asserted
unexpectedly.

• event_s_reload_tlast_missing: Enabled when the RELOAD channel is enabled;
this signal is asserted on the last transaction of an incoming vector if
s_axis_reload_tlast is not seen asserted. If the core is reset following a
tlast_missing event on the RELOAD channel, the core has received a complete
coefficient set and the reset does not clear the loaded coefficient vector. If only one
reload slot has been specified, then a synchronization event needs to occur before
another coefficient set can be loaded. This is reflected in the reload_tready
deassertion. If more than one reload slot has been specified, then it is possible to
overwrite the previously loaded set before applying a synchronization event.

• event_s_reload_tlast_unexpected: Enabled when the RELOAD channel is
enabled; this signal is asserted when s_axis_reload_tlast is seen asserted
unexpectedly. If the core is reset following a tlast_unexpected event on the
RELOAD channel, it is safe to load a new complete coefficient vector before triggering a
synchronization event. The new coefficient vector will overwrite the previous partial
coefficient vector.

Interface Timing
Figure 3-7 shows the sequence of events from a packet of reload data being written to the
RELOAD channel (start of first arrow), which is triggered for use on the arrival and
consumption of a packet on the CONFIG channel (end of first arrow and start of second
arrow), and on to the data stream.

Note: Particular care should be taken so that the time between the start of the first arrow and the
end of the first arrow is sufficient to allow the core to store the new coefficients. When using the
Transpose Architecture, this time should be equal to the time required to process a single data input
vector (block of interleaved channels).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=21

FIR Compiler v7.2 22
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Core Features
Filter Architectures
The following sections show the filter architectures available in the FIR Compiler core.

X-Ref Target - Figure 3-7

Figure 3-7: Interface Timing

aclk

s_axis_reload_tvalid

s_axis_reload_tready

s_axis_reload_tdata

s_axis_reload_tlast

s_axis_config_tvalid

s_axis_config_tready

s_axis_config_tdata

s_axis_config_tlast

s_axis_data_tvalid

s_axis_data_tready

s_axis_data_tdata

s_axis_data_tlast

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=22

FIR Compiler v7.2 23
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Multiply-Accumulate

Figure 3-8 shows a simplified view of a Multiply-Accumulate (MAC)-based FIR utilizing a
single MAC engine.

The single implementation is extensible to multi-MAC implementations for use in achieving
higher performance filter specifications (larger numbers of coefficients, higher sample
rates, more channels).

The number of multipliers required to implement a filter is determined by calculating the
number of multiplies required to perform the computation (taking into account symmetrical
and half-band coefficient structures and sample rate changes) and then dividing by the
number of clocks available to process each input sample. The available clock cycles value is
always rounded down and the number of multipliers rounded up to the nearest integer. If
there is a non-zero remainder, some of the MAC engines calculate fewer coefficients than
others, and the coefficients are padded with zeros to accommodate the excess cycles.

The output samples reflect the padding of the coefficient vector; for this reason, the
response to an applied impulse contains a certain number of zero outputs before the first
coefficient of the specified impulse response appears at the output. The core automatically
generates an implementation that meets the user-defined performance requirements based
on the system clock rate, the sample rate, the number of taps and channels, and the rate
change. The core inserts one or more multipliers to meet the overall throughput
requirements.

Two MAC architectures are available in the FIR Compiler: one that implements a Systolic
filter structure and the other a Transpose filter structure

X-Ref Target - Figure 3-8

Figure 3-8: Single MAC Engine Block Diagram

Textz
-1

z
-1 z
-1

z
-1

Z
-(

N
-1

)

Text

a(0)

a(1)

a(2)

a(3)

a(N-1)

z
-1 y(n)

x(n)

Coefficient Storage

Data Storage

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=23

FIR Compiler v7.2 24
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Systolic Multiply-Accumulate

Figure 3-9 shows the Systolic Multiply-Accumulate architecture implementing a pipelined
Direct-Form filter.

Figure 3-10 shows a multi-MAC implementation for this architecture.

The architecture is directly supported by the DSP Slice and results in area-efficient and high
performance filter implementations. The structure also extends to exploit coefficient
symmetry, thus providing further resource savings.

Transpose Multiply-Accumulate

Figure 3-11 shows the Transpose Multiply-Accumulate architecture implementing a
Transposed Direct-Form filter.

X-Ref Target - Figure 3-9

Figure 3-9: Pipelined Direct - Form

X-Ref Target - Figure 3-10

Figure 3-10: Systolic Multi - MAC Implementation

X-Ref Target - Figure 3-11

Figure 3-11: Transpose Direct - Form

Z
-1

Z
-1x(n)

a(0) a(1) a(2)

Z
-1

Z
-1

a(N-1)

y(n)Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

x(n)

z-1 z-1
z-1

Text

a(0)

a(1)

a(2)

a(3)

z-1

Textz-1 z-1 z-1 z-1 Textz-1 z-1 z-1 z-1 Textz-1 z-1 z-1 z-1

Text

a(4)

a(5)

a(6)

a(7)

Text

a(N-4)

a(N-3)

a(N-2)

a(N-1)

z-1

z-1 y(n)

x(n)

a(n-1) a(2) a(1) a(0)

Z
-1

Z
-1

Z
-1

Z
-1 y(n)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=24

FIR Compiler v7.2 25
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Figure 3-12 shows a multi-MAC implementation for this architecture.

This architecture is also directly supported by the DSP Slice. This structure offers a low
latency implementation, and for some configurations can also offer extra resource savings
over the Systolic structure. It does not require an accumulator and can use fewer data
memory resources, although it does not exploit coefficient symmetry.

Filter Structures and Optimizations
This section describes the filters and how to optimize their use in the FIR Compiler.

Filter Symmetry

The impulse response for many filters possesses significant symmetry. This symmetry can
generally be exploited to minimize arithmetic requirements and produce area-efficient
filter realizations. Figure 3-13 shows the impulse response for a 9-tap symmetric FIR filter.

Instead of implementing this filter using the architecture shown in Figure 1-1, the more
efficient signal flow-graph in Figure 3-14 can be used. In general, the former approach
requires N multiplications and (N-1) additions. In contrast, the architecture in Figure 3-14

X-Ref Target - Figure 3-12

Figure 3-12: Transpose Multi - MAC Implementation

X-Ref Target - Figure 3-13

Figure 3-13: Symmetric FIR – Odd Number of Terms

x(n)

z
-1

Text

a(M-1)

a(2M-1)

a(3M-1)

a(N-1)

z
-1

Textz
-M

z
-M

z
-M

z
-M

Text

a(1)

a(M+1)

a(2M+1)

a(3M+1)

Text

a(0)

a(M)

a(2M)

a(3M)

z
-1 y(n)

M-1 M-2 0

a3 a5
(=a3)

a2

a1
a0 a4 a6

(=a2)

a7
(=a1)

a8
(=a0)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=25

FIR Compiler v7.2 26
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

requires only [N/2] multiplications and approximately N additions. This significant
reduction in the computation workload can be exploited to generate efficient filter
hardware implementations.

Coefficient symmetry for an even number of terms can be exploited as shown in
Figure 3-15.

Figure 3-16 shows the impulse response for a negative, or odd, symmetric filter.
s

X-Ref Target - Figure 3-14

Figure 3-14: Exploiting Coefficient Symmetry – Odd Number of Filter Taps

X-Ref Target - Figure 3-15

Figure 3-15: Exploiting Coefficient Symmetry – Even Number of Filter Taps

X-Ref Target - Figure 3-16

Figure 3-16: Negative Symmetric Impulse Response

Z
-1

Z
-1

Z
-1

Z
-1

x(n)

a(0) a(1) a(2) a(3) a(4)

Z
-1

Z
-1

Z
-1

Z
-1

y(n)

Z
-1

Z
-1

Z
-1

Z
-1

x(n)

a(0) a(1) a(2) a(3) a(4)

Z
-1

Z
-1

Z
-1

Z
-1

y(n)

Z
-1

a3

a5=-a4

a2

a1

a0

a4

a6=-a3

a7=-a2

a8=-a1

a9=-a0

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=26

FIR Compiler v7.2 27
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

This symmetry is exploited in a manner similar to that shown in Figure 3-14 and
Figure 3-15. In this case, the middle layer of adders are replaced by subtracters, as shown in
Figure 3-17.

Filter coefficient symmetry is inferred by the core GUI from the coefficient definition file.
You can override this inferred value. When the structure is inferred, the inferred setting is
displayed in the Summary page and in the ToolTip for the Coefficient Structure field.

Coefficient Padding

When implementing a filter with symmetric coefficients using the Multiply-Accumulate
architecture, you must be aware that the core reorganizes the filter coefficients if required
to exploit symmetry, and this might alter the filter response. This is only necessary if the
core is configured such that all processing cycles are not utilized. For example, when the
core has four cycles to process each sample for a 30-tap symmetric response filter, the core
pads the coefficient storage out as shown in Figure 3-18.

The appended zeroes after the non-zero coefficients do not affect the filter response, but
the prepended zero coefficients do alter the phase response of the filter implementation
when compared to the ideal coefficients. There are two ways to avoid this issue: First, and

X-Ref Target - Figure 3-17

Figure 3-17: FIR Architecture Exploiting Negative Symmetry

X-Ref Target - Figure 3-18

Figure 3-18: Filter Padding to Facilitate Symmetric Structure Exploitation

Z
-1

Z
-1

Z
-1

Z
-1

x(n)

a(0) a(1) a(2) a(3) a(4)

Z
-1

Z
-1

Z
-1

Z
-1

y(n)

Z
-1

+ + + + +- - - - -

MAC3 0 a b c

MAC2 d e f g

MAC1 h i j k

MAC0 l m n p

Resultant Impulse Response

0 a b c d e f g h i j k l m n p p n m l k j i h g f e d c b a 0

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=27

FIR Compiler v7.2 28
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

simplest, you can force the Coefficient Structure to be Non-Symmetric. This avoids the issue
of prepending zero coefficients to the coefficient vector, and only appended zeroes are
used to pad out the filter response to the required number of cycles. Second, and more
efficient, you can increase the number of taps implemented by the filter at little or no cost
in resource usage. In the previous example, the filter could process 32 taps in the same
time, with the same hardware resources, and with the same cycle latency as the 30-tap
implementation, and the phase response of the 32-tap filter would be unaltered.

The Vivado IDE displays the actual number of coefficients calculated on the Implementation
Details tab. You can use this information to determine if you can increase the number of
coefficients used by your filter definition.

Single-rate FIR Filter

The basic FIR filter core is a single-rate (input sample rate = output sample rate) finite
impulse response filter. This is the simplest of filter types and is the default at the start of
parametrization in the Vivado IDE.

Half-band FIR Filter

Figure 3-19 shows the general frequency response for a half-band filter.

The magnitude frequency response is symmetrical about quarter sample frequency π/2
radians. The sample rate is normalized to 2π radians/sec. The passband and stopband
frequencies are positioned such that

The passband and stopband ripple, and respectively, are equal . These
properties are reflected in the filter impulse response. It can be shown (in Digital Signal
Processing in Communication Systems [Ref 5]) that approximately half of the filter
coefficients are zero for an odd number of taps, as shown in Figure 3-20 for an 11-tap
half-band filter.

X-Ref Target - Figure 3-19

Figure 3-19: Half-band Filter Magnitude Frequency Response

1+δp
1−δp

1

δs

−δs
Ωπ

|H(ejΩ)|

PASSBAND

STOPBAND

Ωp Ωs

0.5

π
2

Ω Ωp s= −π

δ p δ s δ δp s=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=28

FIR Compiler v7.2 29
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The interleaved zero values in the coefficient data can be exploited to realize an efficient
realization, as shown in Figure 3-21. Note that the FIR Compiler also exploits coefficient
symmetry for half-band filter structures, although this is not shown in Figure 3-21.

The half-band filter selection in the compiler is intended for this purpose. This filter is
available in the Coefficient Structure field of the user interface.

IMPORTANT: You must supply the complete list of filter coefficients, including the 0 value
samples, when using the half-band filter.

The filter coefficient file format is discussed in greater detail in Filter Coefficient Data.

Hilbert Transform

Hilbert transformers (see Digital Signal Processing in Communication Systems [Ref 5]) are
used in several ways in digital communication systems. An ideal Hilbert transform provides
a phase shift of 90 degrees for positive frequencies and -90 degrees for negative
frequencies. It can be shown (in Digital Signal Processing in Communication Systems [Ref 5])
that the impulse response corresponding to this frequency domain characteristic is
odd-symmetric and has interleaved zeros as shown in Figure 3-21. Both the alternating
zero-valued coefficients and the negative symmetry can be utilized to produce an efficient
hardware realization.

X-Ref Target - Figure 3-20

Figure 3-20: Half-band Filter Impulse Response

X-Ref Target - Figure 3-21

Figure 3-21: Half-band Filter Impulse Response

0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

COEFFICIENT INDEX

Z
-1

Z
-1

x(n)

a(2) a(4) a(5)

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

a(0)

y(n)

a(6) a(8) a(10)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=29

FIR Compiler v7.2 30
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

A Hilbert transformer accepts a real-valued signal and produces a complex (I,Q) output
signal. The quadrature (Q) component of the output signal is produced by a FIR filter with
an impulse response like that shown in Figure 3-22. The in-phase (I) component is the input
signal delayed by an appropriate amount to compensate for the phase delay of the FIR
process employed for generating the Q output. This is efficiently achieved by accessing the
center tap of the sample history delay of the Q channel FIR filter as shown in Figure 3-23. In
this figure, x(n) is the real-valued input signal, and yI(n) and yQ(n) are the in-phase and
quadrature outputs, respectively.

Figure 3-24 shows the architecture for a Hilbert transformer that exploits both the
zero-valued and the negative symmetry characteristics of the impulse response.

X-Ref Target - Figure 3-22

Figure 3-22: Hilbert Transformer Impulse Response
X-Ref Target - Figure 3-23

Figure 3-23: Hilbert Transformer FIR Filter Realization

X-Ref Target - Figure 3-24

Figure 3-24: Hilbert Transformer Exploiting Zero-valued Filter Coefficients and Negative Symmetry

4096

1365

0

-1365

0 0
819

0

-819

-4096

0

Z
-1

Z
-1

x(n)

a(2) a(4)

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

a(0)

yQ(n)

-a(4) -a(2) -a(0)

yI(n)

Z
-2

x(n)

a(2) a(4)

Z
-2

Z
-1

a(0)

yQ(n)

yI(n)Z
-2

Z
-2

Z
-1

+ + + ---

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=30

FIR Compiler v7.2 31
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Interpolated FIR Filter

An interpolated FIR (IFIR) filter (see Multi-Rate Systems and Filter Banks [Ref 2]) has a similar
architecture to a conventional FIR filter, but with the unit delay operator replaced by k-1
units of delay. k is referred to as the zero-packing factor. Figure 3-25 shows a N-tap IFIR
filter. This architecture is functionally equivalent to inserting k-1 zeros between the
coefficients of a prototype filter coefficient set.

Interpolated filters are useful for realizing efficient implementations of both narrow-band
and wide-band filters. A filter system based on an IFIR approach requires not only the IFIR
but also an image rejection filter. References, Multi-Rate Systems and Filter Banks [Ref 2]
and XtremeDSP Design Manual [Ref 8] provide the details of how these systems are realized,
and how to design the IFIR and the image rejection filters.

The IFIR filter implementation takes advantage of the k-1 zeros in the impulse response to
realize an area-efficient FPGA implementation. The FPGA area required by an IFIR filter is
not a strong function of the zero-packing factor.

The interpolated FIR should not be confused with an interpolation filter. Interpolated filters
are single-rate systems employed to produce efficient realizations of narrow-band filters
and, with some minor enhancements, wide-band filters can be accommodated. There is no
inherent rate change when using an interpolated filter – the input rate is the same as the
output rate.

X-Ref Target - Figure 3-25

Figure 3-25: Interpolated FIR (IFIR) - Zero-packing Factor is k

x(n)

y(n)

a(1)

Z
-D

a(0) a(2)

Z
-D

a(N-1)

Z
-D

a(1)

Z
-D

D = k-1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=31

FIR Compiler v7.2 32
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Polyphase Decimator

Figure 3-26 shows the polyphase decimation filter option which implements the
computationally efficient M-to-1 polyphase decimating filter.

A set of N prototype filter coefficients is mapped to the M polyphase
subfilters according to Equation 3-1.

The polyphase segments are accessed by delivering the input samples x(n) to their inputs
using an input commutator which starts at the segment index and decrements to
index 0. After the commutator has executed one cycle and delivered M input samples to the
filter, a single output is taken as the summation of the outputs from the polyphase
segments. The output sample rate is where is the sample rate of the input
data stream .

Observe that each of the polyphase segments is operating at the low output sample rate
(compared to the high input sample rate), and a total of operations is performed per
output point.

X-Ref Target - Figure 3-26

Figure 3-26: M-to-1 Polyphase Decimating Filter

h0(n)

h1(n)

hM-3(n)

hM-2(n)

hM-1(n)

x(n)

y(n)

a0 a1 … aN 1–, , ,
h0 n() h1 n() … hM 1– n(), , ,

hi r() a i Mr+()= i 0 1 … M 1–, , ,= r 0 1 … N
M----, , ,= Equation 3-1

i M 1–=

′f s
fs
M----=′f s f s

x n() n, 0 1 2 …, , ,=

fs ′f s
f s N

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=32

FIR Compiler v7.2 33
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Polyphase Interpolator

Figure 3-27 shows the polyphase interpolation filter option which implements the
computationally efficient 1-to-P interpolation filter.

A set of N prototype filter coefficients is mapped to the polyphase
subfilters according to Equation 3-1, as in the decimation case.

Each new input sample engages all of the polyphase segments in parallel. For each
input sample delivered to the filter, output samples, one from each segment, are
delivered to the filter output port, as indicated by the commutator in Figure 3-27.

The output sample rate is where is the sample rate of the input data
stream . Observe each of the polyphase segments operating at the low input
sample rate (compared to the high output sample rate) and a total of operations
performed per output point.

Polyphase Interpolator Exploiting Symmetric Pairs

The symmetric pairs technique (see Symmetry Exploitation in Digital Interpolators/
Decimators [Ref 9]) is used to exploit coefficient symmetry when implementing an
Interpolation filter in the Systolic Multiply-Accumulator architecture. When P polyphase
subfilters are generated from symmetric filter coefficients, not all the subfilters contain a
set of coefficients that are themselves symmetric. The symmetric pairs technique observes
that adding and subtracting two corresponding non-symmetric phases produces two new
phases containing symmetric coefficients.

The following example demonstrates this technique for a 15-tap interpolate by 3 filter. The
filter coefficients, a, b, c, d, e, f, g, h, g, f, e, d, c, b, a produce the following subfilters:

h0 = a, d, g, f, c

h1 = b, e, h, e, b

h2 = c, f, g, d, a

X-Ref Target - Figure 3-27

Figure 3-27: 1-to-P Polyphase Interpolator

h0(n)

h1(n)

hP-3(n)

hP-2(n)

hP-1(n)

x(n)

y(n)

a0 a1 … aN 1–, , , P
h0 n() h1 n() … hp 1– n(), , ,

x n()
P

′f s = fs P′f s f s
x n() n, 0 1 2 …, , ,=

fs ′fs N

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=33

FIR Compiler v7.2 34
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Subfilters h0 and h2 are not symmetric. Applying the symmetric pairs technique produces
the following subfilters:

h0 = a+c, d+f, d,g, f+d, c+a

h1 = b, e, h, e, b

h2 = c-a, f-d, g-g, d-f, a-c

Now both h0 and h2 are symmetric with h2 being negative symmetric. The filter can now be
implemented utilizing symmetry, giving the associated resource savings. The output from
subfilters h0 and h2 must be added and subtracted and then scaled by a factor of 0.5 to
produce the original filter output. Figure 3-28 shows the resulting structure.

Note: For some configurations an extra DSP Slice is required to implement the recombination of the
phases.
Note: When interpolating by 2 with an odd number of symmetric coefficients, this technique is not
required as the resulting polyphase subfilters are symmetric.

Coefficient Padding

As with the general symmetric filter case, if the combination of rate and number of filter
taps results in a subfilter which is not fully populated with coefficients, the reorganization
of the filter coefficients results in a change in the phase response of the filter. The impulse
response is shifted by several output samples as a result. In the 14 tap, interpolate by 4 case,
padding a zero coefficient to the front of the coefficient response would be required to
align the phases such that symmetry can be exploited, resulting in a smaller
implementation, but this results in a different phase response for the filter. The methods to
avoid this change in response, if such a change cannot be accommodated in your
application system, are also similar to the general symmetry case; you can either force
non-symmetric structure implementation or make use of the extra coefficients which can be
supported in the structure. Figure 3-29 shows several example cases in and is extensible to
larger filters.

X-Ref Target - Figure 3-28

Figure 3-28: Symmetric Pairs

h0

h1

h2

x(n)
y(n)

-

+

0.5

0.5

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=34

FIR Compiler v7.2 35
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Half-band Decimator

The half-band decimator is a polyphase filter with an embedded 2-to-1 down-sampling of
the input signal. Figure 3-30 shows the structure.

The filter is very similar to the polyphase decimator described in Polyphase Decimator with
the decimation factor set to M=2. However, there is a subtle difference in the
implementation that makes the half-band decimator a more area-efficient 2-to-1
down-sampling filter when the frequency response reflects a true half-band characteristic.

The frequency and time response of a half-band filter are shown in Figure 3-19 and
Figure 3-20, respectively. Observe the alternating zero-valued coefficients in the impulse
response. Figure 3-30 details a 7-tap half-band polyphase filter when the coefficients are

X-Ref Target - Figure 3-29

Figure 3-29: Filter Padding to Facilitate Symmetric Pairing

X-Ref Target - Figure 3-30

Figure 3-30: Half-band Decimation Filter

17 taps, Interpolate by 3

d

Even Sym

14 taps, interpolate by 4

a g h e b 0

b0 e h g d a

c0 f i f c 0

Symmetric Pair Symmetric Pairs

21 taps, Interpolate by 3
(no padding)

f

Even Sym

16 taps, interpolate by 4
(no padding)

c i j g d a

da g j i f c

eb h k h e b

Symmetric Pair

c g d 0

b f e a

a e f b

0 d g c

d h e a

c g f b

b f g c

a e h dSymmetric Pairs

h0(n)

h1(n)

y(n)x(n)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=35

FIR Compiler v7.2 36
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

allocated to the two polyphase segments and shown in Figure 3-30. Figure 3-31
(a) is the filter impulse response (). Figure 3-31 (b) provides a detailed illustration
of the polyphase subfilters and shows how the filter coefficients are allocated to the two
polyphase arms.

In the bottom arm, the only non-zero coefficient, is the center value of the impulse
response Figure 3-31 (c) shows the optimized architecture when the redundant
multipliers and adders are removed and coefficient symmetry is exploited. The final
structure has a reduced computation workload in contrast to a more general 2:1
down-sampling filter.

The number of multiply-accumulate (MAC) operations required to compute an output
sample has been lowered by a factor of approximately two. In this figure, the high density
of zero-valued filter coefficients is exploited in the FPGA realization to produce a minimal
area implementation.
X-Ref Target - Figure 3-31

Figure 3-31: 7-Tap Half-band Decimation Filter

h n0 () h n1()
a a1 50= =

h n1(),
a3.

a3

a2
a4

a5=0a1=0a0 a6

(a) Impulse Repsonse

a(2)

Z
-1

a(0) a(4)

Z
-1

a(6)

Z
-1

a(1)=0 a(3)

Z
-1

a(5)=0

Z
-1

y(n)

x(n) (b) Polyphase Partition

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=36

FIR Compiler v7.2 37
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Half-band Interpolator

Just as the half-band decimator is an optimized version of the more general polyphase
decimation filter, the half-band interpolator is a special case of a polyphase interpolator.
Figure 3-32 shows the half-band interpolator.

The coefficient set for a true half-band interpolator is identical to that of a half-band
decimator with the same specifications. The large number of zero entries in the impulse
response is exploited in exactly the same manner as with the half-band decimator to
produce hardware-optimized half-band interpolators. The process is presented in
Figure 3-33. Figure 3-33(a) is the impulse response, Figure 3-33(b) shows the polyphase
partition, and Figure 3-33(c) is the optimized architecture that has taken full advantage of
the 0 entries in the coefficient data, along with coefficient symmetry.

The high density of zero-valued filter coefficients is exploited in the FPGA realization to
produce a minimal area implementation.

X-Ref Target - Figure 3-32

Figure 3-32: Half-band Interpolation Filter

Figure 3-31: 7-Tap Half-band Decimation Filter

a(2)

Z
-1

a(0)

Z
-1

a(3)

Z
-1

y(n)

x(n)

Z
-1

(c) Reduced Complexity (Hardware Optimized) Realization

h0(n)

h1(n)

x(n) y(n)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=37

FIR Compiler v7.2 38
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Small Non-zero Even Terms in a Half-band Filter Impulse Response

Certain filter design software can result in small non-zero values for the odd terms in the
half-band filter impulse response. In this situation, it can be useful to force these values to

X-Ref Target - Figure 3-33

Figure 3-33: 7-Tap Half-band Interpolation Filter

a3

a2
a4

a5=0a1=0a0 a6

(a) Impulse Repsonse

a(2)

Z
-1

a(0) a(4)

Z
-1

a(6)

Z
-1

a(1)=0 a(3)

Z
-1

a(5)=0

Z
-1

y(n)

x(n)

0

1

The first output is taken

from port 0, then port 1.

(b) Polyphase Partition

a(2)

Z
-1

a(0)

Z
-1

Z
-1

a(3)

Z
-1

y(n)

x(n)

0

1

The first output is taken

from port 0, then port 1.

(c) Reduced Complexity (Hardware Optimized) Realization

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=38

FIR Compiler v7.2 39
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

0 and re-evaluate the frequency response to assess if it is still acceptable for the intended
application. If the odd terms are not identically zero, the hardware optimizations described
previously are not possible. If the small non-zero value terms cannot be ignored, the
general polyphase decimator or interpolator described in Polyphase Decimator and
Polyphase Interpolator, using a rate change of two, is more appropriate.

Fixed Fractional Rate Resampling Filters

FIR filters that implement resampling of a data stream at a fixed fractional rate P/Q, where
P and Q are integers up to 64, are available for the Systolic Multiply-Accumulate
architecture. In Figure 3-34, the operation of an interpolation filter with interpolation rate
P=5 is contrasted conceptually with the operation of a fixed fractional rate filter with rate P/
Q=5/3.

The normal (integer rate) interpolator passes the input sample to all P phases and then
produces an output from each of the phase arms of the polyphase filter structure. In the
fractional rate version, the output is taken from a phase arm which varies according to a
stepping sequence with step size Q.

Figure 3-35 illustrates how the fractional rate decimator structure is implemented for a rate
change of P/Q = 3/5. Input samples are fed into the data vector until enough samples are
received to generate the current output given the interpolation and decimation rate. In this
example, two new input samples are required to generate the first two outputs, with the
third output requiring only a single input. To generate each output, the data vector samples
are applied to the corresponding coefficients.

X-Ref Target - Figure 3-34

Figure 3-34: Interpolation Filters for Integer and Fractional Rates

a f k p

b g l q

c h m r

d i n s

e j o t

a f k p

b g l q

c h m r

d i n s

e j o t

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=39

FIR Compiler v7.2 40
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Symmetry is not currently exploited when using the fractional rate structures.

Filter Coefficient Data
The filter coefficients are supplied to the FIR Compiler using a coefficient file with a .coe
extension. This is an ASCII text file with a single-line header that defines the radix of the
number representation used for the coefficient data, followed by the coefficient values
themselves. This is shown in Figure 3-36 for an N-tap filter.

The filter coefficients can be supplied as integers in either base-10, base-16, or base-2
representation. This corresponds to coefficient_radix=10, coefficient_radix=16, and
coefficient_radix=2 respectively. Alternatively, the coefficients can be entered as real
numbers (specified to a minimum of one decimal place) in base-10 only. If you enter signed
negative symmetric hexadecimal coefficients, each value should be sign-extended to the
boundary of the most significant nibble or hex character. This ensures that coefficient
structure inference can be performed correctly (this includes Hilbert transform filter types,
which are also negative symmetric).

X-Ref Target - Figure 3-35

Figure 3-35: Decimation Filter for Fractional Rates

X-Ref Target - Figure 3-36

Figure 3-36: Filter Coefficient File Format

Fractional Decimator

a b d e g h j

n

0 n

0 0 n

n+1 0 0 n

0 n+1 0 0 n

0 0 n0 0 n+1

0 0 n0 0 n+1n+2

0 0 n0 0 n+1n+2

0 0 n0 0 n+1n+2

0

00

0 0 n0 0 n+1n+200n+3

k

a d g j

b e h k

0 0 n+20 0 n+3n+400 n+1

c

f i lc

f i l

radix=coefficient_radix;
coefdata=
a(0),
a(1),
a(2),
….
a(N-1);

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=40

FIR Compiler v7.2 41
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The coefficient values can also be placed on a single line as shown in Figure 3-37.

Single-rate FIR

The coefficient file for the single-rate FIR filter is straightforward and consists of a one-line
header followed by the filter coefficient data. For example, the filter coefficient file for an
8-tap filter using a base-10 representation for the coefficient values is shown in
Figure 3-38:

Irrespective of the filter possessing positive or negative symmetry, the coefficient file
should contain the complete set of coefficient values. The filter coefficient file for the
non-symmetric impulse response shown in Figure 3-39 is presented in Figure 3-40.

X-Ref Target - Figure 3-37

Figure 3-37: Filter Coefficient File Format – Coefficient Data on a Single Line

X-Ref Target - Figure 3-38

Figure 3-38: Filter Coefficient File – 8-Tap Filter, Base-10 Coefficient Values

X-Ref Target - Figure 3-39

Figure 3-39: Non-symmetric Impulse Response
X-Ref Target - Figure 3-40

Figure 3-40: Coefficient File for the Non-symmetric Impulse Response

radix=coefficient_radix;
coefdata=a(0),a(1),a(2),...,a(N-1);

radix=10;

coefdata=20,-256,200,255,255,200,-256,20;

255

200

-180

80

220

180
100

-48

40

radix=10;
coefdata=255,200,-180,80,220,180,100,-48,40;

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=41

FIR Compiler v7.2 42
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The coefficient file for the negative-symmetric filter characterized by the impulse response
in Figure 3-41 is shown in Figure 3-42.

Half-band Filter

As previously described, every second filter coefficient for a half-band filter with an odd
number of terms is zero. When specifying the filter coefficient data for this filter class, the
zero value entries must be included in the coefficient file. For example, the filter coefficient
file that specifies the filter impulse response in Figure 3-43 is shown in Figure 3-44.

The filter coefficient set is parsed by the FIR Compiler. If either the alternating zero entries
are absent or the coefficient set is not even-symmetric, this condition is flagged as an error
and the filter is not generated. A dialog box is presented to indicate the issue under these
circumstances.

X-Ref Target - Figure 3-41

Figure 3-41: Negative Symmetric Impulse Response
X-Ref Target - Figure 3-42

Figure 3-42: Coefficient File for the Negative Symmetric Impulse Response

X-Ref Target - Figure 3-43

Figure 3-43: 11-Tap Half-band Filter Impulse Response
X-Ref Target - Figure 3-44

Figure 3-44: Coefficient File for the Half-band Filter Impulse Response

200

-200

-100

10080

-40

30

-80

40

-30

radix=10;
coefdata=30,-40,80,-100,-200,200,100,-80,40,-30;

2047

1283 1283

0

-375

0
220

0

-375

220
0

radix=10;
coefdata=220,0,-375,0,1283,2047,1283,0,-375,0,220;

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=42

FIR Compiler v7.2 43
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Technically, the zero-valued entries for a half-band filter can occur at the filter impulse
response extremities as shown in Figure 3-45. However, observe that these values do not
contribute to the result.

This condition is detected when the filter is specified. If the number of taps is such that the
zero-valued coefficients form the first and last entry of the impulse response, the filter
length is reported as an invalid value. The number of taps N for a half-band filter must obey
N=3 + 4n, where n=0,1,2,3,…. For example, a half-band filter can have 11, 15, 19, and 23
taps, but not 9, 13, 17, or 21 taps.

Hilbert Transform

The impulse response for a 10-term approximation to a Hilbert transformer is shown in
Figure 3-46. The odd-symmetry and zero-valued coefficients are both exploited to
generate an efficient FPGA realization. The coefficient data file for the Hilbert transform
must contain the zero-valued entries. For example, the .coe file corresponding to
Figure 3-46 is shown in Figure 3-47.

X-Ref Target - Figure 3-45

Figure 3-45: 9-Tap Half-band Filter Impulse Response

X-Ref Target - Figure 3-46

Figure 3-46: Hilbert Transform Impulse Response
X-Ref Target - Figure 3-47

Figure 3-47: Coefficient File for the Hilbert Transformer Impulse Response

a3

2047

1283 1283

0

-375

0 0

-375

0

4096

1365

0

-1365

0 0
819

0

-819

-4096

0

radix=10;
coefdata=-819,0,-1365,0,-4096,0,4096,0,1365,0,819;

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=43

FIR Compiler v7.2 44
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

In practice, some optimization methods used for designing a Hilbert transform can lead to
the presence of small even-numbered coefficients. If the Hilbert Transform filter class is
used in the FIR Compiler, you must force these terms to zero.

Just like the half-band filter, the zero-valued entries for a Hilbert transformer can occur at
the filter impulse response extremities. However, these values do not contribute to the
result.

This condition is detected when the filter is specified. If the number of taps is such that the
zero-valued coefficients form the first and last entry of the impulse response, the filter
length is reported as an invalid value. The number of taps N for a Hilbert transformer must
obey N=3 + 4n, where n = 0, 1, 2, 3,…. For example, a Hilbert transform filter can have 11, 15,
19, and 23 taps, but not 9, 13, 17, or 21 taps.

Interpolated Filter

A previous section explained that an IFIR filter is similar to a conventional FIR, but with the
unit delay operator replaced by k-1 units of delay. k is referred to as the zero-packing factor.
One way to realize this substitution is by the insertion of k-1 zeros between the coefficient
values of a prototype filter. When specifying an IFIR architecture, the full set of prototype
coefficients is supplied in the coefficient file, without the zeros implied by the zero-packing
factor. The zero-packing factor is defined through the filter user interface. For example,
consider the filter coefficient data in the .coe file shown in Figure 3-48.

If a zero-packing factor of k=2 is specified, the equivalent filter impulse response is shown
in Figure 3-49.

X-Ref Target - Figure 3-48

Figure 3-48: Prototype Coefficient Data for IFIR Example

X-Ref Target - Figure 3-49

Figure 3-49: Equivalent IFIR Impulse Response for the Coefficient Data Shown in Figure 3-48
with a Zero-packing Factor k=2

radix=10;
coefdata=-200,1200,2047,1200,-200;

2047

-200

12001200

0 00 0

-200

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=44

FIR Compiler v7.2 45
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

If the zero-packing factor is changed to k=3, the impulse response is as shown in
Figure 3-50.

These examples use a symmetrical prototype impulse response; this is not a restriction of
the filter core. The prototype filter coefficient set can be symmetrical, non-symmetrical, or
negative-symmetric.

Multiple Coefficient Sets

For multiple coefficient filters, a single .coe file is used to specify the coefficient sets. Each
coefficient set should be appended to the previous set of coefficients.

For example, if a 2-coefficient set, 10-tap symmetric filter was being designed and
coefficient set #0 was: coef data = -1, -2, -3, 4, 5, 5, 4, -3, -2, -1;

and coefficient set #1 was:

coefdata = -9, -10, -11, 12, 13, 13, 12, -11, -10, -9;

then the .coe file for the entire filter would be:

radix = 10;

coefdata = -1, -2, -3, 4, 5, 5, 4, -3, -2, -1, -9, -10, -11, 12, 13, 13, 12, -11, -10, -9;

All coefficients sets in a multiple set implementation must exhibit the same symmetry. For
example, if even one set of a multi-set has non-symmetric coefficient structure, then all sets
are implemented using that structure. All coefficient sets must also be of the same vector
length. If one coefficient set has fewer coefficients, it must be zero padded – either
appended with zeros when non-symmetric or prepended and appended with an equal
number of zeros when symmetric. See the Coefficient Padding section for further
information.

X-Ref Target - Figure 3-50

Figure 3-50: Equivalent IFIR Impulse Response for the Coefficient Data Shown in Figure 3-48
with a Zero-packing Factor k=3

2047

0 00 0

-200

1200 1200

-200

00 0 0

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=45

FIR Compiler v7.2 46
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Coefficient Specification Using Non-integer Real Numbers

As indicated previously, you can specify the coefficient values as non-integer real numbers,
with the radix set to 10. For example:

radix = 10;

coefdata = 0.08659436542927, 0.00579513928555, -0.06734424313287,
-0.04031582111240;

The coefficients are then quantized by the core to produce the binary coefficient values
used in the filter, based on your specified coefficient bit width. This allows you to supply
floating-point values derived from a chosen filter design tool and explore the costs and
benefits between performance and resource usage by altering the coefficient bit width and
observing the alteration in the quantified frequency response in comparison to the ideal
response. The basic quantization function is selected by setting the Quantization field to
Quantize_Only. See Coefficient Quantization for further details.

The integer values used in the filter implementation can be determined by examining the
main core MIF file (<component_name>.mif) which is generated in the project directory.
The MIF file is always in binary format.

Interleaved Data Channel Filters
The FIR Compiler core provides support for processing multiple input sample streams using
the same implementation. Each input stream is filtered using the same filter configuration
(rate change, etc.) using the currently selected filter coefficient set.

In many applications, the same filter must be applied to several data streams. A common
example is the simple digital down converter shown in Figure 3-51. Here a complex
base-band signal is applied to a matched filter M(z). The in-phase and
quadrature components are processed by the same filter.

One solution to this issue is to employ two separate filters; however, this can waste logic
resources. A more efficient design can be realized using a filter architecture that shares
logic resources between multiple time division multiplexed (TDM) sample streams. As more
channels are processed by the core, the sample throughput is commensurately reduced. For

X-Ref Target - Figure 3-51

Figure 3-51: Digital Down Converter

x n() xI n() jxQ n()+=

M(z)

M(z)

DDS

v(n)

I

Q

Direct Digital Synthesizer

xI(n)

xQ(n)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=46

FIR Compiler v7.2 47
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

example, if the sample rate for a single-channel filter is fs, a two-channel version of the
same filter processes two sample streams, each with a sample rate of fs/2. A three-channel
version of the filter processes three data streams and supports a sample rate of fs/3 for each
of the streams.

A multichannel filter implementation is very efficient in resource utilization. A filter with
two or more channels can be realized using a similar amount of logic resources to a
single-channel version of the same filter, with proportionate increase in data memory
requirements. The trade-off that needs to be addressed when using multichannel filters is
one of sample rate versus logic requirements. As the number of channels is increased, the
logic area remains approximately constant, but the sample rate for an individual input
stream decreases. The number of channels supported by a filter core is specified in the filter
Customize IP dialog box. The FIR Compiler supports two multichannel implementation:
Basic and Advanced.

Basic

The basic implementation processes interleaved data channels sequentially; channel 0,
channel 1, channel 2, ..., channel N-1, where N = Number of Channels. This implementation
uses minimal resources.

Advanced

The advanced implementation provides a list of predefined interleaved data channel
sequences, or patterns, from which multiple patterns can be selected during core
customization. The specified patterns can then be selected during core operation using the
CONFIG Channel.

When the core is configured to support one channel with a sample frequency of fS the same
hardware resources (DSP Slice and Memory) can support two channels with a sample
frequency of fS/2, 4 channels with a sample frequency of fS/4 or 1 channel with a sample
frequency fS/2 and 2 channels with a sample frequency fS/4. The Advanced implementation
supports each of these configurations with an associated interleaved channel sequence that
can then be selected, dynamically, during core operation through the CONFIG Channel.

IMPORTANT: Switching between channel sequences causes the data vector of all channels to be
cleared/reset.

Table 3-1 lists all the supported interleaved channel patterns. The full pattern list is also
displayed on the Vivado IDE.

Although the hardware resources (DSP Slice and Memory) remain the same as the
equivalent Basic implementation, the Advanced Implementation requires additional logic
resources. For the patterns highlighted in Table 3-1, the memory requirements might also
increase and further logic resources might be required.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=47

FIR Compiler v7.2 48
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Table 3-1: Advanced Interleaved Data Channel Patterns
No.

Chans.
Seq.

ID Description Interleaved Channel Pattern

4 P4-0 1 Channel at fs 0 0 0 0
4 P4-1 2 Channels at 1/2fs 0 1 0 1
4 P4-2 1 Channel at 3/4fs,

1 Channel at 1/4fs
0 0 0 1

4 P4-3 1 Channel at 1/2fs,
2 Channels at 1/4fs

0 1 0 2

4 P4-4 4 Channels at 1/4fs 0 1 2 3
6 P6-0 1 Channel at fs 0 0 0 0 0 0
6 P6-1 2 Channels at 1/2fs 0 1 0 1 0 1
6 P6-2 1 Channel at 2/3fs,

1 Channel at 1/3fs
0 0 0 0 1 1

6 P6-3 3 Channels at 1/3fs 0 1 2 0 1 2
6 P6-4 1 Channel at 2/3fs,

2 Channels at 1/6fs
0 0 0 0 1 2

6 P6-5 1 Channel at 1/2fs,
3 Channels at 1/6fs

0 1 0 2 0 3

6 P6-6 2 Channels at 1/3fs,
2 Channels at 1/6fs

0 1 2 0 1 3

6 P6-7 1 Channel at 1/3fs,
3 Channels at 1/6fs

0 1 2 0 3 4

6 P6-8 6 Channels at 1/6fs 0 1 2 3 4 5
8 P8-0 1 Channel at fs 0 0 0 0 0 0 0 0
8 P8-1 1 Channel at 3/4fs,

1 Channel at 1/4fs
0 0 0 0 0 0 1 1

8 P8-2 2 Channels at 1/2fs 0 1 0 1 0 1 0 1
8 P8-3 1 Channel at 3/4fs,

2 Channels at 1/8fs
0 0 0 0 0 0 1 2

8 P8-4 1 Channel at 1/2fs,
2 Channels at 1/4fs

0 1 0 2 0 1 0 2

8 P8-5 4 Channels at 1/4fs 0 1 2 3 0 1 2 3
8 P8-6 1 Channel at 1/2fs,

1 Channel at 1/4fs,
2 Channels at 1/8fs

0 1 0 2 0 1 0 3

8 P8-7 2 Channels at 3/8fs,
2 Channels at 1/8fs

0 1 0 1 0 1 2 3

8 P8-8 1 Channel at 1/2fs,
4 Channels at 1/8fs

0 1 0 2 0 3 0 4

8 P8-9 3 Channels at 1/4fs,
2 Channels at 1/8fs

0 1 2 3 0 1 2 4

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=48

FIR Compiler v7.2 49
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

8 P8-10 2 Channels at 1/4fs,
4 Channels at 1/8fs

0 2 1 3 0 4 1 5

8 P8-11 1 Channel at 1/4fs,
6 Channels at 1/8fs

0 1 2 3 0 4 5 6

8 P8-12 8 Channels at 1/8fs 0 1 2 3 4 5 6 7
12 P12-0 1 Channel at fs 0 0 0 0 0 0 0 0 0 0 0 0
12 P12-1 2 Channels at 1/2fs 0 1 0 1 0 1 0 1 0 1 0 1
12 P12-2 1 Channel at 2/3fs,

1 Channel at 1/3fs
0 0 0 0 0 0 0 0 1 1 1 1

12 P12-3 1 Channel at 3/4fs,
1 Channel at 1/4fs

0 0 0 0 0 0 0 0 0 1 1 1

12 P12-4 1 Channel at 2/3fs,
2 Channels at 1/6fs

0 0 0 0 0 0 0 0 1 2 1 2

12 P12-5 1 Channel at 1/2fs,
2 Channels at 1/4fs

0 1 0 2 0 1 0 2 0 1 0 2

12 P12-6 3 Channels at 1/3fs 0 1 2 0 1 2 0 1 2 0 1 2
12 P12-7 1 Channel at 1/2fs,

3 Channels at 1/6fs
0 1 0 2 0 3 0 1 0 2 0 3

12 P12-8 2 Channels at 1/3fs,
2 Channels at 1/6fs

0 1 2 0 1 3 0 1 2 0 1 3

12 P12-9 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3
12 P12-10 1 Channel at 2/3fs,

4 Channels at 1/12fs
0 0 0 0 0 0 0 0 1 2 3 4

12 P12-11 1 Channel at 1/2fs,
2 Channels at 1/6fs,
2 Channels at 1/12fs

0 1 0 2 0 3 0 1 0 2 0 4

12 P12-12 2 Channels at 1/3fs,
1 Channel at 1/6fs,
2 Channels at 1/12fs

0 1 2 0 1 3 0 1 2 0 1 4

12 P12-13 1 Channel at 1/3fs,
4 Channels at 1/6fs

0 1 2 0 3 4 0 1 2 0 3 4

12 P12-14 2 Channels at 1/3fs,
4 Channels at 1/12fs

0 1 2 0 1 3 0 1 4 0 1 5

12 P12-15 3 Channels at 1/4fs,
3 Channels at 1/12fs

0 1 2 3 0 1 2 4 0 1 2 5

12 P12-16 1 Channel at 1/3fs,
3 Channels at 1/6fs,
2 Channels at 1/12fs

0 1 3 0 2 4 0 1 3 0 2 5

12 P12-17 6 Channels at 1/6fs 0 1 2 3 4 5 0 1 2 3 4 5
12 P12-18 1 Channel at 1/2fs,

6 Channels at 1/12fs
0 1 0 2 0 3 0 4 0 5 0 6

Table 3-1: Advanced Interleaved Data Channel Patterns (Cont’d)
No.

Chans.
Seq.

ID Description Interleaved Channel Pattern

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=49

FIR Compiler v7.2 50
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

12 P12-19 1 Channel at 1/3fs,
2 Channels at 1/6fs,
4 Channels at 1/12fs

0 1 3 0 2 4 0 1 5 0 2 6

12 P12-20 5 Channels at 1/6fs,
2 Channels at 1/12fs

0 1 2 3 4 5 0 1 2 3 4 6

12 P12-21 1 Channel at 1/3fs,
1 Channel at 1/6fs,
6 Channels at 1/12fs

0 1 2 0 3 4 0 1 5 0 6 7

12 P12-22 2 Channels at 1/4fs,
6 Channels at 1/12fs

0 1 2 3 0 1 4 5 0 1 6 7

12 P12-23 4 Channels at 1/6fs,
4 Channels at 1/12fs

0 1 2 3 4 5 0 1 2 3 6 7

12 P12-24 3 Channels at 1/6fs,
6 Channels at 1/12fs

0 1 2 3 4 5 0 1 2 6 7 8

12 P12-25 2 Channels at 1/6fs,
8 Channels at 1/12fs

0 1 2 3 4 5 0 1 6 7 8 9

12 P12-26 12 Channel at 1/12fs 0 1 2 3 4 5 6 7 8 9 10 11
16 P16-0 1 Channel at fs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 P16-1 1 Channel at 3/4fs,

1 Channel at 1/4fs
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

16 P16-2 2 Channels at 1/2fs 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
16 P16-3 1 Channel at 3/4fs,

2 Channels at 1/8fs
0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2

16 P16-4 1 Channel at 1/2fs,
2 Channels at 1/4fs

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

16 P16-5 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
16 P16-6 1 Channel at 1/2fs,

1 Channel at 1/4fs,
2 Channels at 1/8fs

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 3

16 P16-7 2 Channels at 3/8fs,
2 Channels at 1/8fs

0 1 0 1 0 1 0 1 0 1 0 1 2 3 2 3

16 P16-8 1 Channel at 1/2fs,
4 Channels at 1/8fs

0 1 0 2 0 3 0 4 0 1 0 2 0 3 0 4

16 P16-9 3 Channels at 1/4fs,
2 Channels at 1/8fs

0 1 2 3 0 1 2 4 0 1 2 3 0 1 2 4

16 P16-10 2 Channels at 1/4fs,
4 Channels at 1/8fs

0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5

16 P16-11 1 Channel at 1/4fs,
6 Channels at 1/8fs

0 1 2 3 0 4 5 6 0 1 2 3 0 4 5 6

16 P16-12 8 Channels at 1/8fs 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Table 3-1: Advanced Interleaved Data Channel Patterns (Cont’d)
No.

Chans.
Seq.

ID Description Interleaved Channel Pattern

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=50

FIR Compiler v7.2 51
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

16 P16-13 2 Channels at 3/8fs,
4 Channels at 1/16fs

0 1 0 1 0 1 0 1 0 1 0 1 2 3 4 5

16 P16-14 2 Channels at 1/4fs,
4 Channels at 1/8fs

0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5

16 P16-15 2 Channels at 1/4fs,
2 Channels at 1/8fs,
4 Channels at 1/16fs

0 2 1 4 0 3 1 5 0 2 1 6 0 3 1 7

16 P16-16 4 Channels at 3/16fs,
4 Channels at 1/16fs

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

16 P16-17 2 Channels at 1/4fs,
8 Channels at 1/16fs

0 2 1 3 0 4 1 5 0 6 1 7 0 8 1 9

16 P16-18 6 Channels at 1/8fs,
4 Channels at 1/16fs

0 1 2 6 3 4 5 7 0 1 2 8 3 4 5 9

16 P16-19 4 Channels at 1/8fs,
8 Channels at 1/16fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11

16 P16-20 2 Channels at 1/8fs,
12 Channel at 1/16fs

0 2 3 4 1 5 6 7 0 8 9 10 1 11 12 13

16 P16-21 16 Channel at 1/16fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
24 P24-0 2 Channels at 1/2fs 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
24 P24-1 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
24 P24-2 2 Channels at 1/3fs,

2 Channels at 1/6fs
0 1 2 0 1 3 0 1 2 0 1 3 0 1 2 0 1 3 0 1 2 0 1 3

24 P24-3 2 Channels at 3/8fs,
2 Channels at 1/4fs

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 2 3 2 3

24 P24-4 2 Channels at 1/3fs,
4 Channels at 1/12fs

0 1 2 0 1 3 0 1 4 0 1 5 0 1 2 0 1 3 0 1 4 0 1 5

24 P24-5 2 Channels at 1/4fs,
4 Channels at 1/8fs

0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5

24 P24-6 6 Channels at 1/6fs 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
24 P24-7 2 Channels at 1/4fs,

6 Channels at 1/12fs
0 2 1 3 0 4 1 5 0 6 1 7 0 2 1 3 0 4 1 5 0 6 1 7

24 P24-8 4 Channels at 1/6fs,
4 Channels at 1/12fs

0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 4 5 0 1 2 3 6 7

24 P24-9 8 Channels at 1/8fs 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
24 P24-10 2 Channels at 1/3fs,

8 Channels at 1/24fs
0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9

24 P24-11 2 Channels at 1/4fs,
4 Channels at 1/12fs,
4 Channels at 1/24fs

0 2 1 3 0 4 1 5 0 6 1 7 0 2 1 3 0 4 1 5 0 8 1 9

Table 3-1: Advanced Interleaved Data Channel Patterns (Cont’d)
No.

Chans.
Seq.

ID Description Interleaved Channel Pattern

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=51

FIR Compiler v7.2 52
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

24 P24-12 4 Channels at 1/6fs,
2 Channels at 1/12fs,
4 Channels at 1/24fs

0 1 2 3 4 6 0 1 2 3 5 7 0 1 2 3 4 8 0 1 2 3 5 9

24 P24-13 2 Channels at 1/6fs,
8 Channels at 1/12fs

0 2 3 1 4 5 0 6 7 1 8 9 0 2 3 1 4 5 0 6 7 1 8 9

24 P24-14 4 Channels at 1/6fs,
8 Channels at 1/24fs

0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 8 9 0 1 2 3 10 11

24 P24-15 6 Channels at 1/8fs,
6 Channels at 1/24fs

0 1 2 3 4 5 6 7 0 1 2 3 4 5 8 9 0 1 2 3 4 5 10 11

24 P24-16 2 Channels at 1/6fs,
6 Channels at 1/12fs,
4 Channels at 1/24fs

0 2 3 1 4 5 0 6 7 1 8 9 0 2 3 1 4 5 0 6 7 1 10 11

24 P24-17 12 Channel at 1/12fs 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11
24 P24-18 2 Channels at 1/4fs,

12 Channel at 1/24fs
0 2 1 3 0 4 1 5 0 6 1 7 0 8 1 9 0 10 1 11 0 12 1 13

24 P24-19 2 Channels at 1/6fs,
4 Channels at 1/12fs,
8 Channels at 1/24fs

0 2 6 1 3 7 0 4 8 1 5 9 0 2 10 1 3 11 0 4 12 1 5 13

24 P24-20 10 Channel at 1/12fs,
4 Channels at 1/24fs

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 12 13

24 P24-21 2 Channels at 1/6fs,
2 Channels at 1/12fs,
12 Channel at 1/24fs

0 2 4 1 5 6 0 3 7 1 8 9 0 2 10 1 11 12 0 3 13 1 14 15

24 P24-22 4 Channels at 1/8fs,
12 Channel at 1/24fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15

24 P24-23 8 Channels at 1/12fs,
8 Channels at 1/24fs

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 12 13 14 15

24 P24-24 6 Channels at 1/12fs,
12 Channel at 1/24fs

0 6 1 7 2 8 3 9 4 10 5 11 0 12 1 13 2 14 3 15 4 16 5 17

24 P24-25 4 Channels at 1/12fs,
16 Channel at 1/24fs

0 4 5 1 6 7 2 8 9 3 10 11 0 12 13 1 14 15 2 16 17 3 18 19

24 P24-26 24 Channels at 1/24fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
32 P32-0 2 Channels at 1/2fs 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
32 P32-1 2 Channels at 3/8fs,

2 Channels at 1/8fs
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 2 3 2 3 2 3

32 P32-2 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
32 P32-3 2 Channels at 3/8fs,

4 Channels at 1/16fs
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 4 5 2 3 4 5

32 P32-4 2 Channels at 1/4fs,
4 Channels at 1/8fs

0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5

32 P32-5 8 Channels at 1/8fs 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Table 3-1: Advanced Interleaved Data Channel Patterns (Cont’d)
No.

Chans.
Seq.

ID Description Interleaved Channel Pattern

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=52

FIR Compiler v7.2 53
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

32 P32-6 2 Channels at 1/4fs,
2 Channels at 1/8fs,
4 Channels at 1/16fs

0 2 1 4 0 3 1 5 0 2 1 6 0 3 1 7 0 2 1 4 0 3 1 5 0 2 1 6 0 3 1 7

32 P32-7 4 Channels at 3/16fs,
4 Channels at 1/16fs

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7

32 P32-8 2 Channels at 1/4fs,
8 Channels at 1/16fs

0 2 1 3 0 4 1 5 0 6 1 7 0 8 1 9 0 2 1 3 0 4 1 5 0 6 1 7 0 8 1 9

32 P32-9 6 Channels at 1/8fs,
4 Channels at 1/16fs

0 1 2 3 4 5 6 7 0 1 2 3 4 5 8 9 0 1 2 3 4 5 6 7 0 1 2 3 4 5 8 9

32 P32-10 4 Channels at 1/8fs,
8 Channels at 1/16fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11

32 P32-11 2 Channels at 1/8fs,
12 Channel at 1/16fs

0 2 3 4 1 5 6 7 0 8 9 10 1 11 12 13 0 2 3 4 1 5 6 7 0 8 9 10 1 11 12 13

32 P32-12 16 Channel at 1/16fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
32 P32-13 4 Channels at 3/16fs,

8 Channels at 1/32fs
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 8 9 10 11

32 P32-14 4 Channels at 1/8fs,
8 Channels at 1/16fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11

32 P32-15 4 Channels at 1/8fs,
4 Channels at 1/16fs,
8 Channels at 1/32fs

0 4 1 8 2 5 3 9 0 6 1 10 2 7 3 11 0 4 1 12 2 5 3 13 0 6 1 14 2 7 3 15

32 P32-16 8 Channels at 3/32fs,
8 Channels at 1/32fs

0 1 2 6 3 4 5 7 0 1 2 6 3 4 5 7 0 1 2 6 3 4 5 7 8 9 10 11 12 13 14 15

32 P32-17 4 Channels at 1/8fs,
16 Channel at 1/32fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 16 1 17 2 18 3 19

32 P32-18 12 Channel at 1/16fs,
8 Channels at 1/32fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 16 17 18 19

32 P32-19 8 Channels at 1/16fs,
16 Channel at 1/32fs

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6
22 7 23

32 P32-20 4 Channels at 1/16fs,
24 Channels at 1/32fs

0 4 5 6 1 7 8 9 2 10 11 12 3 13 14 15 0 16 17 18 1 19 20 21 2 22 23 24
3 25 26 27

32 P32-21 32 Channels at 1/32fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31

48 P48-0 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0
1 2 3 0 1 2 3 0 1 2 3

48 P48-1 8 Channels at 1/8fs 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4
5 6 7 0 1 2 3 4 5 6 7

48 P48-2 4 Channels at 1/6fs,
4 Channels at 1/12fs

0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 4 5 0 1 2 3 6 7 0
1 2 3 4 5 0 1 2 3 6 7

48 P48-3 4 Channels at 3/16fs,
4 Channels at 1/16fs

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4
5 6 7 4 5 6 7 4 5 6 7

Table 3-1: Advanced Interleaved Data Channel Patterns (Cont’d)
No.

Chans.
Seq.

ID Description Interleaved Channel Pattern

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=53

FIR Compiler v7.2 54
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

48 P48-4 4 Channels at 1/6fs,
8 Channels at 1/24fs

0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 8 9 0 1 2 3 10 11 0 1 2 3 4 5 0 1 2 3 6 7
0 1 2 3 8 9 0 1 2 3 10 11

48 P48-5 4 Channels at 1/8fs,
8 Channels at 1/16fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1
5 2 6 3 7 0 8 1 9 2 10 3 11

48 P48-6 12 Channel at 1/12fs 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9
10 11 0 1 2 3 4 5 6 7 8 9 10 11

48 P48-7 4 Channels at 1/8fs,
12 Channel at 1/24fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 4 1 5 2 6 3 7 0
8 1 9 2 10 3 11 0 12 1 13 2 14 3 15

48 P48-8 8 Channels at 1/12fs,
8 Channels at 1/24fs

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 12 13 14 15 0 1 2 3 4 5 6 7 8
9 10 11 0 1 2 3 4 5 6 7 12 13 14 15

48 P48-9 16 Channel at 1/16fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

48 P48-10 4 Channels at 1/6fs,
16 Channel at 1/48fs

0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 8 9 0 1 2 3 10 11 0 1 2 3 12 13 0 1 2 3
14 15 0 1 2 3 16 17 0 1 2 3 18 19

48 P48-11 4 Channels at 1/8fs,
8 Channels at 1/24fs,
8 Channels at 1/48fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 4 1 5 2 6 3 7 0
8 1 9 2 10 3 11 0 16 1 17 2 18 3 19

48 P48-12 8 Channels at 1/12fs,
4 Channels at 1/24fs,
8 Channels at 1/48fs

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 12 13 14 15 0 1 2 3 4 5 6 7 8
9 10 11 0 1 2 3 4 5 6 7 16 17 18 19

48 P48-13 4 Channels at 1/12fs,
16 Channel at 1/24fs

0 4 5 1 6 7 2 8 9 3 10 11 0 12 13 1 14 15 2 16 17 3 18 19 0 4 5 1 6 7 2
8 9 3 10 11 0 12 13 1 14 15 2 16 17 3 18 19

48 P48-14 8 Channels at 1/12fs,
16 Channel at 1/48fs

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 12 13 14 15 0 1 2 3 4 5 6 7 16
17 18 19 0 1 2 3 4 5 6 7 20 21 22 23

48 P48-15 12 Channel at 1/16fs,
12 Channel at 1/48fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 16 17 18
19 0 1 2 3 4 5 6 7 8 9 10 11 20 21 22 23

48 P48-16 4 Channels at 1/12fs,
12 Channel at 1/24fs,
8 Channels at 1/48fs

0 4 5 1 6 7 2 8 9 3 10 11 0 12 13 1 14 15 2 16 17 3 18 19 0 4 5 1 6 7 2
8 9 3 10 11 0 12 13 1 14 15 2 20 21 3 22 23

48 P48-17 24 Channels at 1/24fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

48 P48-18 4 Channels at 1/8fs,
24 Channels at 1/48fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 16 1 17 2 18 3
19 0 20 1 21 2 22 3 23 0 24 1 25 2 26 3 27

48 P48-19 4 Channels at 1/12fs,
8 Channels at 1/24fs,
16 Channel at 1/48fs

0 4 12 1 5 13 2 6 14 3 7 15 0 8 16 1 9 17 2 10 18 3 11 19 0 4 20 1 5 21
2 6 22 3 7 23 0 8 24 1 9 25 2 10 26 3 11 27

48 P48-20 20 Channels at 1/24fs,
8 Channels at 1/48fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 25 26 27

48 P48-21 4 Channels at 1/12fs,
4 Channels at 1/24fs,
24 Channels at 1/48fs

0 4 8 1 9 10 2 5 11 3 12 13 0 6 14 1 15 16 2 7 17 3 18 19 0 4 20 1 21
22 2 5 23 3 24 25 0 6 26 1 27 28 2 7 29 3 30 31

48 P48-22 8 Channels at 1/16fs,
24 Channels at 1/48fs

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6
22 7 23 0 24 1 25 2 26 3 27 4 28 5 29 6 30 7 31

Table 3-1: Advanced Interleaved Data Channel Patterns (Cont’d)
No.

Chans.
Seq.

ID Description Interleaved Channel Pattern

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=54

FIR Compiler v7.2 55
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

48 P48-23 16 Channel at 1/24fs,
16 Channel at 1/48fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31

48 P48-24 12 Channel at 1/24fs,
24 Channels at 1/48fs

0 12 1 13 2 14 3 15 4 16 5 17 6 18 7 19 8 20 9 21 10 22 11 23 0 24 1
25 2 26 3 27 4 28 5 29 6 30 7 31 8 32 9 33 10 34 11 35

48 P48-25 8 Channels at 1/24fs,
32 Channels at 1/48fs

0 8 9 1 10 11 2 12 13 3 14 15 4 16 17 5 18 19 6 20 21 7 22 23 0 24 25
1 26 27 2 28 29 3 30 31 4 32 33 5 34 35 6 36 37 7 38 39

48 P48-26 48 Channels at 1/48fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

64 P64-0 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0
1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

64 P64-1 4 Channels at 3/16fs,
4 Channels at 1/16fs

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0
1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7

64 P64-2 8 Channels at 1/8fs 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4
5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

64 P64-3 4 Channels at 3/16fs,
8 Channels at 1/32fs

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0
1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11

64 P64-4 4 Channels at 1/8fs,
8 Channels at 1/16fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1
5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11

64 P64-5 16 Channel at 1/16fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15

64 P64-6 4 Channels at 1/8fs,
4 Channels at 1/16fs,
8 Channels at 1/32fs

0 4 1 8 2 5 3 9 0 6 1 10 2 7 3 11 0 4 1 12 2 5 3 13 0 6 1 14 2 7 3 15 0
4 1 8 2 5 3 9 0 6 1 10 2 7 3 11 0 4 1 12 2 5 3 13 0 6 1 14 2 7 3 15

64 P64-7 8 Channels at 3/32fs,
8 Channels at 1/32fs

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4
5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

64 P64-8 4 Channels at 1/8fs,
16 Channel at 1/32fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 16 1 17 2 18 3
19 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 16 1 17 2 18
3 19

64 P64-9 12 Channel at 1/16fs,
8 Channels at 1/32fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 16 17 18
19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 16 17
18 19

64 P64-10 8 Channels at 1/16fs,
16 Channel at 1/32fs

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6
22 7 23 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20
5 21 6 22 7 23

64 P64-11 4 Channels at 1/16fs,
24 Channels at 1/32fs

0 4 5 6 1 7 8 9 2 10 11 12 3 13 14 15 0 16 17 18 1 19 20 21 2 22 23 24
3 25 26 27 0 4 5 6 1 7 8 9 2 10 11 12 3 13 14 15 0 16 17 18 1 19 20 21
2 22 23 24 3 25 26 27

64 P64-12 32 Channels at 1/32fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31

64 P64-13 8 Channels at 3/32fs,
16 Channel at 1/64fs

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4
5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Table 3-1: Advanced Interleaved Data Channel Patterns (Cont’d)
No.

Chans.
Seq.

ID Description Interleaved Channel Pattern

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=55

FIR Compiler v7.2 56
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Parallel Data Channel Filters
The FIR Compiler provides support for processing multiple parallel datapaths with the same
filter coefficients. This feature differs from a multiple-channel implementation when it is
necessary to time division multiplex (TDM) the individual channels onto a single data
stream. When processing parallel datapaths, the FIR Compiler allocates a field of the
s_axis_data_tdata and m_axis_data_tdata port to each individual datapath. See
Input and Output DATA Channels for details of the tdata format.

This feature can be used in conjunction with the Interleaved Data Channel Filters feature
such that multiple data stream can be shared across multiple parallel paths and interleaved
channels. For example, six data streams can be shared across two parallel datapaths each
implementing three interleaved data channels. Each parallel datapath exhibits the same
interleaved data sequence and the Channel ID field of the s_data_tuser and
m_data_tuser buses is shared across all paths.

In this configuration, the FIR Compiler can share control logic and coefficient memory
resources between the parallel datapaths. This offers significant resource savings over using
one FIR Compiler instance per parallel datapath.

64 P64-14 8 Channels at 1/16fs,
16 Channel at 1/32fs

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6
22 7 23 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20
5 21 6 22 7 23

64 P64-15 8 Channels at 1/16fs,
8 Channels at 1/32fs,
16 Channel at 1/64fs

0 8 1 16 2 9 3 17 4 10 5 18 6 11 7 19 0 12 1 20 2 13 3 21 4 14 5 22 6
15 7 23 0 8 1 24 2 9 3 25 4 10 5 26 6 11 7 27 0 12 1 28 2 13 3 29 4 14
5 30 6 15 7 31

64 P64-16 16 Channel at 3/64fs,
16 Channel at 1/64fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31

64 P64-17 8 Channels at 1/16fs,
32 Channels at 1/64fs

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6
22 7 23 0 24 1 25 2 26 3 27 4 28 5 29 6 30 7 31 0 32 1 33 2 34 3 35 4
36 5 37 6 38 7 39

64 P64-18 24 Channels at 1/32fs,
16 Channel at 1/64fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 32 33 34 35 36 37 38 39

64 P64-19 16 Channel at 1/32fs,
32 Channels at 1/64fs

0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23 8 24 9 25 10 26 11 27 12 28 13
29 14 30 15 31 0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42
11 43 12 44 13 45 14 46 15 47

64 P64-20 8 Channels at 1/32fs,
48 Channels at 1/64fs

0 8 9 10 1 11 12 13 2 14 15 16 3 17 18 19 4 20 21 22 5 23 24 25 6 26
27 28 7 29 30 31 0 32 33 34 1 35 36 37 2 38 39 40 3 41 42 43 4 44 45
46 5 47 48 49 6 50 51 52 7 53 54 55

64 P64-21 64 Channels at 1/64fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59 60 61 62 63

Table 3-1: Advanced Interleaved Data Channel Patterns (Cont’d)
No.

Chans.
Seq.

ID Description Interleaved Channel Pattern

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=56

FIR Compiler v7.2 57
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Coefficient Reload
To minimize the resources required to implement the coefficient reload feature, it is
necessary for users to re-order the coefficients that are to be reloaded to correctly pass
each coefficient to its correct storage location in the filter structure. The Vivado IDE offers
the facility to generate re-ordered coefficient files for use with the RELOAD channel and
during core generation delivers an informational text file to the project area named
<component_name>_reload_order.txt, which lists the indexes of the coefficients,
Coefficient x, in the order they should be reloaded into the filter through the reload channel
Reload index x.

Reload Order File

Care must be taken to correctly interpret the reload order, as it is based on the actual
number of coefficients calculated by the filter. The Coefficient Padding section of Filter
Symmetry discusses how the FIR Compiler sometimes implements a filter with more
coefficients than specified. The actual coefficients calculated are displayed on the
Implementation Details tab. When the filter is configured to utilize coefficient symmetry,
you must pad the filter response at the beginning and the end with (actual - specified)/2
zeros before applying the reload order. Figure 3-18 demonstrates a padded filter response.
When the filter is non-symmetric, the coefficient set must be padded with (actual -
specified) zeros at the end of the filter response before applying the reload order.

In the case of a polyphase interpolating filter utilizing coefficient symmetry, where the
Symmetric Pairs technique has been used, the coefficients must be preprocessed before
being loaded into the filter. The combination of the non-symmetric subfilters are defined as
the sum or difference of two coefficient indexes. When the filter configuration requires
multiple DSP slices to implement a single Multiply-Accumulate unit, the definition is
extended to include bit ranges of the source coefficients.

Figure 3-52 contains an example of the _reload_order.txt file, for a non-symmetric
16-tap single rate filter where the clock rate is four times the input sample rate.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=57

FIR Compiler v7.2 58
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Figure 3-53 contains an example for a symmetric 15-tap interpolate by 3 filter where the
clock rate is six times the input sample rate and a coefficient width of 16 bits.

Figure 3-54 contains an example with the same filter configuration as in Figure 3-53, but
with a coefficient width of 30 bits (the width of the reload port is extended when the
Symmetric Pairs technique is used, so in this example, the reload port is 33 bits wide).

Contact Xilinx Technical Support if you need any assistance or guidance in implementing
the reload coefficient ordering for your specific filter implementation.

X-Ref Target - Figure 3-52

Figure 3-52: Reload Order Text File Format Example 1

X-Ref Target - Figure 3-53

Figure 3-53: Reload Order Text File Format Example 2

Reload index 0 = Coefficient 12
Reload index 1 = Coefficient 13
Reload index 2 = Coefficient 14
Reload index 3 = Coefficient 15
Reload index 4 = Coefficient 8
Reload index 5 = Coefficient 9
Reload index 6 = Coefficient 10
Reload index 7 = Coefficient 11
Reload index 8 = Coefficient 4
Reload index 9 = Coefficient 5
Reload index 10 = Coefficient 6
Reload index 11 = Coefficient 7
Reload index 12 = Coefficient 0
Reload index 13 = Coefficient 1
Reload index 14 = Coefficient 2
Reload index 15 = Coefficient 3

Reload index 0 = Coefficient 7
Reload index 1 = Coefficient 10
Reload index 2 = Coefficient 6 - Coefficient 8
Reload index 3 = Coefficient 9- Coefficient 11
Reload index 4 = Coefficient 6 + Coefficient 8
Reload index 5 = Coefficient 9 + Coefficient 11
Reload index 6 = Coefficient 1
Reload index 7 = Coefficient 4
Reload index 8 = Coefficient 0 - Coefficient 2
Reload index 9 = Coefficient 3 - Coefficient 5
Reload index 10 = Coefficient 0 + Coefficient 2
Reload index 11 = Coefficient 3 + Coefficient 5

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=58

FIR Compiler v7.2 59
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-54

Coefficient Quantization
The FIR Compiler core offers three coefficient quantization options: Integer Coefficient,
Quantize Only, and Maximize Dynamic Range. When the coefficients are specified using
Radix 2 (binary) and 16 (hexadecimal), only the Integer Coefficients option is available, as
the coefficients are considered to have already been quantized. When the coefficients are
specified using integer numbers, all of the quantization options are available. When the
coefficients are specified using non-integer decimal numbers (containing fractional
information), only the Quantize Only and Maximize Dynamic Range options are available.

Reload index 0 (17 downto 0) = “00” & Coefficient 7 (15 downto 0)
Reload index 0 (32 downto 18) = Coefficient 7 (29) & Coefficient 7 (29 downto 16)
Reload index 1 (17 downto 0) = “00” & Coefficient 10 (15 downto 0)
Reload index 1 (32 downto 18) = Coefficient 10 (29) & Coefficient 10 (29 downto 16)
Reload index 2 (17 downto 0) = “00” & Coefficient 6 (15 downto 0) -
 “00” & Coefficient 8 (15 downto 0)
Reload index 2 (32 downto 18) = Coefficient 6 (29) & Coefficient 6 (29 downto 16) -
 Coefficient 8 (29) & Coefficient 8 (29 downto 16)
Reload index 3 (17 downto 0) = “00” & Coefficient 9 (15 downto 0) -
 “00” & Coefficient 11 (15 downto 0)
Reload index 3 (32 downto 18) = Coefficient 9 (29) & Coefficient 9 (29 downto 16) -
 Coefficient 11 (29) & Coefficient 11 (29 downto 16)
Reload index 4 (17 downto 0) = “00” & Coefficient 6 (15 downto 0) +
 “00” & Coefficient 8 (15 downto 0)
Reload index 4 (32 downto 18) = Coefficient 6 (29) & Coefficient 6 (29 downto 16) +
 Coefficient 8 (29) & Coefficient 8 (29 downto 16)
Reload index 5 (17 downto 0) = “00” & Coefficient 9 (15 downto 0) +
 “00” & Coefficient 11 (15 downto 0)
Reload index 5 (32 downto 18) = Coefficient 9 (29) & Coefficient 9 (29 downto 16) +
 Coefficient 11 (29) & Coefficient 11 (29 downto 16)
Reload index 6 (17 downto 0) = “00” & Coefficient 1 (15 downto 0)
Reload index 6 (32 downto 18) = Coefficient 1 (29) & Coefficient 1 (29 downto 16)
Reload index 7 (17 downto 0) = “00” & Coefficient 4 (15 downto 0)
Reload index 7 (32 downto 18) = Coefficient 4 (29) & Coefficient 4 (29 downto 16)
Reload index 8 (17 downto 0) = “00” & Coefficient 0 (15 downto 0) -
 “00” & Coefficient 2 (15 downto 0)
Reload index 8 (32 downto 18) = Coefficient 0 (29) & Coefficient 0 (29 downto 16) -
 Coefficient 2 (29) & Coefficient 2 (29 downto 16)
Reload index 9 (17 downto 0) = “00” & Coefficient 3 (15 downto 0) -
 “00” & Coefficient 5 (15 downto 0)
Reload index 9 (32 downto 18) = Coefficient 3 (29) & Coefficient 3 (29 downto 16) -
 Coefficient 5 (29) & Coefficient 5 (29 downto 16)
Reload index 10 (17 downto 0) = “00” & Coefficient 0 (15 downto 0) +
 “00” & Coefficient 2 (15 downto 0)
Reload index 10 (32 downto 18) = Coefficient 0 (29) & Coefficient 0 (29 downto 16) +
 Coefficient 2 (29) & Coefficient 2 (29 downto 16)
Reload index 11 (17 downto 0) = “00” & Coefficient 3 (15 downto 0) +
 “00” & Coefficient 5 (15 downto 0)
Reload index 11 (32 downto 18) = Coefficient 3 (29) & Coefficient 3 (29 downto 16) +
 Coefficient 5 (29) & Coefficient 5 (29 downto 16)

Figure 3-54: Reload Order Text File Format Example 3

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=59

FIR Compiler v7.2 60
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Integer Coefficients

The Integer Coefficients quantization option analyzes the coefficients and determines the
minimum number of bits required to represent the coefficients. The coefficient width must
be equal to or greater than this value. When more bits are specified than required, the
coefficients are sign extended. If you wish to truncate the coefficients, the Quantize Only
option must be used.

Quantize Only

Primarily for use when the filter coefficients have been specified using non-integer real
numbers, this option quantizes the coefficients to the specified coefficient bit width. The
coefficient values are rounded to the nearest quantum using a simple round towards zero
algorithm. The coefficient word is split into integer and fractional bits. The integer width is
determined by analyzing the filter coefficients to find the maximum integer value. The
remaining bits are allocated to represent the fractional portion of the coefficient values.
When the specified coefficient bit width is less than the required integer bit width,
coefficients are appropriately rounded. The default value for the Coefficient Fractional Bits
parameter is set to maximize the precision of the coefficients, but you can reduce it. In this
circumstance, more bits are allocated to the integer portion of the word, and the coefficient
values are sign extended appropriately. When all the specified coefficients are between 1
and -1, only a single integer bit is required (to convey sign information), with the remainder
of the coefficient word being used for fractional bits. When the coefficient range reduces
further, the fractional bit width can be specified to a value greater than or equal to the
coefficient width. See the Best Precision Fractional Length section for further explanation.

The frequency response of the quantized filter coefficients are compared to the ideal
response on the Frequency Response Tab. This enables you to explore the trade-off
between filter performance and resources by varying the coefficient width parameter.

Maximize Dynamic Range

You can also choose to scale the coefficients to utilize the full dynamic range provided by
the coefficient bit width by selecting the Maximize Dynamic Range option. If selected, this
results in the filter coefficients being scaled up by a common factor such that the largest
coefficient (usually the center tap) is equal to the maximum representable value using the
chosen bit width, then quantized. The overall scale factor is calculated as the ratio of the
sum of the scaled and quantized coefficients to the sum of the original (ideal) coefficients.
This value is calculated by the FIR Compiler and is presented (in dB) as part of the legend
text on the filter response graph, or on the Summary page in the Vivado IDE.

The filter response plot for the quantized coefficients is scaled down by the scale factor for
easy comparison against the ideal coefficients. Scaling the coefficients introduces a gain
which should be taken into account in your design.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=60

FIR Compiler v7.2 61
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Example 1

For this example the coefficients are signed with a coefficient width of 10 bits and a
coefficient fractional width of 5 bits (using the Mathworks Fix format notation Fix10_5). The
specified coefficients range between -12.34 and +13.88.

Considering the coefficient bit width as integer only, 10 bits give a maximum positive value
of 511 and a maximum negative value of -512. The fractional bit width is 5 bits; this gives a
maximum representable positive number of 511/(2^5)=15.96875 and a maximum
representation negative number of -512/(2^5)=-16. All coefficients are scaled by the factor
15.96875/13.88=1.1504863 (=+1.2176dB) prior to quantization. The overall scaling factor is
calculated as defined previously and displayed in the Vivado IDE.

Example 2

For this example the coefficients are signed with a coefficient width of 18 bits and a
coefficient fractional width of 19 bits, or Fix18_19. The specified coefficients range between
-0.000256022 and +0.182865845.

An integer coefficient width of 18 bits gives a maximum positive value of 131071 and a
maximum negative number of -131072. Considering the fractional bits, this gives a
maximum representable positive number of 131071/(2^19)=0.249998092 and a maximum
representable negative number of 131072/(2^19)=0.25. The scaling factor is determined by
dividing the maximum value that can be represented (for the specified number of
coefficient bits) by the maximum coefficient value. In this case 0.249998092/
0.182865845=1.367112009 (=+2.716081962dB).

IMPORTANT: While some performance improvement can be achieved by using the full
dynamic range of the coefficient bit width, you must be satisfied that any changes are
acceptable using the frequency response plot. You must also account for any additional
gain introduced by coefficient scaling elsewhere in the application system. In many
systems, signal scaling can be arbitrary and no gain compensation is required; where
scaling is necessary, it is often desirable to amalgamate gains inherent in a signal
processing chain and compensate or adjust for these gains either at the front end (for
example, in an Automatic Gain Control circuit) or the back end (for example, in a
Constellation Decoder unit) of the chain. If you do not want to introduce any additional
scaling into the design, select Quantize Only.

Best Precision Fractional Length

When the Best Precision Fractional Length option is selected, the coefficient fractional width
is set to maximize the precision of the specified filter coefficients. As discussed in the
Quantize Only section, the FIR Compiler analyzes the filter coefficients to determine how
many bits are required to represent the integer portion of the coefficient values. All the
remaining coefficient bits are then allocated to represent the fractional portion of the
coefficients. When all the specified coefficients are between 1 and -1, only a single integer

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=61

FIR Compiler v7.2 62
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

bit is required. The reminder of the coefficient word is then used for fractional bits. When
the coefficient range reduces further, the fractional bit width is specified to a value greater
than or equal to the coefficient width; otherwise the coefficient values contains redundant
information that does not need to be explicitly stored. The available coefficient bits can
then be better used to increase the precision of the coefficient values. This section goes on
to illustrate this concept further. The MathWorks Fix Format notation is used, Fixword
length_fractional length. The word length is specified by the Coefficient Width parameter,
and the fractional length is specified by the Coefficient Fractional Bits parameter.

In Figure 3-55 the coefficient values are represented using 18 bits. The binary point is
positioned such that 17 bits are used to represent the fractional portion of the number. An
analysis of the coefficients reveals that no value has a magnitude greater than 0.25;
therefore, the upper two MSBs are a sign extension and contain redundant information.

X-Ref Target - Figure 3-55

Figure 3-55: Coefficient Quantization Fix18_17

-0.000256022 1.111111111110111100111000101010000100
0.000946783 0.000000000011111000001100011000100000
0.006942834 0.000000011100011100000001011011000011
0.022602178 0.000001011100100101000001100111011011
0.051369015 0.000011010010011010000101000100000110
0.091745167 0.000101110111110010011100011110110001
0.135509351 0.001000101011000010111101101010000011
0.169825915 0.001010110111100110110110000100001000
0.182865845 0.001011101101000001001011110010001110
0.169825915 0.001010110111100110110110000100001000
0.135509351 0.001000101011000010111101101010000011
0.091745167 0.000101110111110010011100011110110001
0.051369015 0.000011010010011010000101000100000110
0.022602178 0.000001011100100101000001100111011011
0.006942834 0.000000011100011100000001011011000011
0.000946783 0.000000000011111000001100011000100000
-0.000256022 1.111111111110111100111000101010000100

1.11111111111011110
0.000000000011111000
0.000000011100011100
0.000001011100100101
0.000011010010011010
0.000101110111110010
0.001000101011000010
0.001010110111100110
0.001011101101000001
0.001010110111100110
0.001000101011000010
0.000101110111110010
0.000011010010011010
0.000001011100100101
0.000000011100011100
0.000000000011111000
1.11111111111011110

{

Fix18_17
Sign extension,

redundant information

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=62

FIR Compiler v7.2 63
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

In Figure 3-56, 16 bits are used to represent the same coefficient values to the same
precision. The redundant information has been removed, reducing the resources required
to store the filter coefficients. The binary point position has not moved. 17 bits are still
effectively used to represent the fractional portion of the number, but one of them does not
need to be explicitly stored, as it is a sign extension of the stored MSB.

X-Ref Target - Figure 3-56

Figure 3-56: Coefficient Quantization Fix16_17

-0.000256022 1.111111111110111100111000101010000100
0.000946783 0.000000000011111000001100011000100000
0.006942834 0.000000011100011100000001011011000011
0.022602178 0.000001011100100101000001100111011011
0.051369015 0.000011010010011010000101000100000110
0.091745167 0.000101110111110010011100011110110001
0.135509351 0.001000101011000010111101101010000011
0.169825915 0.001010110111100110110110000100001000
0.182865845 0.001011101101000001001011110010001110
0.169825915 0.001010110111100110110110000100001000
0.135509351 0.001000101011000010111101101010000011
0.091745167 0.000101110111110010011100011110110001
0.051369015 0.000011010010011010000101000100000110
0.022602178 0.000001011100100101000001100111011011
0.006942834 0.000000011100011100000001011011000011
0.000946783 0.000000000011111000001100011000100000
-0.000256022 1.111111111110111100111000101010000100

1.1
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.1

Fix18_17

1111111111011110
00000000011111000
00000011100011100
0000101110010010
00011010010011010
00101110111110010
01000101011000010
01010110111100110
0101110110100000
01010110111100110
01000101011000010
00101110111110010
00011010010011010
0000101110010010
00000011100011100
00000000011111000
1111111111011110

Fix18_17

Fix16_17

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=63

FIR Compiler v7.2 64
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

In Figure 3-57 18 bits are specified for the coefficient width. The two additional bits can be
used to increase the precision. The binary point position has still not moved, but now, 19
bits are effectively used to represent the fractional portion of the number, which results in
an increase of the filter precision.

Output Width and Bit Growth
The full precision output width can be defined as the input data width plus the bit growth
due to the application of the filter coefficients. Bit growth from the original sample width
occurs as a result of the many multiplications and additions that form the basic function of
the filter. Therefore, the accumulator result width is significantly larger than the original
input sample width. Limiting the accumulator width is desirable to save resources, both in
the filter output path (such as output buffer memory, if present) and in any subsequent
blocks in the signal processing chain. The worst case bit growth can be obtained by adding
the coefficient width to the base 2 logarithm of the number of non-zero multiplications
required (rounded up); however, this does not take into account the actual coefficient
values. Equation 3-2 demonstrates this calculation, where B is the calculated bit growth, N
is the number for filter coefficients and Cw is the coefficient width.

Equation 3-2

X-Ref Target - Figure 3-57

Figure 3-57: Coefficient Quantization Fix18_19

-0.000256022 1.111111111110111100111000101010000100
0.000946783 0.000000000011111000001100011000100000
0.006942834 0.000000011100011100000001011011000011
0.022602178 0.000001011100100101000001100111011011
0.051369015 0.000011010010011010000101000100000110
0.091745167 0.000101110111110010011100011110110001
0.135509351 0.001000101011000010111101101010000011
0.169825915 0.001010110111100110110110000100001000
0.182865845 0.001011101101000001001011110010001110
0.169825915 0.001010110111100110110110000100001000
0.135509351 0.001000101011000010111101101010000011
0.091745167 0.000101110111110010011100011110110001
0.051369015 0.000011010010011010000101000100000110
0.022602178 0.000001011100100101000001100111011011
0.006942834 0.000000011100011100000001011011000011
0.000946783 0.000000000011111000001100011000100000
-0.000256022 1.111111111110111100111000101010000100

1.1
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.1

Fix18_17

Fix16_17

01
000
000
100
000
001
011
011
100
011
011
001
000
100
000
000
01

1111111111011110
00000000011111000
00000011100011100
0000101110010010
00011010010011010
00101110111110010
01000101011000010
01010110111100110
0101110110100000
01010110111100110
01000101011000010
00101110111110010
00011010010011010
0000101110010010
00000011100011100
00000000011111000
1111111111011110

Fix18_17

Fix16_17

Fix18_19

B Cw ceil N2log[]+=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=64

FIR Compiler v7.2 65
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Taking the base 2 logarithm of the sum of the absolute value of all filter coefficients reveals
the true maximum bit growth for a fixed coefficient filter, and this can be used to limit the
required accumulator width. Equation 3-3 demonstrates this calculation, where B is the
calculated bit growth, N is the number for filter coefficients, and an is nth filter coefficient.

Equation 3-3

The FIR Compiler automatically calculates the bit growth based on the actual coefficient
values. For reloadable filters the worst case bit growth is used.

Equation 3-4 gives the cores full precision output width, where B is the calculated bit
growth (given by Equation 3-2 or Equation 3-3), Dw is the data width and Aw is the full
precision output width.

Equation 3-4

The Coefficient (and Data) fractional width does not affect the output width calculation. The
core determines the output width without considering fractional bits. The core determines
the full precision output as previously described and then determines the output fractional
width by summing the data and coefficient fractional bit width. This value is then reduced
by any output rounding. Equation 3-5 demonstrates this calculation, where Ow = output
width, Ofw=output fractional width, Dfw=data fractional width, Cfw=coefficient fractional
width and Aw=full precision output width.

Equation 3-5

Output Rounding
As mentioned in Symmetric Rounding to Highest Magnitude, it is desirable to limit the
output sample width of the filter to minimize resource utilization in downstream blocks in
a signal processing chain. For MAC implementations the FIR Compiler includes features to
limit the output sample width and round the result to the nearest representable number
within that bit width. Several rounding modes are provided to allow you to select the
preferred trade-off between resource utilization, rounding precision, and rounding bias.

In the following descriptions, the variable x is the fractional number to be rounded, with n
representing the output width (that is, the integer bits of the accumulator result) and m
representing the truncated LSBs (that is, the difference between the accumulator width and
the output width). In Figure 3-58 through Figure 3-60, the direction of inflexion on the red
midpoint markers indicates the direction of rounding.

Full Precision

In Full Precision mode, no output sample bit width reduction is performed (n=accumulator
width, m=0). This is the default option.

B ceil 2 an
n 0=

N 1–()

log=

Aw Dw B+=

Ofw Dfw Cfw max 0 Aw Ow–,()–+=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=65

FIR Compiler v7.2 66
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Truncation

In Truncation mode, the m LSBs are removed from the accumulator result to reduce it to the
specified output width; the effect is the same as the MATLAB® software function floor(x).
This has the advantage that it can be implemented with zero resource cost, but has the
disadvantage of being biased towards the negative by 0.5.

Non-symmetric Rounding to Positive

In this rounding mode, a binary value corresponding to 0.5 is added to the accumulator
result and the m LSBs are removed; this is equivalent to the MATLAB software function
floor(x+0.5). The addition can usually be done in most filter configurations with little or no
resource cost in hardware using the DSP slice features. It has the disadvantage of being
biased towards the positive by 2-(m+1).

Non-symmetric Rounding to Negative

In a modification of the preceding technique, a binary value corresponding to 0.499... is
added to the accumulator result and the m LSBs are removed; this is equivalent to the
MATLAB software function ceil(x-0.5). The resource usage advantage is the same, but the
bias in this case is towards the negative by 2-(m+1).

Symmetric Rounding to Highest Magnitude

The bias incurred during non-symmetric rounding occurs because rounding decisions at the
midpoints always go in the same direction. In symmetric rounding, the decision on which
direction to round is based on the sign of the number. For rounding towards highest
magnitude, a binary value corresponding to 0.499 is added to the accumulator result, and
the inverse of the accumulator sign bit is added as a carry-in before removal of the m LSBs.
As is generally the case, there are as many positive as negative numbers; the result should
not be biased in either direction. This rounding mode is commonly used in general
applications, mainly because it is equivalent to the MATLAB software function round(x).

Symmetric Rounding to Zero

The implementation difference for this mode from round to highest magnitude is that the
sign bit is used directly as the carry-in (see Figure 3-59). There is no direct MATLAB software
equivalent of this operation. One minor advantage of rounding towards zero is that it does
not cause overflow situations.

X-Ref Target - Figure 3-58

Figure 3-58: Non-symmetric Rounding (a) to Positive (b) to Negative

0 1 2-1-2 0 1 2-1-2 0 1 2-1-2 0 1 2-1-2

(a) (b)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=66

FIR Compiler v7.2 67
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Convergent Rounding

Convergent rounding chooses the rounding direction for midpoints as either toward odd or
even numbers, rather than toward positive or negative (Figure 3-60). This can be
advantageous, as the balance of rounding direction decisions for midpoints is based on the
probability of occurrence of odd or even numbers, which is generally equal in most
scenarios, even when the mean of the input signal moves away from zero. The function is
achieved by adding a rounding constant, as in other modes, but then checking for a
particular pattern on the LSBs to detect a midpoint and forcing the LSB to be either zero (for
round to even) or one (for round to odd) when a midpoint occurs.

Resource Implications of Rounding

Ensure that you consider the implications of selecting a particular rounding mode on
resource utilization. Generally, the FIR Compiler IP core attempts to integrate rounding
functions with existing functions, which usually means the accumulator portion of the
circuit. However, this is not always possible. In certain combinations of rounding mode,
filter type and device family, an additional DSP slice must be used to implement the
rounding function. The most important factor to consider is the inherent hardware support
for each mode in each of the device families, but filter type and configuration also play a
role.

Table 3-2 indicates the combinations of filter type and rounding type for which no extra
DSP slice is likely to be required. Where all three DSP slice enabled device families are likely
to support that combination of rounding mode and filter type without an additional DSP
slice, a tick mark is entered; where none of the three is likely to support the combination
without the additional DSP slice, a check mark is entered; where there is a list of families
provided, the list refers to those families that support the combination without an extra DSP
slice. Support for symmetric rounding assumes that either there is a spare cycle available, or
approximation is allowed. If this is not the case, an additional DSP slice is always required
for symmetric rounding modes, regardless of filter type or family.

X-Ref Target - Figure 3-59

Figure 3-59: Symmetric Rounding (a) to Highest Magnitude (b) to Zero

X-Ref Target - Figure 3-60

Figure 3-60: Convergent Rounding (a) to Even (b) to Odd

0 1 2-1-2 0 1 2-1-2 0 1 2-1-2 0 1 2-1-2
(a) (b)

0 1 2-1-2 0 1 2-1-2 0 1 2-1-2 0 1 2-1-2
(a) (b)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=67

FIR Compiler v7.2 68
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Table 3-2 is indicative only, and certain combinations for which hardware support is
indicated actually require the extra DSP, and vice versa.

Multiple Column Filter Implementation
The FIR Compiler can build filter implementations that span multiple DSP slice columns. The
multi-column implementation is only required when the filter parameters, specifically the
number of filter coefficients and the hardware oversampling rate (Sample Frequency to
Clock Frequency ratio), result in an implementation that requires to chain together more
DSP slices than are available in a single column of the select device. Figure 3-61 shows the
structures implemented.

Table 3-2: Indicative Table of Hardware Support for Rounding Modes for Particular Filter Types

Filter Type Non-
symmetric

Symmetric
(Infinity)

Symmetric
(Zero) Convergent

Single Rate Yes Yes Yes Yes
Half-band Yes Yes Yes Yes
Interpolating without Symmetry Yes Yes Yes Yes
Interpolate by 2, Odd Symmetry Yes Yes Yes Yes
Interpolating with Symmetry (others) No No No No
Interpolating Half-band Yes Yes No Yes
Decimating, Single-channel Yes Yes Yes Yes
Decimating, Multichannel Yes Yes Yes Yes
Decimating Half-band Yes Yes Yes Yes

X-Ref Target - Figure 3-61

Figure 3-61: Multi-Column Implementations

x(n)x(n)

D
a

ta
p

a
th

C
o

e
fi
c
ie

n
ts

 0
 t

o
 x

-1

D
S

P
 C

o
lu

m
n

y(n)

y(n)

D
a

ta
p

a
th

C
o

e
fi
c
ie

n
ts

 x
 t

o
 n

u
m

_
ta

p
s
-1

D
S

P
 C

o
lu

m
n

S
y
m

m
e

tr
ic

 D
a

ta
p

a
th

D
a

ta
p

a
th

D
S

P
 C

o
lu

m
n

 0

S
y
m

m
e

tr
ic

 D
a

ta
p

a
th

D
a

ta
p

a
th

D
S

P
 C

o
lu

m
n

 1

S
y
m

m
e

tr
ic

 D
a

ta
p

a
th

D
a

ta
p

a
th

D
S

P
 C

o
lu

m
n

 N
-1

X12185

z-1

z-1 z-1

z-N

z-1

z-1z-1

z-1z-1

z-1

Non-symmetric implementation Symmetric implementation

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=68

FIR Compiler v7.2 69
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The DSP column lengths are displayed on the Details Implementation Options page of the
Vivado IDE. The implemented column lengths can be determined automatically,
Multi-column Support: Automatic, or user-specified, Multi-column Support: Custom. The
length of each implemented DSP column can be specified using the Column Configuration
parameter. See Detailed Implementation Tab for more details.

Super Sample Rate Filters
When the required sample frequency is greater than the clock frequency, the core accepts
multiple parallel samples every clock cycle for each data channel. The number of parallel
samples is determined by calculating the ratio of between the sample frequency and clock
frequency.

Super sample rate is supported for single rate and integer rate change configurations.
Symmetry is exploited for single rate, polyphase decimator and polyphase interpolator
filters.

Note: For rate change filters, symmetry is exploited for a limited range of coefficient/data width,
determined by the device selected.

Input and Output Sample Rate
The rate, or sample period, at which the core accepts input samples and generates output
samples is determined by the hardware oversampling rate and rate change value specified
on the core interface in the Vivado IDE.

The hardware oversampling rate can be specified by one of two methods: using the Input
Sampling Frequency, per channel, and the intended Clock Frequency; or using the input or
output sample period.

Note: When using the Advanced Interleaved Data Channels (see Interleaved Data Channel Filters),
the Input Sample Frequency is specified for the highest frequency channel (fs) supported by the
selected advanced channel configuration. For N channels, this is the sample frequency of PN-0, as
seen in Table 3-1.

When the core is configured as an interpolating (up-sampling) or a decimating
(down-sampling) filter the output rate is increased, or decreased, relative to the input rate
by the integer or fractional rate change value specified on the core interface in the Vivado
IDE.

Integer Rate Change
For filters with an integer rate change the core accepts input samples at fixed intervals and
produces an output that has a fixed sample period. A decimation by 3 filter with an input

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=69

FIR Compiler v7.2 70
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

sampling frequency of 50 MHz and a clock frequency of 200 MHz has an input sample
period of 4 clocks cycles and an output sample period of 12 clock cycles.

The exception to this is interpolating filters with a rate change that when divided into the
input sample period leaves a non-zero remainder; for example, an interpolation by 3 filter
with an input sampling frequency of 25 MHz and a clock frequency of 200 MHz. The input
sample period is 8 but the output sample period should be 2.666…7. In this circumstance
the core generates the interpolated output samples with a period of 2 but following the
final interpolated output sample there is an additional 2 clock cycles where no outputs are
produced. This generates 3 output samples for every 8 clock cycles and an effective sample
rate of 2.666…7 clock cycles.

Fractional Rate Change
For fractional rate change filters the effective sample period must be considered because
most core configurations require a fractional input or output sample period.

Fractional interpolation filters (see Fixed Fractional Rate Resampling Filters) use the
specified input sample period to determine the number of clock cycles available to produce
the worst case number of output samples for the specified rate change. Figure 3-34
illustrates a 5/3 rate change filter. For every input sample, the core produces either 1 or 2
output samples in the sequence 2, 2, 1. For this example, the worst case number of output
samples per input is 2. If the input sample period was specified as 4 the output sample
period should be 3/5 * 4 = 2.4 clock cycles. The core generates one output sample per 2
clock cycles, 4 (input rate)/ 2 (worst case outputs per input). If 3 input samples are provided
at the specified input rate of 4 clock cycles per sample, without halting, the core generates
the 5 output samples, in the previously defined pattern, with a sample period of 2 clock
cycles. This means the core has output 5 samples in 12 clock cycles, giving an effective
sample period of 2.4 clock cycles. The pattern then repeats for the next 3 input samples. See
Figure 3-62.

The core optionally supports an input FIFO on the S_AXIS_DATA input channel. Data can be
supplied at full rate until the FIFO becomes full, when the s_axis_data_tready signal is
deasserted. The core continues to consume data at the specified input sample period. The
FIFO can be used to supply input samples at a rate that better suits the system, as long as
the effective sample rate matches that specified for the input sample rate of the core and it
is not starved of data.

X-Ref Target - Figure 3-62

Figure 3-62: Sample Period of 2.4 Clock Cycles

aclk

s_axis_data_tready

s_axis_data_tvalid

m_axis_data_tvalid

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=70

FIR Compiler v7.2 71
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

If the input sample period divided by the worst case number of outputs per input leaves a
non-zero remainder the core rounds down and generates output samples at the lower
sample period. In this circumstance, it requests input samples at the higher rate, indicated
by asserting s_axis_data_tready (see AXI4-Stream Considerations for more details),
but it is not necessary to provide the input samples at this higher rate. Consider the
previous example but change the specified input sample period to 3 clock cycles giving an
output sample period of 1.8 clock cycles. The core generates one output per clock cycle, 3
(input rate)/ 2 (worst case outputs per input) round down. As a result, the core requests
input data every 2 clock cycles but the specified input sample period should be maintained
by the system. 3 inputs samples at 3 clock cycles per sample generates 5 output samples in
9 clock cycles, one sample per clock cycle with an idle cycle, giving an effective output
sample period of 1.8 clock cycles. See Figure 3-63.

Fractional decimation filters (see Fixed Fractional Rate Resampling Filters) use the specified
output sample period to determine the number of clock cycles available to calculate each
output sample. The output sample period can be directly specified on the GUI or is
calculated from the specified input sampling and clock frequencies. The core generates an
output sample only when enough inputs have been supplied. Figure 3-35 illustrates how
many input samples are required per output for a 3/5 rate change filter. The core generates
outputs at the specified sample period. The input samples can be supplied at full rate, one
per clock cycle, until the input buffer is full. As the core consumes input samples it can
accept more from the system. This results in an effective sample rate that matches that
specified on the GUI. The core controls the input rate using the s_axis_data_tready
signal.

Super Sample Rate
When the required sample frequency is greater than the clock frequency, the core accepts
multiple parallel samples every clock cycle. The number of parallel samples is determined
by calculating the ratio of between the sample frequency and clock frequency. It can also be
specified using a fractional input or output sample period.

As with the sample period for non-super sample rate configurations the number of parallel
outputs is increased or reduced to reflect any specified integer rate change.

X-Ref Target - Figure 3-63

Figure 3-63: Sample Period of 1.8 Clock Cycles

aclk

s_axis_data_tready

s_axis_data_tvalid

m_axis_data_tvalid

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=71

FIR Compiler v7.2 72
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Resource Considerations
The number of DSP slices utilized by the FIR Compiler is primarily determined by the
number of coefficients, modified by any rate change, and the hardware oversampling rate
per channel (defined by the Sample Period or the Sample frequency to Clock frequency
ratio divided by the number of channels). Data and Coefficient Bit Width and Output
Rounding Selection can also affect the DSP slice usage and are discussed in the following
sections.

Implementation Details Tab of the IDE displays the core DSP slice usage given all the core
parameters.

Data and Coefficient Bit Width
The DSP slice resource usage is influenced by the data and coefficient width specified.
When the data and coefficient widths are specified to be greater than the input width of the
DSP slice, the core uses multiple DSP slice columns to implement the filter. Table 3-3
provides a guide to the number of DSP columns that are required for various combinations
of data and coefficient widths.

Note: The data/coefficient widths at which implementations transition to multi-column implementations might be
lower than that shown based on the number of filter coefficients. This ensures that the accumulator width does not
exceed 48 bits, thereby avoiding overflow.

The Data Width threshold is further reduced by a bit when coefficient symmetry is being
utilized by the core, see Filter Symmetry.

The Coefficient Width threshold is further reduced by a bit when symmetric pairs are being
utilized by the core, see Polyphase Interpolator Exploiting Symmetric Pairs.

Table 3-3: DSP Slice Column Usage for Given Data and Coefficient Widths
Data Width Coefficient Width Number of DSP

Slice ColumnsUnsigned Signed Unsigned Signed
<=24 <=25 <=17 <=18 1
<=17 <=18 <=24 <=25 1
>24 >25 <=17 <=18 2

<=17 <=18 >24 >25 2
>17 >18 <=24 <=25 2

<=24 <=25 >17 >18 2
>24 >25 >17 >18 4
>17 >18 >24 >25 4

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=72

FIR Compiler v7.2 73
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Output Rounding Selection
The selected output rounding mode might cause additional DSP slice resources to be used.
See Output Rounding for more details.

Multiple Channel versus Parallel Datapaths
The Interleaved Data Channel Filters and Parallel Data Channel Filters features both offer
the facility to process multiple input sample streams but using different interfaces. A
multichannel interface requires the multiple input streams to be time division multiplexed
(TDM) into a single core input, whereas the Parallel Datapaths interface provides an
individual core input for each input stream. The choice of interface can influence the
resources used by the core. In general, the multichannel implementation uses less DSP slice
resources, but under some circumstances this is not the case. The following example
demonstrates such a situation.

Consider an 8-tap single rate filter that is to process four 12.5 MHz input streams with a
clock frequency of 100 MHz.

Multichannel implementation

100 MHz/12.5 MHz=8 clock cycles per input sample. Shared between the four input
streams, 8/4=2, gives a hardware oversampling rate of 2. The 8 filter coefficients must be
processed in 2 clock cycles. This gives 8/2=4 DSP slices, where the filter processes the first
4 coefficients on the first clock cycle and the remaining 4 coefficients on the second clock
cycle. The two partial products must be summed together, so an additional accumulator
DSP slice is required. This gives a total of 5 DSP slices.

Parallel Datapaths

100 MHz/12.5 MHz=8 clock cycles per input sample. Each input stream can use the full 8
clock cycles to process the 8 filter coefficients. This gives 8/8=1 multiply-accumulate DSP
slice. The core provides four input streams, each using 1 DSP slice. This gives a total of 4
DSP slices.

This demonstrates that the Parallel Datapath implementation offers a more efficient
implementation.

If the input sample frequency was increased to 25 MHz per channel, this would not be the
case, shown as follows.

Multichannel implementation

8 taps/(100 MHz/25 MHz/4)=8 DSP slices, no accumulator required.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=73

FIR Compiler v7.2 74
PG149 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Parallel Datapaths

8 taps/(100 MHz/25 MHz)=2 DSP slices, plus 1 accumulator DSP slice gives 3 DSP slices per
path. A total of 12 DSP slices are required.

Coefficient Reload
Two implementations of the associated control logic are available when the coefficient
memory has been specified to use block RAM.

The core can be configured to avoid the use of the block memory READ-FIRST mode. This
results in the core achieving a greater Fmax but requires more FPGA resources.

Alternatively, the core can use the Block RAM READ-FIRST mode and minimize the FPGA
resources required at the expense of a lower Fmax.

The No_BRAM_Read_First_Mode Optimization option is used to select which
implementation is required. This is automatically selected when the Optimization Goal is set
to Speed or can be explicitly selected by using the Custom optimization goal and then
selecting the No_BRAM_Read_First_Mode optimization.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=74

FIR Compiler v7.2 75
PG149 January 21, 2021 www.xilinx.com

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 10]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 11]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 12]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 13]

Customizing and Generating the Core
This section includes information about using Xilinx® tools to customize and generate the
core in the Vivado® Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 10] for
detailed information. IP integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values do change, see the
description of the parameter in this chapter. To view the parameter value you can run the
validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or

right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 11] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 12].

The FIR Compiler interface in the Vivado IDE contains four pages used to configure the core
plus four informational/analysis tabs.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=75

FIR Compiler v7.2 76
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Tool Tips appear when hovering the mouse over each parameter and a brief description
appears, as well as feedback about how their values or ranges are affected by other
parameter selections. For example, the Coefficient Structure Tool Tip displays the inferred
structure when Inferred is selected from the drop-down list.

IP Symbol Tab

The IP Symbol tab shows the core pinout.

Freq. Response Tab

The Freq. Response tab displays the filter frequency response (magnitude only).

The frequency response of the currently selected coefficient set is plotted against
normalized frequency. Where the Quantization option is set to Integer Coefficients, there is
only a single plot based on the specified coefficient values. Where the Quantization option
has been set to Quantize Only, an ideal plot is displayed based on the provided values
alongside a Quantized plot based on a set of coefficient values quantized according to the
specified coefficient bit width. Where the Quantization option is set to Maximize Dynamic
Range, the coefficients are first scaled to take full advantage of the available dynamic
range, then quantized according to the specified coefficient bit width. The quantized
coefficients are summed to determine the resulting gain factor over the provided real
coefficient set, and the resulting scale factor is used to correct the filter response of the
quantized coefficients such that the gain is factored out. The scale factor is reported in the
legend text of the frequency response plot and on the Summary page. See Coefficient
Quantization for more details.

The filter gain displayed is for a single rate implementation and does not take into account
the zero insertion between output samples in the up-sampling processes in a interpolating
filter. Therefore, following the zero insertion the average filter gain is reduced by the
up-sampling rate.

• Set to Display: This selects which of multiple coefficient sets (if applicable) is displayed
in the Frequency Response Graph.

• Passband Range: Two fields are available to specify the passband range, the left-most
being the minimum value and the right-most the maximum value. The values are
specified in the same units as on the graph x-axis (for example, normalized to pi
radians per second). For the specified range the passband maximum, minimum and
ripple values are calculated and displayed (in dB).

• Stopband Range: Two fields are available to specify the stopband range, the left-most
being the minimum value and the right-most the maximum value. The values are
specified in the same units as on the graph x-axis (for example, normalized to pi
radians per second). For the specified range the stopband maximum value is calculated
and displayed (in dB).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=76

FIR Compiler v7.2 77
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

You can specify any range for the passband or stopband, allowing closer analysis of any
region of the response. For example, examination of the transition region can be done to
more accurately examine the filter roll-off.

Implementation Details Tab

The Implementation Details tab displays Resource Estimation information, core latency,
actual calculated coefficients, selected interleaved data channel sequences and the internal
structure of AXI4-Stream tdata and TUSER ports.

The number of DSP slices/Multipliers is displayed in addition to a count of the number of
block RAM elements required to implement the design. Usage of general slice logic is not
currently estimated.

It should be noted that the results presented in the Resource Estimation are estimates only
using equations that model the expected core implementation structure. It is not
guaranteed that the resource estimates provided in the GUI match the results of a mapped
core implementation.

For some configurations, the number of coefficients calculated by the core might be
greater than specified. In this circumstance, you can increase the number coefficients used
to specify the filter at little or no cost in resource usage.

The AXI4-Port Structure pane describes fields internal to the AXI4-Stream ports and the
number of bus transactions the core expects. This pane allows you to see how individual
fields map to the indexes of the compound port as a whole.

The Interleaved Channel Pattern pane displays the enumerated list of channel sequences
that have been selected. The enumerated value is used to select the desired pattern using
the chanpat field of the s_axis_config_tdata port. See CONFIG Channel for details of
the CONFIG channel.

Coefficient Reload Tab

The Coefficient Reload tab provides the facility to generate re-ordered filter coefficient files
for use with the RELOAD channel. The tab also displays the coefficient reload order.

Reload Coefficients MIF File Generation pane is enabled when Use Reloadable Coefficients
has been selected. Reload files can be generated for the coefficients used to specify the
filter configuration (Coefficient Vector or Coefficient File) or for coefficients specified using
the Reload Coefficient File parameter. It uses the same COE format as the Coefficient File
parameter. See Filter Coefficient Data for more details. The reload filter coefficient
characteristics must match those of the coefficients used to specify the filter configuration.

The re-ordered coefficients are output in a multiple binary text files formatted to the width
of the s_axis_reload_tdata port.

The output file names have the following format, given their source:

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=77

FIR Compiler v7.2 78
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

where x specifies the coefficient set.

The coefficient reload order is displayed when Use Reloadable Coefficients has been
selected and Display Reload Order is checked. This information is also contained in the
<component_name>_reload_order.txt file produced during core generation. See
Coefficient Reload for more details.

Filter Options Tab

The Filter Specification screen is used to define the basic configuration and performance of
the filter.

• Component Name: The user-defined filter component instance name.

Filter Coefficients

• Coefficient Source: Specifies which coefficient input method to use, directly in the GUI
using the Coefficient Vector parameter or from a .coe file specified by the Coefficient
File parameter.

• Coefficient Vector: Used to specify the filter coefficients directly in the GUI. The filter
coefficients are specified in decimal using a comma delimited list as for the coefdata
field in the Filter Coefficient Data file. As with the .coe file, the filter coefficients can be
specified using non-integer real numbers which the FIR Compiler quantizes
appropriately, given your requirements. See Coefficient Quantization for more details.

• Coefficients File: Coefficient file name. This is the file of filter coefficients. The file has
a .coe extension, and the file format is described in theFilter Coefficient Data section.
The file can be selected through the dialog box activated by the Browse.

• Show Coefficients: Selecting this button displays the filter coefficient data defined in
the specified Coefficient file in a pop-up window.

• Number of Coefficient Sets: The number of sets of filter coefficients to be
implemented. The value specified must divide without remainder into the number of
coefficients derived from the .coe file or Coefficient Vector.

• Number of Coefficients (per set): The number of filter coefficients per filter set. This
value is automatically derived from the specified coefficient data and the specified
number of coefficient sets.

• Use Reloadable Coefficients: When the Reloadable option is selected, a coefficient
reload interface is provided on the core.

Filter Specification Coefficients: <component_name>_rld_src_<x>.txt
Reload Coefficient File: <component_name>_rld_coe_<x>.txt

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=78

FIR Compiler v7.2 79
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Filter Specification

• Filter Type: Five filter types are supported: Single-rate FIR, Interpolating FIR,
Decimating FIR, Hilbert transform and Interpolated FIR.

• Inferred Coefficient Structure(s): Displays the coefficient structures, that can be
supported for the selected filter type, detected by the GUI in the specified coefficients.
The inferred coefficient structure (the first item in the list) can be overridden using the
Coefficient Structure parameter later in the GUI. Supported coefficient structures are:
Non-symmetric, Symmetric, Negative Symmetric, Half-band and Hilbert.

The combination of Filter Type, Coefficient Structure and Filter Architecture selects the
implementation used by the core.

• Rate Change Type: This field is applicable to Interpolation and Decimation filter types.
Used to specify an Integer or Fixed Fractional rate change.

• Interpolation Rate Value: This field is applicable to all Interpolation filter types and
Decimation filter types for Fractional Rate Change implementations. The value
provided in this field defines the up-sampling factor, or P for Fixed Fractional Rate (P/
Q) resampling filter implementations.

• Decimation Rate Value: This field is applicable to the all Decimation and Interpolation
filter types for Fractional Rate Change implementations. The value provided in this field
defines the down-sampling factor, or Q for Fixed Fractional Rate (P/Q) resampling filter
implementations.

• Zero Packing Factor: This field is applicable to the interpolated filter only. The zero
packing factor specifies the number of 0s inserted between the coefficient data
specified by you. A zero packing factor of k inserts k-1 zeros between the supplied
coefficient values.

Channel Specification Tab

Interleaved Channel Specification

• Channel Sequence: This field selects between Basic and Advanced interleaved data
channel sequences. The Basic implementation processes interleaved data channels
starting at channel 0 incrementing in steps of 1 to Number of Channels - 1. The
Advanced implementation can processes interleaved data channels in multiple
predefined sequences. The desired sequences are specified using the Sequence ID List
parameter. The CONFIG channel is used to select the active channel sequence. See
Interleaved Data Channel Filters for more details.

• Number of Channels: The maximum number of interleaved data channels to be
processed by the filter. For Advanced channel sequences this parameter specifies the
channel sequence length, which also specifies the maximum number of interleave data
channels.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=79

FIR Compiler v7.2 80
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

• Select Sequence: This field can be used to select which of the supported channel
sequences are to be implemented. Selecting All populates the Sequence ID List with all
the available channel sequences. Similarly, Clear All removes all the sequences apart
from default first channel sequence supported. Selecting a specific channel sequence
toggles its entry in the Sequence ID List parameter.

• Sequence ID List: A comma delimited list that specifies which channel sequences are
implemented by the core. The Interleaved Channel Pattern pane of Implementation Tab,
Implementation, displays the enumerated list of selected patterns. The Select Sequence
parameter can be used to populate the list. See Interleaved Data Channel Filters for
details of the supported channel sequences.

Parallel Channel Specification

• Number of Paths: Specifies the number of parallel datapaths the filter is to process.
Each parallel datapath is extended to a byte boundary, for both the input and output
widths selected. The padding can be signed extended or set to zero.

Hardware Oversampling Specification

• Select format: Selects which format is used to specify the hardware oversampling rate,
the number of clock cycles available to the core to process an input sample and
generate an output. This value directly affects the level of parallelism in the core
implementation and resources used. When Frequency Specification is selected, you can
specify the Input Sampling Frequency and Clock Frequency. The ratio between these
values along with other core parameters determine the hardware oversampling rate.
When Input Sample Period is selected, you can specify the number of clock cycles
between input samples. Similarly, when Output Sample Period is selected, you can
specify the number of clock cycles between output samples.

• Sample Period: Number of clock cycles between input or output samples. When the
multiple channels have been specified, this value should be the integer number of
clock cycles between the time division multiplexed input sample data stream. A sample
frequency greater than the clock frequency can be specified using a fractional sample
period (see Super Sample Rate Filters).

• Input Sampling Frequency: This field can be an integer or real value; it specifies the
sample frequency for one channel. The upper limit is set based on the clock frequency
and filter parameters such as Interpolation Rate and number of channels.
Note: When using the Advanced Interleaved Data Channel Filters (see Interleaved Data Channel
Filters), the Input Sample Frequency is specified for the highest frequency channel (fs) supported
by the selected advanced channel configuration. For N channels, this is the sample frequency of
PN-0, as seen in Table 3-1.

• Clock Frequency: This field can be an integer or real value. The limits are set based on
the sample frequency, interpolation rate, and number of channels. This field influences
architecture choices only; the specified clock rate might not be achievable by the final
implementation.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=80

FIR Compiler v7.2 81
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Implementation Tab

The Implementation Options screen is used to define the coefficient structure to use and to
configure the various datapath and coefficient options.

Coefficient Options

• Coefficient Type: The coefficient data can be specified as either signed or unsigned.
When the signed option is selected, conventional two’s complement representation is
assumed.

• Quantization: Specifies the quantization method to be used. Available options are
Integer Coefficients, Quantize Only, or Maximize Dynamic Range.

° The Integer Coefficients option is only available when the filter coefficients have
been specified using only integer values.

° The Quantize Only option rounds the provided values to the nearest quantum using
a simple rounding towards zero algorithm.

° The Maximize Dynamic Range option scales all coefficients such that the maximum
coefficient is equal to the maximum representable number in the specified bit
width, thus maximizing the dynamic range of the filter (with the current
implementation, overflow is not possible, as the accumulator width is automatically
set to accommodate maximum bit growth within the filter). See Coefficient
Quantization for more information.

° The Normalize to Center Coefficient option scales the coefficients such that the
center coefficient can be represented as a power of 2. This option is only available
for a single coefficients set with an odd number of taps.

• Coefficient Width: The bit precision of the filter coefficients. This field can be used
with the filter response graph to explore the possibilities for more efficient
implementation by limiting coefficient bit width to the minimum required to meet your
target specification for the filter.

• Best Precision Fraction Length: When selected, the coefficient fractional width is
automatically set to maximize the precision of the specified filter coefficients. See Best
Precision Fractional Length for further information.

• Coefficient Fractional Bits: Specifies the number of coefficient bits that are used to
represent the fractional portion of the provided filter coefficients. The maximum value
it supports is the Coefficient Width value minus the required integer bit width. The
integer bit width value is static and is automatically determined by calculating the
integer bit width required to represent the maximum value contained in the provided
coefficient sets. When the coefficient width is less than the required integer bit width,
this field reports zero. When the required integer bit width is zero, this parameter can
take a value greater than the Coefficient Width. See Coefficient Quantization for more
information.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=81

FIR Compiler v7.2 82
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

• Coefficient Structure: Five coefficient structures are supported: Non-symmetric,
Symmetric, Negative Symmetric, Half-band and Hilbert. The structure can also be
inferred from the coefficient file directly (default setting), or specified directly. The
inference algorithm only analyses the first 2048 coefficients. Only valid structure
options, based on analysis of the provided coefficient file, are available for you to
specify directly. If Hilbert has been specified as the Filter Type then Hilbert is forced for
Coefficient Structure.

Datapath Options

• Input Data Type: The filter input data can be specified as either signed or unsigned.
The signed option employs conventional two’s complement arithmetic. This parameter
is automatically set in IP integrator but can also be overridden.

• Input Data Width: The precision (in bits) of the filter input data samples. This
parameter is automatically set in IP integrator but can also be overridden.

• Input Data Fractional Bits: The number of Input Data Width bits used to represent the
fractional portion of the filter input data samples. This field is for information only. It is
used in conjunction with Coefficient Fractional Bits to calculate the filter Output
Fractional Bits value. This parameter is automatically set in IP integrator but can also be
overridden.

• Output Rounding Mode: Specifies the type of rounding to be applied to the output of
the filter.

• Output Width: When using Full Precision, this field is disabled and indicates the
output precision (in bits) of the filter output data samples, including bit growth. When
using any other Rounding Mode, this field allows you to specify the desired output
sample width.

• Output Fractional Bits: This field reports the number Output Width bits used to
represent the fractional portion of the filter output samples.

Detailed Implementation Tab

The Detailed Implementation Options screen is used to configure various control and
implementation options.

• Filter Architecture: Two filter architectures are supported: Systolic
Multiply-Accumulate and Transpose Multiply-Accumulate.

Optimization Options

• Goal: Specifies if the core is required to operate at maximum possible speed (Speed or
Custom option) or minimum area (Area option).

RECOMMENDED: The Area option is the recommended default and normally achieves the best speed
and area for the design.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=82

FIR Compiler v7.2 83
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

In certain configurations, the Speed or Custom setting might be required to improve
performance at the expense of overall resource usage. The Speed option selects all the
possible optimizations supported by the core. The Custom option enables the Select
Optimization and List parameters where individual optimizations can be specified. This
provides finer control over the optimizations applied to specifically target any critical
paths.

• Select Optimization: This is a helper parameter that can be used to select/deselect the
entries in the Optimization List. Selecting All fully populates the list with all possible
optimizations. This does the same as selecting the Speed Optimization Goal. Selecting
None deselects all optimizations. Selecting a specific optimization toggles its entry in
the Optimization List.

• List: Comma delimited list that specifies which optimizations are implemented by the
core.

° Data_Path_Fanout: Adds additional pipeline registers on the data memory outputs
to minimize fan-out. Useful when implementing large data width filters requiring
multiple DSP slices per multiply-add unit.

° Pre-Adder_Pipeline: Pipelines the pre-adder when implemented using fabric
resources. This may occur when a large coefficient width is specified.

° Coefficient_Fanout: Adds additional pipeline registers on the coefficient memory
outputs to minimize fan-out. Useful for Parallel channels or large coefficient width
filters requiring multiple DSP slices per multiply-add unit.

° Control_Path_Fanout: Adds additional pipeline registers to control logic when
Parallel channels have been specified.

° Control_Column_Fanout: Adds additional pipeline registers to control logic when
multiple DSP columns are required to implement the filter.

° Control_Broadcast_Fanout: Adds additional pipeline registers to control logic for
fully parallel (one clock cycle per channel per input sample) symmetric filter
implementations.

° Control_LUT_Pipeline: Pipelines the Look-up tables required to implement the
control logic for Advanced Channel sequences.

° No_BRAM_Read_First_Mode: Specifies that Block RAM READ-FIRST mode should
not be used. This can increase the achievable FMax of the core configuration.

° Optimal_Column_Lengths: Partitions the DSP slice columns to maximize speed
when multiple DSP slice columns are required for non-symmetric filter
implementations.

° Data_Path_Broadcast: Forces the use of a fabric-efficient implementation for single
rate fully parallel symmetric filter configurations. For single channel configurations,
this can result in a lower FMax for filters with a large number of taps. This structure is
available only in configurations with a single DSP column, single filter set, and basic
interleaved channels.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=83

FIR Compiler v7.2 84
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

° Disable_Half_Band_Center_Tap: Disables the half-band interpolation center tap
optimization. When selected, a DSP slice is used to implement the center tap. This
optimization applies only to UltraScale devices.

° Other: Miscellaneous optimizations.
Note: Note: All optimizations maybe specified but are only implemented when relevant to the
core configuration.

Memory Options

The memory type can either be user-selected or chosen automatically to suit the best
implementation options. Choosing Distributed can result in shift register implementation
where appropriate to the filter structure. Inappropriate use of forcing the RAM selection to
be either Block or Distributed can lead to inefficient resource usage.

RECOMMENDED: The default Automatic mode is recommended for most implementations.

• Data Buffer Type: Specifies the type of RAM to be used to store data within a MAC
element. You can select either Block or Distributed RAM options, or select Automatic to
allow the core to choose the memory type appropriately.

• Coefficient Buffer Type: Specifies the type of RAM to be used to store coefficients
within a MAC element. You can select either Block or Distributed RAM options, or select
Automatic to allow the core to choose the memory type appropriately.

• Input Buffer Type: Specifies the type of RAM to be used to implement the data input
buffer, where present. You can select either Block or Distributed RAM options, or select
Automatic to allow the core to choose the memory type appropriately.

• Output Buffer Type: Specifies the type of RAM to be used to implement the data
output buffer, where present. You can select either Block or Distributed RAM options,
or select Automatic to allow the core to choose the memory type appropriately.

• Preference for Other Storage: Specifies the type of RAM to be used to implement
general storage in the datapath. You can select either Block or Distributed RAM
options, or select Automatic to allow the core to choose the memory type
appropriately. Because this covers several different types of storage, it is recommended
that you specify this type of memory directly only if you really need to steer the core
away from using a particular memory resource (for example, if you are short of block
RAMs in your overall design).

DSP Slice Column Options

The Vivado IDE displays the number of independent DSP chains, and their length, required
to build the specified filter configuration.

• Multi-column Support: Implementations of large high speed filters might require
chaining of DSP slice elements across multiple DSP columns. Where applicable (the
feature is only enabled for multi-column devices), you can select the method of folding

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=84

FIR Compiler v7.2 85
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

of the filter structure across the multiple columns, which can be Automatic (based on
the selected device for the project) or Custom (you specify the length of each column).
Multiple Column Filter Implementation describes the multi-column implementation in
more detail.

• Device Column Lengths: Displays the column length pattern in a comma delimited list
for the selected project device.

• Available Column Lengths: Displays the column length pattern available for a single
DSP chain. The GUI reduces the Device Columns Lengths given the number of
independent DSP chains required by the filter configuration. The generated column
pattern considers the Optimization Goal specified.

• Column Configuration: Specifies the individual column lengths, in a comma delimited
list, that implement a single DSP chain. When Automatic has been selected, the column
lengths are determined by the GUI starting with the first column in the available
column pattern. When Custom is selected, you can specify the desired column pattern.
The number and length of the columns cannot exceed the available column pattern and
the column lengths must sum to the DSP chain length. When the available columns
have various lengths, it might be desirable to skip a particular column; this can be done
by specifying a zero column length, for example 10,0,22. The specified column
configuration does not guarantee that the downstream tools place the columns in the
desired sequence.

• Inter-column Pipe Length: Pipeline stages are required to connect between the
columns (Non-symmetric filter implementations only), with the level of pipelining
required being dependent upon the required system clock rate, the chosen device, and
other system-level parameters. Choice of this parameter is always left for you to
specify.

Interface Tab

Data Channel Options

• TLAST: tlast can either be Not Required, Vector Framing or Packet Framing. Selecting
Not Required means that the core does not have the port; selecting Vector Framing
means that tlast is expected to denote the last sample of an interleaved cycle of data
channels; selecting Packet Framing means that the core does not interpret tlast, but
passes the signal to the output DATA channel tlast with the same latency as the
datapath.

• Output TREADY: This field enables the m_axis_data_tready port. With this port
enabled, the core supports back-pressure. Without the port, back-pressure is not
supported, but resources are saved and performance is likely to be higher.

• Input FIFO: Selects a FIFO interface for the S_AXIS_DATA channel. When the FIFO has
been selected data can be transferred in a continuous burst up to the size of the FIFO
(default 16) or, if greater, the number of interleaved data channels. The FIFO requires
additional FPGA logic resources.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=85

FIR Compiler v7.2 86
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

• TUSER Input: The input TUSER port can independently and optionally convey a User
Field and/or a Chan ID Field, giving four options.

• TUSER Output: The output TUSER port can optionally carry a User Field and/or a Chan
ID Field. The presence of a User field in this port is coupled to the presence of a User
Field in the TUSER input selection, because the User Field, if present, is not interpreted
by the core, but conveyed from input DATA channel to Output Channel with the same
latency as the datapath to ease system design.

• User Field Width: Range 1 to 256 bits. This parameter is automatically set in IP
integrator but can also be overridden.

See TUSER Options of the Input and Output DATA Channels for further details.

Configuration Channel Options

The CONFIG channel is used to select the active filter coefficient set. The channel is also
used to apply newly reload filter coefficients. See CONFIG Channel for full details.

• Synchronization Mode:

° On Vector: Configuration packets, when available, are consumed and their contents
applied when the first sample of an interleaved data channel sequence is processed
by the core. When the core is configured to process a single data channel
configuration packets are consumed every processing cycle of the core.

° On Packet: Further qualifies the consumption of configuration packets. Packets are
only consumed after the core has received a transaction on the S_AXIS_DATA
channel where s_axis_data_tlast has been asserted.

• Configuration Method

° Single: A single coefficient set is used to process all interleaved data channels.

° By Channel: A unique coefficient set is specified for each interleaved data channel.

Reload Channel Options

• Reload Slots: Range 1 to 256. Specifies the number of coefficient sets that can be
loaded in advance. Reloaded coefficients are only applied to the core after a
configuration packet has been consumed. See RELOAD Channel and CONFIG Channel
for more details.

Control Signals

• aclken: Determines if the core has the aclken pin.
• aresetn: Determines if the core has the aresetn pin.

IMPORTANT: aresetn is active-Low and when asserted, it should be asserted for a minimum of two
clock cycles.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=86

FIR Compiler v7.2 87
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

• Reset data vector: Specifies if aresetn resets the data vector as well as the control
signals. Data vector reset requires additional FPGA logic resources. When no data
vector reset has been selected an additional data_valid field is present in the
m_axis_data_tuser bus which can be used as further qualification of the output
data of the core. See Resets and Input and Output DATA Channels TUSER Options for
more details.

• Blank Output: Specifies that the core output will be blanked (forced to zero) following
a reset until the data vector is completely filled with new data. This requires minimal
additional FPGA logic resources.

Summary Tab

The Summary screen provides a summary of core options selected.

Summary: The final page provides summary information about the core parameters
selected, which includes information on the actual number of calculated coefficients,
including padding; the inferred or specified coefficient structure; the additional gain
incurred as data passes through the filter due to maximizing the coefficient dynamic range
during quantization; the specified output width along with the full precision width for
comparison; the calculated cycle-latency value; and the latency delta from the previous
major revision of the core.

User Parameters
Table 4-1 shows the relationship between the fields in the Vivado IDE (described in
Customizing and Generating the Core) and the User Parameters (which can be viewed in the
Tcl console).

Table 4-1: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter User Parameter Default Value

Select Source coefficientsource Vector
Coefficient Vector coefficientvector 6,0,-4,-3,5,6,-6,-13,7,44,

64,44,7,-13,-6,6,5,-3,-4,0,6
Coefficient File coefficient_file No_coe_file_loaded
Number of Coefficient Sets coefficient_sets 1
Use Reloadable Coefficients coefficient_reload False
Filter Type filter_type Single_Rate
Rate Change Type rate_change_type Integer
Interpolation Rate Value interpolation_rate 1
Decimation Rate Value decimation_rate 1
Zero Pack Factor zero_pack_factor 1
Channel Sequence channel_sequence Basic

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=87

FIR Compiler v7.2 88
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Number of Channels number_channels 1
Select Sequence select_pattern All
Sequence ID List pattern_list P4-0,P4-1,P4-2,P4-3,P4-4
Number of Paths number_paths 1
Sample Period sampleperiod 1
Input Sampling Frequency sample_frequency 0.001
Clock Frequency clock_frequency 300.0
Coefficient Type coefficient_sign Signed
Quantization quantization Integer_coefficients
Coefficient Width coefficient_width 16
Best Precision Fraction Length bestprecision False
Coefficient Fractional Bits coefficient_fractional_bits 0
Coefficient Structure coefficient_structure Inferred
Input Data Type data_sign Signed
Input Data Width data_width 16
Input Data Fractional Bits data_fractional_bits 0
Output Rounding Mode output_rounding_mode Full_Precision
Output Width output_width 24
Filter Architecture filter_architecture Systolic_Multiply_Accumulate
Goal optimization_goal Area
Select Optimization optimization_selection None
List optimization_list None
Data Buffer Type data_buffer_type Automatic
Coefficient Buffer Type coefficient_buffer_type Automatic
Input Buffer Type input_buffer_type Automatic
Output Buffer Type output_buffer_type Automatic
Preference For Other Storage preference_for_other_storage Automatic
Multi-Column Support multi_column_support Automatic
Inter-Column Pipe Length inter_column_pipe_length 4
Column Configuration columnconfig 1
TLAST data_has_tlast Not_Required
Output TREADY m_data_has_tready False
Input FIFO s_data_has_fifo True
TUSER: Input s_data_has_tuser Not_Required
TUSER: Output m_data_has_tuser Not_Required

Table 4-1: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=88

FIR Compiler v7.2 89
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 11].

System Generator for DSP
This section describes each tab of the System Generator GUI and details the parameters that
differ from the Vivado Integrated Design Environment (IDE). See Customizing and
Generating the Core for detailed information about all other parameters.

Filter Specification
The Filter Specification tab is used to define the basic filter configuration as on the Filter
Options Tab of the GUI.

• Coefficients: This field is used to specify the coefficient vector as a single MATLAB®
software row vector. The number of taps is inferred from the length of the MATLAB
software row vector. It is possible to enter these coefficients using the MATLAB
software FDATool block. Multiple coefficient sets must be concatenated into a single
vector as described in Multiple Coefficient Sets.

Channel Specification
• Hardware Oversampling Specification format: Selects which method is used to

specify the hardware oversampling rate and determines the level of control and rate
abstraction utilized by the core. This value directly affects the level of parallelism of the
core implementation and resources used.

TUSER: User Field Width data_tuser_width 1
Configuration Channel Options:
Synchronization Mode

s_config_sync_mode On_Vector

Configuration Channel Options:
Configuration Method

s_config_method Single

Reload Slots num_reload_slots 1
ACLKEN has_aclken False
ARESETn (active-Low) has_aresetn False
Reset Data Vector reset_data_vector True
Blank Output blank_output False

Table 4-1: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=89

FIR Compiler v7.2 90
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

When Maximum Possible is selected, the core uses the maximum oversampling given
the sample period of the signal connected to s_data_tdata port. The
s_data_tvalid handshake signal is abstracted and automatically driven by System
Generator and the core propagates the data streams sample period.

When Hardware Oversampling Rate is selected, you can specify the oversampling rate
relative to the input sample period of the core. As with Maximum Possible the
handshake and sample period are managed automatically by System Generator.

When Input or Output Sample Period is selected, there is no automatic handshaking, so
s_data_tvalid is exposed, nor is there rate abstraction, so all core ports are
considered to have a normalized sample period 1. The core clock is connected to the
system clock. The core must be controlled using the full AXI4-Stream protocol (see
AXI4-Stream Considerations).

• Sample Period: Specifies the input or output sample period supported by the core. A
sample frequency greater than the clock frequency can be specified using a fractional
sample period (see Super Sample Rate Filters).

• Hardware Oversampling Rate: Specifies the hardware oversampling rate to be applied
to the core.

See Filter Options Tab for information about the other parameters on this tab.

Implementation
The Implementation tab is used to define implementation options; see the Implementation
Tab of the Vivado IDE for details of all the core parameters on this tab.

• FPGA Area Estimation: See the System Generator documentation for detailed
information about this section.

See the Implementation Tab for information about the other parameters on this tab.

Interface
See Detailed Implementation Tab for the corresponding IDE screen.

The TUSER User Field width parameter is abstracted by System Generator and is defined by
the signal connected to the core.

When data vector reset is not selected, the output blanking functionality is used (see
Resets).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=90

FIR Compiler v7.2 91
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints
This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Clock Management
This section is not applicable for this IP core.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
This section is not applicable for this IP core.

Simulation
For comprehensive information about Vivado simulation components, as well as
information about using supported third party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 13].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=91

FIR Compiler v7.2 92
PG149 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

IMPORTANT: For cores targeting 7 series or Zynq®-7000 devices, UNIFAST libraries are not supported.
Xilinx IP is tested and qualified with UNISIM libraries only.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 11].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=92

FIR Compiler v7.2 93
PG149 January 21, 2021 www.xilinx.com

Chapter 5

C Model
The Xilinx® LogiCORE ™ IP FIR Compiler v7.2 core bit accurate C model is a self-contained,
linkable, shared library that models the functionality of this core with finite precision
arithmetic. This model provides a bit accurate representation of the various modes of the
core, and it is suitable for inclusion in a larger framework for system-level simulation or
core-specific verification.

This chapter provides information about the bit accurate C model for 32-bit and 64-bit
Linux, and 32-bit and 64-bit Windows platforms.

The model consists of a set of C functions that reside in a shared library. Example C code is
provided to demonstrate how these functions form the interface to the C model. Full details
of this interface are given in C Model Interface.

The model is bit accurate but not cycle-accurate; it performs exactly the same operations as
the core. However, it does not model the core latency or its interface signals.

The C model ZIP files are delivered in the cmodel directory of a generated core.

Unpacking and Model Contents
There are separate ZIP files containing all the files necessary for use with a specific
computing platform. Each ZIP file contains:

• The C model shared library
• Multiple Precision Integers and Rationals (MPIR) [Ref 14] shared libraries and header

files.
• The C model header file
• The example code showing customers how to call the C model
• Documentation
Note: The C model uses MPIR libraries, which is provided in the ZIP files. MPIR is an
interface-compatible version of the GNU Multiple Precision (GMP) [Ref 15] library, with greater
support for Windows platforms. MPIR has been compiled using its GMP compatibility option, so the
MPIR library and header file use GMP file names.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=93

FIR Compiler v7.2 94
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Table 5-1: Example C Model ZIP File Contents - Linux
File Description

fir_compiler_v7_2_bitacc_cmodel.h Header file which defines the C model API
libIp_fir_compiler_v7_2_bitacc_cmodel.so Model shared object library
libgmp.so.11 MPIR library, used by the C model
libgmpxx.so.4 MPIR Class library, used internally by the C model
gmp.h MPIR header file, used by the C model
run_bitacc_cmodel.c Example program for calling the C model
fir_compiler_v7_2_bitacc_mex.cpp MATLAB® MEX function source
make_fir_compiler_v7_2_mex.m MATLAB MEX function compilation script
run_fir_compiler_v7_2_mex.m MATLAB MEX function example script
@fir_compiler_v7_2_bitacc MATLAB MEX function class directory

Table 5-2: Example C Model ZIP File Contents - Windows
File Description

fir_compiler_v7_2_bitacc_cmodel.h Header file which defines the C model API
libIp_fir_compiler_v7_2_bitacc_cmodel.dll Model dynamically linked library
libIp_fir_compiler_v7_2_bitacc_cmodel.lib Model .lib file for compiling
libgmp.dll MPIR library, used by the C model
libgmp.lib MPIR .lib file for compiling
gmp.h MPIR header file, used by the C model
run_bitacc_cmodel.c Example program for calling the C model
fir_compiler_v7_2_bitacc_mex.cpp MATLAB MEX function source
make_fir_compiler_v7_2_mex.m MATLAB MEX function compilation script
run_fir_compiler_v7_2_mex.m MATLAB MEX function example script
@fir_compiler_v7_2_bitacc MATLAB MEX function class directory

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=94

FIR Compiler v7.2 95
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Installation
Linux
• Unpack the contents of the ZIP file.
• Ensure that the directory where the

libIp_fir_compiler_v7_2_bitacc_cmodel.so, libgmp.so.11 and
libgmpxx.so.4 files reside is included in the path of the environment variable
LD_LIBRARY_PATH.

Windows
• Unpack the contents of the ZIP file.
• Ensure that the directory where the

libIp_fir_compiler_v7_2_bitacc_cmodel.dll and libgmp.dll files reside is
a. included in the path of the environment variable PATH or
b. the directory in which the executable that calls the C model is run.

C Model Interface
The Application Programming Interface (API) of the C model is defined in the header file
fir_compiler_v7_2_bitacc_cmodel.h. The interface consists of data structures and
functions as described in the following sections.

An example C file, run_bitacc_cmodel.c, is included with the C libraries. This file
demonstrates how to call the C model.

Constants
Table 5-3 lists the C Model constants.

Table 5-3: Constants
Name Value

Error codes
XIP_STATUS_OK 0
XIP_STATUS_ERROR 1
Filter Types
XIP_FIR_SINGLE_RATE 0

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=95

FIR Compiler v7.2 96
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

XIP_FIR_INTERPOLATION 1
XIP_FIR_DECIMATION 2
XIP_FIR_HILBERT 3
XIP_FIR_INTERPOLATED 4
Rate Change
XIP_FIR_INTEGER_RATE 0
XIP_FIR_FRACTIONAL_RATE 1
Channel Sequence
XIP_FIR_BASIC_CHAN_SEQ 0
XIP_FIR_ADVANCED_CHAN_SEQ 1
Quantization
XIP_FIR_INTEGER_COEFF 0
XIP_FIR_QUANTIZED_ONLY 1
XIP_FIR_MAXIMIZE_DYNAMIC_RANGE 2
XIP_FIR_NORMALIZE_TO_CENTER_COEFFICIENT 3
Output Rounding
XIP_FIR_FULL_PRECISION 0
XIP_FIR_TRUNCATE_LSBS 1
XIP_FIR_SYMMETRIC_ZERO 2
XIP_FIR_SYMMETRIC_INF 3
XIP_FIR_CONVERGENT_EVEN 4
XIP_FIR_CONVERGENT_ODD 5
XIP_FIR_NON_SYMMETRIC_DOWN 6
XIP_FIR_NON_SYMMETRIC_UP 7
Configuration Method
XIP_FIR_CONFIG_SINGLE 0
XIP_FIR_CONFIG_BY_CHANNEL 1

Table 5-3: Constants (Cont’d)

Name Value

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=96

FIR Compiler v7.2 97
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Type Definitions
Table 5-3 lists the C Model type definitions.

Dynamic Arrays
The C model represents input and output data using multi-dimensional dynamic arrays. The
xip_array_<type> structure is used to specify a multi-dimensional dynamic array
containing elements of type xip_<type>. Several utility functions are provided that allow
creation, allocation and destruction of array instances.

Table 5-4: Type Definitions
Field Name Description

General types
typedef double xip_real Scalar type alias
typedef unsigned integer xip_uint Integer type alias
typedef struct xip_complex Complex data type
typedef mpz_t xip_mpz MPIR [Ref 14] integer type alias
typedef struct xip_mpz_complex Complex type based on xip_mpz
typedef int xip_status Result code from API functions
typedef struct _xip_fir_v7_2 xip_fir_v7_2 Handle type to refer to an instance of the model

typdef enum xip_fir_v7_2_pattern Defines enumerated values for all the advance channel
patterns

Handler function signatures
typedef void (*xip_msg_handler)(void*
handle, int error,const char* msg) Interface to a message handler function

typedef void (*xip_array_real_handler)
(const xip_array_real* data, void* handle,
void* opt_arg)

Interface to data packet handler function

Structures
typedef struct xip_fir_v7_2_config Model configuration structure, Table 5-6
typedef struct xip_fir_v7_2_cnfg_packet Configuration packet structure, Table 5-7
typedef struct xip_fir_v7_2_rld_packet Reload packet structure, Table 5-8
Array types
typedef struct xip_array_uint

See Dynamic Arrays
typedef struct xip_array_real
typedef struct xip_array_complex
typedef struct xip_array_mpz

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=97

FIR Compiler v7.2 98
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

For each array type, the DECLARE_XIP_ARRAY(<type>) macro can be used to declare the
structure and utility function prototypes. The C model header already contains declarations
for the following array types:

• xip_array_real for arrays of xip_real
• xip_array_complex for arrays of xip_complex
• xip_array_uint for arrays of xip_uint
• xip_array_mpz for arrays of xip_mpz
• xip_array_mpz_complex for arrays of xip_mpz_complex

The utility functions for each array type can be defined using the
DEFINE_XIP_ARRAY(<type>) macro. The utility function must be defined somewhere within
user code before the functions can be used; see the run_bitacc_cmodel.c file for
examples.

Further utility functions, specific to the FIR Compiler C Model, can be declared and defined
using the DECLARE_FIR_XIP_ARRAY(<type>) and DEFINE_FIR_XIP_ARRAY(<type>) macros.
The C model header already contains declarations for the following array types:

• xip_array_real

• xip_array_complex

• xip_array_mpz

• xip_array_mpz_complex

Structure

The xip_array_<type> structure is used to specify a multi-dimensional array of data
with type <type>. The content is summarized in Table 5-5.

Table 5-5: xip_array_<type>
Field Name Type Description

data xip_<type>* Pointer to array of data
data_size size_t Current number of elements in the data array
data_capacity size_t Max number of elements in the data array
dim size_t* Pointer to dimension array
dim_size size_t Current number of elements in the dimension array, dim
dim_capacity size_t Max number of elements in dim array

owner unsigned int

Ownership control. A value of 0 indicates that the structure and
associated memory (for the data and dim fields) is allocated and owned
by the xip_array_<type>_* functions, in which case the model can
automatically resize arrays as required. Any other value indicates that the
memory is owned by the user, and the model must report an error if an
array is of insufficient capacity.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=98

FIR Compiler v7.2 99
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

This data structure is defined for types:

• xip_real

• xip_complex

• xip_uint

• xip_mpz

• xip_mpz_complex

General Functions

Create Array

xip_array_<type>*
xip_array_<type>_create();

This function allocates and initializes an empty array for holding values of type <type>. The
function returns a pointer to the created structure, or null if the structure cannot be created.
The structure fields are all initialized to zero indicating an empty array, with ownership
associated with the xip_array_<type>_* functions.

Reserve Data Memory

xip_status
xip_array_<type>_reserve_data(

xip_array_<type>* p,
size_t max_nels

);

This function ensures that array p has sufficient space to store up to max_nels elements of
data. If the current data_capacity is insufficient and the current owner is zero, the
function attempts to allocate or reallocate space to meet the request. The function returns
XIP_STATUS_OK if the array capacity is now sufficient or XIP_STATUS_ERROR if memory
could not be allocated.

Note: This function does not change the data or dimensions held within the array in any way; the
contents of the array after calling the function are equivalent to the contents before calling the
function, even if memory is reallocated. Also, this function never reduces memory allocation; use
xip_array_<type>_destroy to release memory.

Reserve Dimension Memory

xip_status
xip_array_<type>_reserve_dim(

xip_array_<type>* p,
size_t max_nels

);

This function ensures that array p has sufficient space to store up to max_ndims
dimensions. If the current dim_capacity is insufficient and the current owner is zero, the

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=99

FIR Compiler v7.2 100
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

function attempts to allocate or reallocate space to meet the request. The function returns
XIP_STATUS_OK if the array capacity is now sufficient or XIP_STATUS_ERROR if memory
could not be allocated.

Note: This function does not change the data or dimensions held within the array in any way; the
contents of the array after calling the function are equivalent to the contents before calling the
function, even if memory is reallocated. Also, this function never reduces memory allocation; use
xip_array_<type>_destroy to release memory.

Destroy Array

xip_array_<type>*
xip_array_<type>_create(

xip_array_<type>* p
);

This function attempts to release all memory associated with array p. If the owner field is
zero, the function releases the memory associated with data, dim and p, and returns null
indicating success. If owner is non-zero the function returns p, indicating failure.

FIR Compiler Specific Functions

The following functions have been added to aid the use of the array types with the FIR
Compiler C Model and, specifically, the advanced channel patterns.

Set Channel

xip_status
xip_array_<type>_set_chan(

xip_array_<type>* p
const <type> value,
size_t path,
size_t chan,
size_t index
xip_fir_v7_2_pattern pattern

);

This function maps an array index for one channel, specified by path and chan, onto the
3-D structure of xip_array_<type> structure expected by the
xip_fir_v7_2_data_send (see Send DATA Packet) and xip_fir_v7_2_data_get
(see Get DATA Packet) functions of the model.

This function should be particularly useful for the Advanced Interleaved Channels feature;
where locations in the input array are remapped to duplicate entries for some channels.
Figure 5-2 shows this requirement.

pattern should be set to P_BASIC for a Basic Interleaved Channel model configuration
and set to the current pattern ID for an Advanced Interleaved Channel model configuration.
See Table 3-1 for a list of all the supported patterns and see
fir_compiler_v7_2_bitacc_cmodel.h for the enumerated pattern IDs.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=100

FIR Compiler v7.2 101
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Note: If the value of index exceeds the current capacity (data_capacity) of p then the function issues
a XIP_STATUS_ERROR. If the value of index exceeds number of elements (data_size) of p then the
function sets the new size of the array.

Get Channel

xip_status
xip_array_<type>_get_chan(

xip_array_<type>* p
<type>* value,

size_t path,
size_t chan,
size_t index
xip_fir_v7_2_pattern pattern

);

This function is the reciprocal of the xip_array_<type>_set_chan function and
extracts the value of an individual channel for a given index, path and channel. The function
issues an XIP_STATUS_ERROR if the index exceeds the array capacity or size.

Structures
The xip_fir_v7_2_config structure contains all parameters that affect the filter
configuration. Most are duplicates of the core XCO parameters. The filter coefficients of the
model are provided using the coeff field and are quantized (if specified) in the same
manner as by the core GUI.

Table 5-6: xip_fir_v7_2_config
Field Name Type Description

name const char*

filter_type unsigned int

Select from:
XIP_FIR_SINGLE_RATE
XIP_FIR_INTERPOLATION
XIP_FIR_DECIMATION
XIP_FIR_HILBERT
XIP_FIR_INTERPOLATED

rate_change unsigned int
Select from:
XIP_FIR_INTEGER_RATE
XIP_FIR_FRACTIONAL_RATE

interp_rate unsigned int Specifies the interpolation (or up-sampling) factor
decim_rate unsigned int Specifies the decimation (or down-sampling) factor
zero_pack_factor unsigned int Specifies the zero packing factor for Interpolated filters
coeff const double* Pointer to coefficient array

coeff_padding unsigned int
Specifies the amount of zero padding added to the
front of the filter.
The core GUI reports this value for a given core
configuration.

num_coeffs unsigned int Specifies the number of coefficients in one filter

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=101

FIR Compiler v7.2 102
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

The xip_fir_v7_2_cnfg_packet structure is supplied to the
xip_fir_v7_2_config_send function (see Send CONFIG Packet) to update the channel
pattern and coefficient set used by the model.

coeff_sets unsigned int Specifies the number of coefficient sets in the coeff
array

reloadable unsigned int Specifies if the coefficients are reloadable; 0 = No, 1 =
Yes

is_halfband unsigned int Specifies if halfband coefficients have been specified; 0
= No, 1 = Yes

quantization unsigned int
Select from:
XIP_FIR_INTEGER_COEFF
XIP_FIR_QUANTIZED_ONLY
XIP_FIR_MAXIMIZE_DYNAMIC_RANGE

coeff_width unsigned int The model uses these parameters, if requested, to
quantize the supplied coefficientscoeff_fract_width unsigned int

chan_seq unsigned int
Select from:
XIP_FIR_BASIC_CHAN_SEQ
XIP_FIR_ADVANCED_CHAN_SEQ

num_channels unsigned int Specifies the number of data channels supported

init_pattern xip_fir_v7_2_pattern
Specifies the initial channel pattern used by the model
when Advanced Interleaved Channels have been
selected

num_paths unsigned int Specifies the number of datapaths supported
data_width unsigned int The model uses these parameters to quantize the input

samples of the modeldata_fract_width unsigned int

output_rounding_mode unsigned int

Select from:
XIP_FIR_FULL_PRECISION
XIP_FIR_TRUNCATE_LSBS
XIP_FIR_SYMMETRIC_ZERO
XIP_FIR_SYMMETRIC_INF
XIP_FIR_CONVERGENT_EVEN
XIP_FIR_CONVERGENT_ODD
XIP_FIR_NON_SYMMETRIC_DOWN
XIP_FIR_NON_SYMMETRIC_UP

output_width unsigned int Ignored when XIP_FIR_FULL_PRECISION

output_fract_width unsigned int
READ ONLY
Provides the number of fractional bits present in the
output word

config_method unsigned int
Select from:
XIP_FIR_CONFIG_SINGLE
XIP_FIR_CONFIG_BY_CHANNEL

Table 5-6: xip_fir_v7_2_config (Cont’d)

Field Name Type Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=102

FIR Compiler v7.2 103
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

The xip_fir_v7_2_rld_packet structure is supplied to the
xip_fir_v7_2_reload_send function (see Send RELOAD Packet) to update a given
coefficient set with new filter coefficients. As with the core, a configuration packet must be
processed by the model to apply any pending reload packets.

Functions

Model Configuration Functions

Get Version

const char* xip_fir_v7_2_get_version(void);

The function returns a string describing the version of the model.

Get Default Configuration

xip_status
xip_fir_v7_2_get_default_config(

xip_fir_v7_2_config* config
)

This function populates the xip_fir_v7_2_config configuration structure pointed to by
config with the default configuration of the FIR Compiler v7.2 core.

Create Model Object

xip_fir_v7_2
xip_fir_v7_2_create(

const xip_fir_v7_2_config* config,
xip_msg_handler msg_handler,
void* msg_handle

)

This function creates a new model instance, based on the configuration data pointed to by
config.

Table 5-7: xip_fir_v7_2_cnfg_packet
Field Name Type Description
chanpat xip_fir_v7_2_pattern Specifies the Advanced Interleaved Channel pattern to be used

fsel xip_array_uint*
Filter set to use, 1-D array; specifies one value for all channels
(XIP_FIR_CONFIG_SINGLE) or individually for each interleaved
channel (XIP_FIR_CONFIG_BY_CHANNEL)

Table 5-8: xip_fir_v7_2_rld_packet
Field Name Type Description
fsel Int Filter set to reload
coeff xip_array_real* Pointer to an array containing the new coefficients to be loaded, 1-D array.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=103

FIR Compiler v7.2 104
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

The msg_handler argument is a pointer to a function taking three arguments as
previously defined in Type Definitions. This function pointer is retained by the model object
and is called whenever the model wishes to issue a note, warning or error message. Its
arguments are:

1. A generic pointer (void*). This is always the value that was passed in as the msg_handle
argument to the create function.

2. An integer (int) indicating whether the message is an error (1) or a note or warning (0).
3. The message string itself.

If the handler argument is a null pointer, then the C model outputs no messages at all.
Using this mechanism, you can choose whether to output messages to the console, log
them to a file or ignore them completely.

The create function returns a pointer to the newly created object. If the object cannot be
created, then a diagnostic error message is emitted using the supplied handler function (if
any) and a null pointer is returned.

If the data and coefficient widths, number of coefficients and output precision result in an
output precision greater than supported by the double (xip_real) data type then the
model uses the mpz_t data type [Ref 14] (xip_mpz) and issues a warning indicating this
requirement when this function is executed.

Get Model Configuration

xip_status
xip_fir_v7_2_get_config (

xip_fir_v7_2* model,
xip_fir_v7_2_config* config

)

This function returns the full configuration of the model. The function is intended to be
primarily used to determine the output width and output fractional width of the model.

Note: The coeff pointer of the returned xip_fir_v7_2_config structure is set to NULL.

Reset Model Object

xip_status
xip_fir_v7_2_reset(

xip_fir_v7_2* model
);

This function resets in the internal state of the FIR Compiler model object pointed to by
model. A reset causes all data and pending configuration packets to be cleared from the
model. As per the core, any pending reload packets are retained.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=104

FIR Compiler v7.2 105
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Destroy Model Object

xip_status
xip_fir_v7_2_destroy(

xip_fir_v7_2* model
);

This function deallocates the model object pointed to by model. Any system resources or
memory belonging to the model object are released on return from this function. The
model object becomes undefined, and any further attempt to use it is an error.

Set Output Data Array

xip_status
xip_fir_v7_2_set_data_sink(

xip_fir_v7_2* model,
xip_array_real* data,
xip_array_complex* cmplx_data

);
xip_status
xip_fir_v7_2_set_data_sink_mpz(

xip_fir_v7_2* model,
xip_array_mpz* data,
xip_array_mpz_complex* cmplx_data

);

This function registers an array (the data sink), pointed to by data or cmplx_data, to push
the generated filter output when the xip_fir_v7_2_data_send function is called. Only
data or cmplx_data can be set, the other should be set to NULL (or 0).

If the data sink is undefined the filter output must be explicitly pulled using the
xip_fir_v7_2_data_get function.

The array is automatically sized by the model given the size of the input request. The owner
field of xip_array_<type> is ignored and forced to 0.

Note: The complex data sink is intended for the Hilbert filter type but is populated for other filter
types with im set to 0.

Set Data Handler

xip_status
xip_fir_v7_2_set_data_handler(

xip_fir_v7_2* model,
xip_array_real_handler data_handler,
void* handle,
void* opt_arg

);

This function registers a data handler call back function that is called when the output data
array is filled following a call to xip_fir_v7_2_data_send. The FIR Compiler C model
API contains a function, xip_fir_v7_2_data_send_handler (see Send DATA Packet),
to send data to an instance of the model whose signature matches that of a data handler.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=105

FIR Compiler v7.2 106
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

The intention of this facility is to enable multiple instances of the model to be chained
together such that only the first and last instance of the chain need to be directly controlled
using the xip_fir_v7_2_data_send and xip_fir_v7_2_data_get functions.

The model only supports data handlers for output data arrays of type xip_array_real
and the value passed to the (*xip_array_real_handler) function for the data
argument is the value set by the xip_fir_v7_2_set_data_sink function. See Type
Definitions for details of the data handler function signature. Its arguments are:

1. data: A pointer to the xip_array_real type containing the data to be processed. The
array registered by the xip_fir_v7_2_set_data_sink function.

2. handle: A void pointer used to point to the next model instance in the filter chain.
3. opt_arg: An extra generic argument not currently used by the FIR Compiler C model.

Calculate Output Size

xip_status
xip_fir_v7_2_data_calc_size(

xip_fir_v7_2* model,
const xip_array_real* data_in,
xip_array_real* data_out,
xip_array_complex* cmplx_data_out

)
xip_status
xip_fir_v7_2_data_calc_size_mpz(

xip_fir_v7_2* model,
const xip_array_real* data_in,
xip_array_mpz* data_out,
xip_array_mpz_complex cmplx_data_out

)

This function calculates the size of an output packet/array given the size of the supplied
input packet/array.

The data_out or cmplx_data_out array dimensions are modified to reflect the size of
output the model produces, given the data_in array. The array dimensions, dim and
data_size element are updated but the function does not allocate more space. Ensure
that the correct amount of space is allocated for the data element of the array.

Note: Only one of data_out or cmplx_data_out can be set; the other should be set to NULL (or
0).

Model Operation Functions

Send CONFIG Packet

xip_status
xip_fir_v7_2_config_send(

xip_fir_v7_2* model,
const xip_fir_v7_2_cnfg_packet* cnfg_packet

)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=106

FIR Compiler v7.2 107
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

This function passes a configuration packet, pointed to by cnfg_packet (see Table 5-7), to
the model. The model implements an internal FIFO/queue. A configuration packet is
consumed from the queue for every data packet processed, that is, every call to
xip_fir_v7_2_data_send.

Note: If the fsel field of the cnfg_packet is not sized correctly the function returns
XIP_STATUS_ERROR.

Send RELOAD Packet

xip_status
xip_fir_v7_2_reload_send(

xip_fir_v7_2* model,
const xip_fir_v7_2_rld_packet* rld_packet

)

This function passes a reload packet, pointed to by rld_packet (see Table 5-8), to the
model.

Note: If the coeff field of the rld_packet is not sized correctly the function returns
XIP_STATUS_ERROR.

Send DATA Packet

xip_status
xip_fir_v7_2_data_send(

xip_fir_v7_2* model,
const xip_array_real* data

);
void
xip_fir_v7_2_data_send_handler(

const xip_array_real* data,
void* model,
void* dummy

);

This function sends a new data packet, pointed to by data, to the model for processing.

The second version of the function, xip_fir_v7_2_data_send_handler, is supplied to
be used as a (*xip_array_real_handler) call back function, see Set Data Handler for
further details.

Input data is provided using the xip_array_real structure pointed to by data and is
expected to be sized:
Number of paths x Number of interleaved channels x number of input vectors.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=107

FIR Compiler v7.2 108
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

The 3-D structure shown in Figure 5-1 is translated to the 1-D array of the
xip_array_<type> data element in the order; Paths, Channels, Vectors. The helper
functions, xip_array_<type>_set_chan (Set Channel) and
xip_array_<type>_get_chan (Get Channel) implement this translation.

The Advanced Channel implementation requires redundant channel positions to be
remapped to higher rate channels. The helper functions, xip_array_<type>_set_chan
(Set Channel) and xip_array_<type>_get_chan (Get Channel), simplify referencing
each channel by presenting a flat index for each channel.

Figure 5-1 shows the remapping for three different pattern sequences:

• P4_4 (4 channels x 1/4fs);
• P4_3 (1 channel x 1/2fs and 2 channels x 1/4fs);
• P4_2 (1 channel x 3/4fs and 1 channel x 1/4fs).

X-Ref Target - Figure 5-1

Figure 5-1: Input and Output Data Packet Structure

X-Ref Target - Figure 5-2

Figure 5-2: Advanced Channel Pattern Data Packet Remapping

Num vectors
0 1 N-1

V-1

0
1

Num paths

P-1

0

1

Dim [2]

Dim [0]

Num channels
Dim [1]

vect 0

vect 1

P4-4 (4 channels x 1/4fs)

C00 C10 C20 C30

P4-2 (1 channel x 3/4fs and 1 channel x 1/4fs)

C01 C11 C21 C31

vect 0

vect 1

C00 C01 C02 C10

C03 C04 C05 C11

vect 0

vect 1

P4-3 (1 channel x 1/2fs and 2 channels x 1/4fs)

C00 C10 C01 C20

C02 C11 C03 C21

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=108

FIR Compiler v7.2 109
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Get DATA Packet

xip_status
xip_fir_v7_2_data_get(

xip_fir_v7_2* model,
xip_array_real* data,
xip_array_complex* cmplx_data

);
xip_status
xip_fir_v7_2_data_get_mpz(

xip_fir_v7_2* model,
xip_array_mpz* data,
xip_array_mpz_complex* cmplx_data

);

This function retrieves a filtered data packet from the model into the xip_array_<type>
pointed to by data or cmplx_data. Only one of data or cmplx_data maybe set, the
other should be set to NULL (or 0).

The size of the array dim[2] (Figure 5-1) determines how much data is fetched from the
model. If the request is greater than available, then the array size is reduced to reflect this.
The model does not modify the amount of space allocated. Both versions of the functions
maybe used regardless of the internal implementation method of the model. If double data
(xip_real) is requested when mpz_t (xip_mpz) has been used internally by the model
the output data is truncated, as per the mpz_get_d function (see [Ref 15]).

mpz_t (xip_mpz) is an integer type so the model scales the input data and coefficients
by their specified fractional width to use an integer representation. The output is also
supplied as an integer value when mpz_t is requested. To correctly interpret the mpz_t
output the model configuration, returned by the xip_fir_v7_2_get_config function
(see Get Model Configuration), should be interrogated to determine the output fractional
width.

Compiling
Compilation of user code requires access to the
fir_compiler_v7_2_bitacc_cmodel.h header file and the header file of the MPIR
[Ref 14] dependent library, gmp.h. The header files should be copied to a location where
they are available to the compiler. Depending on the location chosen, the ‘include’ search
path of the compiler might need to be modified.

The fir_compiler_v7_2_bitacc_cmodel.h header file includes the MPIR header file,
so these do not need to be explicitly included in source code that uses the C model. When
compiling on Windows, the symbol NT must be defined, either by a compiler option, or in
user source code before the fir_compiler_v7_2_bitacc_cmodel.h header file is
included.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=109

FIR Compiler v7.2 110
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Linking
To use the C model the user executable must be linked against the correct libraries for the
target platform.

Note: The C model uses the MPIR library. Pre-compiled MPIR libraries are provided with the C
model. It is also possible to use GMP or MPIR, libraries from other sources, for example, compiled
from source code. For details, see Dependent Libraries.

Linux

The executable must be linked against the following shared object libraries:

• libgmp.so.11

• libIp_fir_compiler_v7_2_bitacc_cmodel.so

Using GCC, linking is typically achieved by adding the following command line options:

-L. -Wl,-rpath,. -lIp_fir_compiler_v7_2_bitacc_cmodel

This assumes the shared object libraries are in the current directory. If this is not the case,
the -L. option should be changed to specify the library search path to use.

Using GCC, the provided example program run_bitacc_cmodel.c can be compiled and
linked using the following command:

gcc -x c++ -I. -L. -lIp_fir_compiler_v7_2_bitacc_cmodel -Wl,-rpath,. -o
run_bitacc_cmodel run_bitacc_cmodel.c

Note: The C model dynamically links to gmpxx.so.1 and therefore must be visible to the model while
running.

Windows

The executable must be linked against the following dynamic link libraries:

• libgmp.dll

• libIp_fir_compiler_v7_2_bitacc_cmodel.dll

Depending on the compiler, the import libraries might also be required:

• libgmp.lib

• libIp_fir_compiler_v7_2_bitacc_cmodel.lib
Using Microsoft Visual Studio, linking is typically achieved by adding the import libraries to
the Additional Dependencies entry under the Linker section of Project Properties.

Example
The run_bitacc_cmodel.c file contains example code to show the basic operation of
the C model in various configurations.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=110

FIR Compiler v7.2 111
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

MATLAB Interface
A MEX function and MATLAB® software class are provided to simplify the integration with
MATLAB. The MEX function provides a low-level wrapper around the underlying C model,
while the class file provides a convenient interface to the MEX function.

Compiling
Source code for a MATLAB MEX function is provided. This can be compiled within MATLAB
by changing to the directory that contains the code and running the
make_fir_compiler_v7_2_bitacc_mex.m script.

Installation
To use the MEX function, the compiled MEX function must be present on the MATLAB
search path. This can be achieved in either of two ways:

1. Add the directory where the compiled MEX function is located to the MATLAB search
path (see the MATLAB addpath function)

or

2. Copy the files to a location already on the MATLAB search path.

As with all uses of the C model, the correct C model libraries also need to be present on the
platform library search path (that is, PATH or LD_LIBRARY_PATH).

MATLAB Class Interface
The @fir_compiler_v7_2_bitacc class handles the create/destroy semantics on the C
model. The class provides objects for each of the data, configuration and control structures,
defined for the C model and previously described in Structures. All structure elements have
MATLAB type double. MATLAB arrays are used with the mapping of types as in Table 5-9.

Table 5-9: MATLAB to C Model Type Mapping
C Model Type MATLAB Type

xip_uint32 uint32
xip_complex complex double

xip_real double

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=111

FIR Compiler v7.2 112
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

The class provides the methods:

Constructor

[model]=fir_compiler_v7_2_bitacc
[model]=fir_compiler_v7_2_bitacc(config)
[model]=fir_compiler_v7_2_bitacc(field, value [, field,value]*)

Note: * indicates an optional parameter.

The first version of the function call constructs a model object using the default
configuration.

The second version constructs a model object from a structure that specifies the
configuration parameter values to use.

The third version is the same as the second, but allows the configuration to be specified as
a series of (parameter name, value) pairs rather than a single structure.

The names and valid values of configuration parameters are identical to those previously
described for the C model in Structures.

The MATLAB configuration structure can contain an additional element,
PersistentMemory. When the element is set to TRUE the internal data memory state of
the model is retained following a call to the Filter function. Otherwise, the model is Reset
after the filtered data is returned. PersistentMemory is set to FALSE by default.

Get Version

[version]=get_version(model)

This method returns the version string of the C model library used.

Get Configuration

[config]=get_configuration(model)

This method returns the current parameters structure of a model object. If the model object
is empty, the method returns the default configuration. If the model object has been
created, the method returns the configuration parameters that were used to create it.

Reset

[model]=reset(model)

This function resets the model, see Reset Model Object for further details.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=112

FIR Compiler v7.2 113
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Send CONFIG Packet

[model]=config_send(model,cnfg_packet)

This function passes a configuration packet (see Table 5-7), to the model. See Send CONFIG
Packet for further details.

Send RELOAD Packet

[model]=reload_send(model,rld_packet)

This function passes a reload packet (see Table 5-8), to the model. See Send RELOAD Packet
for further details.

Filter

[model,data_out]=filter(model,data_in)

This function passes a MATLAB double array to the model and returns the filtered output.
data_in can be a 1, 2 or 3 dimensional array:

• A 1-D array is only supported by a single channel, single path filter configuration.
• A 2-D array is only supported by a multichannel, single path filter configuration.
• All filter configurations support a 3-D array.

See Send DATA Packet and Figure 5-1 for further details on the data array structure.

Example
The run_fir_compiler_v7_2_bitacc_mex.m file contains a MATLAB script with an
example of how to run the C model using the MEX function.

To run the sample script:

1. Compile the MEX function with the make_fir_compiler_v7_2_bitacc_mex.m
script (see Compiling).

2. Install the MEX function (see Installation).
3. Execute the run_fir_compiler_v7_2_bitacc_mex.m script.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=113

FIR Compiler v7.2 114
PG149 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Dependent Libraries
The C model uses MPIR libraries. Pre-compiled MPIR libraries are provided with the C
model, using the following versions of the libraries:

• MPIR 2.6.0

Because MPIR is a compatible alternative to GMP, the GMP library can be used in place of
MPIR. It is possible to use GMP or MPIR libraries from other sources, for example, compiled
from source code.

GMP and MPIR in particular contain many low level optimizations for specific processors.
The libraries provided are compiled for a generic processor on each platform, not using
optimized processor-specific code. These libraries work on any processor, but run more
slowly than libraries compiled to use optimized processor-specific code. For the fastest
performance, compile libraries from source on the machine on which you run the
executables.

Source code and compilation scripts are provided for the version of MPIR that were used to
compile the provided libraries. Source code and compilation scripts for any version of the
libraries can be obtained from the GMP [Ref 15] and MPIR [Ref 14] web sites.

Note: If compiling MPIR using its configure script (for example, on Linux platforms), use the
--enable-gmpcompat option when running the configure script. This generates a libgmp.so library
and a gmp.h header file that provide full compatibility with the GMP library.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=114

FIR Compiler v7.2 115
PG149 January 21, 2021 www.xilinx.com

Chapter 6

Test Bench
This chapter contains information about the test bench provided in the Vivado® Design
Suite.

Demonstration Test Bench
When the core is generated using the Vivado IP catalog, a demonstration test bench is
optionally created. This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: demo_tb/
tb_<component_name>.vhd in the Vivado Design Suite output directory. The source
code is comprehensively commented.

Using the Demonstration Test Bench
The demonstration test bench instantiates the generated FIR Compiler core.

After generating the demonstration test bench it must be set as the top-level simulation
object. This is done using the Sources pane. Expand the Simulation sources folder and under
the core instance the test bench object is visible as tb_<component_name>. Select the
file, right-click and select Set as Top. Simulation can now be launched and the test bench
is used to drive the core instance.

The Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiates the core
• Generates a clock signal
• Drives the input signals of the core to demonstrate core features
• Checks that the output signals of the core obey AXI4 protocol rules (data values are not

checked to keep the test bench simple)
• Provides signals showing the separate fields of AXI4 tdata and TUSER signals

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=115

FIR Compiler v7.2 116
PG149 January 21, 2021 www.xilinx.com

Chapter 6: Test Bench

The demonstration test bench drives the input signals of the core to demonstrate the
features and modes of operation of the core. An impulse is used as input data in all
operations; the corresponding output of the core is therefore the impulse response of the
filter, that is, the filter coefficients.

The operations performed by the demonstration test bench are appropriate for the
configuration of the generated core, and are a subset of the following operations:

• Drive an impulse
• Drive an impulse, demonstrating AXI4 handshaking signals by modifying the input data

rate using slave data channel TVALID, and modifying the output data rate using master
data channel tready (if present)

• Drive an impulse, during which deassert clock enable (if present), then assert reset (if
present) and drive a new impulse

• For multiple paths: drive a set of impulses of different magnitudes on each path
• For multiple channels: drive a set of impulses of different magnitudes on each channel
• For advanced interleaved data channel sequences: select a different channel pattern;

drive an impulse on each channel
• For multiple filter coefficient sets: select a different coefficient set (a different set for

each channel, if supported); drive an impulse (on each channel, if there are multiple
channels)

• For reloadable coefficients: load a new coefficient set; drive an impulse (on each
channel, if there are multiple channels)

Customizing the Demonstration Test Bench
It is possible to modify the demonstration test bench to drive the core inputs with different
data or to perform different operations.

All operations performed by the demonstration test bench to drive the core inputs are done
in the stimuli process. This process also contains procedures to simplify driving input data.
The drive_data procedure drives one or more input data samples with the specified data,
controlling AXI4 signals to adhere to the AXI4 protocol and keep to the configured input
sample rate of the core. The drive_impulse procedure drives an impulse input, with enough
zero-valued samples to allow time for the impulse response to emerge on the output data
channel of the core. To drive input data other than an impulse, either use the drive_data
procedure repeatedly with specific input data values, or copy and modify the drive_impulse
procedure.

The stimuli process is comprehensively commented, to explain clearly what is being done.
New data, configuration and reload operations can be added by copying and modifying
sections of this process.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=116

FIR Compiler v7.2 117
PG149 January 21, 2021 www.xilinx.com

Chapter 6: Test Bench

Simulation
To simulate the core, generate the core simulation model and demonstration test bench.
Ensure that the demonstration test bench is the top level entity in the simulation options.
Then select ‘Run Simulation’ in the Vivado IDE.

For full instructions on simulating your core, see the Vivado Design Suite User Guide: Logic
Simulation (UG900) [Ref 13].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=117

FIR Compiler v7.2 118
PG149 January 21, 2021 www.xilinx.com

Appendix A

 Upgrading
This appendix contains information about migrating a design from the ISE® Design Suite to
the Vivado® Design Suite, and for upgrading to a more recent version of the IP core. For
customers upgrading in the Vivado Design Suite, important details (where applicable)
about any port changes and other impact to user logic are included.

Migrating to the Vivado Design Suite from ISE
For information about migrating to the Vivado Design Suite, see the ISE to Vivado Design
Suite Migration Guide (UG911) [Ref 16].

Parameter Changes

Updating from FIR Compiler Versions 6.0 through 6.3

Modified Parameters

Multi-Column Support: Disabled is now deprecated. Automatic upgrade replaces this with
a value of Automatic. This change occurred in FIR Compiler v6.3.

Optimization Goal: Speed (Control Only) and Speed (Data Only) are now deprecated.
Speed now includes additional optimizations. The automatic upgrade replaces these with a
value of Custom and populates the new Optimization List parameter with the optimizations
that correspond with the original values, such that the new core configuration generates an
identical implementation. See Customizing and Generating the Core for details. This change
occurred in FIR Compiler core v7.1.

Rate Specification Format: Sample_Period is now deprecated. The automatic upgrade
replaces this with either Input_Sample_Period and Output_Sample_Period. This change
occurred in FIR Compiler v7.2

New Parameters

Channel Sequence, Select Pattern, and Pattern List added to FIR Compiler v6.3. See
Customizing and Generating the Core for details.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=118

FIR Compiler v7.2 119
PG149 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

Select Optimization and Optimization List added to FIR Compiler v7.1. See Customizing and
Generating the Core for details.

Blank Output reset option added to FIR Compiler v7.2. See Customizing and Generating the
Core for details.

Updating from FIR Compiler v5.0

The Vivado core update functionality can be used to import an existing XCO file from v5.0
and upgrade to FIR Compiler v7.2, but it should be noted that the update mechanism alone
does not create a core compatible with v5.0. See Instructions for Minimum Change
Migration. FIR Compiler v7.2 has additional AXI4-Stream parameters. The following table
shows the changes in parameters from v5.0 to v7.2.

Table A-1: Parameter Changes from v5.0 to v7.2
Version v5.0 Version 7.2 Notes

component_name component_name Unchanged
CoefficientSource CoefficientSource Unchanged
CoefficientVector CoefficientVector Unchanged
Coefficient_File Coefficient_File Unchanged
Coefficient_Sets Coefficient_Sets Unchanged
Filter_Type Filter_Type Unchanged
Rate_Change_Type Rate_Change_Type Unchanged
Interpolation_Rate Interpolation_Rate Unchanged
Decimation_Rate Decimation_Rate Unchanged
Zero_Pack_Factor Zero_Pack_Factor Deprecated

Channel_Sequence
New to version 7.2. See the Advanced
section of Interleaved Data Channel
Filters.

Number_Channels Number_Channels Unchanged

Select_Pattern New to version 7.2. See the Advanced
section of Advanced

Pattern_List New to version 7.2. See the Advanced
section of Advanced.

RateSpecification RateSpecification Unchanged
SamplePeriod SamplePeriod Unchanged
Sample_Frequency Sample_Frequency Unchanged
Clock_Frequency Clock_Frequency Unchanged
Filter_Architecture Filter_Architecture Unchanged
Coefficient_Reload Coefficient_Reload Unchanged
Coefficient_Sign Coefficient_Sign Unchanged

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=119

FIR Compiler v7.2 120
PG149 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

Quantization Quantization Unchanged
Coefficient_Width Coefficient_Width Unchanged
BestPrecision BestPrecision Unchanged
Coefficient_Fractional_Bits Coefficient_Fractional_Bits Unchanged
Coefficient_Structure Coefficient_Structure Unchanged
Data_Sign Data_Sign Unchanged
Data_Width Data_Width Unchanged
Data_Fractional_Bits Data_Fractional_Bits Unchanged
Number_Paths Number_Paths Unchanged
Output_Rounding_Mode Output_Rounding_Mode Unchanged
Output_Width Output_Width Unchanged
Allow_Rounding_Approximati
on Deprecated

Registered_Output Deprecated
Optimization_Goal Optimization_Goal Unchanged
Has_SCLR Has_ARESETn Name change. aresetn is active-Low.
Has_CE Has_ACLKEN Name change.
Has_ND

Deprecated. These options pertain to
signals which have been replaced in the
move to AXI4-Stream interfaces.

Has_Data_Valid
SCLR_Deterministic
UseChan_in_adv
Chan_in_adv
Data_Buffer_Type Data_Buffer_Type Unchanged
Coefficient_Buffer_Type Coefficient_Buffer_Type Unchanged
Input_Buffer_Type Input_Buffer_Type Unchanged
Output_Buffer_Type Output_Buffer_Type Unchanged

Preference_For_Other_Storage Preference_For_Other_Stora
ge Unchanged

Multi_Column_Support Multi_Column_Support Unchanged
Inter_Column_Pipe_Length Inter_Column_Pipe_Length Unchanged
ColumnConfig ColumnConfig Unchanged

DATA_Has_TLAST Pertains to AXI4-Stream interfaces.
M_DATA_Has_TREADY Pertains to AXI4-Stream interfaces.
S_DATA_Has_FIFO Pertains to AXI4-Stream interfaces.
S_DATA_Has_TUSER Pertains to AXI4-Stream interfaces.

Table A-1: Parameter Changes from v5.0 to v7.2 (Cont’d)

Version v5.0 Version 7.2 Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=120

FIR Compiler v7.2 121
PG149 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

Port Changes
There are no port changes between v7.2 and v6.3, v6.2, v6.1 and v6.0.

Table A-2 details the changes to port naming, additional or deprecated ports and polarity
changes from v5.0 to v7.2.

M_DATA_Has_TUSER Pertains to AXI4-Stream interfaces.
DATA_TUSER_Width Pertains to AXI4-Stream interfaces.
S_CONFIG_Sync_Mode Pertains to AXI4-Stream interfaces.
S_CONFIG_Method Pertains to AXI4-Stream interfaces.
Num_Reload_Slots Pertains to the coefficient reload feature.
Reset_Data_Vector

Table A-2: Port Changes from Version 5.0 to Version 7.2
Version 5.0 Version 7.2 Notes

CLK aclk Rename only
CE aclken Rename only
SCLR aresetn Rename and change of sense (now active-Low)
ND s_axis_data_tvalid Equivalent to s_axis_data_tvalid
FILTER_SEL Replaced by CONFIG channel. See s_axis_config_t*.
COEF_LD

Replaced by RELOAD channel. See s_axis_reload_t*.
COEF_WE
COEF_DIN
COEF_FILTER_SEL
RFD s_axis_data_tready
RDY m_axis_data_tvalid
DATA_VALID Deprecated, see s_axis_data_t*

CHAN_IN Deprecated. Function performed by s_axis_data_tuser (chan
ID field) or s_axis_data_tlast (vector-based).

CHAN_OUT Deprecated. Function performed by m_axis_data_tuser (chan
ID field) or m_axis_data_tlast (vector-based).

DIN Deprecated. Now exists as a field within s_axis_data_tdata.
DOUT Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q Deprecated. Now exists as a field within m_axis_data_tdata.
DIN_1 Deprecated. Now exists as a field within s_axis_data_tdata.

Table A-1: Parameter Changes from v5.0 to v7.2 (Cont’d)

Version v5.0 Version 7.2 Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=121

FIR Compiler v7.2 122
PG149 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

DIN_2 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_3 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_4 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_5 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_6 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_7 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_8 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_9 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_10 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_11 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_12 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_13 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_14 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_15 Deprecated. Now exists as a field within s_axis_data_tdata.
DIN_16 Deprecated. Now exists as a field within s_axis_data_tdata.
DOUT_1 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_1 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_1 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_2 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_2 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_2 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_3 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_3 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_3 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_4 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_4 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_4 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_5 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_5 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_5 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_6 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_6 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_6 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_7 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_7 Deprecated. Now exists as a field within m_axis_data_tdata.

Table A-2: Port Changes from Version 5.0 to Version 7.2 (Cont’d)

Version 5.0 Version 7.2 Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=122

FIR Compiler v7.2 123
PG149 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

DOUT_Q_7 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_8 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_8 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_8 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_9 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_9 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_9 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_10 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_10 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_10 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_11 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_11 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_11 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_12 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_12 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_12 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_13 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_13 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_13 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_14 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_14 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_14 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_15 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_15 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_15 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_16 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_I_16 Deprecated. Now exists as a field within m_axis_data_tdata.
DOUT_Q_16 Deprecated. Now exists as a field within m_axis_data_tdata.

s_axis_data_tvalid tvalid for input DATA channel
s_axis_data_tready tready for input DATA channel

s_axis_data_tdata tdata for input DATA channel. Replaces all DIN ports. See
TDATA Structure for internal structure.

s_axis_data_tuser tuser for input DATA channel. Optionally replaces CHAN_IN.

Table A-2: Port Changes from Version 5.0 to Version 7.2 (Cont’d)

Version 5.0 Version 7.2 Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=123

FIR Compiler v7.2 124
PG149 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

Functionality Changes

Latency Changes

There is no change in latency between FIR Compiler v7.2 and versions 6.0 through 7.0.

The latency of FIR Compiler v7.2 is different compared to v5.0 The update process cannot
account for this and guarantee equivalent performance.

When in Blocking Mode (m_data_tready in use), the latency of the core is variable, so
only the minimum possible latency can be determined. When in Non-Blocking Mode (no
m_data_tready), the latency of the core might only be slightly greater than that for the
equivalent configuration of v5.0. See the latency information in the Vivado IDE Summary
page.

Instructions for Minimum Change Migration
To view latency differences between v5.0 and v7.2, see the GUI Implementation Details Tab.

To configure the FIR Compiler v7.2 to most closely mimic the behavior of v5.0 the
translation is as follows:

s_axis_data_tlast
tlast for input DATA channel. Optionally compared to internal
channel counter (replacement for CHAN_IN) with
discrepancies indicated on event_s_axis_*

s_axis_reload_tvalid tvalid for input RELOAD channel
s_axis_reload_tready tready for input RELOAD channel
s_axis_reload_tdata
s_axis_reload_tlast
s_axis_config_tvalid tvalid for input CONFIG channel
s_axis_config_tready tready for input CONFIG channel
s_axis_config_tdata
s_axis_config_tlast
m_axis_data_tvalid tvalid for output DATA channel
m_axis_data_tready tready for output DATA channel

m_axis_data_tdata tdata for output DATA channel. Replaces all DOUT ports. See
TDATA Structure for internal structure.

m_axis_data_tuser tuser for output DATA channel. Optionally replaces
CHAN_OUT.

m_axis_data_tlast tlast for output DATA channel. Optionally replaces function
performed by CHAN_OUT.

Table A-2: Port Changes from Version 5.0 to Version 7.2 (Cont’d)

Version 5.0 Version 7.2 Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=124

FIR Compiler v7.2 125
PG149 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

Parameters

Output TREADY (Data Channel Options): Set to FALSE. Disables back-pressure facility and
guarantees fixed latency.

Input FIFO (Data Channel Options): Set to FALSE. Disables the input FIFO on the
S_AXIS_DATA channel and minimizes FPGA logic resources.

Synchronization Mode (CONFIG Channel Options): Set to On Vector. This ensures the filter
select values is updated on every processing cycle.

Configuration Method (CONFIG Channel Options): Set to By Channel when applicable.
This ensures a unique filter select value can be set for every interleaved data channel.

Reload Slots (RELOAD Channel Options): Set to the number of coefficient sets specified.

Data Vector Reset (Control Signals): Set to FALSE. Minimizes FPGA logic resources and
matches FIR Compiler v5.0 reset behavior.

Ports

Input / Output Data Channels

ND is mapped to s_axis_data_tvalid

RFD is mapped to s_axis_data_tready

RDY is mapped to m_axis_data_tvalid

Configuration Channel

FILTER_SEL is mapped to the filter select field of the s_axis_config_tdata bus

Drive s_axis_config_tvalid with the same signal driving s_axis_data_tvalid.

Note: For decimation filters s_axis_config_tvalid must be driven at the output rate.
Configuration packets are consumed at the lower output rate and if supplied at the input rate the
Configuration Channel FIFO becomes full and s_axis_config_tready is deasserted and input
packets ignored.

Tie s_axis_config_tlast to 0 and ignore event_s_axis_config_*

Reload Channel

The format of the reload channel has changed such that COEF_FILTER_SEL is now
pre-pended to the reload packet on the s_axis_reload_tdata bus.

COEF_DIN is mapped to s_axis_reload_tdata bus

COEF_WE is mapped to s_axis_reload_tvalid

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=125

FIR Compiler v7.2 126
PG149 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

COEF_LD is mapped to s_axis_reload_tlast but is now asserted at the end of a reload
packet

Upgrading within the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

Parameter Changes
Optimization Goal: Speed (Control Only) and Speed (Data Only) are now deprecated. Speed
now includes additional optimizations. The automatic upgrade replaces these with a value
of Custom and populates the new Optimization List parameter with the optimizations that
correspond with the original values, such that the new core configuration generates an
identical implementation. See Customizing and Generating the Core for details. This change
occurred in FIR Compiler core v7.1.

Rate Specification Format: Sample_Period is now deprecated. The automatic upgrade
replaces this with either Input_Sample_Period or Output_Sample_Period. This change
occurred in FIR Compiler v7.2

Blank Output: New reset option. Added to FIR Compiler v7.2. See Customizing and
Generating the Core for details.

Port Changes
There are no port changes between v7.2 and v7.1, v7.0.

Simulation
Starting with FIR Compiler v7.1 (2013.3 version), behavioral simulation models have been
replaced with IEEE P1735 Encrypted VHDL. The resulting model is bit and cycle accurate
with the final netlist. For more information on simulation, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 13].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=126

FIR Compiler v7.2 127
PG149 January 21, 2021 www.xilinx.com

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the FIR Compiler, the Xilinx Support
web page contains key resources such as product documentation, release notes, answer
records, information about known issues, and links for obtaining further product support.

Documentation
This product guide is the main document associated with the FIR Compiler. This guide,
along with documentation related to all products that aid in the design process, can be
found on the Xilinx Support web page or by using the Xilinx® Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that you have access to the most
accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use keywords such as

• Product name
• Tool message(s)
• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=127

FIR Compiler v7.2 128
PG149 January 21, 2021 www.xilinx.com

Appendix B: Debugging

Master Answer Record for the FIR Compiler

AR: 54502

Technical Support
Xilinx provides technical support at the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.
• Customize the solution beyond that allowed in the product documentation.
• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools
There are many tools available to address FIR Compiler design issues. It is important to
know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a
design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug LogiCORE IP cores, including:

• ILA 2.0 (and later versions)
• VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 17].

Reference Boards
Various Xilinx development boards support FIR Compiler. These boards can be used to
prototype designs and establish that the core can communicate with the system.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/answers/54502.htm
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=128

FIR Compiler v7.2 129
PG149 January 21, 2021 www.xilinx.com

Appendix B: Debugging

• 7 series FPGA evaluation boards

° KC705

° KC724

C-Model Reference
See Chapter 5, C Model in this guide for tips and instructions for using the provided
C-Model files to debug your design.

Simulation Debug
The simulation debug flow for Mentor Graphics Questa Advanced Simulator is shown in
Figure B-1. A similar approach can be used with other simulators.
X-Ref Target - Figure B-1

Figure B-1: Questa Advanced Simulator Debug Flow

Questa Advanced

Simulator

Debug

If using Verilog, do you a have

mixed-mode simulation license?

Obtain a mixed-mode

simulation license.

Check that the simulator

version matches that of the Vivado

 release. See the Xilinx Design Tools:

Release Notes Guide (link at

 foot of IP Facts table)

Do you get errors referring to failing to

access library?

Does simulating the core test bench

give the expected output?

Update to this version.

Need to compile and map the

correct libraries. See the Vivado

Design Suite User Guide – Logic

Simulation UG900

Examine waveforms to gain

understanding of core behavior.

A VHDL license is required

to simulate with the

behavioral model. If the

user design uses Verilog, a

mixed-mode license is required.

No

Yes

Yes

No

No

No

Yes

Yes

Check behavior of AXI interfaces

is as described in this document.

Ensure that the demonstration

test bench has been selected

as the top level of the design.

If problem is more design specific, open

a case with Xilinx Technical Support and

include a wlf file dump of the simulation. For

the best results, dump the entire design

hierarchy.

Although versions of

simulators more recent

than the Vivado release

might be compatible, no

guarantee can be given.

The core test bench

should allow the user to quickly

determine if the simulator is set up

correctly.

Yes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=129

FIR Compiler v7.2 130
PG149 January 21, 2021 www.xilinx.com

Appendix B: Debugging

AXI4-Stream Interface Debug
If data is not being transmitted or received, check the following conditions:

• If transmit <interface_name>_tready is stuck Low following the
<interface_name>_tvalid input being asserted, the core cannot send data.

• If the receive <interface_name>_tvalid is stuck Low, the core is not receiving
data.

• Check that the ACLK inputs are connected and toggling.
• Check that the AXI4-Stream waveforms are being followed (see Figure 3-1).
• Check the core configuration.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=130

FIR Compiler v7.2 131
PG149 January 21, 2021 www.xilinx.com

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

References
These documents provide supplemental material useful with this product guide:

1. C. H. Dick, Implementing Area Optimized Narrow-Band FIR Filters Using Xilinx® FPGAs,
SPIE International Symposium on Voice, Video and Data

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=131

FIR Compiler v7.2 132
PG149 January 21, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

Communications—Configurable Computing: Technology an Applications Stream,
Boston, Massachusetts USA, pp. 227-238, Nov 1-6, 1998

2. P.P. Vaidyanathan, Multi-Rate Systems and Filter Banks, Prentice Hall, Englewood Cliffs,
New Jersey, 1993.

3. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
4. Vivado Design Suite User Guide: Logic Simulation (UG900)
5. M. E. Frerking, Digital Signal Processing in Communication Systems, Van Nostrand

Reinhold, New York, 1994.
6. Xilinx Vivado AXI Reference Guide (UG1037)
7. AMBA® AXI4-Stream Protocol Specification (Arm IHI 0051A)
8. Xilinx Inc., XtremeDSP Design Manual, Xilinx Inc., San Jose California, 2004.
9. Mou, Zhi-Jian, Symmetry Exploitation in Digital Interpolators/Decimators, IEEE

Transactions on Signal Processing, Vol. 44 No. 10, Oct. 1996
10. Vivado® Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
11. Vivado Design Suite User Guide: Designing with IP (UG896)
12. Vivado Design Suite User Guide: Getting Started (UG910)
13. Vivado Design Suite User Guide: Logic Simulation (UG900)
14. The Multiple Precision Integers and Rationals (MPIR) Library: www.mpir.org/
15. The GNU Multiple Precision Arithmetic (GMP) Library: gmplib.org/
16. ISE® to Vivado Design Suite Migration Guide (UG911)
17. Vivado Design Suite User Guide: Programming and Debugging (UG908)
18. System Generator for DSP User Guide (UG640)
19. Peled and B. Liu, A New Hardware Realization of Digital Filters, IEEE Trans. on Acoust.,

Speech, Signal Processing, vol. ASSP-22, pp. 456-462, Dec. 1974.
20. S. A. White, Applications of Distributed Arithmetic to Digital Signal Processing, IEEE ASSP

Magazine, Vol. 6(3), pp. 4-19, July 1989.
21. Fred Harris, Chris Dick, and Michael Rice, Digital Receivers and Transmitters Using

Polyphase Filter Banks for Wireless Communications, IEEE Trans. on Microwave Theory
and Techniques, Vol. 51, No.4. 4 April 2003

Send Feedback

https://www.xilinx.com
http://mpir.org/
http://gmplib.org/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest+ise;d=sysgen_user.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=132

FIR Compiler v7.2 133
PG149 January 21, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

Revision History
The following table shows the revision history for this document.

Date Version Revision
01/21/2021 7.2 • Added Versal support.
06/10/2020 7.2 • Updated Features.

• Added new note to Table 1-1.
• Updated Notable Limitations.
• Updated Event Interface section.

01/31/2020 7.2 • Added RELOAD description to Resets.
• Added description to Event Interface.
• Updated Figure 3-12.
• Added note in Hardware Oversampling Specification.

11/18/2015 7.2 • UltraScale+ device support added
• Note added to highlight channel sequence switching implication

06/24/2015 7.2 • NT defined for Windows in C Model chapter
• TDATA for Reload Channel updated
• Half-band sections updated to show coefficient symmetry being exploited

10/01/2014 7.2 • Added details about Super Sample Rate
• Updated fractional decimation content
• Updated GUI section to reflect changes to the Sample Period parameter

04/02/2014 7.1 • Added link to resource utilization numbers
• Added User Parameter table (Table 4-1)

12/18/2013 7.1 Added UltraScale™ architecture support
10/02/2013 7.1 Minor updates to IP Facts table and Migrating appendix
06/19/2013 7.1 Document changes for this release:

• Added Input and Output Sample Rate
• Added Coefficient Reload section
• Updated GUI section to reflect core version 7.1
• Document revision number advanced to 7.1 to align with core version

number
03/20/2013 1.0 Initial release as a Product Guide; replaces DS795 and UG853. There are no

other document changes for this release.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=133

FIR Compiler v7.2 134
PG149 January 21, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty,
please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2013–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. All
other trademarks are the property of their respective owners.

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG149&Title=FIR%20Compiler%20v7.2&releaseVersion=7.2&docPage=134

	FIR Compiler v7.2
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Navigating Content by Design Process
	Filter Types
	Feature Summary
	Feature Support Matrix
	Notable Limitations

	Licensing and Ordering

	Ch. 2: Product Specification
	Performance
	Maximum Frequencies
	Latency
	Throughput

	Resource Utilization
	Port Descriptions

	Ch. 3: Designing with the Core
	Clocking
	Resets
	AXI4-Stream Considerations
	Basic Handshake
	Input and Output DATA Channels
	TREADY and TVALID
	TDATA Structure
	TLAST Options
	TUSER Options

	CONFIG Channel
	Blocking Behavior
	Packet Consumption Rate and Synchronization
	TREADY
	TLAST Options
	TDATA

	RELOAD Channel
	TREADY
	TLAST
	TDATA

	Event Interface
	Interface Timing

	Core Features
	Filter Architectures
	Multiply-Accumulate
	Systolic Multiply-Accumulate
	Transpose Multiply-Accumulate

	Filter Structures and Optimizations
	Filter Symmetry
	Single-rate FIR Filter
	Half-band FIR Filter
	Hilbert Transform
	Interpolated FIR Filter
	Polyphase Decimator
	Polyphase Interpolator
	Half-band Decimator
	Half-band Interpolator
	Small Non-zero Even Terms in a Half-band Filter Impulse Response
	Fixed Fractional Rate Resampling Filters

	Filter Coefficient Data
	Single-rate FIR
	Half-band Filter
	Hilbert Transform
	Interpolated Filter
	Multiple Coefficient Sets
	Coefficient Specification Using Non-integer Real Numbers

	Interleaved Data Channel Filters
	Basic
	Advanced

	Parallel Data Channel Filters
	Coefficient Reload
	Reload Order File

	Coefficient Quantization
	Integer Coefficients
	Quantize Only
	Maximize Dynamic Range
	Best Precision Fractional Length

	Output Width and Bit Growth
	Output Rounding
	Full Precision
	Truncation
	Non-symmetric Rounding to Positive
	Non-symmetric Rounding to Negative
	Symmetric Rounding to Highest Magnitude
	Symmetric Rounding to Zero
	Convergent Rounding
	Resource Implications of Rounding

	Multiple Column Filter Implementation
	Super Sample Rate Filters

	Input and Output Sample Rate
	Integer Rate Change
	Fractional Rate Change
	Super Sample Rate

	Resource Considerations
	Data and Coefficient Bit Width
	Output Rounding Selection
	Multiple Channel versus Parallel Datapaths
	Multichannel implementation
	Parallel Datapaths
	Multichannel implementation
	Parallel Datapaths

	Coefficient Reload

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	IP Symbol Tab
	Freq. Response Tab
	Implementation Details Tab
	Coefficient Reload Tab
	Filter Options Tab
	Channel Specification Tab
	Implementation Tab
	Detailed Implementation Tab
	Interface Tab
	Summary Tab
	User Parameters
	Output Generation

	System Generator for DSP
	Filter Specification
	Channel Specification
	Implementation
	Interface

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Synthesis and Implementation

	Ch. 5: C Model
	Unpacking and Model Contents
	Installation
	Linux
	Windows

	C Model Interface
	Constants
	Type Definitions
	Dynamic Arrays
	Structure
	General Functions
	FIR Compiler Specific Functions

	Structures
	Functions
	Model Configuration Functions
	Model Operation Functions

	Compiling
	Linking
	Linux
	Windows

	Example

	MATLAB Interface
	Compiling
	Installation
	MATLAB Class Interface
	Constructor
	Get Version
	Get Configuration
	Reset
	Send CONFIG Packet
	Send RELOAD Packet
	Filter

	Example

	Dependent Libraries

	Ch. 6: Test Bench
	Demonstration Test Bench
	Using the Demonstration Test Bench
	The Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	Simulation

	Appx. A: Upgrading
	Migrating to the Vivado Design Suite from ISE
	Parameter Changes
	Updating from FIR Compiler Versions 6.0 through 6.3
	Updating from FIR Compiler v5.0

	Port Changes
	Functionality Changes
	Latency Changes

	Instructions for Minimum Change Migration
	Parameters
	Ports

	Upgrading within the Vivado Design Suite
	Parameter Changes
	Port Changes
	Simulation

	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature
	Reference Boards
	C-Model Reference

	Simulation Debug
	AXI4-Stream Interface Debug

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

