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Introduction LogiCORE IP Facts Table

Core Specifics

The LogiCORE™ IP Virtex®-7 FPGA Gen3

. S d
Integrated Block for PCI Express® core is a D‘;’\),izrte Virtex-7 XT and HT®@
high-bandwidth, scalable, and reliable serial Family(®)
interconnect building block solution for use Supported
with all Virtex-7 XT and HT FPGAs except the User Interfaces AXI4-Stream
XC7VX485T. The Integrated Block for PCI Resources
Express (PCle®) solution supports 1-lane, . 5
2-lane, 4-lane, and 8-lane Endpoint Provided with Core
configurations, including Genl (2.5 GT/s), Gen2 Design Files Verilog
(5.0 GT/s) and Gen3 (8 GT/s) speeds. It is Example .
. . . p . . Verilog
compliant with PCI Express Base Specification, Design
rev. 3.0. This solution supports the AXI4-Stream Test Bench Verilog
interface for the customer user interface. Constraints ISE® Design Suite: UCF
. . File Vivado™ Design Suite: XDC
PCI Express offers a serial architecture that . .
alleviates many limitations of parallel bus i/'lm(;"‘;‘“on Verilog
ode

architectures by using clock data recovery
(CDR) and differential signaling. Using CDR (as Supported N/A

g S/W Drivers
opposed to source synchronous clocking)

. . ; 3
lowers pin count, enables superior frequency Tested Design Flows(?)

ISE Design Suite v14.3

scalability, and makes data synchronization
Vivado Design Suite v2012.34)

easier. PCI Express technology, adopted by the

Design Entry

PCI-SIG® as the next generation PCI™, is _ Mentor Graphics ModelSim

. L Cadence Incisive Enterprise Simulator (IES)
backward-compatible to the existing PCI Simulation Synopsys VCS
software model. Xilinx ISim (for CORE Generator)

Vivado Simulator

With higher bandwidth per pin, low overhead, Xilinx Synthesis Technology (XST)

Synthesis

low latency, reduced signal integrity issues, and Vivado Synthesis
CDR architecture, the Integrated Block sets the Support
industry standard for a high-performance, Provided by Xilinx @ www.xilinx.com/support
cost-efficient PCle solution.
Notes:

The Gen3 Integrated Block for PCle solution is 1. For a complete listing of supported devices, see the release

. 7 . . notes for this core.
compatible with industry-standard application 2. Except for the XC7VX485T.
form factors such as the PCI Express Card 3. For the supported versions of the tools, see the Xilinx Design
Electromechanical (CEM) v3.0 and the PCI Tools: Release Notes Guide.

. 4. Supports only 7 series devices.
Industrial Computer Manufacturers Group Hpports only 7 series devices

(PICMG) 3.4 specifications.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 6
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Features

The key features of the Virtex-7 FPGA Gen3 Integrated Block for PCI Express (8.0 GT/s) core are:

High-performance, highly flexible, scalable, and reliable, general-purpose I/O core
o Compliant with the PCI Express Base Specification, rev. 3.0

- Compatible with conventional PCI software model

GTH transceivers

o 2.5GT/s, 5.0 GT/s, and 8.0 GT/s line speeds

o 1l-lane, 2-lane, 4-lane, and 8-lane operation

Endpoint configuration

Multiple Function and Single-Root I/O Virtualization in the Endpoint configuration
o 2 Physical Functions

- 6 Virtual Functions

Standardized user interface(s)

o Compliant to AXI4-Stream

- Separate Requester, Completion, and Message interfaces

o Flexible Data Alignment

- Parity generation and checking on AXI4-Stream interfaces

- Easy-to-use packet-based protocol

o Full-duplex communication enabling

- Optional back-to-back transactions to enable greater link bandwidth utilization

o Support for flow control of data and discontinuation of an in-process transaction in
transmit direction

o Support for flow control of data in receive direction
Compliant with PCI and PCI Express power management functions
Optional Tag Management feature

Maximum transaction payload of up to 1024 bytes

End-to-End Cyclic Redundancy Check (ECRC)

Advanced Error Reporting (AER)

Multi-Vector MSI for up to 32 vectors and MSI-X

Atomic Operations and TLP Processing Hints

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 7
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Overview

The LogiCORE™ IP Virtex®-7 FPGA Gen3 Integrated Block for PCI Express® core is a
reliable, high-bandwidth, scalable serial interconnect building block for use with Virtex-7
XT and HT FPGAs, except for the XC7VX485T. The core instantiates the Integrated Block
found in Virtex-7 XT and HT FPGA:s.

The Virtex-7 FPGA Gen3 Integrated Block for PCI Express is an IP core available with:

« the CORE Generator™ tool in the ISE® Design Suite
« the IP Catalog in the Vivado™ Design Suite

For detailed information about the core, see the Virtex-7 FPGA Gen3 Integrated Block for
PCI Express product page.

Figure 1-1 shows the interfaces for the LogiCORE IP Virtex-7 FPGA Gen3 Integrated Block
for PCI Express core.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 8
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Feature Summary

The LogiCORE IP Virtex-7 FPGA Gen3 Integrated Block for PCI Express core is a
high-bandwidth, scalable, and flexible general-purpose I/O core for use with most Virtex-7
XT and HT FPGAs. The GTH transceivers in the Integrated Block for PCI Express (PCle®)
solution support 1-lane, 2-lane, 4-lane, and 8-lane operation, running at 2.5 GT/s (Genl),
5.0 GT/s (Gen2), and 8.0 GT/s (Gen3) line speeds. Endpoint configurations are supported.

The customer user interface is compliant with the AMBA® AXI4-Stream interface. This
interface supports separate Requester, Completion, and Message interfaces. It allows for
flexible data alignment and parity checking. Flow control of data is supported in the receive
and transmit directions. The transmit direction additionally supports discontinuation of
in-progress transactions. Optional back-to-back transactions utilize straddling to provide
greater link bandwidth.

The Virtex-7 FPGA supports two physical functions and six virtual functions.
The core is compliant with PCI and PCI Express power management functions.

Note: For information about the availability of Root Port functionality, contact your Xilinx. See
Technical Support, page 382.

Applications

The Integrated Block for PCI Express architecture enables a broad range of computing and
communications target applications, emphasizing performance, cost, scalability, feature
extensibility and mission-critical reliability. Typical applications include:

« Data communications networks

« Telecommunications networks

« Broadband wired and wireless applications
« Network interface cards

¢ Chip-to-chip and backplane interface cards

« Server add-in cards for various applications

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 10
PG023 October 16, 2012
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Unsupported Features

The Integrated Block does not implement the Address Translation Service, but allows its
implementation in external soft logic.

Switch ports and the Resizable BAR Extended Capability are not supported.

Licensing and Ordering Information

The LogiCORE IP Virtex-7 FPGA Gen3 Integrated Block for PCI Express core is provided at no
additional cost with the Xilinx Vivado Design Suite and ISE Design Suite tools under the
terms of the Xilinx End User License. Information about this and other Xilinx LogiCORE IP
modules is available at the Xilinx Intellectual Property page. For information about pricing
and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx
sales representative.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 11
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Chapter 2

Product Specification

Standards Compliance

The Virtex®-7 FPGA Gen3 Integrated Block for PCI Express® solution is compatible with
industry-standard application form factors such as the PC/ Express Card Electromechanical
(CEM) v3.0 and the PCl Industrial Computer Manufacturers Group (PICMG) 3.4 specifications.

Resource Utilization

Resources required for the Gen3 Integrated Block for PCle® core have been estimated for
the Virtex-7 FPGA (Table 2-1). These values were generated using the Xilinx® CORE
Generator™ tools, v14.3. They are derived from post-synthesis reports, and might change
during MAP and PAR. The resources listed in Table 2-1 are for the default core
configuration.

Table 2-1: Gen3 Integrated Block for PCle Resource Estimates

. RX Request | TX Replay | Block RAM Usage
Lanes| GTHE2 | FFY) Lut® |cmps(?) 'I;Xffon;_plet:?; Buffer Size | Buffer Size
uffer Size (KB)| ™™y p) (kB) |RAMB18 RAMB36
8 8
1 1 566 832
16 12
8 8
2 2 957 1384 16 1>
128- 8 8 3
1024 8 8
4 4 1740 | 2500
16 12
8 8
8 8 3399 | 4818
16 12
Notes:

1. Numbers are for the default core configuration. Actual LUT and FF utilization values vary based on specific
configurations.

2. Capability Maximum Payload Size (CMPS).

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 12
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Block Selection

Table 2-2 lists which Gen3 Integrated Blocks for PCle are available for use in FPGAs
containing multiple Integrated Blocks. In some cases, not all Integrated Blocks can be used

due to lack of bonded transceiver sites adjacent to the Integrated Block.

Table 2-2: Available Integrated Blocks for PCI Express

Device Selection Integrated Block for PCI Express Location
Device Package X0YO X0Y1 X0Y2 X0Y3
FFG1157
XC7VX330T FEG1761 Yes Yes
FFG1157
XC7VX415T FFG1158 Yes Yes
FFG1927
FFG1158 Yes Yes
XC7VX550T
FFG1927 Yes Yes Yes
FFG1157
FFG1158 Yes Yes
FFG1930
XC7VX690T
FFG1761
FFG1926 Yes Yes Yes
FFG1927
FFG1926
FFG1928 Yes Yes Yes
XC7VX980T FFG1933
FFG1930 Yes Yes
FLG1926
Y Y Y
FLG1933 es s es
XC7VX1140T FLG1928 Yes Yes Yes Yes
FLG1930 Yes Yes
HCG1155 Yes
XC7VH580T HCG1931
HCG1932 Yes Yes
HCG1931 Yes Yes
XC7VH870T
HCG1932 Yes Yes Yes

Gen3 Integrated Block for PCle (v1.3)
PG023 October 16, 2012
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Chapter 2: Product Specification

Port Descriptions

This section provides detailed port descriptions for each interface.

Co

Ina

re Interfaces

ddition to status and control interfaces, the core has these four required AXI4-Stream

interfaces used to transfer and receive transactions:

The

Gen3 Integr

The Completer reQuest (CQ) interface through which all received requests from the link
are delivered to the user application.

The Completer Completion (CC) interface through which completions generated by the
user application responses to the completer requests are transmitted. The user can
process all Non-Posted transactions as split transactions. That is, it can continue to
accept new requests on the Requester Completion interface while sending a
completion for a request.

The Requester reQuest (RQ) interface through which the user application generates
requests to remote PCle® devices.

The Requester Completion (RC) interface through which the completions received from
the link in response to the user's requests are presented to the user application.

core also provides these interfaces:

The Transmit Flow Control interface is used by the user application to request which
flow control information the core provides. This interface provides the Posted/
Non-Posted Header Flow Control Credits, Posted/Non-Posted Data Flow Control
Credits, the Completion Header Flow Control Credits, and the Completion Data Flow
Control Credits to the user application based upon the setting flow control select input
to the core.

The Configuration Management interface is used to read and write to the
Configuration Space Registers.

The Configuration Status interface provides information on how the core is configured,
such as the negotiated link width and speed, the power state of the core, and
configuration errors.

The Configuration Received Message interface indicates to the user logic that a
decodable message from the link, the parameters associated with the data, and the
type of message have been received.

The Configuration Transmit Message interface is used by the user application to
transmit messages to the core. The user application supplies the transmit message type
and data information to the core, which responds with the Done signal.

ated Block for PCle (v1.3) www.xilinx.com 14
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« The Per Function Status interface provides status data as requested by the user
application through the selected function.

« The Configuration Control Interface signals allow a broad range of information
exchange between the user application and the core. The user application uses this
interface to set the configuration space; indicate if a correctable or uncorrectable error
has occurred; set the device serial number; set the Downstream Bus, Device, and
Function Number; and receive per function configuration information. This interface
also provides handshaking between the user application and the core when a Power
State change or function level reset occurs.

« The Configuration Interrupt Controller interface allows the user application to set
Legacy PCle interrupts, MSI interrupts, or MSI-X interrupts. The core provides the
interrupt status on the configuration interrupt sent and fail signals.

« The Configuration Extended interface allows the core to transfer configuration
information with the user application when externally implemented configuration
registers are implemented.

« The Clock and Reset interface, fundamental to the operation of the core, provides the
system level clock and reset to the core as well as the user application clock and reset
signal.

« The PCI Express interface contains all of the differential transmit and receive pairs.
Completer reQuest (CQ) Interface

Table 2-3 defines the ports in the CQ interface of the Gen3 Integrated Block for PCI Express
core. In the Width column, DW denotes the configured data bus width (64, 128, or 256 bits)

Table 2-3: CQ Interface Port Descriptions

Port Direction Description Width

Transmit Data from the Completer reQuest Interface.
Only the lower 128 bits are to be used when the
interface width is 128 bits, and only the lower 64 bits

m axis cq tdata Outout are to be used when the interface width is 64 bits. DW/32
-ax1s_€q P Bits [255:128] are set permanently to 0 by the core

when the interface width is configured as 128 bits, and
bits [255:64] are set permanently to 0 when the
interface width is configured as 64 bits.

Completer reQuest User Data. This set of signals
contains sideband information for the TLP being
transferred. These signals are valid when

m_axis_cq_tuser Output m_axis_cqg_tvalid is High. 85
Table 2-4, page 18 describes the individual signals in
this set.
Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 15
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Table 2-3: CQ Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

m_axis_cq_tlast

Output

TLAST indication for Completer reQuest Data. The core
asserts this signal in the last beat of a packet to
indicate the end of the packet. When a TLP is
transferred in a single beat, the core sets this bit in the
first beat of the transfer.

m_axis_cq_tkeep

Output

TKEEP indication for Completer reQuest Data. The
assertion of bit i of this bus during a transfer indicates
to the client that Dword { of the m_axis_cqg_tdata
bus contains valid data. The core sets this bit to 1
contiguously for all Dwords starting from the first
Dword of the descriptor to the last Dword of the
payload. Thus, m_axis_cqg_tdata issetto all 1sin all
beats of a packet, except in the final beat when the
total size of the packet is not a multiple of the width of
the data bus (both in Dwords). This is true for both
Dword-aligned and address-aligned modes of payload
transfer.

Bits [7:4] of this bus are set permanently to 0 by the
core when the interface width is configured as 128 bits,
and bits [7:2] are set permanently to 0 when the
interface width is configured as 64 bits.

DW/32

m_axis_cq_tvalid

Output

Completer reQuest Data Valid. The core asserts this
output whenever it is driving valid data on the
m_axis_cqg_tdata bus. The core keeps the valid
signal asserted during the transfer of a packet. The
client application can pace the data transfer using the
m_axis_cqg_tready signal.

m_axis_cq_tready

Input

Completer reQuest Data Ready. Activation of this signal
by the client logic indicates to the core that the client
is ready to accept data. Data is transferred across the
interface when both m_axis_cqg_tvalid and
m_axis_cqg_tready are asserted in the same cycle.

If the client deasserts the ready signal when
m_axis_cqg_tvalid is High, the core maintains the
data on the bus and keeps the valid signal asserted
until the client has asserted the ready signal.

Gen3 Integrated Block for PCle (v1.3)
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Table 2-3: CQ Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

pcie_cq_np_req

Input

Completer reQuest Non-Posted Request. This input is
used by the client application to request the delivery of
a Non-Posted request. The core implements a
credit-based flow control mechanism to control the
delivery of Non-Posted requests across the interface,
without blocking Posted TLPs.

This input to the core controls an internal credit count.
The credit count is incremented in each clock cycle
whenpcie_cqg np_reqis High, and decremented on
the delivery of each Non-Posted request across the
interface. The core temporarily stops delivering
Non-Posted requests to the client when the credit
count is zero. It continues to deliver any Posted TLPs
received from the link even when the delivery of
Non-Posted requests has been paused.

The client application can either provide a one-cycle
pulse on pcie_cqg_np_req each time it is ready to
receive a Non-Posted request, or can keep it High
permanently if it does not need to exercise selective
backpressure on Non-Posted requests.

The assertion and deassertion of the
pcie_cqg_np_reqsignal does not need to be aligned
with the packet transfers on the completer request
interface.

pcie_cq_np_req_count

Output

Completer reQuest Non-Posted Request Count. This
output provides the current value of the credit count
maintained by the core for delivery of Non-Posted
requests to the client. The core delivers a Non-Posted
request across the completer request interface only
when this credit count is non-zero. This counter
saturates at a maximum limit of 32.

Because of internal pipeline delays, there can be

several cycles of delay between the core receiving a
pulse on the pcie_cqg_np_req input and updating
the pcie_cqg_np_req_count output in response.
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Table 2-4: Sideband Signal Descriptions in m_axis_cq_tuser

Bit Index Name Width Description

Byte enables for the first Dword of the payload. This
field reflects the setting of the First_BE bits in the
Transaction-Layer header of the TLP. For Memory Reads
and I/O Reads, these four bits indicate the valid bytes to
be read in the first Dword. For Memory Writes and I/O
Writes, these bits indicate the valid bytes in the first
Dword of the payload. For Atomic Operations and
Messages with a payload, these bits are set to all 1s.

This field is valid in the first beat of a packet, that is,
when sop and m_axis_cqg_tvalid are both High.

3:0 first_be[3:0] 4

Byte enables for the last Dword. This field reflects the
setting of the Last_BE bits in the Transaction-Layer
header of the TLP. For Memory Reads, these four bits
indicate the valid bytes to be read in the last Dword of
the block of data. For Memory Writes, these bits
indicate the valid bytes in the ending Dword of the
payload. For Atomic Operations and Messages with a
payload, these bits are set to all 1s.

This field is valid in the first beat of a packet, that is,
when sop and m_axis_cqg_tvalid are both High.

7:4 last_be[3:0] 4

The client logic can optionally use these byte enable
bits to determine the valid bytes in the payload of a
packet being transferred. The assertion of bit i of this
bus during a transfer indicates to the client that byte i
of them_axis_cqg_tdata bus contains a valid payload
byte. This bit is not asserted for descriptor bytes.

Although the byte enables can be generated by client
logic from information in the request descriptor
(address and length) as well as the settings of the
first_be and last_be signals, the client has the
option to use these signals directly instead of
generating them from other interface signals.

When the payload size is more than two Dwords (eight
bytes), the one bit on this bus for the payload is always
contiguous. When the payload size is two Dwords or
less, the one bit can be non-contiguous.

For the special case of a zero-length memory write
transaction defined by the PCI Express specifications,
the byte_en bits are all 0s when the associated
one-DW payload is being transferred.

Bits [31:16] of this bus are set permanently to 0 by the
core when the interface width is configured as 128 bits,
and bits [31:8] are set permanently to 0 when the
interface width is configured as 64 bits.

39:8 byte_en[31:0] 32

Start of packet. This signal is asserted by the core in the
40 sop 1 first beat of a packet to indicate the start of the packet.
Use of this signal is optional for the client.
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Table 2-4: Sideband Signal Descriptions in m_axis_cq_tuser (Cont’d)

Bit Index Name Width Description

This signal is asserted by the core in the last beat of a
TLP, if it has detected an uncorrectable error while
reading the TLP payload from its internal FIFO memory.
The client application must discard the entire TLP when
such an error is signaled by the core.

41 discontinue 1 This signal is never asserted when the TLP has no
payload. It is asserted only in a cycle when
m_axis_cqg_tlast is High.

When the core is configured as an Endpoint, the error is
also reported by the core to the Root Complex to which
it is attached, using Advanced Error Reporting (AER).

This bit indicates the presence of a Transaction
Processing Hint (TPH) in the request TLP being
delivered across the interface. This bit is valid when sop
and m_axis_cq_tvalid are both High.

42 tph_present 1

When a TPH is present in the request TLP, these two bits
provide the value of the PH[1:0] field associated with
the hint. These bits are valid when sop and
m_axis_cqg_tvalid are both High.

44:43 tph_type[1:0] 2

When a TPH is present in the request TLP, this output
provides the 8-bit Steering Tag associated with the hint.
These bits are valid when sop and
m_axis_cqg_tvalid are both High.

52:45 tph_st_tag[7:0] 8

Odd parity for the 256-bit transmit data. Bit{ provides
the odd parity computed for byte ( of
m_axis_cqg_tdata. Only the lower 16 bits are to be
used when the interface width is 128 bits, and only the
84:53 parity 32 lower 8 bits are to be used when the interface width is
64 bits. Bits [31:16] are set permanently to 0 by the core
when the interface width is configured as 128 bits, and
bits [31:8] are set permanently to 0 when the interface
width is configured as 64 bits.

Completer Completion (CC) Interface

Table 2-5 defines the ports in the CC interface of the Gen 3 Integrated Block for PCI Express
core. In the Width column, DW denotes the configured data bus width (64, 128, or 256 bits).
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Chapter 2: Product Specification

Port

Direction

Description

Width

s_axis_cc_tdata

Input

Completer Completion Data bus. Completion data
from the client application to the core. Only the lower
128 bits are to be used when the interface width is 128
bits, and only the lower 64 bits are to be used when the
interface width is 64 bits.

DW

s_axis_cc_tuser

Input

Completer Completion User Data. This set of signals
contain sideband information for the TLP being
transferred. These signals are valid when
s_axis_cc_tvalidis High.

Table 2-6, page 21 describes the individual signals in
this set.

33

s_axis_cc_tlast

Input

TLAST indication for Completer Completion Data. The
client application must assert this signal in the last
cycle of a packet to indicate the end of the packet.
When the TLP is transferred in a single beat, the client
must set this bit in the first cycle of the transfer.

s_axis_cc_tkeep

Input

TKEEP indication for Completer Completion Data. The
assertion of bit { of this bus during a transfer indicates
to the core that Dword i of the s_axis_cc_tdata bus
contains valid data. The client must set this bit to 1
contiguously for all Dwords starting from the first
Dword of the descriptor to the last Dword of the
payload. Thus, s_axis_cc_tdata must be set to all
1sin all beats of a packet, except in the final beat when
the total size of the packet is not a multiple of the
width of the data bus (both in Dwords). This is true for
both Dword-aligned and address-aligned modes of
payload transfer.

Bits [7:4] of this bus are not used by the core when the
interface width is configured as 128 bits, and bits [7:2]
are not used when the interface width is configured as
64 bits.

DW/32

s_axis_cc_tvalid

Input

Completer Completion Data Valid. The client
application must assert this output whenever it is
driving valid data on the s_axis_cc_tdata bus. The
client must keep the valid signal asserted during the
transfer of a packet. The core paces the data transfer
using the s_axis_cc_tready signal.

s_axis_cc_tready

Output

Completer Completion Data Ready. Activation of this
signal by the core indicates that it is ready to accept
data. Data is transferred across the interface when both
s_axis_cc_tvalidand s_axis_cc_tready are
asserted in the same cycle.

If the core deasserts the ready signal when the valid
signal is High, the client must maintain the data on the
bus and keep the valid signal asserted until the core
has asserted the ready signal.
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Table 2-6: Sideband Signal Descriptions in s_axis_cc_tuser

Bit Index Name Width Description

This signal can be asserted by the client
application during a transfer if it has detected an
error (such as an uncorrectable ECC error while
reading the payload from memory) in the data
being transferred and desires to abort the packet.
The core nullifies the corresponding TLP on the
link to avoid data corruption.

The client can assert this signal during any cycle
during the transfer. It can either choose to
terminate the packet prematurely in the cycle
where the error was signaled, or can continue
until all bytes of the payload are delivered to the
core. In the latter case, the core treats the error as
sticky for the following beats of the packet, even
if the client deasserts the discontinue signal
before the end of the packet.

The discontinue signal can be asserted only when
s_axis_cc_tvalid is High. The core samples
this signal only when s_axis_cc_tready is
High. Thus, when asserted, it should not be
deasserted until s_axis_cc_tready is High.
When the core is configured as an Endpoint, this
error is also reported by the core to the Root
Complex to which it is attached, using AER.

0 discontinue 1

Odd parity for the 256-bit data. When parity
checking is enabled in the core, client logic must
set bit { of this bus to the odd parity computed for
byte i of s_axis_cc_tdata. Only the lower 16
bits are to be used when the interface width is 128
) bits, and only the lower 8 bits are to be used when
3211 parity 32 the interface width is 64 bits.

On detection of a parity error, the core nullifies
the corresponding TLP on the link and reports it
as an Uncorrectable Internal Error.

The parity bits can be permanently tied to 0O if
parity check is not enabled in the core.

Requester reQuest (RQ) Interface

Table 2-7 defines the ports in the RQ interface of the Gen3 Integrated Block for PCI Express
core. In the Width column, DW denotes the configured data bus width (64, 128, or 256 bits).
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Port

Direction

Description

Width

s_axis_rg_tdata

Input

Requester reQuest Data bus. This input contains the
requester-side request data from the client application
to the core. Only the lower 128 bits are to be used
when the interface width is 128 bits, and only the lower
64 bits are to be used when the interface width is 64
bits.

DW

s_axis_rq_tuser

Input

Requester reQuest User Data. This set of signals
contains sideband information for the TLP being
transferred. These signals are valid when
s_axis_rqg tvalidis High.

Table 2-8, page 24 describes the individual signals in
this set.

60

s_axis_rq_tlast

Input

TLAST Indication for Requester reQuest Data. The
client application must assert this signal in the last
cycle of a TLP to indicate the end of the packet. When
the TLP is transferred in a single beat, the client must
set this bit in the first cycle of the transfer.

s_axis_rq_tkeep

Input

TKEEP Indication for Requester reQuest Data. The
assertion of bit { of this bus during a transfer indicates
to the core that Dword i of the s_axis_rqg_tdata bus
contains valid data. The client must set this bit to 1
contiguously for all Dwords, starting from the first
Dword of the descriptor to the last Dword of the
payload. Thus, s_axis_rqg_tdata must be set to all
1sin all beats of a packet, except in the final beat when
the total size of the packet is not a multiple of the
width of the data bus (both in Dwords). This is true for
both Dword-aligned and address-aligned modes of
payload transfer.

Bits [7:4] of this bus are not used by the core when the
interface width is configured as 128 bits, and bits [7:2]
are not used when the interface width is configured as
64 bits.

DW/32

s_axis_rqg_tready

Output

Requester reQuest Data Ready. Activation of this signal
by the core indicates that it is ready to accept data.
Data is transferred across the interface when both
s_axis_rqg_tvalid and s_axis_rq_ tready are
asserted in the same cycle.

If the core deasserts the ready signal when the valid
signal is High, the client must maintain the data on the
bus and keep the valid signal asserted until the core
has asserted the ready signal.

s_axis_rqg_tvalid

Input

Requester reQuest Data Valid. The client application
must assert this output whenever it is driving valid data
on the s_axis_rqg_ tdata bus. The client must keep
the valid signal asserted during the transfer of a
packet. The core paces the data transfer using the
s_axis_rq_ tready signal.

Gen3 Integrated Block for PCle (v1.3)

PG023 October 16, 2012

www.xilinx.com

22


http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-7: RQ Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

pcie_rg_seq_num

Output

Requester reQuest TLP transmit sequence number. The
client can optionally use this output to track the
progress of the request in the core's transmit pipeline.
To use this feature, the client must provide a sequence
number for each request on the
s_axis_rqg_seq_num[3:0] bus. The core outputs
this sequence number on the

pcie_rg _seg num([3:0] output when the request
TLP has reached a point in the pipeline where a
Completion TLP from the client cannot pass it. This
mechanism enables the client to maintain ordering
between Completions sent to the completer
completion interface of the core and Posted requests
sent to the requester request interface. Data on the
pcie_rg seqg num[3:0] output is valid when
pcie_rg seq_num_vld is High.

pcie_rg_seq_num_vid

Output

Requester reQuest TLP transmit sequence number
valid. This output is asserted by the core for one cycle
when it has placed valid data on

pcie_rg_seqg num[3:0].

pcie_rg_tag

Output

Requester reQuest Non-Posted tag. When tag
management for Non-Posted requests is performed by
the core (AXISTEN_IF_ENABLE_CLIENT_TAG is 0), this
output is used by the core to communicate the
allocated tag for each Non-Posted request received
from the client. The tag value on this bus is valid for
one cycle whenpcie_rqg_tag_vldis High. The client
must copy this tag and use it to associate the
completion data with the pending request.

There can be a delay of several cycles between the
transfer of the request on the s_axis_rqg tdata bus
and the assertion of pcie_rqg_tag_v1dby the core to
provide the allocated tag for the request. Meanwhile,
the client can continue to send new requests. The tags
for requests are communicated on this bus in FIFO
order, so the client can easily associate the tag value
with the request it transferred.

pcie_rq_tag_vld

Output

Requester reQuest Non-Posted tag valid. The core
asserts this output for one cycle when it has allocated
a tag to an incoming Non-Posted request from the
requester request interface and placed it on the
pcie_rqg_ tag output.
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Table 2-8: Sideband Signal Descriptions in s_axis_rq_tuser

Bit Index Name Width Description

Byte enables for the first Dword. This field must be set based on
the desired value of the First_BE bits in the Transaction-Layer
header of the request TLP. For Memory Reads, I/O Reads, and
Configuration Reads, these four bits indicate the valid bytes to
3:0 first_be[3:0] 4 be read in the first Dword. For Memory Writes, I/O Writes, and
Configuration Writes, these bits indicate the valid bytes in the
first Dword of the payload.

The core samples this field in the first beat of a packet, when
s_axis_rqg_tvalid and s_axis_rqg_tready are both High.

Byte enables for the last Dword. This field must be set based on
the desired value of the Last_BE bits in the Transaction-Layer
header of the TLP. For Memory Reads of two Dwords or more,
these four bits indicate the valid bytes to be read in the last
7:4 last_be[3:0] 4 Dword of the block of data. For Memory Writes of two Dwords
or more, these bits indicate the valid bytes in the last Dword of
the payload.

The core samples this field in the first beat of a packet, when
s_axis_rqg tvalidand s_axis_rqg tready are both High.

When the address-aligned mode is in use on this interface, the
client application must provide the byte lane number where the
payload data begins on the data bus, modulo 4, on this sideband
bus. This enables the core to determine the alignment of the
10:8 addr_offset[2:0] 3 data block being transferred.

The core samples this field in the first beat of a packet, when
s_axis_rqg_tvalidand s_axis_rqg_tready are both High.
When the requester request interface is configured in the
Dword-alignment mode, this field must always be set to 0.

This signal can be asserted by the client application during a
transfer if it has detected an error in the data being transferred
and desires to abort the packet. The core nullifies the
corresponding TLP on the link to avoid data corruption.

The client can assert this signal in any cycle during the transfer.
It can either choose to terminate the packet prematurely in the
cycle where the error was signaled, or can continue until all
bytes of the payload are delivered to the core. In the latter case,
the core treats the error as sticky for the following beats of the
packet, even if the client deasserts the discontinue signal before
the end of the packet.

The discontinue signal can be asserted only when
s_axis_rqg_tvalidis High. The core samples this signal only
when s_axis_rqg_tready is High. Thus, when asserted, it
should not be deasserted until s_axis_rq_tready is High.
When the core is configured as an Endpoint, this error is also
reported by the core to the Root Complex to which it is
attached, using Advanced Error Reporting (AER).

11 discontinue 1
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Sideband Signal Descriptions in s_axis_rq_tuser (Cont’d)

Bit Index

Name

Width

Description

12

tph_present

This bit indicates the presence of a Transaction Processing Hint
(TPH) in the request TLP being delivered across the interface.
The core samples this field in the first beat of a packet, when
s_axis_rqg tvalidand s_axis_rqg_ tready are both High.
This bit must be permanently tied to 0 if the TPH capability is
not in use.

14:13

tph_type[1:0]

When a TPH is present in the request TLP, these two bits provide
the value of the PH[1:0] field associated with the hint. The core
samples this field in the first beat of a packet, when

s_axis_rqg tvalidand s_axis_rqg tready are both High.

These bits can be set to any value if tph_present is set to 0.

15

tph_indirect_tag_en

When this bit is set, the core uses the lower bits of
tph_st_tag[7:0] as anindex into its Steering Tag Table, and
insert the tag from this location in the transmitted request TLP.
When this bit is 0, the core uses the value on
tph_st_tagl[7:0] directly as the Steering Tag.

The core samples this bit in the first beat of a packet, when
s_axis_rqg_tvalid and s_axis_rqg_tready are both High.
This bit can be set to any value if tph_present is set to 0.

23:16

tph_st_tag[7:0]

When a TPH is present in the request TLP, this output provides
the 8-bit Steering Tag associated with the hint. The core samples
this field in the first beat of a packet, when

s_axis_rqg tvalidand s_axis_rqg_ tready are both High.

These bits can be set to any value if tph_present is set to 0.

27:24

seq_num|[3:0]

The client can optionally supply a 4-bit sequence number in this
field to keep track of the progress of the request in the core's
transmit pipeline. The core outputs this sequence number on its
pcie_rg seqg_num[3:0] output when the request TLP has
progressed to a point in the pipeline where a Completion TLP
from the client is not able to pass it.

The core samples this field in the first beat of a packet, when
s_axis_rqg tvalidand s_axis_rqg_ tready are both High.

This input can be hardwired to 0 when the client is not
monitoring the pcie_rqg_seq num[3:0] output of the core.

59:28

parity

32

Odd parity for the 256-bit data. When parity checking is enabled
in the core, client logic must set bit i of this bus to the odd parity
computed for byte i of s_axis_rqg_ tdata. Only the lower

16 bits are to be used when the interface width is 128 bits, and
only the lower 8 bits are to be used when the interface width is
64 bits.

On detection of a parity error, the core nullifies the
corresponding TLP on the link and reports it as an Uncorrectable
Internal Error.

These bits can be set to 0 if parity checking is disabled in the
core.
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Requester Completion (RC) Interface

Table 2-9 defines the ports in the RC interface of the Gen3 Integrated Block for PCI Express
core. In the Width column, DW denotes the configured data bus width (64, 128, or 256 bits).

Table 2-9: RC Interface Port Descriptions

Port

Direction

Description

Width

m_axis_rc_tdata

Output

Requester Completion Data bus. Transmit data from
the Core requester completion interface to the client
application. Only the lower 128 bits are used when the
interface width is 128 bits, and only the lower 64 bits
are used when the interface width is 64 bits.

Bits [255:128] are set permanently to 0 by the core
when the interface width is configured as 128 bits, and
bits [255:64] are set permanently to 0 when the
interface width is configured as 64 bits.

DW

m_axis_rc_tuser

Output

Requester Completion User Data. This set of signals
contains sideband information for the TLP being
transferred. These signals are valid when
m_axis_rc_tvalid is High.

Table 2-10, page 28 describes the individual signals in
this set.

75

m_axis_rc_tlast

Output

TLAST indication for Requester Completion Data. The
core asserts this signal in the last beat of a packet to
indicate the end of the packet. When a TLP is
transferred in a single beat, the core sets this bit in the
first beat of the transfer. This output is used only when
the straddle option is disabled. When the straddle
option is enabled (for 256-bit interface), the core sets
this output permanently to 0.
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Table 2-9: RC Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

m_axis_rc_tkeep

Output

TKEEP indication for Requester Completion Data. The
assertion of bit i of this bus during a transfer indicates
to the client that Dword { of the m_axis_rc_tdata
bus contains valid data. The core sets this bit to 1
contiguously for all Dwords starting from the first
Dword of the descriptor to the last Dword of the
payload. Thus, m_axis_cqg_tdataissettoall 1sinall
beats of a packet, except in the final beat when the
total size of the packet is not a multiple of the width of
the data bus (both in Dwords). This is true for both
Dword-aligned and address-aligned modes of payload
transfer.

Bits [7:4] of this bus are set permanently to 0 by the
core when the interface width is configured as 128 bits,
and bits [7:2] are set permanently to 0 when the
interface width is configured as 64 bits.

These outputs are permanently set to all 1s when the
interface width is 256 bits and the straddle option is
enabled. The client logic must use the signals in
m_axis_rc_tuser in that case to determine the start
and end of Completion TLPs transferred over the
interface.

DW/32

m_axis_rc_tvalid

Output

Requester Completion Data Valid. The core asserts this
output whenever it is driving valid data on the
m_axis_rc_tdata bus. The core keeps the valid
signal asserted during the transfer of a packet. The
client application can pace the data transfer using the
m_axis_rc_tready signal.

m_axis_rc_tready

Input

Requester Completion Data Ready. Activation of this
signal by the client logic indicates to the core that the
clientis ready to accept data. Data is transferred across
the interface when both m_axis_rc_twvalid and
m_axis_rc_tready are asserted in the same cycle.

If the client deasserts the ready signal when the valid
signal is High, the core maintains the data on the bus
and keeps the valid signal asserted until the client has
asserted the ready signal.
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Sideband Signal Descriptions in m_axis_rc_tuser

Bit Index

Name

Width

Description

31:0

byte_en

32

The client logic can optionally use these byte enable bits
to determine the valid bytes in the payload of a packet
being transferred. The assertion of bit { of this bus
during a transfer indicates to the client that byte { of the
m_axis_cqg_tdata bus contains a valid payload byte.
This bit is not asserted for descriptor bytes.

Although the byte enables can be generated by client
logic from information in the request descriptor
(address and length), the client has the option to use
these signals directly instead of generating them from
other interface signals. The 1 bit in this bus for the
payload of a TLP is always contiguous.

Bits [31:16] of this bus are set permanently to 0 by the
core when the interface width is configured as 128 bits,
and bits [31:8] are set permanently to 0 when the
interface width is configured as 64 bits.

32

is_sof 0

Start of a first Completion TLP. For 64-bit and 128-bit
interfaces, and for the 256-bit interface with no
straddling, is_sof_0 is asserted by the core in the first
beat of a packet to indicate the start of the TLP. On these
interfaces, only a single TLP can be started in a data
beat, and is_sof_1 is permanently set to 0. Use of this
signal is optional for the client when the straddle option
is not enabled.

When the interface width is 256 bits and the straddle
option is enabled, the core can straddle two Completion
TLPs in the same beat. In this case, the Completion TLPs
are not formatted as AXI4-Stream packets. The assertion
of is_sof_0 indicates a Completion TLP starting in the
beat. The first byte of this Completion TLP is in byte lane
0 if the previous TLP ended before this beat, or in byte
lane 16 if the previous TLP continues in this beat.

33

is_sof 1

Start of a second Completion TLP. This signal is used
when the interface width is 256 bits and the straddle
option is enabled, when the core can straddle two
Completion TLPs in the same beat. The output is
permanently set to 0 in all other cases.

The assertion of is_sof_1 indicates a second
Completion TLP starting in the beat, with its first bye in
byte lane 16. The core starts a second TLP at byte
position 16 only if the previous TLP ended in one of the
byte positions 0-15 in the same beat; that is, only if
is_eof_0[0] is also set in the same beat.

37:34

is_eof_0[3:0]

End of a first Completion TLP and the offset of its last
Dword. These outputs are used only when the interface
width is 256 bits and the straddle option is enabled.
The assertion of the bit is_eof_0[0] indicates the end
of a first Completion TLP in the current beat. When this
bit is set, the bits is_eof_0[3:1] provide the offset of
the last Dword of this TLP.
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Sideband Signal Descriptions in m_axis_rc_tuser (Cont’d)

Bit Index

Name

Width

Description

41:38

is_eof_1[3:0]

End of a second Completion TLP and the offset of its last
Dword. These outputs are used only when the interface
width is 256 bits and the straddle option is enabled. The
core can then straddle two Completion TLPs in the same
beat. These outputs are reserved in all other cases.

The assertion of is_eof_1[0] indicates a second TLP
ending in the same beat. When bit0 of is_eof_1 is set,
bits [3:1] provide the offset of the last Dword of the TLP
ending in this beat. Because the second TLP can only
end at a byte position in the range 27-31,
is_eof_1[3:1] can only take one of two values (6 or
7).

The offset for the last byte of the second TLP can be
determined from the starting address and length of the
TLP, or from the byte enable signals byte_en[31:0].
Ifis_eof_110] isHigh, thesignalsis_eof_0[0] and
is_sof_1 are also High in the same beat.

42

discontinue

This signal is asserted by the core in the last beat of a
TLP, if it has detected an uncorrectable error while
reading the TLP payload from its internal FIFO memory.
The client application must discard the entire TLP when
such an error is signaled by the core.

This signal is never asserted when the TLP has no
payload. It is asserted only in the last beat of the payload
transfer; that is, when is_eof_0[0] is High.

When the straddle option is enabled, the core does not
start a second TLP if it has asserted discontinue in a
beat.

When the core is configured as an Endpoint, the error is
also reported by the core to the Root Complex to which
it is attached, using Advanced Error Reporting (AER).

74:43

parity

32

Odd parity for the 256-bit transmit data. Bit { provides
the odd parity computed for byte i of
m_axis_rc_tdata. Only the lower 16 bits are used
when the interface width is 128 bits, and only the lower
8 bits are used when the interface width is 64 bits. Bits
[31:16] are set permanently to 0 by the core when the
interface width is configured as 128 bits, and bits [31:8]
are set permanently to 0 when the interface width is
configured as 64 bits.

Transmit Flow Control Interface

Table 2-11 defines the ports in the Transmit Flow Control interface of the Integrated Block
for PCI Express core.
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Table 2-11: Transmit Flow Control Interface Port Descriptions

Port Direction

Description

Width

pcie_tfc_nph_av Output

Transmit flow control Non-Posted header credits
available. This output indicates the currently available
header credit for Non-Posted TLPs on the transmit side
of the core. Client logic can check this output before
transmitting a Non-Posted request on the requester
request interface, to avoid blocking the interface when
no credit is available. The encodings are:

* 00: No credits available

* 01:1 credit available

* 10: 2 credits available

* 11: 3 or more credits available

Because of pipeline delays, the value on this output
does not include the credit consumed by the
Non-Posted requests sent by the client in the last two
clock cycles. The client logic must adjust the value on
this output by the credit consumed by the Non-Posted
requests it sent in the previous two clock cycles, if any.

pcie_tfc_npd_av Output

Transmit flow control Non-Posted data credits
available. This output indicates the currently available
payload credit for Non-Posted TLPs on the transmit
side of the core. Client logic can check this output
before transmitting a Non-Posted request on the
requester request interface, to avoid blocking the
interface when no credit is available. The encodings
are:

« 00: No credits available

e 01:1 credit available

e 10: 2 credits available

e 11: 3 or more credits available

Because of pipeline delays, the value on this output
does not include the credit consumed by the
Non-Posted requests sent by the client in the last two
clock cycles. The client logic must adjust the value on
this output by the credit consumed by the Non-Posted
requests it sent in the previous two clock cycles, if any.

Configuration Management Interface

Table 2-12 defines the ports in the Configuration Management interface of the Integrated

Block for PCI Express core.
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Table 2-12: Configuration Management Interface Port Descriptions

Port Direction Description Width

Read/Write Address. Address is in the Configuration
and Management register space, and is Dword aligned.
For accesses from the local management bus: for the
address bits cfg_mgmt_addr[17:10], select the PCI
Function associated with the configuration register;
cfg_mgmt_addr Input and for the bits cfg_mgmt_addr[9:0], select the 19
register within the Function. The address bit
cfg_mgmt_addr[18] must be set to zero (0) when
accessing the PCI or PCI Express configuration
registers, and to one (1) when accessing the local
management registers.

Write Enable. Asserted for a write operation. Active

cfg_mgmt_write Input High.

Write data. Write data is used to configure the

Configuration and Management registers. 32

cfg_mgmt_write_data Input

Byte Enable. Byte enable for write data, where
cfg_mgmt_byte_enable Input cfg_mgmt_byte_enable[0] corresponds to 4
cfg_mgmt_write_datal[7:01], and so on.

Read Enable. Asserted for a read operation. Active

cfg_mgmt_read Input High. 1

Read data out. Read data provides the configuration of
cfg_mgmt_read_data Output the Configuration and Management registers. 32
cfg_mgmt_read_write_done Output Read/Write operation complete. Asserted for 1 cycle 1

when operation is complete. Active High.

Type 1 RO, Write. When the core is configured in the
Root Port mode, asserting this input during a write to
a Type-1 PCI™ Config Register forces a write into
cfg_mgmt_typel_cfg_reg_access Input | certain read-only fields of the register (see description 1
of RC-mode Config registers). This input has no effect
when the core is in the Endpoint mode, or when writing
to any register other than a Type-1 Config Register.

Configuration Status Interface

Table 2-13 defines the ports in the Configuration Status interface of the Integrated Block
for PCI Express core.
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Table 2-13: Configuration Status Interface Port Descriptions

Port

Direction

Description

Width

cfg_phy_link_down

Output

Configuration Link Down. Status of the PCI Express link
based on Physical Layer LTSSM.

e 1b: Link is Down (LinkUp state variable is 0b)
* 0b: Link is Up (LinkUp state variable is 1b)

Note: Per the PCI Express Base Specification, rev. 3.0,
LinkUp is 1b in the Recovery, LO, LOs, L1, and L2
cfg_ltssm states. In the Configuration state, LinkUp can
be 0b or 1b. It is always 0b when the Configuration
state is reached via Detect > Polling > Configuration.
LinkUp is 1b if the configuration state is reached via
any other state transition.

cfg_phy_link_status

Output

Configuration Link Status. Status of the PCI Express
link.

* 00b: No receivers detected

* 01b: Link training in progress

e 10b: Link up, DL initialization in progress
e 11b: Link up, DL initialization completed

cfg_negotiated_width

Output

Configuration Link Status. Negotiated Link Width: PCI
Express Link Status Register, Negotiated Link Width
field. This field indicates the negotiated width of the
given PCI Express Link and is valid when
cfg_phy_link_status[1l:0] == 11b (DL
Initialization is complete).

cfg_current_speed

Output

Current Link Speed. This signal outputs the current link
speed from Link Status register bits 1 down to 0. This
field indicates the negotiated Link speed of the given
PCI Express Link.

* 001b: 2.5 GT/s PCI Express Link
e 010b: 5.0 GT/s PCI Express Link
* 100b: 8.0 GT/s PCI Express Link

cfg_max_payload

Output

Max_Payload_Size. This signal outputs the maximum
payload size from Device Control Register bits 7 down
to 5. This field sets the maximum TLP payload size. As
a Receiver, the user logic must handle TLPs as large as
the set value. As a Transmitter, the user logic must not
generate TLPs exceeding the set value.

* 000b: 128 bytes maximum payload size
* 001b: 256 bytes maximum payload size
* 010b: 512 bytes maximum payload size
* 011b: 1024 bytes maximum payload size
* 100b: 2048 bytes maximum payload size
e 101b: 4096 bytes maximum payload size
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Table 2-13: Configuration Status Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

cfg_max_read_req

Output

Max_Read_Request_Size. This signal outputs the
maximum read request size from Device Control
register bits 14 down to 12. This field sets the
maximum Read Request size for the user logic as a
Requester. The user logic must not generate Read
Requests with size exceeding the set value.

* 000b: 128 bytes maximum Read Request size
* 001b: 256 bytes maximum Read Request size
* 010b: 512 bytes maximum Read Request size
* 011b: 1024 bytes maximum Read Request size
* 100b: 2048 bytes maximum Read Request size
* 101b: 4096 bytes maximum Read Request size

cfg_function_status

Output

Configuration Function Status. These outputs indicate
the states of the Command Register bits in the PCI
configuration space of each Function. These outputs
are used to enable requests and completions from the
host logic. The assignment of bits is as follows:

 Bit 0: Function 0 I/O Space Enable

+ Bit 1: Function 0 Memory Space Enable
« Bit 2: Function 0 Bus Master Enable

e Bit 3: Function 0 INTx Disable

 Bit 4: Function 1 I/O Space Enable

« Bit 5: Function 1 Memory Space Enable
« Bit 6: Function 1 Bus Master Enable

e Bit 7: Function 1 INTx Disable

cfg_vf_status

Output

Configuration Virtual Function Status. These outputs

indicate the status of Virtual Functions, two bits each

per Virtual Function.

 Bit 0: Virtual Function 0: Configured/Enabled by
software

 Bit 1: Virtual Function 0: PCI Command Register, Bus
Master Enable, and so on.

12

cfg_function_power_state

Output

Configuration Function Power State. These outputs
indicate the current power state of the Physical
Functions. Bits [2:0] capture the power state of
Function 0, and bits [5:3] capture that of Function 1.
The possible power states are:

* 000: DO_uninitialized

e 001: DO_active

e 010:D1

e 100: D3_hot
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Table 2-13: Configuration Status Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

cfg_vf_power_state

Output

Configuration Virtual Function Power State. These
outputs indicate the current power state of the Virtual
Functions. Bits [2:0] capture the power state of Virtual
Function 0, and bits [5:3] capture that of Virtual
Function 1, and so on. The possible power states are:
* 000: DO_uninitialized

* 001: DO_active

« 010: D1

« 100: D3_hot

18

cfg_link_power_state

Output

Current power state of the PCI Express link:
+ 00:L0

* 01:LOs

« 10:L1

e 11:L2/Reserved

cfg_err_cor_out

Output

Correctable Error Detected. In the Endpoint mode, the
core activates this output for one cycle when it has
detected a correctable error and its reporting is not
masked. In a multi-Function Endpoint, this is the logical
OR of the correctable error status bits in the Device
Status Registers of all Functions. In the Root Port mode,
this output is activated on detection of a local
correctable error, when its reporting is not masked.
This output does not respond to any errors signaled by
remote devices using PCI Express error messages.
These error messages are delivered to the user through
the message interface.

cfg_err_nonfatal_out

Output

Non-Fatal Error Detected. In the Endpoint mode, the
core activates this output for one cycle when it has
detected a non fatal error and its reporting is not
masked. In a multi-Function Endpoint, this is the logical
OR of the non fatal error status bits in the Device Status
Registers of all Functions. In the Root Port mode, this
output is activated on detection of a local non-fatal
error, when its reporting is not masked. This output
does not respond to any errors signaled by remote
devices using PCI Express error messages. These error
messages are delivered to the user through the
message interface.

cfg_err_fatal_out

Output

Fatal Error Detected. In the Endpoint mode, the core
activates this output for one cycle when it has detected
a fatal error and its reporting is not masked. In a
multi-Function Endpoint, this is the logical OR of the
fatal error status bits in the Device Status Registers of
all Functions. In the Root Port mode, this output is
activated on detection of a local fatal error, when its
reporting is not masked. This output does not respond
to any errors signaled by remote devices using PCI
Express error messages. These error messages are
delivered to the user through the message interface.
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Table 2-13: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction

Description

Width

cfg_local_error Output

Local Error Conditions. Output is High when any of the
local error conditions listed in Local Error Status
Register occur. Each of the conditions can be
selectively masked by setting the corresponding bits in
the Local Interrupt Mask Register.

cfg_ltr_enable Output

Latency Tolerance Reporting Enable. The state of this
output reflects the setting of the LTR Mechanism
Enable bit in the Device Control 2 Register of Physical
Function 0. When the core is configured as an Endpoint
user logic uses this output to enable the generation of
LTR messages. This output is not to be used when the
core is configured as a Root Port.
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Table 2-13: Configuration Status Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

cfg_ltssm_state

Output

Current LTSSM State. Shows the current LTSSM state:
Detect.Quiet 00

Detect.Active 01

Polling.Active 02

Polling.Compliance 03

Polling.Configuration 04
Configuration.Linkwidth.Start 05
Configuration.Linkwidth.Accept 06
Configuration.Lanenum.Accept 07
Configuration.Lanenum.Wait 08
Configuration.Complete 09
Configuration.Idle 0A

Recovery.RcvrLock 0B

Recovery.Speed 0C

Recovery.RcvrCfg OD

Recovery.ldle OE

LO 10

Rx_LOs.Entry 11

Rx_LOs.Idle 12

Rx_LOs.FTS 13

Tx_LOs.Entry 14

Tx_LOs.Idle 15

Tx_LOs.FTS 16

L1.Entry 17

L1.Idle 18

L2.Idle 19

L2.TransmitWake 1A

DISABLED = 6'h20;
LOOPBACK_ENTRY_MASTER = 6'h21;
LOOPBACK_ACTIVE_MASTER = 6'h22;
LOOPBACK_EXIT_MASTER = 6'h23;
LOOPBACK_ENTRY_SLAVE = 6'h24;
LOOPBACK_ACTIVE_SLAVE = 6'h25;
LOOPBACK_EXIT_SLAVE = 6'h26;

HOT_RESET = 6'h27;
RECOVERY_EQUALIZATION_PHASEO = 6'h28;
RECOVERY_EQUALIZATION_PHASE1 = 6'h29;
RECOVERY_EQUALIZATION_PHASE2 = 6'h2A;
RECOVERY_EQUALIZATION_PHASE3 = 6'h2B;
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Table 2-13: Configuration Status Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

cfg_rcb_status

Output

RCB Status. Provides the setting of the Read
Completion Boundary (RCB) bit in the Link Control
Register of each Physical Function. In the Endpoint
mode, bit 0 indicates the RCB for PF 0, and so on. In the
RC mode, bit 0 indicates the RCB setting of the Link
Control Register of the RP, bit 1 is reserved.

For each bit, a value of 0 indicates an RCB of 64 bytes
and a value of 1 indicates 128 bytes.

cfg_dpa_substate_change

Output

Dynamic Power Allocation Substate Change. In the
Endpoint mode, the core generates a one-cycle pulse
on one of these outputs when a Configuration Write
transaction writes into the Dynamic Power Allocation
Control Register to modify the DPA power state of the
device. A pulse on bit 0 indicates such a DPA event for
PF 0 and so on. These outputs are not active in the
Root Port mode.

cfg_obff_enable

Output

Optimized Buffer Flush Fill Enable. This output reflects

the setting of the OBFF Enable field in the Device

Control 2 Register.

* 00: OBFF disabled

* 01:OBFF enabled using message signaling, Variation
A

» 10: OBFF enabled using message signaling, Variation
B

* 11: OBFF enabled using WAKE# signaling.
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Table 2-13: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Description Width

This output is used by the core in the Root Port mode
to signal one of the following link training-related
events:

(@) The link bandwidth changed as a result of the
change in the link width or operating speed and the
change was initiated locally (not by the link partner),
without the link going down. This interrupt is enabled
by the Link Bandwidth Management Interrupt Enable
bit in the Link Control Register. The status of this
interrupt can be read from the Link Bandwidth
Management Status bit of the Link Status Register; or
(b) The link bandwidth changed autonomously as a
result of the change in the link width or operating
speed and the change was initiated by the remote
node. This interrupt is enabled by the Link
Autonomous Bandwidth Interrupt Enable bit in the Link
Control Register. The status of this interrupt can be
read from the Link Autonomous Bandwidth Status bit
of the Link Status Register; or

(c) The Link Equalization Request bit in the Link Status
2 Register was set by the hardware because it received
a link equalization request from the remote node. This
interrupt is enabled by the Link Equalization Interrupt
Enable bit in the Link Control 3 Register. The status of
this interrupt can be read from the Link Equalization
Request bit of the Link Status 2 Register.
Thepl_interrupt outputis notactive when the core
is configured as an Endpoint.

cfg_pl_status_change Output

Bit 0 of this output reflect the setting of the TPH
Requester Enable bit [8] of the TPH Requester Control
cfg_tph_requester_enable Output | Register in the TPH Requester Capability Structure of 2
Physical Function 0. Bit 1 corresponds to Physical
Function 1.

Bits [2:0] of this output reflect the setting of the ST
Mode Select bits in the TPH Requester Control Register
of Physical Function 0. Bits [5:3] reflect the setting of
the same register field of PF 1.

cfg_tph_st_mode Output

Each of the six bits of this output reflects the setting of
the TPH Requester Enable bit 8 of the TPH Requester
Control Register in the TPH Requester Capability
Structure of the corresponding Virtual Function.

cfg_vf_tph_requester_enable Output

Bits [2:0] of this output reflect the setting of the ST
Mode Select bits in the TPH Requester Control Register
of Virtual Function 0. Bits [5:3] reflect the setting of the
same register field of VF 1, and so on.

cfg_vf_tph_st_mode Output 18
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Configuration Received Message Interface

Table 2-14 defines the ports in the Configuration Received Message interface of the
Integrated Block for PCI Express core.

Table 2-14: Configuration Received Message Interface Port Descriptions

Port

Direction

Description

Width

cfg_msg_received

Output

Configuration Received a Decodable Message. The
core asserts this output for one or more consecutive
clock cycles when it has received a decodable message
from the link. The duration of its assertion is
determined by the type of message. The core transfers
any parameters associated with the message on the
cfg_msg_datal[7:0]output in one or more cycles
when cfg_msg_received is High. Table 3-8,

page 116 lists the number of cycles of
cfg_msg_received assertion, and the parameters
transferred on cfg_msg_data[7:0] ineach cycle, for
each type of message.

The core inserts at least a one-cycle gap between two
consecutive messages delivered on this interface.

This output is active only when the
AXISTEN_IF_ENABLE_RX_MSG_INTFC attribute is set.

cfg_msg_received_data

Output

This bus is used to transfer any parameters associated
with the Received Message. The information it carries
in each cycle for various message types is listed in
Table 3-8, page 116.

cfg_msg_received_type

Output

Received message type. When cfg_msg_receivedis
High, these five bits indicate the type of message
being signaled by the core. The various message types
are listed in Table 3-7, page 115.

Configuration Transmit Message Interface

Table 2-15 defines the ports in the Configuration Transmit Message interface of the

Integrated Block for PCI Express core.
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Table 2-15: Configuration Transmit Message Interface Port Descriptions

Port Direction Description Width

Configuration Transmit Encoded Message. This signal is asserted
together with cfg_msg_transmit_type, which supplies the
cfg_msg_transmit Input | encoded message type and cfg_msg_transmit_data, which 1
supplies optional data associated with the message, until
cfg_msg_transmit_done is asserted in response.

Configuration Transmit Encoded Message Type. Indicates the type
of PCI Express message to be transmitted. Encodings supported
are:

) * 000b: Latency Tolerance Reporting (LTR)
cfg_msg_transmit_type | Input | 441y Optimized Buffer Flush/Fill (OBFF)
* 010b: Set Slot Power Limit (SSPL)

* 011b: Power Management (PM PME)

* 100b -111b: Reserved

Configuration Transmit Encoded Message Data. Indicates message

data associated with particular message type.

* 000b: LTR - cfg_msg_transmit_data[31] < Snoop Latency Req,,
cfg_msg_transmit_data[28:26] < Snoop Latency Scale,
cfg_msg_transmit_data[25:16] < Snoop Latency Value,
cfg_msg_transmit_data[15] < No-Snoop Latency Requirement,
cfg_msg_transmit_datal[l12:10] < No-Snoop Latency Scale,
cfg_msg_transmit_datal[9:0] < No-Snoop Latency Value.

cfg_msg_transmit_data Input * 001b: OBFF - cfg_msg_transmit_data[3:0] < OBFF Code. 32

* 010b: SSPL - cfg_msg_transmit_data[9:0] < {Slot Power
Limit Scale, Slot Power Limit Value}.

* 011b: PM_PME - cfg_msg_transmit_datal[l:0] < PF1, PFQ;
cfg_msg_transmit_datal[9:4] < VF5, VF4, VF3, VF2, VF1,
VFO, where one or more PFs or VFs can signal PM_PME
simultaneously.

*+ 100b - 111b: Reserved

Configuration Transmit Encoded Message Done. Asserted in
cfg_msg_transmit_done | Output | response to cfg_mg_transmit assertion, for 1 cycle after the 1
request is complete.

Configuration Flow Control Interface

Table 2-16 defines the ports in the Configuration Flow Control interface of the Integrated
Block for PCI Express core.
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Table 2-16: Configuration Flow Control Interface Port Descriptions

Port

Direction

Description

Width

cfg_fc_ph

Output

Posted Header Flow Control Credits. This output
provides the number of Posted Header Flow Control
Credits. This multiplexed output can be used to bring
out various flow control parameters and variables
related to Posted Header Credit maintained by the
core. The flow control information to bring out on this
core is selected by the cfg_fc_sel[2:0] input.

cfg_fc_pd

Output

Posted Data Flow Control Credits. This output provides
the number of Posted Data Flow Control Credits. This
multiplexed output can be used to bring out various
flow control parameters and variables related to
Posted Data Credit maintained by the core. The flow
control information to bring out on this core is
selected by the cfg_fc_sel[2:0] input.

12

cfg_fc_nph

Output

Non-Posted Header Flow Control Credits. This output
provides the number of Non-Posted Header Flow
Control Credits. This multiplexed output can be used to
bring out various flow control parameters and
variables related to Non-Posted Header Credit
maintained by the core. The flow control information
to bring out on this core is selected by the
cfg_fc_sel[2:0] input.

cfg_fc_npd

Output

Non-Posted Data Flow Control Credits. This output
provides the number of Non-Posted Data Flow Control
Credits. This multiplexed output can be used to bring
out various flow control parameters and variables
related to Non-Posted Data Credit maintained by the
core. The flow control information to bring out on this
core is selected by the cfg_fc_sel[2:0] input.

12

cfg_fc_cplh

Output

Completion Header Flow Control Credits. This output
provides the number of Completion Header Flow
Control Credits. This multiplexed output can be used to
bring out various flow control parameters and
variables related to Completion Header Credit
maintained by the core. The flow control information
to bring out on this core is selected by the
cfg_fc_sel[2:0] input.

cfg_fc_cpld

Output

Completion Data Flow Control Credits. This output
provides the number of Completion Data Flow Control
Credits. This multiplexed output can be used to bring
out various flow control parameters and variables
related to Completion Data Credit maintained by the
core. The flow control information to bring out on this
core is selected by the cfg_fc_sel[2:0].

12
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Table 2-16: Configuration Flow Control Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

cfg_fc_sel

Input

Flow Control Informational Select. These inputs select

the type of flow control to bring out on the cfg_fc_*

outputs of the core. The various flow control

parameters and variables that can be accessed for the

different settings of these inputs are:

* 000: Receive credits currently available to the link
partner

* 001: Receive credit limit

* 010: Receive credits consumed

* 011: Available space in receive buffer

* 100: Transmit credits available

¢ 101: Transmit credit limit

* 110: Transmit credits consumed

* 111: Reserved

Note: Infinite credit for transmit credits available

(cfg_fc_sel == 3 'b100)issignaledas 8 'h80,12'h800

for header and data credits, respectively. For all other

cfg_fc_sel selections, infinite credit is signaled as

8'h00, 12'h000, respectively, for header and data

categories.

Per Function Status Interface

Table 2-17 and Table 2-18 define the ports in the Function Status interface of the Integrated
Block for PCI Express core.

Table 2-17: Overview of Function Status Interface Port Descriptions

Port

Direction

Description

Width

cfg_per_func_status_control

Input

Configuration Per Function Control. Controls
information presented on the multi-function output
cfg_per_func_status_data. Supported
encodings are 000b, 001b, 010b, 011b, 100b, and
101b. All other encodings are reserved.

cfg_per_func_status_data

Output

Configuration Per Function Status Data. Provides a
16-bit status output for the selected function.
Information presented depends on the values of
cfg_per_func_status_data and
cfg_per_function_number.

16
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Detailed Function Status Interface Port Descriptions

cfg_per_func_
status_control
[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output

Width

Description

cfg_command_
io_enable

Configuration Command - I/O Space Enable:
Command]0].

Endpoints: If 1, allows the device to receive I/O Space
accesses. Otherwise, the core filters these and
respond with an Unsupported Request.

Root/Switch: Core takes no action based on this
setting. If 0, user logic must not generate TLPs
downstream.

cfg_command_
mem_enable

Configuration Command - Memory Space Enable:
CommandI[1].

Endpoints: If 1, allows the device to receive Memory
Space accesses. Otherwise, the core filters these and
respond with an Unsupported Request.
Root/Switch: Core takes no action based on this
setting. If 0, user logic must not generate TLPs
downstream.

cfg_command_
bus_master_en
able

Configuration Command - Bus Master Enable:
Command][2]. The core takes no action based on this
setting; user logic must do that.

Endpoints: When asserted, the user logic is allowed to
issue Memory or I/O Requests (including MSI/X
interrupts); otherwise it must not.

Root and Switch Ports: When asserted, received
Memory or I/O Requests might be forwarded
upstream; otherwise they are handled as
Unsupported Requests (UR), and for Non-Posted
Requests a Completion with UR completion status is
returned.

cfg_command_
interrupt_disa
ble

Configuration Command - Interrupt Disable:
Command[10].

When asserted, the core is prevented from asserting
INTx interrupts.

cfg_command_
serr_en

Configuration Command - SERR Enable:
Command[8].

When asserted, this bit enables reporting of
Non-fatal and Fatal errors. Note that errors are
reported if enabled either through this bit or through
the PCI Express specific bits in the Device Control
register. In addition, for a Root Complex or Switch,
this bit controls transmission by the primary interface
of ERR_NONFATAL and ERR_FATAL error messages
forwarded from the secondary interface.
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cfg_per_func_

cfg_per_func_

ol_corr_err_rep
orting_en

status_control status_data | Status Output |Width Description
[bit] [bit/slice]
0 5 cfg_bridge_ser |1 Configuration Bridge Control - SERR Enable: Bridge
r_en Ctrl[1].
When asserted, this bit enables the forwarding of
Correctable, Non-fatal and Fatal errors (user must
enforce that).
0 6 cfg_aer_ecrc_c |1 Configuration AER - ECRC Check Enable:
heck_en AER_Cap_and_Ctl[8].
When asserted, this bit indicates that ECRC checking
has been enabled by the host.
0 7 cfg_aer_ecrc_g |1 Configuration AER - ECRC Generation Enable:
en_en AER_Cap_and_Ctl[6].
When asserted, this bit indicates that ECRC
generation has been enabled by the host.
0 15:08 0 8 Reserved
1 0 cfg_dev_status |1 Configuration Device Status - Correctable Error
_corr_err_dete Detected: Device_Status[0].
cted Indicates status of correctable errors detected. Errors
are logged in this register regardless of whether error
reporting is enabled or not in the Device Control
register.
1 1 cfg_dev_status |1 Configuration Device Status - Non-Fatal Error
_non_fatal_err_ Detected: Device_Status[1].
detected Indicates status of Nonfatal errors detected. Errors
are logged in this register regardless of whether error
reporting is enabled or not in the Device Control
register.
1 2 cfg_dev_status |1 Configuration Device Status - Fatal Error Detected:
_fatal_err_dete Device_Status[2].
cted Indicates status of Fatal errors detected. Errors are
logged in this register regardless of whether error
reporting is enabled or not in the Device Control
register.
1 3 cfg_dev_status |1 Configuration Device Status - Unsupported Request
_ur_detected Detected: Device_Status[3].
Indicates that the core received an Unsupported
Request. Errors are logged in this register regardless
of whether error reporting is enabled or not in the
Device Control register.
1 4 cfg_dev_contr |1 Configuration Device Control - Correctable Error

Reporting Enable: Device_Ctrl[0].

This bit, in conjunction with other bits, controls
sending ERR_COR Messages. For a Root Port, the
reporting of correctable errors is internal to the root;
no external ERR_COR Message is generated.
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cfg_per_func_
status_control
[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output

Width

Description

cfg_dev_contr
ol_non_fatal_re
porting_en

Configuration Device Control - Non-Fatal Error
Reporting Enable: Device_Ctrl[1].

This bit, in conjunction with other bits, controls
sending ERR_NONFATAL Messages. For a Root Port,
the reporting of correctable errors is internal to the
root; no external ERR_NONFATAL Message is
generated.

cfg_dev_contr
ol_fatal_err_re
porting_en

Configuration Device Control - Fatal Error Reporting
Enable: Device_Ctrl[2].

This bit, in conjunction with other bits, controls
sending ERR_FATAL Messages. For a Root Port, the
reporting of correctable errors is internal to the root;
no external ERR_FATAL Message is generated.

cfg_dev_contr
ol_ur_err_repor
ting_en

Configuration Device Control - UR Reporting Enable:
Device_Ctrl[3].

This bit, in conjunction with other bits, controls the
signaling of Unsupported Requests by sending Error
Messages.

10:08

cfg_dev_contr
ol_max_payloa
d

Configuration Device Control - Max_Payload_Size:
Device_Ctrl[7:5].

This field sets maximum TLP payload size. As a
Receiver, the user logic must handle TLPs as large as
the set value. As a Transmitter, the user logic must not
generate TLPs exceeding the set value.

000b = 128 bytes max payload size
001b = 256 bytes max payload size
010b = 512 bytes max payload size
011b = 1024 bytes max payload size
100b = 2048 bytes max payload size
101b = 4096 bytes max payload size

11

cfg_dev_contr
ol_enable_ro

Configuration Device Control - Enable Relaxed
Ordering: Device_Ctrl[4].

When asserted, the user logic is permitted to set the
Relaxed Ordering bit in the Attributes field of
transactions it initiates that do not require strong
write ordering.

12

cfg_dev_contr
ol_ext_tag_en

Configuration Device Control - Tag Field Enable:
Device_Ctrl[8].

When asserted, enables user logic to use an 8-bit Tag
field as a Requester. If deasserted, user logic is
restricted to a 5-bit Tag field. Note that the core does
not enforce the number of Tag bits used, either in
outgoing request TLPs or incoming Completions.
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cfg_per_func_
status_control
[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output

Width

Description

13

cfg_dev_contr
ol_no_snoop_e
n

Configuration Device Control - Enable No Snoop:
Device_Ctrl[11].

When asserted, the user logic is permitted to set the
No Snoop bit in TLPs it initiates that do not require
hardware enforced cache coherency.

15:14

0

Reserved

2:00

cfg_dev_contr
ol_max_read_r

€q

Configuration Device Control -
Max_Read_Request_Size: Device_Ctrl[14:12].

This field sets the maximum Read Request size for the
user logic as a Requester. The user logic must not
generate Read Requests with size exceeding the set
value.
000b = 128 bytes maximum Read Request size
001b = 256 bytes maximum Read Request size
010b = 512 bytes maximum Read Request size
011b = 1024 bytes maximum Read Request size
100b = 2048 bytes maximum Read Request size

101b = 4096 bytes maximum Read Request size

cfg_link_status
_link_training

Configuration Link Status - Link Training:
Link_Status[11].

Indicates that the Physical Layer LTSSM is in the
Configuration or Recovery state, or that 1b was
written to the Retrain Link bit but Link training has not
yet begun. The core clears this bit when the LTSSM
exits the Configuration/Recovery state.

6:04

cfg_link_status
_current_speed

Configuration Link Status - Current Link Speed:
Link_Status[1:0].

This field indicates the negotiated Link speed of the
given PCI Express Link.

001b = 2.5 GT/s PCI Express Link

010b = 5.0 GT/s PCI Express Link

100b = 8.0 GT/s PCI Express Link

10:07

cfg_link_status
_negotiated_wi
dth

Configuration Link Status - Negotiated Link Width:
Link_Status[7:4].

This field indicates the negotiated width of the given
PCI Express Link (only widths up to x8 displayed).
0001b = x1

0010b = x2
0100b = x4
1000b = x8
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cfg_per_func_
status_control
[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output

Width

Description

11

cfg_link_status
_bandwidth_st
atus

Configuration Link Status - Link Bandwidth
Management Status: Link_Status[14].

Indicates that either of the following has occurred
without the Port transitioning through DL_Down
status:

» Alinkretraining has completed following a write of
1b to the Retrain Link bit.
Note: This bit is Set following any write of 1b to the
Retrain Link bit, including when the Link is in the
process of retraining for some other reason.

» Hardware has changed Link speed or width to
attempt to correct unreliable Link operation, either
through an LTSSM timeout or a higher level
process. This bit is set if the Physical Layer reports
a speed or width change was initiated by the
Downstream component that was not indicated as
an autonomous change.

12

cfg_link_status
_auto_bandwid
th_status

Configuration Link Status - Link Autonomous
Bandwidth Status: Link_Status[15].

Indicates the core has autonomously changed Link
speed or width, without the Port transitioning
through DL_Down status, for reasons other than to
attempt to correct unreliable Link operation. This bit
must be set if the Physical Layer reports a speed or
width change was initiated by the Downstream
component that was indicated as an autonomous
change.

15:13

0

Reserved

1:00

cfg_link_contr
ol_aspm_contr
ol

Configuration Link Control - ASPM Control:
Link_Ctrl[1:0].

Indicates the level of ASPM supported, where:
00b = Disabled

0lb = LOs Entry Enabled

10b = L1 Entry Enabled

11b = LOs and L1 Entry Enabled

cfg_link_contr
ol_rcb

Configuration Link Control - RCB: Link_Ctrl[3].

Indicates the Read Completion Boundary value,
where 0=64B, and 1=128B.

cfg_link_contr
ol_link_disable

Configuration Link Control - Link Disable: Link_Ctrl[4].

When asserted, indicates the Link is disabled and
directs the LTSSM to the Disabled state.
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cfg_per_func_

cfg_per_func_

ster_enable

status_control status_data | Status Output |Width Description
[bit] [bit/slice]

3 4 cfg_link_contr |1 Configuration Link Control - Common Clock
ol_common_cl Configuration: Link_Ctrl[6].
ock When asserted, indicates that this component and

the component at the opposite end of this Link are
operating with a distributed common reference clock.
When deasserted, indicates they are operating with
an asynchronous reference clock.

3 5 cfg_link_contr |1 Configuration Link Control - Extended Synch:
ol_extended_s Link_Ctrl[7].
ync When asserted, forces the transmission of additional

Ordered Sets when exiting the LOs state and when in
the Recovery state.

3 6 cfg_link_contr |1 Configuration Link Control - Enable Clock Power
ol_clock_pm_e Management: Link_Ctrl[8].

n For Upstream Ports that support a CLKREQ#
mechanism, indicates:
0b = Clock power management disabled.
1b = The device is permitted to use CLKREQ#.
The core will take no action based on the setting of
this bit; external logic must implement this.

3 7 cfg_link_contr |1 Configuration Link Control - Hardware Autonomous
ol_hw_auto_wi Width Disable: Link_Ctrl[9].
dth_dis When asserted, disables the core from changing the

Link width for reasons other than attempting to
correct unreliable Link operation by reducing Link
width.

3 8 cfg_link_contr |1 Configuration Link Control - Link Bandwidth
ol_bandwidth_i Management Interrupt Enable: Link_Ctrl[10].
nt_en When asserted, enables the generation of an

interrupt to indicate that the Link Bandwidth
Management Status bit has been set. The core will
take no action based on the setting of this bit; user
logic must create the interrupt.

3 9 cfg_link_contr |1 Configuration Link Control - Link Autonomous
ol_auto_bandw Bandwidth Interrupt Enable: Link_Ctrl[11].
idth_int_en When asserted, this bit enables the generation of an

interrupt to indicate that the Link Autonomous
Bandwidth Status bit has been set. The core will take
no action based on the setting of this bit; user logic
must create the interrupt.

3 10 cfg_tph_reque |1 TPH Requester Enable: bit [8] of the TPH Requester

Control Register in the TPH Requester Capability
Structure of the function. These bits are active only in
the Endpoint mode. Indicates whether the software
has enabled the device to generate requests with TPH
Hints from the associated Function.

Gen3 Integrated Block for PCle (v1.3)

PG023 October 16, 2012

www.xilinx.com

48



http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-18: Detailed Function Status Interface Port Descriptions

cfg_per_func_

cfg_per_func_

ol2_atomic_re
quester_en

status_control status_data | Status Output |Width Description
[bit] [bit/slice]
3 13:11 cfg_tph_steeri |3 TPH Steering Tag Mode: Reflect the setting of the ST
ng_tag_mode Mode Select bits in the TPH Requester Control
Register. These bits are active only in the Endpoint
mode. They indicate the allowed modes for
generation of TPH Hints by the corresponding
Function.
3 15:14 0 2 Reserved
4 3:00 cfg_dev_contr |4 Configuration Device Control 2 - Completion
ol2_cpl_timeou Timeout Value: Device_Ctrl2[3:0].
t_val This is the time range that the user logic should
regard a Request's pending Completion as a
Completion Timeout. The core will take no action
based on this setting.
0000b = 50 ps to 50 ms (default)
0001b = 50 ps to 100 ps
0010b = 1 ms to 10 ms
0101b = 16 ms to 55 ms
0110b = 65 ms to 210 ms
1001b = 260 ms to 900 ms
1010b =1sto35s
1101b =4 sto 13 s
1110b =17 sto 64 s
4 4 cfg_dev_contr |1 Configuration Device Control 2 - Completion
ol2_cpl_timeou Timeout Disable: Device_Ctrl2[4].
t_dis This should cause the user to disable their
Completion Timeout counters.
4 5 cfg_dev_contr |1 Configuration Device Control 2 - Atomic Requester

Enable: Device_Ctrl2[6].

Applicable only to Endpoints and Root Ports; must be
hardwired to Ob for other Function types. The
Function is allowed to initiate AtomicOp Requests
only if this bit and the Bus Master Enable bit in the
Command register are both Set. This bit is required to
be RW if the Endpoint or Root Port is capable of
initiating AtomicOp Requests, but otherwise is
permitted to be hardwired to Ob. This bit does not
serve as a capability bit. This bit is permitted to be RW
even if no AtomicOp Requester capabilities are
supported by the Endpoint or Root Port.

Default value of this bit is Ob. 32 nm
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cfg_per_func_
status_control
[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output

Width

Description

4

cfg_dev_contr
ol2_ido_req_en

Configuration Device Control 2 - IDO Request Enable:
Device_Ctrl2[8].

If this bit is Set, the Function is permitted to set the
ID-Based Ordering (IDO) bit (Attribute[2]) of Requests
it initiates (see Section 2.2.6.3 and Section 2.4).
Endpoints, including RC Integrated Endpoints, and
Root Ports are permitted to implement this
capability. A Function is permitted to hardwire this
bit to Ob if it never sets the IDO attribute in Requests.
Default value of this bit is Ob. 32 nm

cfg_dev_contr
ol2_ido_cpl_en

Configuration Device Control 2 - IDO Completion
Enable: Device_Ctrl2[9].

If this bit is Set, the Function is permitted to set the
ID-Based Ordering (IDO) bit (Attribute[2]) of
Completions it returns (see Section 2.2.6.3 and
Section 2.4). Endpoints, including RC Integrated
Endpoints, and Root Ports are permitted to
implement this capability. A Function is permitted to
hardwire this bit to Ob if it never sets the IDO attribute
in Requests. Default value of this bit is Ob. 32 nm

cfg_dev_contr
ol2_ltr_en

Configuration Device Control 2 - LTR Mechanism
Enable: Device_Ctrl2[10].

If this bit is Set, the Function is permitted to set the
ID-Based Ordering (IDO) bit (Attribute[2]) of
Completions it returns (see Section 2.2.6.3 and
Section 2.4). Endpoints, including RC Integrated
Endpoints, and Root Ports are permitted to
implement this capability. A Function is permitted to
hardwire this bit to Ob if it never sets the IDO attribute
in Requests. Default value of this bit is Ob. 32 nm

13:09

cfg_dpa_subst
ate

Dynamic Power Allocation Substate: Reflect the
setting of the Dynamic Power Allocation Substate
field in the DPA Control Register.

15:14

0

Reserved

cfg_root_contr
ol_syserr_corr_
err_en

Configuration Root Control - System Error on
Correctable Error Enable: Root_Control[0].

This bit enables the user logic to generate a System
Error for reported Correctable Errors.

cfg_root_contr
ol_syserr_non_
fatal_err_en

Configuration Root Control - System Error on
Non-Fatal Error Enable: Root_Control[1].

This bit enables the user logic to generate a System
Error for reported Non-Fatal Errors.

cfg_root_contr
ol_syserr_fatal_
err_en

Configuration Root Control - System Error on Fatal
Error Enable: Root_Control[2].

This bit enables the user logic to generate a System
Error for reported Fatal Errors.
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cfg_per_func_ | cfg_per_func_
status_control status_data | Status Output |Width Description
[bit] [bit/slice]
5 3 cfg_root_contr |1 Configuration Root Control - PME Interrupt Enable:
ol_pme_int_en Root_Control[3].
This bit enables the user logic to generate an
Interrupt for received PME Messages.
5 4 cfg_aer_rooter |1 Configuration AER - Correctable Error Reporting
r_corr_err_repo Enable: AER_Root_Error_Command[0].
rting_en This bit enables the user logic to generate interrupts
for reported Correctable Errors.
5 5 cfg_aer_rooter |1 Configuration AER - Non Fatal Error Reporting
r_non_fatal_err Enable: AER_Root_Error_Command[1].
_reporting_en This bit enables the user logic to generate interrupts
for reported Non-Fatal Errors.
5 6 cfg_aer_rooter |1 Configuration AER - Fatal Error Reporting Enable:
r_fatal_err_rep AER_Root_Error_Command[2].
orting_en This bit enables the user logic to generate interrupts
for reported Fatal Errors.
5 7 cfg_aer_rooter |1 Configuration AER - Correctable Error Messages
r_corr_err_rece Received: AER_Root_Error_Status[0].
ived Indicates that an ERR_COR Message was received.
5 8 cfg_aer_rooter |1 Configuration AER - Non-Fatal Error Messages
r_non_fatal_err Received: AER_Root_Error_Status[5].
_received Indicates that an ERR_NFE Message was received.
5 9 cfg_aer_rooter |1 Configuration AER - Fatal Error Messages Received:
r_fatal_err_rece AER_Root_Error_Status[6].
ived Indicates that an ERR_FATAL Message was received.
5 15:10 0 6 Reserved
Configuration Control Interface
Table 2-19 defines the ports in the Configuration Control interface of the Integrated Block
for PCI Express core.
Table 2-19: Configuration Control Interface Port Descriptions
Port Direction Description Width
cfa hot reset in Inout Configuration Hot Reset In. In RP mode, assertion 1
g-hot_ - P transitions LTSSM to hot reset state, active High.
Configuration Hot Reset Out. In EP mode, assertion
cfg_hot_reset_out Output | indicates that EP has transitioned to the hot reset state, 1
active High.
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Port

Direction

Description

Width

cfg_config_space_enable

Input

Configuration Configuration Space Enable. When this
input is set to 0 in the Endpoint mode, the core
generates a CRS Completion in response to
Configuration Requests. This port should be held
deasserted when the core configuration registers are
loaded from the DRP due to a change in attributes. This
prevents the core from responding to Configuration
Requests before all the registers are loaded. This input
can be High when the power-on default values of the
Configuration Registers do not need to be modified
before Configuration space enumeration. This input is
not applicable for Root Port mode.

cfg_per_function_update_done

Output

Configuration per Function Update Complete.
Asserted in response to
cfg_per_function_output_request assertion,
for one cycle after the request is complete.

cfg_per_function_number

Input

Configuration Per Function Target Function Number.
The user provides the function number (0-7), where
value 0-1 corresponds to PFO-1, and value 2-7
corresponds to VF0-5, and asserts
cfg_per_function_output_request to obtain
per function output values for the selected function.

cfg_per_function_output_request

Input

Configuration Per Function Output Request. When this
port is asserted with a function number value on
cfg_per_function_number, the core presents
information on per-function configuration output pins
and asserts cfg_update_done when complete.

cfg_dsn

Input

Configuration Device Serial Number. Indicates the
value that should be transferred to the Device Serial
Number Capability on PFO. Bits [31:0] are transferred to
the first (Lower) Dword (byte offset 0x4h of the
Capability), and bits [63:32] are transferred to the
second (Upper) Dword (byte offset 0x8h of the
Capability). If this value is not statically assigned, the
user must pulse user_cfg_input_update afteritis
stable.

64

cfg_ds_bus_number

Input

Configuration Downstream Bus Number.
+ Downstream Port

Provides the bus number portion of the Requester
ID (RID) of the Downstream Port. This is used in TLPs
generated inside the core, such as UR Completions
and Power-management messages; it does not affect
TLPs presented on the TRN interface.

* Upstream Port
No role.
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Port

Direction

Description

Width

cfg_ds_device_number

Input

Configuration Downstream Device Number:
+ Downstream Port

Provides the device number portion of the RID of
the Downstream Port. This is used in TLPs generated
inside the core, such as UR Completions and
Power-management messages; it does not affect
TLPs presented on the TRN interface.

» Upstream Port
No role.

cfg_ds_function_number

Input

Configuration Downstream Function Number.
+ Downstream Port

Provides the function number portion of the RID of
the Downstream Port. This is used in TLPs generated
inside the core, such as UR Completions and
Power-management messages; it does not affect
TLPs presented on the TRN interface.

* Upstream Port
No role.

cfg_power_state_change_ack

Input

Configuration Power State Ack. The user must assert
this input to the core for one cycle in response to the
assertion of cfg_power_state_change_interrupt,
when it is ready to transition to the low-power state
requested by the configuration write request. The
client can permanently hold this input High if it does
not need to delay the return of the completions for the
configuration write transactions, causing power-state
changes.

cfg_power_state_change_interrupt

Output

Power State Change Interrupt. The core asserts this
output when the power state of a Physical or Virtual
Function is being changed to the D1 or D3 states by a
write into its Power Management Control Register. The
core holds this output High until the user asserts the
cfg_power_state_change_ack input to the core.
While cfg_power_state_change_interrupt
remains High, the core does not return completions for
any pending configuration read or write transaction
received by the core. The purpose is to delay the
completion for the configuration write transaction that
caused the state change until the user is ready to
transition to the low-power state. When
cfg_power_state_change_interrupt is
asserted, the Function number associated with the
configuration write transaction is provided on the
cfg_snp_function_number[7:0] output. When
the client asserts cfg_power_state_change_ack,
the new state of the Function that underwent the state
change is reflected on
cfg_function_power_state (for PFs) or the
cfg_vf_power_state (for VFs) outputs of the core.
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Correctable Error Detected: The user can activate this
input for one cycle to indicate a correctable error
detected within the user logic that needs to be
reported as an internal error through the PCI Express
cfg_err_cor_in Input Advanced Error Reporting mechanism. In response, the 1
core sets the Corrected Internal Error Status bit in the
AER Correctable Error Status Register of all enabled
Functions, and also sends an error message if enabled
to do so. This error is not considered Function-specific.

Uncorrectable Error Detected. The user can activate

this input for one cycle to indicate a uncorrectable

error detected within the user logic that needs to be
reported as an internal error through the PCI Express
cfg_err_uncor_in Input | Advanced Error Reporting mechanism. In response, the 1
core sets the uncorrected Internal Error Status bit in the
AER Uncorrectable Error Status Register of all enabled
Functions, and also sends an error message if enabled
to do so. This error is not considered Function-specific.

Function Level Reset Complete. The user must assert
bit { of this bus when the reset operation of Function {
cfg_flr_done Input | completes. This causes the core to deassert 2
cfg _flr_in process for Function { and to
re-enable configuration accesses to the Function.

Function Level Reset for virtual Function is Complete.
The user must assert bit { of this bus the reset
operation of Virtual Function i completes. This causes
the core to deassert cfg_vf_flr_in_process for
Function i and to re-enable configuration accesses to
the Virtual Function.

cfg_vf_flr_done Input

Function Level Reset In Process. The core asserts bit (
of this bus when the host initiates a reset of Function {
through its FLR bit in the configuration space. The core
cfg_flr_in_process Output | continues to hold the output High until the user sets 2
the corresponding cfg_f1lr_done input for the
corresponding Function to indicate the completion of
the reset operation.

Function Level Reset In Process for Virtual Function.
The core asserts bit i of this bus when the host initiates
a reset of Virtual Function i though its FLR bit in the
configuration space. The core continues to hold the

cfg._vi_fir_in_process Output output High until the user sets the corresponding 6
cfg_vf_flr_done input for the corresponding
Function to indicate the completion of the reset
operation.
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Table 2-19: Configuration Control Interface Port Descriptions (Cont’d)

Port Direction Description Width

When the core is configured as an Endpoint, the user
can assert this input to transition the power
management state of the core to L23_READY (see
Chapter 5 of the PCI Express Specification for a detailed
description of power management). This is done after
the PCI Functions in the core are placed in the D3 state
cfg_req_pm_transition_|23_ready Input and after the client acknowledges the PME_Turn_Off 1
message from the Root Complex. Asserting this input
causes the link to transition to the L2 state, and
requires a hard reset to resume operation. This input
can be hardwired to 0 if the link is not required to
transition to L2. This input is not used in Root Complex
mode.

This input must be set to 1 to enable the Link Training
Status State Machine (LTSSM) to bring up the link.
Setting it to O forces the LTSSM to stay in the
Detect.Quiet state.

cfg_link_training_enable Input

Configuration Interrupt Controller Interface

Table 2-20 defines the ports in the Configuration Interrupt Controller interface of the
Integrated Block for PCI Express core.

Table 2-20: Configuration Interrupt Controller Interface Port Descriptions

Port Direction Description Width

Configuration INTx Vector. When the core is configured
as EP, these four inputs are used by the client
application to signal an interrupt from any of its PCI
Functions to the RC using the Legacy PCI Express
Interrupt Delivery mechanism of PCI Express. These
four inputs correspond to INTA, INTB, INTC, and INTD.
Asserting one of these signals causes the core to send
out an Assert_INTx message, and deasserting the
signal causes the core to transmit a Deassert_INTx
message.

cfg_interrupt_int Input

Configuration INTx Sent. A pulse on this output

. indicates that the core has sent an INTx Assert or

cfg_interrupt_sent Output - . 1
Deassert message in response to a change in the state

of one of the cfg_interrupt_int inputs.

Configuration INTx Interrupt Pending (active High). Per
Function indication of a pending interrupt.
cfg_interrupt_pending[0] corresponds to
Function #0.

cfg_interrupt_pending Input

Configuration Interrupt MSI Function Enabled.
cfg_interrupt_msi_enable Output | Indicates that Message Signaling Interrupt (MSI) 2
messaging is enabled per Function.
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Table 2-20: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

cfg_interrupt_msi_vf_enable

Output

Configuration Interrupt MSI on VF Enabled. Indicates
that MSI messaging is enabled, per Virtual Function.

cfg_interrupt_msi_int

Input

Configuration Interrupt MSI Vector. When the core is
configured in the Endpoint mode to support MSI
interrupts, these inputs are used to signal the 32
distinct interrupt conditions associated with a PCI
Function (Physical or Virtual) from the user logic to the
core. The Function number must be specified on the
cfg_interrupt_msi_function_number input.
After placing the Function number on the input
cfg_interrupt_msi_function_number, the user
logic must activate one of these signals for one cycle
to transmit an interrupt. The user logic must not
activate more than one of the 32 interrupt inputs in the
same cycle. The core internally registers the interrupt
condition on the 0-to-1 transition of any bit in
cfg_interrupt_msi_int. After asserting an
interrupt, the user logic must wait for the
cfg_interrupt_msi_sent or
cfg_interrupt_msi_fail indication from the core
before asserting a new interrupt.

32

cfg_interrupt_msi_sent

Output

Configuration Interrupt MSI Interrupt Sent. The core
generates a one-cycle pulse on this output to signal
that an MSIinterrupt message has been transmitted on
the link. The user logic must wait for this pulse before
signaling another interrupt condition to the core.

cfg_interrupt_msi_fail

Output

Configuration Interrupt MSI Interrupt Operation
Failed. A one-cycle pulse on this output indicates that
an MSI interrupt message was aborted before
transmission on the link. The client must retransmit the
MSI interrupt in this case.

cfg_interrupt_msi_mmenable

Output

Configuration Interrupt MSI Function Multiple
Message Enable. When the core is configured in the
Endpoint mode to support MSI interrupts, these
outputs are driven by the "Multiple Message Enable”
bits of the MSI Control Registers associated with
Physical Functions. These bits encode the number of
allocated MSI interrupt vectors for the corresponding
Function. Bits [2:0] correspond to Physical Function 0.

cfg_interrupt_msi_pending_status

Input

Configuration Interrupt MSI Pending Status. These
inputs provide the status of the MSI pending interrupts
for the Physical Functions. The setting of these pins
determines the value read from the MSI Pending Bits
Register of the corresponding PF. Bits [31:0] belong to
PF 0, bits [63:32] to PF 1.

64

cfg_interrupt_msi_mask_update

Output

Configuration Interrupt MSI Function Mask Updated.
Asserted for one cycle when any enabled functions in
the MSI Mask Register change value.
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Table 2-20: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

cfg_interrupt_msi_select

Input

Configuration Interrupt MSI Select. Values
0000b-0001b correspond to PFO-1 selection, and
values 0010b-0111b correspond to VFO-5 selection.
cfg_interrupt_msi_data[31:0] presents the
value of the MSI Mask register from the selected
function. When this input is driven to 1111b,
cfg_interrupt_msi_data[1l7:0] presents the
“Multiple Message Enable” bits of the MSI Control
Registers associated with all Virtual Functions. These
bits encode the number of allocated MSI interrupt
vectors for the corresponding Function.
cfg_interrupt_msi_data[2:0] correspond to
Virtual Function 0, and so on.

cfg_interrupt_msi_data

Output

Configuration Interrupt MSI Data. The value presented
depends on cfg_interrupt_msi_select.

32

cfg_interrupt_msix_enable

Output

Configuration Interrupt MSI-X Function Enabled. When
asserted, indicates that the Message Signaling
Interrupt (MSI-X) messaging is enabled, per Function.

cfg_interrupt_msix_mask

Output

Configuration Interrupt MSI-X Function Mask.
Indicates the state of the Function Mask bit in the
MSI-X Message Control field, per Function.

cfg_interrupt_msix_vf_enable

Output

Configuration Interrupt MSI-X on VF Enabled. When
asserted, indicates that Message Signaling Interrupt
(MSI-X) messaging is enabled, per Virtual Function.

cfg_interrupt_msix_vf_mask

Output

Configuration Interrupt MSI-X VF Mask. Indicates the
state of the Function Mask bit in the MSI-X Message
Control field, per Virtual Function.

cfg_interrupt_msix_address

Input

Configuration Interrupt MSI-X Address. When the core
is configured to support MSI-X interrupts, this bus is
used by the client logic to communicate the address to
be used for an MSI-X message.

64

cfg_interrupt_msix_data

Input

Configuration Interrupt MSI-X Data. When the core is
configured to support MSI-X interrupts, this bus is
used by the client logic to communicate the data to be
used for an MSI-X message.

32
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Table 2-20: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port

Direction

Description

Width

cfg_interrupt_msix_int

Input

Configuration Interrupt MSI-X Data Valid. This signal
indicates that valid information has been placed on the
cfg_interrupt_msix_address([63:0] and
cfg_interrupt_msix_datal[31:0] buses, and the
originating Function number has been placed on
cfg_interrupt_function_number[3:0]. The
core internally registers the associated address and
data from cfg_interrupt_msix_address and
cfg_interrupt_msix_data on the 0-to-1
transition of this valid signal. After asserting an
interrupt, the client logic must wait for the
cfg_interrupt_msix_sent or
cfg_interrupt_msix_fail indication from the
core before asserting a new interrupt.

cfg_interrupt_msix_sent

Output

Configuration Interrupt MSI-X Interrupt Sent. The core
generates a one-cycle pulse on this output to indicate
that it has accepted the information placed on the
cfg_interrupt_msix_address[63:0] and
cfg_interrupt_msix_data[31:0] buses, and an
MSI-X interrupt message has been transmitted on the
link. The user application must wait for this pulse
before signaling another interrupt condition to the
core.

cfg_interrupt_msix_fail

Output

Configuration Interrupt MSI-X Interrupt Operation
Failed. A one-cycle pulse on this output indicates that
the interrupt controller has failed to transmit MSI-X
interrupt on the link. The client must retransmit the
MSI-X interrupt in this case.

cfg_interrupt_msi_attr

Input

Configuration Interrupt MSI/MSI-X TLP Attr. These bits
provide the setting of the Attribute bits to be used for
the MSI/MSI-X interrupt request. Bit 0 is the No Snoop
bit, and bit 1 is the Relaxed Ordering bit. Bit 2 is the
ID-Based Ordering bit. The core samples these bits on
a 0-to-1 transition on cfg_interrupt_msi_int or
cfg_interrupt_msix_int.

cfg_interrupt_msi_tph_present

Input

Configuration Interrupt MSI/MSI-X TPH Present.
Indicates the presence of a Transaction Processing Hint
(TPH) in the MSI/MSI-X interrupt request. The user
application must set this bit while asserting
cfg_interrupt_msi_int or
cfg_interrupt_msix_int, if it includes a TPH in
the MSI or MSI-X transaction.

cfg_interrupt_msi_tph_type

Input

Configuration Interrupt MSI/MSI-X TPH Type: When
cfg_interrupt_msi_tph_present is 1'bl, these
two bits supply the two-bit type associated with the
hint. The core samples these bits on a 0-to-1 transition
on cfg_interrupt_msi_int or
cfg_interrupt_msix_int.
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Table 2-20: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port Direction Description Width

Configuration Interrupt MSI/MSI-X TPH Steering Tag.
When cfg_interrupt_msi_tph_presentisl'bl,
the Steering Tag associated with the Hint must be
placed on
cfg_interrupt_msi_tph_st_tagl[7:0]. Setting
cfg_interrupt_msi_tph_st_tag([8] to 1b
activates the Indirect Tag mode. In the Indirect Tag
mode, the core uses bits [5:0] of
cfg_interrupt_msi_tph_st_tagasanindexinto
its Steering Tag Table (STT) in the TPH Capability
cfg_interrupt_msi_tph_st_tag Input Structure (STT is limited to 64 entries per Function), 9
and inserts the tag from this location in the transmitted
request MSI/X TLP. Setting
cfg_interrupt_msi_tph_st_tag[8] to 0b
activates the Direct Tag mode. In the Direct Tag mode,
the core inserts
cfg_interrupt_msi_tph_st_tag[7:0] directly
as the Tag in the transmitted MSI/X TLP. The core
samples these bits on a 0-to-1 transition on any
cfg_interrupt_msi_int bits or
cfg_interrupt_msix_int.

Configuration MSI/MSI-X Initiating Function. Indicates
the Endpoint function number initiating the MSI or
MSI-X transaction:

« 0: PFO
+ 1. PF1
« 2: VFO
* 3:VF1
e 4:VF2

cfg_interrupt_msi_function_number Input

« 7:VF5

Configuration Extend Interface

Table 2-21 defines the ports in the Configuration Extend interface of the Integrated Block
for PCI Express core.
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Table 2-21: Configuration Extend Interface Port Descriptions

Port

Direction

Description

Width

cfg_ext_read_received

Output

Configuration Extend Read Received. The core asserts
this output when it has received a configuration read
request from the link. When neither user-implemented
legacy or extended configuration space is enabled,
receipt of a configuration read results in a one-cycle
assertion of this signal, together with valid
cfg_ext_register_number and
cfg_ext_function_number. When
user-implemented legacy, extended configuration
space, or both are enabled, for the
cfg_ext_register_number ranges, 0x10-0x1f or
0x100-0x3£f, respectively, this signal is asserted,
until user logic presents cfg_ext_read_data and
cfg_ext_read_data_valid. For
cfg_ext_register_number ranges outside
0x10-0x1f or 0x100-0x3£f, receipt of a
configuration read always results in a one-cycle
assertion of this signal.

cfg_ext_write_received

Output

Configuration Extend Write Received. The core
generates a one-cycle pulse on this output when it has
received a configuration write request from the link.

cfg_ext_register_number

Output

Configuration Extend Register Number. The 10-bit
address of the configuration register being read or
written. The data is valid when
cfg_ext_read_received or
cfg_ext_write_received is High.

10

cfg_ext_function_number

Output

Configuration Extend Function Number. The 8-bit
Function Number corresponding to the configuration
read or write request. The data is valid when
cfg_ext_read_received or
cfg_ext_write_received is High.

cfg_ext_write_data

Output

Configuration Extend Write Data. Data being written
into a configuration register. This output is valid when
cfg_snp_write_received is High.

32

cfg_ext_write_byte_enable

Output

Configuration Extend Write Byte Enable. Byte enables
for a configuration write transaction.

cfg_ext_read_data

Input

Configuration Extend Read Data. The user can provide
data from an externally implemented configuration
register to the core through this bus. The core samples
this data on the next positive edge of the clock after it
sets cfg_snp_read_received High, if the user has
set cfg_snp_read_data_valid.

32

cfg_ext_read_data_valid

Input

Configuration Extend Read Data Valid. The user asserts
this input to the core to supply data from an externally
implemented configuration register. The core samples
this input data on the next positive edge of the clock
after it sets cfg_snp_read_received High.
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Clock and Reset Interface

Table 2-22 defines the ports in the Clock and Reset interface of the Integrated Block for PCI
Express core.

Table 2-22: Clock and Reset Interface Port Descriptions

Port Direction Description Width

User clock output (62.5, 125, or 250 MHz). This clock
user_clk Output | has a fixed frequency and is configured in the CORE 1
Generator™ software.

This signal is deasserted synchronously with respect to
user_reset Output | user_clk. It is deasserted and asserted 1
asynchronously with sys_reset assertion.

Reference clock. This clock has a selectable frequency

sys_clk INPUt | £ 100 MHz, 125 MHz, or 250 MHz.

Fundamental reset input to the core (asynchronous,

sys_reset Input active-High).

PCI Express Interface

The PCI Express (PCI_EXP) interface consists of differential transmit and receive pairs
organized in multiple lanes. A PCI Express lane consists of a pair of transmit differential
signals (pci_exp_txp, pci_exp_txn) and a pair of receive differential signals
{pci_exp_rxp, pci_exp_rxn}. The 1-lane core supports only Lane 0, the 2-lane core
supports lanes 0-1, the 4-lane core supports lanes 0-3, and the 8-lane core supports lanes
0-7. Transmit and receive signals of the PCI_EXP interface are defined in Table 2-23.

Table 2-23: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores

Lane

Number Name Direction Description
1-Lane Cores
0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)
pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (-)
pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)
pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (-)

2-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (-)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)
pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (-)
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Table 2-23: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Nt?:I:er Name Direction Description
1 pci_exp_txpl Output PCI Express Transmit Positive: Serial Differential Output 1 (+)
pci_exp_txnl Output PCI Express Transmit Negative: Serial Differential Output 1 (-)
pci_exp_rxpl Input PCI Express Receive Positive: Serial Differential Input 1 (+)
pci_exp_rxnl Input PCI Express Receive Negative: Serial Differential Input 1 (-)

4-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (-)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)
pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (-)

1 pci_exp_txpl Output PCI Express Transmit Positive: Serial Differential Output 1 (+)
pci_exp_txnl Output PCI Express Transmit Negative: Serial Differential Output 1 (-)
pci_exp_rxpl Input PCI Express Receive Positive: Serial Differential Input 1 (+)
pci_exp_rxnl Input PCI Express Receive Negative: Serial Differential Input 1 (-)

2 pci_exp_txp2 Output PCI Express Transmit Positive: Serial Differential Output 2 (+)
pci_exp_txn2 Output PCI Express Transmit Negative: Serial Differential Output 2 (-)
pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential Input 2 (+)
pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential Input 2 (-)

3 pci_exp_txp3 Output PCI Express Transmit Positive: Serial Differential Output 3 (+)
pci_exp_txn3 Output PCI Express Transmit Negative: Serial Differential Output 3 (-)
pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential Input 3 (+)
pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential Input 3 (-)

8-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)
pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (-)
pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)
pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (-)

1 pci_exp_txpl Output PCI Express Transmit Positive: Serial Differential Output 1 (+)
pci_exp_txnl Output PCI Express Transmit Negative: Serial Differential Output 1 (-)
pci_exp_rxpl Input PCI Express Receive Positive: Serial Differential Input 1 (+)
pci_exp_rxnl Input PCI Express Receive Negative: Serial Differential Input 1 (-)

2 pci_exp_txp2 Output PCI Express Transmit Positive: Serial Differential Output 2 (+)

pci_exp_txn2 Output PCI Express Transmit Negative: Serial Differential Output 2 (-)

pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential Input 2 (+)
pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential Input 2 (-)
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Table 2-23: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Nt?:I:er Name Direction Description

3 pci_exp_txp3 Output PCI Express Transmit Positive: Serial Differential Output 3 (+)
pci_exp_txn3 Output PCI Express Transmit Negative: Serial Differential Output 3 (-)
pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential Input 3 (+)
pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential Input 3 (-)

4 pci_exp_txp4 Output PCI Express Transmit Positive: Serial Differential Output 4 (+)
pci_exp_txn4 Output PCI Express Transmit Negative: Serial Differential Output 4 (-)
pci_exp_rxp4 Input PCI Express Receive Positive: Serial Differential Input 4 (+)
pci_exp_rxn4 Input PCI Express Receive Negative: Serial Differential Input 4 (-)

5 pci_exp_txp5 Output PCI Express Transmit Positive: Serial Differential Output 5 (+)
pci_exp_txn5 Output PCI Express Transmit Negative: Serial Differential Output 5 (-)
pci_exp_rxp5 Input PCI Express Receive Positive: Serial Differential Input 5 (+)
pci_exp_rxn5 Input PCI Express Receive Negative: Serial Differential Input 5 (-)

6 pci_exp_txp6 Output PCI Express Transmit Positive: Serial Differential Output 6 (+)
pci_exp_txn6 Output PCI Express Transmit Negative: Serial Differential Output 6 (-)
pci_exp_rxp6 Input PCI Express Receive Positive: Serial Differential Input 6 (+)
pci_exp_rxn6 Input PCI Express Receive Negative: Serial Differential Input 6 (-)

7 pci_exp_txp7 Output PCI Express Transmit Positive: Serial Differential Output 7 (+)
pci_exp_txn7 Output PCI Express Transmit Negative: Serial Differential Output 7 (-)
pci_exp_rxp7 Input PCI Express Receive Positive: Serial Differential Input 7 (+)
pci_exp_rxn7 Input PCI Express Receive Negative: Serial Differential Input 7 (-)

Attribute Descriptions

Client Interface

Table 2-24 lists the configuration attributes controlling the operation of the client interface
of the Gen3 Integrated Block for PCle.
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Table 2-24: Configuration Attributes of the Integrated Block Client Interface
Attribute Name Type Description

USER_CLK2_FREQ Integer 0: Disable User Clock

1: 31.25 MHz

2:62.50 MHz (default)

3:125.00 MHz

4: 250.00 MHz

5: 500.00 MHz
PL_LINK_CAP_MAX_LINK_SPEED[2:0] Bit vector | Defines the maximum speed of the PCle link.

* 001:2.5GT/s

* 010:5.0 GT/s

* 100: 8.0 GT/s

« others: Reserved
PL_LINK_CAP_MAX_LINK_WIDTH[3:0] Bit vector | Maximum Link Width. Valid settings are:

e 0001b:x1

* 0010b: x2

* 0100b: x4

e 1000b: x8

All other encodings are reserved. This setting is

propagated to all layers in the core.
C_DATA_WIDTH Integer Configures the width of the AXI4-Stream interfaces.

» 64 bit interface

- 128 bit interface

« 256 bit interface
AXISTEN_IF_CQ_ALIGNMENT_MODE String Defines the data alignment mode for the completer

request interface.

« FALSE: Dword-aligned Mode

« TRUE: Address-aligned Mode
AXISTEN_IF_CC_ALIGNMENT_MODE String Defines the data alignment mode for the completer

completion interface.

« FALSE: Dword-aligned Mode

« TRUE: Address-aligned Mode
AXISTEN_IF_RQ_ALIGNMENT_MODE String Defines the data alignment mode for the requester

request interface.

« FALSE: Dword-aligned Mode

« TRUE: Address-aligned Mode
AXISTEN_IF_RC_ALIGNMENT_MODE String Defines the data alignment mode for the requester

completion interface.

« FALSE: Dword-aligned Mode

« TRUE: Address-aligned Mode
AXISTEN_IF_RC_STRADDLE String This attribute enables the straddle option on the

requester completion interface.
« FALSE: Straddle option disabled
« TRUE: Straddle option enabled
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Table 2-24: Configuration Attributes of the Integrated Block Client Interface (Cont’d)

Attribute Name

Type

Description

AXISTEN_IF_RQ_PARITY_CHECK

String

This attribute enables parity checking on the
requester request interface.

« FALSE: Parity check disabled
« TRUE: Parity check enabled

AXISTEN_IF_CC_PARITY_CHECK

String

This attribute enables parity checking on the
completer completion interface.

« FALSE: Parity check disabled
« TRUE: Parity check enabled

AXISTEN_IF_ENABLE_RX_MSG_INTFC

String

This attribute controls how the core delivers a
message received from the link.

When this attribute is set to FALSE, the core delivers
the received message TLPs on the completer
request interface using the AXI4-Stream protocol.In
this mode, the user can select the message types to
receive using the AXISTEN_IF_ENABLE_MSG_ROUTE
attributes. The receive message interface remains
disabled in this mode.

When this attribute is set to TRUE, the core
internally decodes messages received from the link,
and signals them to the user by activating the
cfg_msg_received signal on the receive message
interface. The core does not transfer any message
TLPs on the completer request interface. The
settings of the AXISTEN_ENABLE_MSG_ROUTE
attributes have no effect on the operation of the
receive message interface in this mode.
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Table 2-24: Configuration Attributes of the Integrated Block Client Interface (Cont’d)

Attribute Name Type Description

AXISTEN_IF_ENABLE_MSG_ROUTE[17:0] | Bit vector | When the AXISTEN_IF_ENABLE_RX_MSG_INTFC
attribute is set to 0, these attributes can be used to
select the specific message types that the user
wants to receive on the completer request interface.
Setting a bit to 1 enables the delivery of the
corresponding type of messages on the interface,
and setting it to O results in the core filtering the
message.

Table 2-25 defines the attribute bit definitions
corresponding to the various message types.

AXISTEN_IF_ENABLE_CLIENT_TAG String When this attribute is FALSE, tag management for
Non-Posted transactions initiated from the
requester request interface is performed by the
Integrated Block. That is, for each Non-Posted
request, the core allocates the tag for the
transaction and communicates it to the client.

Setting this attribute to TRUE disables the internal
tag management, allowing the user to supply the
tag to be used for each request. The user must
present the Tag field in the Request descriptor
header in the range 0-31 when the
PFO_DEV_CAP_EXT_TAG_SUPPORTED attribute is
FALSE, while the Tag field can be in the range 0-63
when the PFO_DEV_CAP_EXT_TAG_SUPPORTED
attribute is TRUE.

Table 2-25: AXISTEN_IF_ENABLE_MSG_ROUTE Attribute Bit Descriptions

Bit Index Message Type
0 ERR_COR
1 ERR_NONFATAL
2 ERR_FATAL
3 Assert_INTA and Deassert_INTA
4 Assert_INTB and Deassert_INTB
5 Assert_INTC and Deassert_INTC
6 Assert_INTD and Deassert_INTD
7 PM_PME
8 PME_TO_Ack
9 PME_Turn_Off
10 PM_Active_State_Nak
11 Set_Slot_Power_Limit
12 Latency Tolerance Reporting (LTR)
13 Optimized Buffer Flush/Fill (OBFF)
14 Unlock
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Table 2-25: AXISTEN_IF_ENABLE_MSG_ROUTE Attribute Bit Descriptions (Cont’d)

Bit Index Message Type
15 Vendor_Defined Type 0
16 Vendor_Defined Type 1
17 Invalid Request, Invalid Completion, Page Request, PRG Response

Configuration Space

The PCI configuration space consists of three primary parts, illustrated in Table 2-26. These
include:

« Legacy PCIv3.0 Type 0/1 Configuration Space Header
- Type 0 Configuration Space Header used by Endpoint applications (see Table 2-27)
- Type 1 Configuration Space Header used by Root Port applications (see Table 2-28)
» Legacy Extended Capability Items
- PCle Capability Item
- Power Management Capability Item
- Message Signaled Interrupt (MSI) Capability Item
o MSI-X Capability Item (optional)
« PCle Capabilities
- Advanced Error Reporting Extended Capability Structure (AER)
- Alternate Requestor ID (ARI) (optional)
- Device Serial Number Extended Capability Structure (DSN) (optional)
- Power Budgeting Enhanced
- Capability Header (PB) (optional)
- Resizable BAR (RBAR) (optional)
- Latency Tolerance Reporting (LTR) (optional)
- Dynamic Power Allocation (DPA) (optional)
- Single Root I/O Virtualization (SR-IOV) (optional)
- Transaction Processing Hints (TPH) (optional)
o Virtual Channel Extended Capability Structure (VC) (optional)
« PCle Extended Capabilities
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- Device Serial Number Extended Capability Structure (optional)
o Virtual Channel Extended Capability Structure (optional)
- Advanced Error Reporting Extended Capability Structure (optional)

The core implements up to four legacy extended capability items.

For more information about enabling this feature, see Chapter 7, Customizing and
Generating the Core.

The core optionally implements up to ten PCI Express Extended Capabilities. The remaining
PCI Express Extended Capability Space is available for users to implement. The starting
address of the space available to users begins at 3DCh. If you choose to implement registers
in this space, you can select the starting location of this space, and this space must be
implemented in the User Application.

For more information about enabling this feature, see PCle Extended Capabilities in
Chapter 7.

Table 2-26: Common PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 000h

Status Command 004h

Class Code Rev ID 008h

BIST Header Lat Timer Cache Ln 00Ch

010h
014h
018h

01Ch
Header Type Specific

(see Table 2-27 and Table 2-28)

020h

024h

028h

02Ch

030h

| CapPtr 034h

038h

Intr Pin | Intr Line 03Ch

Reserved 040h-
07Ch
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Table 2-26: Common PCI Configuration Space Header (Cont’d)
31 16 15 0
PM Capability NxtCap | PM Cap 080h
Data Reserved PMCSR 084h
Reserved 088h-
08Ch
Customizable® MSI Control ‘ NxtCap | MSI Cap 090h
Message Address (Lower) 094h
Message Address (Upper) 098h
Reserved ‘ Message Data 09Ch
Mask Bits 0AQh
Pending Bits 0A4h
Reserved giii_
Optional® MSI-X Control NxtCap MSI-X Cap 0BOh
Table Offset Table 0B4h
BIR
PBA Offset PBA 0B8h
BIR
Reserved 0BCh
PE Capability | NxtCap PE Cap 0COh
PCI Express Device Capabilities 0C4h
Device Status ‘ Device Control 0C8h
PCI Express Link Capabilities 0cch
Link Status ‘ Link Control 0DOh
Root Port Only®? Slot Capabilities 0D4h
Slot Status Slot Control 0D8h
Root Capabilities Root Control 0DCh
Root Status O0EOh
PCI Express Device Capabilities 2 0E4h
Device Status 2 ‘ Device Control 2 OE8h
PCI Express Link Capabilities 2 0ECh
Link Status 2 | Link Control 2 0FOh
Unimplemented Configuration Space 0F4h-
(Returns 0x00000000) 0FCh
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Table 2-26: Common PCI Configuration Space Header (Cont’d)

31 16 15 0
Always Enabled Next Cap Cap. Ver. PCI Express Extended Cap. ID (AER) 100h
Uncorrectable Error Status Register 104h
Uncorrectable Error Mask Register 108h
Uncorrectable Error Severity Register 10Ch
Correctable Error Status Register 110h
Correctable Error Mask Register 114h
Advanced Error Cap. & Control Register 118h
Header Log Register 1 11ch
Header Log Register 2 120h
Header Log Register 3 124h
Header Log Register 4 128h
Reserved 12Cch
Optional, Root Root Error Command Register 130h
Port only®
Root Error Status Register 134h
Error Source ID Register 138h
Reserved 13Ch
Optional®® Next Cap Cap. PCI Express Extended Capability - Alternate | 140h
Ver. Requester ID (ARI)
Control Next Function Function Groups 144h
Reserved 148h-
14Ch
Optional® Next Cap Cap. PCI Express Extended Capability - DSN 150h
Ver.
PCI Express Device Serial Number (1st) 154h
PCI Express Device Serial Number (2nd) 158h
Reserved 15Ch
Optional® Next Cap Cap. PCI Express Extended Capability - Power 160h
Ver. Budgeting Enhanced Capability Header
Reserved DS | 164h
Reserved Power Budget Data - State DO, D1, D3, ... 168h
Power Budget Capability 16Ch
Reserved 170h-
1B4h
Optional® Next Cap Cap. PCI Express Extended Capability ID - 1B8h
Ver. Latency Tolerance Reporting (LTR)
No-Snoop Snoop 1BCh
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Table 2-26: Common PCI Configuration Space Header (Cont’d)
31 16 15 0
Optional® Next Cap Cap. PCI Express Extended Capability ID - 1COh
Ver. Dynamic Power Allocation
Capability Register 1c4h
Latency Indicator 1Cc8h
Control Status 1cCh
Power Allocation Array Register 0 1D0h
Power Allocation Array Register 1 1D4h
Reserved 1D8h-
1FCh
Optional® Next Cap Cap. PCI Express Extended Capability ID - Single | 200h
Ver. Root I/O Virtualization (SR-IOV)
Capability Register 204h
SR-IOV Status (not supported) Control 208h
Total VFs Initial VFs 20Ch
Function Dependency Link Number VFs 210h
VF Stride First VF Offset 214h
VF Device ID Reserved 218h
Supported Page Sizes 21Ch
System Page Size 220h
VF Base Address Register 0 224h
VF Base Address Register 1 228h
VF Base Address Register 2 22Ch
VF Base Address Register 3 230h
VF Base Address Register 4 234h
VF Base Address Register 5 238h
Reserved 23Ch
Reserved 240h-
270h
Optional®) Next Cap Cap. PCI Express Extended Capability ID - 274h
Ver. Transaction Processing Hints (TPH)
Capability Register 278h
Requester Control Register 27Ch
Reserved Steering Tag Upper | Steering Tag Lower | 280h
Reserved 284h -
2FCh
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Table 2-26: Common PCI Configuration Space Header (Cont’d)

31

16 15

Optional®

Next Cap

Cap.
Ver.

PCI Express Extended Capability ID -
Secondary PCle Extended Capability

Lane Control (not s

upported)

Reserved

Lane Error Status

Lane Equalization Control Register 0

Lane Equalization Control Register 1

Lane Equalization Control Register 2

Lane Equalization Control Register 3

Reserved

Optional®

Next Cap

Cap.
Ver.

PCI Express Extended
Capability - VC

Port VC Capability

Register 1

Port VC Capability

Register 2

Port VC Status

Port VC Control

VC Resource Capability Register 0

VC Resource Contro

| Register 0

VC Resource Status

Register 0

Notes:

Reserved

1. The MSI Capability Structure varies depending on the selections in the CORE Generator tool GUL
2. Reserved for Endpoint configurations (returns 0x00000000).

300h

304h

308h

30Ch

310h

314h

318h

31Ch-
3BCh

3C0h

3C4h

3C8h

3CCh

3D0h

3D4h

3D8h

400h-
FFFh

3. The layout of the PCI Express Extended Configuration Space (L00h-FFFh) can change dependent on which
optional capabilities are enabled. This table represents the Extended Configuration space layout when all optional
extended capability structures, except RBAR, are enabled.

4. Enabled by default if the SR-IOV option is enabled.
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Table 2-27: Type 0 PCI Configuration Space Header

31 16 15 0
Device ID Vendor ID 00h
Status Command 04h
Class Code Rev ID 08h
BIST Header Lat Timer Cache Ln 0Ch
Base Address Register 0 10h
Base Address Register 1 14h
Base Address Register 2 18h
Base Address Register 3 1ch
Base Address Register 4 20h
Base Address Register 5 24h
Cardbus CIS Pointer 28h
Subsystem ID Subsystem Vendor ID 2Ch
Expansion ROM Base Address 30h
Reserved CapPtr 34h
Reserved 38h
Max Lat Min Gnt Intr Pin Intr Line 3Ch

Table 2-28: Type 1 PCl Configuration Space Header

31 16 15 0
Device ID Vendor ID 00h
Status Command 04h
Class Code Rev ID 08h
BIST Header Lat Timer Cache Ln 0Ch
Base Address Register 0 10h
Base Address Register 1 14h
Second Lat Timer Sub Bus Number Second Bus Number Primary Bus Number 18h
Secondary Status I/0 Limit I/0 Base 1Ch
Memory Limit Memory Base 20h
Prefetchable Memory Limit Prefetchable Memory Base 24h
Prefetchable Base Upper 32 Bits 28h
Prefetchable Limit Upper 32 Bits 2Ch
I/O Limit Upper 16 Bits I/0 Base Upper 16 Bits 30h
Reserved CapPtr 34h
Expansion ROM Base Address 38h
Bridge Control Intr Pin Intr Line 3Ch
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Designing with the Core

This chapter includes guidelines and additional information to make designing with the
core easier.

General Design Guidelines

See the 7 Series FPGAs Clocking Resources User Guide, 7 Series FPGAs GTX/GTH Transceivers
User Guide, and 7 Series FPGAs Select/lO™ Resources User Guide [Ref 3] for more information
on clock, transceiver, and I/O placement rules. Pay special attention to clocking conflicts or
errors that might result from choosing I/O and transceivers that do not follow these guides.
Failure to adhere to these guides will result in build errors and data integrity errors.

Clocking

The input system clock signal of the Virtex®-7 FPGA Gen3 Integrated Block for PCI
Express® is called ref_c1lk. The core requires a 100 MHz, 125 MHz, or 250 MHz clock
input. The clock frequency used must match the clock frequency selection in the CORE
Generator™ tool GUL For more information, see the Answer Records at the Xilinx PCI
Express Solution Center.

In a typical PCI Express solution, the PCI Express reference clock is a spread spectrum clock
(SSC), provided at 100 MHz. In most commercial PCI Express systems, SSC cannot be
disabled. For more information regarding SSC and PCI Express, see Section 4.3.7.1.1 of the
PCI Express Base Specification, rev. 3.0.

Synchronous and Non-Synchronous Clocking

There are two ways to clock the PCI Express system:

« Using synchronous clocking, where a shared clock source is used for all devices.

« Using non-synchronous clocking, where each device has its own clock source. Spread
spectrum clocking (SSC) and active state power management (ASPM) must not be used
in systems with non-synchronous clocking.
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i} IMPORTANT: The most commonly used clocking methodology is synchronous clocking. All add-in card
designs must use synchronous clocking due to the characteristics of the provided reference clock. For
devices using the Slot clock, the “Slot Clock Configuration” setting in the Link Status Register must be
enabled in the CORE Generator tool GUI. See Clocking Requirements, page 84 and the 7 Series FPGAs
GTX/GTH Transceivers User Guide for additional information regarding reference clock requirements.

For synchronous clocked systems, each link partner device shares the same clock source.
Figure 3-1 and Figure 3-3 show a system using a 100 MHz reference clock. When using
the 125 MHz or the 250 MHz reference clock option, an external PLL must be used to do
a multiply of 5/4 and 5/2 to convert the 100 MHz clock to 125 MHz and 250 MHz,
respectively, as illustrated in Figure 3-2 and Figure 3-4.

Even if the device is part of an embedded system, if the system uses commercial PCI
Express root complexes or switches along with typical motherboard clocking schemes,
synchronous clocking should still be used as shown in Figure 3-1 and Figure 3-2.

Figure 3-1 through Figure 3-4 illustrate high-level representations of the board layouts.
Designers must ensure that proper coupling, termination, and so forth are used when
laying out the board.

Note: Figure 3-1 through Figure 3-4 are high-level representations of the board layout. Ensure that
proper coupling, termination, and so forth are used when laying out a board.

Embedded System Board

D e
PO Express (< POl link
Switch or Root PCle Link GTH Virtex-7 XT/HT FPGA
Complex PCle Link Transceivers Endpoint
Device
J \
100 MHz
100 MH
PCI Express z
Clock Oscillator

X12208

Figure 3-1: Embedded System Using 100 MHz Reference Clock
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Figure 3-2: Embedded System Using 125/250 MHz Reference Clock
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PCI Express Add-In Card
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PCI Express Clock GTH
\_ Transceivers
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Figure 3-3: Open System Add-In Card Using 100 MHz Reference Clock
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PCI Express Add-In Card
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External PLL 125/250 MHz Endpoint
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A GTH
\_ Transceivers

L /\

100 MHz with SSC
PCI Express Clock

PCle Link
NuUIT 810d

vioT

PCI Express Connector

PCle Link

X12343

Figure 3-4: Open System Add-In Card Using 125/250 MHz Reference Clock

Resets

The LogiCORE™ Gen3 Integrated Block for PCle IP core resets the system using sys_reset,
an asynchronous, active-Low reset signal asserted during the PCI Express Fundamental
Reset. Asserting this signal causes a hard reset of the entire core, including the GTH
transceivers. After the reset is released, the core attempts to link train and resume normal
operation. In a typical Endpoint application, for example an add-in card, a sideband reset
signal is normally present and should be connected to sys_reset. For Endpoint
applications that do not have a sideband system reset signal, the initial hardware reset
should be generated locally. Four reset events can occur in PCI Express:

« Cold Reset. A Fundamental Reset that occurs at the application of power. The
sys_reset signal is asserted to cause the cold reset of the core.

« Warm Reset. A Fundamental Reset triggered by hardware without the removal and
re-application of power. The sys_reset signal is asserted to cause the warm reset to
the core.

« Hot Reset. In-band propagation of a reset across the PCI Express Link through the
protocol, resetting the entire Endpoint device. In this case, sys_reset is not used. In
the case of Hot Reset, the cfg_hot_reset_out signal is asserted to indicate the
source of the reset.
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« Function-Level Reset: In-band propagation of a reset across the PCI Express Link
through the protocol, resetting only a specific function. In this case, the core asserts
the bit of either cfg_flr_in process and/or cfg _vf flr_ in_ process that
corresponds to the function being reset. Logic associated with the function being reset
must assert the corresponding bit of cfg_flr_done or cfg_vf_flr_done to
indicate it has completed the reset process. Support for function-level reset is indicated
via the PFO_DEV_CAP_FUNCTION_LEVEL_RESET_CAPABLE parameter.

The User Application interface of the core has an output signal called user_reset. This
signal is deasserted synchronously with respect to user_clk. The user_reset signal is
asserted as a result of any of these conditions:

« Fundamental Reset: Occurs (cold or warm) due to assertion of sys_reset.

« PLL within the Core Wrapper: Loses lock, indicating an issue with the stability of the
clock input.

« Loss of Transceiver PLL Lock: Any transceiver loses lock, indicating an issue with the PCI
Express Link.

The user_reset signal is deasserted synchronously with user_c1k after all of the listed
conditions are resolved, allowing the core to attempt to train and resume normal operation.

Note: Systems designed to the PCI Express electromechanical specification provide a sideband reset
signal, which uses 3.3V signaling levels—see the Virtex-7 FPGA data sheet to understand the
requirements for interfacing to such signals.

AXl4-Stream Interface Description

This section provides a detailed description of the features, parameters, and signals
associated with the client-side interfaces of the Gen3 Integrated Block for PCle.

Overview of Features

Figure 3-5 illustrates the client-side interface of the Gen3 Integrated Block for PCle.
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Figure 3-5: Block Diagram of Gen3 Integrated Block Client Interfaces

interface is organized as four separate interfaces through which data can be transferred

between the PCle link and the client application:

Gen3 Integr

A PCle Completer reQuest (CQ) interface through which requests arriving from the link
are delivered to the client application.

A PCle Completer Completion (CC) interface through which the client application can
send back responses to the completer requests. The client can process all Non-Posted
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transactions as split transactions. That is, it can continue to accept new requests on the
completer request interface while sending a completion for a request.

« A PCle Requester reQuest (RQ) interface through which the client application can
generate requests to remote PCle devices attached to the link.

» A PCle Requester Completion (RC) interface through which the Integrated Block returns
the completions received from the link (in response to the client's requests as PCle
requester) to the client application.

Each of the four interfaces is based on the AMBA4® AXI4-Stream Protocol Specification.
The width of these interfaces can be configured as 64, 128, or 256 bytes, and the user clock
frequencies can be selected as 62.5, 125, or 250 MHz, depending on the number of lanes
and PCle generation chosen by the user. Table 3-1 lists the valid combinations of interface
width and user clock frequency for the different link widths and link speeds supported by
the Integrated Block. All four AXI4-Stream interfaces are configured with the same width in
all cases.

In addition, the Integrated Block contains two interfaces through which status information
is communicated to the PCle master side of the client application:

« A flow control status interface that provides information on currently available transmit
credit, so that the client application can schedule requests based on available credit.

« A tag availability status interface that provides information on the number of tags
available to assign to Non-Posted requests, so that the client can schedule requests
without the risk of being blocked by all tags being in use within the PCle controller.

Finally, the Integrated Block also has a received-message interface which optionally
provides indications to the user logic when a message is received from the link, rather than
transferring the entire message to the client over the CQ interface.

Table 3-1: Data Width and Clock Frequency Settings for the Client Interfaces

PCI Express Generation/ Maximum Link AXI4-Stream User Clock
Maximum Link Speed Width Capability | Interface Width | Frequency (MHz)

64 bits 62.5

x1 64 bits 125
64 bits 250
64 bits 62.5

x2 64 bits 125

Genl (2.5 GT/s)

64 bits 250
64 bits 125

x4
64 bits 250
64 bits 250

x8
128 bits 125
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Table 3-1: Data Width and Clock Frequency Settings for the Client Interfaces (Cont’d)

PCI Express Generation/ Maximum Link AXl4-Stream User Clock
Maximum Link Speed Width Capability | Interface Width | Frequency (MHz)

64 bits 62.5
x1 64 bits 125
64 bits 250
64 bits 125

X2
Gen2 (5.0 GT/s) 64 bits 250
64 bits 250

x4
128 bits 125
128 bits 250

x8
256 bits 125
64 bits 125

x1
64 bits 250
5 64 bits 250

X

Gen3 (8.0 GT/s) 128 bits 125
128 bits 250

x4
256 bits 125
x8 256 bits 250

Data Alignment Options

A transaction layer packet (TLP) is transferred on each of the AXI4-Stream interfaces as a
descriptor followed by payload data (when the TLP has a payload). The descriptor has a
fixed size of 16 bytes on the request interfaces and 12 bytes on the completion interfaces.
On its transmit side (towards the link), the Integrated Block assembles the TLP header from
the parameters supplied by the client application in the descriptor. On its receive side
(towards the client), the Integrated Block extracts parameters from the headers of received
TLP and constructs the descriptors for delivering to the client application. Each TLP is
transferred as a packet, as defined in the AXI4-Stream Interface Protocol.

When a payload is present, there are two options for aligning the first byte of the payload
with respect to the datapath.

1. Dword-aligned mode: In this mode, the descriptor bytes are followed immediately by
the payload bytes in the next Dword position, whenever a payload is present.

2. Address-Aligned Mode: In this mode, the payload can begin at any byte position on the
datapath. For data transferred from the Integrated Block to the client, the position of the
first byte is determined as:

n=Amodw
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where A is the memory or I/O address specified in the descriptor (for message and
configuration requests, the address is taken as 0), and w is the configured width of the
data bus in bytes. Any gap between the end of the descriptor and the start of the first
byte of the payload is filled with null bytes.

For data transferred from the Integrated Block to the client application, the data alignment
is determined based on the starting address where the data block is destined to in client
memory. For data transferred from the client application to the Integrated Block, the client
must explicitly communicate the position of the first byte to the Integrated Block using the
tuser sideband signals when the address-aligned mode is in use.

In the address-aligned mode, the payload and descriptor are not allowed to overlap. That is,
the transmitter begins a new beat to start the transfer of the payload after it has transmitted
the descriptor. The transmitter fills any gaps between the last byte of the descriptor and the
first byte of the payload with null bytes.

The CORE Generator tool customization GUI applies the data alignment option globally to
all four interfaces. However, advanced users can select the alignment mode independently
for each of the four AXI4-Stream interfaces. This is done by setting the corresponding
alignment mode parameter, with the constraint that the Requester Completion (RC)
interface can be set to the address-aligned mode only when the Requester reQuest (RQ)
interface is configured in the address-aligned mode. See Interface Operation, page 85 for
more details on address alignment and example diagrams.

Straddle Option on Requester Completion Interface

When the Requester Completion (RC) interface is configured for a width of 256 bits,
depending on type of TLP and Payload size, there can be significant interface utilization
inefficiencies, if a maximum of 1 TLP is allowed to start or end per interface beat. This
inefficient use of RC interface can lead to overflow of the completion FIFO when Infinite
Receiver Credits are advertized. The user must either a) Restrict the number of outstanding
Non Posted requests, so as to keep the total number of completions received less than 64
and within the completion of the FIFO size selected, or b) Use the RC interface straddle
option. See Figure 3-59 for waveforms showing this option.

The straddle option, available only on the 256-bit wide RC interface, is enabled through the
CORE Generator tool customization GUIL See Interface Settings, page 231 for instructions
on enabling the option in the GUI. When this option is enabled, the Integrated Block can
start a new Completion TLP on byte lane 16 when the previous TLP has ended at or before
byte lane 15 in the same beat. Thus, with this option enabled, it is possible for the
Integrated Block to send two Completion TLPs entirely in the same beat on the RC interface,
if neither of them has more than one Dword of payload.

The straddle setting is only available when the interface width is set to 256 bits and the RC
interface is set to Dword-aligned mode.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 82
PG023 October 16, 2012



http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-2 lists the valid combinations of interface width, addressing mode, and the straddle
option.

Table 3-2: Valid Combinations of Interface Width, Alignment Mode, and Straddle

Interface Width | Alignment Mode | Straddle Option Description
64 bits Dword-aligned Not applicable 64-bit, Dword-aligned
64 bits Address-aligned Not applicable 64-bit, Address-aligned
128 bits Dword-aligned Not applicable 128-bit, Dword-aligned
128 bits Address-aligned Not applicable 128-bit, Address-aligned
256 bits Dword-aligned Disabled 256-bit, Dword-aligned, straddle
disabled
256-bit, Dword-aligned, straddle
256 bits Dword-aligned Enabled enabled (only allowed for the Requester
Completion interface)
256 bits Address-aligned Not applicable 256-bit, Address-aligned

Receive Transaction Ordering

The Gen3 Integrated Block for PCle contains logic on its receive side to ensure that TLPs
received from the link and delivered on its completer request interface and requester
completion interface do not violate the PCI Express transaction ordering constraints. The
ordering actions performed by the Integrated Block are based on the following key rules:

« Posted requests must be able to pass Non-Posted requests on the Completer reQuest
(CQ) interface. To enable this capability, the Integrated Block implements a flow control
mechanism on the CQ interface through which client logic can control the flow of
Non-Posted requests without affecting Posted requests. The client logic signals the
availability of a buffer to receive a Non-Posted request by asserting the
pcie_cqg np_req signal.

The Integrated Block delivers a Non-Posted request to the client only when the available
credit is non-zero. The Integrated Block continues to deliver Posted requests while the
delivery of Non-Posted requests has been paused for lack of credit. When no
backpressure is applied by the credit mechanism for the delivery of Non-Posted
requests, the Integrated Block delivers Posted and Non-Posted requests in the same
order as received from the link. For more information on controlling the flow of
Non-Posted requests, see Selective Flow Control for Non-Posted Requests, page 103.

« PCle ordering requires that a completion TLP not be allowed to pass a Posted request,
except in the following cases:

- Completions with the Relaxed Ordering attribute bit set can pass Posted requests

o Completions with the ID-based ordering bit set can pass a Posted request if the
completion's Completer ID is different from the Posted request's Requestor ID.
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The Integrated Block does not start the transfer of a Completion TLP received from the link
on the Requester Completion (RC) interface until it has completely transferred all Posted
TLPs that arrived before it, unless one of the two rules applies.

After a TLP has been transferred completely to the client side, it is the responsibility of the
client application to enforce ordering constraints whenever needed.

Transmit Transaction Ordering

On the transmit side, the Integrated Block receives TLPs from the user on two different
interfaces: the Requester reQuest (RQ) interface and the Completer Completion (CC)
interface. The Integrated Block does not re-order transactions received from each of these
interfaces. It is difficult to predict how the requester-side requests and completer-side
completions are ordered in the transmit pipeline of the Integrated Block, after these have
been multiplexed into a single traffic stream. In cases where completion TLPs must maintain
ordering with respect to requests, client logic can supply a 4-bit sequence number with any
request that needs to maintain strict ordering with respect to a Completion transmitted
from the CC interface, on the seq_num[3:0] inputs within the s_axis_rqg_tuser bus.
The Integrated Block places this sequence number onits pcie_rg_seqg_num[3:0] output
and assert pcie_rqg_seq_num_vld when the request TLP has reached a point in the
transmit pipeline at which no new completion TLP from the client can pass it. This
mechanism can be used in the following situations to maintain TLP order:

« The client logic requires ordering to be maintained between a request TLP and a
completion TLP that follows it. In this case, client logic must wait for the sequence
number of the requester request to appear on the pcie_rg_seg num([3:0] output
before starting the transfer of the completion TLP on the target completion interface.

» The client logic requires ordering to be maintained between a request TLP and
MSI/MSI-X TLP signaled through the MSI Message interface. In this case, the client
logic must wait for the sequence number of the requester request to appear on the
pcie_rg seq num[3:0] output before signaling MSI or MSI-X on the MSI Message
interface.

Clocking Requirements

All client interface signals of the Gen3 Integrated Block for PCle are timed with respect to
the user clock (user_c1k), which can have a frequency of 62.5, 125, or 250 MHz,
depending on the link speed and link width configured (see Table 3-1).
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Interface Operation

This section describes the operation of the client-side interfaces of the Gen3 Integrated
Block for PCle.

Completer Interface

This interface maps the transactions (memory, I/O read/write, messages, Atomic
Operations) received from the PCle link into transactions on the Completer reQuest (CQ)
interface based on the AXI4-Stream protocol. The completer interface consists of two
separate interfaces, one for data transfers in each direction. Each interface is based on the
AXI14-Stream protocol, and its width can be configured as 64, 128, or 256 bits. The CQ
interface is for transfer of requests (with any associated payload data) to the client
application, and the Completer Completion (CC) interface is for transferring the Completion
data (for a Non-Posted request) from the client application for forwarding on the link. The
two interfaces operate independently. That is, the Integrated Block can transfer new
requests over the CQ interface while receiving a Completion for a previous request.

Completer Request Descriptor Formats

The Integrated Block transfers each request TLP received from the link over the CQ interface
as an independent AXI4-Stream packet. Each packet starts with a descriptor and can have
payload data following the descriptor. The descriptor is always 16 bytes long, and is sent in
the first 16 bytes of the request packet. The descriptor is transferred during the first two
beats on a 64-bit interface, and in the first beat on a 128-bit or 256-bit interface.

The formats of the descriptor for different request types are illustrated in Figure 3-6,
Figure 3-7, Figure 3-8, and Figure 3-9. The format of Figure 3-6 applies when the request
TLP being transferred is a memory read/write request, an I/O read/write request, or an
Atomic Operation request. The format of Figure 3-7 is used for Vendor-Defined Messages
(Type 0 or Type 1) only. The format of Figure 3-8 is used for all ATS messages (Invalid
Request, Invalid Completion, Page Request, PRG Response). For all other messages, the
descriptor takes the format of Figure 3-9.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 85
PG023 October 16, 2012



http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

63 32 0
DW +1 DW +0
+7 +6 +5 +4 +3 +2 +1 +0
7|6]5|4]3]|2|1|0f7|6]|5]4|3]2]1|0|7]|6]|5]4]3]|2|1]0]|7]|6]|5|4]3]|2|1]0]|7|6]|5]|4]|3]2]|1]0f7|6]5]4]|3]|2]|1]|0]7|6|5]|4]3]|2]|1]0|7|6]|5]|4]|3]2]1]0
Address [63:2]
Address Type (AT ) J
127 96 64
DW+3 DW +2
+15 +14 +13 +12 +11 +10 +9 +8
7]6|5]4]3|2]1]|0|7]|6]|5]4]3]|2|1]|0|7]|6]|5]|4]|3]|2|1]|0|7]|6]5]4]|3|2|1]|0|7|6|5]4]3]|2]1|0]|7]|6]5]|4]3]|2]|1]|0|7|6]5]|4]3]|2]1]0f7]|6]5]|4]|3]|2]1]0
R| Attr | TC Target Function Tag Bus Device/Function |R Dword count

L BAR ID

BAR Aperture

L

-4—— Requester D ——» L

Req Type

X12117

Figure 3-6: Completer Request Descriptor Format for Memory, 1/0, and Atomic Op Requests

63 32 0
DW +1 DW +0
+7 +6 +5 +4 +3 +2 +1 +0
7|6]|5/4]3]|2|1]0]|7]6]|5]|4]|3|2|1]0|7|6|5]4]3]|2]|1]|0f7]|6|5]4]|3|2|1]0]7|6]|5|4]3]|2|1]0]|7]|6|5]|4]|3|2]|1]|0|7|6]5|4]3]2]|1]0|7|6]|5]4]|3]|2|1]0
Vendor-Defined Header Bytes Vendor ID Bus Device/ Function

-4——— Destination ID ———»

*

*

*

*

TL Header TL Header TL Header TL Header
Byte 15 Byte 14 Byte 13 Byte 12
127 96 64
DW +3 DW +2
+15 +14 +13 +12 +11 +10 +9 +8

7|6]5]4]3]2]|1|0]7|6]5]4]|3|2]1]0]7|6]|5]4|3]|2|1]0|7]|6]5]4]3|2]|1|0]|7]|6]|5]|4|3]|2]|1]0f7]|6]5|4]|3|2]|1]0]|7|6]|5]4]|3]|2]|1]0[7]|6]|5]|4]3]2]1]0

R| Attr [ TC R Msg Code Tag Bus Device/Function |R Dword count
Message f -4—— RequesterID ——» t Rea Tvoe
Routing a1yp X12219

Figure 3-7: Completer Request Descriptor Format for Vendor-Defined Messages
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63 32 0
DW + 1 DW + 0
+7 +6 +5 +4 +3 +2 +1 +0
716|5/4]3]2|1]0]|7]6|5]4]|3|2|1]0]7|6]5]|4]3]2]1]|0|7|6]|5]|4|3]|2]|1]0f7|6]5]4]|3|2]|1]0]7]6|5|4]3]|2]1]|0|7]|6]5]4]3]|2|1]0]|7]|6]|5]4]3]2]1]0
TLP Header Bytes 8-15

f f f ; f f f f

TL Header TL Header TL Header TL Header TL Header TL Header TL Header TL Header
Byte 15 Byte 14 Byte 13 Byte 12 Byte 11 Byte 10 Byte 9 Byte 8
127 96 64
DW + 3 DW + 2
+15 +14 +13 +12 +11 +10 +9 +8
716|5]4]3]2|1]0]7]6]|5]4]|3|2]1]0]7|6]5]|4]|3]2]1]|0|7|6]|5]|4|3]|2]|1]0of7|6]5]4]|3]2]|1]0]7]6]|5]|4]3]|2]1]|0|7|6]5]4]3]|2|1]0]|7]|6]|5]4]3]2]1]0
R[ Attr | TC R Msg Code Tag Bus Device/Function |R Dword Count
MessageJ -4——— Requester ID ——» t
Routi Req Type
outing X12216
Figure 3-8: Completer Request Descriptor Format for ATS Messages
63 32 0
DW +1 DW +0
+7 +6 +5 +4 +3 +2 +1 +0
7|6|5]4]3|2]1]0]|7|6|5]4|3]|2|1]0]|7|6|5]4]3]|2]|1]0]|7|6]5]4]3]|2]|1]0|7|6]|5|4]|3]|2|1]|0]|7]|6]|5|4]|3|2]1]|0]|7|6|5]|4]|3]|2]|1]|0]|7|6|5]|4]|3]|2]|1]0
R
OBFF CodeJ A A
(for OBFF message); No-Snoop Latency Snoop Latency
Reserved (for others) (for LTR message); (for LTR message);
Reserved (for others) Reserved (for others)
127 9 64
DW +3 DW +2
+15 +14 +13 +12 +11 +10 +9 +8
7]|6]5]4]3]2]1]of7]|6]|5]|4|3]|2|1]0]|7]|6]|5]4]|3]|2]|1]0]7|6]|5]4]|3|2]|1]0f7]|6]|5]4]|3]|2]1]0]|7|6]5]4]|3]2]1]0]|7|6|5]4]3]|2]1]|0|7|6]|5]|4]|3]|2]1]0
R| Attr | TC R Msg Code Tag Bus Device/Function |R Dword Count
M J -4——— Requester D ——» t
essage
Routing Req Type X12218
Figure 3-9: Completer Request Descriptor Format for All Other Messages
Table 3-3 describes the individual fields of the completer request descriptor.
Table 3-3: Completer Request Descriptor Fields
Bit Index Field Name Description
This field is defined for memory transactions and Atomic
Operations only. It contains the AT bits extracted from the TL
header of the request.
1:0 Address Type 00: Address in the request is untranslated
01: Transaction is a Translation Request
10: Address in the request is a translated address
11: Reserved
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Table 3-3: Completer Request Descriptor Fields (Cont’d)

Bit Index

Field Name

Description

63:2

Address

This field applies to memory, I/O, and Atomic Op requests. It
provides the address from the TLP header. This is the address
of the first Dword referenced by the request. The First_BE
bits from m_axis_cqg_tuser must be used to determine
the byte-level address.

When the transaction specifies a 32-bit address, bits [63:32]
of this field are 0.

74:64

Dword Count

These 11 bits indicate the size of the block (in Dwords) to be
read or written (for messages, size of the message payload).
Itsrange is 0 - 256 Dwords. For 1/O accesses, the Dword count
is always 1.

For a zero length memory read/write request, the Dword
count is 1, with the First_BE bits set to all Os.

78:75

Request Type

Identifies the transaction type. The transaction types and
their encodings are listed in Table 3-4.

95:80

Requester ID

PCI Requester ID associated with the request. With legacy
interpretation of RIDs, these 16 bits are divided into an 8-bit
bus number [95:88], 5-bit device number [87:83], and 3-bit
Function number [82:80]. When ARI is enabled, bits [95:88]
carry the 8-bit bus number and [87:80] provide the Function
number.

When the request is a Non-Posted transaction, the client
completer application must store this field and supply it back
to the Integrated Block with the completion data.

103:96

Tag

PCle Tag associated with the request. When the request is a
Non-Posted transaction, the client logic must store this field
and supply it back to the Integrated Block with the
completion data. This field can be ignored for memory writes
and messages.

111:104

Target Function

This field is defined for memory, I/O, and Atomic Op requests
only. It provides the Function number the request is targeted
at, determined by the BAR check. When ARl s in use, all 8 bits
of this field are valid. Otherwise, only bits [106:104] are valid.

Following are Target Function Value to PF/VF map mappings:
« 0: PFO

« 1: PF1

* 64: VFO

* 65: VF1

¢ 66: VF2

« 67:VF3

* 68: VF4

* 69: VF5
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Table 3-3: Completer Request Descriptor Fields (Cont’d)

Bit Index

Field Name

Description

114:112

BAR ID

This field is defined for memory, I/O, and Atomic Op requests
only. It provides the matching BAR number for the address in
the request.

¢ 000: BAR O (VF-BAR O for VFs)
« 001: BAR 1 (VF-BAR 1 for VFs)
e 010: BAR 2 (VF-BAR 2 for VFs)
¢ 011: BAR 3 (VF-BAR 3 for VFs)
¢ 100: BAR 4 (VF-BAR 4 for VFs)
e 101: BAR 5 (VF-BAR 5 for VFs)
e 110: Expansion ROM Access

For 64-bit transactions, the BAR number is given as the lower
address of the matching pair of BARs (that is, O, 2, or 4).

120:115

BAR Aperture

This 6-bit field is defined for memory, I/0, and Atomic Op
requests only. It provides the aperture setting of the BAR
matching the request. This information is useful in
determining the bits to be used by the client in addressing its
memory or I/O space. For example, a value of 12 indicates
that the aperture of the matching BAR is 4K, and the client
can therefore ignore bits [63:12] of the address.

For VF BARs, the value provided on this output is based on
the memory space consumed by a single VF covered by the
BAR.

123:121

Transaction Class
(TO)

PCle Transaction Class (TC) associated with the request.
When the request is a Non-Posted transaction, the client
completer application must store this field and supply it back
to the Integrated Block with the completion data.

126:124

Attributes

These bits provide the setting of the Attribute bits associated
with the request. Bit 124 is the No Snoop bit and bit 125 is
the Relaxed Ordering bit. Bit 126 is the ID-Based Ordering bit,
and can be set only for memory requests and messages.
When the request is a Non-Posted transaction, the client
completer application must store this field and supply it back
to the Integrated Block with the completion data.

15:0

Snoop Latency

This field is defined for LTR messages only. It provides the
value of the 16-bit Snoop Latency field in the TLP header of
the message.

31:16

No-Snoop Latency

This field is defined for LTR messages only. It provides the
value of the 16-bit No-Snoop Latency field in the TLP header
of the message.

35:32

OBFF Code

This field is defined for OBFF messages only. The OBFF Code
field is used to distinguish between various OBFF cases:

e 1111b: "CPU Active” — System fully active for all device
actions including bus mastering and interrupts

« 0001b: "OBFF" — System memory path available for device
memory read/write bus master activities

« 0000b: “Idle” — System in an idle, low power state
All other codes are reserved.
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Table 3-3: Completer Request Descriptor Fields (Cont’d)
Bit Index Field Name Description
This field is defined for all messages. It contains the 8-bit
Message Code extracted from the TLP header.
111:104 M Cod
essage Lode Appendix F of the PCI Express Base Specification, rev. 3.0
provides a complete list of the supported Message Codes.
i . This field is defined for all messages. These bits provide the
114112 Message Routing 3-bit Routing field r[2:0] from the TLP header.
This field applies to Vendor-Defined Messages only. When
. N the message is routed by ID (that is, when the Message
150 Destination ID Routing field is 010 binary), this field provides the
Destination ID of the message.
63:32 Vendor-Defined | This field applies to Vendor-Defined Messages only. It
‘ Header contains the bytes extracted from Dword 3 of the TLP header.
. This field is applicable to ATS messages only. It contains the
63:0 ATS Header bytes extracted from Dwords 2 and 3 of the TLP header.

Table 3-4: Transaction Types

Re?;itle‘s;tr;y)/pe Description
0000 Memory Read Request
0001 Memory Write Request
0010 I/O Read Request
0011 I[/O Write Request
0100 Memory Fetch and Add Request
0101 Memory Unconditional Swap Request
0110 Memory Compare and Swap Request
0111 Locked Read Request (allowed only in Legacy Devices)
1000 Type 0 Configuration Read Request (on Requester side only)
1001 Type 1 Configuration Read Request (on Requester side only)
1010 Type 0 Configuration Write Request (on Requester side only)
1011 Type 1 Configuration Write Request (on Requester side only)
1100 Any message, except ATS and Vendor-Defined Messages
1101 Vendor-Defined Message
1110 ATS Message
1111 Reserved

Completer Request Interface Operation

Figure 3-10 illustrates the signals associated with the completer request interface of the
core. The core delivers each TLP on this interface as an AXI4-Stream packet. The packet
starts with a 128-bit descriptor, followed by data in the case of TLPs with a payload.
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Client

Virtex-7 FPGA Gen3 Application
Integrated Block for PCle

m_axis_cq_tdata[255:0]

m_axis_cq_tparity[31:0]

vy

m_axis_cq_tvalid

m_axis_cq_tready
PCle Completer PCle

Request Interface m_axis_cq_tkeep[7:0] Completer-Side
 _ Interface

m_axis_cq_tlast

sop N

AXIl4-Stream first_be[3:0] AXIl4-Stream
Master Slave

last_be[3:0]

vy

byte_en[31:0]

y

discontinue

tph_present

tph_type[1:0]
tph_st_tag[7:0] \ l

m_axis_cq_tuser[52:0] /V

pcie_cq_np_req

vy

pcie_cq_np_req_count[5:0]

X12442

Figure 3-10: Completer Request Interface Signals

The completer request interface supports two distinct data alignment modes, selected by
the attribute AXISTEN_IF_CQ_ALIGNMENT_MODE. In the Dword-aligned mode, the first
byte of valid data appears in lane n = (16 + A mod 4) mod w, where:

« Ais the byte-level starting address of the data block being transferred

« wis the width of the interface in bytes

In the address-aligned mode, the data always starts in a new beat after the descriptor has
ended, and its first valid byte is on lane n = A mod w, where w is the width of the interface
in bytes. For memory, I/O, and Atomic Operation requests, address A is the address
contained in the request. For messages, the address is always taken as 0 for the purpose of
determining the alignment of its payload.
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Completer Memory Write Operation

The timing diagrams in Figure 3-11, Figure 3-12, and Figure 3-13 illustrate the
Dword-aligned transfer of a memory write TLP received from the link across the Completer
reQuest (CQ) interface, when the interface width is configured as 64, 128, and 256 bits,
respectively. For illustration purposes, the starting Dword address of the data block being
written into client memory is assumed to be (m * 32 + 1), for an integer m > 0. Its size is
assumed to be n Dwords, for some n = k*32 + 29, k > 0.

In both Dword-aligned and address-aligned modes, the transfer starts with the

16 descriptor bytes, followed immediately by the payload bytes. The m_axis_cqg_tvalid
signal remains asserted over the duration of the packet. The client can prolong a beat at any
time by deasserting m_axis_cq_tready. The AXI4-Stream interface signals
m_axis_cqg_tkeep (one per Dword position) indicate the valid Dwords in the packet
including the descriptor and any null bytes inserted between the descriptor and the
payload. That is, the tkeep bits are set to 1 contiguously from the first Dword of the
descriptor until the last Dword of the payload. During the transfer of a packet, the tkeep bits
can be 0 only in the last beat of the packet, when the packet does not fill the entire width
of the interface. The m_axis_cqg_tlast signal is always asserted in the last beat of the
packet.

The CQ interface also includes the First Byte Enable and the Last Enable bits in the
m_axis_cqg_tuser bus. These are valid in the first beat of the packet, and specify the valid
bytes of the first and last Dwords of payload.

The m_axi_cqg_tuser bus also provides several informational signals that can be used to
simplify the logic associated with the client side of the interface, or to support additional
features. The sop signal is asserted in the first beat of every packet, when its descriptor is
on the bus. The byte enable outputs byte_en[31:0] (one per byte lane) indicate the valid
bytes in the payload. The bits of byte_en are asserted only when a valid payload byte is in
the corresponding lane (that is, not asserted for descriptor or padding bytes between the
descriptor and payload). The asserted byte enable bits are always contiguous from the start
of the payload, except when the payload size is two Dwords or less. For cases of one-Dword
and two-Dword writes, the byte enables can be non-contiguous. Another special case is
that of a zero-length memory write, when the Integrated Block transfers a one-Dword
payload with all byte_en bits set to 0. Thus, the client logic can, in all cases, use the
byte_en signals directly to enable the writing of the associated bytes into memory.

In the Dword-aligned mode, there can be a gap of zero, one, two, or three byte positions
between the end of the descriptor and the first payload byte, based on the address of the
first valid byte of the payload. The actual position of the first valid byte in the payload can
be determined either from first_be[3:0] orbyte_en[31:0] in the

m_axis_cqg _tuser bus.

When a Transaction Processing Hint is present in the received TLP, the Integrated Block
transfers the parameters associated with the hint (TPH Steering Tag and Steering Tag Type)
on signals within the m_axis_cqg_tuser bus.
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m_axis_cq_tdata[63:32]

-DESC 1XDESC SX DW 1

|
|
|
|
|
m_axis_cq_tvalid |
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Figure 3-11:
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Figure 3-12:
Interface Width = 128 Bits)
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Figure 3-13: Memory Write Transaction on the Completer Request Interface (Dword-Aligned Mode,
Interface Width = 256 Bits)

The timing diagrams in Figure 3-14, Figure 3-15, and Figure 3-16 illustrate the
address-aligned transfer of a memory write TLP received from the link across the CQ
interface, when the interface width is configured as 64, 128 and 256 bits, respectively. For
the purpose of illustration, the starting Dword address of the data block being written into
client memory is assumed to be (m * 32 + 1), for an integer m > 0. Its size is assumed to be
n Dwords, for some n = k* 32 + 29, k > 0.
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In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. The first byte of the payload can appear on any byte lane,
based on the address of the first valid byte of the payload. The keep outputs
m_axis_cqg_tkeep remain High in the gap between the descriptor and the payload. The
actual position of the first valid byte in the payload can be determined either from the least
significant bits of the address in the descriptor or from the byte enable bits
byte_en[31:0] inthem_axis_cqg_tuser bus.

For writes of two Dwords or less, the 1s on byte_en cannot be contiguous from the start
of the payload. In the case of a zero-length memory write, the Integrated Block transfers a
one-Dword payload with the byte_en bits all set to 0 for the payload bytes.
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user_clk | | | | | | | ! S : !
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) §
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(byte_en[7:4)) m_axis_cq_tuser[15:12] | !
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- ——F—-—|1
——— _— /N _—
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Figure 3-14: Memory Write Transaction on the Completer Request Interface (Address-Aligned Mode,
Interface Width = 64 Bits)
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Figure 3-16: Memory Write Transaction on the Completer Request Interface (Address-Aligned Mode,
Interface Width = 256 Bits)

Completer Memory Read Operation

A memory read request is transferred across the completer request interface in the same
manner as a memory write request, except that the AXI4-Stream packet contains only the
16-byte descriptor. The timing diagrams in Figure 3-17, Figure 3-18, and Figure 3-19
illustrate the transfer of a memory read TLP received from the link across the completer
request interface, when the interface width is configured as 64, 128, and 256 bits,
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respectively. The packet occupies two consecutive beats on the 64-bit interface, while it is
transferred in a single beat on the 128- and 256-bit interfaces. Them_axis_cqg_tvalid

signal remains asserted over the duration of the packet. The client can prolong a beat at any
time by deassertingm_axis_cq_tready. The sop signal inthem_axis_cqg_tuser busis

asserted when the first descriptor byte is on the bus.
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Figure 3-17: Memory Read Transaction on the Completer Request Interface (Interface Width = 64 Bits)
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Figure 3-18: Memory Read Transaction on the Completer Request Interface (Interface Width = 128

Bits)
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Figure 3-19: Memory Read Transaction on the Completer Request Interface (Interface Width = 256
Bits)

The byte enable bits associated with the read request for the first and last Dwords are
supplied by the Integrated Block on the m_axis_cqg_tuser sideband bus. These bits are
valid when the first descriptor byte is being transferred, and must be used by the client to
determine the byte-level starting address and the byte count associated with the request.
For the special cases of one-Dword and two-Dword reads, the byte enables can be
non-contiguous. The byte enables are contiguous in all other cases. A zero-length memory
read is sent on the CQ interface with the Dword count field in the descriptor set to 1 and the
first and last byte enables set to 0.

The client must respond to each memory read request with a Completion. The data
requested by the read can be sent as a single Completion or multiple Split Completions.
These Completions must be sent via the Completer Completion (CC) interface of the
Integrated Block. The Completions for two distinct requests can be sent in any order, but
the Split Completions for the same request must be in order. The operation of the CC
interface is described in Completer Completion Interface Operation, page 104.

1/O Write Operation

The transfer of an I/O write request on the CQ interface is similar to that of a memory write
request with a one-Dword payload. The transfer starts with the 128-bit descriptor, followed
by the one-Dword payload. When the Dword-aligned mode is in use, the payload Dword
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immediately follows the descriptor. When the address-alignment mode is in use, the
payload Dword is supplied in a new beat after the descriptor, and its alignment in the
datapath is based on the address in the descriptor. The First Byte Enable bits in the
m_axis_cqg_tuser indicate the valid bytes in the payload. The byte enable bits byte_en
also provide this information.

Because an I/O write is a Non-Posted transaction, the client logic must respond to it with a
Completion containing no data payload. The Completions for I/O requests can be sent in
any order. Errors associated with the I/O write transaction can be signaled to the requester
by setting the Completion Status field in the completion descriptor to CA (Completer
Abort) or UR (Unsupported Request), as is appropriate. The operation of the Completer
Completion interface is described in Completer Completion Interface Operation, page 104.

I/0 Read Operation

The transfer of an I/O read request on the CQ interface is similar to that of a memory read
request, and involves only the descriptor. The length of the requested data is always one
Dword, and the First Byte Enable bits in m_axis_cqg_tuser indicate the valid bytes to be
read.

The client logic must respond to an I/O read request with a one-Dword Completion (or a
Completion with no data in the case of an error). The Completions for two distinct I/O read
requests can be sent in any order. Errors associated with an I/O read transaction can be
signaled to the requester by setting the Completion Status field in the completion
descriptor to CA (Completer Abort) or UR (Unsupported Request), as is appropriate. The
operation of the Completer Completion interface is described in Completer Completion
Interface Operation, page 104.

Atomic Operations on the Completer Request Interface

The transfer of an Atomic Op request on the completer request interface is similar to that of
a memory write request. The payload for an Atomic Op can range from one Dword to eight
Dwords, and its starting address is always aligned on a Dword boundary. The transfer starts
with the 128-bit descriptor, followed by the payload. When the Dword-aligned mode is in
use, the first payload Dword immediately follows the descriptor. When the
address-alignment mode is in use, the payload starts in a new beat after the descriptor, and
its alignment is based on the address in the descriptor. The m_axis_cqg_tkeep output
indicates the end of the payload. The byte_en signals inm_axis_cqg_tuser also indicate
the valid bytes in the payload. The First Byte Enable and Last Byte Enable bits in
m_axis_cqg_tuser should not be used for Atomic Operations.

Because an Atomic Operation is a Non-Posted transaction, the client logic must respond to
it with a Completion containing the result of the operation. Errors associated with the
operation can be signaled to the requester by setting the Completion Status field in the
completion descriptor to Completer Abort (CA) or Unsupported Request (UR), as is
appropriate. The operation of the Completer Completion interface is described in
Completer Completion Interface Operation, page 104.
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Message Requests on the Completer Request Interface

The transfer of a message on the CQ interface is similar to that of a memory write request,
except that a payload might not always be present. The transfer starts with the 128-bit
descriptor, followed by the payload, if present. When the Dword-aligned mode is in use, the
payload immediately follows the descriptor. When the address-alignment mode is in use,
the first Dword of the payload is supplied in a new beat after the descriptor, and always
starts in byte lane 0. The client can determine the end of the end of the payload from the
states of them_axis_cqg_tlast andm_axis_cqg_tkeep signals. The byte_en signals in
m_axis_cqg_tuser also indicate the valid bytes in the payload. The First Byte Enable and
Last Byte Enable bits in m_axis_cqg_tuser should not be used for Message transactions.

The AXISTEN_IF_ENABLE_RX_MSG_INTFC parameter must be set to 0 to enable the
delivery of messages through the CQ interface. When this parameter is set to 0, the
component bits of the AXISTEN_IF_ENABLE_MSG_ROUTE[17:0] parameter can be used
to select the specific message types that the user wants delivered over the CQ interface.
Setting a parameter bit to 1 enables the delivery of the corresponding type of messages on
the interface, and setting it to O results in the Integrated Block filtering the message.

When AXISTEN_IF_ENABLE_RX_MSG_INTFC issetto 1, no messages are delivered on the
CQ interface. Indications of received message are instead sent through a dedicated receive
message interface (see Receive Message Interface, page 115).

Aborting a Transfer

For any request that includes an associated payload, the Integrated Block can signal an
error in the transferred payload by asserting the discontinue signal in the
m_axis_cqg_tuser bus in the last beat of the packet (along with m_axis_cqg tlast).
This occurs when the Integrated Block has detected an uncorrectable error while reading
data from its internal memories. The client application must discard the entire packet when
it has detected discontinue asserted in the last beat of a packet. This condition is
considered a fatal error in the Integrated Block.

Selective Flow Control for Non-Posted Requests

The PCI Express Base Specification requires that the Completer Request interface continue to
deliver Posted transactions even when the client is unable to accept Non-Posted
transactions. To enable this capability, the Integrated Block implements a credit-based flow
control mechanism on the CQ interface through which client logic can control the flow of
Non-Posted requests without affecting Posted requests. The client logic signals the
availability of buffers for receive Non-Posted requests using the pcie_cq np_req signal.
The Gen3 Integrated Block delivers a Non-Posted request to the client only when the
available credit is non-zero. The Integrated Block continues to deliver Posted requests while
the delivery of Non-Posted requests has been paused for lack of credit. When no
backpressure is applied by the credit mechanism for the delivery of Non-Posted requests,
the Integrated Block delivers Posted and Non-Posted requests in the same order as received
from the link.
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The Integrated Block maintains an internal credit counter to track the credit available for
Non-Posted requests on the completer request interface. The following algorithm is used to
keep track of the available credit:

» On reset, the counter is set to 0.
« After the Integrated Block comes out of reset, in every clock cycle:

o Ifpcie_cqg_np_reqis High and no Non-Posted request is being delivered this
cycle, the credit count is incremented by 1, unless it has already reached its
saturation limit of 32.

o Ifpcie_cqg_np_reqgis Low and a Non-Posted request is being delivered this cycle,
the credit count is decremented by 1, unless it is already 0.

o Otherwise, the credit count remains unchanged.

« The Integrated Block starts delivery of a Non-Posted TLP to the client only if the credit
count is greater than 0.

The client application can either provide a one-cycle pulse on pcie_cqg np_reqg each time
it is ready to receive a Non-Posted request, or can keep it permanently asserted if it does
not need to exercise selective backpressure of Non-Posted requests. If the credit count is
always non-zero, the Integrated Block delivers Posted and Non-Posted requests in the same
order as received from the link. If it remains O for some time, Non-Posted requests can
accumulate in the Integrated Block's FIFO. When the credit count becomes non-zero later,
the Integrated Block first delivers the accumulated Non-Posted requests that arrived before
Posted requests already delivered to the client, and then reverts to delivering the requests
in the order received from the link.

The assertion and deassertion of the pcie_cg_np_reqg signal does not need to be aligned
with the packet transfers on the completer request interface.

The client can monitor the current value of the credit count on the output

pcie_cqg np_reqg count[5:0]. The counter saturates at 32. Because of internal pipeline
delays, there can be several cycles of delay between the Integrated Block receiving a pulse
on the pcie_cqg_np_req input and updating the pcie_cg np_reqg_count outputin
response. Thus, when the client has adequate buffer space available, it should provide the
credit in advance so that Non-Posted requests are not held up by the Integrated Block for
lack of credit.

Completer Completion Interface Operation

Figure 3-20 illustrates the signals associated with the completer completion interface of the
core. The core delivers each TLP on this interface as an AXI4-Stream packet.
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Figure 3-20: Completer Completion Interface Signals

The Gen3 Integrated Block for PCle delivers each TLP on the Completer Completion (CC)
interface as an AXI4-Stream packet. The packet starts with a 96-bit descriptor, followed by
data in the case of Completions with a payload.

The CC interface supports two distinct data alignment modes, selected by the
AXISTEN_IF_CC_ALIGNMENT_MODE parameter.In the Dword-aligned mode, the first byte
of valid data must be presented in lane n = (12 + A mod 4) mod w, where A is the byte-level
starting address of the data block being transferred (as conveyed in the Lower Address field
of the descriptor) and w the width of the interface in bytes (8, 16, or 32). In the
address-aligned mode, the data always starts in a new beat after the descriptor has ended.
When transferring the Completion payload for a memory or I/O read request, its first valid
byte is on lane n = A mod w. For all other Completions, the payload is aligned with byte lane
0.

Completer Completion Descriptor Format

The client application sends completion data for a completer request to the CC interface of
the Integrated Block as an independent AXI4-Stream packet. Each packet starts with a
descriptor and can have payload data following the descriptor. The descriptor is always

12 bytes long, and is sent in the first 12 bytes of the completion packet. The descriptor is
transferred during the first two beats on a 64-bit interface, and in the first beat on a 128-
or 256-bit interface. When the client application splits the completion data for a request
into multiple Split Completions, it must send each Split Completion as a separate
AXI4-Stream packet, with its own descriptor.

The format of the completer completion descriptor is illustrated in Figure 3-21. The
individual fields of the completer request descriptor are described in Table 3-5.
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Completer Completion Descriptor Fields

Bit Index

Field Name

Description

6:0

Lower
Address

For memory read Completions, this field must be set to the least significant
7 bits of the starting byte-level address of the memory block being
transferred. For all other Completions, the Lower Address must be set to all
zZeros.

9:8

Address Type

This field is defined for Completions of memory transactions and Atomic
Operations only. For these Completions, the client logic must copy the AT
bits from the corresponding request descriptor into this field. This field must
be set to 0 for all other Completions.

28:16

Byte Count

These 13 bits can have values in the range of 0 — 4096 bytes. If a Memory
Read Request is completed using a single Completion, the Byte Count value
indicates Payload size in bytes. This field must be set to 4 for I/O read
Completions and I/O write Completions. The byte count must be set to 1
while sending a Completion for a zero-length memory read, and a dummy
payload of 1 Dword must follow the descriptor.

The byte count must be set to 0 when sending a UR or CA Completion. For
each Memory Read Completion, the Byte Count field must indicate the
remaining number of bytes required to complete the Request, including the
number of bytes returned with the Completion.

If a Memory Read Request is completed using multiple Completions, the Byte
Count value for each successive Completion is the value indicated by the
preceding Completion minus the number of bytes returned with the
preceding Completion. The total number of bytes required to complete a
Memory Read Request is calculated as shown in Table 3-6, page 108.

29

Locked Read
Completion

This bit must be set when the Completion is in response to a Locked Read
request. It must be set to O for all other Completions.
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Completer Completion Descriptor Fields (Cont’d)

Bit Index

Field Name

Description

42:32

Dword Count

These 11 bits indicate the size of the payload of the current packet in Dwords.
Its range is 0 - 1K Dwords. This field must be set to 1 for I/O read
Completions and 0 for I/O write Completions. The Dword count must be set
to 1 while sending a Completion for a zero-length memory read. The Dword
count must be set to 0 when sending a UR or CA Completion. In all other
cases, the Dword count must correspond to the actual number of Dwords in
the payload of the current packet.

45:43

Completion
Status

These bits must be set based on the type of Completion being sent. The only
valid settings are:

* 000: Successful Completion
e 001: Unsupported Request (UR)
+ 100: Completer Abort (CA)

46

Poisoned
Completion

This bit can be used by the client to poison the Completion TLP being sent.
This bit must be set to 0 for all Completions, except when the client has
detected an error in the block of data following the descriptor and wants to
communicate this information using the Data Poisoning feature of PCI
Express.

63:48

Requester ID

PCI Requester ID associated with the request (copied by the client from the
request).

71:64

Tag

PCle Tag associated with the request (copied by the client from the request).

79:72

Target
Function/
Device
Number

Function number of the completer Function. The client must copy this value
from the Target Function field of the descriptor of the corresponding
request.

When ARl is in use, all 8 bits of this field must be set to the target Function
number. Otherwise, bits [74:72] must be set to the target Function number.

When ARI is not in use, and the Integrated Block is configured as a Root
Complex, the client must supply the 5-bit Device Number of the completer
on bits [79:75].

When ARI is not used and the Integrated Block is configured as an Endpoint,
the client can optionally supply a 5-bit Device Number of the completer on
bits [79:75]. The client must set the Completer ID Enable bit in the descriptor
if a Device Number is supplied on bits [79:75]. This value is used by the
Integrated Block when sending the Completion TLP, instead of the stored
value of the Device Number captured by the Integrated Block from
Configuration Requests.

87:80

Completer
Bus Number

Bus number associated with the completer Function. When the Integrated
Block is configured as a Root Complex, the client must supply the 8-bit Bus
Number of the completer in this field.

When the Integrated Block is configured as an Endpoint, the client can
optionally supply a Bus Number in this field. The client must set the
Completer ID Enable bit in the descriptor if a Bus Number is supplied in this
field. This value is used by the Integrated Block when sending the
Completion TLP, instead of the stored value of the Bus Number captured by
the Integrated Block from Configuration Requests.
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Table 3-5: Completer Completion Descriptor Fields (Cont’d)
Bit Index| Field Name Description
The purpose of this field is to enable the client to supply the bus and device
numbers to be used in the Completer ID. This field is applicable only to
Completer ID Endpoint configurations.
88 Errw)able If this field is O, the Integrated Block uses the captured values of the bus and
device numbers to form the Completer ID. If this input is 1, the Integrated
Block uses the bus and device numbers supplied by the client in the
descriptor to form the Completer ID.
91:89 Transaction | PCle Transaction Class (TC) associated with the request. The client must copy
’ Class (TC) this value from the TC field of the associated request descriptor.
PCle attributes associated with the request (copied from the request). Bit 92
94:92 Attributes is the No Snoop bit, bit 93 is the Relaxed Ordering bit, and bit 94 is the
ID-Based Ordering bit.
Force ECRC insertion. Setting this bit to 1 forces the Integrated Block to
95 Force ECRC | append a TLP Digest containing ECRC to the Completion TLP, even when
ECRC is not enabled for the Function sending the Completion.
Table 3-6: Calculating Byte Count from Completer Request first_be[3:0], last_be[3:0], Dword
Count[10:0]
first_be[3:0] last_be[3:0] Total Byte Count
1xx1 0000 4
01x1 0000 3
1x10 0000 3
0011 0000 2
0110 0000 2
1100 0000 2
0001 0000 1
0010 0000 1
0100 0000 1
1000 0000 1
0000 0000 1
xxx1 Ixxx Dword_count*4
xxx1 01xx (Dword_count*4)-1
xxx1 001x (Dword_count*4)-2
xxx1 0001 (Dword_count*4)-3
xx10 Ixxx (Dword_count*4)-1
xx10 01xx (Dword_count*4)-2
xx10 001x (Dword_count*4)-3
xx10 0001 (Dword_count*4)-4
x100 Ixxx (Dword_count*4)-2
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Table 3-6: Calculating Byte Count from Completer Request first_be[3:0], last_be[3:0], Dword
Count[10:0] (Cont’d)

first_be[3:0] last_be[3:0] Total Byte Count
x100 01xx (Dword_count*4)-3
x100 001x (Dword_count*4)-4
x100 0001 (Dword_count*4)-5
1000 Ixxx (Dword_count*4)-3
1000 01xx (Dword_count*4)-4
1000 001x (Dword_count*4)-5
1000 0001 (Dword_count*4)-6

Completions with Successful Completion Status

The client must return a Completion to the CC interface of the Integrated Block for every
Non-Posted request it receives from the completer request interface. When the request
completes with no errors, the client must return a Completion with Successful Completion
(SC) status. Such a Completion might or might not contain a payload, depending on the
type of request. Furthermore, the data associated with the request can be broken up into
multiple Split Completions when the size of the data block exceeds the maximum payload
size configured. Client logic is responsible for splitting the data block into multiple Split
Completions when needed. The client must transfer each Split Completion over the
completer completion interface as a separate AXI4-Stream packet, with its own 12-byte
descriptor.

In the example timing diagrams of this section, the starting Dword address of the data block
being transferred (as conveyed in bits [6:2] of the Lower Address field of the descriptor) is
assumed to be (m * 8 + 1), for an integer m. The size of the data block is assumed to be n
Dwords, for some n = k * 32 + 28, k > 0.

The CC interface supports two data alignment modes: Dword-aligned and address-aligned.
The timing diagrams in Figure 3-22, Figure 3-23, and Figure 3-24 illustrate the
Dword-aligned transfer of a Completion from the client across the CC interface, when the
interface width is configured as 64, 128, and 256 bits, respectively. In this case, the first
Dword of the payload starts immediately after the descriptor. When the data block is not a
multiple of four bytes, or when the start of the payload is not aligned on a Dword address
boundary, the client must add null bytes to align the start of the payload on a Dword
boundary and make the payload a multiple of Dwords. For example, when the data block
starts at byte address 7 and has a size of 3 bytes, the client must add three null bytes before
the first byte and two null bytes at the end of the block to make it two Dwords long. Also,
in the case of non-contiguous reads, not all bytes in the data block returned are valid. In
that case, the client must return the valid bytes in the proper positions, with null bytes
added in gaps between valid bytes, when needed. The interface does not have any signals
to indicate the valid bytes in the payload. This is not required, as the requester is
responsible for keeping track of the byte enables in the request and discarding invalid bytes
from the Completion.
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In the Dword-aligned mode, the transfer starts with the 12 descriptor bytes, followed
immediately by the payload bytes. The client must keep the s_axis_cc_tvalid signal
asserted over the duration of the packet. The Integrated Block treats the deassertion of
s_axis_cc_tvalidduring the packet transfer as an error, and nullifies the corresponding
Completion TLP transmitted on the link to avoid data corruption.

The client must also assert the s_axis_cc_tlast signal in the last beat of the packet. The
Integrated Block can deassert s_axis_cc_tready in any cycle if it is not ready to accept
data. The client must not change the values on the CC interface during a clock cycle that the
Integrated Block has deasserted s_axis_cc_tready.

I | |
[
s_axis_cc_tdata[31:0] :-DESC OXDESC 2X DW 1
|
s_axis_cc_tdata[63:32] |-DESC 1X DW 0 X DW 2
| - - -
|
|
I
|

s_axis_cc_tvalid

s_axis_cc_tready |

I

s_axis_cc_tkeep[1:0] :
I

s_axis_cc_tlast :

i - -
(discontinue) s_axis_cc_tuser[0] |_

Figure 3-22: Transfer of a Normal Completion on the Completer Completion Interface (Dword-Aligned
Mode, Interface Width = 64 Bits)
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I | |
user_clk : | | | | | | | | | ! S : | S: | | | | |
I
s_axis_cc_tdata[31:0] :-DESC oX DW 1 X DW 5 DW 5 X XDW n-3.
. I
s_axis_cc_tdata[63:32] |-DESC 1X Dw 2 X DW 6 DW 6 X XDW n-2.
. I
s_axis_cc_tdata[95:64] | DESC 2X DW 3 X DwW 7 DwW 7 X XDW n-1 .
| T T T T T T T
s_axis_cc_tdata[127:96] : DW 0 X DW 4 X DwW 8 DW 8 X _
|

1 1 1

s_axis_cc_tvalid | | ! ! | !

! I

s_axis_cc_tready : : : :

s_axis_cc_tkeep[3:0] OxF OxF OxF

—
o
X
&

s_axis_cc_tlast

_——— - —~C~N_ ~—~_C—~N_~N_—~_—
Sl [ i U | O R | || Tl | ol |
| —~~C~N_ "N /A~ _ N /A
el I i Ve R R | | el | ol |

(discontinue) s_axis_cc_tuser[0] :
I

X12350

Figure 3-23: Transfer of a Normal Completion on the Completer Completion Interface (Dword-Aligned
Mode, Interface Width = 128 Bits)
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s_axis_cc_tdata[31:0] E-DESC oX DW5 \ \ DW5 X \ \
s_axis_cc_tdata[63:32] i-oEsc i\ owe \ \ owe X | \ \
s_axis_cc_tdata[95:64]i DESC 2X DW 7 \ \ ow 7 X | \ \
s_axis_cc_tdata[127:96] | DW 0 X DW 8 \ \ DW 8 X \ \
o s co tdatal159:128] | ow s § (_owe | § €
s_axis_cc tdata[191'1601: DW2XDW10 \ \ oW o X | \ \
s_axis_cc_tdata[223:192] I- DW3XDW11 \ \ ow 11 X ' \ \
s_axis_cc_tdata[255:224] i- DW 4 XDW12 \ \ DW 12 X \ \
s_axis_cc_tvalldi : :/ i i \ Si i i i \ Si

s ot vy (S
s_axis_cc tkeep[70]: (I)XFF | \ \I | OxFFI | \ \I
s_axis_cc_tlast R RN
p——— R

Figure 3-24: Transfer of a Normal Completion on the Completer Completion Interface (Dword-Aligned
Mode, Interface Width = 256 Bits)

In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. For memory read Completions, the first byte of the payload
can appear on any byte lane, based on the address of the first valid byte of the payload. For
all other Completions, the payload must start in byte lane 0.

The timing diagrams in Figure 3-25, Figure 3-26, and Figure 3-27 illustrate the
address-aligned transfer of a memory read Completion across the completer completion
interface, when the interface width is configured as 64, 128, and 256 bits, respectively. For
the purpose of illustration, the starting Dword address of the data block being transferred
(as conveyed in bits [6:2] of the Lower Address field of the descriptor) is assumed to be
(m*8 +1), for some integer m. The size of the data block is assumed to be n Dwords, for
somen=k*32 + 28, k> 0.
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I | |
user_clk:|||||||||ls: |S:|||||

I

s_axis_cc_tkeep[7:0] :
I

s_axis_cc_tlast :

i
(discontinue) s_axis_cc_tuser[0] |
|

X12346

Figure 3-25: Transfer of a Normal Completion on the Completer Completion Interface (Address-Aligned
Mode, Interface Width = 64 Bits)

user_clk :

I
s_axis_cc_tdata[31:0] :-DESC 0. DW 3 DW 3 X
. I
s_axis_cc_tdata[63:32] | DESC 1X DW 0 X DW 4 DW 4 X
| - - - - -
I
s_axis_cc_tdata[95:64] | DESC 2X DW 1 X DW 5 DW 5 X
| T T T T T T T
s_axis_cc_tdata[127:96] : DwW 2 X DW 6 DW 6 X
| T T

s_axis_cc_tvalid | | ! ! |
|
s_axis_cc_tready : : :

s_axis_cc_tkeep[7:0] OxF OxF

s_axis_cc_tlast

——— | _—~C—~N_ ~—_C—~N_—~N_—~_—
Wl [ I S | O R | e | Tl | el |
_—— - —~~CN_ "N /A —_ N /A
Ol [l Ve R R | el | el | ol |

(discontinue) s_axis_cc_tuser[0] :
|

Figure 3-26: Transfer of a Normal Completion on the Completer Completion Interface (Address-Aligned
Mode, Interface Width = 128 Bits)
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|

user_clk

—  CICDEr

DESCZX DW 1 X DW 9
L1

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tdata[95:64]

s_axis_cc_tdata[127:96] DW 2 X DW 1

|
I
s_axis_cc_tdata[159:128] :

1
0
1 1
DW 3 X DW 11
1 1
s_axis_cc._tdata[191:160] | DW 4 X DW 12

! : .
s_axis_cc_tdata[223:192] I_ DW5 XDW 13

s_axis_cc_tdata[255:224] DW 6 X DW 14

| |
s_axis_cc_tvalid | | ,

s_axis_cc_tready

_———~~C—~NC ~—~_C—~N_~N_~_—~_C~N_—~_—~_~

s_axis_cc_tkeep[7:0] OxFF OxFF X Ox1F

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0] _
|

Figure 3-27: Transfer of a Normal Completion on the Completer Completion Interface (Address-Aligned
Mode, Interface Width = 256 Bits)
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Aborting a Completion Transfer

The client can abort the transfer of a Completion on the completer completion interface at
any time during the transfer of the payload by asserting the discontinue signal in the
s_axis_cc_tuser bus. The Integrated Block nullifies the corresponding TLP on the link to
avoid data corruption.

The client can assert this signal in any cycle during the transfer, when the Completion being
transferred has an associated payload. The client can either choose to terminate the packet
prematurely in the cycle where the error was signaled (by asserting s_axis_cc_tlast), or
can continue until all bytes of the payload are delivered to the Integrated Block. In the latter
case, the Integrated Block treats the error as sticky for the following beats of the packet,
even if the client deasserts the discontinue signal before reaching the end of the packet.

The discontinue signal can be asserted only when s_axis_cc_tvalid is High. The
Integrated Block samples this signal when s_axis_cc_tvalidand s_axis_cc_tready
are both asserted. Thus, after assertion, the discontinue signal should not be deasserted
until s_axis_cc_tready is asserted.

When the Integrated Block is configured as an Endpoint, this error is reported by the
Integrated Block to the Root Complex to which it is attached, as an Uncorrectable Internal
Error using the Advanced Error Reporting (AER) mechanisms.
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Completions with Error Status (UR and CA)

When responding to a request received on the completer request interface with an
Unsupported Request (UR) or Completion Abort (CA) status, the client must send a
three-Dword completion descriptor in the format of Figure 3-21, followed by five additional
Dwords containing information on the request that generated the Completion. These five
Dwords are necessary for the Integrated Block to log information about the request in its
AER header log registers.

Figure 3-28 shows the sequence of information transferred when sending a Completion
with UR or CA status. The information is formatted as an AXI4-Stream packet with a total of
8 Dwords, which are organized as follows:

« The first three Dwords contain the completion descriptor in the format of Figure 3-21.

« The fourth Dword contains the state of the following signals in m_axis_cqg_tuser,
copied from the request:

o The First Byte Enable bits first_be[3:0] inm_axis_cqg_ tuser.
o The Last Byte Enable bits last_be[3:0] inm_axis_cg_tuser.

- Signals carrying information on Transaction Processing Hint: tph_present,
tph_typel[l:0], and tph_st_tag[7:0] inm_axis_cqg_tuser.

« The four Dwords of the request descriptor received from the Integrated Block with the
request.

DW 1 DW 0
Completion Descriptor, DW 1 Completion Descriptor, DW 0
63 32
DW 3 DW 2
+7 +6 +5 +4 c leti D f DW 2
7]6151413]2|1]0|7|6|5]4]3]2]1]0]7|6]514]3|2|1|0|7|6]5]4]3]2]1]0 ompletion Descriptor,
R tph_st tag R last_be | first_be
tph_type[1:0] —f L tph_present
DW 5 DW 4
Request Descriptor, DW 1 Request Descriptor, DW 0
DW 7 DW 6
Request Descriptor, DW 3 Request Descriptor, DW 2

X12232

Figure 3-28: Composition of the AXI4-Stream Packet for UR and CA Completions
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The entire packet takes four beats on the 64-bit interface, two beats on the 128-bit
interface, and a single beat on the 256-bit interface. The packet is transferred in an identical
manner in both the Dword-aligned mode and the address-aligned mode, with the Dwords
packed together. The client must keep the s_axis_cc_tvalid signal asserted over the
duration of the packet. It must also assert the s_axis_cc_tlast signal in the last beat of
the packet. The Integrated Block can deassert s_axis_cc_tready in any cycle if it is not
ready to accept. The client must not change the values on the CC interface in any cycle that
the Integrated Block has deasserted s_axis_cc_tready.

Receive Message Interface

The Gen3 Integrated Block for PCle provides a separate receive-message interface which the
client can optionally use to receive indications of messages received from the link. This
interface is enabled by the AXISTEN_IF_ENABLE_RX_MSG_INTFC parameter. When the
receive message interface is enabled, the Integrated Block signals the arrival of a message
from the link by setting the cfg_msg_received_type[4:0] output to indicate the type
of message (see Table 3-7) and pulsing the cfg_msg_received signal for one or more
cycles. The duration of assertion of cfg_msg_received is determined by the type of message
received (see Table 3-8). When cfg_msg_received is High, the Integrated Block transfers
any parameters associated with the message on the bus 8 bits at a time on the bus
cfg_msg_received_data. The parameters transferred on this bus in each cycle of
cfg_msg_received assertion for various message types are listed in Table 3-8. For
Vendor-Defined Messages, the Integrated Block transfers only the first Dword of any
associated payload across this interface. When larger payloads are in use, the completer
request interface should be used for the delivery of messages.

Table 3-7: Message Type Encoding on Receive Message Interface

cfg_msg_received_type[4:0] Message Type
0 ERR_COR
1 ERR_NONFATAL
2 ERR_FATAL
3 Assert_INTA
4 Deassert_ INTA
5 Assert_INTB
6 Deassert_ INTB
7 Assert_INTC
8 Deassert_ INTC
9 Assert_INTD
10 Deassert_ INTD
11 PM_PME
12 PME_TO_Ack
13 PME_Turn_Off

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 115

PG023 October 16, 2012


http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-7: Message Type Encoding on Receive Message Interface (Cont’d)
cfg_msg_received_type[4:0] Message Type
14 PM_Active_State_Nak
15 Set_Slot_Power_Limit
16 Latency Tolerance Reporting (LTR)
17 Optimized Buffer Flush/Fill (OBFF)
18 Unlock
19 Vendor_Defined Type 0
20 Vendor_Defined Type 1
21 ATS Invalid Request
22 ATS Invalid Completion
23 ATS Page Request
24 ATS PRG Response
25-31 Reserved

Table 3-8: Message Parameters on Receive Message Interface

Number of Cycles of
- Parameter Transferred on
Message Type cfg_msg_received - .
Assertion cfg_msg_received_data[7:0]
ERR_COR, ERR_NONFATAL, Cycle 1: Requester ID, Bus Number
2 . .
ERR_FATAL Cycle 2: Requester ID, Device/Function Number
Cycle 1: Requester ID, Bus Number
Assert_INTx, D t_INT 2 . .
Seert N Ix Deassert NI Cycle 2: Requester ID, Device/Function Number
PM_PME, PME_TO_Ack, Cycle 1: Requester ID, Bus Number
PME_Turn_off, 2 Cycle 2: Requester ID, Device/Function Number
PM_Active_State_Nak
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
- Cycle 3: bits [7:0] of payload
t_Slot_P Limit
Set_Slot_Power_Limi 6 Cycle 4: bits [15:8] of payload
Cycle 5: bits [23:16] of payload
Cycle 6: bits [31:24] of payload
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Latency Tolerance 6 Cycle 3: bits [7:0] of Snoop Latency
Reporting (LTR) Cycle 4: bits [15:8] of Snoop Latency
Cycle 5: bits [7:0] of No-Snoop Latency
Cycle 6: bits [15:8] of No-Snoop Latency
Optimized Buffer Flush/Eill Cycle 1: Requester ID, Bus Number
ptimize (OLIJBFE)r ush/Fi 3 Cycle 2: Requester ID, Device/Function Number
Cycle 3: OBFF Code
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Table 3-8: Message Parameters on Receive Message Interface (Cont’d)

Number of Cycles of
Message Type cfg_msg_received
Assertion

Parameter Transferred on
cfg_msg_received_data[7:0]

Cycle 1: Requester ID, Bus Number

Unlock 2
nioc Cycle 2: Requester ID, Device/Function Number

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
4 | N dat Cycle 3: Vendor ID[7:0]

cycles when no data ) .
Vendor_Defined Type 0 pre>s/ent, 8 cycles when Eycle 4: V'endo'r IDL1>:8]

data present. ycle 5: bits [7:0] of payload
Cycle 6: bits [15:8] of payload

Cycle 7: bits [23:16] of payload
Cycle 8: bits [31:24] of payload

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
4 I " dat Cycle 3: Vendor ID[7:0]
cycles when no data
Vendor_Defined Type 1 pre);ent, 8 cycles when Cycle 4: V.endor ID[15:8]
data present. Cycle 5: bits [7:0] of payload
Cycle 6: bits [15:8] of payload
Cycle 7: bits [23:16] of payload
Cycle 8: bits [31:24] of payload

Cycle 1: Requester ID, Bus Number

ATS Invalid Request 2 . .
Cycle 2: Requester ID, Device/Function Number
. . Cycle 1: Requester ID, Bus Number
ATS Invalid Completion 2 . .
P Cycle 2: Requester ID, Device/Function Number
Cycle 1: Requester ID, Bus Number
ATS Page Request 2
g 4 Cycle 2: Requester ID, Device/Function Number
Cycle 1: R ter ID, Bus Numb
ATS PRG Response 2 yee equester us Tumber

Cycle 2: Requester ID, Device/Function Number

Figure 3-29 is a timing diagram showing the example of a Set_Slot_Power_Limit message on
the receive message interface. This message has an associated one-Dword payload. For this
message, the parameters are transferred over six consecutive cycles. The following
information appears on the cfg_msg_received_data bus in each cycle:

« Cycle 1: Bus number of Requester ID

« Cycle 2: Device/Function Number of Requester ID
« Cycle 3: Bits [7:0] of the payload Dword

« Cycle 4: Bits [15:8] of the payload Dword

« Cycle 5: Bits [23:16] of the payload Dword

« Cycle 6: Bits [31:24] of the payload Dword
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user_clk

cfg_msg_received

cfg_msg_received_type[4:0]

OxF .
Bus | XD ev/FAXPL[?:O']X PL[15:8'] XPL[23:1(;]XPL[31:2:1].

X12344

cfg_msg_received_data[7:0] :

| 8

Figure 3-29: Receive Message Interface

The Integrated Block inserts a gap of at least one clock cycle between successive pulses on
the cfg_msg_received output. There is no mechanism for the user to apply backpressure
on the message indications delivered through the receive message interface. When using
this interface, the client logic must always be ready to receive message indications.

Receive Message Interface Design Requirements

When configured as an Endpoint, the client application must implement one of the
following:

1. The client application must issue Non-Posted Requests that result in Completions with
the RO bit set.

2. The client application must not exceed the configured completion space.

This requirement ensures the RX Completion buffer does not overflow.

Requester Interface

The requester interface enables a client Endpoint application to initiate PCI transactions as
a bus master across the PCle link to the host memory. For Root Complexes, this interface is
also used to initiate I/O and configuration requests. This interface can also be used by both
Endpoints and Root Complexes to send messages on the PCle link. The transactions on this
interface are similar to those on the completer interface, except that the roles of the Gen3
Integrated Block for PCle and the client application are reversed. Posted transactions are
performed as single indivisible operations and Non-Posted transactions as split
transactions.

The requester interface consists of two separate interfaces, one for data transfer in each
direction. Each interface is based on the AXI4-Stream protocol, and its width can be
configured as 64, 128, or 256 bits. The Requester reQuest (RQ) interface is for transfer of
requests (with any associated payload data) from the client application to the Integrated
Block, and the Requester Completion (RC) interface is used by the Integrated Block to
deliver Completions received from the link (for Non-Posted requests) to the client
application. The two interfaces operate independently. That is, the client can transfer new
requests over the RQ interface while receiving a completion for a previous request.
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Requester Request Interface Operation

On the RQ interface, the client delivers each TLP as an AXI4-Stream packet. The packet starts
with a 128-bit descriptor, followed by data in the case of TLPs with a payload. Figure 3-30
shows the signals associated with the requester request interface.

Virtex-7 FPGA Gen3

Integrated Block for PCle

PCle Requester
Request Interface

AXl4-Stream
Slave

s_axis_rqg_tdata[255:0]

Client
Application

A A

s_axis_rq_tparity[31:0]

s_axis_rq_tvalid

s_axis_rq_tready

PCle

s_axis_rq_tlast

Requester
Interface

s_axis_rq_tkeep[7:0]

first_be[3:0] A

last_be[3:0] \

addr_offset[2:0]

A A

discontinue

tph_present

A

tph_type[1:0]

tph_st_tag[7:0]

AXI4-Stream
Master

tph_indirect_tag_en

seq_num[3:0]

s_axis_rq_tuser[27:0] /\/

pcie_rq_tag[5:0]

pcie_rq_tag_vld

pcie_tfc_nph[1:0]

pcie_tfc_npd[1:0]

pcie_rqg_tag_av[1:0]

y

pcie_rq_seq_num[3:0]

pcie_rq_seq_num_vid
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The RQ interface supports two distinct data alignment modes for transferring payloads,
selected by the AXISTEN_IF_RQ_ALIGNMENT_MODE parameter. In the Dword-aligned
mode, the client logic must provide the first Dword of the payload immediately after the
last Dword of the descriptor. It must also set the bits in first_be[3:0] to indicate the
valid bytes in the first Dword and the bits in last_be[3:0] (both part of the bus
s_axis_rqg_ tuser) to indicate the valid bytes in the last Dword of the payload. In the
address-aligned mode, the client must start the payload transfer in the beat following the
last Dword of the descriptor, and its first Dword can be in any of the possible Dword
positions on the datapath. The client communicates the offset of the first Dword on the
datapath using the addr_offset[2:0] signalsin s_axis_rqg_tuser. As in the case of
the Dword-aligned mode, the client must also set the bits in first_be[3:0] to indicate
the valid bytes in the first Dword and the bits in last_be[3:0] to indicate the valid bytes
in the last Dword of the payload.

When the Transaction Processing Hint Capability is enabled in the Integrated Block, the
client can provide an optional Hint with any memory transaction using the tph_* signals
included in the s_axis_rqg_tuser bus. To supply a Hint with a request, the client logic
must assert tph_present in the first beat of the packet, and provide the TPH Steering Tag
and Steering Tag Type on tph_st_tag[7:0] and tph_st_type[1:0], respectively.
Instead of supplying the value of the Steering Tag to be used, the client also has the option
of providing an indirect Steering Tag. This is done by setting the tph_indirect_tag_en
signal to 1 when tph_present is asserted, and placing an index on tph_st_tag[7:0],
instead of the tag value. The Integrated Block then reads the tag stored in its Steering Tag
Table associated with the requester Function at the offset specified in the index and inserts
it in the request TLP.

Requester Request Descriptor Formats

The client must transfer each request to be transmitted on the link to the RQ interface of
the Integrated Block as an independent AXI4-Stream packet. Each packet must start with a
descriptor and can have payload data following the descriptor. The descriptor is always 16
bytes long, and must be sent in the first 16 bytes of the request packet. The descriptor is
transferred during the first two beats on a 64-bit interface, and in the first beat on a 128-bit
or 256-bit interface.

The formats of the descriptor for different request types are illustrated in Figure 3-31
through Figure 3-35. The format of Figure 3-31 applies when the request TLP being
transferred is a memory read/write request, an I/O read/write request, or an Atomic
Operation request. The format in Figure 3-32 is used for Configuration Requests. The
format in Figure 3-33 is used for Vendor-Defined Messages (Type 0 or Type 1) only. The
format in Figure 3-34 is used for all ATS messages (Invalid Request, Invalid Completion,
Page Request, PRG Response). For all other messages, the descriptor takes the format
shown in Figure 3-35.
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63 32 0
DW + 1 DW + 0
+7 +6 +5 +4 +3 +2 +1 +0
716]5]|413|2]1]|0f7|6]5]|4]3|2]1|0]|7|6]|5|4]|3|2]|1]0]|7]|6]|5]4]|3]|2]1]0]|7|6]5]|4]|3]|2]|1]|0]|7|6]|5]4]|3]|2]1]0]|7]6]|5]4]|3]2|1]0|7]|6]|5]|4]|3]|2]1]0
Addresg63:2]
Address Type (AT ) J
127 96 64
DW + 3 DW + 2
+15 +14 +13 +12 +11 +10 +9 +8
7|6]5]|4]3|2]1]|0f7|6]5]4]3|2]1|0]|7|6]5|4]|3|2]|1]0]|7]|6]|5]4]|3]|2]1]0]|7|6]5]|4]|3]|2]|1]|0]|7|6]|5]4]|3]|2]1]0]|7]6]|5]4]|3]2|1]0|7|6]|5]4]|3]|2]1]0
Attr | TC Bus Device/Function Tag Bus Device/Function Dword Count

<¢—— Requester ID ——» L

f 14— Completer I D ———» Req Type
Force ECRC Requester ID Enable Poisoned Request X12212
Figure 3-31: Requester Request Descriptor Format for Memory, 1/0, and Atomic Op Requests
63 32 0
DW + 1 DW + 0
+7 +6 +5 +4 +3 +2 +1 +0
7l6]5]4]3]2]1]of7]|6]5]4]3]2|1]0]l7]6]5]4l3|2]1]0]|7]6l5]4|3]2]1]ol7]6]5]4l3]2|1]0]|7]6]5]4|3]2]1]o]7l6l5]4]3]2]1]ol7|6]5]4]3]2]1]0
Reserved T Heg | Reg Number
Reserved
127 96 64
DW + 3 DW + 2
+15 +14 +13 +12 +11 +10 +9 +8
7]6]514]3]2]1]ol7]6]514]13]2|1]0l7l6]514]13]2]1]0]7]6]5]4]3]2]1|0l7]6]5]14]3]2]1]0]7|6|5]4]3]2]1]0]7]6]5]14]13]2]1]0]7]|6]|5]4|3]2]1]0
Attr | TC Bus Device/Function Tag Bus Device/Function Dword count
f T<— Completer ID? -4—— Requester ID —»T L Req Type
Force ECRC Requester ID Enable {Bus Number[7:0], Poisoned Request

Device Number{4:0],

Function Number[2:0]} X12631

Figure 3-32: Requester Request Descriptor Format for Configuration Requests
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DW

+ 1

DW

+0

+7
716]5]4]3]2]1]0

+6
7]6]5|4]3|2]1]0

+5

7]6]5]|4]3]2]1]0

+4
716]|5]4]3]2]1]0

+3

7]6]5|4]3]2]|1]0

+2
7]6]5|4]3|2]1]0

716]5]4]3]2]1]0

+1

+0
7]6]5|4]3|2]1]0

Vendor-Defined Header Bytes

Vendor ID

Bus

Device/Function

*

*

*

*

-¢——— Destination ID ——»

TL Header TL Header TL Header TL Header
Byte 15 Byte 14 Byte 13 Byte 12
127 96 64
DW + 3 DW + 2
+15 +14 +13 +12 +11 +10 +9 +8
7|6]5]4|3|2|1]0f7]|6|5|4]|3]|2]1]0]7|6]5]4]|3]|2|1]|0|7]|6]5]4]|3]|2|1]0|7|6]|5]|4|3]|2]|1]0]|7]6]|5]|4]3]2]1|0]7]6]|5]4]3]|2]1]0]|7]6]|5]4]3]2]1]0
Attr | TC R Msg Code Tag Bus Device/Function Dword Count
Message f -4—— Requester ID ———» L Req Type
Force ECRC Routing Poisoned Request
Requester ID Enable X12214
Figure 3-33: Requester Request Descriptor Format for Vendor-Defined Messages
63 32 0
DW + 1 DW + 0
+7 +6 +5 +4 +3 +2 +1 +0

7|6]5]4]3]2]|1]0

7]16]5]4]3]2|1]0

7|6]5]4]3]2|1]0

7]6]5|4]3]2]|1]0

7]16]5]4]3]2|1]0

7|6]5]4]3]2|1]|0

7]16]5|4]3]2]|1]0

7]6]5]4]3]2|1]0

TL Header Bytes 8-15

*

*

*

*

*

*

*

*

TL Header TL Header TL Header TL Header TL Header TL Header TL Header TL Header
Byte 15 Byte 14 Byte 13 Byte 12 Byte 11 Byte 10 Byte 9 Byte 8
127 96 64
DW + 3 DW + 2
+15 +14 +13 +12 +11 +10 +9 +8
7]16]5/4|3|2|1]of7|6|5]4]|3]|2|1]0]7|6]|5]4|3]|2]|1|0]|7]|6]|5]|4|3|2]|1]0]|7]|6]|5]4]|3]|2|1]0f7|6]|5]4]|3]|2]1|0]|7]|6]|5]|4|3|2]|1]0]|7]6]|5]|4]3|2]1]0
Attr | TC R Msg Code Tag Bus Device /Function Dword Count
? Message T -¢——— Requester ID —»T L Req Type
Force ECRC Routing Poisoned Request

Requester ID Enable

Figure 3-34:
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63 32 0
DW +1 DW+0

+7 +6 +5 +4 +3 +2 +1 +0
7]6]5]4]3|2]1]0o|7|6]|5]4]|3]2]|1]0]7]6]|5|4]|3]2]1]|0]7|6]|5|4]3|2]|1]0|7|6]5]4]|3]|2]1|0]|7]|6]5]|4]|3]|2]1]|0]7]|6|5]|4]|3]2]|1]0]|7|6]5]4]|3]|2]1]|0

R
OBFF CodeJ * *

(for OBFF message), No-Snoop Latency Snoop Latency
Reserved (for others) (for LTR message), (for LTR message),
Reserved (for others) Reserved (for others)

127 96 64
DW+3 DW+2

+15 +14 +13 +12 +11 +10 +9 +8
6|5|4]3]|2|1]0]7|6|5]|4]3]2|1]0]7|6]5]4|3|2|1]0]7]|6]5]4]|3]|2]1]0]7|6]|5]4]|3|2]1]0|7|6]|5]4]|3]|2]1]0|7]6]5|4]|3]|2]1]|0]7|6]|5]4]|3]|2]1]0
Attr | TC R Msg Code Tag Bus Device/Function Dword Count

f Message_f ¢ Requester ID L Req Type
Force ECRC

~

Routing Poisoned Request
Requester ID Enable

X12213

Figure 3-35: Requester Request Descriptor Format for all other Messages

Table 3-9 describes the individual fields of the completer request descriptor.

Table 3-9: Requester Request Descriptor Fields

Bit Index Field Name Description

This field is defined for memory transactions and Atomic
Operations only. The Integrated Block copies this field into
the AT of the TL header of the request TLP.

1:0 Address Type * 00: Address in the request is untranslated

« 01: Transaction is a Translation Request

* 10: Address in the request is a translated address
¢ 11: Reserved

This field applies to memory, I/0, and Atomic Op requests.
This is the address of the first Dword referenced by the
request. The client must also set the First_BE and Last_BE
63:2 Address bits in s_axis_rqg_ tuser to indicate the valid bytes in the
first and last Dwords, respectively.

When the transaction specifies a 32-bit address, bits [63:32]
of this field must be set to 0.

These 11 bits indicate the size of the block (in Dwords) to be
read or written (for messages, size of the message payload).
The valid range for Memory Write Requests is 0-256 Dwords.
Memory Read Requests have a valid range of 1-1024
Dwords. For I/O accesses, the Dword count is always 1.

74:64 Dword Count For a zero length memory read/write request, the Dword
count must be 1, with the First_BE bits set to all zeros.

The Integrated Block does not check the setting of this field
against the actual length of the payload supplied (for
requests with payload), nor against the maximum payload
size or read request size settings of the Integrated Block.
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Table 3-9: Requester Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Identifies the transaction type. The transaction types and

7875 Request Type their encodings are listed in Table 3-4.

This bit can be used by the client to poison the request TLP
being sent. This feature is supported on all request types
except Type 0 and Type 1 Configuration Write Requests. This
bit must be set to 0 for all requests, except when the client
79 Poisoned Request | has detected an error in the block of data following the
descriptor and wants to communicate this information using
the Data Poisoning feature of PCI Express.

This feature is supported on all request types except Type O
and Type 1 Configuration Write Requests.

Function number of the Requester Function. When ARI is in
use, all 8 bits of this field must be set to the Function
number. Otherwise, bits [84:82] must be set to the completer
Function number.

When ARI is not in use, and the Integrated Block is
configured as a Root Complex, the client must supply the

Requester 5-bit Device Number of the requester on bits [87:83].
87:80 Function/Device | When ARI is not use, and the Integrated Block is configured
Number as an Endpoint, the client can optionally supply a 5-bit

Device Number of the requester on bits [87:83]. The client
must set the Requester ID Enable bit in the descriptor if a
Device Number is supplied on bits [87:83]. This value is used
by the Integrated Block when sending the Request TLP,
instead of the stored value of the Device Number captured
by the Integrated Block from Configuration Requests.

Bus number associated with the requester Function. When
the Integrated Block is configured as a Root Complex, the
client must supply the 8-bit Bus Number of the requester in
this field.

When the Integrated Block is configured as an Endpoint, the
client can optionally supply a Bus Number in this field. The
client must set the Requester ID Enable bit in the descriptor
if a Bus Number is supplied in this field. This value is used
by the Integrated Block when sending the Request TLP,
instead of the stored value of the Bus Number captured by
the Integrated Block from Configuration Requests.

Requester Bus

9>:88 Number

PCle Tag associated with the request. For Posted
transactions, the Integrated Block always uses the value
from this field as the tag for the request.

For Non-Posted transactions, the Integrated Block uses the
103:96 Tag value from this field if the

AXISTEN_IF_ ENABLE_CLIENT_TAG parameter is set (that
is, when tag management is performed by the client). If this
parameter is not set, tag management logic in the
Integrated Block generates the tag to be used, and the value
in the tag field of the descriptor is not used.
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Table 3-9: Requester Request Descriptor Fields (Cont’d)

Bit Index

Field Name

Description

119:104

Completer ID

This field is applicable only to Configuration requests and
messages routed by ID. For these requests, this field
specifies the PCI Completer ID associated with the request
(these 16 bits are divided into an 8-bit bus number, 5-bit
device number, and 3-bit function number in the legacy
interpretation mode. In the ARI mode, these 16 bits are
treated as an 8-bit bus number + 8-bit Function number.).

120

Requester ID Enable

The purpose of this field is to enable the client to supply the
bus and device numbers to be used in the Requester ID. This
field is applicable only to Endpoints.

If this field is 0, the Integrated Block uses the captured
values of the bus and device numbers to form the Requester
ID. If this input is 1, the Integrated Block uses the bus and
device numbers supplied by the client in the descriptor to
form the Requester ID.

123:121

Transaction Class
(TO)

PCle Transaction Class (TC) associated with the request.

126:124

Attributes

These bits provide the setting of the Attribute bits
associated with the request. Bit 124 is the No Snoop bit and
bit 125 is the Relaxed Ordering bit. Bit 126 is the ID-Based
Ordering bit, and can be set only for memory requests and
messages.

The Integrated Block forces the attribute bits to 0 in the
request sent on the link if the corresponding attribute is not
enabled in the Function's PCI Express Device Control
Register.

127

Force ECRC

Force ECRC insertion. Setting this bit to 1 forces the
Integrated Block to append a TLP Digest containing ECRC to
the Request TLP, even when ECRC is not enabled for the
Function sending request.

15:0

Snoop Latency

This field is defined for LTR messages only. It provides the
value of the 16-bit Snoop Latency field in the TLP header of
the message.

31:16

No-Snoop Latency

This field is defined for LTR messages only. It provides the
value of the 16-bit No-Snoop Latency field in the TLP header
of the message.

35:32

OBFF Code

The OBFF Code field is used to distinguish between various
OBFF cases:

e 1111b: “CPU Active” — System fully active for all device
actions including bus mastering and interrupts

* 0001b: "OBFF" — System memory path available for device
memory read/write bus master activities

* 0000b: “Idle” — System in an idle, low power state
All other codes are reserved.
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Table 3-9: Requester Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

This field is defined for all messages. It contains the 8-bit
Message Code to be set in the TL header.

Appendix F of the PCI Express Base Specification, rev. 3.0
provides a complete list of the supported Message Codes.

111:104 Message Code

This field is defined for all messages. The Integrated Block
114:112 Message Routing | copies these bits into the 3-bit Routing field r[2:0] of the TLP
header of the Request TLP.

This field applies to Vendor-Defined Messages only. When
the message is routed by ID (that is, when the Message
Routing field is 010 binary), this field must be set to the
Destination ID of the message.

15:0 Destination ID

Vendor-Defined This field applies to Vendor-Defined Messages only. It is

63:32 Header copied into Dword 3 of the TLP header.

This field is applicable to ATS messages only. It contains the
63:0 ATS Header bytes that the Integrated Block copies into Dwords 2 and 3
of the TLP header.

Requester Memory Write Operation

In both Dword-aligned, the transfer starts with the sixteen descriptor bytes, followed
immediately by the payload bytes. The client must keep the s_axis_rqg tvalid signal
asserted over the duration of the packet. The Integrated Block treats the deassertion of
s_axis_rqg_tvalidduring the packet transfer as an error, and nullifies the corresponding
Request TLP transmitted on the link to avoid data corruption.

The client must also assert the s_axis_rqg_ tlast signal in the last beat of the packet. The
Integrated Block can deassert s_axis_rqg_tready in any cycle if it is not ready to accept
data. The client must not change the values on the RQ interface during cycles when the
Integrated Block has deasserted s_axis_rqg_tready. The AXI4-Stream interface signals
m_axis_cqg_tkeep (one per Dword position) must be set to indicate the valid Dwords in
the packet including the descriptor and any null bytes inserted between the descriptor and
the payload. That is, the tkeep bits must be set to 1 contiguously from the first Dword of the
descriptor until the last Dword of the payload. During the transfer of a packet, the tkeep bits
can be 0 only in the last beat of the packet, when the packet does not fill the entire width
of the interface.

The requester request interface also includes the First Byte Enable and the Last Enable bits
in the s_axis_rqg_tuser bus. These must be set in the first beat of the packet, and
provides information of the valid bytes in the first and last Dwords of the payload.

The client must limit the size of the payload transferred in a single request to the maximum
payload size configured in the Integrated Block, and must ensure that the payload does not
cross a 4 Kbyte boundary. For memory writes of two Dwords or less, the 1sin first_be
and last_be can be non-contiguous. For the special case of a zero-length memory write
request, the client must provide a dummy one-Dword payload with first_be and
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last_be both set to all Os. In all other cases, the 1 bitsin first _be and last_be must be
contiguous.

The timing diagrams in Figure 3-36, Figure 3-37, and Figure 3-38 illustrate the
Dword-aligned transfer of a memory write request from the client across the requester
request interface, when the interface width is configured as 64, 128, and 256 bits,
respectively. For illustration purposes, the size of the data block being written into client
memory is assumed to be n Dwords, for some n = k* 32 + 29, k > 0.

I | |
user_clk : | | | | | | | ! S : !
[
s_axis_rg_tdata[31:0] I-DESC OXDESC 2X DW 0 DW 0 X DW 2 X
s_axis_rq_tdata[63:32] -DESC 1XDESC 3X DW 1 DW 1 X DW 3 X

s_axis_rq_tvalid |

s_axis_rq_tready

I

s_axis_rq_tkeep[1:0] :
I

s_axis_rq_tlast |

|

i

(first_be) s_axis_rq_tuser[3:0] |
!

|

(last_be) s_axis_rq_tuser[7:4] |

I

(discontinue) s_axis_rq_tuser[11] :
|

Figure 3-36: Memory Write Transaction on the Requester Request Interface (Dword-Aligned Mode,
Interface Width = 64 Bits)
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(discontinue) s_axis_rq_tuser[11] :- % S: :
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Figure 3-37: Memory Write Transaction on the Requester Request Interface (Dword-Aligned Mode,

Interface Width = 128 Bits)
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Figure 3-38: Memory Write Transaction on the Requester Request Interface (Dword-Aligned Mode,

Interface Width = 256 Bits)

The timing diagrams in Figure 3-39, Figure 3-40, and Figure 3-41 illustrate the
address-aligned transfer of a memory write request from the client across the RQ interface,
when the interface width is configured as 64, 128, and 256 bits, respectively. For illustration
purposes, the starting Dword offset of the data block being written into client memory is
assumed to be (m * 32 + 1), for some integer m > 0. Its size is assumed to be n Dwords, for
somen =k*32+ 29 k>0.

In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. The first Dword of the payload can appear at any Dword
position. The client must communicate the offset of the first Dword of the payload on the
datapath using the addr_offset[2:0] signal in s_axis_rqg_tuser. The client must
also set the bits in first_be[3:0] to indicate the valid bytes in the first Dword and the
bits in last_be[3:0] to indicate the valid bytes in the last Dword of the payload.
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Figure 3-39: Memory Write Transaction on the Requester Request Interface (Address-Aligned Mode,
Interface Width = 64 Bits)
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Figure 3-41: Memory Write Transaction on the Requester Request Interface (Address-Aligned Mode,
Interface Width = 256 Bits)

Non-Posted Transactions with No Payload

Non-Posted transactions with no payload (memory read requests, 1/O read requests,
Configuration read requests) are transferred across the RQ interface in the same manner as
a memory write request, except that the AXI4-Stream packet contains only the 16-byte
descriptor. The timing diagrams in Figure 3-42, Figure 3-43, and Figure 3-44 illustrate the
transfer of a memory read request across the RQ interface, when the interface width is
configured as 64, 128, and 256 bits, respectively. The packet occupies two consecutive beats
on the 64-bit interface, while it is transferred in a single beat on the 128- and 256-bit
interfaces. The s_axis_rqg_tvalid signal must remain asserted over the duration of the
packet. The Integrated Block can deassert s_axis_rqg_tready to prolong the beat. The
s_axis_rqg_tlast signal must be set in the last beat of the packet, and the bits in
s_axis_rqg_tkeep[7:0] must be setin all Dword positions where a descriptor is present.

The valid bytes in the first and last Dwords of the data block to be read must be indicated
using first_be[3:0] and last_be[3:01], respectively. For the special case of a

zero-length memory read, the length of the request must be set to one Dword, with both
first_be[3:0] and last_be[3:0] set to all Os. Additionally when in address-aligned
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mode, addr_offset[2:0] in s_axis_rqg_tuser specifies the desired starting
alignment of data returned on the Requester Completion interface. The alignment is not
required to be correlated to the address of the request.
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Figure 3-42: Memory Read Transaction on the Requester Request Interface (Interface Width =
64 Bits)
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Figure 3-43: Memory Read Transaction on the Requester Request Interface (Interface Width =

128 Bits)
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Non-Posted Transactions with a Payload

The transfer of a Non-Posted request with payload (an I/O write request, Configuration
write request, or Atomic Operation request) is similar to the transfer of a memory request,
with the following changes in how the payload is aligned on the datapath:

« In the Dword-aligned mode, the first Dword of the payload follows the last Dword of
the descriptor, with no gaps between them.

« In the address-aligned mode, the payload must start in the beat following the last
Dword of the descriptor. The payload can start at any Dword position on the datapath.
The offset of its first Dword must be specified using the addr_offset[2:0] signal.

For1/0 and Configuration write requests, the valid bytes in the one-Dword payload must be
indicated using first_be[3:0]. For Atomic Operation requests, all bytes in the first and
last Dwords are assumed valid.

Message Requests on the Requester Interface

The transfer of a message on the RQ interface is similar to that of a memory write request,
except that a payload might not always be present. The transfer starts with the 128-bit
descriptor, followed by the payload, if present. When the Dword-aligned mode is in use, the
first Dword of the payload must immediately follow the descriptor. When the
address-alignment mode is in use, the payload must start in the beat following the
descriptor, and must be aligned to byte lane 0. The addr_offset input to the Integrated
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Block must be set to 0 for messages when the address-aligned mode is in use. The
Integrated Block determines the end of the payload from s_axis_rqg_tlast and
s_axis_rqg_tkeep signals. The First Byte Enable and Last Byte Enable bits (first_be and
last_be) are not used for message requests.

Aborting a Transfer

For any request that includes an associated payload, the client can abort the request at any
time during the transfer of the payload by asserting the discontinue signal in the
s_axis_rqg_tuser bus. The Integrated Block nullifies the corresponding TLP on the link to
avoid data corruption.

The client can assert this signal in any cycle during the transfer, when the request being
transferred has an associated payload. The client can either choose to terminate the packet
prematurely in the cycle where the error was signaled (by asserting s_axis_rqg_tlast), or
can continue until all bytes of the payload are delivered to the Integrated Block. In the latter
case, the Integrated Block treats the error as sticky for the following beats of the packet,
even if the client deasserts the discontinue signal before reaching the end of the packet.

The discontinue signal can be asserted only when s_axis_rqg_tvalid is High. The
Integrated Block samples this signal when s_axis_rq tvalidand s_axis_rqg_tready
are both High. Thus, after assertion, the discontinue signal should not be deasserted until
s_axis_rqg_tready is High.

When the Integrated Block is configured as an Endpoint, this error is reported by the
Integrated Block to the Root Complex it is attached to, as an Uncorrectable Internal Error
using the Advanced Error Reporting (AER) mechanisms.

Tag Management for Non-Posted Transactions

The requester side of the Integrated Block maintains the state of all pending Non-Posted

transactions (memory reads, I/O reads and writes, configuration reads and writes, Atomic
Operations) initiated by the client, so that the completions returned by the targets can be
matched against the corresponding requests. The state of each outstanding transaction is
held in a Split Completion Table in the requester side of the interface, which has a capacity
of 64 Non-Posted transactions. The returning Completions are matched with the pending

requests using a 6-bit tag. There are two options for management of these tags.

« Internal Tag Management: This mode of operation is selected by setting the
AXISTEN_IF_ENABLE_CLIENT_TAG parameter to FALSE, which is the default setting
for the core. In this mode, logic within the Integrated Block is responsible for allocating
the tag for each Non-Posted request initiated from the requester side. The Integrated
Block maintains a list of free tags and assigns one of them to each request when the
client initiates a Non-Posted transaction, and communicates the assigned tag value to
the client via the output pcie_rg tag[5:0]. The value on this bus is valid when the
Integrated Block asserts pcie_rqg_tag_vld. The client logic must copy this tag so
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that any Completions delivered by the Integrated Block in response to the request can
be matched to the request.

In this mode, logic within the Integrated Block checks for the Split Completion Table full
condition, and backpressures a Non-Posted request from the client (using
s_axis_rqg_tready) if the total number of Non-Posted requests currently outstanding
has reached its limit (64).

« External Tag Management: This mode of operation is selected by setting the
AXISTEN_IF_ENABLE_CLIENT_TAG parameter to 1. In this mode, the client logic is
responsible for allocating the tag for each Non-Posted request initiated from the
requester side. The client logic must choose the tag value without conflicting with the
tags of all other Non-Posted transactions outstanding at that time, and must
communicate this chosen tag value to the Integrated Block via the request descriptor.
The Integrated Block still maintains the outstanding requests in its Split Completion
Table and matches the incoming Completions to the requests, but does not perform
any checks for the uniqueness of the tags, or for the Split Completion Table full
condition.

When internal tag management is in use, the Integrated Block asserts pcie_rqg tag_vld
for one cycle for each Non-Posted request, after it has placed its allocated tag on
pcie_rqg tagl[5:0]. There can be a delay of several cycles between the transfer of the
request on the RQ interface and the assertion of pcie_rqg_tag_v1ld by the Integrated
Block to provide the allocated tag for the request. The client can, meanwhile, continue to
send new requests. The tags for requests are communicated on the pcie_rg_tag busin
FIFO order, so it is easy for the client to associate the tag value with the request it
transferred. A tag is reused when the EOF of the last completion of a split completion is
accepted by the client.

Avoiding Head-of-Line Blocking for Posted Requests

The Integrated Block can hold a Non-Posted request received on its RQ interface for lack of
transmit credit or lack of available tags. This could potentially result in head-of-line (HOL)
blocking for Posted transactions. The Integrated Block provides a mechanism for the client
logic to avoid this situation through these signals:

* pcie_tfc_nph _av[1l:0]: These outputs indicate the Header Credit currently
available for Non-Posted requests, where:

o 00 = no credit available
o 01 =1 credit

o 10 = 2 credits

o 11 = 3 or more credits

« pcie_tfc_npd_av[1:0]: These outputs indicate the Data Credit currently available
for Non-Posted requests, where:
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o 00 = no credit available

o 01 =1 credit
o 10 = 2 credits

o 11 = 3 or more credits

The client logic can optionally check these outputs before transmitting Non-Posted
requests. Because of internal pipeline delays, the information on these outputs is delayed
by two user clock cycles from the cycle in which the last byte of the descriptor is transferred
on the RQ interface. Thus the client logic must adjust these values, taking into account any
Non-Posted requests transmitted in the two previous clock cycles. Figure 3-45 illustrates
the operation of these signals for the 256-bit interface. In this example, the Integrated Block
initially had three Non-Posted Header Credits and two Non-Posted Data Credits, and had
three free tags available for allocation. Request 1 from the client had a one-Dword payload,
and therefore consumed one header and data credit each, and also one tag. Request 2 in
the next clock cycle consumed one header credit, but no data credit. When the client
presents Request 3 in the following clock cycle, it must adjust the available credit and
available tag count by taking into account requests 1 and 2. If Request 3 consumes one
header credit and one data credit, both available credits are 0 two cycles later, as also the
number of available tags.

Figure 3-46 and Figure 3-47 illustrate the timing of the credit and tag available signals for
the same example, for interface width of 128 bits and 64 bits, respectively.
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| |
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Figure 3-45: Credit and Tag Availability Signals on the Requester Request Interface (Interface
Width = 256 Bits)
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Figure 3-46: Credit and Tag Availability Signals on the Requester Request Interface (Interface
Width = 128 Bits)
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Figure 3-47: Credit and Tag Availability Signals on the Requester Request Interface (Interface Width =
64 Bits)

Maintaining Transaction Order

The Integrated Block does not change the order of requests received from the client on its
requester interface when it transmits them on the link. In cases where the client would like
to have precise control of the order of transactions sent on the RQ interface and the CC
interface (typically to avoid Completions from passing Posted requests when using strict
ordering), the Integrated Block provides a mechanism for the client to monitor the progress
of a Posted transaction through its pipeline, so that it can determine when to schedule a
Completion on the completer completion interface without the risk of passing a specific
Posted request transmitted from the requester request interface,

When transferring a Posted request (memory write transactions or messages) across the
requester request interface, the client can provide an optional 4-bit sequence number to
the Integrated Block on its seq_num[3:0] input within s_axis_rqg tuser. The sequence
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number must be valid in the first beat of the packet. The client can then monitor the
pcie_rqg seg num[3:0] output of the Integrated Block for this sequence number to
appear. When the transaction has reached a stage in the internal transmit pipeline of the
Integrated Block where a Completion cannot pass it, the Integrated Block asserts
pcie_rqg seg num_valid forone cycle and provides the sequence number of the Posted
request on the pcie_rqg_seqg_num([3:0] output. Any Completions transmitted by the
Integrated Block after the sequence number has appeared on pcie_rqg_seg_num[3:0]
cannot pass the Posted request in the internal transmit pipeline.

Requester Completion Interface Operation

Completions for requests generated by client logic are presented on the Integrated Block's
Request Completion (RC) interface. See Figure 3-48 for an illustration of signals associated
with the requester completion interface. When straddle is not enabled, the Integrated Block
delivers each TLP on this interface as an AXI4-Stream packet. The packet starts with a 96-bit
descriptor, followed by data in the case of Completions with a payload.

Virtex-7 FPGA Gen3 C_Iien_t
Integrated Block for PCle Application

m_axis_rc_tdata[255:0]

y

m_axis_rc_tparity[31:0]
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Figure 3-48: Requester Completion Interface

X12441

The RC interface supports two distinct data alignment modes for transferring payloads,
selected by the AXISTEN_IF_RC_ALIGNMENT_MODE parameter. In the Dword-aligned
mode, the Integrated Block transfers the first Dword of the Completion payload
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immediately after the last Dword of the descriptor. In the address-aligned mode, the
Integrated Block starts the payload transfer in the beat following the last Dword of the
descriptor, and its first Dword can be in any of the possible Dword positions on the
datapath. The alignment of the first Dword of the payload is determined by address offset
provided by the client when it sent the request to the Integrated Block (that is, the setting
ofthe addr_offset[2:0] input of the RQ interface). Thus, the address-aligned mode can
be used on the RC interface only if the RQ interface is also configured to use the
address-aligned mode.

Requester Completion Descriptor Format

The RC interface of the Integrated Block sends completion data received from the link to the
client application as AXI4-Stream packets. Each packet starts with a descriptor and can have
payload data following the descriptor. The descriptor is always 12 bytes long, and is sent in
the first 12 bytes of the completion packet. The descriptor is transferred during the first two
beats on a 64-bit interface, and in the first beat on a 128- or 256-bit interface. When the
completion data is split into multiple Split Completions, the Integrated Block sends each
Split Completion as a separate AXI4-Stream packet, with its own descriptor.

The format of the Requester Completion descriptor is illustrated in Figure 3-49. The
individual fields of the RC descriptor are described in Table 3-10.
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Figure 3-49: Requester Completion Descriptor Format

Table 3-10: Requester Completion Descriptor Fields

Bit Index Field Name Description

This field provides the 12 least significant bits of the first byte
referenced by the request. The Integrated Block returns this address
from its Split Completion Table, where it stores the address and other
11:0 Lower Address parameters of all pending Non-Posted requests on the requester side.
When the Completion delivered has an error, only bits [6:0] of the
address should be considered valid.

This is a byte-level address.
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Requester Completion Descriptor Fields (Cont’d)

Bit Index

Field Name

Description

15:12

Error Code

Completion error code. These three bits encode error conditions
detected from error checking performed by the Integrated Block on
received Completions. Its encodings are:

* 0000: Normal termination (all data received).
¢ 0001: The Completion TLP is Poisoned.

* 0010: Request terminated by a Completion with UR, CA or CRS
status.

e 0011: Request terminated by a Completion with no data, or the byte
count in the Completion was higher than the total number of bytes
expected for the request.

* 0100: The current Completion being delivered has the same tag of
an outstanding request, but its Requester ID, TC, or Attr fields did
not match with the parameters of the outstanding request.

e 0101: Error in starting address. The low address bits in the
Completion TLP header did not match with the starting address of
the next expected byte for the request.

+ 0110: Invalid tag. This Completion does not match the tags of any
outstanding request.

+ 1001:Request terminated by a Completion timeout. The other fields
in the descriptor, except bit [30], the requester Function [55:48], and
the tag field [71:64], are invalid in this case, because the descriptor
does not correspond to a Completion TLP.

* 1000: Request terminated by a Function-Level Reset (FLR) targeted
at the Function that generated the request. The other fields in the
descriptor, except bit [30], the requester Function [55:48], and the
tag field [71:64], are invalid in this case, because the descriptor does
not correspond to a Completion TLP.

28:16

Byte Count

These 13 bits can have values in the range of 0 — 4096 bytes. If a
Memory Read Request is completed using a single Completion, the
Byte Count value indicates Payload size in bytes. This field must be set
to 4 for I/0O read Completions and I/O write Completions. The byte
count must be set to 1 while sending a Completion for a zero-length
memory read, and a dummy payload of 1 Dword must follow the
descriptor.

The byte count must be set to 0 when sending a UR or CA Completion.
For each Memory Read Completion, the Byte Count field must indicate
the remaining number of bytes required to complete the Request,
including the number of bytes returned with the Completion.

If a Memory Read Request is completed using multiple Completions,
the Byte Count value for each successive Completion is the value
indicated by the preceding Completion minus the number of bytes
returned with the preceding Completion.

29

Locked Read
Completion

This bit is set to 1 when the Completion is in response to a Locked
Read request. It is set to O for all other Completions.
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Requester Completion Descriptor Fields (Cont’d)

Bit Index

Field Name

Description

30

Request
Completed

The Integrated Block asserts this bit in the descriptor of the last
Completion of a request. The assertion of the bit can indicate normal
termination of the request (because all data has been received) or
abnormal termination because of an error condition. The client logic
can use this indication to clear its outstanding request status.

When tags are assigned by the client, the client logic should not
re-assign a tag allocated to a request until it has received a
Completion Descriptor from the Integrated Block with a matching tag
field and the Request Completed bit set to 1.

42:32

Dword Count

These 11 bits indicate the size of the payload of the current packet in
Dwords. Its range is 0 - 1K Dwords. This field is set to 1 for I/O read
Completions and 0 for I/O write Completions. The Dword count is also
set to 1 while transferring a Completion for a zero-length memory
read. In all other cases, the Dword count corresponds to the actual
number of Dwords in the payload of the current packet.

45:43

Completion Status

These bits reflect the setting of the Completion Status field of the
received Completion TLP. The valid settings are:

¢ 000: Successful Completion

* 001: Unsupported Request (UR)

» 010: Configuration Request Retry Status (CRS)
* 100: Completer Abort (CA)

46

Poisoned
Completion

This bit is set to indicate that the Poison bit in the Completion TLP was
set. Data in the packet should then be considered corrupted.

63:48

Requester ID

PCI Requester ID associated with the Completion.

71:64

Tag

PCle Tag associated with the Completion.

87:72

Completer ID

Completer ID received in the Completion TLP. (These 16 bits are
divided into an 8-bit bus number, 5-bit device number, and 3-bit
function number in the legacy interpretation mode. In the ARI mode,
these 16 bits must be treated as an 8-bit bus number + 8-bit Function
number.).

91:89

Transaction Class
(TO

PCle Transaction Class (TC) associated with the Completion.

94:92

Attributes

PCle attributes associated with the Completion. Bit 92 is the No Snoop
bit, bit 93 is the Relaxed Ordering bit, and bit 94 is the ID-Based
Ordering bit.

Transfer of Completions with no Data

The timing diagrams in Figure 3-50, Figure 3-51, and Figure 3-52 illustrate the transfer of a
Completion TLP received from the link with no associated payload across the RC interface,
when the interface width is configured as 64, 128, and 256 bits, respectively. The timing
diagrams in this section assume that the Completions are not straddled on the 256-bit
interface. The straddle feature is described in Straddle Option for 256-Bit Interface,

page 149.
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Figure 3-50: Transfer of a Completion with no Data on the Requester Completion Interface
(Interface Width = 64 Bits)
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Figure 3-51: Transfer of a Completion with no Data on the Requester Completion Interface
(Interface Width = 128 Bits)
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Figure 3-52: Transfer of a Completion with no Data on the Requester Completion Interface
(Interface Width = 256 Bits)

The entire transfer of the Completion TLP takes only a single beat on the 256- and 128-bit
interfaces, and two beats on the 64-bit interface. The Integrated Block keeps the
m_axis_rc_tvalid signal asserted over the duration of the packet. The client can
prolong a beat at any time by deasserting m_axis_rc_tready. The AXI4-Stream interface
signals m_axis_rc_tkeep (one per Dword position) indicate the valid descriptor Dwords
in the packet. That is, the tkeep bits are set to 1 contiguously from the first Dword of the
descriptor until its last Dword. During the transfer of a packet, the tkeep bits can be 0 only
in the last beat of the packet. The m_axis_cqg_tlast signal is always asserted in the last
beat of the packet.

Them_axi_cqg_tuser bus alsoincludes an is_sof_0 signal, which is asserted in the first
beat of every packet. The client can optionally use this signal to qualify the start of the
descriptor on the interface. No other signals within m_axi_cqg_tuser are relevant to the
transfer of Completions with no data, when the straddle option is not in use.

Transfer of Completions with Data

The timing diagrams in Figure 3-53, Figure 3-54, and Figure 3-55 illustrate the
Dword-aligned transfer of a Completion TLP received from the link with an associated
payload across the RC interface, when the interface width is configured as 64, 128, and 256
bits, respectively. For illustration purposes, the size of the data block being written into
client memory is assumed to be n Dwords, for some n = k * 32 + 28, k > 0. The timing
diagrams in this section assume that the Completions are not straddled on the 256-bit
interface. The straddle feature is described in Straddle Option for 256-Bit Interface,

page 149.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 143
PG023 October 16, 2012



http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

In the Dword-aligned mode, the transfer starts with the three descriptor Dwords, followed
immediately by the payload Dwords. The entire TLP, consisting of the descriptor and
payload, is transferred as a single AXI4-Stream packet. Data within the payload is always a
contiguous stream of bytes when the length of the payload exceeds two Dwords. The
positions of the first valid byte within the first Dword of the payload and the last valid byte
in the last Dword can then be determined from the Lower Address and Byte Count fields of
the Request Completion Descriptor. When the payload size is two Dwords or less, the valid
bytes in the payload cannot be contiguous. In these cases, the client must store the First
Byte Enable and the Last Byte Enable fields associated with each request sent out on the RQ
interface and use them to determine the valid bytes in the completion payload. The client
can optionally use the byte enable outputs byte_en[31:0] withinthem_axi_cqg_tuser
bus to determine the valid bytes in the payload, in the cases of contiguous as well as
non-contiguous payloads.

The Integrated Block keeps the m_axis_rc_tvalid signal asserted over the entire
duration of the packet. The client can prolong a beat at any time by deasserting
m_axis_rc_tready. The AXI4-Stream interface signals m_axis_rc_tkeep (0one per
Dword position) indicate the valid Dwords in the packet including the descriptor and any
null bytes inserted between the descriptor and the payload. That is, the tkeep bits are set to
1 contiguously from the first Dword of the descriptor until the last Dword of the payload.
During the transfer of a packet, the tkeep bits can be 0 only in the last beat of the packet,
when the packet does not fill the entire width of the interface. The m_axis_rc_tlast
signal is always asserted in the last beat of the packet.

The m_axi_rc_tuser bus provides several informational signals that can be used to
simplify the logic associated with the client side of the interface, or to support additional
features. The is_sof_0 signal is asserted in the first beat of every packet, when its
descriptor is on the bus. The byte enable outputs byte_en[31:0] (one per byte lane)
indicate the valid bytes in the payload. These signals are asserted only when a valid payload
byte is in the corresponding lane (it is not asserted for descriptor or null bytes). The
asserted byte enable bits are always contiguous from the start of the payload, except when
payload size is 2 Dwords or less. For Completion payloads of two Dwords or less, the 1s on
byte_en might not be contiguous. Another special case is that of a zero-length memory
read, when the Integrated Block transfers a one-Dword payload with the byte_en bits all
set to 0. Thus, the client logic can, in all cases, use the byte_en signals directly to enable
the writing of the associated bytes into memory.

The is_sof_1,is_eof_0[3:0],and is_eof_1[3:0] signals within the
m_axis_rc_tuser bus are not to be used for 64-bit and 128-bit interfaces, and for
256-bit interfaces when the straddle option is not enabled.
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Figure 3-53: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, Interface Width = 64 Bits)
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Figure 3-54: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, Interface Width = 128 Bits)
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Figure 3-55: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, Interface Width = 256 Bits)

The timing diagrams in Figure 3-56, Figure 3-57, and Figure 3-58 illustrate the
address-aligned transfer of a Completion TLP received from the link with an associated
payload across the RC interface, when the interface width is configured as 64, 128, and 256
bits, respectively. In the example timing diagrams, the starting Dword address of the data
block being transferred (as conveyed in bits [6:2] of the Lower Address field of the
descriptor) is assumed to be (m * 8 + 1), for an integer m. The size of the data block is
assumed to be n Dwords, forsome n = k * 32 + 28, k > 0. The straddle option is not valid for
address-aligned transfers, so the timing diagrams assume that the Completions are not
straddled on the 256-bit interface.
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In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. The first byte of the payload can appear on any byte lane,
based on the address of the first valid byte of the payload. The tkeep bits are set to 1
contiguously from the first Dword of the descriptor until the last Dword of the payload. The
alignment of the first Dword on the data bus is determined by the setting of the
addr_offset[2:0] input of the requester request interface when the client sent the
request to the Integrated Block. The client can optionally use the byte enable outputs
byte_en[31:0] to determine the valid bytes in the payload.
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Figure 3-56: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, Interface Width = 64 Bits)
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Figure 3-57: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, Interface Width = 128 Bits)
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Figure 3-58: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, Interface Width = 256 Bits)

Straddle Option for 256-Bit Interface

When the interface width is configured as 256 bits, the Integrated Block can start a new
Completion transfer on the RC interface in the same beat when the previous Completion
has ended on or before Dword position 3 on the data bus. This straddle option is enabled
by setting the AXISTEN_IF_RC_STRADDLE parameter. The straddle option can be used

only with the Dword-aligned mode.

When the straddle option is enabled, Completion TLPs are transferred on the RC interface
as a continuous stream, with no packet boundaries (from an AXI4-Stream perspective).
Thus, the m_axis_rc_tkeep and m_axis_rc_tlast signals are not useful in
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determining the boundaries of Completion TLPs delivered on the interface (the Integrated
Block sets m_axis_rc_tkeep to all 1sand m_axis_rc_tlast to 0 permanently when
the straddle option is in use). Instead, delineation of TLPs is performed using the following
signals provided within the m_axis_rc_tuser bus:

+ is_sof_0:The Integrated Block drives this output High in a beat when there is at least
one Completion TLP starting in the beat. The position of the first byte of this
Completion TLP is determined as follows:

o If the previous Completion TLP ended before this beat, the first byte of this
Completion TLP is in byte lane 0.

o If a previous TLP is continuing in this beat, the first byte of this Completion TLP is in
byte lane 16. This is possible only when the previous TLP ends in the current beat,
that is when is_eof_0[0] is also set.

+ is_sof_1: The Integrated Block asserts this output in a beat when there are two
Completion TLPs starting in the beat. The first TLP always starts at byte position 0 and
the second TLP at byte position 16. The Integrated Block starts a second TLP at byte
position 16 only if the previous TLP ended before byte position 16 in the same beat,
thatisonly if is_eof_0[0] is also set in the same beat.

e is_eof_0[3:0]: These outputs are used to indicate the end of a Completion TLP and
the position of its last Dword on the data bus. The assertion of the bit is_eof_0[0]
indicates that there is at least one Completion TLP ending in this beat. When bit 0 of
is_eof_0 is set, bits [3:1] provide the offset of the last Dword of the TLP ending in this
beat. The offset for the last byte can be determined from the starting address and
length of the TLP, or from the byte enable signals byte_en[31:0]. When there are
two Completion TLPs ending in a beat, the setting of is_eof_0[3:1] is the offset of
the last Dword of the first Completion TLP (in that case, its range is 0 through 3).

e is_eof_1[3:0]:Theassertionof is_eof_1[0] indicates a second TLP ending in the
same beat. When bit 0 of is_eof_1 is set, bits [3:1] provide the offset of the last
Dword of the second TLP ending in this beat. Because the second TLP can start only on
byte lane 16, it can only end at a byte lane in the range 27-31. Thus the offset
is_eof_1[3:1] can only take one of two values: 6 or 7. If is_sof_1[0] is High, the
signals is_eof_0[0] and is_sof_0 are also High in the same beat. If is_sof_1 is
High, is_sof_0 is High.If is_eof_1 is High, is_eof_0 is High.

The timing diagram in Figure 3-59 illustrates the transfer of four Completion TLPs on the
256-bit RC interface when the straddle option is enabled. The first Completion TLP (COMPL
1) starts at Dword position 0 of Beat 1 and ends in Dword position 0 of Beat 3. The second
TLP (COMPL 2) starts in Dword position 4 of the same beat. This second TLP has only a
one-Dword payload, so it also ends in the same beat. The third and fourth Completion TLPs
are transferred completely in Beat 4, because Completion 3 has only a one-Dword payload
and Completion 4 has no payload.
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Figure 3-59: Transfer of Completion TLPs on the Requester Completion Interface with the Straddle

Option Enabled

Aborting a Completion Transfer

For any Completion that includes an associated payload, the Integrated Block can signal an
error in the transferred payload by asserting the discontinue signal in the
m_axis_rc_tuser bus in the last beat of the packet. This occurs when the Integrated
Block has detected an uncorrectable error while reading data from its internal memories.
The client application must discard the entire packet when it has detected the
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discontinue signal asserted in the last beat of a packet. This is also considered a fatal
error in the Integrated Block.

When the straddle option is in use, the Integrated Block does not start a second Completion
TLP in the same beat when it has asserted discontinue, aborting the Completion TLP ending
in the beat.

Handling of Completion Errors

When a Completion TLP is received from the link, the Integrated Block matches it against
the outstanding requests in the Split Completion Table to determine the corresponding
request, and compares the fields in its header against the expected values to detect any
error conditions. The Integrated Block then signals the error conditions in a 4-bit error code
sent to the client as part of the completion descriptor. The Integrated Block also indicates
the last completion for a request by setting the Request Completed bit (bit 30) in the
descriptor. Table 3-11 defines the error conditions signaled by the various error codes.

Table 3-11: Encoding of Error Codes

Error Code Description

0000 No errors detected.
The Completion TLP received from the link was Poisoned. The client should discard any
data that follows the descriptor. In addition, if the Request Completed bit in the

0001 descriptor is not set, the client should continue to discard the data subsequent
completions for this tag until it receives a completion descriptor with the Request
Completed bit set. On receiving a completion descriptor with the Request Completed
bit set, the client can remove all state for the corresponding request.
Request terminated by a Completion TLP with UR, CA, or CRS status. In this case, there

0010 is no data associated with the completion, and the Request Completed bit in the
completion descriptor is set. On receiving such a Completion from the Integrated Block,
the client can discard the corresponding request.
Read Request terminated by a Completion TLP with incorrect byte count. This condition
occurs when a Completion TLP is received with a byte count not matching the expected

0011 count. The Request Completed bit in the completion descriptor is set. On receiving such
a completion from the Integrated Block, the client can discard the corresponding
request.
This code indicates the case when the current Completion being delivered has the same
tag of an outstanding request, but its Requester ID, TC, or Attr fields did not match with
the parameters of the outstanding request. The client should discard any data that

0100 follows the descriptor. In addition, if the Request Completed bit in the descriptor is not
set, the client should continue to discard the data subsequent completions for this tag
until it receives a completion descriptor with the Request Completed bit set. On
receiving a completion descriptor with the Request Completed bit set, the client can
remove all state associated with the request.
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Table 3-11: Encoding of Error Codes (Cont’d)

Error Code Description

Error in starting address. The low address bits in the Completion TLP header did not
match with the starting address of the next expected byte for the request. The client
should discard any data that follows the descriptor. In addition, if the Request

0101 Completed bit in the descriptor is not set, the client should continue to discard the data
subsequent Completions for this tag until it receives a completion descriptor with the
Request Completed bit set. On receiving a completion descriptor with the Request
Completed bit set, the client can discard the corresponding request.

Invalid tag. This error code indicates that the tag in the Completion TLP did not match
0110 with the tags of any outstanding request. The client should discard any data following
the descriptor.

Invalid byte count. The byte count in the Completion was higher than the total number
of bytes expected for the request. In this case, the Request Completed bit in the
completion descriptor is also set. On receiving such a completion from the Integrated
Block, the client can discard the corresponding request.

0111

Request terminated by a Completion timeout. This error code is used when an
outstanding request times out without receiving a Completion from the link. The
Integrated Block maintains a completion timer for each outstanding request, and
responds to a completion timeout by transmitting a dummy completion descriptor on
1001 the requester completion interface to the client, so that the client can terminate the
pending request, or retry the request. Because this descriptor does not correspond to
a Completion TLP received from the link, only the Request Completed bit (bit 30), the
tag field (bits [71: 64]) and the requester Function field (bits [55: 48]) are valid in this
descriptor.

Request terminated by a Function-Level Reset (FLR) targeting the Function that
generated the request. In this case, the Integrated Block transmits a dummy completion
descriptor on the requester completion interface to the client, so that the client can
1000 terminate the pending request. Because this descriptor does not correspond to a
Completion TLP received from the link, only the Request Completed bit (bit 30), the tag
field (bits [71:64]) and the requester Function field (bits [55:48]) are valid in this
descriptor.

When the tags are managed internally by the Integrated Block, logic within the Integrated
Block ensures that a tag allocated to a pending request is not re-used until either all the
Completions for the request were received or the request was timed out.

When tags are managed by the client, however, the client must ensure that a tag assigned
to a request is not re-used until the Integrated Block has signaled the termination of the
request by setting the Request Completed bit in the completion descriptor. The client can
close out a pending request on receiving a completion with a non-zero error code, but
should not free the associated tag if the Request Completed bit in the completion
descriptor is not set. Such a situation might occur when a request receives multiple split
completions, one of which has an error. In this case, the Integrated Block can continue to
receive Completion TLPs for the pending request even after the error was detected, and
these Completions are incorrectly matched to a different request if its tag is re-assigned too
soon. In some cases, the Integrated Block might have to wait for the request to time out
even when a split completion is received with an error, before it can allow the tag to be
re-used.
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Power Management

The Gen3 Integrated Block core supports these power management modes:

» Active State Power Management (ASPM)

+ Programmed Power Management (PPM)

Implementing these power management functions as part of the PCI Express design
enables the PCI Express hierarchy to seamlessly exchange power-management messages to
save system power. All power management message identification functions are
implemented. The subsections in this section describe the user logic definition to support
the above modes of power management.

For additional information on ASPM and PPM implementation, see the PCI Express Base
Specification.
Active State Power Management

The Gen3 Integrated Block for PCle advertises an N_FTS value of 255 to ensure proper
alignment when exiting LOs. If the N_FTS value is modified, you must ensure enough FTS
sequences are received to properly align and avoid transition into the Recovery state.

The Active State Power Management (ASPM) functionality is autonomous and transparent
from a user-logic function perspective. The core supports the conditions required for ASPM.
The integrated block supports ASPM LOs and not ASPM L1.

Note: This is not supported in non-synchronous clocking mode.

Programmed Power Management

To achieve considerable power savings on the PCI Express hierarchy tree, the core supports
these link states of Programmed Power Management (PPM):

« LO: Active State (data exchange state)
« L1: Higher Latency, lower power standby state

» L3: Link Off State

The Programmed Power Management Protocol is initiated by the Downstream
Component/Upstream Port.
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PPM LO State

The LO state represents normal operation and is transparent to the user logic. The core
reaches the LO (active state) after a successful initialization and training of the PCI Express
Link(s) as per the protocol.

PPM L1 State

These steps outline the transition of the core to the PPM L1 state:

1. The transition to a lower power PPM L1 state is always initiated by an upstream device,
by programming the PCI Express device power state to D3-hot (or to D1 or D2, if they
are supported).

2. The device power state is communicated to the user logic through the
cfg_function_power_state output.

3. The core then throttles/stalls the user logic from initiating any new transactions on the
user interface by deasserting s_axis_rqg_tready. Any pending transactions on the
user interface are, however, accepted fully and can be completed later.

There are two exceptions to this rule:

o The core is configured as an Endpoint and the User Configuration Space is enabled.
In this situation, the user must refrain from sending new Request TLPs if
cfg_function_power_state indicates non-D0, but the user can return
Completions to Configuration transactions targeting User Configuration space.

- The core is configured as a Root Port. To be compliant in this situation, the user
should refrain from sending new Requests if cfg_function_power_state
indicates non-DO.

4. The core exchanges appropriate power management DLLPs with its link partner to
successfully transition the link to a lower power PPM L1 state. This action is transparent
to the user logic.

5. All user transactions are stalled for the duration of time when the device power state is
non-DO0, with the exceptions indicated in step 3.

PPM L3 State

These steps outline the transition of the Endpoint for PCI Express to the PPM L3 state:

1. The core negotiates a transition to the L23 Ready Link State upon receiving a
PME_Turn_Off message from the upstream link partner.

2. Upon receiving a PME_Turn_Off message, the core initiates a handshake with the user
logic through cfg_power_state_change_interrupt (see Table 3-12) and expects
a cfg_power_state_change_ack back from the user logic.
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A successful handshake results in a transmission of the Power Management Turn-off
Acknowledge (PME-turnoff_ack) Message by the core to its upstream link partner.

The core closes all its interfaces, disables the Physical/Data-Link/Transaction layers and
is ready for removal of power to the core.

There are two exceptions to this rule:

- The core is configured as an Endpoint and the User Configuration Space is enabled.
In this situation, the user must refrain from sending new Request TLPs if
cfg_function_power_state indicates non-DO, but the user can return
Completions to Configuration transactions targeting User Configuration space.

o The core is configured as a Root Port. To be compliant in this situation, the user
should refrain from sending new Requests if cfg_function_power_state
indicates non-DO.

Table 3-12: Power Management Handshaking Signals

Port Name Direction Description

cfg

_power_state_change_interrupt Output Asserted if a power-down request TLP is
received from the upstream device. After
assertion,
cfg_power_state_change_interrupt
remains asserted until the user asserts
cfg_power_state_change_ack.

cfg

_power_state_change_ack Input Asserted by the User Application when it is safe
to power down.

Power-down negotiation follows these steps:

1. Before power and clock are turned off, the Root Complex or the Hot-Plug controller in a
downstream switch issues a PME_Turn_Off broadcast message.

2. When the core receives this TLP, it asserts cfg_power_state_change_interrupt to
the User Application and starts polling the cfg_power_state_change_ack input.

3. When the User Application detects the assertion of cfg_to_turnoff, it must complete any
packet in progress and stop generating any new packets. After the User Application is
ready to be turned off, it asserts cfg_power_state_change_ack to the core. After
assertion of cfg_power_state_change_ack, the User Application is committed to
being turned off.

4. The core sends a PME_TO_Ack when it detects assertion of
cfg_power_state_change_ack.
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Link Training: 2-Lane, 4-Lane, and 8-Lane
Components

The 2-lane, 4-lane, and 8-lane Integrated Block for PCI Express can operate at less than the
maximum lane width as required by the PC/ Express Base Specification. Two cases cause core
to operate at less than its specified maximum lane width, as defined in these subsections.

Link Partner Supports Fewer Lanes

When the 2-lane core is connected to a device that implements only 1 lane, the 2-lane core
trains and operates as a 1-lane device using lane 0.

When the 4-lane core is connected to a device that implements 1 lane, the 4-lane core
trains and operates as a 1-lane device using lane 0, as shown in Figure 3-60. Similarly, if the
4-lane core is connected to a 2-lane device, the core trains and operates as a 2-lane device
using lanes 0 and 1.

When the 8-lane core is connected to a device that only implements 4 lanes, it trains and
operates as a 4-lane device using lanes 0-3. Additionally, if the connected device only
implements 1 or 2 lanes, the 8-lane core trains and operates as a 1- or 2-lane device.

Upstream Device Upstream Device
4-lane Downstream Port 1-lane Downstream Port
Lane 0 | Lane 1 | Lane 2| Lane 3 Lane 0 | Lane 1 | Lane 2| Lane 3

Note: Shaded blocks indicate
disabled lanes.

Lane 0Lane 1|Lane 2[Lane 3 Lane 0 [Lane 1[Lane 2[Lane 3

4-lane Integrated Block 4-lane Integrated Block

X12470

Figure 3-60: Scaling of 4-Lane Endpoint Block from 4-Lane to 1-Lane Operation

Lane Becomes Faulty

If a link becomes faulty after training to the maximum lane width supported by the core and
the link partner device, the core attempts to recover and train to a lower lane width, if
available. If lane 0 becomes faulty, the link is irrecoverably lost. If any or all of lanes 1-7
become faulty, the link goes into recovery and attempts to recover the largest viable link
with whichever lanes are still operational.

For example, when using the 8-lane core, loss of lane 1 yields a recovery to 1-lane operation
on lane 0, whereas the loss of lane 6 yields a recovery to 4-lane operation on lanes 0-3.
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After recovery occurs, if the failed lane(s) becomes alive again, the core does not attempt to
recover to a wider link width. The only way a wider link width can occur is if the link actually
goes down and it attempts to retrain from scratch.

The user_clk clock output is a fixed frequency configured in the CORE Generator tool
GUL user_clk does not shift frequencies in case of link recovery or training down.

Lane Reversal

The Integrated Block supports limited lane reversal capabilities and therefore provides
flexibility in the design of the board for the link partner. The link partner can choose to lay
out the board with reversed lane numbers and the Integrated Block continues to link train
successfully and operate normally. The configurations that have lane reversal support are
x8 and x4 (excluding downshift modes). Downshift refers to the link width negotiation
process that occurs when link partners have different lane width capabilities advertised. As
a result of lane width negotiation, the link partners negotiate down to the smaller of the two
advertised lane widths. Table 3-13 describes the several possible combinations including
downshift modes and availability of lane reversal support.

Table 3-13: Lane Reversal Support

Integrated Block | Negotiated Lane Number Mapping Lane
Advertised Lane (Endpoint Link Partner) Reversal
Lane Width Width Endpoint Link Partner Supported

x8 x8 Lane 0... Lane 7 Lane 7... Lane 0 Yes
x8 x4 Lane 0... Lane 3 Lane 7... Lane 4 No®
x8 x2 Lane 0... Lane 3 Lane 7... Lane 6 No®
x4 x4 Lane 0... Lane 3 Lane 3... Lane 0 Yes
x4 X2 Lane 0... Lane 1 Lane 3... Lane 2 No®
X2 X2 Lane 0... Lane 1 Lane 1... Lane 0 Yes
x2 x1 Lane 0... Lane 1 Lane 1 No®
Notes:

1. When the lanes are reversed in the board layout and a downshift adapter card is inserted between the Endpoint
and link partner, Lane 0 of the link partner remains unconnected (as shown by the lane mapping in this table) and
therefore does not link train.
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Customizing and Generating the Core
Constraining the Core

Detailed Example Design
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Customizing and Generating the Core

This chapter includes information on using the Vivado™ IP Catalog to customize and
generate the core.

Graphical User Interface (GUI)

The LogiCORE™ IP Virtex®-7 FPGA Gen3 Integrated Block for PCI Express® core is a fully
configurable and highly customizable solution. The Gen3 Integrated Block for PCle is
customized using the Vivado IP Catalog.

Note: The screen captures in this chapter are conceptual representatives of their subjects and
provide general information only. For the latest information, see the Vivado Design Suite.

Customizing the Core using the Vivado IP Catalog

The Vivado Design Suite IP Catalog for the Gen3 Integrated Block for PCle consists two
modes: Basic Mode and Advanced Mode. To select a mode, use the Mode drop-down list on
the first page of the Customize IP dialog box.

Basic Mode

The Basic mode parameters are in the following pages:

Basic

Capabilities

Identity Settings (PFO IDs and PF1 IDs)
Base Address Registers (PFO and PF1)
Legacy/MSI Capabilities
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Basic

Basic Parameter Settings

The initial customization screen shown in Figure 4-1 is used to define the basic parameters
for the core, including the component name, reference clock frequency, and silicon type.

Customize IP

o Customize Virtex-7 FPGA Gen3
Integrated Block for PCI Express (1.3)
by specifying IP Options.

=

IP Options
irtex-7 FPGA Gen3 Integrated Block for PCI Express

Component Name |p:i93j><7v17370 ‘

Basic Capabilities PFOIDs FFLIDs FFOBAR FFl BAR Legacy/MSI Cap

Device / Port Type |FCI Express Endpeint device |z|| Generate Additional PCIE Constraints 2«
Fle Block Location [0l [=] | Pcie Block Location : Cxavz
Murnber of Lanes 2 Maximum Link Speed 2
Lane Wicth @256T/s 05061 OB0GTE
AXI-ST Interface Width 2 AXI-ST Interface Frequency 2
£0-ST Interface Width |84 bit [ | 62.5MHz

AXI-ST Alignment Mode

@ Data aligned O Address Aligned ¥l Enable client Tag

Reference Clock Frequency (MHz) 100 MHz

Silicon Revision IES

[JEnable Pipe Simulation

Show Advanced Options

‘ QK ‘ Cancel
Figure 4-1: Integrated Block for PCI Express Parameters
Component Name

Base name of the output files generated for the core. The name must begin with a letter and
can be composed of these characters:atoz, 0to 9, and “_"

Mode

Allows you to select the Basic or Advanced mode of the configuration of core.

PCle Device / Port Type

Indicates the PCI Express logical device type.
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PCle Block Location

Selects from the available Integrated Blocks to enable generation of location-specific
constraint files and pinouts. This selection is used in the default example design scripts.

This option is not available if a Xilinx Development Board is selected.

Generate Additional PCle Constraints
Allows you to generate additional constraints files for other blocks available in the device.

This option is not available if a Xilinx Development Board is selected.

Number of Lanes

The Gen3 Integrated Block for PCle requires the selection of the initial lane width. Figure 4-1
defines the available widths and associated generated core. Wider lane width cores can
train down to smaller lane widths if attached to a smaller lane-width device. See Link
Training: 2-Lane, 4-Lane, and 8-Lane Components, page 157 for more information.

Table 4-1: Lane Width and Product Generated

Lane Width Product Generated
x1 1-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express
X2 2-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express
x4 4-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express
x8 8-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express

Maximum Link Speed

The Gen3 Integrated Block for PCle allows you to select the Maximum Link Speed supported
by the device. Table 4-2 defines the lane widths and link speeds supported by the device.
Higher link speed cores are capable of training to a lower link speed if connected to a lower
link speed capable device.

Table 4-2: Lane Width and Link Speed

Lane Width Link Speed
x1 2.5 Gb/s, 5 Gb/s, 8 Gb/s
X2 2.5 Gb/s, 5 Gb/s, 8 Gb/s
x4 2.5 Gb/s, 5 Gb/s, 8 Gb/s
x8 2.5 Gb/s, 5 Gb/s, 8 Gb/s
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AXI-ST Interface Width

The Gen3 Integrated Block for PCle allows you to select the Interface Width, as defined in
Table 4-3. The default interface width set in the Customize IP dialog box is the lowest
possible interface width.

Table 4-3: Lane Width, Link Speed, and Interface Width

Lane Width Lir;lég;)se)ed Interface Width (Bits)
x1 2.5,50,8.0 64
x2 25,50 64
x2 8.0 64, 128
x4 2.5 64
x4 5.0 64,128
x4 8.0 128, 256
x8 2.5 64, 128
x8 5.0 128 256
x8 8.0 256

AXI-ST Interface Frequency
The frequency is set to 62.5Mhz.
AXI-ST Alignment Mode

When a payload is present, there are two options for aligning the first byte of the payload
with respect to the datapath. See Data Alignment Options, page 81.

Requestor Completion Straddle

The Gen3 Integrated Block for PCle provides an option to straddle packets on the Requestor
Completion interface when the interface width is 256 bits. See Straddle Option for 256-Bit
Interface, page 149.

Enable Client Tag
Enables you to use the client Tag.
Reference Clock Frequency

Selects the frequency of the reference clock provided on sys_c1lk. For important
information about clocking the Gen3 Integrated Block for PCle, see Clocking, page 64.
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Xilinx Development Board

Selects the Xilinx Development Board to enable the generation of Xilinx Development
Board-specific constraints files.

Silicon Type
Selects the silicon type.

Enable Pipe Simulation

When this box is checked, generates a core that can be simulated with pipe interfaces
connected.

Capabilities

The Capabilities settings page is shown in Figure 4-2.

Customize IP.

6. Customize Virtex-7 FFGA Gen3
" Integrated Block for PCI Express (1.3) E
by specifying IP Options,

IP Options

irtex-7 FPGA Gen3 Integrated Block for PCl Express

Component Name \pcwe377><7v17370 |

Basic Capabilities PFDIDs FPFOBAR Legacy/MSI Cap

Physical Functions

[1Enable Physical Function 1

»
»

Device Capabilities Register PF

PFO Max Payload Size  [S512 bytes [*]| PF1 Max Payload Size [512 bytes =] Selects whether the device reference clock is provided by the connector
—atees = (Synchronous) or generated via an onboard PLL{ASYnchronous)

Link Status Register

[l Estended Tag Field [ Enable Slot Clock Configuration

Show Advanced Options

OK | | Cancel

Figure 4-2: Capabilities Settings
Enable Physical Function 0 and 1

The Gen3 Integrated Block for PCle implements an additional Physical Function (PF).
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The Integrated Block implements up to six Virtual Functions that are associated to either
PFO or PF1 (if enabled).

MPS

This field indicates the maximum payload size that the device or function can support for
TLPs. This is the value advertised to the system in the Device Capabilities Register.

Extended Tag

This field indicates the maximum supported size of the Tag field as a Requester. The options
are:

«  When selected, 8-bit Tag field support
«  When deselected, 5-bit Tag field support
Slot Clock Configuration

Enables the Slot Clock Configuration bit in the Link Status register. When you select this
option, the link is synchronously clocked. For more information on clocking options, see
Clocking, page 74.

Identity Settings (PFO IDs and PF1 IDs)

The Identity Settings pages are shown in Figure 4-3 and Figure 4-4. These settings
customize the IP initial values, class code, and Cardbus CIS pointer information. The page
for Physical Function 1 (PF1) is only displayed when PF1 is enabled.
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| Customize Virtex-7 FPGA Gen3
“" Integrated Block for PCI Express (1.3)
by specifying IP Options.

IP Options
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Customize IP. [z]

=

irtex-7 FPGA Gen3 Integrated Block for PCI Express

Component Name ‘pc|5377x7v17370

Basic Capabilties PFOIDs PFO BAR  Legscy/MSI Cap
PFO - ID Initial Values 2
wendor ID Range: 0000, FFFF
Device D Range: 0000. FFFF
Revision ID Range: 00..FF
Subsystem Vendor ID Range: 0000, FFFF
Subsystern D Range: 0000..FFFF

Class Code

[1PFO Use Class Code Lookup Assistant

Base Class Value |S\mp\e comrmunication controllers E“

Base Class [os | Range: 00, FF
Sub-Class/Interface Value |Gensnc XT compatible serial controller El

Sub-Class [so | Range: 00..FF
Interface [oo | Ramge: 00, FF

Class Code [osBo00 | Range: 000000, FFFFFF

Show Advanced Options

| Cancel

Figure 4-3:

Identity Settings (PFO)
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Customize IR

o Customize Virtex-7 FPGA Gen3
Integrated Block for PCI Express (1.3} b

by specifying IP Options.

IP Options
irtex-7 FPGA Gen3 Integrated Block for PCl Express

Component Name |pcweﬁjxﬁv17370 |

Basic Capabilities PFOIDs PFlIDs PFOBAR PFL BAR Legacy/MS| Cap

FF1 - 1D Initial Walues

»

Wendor D 10EE

Device ID 7011 Range: 0000..FFFF
Revision ID Range: 00..FF
Subsystern Vendor ID 10EE

Subsystemn ID 0007 Range: 0000..FFFF

»

Class Code

[IPF1 Use Class Code Lockup Assistant

Base Class Value ‘S\mple communication controllers El

Base Class [os | Range: 00..FF
Sub-Class/interface Value ‘Genenc XT compatible serial controller El

Sub-Class N | Range: 00..FF
Interface oo | Range: 00..FF

Range: 000000, .FFFFFF

Show Advanced Options

| OK ‘ Cancel

Figure 4-4: ldentity Settings (PF1)

PFO ID Initial Values

« Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers
are assigned by the PCI Special Interest Group to guarantee that each identifier is
unique. The default value, 10EEH, is the Vendor ID for Xilinx. Enter a vendor
identification number here. FFFFh is reserved.

« Device ID: A unique identifier for the application; the default value, which depends on
the configuration selected, is 70<link speed> <link width>h. This field can be any value;
change this value for the application.

« Revision ID: Indicates the revision of the device or application; an extension of the
Device ID. The default value is 00h; enter values appropriate for the application.

» Subsystem Vendor ID: Further qualifies the manufacturer of the device or application.
Enter a Subsystem Vendor ID here; the default value is 10EEh. Typically, this value is the
same as Vendor ID. Setting the value to 0000h can cause compliance testing issues.

« Subsystem ID: Further qualifies the manufacturer of the device or application. This
value is typically the same as the Device ID; the default value depends on the lane
width and link speed selected. Setting the value to 0000h can cause compliance testing
issues.
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Class Code

The Class Code identifies the general function of a device, and is divided into three
byte-size fields:

« Base Class: Broadly identifies the type of function performed by the device.
« Sub-Class: More specifically identifies the device function.

« Interface: Defines a specific register-level programming interface, if any, allowing
device-independent software to interface with the device.

Class code encoding can be found at www.pcisig.com.

Class Code Look-up Assistant

The Class Code Look-up Assistant provides the Base Class, Sub-Class and Interface values
for a selected general function of a device. This Look-up Assistant tool only displays the
three values for a selected function. The user must enter the values in Class Code for these
values to be translated into device settings.

Base Address Registers (PFO and PF1)

The Base Address Registers (BARs) screens shown in Figure 4-5 and Figure 4-6 set the base
address register space for the Endpoint configuration. Each BAR (0 through 5) configures
the BAR Aperture Size and Control attributes of the Physical Function as described in
Table D-1.
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Customize Virtex-7 FPGA Gen3
Integrated Block for PCI Express (1.3)
by specifying IP Options.

IP Options

Chapter 4: Customizing and Generating the Core

Customize |IP.

irtex-7 FPGA Gen3 Integrated Block for PCI Express

Componant Name |pme3_7>¢_\/1_3_0

Basic Cadabilities PFCIDs PFOBAR  LegacyMSICap

this information to perform address decoding.

— @ Bard
Type [eabit [prefetchat
Size Unit ‘K\Iubytes Iz” Size Value |2 IZH
Value (Hesd:
—OBar2
Type [ [7] Osabi sfetchable
Size Unit [Kilo ~| Size Valua |2 =1

value (Hex) 00000000

— [ Bara

Type

Walue (Hex)k 00000000

i~ [ Expansion Rom

Init

Walue (Hexi:  [00000000

Base Address Registers (BARs) serve two surposes. Initially, they serve as a mechanism for the device to reguest blocks of address space in the system memary
map. After the BIOS or 0S datermines what addresses tc assign to the device, the Base Address Registers are programmed with addresses and the device uses

~ O Barl
Type
Size Unit

Walue (Hex: 00000000

~[par3

Type
Size Unit

Walue (Hex): 00000000

—Oears
Type

Size Unit

Walue (Hex): 00000000

Show Advanced Options

——

Cancel

Figure 4-5:
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Cuslomize IP.

0 Custornize Virtex-7 FPGA Gen3
' Integrated Block for PCI Express (1.3) E
by specifying IP Options.

IP Options
irtex-7 FPGA Gen3 Integrated Block for PCI Express

Component Name |pc|e§77xﬁv17370 |

Baszic Capshilties PFOIDs PF1IDs  PFO BAR PFL BAR  Legacy/MSI Cap

Base Address Registers (BARs) serve two purposes, Initially, they serve as a mechanism for the device to request blocks of address space in the system memory T |
map, After the BIOS or 0S determines what addresses to assign to the device, the Base Address Registers are programmed with addresses and the device uses
this information to perform address decoding.

— @ Baro ~ O Barl
Tpe D4t
Size Unit [dlobytes  [~] size value [2 -] Size Unit Kilobytes  [] Size Value
Value (Hex):  [FFFFFE0Q “alue (Hex):  [00000000
—par2 - s [ Bar3
¥ =] Prefatohable T
Value (Hex):  [00000000 Value (Hex): [00000000
[ Bard - = = O Bars =
[=] Cis4 bt &
Size Uni Kilabytes | =] Size walue [2 =~ Size Ur (labytes [ =] Size Value Z 1=
Value (Hex): [00000000 value (Hex); [00000000

— [ Expansion Rom

walue (Hew): [00000000 =

Show Advanced Options

“_ oK | | Cancel

Figure 4-6: Base Address Register (PF1)

Base Address Register Overview

The Gen3 Integrated Block for PCle in Endpoint configuration supports up to six 32-bit BARs
or three 64-bit BARs, and the Expansion read-only memory (ROM) BAR. The Gen3
Integrated Block for PCle in Root Port configuration supports up to two 32-bit BARs or one
64-bit BAR, and the Expansion ROM BAR.

BARs can be one of two sizes:

« 32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes.
Used for Memory to I/O.

+ 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes.
Used for Memory only.

All BAR registers share these options:

« Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

« Type: BARs can either be I/O or Memory.

- 1/0O:1/O BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.
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o Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible to the user.

« Size: The available Size range depends on the PCle Device/Port Type and the Type of
BAR selected. Table 4-4 lists the available BAR size ranges.

Table 4-4: BAR Size Ranges for Device Configuration

PCle Device / Port Type BAR Type BAR Size Range
32-bit Memory 128 Bytes — 2 Gigabytes
PCI Express Endpoint
64-bit Memory 128 Bytes — 8 Exabytes
32-bit Memory 16 Bytes — 2 Gigabytes
Legacy PCI Express Endpoint 64-bit Memory 16 Bytes — 8 Exabytes
I/0 16 Bytes — 2 Gigabytes

« Prefetchable: Identifies the ability of the memory space to be prefetched.

» Value: The value assigned to the BAR based on the current selections.

For more information about managing the Base Address Register settings, see Managing
Base Address Register Settings.

Expansion ROM Base Address Register

If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB. According
to the PC/ 3.0 Local Bus Specification, the maximum size for the Expansion ROM BAR should
be no larger than 16 MB. Selecting an address space larger than 16 MB can result in a
non-compliant core.

Managing Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate GUI
settings for the desired base address register.

Memory or 1/O settings indicate whether the address space is defined as memory or I/O.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum
I/O space allowed is 16 bytes; use of I/O space should be avoided in all new designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading,
as from a RAM). Byte write operations can be merged into a single double word write, when
applicable.

When configuring the core as an Endpoint for PCle (non-Legacy), 64-bit addressing must be
supported for all BARs (except BARS) that have the prefetchable bit set. 32-bit addressing
is permitted for all BARs that do not have the prefetchable bit set. The prefetchable
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bit-related requirement does not apply to a Legacy Endpoint. The minimum memory
address range supported by a BAR is 128 bytes for a PCI Express Endpoint and 16 bytes for
a Legacy PCI Express Endpoint.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A base
address register is disabled by deselecting unused BARs in the GUL

Legacy/MSI Capabilities

On this page, you set the Legacy Interrupt Settings and MSI Capabilities for all applicable
Physical and Virtual Functions.

Customize IP

0 Custormize Virtex-7 FPGA Gena
" Integrated Block for PCI Express (1.3} 'E
by specifying IP Options,
IP Options

irtex-7 FPGA Gen3 Integrated Block for PCl Express

Component Name |pc|eai7x7v17370 |

Basic Capabilities PFOIDs PFO BAR Legacy/MSI Cap

»

Legacy Interrupt Settings

PFO Interrupt PIN

MS| Capabilities

¥ PFO Enable MSI Capahility Structure PFO Multiple Message Capable

Show Advanced Options

| 0K || cancel

Figure 4-7: Legacy/MSI Capabilities
Legacy Interrupt Settings

« Enable INTX: Enables the ability of the PCI Express function to generate INTx
interrupts.

« Interrupt PIN: Indicates the mapping for Legacy Interrupt messages. A setting of
“None” indicates no Legacy Interrupts are used.
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MSI Capabilities

« Enable MSI Capability Structure: Indicates that the MSI Capability structure exists.

Note: Although it is possible not to enable MSI or MSI-X, the result would be a non-compliant
core. The PCI Express Base Specification requires that MSI, MSI-X, or both be enabled.

+ 64 bit Address Capable: Indicates that the function can send a 64-bit Message
Address.

« Multiple Message Capable: Selects the number of MSI vectors to request from the
Root Complex.

« Per Vector Masking Capable: Indicates that the function supports MSI per-vector
Masking.

Advanced Mode
In Advanced Mode, the GUI consists of the following pages:

+ Basic

« Capabilities

« PFOID and PF11ID

« PFO BAR and PF1 BAR

« SRIOV Config (PFO and PF1)

« PFO SRIOV BARs and PF1 SRIVO BARs
« Legacy/MSI Capabilities

« MSI-X Capabilities

* Power Management

« Extended Capabilities 1 and Extended Capabilities 2

Basic

The Basic setting page is the same for both Basic or Advanced modes. See Basic, page 161.
Capabilities

The Capabilities settings for Advanced mode contains three additional parameters those for

Basic mode. For a description of the basic mode settings, see Capabilities, page 164. The
Advanced mode settings are described below.
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Customize IP

6 Customize Virtex-7 FPGA Gen3
“ Integrated Block for PCI Express (1.3) e
by specifying IP Opticns.

IP Options
irtex-7 FPGA Gen3 Integrated Block for PCl Express

Component Mame |p:\9377><7v17370 |

Basic Capabilities PF0IDs PFlIDs PFOBAR PFL BAR SRIOV Config  PFO SRIOW BARs  PFL SRIOV BARs  Legacy/MSI Cap  MSkk Cap | Power Management Extd, Capabilitie 4 » B

Physical Functiens X

Enable Physical Function 1

Device Capabilities Register PF 3 | [ Link Status Register 2

PFO Max Payload Size  [512 bytes ||| PFL Max Payload Size [512 bytes [~ Selects whether the device reference clock is provided by the connector

(Synchronous) or generated via an onboard PLL(Asynchronous)
U Bxtended Tag Field [ Enable Slot clock Cenfiguration

SRIOV Capability [ Function Level Reset
Device Capabilities Register 2 3
[ 22-bit AtomicOp Completer Supported
] 64-bit AtomicOp Completer Supported
[1128-bit CAS Completer Supported
[ TPH Completer Supported

OBFF Supported |00 Not Supported [~]

Show Advanced Options

[alie ‘ | Cancel

Figure 4-8: Capabilities Settings (Advanced Mode)
SRIOV Capabilities
Enables Single Root Port I/O Virtualization (SRIOV) Capabilities. The Integrated Block
implements the Single Root Port I/0O Virtualization PCle extended capability. When this

capability is enabled, the SRIOV capability is implemented for both PFO and PF1 (if
selected).

Function Level Reset

Indicates the Function Level Reset is enabled. The Integrated Block enables you to reset a
specific device function. This mechanism is only applicable to Endpoint configurations.

Device Capabilities Registers 2
Device Capability Register 2 Settings: Specifies options for AtomicOps and TPH Completer
Support. See the Device Capability Register 2 description in Chapter 7 of the PCI Express

Base Specification for more information. These settings apply to both Physical Functions, if
PF1 is enabled.

PFO ID and PF1ID

The Identity settings (PFO and PF1 Initial ID) are the same for both Basic and Advanced
modes. See Identity Settings (PFO IDs and PF1 IDs), page 165.
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PFO BAR and PF1 BAR

The PFO and PF1 BAR settings are the same for both Basic and Advanced modes. See Base
Address Registers (PFO and PF1), page 168.

SRIOV Config (PFO and PF1)

The SRIOV Config page is shows in Figure 4-9.

Customize IP.

0 Customize Virtex-7 FPGA Gen3

* Integrated Block for PCI Express (1.3} b
by specifying IP Options.

IP Options

irtex-7 FPGA Gen3 Integrated Block for PCl Express

Component Mare [pcie3_7xwl 3.0 |

Basic Capahilties FFOIDs PFLIDs PFOBAR PFl BAR SRIOV Config FPFO SRIOV BARs FFl SRIOV BARs  Legacy/MSI Cap  MSlk Cap  Power Management  Extd Capabiltie 4 » B

FFO SRIOV Config A FF1 SRIOV Config A
Cap Version C’ Range: 0..F Cap Version I:’ Range: O..F

Humber of PFO WF's Humber of PF1 WF's

FF Dependency Link Range: 0000..FFFF FF Dependency Link Range: 0000, FFFF

First WF Offset Range: 0000..FFFF PF Dependency Link Range: 0000.. FFFF

WF Device D Farnge: 0000..FFFF WF Device ID Fiange: 0000, FFFF

Supported Page Size Supported Fage Size |4KE B

Show Advanced Optiens

‘ OK | Cancel

Figure 4-9: SRIOV Config (PFO and PF1)
SRIOV Capability Version

Indicates the 4-bit SRIOV Capability Version for the Physical Function.
SRIOV Function Select

Indicates the number of Virtual Functions associated to the Physical Function. A maximum
of six Virtual Functions are available to PFO and PF1.

SRIOV Functional Dependency Link

Indicates the SRIOV Functional Dependency Link for the Physical Function. The
programming model for a device can have vendor-specific dependencies between sets of
Functions. The Function Dependency Link field is used to describe these dependencies.
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SRIOV First VF Offset

Indicates the offset of the first Virtual Function (VF) for the Physical Function (PF). PFO
always resides at Offset O while PF1 always resides at Offset 1. There are 6 Virtual Functions
available in the Virtex-7 Gen3 Integrated block for PCI Express, and the Virtual Functions
reside at the function number range 64 - 69.

Virtual functions are mapped sequentially with VFs for PFO taking precedence. For example,
if PFO has 2 Virtual Functions and PF1 has 3 Virtual Functions, the following mapping would
occur:

Table 4-5: Example Virtual Function Mappings

Physical Function Virtual Function Functi;:ng:mber
PFO VFO 64
PFO VF1 65
PF1 VFO 66
PF1 VF1 67
PF1 VF2 68

The PFx_FIRST_VF_OFFSET is calculated by taking the first offset of the Virtual Function and
subtracting that from the offset of the Physical Function.

PFx_FIRST_VF_OFFSET = (PFx first VF offset - PFx offset)
In the example above, the following offsets is used:

PFO_FIRST_VF_OFFSET
PF1_FIRST_VF_OFFSET

(64 - 0)
(66 - 1)

64
65

PFO is always 64 assuming PFO has 1 or more Virtual Functions. The initial offset for PF1 is
a function of how many VF's are attached to PFO and is defined in pseudo code below:

PF1_FIRST VF_OFFSET = 63 + NUM_PFO_VFS
SRIOV VF Device ID
Indicates the 16-bit Device ID for all Virtual Functions associated with the Physical Function.
SRIOV Supported Page Size

Indicates the page size supported by the Physical Function. This Physical Function supports
a page size of 2n+12, if bit n of the 32-bit register is set.
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PFO SRIOV BARs and PF1 SRIVO BARs

The SRIOV Base Address Registers (BARs) screens shown in Table 4-10 and Table 4-11 set
the base address register space for the Endpoint configuration. Each BAR (0 through 5)

configures the SRIOV BAR Aperture Size and SRIOV Control attributes as described in
Table D-1.

Customize P

6 Custornize Virtex-7 FPGA Gen3
* Integrated Block for PCI Express (1.3)
by specifying IP Options.
IP Optiohs

B
irtex-7 FPGA Gen3 Integrated Block for PCI Express

Component Name [pcie3 7 vl 3 0

Basic Capabilities PFOIDs PFLIDs PFO BAR W PFL BAR SRIOW Confio PFO SRIOV BARs FF1 SRIOW BARs Legacy/MS| Cap  MSh Cap Power Management Extd, Capabilitiesl BExtd, 4 » B

Base Address Registers (BARs) serve two purposes. Initially, they serve as a mechanism for the device to request blocks of address space in the system memory

map. After the BIOS or OS determines what addresses to assign to the device, the Base Address Registers are programmed with addresses and the device uses
this information to perform address decoding.

— M Baro —[Barl

Type Cls4 bit [ Prefatchable Typs [7] Cisabit [IPrefetchable
size Unit [Kilobytes [~ Size value Size Unit [k 7] sie value [2 =l
Value  [FFEFFE00

WValue 00000000

~[ear3

Walue 00000000 Value 00000000

- eara

~ears

Size Unt 2 T Size Unit [kl =] size value
Value  [00000000 Value  [00000000

Show Advanced Options

[ox ][ cancel |
Figure 4-10: PFO SRIOV BARs Settings
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Customize IP

o Customize Virten7 FPGA Gen3
Integrated Block for PCI Express (1.3} b

by specifying IP Options.

IP Optiong
irtex-7 FPGA Gen3 Integrated Block for PCl Express

Component Name \p:\e3jxﬁv17370 ‘

Basic Capsbilities PFOIDs PFlIDs | PFO BAR PFl BAR SRIOV Config PFO SRICY BARs PFL SRIOV BARs Legacy/MS| Cap  MSkk Cap  Power Management Extd Capabilitic 4 » B

Base Address Registers (BARs) serve two purposes. Initially, they serve as a mechanism for the device to request blocks of addrass space in the system marnory
map. After the BIOS or 05 determines what addresses to assign to the device, the Base Address Registers are programmed with addresses and the device uses
this information to perform address decoding.

¥ Bar0 [ earl

e Csabe

Size Unit [Klobytes [~ Size value [2 ]

value value

Oear2 [ eara

valus valus

Oeara Oears

valus valus

Show Advanced Options

‘ QK ‘ Cancel

Figure 4-11: PF1 SRIOV BARs Settings
SRIOV Base Address Register Overview

The Gen3 Integrated Block for PCle in Endpoint configuration supports up to six 32-bit BARs
or three 64-bit BARs. The Gen3 Integrated Block for PCle in Root Port configuration
supports up to two 32-bit BARs or one 64-bit BAR.

SRIOV BARSs can be one of two sizes:

« 32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes.
Used for Memory to I/0.

+ 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes.
Used for Memory only.

All SRIOV BAR registers share these options:

« Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.
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+ Type: SRIOV BARs can either be I/O or Memory.

- 1/0O:1/0O BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

o Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible to the user.

» Size: The available Size range depends on the PCle® Device/Port Type and the Type of
BAR selected. Table 4-6 lists the available BAR size ranges.

Table 4-6: SRIOV BAR Size Ranges for Device Configuration

PCle Device / Port Type BAR Type BAR Size Range
32-bit Memory 128 Bytes — 2 Gigabytes
PCI Express Endpoint -
64-bit Memory 128 Bytes — 8 Exabytes
32-bit Memory 16 Bytes — 2 Gigabytes
Legacy PCI Express Endpoint 64-bit Memory 16 Bytes — 8 Exabytes
/0 16 Bytes — 2 Gigabytes

« Prefetchable: Identifies the ability of the memory space to be prefetched.

« Value: The value assigned to the BAR based on the current selections.

For more information about managing the SRIOV Base Address Register settings, see
Managing Base Address Register Settings.

Managing SRIOV Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate
Customize IP dialog box settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or 1/0.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum
I/O space allowed is 16 bytes; use of I/O space should be avoided in all new designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading,
as from a RAM). Byte write operations can be merged into a single double word write, when
applicable.

When configuring the core as an Endpoint for PCle (non-Legacy), 64-bit addressing must be
supported for all SRIOV BARs (except BARS) that have the prefetchable bit set. 32-bit
addressing is permitted for all SRIOV BARs that do not have the prefetchable bit set. The
prefetchable bit related requirement does not apply to a Legacy Endpoint. The minimum
memory address range supported by a BAR is 128 bytes for a PCI Express Endpoint and
16 bytes for a Legacy PCI Express Endpoint.
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Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A base

address register is disabled by deselecting unused BARs in the GUL

Legacy/MSI Capabilities

This page is same as that of Basic mode. See Legacy/MSI Capabilities, page 172.

MSI-X Capabilities

The MSI-X Capabilities page is available in Advanced mode only.

Customize IP.

0 Customize Virten-7 FPGA Gen3
' Integrated EBlock for PCI Express (1.3)
by specifying IP Options.

K
IP Options
irtex-7 FPGA Gen3 Integrated Block for PCl Express

Compeonent Name \pc\e3j><7v17370

Bagic Capahbilities PFOIDe PFOBAR LegacyMS| Cap MSIx Cap Power Management Extd. Capabilities-l = Extd. Capabilities-2

PFO

[] Enable Msix Capability Structure

MSh Table Settings
000, 7FF
00000000.. 1FFFFFFF

MSht Pending Bit Array (PEA) Settings
00000000, 1FFFFFFF

»

Show Advanced Options

K ‘ Cancel

Figure 4-12: MSIx Cap Settings

« Enable MSIx Capability Structure: Indicates that the MSI-X Capability structure exists.

Note: The Capability Structure needs at least one Memory BAR to be configured. You must

maintain the MSI-X Table and Pending Bit Array in the application.
« MSIx Table Settings: Defines the MSI-X Table Structure.
o Table Size: Specifies the MSI-X Table Size.

- Table Offset: Specifies the Offset from the Base Address Register that points to the

Base of the MSI-X Table.
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o BAR Indicator: Indicates the Base Address Register in the Configuration Space that
is used to map the function in the MSI-X Table onto Memory Space. For a 64-bit
Base Address Register, this indicates the lower DWORD.

« MSIx Pending Bit Array (PBA) Settings: Defines the MSI-X Pending Bit Array (PBA)
Structure.

o PBA Offset: Specifies the Offset from the Base Address Register that points to the
Base of the MSI-X PBA.

o PBA BAR Indicator: Indicates the Base Address Register in the Configuration Space
that is used to map the function in the MSI-X PBA onto Memory Space.

Power Management

The Power Management page shown in Figure 4-13 includes settings for the Power
Management Registers, power consumption, and power dissipation options. These settings
apply to both Physical Functions, if PF1 is enabled.

Customize IP.

= 8

e Custornize Virtex-7 FPGA Gen3
“ Integrated Block for PCl Express (1.3}
by specifying IP Optiong.

IP Options
irtex-7 FPGA Gen3 Integrated Block for PCl Express

Component Name [pcie3_7 vl 3.0

Basic Capabilities FFOIDs FPFOBAR LegacyMSlCap MSkcCap Power Management Extd. Capabilitiesl Extd. Capabilities-2

Power Management Registers £
CID1 Support

PME Support x

Cpo bl [ClD3het
BRAM Configuration Options £
Performance Posted Non-posted Completion Total BRAMS
Level Header/Data Credits Header/Data Credits Header/Data Credits Required
[Beod —  [Foeoomce 0:20/0x28 0XOD/0K000 812

0+20/0x1 98 0+20/0%28 0+00/0x000 46
Show Advanced Options
| ok | cancel

Figure 4-13: Page 12: Power Management Registers

« D1 Support: When selected, this option indicates that the function supports the D1
Power Management State. See section 3.2.3 of the PC/ Bus Power Management Interface
Specification Revision 1.2.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 181
PG023 October 16, 2012


http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

«  PME Support From: When this option is selected, it indicates the power states in which
the function can assert cfg_pm_wake. See section 3.2.3 of the PCI Bus Power
Management Interface Specification Revision 1.2.

« BRAM Configuration Options: Can specify the number of receive block RAMs used for
the solution. The table displays the number of receiver credits available for each packet

type.

Extended Capabilities 1 and Extended Capabilities 2

The PCle Extended Capabilities screens shown in Figure 4-14 and Figure 4-15 allow you to
enable PCI Express Extended Capabilities. The Advanced Error Reporting Capability (offset
0x100h) is always enabled. The customization GUI sets up the link list based on the
capabilities enabled. After enabling, you must configure the capability by setting the
applicable attributes in the core top-level defined in Output Generation, page 184. See
Appendix D, Attributes for parameters applicable to each capability.

Customize IP

6 customize Virtex-7 FPGA Gen3
Integrated Block for PCl Express (1.3} ‘
by specifying IP Optiens.
IF Options

irtex-7 FPGA Gen3 Integrated Block for PCI Express

Compenent Name [pcie3 7 vl 3 0 ]

Basic Capabilties FFOIDs FFOBAR LegacyMs|Cap MSlkCap  Power Management Extd. Capabilities-1 Extd. Capabilities-2

Device Serial Number Capability

The Device Serial Number (DSN) Capability is an optional PCle Extendad Capability, that contains a unigue Device Serial Numnber, This identifier must be
presented on the Device Serial Number Input pin of port.

[] Enable DSN Capability(FF0)

DPA Capability F3

The DPA Capability provides a mechanism to allocate power dynamically for devices hich do net have a driver managing power, Section 6,16 of the PC|
Express Base Specification Revision 3.0 for more details

[ Enable DPA Capability(PFQ}

virtual Channel capability 2

The Virtual Channel (vC) Capability is an optional PCle Extended Capability, which when enabled, allows the port to support functionality beyond the
default Traffic Class (TCO) over the default Virtual Channel (WCD). Checking this allows Traffic Class (TC) filtering to be supported

[ Enable vC capability(PFO)

»

AER Capabilities
The Advanced Error Reporting(AER) Capability is an optional FCle Extended Capability, which when enabled,allows advanced error control and reperting

1) [JECRC check Capable(PF0) [ ECRC Check Capable(PFo)

BRI Capability

The Alternative Routing ID-Interpratation (ARI) Capability is an optional PCle Extended Capability, which when enabled, allows a device to support up to
256 functions by reducing the ID from 3 field vector (Bus Murnber, Davice Number, Function Number) to a 2 fisld vector (Bus Numbear, Function Numnbar)

[ Enable AR Capability(PFO)

Show Advanced Options

| ok || cancel

Figure 4-14: Extended Capabilities 1
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Customize IP

e Customize Virtex-7 FPGA Gen3
" Integrated 8lock for PC Express (1.3) ‘ B |
by specifying IP Options. S
IP Gptions

irtex-7 FPGA Gen3 Integrated Block for PCl Express

Component Name [peied_7x vl 3 0 |

Basic  Capabiltiss PFOIDs PFOBAR LegacyMSICap MSkCap  Power Management Extd Capahilities-l  Extd. Capabilities-2

RBAR Capability H

The Resizable BAR(RBAR) Capabilities is an optional PCle Extended Capability, which when enabled,adds a capability for Functions with BARs to report various
optiong for sizes of their memory mapped rezources

[ Enable RBAR Capability(PFO)

PB Capability 3

The Power Budgeting Capability allows a device te report power consumption to the system. See Section 7.15 of the PCI Express Base Specification Revision 3.0
for more details.

[J Enable PB Capability(PFO)

LTR Capability =

The Latency Tolerance Reparting Capability allows Endpoints to report Latency requirements to the Root Complex, See Section 8,18 of the PCI Express Base
Specification Revision 3.0 for more details

] Enable LTR Capability(PF0)

»

TPH Capability

The Resizable BAR(RBAR) Capabilities is an optional PCle Extended Capability, which when enabled, adds a capability for Functions with BARs to report various
options for sizes of their memory mapped resources

[J Enable TPH Capahbility(PFO)

User Defined Configuration Capabilities 3

[ PCl Express Extended Configuration Space Enable

Show Advanced Options

ok || cancel

Figure 4-15: Extended Capabilities 2

Device Serial Number Capability

+ Device Serial Number Capability: An optional PCle Extended Capability containing a
unique Device Serial Number. When this Capability is enabled, the DSN identifier must
be presented on the Device Serial Number input pin of the port. This Capability must
be turned on to enable the Virtual Channel and Vendor Specific Capabilities

Virtual Channel Capability

« Virtual Channel Capability: An optional PCle Extended Capability which allows the
user application to be operated in TCn/VCO mode. Checking this allows Traffic Class
filtering to be supported. This capability only exists for Physical Function 0.

* Reject Snoop Transactions (Root Port Configuration Only): When enabled, any
transactions for which the No Snoop attribute is applicable, but is not set in the TLP
header, can be rejected as an Unsupported Request.

AER Capability

« Enable AER Capability: An optional PCle Extended Capability that allows Advanced
Error Reporting. This capability is always enabled.
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Additional Optional Capabilities
« Enable ARI: An optional PCle Extended Capability that allows Alternate Requestor ID.
This capability is automatically enabled if SRIOV is enabled.

« Enable PB: An optional PCle Extended Capability that implements the Power Budgeting
Enhanced Capability Header.

« Enable RBAR: An optional PCle Extended Capability that implements the Resizable BAR
Capability.

« Enable LTR: An optional PCle Extended Capability that implements the Latency
Tolerance Reporting Capability.

« Enable DPA: An optional PCle Extended Capability that implements Dynamic Power
Allocation Capability.

« Enable TPH: An optional PCle Extended Capability that implements Transaction
Processing Hints Capability.

Output Generation

The Gen3 Integrated Block for PCle example design directories and their associated files are
defined in the sections that follow. Click a directory name in blue to go to the desired
directory and its associated files.
) <project_directory>
) <project_directory>.srcs/
) sources_1
_ ip
] component_name_#
) component_name_#
) example_design
) <component_name_#>/<component_name_#>/simulation
) simulation/dsport
) simulation/functional
) simulation/tests
) <component_name_#>/<component_name_#>/source
) <component_name_#>/sim
) <component_name_#>/synth

) <component_name_#>/source
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The example_design directory contains the example design files provided with the core.
Table 4-7 shows the directory contents for an Endpoint configuration core.

Table 4-7:

Example Design Directory: Endpoint Configuration

Name

Description

example_design

xilinx_pcie_3_0_ep_7x_01_lane_
genl_xc7vx690t-ffgl761-3-PCIE_
X0Y0 .xdc

Example design UCF. The file name varies by Device/
Port Type, lane width, maximum link speed, part,
package, Integrated Block for PCI Express block
location, and Xilinx Development Board selected.

xilinx_pcie_3_0_ep_xt.v

Verilog top-level PIO example design file.

pcie_app_7vX.v
PIO_INTR_CTRL.Vv
EP_MEM.v
PIO.v\PIO_EP.v
PIO_EP_MEM_ACCESS.v
PIO_TO_CTRL.Vv
PTIO_RX_ENGINE.v
PIO_TX_ENGINE.v

PIO example design files.

Back to Top

<component_name_#>/<component_name_#>/simulation

The simulation directory contains the simulation source files provided with the core.

simulation/dsport

The dsport directory contains the files for the Root Port model test bench.

Table 4-8:

dsport Directory: Endpoint Configuration

Name

Description

<component_name_#>/<component_name_#>/simulation/dsport

pcie_2_ 1 rp v7.v
pci_exp_expect_tasks.v
pci_exp_usrapp_cfg.v
pci_exXp_usrapp_com.v
pci_exp_usrapp_pl.v
pci_exp_usrapp_rx.v
pci_exp_usrapp_tx.v

xilinx_pcie_2_1_rport_v7.v

Root Port model files.

Back to Top

Gen3 Integrated Block for PCle (v1.3)
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simulation/functional
The functional directory contains functional simulation scripts provided with the core.

Table 4-9: Functional Directory

Name Description

<component_name_#>/<component_name_#>/simulation/functional

board. f List of files for RTL simulations.
simulate_mti.do Simulation script for ModelSim.
simulate_ncsim.sh Simulation script for Cadence IES (Verilog only).
simulate_vcs.sh Simulation script for VCS (Verilog only).
xilinx_1lib_vcs.f Points to the required SecurelP Model.

board_common.v

Contains test bench definiti Veril ly).
(Endpoint configuration only) ontains test bench definitions (Verilog only)

board.v Top-level simulation module.

sys_clk_gen_ds.v

System diff tial clock .
(Endpoint configuration only) ystem differential clock source

sys_clk_gen.v System clock source.

Back to Top

simulation/tests

Note: This directory exists for Endpoint configuration only.

The tests directory contains test definitions for the example test bench.

Table 4-10: Tests Directory

Name Description

<component_name_#>/<component_name_#>/simulation/tests

sample_tests.v Test definitions for example test bench.
tests.v

Back to Top

<component_name_#>/<component_name_#>/source

The source directory contains the generated core source files.

Table 4-11: Source Directory

Name Description

<component_name_#>/<component_name_#>/source

pcie_3_0_7vx.v Verilog top-level core wrapper for the Virtex-7
FPGA Gen3 Integrated Block for PCI Express.
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Name

Description

pcie_top.v

AXI4-Stream solution wrapper for the Virtex-7
FPGA Gen3 Integrated Block for PCI Express.

pcie_7vx.v

Solution Wrapper for the Virtex-7 FPGA Gen3
Integrated Block for PCI Express.

pcie_init_ctrl_7vx.v

Initialization Controller for Virtex-7 FPGA Gen3
Integrated Block for PCI Express

pcie_pipe_pipeline.v
pcie_pipe_lane.v
pcie_pipe_misc.v

PIPE module for the Virtex-7 FPGA Gen3
Integrated Block for PCI Express.

pcie_bram_7vx.v
pcie_bram_7vx_lé6k.v
pcie_bram_7vx_8k.v
pcie_bram_7vx_cpl.v
pcie_bram_7vx_rep.v
pcie_bram_7vx_rep_8k.v

pcie_bram_7vx_req.v

Block RAM module for the Virtex-7 FPGA Gen3
Integrated Block for PCI Express.

gt_top.v

GTH wrapper for the Virtex-7 FPGA Gen3
Integrated Block for PCI Express.

gt_wrapper.v
pipe_clock.v
pipe_drp.v
pipe_rate.v
pipe_reset.v
pipe_sync.v
pipe_user.v
pipe_wrapper.v
pipe_eq.v
rxeqg_scan.v
gpll_drp.v
gpll_reset.v
agpll_wrapper.v

GTH module for the Virtex-7 FPGA GTH
transceivers.

Back to Top

<component_name_#>/sim

Table 4-12: sim Directory

Name

Description

<component_name_#>/sim

Component_name_#.v

Core top-level file for simulation

Gen3 Integrated Block for PCle (v1.3)
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<component_name_#>/synth

Table 4-13: synth Directory

Name Description

<component_name_#/synth

Component_name_#.v Core top-level file for synthesis

<component_name_#>/source

Table 4-14: source Directory

Name Description

<component_name_#>/source

<component_name>_pipe_clock.v Clock block used in the example design top level
module.
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Constraining the Core

Required Constraints

The Virtex®-7 FPGA Gen3 Integrated Block for PCI Express® solution requires the
specification of timing and other physical implementation constraints to meet specified
performance requirements for PCI Express. These constraints are provided with the
Endpoint and Root Port solutions in a Xilinx Device Constraints (XDC) file. Pinouts and
hierarchy names in the generated XDC correspond to the provided example design.

To achieve consistent implementation results, an XDC containing these original, unmodified
constraints must be used when a design is run through the Xilinx tools. For additional
details on the definition and use of an XDC or specific constraints, see the Xilinx Libraries
Guide and/or Command Line Tools User Guide.

Constraints provided with the Integrated Block solution have been tested in hardware and
provide consistent results. Constraints can be modified, but modifications should only be
made with a thorough understanding of the effect of each constraint. Additionally, support
is not provided for designs that deviate from the provided constraints.

Device, Package, and Speed Grade Selections

The device selection portion of the XDC informs the implementation tools which part,
package, and speed grade to target for the design. Because Gen3 Integrated Block for PCle
cores are designed for specific part and package combinations, this section should not be
modified by the designer.

The device selection section always contains a part selection line, but can also contain part
or package-specific options. An example part selection line follows:

CONFIG PART = XC7VX690T-FFG1761-3
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Clock Frequencies

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Clock Management

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Clock Placement

See the 7 Series FPGAs GTX/GTH Transceivers User Guide [Ref 3] for guidelines regarding
clock resource selection.

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Stacked Silicon Interconnect Devices

Some Virtex-7 devices utilize stacked silicon interconnect (SSI) technology. The I/O and
Integrated Block must remain on the same die when targeting an SSI device.

The sys_clk must be chosen to be in the same bank as the GTH transceiver it is connected
to, or one bank above/below the GTH transceiver being used.

For more information, see the “Placement Information by Package” and “Placement
Information by Device” appendices in the 7 Series FPGAs GTX/GTH Transceivers User Guide.

Transceiver Placement

These constraints select which transceivers to use and dictates the pinout for the
transceiver differential pairs. For more information, see the "Placement Information by
Package” appendix in the 7 Series FPGAs GTX/GTH Transceivers User Guide [Ref 3].
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Table 5-1 through Table 5-8 list the supported transceiver locations available for supported
Virtex-7 FPGA part and package combinations. The Vivado™ IP Catalog provides an XDC for
the selected part and package that matches the table contents. The following lists all

devices with their associated tables containing transceiver locations:

+  XC7VX330T: Table 5-1
«  XC7VX415T: Table 5-2
¢ XC7VX550T: Table 5-3
«  XC7VX690T: Table 5-4
«  XC7VX980T: Table 5-5
« XC7VX1140T: Table 5-6
« XC7VH580T: Table 5-7
« XC7VH870T: Table 5-8

Table 5-1: Supported Transceiver Locations for the XC7VX330T
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X0Y1l1 X0Y10 X0Y9 X0Y8 X0Y7 X0Y6 X0Y5 X0Y4
X0yl X0y23 X0Y22 X0Y21 X0Y20 X0Y19 X0Y18 X0Y17 X0Y16
FFG1157
X0Y2 N/A
X0Y3 N/A
X0YO0 X0Y1l1 X0Y10 X0Y9 X0Y8 X0Y7 X0Y6 X0Y5 X0Y4
X0Y1 X0Y23 X0Y22 X0Y21 X0Y20 X0Y19 X0Y18 X0Y17 X0Y16
FFG1761
X0Y2 N/A
X0Y3 N/A
Table 5-2: Supported Transceiver Locations for the XC7VX415T
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X1Y7 X1Y6 X1Y5 X1Y4 X1Y3 X1Y2 X1Y1l X1Y0
X0Y1 X1Y19 X1Y18 X1Y17 X1Y16 X1Y15 X1Y14 X1Y13 X1Y12
FFG1157
X0Y2 N/A
X0Y3 N/A
X0YO0 X1Y7 X1Y6 X1Y5 X1Y4 X1Y3 X1Y2 X1Y1l X1Y0
X0Y1 X1Y19 X1Y18 X1Y17 X1Y16 X1Y15 X1Y14 X1Y13 X1Y12
FFG1158
X0Y2 N/A
X0Y3 N/A
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Table 5-2: Supported Transceiver Locations for the XC7VX415T (Cont’d)
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X1Y7 X1Y6 X1Y5 X1Y4 X1Y3 X1Y2 X1Y1l X1Y0
X0Y1 X1Y19 X1Y18 X1Y17 X1Y16 X1Y15 X1Y14 X1Y13 X1Y12
FFG1927
X0Y2 N/A
X0Y3 N/A
Table 5-3: Supported Transceiver Locations for the XC7VX550T
Package | Block | Lane0 | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 N/A
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FrG1158 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FrG1927 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
Table 5-4: Supported Transceiver Locations for the XC7VX690T
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 N/A
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FrG1157 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 N/A
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
Fre11s8 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FrG1761 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1926 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
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Table 5-4: Supported Transceiver Locations for the XC7VX690T (Cont’d)
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
Fre1927 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 N/A
X0yl X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1930 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
Table 5-5: Supported Transceiver Locations for the XC7VX980T
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0yl X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1926 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FrG1928 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 N/A
X0yl X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1930 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1933 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
Table 5-6: Supported Transceiver Locations for the XC7VX1140T
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1926 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
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Table 5-6: Supported Transceiver Locations for the XC7VX1140T (Cont’d)

Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
Xoy1 X1Y23 | X1y22 | X1y21 | X1Y20 | X1Y19 | X1Y18 | X1Y17 | X1Y1lé
FlG1928 Xoy2 X1Y35 | X1Y34 | X1Y33 | X1Y32 | X1Y31 | X1Y30 | X1Y29 | X1Y28
X0Y3 X1Y47 X1Y46 X1Y45 X1Y44 X1Y43 X1Y42 X1Y41 X1Y40
X0YO N/A
X0Y1 X1Y23 X1Y22 X1y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FLG1930 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FLG1933 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A

Table 5-7: Supported Transceiver Locations for the XC7VH580T

Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 N/A
HCG1155

X0Y2 N/A

X0Y3 N/A

X0YO0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y1l6
HCG1931

X0Y2 N/A

X0Y3 N/A

X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Ye6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y1le
HCG1932

X0Y2 N/A

X0Y3 N/A

Table 5-8: Supported Transceiver Locations for the XC7VH870T

Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO N/A
X0Y1l X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y1l6

HCG1931
X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
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Table 5-8: Supported Transceiver Locations for the XC7VH870T

Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0vY1l X1Y23 | X1Y22 | X1Y21 | X1Y20 | X1y19 | X1Y18 | X1Y17 | X1VY16

Heei9s X0Y2 X1Y35 | X1Y34 | X1Y33 | X1Y32 | X1y31 | X1Y30 | X1Y29 | X1v28
X0Y3 N/A

/0 Standard and Placement

This section controls the placement and options for I/Os belonging to the System (SYS)
interface and PCI Express (PCI_EXP) interface of the core. NET constraints in this section
control the pin location and I/O options for signals in the SYS group. Locations and options
vary depending on which derivative of the core is used and should not be changed without

fully understanding the system requirements.

For example:

set_property IOSTANDARD LVCMOS18
set_property LOC IBUFDS_GTE2_X0Y3 [get_cells refclk_ibuf]

[get_ports sys_rst_n]

INST constraints control placement of signals that belong to the PCI_EXP group. These
constraints control the location of the transceiver(s) used, which implicitly controls pin
locations for the transmit and receive differential pair.

For example:

set_property LOC GTXE2_CHANNEL_XO0Y7 [get_cells {pcie_7x vl_6_0_i/inst/inst/

gt_top_i/pipe_wrapper_i/pipe_lane[0].gt_wrapper_i/gtx_channel.gtxe2_channel_i}]

Gen3 Integrated Block for PCle (v1.3)
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Directory and File Contents

See Output Generation, page 184 for directory structure and file contents.

Example Design

This section provides an overview of the Virtex®-7 FPGA Gen Integrated Block for PCI
Express® example design and instructions for generating the core. It also includes
information about simulating and implementing the example design using the provided
demonstration test bench.

For current information about generating, simulating, and implementing the core, see the
Release Notes provided with the core, when it is generated using the Vivado™ IP Catalog.

Integrated Block Endpoint Configuration Overview

The example simulation design for the Endpoint configuration of the integrated block
consists of two discrete parts:

« The Root Port Model, a test bench that generates, consumes, and checks PCI Express
bus traffic.

« The Programmed Input/Output (PIO) example design, a completer application for PCI
Express. The PIO example design responds to Read and Write requests to its memory
space and can be synthesized for testing in hardware.
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For the simulation design, transactions are sent from the Root Port Model to the Integrated
Block core (configured as an Endpoint) and processed by the PIO example design.

Figure 6-1 illustrates the simulation design provided with the Integrated Block core. For
more information about the Root Port Model, see Root Port Model Test Bench for Endpoint,

page 208.

Output
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The implementation design consists of a simple PIO example that can accept read and write

transactions and respond to requests, as illustrated in Figure 6-2. Source code for the

example is provided with the core. For more information about the PIO example design, see

Programmed Input/Output: Endpoint Example Design, page 199.

Virtex-7 FPGA Gen3 Integrated Block for PCI Express (Configured as an Endpoint)

EP_TX

EP_RX

ep_io_mem

ep_mem32

PIO_TO_CTRL

ep_mem64

ep_mem_erom

EP_MEM

PIO_INTR_CTRL

PIO_EP

PIO

Figure 6-2:

Example Design Elements

The PIO example design elements include:

» Core wrapper

« An example Verilog HDL wrapper (instantiates the cores and example design)

« A customizable demonstration test bench to simulate the example design

Implementation Example Design Block Diagram

The example design has been tested and verified with Vivado™ Design Suite v2012.3 and

these simulators:

« Mentor Graphics ModelSim

« Cadence Incisive Enterprise Simulator (IES)

* Synopsys VCS

* Vivado Simulator

For the supported versions of these tools, see the Xilinx Design Tools: Release Notes Guide.

Gen3 Integrated Block for PCle (v1.3)
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Programmed Input/Output: Endpoint Example Design

Programmed Input/Output (PIO) transactions are generally used by a PCI Express system
host CPU to access Memory Mapped Input/Output (MMIO) and Configuration Mapped
Input/Output (CMIO) locations in the PCI Express logic. Endpoints for PCI Express accept
Memory and I/O Write transactions and respond to Memory and I/O Read transactions with
Completion with Data transactions.

The PIO example design (PIO design) is included with the Gen3 Integrated Block for PCle in
Endpoint configuration generated by the CORE Generator™ tool, which allows users to
bring up their system board with a known established working design to verify the link and
functionality of the board.

The PIO design Port Model is shared by the Gen3 Integrated Block for PCle, Endpoint Block
Plus for PCI Express, and Endpoint PIPE for PCI Express solutions. This appendix represents
all the solutions generically using the name Endpoint for PCI Express (or Endpoint for
PCle®).

System Overview

The PIO design is a simple target-only application that interfaces with the Endpoint for the
PCle core Transaction (AXI4-Stream) interface and is provided as a starting point for
customers to build their own designs. These features are included:

« Four transaction-specific 2 KB target regions using the internal FPGA block RAMs,
providing a total target space of 8192 bytes

« Supports single Dword payload Read and Write PCI Express transactions to 32-/64-bit
address memory spaces and I/O space with support for completion TLPs

« Utilizes the BAR ID[2:0] and Completer Request Descriptor[114:112] of the core to
differentiate between TLP destination Base Address Registers

« Provides separate implementations optimized for 64-bit, 128-bit, and 256-bit
AXI4-Stream interfaces

Figure 6-3 illustrates the PCI Express system architecture components, consisting of a Root
Complex, a PCI Express switch device, and an Endpoint for PCle. PIO operations move data
downstream from the Root Complex (CPU register) to the Endpoint, and/or upstream from
the Endpoint to the Root Complex (CPU register). In either case, the PCI Express protocol
request to move the data is initiated by the host CPU.
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Figure 6-3: System Overview

Data is moved downstream when the CPU issues a store register to a MMIO address
command. The Root Complex typically generates a Memory Write TLP with the appropriate
MMIO location address, byte enables, and the register contents. The transaction terminates
when the Endpoint receives the Memory Write TLP and updates the corresponding local
register.

Data is moved upstream when the CPU issues a load register from a MMIO address
command. The Root Complex typically generates a Memory Read TLP with the appropriate
MMIO location address and byte enables. The Endpoint generates a Completion with Data
TLP after it receives the Memory Read TLP. The Completion is steered to the Root Complex
and payload is loaded into the target register, completing the transaction.

PIO Hardware

The PIO design implements a 8192 byte target space in FPGA block RAM, behind the
Endpoint for PCle. This 32-bit target space is accessible through single Dword I/O Read, I/
O Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write 32 TLPs.

The PIO design generates a completion with one Dword of payload in response to a valid
Memory Read 32 TLP, Memory Read 64 TLP, or I/O Read TLP request presented to it by the
core. In addition, the PIO design returns a completion without data with successful status
for I/O Write TLP request.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 200
PG023 October 16, 2012



http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

The PIO design can initiate:

+ a Memory Read transaction when the received write address is 11 'hEA8 and the write
data is 32 'hAAAA_BBBB, and Targeting the BARO.

* a Legacy Interrupt when the received write address is 11 'hEEC and the write data is
32 'hcccc_DDDD, and Targeting the BARO.

« an MSI when the received write address is 11 ' hEEC and the write data is
32 'hEEEE_FFFF, and Targeting the BARO.

« an MSIx when the received write address is 11 ' hEEC and the write data is
32 'hDEAD_BEEF, and Targeting the BARO.

The PIO design processes a Memory or I/O Write TLP with one Dword payload by updating
the payload into the target address in the FPGA block RAM space.

Base Address Register Support

The PIO design supports four discrete target spaces, each consisting of a 2 KB block of
memory represented by a separate Base Address Register (BAR). Using the default
parameters, the CORE Generator tool produces a core configured to work with the PIO
design defined in this section, consisting of:

+ One 64-bit addressable Memory Space BAR
* One 32-bit Addressable Memory Space BAR

Users can change the default parameters used by the PIO design; however, in some cases
they might need to change the back-end User Application depending on their system. See
Changing IP Catalog Tool Default BAR Settings for information about changing the default
CORE Generator tool parameters and the effect on the PIO design.

Each of the four 2 KB address spaces represented by the BARs corresponds to one of four
2 KB address regions in the PIO design. Each 2 KB region is implemented using a 2 KB
dual-port block RAM. As transactions are received by the core, the core decodes the
address and determines which of the four regions is being targeted. The core presents the
TLP to the PIO design and asserts the appropriate bits of (BAR ID[2:0]), Completer Request
Descriptor[114:112], as defined in Table 6-1.

Table 6-1: TLP Traffic Types

Block RAM TLP Transaction Type Default BAR BAR ID[2:0]
ep_io_mem I/O TLP transactions Disabled Disabled
ep_mem32 32-bit address Memory TLP transactions 2 000b
ep_memb64 64-bit address Memory TLP transactions 0-1 001b
ep_mem_erom 32-bit address Memory TLP transactions | Expansion ROM 110b

destined for EROM
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Changing IP Catalog Tool Default BAR Settings

You can change the Vivado IP Catalog tool parameters and continue to use the PIO design
to create customized Verilog source to match the selected BAR settings. However, because
the PIO design parameters are more limited than the core parameters, consider these
example design limitations when changing the default IP Catalog tool parameters:

« The example design supports one I/O space BAR, one 32-bit Memory space (that
cannot be the Expansion ROM space), and one 64-bit Memory space. If these limits are
exceeded, only the first space of a given type is active—accesses to the other spaces do
not result in completions.

« Each spaceis implemented with a 2 KB memory. If the corresponding BAR is configured
to a wider aperture, accesses beyond the 2 KB limit wrap around and overlap the 2 KB
memory space.

« The PIO design supports one I/O space BAR, which by default is disabled, but can be
changed if desired.

Although there are limitations to the PIO design, Verilog source code is provided so users
can tailor the example design to their specific needs.

TLP Data Flow
This section defines the data flow of a TLP successfully processed by the PIO design.

The PIO design successfully processes single Dword payload Memory Read and Write TLPs
and I/O Read and Write TLPs. Memory Read or Memory Write TLPs of lengths larger than
one Dword are not processed correctly by the PIO design; however, the core does accept
these TLPs and passes them along to the PIO design. If the PIO design receives a TLP with
a length of greater than one Dword, the TLP is received completely from the core and
discarded. No corresponding completion is generated.

Memory and 1/O Write TLP Processing

When the Endpoint for PCle receives a Memory or I/O Write TLP, the TLP destination
address and transaction type are compared with the values in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design. The PIO design handles Memory writes and I/O TLP writes in different
ways: the PIO design responds to I/O writes by generating a Completion Without Data (cpl),
a requirement of the PCI Express specification.

Along with the start of packet, end of packet, and ready handshaking signals, the Completer
Requester AXI4-Stream interface also asserts the appropriate (BAR ID[2:0]), Completer
Request Descriptor[114:112] signal to indicate to the PIO design the specific destination
BAR that matched the incoming TLP. On reception, the PIO design RX State Machine
processes the incoming Write TLP and extracts the TLPs data and relevant address fields so
that it can pass this along to the PIO design internal block RAM write request controller.
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Based on the specific BAR ID[2:0] signals asserted, the RX state machine indicates to the
internal write controller the appropriate 2 KB block RAM to use prior to asserting the write
enable request. For example, if an I/O Write Request is received by the core targeting BARO,
the core passes the TLP to the PIO design and sets BAR ID[2:0] to 000b. The RX state
machine extracts the lower address bits and the data field from the I/O Write TLP and
instructs the internal Memory Write controller to begin a write to the block RAM.

In this example, the assertion of setting BAR ID[2:0] to 000b instructed the PIO memory
write controller to access ep_mem0 (which by default represents 2 KB of I/O space). While
the write is being carried out to the FPGA block RAM, the PIO design RX state machine
deasserts m_axis_cqg_tready, causing the Receive AXI4-Stream interface to stall
receiving any further TLPs until the internal Memory Write controller completes the write to
the block RAM. Deassertingm_axis_cq_tready in this way is not required for all designs
using the core—the PIO design uses this method to simplify the control logic of the RX
state machine.

Memory and I/O Read TLP Processing

When the Endpoint for PCle receives a Memory or I/O Read TLP, the TLP destination address
and transaction type are compared with the values programmed in the core BARs. If the TLP

passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design.

Along with the start of packet, end of packet, and ready handshaking signals, the Completer
Requester AXI4-Stream interface also asserts the appropriate BAR ID[2:0] signal to indicate
to the PIO design the specific destination BAR that matched the incoming TLP. On
reception, the PIO design state machine processes the incoming Read TLP and extracts the
relevant TLP information and passes it along to the PIO design's internal block RAM read
request controller.

Based on the specific BAR ID[2:0] signal asserted, the RX state machine indicates to the
internal read request controller the appropriate 2 KB block RAM to use before asserting the
read enable request. For example, if a Memory Read 32 Request TLP is received by the core
targeting the default Mem32 BAR2, the core passes the TLP to the PIO design and sets BAR
ID[2:0] to 010b. The RX state machine extracts the lower address bits from the Memory 32
Read TLP and instructs the internal Memory Read Request controller to start a read
operation.

In this example, the setting BARID[2:0] to 010b instructs the PIO memory read controller to
access the Mem32 space, which by default represents 2 KB of memory space. A notable
difference in handling of memory write and read TLPs is the requirement of the receiving
device to return a Completion with Data TLP in the case of memory or I/O read request.

While the read is being processed, the PIO design RX state machine deasserts
m_axis_cqg_tready, causing the Receive AXI4-Stream interface to stall receiving any
further TLPs until the internal Memory Read controller completes the read access from the
block RAM and generates the completion. Deasserting m_axis_cqg_tready in this way is
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not required for all designs using the core. The PIO design uses this method to simplify the
control logic of the RX state machine.

PIO File Structure

Table 6-2 defines the PIO design file structure. Based on the specific core targeted, not all
files delivered by the Vivado IP Catalog are necessary, and some files might not be
delivered. The major difference is that some of the Endpoint for PCle solutions use a 32-bit
user datapath, others use a 64-bit datapath, and the PIO design works with both. The width
of the datapath depends on the specific core being targeted.

Table 6-2: PIO Design File Structure

File Description

PIO.vV Top-level design wrapper

PIO_INTR_CTRL.V PIO interrupt controller

PIO_EP.v PIO application module

PIO_TO_CTRL.V PIO turn-off controller module

PIO_RX_ENGINE.v 32-bit Receive engine

PIO_TX_ENGINE.v 32-bit Transmit engine

PIO_EP_MEM_ACCESS.v Endpoint memory access module

PIO_EP_MEM.v

Endpoint memory

Three configurations of the PIO design are provided: PIO_64, PIO_128, and PIO_256 with
64-, 128-, and 256-bit AXI4-Stream interfaces, respectively. The PIO configuration
generated depends on the selected Endpoint type (that is, Virtex-7 FPGA integrated block,
PIPE, PCI Express, and Block Plus) as well as the number of PCI Express lanes and the
interface width selected by the user. Table 6-3 identifies the PIO configuration generated
based on your selection.

Table 6-3: PIO Configuration
Core x1 x2 x4 x8
Virtex-7 FPGA Gen3 Integrated Block PIO_64 PIO_64, PIO_64, PIO_64,
PIO_128 PIO_128, P10_128W),
PIO_256 PIO_256

Notes:

1. The core does not support 128-bit x8 8.0 Gb/s configuration and 500 MHz user clock frequency.
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Figure 6-4 shows the various components of the PIO design, which is separated into four
main parts: the TX Engine, RX Engine, Memory Access Controller, and Power Management
Turn-Off Controller.

Virtex-7 FPGA Geng3 Integrated Block for PCI Express (Configured as an Endpoint)

EP_TX

ep_io_mem

ep_mem32

PIO_TO_CTRL

EP_RX

ep_mem64

ep_mem_erom

EP_MEM

PIO_INTR_CTRL

PIO_EP

PIO
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PIO Operation

PIO Read Transaction

Figure 6-5 depicts a Back-to-Back Memory Read request to the PIO design. The receive
engine deasserts m_axis_rx_tready as soon as the first TLP is completely received. The
next Read transaction is accepted only after compl_done_o is asserted by the transmit
engine, indicating that Completion for the first request was successfully transmitted.

user_clk

m_axis_cq_tdata[63:0] DS1 DszDsaDszX XDS1 DSOX DsaDszX

5

m_axis_cq_tvalid :

m_axis_cq_tready

m_axis_cq_tkeep[1:0]

=3

X

@
1
~——

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser{7:4]

(byte_en[3:0]) m_axis_cq_tuser[15:8]

(sop) m_axis_cq_tuser{40]

compl_done

b

S —
I \

m_axis_cc_tdata[63:0]

m_axis_cc_tvalid

m_axis_cc_tready :

0x3 X 0x1 X
| | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
T T T T T T T | T T T T T T T
X12523

m_axis_cc_tkeep[1:0]

m_axis_cc_tlast

Figure 6-5: Back-to-Back Read Transactions
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PIO Write Transaction

Figure 6-6 depicts a back-to-back Memory Write to the PIO design. The next Write
transaction is accepted only after wr_busy_o is deasserted by the memory access unit,
indicating that data associated with the first request was successfully written to the
memory aperture.

user_clk

m_axis_cq_tdata[63:0] DS1DS0 XDsstz anmwox

XDS1 DquDsaDszx:wa Dwox

T
| , | | | \
+ | | |
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—

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[1:0] /
m_axis_cq_tlast T r
(first_be) m_axis_cq_tuser[3:0] XF\HST,BEX /
(last_be) m_axis_cq_tuser[7:4] XLAsT,BEx /
(byte_en[3:0]) m_axis_cq_tuser([11:8] X‘IRST,B* /
(byte_en[7:4]) m_axis_cq_tuser[15:12] X OxF /
(sop) m_axis_cq_tuser(40] I B S A A e e
(discontinue) m_axis_cq_tuser[41] } } } } } } : } } } } } /_
I I 1 1 T T T T T T T T
wr_busy } } } }\ \ \ \ \ \ \ \ \ /_
compl_done [ [ [ [ [ [ [ [ [ [ [ [ /_
X12522
Figure 6-6: Back-to-Back Write Transactions
Device Utilization
Table 6-4 shows the PIO design FPGA resource utilization.
Table 6-4: PIO Design FPGA Resources
Resources Utilization
LUTs 300
Flip-Flops 500
Block RAMs 4
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Demonstration Test Bench

Root Port Model Test Bench for Endpoint

The PCI Express Root Port Model is a robust test bench environment that provides a test
program interface that can be used with the provided PIO design or with your design. The
purpose of the Root Port Model is to provide a source mechanism for generating
downstream PCI Express TLP traffic to stimulate the customer design, and a destination
mechanism for receiving upstream PCI Express TLP traffic from the customer design in a
simulation environment.

Source code for the Root Port Model is included to provide the model for a starting point
for the user test bench. All the significant work for initializing the core configuration space,
creating TLP transactions, generating TLP logs, and providing an interface for creating and
verifying tests are complete, allowing you to dedicate efforts to verifying the correct
functionality of the design rather than spending time developing an Endpoint core test
bench infrastructure.

The Root Port Model consists of:

« Test Programming Interface (TPI), which allows the user to stimulate the Endpoint
device for the PCI Express

« Example tests that illustrate how to use the test program TPI

« Verilog source code for all Root Port Model components, which allow you to customize
the test bench
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Figure 6-7 illustrates the illustrates the Root Port Model coupled with the PIO design.

Outout Root Port
P < usrapp_com Model TPI for

Logs PCI Express
? A ,/

/ |_:||: Test
usrapp_rx usrapp_tx Program

b

dsport

< > PCI Express Fabric

Y

Endpoint Core for
PCI Express

b

PIO
Design

Endpoint DUT for PCI Express X12468
Figure 6-7: Root Port Model and Top-Level Endpoint

Architecture

The Root Port Model consists of these blocks, illustrated in Figure 6-7:

« dsport (Root Port)

e usrapp_tx

s usrapp_rx

« usrapp_com (Verilog only)

The usrapp_tx and usrapp_rx blocks interface with the dsport block for transmission and

reception of TLPs to/from the Endpoint Design Under Test (DUT). The Endpoint DUT
consists of the Endpoint for PCle and the PIO design (displayed) or customer design.
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The usrapp_tx block sends TLPs to the dsport block for transmission across the PCI Express
Link to the Endpoint DUT. In turn, the Endpoint DUT device transmits TLPs across the PCI
Express Link to the dsport block, which are subsequently passed to the usrapp_rx block. The
dsport and core are responsible for the data link layer and physical link layer processing
when communicating across the PCI Express logic. Both usrapp_tx and usrapp_rx utilize the
usrapp_com block for shared functions, for example, TLP processing and log file outputting.
Transaction sequences or test programs are initiated by the usrapp_tx block to stimulate the
Endpoint device's fabric interface. TLP responses from the Endpoint device are received by
the usrapp_rx block. Communication between the usrapp_tx and usrapp_rx blocks allow the
usrapp_tx block to verify correct behavior and act accordingly when the usrapp_rx block has
received TLPs from the Endpoint device.

Simulating the Design

Simulation script files are provided with the model to facilitate simulation with various
simulation tools:

e vsim -do simulate_mti.do
e ./simulate_ncsim.sh

e ./simulate_vcs.sh

The example simulation script files are located in this directory:
<project_dir>/<component_name>/simulation/functional

Instructions for simulating the PIO design using the Root Port Model are provided in
Programmed Input/Output: Endpoint Example Design, page 199.

Scaled Simulation Timeouts

The simulation model of the Gen3 Integrated Block for PCle uses scaled down times during
link training to allow for the link to train in a reasonable amount of time during simulation.
According to the PCI Express Specification, rev. 3.0, there are various timeouts associated
with the link training and status state machine (LTSSM) states. The Gen3 Integrated Block for
PCle scales these timeouts by a factor of 256 in simulation, except in the Recovery Speed_1
LTSSM state, where the timeouts are not scaled.
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Test Selection

Table 6-5 describes the tests provided with the Root Port Model, followed by specific
sections for Verilog test selection.

Table 6-5: Root Port Model Provided Tests

Test Name Test in Verilog Description

sample_smoke_test0 Verilog Issues a PCI Type 0 Configuration Read TLP and waits for the
completion TLP; then compares the value returned with the
expected Device/Vendor ID value.

sample_smoke_testl Verilog Performs the same operation as sample_smoke_test0 but
makes use of expectation tasks. This test uses two separate test
program threads: one thread issues the PCI Type 0
Configuration Read TLP and the second thread issues the
Completion with Data TLP expectation task. This test illustrates
the form for a parallel test that uses expectation tasks. This test
form allows for confirming reception of any TLPs from your
design. Additionally, this method can be used to confirm
reception of TLPs when ordering is unimportant.

Verilog Test Selection

The Verilog test model used for the Root Port Model lets the user specify the name of the
test to be run as a command line parameter to the simulator.

To change the test to be run, change the value provided to TESTNAME, which is defined in
the test files sample_testsl.v and pio_tests.v. This mechanism is used for
ModelSim. ISim uses the -testplusarg options to specify TESTNAME, for example:
demo_tb.exe -guil -view wave.wcfg -wdb wave_isim -tclbatch
isim_cmd.tcl -testplusarg TESTNAME=sample_smoke_testO.

Waveform Dumping

Table 6-6 describes the available simulator waveform dump file formats, provided in the
simulator native file format. The same mechanism is used for ModelSim.

Table 6-6: Simulator Dump File Format

Simulator Dump File Format
Mentor Graphics ModelSim .ved
Synopsys VCS and Synopsys VCS_MX .vpd
Cadence IES .trn

Verilog Flow

The Root Port Model provides a mechanism for outputting the simulation waveform to file
by specifying the +dump_all command line parameter to the simulator.
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Output Logging

When a test fails on the example or customer design, the test programmer debugs the
offending test case. Typically, the test programmer inspects the wave file for the simulation
and cross-reference this to the messages displayed on the standard output. Because this
approach can be very time consuming, the Root Port Model offers an output logging
mechanism to assist the tester with debugging failing test cases to speed the process.

The Root Port Model creates three output files (tx.dat, rx.dat, and error.dat) during
each simulation run. Log files rx.dat and tx.dat each contain a detailed record of every
TLP that was received and transmitted, respectively, by the Root Port Model.

TIP: With an understanding of the expected TLP transmission during a specific test case, you can
O isolate the failure.

The log file error.dat is used in conjunction with the expectation tasks. Test programs
that utilize the expectation tasks generate a general error message to standard output.
Detailed information about the specific comparison failures that have occurred due to the
expectation error is located within error.dat.

Parallel Test Programs
There are two classes of tests are supported by the Root Port Model:

« Sequential tests. Tests that exist within one process and behave similarly to sequential
programs. The test depicted in Test Program: pio_writeReadBack_test0, page 213 is an
example of a sequential test. Sequential tests are very useful when verifying behavior
that have events with a known order.

« Parallel tests. Tests involving more than one process thread. The test
sample_smoke_testl is an example of a parallel test with two process threads. Parallel
tests are very useful when verifying that a specific set of events have occurred, however
the order of these events are not known.

A typical parallel test uses the form of one command thread and one or more expectation
threads. These threads work together to verify a device's functionality. The role of the
command thread is to create the necessary TLP transactions that cause the device to receive
and generate TLPs. The role of the expectation threads is to verify the reception of an
expected TLP. The Root Port Model TPI has a complete set of expectation tasks to be used
in conjunction with parallel tests.

Because the example design is a target-only device, only Completion TLPs can be expected
by parallel test programs while using the PIO design. However, the full library of expectation
tasks can be used for expecting any TLP type when used in conjunction with the customer's
design (which can include bus-mastering functionality).
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Test Description

The Root Port Model provides a Test Program Interface (TPI). The TPI provides the means to
create tests by invoking a series of Verilog tasks. All Root Port Model tests should follow the
same six steps:

Perform conditional comparison of a unique test name
Set up master timeout in case simulation hangs

Wait for Reset and link-up

1.

2

3

4. Initialize the configuration space of the Endpoint

5. Transmit and receive TLPs between the Root Port Model and the Endpoint DUT
6

Verify that the test succeeded

Test Program: pio_writeReadBack_test0

1. else if (testname == "pio_writeReadBack_testl"

2. begin

3. // This test performs a 32 bit write to a 32 bit Memory space and performs a read back

4. TSK_SIMULATION_TIMEOUT (10050) ;

5. TSK_SYSTEM_INITIALIZATION;

6. TSK_BAR_INIT;

7. for (ii = 0; ii <= 6; 1ii = ii + 1) begin

8. if (BAR_INIT_P_BAR_ENABLED[ii] > 2'b00) // bar is enabled

9. case (BAR_INIT_ P_BAR_ENABLED[ii])

10. 2'b01 : // IO SPACE

11. begin

12. Sdisplay (" [%t] : NOTHING: to IO 32 Space BAR %x", Srealtime, 1ii);

13. end

14. 2'bl0 : // MEM 32 SPACE

15. begin

16. Sdisplay (" [%t] : Transmitting TLPs to Memory 32 Space BAR %$x",

17. Srealtime, 1ii);

18. f ] mm e -

19. // Event Memory Write 32 bit TLP

20. f ] = m e e e -

21. DATA_STORE[0] = 8'h04;

22. DATA_STORE[1] = 8'h03;

23. DATA_STORE[2] = 8'h02;

24. DATA_STORE[3] = 8'h01;

25. P_READ_DATA = 32'hffff ffff; // make sure P_READ_DATA has known initial value

26. TSK_TX_MEMORY_WRITE_32 (DEFAULT_TAG, DEFAULT TC, 10'dl, BAR_INIT_P_BAR[ii][31:0] , 4'hF,
4'hF, 1'b0);

27. TSK_TX_CLK_EAT (10) ;

28. DEFAULT_TAG = DEFAULT_TAG + 1;

29. J == e e e

30. // Event Memory Read 32 bit TLP

31. J == e e e

32. TSK_TX_MEMORY_READ_32 (DEFAULT_TAG, DEFAULT_TC, 10'dl, BAR_INIT P_BAR[ii]([31:0], 4'hF,
4'hF) ;

33. TSK_WAIT_FOR_READ_DATA;

34. if (P_READ_DATA != {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[Q0] })

35. begin

36. Sdisplay (" [%t] : Test FAILED --- Data Error Mismatch, Write Data %x != Read Data %x",

Srealtime, {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[O0]}, P_READ_DATA) ;
37. end

38. else

39. begin

40. Sdisplay (" [%t] : Test PASSED --- Write Data: %$x successfully received", Srealtime,
P_READ_DATA) ;

41. end
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Expanding the Root Port Model

The Root Port Model was created to work with the PIO design, and for this reason is tailored
to make specific checks and warnings based on the limitations of the PIO design. These
checks and warnings are enabled by default when the Root Port Model is generated by the
CORE Generator tool. However, these limitations can be disabled so that they do not affect
the customer's design.

Because the PIO design was created to support at most one I/O BAR, one Mem64 BAR, and
two Mem32 BARs (one of which must be the EROM space), the Root Port Model by default
makes a check during device configuration that verifies that the core has been configured
to meet this requirement. A violation of this check causes a warning message to be
displayed as well as for the offending BAR to be gracefully disabled in the test bench. This
check can be disabled by setting the pio_check_design variable to zero in the
pci_exp_usrapp_tx.v file.

Root Port Model TPI Task List
The Root Port Model TPI tasks include these tasks, which are further defined in these tables.

« Table 6-7, Test Setup Tasks

« Table 6-8, TLP Tasks

« Table 6-9, BAR Initialization Tasks

« Table 6-10, Example PIO Design Tasks
« Table 6-11, Expectation Tasks

Table 6-7: Test Setup Tasks

Name Input(s) Description

TSK_SYSTEM_INITIALIZATION None Waits for transaction interface reset and

link-up between the Root Port Model
and the Endpoint DUT.

This task must be invoked prior to the
Endpoint core initialization.

TSK_USR_DATA_SETUP_SEQ None Initializes global 4096 byte DATA_STORE

array entries to sequential values from
zero to 4095.

TSK_TX_CLK_EAT clock count 31:30 | Waits clock_count transaction interface
clocks.
TSK_SIMULATION_TIMEOUT timeout 31:0 | Sets master simulation timeout value in

units of transaction interface clocks.
This task should be used to ensure that
all DUT tests complete.
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Chapter 6: Detailed Example Design

Name Input(s) Description
TSK_TX_TYPEO_CONFIGURATION_READ tag_ 7:0 | Waits for transaction interface reset and
reg_addr_ 11:0 | link-up between the Root Port Model and
first dw be 3:0 the Endpoint DUT.
T This task must be invoked prior to Endpoint
core initialization.
TSK_TX_TYPE1_CONFIGURATION_READ tag_ 7:0 | Sends a Type 1 PCI Express Config Read TLP
reg_addr_ 11:0 | from Root Port Model to reg_addr_ of
first dw be 3-0 | Endpoint DUT with tag_ and first_dw_be_
-0 inputs.
CpID returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.
TSK_TX_TYPEO_CONFIGURATION_WRITE tag_ 7:0 | Sends a Type 0 PCI Express Config Write TLP
reg_addr_ 11:0 | from Root Port Model to reg_addr_ of
reg_data 31:0 | Endpoint DUT with tag_ and first_dw_be_
first_dw_be_ 3:0 | Inputs. ,
Cpl returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.
TSK_TX_TYPE1_CONFIGURATION_WRITE tag_ 7:0 | Sends a Type 1 PCI Express Config Write TLP
reg_addr_ 11:0 | from Root Port Model to reg_addr_ of
reg_data 31:0 !Endpoint DUT with tag_ and first_dw_be_
first_dw_be_ 3:0 | Inputs. _
Cpl returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.
TSK_TX_MEMORY_READ_32 tag_ 7:0 | Sends a PCI Express Memory Read TLP from
tc_ 2:0 | Root Port to 32-bit memory address addr_
len 10:0 | of Endpoint DUT.
addr 31:0 | CpID returned from the Endpoint DUT uses
last ;Iw be 3:0 the contents of global COMPLETE_ID_CFG as
T . the completion ID.
first_dw_be_ 3:0
TSK_TX_MEMORY_READ_64 tag_ 7:0 | Sends a PCI Express Memory Read TLP from
tc 2:0 | Root Port Model to 64-bit memory address
len 10:0 | addr_ of Endpoint DUT.
add_r 63:0 | CpID returned from the Endpoint DUT uses
last aw be 3:0 the contents of global COMPLETE_ID_CFG as
T . the completion ID.
first_dw_be_ 3:0
TSK_TX_MEMORY_WRITE_32 tag_ 7:0 | Sends a PCI Express Memory Write TLP from
tc 2:0 | Root Port Model to 32-bit memory address
len 10:0 | addr_ of Endpoint DUT.
add_r 31:0 | CpID returned from the Endpoint DUT uses
last ;Iw be 3:0 the contents of global COMPLETE_ID_CFG as
T .~ | the completion ID.
first_dw_be 3:0 .
- _ | The global DATA_STORE byte array is used
ep_ to pass write data to task.
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Table 6-8: TLP Tasks (Cont’d)

Chapter 6: Detailed Example Design

Name Input(s) Description

TSK_TX_MEMORY_WRITE_64 tag_ 7:0 | Sends a PCI Express Memory Write TLP from
tc 2:0 | Root Port Model to 64-bit memory address
Ie; 10:0 | addr_ of Endpoint DUT.
adoIr 63:0 | CpID returned from the Endpoint DUT uses
last aw be 3.0 | the contents of global COMPLETE_ID_CFG as

A .~ | the completion ID.
first_dw_be_ 3:0 .
_ | The global DATA_STORE byte array is used
ep_ to pass write data to task.

TSK_TX_COMPLETION tag_ 7:0 | Sends a PCI Express Completion TLP from
tc 2:0 | Root Port Model to the Endpoint DUT using
len 10:0 | global COMPLETE_ID_CFG as the
cor;wp status 5.0 | completion ID.

TSK_TX_COMPLETION_DATA tag_ 7:0 | Sends a PCI Express Completion with Data
tc_ 2:0 | TLP from Root Port Model to the Endpoint
len 10:0 | PUT using global COMPLETE_ID_CFG as the
byt_e count 11:0 | completion ID.

Iowe_r addr 6:0 | The global DATA_STORE byte array is used
- 5.0 | topass completion data to task.

comp_status :

ep_ -

TSK_TX_MESSAGE tag_ 7:0 | Sends a PCI Express Message TLP from Root
tc_ 2:0 | Port Model to Endpoint DUT.
len_ 10:0 | Completion returned from the Endpoint
data 63:0 | DUT uses the contents of global
messa 2.0 | COMPLETE_ID_CFG as the completion ID.

ge_rtg
message_code 7:0

TSK_TX_MESSAGE_DATA tag_ 7:0 | Sends a PCI Express Message with Data TLP
tc_ 2:0 | from Root Port Model to Endpoint DUT.
len_ 10:0 | The global DATA_STORE byte array is used
data 63:0 | to pass message data to task.
message_rtg 2:0 | Completion returned from the Endpoint
message_code | 70 DUT uses the contents of global

- COMPLETE_ID_CFG as the completion ID.

TSK_TX_IO_READ tag_ 7:0 | Sends a PCI Express I/O Read TLP from Root
addr_ 31:0 | Port Model to I/O address addr_[31:2] of the
first_dw_be_ 3.0 | Endpoint DUT.

CpID returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_IO_WRITE tag_ 7:0 | Sends a PCI Express I/O Write TLP from Root
addr_ 31:0 | Port Model to I/O address addr_[31:2] of the
first_dw_be_ 3:0 Endpoint DUT.
data 31:0 | CpID returned from the Endpoint DUT uses

the contents of global COMPLETE_ID_CFG as
the completion ID.
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Table 6-8: TLP Tasks (Cont’d)
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Name

Input(s)

Description

TSK_TX_BAR_READ

bar_index
byte_offset
tag_

tc_

2:0
31:.0
7:0
2:0

Sends a PCI Express one Dword Memory 32,
Memory 64, or I/O Read TLP from the Root
Port Model to the target address
corresponding to offset byte_offset from
BAR bar_index of the Endpoint DUT. This
task sends the appropriate Read TLP based
on how BAR bar_index has been configured
during initialization. This task can only be
called after TSK_BAR_INIT has successfully
completed.

CpID returned from the Endpoint DUT use
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_BAR_WRITE

bar_index
byte_offset
tag_

tc_

data_

2:0
31.0
7:0
2:0
31:0

Sends a PCI Express one Dword Memory 32,
Memory 64, or I/O Write TLP from the Root
Port to the target address corresponding to
offset byte_offset from BAR bar_index of the
Endpoint DUT.

This task sends the appropriate Write TLP
based on how BAR bar_index has been
configured during initialization. This task
can only be called after TSK_BAR_INIT has
successfully completed.

TSK_WAIT_FOR_READ_DATA

None

Waits for the next completion with data TLP
that was sent by the Endpoint DUT. On
successful completion, the first Dword of
data from the CplD is stored in the global
P_READ_DATA. This task should be called
immediately following any of the read tasks
in the TPI that request Completion with Data
TLPs to avoid any race conditions.

By default this task locally times out and
terminate the simulation after 1000
transaction interface clocks. The global
cpld_to_finish can be set to zero so that
local time out returns execution to the
calling test and does not result in simulation
timeout. For this case test programs should
check the global cpld_to, which when set to
one indicates that this task has timed out
and that the contents of P_READ_DATA are
invalid.
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Table 6-9: BAR Initialization Tasks

Name Input(s) Description

TSK_BAR_INIT None Performs a standard sequence of Base Address Register
initialization tasks to the Endpoint device using the PCI
Express fabric. Performs a scan of the Endpoint's PCI BAR
range requirements, performs the necessary memory and
I/O space mapping calculations, and finally programs the
Endpoint so that it is ready to be accessed.

On completion, the user test program can begin memory
and I/0 transactions to the device. This function displays
to standard output a memory and I/O table that details
how the Endpoint has been initialized. This task also
initializes global variables within the Root Port Model that
are available for test program usage. This task should only
be called after TSK_SYSTEM_INITIALIZATION.

TSK_BAR_SCAN None Performs a sequence of PCI Type 0 Configuration Writes
and Configuration Reads using the PCI Express logic to
determine the memory and I/O requirements for the
Endpoint.

The task stores this information in the global array
BAR_INIT_P_BAR_RANGE[]. This task should only be called
after TSK_SYSTEM_INITIALIZATION.

TSK_BUILD_PCIE_MAP None Performs memory and I/O mapping algorithm and
allocates Memory 32, Memory 64, and I/O space based on
the Endpoint requirements.

This task has been customized to work in conjunction with
the limitations of the PIO design and should only be called
after completion of TSK_BAR_SCAN.

TSK_DISPLAY_PCIE_MAP None Displays the memory mapping information of the Endpoint
core PCI Base Address Registers. For each BAR, the BAR
value, the BAR range, and BAR type is given. This task
should only be called after completion of
TSK_BUILD_PCIE_MAP.

Table 6-10: Example PIO Design Tasks

Name Input(s) Description

TSK_TX_READBACK_CONFIG None Performs a sequence of PCI Type 0 Configuration Reads
to the Endpoint device's Base Address Registers, PCI
Command Register, and PCle Device Control Register
using the PCI Express logic.

This task should only be called after
TSK_SYSTEM_INITIALIZATION.

TSK_MEM_TEST_DATA_BUS bar_index 2:0 Tests whether the PIO design FPGA block RAM data bus
interface is correctly connected by performing a 32-bit
walking ones data test to the I/O or memory address
pointed to by the input bar_index.

For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.
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Table 6-10: Example PIO Design Tasks (Cont’d)
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Name

Input(s)

Description

TSK_MEM_TEST_ADDR_BUS

bar_index
nBytes

2:0
31:0

Tests whether the PIO design FPGA block RAM address
bus interface is accurately connected by performing a
walking ones address test starting at the [/O or memory
address pointed to by the input bar_index.

For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire
size of the individual block RAM.

TSK_MEM_TEST_DEVICE

bar_index
nBytes

2:0
31:.0

Tests the integrity of each bit of the PIO design FPGA
block RAM by performing an increment/decrement test
on all bits starting at the block RAM pointed to by the
input bar_index with the range specified by input
nBytes.

For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire
size of the individual block RAM.

TSK_RESET

Reset

Initiates PERSTn. Forces the PERSTn signal to assert the
reset. Use TSK_RESET (1'b1) to assert the reset and
TSK_RESET (1'b0) to release the reset signal.

TSK_MALFORMED

malformed
_bits

7:0

Control bits for creating malformed TLPs:

» 0001: Generate Malformed TLP for I/O Requests and
Configuration Requests called immediately after this
task

» 0010: Generate Malformed Completion TLPs for
Memory Read requests received at the Root Port
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Table 6-11: Expectation Tasks
Name Input(s) Output Description
TSK_EXPECT_CPLD traffic_class 2:0 Expect status | Waits for a Completion with
td - Data TLP that matches
ep _ traffic_class, td, ep, attr, length,
attr 1:0 and payload.
. Returns a 1 on successful
10:0
length ) ) completion; 0 otherwise.
completer_id 15:0
completer_status 2:0
bcm B
byte_count 110
requester_id 150
7:0
tag 60
address_low ’
TSK_EXPECT_CPL traffic_class 2:0 Expect status | Waits for a Completion without
td - Data TLP that matches
ep _ traffic_class, td, ep, attr, and
attr 1:0 length.
. . Returns a 1 on successful
15:0
completer_id 5 completion; 0 otherwise.
completer_status 0
bcm B
byte_count 11:0
requester_id 15:0
tag 7:0
address_low 6:0
TSK_EXPECT_MEMRD traffic_class 2:0 Expect status | Waits for a 32-bit Address
td - Memory Read TLP with
ep _ matching header fields.
attr 1:0 Returns a 1 on successful
length 10:0 completion; 0 otherwise. This
9 ) 150 task can only be used in
requester_id 7"() conjunction with Bus Master
tag : designs.
last_dw_be 3.0
first_dw_be 3:0
address 23:0
TSK_EXPECT_MEMRD64 traffic_class 2:0 Expect status | Waits for a 64-bit Address
td - Memory Read TLP with
ep _ matching header fields. Returns
attr 1:0 a 1 on successful completion; 0
I N 16.0 otherwise.
engt . 15:0 This task can only be used in
requester_id 0 conjunction with Bus Master
tag ' designs.
last_dw_be 3:0
first_dw_be 3:0
address 610
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Table 6-11: Expectation Tasks (Cont’d)
Name Input(s) Output Description
TSK_EXPECT_MEMWR traffic_class 2:0 Expect status | Waits for a 32-bit Address
td - Memory Write TLP with
ep B, matching header fields. Returns
1:0 a 1 on successful completion; 0
attr : .
) otherwise.
length 10:0 hi ‘ M b qi
. 15:0 This task can only be used in
requester_id 70 conjunction with Bus Master
tag ' designs.
last_dw_be 3:0
first_dw_be 3:0
address 23:0
TSK_EXPECT_MEMWR64 traffic_class 2:0 Expect status | Waits for a 64-bit Address
td - Memory Write TLP with
ep i matching header fields. Returns
1:0 a 1 on successful completion; 0
attr : ;
) otherwise.
length 10:0 hi K M b qi
. 15:0 This task can only be used in
requester_id 70 conjunction with Bus Master
tag : designs.
last_dw_be 3:0
first_dw_be 3:0
address 61:0
TSK_EXPECT_IOWR td - Expect status | Waits for an I/O Write TLP with
ep - matching header fields. Returns
requester_id 15:0 alon §uccessfu| completion; 0
7:0 otherwise.
tag ' This task can only be used in
first_dw_be 3:0 I> task can only be use
. conjunction with Bus Master
address 31:0 designs.
data 31:0

Endpoint Model Test Bench for Root Port

The Endpoint model test bench for the Virtex-7 FPGAs Integrated Block for PCI Express in
Root Port configuration is a simple example test bench that connects the Configurator
example design and the PCI Express Endpoint model allowing the two to operate like two
devices in a physical system. As the Configurator example design consists of logic that
initializes itself and generates and consumes bus traffic, the example test bench only
implements logic to monitor the operation of the system and terminate the simulation.

The Endpoint model test bench consists of:

PIO slave design

Gen3 Integrated Block for PCle (v1.3)
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Figure 6-7, page 209 illustrates the Endpoint model coupled with the Configurator example
design.

Architecture
The Endpoint model consists of these blocks:

« PCI Express Endpoint (Gen3 Integrated Block for PCle in Endpoint configuration) model.
« PIO slave design, consisting of:

o PIO_RX_ENGINE

o PIO_TX_ENGINE

o PIO_EP_MEM

- PIO_TO_CTRL

The PIO_RX_ENGINE and PIO_TX_ENGINE blocks interface with the ep block for reception
and transmission of TLPs from/to the Root Port Design Under Test (DUT). The Root Port DUT
consists of the Integrated Block for PCI Express configured as a Root Port and the
Configurator Example Design, which consists of a Configurator block and a PIO Master
design, or customer design.

The PIO slave design is described in detail in Programmed Input/Output: Endpoint Example
Design, page 199.

Simulating the Design

A simulation script file is provided with the model to facilitate simulation with the Mentor
Graphics ModelSim simulator:

e simulate_mti.do
The example simulation script files are located in this directory:
<project_dir>/<component_name>/simulation/functional

Instructions for simulating the Configurator example design with the Endpoint model are
provided in Simulating the Example Design, page 225.

Note: For Cadence IES users, the work construct must be manually inserted into the cds.1ib file:

DEFINE WORK WORK.

Scaled Simulation Timeouts

The simulation model of the Gen3 Integrated Block for PCle uses scaled down times during
link training to allow for the link to train in a reasonable amount of time during simulation.
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According to the PCI Express Specification, rev. 3.0, there are various timeouts associated
with the link training and status state machine (LTSSM) states. The Gen3 Integrated Block for
PCle scales these timeouts by a factor of 256 in simulation, except in the Recovery Speed_1
LTSSM state, where the timeouts are not scaled.

Waveform Dumping

Table 6-6 describes the available simulator waveform dump file format, which is provided in
the simulator native file format.

Table 6-12: Simulator Dump File Format

Simulator Dump File Format

ModelSim .ved

The Endpoint model test bench provides a mechanism for outputting the simulation
waveform to file by specifying the +dump_all command line parameter to the simulator.

For example, the script file simulate_ncsim. sh (used to start the Cadence IES simulator)
can indicate to the Endpoint model that the waveform should be saved to a file using this
command line:

ncsim work.boardx01l +dump_all

Output Logging

The test bench outputs messages, captured in the simulation log, indicating the time at
which these occur:

e user_reset deasserted

« user_lnk_up asserted

« cfg_done asserted by the Configurator

« pio_test_finished asserted by the PIO Master

« Simulation Timeout (if pio_test_finished or pio_test_failed never asserted)

PIPE MODE Simulation

The PIPE Simulation mode allows you to run the simulations without GT block, which speeds
up simulations.

To run the simulations using the PIPE interface to speed up the simulation, generate the
core using the Enable PIPE simulation option, as shown on the Basic page of the
Customize IP dialog box described in Customizing the Core using the Vivado IP Catalog.
With this option, the PIPE interface of the core top module in the PCle example design is
connected to PIPE interface of the model.
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)

IMPORTANT: A new file pcie3_7x_v1_3_gt_top_pipe.vis created in the simulation directory,
and the file replaces the GT block for PIPE mode simulation.

To run simulations using GT block with the same core, define ENABLE_GT during run time
so that the original GT block is instantiated in the core top module and simulations are run
using the GT block. Comments are included in the simulation scripts to define which
parameters need to be passed to run the simulations using GT block.

TIP: Implementation is always run with the GT block. The PIPE mode is only for simulation.

Implementation

Implementing the Example Design

To run the implementation on the generated core, go to the XCI file, right-click, and select
open IP example design. A new Vivado tool window opens with the project name
“example_project” within the project directory. In this new window, select the Run Synthesis
and Run Implementation buttons and generate a bitstream either in sequence or any at a
time. Selecting the Generate Bitstream button runs all steps: synthesis, implementation, and
then bitstream. Selecting the Implementation button runs synthesis first and then
implementation.

Ele Edit Flow Iools window Layout View Help

g8 . P D> %S K| L G| 0efaut Layour = © Ready
Flow Navigator «| | Project Manager - pcied 7+l 2 0 X
aQTH Sources — O& % | IProject Summary Oag x
AT 'y = -
4 Project Manager LS e 8 project Settings Edit 4 (0 Messages Py
Design Sources (17 =
@ Project Settings & @y xilinx_pcie_3_0_7vx_ep (alin_peie_3_0_7w_ep.y) Froject name: peies 71 2 0 summary: 0 errors
&% Add Sources Constraints (1) Product family: Virtex7 0 eritical warnings
£F P catalog Project part: *CTWHEOO0HTgL157-3 0 warnings
P Packager Top module name:  xlir_peie_3_0_7us_ey
= Synthesis (Ready) 2 <) Implementation (Feady) %
4 Simulation
& Simulation Sattings A | GOl Part: HCFBOO0tfgL157-3 Part: HCTWOIOLHGLLS7-3
@ Run Simulation Hierarchy [P Sources  Libraries  Complle Order Strategy Ywado Sunthesis Defaults Strategy: \ivado mplementation Defaults
9 open static Simulation é Sources | ¥ Templates Flow: vivado Synthesis Flow: ivado Implementation
Properties —Oa %
4 RTL Analysis =y
.
5% Open Elaborated Design
4 Syrthesis
& synthesis Settings
& Run Synthesis
4 Implementation Design Auns —Ogx
5 Implementation Settings @ [Name [Part [Constraints | Strateg; [Host [Status  |Progress [Start
I) Run Implementation | @ synth 1 HCTwBO0Efg1157 -2 constrs_1 Vivado Synthesis Defaults (Vivado Synthesis 2012) Mot started O
i S| Leimely ¥eTWB90tFfg1157-3 constrs_L Vivado Implementation Defaults (Vivado Implementation 2012) Not started ———10%
4 Program and Debug
&} Bitstream Settings
¥ Generate Bitstream
’ %
Kl 1 nE

ETcl console | Messages Gllog % Reports [ Design Runs

Figure 6-8: Example Project
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Simulation

Simulating the Example Design

The example design provides a quick way to simulate and observe the behavior of the core.

Endpoint Configuration

The simulation environment provided with the LogiCORE™ Gen3 Integrated Block for PCle
IP core in Endpoint configuration performs simple memory access tests on the PIO example
design. Transactions are generated by the Root Port Model and responded to by the PIO
example design.

« PCI Express Transaction Layer Packets (TLPs) are generated by the test bench transmit
User Application (pci_exp_usrapp_tx). As it transmits TLPs, it also generates a log
file, tx.dat.

« PCI Express TLPs are received by the test bench receive User Application
(pci_exp_usrapp_rx). As the User Application receives the TLPs, it generates a log
file, rx.dat.

For more information about the test bench, see Root Port Model Test Bench for Endpoint,
page 208.

Setting Up for Simulation

To run the gate-level simulation, the Xilinx Simulation Libraries must be compiled for the
user system. See the Compiling Xilinx Simulation Libraries (COMPXLIB) in the Xilinx ISE
Synthesis and Verification Design Guide and the Xilinx ISE Software Manuals and Help.
Documents can be downloaded from www.xilinx.com/support/software_manuals.htm.

Simulator Requirements

Virtex-7 FPGA designs require a Verilog LRM-IEEE 1364-2005 encryption-compliant
simulator. This core supports this simulator:

« Mentor Graphics ModelSim
« Cadence IES
* Synopsys VCS

* Vivado Simulator
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Running the Simulation

The simulation scripts provided with the example design support pre-implementation (RTL)
simulation. The existing test bench can be used to simulate with a post-implementation
version of the example design.

The pre-implementation simulation consists of these components:

Verilog model of the test bench

Verilog RTL example design

The Verilog model of the Virtex-7 FPGA Gen3 Integrated Block for PCI Express

To run the simulation, go to this directory:
<project_dir>/<component_name>/simulation/functional

Launch the simulator and run the script that corresponds to the user simulation tool:
- ModelSim > do simulate mti.do

o VCS > ./simulate_vcs.sh

o IUS > ./simulate_ncsim.sh
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Customizing and Generating the Core
Constraining the Core

Example Design and Model Test Bench for
Endpoint Configuration

Example Design and Model Test Bench for Root
Port Configuration
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Customizing and Generating the Core

This chapter includes information on using the ISE® Design Suite to customize and
generate the core.

GUI

The LogiCORE™ IP Virtex®-7 FPGA Gen3 Integrated Block for PCI Express® core is a fully
configurable and highly customizable solution. The Gen3 Integrated Block for PCle is
customized using the CORE Generator™ tool.

Note: The screen captures in this chapter are conceptual representatives of their subjects and
provide general information only. For the latest information, see the CORE Generator tool.

Customizing the Core using the CORE Generator Tool

The CORE Generator tool GUI for the Gen3 Integrated Block for PCle consists of these
screens:

« Page 1: Basic Parameter Settings

« Page 2: Interface Settings

« Pages 3 and 4: Identity Settings (PFO and PF1)

« Pages 5 and 6: Base Address Registers (PFO and PF1)

« Pages 7 and 8: SRIOV Config (PFO and PF1)

« Pages 9 and 10: SRIOV Base Address Registers (PFO and PF1)
« Page 11: Interrupt Capabilities (all PFs and VFs)

« Page 12: Power Management Registers

« Pages 13 and 14: PCle Extended Capabilities

Basic Parameter Settings

The initial customization screen shown in Figure 7-1 is used to define the basic parameters
for the core, including the component name, reference clock frequency, and silicon type.
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K4 Virtex-7 FPGA Gen3 Integrated Block for PCI Express. =%
Documents

Virtex-7 FPGA Gen3
lgic "t Integrated Block for PCI
Express

Component Name |pcieii7x7vlil
PCle Device / Port Type

The Integrated Block for PCI Express allows selection of the Device / Port Type

Device / Port Type |PCI Express Endpoint device LI

Pinout Selection
Xilinx Development Boards
Generate Xilinx Development Board specific UCF
Xilinx Developrment Board |None -
PCle Block Location Selection

Selects from available PCle Block locations for a part-package combination which determines Pinout

PCle Block Location I)(O‘(O x

Generate Additional PCle Constraints

Enables generation of additional constraints files

PCle Block Lecation ¥ xovo I xorl I~ xoy2

Reference Clock Freguency

The Integrated Black for PCI Express allows selection of the reference clock frequency

Frequency [MHz} |100 MHz ¥

Link Status Register

Selects whether the device reference clock is provided by the connector (Synchronous) or generated via an cnbeard PLL (Asynchronous)

™ Enable Slot Clock Configuration

Silican

Silicon Revision |IES I

ilin.corm:ip:pcie3_7x:1.1

=

-

Help |

< Back |Pagelof12 Next:\-l Generate | Cancel |
L

Figure 7-1: Page 1: Integrated Block for PClI Express Parameters

Component Name

Chapter 7: Customizing and Generating the Core

Base name of the output files generated for the core. The name must begin with a letter and

can be composed of these characters:atoz, 0to 9, and “_"

PCle Device / Port Type
Indicates the PCI Express logical device type.

Xilinx Development Board

Selects the Xilinx Development Board to enable the generation of Xilinx Development

Board specific constraints files.
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Integrated Block for PCle Location

Selects from the available Integrated Blocks to enable generation of location-specific
constraint files and pinouts. This selection is used in the default example design scripts.

This option is not available if a Xilinx Development Board is selected.

Additional Constraints

Allows generation of additional constraints files for other blocks available in the device.
This option is not available if a Xilinx Development Board is selected.

Reference Clock Frequency

Selects the frequency of the reference clock provided on sys_c1lk. For information about
clocking the Gen3 Integrated Block for PCle, see Clocking, page 74.

Slot Clock Configuration

Enables the Slot Clock Configuration bit in the Link Status register. Selecting this option
means the link is synchronously clocked. See Clocking, page 74 for more information on
clocking options.

Silicon Type

Selects the silicon type.
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Interface Settings

The Interface Settings page is shown in Figure 7-2.

[ VrerT FreR cer el EREK o P Exsrees 2
Documents

Virtex-7 FPGA Gen3

lgic \**  Integrated Block for PCI

[

EXPI’ESS Allinx.cormip:pcie3_7xl.1l

-

Number of Lanes

The Integrated Block for PCI Express requires that an initial lane width be selected. Wider lane width cores can train down to smaller lane widths if
attached to a smaller lane width device. Select only the lane width that is necessary for the design.

Lane Width [X1 =

Link Speed AXI-ST Interface Frequency
The Integrated Block for PCI Express allows selection of the Maximum Link Speed supported by the device.

* 25GT/s € 50GT/s  B.0GT/s
62 5MHz
Interface Width

The Integrated Block for PCI Express allows selection of Interface Width

& 64-bit € 128-bit  256-bit
Receive Completion Straddle Enable Alignment Mode
I Enable AXISTEN Frame Straddle & Data Aligned © Address Aligned

Physical Functions

F Enable Physical Function 0 rEEnab\e Physical Function 1

Device Capabilities Register — PF

FFO Max Payload Size |512 bytes =] FFL Max Fayload Size |512 bytes

I” Extended Tag Field

Function Level Reset

Enables Function Level Reset Capability

™ Function Level Reset

SRIOV Capability
Enables Single Root /0 Mirtualization
I™ SRIOV Capability Enable

=

<Back |Page20of9 Nextx | Generate Lancell Help |
|

Figure 7-2: Page 2: Interface Settings

Number of Lanes

The Gen3 Integrated Block for PCle requires the selection of the initial lane width. Figure 7-1

defines the available widths and associated generated core. Wider lane width cores can

train down to smaller lane widths if attached to a smaller lane-width device. See Link
Training: 2-Lane, 4-Lane, and 8-Lane Components, page 157 for more information.
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Table 7-1: Lane Width and Product Generated

Lane Width Product Generated
x1 1-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express
X2 2-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express
x4 4-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express
x8 8-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express
Link Speed

The Gen3 Integrated Block for PCle allows the selection of Maximum Link Speed supported
by the device. Table 7-2 defines the lane widths and link speeds supported by the device.
Higher link speed cores are capable of training to a lower link speed if connected to a lower
link speed capable device.

Table 7-2: Lane Width and Link Speed

Lane Width Link Speed
x1 2.5 Gb/s, 5 Gb/s, 8 Gb/s
X2 2.5 Gb/s, 5 Gb/s, 8 Gb/s
x4 2.5 Gb/s, 5 Gb/s, 8 Gb/s
x8 2.5 Gb/s, 5 Gb/s, 8 Gb/s

Interface Width

The Gen3 Integrated Block for PCle allows the selection of Interface Width, as defined in
Table 7-3. The default interface width set in the CORE Generator tool GUI is the lowest
possible interface width.

Table 7-3: Lane Width, Link Speed, and Interface Width

Lane Width Lin(léglpse)ed Interface Width (Bits)
x1 2.5,50,8.0 64
X2 25,50 64
X2 8.0 64, 128
x4 2.5 64
x4 5.0 64, 128
x4 8.0 128, 256
x8 2.5 64,128
x8 5.0 128 256
x8 8.0 256
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Requestor Completion Straddle

The Gen3 Integrated Block for PCle provides an option to straddle packets on the Requestor
Completion interface when the interface width is 256 bits. See Straddle Option for 256-Bit
Interface, page 149.

Alignment Mode

When a payload is present, there are two options for aligning the first byte of the payload
with respect to the datapath. See Data Alignment Options, page 81.

Physical Function 1 Enable
The Gen3 Integrated Block for PCle implements an additional Physical Function.
MPS

This field indicates the maximum payload size that the device or function can support for
TLPs. This is the value advertised to the system in the Device Capabilities Register.

Extended Tag

This field indicates the maximum supported size of the Tag field as a Requester. Options are
8-bit Tag field support (when selected) or 5-bit Tag field support (when deselected).

SRIOV Enable

The Integrated Block implements the Single Root Port I/O Virtualization PCle extended
capability. When this capability is enabled, the SRIOV capability is implemented for both
PFO and PF1 (if selected).

Number of Functions

The Integrated Block implements up to six Virtual Functions that are associated to either
PFO or PF1 (if enabled).

Function Level Reset

The Integrated Block enables you to reset a specific device function. This mechanism is only
applicable to Endpoint configurations.
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Identity Settings (PFO and PF1)

The Identity Settings pages are shown in Figure 7-3 and Figure 7-4. These settings
customize the IP initial values, class code, and Cardbus CIS pointer information. The page
for Physical Function 1 (PF1) is only displayed when PF1 is enabled.

v Virtex-7 FPGA Gen3 Integrated Block for PCI Express.

Documents

Virtex-7 FPGA Gen3
lgiC " Integrated Block for PCI

Express

PFO - ID Initial Values

Vendor ID 10EE Range: 0000.FFFF

Device ID 7011 Range: 0000..FFFF
Revision ID a0 Range: 00 FF
Subsystern Vendor ID | LOEE Range: 0000..FFFF

Subsystem ID 0007 Range: 0000 FFFF

PFO - Class Code

Base Class IOS— Range: 00.FF
Sub-Class 80 Range: 00..FF
Interface [o4] Range: 00.FF
Class Code 058000 {Hex)

Class Code Lookup Assistant

Must enter values above.

Base Class |S\mp\e cormmunication controllers j
Base Class 07h
Sub-Class{interface Value |Generic XT compatible serial controller j
Sub-Class adh
Interface 00h

< Back |Page 3of12

xilinx.comip:pcie3_7x:1.1

-

K

I.Elext:\-mfl Generate Cancel | Help |

Figure 7-3:
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K'g Virtex-7 FPGA Gen3 Integrated Block for PCI Express =%
Documents

Virtex-7 FPGA Gen3
Lgic .7*  Integrated Block for PCI
Express

xilinx comiip:pcie3_7x:1.1

-

PF1 - ID Initial Values ]

Vendor ID 10EE |

Device ID [7o11 Range: 0ooo FrrF
Revision ID |00 Range: 00.FF
Subsystem Vendor ID  10EE |

Subsystem ID |0007 Range: 0000, FFFF

PF1 - Class Code

Base Class |05 Range: 00.FF
Sub-Class |BO Range: 00.FF

Interface

-

Range: 00.FF

Class Code 058000 (Hex)
Class Code Loockup Assistant

Must enter values above

Base Class |Simple communication controllers j

Base Class 07h

Sub-Class/interface Value |Generic XT compatible serial controller j

Sub-Class 0ch m
Interface 0ch

=

=< Back | Page 4 of 12 ( Next > ﬁl Generate | Cancel | Help |
I

Figure 7-4: Page 4: Identity Settings (PF1)

ID Initial Values

« Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers
are assigned by the PCI Special Interest Group to guarantee that each identifier is
unique. The default value, 10EER, is the Vendor ID for Xilinx. Enter a vendor
identification number here. FFFFh is reserved.

« Device ID: A unique identifier for the application; the default value, which depends on
the configuration selected, is 70<link speed> <link width>h. This field can be any value;
change this value for the application.

« Revision ID: Indicates the revision of the device or application; an extension of the
Device ID. The default value is 00h; enter values appropriate for the application.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 235
PG023 October 16, 2012



http://www.xilinx.com

& XILINX. Chapter 7: Customizing and Generating the Core

« Subsystem Vendor ID: Further qualifies the manufacturer of the device or application.
Enter a Subsystem Vendor ID here; the default value is 10EE. Typically, this value is the
same as Vendor ID. Setting the value to 0000h can cause compliance testing issues.

« Subsystem ID: Further qualifies the manufacturer of the device or application. This
value is typically the same as the Device ID; the default value depends on the lane
width and link speed selected. Setting the value to 0000h can cause compliance testing
issues.

Class Code

The Class Code identifies the general function of a device, and is divided into three
byte-size fields:

« Base Class: Broadly identifies the type of function performed by the device.
« Sub-Class: More specifically identifies the device function.

« Interface: Defines a specific register-level programming interface, if any, allowing
device-independent software to interface with the device.

Class code encoding can be found at www.pcisig.com.

Class Code Look-up Assistant

The Class Code Look-up Assistant provides the Base Class, Sub-Class and Interface values
for a selected general function of a device. This Look-up Assistant tool only displays the
three values for a selected function. The user must enter the values in Class Code for these
values to be translated into device settings.

Base Address Registers (PFO and PF1)

The Base Address Registers (BARs) screens shown in Figure 7-5 and Figure 7-6 set the base
address register space for the Endpoint configuration. Each BAR (0 through 5) configures
the BAR Aperture Size and Control attributes of the Physical Function, as described in
Table D-1.
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4 Virtex-7 FPGA Gen3 Integrated Block for PCI Express. =%
Documents

Virtex-7 FPGA Gen3
lgic .7*  Integrated Block for PCI
EXpI’ESS xilink comip:pcie3_7x:1.1

-

PFO Base Address Registers

Base Address Registers (BARs) serve two purposes. Initially. they serve as a mechanism for the device to reguest blocks of address space in the
systern memory map. After the BIOS or OS determines what addresses to assign to the device, the Base Address Registers are programmed with
addresses and the device uses this information to perform address decoding.

BAR 0 Options BAR 1 Options

¥ Bar0 Type |Mernory "I [ &4 bit [ Prefetchable I" Barl Type |W/A ~| T &4 bit ™ Frefetchable
Size |2 LI |Ki|obytes _:I Size |:‘ J |K|Ioi3vres j
Value FFFFFBO0 (Hex}) Value 00000000 (Hex)

BAR 2 Options BAR 3 Options

I" Bar2 Type |NA I [ 64 bit [~ prefetchable I Bar3 Type |N/A I ™ 64 bit [T prefetchable
size |2 =] [kilebytes — ~] size [2 =] [kilebytes  ~]
Value 00000000 (Hex) WValue 00000000 (Hex)

EAR 4 Options EAR 5 Options
I Bard Type [N/A *I ™ &4 bit ™ Prefetchable I" Bars5 Type INJA ~| I Prefetchable
Size |3 J |m|oi)vles J Size |3 j ||<.|IOI)_\.'1L>5 J

Value 00000000 {Hex!} Value Q0000000 |EHE>()

Expansion ROM Base Address Register =

™ Expansion Rom Size |? j |K|Iobyte:‘ J
Value 00000000 (Hex}

z

< Back |PageSofl2 Next = | ﬁeneratel Cancel | Help |
L

Figure 7-5: Page 5: Base Address Register (PF0)
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"4 Virtex-7 FPGA Gen3 Integrated Block for PCI Express -|%]
Documents

Virtex-7 FPGA Gen3
giC .7*  Integrated Block for PCI

E X p ress xilinx.cormip:pcie3_7x:1.1
PFL Base Address Registers =
Base Address Registers (BARs) serve two purposes. Initially. they serve as a mechanism for the device to request blocks of address space in the
systern memery map. After the BIOS or OS determines what addresses to assign to the device. the Base Address Registers are programmed with
addresses and the device uses this information to perform address decoding
BAR 0 Options BAR 1 Options
W Bard Type |Memory | ™ 54 hit I Prefetchable ™ Barl Type Ii‘.'h”« *| I” 64 bit I” prefe e
Size [2 LI |Ki|obytes :] Size |Z.‘ J |<-=u:_ es J
Value FFFFFBO0 (Hex) Value 00000000 (Hex)
BAR 2 Options BAR 3 Options
I Bar2 Type [N/A | [T 64 bit I™ Prefetchable [T Bar3 Type [N/ ~| [T 64 bit I™ prefetchable
size [2 =] [ilobytes  ~] size |2 ~] [kilobytes  ~]
Walue 00000000 [Hex) Walue 00000000 |{Hex]
BAR 4 Options BAR 5 Options
I Bard Type [N/A | [T 64 bit I Prefetchable [ BarS Type |M/A | I Prefetchable
Size [Z.‘ J [mlchv[e-; _] Size |'_3 J I'\: obytes J
Value 00000000 [Hex!} Value 00000000 |iHex3
Expansion ROM Base Address Register —
I™ Expansion Rom Size |2 =] [kilobytes =]
Value 00000000 [Hex)
L <Back |Page6ofl2 | Next> | Generate | Cancel | Help |

Figure 7-6: Page 6: Base Address Register (PF1)

e Address Register Overview

The Gen3 Integrated Block for PCle in Endpoint configuration supports up to six 32-bit BARs
or three 64-bit BARs, and the Expansion ROM BAR. The Gen3 Integrated Block for PCle in
Root Port configuration supports up to two 32-bit BARs or one 64-bit BAR, and the

Exp

ansion ROM BAR.

BARs can be one of two sizes:

Gen3 Integr

32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes.

Used for Memory to I/O.

64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes.

Used for Memory only.
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All BAR registers share these options:

« Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

« Type: BARs can either be I/O or Memory.

- 1/0O:1/0O BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

o Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible to the user.

« Size: The available Size range depends on the PCle® Device/Port Type and the Type of
BAR selected. Table 7-4 lists the available BAR size ranges.

Table 7-4: BAR Size Ranges for Device Configuration

PCle Device / Port Type BAR Type BAR Size Range
32-bit Memory 128 Bytes — 2 Gigabytes
PCI Express Endpoint -
64-bit Memory 128 Bytes — 8 Exabytes
32-bit Memory 16 Bytes — 2 Gigabytes
Legacy PCI Express Endpoint 64-bit Memory 16 Bytes — 8 Exabytes
I/0 16 Bytes — 2 Gigabytes

« Prefetchable: Identifies the ability of the memory space to be prefetched.

» Value: The value assigned to the BAR based on the current selections.

For more information about managing the Base Address Register settings, see Managing
Base Address Register Settings.

Expansion ROM Base Address Register

If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB. According
to the PCI 3.0 Local Bus Specification, the maximum size for the Expansion ROM BAR should
be no larger than 16 MB. Selecting an address space larger than 16 MB might result in a
non-compliant core.

Managing Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate GUI
settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or 1/0.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum 1/
O space allowed is 16 bytes; use of I/O space should be avoided in all new designs.
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Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading,
as from a RAM). Byte write operations can be merged into a single double word write, when

applicable.

When configuring the core as an Endpoint for PCle (non-Legacy), 64-bit addressing must be
supported for all BARs (except BARS) that have the prefetchable bit set. 32-bit addressing
is permitted for all BARs that do not have the prefetchable bit set. The prefetchable bit
related requirement does not apply to a Legacy Endpoint. The minimum memory address
range supported by a BAR is 128 bytes for a PCI Express Endpoint and 16 bytes for a Legacy
PCI Express Endpoint.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A base
address register is disabled by deselecting unused BARs in the GUIL
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The SRIOV Config screen is shown in Figure 7-7.

74 Virtex-7 FPGA Gen3 Integrated Block for PCI Express =%
Documents

Virtex-7 FPGA Gen3

Kgic.7*  Integrated Block for PCI
EXPI’ESS xilink. comip:pcie3_7x:1.1
PFO SRIOV Config PF1 SRIOV Config =
SRIOV Capability Version SRIOV Capability Version
SRIOV Cap Wersion |0 Range: 0.F SRIOV Cap Wersion |0 Range: 0.F
Virtual Function Select Virtual Function Select
Nurnber of PFD VF's [o ] Nurnber of PF1 VF's [o ~]

SRIOV Functional Dependency Link

SRIOV PF Dependency Link | 0000 Range: 0000..FFFF

SRIOV First VF Offset

SRIOW PF Dependency Link | 0000 Range: 0000..FFFF

SRIOV VF Device ID

SRIOV VF Device ID ‘0000

SRIOV Supported Fage Size

SRIOV Functional Dependency Link

SRIOV First VF Offset

SRIOV VF Device ID

SRIOV PF Dependency Link | 0000 Range: 0000..FFFF

SRIOW PF Dependency Link | 0000 Range: 0000..FFFF

Range: 0000..FFFF SRIOV VF Device ID ‘0000

SRIOV Supported Fage Size

Range: 0000..FFFF

SRIOV Supported Page Size 4KB ~] SRIOV Supported Page Size 4KB ~]
L < Back |Page7ofl2 Next = | Generate | Lancel | Help ‘
Figure 7-7: Page 7: SRIOV Config (PFO and PF1)

SRIOV Capability Version

Indicates the 4-bit SRIOV Capability Version for the Physical Function.

SRIOV Function Select

Indicates the number of Virtual Functions associated to the Physical Function. A maximum
of six Virtual Functions are available to PFO and PF1.

Gen3 Integrated Block for PCle (v1.3)
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SRIOV Functional Dependency Link

Indicates the SRIOV Functional Dependency Link for the Physical Function. The
programming model for a device can have vendor-specific dependencies between sets of
Functions. The Function Dependency Link field is used to describe these dependencies.

SRIOV First VF Offset

Indicates the offset of the first Virtual Function for the Physical Function.

SRIOV VF Device ID

Indicates the 16-bit Device ID for all Virtual Functions associated with the Physical Function.
SRIOV Supported Page Size

Indicates the page size supported by the Physical Function. This Physical Function supports
a page size of 2n+12, if bit n of the 32-bit register is set.

SRIOV Base Address Registers (PFO and PF1)

The SRIOV Base Address Registers (BARs) screens shown in Figure 7-8 and Figure 7-9 set
the base address register space for the Endpoint configuration. Each BAR (0 through 5)
configures the SRIOV BAR Aperture Size and SRIOV Control attributes as described in
Table D-1.
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4 Virtex-7 FPGA Gen3 Integrated Block for PCI Express

Documents

Virtex-7 FPGA Gen3
kgic .7t Integrated Block for PCI

Express xilinx.com:ippcie3 7x:1.1
PFO SRIOV Base Address Registers =
Base Address Registers (BARs) serve two purposes. Initially. they serve as a mechanism for the device to request blocks of address space in the
system memory map. After the BIOS or OS determines what addresses to assign to the device, the Base Address Registers are programmed with
addresses and the device uses this information to perform address decoding.
PFO SRIOV BAR 0 Options PFO SRIOYV BAR 1 Options
W Bar0 Type |Memory 'i ™ 84 bit I~ Frefetchable I” Barl Type |[n/A ¥ I~ Prefetchable
Size ]2 L] IKiIobytes LI Size |: J |ii- J
Walue FFFFFBO0 (Hex}) Value 00000000 (Hex}
PFO SRIOV BAR 2 Options PFO SRIOV BAR 3 Options
I Bar2 Type |N/A ~| T 64 bit [ Prefetchable I Bar3 Type [N/A ~| I 64 bit
Size |2 ;] Imlcbv[es j Size |t j |z<:-’~-\ es j
Value 00000000 {Hex} Value 00000000 (Hex}
FFO SRIOV BAR 4 Options PFO SRIOV BAR 5 Ophions
" Bard Type |M/A *l ™ 64 bit ™ Prefetchable I Bars Type |MWA =| I© Prefetchable
Size |[2 | [ilobytes  ~] Size |2 | |kilobytes =]
Value 00000000 {Hex} Value 00000000 (Hex)

=
i <Back |(Page8ofl4 VﬁlieixtT‘l ﬁeneral:el Cancel | Help |]
Figure 7-8: Page 8: SRIOV Base Address Register (PF0)
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K74 Virtex-7 FPGA Gen3 Integrated Block for PCI Express =%
Documents

Virtex-7 FPGA Gen3
giC .F*  Integrated Block for PCI

E Xpl‘es S xilink comip:pcie3_7x11
PFL SRIOV Base Address Registers =
Base Address Registers (BARs) serve two purposes. Initially. they serve as a mechanism for the device to request blocks of address space in the
systemn memery map. After the BIOS or OS determines what addresses to assign to the device. the Base Address Registers are programmed with
addresses and the device uses this inforrmation to perform address decoding
PFL SRIOV BAR O Options PFl SRIOV BAR 1 Options
W Bard Type |Mernory =| ™ 84 bit I™ Frefetchable [ Barl Type |N!A -| I B4 bit = Pr
Size ‘2 L] ‘Kilobytes LJ Size |3 _] !Kulol::,*te:- J
Value FFFFFBO0 (Hex} Walue 00000000 (Hex)
PFL SRIOV BAR 2 Options PF1 SRIOV BAR 3 Options
I" Bar2 Type |N/A -| ™ 84 bit ™ Prefetchable [ Bar3 Type m [~ 64 bit I™ Prefetchable
Size ‘: _] ‘mlcnvte; _J Size |:‘ _] lmioiywe; J
Walue 00000000 (Hex} Walue 00000000 {Hex)
PFL SRIOV BAR 4 Options PFL SRIOV BAR 5 Options
I Bard Type ’_r—f;—:] ™ 64 bit ™ Prefetchable " Bars Type ﬁ‘—lm I Prefetchable
Size ‘2 __] ‘Klich\;Le: _J Size |? __| |Klloi)_-,-!es __]
WValue 00000000 (Hex} Value 00000000 I [Hex!)

=

< Back |FPage 9 of 14 { Next > | Eeneratel Cancel | Help |

Figure 7-9: Page 9: SRIOV Base Address Register (PF1)

SRIOV Base Address Register Overview

The Gen3 Integrated Block for PCle in Endpoint configuration supports up to six 32-bit BARs
or three 64-bit BARs. The Gen3 Integrated Block for PCle in Root Port configuration
supports up to two 32-bit BARs or one 64-bit BAR.

SRIOV BARs can be one of two sizes:

« 32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes.
Used for Memory to I/O.

+ 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes.
Used for Memory only.
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All SRIOV BAR registers share these options:

« Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

+ Type: SRIOV BARs can either be I/O or Memory.

- 1/0O:1/0O BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

o Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible to the user.

« Size: The available Size range depends on the PCle® Device/Port Type and the Type of
BAR selected. Table 7-5 lists the available BAR size ranges.

Table 7-5: SRIOV BAR Size Ranges for Device Configuration

PCle Device / Port Type BAR Type BAR Size Range
32-bit Memory 128 Bytes — 2 Gigabytes
PCI Express Endpoint -
64-bit Memory 128 Bytes — 8 Exabytes
32-bit Memory 16 Bytes — 2 Gigabytes
Legacy PCI Express Endpoint 64-bit Memory 16 Bytes — 8 Exabytes
I/0 16 Bytes — 2 Gigabytes

« Prefetchable: Identifies the ability of the memory space to be prefetched.

» Value: The value assigned to the BAR based on the current selections.

For more information about managing the SRIOV Base Address Register settings, see
Managing Base Address Register Settings.

Managing SRIOV Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate GUI
settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or 1/0.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum 1/
O space allowed is 16 bytes; use of I/O space should be avoided in all new designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading,
as from a RAM). Byte write operations can be merged into a single double word write, when
applicable.

When configuring the core as an Endpoint for PCle (non-Legacy), 64-bit addressing must be
supported for all SRIOV BARs (except BARS) that have the prefetchable bit set. 32-bit
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addressing is permitted for all SRIOV BARs that do not have the prefetchable bit set. The
prefetchable bit related requirement does not apply to a Legacy Endpoint. The minimum
memory address range supported by a BAR is 128 bytes for a PCI Express Endpoint and
16 bytes for a Legacy PCI Express Endpoint.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A base
address register is disabled by deselecting unused BARs in the GUI.

Interrupt Capabilities

The Interrupt Capabilities screen shown in Figure 7-10 sets the Legacy Interrupt Settings
and MSI Capabilities for all applicable Physical and Virtual Functions. The MSI-X
Capabilities screen shown in Figure 7-11 sets the MSI-X Capabilities.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 246
PG023 October 16, 2012



http://www.xilinx.com

& XILINX. Chapter 7: Customizing and Generating the Core

i Virtex-7 FPGA Gens3 Integrated Block for PCI Express. =%
Documents

Virtex-7 FPGA Gen3
wgic ¥ Integrated Block for PCI
Express

xilinx.comip:pcie3_7x:1.1

-

Interrupt Capabilities

The PC| Express Base Specification 3.0 requires Legacy. MSI, andfor MSI-X interrupts capability to be implemented in a device.
The 7 Series Gen3 Integrated Block allows the user to customize the capability list as needed for the application

Legacy Interrupt Settings

PFO Interrupt PIN |[NONE b PFL Interrupt PIN INONE 'I

MSI Capabilities

¥ PFO Enable MSI Capability Structure ¥ PF1 Enable MSI Capability Structure
PFO Multiple Message Capable |1 vector 'I PF1 Multiple Message Capable |1 vector =

YFO Multiple Message Capable !]. vector =
VF1 Multiple Message Capable |1 vector T

1=l
L < Back |Page 10 of 14 uext—>| Generate Cancel | Help |
Figure 7-10: Page 10: Interrupt Capabilities
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Documents

Virtex-7 FPGA Gen3
wgi¢ .**  Integrated Block for PCI

Express xilinx.comiip:pcie3_7x1.1
MSix Capabilities il
PFO PF1
™ Enable MSIx Capability Structure ™ Enable MSIx Capability Structure
MSix Table Settings MSix Table Settings

PFO-VFO PF1-VF1
MSIx Table Settings MSIx Table Settings

bl

< Back [Pagell of14 ( Next = | ﬁeneratel Cancel | Help |

L°d Virtex-7 FPGA Gen3 Integrated Black for PCI Express. =|%]

Figure 7-11: Page 11: MSI-X Interrupt Capabilities

Legacy Interrupt Settings

Enable INTX: Enables the ability of the PCI Express function to generate INTx
interrupts.

Interrupt PIN: Indicates the mapping for Legacy Interrupt messages. A setting of
“None” indicates no Legacy Interrupts are used.

MSI Capabilities

Enable MSI Capability Structure: Indicates that the MSI Capability structure exists.

Note: Although it is possible not to enable MSI or MSI-X, the result would be a non-compliant

core. The PCl Express Base Specification requires that MSI, MSI-X, or both be enabled.

64 bit Address Capable: Indicates that the function can send a 64-bit Message
Address.
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« Multiple Message Capable: Selects the number of MSI vectors to request from the
Root Complex.

« Per Vector Masking Capable: Indicates that the function supports MSI per-vector
Masking.
MSI-X Capabilities

« Enable MSIx Capability Structure: Indicates that the MSI-X Capability structure exists.

Note: This Capability Structure needs at least one Memory BAR to be configured. The user must
maintain the MSI-X Table and Pending Bit Array in the user application.

« MSIx Table Settings: Defines the MSI-X Table Structure.
o Table Size: Specifies the MSI-X Table Size.

- Table Offset: Specifies the Offset from the Base Address Register that points to the
Base of the MSI-X Table.

o BAR Indicator: Indicates the Base Address Register in the Configuration Space that
is used to map the function MSI-X Table, onto Memory Space. For a 64-bit Base
Address Register, this indicates the lower DWORD.

« MSIx Pending Bit Array (PBA) Settings: Defines the MSI-X Pending Bit Array (PBA)
Structure.

o PBA Offset: Specifies the Offset from the Base Address Register that points to the
Base of the MSI-X PBA.

o PBA BAR Indicator: Indicates the Base Address Register in the Configuration Space
that is used to map the function MSI-X PBA, onto Memory Space.
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Power Management Registers

The Power Management Registers screen shown in Figure 7-12 includes settings for the
Power Management Registers, power consumption, and power dissipation options. These
settings apply to both Physical Functions, if PF1 is enabled.

Z Vinex-7 FPGA Gen3 Integrated Block for PCI Express 7 - Hj

Documents

Virtex-7 FPGA Gen3
lgiC .*"  Integrated Block for PCI
Express xilink.comip:pcie3_7x:1.1

~

Power Management Registers
™ DL Support

PME Support from:

oo M DL I D3het

Device Capabilities Register 2

™ 32-bit AtornicOp Cornpleter Supported
™ 64-bit AtomicOp Completer Supported
™ 128-bit CAS Completer Supported

™ TPH Cornpleter Supported

OBFF Supported |00 Not Supported =

BRAM Configuration Options

Posted Non-posted Completion Total BRAMS
E:f:[rmance Header/Data Header/Data Header/Data Required
Credits Credits Credits 18K/36K
& Good 0x2040x Ox20/0x% 0x20/0x 82
 Extreme Ox20/0x% 0x20/0x% 0x20/0x% 46

-

=< Back |Page12ofl14 Next>| Qeneratel Cancel | Help |
: |

Figure 7-12: Page 12: Power Management Registers

« D1 Support: When selected, this option indicates that the function supports the D1
Power Management State. See section 3.2.3 of the PCI Bus Power Management Interface
Specification Revision 1.2.

« PME Support From: When this option is selected, it indicates the power states in which
the function can assert cfg_pm_wake. See section 3.2.3 of the PC/ Bus Power
Management Interface Specification Revision 1.2.

« Device Capability Register 2 Settings: Specifies options for AtomicOps and TPH
Completer Support. See the Device Capability Register 2 description in Chapter 7 of the
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PCI Express Base Specification for more information. These settings apply to both
Physical Functions, if PF1 is enabled.

+  BRAM Configuration Options: Can specify the number of receive block RAMs used for
the solution. The table displays the number of receiver credits available for each packet

type.

PCle Extended Capabilities

The PCle Extended Capabilities screens shown in Figure 7-13 and Figure 7-14 allow you to
enable PCI Express Extended Capabilities. The Advanced Error Reporting Capability (offset
0x100h) is always enabled. The customization GUI sets up the link list based on the
capabilities enabled. After enabling, you must configure the capability by setting the
applicable attributes in the core top-level defined in Output Generation, page 254. See
Appendix D, Attributes for parameters applicable to each capability.

(¥4 Virtex-7 FPGA Gen3 Integrated Block for PCI Express T =%

Documents

Virtex-7 FPGA Gen3
lgic .t Integrated Block for PCI
E X p ress xilinx cormiprpcie3_7x11

-

PCle Extended Capabilities
Device Serial Number Capability

The Device Serial Nurber (DSN} Capability is an optional PCle Extended Capability, that contains a unique Device Serial Number. This identifier
must be presented on the Device Serial Nurnber Input pin of the port

™ Enable DSN Capabilityl PFO) [ Enable DSN Capability(PFL}

Virtual Channel Capability

The Virtual Channel (WVC} Capability is an optional PCle Extended Capability. which when enabled, allows the port to support functionality beyond
the default Traffic Class (TCO} over the default Virtual Channel (VC0). Checking this allows Traffic Class (TC) filtering to be supported

™ Enable VC Capability(PF0)

DFA Capability

The DFA Capability provides a mechanism to allocate power dynamically for devices which do not have a
driver managing power. Section 6.16 of the PCI Express Base Specification Revision 3.0 for more details

™ Enable DPA Capability(PFO) ™ Enable DR& Capability(PF1)

AER Capabilities

The Advanced Error Reporting{AER} Capability is an opticnal PCle Extended Capability. which when enabled.
allows advanced error control and reporting

™ ECRC Check Capable(PFo} ™ ECRC Gen Capable{PF0}

bility (PFO}

¥ Ena ) ) ™ ECRC Check Capable(PF1) ™ ECRC Gen Capable(PFL} =

ARI Capability

The Alternative Routing ID-Interpretation (ARI) Capability is an optional PCle Extended Capability. which
when enabled. allows a device to support up to 256 functions by reducing the ID fram 3 field vector (Bus
Number, Device Number, Function Mumber) to a 2 field vector (Bus Number, Function Number}

F Enable ARI Cag

W Enable ARI Capability(PFL}

RBAR Capability

The Resizable BARIRBAR) Capabilities is an optional PCle Extended Capability. which when enabled.
adds a capability for Functions with BARs to report various options for sizes of their memory mapped
resources

™ Enable RBAR Capability(PFO) ™ Enable RBAR Capability(PFL}

-

< Back |FPagel3of 14 { Next > | ﬁeneratel Cancel | Help |

Figure 7-13: Page 13: PCle Extended Capabilities
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Documents

Virtex-7 FPGA Gen3
wgic .**  Integrated Block for PCI
EXpI’ESS xilink cormiprpcie3 7x1.1
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PCle Extended Capabilities 2
PE Capability

The Power Budgeting Capability allows a device to report power consumption to the system. See Section 7.15 of the
PCl Express Base Specification Revision 3.0 for more details

™ Enable PE Capability(PFO} ™ Enable PB Capability(FF1}

LTR Capability

The Latency Tolerance Reporting Capability allows Endpoints to report Latency requirements to the Root Complex.
See Section 6.18 of the PCl Express Base Specification Revision 3.0 for more details

" Enable LTR Capability(PF0}
TPH Capability
TLF Processing Hints (TPH} is a feature which facilitates optimization of requests targeting Memory Space. The TLP Processing

Hints Capability is required for all functions capable of generating request TLF's with TPH, See section 6.17 of the PCI Express
Base Specification 3.0 for more details

™ Enable TPH Capability(PFO) ™ Enable TPH Capability(FFL}

User Defined Configuration Capabilities

™ PCI Express Extended Configuration Space Enable (3FF-FFF: Dword Aligned)

=l

< Back |Page 14 of 14  [ext > | Eﬁeneratezl Cancel | Help |

Lol Virtex-7 FPGA Gen3 Integrated Block for PCI Express. LS

Figure 7-14: Page 14: PCle Extended Capabilities 2

Device Serial Number Capability

Device Serial Number Capability: An optional PCle Extended Capability containing a
unique Device Serial Number. When this Capability is enabled, the DSN identifier must
be presented on the Device Serial Number input pin of the port. This Capability must

be turned on to enable the Virtual Channel and Vendor Specific Capabilities

Virtual Channel Capability

Gen3 Integr

Virtual Channel Capability: An optional PCle Extended Capability which allows the
user application to be operated in TCn/VCO mode. Checking this allows Traffic Class

filtering to be supported. This capability only exists for Physical Function 0.
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Reject Snoop Transactions (Root Port Configuration Only): When enabled, any
transactions for which the No Snoop attribute is applicable, but is not set in the TLP
header, can be rejected as an Unsupported Request.

AER Capability

Enable AER Capability: An optional PCle Extended Capability that allows Advanced
Error Reporting. This capability is always enabled.

Additional Optional Capabilities

Gen3 Integr

Enable ARI: An optional PCle Extended Capability that allows Alternate Requestor ID.
This capability is automatically enabled if SRIOV is enabled.

Enable PB: An optional PCle Extended Capability that implements the Power Budgeting
Enhanced Capability Header.

Enable RBAR: An optional PCle Extended Capability that implements the Resizable BAR
Capability.

Enable LTR: An optional PCle Extended Capability that implements the Latency
Tolerance Reporting Capability.

Enable DPA: An optional PCle Extended Capability that implements Dynamic Power
Allocation Capability.

Enable TPH: An optional PCle Extended Capability that implements Transaction
Processing Hints Capability.
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Output Generation

The Gen3 Integrated Block for PCle example design directories and their associated files are

defined in the sections that follow. Click a directory name to go to the desired directory and
its associated files.

) <project directory>
Top-level project directory; name is user-defined

) <project directory>/<component name>
Core release notes readme file

) <component name>/doc
Product documentation

) <component name>/example_design
Verilog or VHDL design files

) <component name>/implement
Implementation script files

) implement/results
Contains implement script results
) implement/xst
Contains synthesis results, when XST is chosen as the synthesis tool
) <component name>/source

Core source files

) <component name>/simulation
Simulation scripts

) simulation/dsport (for Endpoint configuration only)
Root Port Bus Functional Model

) simulation/functional
Functional simulation files

) simulation/tests (for Endpoint configuration only)
Test command files
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The project directory contains all the CORE Generator tool project files.

Table 7-6: Project Directory

Name

Description

<project_dir>

<component_name>.xXcCco

CORE Generator software project-specific option file;
can be used as an input to the CORE Generator tool.

<component_name>_flist.txt

List of files delivered with core.

<component_name>.{veo|vho}

Verilog or VHDL instantiation template.

<component_name>_xmdf.tcl

Xilinx standard IP Core information file used by Xilinx
design tools.

<component_name>_synth. {v]|vhd}

Verilog/VHDL top-level solution wrapper for the
Virtex-7 FPGA Gen3 Integrated Block for PCI Express.
This file receives user-specific settings and sets
parameters accordingly

Back to Top

<project directory>/<component name>

The component name directory contains the release notes in the readme file provided with
the core, which can include tool requirements, updates, and issue resolution.

Table 7-7: Component Name Directory

Name

Description

<project_dir>/<component_name>

pcie3_7x_vl_1_readme.txt

Release notes file.

Back to Top

<component name>/doc

The doc directory contains a redirect PDF, which points to this document on the Xilinx

website.

Table 7-8: Doc Directory

Name

Description

<project_dir>/<component_name>/doc

pg023_v7_pcie_gen3.pdf

Virtex-7 FPGA Gen3 Integrated Block for PCI Express Product Guide

Back to Top
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<component name>/example_design

The example_design directory contains the example design files provided with the core.
Table 3-9 shows the directory contents for an Endpoint configuration core.

Table 7-9: Example Design Directory: Endpoint Configuration

Name Description

<project_dir>/<component_name>/example_design

xilinx_pcie_3_0_ep_7x_01_lane_ Example design UCF. The file name varies by Device/
genl_xc7vx690t-ffgl761-3-PCIE_ Port Type, lane width, maximum link speed, part,
X0Y0 .ucf package, Integrated Block for PCI Express block

location, and Xilinx Development Board selected.

xilinx_pcie_3_0_ep_xt.v Verilog top-level PIO example design file.

pcie_app_7vxX.Vv
PIO_INTR_CTRL.Vv
EP_MEM.v[hd]
PIO.v[hd]\PIO_EP.v[hd]
PIO_EP_MEM_ACCESS.v[hd]
PIO_TO_CTRL.v[hd]
PIO_RX_ENGINE.v[hd]
PIO_TX_ENGINE.v[hd]

PIO example design files.

Back to Top

<component name>/implement

The implement directory contains the core implementation script files.

Table 7-10: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.bat

, DOS and Linux implementation scripts.
implement.sh

xilinx_pcie_3_0_7vx_ep.prj XST file list for the core.
xilinx_pcie_3_0_7vx_ep.xst XST command file.
xilinx_pcie_3_0_7vx_ep.xcf XST synthesis constraints file.
Back to Top
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implement/results

The results directory is created by the implement script. The implement script results are
placed in the results directory.

Table 7-11: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

Implement script result files.

Back to Top

implement/xst

The xst directory is created by the XST script. The synthesis results are placed in the xst
directory.

Table 7-12: XST Results Directory

Name Description

<project_dir>/<component_name>/implement/xst

XST result files.

Back to Top
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The source directory contains the generated core source files.

Table 7-13: Source Directory

Name

Description

<project_dir>/<compone

nt_name>/source

pcie_3_0_7vx.v

Verilog top-level core wrapper for the Virtex-7
FPGA Gen3 Integrated Block for PCI Express.

pcie_top.v

AXI4-Stream solution wrapper for the Virtex-7
FPGA Gen3 Integrated Block for PCI Express.

pcie_7vx.v

Solution Wrapper for the Virtex-7 FPGA Gen3
Integrated Block for PCI Express.

pcie_init_ctrl_7vx.v

Initialization Controller for Virtex-7 FPGA Gen3
Integrated Block for PCI Express

pcie_pipe_pipeline.v
pcie_pipe_lane.v

pcie_pipe_misc.v

PIPE module for the Virtex-7 FPGA Gen3
Integrated Block for PCI Express.

pcie_bram_7vx.v
pcie_bram_7vx_1l6k.v
pcie_bram_7vx_8k.v
pcie_bram_7vx_cpl.v
pcie_bram_7vx_rep.v
pcie_bram_7vx_rep_8k.v

pcie_bram_7vx_req.v

Block RAM module for the Virtex-7 FPGA Gen3
Integrated Block for PCI Express.

gt_top.v

GTH wrapper for the Virtex-7 FPGA Gen3
Integrated Block for PCI Express.

gt_wrapper.v
pipe_clock.v
pipe_drp.v
pipe_rate.v
pipe_reset.v
pipe_sync.v
pipe_user.v
pipe_wrapper.v
pipe_eq.v
rxeqg_scan.v
gpll_drp.v
gpll_reset.v

gpll_wrapper.v

GTH module for the Virtex-7 FPGA GTH
transceivers.

Back to Top
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The simulation directory contains the simulation source files provided with the core.

simulation/dsport

The dsport directory contains the files for the Root Port model test bench.

Table 7-14:

dsport Directory: Endpoint Configuration

Name

Description

<project_dir>/<component_name>/simulation/dsport

pcie_2_1_ rp v7.v
pci_exp_expect_tasks.v
pci_exp_usrapp_cfg.v
pci_exp_usrapp_com.v
pci_exp_usrapp_pl.v
pci_exp_usrapp_rx.v
pci_exp_usrapp_tx.v
xilinx_pcie_2_1_rport_v7.v

test_interface.vhd

Root Port model files.

Back to Top

simulation/functional

The functional directory contains functional simulation scripts provided with the core.

Table 7-15: Functional Directory
Name Description
<project_dir>/<component_name>/simulation/functional
board.f List of files for RTL simulations.

simulate_mti.do

Simulation script for ModelSim.

simulate_ncsim.sh

Simulation script for Cadence IES (Verilog only).

simulate_vcs.sh

Simulation script for VCS (Verilog only).

simulate_isim.sh

Simulation script for ISim (Verilog only).

xilinx_1ib_vecs.f

Points to the required SecurelP Model.

board_common.v
(Endpoint configuration only)

Contains test bench definitions (Verilog only).

board.v

Top-level simulation module.

sys_clk_gen_ds.v
(Endpoint configuration only)

System differential clock source.

sys_clk_gen.v

System clock source.

Back to Top
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simulation/tests

Note: This directory exists for Endpoint configuration only.

The tests directory contains test definitions for the example test bench.

Table 7-16: Tests Directory

Name Description

<project_dir>/<component_name>/simulation/tests

sample_tests.v Test definitions for example test bench.
tests.v
Back to Top
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Required Constraints

The Virtex®-7 FPGA Gen3 Integrated Block for PCI Express® solution requires the
specification of timing and other physical implementation constraints to meet specified
performance requirements for PCI Express. These constraints are provided with the
Endpoint and Root Port solutions in a user constraints file (UCF). Pinouts and hierarchy
names in the generated UCF correspond to the provided example design.

To achieve consistent implementation results, a UCF containing these original, unmodified
constraints must be used when a design is run through the Xilinx tools. For additional
details on the definition and use of a UCF or specific constraints, see the Xilinx Libraries
Guide and/or Command Line Tools User Guide.

Constraints provided with the Integrated Block solution have been tested in hardware and
provide consistent results. Constraints can be modified, but modifications should only be
made with a thorough understanding of the effect of each constraint. Additionally, support
is not provided for designs that deviate from the provided constraints.

Device, Package, and Speed Grade Selections

The device selection portion of the UCF informs the implementation tools which part,
package, and speed grade to target for the design. Because Gen3 Integrated Block for PCle
cores are designed for specific part and package combinations, this section should not be
modified by the designer.

The device selection section always contains a part selection line, but can also contain part
or package-specific options. An example part selection line follows:

CONFIG PART = XC7VX690T-FFG1761-3
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Clock Frequencies

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Clock Management

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Clock Placement

See the 7 Series FPGAs GTX/GTH Transceivers User Guide [Ref 3] for guidelines regarding
clock resource selection.

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Stacked Silicon Interconnect Devices

Some Virtex-7 devices utilize stacked silicon interconnect (SSI) technology. The I/O and
Integrated Block must remain on the same die when targeting an SSI device.

The sys_clk must be chosen to be in the same bank as the GTH transceiver it is connected
to, or one bank above/below the GTH transceiver being used.

For more information, see the “Placement Information by Package” and “Placement
Information by Device” appendices in the 7 Series FPGAs GTX/GTH Transceivers User Guide.

Transceiver Placement

These constraints select which transceivers to use and dictates the pinout for the
transceiver differential pairs. For more information, see the "Placement Information by
Package” appendix in the 7 Series FPGAs GTX/GTH Transceivers User Guide [Ref 3].
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Table 8-1 through Table 8-8 list the supported transceiver locations available for supported
Virtex-7 FPGA part and package combinations. The CORE Generator tool provides a UCF for
the selected part and package that matches the table contents. The following lists all

devices with their associated tables containing transceiver locations:

«  XC7VX330T: Table 8-1
«  XC7VX415T: Table 8-2
¢ XC7VX550T: Table 8-3
«  XC7VX690T: Table 8-4
«  XC7VX980T: Table 8-5
«  XC7VX1140T: Table 8-6
« XC7VH580T: Table 8-7
« XC7VH870T: Table 8-8

Table 8-1: Supported Transceiver Locations for the XC7VX330T
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X0Y1l1 X0Y10 X0Y9 X0Y8 X0Y7 X0Y6 X0Y5 X0Y4
X0yl X0y23 X0Y22 X0Y21 X0Y20 X0Y19 X0Y18 X0Y17 X0Y16
FFG1157
X0Y2 N/A
X0Y3 N/A
X0YO0 X0Y1l1 X0Y10 X0Y9 X0Y8 X0Y7 X0Y6 X0Y5 X0Y4
X0Y1 X0Y23 X0Y22 X0Y21 X0Y20 X0Y19 X0Y18 X0Y1l7 X0Y1l6
FFG1761
X0Y2 N/A
X0Y3 N/A
Table 8-2: Supported Transceiver Locations for the XC7VX415T
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X1Y7 X1Y6 X1Y5 X1Y4 X1Y3 X1Y2 X1Y1l X1Y0
X0Y1 X1Y19 X1Y18 X1Y17 X1Y16 X1Y15 X1Y14 X1Y13 X1Y12
FFG1157
X0Y2 N/A
Xo0Y3 N/A
X0YO X1Y7 X1Y6 X1Y5 X1Y4 X1Y3 X1Y2 X1Y1l X1Y0
X0Y1 X1Y19 X1Y18 X1Y1l7 X1Y1le X1Y1l5 X1Y1l4 X1Y13 X1Y12
FFG1158
X0Y2 N/A
X0Y3 N/A
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Table 8-2: Supported Transceiver Locations for the XC7VX415T (Cont’d)
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X1Y7 X1Y6 X1Y5 X1Y4 X1Y3 X1Y2 X1Y1l X1Y0
X0Y1 X1Y19 X1Y18 X1Y17 X1Y16 X1Y15 X1Y14 X1Y13 X1Y12
FFG1927
X0Y2 N/A
X0Y3 N/A
Table 8-3: Supported Transceiver Locations for the XC7VX550T
Package | Block | Lane0 | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 N/A
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FrG1158 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FrG1927 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
Table 8-4: Supported Transceiver Locations for the XC7VX690T
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 N/A
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FrG1157 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 N/A
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
Fre11s8 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FrG1761 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1926 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
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Table 8-4: Supported Transceiver Locations for the XC7VX690T (Cont’d)
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
Fre1927 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 N/A
X0yl X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1930 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
Table 8-5: Supported Transceiver Locations for the XC7VX980T
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0yl X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1926 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FrG1928 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 N/A
X0yl X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1930 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1933 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
Table 8-6: Supported Transceiver Locations for the XC7VX1140T
Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FFG1926 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
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Table 8-6: Supported Transceiver Locations for the XC7VX1140T (Cont’d)

Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
Xoy1 X1Y23 | X1y22 | X1y21 | X1Y20 | X1Y19 | X1Y18 | X1Y17 | X1Y1lé
FlG1928 Xoy2 X1Y35 | X1Y34 | X1Y33 | X1Y32 | X1Y31 | X1Y30 | X1Y29 | X1Y28
X0Y3 X1Y47 X1Y46 X1Y45 X1Y44 X1Y43 X1Y42 X1Y41 X1Y40
X0YO N/A
X0Y1 X1Y23 X1Y22 X1y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FLG1930 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
X0YO X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4
X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16
FLG1933 X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A

Table 8-7: Supported Transceiver Locations for the XC7VH580T

Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 N/A
HCG1155

X0Y2 N/A

X0Y3 N/A

X0YO0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y1l6
HCG1931

X0Y2 N/A

X0Y3 N/A

X0YO0 X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Ye6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y1le
HCG1932

X0Y2 N/A

X0Y3 N/A

Table 8-8: Supported Transceiver Locations for the XC7VH870T

Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO N/A
X0Y1l X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y1l6

HCG1931
X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28
X0Y3 N/A
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Table 8-8: Supported Transceiver Locations for the XC7VH870T

Package | Block | LaneO | Lanel | Lane2 | Lane3 | Lane4 | Lane5 | Lane 6 | Lane?7
X0YO X1Y1l1 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0vY1l X1Y23 | X1Y22 | X1Y21 | X1Y20 | X1y19 | X1Y18 | X1Y17 | X1VY16
X0Y2 X1Y35 | X1Y34 | X1Y33 | X1Y32 | X1y31 | X1Y30 | X1Y29 | X1v28
X0Y3 N/A

HCG1932

/0 Standard and Placement

This section controls the placement and options for I/Os belonging to the core System (SYS)
interface and PCI Express (PCI_EXP) interface. NET constraints in this section control the pin
location and I/O options for signals in the SYS group. Locations and options vary
depending on which derivative of the core is used and should not be changed without fully
understanding the system requirements.

For example:

NET "sys_rt_n" IOSTANDARD = LVCMOSlB| PULLUP | NODELAY ;
INST "refclk_ibuf" LOC = IBUFDS_GT2_X0Y7;

INST constraints control placement of signals that belong to the PCI_EXP group. These
constraints control the location of the transceiver(s) used, which implicitly controls pin
locations for the transmit and receive differential pair.

For example:

INST "core_i/gt_top_1i/pipe_wrapper_i/pipe_lane[0].gt_wrapper_i/
gth_channel.gthe2_channel_i" LOC = GTHE2_CHANNEL_X1Y11;
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Directory and File Contents

See Output Generation, page 184 for directory structure and file contents.

Example Design

This section provides an overview of the Virtex®-7 FPGA Integrated Block for PCI Express®
Gen3 example design and instructions for generating the core. It also includes information
about simulating and implementing the example design using the provided demonstration
test bench.

For current information about generating, simulating, and implementing the core, see the
Release Notes provided with the core, when it is generated using the CORE Generator™ tool
available in the ISE® Design Suite.

Integrated Block Endpoint Configuration Overview

The example simulation design for the Endpoint configuration of the integrated block
consists of two discrete parts:

« The Root Port Model, a test bench that generates, consumes, and checks PCI Express
bus traffic.

« The Programmed Input/Output (PIO) example design, a completer application for PCI
Express. The PIO example design responds to Read and Write requests to its memory
space and can be synthesized for testing in hardware.
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Simulation Design Overview

For the simulation design, transactions are sent from the Root Port Model to the Integrated
Block core (configured as an Endpoint) and processed by the PIO example design.

Figure 9-1 illustrates the simulation design provided with the Integrated Block core. For
more information about the Root Port Model, see Root Port Model Test Bench for Endpoint,

page 280.
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Implementation Design Overview

The implementation design consists of a simple PIO example that can accept read and write
transactions and respond to requests, as illustrated in Figure 9-2. Source code for the
example is provided with the core. For more information about the PIO example design, see
Programmed Input/Output: Endpoint Example Design, page 271.

Virtex-7 FPGA Gen3 Integrated Block for PCI Express (Configured as an Endpoint)

ep_io_mem PIO_TO_CTRL

ep_mem32

EP_TX EP_RX ep_mem64

ep_mem_erom

EP_MEM

PIO_INTR_CTRL

PIO_EP

PIO

X12459

Figure 9-2: Implementation Example Design Block Diagram
Example Design Elements
The PIO example design elements include:

» Core wrapper
« An example Verilog HDL wrapper (instantiates the cores and example design)

« A customizable demonstration test bench to simulate the example design

The example design has been tested and verified with Xilinx® ISE® Design Suite v14.3 and
this simulator:

« Mentor Graphics ModelSim
« Cadence IES
* Synopsys VCS

*  Xilinx ISim

For the supported versions of these tools, see the Release Notes Guide.
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Programmed Input/Output: Endpoint Example Design

Programmed Input/Output (PIO) transactions are generally used by a PCI Express® system
host CPU to access Memory Mapped Input/Output (MMIO) and Configuration Mapped
Input/Output (CMIO) locations in the PCI Express logic. Endpoints for PCI Express accept
Memory and I/O Write transactions and respond to Memory and I/O Read transactions with
Completion with Data transactions.

The PIO example design (PIO design) is included with the Gen3 Integrated Block for PCle in
Endpoint configuration generated by the CORE Generator™ tool, which allows users to
bring up their system board with a known established working design to verify the link and
functionality of the board.

The PIO design Port Model is shared by the Gen3 Integrated Block for PCle, Endpoint Block
Plus for PCI Express, and Endpoint PIPE for PCI Express solutions. This appendix represents
all the solutions generically using the name Endpoint for PCI Express (or Endpoint for
PCle®).

System Overview

The PIO design is a simple target-only application that interfaces with the Endpoint for the
Transaction (AXI4-Stream) interface of the PCle core and is provided as a starting point for
customers to build their own designs. These features are included:

« Four transaction-specific 2 KB target regions using the internal FPGA block RAMs,
providing a total target space of 8192 bytes

« Supports single Dword payload Read and Write PCI Express transactions to 32-/64-bit
address memory spaces and I/O space with support for completion TLPs

« Utilizes the BAR ID[2:0] and Completer Request Descriptor[114:112] of the core to
differentiate between TLP destination Base Address Registers

« Provides separate implementations optimized for 64-bit, 128-bit, and 256-bit
AXI4-Stream interfaces

Figure 9-3 illustrates the PCI Express system architecture components, consisting of a Root
Complex, a PCI Express switch device, and an Endpoint for PCle. PIO operations move data
downstream from the Root Complex (CPU register) to the Endpoint, and/or upstream from
the Endpoint to the Root Complex (CPU register). In either case, the PCI Express protocol
request to move the data is initiated by the host CPU.
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Figure 9-3: System Overview

Data is moved downstream when the CPU issues a store register to a MMIO address
command. The Root Complex typically generates a Memory Write TLP with the appropriate
MMIO location address, byte enables, and the register contents. The transaction terminates
when the Endpoint receives the Memory Write TLP and updates the corresponding local
register.

Data is moved upstream when the CPU issues a load register from a MMIO address
command. The Root Complex typically generates a Memory Read TLP with the appropriate
MMIO location address and byte enables. The Endpoint generates a Completion with Data
TLP after it receives the Memory Read TLP. The Completion is steered to the Root Complex
and payload is loaded into the target register, completing the transaction.

PIO Hardware

The PIO design implements a 8192 byte target space in FPGA block RAM, behind the
Endpoint for PCle. This 32-bit target space is accessible through single Dword I/O Read, I/
O Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write 32 TLPs.

The PIO design generates a completion with one Dword of payload in response to a valid
Memory Read 32 TLP, Memory Read 64 TLP, or I/O Read TLP request presented to it by the
core. In addition, the PIO design returns a completion without data with successful status
for I/O Write TLP request.
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The PIO design can initiate:

+ a Memory Read transaction when the received write address is 11 'h7AA and the write
data is 32 'hAAAA_BBBB

« a Legacy Interrupt when the received write address is 11 'h7BB and the write data is
32'hCcCccC_DDDD

« an MSI when the received write address is 11 'h7BB and the write data is
32 'hEEEE_FFFF

* an MSIx when the received write address is 11 'h7BB and the write data is
32 'hDEAD_ BEEF.

The PIO design processes a Memory or I/O Write TLP with one Dword payload by updating
the payload into the target address in the FPGA block RAM space.

Base Address Register Support

The PIO design supports four discrete target spaces, each consisting of a 2 KB block of
memory represented by a separate Base Address Register (BAR). Using the default
parameters, the CORE Generator tool produces a core configured to work with the PIO
design defined in this section, consisting of:

+ One 64-bit addressable Memory Space BAR
* One 32-bit Addressable Memory Space BAR

Users can change the default parameters used by the PIO design; however, in some cases
they might need to change the back-end User Application depending on their system. See
Changing CORE Generator Tool Default BAR Settings for information about changing the
default CORE Generator tool parameters and the effect on the PIO design.

Each of the four 2 KB address spaces represented by the BARs corresponds to one of four
2 KB address regions in the PIO design. Each 2 KB region is implemented using a 2 KB
dual-port block RAM. As transactions are received by the core, the core decodes the
address and determines which of the four regions is being targeted. The core presents the
TLP to the PIO design and asserts the appropriate bits of (BAR ID[2:0]), Completer Request
Descriptor[114:112], as defined in Table 9-1.

Table 9-1: TLP Traffic Types

Block RAM TLP Transaction Type Default BAR BAR ID[2:0]
ep_io_mem I/O TLP transactions Disabled Disabled
ep_mem32 32-bit address Memory TLP transactions 2 000b
ep_memb64 64-bit address Memory TLP transactions 0-1 001b
ep_mem_erom 32-bit address Memory TLP transactions | Expansion ROM 110b

destined for EROM
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Changing CORE Generator Tool Default BAR Settings

You can change the CORE Generator tool parameters and continue to use the PIO design to
create customized Verilog source to match the selected BAR settings. However, because the
PIO design parameters are more limited than the core parameters, consider these example
design limitations when changing the default CORE Generator tool parameters:

« The example design supports one I/O space BAR, one 32-bit Memory space (that
cannot be the Expansion ROM space), and one 64-bit Memory space. If these limits are
exceeded, only the first space of a given type is active—accesses to the other spaces do
not result in completions.

« Each spaceis implemented with a 2 KB memory. If the corresponding BAR is configured
to a wider aperture, accesses beyond the 2 KB limit wrap around and overlap the 2 KB
memory space.

« The PIO design supports one I/O space BAR, which by default is disabled, but can be
changed if desired.

Although there are limitations to the PIO design, Verilog source code is provided so users
can tailor the example design to their specific needs.

TLP Data Flow

This section defines the data flow of a TLP successfully processed by the PIO design.

The PIO design successfully processes single Dword payload Memory Read and Write TLPs
and I/O Read and Write TLPs. Memory Read or Memory Write TLPs of lengths larger than
one Dword are not processed correctly by the PIO design; however, the core does accept
these TLPs and passes them along to the PIO design. If the PIO design receives a TLP with
a length of greater than one Dword, the TLP is received completely from the core and
discarded. No corresponding completion is generated.

Memory and 1/O Write TLP Processing

When the Endpoint for PCle receives a Memory or I/O Write TLP, the TLP destination
address and transaction type are compared with the values in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design. The PIO design handles Memory writes and I/O TLP writes in different
ways: the PIO design responds to I/O writes by generating a Completion Without Data (cpl),
a requirement of the PCI Express specification.

Along with the start of packet, end of packet, and ready handshaking signals, the Completer
Requester AXI4-Stream interface also asserts the appropriate (BAR ID[2:0]), Completer
Request Descriptor[114:112] signal to indicate to the PIO design the specific destination
BAR that matched the incoming TLP. On reception, the RX State Machine of the PIO design
processes the incoming Write TLP and extracts the TLPs data and relevant address fields so
that it can pass this along to the PIO design internal block RAM write request controller.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 274
PG023 October 16, 2012



http://www.xilinx.com

& XILINX. Chapter 9: Example Design and Model Test Bench for Endpoint Configuration

Based on the specific BAR ID[2:0] signals asserted, the RX state machine indicates to the
internal write controller the appropriate 2 KB block RAM to use prior to asserting the write
enable request. For example, if an I/O Write Request is received by the core targeting BARO,
the core passes the TLP to the PIO design and sets BAR ID[2:0] to 000b. The RX state
machine extracts the lower address bits and the data field from the I/O Write TLP and
instructs the internal Memory Write controller to begin a write to the block RAM.

In this example, the assertion of setting BAR ID[2:0] to 000b instructed the PIO memory
write controller to access ep_mem0 (which by default represents 2 KB of I/O space). While
the write is being carried out to the FPGA block RAM, the PIO design RX state machine
deasserts m_axis_cqg_tready, causing the Receive AXI4-Stream interface to stall
receiving any further TLPs until the internal Memory Write controller completes the write to
the block RAM. Deassertingm_axis_cq_tready in this way is not required for all designs
using the core—the PIO design uses this method to simplify the control logic of the RX
state machine.

Memory and I/O Read TLP Processing

When the Endpoint for PCle receives a Memory or I/O Read TLP, the TLP destination address
and transaction type are compared with the values programmed in the core BARs. If the TLP

passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design.

Along with the start of packet, end of packet, and ready handshaking signals, the Completer
Requester AXI4-Stream interface also asserts the appropriate BAR ID[2:0] signal to indicate
to the PIO design the specific destination BAR that matched the incoming TLP. On
reception, the PIO design state machine processes the incoming Read TLP and extracts the
relevant TLP information and passes it along to the PIO design's internal block RAM read
request controller.

Based on the specific BAR ID[2:0] signal asserted, the RX state machine indicates to the
internal read request controller the appropriate 2 KB block RAM to use before asserting the
read enable request. For example, if a Memory Read 32 Request TLP is received by the core
targeting the default Mem32 BAR2, the core passes the TLP to the PIO design and sets BAR
ID[2:0] to 010b. The RX state machine extracts the lower address bits from the Memory 32
Read TLP and instructs the internal Memory Read Request controller to start a read
operation.

In this example, the setting BARID[2:0] to 010b instructs the PIO memory read controller to
access the Mem32 space, which by default represents 2 KB of memory space. A notable
difference in handling of memory write and read TLPs is the requirement of the receiving
device to return a Completion with Data TLP in the case of memory or I/O read request.

While the read is being processed, the PIO design RX state machine deasserts
m_axis_cqg_tready, causing the Receive AXI4-Stream interface to stall receiving any
further TLPs until the internal Memory Read controller completes the read access from the
block RAM and generates the completion. Deasserting m_axis_cqg_tready in this way is
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not required for all designs using the core. The PIO design uses this method to simplify the
control logic of the RX state machine.

PIO File Structure

Table 9-2 defines the PIO design file structure. Based on the specific core targeted, not all
files delivered by the CORE Generator tool are necessary, and some files might not be
delivered. The major difference is that some of the Endpoint for PCle solutions use a 32-bit
user datapath, others use a 64-bit datapath, and the PIO design works with both. The width
of the datapath depends on the specific core being targeted.

Table 9-2: PIO Design File Structure

File Description
PIO.vV Top-level design wrapper
PIO_INTR_CTRL.V PIO interrupt controller
PIO_EP.v PIO application module
PIO_TO_CTRL.V PIO turn-off controller module
PIO_RX_ENGINE.v 32-bit Receive engine
PIO_TX_ENGINE.v 32-bit Transmit engine
PIO_EP_MEM_ACCESS.v Endpoint memory access module
PIO_EP_MEM.vV Endpoint memory

Three configurations of the PIO design are provided: PIO_64, PIO_128, and PIO_256 with
64-, 128-, and 256-bit AXI4-Stream interfaces, respectively. The PIO configuration
generated depends on the selected Endpoint type (that is, Virtex-7 FPGA integrated block,
PIPE, PCI Express, and Block Plus) as well as the number of PCI Express lanes and the
interface width selected by the user. Table 9-3 identifies the PIO configuration generated
based on your selection.

Table 9-3: PIO Configuration

Core x1 x2 x4 x8
Virtex-7 FPGA Gen3 Integrated Block PIO_64 PIO_64, PIO_64, PIO_64,
PIO_128 PIO_128, P1IO_1281),
PIO_256 PIO_256

Notes:
1. The core does not support 128-bit x8 8.0 Gb/s configuration and 500 MHz user clock frequency.
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Figure 9-4 shows the various components of the PIO design, which is separated into four
main parts: the TX Engine, RX Engine, Memory Access Controller, and Power Management
Turn-Off Controller.

Virtex-7 FPGA Geng3 Integrated Block for PCI Express (Configured as an Endpoint)
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PIO Operation

PIO Read Transaction

Figure 9-5 depicts a Back-to-Back Memory Read request to the PIO design. The receive
engine deasserts m_axis_rx_tready as soon as the first TLP is completely received. The
next Read transaction is accepted only after compl_done_o is asserted by the transmit
engine, indicating that Completion for the first request was successfully transmitted.
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Figure 9-5: Back-to-Back Read Transactions
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PIO Write Transaction

Figure 9-6 depicts a back-to-back Memory Write to the PIO design. The next Write
transaction is accepted only after wr_busy_o is deasserted by the memory access unit,
indicating that data associated with the first request was successfully written to the
memory aperture.
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Figure 9-6: Back-to-Back Write Transactions
Device Utilization
Table 9-4 shows the PIO design FPGA resource utilization.
Table 9-4: PIO Design FPGA Resources
Resources Utilization
LUTs 300
Flip-Flops 500
Block RAMs 4
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Demonstration Test Bench

Root Port Model Test Bench for Endpoint

The PCI Express Root Port Model is a robust test bench environment that provides a test
program interface that can be used with the provided PIO design or with your design. The
purpose of the Root Port Model is to provide a source mechanism for generating
downstream PCI Express TLP traffic to stimulate the customer design, and a destination
mechanism for receiving upstream PCI Express TLP traffic from the customer design in a
simulation environment.

Source code for the Root Port Model is included to provide the model for a starting point
for the user test bench. All the significant work for initializing the configuration space of the
core, creating TLP transactions, generating TLP logs, and providing an interface for creating
and verifying tests are complete, allowing the user to dedicate efforts to verifying the
correct functionality of the design rather than spending time developing an Endpoint core
test bench infrastructure.

The Root Port Model consists of:

« Test Programming Interface (TPI), which allows the user to stimulate the Endpoint
device for the PCI Express

« Example tests that illustrate how to use the test program TPI

« Verilog source code for all Root Port Model components, which allow the user to
customize the test bench
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Figure 9-7 illustrates the illustrates the Root Port Model coupled with the PIO design.
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Figure 9-7: Root Port Model and Top-Level Endpoint

Architecture

The Root Port Model consists of these blocks, illustrated in Figure 9-7:

« dsport (Root Port)

e usrapp_tx

s usrapp_rx

« usrapp_com (Verilog only)

The usrapp_tx and usrapp_rx blocks interface with the dsport block for transmission and

reception of TLPs to/from the Endpoint Design Under Test (DUT). The Endpoint DUT
consists of the Endpoint for PCle and the PIO design (displayed) or customer design.
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The usrapp_tx block sends TLPs to the dsport block for transmission across the PCI Express
Link to the Endpoint DUT. In turn, the Endpoint DUT device transmits TLPs across the PCI
Express Link to the dsport block, which are subsequently passed to the usrapp_rx block. The
dsport and core are responsible for the data link layer and physical link layer processing
when communicating across the PCI Express logic. Both usrapp_tx and usrapp_rx utilize the
usrapp_com block for shared functions, for example, TLP processing and log file outputting.
Transaction sequences or test programs are initiated by the usrapp_tx block to stimulate the
Endpoint device's fabric interface. TLP responses from the Endpoint device are received by
the usrapp_rx block. Communication between the usrapp_tx and usrapp_rx blocks allow the
usrapp_tx block to verify correct behavior and act accordingly when the usrapp_rx block has
received TLPs from the Endpoint device.

Simulating the Design

Simulation script files are provided with the model to facilitate simulation with various
simulation tools:

e vsim -do simulate_mti.do

e ./simulate_vcs.sh
e ./simulate_ncsim.sh
e ./simulate_isim.sh

The example simulation script file is located in this directory:
<project_dir>/<component_name>/simulation/functional

Instructions for simulating the PIO design using the Root Port Model are provided in
Programmed Input/Output: Endpoint Example Design, page 271.

Scaled Simulation Timeouts

The simulation model of the Gen3 Integrated Block for PCle uses scaled down times during
link training to allow for the link to train in a reasonable amount of time during simulation.
According to the PCI Express Specification, rev. 3.0, there are various timeouts associated
with the link training and status state machine (LTSSM) states. The Gen3 Integrated Block
scales these timeouts by a factor of 256 in simulation, except in the Recovery Speed_1
LTSSM state, where the timeouts are not scaled.
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Test Selection

Table 9-5 describes the tests provided with the Root Port Model, followed by specific
sections for VHDL and Verilog test selection.

Table 9-5: Root Port Model Provided Tests

Test Name Test in Verilog Description
sample_smoke_test0 Verilog and Issues a PCI Type 0 Configuration Read TLP and waits for the
VHDL completion TLP; then compares the value returned with the

expected Device/Vendor ID value.

sample_smoke_testl Verilog Performs the same operation as sample_smoke_test0 but
makes use of expectation tasks. This test uses two separate test
program threads: one thread issues the PCI Type 0
Configuration Read TLP and the second thread issues the
Completion with Data TLP expectation task. This test illustrates
the form for a parallel test that uses expectation tasks. This test
form allows for confirming reception of any TLPs from your
design. Additionally, this method can be used to confirm
reception of TLPs when ordering is unimportant.

Verilog Test Selection

The Verilog test model used for the Root Port Model lets the user specify the name of the
test to be run as a command line parameter to the simulator.

To change the test to be run, change the value provided to TESTNAME, which is defined in
the test files sample_testsl.v and pio_tests.v. This mechanism is used for
ModelSim. ISim uses the -testplusarg options to specify TESTNAME, for example:
demo_tb.exe -guil -view wave.wcfg -wdb wave_isim -tclbatch
isim_cmd.tcl -testplusarg TESTNAME=sample_smoke_testO.

Waveform Dumping

Table 9-6 describes the available simulator waveform dump file formats, provided in the
simulator native file format. The same mechanism is used for ModelSim.

Table 9-6: Simulator Dump File Format

Simulator Dump File Format
Mentor Graphics ModelSim .ved
Synopsys VCS or Synopsys VCS_MX .vpd
Cadence IES .trn
Xilinx ISE Simulator (ISim) .wbd
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Verilog Flow

The Root Port Model provides a mechanism for outputting the simulation waveform to file
by specifying the +dump_all command line parameter to the simulator.

Output Logging

When a test fails on the example or customer design, the test programmer debugs the
offending test case. Typically, the test programmer inspects the wave file for the simulation
and cross-reference this to the messages displayed on the standard output. Because this
approach can be very time consuming, the Root Port Model offers an output logging
mechanism to assist the tester with debugging failing test cases to speed the process.

The Root Port Model creates three output files (tx.dat, rx.dat, and error.dat) during
each simulation run. Log files rx.dat and tx.dat each contain a detailed record of every
TLP that was received and transmitted, respectively, by the Root Port Model.

TIP: With an understanding of the expected TLP transmission during a specific test case, you can more
O easily isolate the failure.

The log file error.dat is used in conjunction with the expectation tasks. Test programs
that utilize the expectation tasks generate a general error message to standard output.
Detailed information about the specific comparison failures that have occurred due to the
expectation error is located within error.dat.

Parallel Test Programs
There are two classes of tests are supported by the Root Port Model:

« Sequential tests. Tests that exist within one process and behave similarly to sequential
programs. The test depicted in Test Program: pio_writeReadBack_test0, page 286 is an
example of a sequential test. Sequential tests are very useful when verifying behavior
that have events with a known order.

« Parallel tests. Tests involving more than one process thread. The test
sample_smoke_testl is an example of a parallel test with two process threads. Parallel
tests are very useful when verifying that a specific set of events have occurred, however
the order of these events are not known.

A typical parallel test uses the form of one command thread and one or more expectation
threads. These threads work together to verify a device's functionality. The role of the
command thread is to create the necessary TLP transactions that cause the device to receive
and generate TLPs. The role of the expectation threads is to verify the reception of an
expected TLP. The Root Port Model TPI has a complete set of expectation tasks to be used
in conjunction with parallel tests.
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Because the example design is a target-only device, only Completion TLPs can be expected
by parallel test programs while using the PIO design. However, the full library of expectation
tasks can be used for expecting any TLP type when used in conjunction with the customer's
design (which can include bus-mastering functionality).

Test Description

The Root Port Model provides a Test Program Interface (TPI). The TPI provides the means to
create tests by invoking a series of Verilog tasks. All Root Port Model tests should follow the
same six steps:

Perform conditional comparison of a unique test name
Set up master timeout in case simulation hangs

Wait for Reset and link-up

1

2

3

4. Initialize the configuration space of the Endpoint

5. Transmit and receive TLPs between the Root Port Model and the Endpoint DUT
6

Verify that the test succeeded
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Test Program: pio_writeReadBack_test0

1. else if (testname == "pio_writeReadBack_testl"

2. begin

3. // This test performs a 32 bit write to a 32 bit Memory space and performs a read back

4. TSK_SIMULATION_TIMEOUT(10050) ;

5. TSK_SYSTEM_INITIALIZATION;

6. TSK_BAR_INIT;

7. for (ii = 0; ii <= 6; 1ii = ii + 1) begin

8. if (BAR_INIT_P_BAR_ENABLED[ii] > 2'b00) // bar is enabled

9. case (BAR_INIT_P_BAR_ENABLED[ii])

10. 2'pb01 : // IO SPACE

11. begin

12. Sdisplay (" [%t] : NOTHING: to IO 32 Space BAR %x", Srealtime, 1ii);

13. end

14. 2'bl0 : // MEM 32 SPACE

15. begin

16. Sdisplay (" [%t] : Transmitting TLPs to Memory 32 Space BAR %x",

17. $realtime, ii);

18. L i

19. // Event Memory Write 32 bit TLP

20. YR L

21. DATA_STORE[0] = 8'h04

22. DATA_STORE[1] = 8'h03

23. DATA_STORE[2] = 8'h02

24 . DATA_STORE[3] = 8'h01

25. P_READ_DATA = 32'hffff ffff; // make sure P_READ_DATA has known initial value

26. TSK_TX_MEMORY_WRITE_32 (DEFAULT_TAG, DEFAULT TC, 10'dl, BAR_INIT P_BAR[ii][31:0] , 4'hF,
4'hF, 1'b0);

27. TSK_TX_CLK_EAT (10) ;

28. DEFAULT_TAG = DEFAULT TAG + 1;

29. /e

30. // Event Memory Read 32 bit TLP

31. /=

32. TSK_TX_MEMORY_READ_32 (DEFAULT_TAG, DEFAULT TC, 10'dl, BAR_INIT_P_BAR[ii][31:0], 4'hF,
4'hF) ;

33. TSK_WAIT_FOR_READ_DATA;

34. if (P_READ_DATA != {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1l], DATA_STORE[O0] 1})

35. begin

36. Sdisplay (" [%t] : Test FAILED --- Data Error Mismatch, Write Data %$x != Read Data %x",
Srealtime, {DATA_STORE([3], DATA_STORE[2], DATA_STORE[1l], DATA_STORE[O]}, P_READ_DATA) ;

37. end

38. else

39. begin

40 Sdisplay (" [%t] : Test PASSED --- Write Data: %$x successfully received", S$realtime,
P_READ_DATA) ;

41 end
Expanding the Root Port Model
The Root Port Model was created to work with the PIO design, and for this reason is tailored
to make specific checks and warnings based on the limitations of the PIO design. These
checks and warnings are enabled by default when the Root Port Model is generated by the
CORE Generator tool. However, these limitations can be disabled so that they do not affect
the customer's design.
Because the PIO design was created to support at most one I/O BAR, one Mem64 BAR, and
two Mem32 BARs (one of which must be the EROM space), the Root Port Model by default
makes a check during device configuration that verifies that the core has been configured
to meet this requirement. A violation of this check causes a warning message to be
displayed as well as for the offending BAR to be gracefully disabled in the test bench. This
check can be disabled by setting the pio_check_design variable to zero in the
pci_exp_usrapp_tx.v file.
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Root Port Model TPI Task List

Chapter 9: Example Design and Model Test Bench for Endpoint Configuration

The Root Port Model TPI tasks include these tasks, which are further defined in these tables.

« Table 9-7, Test Setup Tasks

« Table 9-8, TLP Tasks

« Table 9-9, BAR Initialization Tasks
» Table 9-10, Example PIO Design Tasks

« Table 9-11, Expectation Tasks

Table 9-7: Test Setup Tasks

Name

Input(s)

Description

TSK_SYSTEM_INITIALIZATION

None

Waits for transaction interface reset and
link-up between the Root Port Model
and the Endpoint DUT.

This task must be invoked prior to the
Endpoint core initialization.

TSK_USR_DATA_SETUP_SEQ

None

Initializes global 4096 byte DATA_STORE
array entries to sequential values from
zero to 4095.

TSK_TX_CLK_EAT

clock count

31:30

Waits clock_count transaction interface
clocks.

TSK_SIMULATION_TIMEOUT

timeout

310

Sets master simulation timeout value in
units of transaction interface clocks.
This task should be used to ensure that
all DUT tests complete.

Table 9-8: TLP Tasks

Name

Input(s)

Description

TSK_TX_TYPEO_CONFIGURATION_READ

tag_
reg_addr_
first_dw_be_

7:0 | Waits for transaction interface reset and

11:0

link-up between the Root Port Model and

3.0 | the Endpoint DUT.

This task must be invoked prior to Endpoint
core initialization.

TSK_TX_TYPE1_CONFIGURATION_READ

tag_
reg_addr_
first_dw_be_

7:0 | Sends a Type 1 PCI Express Config Read TLP

11:0

from Root Port Model to reg_addr_ of

3-0 | Endpoint DUT with tag_ and first_dw_be_

inputs.

CpID returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.
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Table 9-8: TLP Tasks (Cont’d)

Chapter 9: Example Design and Model Test Bench for Endpoint Configuration

comp_status_

Name Input(s) Description
TSK_TX_TYPEO_CONFIGURATION_WRITE tag_ 7:0 | Sends a Type 0 PCI Express Config Write TLP
reg_addr_ 11:0 | from Root Port Model to reg_addr_ of
reg_data 31:0 Endpoint DUT with tag_ and first_dw_be_
first_dw_be_ 3:0 | Inputs. ,
Cpl returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.
TSK_TX_TYPE1_CONFIGURATION_WRITE tag_ 7:0 | Sends a Type 1 PCI Express Config Write TLP
reg_addr_ 11:0 | from Root Port Model to reg_addr_ of
reg_data_ 31:0 !Endpoint DUT with tag_ and first_dw_be_
first_dw_be_ 3:0 | Inputs. _
Cpl returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.
TSK_TX_MEMORY_READ_32 tag_ 7:0 | Sends a PCI Express Memory Read TLP from
tc_ 2:0 | Root Port to 32-bit memory address addr_
len 10:0 | of Endpoint DUT.
addr 31:0 | CpID returned from the Endpoint DUT uses
last ;Iw be 3:0 the contents of global COMPLETE_ID_CFG as
T . the completion ID.
first_dw_be_ 3:0
TSK_TX_MEMORY_READ_64 tag_ 7:0 | Sends a PCI Express Memory Read TLP from
tc 2:0 | Root Port Model to 64-bit memory address
Ie; 10:0 | addr_ of Endpoint DUT.
add_r 63:0 | CpID returned from the Endpoint DUT uses
last ;Iw be 3:0 the contents'ofglobal COMPLETE_ID_CFG as
first_ dw_ be_ 30 the completion ID.
TSK_TX_MEMORY_WRITE_32 tag_ 7:0 | Sends a PCI Express Memory Write TLP from
tc 2:0 | Root Port Model to 32-bit memory address
len 10:0 | addr_ of Endpoint DUT.
add_r 31:0 | CpID returned from the Endpoint DUT uses
last ;Iw be 3:0 the contents of global COMPLETE_ID_CFG as
T 30 the completion ID.
first_dw_be_ _ The global DATA_STORE byte array is used
ep- to pass write data to task.
TSK_TX_MEMORY_WRITE_64 tag_ 7:0 | Sends a PCI Express Memory Write TLP from
tc 2:0 | Root Port Model to 64-bit memory address
len 10:0 | addr_ of Endpoint DUT.
add_r 63:0 | CpID returned from the Endpoint DUT uses
last aw be 3:0 the contents of global COMPLETE_ID_CFG as
T .~ | the completion ID.
first_dw_be_ 3:0 .
_ | The global DATA_STORE byte array is used
ep_ to pass write data to task.
TSK_TX_COMPLETION tag_ 7:0 | Sends a PCI Express Completion TLP from
tc 2:0 | Root Port Model to the Endpoint DUT using
len 10:0 | global COMPLETE_ID_CFG as the
- 5.0 | completion ID.
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Table 9-8: TLP Tasks (Cont’d)
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Name Input(s) Description

TSK_TX_COMPLETION_DATA tag_ 7:0 | Sends a PCI Express Completion with Data
tc 2:0 | TLP from Root Port Model to the Endpoint
len 10:0 | DUT using global COMPLETE_ID_CFG as the
byt; count 11:0 | completion ID.

Iowe_r addr 6:0 | The global DATA_STORE byte array is used
- 2.0 | topass completion data to task.

comp_status

ep_ -

TSK_TX_MESSAGE tag_ 7:0 | Sends a PCI Express Message TLP from Root
tc_ 2:0 | Port Model to Endpoint DUT.
len_ 10:0 | Completion returned from the Endpoint
data 63:0 | DUT uses the contents of global
messa 2:0 COMPLETE_ID_CFG as the completion ID.

ge_rtg
message_code 7:0

TSK_TX_MESSAGE_DATA tag_ 7:0 | Sends a PCI Express Message with Data TLP
tc_ 2:0 | from Root Port Model to Endpoint DUT.
len 10:0 | The global DATA_STORE byte array is used
dat; 63:0 | to pass message data to task.
message_rtg 2:0 | Completion returned from the Endpoint
message_code 7.0 | DUT uses the contents of global

- COMPLETE_ID_CFG as the completion ID.

TSK_TX_IO_READ tag_ 7:0 | Sends a PCI Express I/O Read TLP from Root
addr_ 31:0 | Port Model to I/O address addr_[31:2] of the
first dw be 3-0 | Endpoint DUT.

T CplID returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_IO_WRITE tag_ 7:0 | Sends a PCI Express I/O Write TLP from Root
addr_ 31:0 | Port Model to I/O address addr_[31:2] of the
first dw be 3-0 | Endpoint DUT.
data | 310 | CpID returned from the Endpoint DUT uses

the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_BAR_READ bar_index 2:0 | Sends a PCI Express one Dword Memory 32,
byte_offset 31:0 | Memory 64, or I/O Read TLP from the Root
tag 7.0 | Port Model to the target address
te - 5.0 | corresponding to offset byte_offset from

BAR bar_index of the Endpoint DUT. This
task sends the appropriate Read TLP based
on how BAR bar_index has been configured
during initialization. This task can only be
called after TSK_BAR_INIT has successfully
completed.

CpID returned from the Endpoint DUT use
the contents of global COMPLETE_ID_CFG as
the completion ID.
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Table 9-8: TLP Tasks (Cont’d)

Name Input(s) Description
TSK_TX_BAR_WRITE bar_index 2:0 | Sends a PCI Express one Dword Memory 32,
byte_offset 31:0 | Memory 64, or I/O Write TLP from the Root
tag 7.0 | Port to the target address corresponding to
¢ - 2:0 offset byte_offset from BAR bar_index of the
c " | Endpoint DUT.
data_ 31:0

This task sends the appropriate Write TLP
based on how BAR bar_index has been
configured during initialization. This task
can only be called after TSK_BAR_INIT has
successfully completed.

TSK_WAIT_FOR_READ_DATA None Waits for the next completion with data TLP
that was sent by the Endpoint DUT. On
successful completion, the first Dword of
data from the CplID is stored in the global
P_READ_DATA. This task should be called
immediately following any of the read tasks
in the TPI that request Completion with Data
TLPs to avoid any race conditions.

By default this task locally times out and
terminate the simulation after 1000
transaction interface clocks. The global
cpld_to_finish can be set to zero so that
local time out returns execution to the
calling test and does not result in simulation
timeout. For this case test programs should
check the global cpld_to, which when set to
one indicates that this task has timed out
and that the contents of P_READ_DATA are
invalid.
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Table 9-9: BAR Initialization Tasks

Name Input(s) Description

TSK_BAR_INIT None Performs a standard sequence of Base Address Register
initialization tasks to the Endpoint device using the PCI
Express fabric. Performs a scan of the Endpoint's PCI BAR
range requirements, performs the necessary memory and
I/O space mapping calculations, and finally programs the
Endpoint so that it is ready to be accessed.

On completion, the user test program can begin memory
and I/0 transactions to the device. This function displays
to standard output a memory and I/O table that details
how the Endpoint has been initialized. This task also
initializes global variables within the Root Port Model that
are available for test program usage. This task should only
be called after TSK_SYSTEM_INITIALIZATION.

TSK_BAR_SCAN None Performs a sequence of PCI Type 0 Configuration Writes
and Configuration Reads using the PCI Express logic to
determine the memory and I/O requirements for the
Endpoint.

The task stores this information in the global array
BAR_INIT_P_BAR_RANGE[]. This task should only be called
after TSK_SYSTEM_INITIALIZATION.

TSK_BUILD_PCIE_MAP None Performs memory and I/O mapping algorithm and
allocates Memory 32, Memory 64, and I/O space based on
the Endpoint requirements.

This task has been customized to work in conjunction with
the limitations of the PIO design and should only be called
after completion of TSK_BAR_SCAN.

TSK_DISPLAY_PCIE_MAP None Displays the memory mapping information of the Endpoint
core PCI Base Address Registers. For each BAR, the BAR
value, the BAR range, and BAR type is given. This task
should only be called after completion of
TSK_BUILD_PCIE_MAP.

Table 9-10: Example PIO Design Tasks

Name Input(s) Description

TSK_TX_READBACK_CONFIG None Performs a sequence of PCI Type 0 Configuration Reads
to the Endpoint device's Base Address Registers, PCI
Command Register, and PCle Device Control Register
using the PCI Express logic.

This task should only be called after
TSK_SYSTEM_INITIALIZATION.

TSK_MEM_TEST_DATA_BUS bar_index 2:0 Tests whether the PIO design FPGA block RAM data bus
interface is correctly connected by performing a 32-bit
walking ones data test to the I/O or memory address
pointed to by the input bar_index.

For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.
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Table 9-10: Example PIO Design Tasks (Cont’d)

Name Input(s) Description
TSK_MEM_TEST_ADDR_BUS bar_index 2:0 | Tests whether the PIO design FPGA block RAM address
nBytes 31:0 | bus interface is accurately connected by performing a

walking ones address test starting at the [/O or memory
address pointed to by the input bar_index.

For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire
size of the individual block RAM.

TSK_MEM_TEST_DEVICE bar_index 2:0 | Tests the integrity of each bit of the PIO design FPGA
nBytes 31:0 | block RAM by performing an increment/decrement test
on all bits starting at the block RAM pointed to by the
input bar_index with the range specified by input
nBytes.

For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire
size of the individual block RAM.

TSK_RESET Reset 0 Initiates PERSTn. Forces the PERSTn signal to assert the
reset. Use TSK_RESET (1'b1) to assert the reset and
TSK_RESET (1'b0) to release the reset signal.

TSK_MALFORMED malformed 7:0 | Control bits for creating malformed TLPs:
_bits + 0001: Generate Malformed TLP for I/O Requests and
Configuration Requests called immediately after this
task

+ 0010: Generate Malformed Completion TLPs for
Memory Read requests received at the Root Port
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Table 9-11: Expectation Tasks
Name Input(s) Output Description
TSK_EXPECT_CPLD traffic_class 2:0 Expect Waits for a Completion with
td - status Data TLP that matches
ep _ traffic_class, td, ep, attr, length,
attr 1:0 and payload.
. Returns a 1 on successful
10:0
length ) . completion; 0 otherwise.
completer_id 15:0
completer_status 2:0
bcm .
byte_count 110
requester_id 150
7:0
tag 60
address_low ’
TSK_EXPECT_CPL traffic_class 2:0 Expect Waits for a Completion without
td - status Data TLP that matches
ep _ traffic_class, td, ep, attr, and
attr 1:0 length.
. . Returns a 1 on successful
15:0
completer_id 5 completion; 0 otherwise.
completer_status 0
bcm -
byte_count 11:0
requester_id 15:0
tag 7:0
address_low 6:0
TSK_EXPECT_MEMRD traffic_class 2:0 Expect Waits for a 32-bit Address
td - status Memory Read TLP with
ep i, matching header fields.
attr 1:0 Returns a 1 on successful
lenath 10:0 completion; 0 otherwise. This
9 ) 150 task can only be used in
requester_id 7"() conjunction with Bus Master
tag : designs.
last_dw_be 3:0
first_dw_be 3:0
address 230
TSK_EXPECT_MEMRD64 traffic_class 2:0 Expect Waits for a 64-bit Address
td - status Memory Read TLP with
ep _ matching header fields. Returns
attr 1:0 a 1 on successful completion; 0
I N 16.0 otherwise.
engt . 15:0 This task can only be used in
requester_id 0 conjunction with Bus Master
tag ' designs.
last_dw_be 3.0
first_dw_be 3:0
address 61:0
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Table 9-11: Expectation Tasks (Cont’d)
Name Input(s) Output Description
TSK_EXPECT_MEMWR traffic_class 2:0 Expect Waits for a 32-bit Address
td - status Memory Write TLP with
ep B, matching header fields. Returns
1:0 a 1 on successful completion; 0
attr : ,
) otherwise.
length 10:0 hi ‘ M b q4i
. 15:0 This task can only be used in
requester_id 70 conjunction with Bus Master
tag ' designs.
last_dw_be 3:0
first_dw_be 3:0
address 29:0
TSK_EXPECT_MEMWR64 traffic_class 2:0 Expect Waits for a 64-bit Address
td - status Memory Write TLP with
ep i matching header fields. Returns
attr 1:0 a 1 on successful completion; 0
] otherwise.
length 10:0 hi K M b qi
) 15:0 This task can only be used in
requester_id 70 conjunction with Bus Master
tag : designs.
last_dw_be 3:0
first_dw_be 3:0
address 61:0
TSK_EXPECT_IOWR td - Expect Waits for an I/O Write TLP with
ep - status matching header fields. Returns
requester_id 15:0 alon §uccessfu| completion; 0
7:0 otherwise.
tag ' This task ly be used i
first_dw_be 3:0 is task can only be used in
. conjunction with Bus Master
address 31:0 designs.
data 31:.0

Endpoint Model Test Bench for Root Port

The Endpoint model test bench for the Virtex-7 FPGAs Integrated Block for PCI Express in
Root Port configuration is a simple example test bench that connects the Configurator
example design and the PCI Express Endpoint model allowing the two to operate like two
devices in a physical system. As the Configurator example design consists of logic that
initializes itself and generates and consumes bus traffic, the example test bench only
implements logic to monitor the operation of the system and terminate the simulation.

The Endpoint model test bench consists of:

« Verilog or VHDL source code for all Endpoint model components

+ PIO slave design
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Architecture
The Endpoint model consists of these blocks:

« PCI Express Endpoint (Gen3 Integrated Block for PCle in Endpoint configuration) model.
« PIO slave design, consisting of:

o PIO_RX_ENGINE

o PIO_TX_ENGINE

- PIO_EP_MEM

- PIO_TO_CTRL

The PIO_RX_ENGINE and PIO_TX_ENGINE blocks interface with the ep block for reception
and transmission of TLPs from/to the Root Port Design Under Test (DUT). The Root Port DUT
consists of the Integrated Block for PCI Express configured as a Root Port and the
Configurator Example Design, which consists of a Configurator block and a PIO Master
design, or customer design.

The PIO slave design is described in detail in Programmed Input/Output: Endpoint Example
Design, page 271.

Simulating the Design

A simulation script file is provided with the model to facilitate simulation with the Mentor
Graphics ModelSim simulator:

e simulate_mti.do

The example simulation script files are located in this directory:
<project_dir>/<component_name>/simulation/functional

Note: For Cadence IES users, the work construct must be manually inserted into the cds.1ib file:

DEFINE WORK WORK.

Scaled Simulation Timeouts

The simulation model of the Gen3 Integrated Block for PCle uses scaled down times during
link training to allow for the link to train in a reasonable amount of time during simulation.
According to the PCI Express Specification, rev. 3.0, there are various timeouts associated
with the link training and status state machine (LTSSM) states. The Gen3 Integrated Block for
PCle scales these timeouts by a factor of 256 in simulation, except in the Recovery Speed_1
LTSSM state, where the timeouts are not scaled.

Gen3 Integrated Block for PCle (v1.3) www.xilinx.com 295
PG023 October 16, 2012



http://www.xilinx.com

& XILINX. Chapter 9: Example Design and Model Test Bench for Endpoint Configuration

Waveform Dumping

Table 9-12 describes the available simulator waveform dump file format, which is provided
in the simulator native file format.

Table 9-12: Simulator Dump File Format

Simulator Dump File Format

ModelSim .ved

The Endpoint model test bench provides a mechanism for outputting the simulation
waveform to file by specifying the +dump_all command line parameter to the simulator.

For example, the script file simulate_ncsim. sh (used to start the Cadence IES simulator)
can indicate to the Endpoint model that the waveform should be saved to a file using this
command line:

ncsim work.boardx01l +dump_all

Output Logging

The test bench outputs messages, captured in the simulation log, indicating the time at
which these occur:

e user_reset deasserted

« user_Ink_up asserted

« cfg_done asserted by the Configurator

« pio_test_finished asserted by the PIO Master

« Simulation Timeout (if pio_test_finished or pio_test_failed never asserted)

PIPE MODE Simulation

The PIPE Simulation mode allows you to run the simulations without GT block, which speeds
up simulations.

To run the simulations using the PIPE interface to speed up the simulation, generate the
core using the Enable PIPE simulation option, as shown on the Basic page of the
Customize IP dialog box described in Customizing the Core using the Vivado IP Catalog.
With this option, the PIPE interface of the core top module in the PCle example design is
connected to PIPE interface of the model.

IMPORTANT: A new pcie3_7x_vl1_3_gt_top_pipe.v file is created in the simulation directory,
ﬁ and the file replaces the GT block for PIPE mode simulation.
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To run simulations using GT block with the same core, define ENABLE_GT during run time
so that the original GT block is instantiated in the core top module and simulations are run
using the GT block. Comments are included in the simulation scripts to define which
parameters need to be passed in order to run the simulations using GT block.

O TIP: Implementation is always run with the GT block. The PIPE mode is only for simulation.

Implementation

Implementing the Example Design

After generating the core, the netlists and the example design can be processed using the
Xilinx implementation tools. The generated output files include scripts to assist in running
the Xilinx software.

To implement the example design:
Open a command prompt or terminal window and type:
Windows

ms-dos> cd <project_dir>\<component_name>\implement
ms-dos> implement.bat

Linux

% cd <project_dir>/<component_name>/implement
% ./implement.sh

These commands execute a script that synthesizes, builds, maps, and place-and-routes the
example design, and then generates a post-par simulation model for use in timing
simulation. The resulting files are placed in the results directory and execute these
processes:

1. Removes data files from the previous runs.

2. Synthesizes the example design using XST based on the flow settings in the Project
Options window.
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3. ngdbuild: Builds a Xilinx design database for the example design.

o Inputs:
Part-Package-Speed Grade selection:
XC7VA485T-FFG1157-3

Example design UCF:

xilinx_pcie_2_1_ep_7x_01_lane_genl_xc7v485t-ffgll57-3-PCIE_X0YO0.ucf
map: Maps design to the selected FPGA using the constraints provided.
par: Places cells onto FPGA resources and routes connectivity.

trce: Performs static timing analysis on design using constraints specified.

N o uoA

netgen: Generates a logical Verilog HDL representation of the design and an SDF file
for post-layout verification.

These FPGA implementation related files are generated in the results directory:

* routed.v
Verilog functional model.

e routed.sdf
Timing model Standard Delay File.

* mapped.mrp
Xilinx map report.

* routed.par
Xilinx place and route report.

* routed.twr
Xilinx timing analysis report.

Simulation

Simulating the Example Design

The example design provides a quick way to simulate and observe the behavior of the core.
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Endpoint Configuration

The simulation environment provided with the LogiCORE™ IP Gen3 Integrated Block for
PCle core in Endpoint configuration performs simple memory access tests on the PIO
example design. Transactions are generated by the Root Port Model and responded to by
the PIO example design.

« PCI Express Transaction Layer Packets (TLPs) are generated by the test bench transmit
User Application (pci_exp_usrapp_tx). As it transmits TLPs, it also generates a log
file, tx.dat.

« PCI Express TLPs are received by the test bench receive User Application
(pci_exp_usrapp_rx). As the User Application receives the TLPs, it generates a log
file, rx.dat.

For more information about the test bench, see Root Port Model Test Bench for Endpoint,
page 280.

Setting Up for Simulation

To run the gate-level simulation, the Xilinx Simulation Libraries must be compiled for the
user system. See the Compiling Xilinx Simulation Libraries (COMPXLIB) in the Xilinx ISE
Synthesis and Verification Design Guide and the Xilinx ISE Software Manuals and Help.
Documents can be downloaded from www.xilinx.com/support/software_manuals.htm.

Simulator Requirements

Virtex-7 FPGA designs require a Verilog LRM-IEEE 1364-2005 encryption-compliant
simulator. This core supports these simulators:

« Mentor Graphics ModelSim
« Cadence IES
* Synopsys VCS

*  Xilinx ISim

Running the Simulation

The simulation scripts provided with the example design support pre-implementation (RTL)
simulation. The existing test bench can be used to simulate with a post-implementation
version of the example design.
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The pre-implementation simulation consists of these components:

« Verilog model of the test bench

» Verilog RTL example design

« The Verilog model of the Gen3 Integrated Block for PCle
1. To run the simulation, go to this directory:

<project_dir>/<component_name>/simulation/functional

2. Launch the simulator and run the script that corresponds to the user simulation tool:

ModelSim > do simulate_mti.do
vsim -do simulate_mti.do
./simulate_ncsim.sh
./simulate_vcs.sh

./simulate_isim.sh
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Note: For information about the availability of Root Port functionality, contact Xilinx. See Technical
Support, page 382.

Configurator Example Design

The Configurator example design, included with the Xilinx® Virtex-7 FPGA Gen3 Integrated
Block for PCI Express® in Root Port configuration generated by the CORE Generator™ tool,
is a synthesizable, lightweight design that demonstrates the minimum setup required for
the integrated block in Root Port configuration to begin application-level transactions with
an Endpoint.

System Overview

PCI Express devices require setup after power-on, before devices in the system can begin
application specific communication with each other. Minimally, two devices connected via a
PCI Express Link must have their Configuration spaces initialized and be enumerated to
communicate.

Root Ports facilitate PCI Express enumeration and configuration by sending Configuration
Read (CfgRd) and Write (CfgWr) TLPs to the downstream devices such as Endpoints and
Switches to set up the configuration spaces of those devices. When this process is
complete, higher-level interactions, such as Memory Reads (MemRd TLPs) and Writes
(MemWr TLPs), can occur within the PCI Express System.

The Configurator example design described herein performs the configuration transactions
required to enumerate and 