
Virtex-7 FPGA Gen3
Integrated Block for
PCI Express v3.0
LogiCORE IP Product Guide

Vivado Design Suite

PG023 November 19, 2014

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 2
PG023 November 19, 2014

Table of Contents
IP Facts

Chapter 1: Overview
Feature Summary. 7
Applications . 8
Unsupported Features. 8
Licensing and Ordering Information . 9

Chapter 2: Product Specification
Standards Compliance . 10
Resource Utilization. 10
Block Selection . 11
Port Descriptions . 13
Attribute Descriptions . 64
Configuration Space. 67

Chapter 3: Designing with the Core
General Design Guidelines . 75
System Clocking . 75
Clocking Requirements . 79
Resets . 79
Shared Logic . 81
AXI4-Stream Interface Description . 87
Interface Operation . 94
Power Management . 164
Generating Interrupt Requests . 167
Designing with Configuration Space Registers and Configuration Interface 171
Link Training: 2-Lane, 4-Lane, and 8-Lane Components . 173
Lane Reversal . 174
Tandem Configuration. 175
Known Restrictions . 199

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=2

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 3
PG023 November 19, 2014

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 202
Constraining the Core . 231
Simulation . 238
Synthesis and Implementation . 240

Chapter 5: Detailed Example Design
Overview of the Example Design . 241
Simulating the Example Design. 253
Synthesizing and Implementing the Example Design . 254
Directory and File Contents. 254

Chapter 6: Test Bench
Root Port Model Test Bench for Endpoint . 263
Endpoint Model Test Bench for Root Port . 276

Appendix A: Migrating and Upgrading
Migrating to the Vivado Design Suite. 279
Upgrading in the Vivado Design Suite . 279

Appendix B: Managing Receive-Buffer Space for Inbound Completions
General Considerations and Concepts . 284
Methods of Managing Completion Space . 286

Appendix C: Debugging
Finding Help on Xilinx.com . 291
Debug Tools . 293
Simulation Debug. 296
Hardware Debug . 297
FPGA Configuration . 308

Appendix D: Additional Resources and Legal Notices
Xilinx Resources . 317
References . 317
Revision History . 318
Please Read: Important Legal Notices . 319

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=3

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 4
PG023 November 19, 2014 Product Specification

Introduction
The Virtex®-7 FPGA Gen3 Integrated Block for
PCI Express® core is a high-bandwidth,
scalable, and reliable serial interconnect
building block solution for use with all Virtex-7
XT and HT FPGAs except the XC7VX485T. The
Integrated Block for PCI Express (PCIe®)
solution supports 1-lane, 2-lane, 4-lane, and
8-lane Endpoint configurations, including Gen1
(2.5 GT/s), Gen2 (5.0 GT/s) and Gen3 (8 GT/s)
speeds. It is compliant with PCI Express Base
Specification, rev. 3.0 [Ref 2]. This solution
supports the AXI4-Stream interface for the
customer user interface.

PCI Express offers a serial architecture that
alleviates many limitations of parallel bus
architectures by using clock data recovery
(CDR) and differential signaling. Using CDR (as
opposed to source synchronous clocking)
lowers pin count, enables superior frequency
scalability, and makes data synchronization
easier. PCI Express technology, adopted by the
PCI-SIG® as the next generation PCI™, is
backward-compatible to the existing PCI
software model.

With higher bandwidth per pin, low overhead,
low latency, reduced signal integrity issues, and
CDR architecture, the integrated block sets the
industry standard for a high-performance,
cost-eff icient PCIe solution.

The Virtex-7 Gen3 Integrated Block for PCIe
solution is compatible with industry-standard
application form factors such as the PCI Express
Card Electromechanical (CEM) v3.0 and the PCI
Industrial Computer Manufacturers Group
(PICMG) v3.4 specif ications [Ref 2].

For a list of features, see Feature Summary.

IP Facts

LogiCORE™ IP Facts Table

Core Specifics
Supported
Device
Family(1)

Virtex-7 XT and HT(2)

Supported
User Interfaces AXI4-Stream

Resources See Table 2-1

Provided with Core
Design Files Verilog

Example
Design Verilog

Test Bench Verilog

Constraints
File XDC

Simulation
Model Verilog

Supported
S/W Drivers N/A

Tested Design Flows(3)

Design Entry Vivado® Design Suite

Simulation For a list of supported simulators, see the
Xilinx Design Tools: Release Notes Guide

Synthesis Vivado Synthesis

Support

Provided by Xilinx @ www.xilinx.com/support

Notes:
1. For a complete listing of supported devices, see the Vivado IP

catalog.
2. Except for the XC7VX485T.
3. For the supported versions of the tools, see the

Xilinx Design Tools: Release Notes Guide.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;t=vivado+release+notes
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=4

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 5
PG023 November 19, 2014

Chapter 1

Overview
The Virtex®-7 FPGA Gen3 Integrated Block for PCI Express® core, also referred to as the
Gen3 Integrated Block for PCIe core, is a reliable, high-bandwidth, scalable serial
interconnect building block for use with Virtex-7 XT and HT FPGAs, except for the
XC7VX485T. The core instantiates the integrated block found in Virtex-7 XT and HT FPGAs.

The Gen3 Integrated Block for PCIe core is available with the Vivado® Design Suite.

For additional information about the core, see the Virtex-7 FPGA Gen3 Integrated Block for
PCI Express product page.

Figure 1-1 shows the interfaces for the core.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/7_Series_Gen_3_PCI_Express.htm
http://www.xilinx.com/products/intellectual-property/7_Series_Gen_3_PCI_Express.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=5

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 6
PG023 November 19, 2014

Chapter 1: Overview

X-Ref Target - Figure 1-1

Figure 1-1: Virtex-7 FPGA Gen3 Integrated Block for PCI Express Interfaces

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=6

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 7
PG023 November 19, 2014

Chapter 1: Overview

Feature Summary
The Gen3 Integrated Block for PCIe core is a high-bandwidth, scalable, and flexible
general-purpose I/O core for use with most Virtex-7 XT and HT FPGAs. The GTH transceivers
in the integrated block for PCI Express (PCIe®) solution support 1-lane, 2-lane, 4-lane, and
8-lane operation, running at 2.5 GT/s (Gen1), 5.0 GT/s (Gen2), and 8.0 GT/s (Gen3) line
speeds. Endpoint configurations are supported.

The customer user interface is compliant with the AMBA® AXI4-Stream interface. This
interface supports separate Requester, Completion, and Message interfaces. It allows for
flexible data alignment and parity checking. Flow control of data is supported in the receive
and transmit directions. The transmit direction additionally supports discontinuation of
in-progress transactions. Optional back-to-back transactions use straddling to provide
greater link bandwidth.

The key features of the Virtex-7 FPGA Gen3 Integrated Block for PCI Express (8.0 GT/s) core
are:

• High-performance, highly flexible, scalable, and reliable general-purpose I/O core

° Compliant with the PCI Express Base Specification, rev. 3.0 [Ref 2]

° Compatible with conventional PCI software model

° Compliant with PCI and PCI Express power management functions

• GTH transceivers

° 2.5 GT/s, 5.0 GT/s, and 8.0 GT/s line speeds

° 1-lane, 2-lane, 4-lane, and 8-lane operation

• Endpoint configuration

• Multiple Function and Single-Root I/O Virtualization in the Endpoint configuration

° Two Physical Functions

° Six Virtual Functions

• Standardized user interface(s)

° Compliant to AXI4-Stream

° Separate Requester, Completion, and Message interfaces

° Flexible Data Alignment

° Parity generation and checking on AXI4-Stream interfaces

° Easy-to-use packet-based protocol

° Full-duplex communication enabling

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=7

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 8
PG023 November 19, 2014

Chapter 1: Overview

° Optional back-to-back transactions to enable greater link bandwidth utilization

° Support for flow control of data and discontinuation of an in-process transaction in
transmit direction

° Support for flow control of data in receive direction

• Compliant with PCI and PCI Express power management functions

• Optional Tag Management feature

• Maximum transaction payload of up to 1024 bytes

• End-to-End Cyclic Redundancy Check (ECRC)

• Advanced Error Reporting (AER)

• Multi-Vector MSI for up to 32 vectors and MSI-X

• Atomic operations and TLP processing hints

Applications
The core architecture enables a broad range of computing and communications target
applications, emphasizing performance, cost, scalability, feature extensibility and
mission-critical reliability. Typical applications include:

• Data communications networks

• Telecommunications networks

• Broadband wired and wireless applications

• Network interface cards

• Chip-to-chip and backplane interface cards

• Server add-in cards for various applications

Unsupported Features
The integrated block does not implement the Address Translation Service, but allows its
implementation in external soft logic.

Switch ports and the Resizable BAR Extended Capability are not supported.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=8

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 9
PG023 November 19, 2014

Chapter 1: Overview

Licensing and Ordering Information
The LogiCORE™ IP Virtex-7 FPGA Gen3 Integrated Block for PCI Express core is provided at
no additional cost with the Xilinx® Vivado Design Suite under the terms of the Xilinx End
User License. Information about this and other Xilinx LogiCORE IP modules is available at
the Xilinx Intellectual Property page. For information about pricing and availability of other
Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=9

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 10
PG023 November 19, 2014

Chapter 2

Product Specification

Standards Compliance
The Virtex®-7 FPGA Gen3 Integrated Block for PCI Express® solution is compatible with
industry-standard application form factors such as the PCI Express Card Electromechanical
(CEM) v3.0 and the PCI Industrial Computer Manufacturers Group (PICMG) 3.4
specifications [Ref 2].

Resource Utilization
Resources required for the Gen3 Integrated Block for PCIe core have been estimated for the
Virtex-7 FPGA (Table 2-1). These values were generated using the Vivado® Design Suite.
The resources listed in Table 2-1 are for the default core configuration. (By default, the core
has x1 and Gen3 speed.)

Table 2-1: Virtex-7 FPGA Resource Estimates

Lanes GTHE2 FF(1) LUT(1) CMPS(2) RX Completion
Buffer Size (KB)

RX Request
Buffer Size

(KB)

TX Replay
Buffer Size

(KB)

Block RAM Usage

RAMB18 RAMB36

1 1 566 832

128-
1024

8

8 8

8

3

16 12

2 2 957 1384
8 8

16 12

4 4 1740 2500
8 8

16 12

8 8 3399 4818
8 8

16 12

Notes:
1. Numbers are for the default core configuration. Actual LUT and FF utilization values vary based on specif ic

configurations.
2. Capability Maximum Payload Size (CMPS).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=10

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 11
PG023 November 19, 2014

Chapter 2: Product Specification

Table 2-2 shows the BUFG usage by standalone PCIe core.

Block Selection
Table 2-3 lists the integrated block for PCI Express available for use in FPGAs containing
multiple integrated blocks. In some cases, not all integrated blocks can be used due to lack
of bonded transceiver sites adjacent to the integrated block.

Table 2-2: BUFG Usage

Links Speed
(Gb/s) Lane Width Interface Width

(Bits)
AXI - ST Interface
Frequency (MHz) BUFG usage

2.5 x1 64 62.5 3/32

2.5 x1 64 125 2/32

2.5 x1 64 250 3/32

2.5 x2 64 62.5 2/32

2.5 x2 64 125 2/32

2.5 x2 64 250 3/32

2.5 x4 64 125 2/32

2.5 x4 64 250 3/32

2.5 x8 64 250 3/32

2.5 x8 128 125 2/32

5.0 x1 64 62.5 3/32

5.0 x1 64 125 3/32

5.0 x1 64 250 3/32

5.0 x2 64 125 3/32

5.0 x2 64 250 3/32

5.0 x4 64 250 3/32

5.0 x4 128 125 3/32

5.0 x8 128 250 3/32

5.0 x8 256 125 3/32

8.0 x1 64 125 3/32

8.0 x1 64 250 4/32

8.0 x2 64 250 4/32

8.0 x2 128 125 3/32

8.0 x4 128 250 4/32

8.0 x4 256 125 3/32

8.0 x8 256 250 4/32

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=11

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 12
PG023 November 19, 2014

Chapter 2: Product Specification

Note: Not all SSI devices PCIe/MMCM site pair pass timing skew checks.

Note: Gen3 configuration requires a speed grade of -2.

Table 2-3: Available Integrated Blocks for PCI Express

Device Selection Integrated Block for PCI Express Location

Device Package X0Y0 X0Y1 X0Y2 X0Y3

XC7VX330T
FFG1157
FFG1761

Yes Yes

XC7VX415T
FFG1157
FFG1158
FFG1927

Yes Yes

XC7VX550T
FFG1158 Yes Yes

FFG1927 Yes Yes Yes

XC7VX690T

FFG1157
FFG1158
FFG1930

Yes Yes

FFG1761
FFG1926
FFG1927

Yes Yes Yes

XC7VX980T

FFG1926
FFG1928

Yes Yes Yes

FFG1930 Yes Yes

XC7VX1140T

FLG1926 Yes Yes Yes

FLG1928 Yes Yes Yes Yes

FLG1930 Yes Yes

XC7VH580T
HCG1155 Yes

HCG1931 Yes Yes

XC7VH870T HCG1932 Yes Yes Yes

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=12

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 13
PG023 November 19, 2014

Chapter 2: Product Specification

Port Descriptions
This section provides detailed port descriptions for the following interfaces:

• AXI4-Stream Core Interfaces

• Other Core Interfaces

AXI4-Stream Core Interfaces
In addition to status and control interfaces, the core has four AXI4-Stream interfaces used
to transfer and receive transactions. These interfaces are also described in detail in
Chapter 3, Designing with the Core.

Completer reQuest (CQ) Interface

The Completer reQuest (CQ) interface is used by the user application to deliver all received
requests from the link. Table 2-4 defines the ports in the CQ interface of the core. In the
Width column, DW denotes the configured data bus width (64, 128, or 256 bits)

Table 2-4: CQ Interface Port Descriptions

Port Direction Width Description

m_axis_cq_tdata Output DW/32

Transmit Data from the Completer reQuest Interface.
Only the lower 128 bits are to be used when the
interface width is 128 bits, and only the lower 64 bits
are to be used when the interface width is 64 bits.
Bits [255:128] are set permanently to 0 by the core
when the interface width is configured as 128 bits, and
bits [255:64] are set permanently to 0 when the
interface width is configured as 64 bits.

m_axis_cq_tuser Output 85

Completer reQuest User Data.
This set of signals contains sideband information for
the TLP being transferred. These signals are valid when
m_axis_cq_tvalid is High. Table 2-5, page 16
describes the individual signals in this set.

m_axis_cq_tlast Output 1

TLAST indication for Completer reQuest Data.
The core asserts this signal in the last beat of a packet
to indicate the end of the packet. When a TLP is
transferred in a single beat, the core sets this signal in
the f irst beat of the transfer.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=13

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 14
PG023 November 19, 2014

Chapter 2: Product Specification

m_axis_cq_tkeep Output DW/32

TKEEP indication for Completer reQuest Data.
The assertion of bit i of this bus during a transfer
indicates to the user application that Dword i of the
m_axis_cq_tdata bus contains valid data. The core
sets this bit to 1 contiguously for all Dwords starting
from the first Dword of the descriptor to the last
Dword of the payload. Thus, m_axis_cq_tdata is set
to all 1s in all beats of a packet, except in the f inal beat
when the total size of the packet is not a multiple of the
width of the data bus (both in Dwords). This is true for
both Dword-aligned and address-aligned modes of
payload transfer.
Bits [7:4] of this bus are set permanently to 0 by the
core when the interface width is configured as 128 bits,
and bits [7:2] are set permanently to 0 when the
interface width is configured as 64 bits.

m_axis_cq_tvalid Output 1

Completer reQuest Data Valid.
The core asserts this output whenever it is driving valid
data on the m_axis_cq_tdata bus. The core keeps
the valid signal asserted during the transfer of a
packet. The user application can pace the data transfer
using the m_axis_cq_tready signal.

m_axis_cq_tready Input 22

Completer reQuest Data Ready.
Activation of this signal by the user logic indicates to
the core that the user application is ready to accept
data. Data is transferred across the interface when both
m_axis_cq_tvalid and m_axis_cq_tready are
asserted in the same cycle.
If the user application deasserts the ready signal when
m_axis_cq_tvalid is High, the core maintains the
data on the bus and keeps the valid signal asserted
until the user application has asserted the ready signal.

Table 2-4: CQ Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=14

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 15
PG023 November 19, 2014

Chapter 2: Product Specification

pcie_cq_np_req Input 1

Completer reQuest Non-Posted Request.
This input is used by the user application to request
the delivery of a Non-Posted request. The core
implements a credit-based flow control mechanism to
control the delivery of Non-Posted requests across the
interface, without blocking Posted TLPs.
This input to the core controls an internal credit count.
The credit count is incremented in each clock cycle
when pcie_cq_np_req is High, and decremented on
the delivery of each Non-Posted request across the
interface. The core temporarily stops delivering
Non-Posted requests to the user application when the
credit count is zero. It continues to deliver any Posted
TLPs received from the link even when the delivery of
Non-Posted requests has been paused.
The user application can either provide a one-cycle
pulse on pcie_cq_np_req each time it is ready to
receive a Non-Posted request, or can keep it High
permanently if it does not need to exercise selective
backpressure on Non-Posted requests.
The assertion and deassertion of the
pcie_cq_np_req signal does not need to be aligned
with the packet transfers on the completer request
interface. There is a minimum of five user_clk from the
presentation of completion on m_axis_rc_tuser
and the reuse of the tag that was returned on the
completion.

pcie_cq_np_req_count Output 6

Completer reQuest Non-Posted Request Count.
This output provides the current value of the credit
count maintained by the core for delivery of
Non-Posted requests to the user application. The core
delivers a Non-Posted request across the completer
request interface only when this credit count is
non-zero. This counter saturates at a maximum limit of
32.
Because of internal pipeline delays, there can be
several cycles of delay between the core receiving a
pulse on the pcie_cq_np_req input and updating
the pcie_cq_np_req_count output in response.

Table 2-4: CQ Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=15

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 16
PG023 November 19, 2014

Chapter 2: Product Specification

Table 2-5: Sideband Signal Descriptions in m_axis_cq_tuser

Bit Index Name Width Description

3:0 first_be[3:0] 4

Byte enables for the f irst Dword of the payload.
This f ield reflects the setting of the First_BE bits in the
Transaction-Layer header of the TLP. For Memory Reads
and I/O Reads, these four bits indicate the valid bytes to
be read in the first Dword. For Memory Writes and I/O
Writes, these bits indicate the valid bytes in the f irst
Dword of the payload. For Atomic Operations and
Messages with a payload, these bits are set to all 1s.
This f ield is valid in the f irst beat of a packet, that is,
when sop and m_axis_cq_tvalid are both High.

7:4 last_be[3:0] 4

Byte enables for the last Dword.
This f ield reflects the setting of the Last_BE bits in the
Transaction-Layer header of the TLP. For Memory Reads,
these four bits indicate the valid bytes to be read in the
last Dword of the block of data. For Memory Writes,
these bits indicate the valid bytes in the ending Dword
of the payload. For Atomic Operations and Messages
with a payload, these bits are set to all 1s.
This f ield is valid in the f irst beat of a packet, that is,
when sop and m_axis_cq_tvalid are both High.

39:8 byte_en[31:0] 32

The user logic can optionally use these byte enable bits
to determine the valid bytes in the payload of a packet
being transferred. The assertion of bit i of this bus
during a transfer indicates to the user application that
byte i of the m_axis_cq_tdata bus contains a valid
payload byte. This bit is not asserted for descriptor
bytes.
Although the byte enables can be generated by user
logic from information in the request descriptor
(address and length) as well as the settings of the
first_be and last_be signals, the user application
has the option to use these signals directly instead of
generating them from other interface signals.
When the payload size is more than two Dwords (eight
bytes), the one bit on this bus for the payload is always
contiguous. When the payload size is two Dwords or
less, the one bit can be non-contiguous.
For the special case of a zero-length memory write
transaction defined by the PCI Express specif ications,
the byte_en bits are all 0s when the associated
one-DW payload is being transferred.
Bits [31:16] of this bus are set permanently to 0 by the
core when the interface width is configured as 128 bits,
and bits [31:8] are set permanently to 0 when the
interface width is configured as 64 bits.

40 sop 1

Start of packet.
This signal is asserted by the core in the f irst beat of a
packet to indicate the start of the packet. Use of this
signal is optional.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=16

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 17
PG023 November 19, 2014

Chapter 2: Product Specification

Completer Completion (CC) Interface

The Completer Completion (CC) interface is used by the user application to transmit the
completer requests. You can process all Non-Posted transactions as split transactions. That
is, it can continue to accept new requests on the Completer Request (CQ) interface while
sending a completion for a request.

Table 2-6 defines the ports in the CC interface of the core. In the Width column, DW
denotes the configured data bus width (64, 128, or 256 bits).

41 discontinue 1

This signal is asserted by the core in the last beat of a
TLP, if it has detected an uncorrectable error while
reading the TLP payload from its internal FIFO memory.
The user application must discard the entire TLP when
such an error is signaled by the core.
This signal is never asserted when the TLP has no
payload. It is asserted only in a cycle when
m_axis_cq_tlast is High.
When the core is configured as an Endpoint, the error is
also reported by the core to the Root Complex to which
it is attached, using Advanced Error Reporting (AER).

42 tph_present 1

This bit indicates the presence of a Transaction
Processing Hint (TPH) in the request TLP being
delivered across the interface. This bit is valid when sop
and m_axis_cq_tvalid are both High.

44:43 tph_type[1:0] 2

When a TPH is present in the request TLP, these two bits
provide the value of the PH[1:0] f ield associated with
the hint. These bits are valid when sop and
m_axis_cq_tvalid are both High.

52:45 tph_st_tag[7:0] 8

When a TPH is present in the request TLP, this output
provides the 8-bit Steering Tag associated with the hint.
These bits are valid when sop and
m_axis_cq_tvalid are both High.

84:53 parity 32

Odd parity for the 256-bit transmit data. Bit i provides
the odd parity computed for byte i of
m_axis_cq_tdata. Only the lower 16 bits are to be
used when the interface width is 128 bits, and only the
lower 8 bits are to be used when the interface width is
64 bits. Bits [31:16] are set permanently to 0 by the core
when the interface width is configured as 128 bits, and
bits [31:8] are set permanently to 0 when the interface
width is configured as 64 bits.

Table 2-5: Sideband Signal Descriptions in m_axis_cq_tuser (Cont’d)

Bit Index Name Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=17

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 18
PG023 November 19, 2014

Chapter 2: Product Specification

Table 2-6: CC Interface Port Descriptions

Port Direction Width Description

s_axis_cc_tdata Input DW

Completer Completion Data bus.
Completion data from the user application to the core. Only
the lower 128 bits are to be used when the interface width is
128 bits, and only the lower 64 bits are to be used when the
interface width is 64 bits.

s_axis_cc_tuser Input 33

Completer Completion User Data.
This set of signals contain sideband information for the TLP
being transferred. These signals are valid when
s_axis_cc_tvalid is High.
Table 2-7, page 19 describes the individual signals in this
set.

s_axis_cc_tlast Input 1

TLAST indication for Completer Completion Data.
The user application must assert this signal in the last cycle
of a packet to indicate the end of the packet. When the TLP
is transferred in a single beat, the user application must set
this bit in the f irst cycle of the transfer.

s_axis_cc_tkeep Input DW/32

TKEEP indication for Completer Completion Data.
The assertion of bit i of this bus during a transfer indicates
to the core that Dword i of the s_axis_cc_tdata bus
contains valid data. The user application must set this bit to
1 contiguously for all Dwords starting from the f irst Dword
of the descriptor to the last Dword of the payload. Thus,
s_axis_cc_tdata must be set to all 1s in all beats of a
packet, except in the final beat when the total size of the
packet is not a multiple of the width of the data bus (both in
Dwords). This is true for both Dword-aligned and
address-aligned modes of payload transfer.
Bits [7:4] of this bus are not used by the core when the
interface width is configured as 128 bits, and bits [7:2] are
not used when the interface width is configured as 64 bits.

s_axis_cc_tvalid Input 1

Completer Completion Data Valid.
The user application must assert this output whenever it is
driving valid data on the s_axis_cc_tdata bus. The user
application must keep the valid signal asserted during the
transfer of a packet. The core paces the data transfer using
the s_axis_cc_tready signal.

s_axis_cc_tready Output 4

Completer Completion Data Ready.
Activation of this signal by the core indicates that it is ready
to accept data. Data is transferred across the interface when
both s_axis_cc_tvalid and s_axis_cc_tready are
asserted in the same cycle.
If the core deasserts the ready signal when the valid
signal is High, the user application must maintain the data
on the bus and keep the valid signal asserted until the core
has asserted the ready signal.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=18

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 19
PG023 November 19, 2014

Chapter 2: Product Specification

Requester reQuest (RQ) Interface

The Requester reQuest (RQ) interface is used by the user application to generate requests
to remote PCIe® devices. Table 2-8 defines the ports in the RQ interface of the core. In the
Width column, DW denotes the configured data bus width (64, 128, or 256 bits).

Table 2-7: Sideband Signal Descriptions in s_axis_cc_tuser

Bit Index Name Width Description

0 discontinue 1

This signal can be asserted by the user application during
a transfer if it has detected an error (such as an
uncorrectable ECC error while reading the payload from
memory) in the data being transferred and desires to
abort the packet. The core nullif ies the corresponding TLP
on the link to avoid data corruption.
The user application can assert this signal during any
cycle during the transfer. It can either choose to terminate
the packet prematurely in the cycle where the error was
signaled, or can continue until all bytes of the payload are
delivered to the core. In the latter case, the core treats the
error as sticky for the following beats of the packet, even
if the user application deasserts the discontinue signal
before the end of the packet.
The discontinue signal can be asserted only when
s_axis_cc_tvalid is High. The core samples this
signal only when s_axis_cc_tready is High. Thus,
when asserted, it should not be deasserted until
s_axis_cc_tready is High.
Discontinue is not supported for Non Posted TLPs.
The client can assert this signal in any cycle except the
f irst cycle during the transfer.
When the core is configured as an Endpoint, this error is
also reported by the core to the Root Complex to which it
is attached, using AER.

32:1 parity 32

Odd parity for the 256-bit data.
When parity checking is enabled in the core, user logic
must set bit i of this bus to the odd parity computed for
byte i of s_axis_cc_tdata. Only the lower 16 bits are
to be used when the interface width is 128 bits, and only
the lower 8 bits are to be used when the interface width is
64 bits.
When an interface parity error is detected, it is recorded
as an uncorrectable internal error and the packet is
discarded. According to the Base Spec 6.2.9, an
uncorrectable internal error is an error that occurs within a
component that results in improper operation of the
component. The only method of recovering from an
uncorrectable internal error is reset or hardware
replacement.
The parity bits can be permanently tied to 0 if parity check
is not enabled in the core.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=19

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 20
PG023 November 19, 2014

Chapter 2: Product Specification

Table 2-8: RQ Interface Port Descriptions

Port Direction Width Description

s_axis_rq_tdata Input DW

Requester reQuest Data bus.
This input contains the requester-side request data from the
user application to the core. Only the lower 128 bits are to be
used when the interface width is 128 bits, and only the lower
64 bits are to be used when the interface width is 64 bits.

s_axis_rq_tuser Input 60

Requester reQuest User Data.
This set of signals contains sideband information for the TLP
being transferred. These signals are valid when
s_axis_rq_tvalid is High.
Table 2-9, page 22 describes the individual signals in this set.

s_axis_rq_tlast Input 1

TLAST Indication for Requester reQuest Data.
The user application must assert this signal in the last cycle of
a TLP to indicate the end of the packet. When the TLP is
transferred in a single beat, the user application must set this
bit in the first cycle of the transfer.

s_axis_rq_tkeep Input DW/32

TKEEP Indication for Requester reQuest Data.
The assertion of bit i of this bus during a transfer indicates to
the core that Dword i of the s_axis_rq_tdata bus contains
valid data. The user application must set this bit to 1
contiguously for all Dwords, starting from the f irst Dword of
the descriptor to the last Dword of the payload. Thus,
s_axis_rq_tdata must be set to all 1s in all beats of a
packet, except in the final beat when the total size of the
packet is not a multiple of the width of the data bus (both in
Dwords). This is true for both Dword-aligned and
address-aligned modes of payload transfer.
Bits [7:4] of this bus are not used by the core when the interface
width is configured as 128 bits, and bits [7:2] are not used when
the interface width is configured as 64 bits.

s_axis_rq_tready Output 4

Requester reQuest Data Ready.
Activation of this signal by the core indicates that it is ready to
accept data. Data is transferred across the interface when both
s_axis_rq_tvalid and s_axis_rq_tready are asserted
in the same cycle.
If the core deasserts the ready signal when the valid signal
is High, the user application must maintain the data on the bus
and keep the valid signal asserted until the core has asserted
the ready signal.
You can check all 4 bits to 1 or 0.

s_axis_rq_tvalid Input 1

Requester reQuest Data Valid.
The user application must assert this output whenever it is
driving valid data on the s_axis_rq_tdata bus. The user
application must keep the valid signal asserted during the
transfer of a packet. The core paces the data transfer using the
s_axis_rq_tready signal.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=20

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 21
PG023 November 19, 2014

Chapter 2: Product Specification

pcie_rq_seq_num Output 4

Requester reQuest TLP transmit sequence number.
The user application can optionally use this output to track the
progress of the request in the core transmit pipeline. To use
this feature, the user application must provide a sequence
number for each request on the seq_num[3:0] bus. The core
outputs this sequence number on the
pcie_rq_seq_num[3:0] output when the request TLP has
reached a point in the pipeline where a Completion TLP from
the user application cannot pass it. This mechanism enables
the user application to maintain ordering between
Completions sent to the completer completion interface of the
core and Posted requests sent to the requester request
interface. Data on the pcie_rq_seq_num[3:0] output is
valid when pcie_rq_seq_num_vld is High.

pcie_rq_seq_num_vld Output 1
Requester reQuest TLP transmit sequence number valid.
This output is asserted by the core for one cycle when it has
placed valid data on pcie_rq_seq_num[3:0].

pcie_rq_tag Output 6

Requester reQuest Non-Posted tag.
When tag management for Non-Posted requests is performed
by the core (AXISTEN_IF_ENABLE_CLIENT_TAG is 0), this output
is used by the core to communicate the allocated tag for each
Non-Posted request received from the user application. The
tag value on this bus is valid for one cycle when
pcie_rq_tag_vld is High. The user application must copy
this tag and use it to associate the completion data with the
pending request.
There can be a delay of several cycles between the transfer of
the request on the s_axis_rq_tdata bus and the assertion
of pcie_rq_tag_vld by the core to provide the allocated tag
for the request. Meanwhile, the user application can continue
to send new requests. The tags for requests are communicated
on this bus in FIFO order, so the user application can easily
associate the tag value with the request it transferred.

pcie_rq_tag_vld Output 1

Requester reQuest Non-Posted tag valid.
The core asserts this output for one cycle when it has allocated
a tag to an incoming Non-Posted request from the requester
request interface and placed it on the pcie_rq_tag output.

Table 2-8: RQ Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=21

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 22
PG023 November 19, 2014

Chapter 2: Product Specification

Table 2-9: Sideband Signal Descriptions in s_axis_rq_tuser

Bit Index Name Width Description

3:0 first_be[3:0] 4

Byte enables for the f irst Dword.
This f ield must be set based on the desired value of the First_BE bits
in the Transaction-Layer header of the request TLP. For Memory
Reads, I/O Reads, and Configuration Reads, these four bits indicate
the valid bytes to be read in the f irst Dword. For Memory Writes, I/
O Writes, and Configuration Writes, these bits indicate the valid
bytes in the first Dword of the payload.
The core samples this f ield in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.

7:4 last_be[3:0] 4

Byte enables for the last Dword.
This f ield must be set based on the desired value of the Last_BE bits
in the Transaction-Layer header of the TLP. For Memory Reads of two
Dwords or more, these four bits indicate the valid bytes to be read
in the last Dword of the block of data. For Memory Writes of two
Dwords or more, these bits indicate the valid bytes in the last Dword
of the payload.
The core samples this f ield in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.

10:8 addr_offset[2:0] 3

When the address-aligned mode is in use on this interface, the user
application must provide the byte lane number where the payload
data begins on the data bus, modulo 4, on this sideband bus. This
enables the core to determine the alignment of the data block being
transferred.
The core samples this f ield in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.
When the requester request interface is configured in the
Dword-alignment mode, this f ield must always be set to 0.

11 discontinue 1

This signal can be asserted by the user application during a transfer
if it has detected an error in the data being transferred and desires
to abort the packet. The core nullif ies the corresponding TLP on the
link to avoid data corruption.
The user application can assert this signal in any cycle during the
transfer. It can either choose to terminate the packet prematurely in
the cycle where the error was signaled, or can continue until all bytes
of the payload are delivered to the core. In the latter case, the core
treats the error as sticky for the following beats of the packet, even
if the user application deasserts the discontinue signal before the
end of the packet.
The discontinue signal can be asserted only when
s_axis_rq_tvalid is High. The core samples this signal only
when s_axis_rq_tready is High. Thus, when asserted, it should
not be deasserted until s_axis_rq_tready is High.
When the core is configured as an Endpoint, this error is also
reported by the core to the Root Complex to which it is attached,
using Advanced Error Reporting (AER).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=22

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 23
PG023 November 19, 2014

Chapter 2: Product Specification

12 tph_present 1

This bit indicates the presence of a Transaction Processing Hint (TPH)
in the request TLP being delivered across the interface. The core
samples this f ield in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.
This bit must be permanently tied to 0 if the TPH capability is not in
use.

14:13 tph_type[1:0] 2

When a TPH is present in the request TLP, these two bits provide the
value of the PH[1:0] f ield associated with the hint. The core samples
this f ield in the first beat of a packet, when s_axis_rq_tvalid
and s_axis_rq_tready are both High.
These bits can be set to any value if tph_present is set to 0.

15 tph_indirect_tag_en 1

When this bit is set, the core uses the lower bits of
tph_st_tag[7:0] as an index into its Steering Tag Table, and
insert the tag from this location in the transmitted request TLP.
When this bit is 0, the core uses the value on tph_st_tag[7:0]
directly as the Steering Tag.
The core samples this bit in the f irst beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.
This bit can be set to any value if tph_present is set to 0.

23:16 tph_st_tag[7:0] 8

When a TPH is present in the request TLP, this output provides the
8-bit Steering Tag associated with the hint. The core samples this
f ield in the f irst beat of a packet, when s_axis_rq_tvalid and
s_axis_rq_tready are both High.
These bits can be set to any value if tph_present is set to 0.

27:24 seq_num[3:0] 4

The user application can optionally supply a 4-bit sequence number
in this f ield to keep track of the progress of the request in the core
transmit pipeline. The core outputs this sequence number on its
pcie_rq_seq_num[3:0] output when the request TLP has
progressed to a point in the pipeline where a Completion TLP from
the user application is not able to pass it.
The core samples this f ield in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.
This input can be hardwired to 0 when the user application is not
monitoring the pcie_rq_seq_num[3:0] output of the core.

59:28 parity 32

Odd parity for the 256-bit data.
When parity checking is enabled in the core, user logic must set bit
i of this bus to the odd parity computed for byte i of
s_axis_rq_tdata. Only the lower 16 bits are to be used when the
interface width is 128 bits, and only the lower 8 bits are to be used
when the interface width is 64 bits.
When an interface parity error is detected, it is recorded as an
uncorrectable internal error and the packet is discarded. According
to the Base Spec 6.2.9, an uncorrectable internal error is an error that
occurs within a component that results in improper operation of the
component. The only method of recovering from an uncorrectable
internal error is reset or hardware replacement.
These bits can be set to 0 if parity checking is disabled in the core.

Table 2-9: Sideband Signal Descriptions in s_axis_rq_tuser (Cont’d)

Bit Index Name Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=23

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 24
PG023 November 19, 2014

Chapter 2: Product Specification

Requester Completion (RC) Interface

The Requester Completion (RC) interface is used by core to present the completions
received from the link in response to your requests. Table 2-10 defines the ports in the RC
interface of the core. In the Width column, DW denotes the configured data bus width (64,
128, or 256 bits).

Table 2-10: RC Interface Port Descriptions

Port Direction Width Description

m_axis_rc_tdata Output DW

Requester Completion Data bus.
Transmit data from the Core requester completion interface
to the user application. Only the lower 128 bits are used
when the interface width is 128 bits, and only the lower 64
bits are used when the interface width is 64 bits.
Bits [255:128] are set permanently to 0 by the core when the
interface width is configured as 128 bits, and bits [255:64]
are set permanently to 0 when the interface width is
configured as 64 bits.

m_axis_rc_tuser Output 75

Requester Completion User Data.
This set of signals contains sideband information for the TLP
being transferred. These signals are valid when
m_axis_rc_tvalid is High.
Table 2-11, page 26 describes the individual signals in this
set.

m_axis_rc_tlast Output 1

TLAST indication for Requester Completion Data.
The core asserts this signal in the last beat of a packet to
indicate the end of the packet. When a TLP is transferred in
a single beat, the core sets this bit in the f irst beat of the
transfer. This output is used only when the straddle option
is disabled. When the straddle option is enabled (for 256-bit
interface), the core sets this output permanently to 0.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=24

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 25
PG023 November 19, 2014

Chapter 2: Product Specification

m_axis_rc_tkeep Output DW/32

TKEEP indication for Requester Completion Data.
The assertion of bit i of this bus during a transfer indicates
to the user application that Dword i of the
m_axis_rc_tdata bus contains valid data. The core sets
this bit to 1 contiguously for all Dwords starting from the
f irst Dword of the descriptor to the last Dword of the
payload. Thus, m_axis_rc_tkeep will set to all 1s in all
beats of a packet, except in the f inal beat when the total size
of the packet is not a multiple of the width of the data bus
(both in Dwords). This is true for both Dword-aligned and
address-aligned modes of payload transfer.
Bits [7:4] of this bus are set permanently to 0 by the core
when the interface width is configured as 128 bits, and bits
[7:2] are set permanently to 0 when the interface width is
configured as 64 bits.
These outputs are permanently set to all 1s when the
interface width is 256 bits and the straddle option is
enabled. The user logic must use the signals in
m_axis_rc_tuser in that case to determine the start and
end of Completion TLPs transferred over the interface.

m_axis_rc_tvalid Output 1

Requester Completion Data Valid.
The core asserts this output whenever it is driving valid data
on the m_axis_rc_tdata bus. The core keeps the valid
signal asserted during the transfer of a packet. The user
application can pace the data transfer using the
m_axis_rc_tready signal.

m_axis_rc_tready Input 22

Requester Completion Data Ready.
Activation of this signal by the user logic indicates to the
core that the user application is ready to accept data. Data
is transferred across the interface when both
m_axis_rc_tvalid and m_axis_rc_tready are
asserted in the same cycle.
If the user application deasserts the ready signal when the
valid signal is High, the core maintains the data on the bus
and keeps the valid signal asserted until the user
application has asserted the ready signal.
You can assign all 22 bits to 1 or 0.

Table 2-10: RC Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=25

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 26
PG023 November 19, 2014

Chapter 2: Product Specification

Table 2-11: Sideband Signal Descriptions in m_axis_rc_tuser

Bit Index Name Width Description

31:0 byte_en 32

The user logic can optionally use these byte enable bits to
determine the valid bytes in the payload of a packet being
transferred. The assertion of bit i of this bus during a transfer
indicates to the user application that byte i of the
m_axis_rc_tdata bus contains a valid payload byte. This bit is
not asserted for descriptor bytes.
Although the byte enables can be generated by user logic from
information in the request descriptor (address and length), the user
application has the option to use these signals directly instead of
generating them from other interface signals. The 1 bit in this bus
for the payload of a TLP is always contiguous.
Bits [31:16] of this bus are set permanently to 0 by the core when
the interface width is configured as 128 bits, and bits [31:8] are set
permanently to 0 when the interface width is configured as 64 bits.

32 is_sof_0 1

Start of a f irst Completion TLP.
For 64-bit and 128-bit interfaces, and for the 256-bit interface with
no straddling, is_sof_0 is asserted by the core in the first beat of
a packet to indicate the start of the TLP. On these interfaces, only a
single TLP can be started in a data beat, and is_sof_1 is
permanently set to 0. Use of this signal is optional for the user
application when the straddle option is not enabled.
When the interface width is 256 bits and the straddle option is
enabled, the core can straddle two Completion TLPs in the same
beat. In this case, the Completion TLPs are not formatted as
AXI4-Stream packets. The assertion of is_sof_0 indicates a
Completion TLP starting in the beat. The f irst byte of this
Completion TLP is in byte lane 0 if the previous TLP ended before
this beat, or in byte lane 16 if the previous TLP continues in this
beat.

33 is_sof_1 1

Start of a second Completion TLP.
This signal is used when the interface width is 256 bits and the
straddle option is enabled, when the core can straddle two
Completion TLPs in the same beat. The output is permanently set
to 0 in all other cases.
The assertion of is_sof_1 indicates a second Completion TLP
starting in the beat, with its f irst bye in byte lane 16. The core starts
a second TLP at byte position 16 only if the previous TLP ended in
one of the byte positions 0-15 in the same beat; that is, only if
is_eof_0[0] is also set in the same beat.

37:34 is_eof_0[3:0] 4

End of a f irst Completion TLP and the offset of its last Dword.
These outputs are used only when the interface width is 256 bits
and the straddle option is enabled.
The assertion of the bit is_eof_0[0] indicates the end of a first
Completion TLP in the current beat. When this bit is set, the bits
is_eof_0[3:1] provide the offset of the last Dword of this TLP.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=26

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 27
PG023 November 19, 2014

Chapter 2: Product Specification

Other Core Interfaces
The core also provides the interfaces described in this section.

Transmit Flow Control Interface

The Transmit Flow Control interface is used by the user application to request which flow
control information the core provides. This interface provides the Posted/Non-Posted
Header Flow Control Credits, Posted/Non-Posted Data Flow Control Credits, the
Completion Header Flow Control Credits, and the Completion Data Flow Control Credits to
the user application based on the setting flow control select input to the core.

41:38 is_eof_1[3:0] 4

End of a second Completion TLP and the offset of its last Dword.
These outputs are used only when the interface width is 256 bits
and the straddle option is enabled. The core can then straddle two
Completion TLPs in the same beat. These outputs are reserved in
all other cases.
The assertion of is_eof_1[0] indicates a second TLP ending in
the same beat. When bit 0 of is_eof_1 is set, bits [3:1] provide the
offset of the last Dword of the TLP ending in this beat. Because the
second TLP can only end at a byte position in the range 27–31,
is_eof_1[3:1] can only take one of two values (6 or 7).
The offset for the last byte of the second TLP can be determined
from the starting address and length of the TLP, or from the byte
enable signals byte_en[31:0].
If is_eof_1[0] is High, the signals is_eof_0[0] and is_sof_1
are also High in the same beat.

42 discontinue 1

This signal is asserted by the core in the last beat of a TLP, if it has
detected an uncorrectable error while reading the TLP payload from
its internal FIFO memory. The user application must discard the
entire TLP when such an error is signaled by the core.
This signal is never asserted when the TLP has no payload. It is
asserted only in the last beat of the payload transfer; that is, when
is_eof_0[0] is High.
When the straddle option is enabled, the core does not start a
second TLP if it has asserted discontinue in a beat.
When the core is configured as an Endpoint, the error is also
reported by the core to the Root Complex to which it is attached,
using Advanced Error Reporting (AER).

74:43 parity 32

Odd parity for the 256-bit transmit data.
Bit i provides the odd parity computed for byte i of
m_axis_rc_tdata. Only the lower 16 bits are used when the
interface width is 128 bits, and only the lower 8 bits are used when
the interface width is 64 bits. Bits [31:16] are set permanently to 0
by the core when the interface width is configured as 128 bits, and
bits [31:8] are set permanently to 0 when the interface width is
configured as 64 bits.

Table 2-11: Sideband Signal Descriptions in m_axis_rc_tuser (Cont’d)

Bit Index Name Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=27

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 28
PG023 November 19, 2014

Chapter 2: Product Specification

Table 2-12 defines the ports in the Transmit Flow Control interface of the core.

Configuration Management Interface

The Configuration Management interface is used to read and write to the Configuration
Space Registers. Table 2-13 defines the ports in the Configuration Management interface of
the core.

Table 2-12: Transmit Flow Control Interface Port Descriptions

Port Direction Width Description

pcie_tfc_nph_av Output 2

Transmit flow control Non-Posted header credits available.
This output indicates the currently available header credit for
Non-Posted TLPs on the transmit side of the core. The user logic
can check this output before transmitting a Non-Posted request on
the requester request interface to avoid blocking the interface
when no credit is available.
The values are:
• 00: No credits available.
• 01: 1 credit available.
• 10: 2 credits available.
• 11: 3 or more credits available.
Because of pipeline delays, the value on this output does not
include the credit consumed by the Non-Posted requests sent by
the user logic in the last two clock cycles. The user logic must
adjust the value on this output by the credit consumed by the
Non-Posted requests it sent in the previous two clock cycles, if any.

pcie_tfc_npd_av Output 2

Transmit flow control Non-Posted data credits available.
This output indicates the currently available payload credit for
Non-Posted TLPs on the transmit side of the core. The user logic
can check this output before transmitting a Non-Posted request on
the requester request interface to avoid blocking the interface
when no credit is available.
The values are:
• 00: No credits available.
• 01: 1 credit available.
• 10: 2 credits available.
• 11: 3 or more credits available.
Because of pipeline delays, the value on this output does not
include the credit consumed by the Non-Posted requests sent by
the user logic in the last two clock cycles. The user logic must
adjust the value on this output by the credit consumed by the
Non-Posted requests it sent in the previous two clock cycles, if any.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=28

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 29
PG023 November 19, 2014

Chapter 2: Product Specification

Configuration Status Interface

The Configuration Status interface provides information on how the core is configured,
such as the negotiated link width and speed, the power state of the core, and configuration
errors. Table 2-14 defines the ports in the Configuration Status interface of the core.

Table 2-13: Configuration Management Interface Port Descriptions

Port Direction Width Description

cfg_mgmt_addr Input 19

Read/Write Address.
The address is in the Configuration and Management
register space, and is Dword aligned. For accesses from the
local management bus: for the address bits
cfg_mgmt_addr[17:10], select the PCI Function
associated with the configuration register; and for the bits
cfg_mgmt_addr[9:0], select the register within the
Function. The address bit cfg_mgmt_addr[18] must be
set to zero (0) when accessing the PCI or PCI Express
configuration registers.

cfg_mgmt_write Input 1
Write Enable.
Asserted for a write operation. Active-High.

cfg_mgmt_write_data Input 32
Write data.
Write data is used to configure the Configuration and
Management registers.

cfg_mgmt_byte_enable Input 4

Byte Enable.
Byte enable for write data, where
cfg_mgmt_byte_enable[0] corresponds to
cfg_mgmt_write_data[7:0], and so on.

cfg_mgmt_read Input 1
Read Enable.
Asserted for a read operation. Active-High.

cfg_mgmt_read_data Output 32
Read data out.
Read data provides the configuration of the Configuration
and Management registers.

cfg_mgmt_read_write_done Output 1
Read/Write operation complete.
Asserted for 1 cycle when operation is complete.
Active-High.

cfg_mgmt_type1_cfg_reg_access Input 1

Type 1 RO, Write.
When the core is configured in the Root Port mode,
asserting this input during a write to a Type-1 PCI™ Config
Register forces a write into certain read-only f ields of the
register (see description of RC-mode Config registers).
This input has no effect when the core is in the Endpoint
mode, or when writing to any register other than a Type-1
Config Register.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=29

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 30
PG023 November 19, 2014

Chapter 2: Product Specification

Table 2-14: Configuration Status Interface Port Descriptions

Port Direction Width Description

cfg_phy_link_down Output 1

Configuration Link Down.
Status of the PCI Express link based on Physical Layer LTSSM.
The values are:
• 1b: Link is Down (LinkUp state variable is 0b)
• 0b: Link is Up (LinkUp state variable is 1b)

Note: Per the PCI Express Base Specification, rev. 3.0 [Ref 2],
LinkUp is 1b in the Recovery, L0, L0s, L1, and L2 cfg_ltssm
states. In the Configuration state, LinkUp can be 0b or 1b. It
is always 0b when the Configuration state is reached using
Detect > Polling > Configuration. LinkUp is 1b if the
configuration state is reached via any other state transition.

Note: While reset is asserted, the output of this signal will
be 0b until reset is released.

cfg_phy_link_status Output 2

Configuration Link Status.
Status of the PCI Express link. The values are:
• 00b: No receivers detected.
• 01b: Link training in progress.
• 10b: Link up, DL initialization in progress.
• 11b: Link up, DL initialization completed.

cfg_negotiated_width Output 4

Configuration Link Status.
Negotiated Link Width: PCI Express Link Status Register,
Negotiated Link Width f ield. This f ield indicates the negotiated
width of the given PCI Express Link and is valid when
cfg_phy_link_status[1:0] == 11b (DL Initialization is
complete).

cfg_current_speed Output 3

Current Link Speed.
This signal outputs the current link speed from Link Status
register bits 1 down to 0. This f ield indicates the negotiated
Link speed of the given PCI Express Link.
The values are:
• 001b: 2.5 GT/s PCI Express Link
• 010b: 5.0 GT/s PCI Express Link
• 100b: 8.0 GT/s PCI Express Link

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=30

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 31
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_max_payload Output 3

Max_Payload_Size.
This signal outputs the maximum payload size from Device
Control Register bits 7 down to 5. This f ield sets the maximum
TLP payload size. As a Receiver, the logic must handle TLPs as
large as the set value. As a Transmitter, the logic must not
generate TLPs exceeding the set value.
The values are:
• 000b: 128 bytes maximum payload size
• 001b: 256 bytes maximum payload size
• 010b: 512 bytes maximum payload size
• 011b: 1024 bytes maximum payload size
• 100b: 2048 bytes maximum payload size
• 101b: 4096 bytes maximum payload size

cfg_max_read_req Output 3

Max_Read_Request_Size.
This signal outputs the maximum read request size from Device
Control register bits 14 down to 12. This f ield sets the
maximum Read Request size for the logic as a Requester. The
logic must not generate Read Requests with size exceeding the
set value.
The values are:
• 000b: 128 bytes maximum Read Request size
• 001b: 256 bytes maximum Read Request size
• 010b: 512 bytes maximum Read Request size
• 011b: 1024 bytes maximum Read Request size
• 100b: 2048 bytes maximum Read Request size
• 101b: 4096 bytes maximum Read Request size

cfg_function_status Output 8

Configuration Function Status.
These outputs indicate the states of the Command Register bits
in the PCI configuration space of each Function. These outputs
are used to enable requests and completions from the host
logic. The assignment of bits is as follows:
• Bit 0: Function 0 I/O Space Enable
• Bit 1: Function 0 Memory Space Enable
• Bit 2: Function 0 Bus Master Enable
• Bit 3: Function 0 INTx Disable
• Bit 4: Function 1 I/O Space Enable
• Bit 5: Function 1 Memory Space Enable
• Bit 6: Function 1 Bus Master Enable
• Bit 7: Function 1 INTx Disable

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=31

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 32
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_vf_status Output 12

Configuration Virtual Function Status.
These outputs (active-High) indicate the status of Virtual
Functions, two bits each per Virtual Function. The assignment
of bits is as follows:
• Bit 0: Virtual Function 0: Configured/Enabled by software.
• Bit 1: Virtual Function 0: PCI Command Register, Bus Master

Enable.
• Bit 2: Virtual Function 1: Configured/Enabled by software.
• Bit 3: Virtual Function 1: PCI Command Register, Bus Master

Enable and so on until Virtual Function 5.

cfg_function_power_state Output 6

Configuration Function Power State.
These outputs indicate the current power state of the Physical
Functions. Bits [2:0] capture the power state of Function 0, and
bits [5:3] capture that of Function 1. The power states are:
• 000: D0_uninitialized
• 001: D0_active
• 010: D1
• 100: D3_hot

cfg_vf_power_state Output 18

Configuration Virtual Function Power State.
These outputs indicate the current power state of the Virtual
Functions. Bits [2:0] capture the power state of Virtual Function
0, and bits [5:3] capture that of Virtual Function 1, and so on.
The power states are:
• 000: D0_uninitialized
• 001: D0_active
• 010: D1
• 100: D3_hot

cfg_link_power_state Output 2

Current power state of the PCI Express link.
The power states are:
• 00: L0
• 01: L0s
• 10: L1
• 11: L2/Reserved

cfg_err_cor_out Output 1

Correctable Error Detected.
In the Endpoint mode, the core activates this output for one
cycle when it has detected a correctable error and its reporting
is not masked. In a multi-Function Endpoint, this is the logical
OR of the correctable error status bits in the Device Status
Registers of all Functions. In the Root Port mode, this output is
activated on detection of a local correctable error, when its
reporting is not masked. This output does not respond to any
errors signaled by remote devices using PCI Express error
messages. These error messages are delivered through the
message interface.

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=32

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 33
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_err_nonfatal_out Output 1

Non-Fatal Error Detected.
In the Endpoint mode, the core activates this output for one
cycle when it has detected a non fatal error and its reporting is
not masked. In a multi-Function Endpoint, this is the logical OR
of the non fatal error status bits in the Device Status Registers
of all Functions. In the Root Port mode, this output is activated
on detection of a local non-fatal error, when its reporting is not
masked. This output does not respond to any errors signaled
by remote devices using PCI Express error messages. These
error messages are delivered through the message interface.

cfg_err_fatal_out Output 1

Fatal Error Detected.
In the Endpoint mode, the core activates this output for one
cycle when it has detected a fatal error and its reporting is not
masked. In a multi-Function Endpoint, this is the logical OR of
the fatal error status bits in the Device Status Registers of all
Functions. In the Root Port mode, this output is activated on
detection of a local fatal error, when its reporting is not
masked. This output does not respond to any errors signaled
by remote devices using PCI Express error messages. These
error messages are delivered through the message interface.

cfg_ltr_enable Output 1

Latency Tolerance Reporting Enable.
The state of this output reflects the setting of the LTR
Mechanism Enable bit in the Device Control 2 Register of
Physical Function 0. When the core is configured as an
Endpoint logic uses this output to enable the generation of LTR
messages. This output is not to be used when the core is
configured as a Root Port.

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=33

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 34
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_ltssm_state Output 6

Current LTSSM State. The current LTSSM states are:
• 00: Detect.Quiet
• 01: Detect.Active
• 02: Polling.Active
• 03: Polling.Compliance
• 04: Polling.Configuration
• 05: Configuration.Linkwidth.Start
• 06: Configuration.Linkwidth.Accept
• 07: Configuration.Lanenum.Accept
• 08: Configuration.Lanenum.Wait
• 09: Configuration.Complete
• 0A: Configuration.Idle
• 0B: Recovery.RcvrLock
• 0C: Recovery.Speed
• 0D: Recovery.RcvrCfg
• 0E: Recovery.Idle
• 10: L0
• 11: Rx_L0s.Entry
• 12: Rx_L0s.Idle
• 13: Rx_L0s.FTS
• 14: Tx_L0s.Entry
• 15: Tx_L0s.Idle
• 16: Tx_L0s.FTS
• 17: L1.Entry
• 18: L1.Idle
• 19: L2.Idle 19
• 1A: L2.TransmitWake
• 20: DISABLED
• 21: LOOPBACK_ENTRY_MASTER
• 22: LOOPBACK_ACTIVE_MASTER
• 23: LOOPBACK_EXIT_MASTER
• 24: LOOPBACK_ENTRY_SLAVE
• 25: LOOPBACK_ACTIVE_SLAVE
• 26: LOOPBACK_EXIT_SLAVE
• 27: HOT_RESET
• 28: RECOVERY_EQUALIZATION_PHASE0
• 29: RECOVERY_EQUALIZATION_PHASE1
• 2A: RECOVERY_EQUALIZATION_PHASE2
• 2B: RECOVERY_EQUALIZATION_PHASE3

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=34

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 35
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_rcb_status Output 2

RCB Status.
Provides the setting of the Read Completion Boundary (RCB)
bit in the Link Control Register of each Physical Function. In the
Endpoint mode, bit 0 indicates the RCB for PF 0, and so on. In
the RC mode, bit 0 indicates the RCB setting of the Link Control
Register of the RP, bit 1 is reserved.
For each bit, a value of 0 indicates an RCB of 64 bytes and a
value of 1 indicates 128 bytes.

cfg_dpa_substate_change Output 2

Dynamic Power Allocation Substate Change.
In the Endpoint mode, the core generates a one-cycle pulse on
one of these outputs when a Configuration Write transaction
writes into the Dynamic Power Allocation Control Register to
modify the DPA power state of the device. A pulse on bit 0
indicates such a DPA event for PF 0 and so on. These outputs
are not active in the Root Port mode.

cfg_obff_enable Output 2

Optimized Buffer Flush Fill (OBFF) Enable.
This output reflects the setting of the OBFF Enable field in the
Device Control 2 Register. The values are:
• 00: OBFF disabled.
• 01: OBFF enabled using message signaling, Variation A.
• 10: OBFF enabled using message signaling, Variation B.
• 11: OBFF enabled using WAKE# signaling.

cfg_pl_status_change Output 1

This output is used by the core in the Root Port mode to signal
one of the following link training-related events:
• The link bandwidth changed as a result of the change in the

link width or operating speed and the change was initiated
locally (not by the link partner), without the link going down.
This interrupt is enabled by the Link Bandwidth Management
Interrupt Enable bit in the Link Control Register. The status
of this interrupt can be read from the Link Bandwidth
Management Status bit of the Link Status Register; or

• The link bandwidth changed autonomously as a result of the
change in the link width or operating speed and the change
was initiated by the remote node. This interrupt is enabled
by the Link Autonomous Bandwidth Interrupt Enable bit in
the Link Control Register. The status of this interrupt can be
read from the Link Autonomous Bandwidth Status bit of the
Link Status Register; or

• The Link Equalization Request bit in the Link Status 2 Register
was set by the hardware because it received a link
equalization request from the remote node. This interrupt is
enabled by the Link Equalization Interrupt Enable bit in the
Link Control 3 Register. The status of this interrupt can be
read from the Link Equalization Request bit of the Link Status
2 Register.

The pl_interrupt output is not active when the core is
configured as an Endpoint.

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=35

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 36
PG023 November 19, 2014

Chapter 2: Product Specification

Configuration Received Message Interface

The Configuration Received Message interface indicates to the user application that a
decodable message from the link, the parameters associated with the data, and the type of
message have been received. Table 2-15 defines the ports in the Configuration Received
Message interface of the core.

cfg_tph_requester_enable Output 2

Bit 0 of this output reflect the setting of the TPH Requester
Enable bit [8] of the TPH Requester Control Register in the TPH
Requester Capability Structure of Physical Function 0. Bit 1
corresponds to PF 1.

cfg_tph_st_mode Output 6
Bits [2:0] of this output reflect the setting of the ST Mode Select
bits in the TPH Requester Control Register of Physical Function
0. Bits [5:3] reflect the setting of the same register f ield of PF 1.

cfg_vf_tph_requester_enable Output 6

Each of the six bits of this output reflects the setting of the TPH
Requester Enable bit 8 of the TPH Requester Control Register
in the TPH Requester Capability Structure of the corresponding
Virtual Function.

cfg_vf_tph_st_mode Output 18

Bits [2:0] of this output reflect the setting of the ST Mode Select
bits in the TPH Requester Control Register of Virtual Function
0. Bits [5:3] reflect the setting of the same register f ield of VF 1,
and so on.

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Table 2-15: Configuration Received Message Interface Port Descriptions

Port Direction Width Description

cfg_msg_received Output 1

Configuration Received a Decodable Message.
The core asserts this output for one or more consecutive clock cycles
when it has received a decodable message from the link. The
duration of its assertion is determined by the type of message. The
core transfers any parameters associated with the message on the
cfg_msg_data[7:0]output in one or more cycles when
cfg_msg_received is High. Table 3-9, page 127 lists the number
of cycles of cfg_msg_received assertion, and the parameters
transferred on cfg_msg_data[7:0] in each cycle, for each type of
message.
The core inserts at least a one-cycle gap between two consecutive
messages delivered on this interface.
This output is active only when the
AXISTEN_IF_ENABLE_RX_MSG_INTFC attribute is set. This attribute is
not controllable through the Vivado IDE.

cfg_msg_received_data Output 8
This bus is used to transfer any parameters associated with the
Received Message. The information it carries in each cycle for
various message types is listed in Table 3-9, page 127.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=36

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 37
PG023 November 19, 2014

Chapter 2: Product Specification

Configuration Transmit Message Interface

The Configuration Transmit Message interface is used by the user application to transmit
messages to the core. The user application supplies the transmit message type and data
information to the core, which responds with the Done signal. Table 2-16 defines the ports
in the Configuration Transmit Message interface of the core.

cfg_msg_received_type Output 5

Received message type.
When cfg_msg_received is High, these f ive bits indicate the type
of message being signaled by the core. The various message types
are listed in Table 3-8, page 126.

Table 2-15: Configuration Received Message Interface Port Descriptions (Cont’d)

Port Direction Width Description

Table 2-16: Configuration Transmit Message Interface Port Descriptions

Port Direction Width Description

cfg_msg_transmit Input 1

Configuration Transmit Encoded Message.
This signal is asserted together with cfg_msg_transmit_type,
which supplies the encoded message type and
cfg_msg_transmit_data, which supplies optional data
associated with the message, until cfg_msg_transmit_done is
asserted in response.

cfg_msg_transmit_type Input 3

Configuration Transmit Encoded Message Type.
Indicates the type of PCI Express message to be transmitted.
Encodings supported are:
• 000b: Latency Tolerance Reporting (LTR).
• 001b: Optimized Buffer Flush/Fill (OBFF).
• 010b: Set Slot Power Limit (SSPL).
• 011b: Power Management (PM PME).
• 100b -111b: Reserved.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=37

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 38
PG023 November 19, 2014

Chapter 2: Product Specification

Configuration Flow Control Interface

Table 2-17 defines the ports in the Configuration Flow Control interface of the core.

cfg_msg_transmit_data Input 32

Configuration Transmit Encoded Message Data.
Indicates message data associated with particular message type.
• 000b: LTR, where
cfg_msg_transmit_data[31] < Snoop Latency Req.;
cfg_msg_transmit_data[28:26] < Snoop Latency Scale;
cfg_msg_transmit_data[25:16] < Snoop Latency Value;
cfg_msg_transmit_data[15] < No-Snoop Latency Requirement;
cfg_msg_transmit_data[12:10] < No-Snoop Latency Scale;
cfg_msg_transmit_data[9:0] < No-Snoop Latency Value.

• 001b: OBFF, where
cfg_msg_transmit_data[3:0] < OBFF Code.

• 010b: SSPL, where
cfg_msg_transmit_data[9:0] < {Slot Power Limit Scale, Slot
Power Limit Value}.

• 011b: PM_PME, where
cfg_msg_transmit_data[1:0] < PF1, PF0;
cfg_msg_transmit_data[9:4] < VF5, VF4, VF3, VF2, VF1, VF0,
where one or more PFs or VFs can signal PM_PME simultaneously.

• 100b - 111b: Reserved.

cfg_msg_transmit_done Output 1
Configuration Transmit Encoded Message Done.
Asserted in response to cfg_mg_transmit assertion, for 1 cycle
after the request is complete.

Table 2-16: Configuration Transmit Message Interface Port Descriptions (Cont’d)

Port Direction Width Description

Table 2-17: Configuration Flow Control Interface Port Descriptions

Port Direction Width Description

cfg_fc_ph Output 8

Posted Header Flow Control Credits.
This output provides the number of Posted Header Flow Control Credits. This
multiplexed output can be used to bring out various flow control parameters
and variables related to Posted Header Credit maintained by the core. The
flow control information to bring out on this core is selected by the
cfg_fc_sel[2:0] input.

cfg_fc_pd Output 12

Posted Data Flow Control Credits.
This output provides the number of Posted Data Flow Control Credits. This
multiplexed output can be used to bring out various flow control parameters
and variables related to Posted Data Credit maintained by the core. The flow
control information to bring out on this core is selected by the
cfg_fc_sel[2:0] input.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=38

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 39
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_fc_nph Output 8

Non-Posted Header Flow Control Credits.
This output provides the number of Non-Posted Header Flow Control
Credits. This multiplexed output can be used to bring out various flow
control parameters and variables related to Non-Posted Header Credit
maintained by the core. The flow control information to bring out on this
core is selected by the cfg_fc_sel[2:0] input.

cfg_fc_npd Output 12

Non-Posted Data Flow Control Credits.
This output provides the number of Non-Posted Data Flow Control Credits.
This multiplexed output can be used to bring out various flow control
parameters and variables related to Non-Posted Data Credit maintained by
the core. The flow control information to bring out on this core is selected
by the cfg_fc_sel[2:0] input.

cfg_fc_cplh Output 8

Completion Header Flow Control Credits.
This output provides the number of Completion Header Flow Control
Credits. This multiplexed output can be used to bring out various flow
control parameters and variables related to Completion Header Credit
maintained by the core. The flow control information to bring out on this
core is selected by the cfg_fc_sel[2:0] input.

cfg_fc_cpld Output 12

Completion Data Flow Control Credits.
This output provides the number of Completion Data Flow Control Credits.
This multiplexed output can be used to bring out various flow control
parameters and variables related to Completion Data Credit maintained by
the core. The flow control information to bring out on this core is selected
by the cfg_fc_sel[2:0].

cfg_fc_sel Input 3

Flow Control Informational Select.
These inputs select the type of flow control to bring out on the cfg_fc_*
outputs of the core. The various flow control parameters and variables that
can be accessed for the different settings of these inputs are:
• 000: Receive credits currently available to the link partner
• 001: Receive credit limit
• 010: Receive credits consumed
• 011: Available space in receive buffer
• 100: Transmit credits available
• 101: Transmit credit limit
• 110: Transmit credits consumed
• 111: Reserved
This value represents the actual unused credits in the receiver FIFO, and the
recommendation is to use it only as an approximate indication of receiver
FIFO fullness, relative to the initial credit limit value advertized, such as, ¼
full, ½ full, ¾ full, and full.

Note: Infinite credit for transmit credits available (cfg_fc_sel ==
3'b100) is signaled as 8'h80, 12'h800 for header and data credits,
respectively. For all other cfg_fc_sel selections, infinite credit is
signaled as 8'h00, 12'h000, respectively, for header and data
categories.

Table 2-17: Configuration Flow Control Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=39

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 40
PG023 November 19, 2014

Chapter 2: Product Specification

Per Function Status Interface

The Function Status interface provides status data as requested by the user application
through the selected function. Table 2-18 and Table 2-19 define the ports in the Function
Status interface of the core.

Table 2-18: Overview of Function Status Interface Port Descriptions

Port Direction Width Description

cfg_per_func_status_control Input 3

Configuration Per Function Control.
Controls information presented on the multi-function output
cfg_per_func_status_data. Supported encodings are:
• 000b
• 001b
• 010b
• 011b
• 100b
• 101b
All other encodings are reserved.

cfg_per_func_status_data Output 16

Configuration Per Function Status Data.
Provides a 16-bit status output for the selected function.
Information presented depends on the values of
cfg_per_func_status_data and
cfg_per_function_number.

Table 2-19: Detailed Function Status Interface Port Descriptions

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

0 0 cfg_command_io_enable 1

Configuration Command - I/O Space Enable:
Command[0].
Endpoints: If 1, allows the device to receive I/
O Space accesses. Otherwise, the core f ilters
these and respond with an Unsupported
Request.
Root/Switch: Core takes no action based on
this setting. If 0, logic must not generate
TLPs downstream.

0 1 cfg_command_mem_
enable 1

Configuration Command - Memory Space
Enable: Command[1].
Endpoints: If 1, allows the device to receive
Memory Space accesses. Otherwise, the core
f ilters these and respond with an
Unsupported Request.
Root/Switch: Core takes no action based on
this setting. If 0, logic must not generate
TLPs downstream.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=40

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 41
PG023 November 19, 2014

Chapter 2: Product Specification

0 2 cfg_command_bus_
master_enable 1

Configuration Command - Bus Master
Enable: Command[2].
The core takes no action based on this
setting; logic must do that.
Endpoints: When asserted, the logic is
allowed to issue Memory or I/O Requests
(including MSI/X interrupts); otherwise it
must not.
Root and Switch Ports: When asserted,
received Memory or I/O Requests might be
forwarded upstream; otherwise they are
handled as Unsupported Requests (UR), and
for Non-Posted Requests a Completion with
UR completion status is returned.

0 3 cfg_command_interrupt_
disable 1

Configuration Command - Interrupt Disable:
Command[10].
When asserted, the core is prevented from
asserting INTx interrupts.

0 4 cfg_command_serr_en 1

Configuration Command - SERR Enable:
Command[8].
When asserted, this bit enables reporting of
Non-fatal and Fatal errors. Note that errors
are reported if enabled either through this
bit or through the PCI Express specific bits in
the Device Control register. In addition, for a
Root Complex or Switch, this bit controls
transmission by the primary interface of
ERR_NONFATAL and ERR_FATAL error
messages forwarded from the secondary
interface.

0 5 cfg_bridge_serr_en 1

Configuration Bridge Control - SERR Enable:
Bridge Ctrl[1].
When asserted, this bit enables the
forwarding of Correctable, Non-fatal and
Fatal errors (you must enforce that).

0 6 cfg_aer_ecrc_check_en 1

Configuration AER - ECRC Check Enable:
AER_Cap_and_Ctl[8].
When asserted, this bit indicates that ECRC
checking has been enabled by the host.

0 7 cfg_aer_ecrc_gen_en 1

Configuration AER - ECRC Generation
Enable: AER_Cap_and_Ctl[6].
When asserted, this bit indicates that ECRC
generation has been enabled by the host.

0 15:8 0 8 Reserved

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=41

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 42
PG023 November 19, 2014

Chapter 2: Product Specification

1 0 cfg_dev_status_corr_err_
detected 1

Configuration Device Status - Correctable
Error Detected: Device_Status[0].
Indicates status of correctable errors
detected. Errors are logged in this register
regardless of whether error reporting is
enabled or not in the Device Control register.

1 1 cfg_dev_status_non_
fatal_err_detected 1

Configuration Device Status - Non-Fatal
Error Detected: Device_Status[1].
Indicates status of Nonfatal errors detected.
Errors are logged in this register regardless
of whether error reporting is enabled or not
in the Device Control register.

1 2 cfg_dev_status_fatal_
err_detected 1

Configuration Device Status - Fatal Error
Detected: Device_Status[2].
Indicates status of Fatal errors detected.
Errors are logged in this register regardless
of whether error reporting is enabled or not
in the Device Control register.

1 3 cfg_dev_status_ur_
detected 1

Configuration Device Status - Unsupported
Request Detected: Device_Status[3].
Indicates that the core received an
Unsupported Request. Errors are logged in
this register regardless of whether error
reporting is enabled or not in the Device
Control register.

1 4 cfg_dev_control_corr_
err_reporting_en 1

Configuration Device Control - Correctable
Error Reporting Enable: Device_Ctrl[0].
This bit, in conjunction with other bits,
controls sending ERR_COR Messages. For a
Root Port, the reporting of correctable errors
is internal to the root; no external ERR_COR
Message is generated.

1 5 cfg_dev_control_non_
fatal_reporting_en 1

Configuration Device Control - Non-Fatal
Error Reporting Enable: Device_Ctrl[1].
This bit, in conjunction with other bits,
controls sending ERR_NONFATAL Messages.
For a Root Port, the reporting of correctable
errors is internal to the root; no external
ERR_NONFATAL Message is generated.

1 6 cfg_dev_control_fatal_
err_reporting_en 1

Configuration Device Control - Fatal Error
Reporting Enable: Device_Ctrl[2].
This bit, in conjunction with other bits,
controls sending ERR_FATAL Messages. For a
Root Port, the reporting of correctable errors
is internal to the root; no external ERR_FATAL
Message is generated.

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=42

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 43
PG023 November 19, 2014

Chapter 2: Product Specification

1 7 cfg_dev_control_ur_err_
reporting_en 1

Configuration Device Control - UR Reporting
Enable: Device_Ctrl[3].
This bit, in conjunction with other bits,
controls the signaling of Unsupported
Requests by sending Error Messages.

1 10:8 cfg_dev_control_max_
payload 3

Configuration Device Control -
Max_Payload_Size: Device_Ctrl[7:5].
This f ield sets maximum TLP payload size. As
a Receiver, the logic must handle TLPs as
large as the set value. As a Transmitter, the
logic must not generate TLPs exceeding the
set value.
• 000b = 128 bytes max payload size.
• 001b = 256 bytes max payload size.
• 010b = 512 bytes max payload size.
• 011b = 1024 bytes max payload size.
• 100b = 2048 bytes max payload size.
• 101b = 4096 bytes max payload size.

1 11 cfg_dev_control_enable_
ro 1

Configuration Device Control - Enable
Relaxed Ordering: Device_Ctrl[4].
When asserted, the logic is permitted to set
the Relaxed Ordering bit in the Attributes
f ield of transactions it initiates that do not
require strong write ordering.

1 12 cfg_dev_control_ext_tag_
en 1

Configuration Device Control - Tag Field
Enable: Device_Ctrl[8].
When asserted, enables the logic to use an
8-bit Tag field as a Requester. If deasserted,
the logic is restricted to a 5-bit Tag f ield.
Note that the core does not enforce the
number of Tag bits used, either in outgoing
request TLPs or incoming Completions.

1 13 cfg_dev_control_no_
snoop_en 1

Configuration Device Control - Enable No
Snoop: Device_Ctrl[11].
When asserted, the logic is permitted to set
the No Snoop bit in TLPs it initiates that do
not require hardware enforced cache
coherency.

1 15:14 0 2 Reserved

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=43

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 44
PG023 November 19, 2014

Chapter 2: Product Specification

2 2:00 cfg_dev_control_max_
read_req 3

Configuration Device Control -
Max_Read_Request_Size: Device_Ctrl[14:12].
This f ield sets the maximum Read Request
size for the logic as a Requester. The logic
must not generate Read Requests with size
exceeding the set value.
• 000b = 128 bytes max Read Request size.
• 001b = 256 bytes max Read Request size.
• 010b = 512 bytes max Read Request size.
• 011b = 1024 bytes max Read Request size.
• 100b = 2048 bytes max Read Request size.
• 101b = 4096 bytes max Read Request size.

2 3 cfg_link_status_link_
training 1

Configuration Link Status - Link Training:
Link_Status[11].
Indicates that the Physical Layer LTSSM is in
the Configuration or Recovery state, or that
1b was written to the Retrain Link bit but Link
training has not yet begun. The core clears
this bit when the LTSSM exits the
Configuration/Recovery state.

2 6:04 cfg_link_status_current_
speed 3

Configuration Link Status - Current Link
Speed: Link_Status[1:0].
This f ield indicates the negotiated Link
speed of the given PCI Express Link.
• 001b = 2.5 GT/s PCI Express Link.
• 010b = 5.0 GT/s PCI Express Link.
• 100b = 8.0 GT/s PCI Express Link.

2 10:07 cfg_link_status_
negotiated_width 4

Configuration Link Status - Negotiated Link
Width: Link_Status[7:4].
This f ield indicates the negotiated width of
the given PCI Express Link (only widths up to
x8 displayed).
• 0001b = x1
• 0010b = x2
• 0100b = x4
• 1000b = x8

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=44

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 45
PG023 November 19, 2014

Chapter 2: Product Specification

2 11 cfg_link_status_
bandwidth_status 1

Configuration Link Status - Link Bandwidth
Management Status: Link_Status[14].
Indicates that either of the following has
occurred without the Port transitioning
through DL_Down status:
• A Link retraining has completed following

a write of 1b to the Retrain Link bit.
Note: This bit is set following any write of 1b
to the Retrain Link bit, including when the
Link is in the process of retraining for some
other reason.

• Hardware has changed Link speed or
width to attempt to correct unreliable Link
operation, either through an LTSSM
timeout or a higher level process. This bit
is set if the Physical Layer reports a speed
or width change was initiated by the
Downstream component that was not
indicated as an autonomous change.

2 12 cfg_link_status_auto_
bandwidth_status 1

Configuration Link Status - Link Autonomous
Bandwidth Status: Link_Status[15].
Indicates the core has autonomously
changed Link speed or width, without the
Port transitioning through DL_Down status,
for reasons other than to attempt to correct
unreliable Link operation. This bit must be
set if the Physical Layer reports a speed or
width change was initiated by the
Downstream component that was indicated
as an autonomous change.

2 15:13 0 3 Reserved

3 1:00 cfg_link_control_aspm_
control 2

Configuration Link Control - ASPM Control:
Link_Ctrl[1:0].
Indicates the level of ASPM supported,
where:
• 00b = Disabled.
• 01b = L0s Entry Enabled.
• 10b = L1 Entry Enabled.
• 11b = L0s and L1 Entry Enabled.

3 2 cfg_link_control_rcb 1

Configuration Link Control - RCB:
Link_Ctrl[3].
Indicates the Read Completion Boundary
value, where:
• 0=64B.
• 1=128B.

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=45

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 46
PG023 November 19, 2014

Chapter 2: Product Specification

3 3 cfg_link_control_link_
disable 1

Configuration Link Control - Link Disable:
Link_Ctrl[4].
When asserted, indicates the Link is disabled
and directs the LTSSM to the Disabled state.

3 4 cfg_link_control_
common_clock 1

Configuration Link Control - Common Clock
Configuration: Link_Ctrl[6].
When asserted, indicates that this
component and the component at the
opposite end of this Link are operating with
a distributed common reference clock. When
deasserted, indicates they are operating with
an asynchronous reference clock.

3 5 cfg_link_control_
extended_sync 1

Configuration Link Control - Extended
Synch: Link_Ctrl[7].
When asserted, forces the transmission of
additional Ordered Sets when exiting the L0s
state and when in the Recovery state.

3 6 cfg_link_control_clock_
pm_en 1

Configuration Link Control - Enable Clock
Power Management: Link_Ctrl[8].
For Upstream Ports that support a CLKREQ#
mechanism, indicates:
• 0b = Clock power management disabled.
• 1b = The device is permitted to use

CLKREQ#.
The core takes no action based on the
setting of this bit; external logic must
implement this.

3 7 cfg_link_control_hw_
auto_width_dis 1

Configuration Link Control - Hardware
Autonomous Width Disable: Link_Ctrl[9].
When asserted, this bit disables the core
from changing the Link width for reasons
other than attempting to correct unreliable
Link operation by reducing Link width.

3 8 cfg_link_control_
bandwidth_int_en 1

Configuration Link Control - Link Bandwidth
Management Interrupt Enable: Link_Ctrl[10].
When asserted, this bit enables the
generation of an interrupt to indicate that
the Link Bandwidth Management Status bit
has been set. The core takes no action based
on the setting of this bit; the logic must
create the interrupt.

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=46

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 47
PG023 November 19, 2014

Chapter 2: Product Specification

3 9 cfg_link_control_auto_
bandwidth_int_en 1

Configuration Link Control - Link
Autonomous Bandwidth Interrupt Enable:
Link_Ctrl[11].
When asserted, this bit enables the
generation of an interrupt to indicate that
the Link Autonomous Bandwidth Status bit
has been set. The core takes no action based
on the setting of this bit; the logic must
create the interrupt.

3 10 cfg_tph_requester_
enable 1

TPH Requester Enable: bit [8] of the TPH
Requester Control Register in the TPH
Requester Capability Structure of the
function.
These bits are active only in the Endpoint
mode. Indicates whether the software has
enabled the device to generate requests with
TPH Hints from the associated Function.

3 13:11 cfg_tph_steering_tag_
mode 3

TPH Steering Tag Mode: Reflect the setting
of the ST Mode Select bits in the TPH
Requester Control Register.
These bits are active only in the Endpoint
mode. They indicate the allowed modes for
generation of TPH Hints by the
corresponding Function.

3 15:14 0 2 Reserved

4 3:00 cfg_dev_control2_cpl_
timeout_val 4

Configuration Device Control 2 - Completion
Timeout Value: Device_Ctrl2[3:0].
This is the time range that the logic regard as
a Request is pending Completion as a
Completion Timeout. The core takes no
action based on this setting.
• 0000b = 50 μs to 50 ms (default).
• 0001b = 50 μs to 100 μs.
• 0010b = 1 ms to 10 ms.
• 0101b = 16 ms to 55 ms.
• 0110b = 65 ms to 210 ms.
• 1001b = 260 ms to 900 ms.
• 1010b = 1 s to 3.5 s.
• 1101b = 4 s to 13 s.
• 1110b = 17 s to 64 s.

4 4 cfg_dev_control2_cpl_
timeout_dis 1

Configuration Device Control 2 - Completion
Timeout Disable: Device_Ctrl2[4].
This should cause the user application to
disable the Completion Timeout counters.

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=47

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 48
PG023 November 19, 2014

Chapter 2: Product Specification

4 5 cfg_dev_control2_
atomic_requester_en 1

Configuration Device Control 2 - Atomic
Requester Enable: Device_Ctrl2[6].
Applicable only to Endpoints and Root Ports;
must be hardwired to 0b for other Function
types. The Function is allowed to initiate
AtomicOp Requests only if this bit and the
Bus Master Enable bit in the Command
register are both Set. This bit is required to
be RW if the Endpoint or Root Port is capable
of initiating AtomicOp Requests, but
otherwise is permitted to be hardwired to
0b. This bit does not serve as a capability bit.
This bit is permitted to be RW even if no
AtomicOp Requester capabilities are
supported by the Endpoint or Root Port.
Default value of this bit is 0b (32 nm).

4 6 cfg_dev_control2_ido_
req_en 1

Configuration Device Control 2 - IDO
Request Enable: Device_Ctrl2[8].
If this bit is Set, the Function is permitted to
set the ID-Based Ordering (IDO) bit
(Attribute[2]) of Requests it initiates (see
section 2.2.6.3 and section 2.4 of the PCI
Express 3.0 Base Specif ication[Ref 2]).
Endpoints, including RC Integrated
Endpoints, and Root Ports are permitted to
implement this capability. A Function is
permitted to hardwire this bit to 0b if it never
sets the IDO attribute in Requests. Default
value of this bit is 0b (32 nm).

4 7 cfg_dev_control2_ido_
cpl_en 1

Configuration Device Control 2 - IDO
Completion Enable: Device_Ctrl2[9].
If this bit is Set, the Function is permitted to
set the ID-Based Ordering (IDO) bit
(Attribute[2]) of Completions it returns (see
section 2.2.6.3 and section 2.4 of the PCI
Express 3.0 Base Specif ication). Endpoints,
including RC Integrated Endpoints, and Root
Ports are permitted to implement this
capability. A Function is permitted to
hardwire this bit to 0b if it never sets the IDO
attribute in Requests. Default value of this
bit is 0b (32 nm).

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=48

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 49
PG023 November 19, 2014

Chapter 2: Product Specification

4 8 cfg_dev_control2_ltr_en 1

Configuration Device Control 2 - LTR
Mechanism Enable: Device_Ctrl2[10].
If this bit is Set, the Function is permitted to
set the ID-Based Ordering (IDO) bit
(Attribute[2]) of Completions it returns (see
section 2.2.6.3 and section 2.4 of the PCI
Express 3.0 Base Specif ication). Endpoints,
including RC Integrated Endpoints, and Root
Ports are permitted to implement this
capability. A Function is permitted to
hardwire this bit to 0b if it never sets the IDO
attribute in Requests. Default value of this
bit is 0b. 32 nm

4 13:09 cfg_dpa_substate 5
Dynamic Power Allocation Substate: Reflect
the setting of the Dynamic Power Allocation
Substate f ield in the DPA Control Register.

4 15:14 0 1 Reserved

5 0 cfg_root_control_syserr_
corr_err_en 1

Configuration Root Control - System Error
on Correctable Error Enable: Root_Control[0].
This bit enables the logic to generate a
System Error for reported Correctable Errors.

5 1 cfg_root_control_syserr_
non_fatal_err_en 1

Configuration Root Control - System Error
on Non-Fatal Error Enable: Root_Control[1].
This bit enables the logic to generate a
System Error for reported Non-Fatal Errors.

5 2 cfg_root_control_syserr_
fatal_err_en 1

Configuration Root Control - System Error
on Fatal Error Enable: Root_Control[2].
This bit enables the logic to generate a
System Error for reported Fatal Errors.

5 3 cfg_root_control_pme_
int_en 1

Configuration Root Control - PME Interrupt
Enable: Root_Control[3].
This bit enables the logic to generate an
Interrupt for received PME Messages.

5 4 cfg_aer_rooterr_corr_err_
reporting_en 1

Configuration AER - Correctable Error
Reporting Enable:
AER_Root_Error_Command[0].
This bit enables the logic to generate
interrupts for reported Correctable Errors.

5 5 cfg_aer_rooterr_non_
fatal_err_reporting_en 1

Configuration AER - Non Fatal Error
Reporting Enable:
AER_Root_Error_Command[1].
This bit enables the user logic to generate
interrupts for reported Non-Fatal Errors.

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=49

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 50
PG023 November 19, 2014

Chapter 2: Product Specification

Configuration Control Interface

The Configuration Control interface signals allow a broad range of information exchange
between the user application and the core. The user application uses this interface to set
the configuration space; indicate if a correctable or uncorrectable error has occurred; set
the device serial number; set the Downstream Bus, Device, and Function Number; and
receive per function configuration information. This interface also provides handshaking
between the user application and the core when a Power State change or function level
reset occurs.

Table 2-20 defines the ports in the Configuration Control interface of the core.

5 6 cfg_aer_rooterr_fatal_
err_reporting_en 1

Configuration AER - Fatal Error Reporting
Enable: AER_Root_Error_Command[2].
This bit enables the user logic to generate
interrupts for reported Fatal Errors.

5 7 cfg_aer_rooterr_corr_err_
received 1

Configuration AER - Correctable Error
Messages Received:
AER_Root_Error_Status[0].
Indicates that an ERR_COR Message was
received.

5 8 cfg_aer_rooterr_non_
fatal_err_received 1

Configuration AER - Non-Fatal Error
Messages Received:
AER_Root_Error_Status[5].
Indicates that an ERR_NFE Message was
received.

5 9 cfg_aer_rooterr_fatal_
err_received 1

Configuration AER - Fatal Error Messages
Received: AER_Root_Error_Status[6].
Indicates that an ERR_FATAL Message was
received.

5 15:10 0 6 Reserved

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Table 2-20: Configuration Control Interface Port Descriptions

Port Direction Width Description

cfg_hot_reset_in Input 1
Configuration Hot Reset In.
In RP mode, assertion transitions LTSSM to hot reset
state, active-High.

cfg_hot_reset_out Output 1
Configuration Hot Reset Out.
In EP mode, assertion indicates that EP has transitioned
to the hot reset state, active-High.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=50

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 51
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_config_space_enable Input 1

Configuration Configuration Space Enable.
When this input is set to 0 in the Endpoint mode, the core
generates a CRS Completion in response to
Configuration Requests. This port should be held
deasserted when the core configuration registers are
loaded from the DRP due to a change in attributes. This
prevents the core from responding to Configuration
Requests before all the registers are loaded. This input
can be High when the power-on default values of the
Configuration Registers do not need to be modified
before Configuration space enumeration. This input is
not applicable for Root Port mode.

cfg_per_function_update_done Output 1

Configuration per Function Update Complete.
Asserted in response to
cfg_per_function_output_request assertion, for
one cycle after the request is complete.

cfg_per_function_number Input 3

Configuration Per Function Target Function Number.
The user application provides the function number (0-7),
where value 0–1 corresponds to PF0–1, and value 2–7
corresponds to VF0–5, and asserts
cfg_per_function_output_request to obtain per
function output values for the selected function.

cfg_per_function_output_request Input 1

Configuration Per Function Output Request.
When this port is asserted with a function number value
on cfg_per_function_number, the core presents
information on per-function configuration output pins
and asserts cfg_update_done when complete.

cfg_dsn Input 64

Configuration Device Serial Number.
Indicates the value that should be transferred to the
Device Serial Number Capability on PF0. Bits [31:0] are
transferred to the f irst (Lower) Dword (byte offset 0x4h
of the Capability), and bits [63:32] are transferred to the
second (Upper) Dword (byte offset 0x8h of the
Capability). If this value is not statically assigned, the user
application must pulse user_cfg_input_update after
it is stable.

cfg_ds_bus_number Input 8

Configuration Downstream Bus Number.
• Downstream Port: Provides the bus number portion of

the Requester ID (RID) of the Downstream Port. This is
used in TLPs generated inside the core, such as UR
Completions and Power-management messages; it
does not affect TLPs presented on the AXI interface.

• Upstream Port: No role.

Table 2-20: Configuration Control Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=51

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 52
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_ds_device_number Input 5

Configuration Downstream Device Number:
• Downstream Port: Provides the device number portion

of the RID of the Downstream Port. This is used in TLPs
generated inside the core, such as UR Completions and
Power-management messages; it does not affect TLPs
presented on the AXI interface.

• Upstream Port: No role.

cfg_ds_function_number Input 3

Configuration Downstream Function Number.
• Downstream Port: Provides the function number

portion of the RID of the Downstream Port. This is used
in TLPs generated inside the core, such as UR
Completions and Power-management messages; it
does not affect TLPs presented on the AXI interface.

• Upstream Port: No role.

cfg_power_state_change_ack Input 1

Configuration Power State Ack.
The user application must assert this input to the core for
one cycle in response to the assertion of
cfg_power_state_change_interrupt, when it is
ready to transition to the low-power state requested by
the configuration write request. The user application can
permanently hold this input High if it does not need to
delay the return of the completions for the configuration
write transactions, causing power-state changes.

cfg_power_state_change_interrupt Output 1

Power State Change Interrupt.
The core asserts this output when the power state of a
Physical or Virtual Function is being changed to the D1
or D3 states by a write into its Power Management
Control Register. The core holds this output High until
the user application asserts the
cfg_power_state_change_ack input to the core.
While cfg_power_state_change_interrupt
remains High, the core does not return completions for
any pending configuration read or write transaction
received by the core. The purpose is to delay the
completion for the configuration write transaction that
caused the state change until the user application is
ready to transition to the low-power state. When
cfg_power_state_change_interrupt is asserted,
the Function number associated with the configuration
write transaction is provided on the
cfg_snp_function_number[7:0] output. When the
user application asserts
cfg_power_state_change_ack , the new state of the
Function that underwent the state change is reflected on
cfg_function_power_state (for PFs) or the
cfg_vf_power_state (for VFs) outputs of the core.

Table 2-20: Configuration Control Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=52

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 53
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_err_cor_in Input 1

Correctable Error Detected.
The user application can activate this input for one cycle
to indicate a correctable error detected within the user
logic that needs to be reported as an internal error
through the PCI Express Advanced Error Reporting
mechanism. In response, the core sets the Corrected
Internal Error Status bit in the AER Correctable Error
Status Register of all enabled Functions, and also sends
an error message if enabled to do so. This error is not
considered function-specific.

cfg_err_uncor_in Input 1

Uncorrectable Error Detected.
The user application can activate this input for one cycle
to indicate a uncorrectable error detected within the user
logic that needs to be reported as an internal error
through the PCI Express Advanced Error Reporting
mechanism. In response, the core sets the uncorrected
Internal Error Status bit in the AER Uncorrectable Error
Status Register of all enabled Functions, and also sends
an error message if enabled to do so. This error is not
considered function-specific.

cfg_flr_done Input 2

Function Level Reset Complete.
The user application must assert bit i of this bus when the
reset operation of Function i completes. This causes the
core to deassert cfg_flr_in_process for function i
and to re-enable configuration accesses to the function.

cfg_vf_flr_done Input 6

Function Level Reset for virtual Function is Complete.
The user application must assert bit i of this bus the reset
operation of Virtual Function i completes. This causes the
core to deassert cfg_vf_flr_in_process for
Function i and to re-enable configuration accesses to the
Virtual Function.

cfg_flr_in_process Output 2

Function Level Reset In Process.
The core asserts bit i of this bus when the host initiates a
reset of Function i through its FLR bit in the configuration
space. The core continues to hold the output High until
the user sets the corresponding cfg_flr_done input
for the corresponding Function to indicate the
completion of the reset operation.

cfg_vf_flr_in_process Output 6

Function Level Reset In Process for Virtual Function.
The core asserts bit i of this bus when the host initiates a
reset of Virtual Function i though its FLR bit in the
configuration space. The core continues to hold the
output High until the user sets the corresponding
cfg_vf_flr_done input for the corresponding
Function to indicate the completion of the reset
operation.

Table 2-20: Configuration Control Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=53

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 54
PG023 November 19, 2014

Chapter 2: Product Specification

Configuration Interrupt Controller Interface

The Configuration Interrupt Controller interface allows the user application to set Legacy
PCIe interrupts, MSI interrupts, or MSI-X interrupts. The core provides the interrupt status
on the configuration interrupt sent and fail signals. Table 2-21 defines the ports in the
Configuration Interrupt Controller interface of the core.

cfg_req_pm_transition_l23_ready Input 1

When the core is configured as an Endpoint, the user
application can assert this input to transition the power
management state of the core to L23_READY (see
Chapter 5 of the PCI Express Specification for a detailed
description of power management [Ref 2]). This is done
after the PCI Functions in the core are placed in the D3
state and after the user application acknowledges the
PME_Turn_Off message from the Root Complex.
Asserting this input causes the link to transition to the L3
state, and requires a hard reset to resume operation. This
input can be hardwired to 0 if the link is not required to
transition to L3. This input is not used in Root Complex
mode.

cfg_link_training_enable Input 1
This input must be set to 1 to enable the Link Training
Status State Machine (LTSSM) to bring up the link. Setting
it to 0 forces the LTSSM to stay in the Detect.Quiet state.

Table 2-20: Configuration Control Interface Port Descriptions (Cont’d)

Port Direction Width Description

Table 2-21: Configuration Interrupt Controller Interface Port Descriptions

Port Direction Width Description

cfg_interrupt_int Input 4

Configuration INTx Vector.
When the core is configured as EP, these four inputs are
used by the user application to signal an interrupt from
any of its PCI Functions to the RC using the Legacy PCI
Express Interrupt Delivery mechanism of PCI Express.
These four inputs correspond to INTA, INTB, INTC, and
INTD. Asserting one of these signals causes the core to
send out an Assert_INTx message, and deasserting the
signal causes the core to transmit a Deassert_INTx
message.

cfg_interrupt_sent Output 1

Configuration INTx Sent.
A pulse on this output indicates that the core has sent
an INTx Assert or Deassert message in response to a
change in the state of one of the cfg_interrupt_int
inputs.

cfg_interrupt_pending Input 2

Configuration INTx Interrupt Pending (active-High).
Per Function indication of a pending interrupt.
cfg_interrupt_pending[0] corresponds to
Function #0.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=54

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 55
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_interrupt_msi_enable Output 2
Configuration Interrupt MSI Function Enabled.
Indicates that Message Signaling Interrupt (MSI)
messaging is enabled per Function.

cfg_interrupt_msi_vf_enable Output 6
Configuration Interrupt MSI on VF Enabled.
Indicates that MSI messaging is enabled, per Virtual
Function.

cfg_interrupt_msi_int Input 32

Configuration Interrupt MSI Vector.
When the core is configured in the Endpoint mode to
support MSI interrupts, these inputs are used to signal
the 32 distinct interrupt conditions associated with a PCI
Function (Physical or Virtual) from the user logic to the
core. The Function number must be specif ied on the
cfg_interrupt_msi_function_number input.
After placing the Function number on the input
cfg_interrupt_msi_function_number, the user
logic must activate one of these signals for at least one
cycle to transmit an interrupt. The user logic must not
activate more than one of the 32 interrupt inputs in the
same cycle. The core internally registers the interrupt
condition on the 0-to-1 transition of any bit in
cfg_interrupt_msi_int. After asserting an
interrupt, the user logic must wait for the
cfg_interrupt_msi_sent or
cfg_interrupt_msi_fail indication from the core
before asserting a new interrupt.

cfg_interrupt_msi_sent Output 1

Configuration Interrupt MSI Interrupt Sent.
The core generates a one-cycle pulse on this output to
signal that an MSI interrupt message has been
transmitted on the link. The user logic must wait for this
pulse before signaling another interrupt condition to
the core.

cfg_interrupt_msi_fail Output 1

Configuration Interrupt MSI Interrupt Operation Failed.
A one-cycle pulse on this output indicates that an MSI
interrupt message was aborted before transmission on
the link. The user application must retransmit the MSI
interrupt in this case.

cfg_interrupt_msi_mmenable Output 6

Configuration Interrupt MSI Function Multiple Message
Enable.
When the core is configured in the Endpoint mode to
support MSI interrupts, these outputs are driven by the
“Multiple Message Enable” bits of the MSI Control
Registers associated with Physical Functions. These bits
encode the number of allocated MSI interrupt vectors
for the corresponding Function. Bits [2:0] correspond to
Physical Function 0.

Table 2-21: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=55

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 56
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_interrupt_msi_pending_status Input 64

Configuration Interrupt MSI Pending Status.
These inputs provide the status of the MSI pending
interrupts for the Physical Functions. The setting of
these pins determines the value read from the MSI
Pending Bits Register of the corresponding PF. Bits [31:0]
belong to PF 0, bits [63:32] to PF 1. The MSI Pending bits
register contains the pending bits for MSI Interrupts. A
read from this location returns the state of MSI_MASK
inputs of the core. This is a 32-bit wide RO register with
a default value of MSI Mask inputs. MSI_MASK bits
provide the setting of the MSI Mask registers of the
Physical Functions. Bits [31:0] correspond to Physical
Function 0, bits [63:32] correspond to PF 1, and so on.

cfg_interrupt_msi_mask_update Output 1

Configuration Interrupt MSI Function Mask Update.
Asserted for one cycle when any enabled functions in
the MSI Mask Register change value. MSI Mask register
contains the Mask bits for MSI interrupts. The Multiple
Message Capable f ield in the MSI Control Register
specif ies the number of distinct interrupts for the
Function, which determines the number of valid mask
bits. This is a 32-bit wide RW register with a default
value of 0.

cfg_interrupt_msi_select Input 4

Configuration Interrupt MSI Select.
Values 0000b-0001b correspond to PF0-1 selection,
and values 0010b-0111b correspond to VF0-5
selection. cfg_interrupt_msi_data[31:0]
presents the value of the MSI Mask register from the
selected function. When this input is driven to 1111b,
cfg_interrupt_msi_data[17:0] presents the
“Multiple Message Enable” bits of the MSI Control
Registers associated with all Virtual Functions. These
bits encode the number of allocated MSI interrupt
vectors for the corresponding function.
cfg_interrupt_msi_data[2:0] correspond to
Virtual Function 0, and so on.

cfg_interrupt_msi_data Output 32
Configuration Interrupt MSI Data.
The value presented depends on
cfg_interrupt_msi_select.

cfg_interrupt_msix_enable Output 2
Configuration Interrupt MSI-X Function Enabled.
When asserted, indicates that the Message Signaling
Interrupt (MSI-X) messaging is enabled, per function.

cfg_interrupt_msix_mask Output 2
Configuration Interrupt MSI-X Function Mask.
Indicates the state of the Function Mask bit in the MSI-X
Message Control f ield, per function.

cfg_interrupt_msix_vf_enable Output 6

Configuration Interrupt MSI-X on VF Enabled.
When asserted, indicates that Message Signaling
Interrupt (MSI-X) messaging is enabled, per Virtual
Function.

Table 2-21: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=56

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 57
PG023 November 19, 2014

Chapter 2: Product Specification

cfg_interrupt_msix_vf_mask Output 6
Configuration Interrupt MSI-X VF Mask.
Indicates the state of the Function Mask bit in the MSI-X
Message Control f ield, per Virtual Function.

cfg_interrupt_msix_address Input 64

Configuration Interrupt MSI-X Address.
When the core is configured to support MSI-X
interrupts, this bus is used by the user logic to
communicate the address to be used for an MSI-X
message.

cfg_interrupt_msix_data Input 32

Configuration Interrupt MSI-X Data.
When the core is configured to support MSI-X
interrupts, this bus is used by the user logic to
communicate the data to be used for an MSI-X message.

cfg_interrupt_msix_int Input 1

Configuration Interrupt MSI-X Data Valid.
This signal indicates that valid information has been
placed on the
cfg_interrupt_msix_address[63:0] and
cfg_interrupt_msix_data[31:0] buses, and the
originating function number has been placed on
cfg_interrupt_msi_function_number[2:0].
The core internally registers the associated address and
data from cfg_interrupt_msix_address and
cfg_interrupt_msix_data on the 0-to-1 transition
of this valid signal. After asserting an interrupt, the user
logic must wait for the cfg_interrupt_msix_sent
or cfg_interrupt_msix_fail indication from the
core before asserting a new interrupt.

cfg_interrupt_msix_sent Output 1

Configuration Interrupt MSI-X Interrupt Sent.
The core generates a one-cycle pulse on this output to
indicate that it has accepted the information placed on
the cfg_interrupt_msix_address[63:0] and
cfg_interrupt_msix_data[31:0] buses, and an
MSI-X interrupt message has been transmitted on the
link. The user application must wait for this pulse before
signaling another interrupt condition to the core.

cfg_interrupt_msix_fail Output 1

Configuration Interrupt MSI-X Interrupt Operation
Failed.
A one-cycle pulse on this output indicates that the
interrupt controller has failed to transmit MSI-X
interrupt on the link. The user application must
retransmit the MSI-X interrupt in this case.

cfg_interrupt_msi_attr Input 3

Configuration Interrupt MSI/MSI-X TLP Attr.
These bits provide the setting of the Attribute bits to be
used for the MSI/MSI-X interrupt request. Bit 0 is the No
Snoop bit, and bit 1 is the Relaxed Ordering bit. Bit 2 is
the ID-Based Ordering bit. The core samples these bits
on a 0-to-1 transition on cfg_interrupt_msi_int or
cfg_interrupt_msix_int.

Table 2-21: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=57

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 58
PG023 November 19, 2014

Chapter 2: Product Specification

Configuration Extend Interface

The Configuration Extend interface allows the core to transfer configuration information
with the user application when externally implemented configuration registers are

cfg_interrupt_msi_tph_present Input 1

Configuration Interrupt MSI/MSI-X TPH Present.
Indicates the presence of a Transaction Processing Hint
(TPH) in the MSI/MSI-X interrupt request. The user
application must set this bit while asserting
cfg_interrupt_msi_int or
cfg_interrupt_msix_int, if it includes a TPH in the
MSI or MSI-X transaction.

cfg_interrupt_msi_tph_type Input 2

Configuration Interrupt MSI/MSI-X TPH Type.
When cfg_interrupt_msi_tph_present is 1'b1,
these two bits supply the two-bit type associated with
the hint. The core samples these bits on a 0-to-1
transition on cfg_interrupt_msi_int or
cfg_interrupt_msix_int.

cfg_interrupt_msi_tph_st_tag Input 9

Configuration Interrupt MSI/MSI-X TPH Steering Tag.
When cfg_interrupt_msi_tph_present is 1'b1,
the Steering Tag associated with the Hint must be
placed on cfg_interrupt_msi_tph_st_tag[7:0].
Setting cfg_interrupt_msi_tph_st_tag[8] to 1b
activates the Indirect Tag mode. In the Indirect Tag
mode, the core uses bits [5:0] of
cfg_interrupt_msi_tph_st_tag as an index into
its Steering Tag Table (STT) in the TPH Capability
Structure (STT is limited to 64 entries per Function), and
inserts the tag from this location in the transmitted
request MSI/X TLP. Setting
cfg_interrupt_msi_tph_st_tag[8] to 0b
activates the Direct Tag mode. In the Direct Tag mode,
the core inserts
cfg_interrupt_msi_tph_st_tag[7:0] directly as
the Tag in the transmitted MSI/X TLP. The core samples
these bits on a 0-to-1 transition on any
cfg_interrupt_msi_int bits or
cfg_interrupt_msix_int.

cfg_interrupt_msi_function_number Input 3

Configuration MSI/MSI-X Initiating Function.
Indicates the Endpoint function number initiating the
MSI or MSI-X transaction:
• 0: PF0
• 1: PF1
• 2: VF0
• 3: VF1
• 4: VF2

...
• 7: VF5

Table 2-21: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=58

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 59
PG023 November 19, 2014

Chapter 2: Product Specification

implemented. Table 2-22 defines the ports in the Configuration Extend interface of the
core.

Table 2-22: Configuration Extend Interface Port Descriptions

Port Direction Width Description

cfg_ext_read_received Output 1

Configuration Extend Read Received.
The core asserts this output when it has received a configuration
read request from the link. When neither user-implemented
legacy or extended configuration space is enabled, receipt of a
configuration read results in a one-cycle assertion of this signal,
together with valid cfg_ext_register_number and
cfg_ext_function_number. When user-implemented legacy,
extended configuration space, or both are enabled, for the
cfg_ext_register_number ranges, 0x10-0x1f or
0x100-0x3ff, respectively, this signal is asserted, until user
logic presents cfg_ext_read_data and
cfg_ext_read_data_valid. For
cfg_ext_register_number ranges outside 0x10-0x1f or
0x100-0x3ff, receipt of a configuration read always results in a
one-cycle assertion of this signal.

cfg_ext_write_received Output 1
Configuration Extend Write Received.
The core generates a one-cycle pulse on this output when it has
received a configuration write request from the link.

cfg_ext_register_number Output 10

Configuration Extend Register Number. The 10-bit address of the
configuration register being read or written. The data is valid
when cfg_ext_read_received or
cfg_ext_write_received is High.

cfg_ext_function_number Output 8

Configuration Extend Function Number.
The 8-bit Function Number corresponding to the configuration
read or write request. The data is valid when
cfg_ext_read_received or cfg_ext_write_received is
High.

cfg_ext_write_data Output 32
Configuration Extend Write Data.
Data being written into a configuration register. This output is
valid when cfg_snp_write_received is High.

cfg_ext_write_byte_enable Output 4
Configuration Extend Write Byte Enable.
Byte enables for a configuration write transaction.

cfg_ext_read_data Input 32

Configuration Extend Read Data.
The user can provide data from an externally implemented
configuration register to the core through this bus. The core
samples this data on the next positive edge of the clock after it
sets cfg_snp_read_received High, if the user has set
cfg_snp_read_data_valid.

cfg_ext_read_data_valid Input 1

Configuration Extend Read Data Valid.
The user asserts this input to the core to supply data from an
externally implemented configuration register. The core samples
this input data on the next positive edge of the clock after it sets
cfg_snp_read_received High.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=59

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 60
PG023 November 19, 2014

Chapter 2: Product Specification

Clock and Reset Interface

Fundamental to the operation of the core, the Clock and Reset interface provides the
system-level clock and reset to the core as well as the user application clock and reset
signal. Table 2-23 defines the ports in the Clock and Reset interface of the core.

For more information about PCI Express clocking and reset, see PCI Express Clocking and
PCI Express Reset in the “Use Model” chapter of the 7 Series FPGAs GTX/GTH Transceivers
User Guide (UG476) [Ref 7].

Clocking Interface for Partial Reconfiguration

The clocking interface provided to the user application supports Partial Reconfiguration by
use of clocking external to the PCI Express design. Table 2-24 defines the clocking interface
signals.

Table 2-23: Clock and Reset Interface Port Descriptions

Port Direction Width Description

user_clk Output 1 User clock output (62.5, 125, or 250 MHz). This clock has a fixed
frequency and is configured in the Vivado® Design Suite.

user_reset Output 1
This signal is deasserted synchronously with respect to
user_clk . It is deasserted and asserted asynchronously with
sys_reset assertion.

sys_clk Input 1 Reference clock. This clock has a selectable frequency of 100 MHz,
125 MHz, or 250 MHz.

sys_reset Input 1 Fundamental reset input to the core (asynchronous, active-High).

Table 2-24: Clocking Interface Signals

Name Direction Description

pipe_pclk_in Input Parallel clock used to synchronize data transfers across the parallel
interface of the GTX transceiver.

pipe_rxusrclk_in Input Provides a clock for the internal RX PCS datapath.

pipe_rxoutclk_in Input Recommended clock output to the FPGA logic.

pipe_dclk_in Input Dynamic reconfiguration clock.

pipe_userclk1_in Input Optional user clock.

pipe_userclk2_in Input Optional user clock

pipe_mmcm_lock_in Input Indicates if the MMCM is locked onto the source CLK.

pipe_txoutclk_out Output Recommended clock output to the FPGA logic.

pipe_rxoutclk_out Output Recommended clock output to the FPGA logic.

pipe_pclk_sel_out Output Parallel clock select.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=60

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 61
PG023 November 19, 2014

Chapter 2: Product Specification

PCI Express Interface

The PCI Express (PCI_EXP) interface consists of differential transmit and receive pairs
organized in multiple lanes. A PCI Express lane consists of a pair of transmit differential
signals (pci_exp_txp, pci_exp_txn) and a pair of receive differential signals
{pci_exp_rxp, pci_exp_rxn}. The 1-lane core supports only Lane 0, the 2-lane core
supports lanes 0–1, the 4-lane core supports lanes 0-3, and the 8-lane core supports lanes
0–7. Transmit and receive signals of the PCI_EXP interface are defined in Table 2-25.

pipe_gen3_out Output Indicates the PCI Express operating speed.

pipe_mmcm_rst_n Input

Provides a MMCM reset port (pipe_mmcm_rst_n) and has the
upper layer control the reset if error recovery is required. If system
detects the MMCM lose lock, Xilinx recommends that you reset the
MMCM. Reset the MMCM after the MMCM input clock recovers (if
MMCM reset occurs before the input reference clock recovers, the
MMCM might never relock). After MMCM reset, wait for MMCM
lock and then reset the PIPE Wrapper as normally done. Currently
this input is tied High.

Table 2-25: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores

Lane
Number Name Direction Description

1-Lane Cores

0

pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (–)

2-Lane Cores

0

pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (–)

1

pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential Input 1 (–)

Table 2-24: Clocking Interface Signals (Cont’d)

Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=61

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 62
PG023 November 19, 2014

Chapter 2: Product Specification

4-Lane Cores

0

pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (–)

1

pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential Input 1 (–)

2

pci_exp_txp2 Output PCI Express Transmit Positive: Serial Differential Output 2 (+)

pci_exp_txn2 Output PCI Express Transmit Negative: Serial Differential Output 2 (–)

pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential Input 2 (+)

pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential Input 2 (–)

3

pci_exp_txp3 Output PCI Express Transmit Positive: Serial Differential Output 3 (+)

pci_exp_txn3 Output PCI Express Transmit Negative: Serial Differential Output 3 (–)

pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential Input 3 (+)

pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential Input 3 (–)

8-Lane Cores

0

pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (–)

1

pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential Input 1 (–)

2

pci_exp_txp2 Output PCI Express Transmit Positive: Serial Differential Output 2 (+)

pci_exp_txn2 Output PCI Express Transmit Negative: Serial Differential Output 2 (–)

pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential Input 2 (+)

pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential Input 2 (–)

3

pci_exp_txp3 Output PCI Express Transmit Positive: Serial Differential Output 3 (+)

pci_exp_txn3 Output PCI Express Transmit Negative: Serial Differential Output 3 (–)

pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential Input 3 (+)

pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential Input 3 (–)

Table 2-25: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane
Number Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=62

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 63
PG023 November 19, 2014

Chapter 2: Product Specification

User TPH Interface

For each active Physical Function (PF) or Virtual Function (VF), the user application must
perform the following:

1. Wait for assertion of the bit corresponding to PF in
cfg_tph_requester_enable[1:0] or VF in
cfg_vf_tph_requester_enable[5:0]. Here cfg_tph_requester_enable[0],
indicates PF0 status, while cfg_vf_tph_requester_enable[0] indicates status of
VF0.

2. Before using the Steering Tag (ST) Table entries using the user_tph interface, the ST
Mode of Operation values indicate the corresponding PF by cfg_tph_st_mode[5:0]
(where values for PF0 are in cfg_tph_st_mode[2:0]), or VF by
cfg_vf_tph_st_mode[17:0] (where values for VF0 are in
cfg_vf_tph_st_mode[2:0]). Here:

° ST Mode of Operation of 000b indicates: no ST Mode, meaning, that Function must
use a value of all zeroes for all Steering Tags.

° ST Mode of Operation of 001 indicates: Interrupt Vector Mode, meaning, each
Steering Tag is selected by an MSI/MSI-X interrupt vector number. The Function is
required to use the Steering Tag value from an ST Table entry that can be indexed
by a valid MSI/MSI-X interrupt vector number.

4

pci_exp_txp4 Output PCI Express Transmit Positive: Serial Differential Output 4 (+)

pci_exp_txn4 Output PCI Express Transmit Negative: Serial Differential Output 4 (–)

pci_exp_rxp4 Input PCI Express Receive Positive: Serial Differential Input 4 (+)

pci_exp_rxn4 Input PCI Express Receive Negative: Serial Differential Input 4 (–)

5

pci_exp_txp5 Output PCI Express Transmit Positive: Serial Differential Output 5 (+)

pci_exp_txn5 Output PCI Express Transmit Negative: Serial Differential Output 5 (–)

pci_exp_rxp5 Input PCI Express Receive Positive: Serial Differential Input 5 (+)

pci_exp_rxn5 Input PCI Express Receive Negative: Serial Differential Input 5 (–)

6

pci_exp_txp6 Output PCI Express Transmit Positive: Serial Differential Output 6 (+)

pci_exp_txn6 Output PCI Express Transmit Negative: Serial Differential Output 6 (–)

pci_exp_rxp6 Input PCI Express Receive Positive: Serial Differential Input 6 (+)

pci_exp_rxn6 Input PCI Express Receive Negative: Serial Differential Input 6 (–)

7

pci_exp_txp7 Output PCI Express Transmit Positive: Serial Differential Output 7 (+)

pci_exp_txn7 Output PCI Express Transmit Negative: Serial Differential Output 7 (–)

pci_exp_rxp7 Input PCI Express Receive Positive: Serial Differential Input 7 (+)

pci_exp_rxn7 Input PCI Express Receive Negative: Serial Differential Input 7 (–)

Table 2-25: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane
Number Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=63

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 64
PG023 November 19, 2014

Chapter 2: Product Specification

° ST Mode of Operation of 010 indicates: Device Specif ic Mode, where, it is
recommended for the Function to use a Steering Tag (ST) value from an ST Table
entry, but it is not required

Attribute Descriptions

Client Interface
Table 2-27 lists the configuration attributes controlling the operation of the client interface
of the core.

Table 2-26: User TPH Interface Signals

Port Name Direction Width Description

user_tph_stt_address Input 5 Indicates the address of an entry that user wants to
read from ST table.

user_tph_function_num Input 3 Function number associated with the read request
(0 =PF 0, 1 = PF 1, 2= VF 0, 3 = VF 1, …,)

user_tph_stt_read_data Output 32 Indicates the 32-bit data read from the ST table for
the address given by user_tph_stt_address.

user_tph_stt_read_data_valid Output 1 Indicates that valid data has been placed on the
user_tph_stt_read_data bus.

user_tph_stt_read_enable Input 1
It should be asserted when placing the address
user_tph_stt_address to be read from the ST
table for an active function.

Table 2-27: Configuration Attributes of the Integrated Block Client Interface

Attribute Name Type Description

USER_CLK2_FREQ Integer

• 0: Disable User Clock
• 1: 31.25 MHz
• 2: 62.50 MHz (default)
• 3: 125.00 MHz
• 4: 250.00 MHz
• 5: 500.00 MHz

PL_LINK_CAP_MAX_LINK_SPEED[2:0] Bit vector

Defines the maximum speed of the PCIe link.
• 001: 2.5 GT/s
• 010: 5.0 GT/s
• 100: 8.0 GT/s
All other encodings are reserved.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=64

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 65
PG023 November 19, 2014

Chapter 2: Product Specification

PL_LINK_CAP_MAX_LINK_WIDTH[3:0] Bit vector

Maximum Link Width. Valid settings are:
• 0001b: x1
• 0010b: x2
• 0100b: x4
• 1000b: x8
All other encodings are reserved. This setting is
propagated to all layers in the core.

C_DATA_WIDTH Integer

Configures the width of the AXI4-Stream interfaces.
• 64 bit interface
• 128 bit interface
• 256 bit interface

AXISTEN_IF_CQ_ALIGNMENT_MODE String

Defines the data alignment mode for the completer
request interface.
• FALSE: Dword-aligned Mode
• TRUE: Address-aligned Mode

AXISTEN_IF_CC_ALIGNMENT_MODE String

Defines the data alignment mode for the completer
completion interface.
• FALSE: Dword-aligned Mode
• TRUE: Address-aligned Mode

AXISTEN_IF_RQ_ALIGNMENT_MODE String

Defines the data alignment mode for the requester
request interface.
• FALSE: Dword-aligned Mode
• TRUE: Address-aligned Mode

AXISTEN_IF_RC_ALIGNMENT_MODE String

Defines the data alignment mode for the requester
completion interface.
• FALSE: Dword-aligned Mode
• TRUE: Address-aligned Mode

AXISTEN_IF_RC_STRADDLE String

This attribute enables the straddle option on the
requester completion interface.
• FALSE: Straddle option disabled
• TRUE: Straddle option enabled

AXISTEN_IF_RQ_PARITY_CHECK String

This attribute enables parity checking on the requester
request interface.
• FALSE: Parity check disabled
• TRUE: Parity check enabled

AXISTEN_IF_CC_PARITY_CHECK String

This attribute enables parity checking on the completer
completion interface.
• FALSE: Parity check disabled
• TRUE: Parity check enabled

Table 2-27: Configuration Attributes of the Integrated Block Client Interface (Cont’d)

Attribute Name Type Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=65

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 66
PG023 November 19, 2014

Chapter 2: Product Specification

AXISTEN_IF_ENABLE_RX_MSG_INTFC String

This attribute controls how the core delivers a message
received from the link.
When this attribute is set to FALSE, the core delivers the
received message TLPs on the completer request
interface using the AXI4-Stream protocol. In this mode,
you can select the message types to receive using the
AXISTEN_IF_ENABLE_MSG_ROUTE attributes. The receive
message interface is inactive in this mode.
When this attribute is set to TRUE, the core internally
decodes messages received from the link, and signals
them to the user by activating the cfg_msg_received
signal on the receive message interface. The core does
not transfer any message TLPs on the completer request
interface. The settings of the
AXISTEN_ENABLE_MSG_ROUTE attributes have no effect
on the operation of the receive message interface in this
mode.

AXISTEN_IF_ENABLE_MSG_ROUTE[17:0] Bit vector

When the AXISTEN_IF_ENABLE_RX_MSG_INTFC attribute is
set to 0, you can use these attributes to select the
specif ic message types you want to receive on the
completer request interface. Setting a bit to 1 enables
the delivery of the corresponding type of messages on
the interface, and setting it to 0 results in the core
f iltering the message.
Table 2-28 defines the attribute bit definitions
corresponding to the various message types.

AXISTEN_IF_ENABLE_CLIENT_TAG String

When set to FALSE, tag management for Non-Posted
transactions initiated from the requester request
interface is performed by the integrated block. That is,
for each Non-Posted request, the core allocates the tag
for the transaction and communicates it to the client
interface.
Setting set to TRUE, disables the internal tag
management, allowing the user logic to supply the tag to
be used for each request. The user logic must present the
Tag f ield in the Request descriptor header in the range
0–31 when the PF0_DEV_CAP_EXT_TAG_SUPPORTED
attribute is FALSE, while the Tag f ield can be in the range
0–63 when the PF0_DEV_CAP_EXT_TAG_SUPPORTED
attribute is TRUE.

Table 2-27: Configuration Attributes of the Integrated Block Client Interface (Cont’d)

Attribute Name Type Description

Table 2-28: AXISTEN_IF_ENABLE_MSG_ROUTE Attribute Bit Descriptions

Bit Index Message Type

0 ERR_COR

1 ERR_NONFATAL

2 ERR_FATAL

3 Assert_INTA and Deassert_INTA

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=66

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 67
PG023 November 19, 2014

Chapter 2: Product Specification

Configuration Space
The PCI configuration space consists of three primary parts, illustrated in Table 2-29. These
include:

• Legacy PCI v3.0 Type 0/1 Configuration Space Header

° Type 0 Configuration Space Header used by Endpoint applications (see Table 2-30)

° Type 1 Configuration Space Header used by Root Port applications (see Table 2-31)

• Legacy Extended Capability Items

° PCIe Capability Item

° Power Management Capability Item

° Message Signaled Interrupt (MSI) Capability Item

° MSI-X Capability Item (optional)

• PCIe Capabilities

° Advanced Error Reporting Extended Capability Structure (AER)

° Alternate Requester ID (ARI) (optional)

° Device Serial Number Extended Capability Structure (DSN) (optional)

4 Assert_INTB and Deassert_INTB

5 Assert_INTC and Deassert_INTC

6 Assert_INTD and Deassert_INTD

7 PM_PME

8 PME_TO_Ack

9 PME_Turn_Off

10 PM_Active_State_Nak

11 Set_Slot_Power_Limit

12 Latency Tolerance Reporting (LTR)

13 Optimized Buffer Flush/Fill (OBFF)

14 Unlock

15 Vendor_Defined Type 0

16 Vendor_Defined Type 1

17 Invalid Request, Invalid Completion, Page Request, PRG Response

Table 2-28: AXISTEN_IF_ENABLE_MSG_ROUTE Attribute Bit Descriptions (Cont’d)

Bit Index Message Type

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=67

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 68
PG023 November 19, 2014

Chapter 2: Product Specification

° Power Budgeting Enhanced

° Capability Header (PB) (optional)

° Resizable BAR (RBAR) (optional)

° Latency Tolerance Reporting (LTR) (optional)

° Dynamic Power Allocation (DPA) (optional)

° Single Root I/O Virtualization (SR-IOV) (optional)

° Transaction Processing Hints (TPH) (optional)

° Virtual Channel Extended Capability Structure (VC) (optional)

• PCIe Extended Capabilities

° Device Serial Number Extended Capability Structure (optional)

° Virtual Channel Extended Capability Structure (optional)

° Advanced Error Reporting Extended Capability Structure (optional)

The core implements up to four legacy extended capability items.

For more information about enabling this feature, see Chapter 4, Customizing and
Generating the Core.

The core can implement up to ten PCI Express Extended Capabilities. The remaining PCI
Express Extended Capability Space is available for users to implement. The starting address
of the space available to users begins at 3DCh. If you choose to implement registers in this
space, you can select the starting location of this space, and this space must be
implemented in the user application.

For more information about enabling this feature, see Extended Capabilities 1 and Extended
Capabilities 2 in Chapter 4.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=68

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 69
PG023 November 19, 2014

Chapter 2: Product Specification

Table 2-29: Common PCI Configuration Space Header
31 16 15 0

Device ID Vendor ID 000h

Status Command 004h

Class Code Rev ID 008h

BIST Header Lat Timer Cache Ln 00Ch

Header Type Specific
(see Table 2-30 and Table 2-31)

010h

014h

018h

01Ch

020h

024h

028h

02Ch

030h

CapPtr 034h

038h

Intr Pin Intr Line 03Ch

Reserved 040h-
07Ch

PM Capability NxtCap PM Cap 080h

Data Reserved PMCSR 084h

Reserved 088h-
08Ch

Customizable(1)

MSI Control NxtCap MSI Cap 090h

Message Address (Lower) 094h

Message Address (Upper) 098h

Reserved Message Data 09Ch

Mask Bits 0A0h

Pending Bits 0A4h

Reserved 0A8h-
0ACh

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=69

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 70
PG023 November 19, 2014

Chapter 2: Product Specification

Optional(3)

MSl-X Control NxtCap MSl-X Cap 0B0h

Table Offset Table
BIR

0B4h

PBA Offset PBA
BIR

0B8h

Reserved 0BCh

PE Capability NxtCap PE Cap 0C0h

PCI Express Device Capabilities 0C4h

Device Status Device Control 0C8h

PCI Express Link Capabilities 0CCh

Link Status Link Control 0D0h

Root Port Only(2)

Slot Capabilities 0D4h

Slot Status Slot Control 0D8h

Root Capabilities Root Control 0DCh

Root Status 0E0h

PCI Express Device Capabilities 2 0E4h

Device Status 2 Device Control 2 0E8h

PCI Express Link Capabilities 2 0ECh

Link Status 2 Link Control 2 0F0h

Unimplemented Configuration Space
(Returns 0x00000000)

0F4h-
0FCh

Always Enabled

Next Cap Cap. Ver. PCI Express Extended Cap. ID (AER) 100h

Uncorrectable Error Status Register 104h

Uncorrectable Error Mask Register 108h

Uncorrectable Error Severity Register 10Ch

Correctable Error Status Register 110h

Correctable Error Mask Register 114h

Advanced Error Cap. & Control Register 118h

Header Log Register 1 11Ch

Header Log Register 2 120h

Header Log Register 3 124h

Header Log Register 4 128h

Reserved 12Ch

Optional, Root
Port only(3)

Root Error Command Register 130h

Root Error Status Register 134h

Error Source ID Register 138h

Reserved 13Ch

Optional(3)(4) Next Cap Cap.
Ver.

PCI Express Extended Capability - Alternate
Requester ID (ARI)

140h

Table 2-29: Common PCI Configuration Space Header (Cont’d)
31 16 15 0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=70

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 71
PG023 November 19, 2014

Chapter 2: Product Specification

Control Next Function Function Groups 144h

Reserved 148h-
14Ch

Optional(3)

Next Cap Cap.
Ver.

PCI Express Extended Capability - DSN 150h

PCI Express Device Serial Number (1st) 154h

PCI Express Device Serial Number (2nd) 158h

Reserved 15Ch

Optional(3)

Next Cap Cap.
Ver.

PCI Express Extended Capability - Power
Budgeting Enhanced Capability Header

160h

Reserved DS 164h

Reserved Power Budget Data - State D0, D1, D3, ... 168h

Power Budget Capability 16Ch

Reserved 170h-
1B4h

Optional(3)
Next Cap Cap.

Ver.
PCI Express Extended Capability ID -

Latency Tolerance Reporting (LTR)
1B8h

No-Snoop Snoop 1BCh

Optional(3)

Next Cap Cap.
Ver.

PCI Express Extended Capability ID -
Dynamic Power Allocation

1C0h

Capability Register 1C4h

Latency Indicator 1C8h

Control Status 1CCh

Power Allocation Array Register 0 1D0h

Power Allocation Array Register 1 1D4h

Reserved 1D8h-
1FCh

Table 2-29: Common PCI Configuration Space Header (Cont’d)
31 16 15 0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=71

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 72
PG023 November 19, 2014

Chapter 2: Product Specification

Optional(3)

Next Cap Cap.
Ver.

PCI Express Extended Capability ID - Single
Root I/O Virtualization (SR-IOV)

200h

Capability Register 204h

SR-IOV Status (not supported) Control 208h

Total VFs Initial VFs 20Ch

Function Dependency Link Number VFs 210h

VF Stride First VF Offset 214h

VF Device ID Reserved 218h

Supported Page Sizes 21Ch

System Page Size 220h

VF Base Address Register 0 224h

VF Base Address Register 1 228h

VF Base Address Register 2 22Ch

VF Base Address Register 3 230h

VF Base Address Register 4 234h

VF Base Address Register 5 238h

Reserved 23Ch

Reserved 240h-
270h

Optional(3)

Next Cap Cap.
Ver.

PCI Express Extended Capability ID -
Transaction Processing Hints (TPH)

274h

Capability Register 278h

Requester Control Register 27Ch

Reserved Steering Tag Upper Steering Tag Lower 280h

Reserved 284h -
2FCh

Optional(3)

Next Cap Cap.
Ver.

PCI Express Extended Capability ID -
Secondary PCIe Extended Capability

300h

Lane Control (not supported) 304h

Reserved Lane Error Status 308h

Lane Equalization Control Register 0 30Ch

Lane Equalization Control Register 1 310h

Lane Equalization Control Register 2 314h

Lane Equalization Control Register 3 318h

Reserved 31Ch-
3BCh

Table 2-29: Common PCI Configuration Space Header (Cont’d)
31 16 15 0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=72

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 73
PG023 November 19, 2014

Chapter 2: Product Specification

Optional(3)

Next Cap Cap.
Ver.

PCI Express Extended
Capability - VC

3C0h

Port VC Capability Register 1 3C4h

Port VC Capability Register 2 3C8h

Port VC Status Port VC Control 3CCh

VC Resource Capability Register 0 3D0h

VC Resource Control Register 0 3D4h

VC Resource Status Register 0 3D8h

Reserved 400h-
FFFh

Notes:
1. The MSI Capability Structure varies depending on the selections in the Vivado Design Suite.
2. Reserved for Endpoint configurations (returns 0x00000000).
3. The layout of the PCI Express Extended Configuration Space (100h-FFFh) can change dependent on which

optional capabilities are enabled. This table represents the Extended Configuration space layout when all optional
extended capability structures, except RBAR, are enabled.

4. Enabled by default if the SR-IOV option is enabled.

Table 2-30: Type 0 PCI Configuration Space Header
31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header Lat Timer Cache Ln 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Base Address Register 2 18h

Base Address Register 3 1Ch

Base Address Register 4 20h

Base Address Register 5 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved CapPtr 34h

Reserved 38h

Max Lat Min Gnt Intr Pin Intr Line 3Ch

Table 2-29: Common PCI Configuration Space Header (Cont’d)
31 16 15 0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=73

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 74
PG023 November 19, 2014

Chapter 2: Product Specification

Table 2-31: Type 1 PCI Configuration Space Header
31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header Lat Timer Cache Ln 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Second Lat Timer Sub Bus Number Second Bus Number Primary Bus Number 18h

Secondary Status I/O Limit I/O Base 1Ch

Memory Limit Memory Base 20h

Prefetchable Memory Limit Prefetchable Memory Base 24h

Prefetchable Base Upper 32 Bits 28h

Prefetchable Limit Upper 32 Bits 2Ch

I/O Limit Upper 16 Bits I/O Base Upper 16 Bits 30h

Reserved CapPtr 34h

Expansion ROM Base Address 38h

Bridge Control Intr Pin Intr Line 3Ch

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=74

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 75
PG023 November 19, 2014

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to make designing with the
core easier.

General Design Guidelines
For more information about clock, transceiver, and I/O placement rules, see the 7 Series
FPGAs SelectIO™ Resources User Guide (UG471) [Ref 5], 7 Series FPGAs Clocking Resources
User Guide (UG472) [Ref 6], and 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)
[Ref 7].

IMPORTANT: Pay special attention to clocking conflicts or errors that might result from choosing I/O
and transceivers that do not follow these guides. Failure to adhere to these guides will result in build
errors and data integrity errors.

System Clocking
The input system clock signal of the Gen3 Integrated Block for PCIe core is called sys_clk .
The core requires a 100 MHz, 125 MHz, or 250 MHz clock input. The clock frequency used
must match the clock frequency selection in the Vivado® IP catalog. For more information,
see the Answer Records at the Xilinx PCI Express Solution Center.

In a typical PCI Express solution, the PCI Express reference clock is a spread spectrum clock
(SSC), provided at 100 MHz. In most commercial PCI Express systems, SSC cannot be
disabled. For more information regarding SSC and PCI Express, see Section 4.3.7.1.1 of the
PCI Express Base Specification, rev. 3.0 [Ref 2].

Send Feedback

http://www.xilinx.com/support/answers/34536.htm
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=75

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 76
PG023 November 19, 2014

Chapter 3: Designing with the Core

Synchronous and Non-Synchronous Clocking
There are two ways to clock the PCI Express system:

• Using synchronous clocking, where a shared clock source is used for all devices.

• Using non-synchronous clocking, where each device has its own clock source. Spread
spectrum clocking (SSC) and active state power management (ASPM) must not be used
in systems with non-synchronous clocking.

IMPORTANT: The most commonly used clocking methodology is synchronous clocking. All add-in card
designs must use synchronous clocking due to the characteristics of the provided reference clock. For
devices using the Slot clock, the Slot Clock Configuration setting in the Link Status Register must be
enabled in the Vivado® IP catalog. See Clocking Requirements, page 79 and the 7 Series FPGAs
GTX/GTH Transceivers User Guide (UG476) [Ref 7] for additional information regarding reference clock
requirements.

For synchronous clocked systems, each link partner device shares the same clock source.
Figure 3-1 and Figure 3-3 show a system using a 100 MHz reference clock. When using
the 125 MHz or the 250 MHz reference clock option, an external PLL must be used to do
a multiply of 5/4 and 5/2 to convert the 100 MHz clock to 125 MHz and 250 MHz,
respectively, as illustrated in Figure 3-2 and Figure 3-4.

Even if the device is part of an embedded system, if the system uses commercial PCI
Express root complexes or switches along with typical motherboard clocking schemes,
synchronous clocking should still be used as shown in Figure 3-1 and Figure 3-2.

Figure 3-1 through Figure 3-4 illustrate high-level representations of the board layouts.
Designers must ensure that proper coupling, termination, and so forth are used when
laying out the board.

Note: Figure 3-1 through Figure 3-4 are high-level representations of the board layout. Ensure that
proper coupling, termination, and so forth are used when laying out a board.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=76

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 77
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-1

Figure 3-1: Embedded System Using 100 MHz Reference Clock
X-Ref Target - Figure 3-2

Figure 3-2: Embedded System Using 125/250 MHz Reference Clock

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=77

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 78
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-3

Figure 3-3: Open System Add-In Card Using 100 MHz Reference Clock
X-Ref Target - Figure 3-4

Figure 3-4: Open System Add-In Card Using 125/250 MHz Reference Clock

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=78

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 79
PG023 November 19, 2014

Chapter 3: Designing with the Core

Clocking Requirements
All user interface signals of the core are timed with respect to the user clock (user_clk),
which can have a frequency of 62.5, 125, or 250 MHz, depending on the link speed and link
width configured (see Table 3-2).

The clocking diagram for the core is found in Figure 3-5.

For more information about sharing clock resources across two or more PCI Express blocks,
see Shared Clocking.

Resets
The core resets the system using sys_reset, an asynchronous, active-Low reset signal
asserted during the PCI Express Fundamental Reset. Asserting this signal causes a hard
reset of the entire core, including the GTH transceivers. After the reset is released, the core
attempts to link train and resume normal operation. In a typical Endpoint application, for
example an add-in card, a sideband reset signal is normally present and should be
connected to sys_reset. For Endpoint applications that do not have a sideband system

X-Ref Target - Figure 3-5

Figure 3-5: Clocking Diagram

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=79

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 80
PG023 November 19, 2014

Chapter 3: Designing with the Core

reset signal, the initial hardware reset should be generated locally. Four reset events can
occur in PCI Express:

• Cold Reset: A Fundamental Reset that occurs at the application of power. The
sys_reset signal is asserted to cause the cold reset of the core.

• Warm Reset: A Fundamental Reset triggered by hardware without the removal and
re-application of power. The sys_reset signal is asserted to cause the warm reset to
the core.

• Hot Reset: In-band propagation of a reset across the PCI Express Link through the
protocol, resetting the entire Endpoint device. In this case, sys_reset is not used. In
the case of Hot Reset, the cfg_hot_reset_out signal is asserted to indicate the
source of the reset.

• Function-Level Reset: In-band propagation of a reset across the PCI Express Link
through the protocol, resetting only a specif ic function. In this case, the core asserts
the bit of either cfg_flr_in_process and/or cfg_vf_flr_in_process that
corresponds to the function being reset. Logic associated with the function being reset
must assert the corresponding bit of cfg_flr_done or cfg_vf_flr_done to
indicate it has completed the reset process. Support for function-level reset is indicated
by the PF0_DEV_CAP_FUNCTION_LEVEL_RESET_CAPABLE parameter.

The User Application interface of the core has an output signal called user_reset. This
signal is deasserted synchronously with respect to user_clk . The user_reset signal is
asserted as a result of any of these conditions:

• Fundamental Reset: Occurs (cold or warm) due to assertion of sys_reset.

• PLL within the Core Wrapper : Loses lock, indicating an issue with the stability of the
clock input.

• Loss of Transceiver PLL Lock : Any transceiver loses lock, indicating an issue with the
PCI Express Link.

The user_reset signal is deasserted synchronously with user_clk after all of the listed
conditions are resolved, allowing the core to attempt to train and resume normal operation.

Note: Systems designed to the PCI Express electromechanical specif ication provide a sideband reset
signal, which uses 3.3V signaling levels. For the requirements for interfacing to such signals, see the
Virtex-7 FPGA data sheet [Ref 3].

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=80

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 81
PG023 November 19, 2014

Chapter 3: Designing with the Core

Shared Logic
This new feature allows you to share common logic across multiple instances of PCIe Blocks
or with other cores with certain limitations. The Shared Logic feature minimizes the HDL
modif ications needed by bringing the logic to be shared to the top module of the design;
it also enables additional ports on the top module to enable sharing. This feature is
applicable only for the Endpoint mode, and not the Root Port mode.

In the Vivado Design Suite, the shared logic options are available in the Shared Logic page
when customizing the core.

There are four types of logic sharing:

• Shared Clocking

• Shared GT_COMMON

• Shared GT_COMMON and Clocking

• Internal Shared GT_COMMON and Clocking

IMPORTANT: For Shared Clocking option Include Shared Logic (Clocking) in example design (default
mode), Shared GT_COMMON option Include Shared Logic (Transceiver GT_COMMON) in example
design, and Shared GT_COMMON and Clocking, to generate the corresponding modules in the support
directory, you must run the Open IP Example Design command after the output products are generated.
For the option Include Shared Logic in Core, these modules are generated in the source directory.

Shared Clocking
To use the share clocking feature, select the Include Shared Logic (Clocking) in example
design option in the in the Shared Logic tab (Figure 3-6).

When this feature is selected, the mixed-mode clock manager (MMCM) instance is removed
from the pipe wrappers and is moved into the support wrapper of the example design. It
also brings out additional ports to the top level to enable sharing of the clocks.

You also have the option to modify and use the unused outputs of the MMCM.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=81

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 82
PG023 November 19, 2014

Chapter 3: Designing with the Core

The MMCM generates the following clocks for PCIe solution wrapper:

• clk_125mhz: 125 MHz clock.

• clk_250mhz: 250 MHz clock.

• userclk: 62.5 MHz / 125 MHz / 250 MHz clock, depending on selected PCIe core lane
width, link speed, and AXI interface width.

• userclk2: 250 MHz / 500 MHz clock, depending on selected PCIe core link speed.

• oobclk: 50 MHz clock.

X-Ref Target - Figure 3-6

Figure 3-6: Shared Clocking

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=82

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 83
PG023 November 19, 2014

Chapter 3: Designing with the Core

The other cores/logic present in the user design can use any of the MMCM outputs listed
above.

The MMCM instantiated in the PCIe example design has two unconnected outputs:
CLKOUT5, and CLKOUT6. These outputs can be used to generate other desired clock
frequencies by selecting the appropriate CLKOUT5_DIVIDE and CLKOUT6_DIVIDE
parameters for MMCM.

Example: Clock Sharing when Include Shared Logic (Clocking) in Example
Design Is Selected

The clocking module provides two output clocks (CLK_PCLK and CLK_PCLK_SLAVE) that
can switch between 125 MHz and 250 MHz, depending on the selected lines. To share the
clocking module, make the connection as follows. All output clocks of
pcie3_7x_0_pipe_clock.v, except CLK_PCLK, are shared between both PCIe cores.

1. Connect CLK_PCLK to pipe_pclk_in of the PCIe core #0.

2. Connect CLK_PCLK_SEL to pipe_pclk_sel_out of the PCIe core #0.

3. Connect CLK_PCLK_SLAVE to pipe_pclk_in of the PCIe core #1.

4. Connect CLK_PCLK_SEL_SLAVE to pipe_pclk_sel_out of the PCIe core #1.

TIP: Sharing the MMCM between PCIe and other cores in your design saves FPGA resources and eases
output clock path routing.

Limitations

• Reference clock input to MMCM is restricted to 100 MHz in most use cases.

° There is an option for selecting a reference clock of 125MHz or 250MHz, which is
not a common use case.

• The MMCM reset is tied to a static value in the top module. The MMCM can be reset as
required by the system design. Note that MMCM reset can be asserted only after
reference clock is recovered and is stable. Also, MMCM reset is indirectly tied to the
PCIe core reset and asserting MMCM reset will reset the PCIe core.

• Userclk1 and Userclk2 outputs are selected based on the PCIe Lane Width,
Link Speed, and AXI width selections (for details, see Customizing and Generating
the Core in Chapter 4). Sharing cores must comply with these requirements.

Shared GT_COMMON
A quad phase-locked loop (QPLL) in GT_COMMON can serve a quad of GT_CHANNEL
instances. If the PCIe core is configured as X1 or X2 and is using a QPLL, the remaining

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=83

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 84
PG023 November 19, 2014

Chapter 3: Designing with the Core

GT_CHANNEL instances can be used by other cores by sharing the same QPLL and
GT_COMMON.

To use the shared GT_COMMON instances, select the Include Shared Logic (Transceiver
GT_COMMON) in example design option in the Shared Logic tab (Figure 3-7).

When this feature is selected, the GT_COMMON instance is removed from the pipe
wrappers and is moved into the support wrapper of the example design. It also brings out
additional ports to the top level to enable sharing of the GT_COMMON.

Shared logic feature for GT_COMMON helps save FPGA resources and also eases dedicated
clock routing within the single GT Quad.

Shared GT_COMMON Use Cases with GTH

Limitations

• GTH Pipe wrappers will reset the QPLL when the PCIe does a rate change to Gen3. The
sharing core must be able to handle this situation.

• Commonly Pipe wrappers use a channel phase-locked loop (CPLL) for Gen1 or Gen2
PCIe, and QPLL for Gen3. If the Gen3 PCIe is capable of operating at lower speed, pipe
wrappers may not require a QPLL at all.

• The settings of the GT_COMMON should not be changed as they are optimized for the
PCIe core.

Table 3-1: Shared GT_COMMON Use Cases

GT – PCIe max
Link Speed Device – PCIe Max Link Speed Shared GT_COMMON

GTH Virtex7(690T)- PCIe Gen3
PCIe Pipe Wrappers use QPLL for Gen3 and CPLL
for Gen1/Gen2. If PCIe is Gen3 capable but
operating at lower speed, other IP can use.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=84

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 85
PG023 November 19, 2014

Chapter 3: Designing with the Core

Shared GT_COMMON and Clocking
Both the GT_COMMON and Clocks can be shared when you select Include Shared Logic
(Clocking) in example design and Include Shared Logic (Transceiver GT_COMMON) in
example design in the Shared Logic tab (see Figure 3-8).

X-Ref Target - Figure 3-7

Figure 3-7: Shared GT_COMMON

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=85

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 86
PG023 November 19, 2014

Chapter 3: Designing with the Core

Internal Shared GT_COMMON and Clocking
This feature allows sharing of GT_COMMON and Clocks while these modules are still
internal to the core (not brought up to the support wrapper). It can be enabled when you
select Include Shared Logic in Core in the Shared Logic page (see Figure 3-9.)

X-Ref Target - Figure 3-8

Figure 3-8: Shared GT_COMMON and Clocking

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=86

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 87
PG023 November 19, 2014

Chapter 3: Designing with the Core

AXI4-Stream Interface Description
This section provides a detailed description of the features, parameters, and signals
associated with the user-side interfaces of the core.

Overview of Features
Figure 3-10 illustrates the user-side interface of the core.

X-Ref Target - Figure 3-9

Figure 3-9: Internal Shared Logic

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=87

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 88
PG023 November 19, 2014

Chapter 3: Designing with the Core

The interface is organized as four separate interfaces through which data can be transferred
between the PCIe link and the user application:

• A PCIe Completer reQuest (CQ) interface through which requests arriving from the link
are delivered to the user application.

• A PCIe Completer Completion (CC) interface through which the user application can
send back responses to the completer requests. The user application can process all

X-Ref Target - Figure 3-10

Figure 3-10: Block Diagram of Virtex-7 FPGA Gen3 Integrated Block user Interfaces

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=88

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 89
PG023 November 19, 2014

Chapter 3: Designing with the Core

Non-Posted transactions as split transactions. That is, it can continue to accept new
requests on the completer request interface while sending a completion for a request.

• A PCIe Requester reQuest (RQ) interface through which the user application can
generate requests to remote PCIe devices attached to the link.

• A PCIe Requester Completion (RC) interface through which the integrated block returns
the completions received from the link (in response to the user requests as PCIe
requester) to the user application.

Each of the four interfaces is based on the AMBA4® AXI4-Stream Protocol Specification
[Ref 1]. The width of these interfaces can be configured as 64, 128, or 256 bytes, and the
user clock frequencies can be selected as 62.5, 125, or 250 MHz, depending on the number
of lanes and PCIe generation you choose. Table 3-2 lists the valid combinations of interface
width and user clock frequency for the different link widths and link speeds supported by
the integrated block. All four AXI4-Stream interfaces are configured with the same width in
all cases.

In addition, the integrated block contains two interfaces through which status information
is communicated to the PCIe master side of the user application:

• A flow control status interface that provides information on currently available transmit
credit, so that the user application can schedule requests based on available credit.

• A tag availability status interface that provides information on the number of tags
available to assign to Non-Posted requests, so that you can schedule requests without
the risk of being blocked by all tags being in use within the PCIe controller.

Finally, the integrated block has a configuration-received message interface that optionally
provides indications to the user logic when a message is received from the link, rather than
transferring the entire message to the user over the CQ interface.

Table 3-2: Data Width and Clock Frequency Settings for the user Interfaces

PCI Express Generation/
Maximum Link Speed

Maximum Link
Width Capability

AXI4-Stream
Interface Width

User Clock
Frequency (MHz)

Gen1 (2.5 GT/s)

x1

64 bits 62.5

64 bits 125

64 bits 250

x2

64 bits 62.5

64 bits 125

64 bits 250

x4
64 bits 125

64 bits 250

x8
64 bits 250

128 bits 125

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=89

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 90
PG023 November 19, 2014

Chapter 3: Designing with the Core

Data Alignment Options

A transaction layer packet (TLP) is transferred on each of the AXI4-Stream interfaces as a
descriptor followed by payload data (when the TLP has a payload). The descriptor has a
f ixed size of 16 bytes on the request interfaces and 12 bytes on the completion interfaces.
On its transmit side (towards the link), the integrated block assembles the TLP header from
the parameters supplied by the user application in the descriptor. On its receive side
(towards the user), the integrated block extracts parameters from the headers of received
TLP and constructs the descriptors for delivering to the user application. Each TLP is
transferred as a packet, as defined in the AXI4-Stream Interface Protocol.

When a payload is present, there are two options for aligning the f irst byte of the payload
with respect to the datapath.

• Dword-aligned mode: In this mode, the descriptor bytes are followed immediately by
the payload bytes in the next Dword position, whenever a payload is present.

• Address-Aligned Mode: In this mode, the payload can begin at any byte position on the
datapath. For data transferred from the integrated block to the user, the position of the
f irst byte is determined as:

n = A mod w

Gen2 (5.0 GT/s)

x1

64 bits 62.5

64 bits 125

64 bits 250

x2
64 bits 125

64 bits 250

x4
64 bits 250

128 bits 125

x8
128 bits 250

256 bits 125

Gen3 (8.0 GT/s)

x1
64 bits 125

64 bits 250

x2
64 bits 250

128 bits 125

x4
128 bits 250

256 bits 125

x8 256 bits 250

Table 3-2: Data Width and Clock Frequency Settings for the user Interfaces (Cont’d)

PCI Express Generation/
Maximum Link Speed

Maximum Link
Width Capability

AXI4-Stream
Interface Width

User Clock
Frequency (MHz)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=90

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 91
PG023 November 19, 2014

Chapter 3: Designing with the Core

where,

° A is the memory or I/O address specif ied in the descriptor (for message and
configuration requests, the address is taken as 0).

° w is the configured width of the data bus in bytes. Any gap between the end of the
descriptor and the start of the first byte of the payload is f illed with null bytes.

For data transferred from the integrated block to the user application, the data alignment is
determined based on the starting address where the data block is destined to in user
memory. For data transferred from the user application to the integrated block, the user
must explicitly communicate the position of the f irst byte to the integrated block using the
tuser sideband signals when the address-aligned mode is in use.

In the address-aligned mode, the payload and descriptor are not allowed to overlap. That is,
the transmitter begins a new beat to start the transfer of the payload after it has transmitted
the descriptor. The transmitter f ills any gaps between the last byte of the descriptor and the
f irst byte of the payload with null bytes.

The Vivado IP catalog applies the data alignment option globally to all four interfaces.
However, advanced users can select the alignment mode independently for each of the four
AXI4-Stream interfaces. This is done by setting the corresponding alignment mode
parameter, with the constraint that the Requester Completion (RC) interface can be set to
the address-aligned mode. See Interface Operation, page 94 for more details on address
alignment and example diagrams.

Straddle Option on Requester Completion Interface

When the Requester Completion (RC) interface is configured for a width of 256 bits,
depending on type of TLP and Payload size, there can be signif icant interface utilization
ineff iciencies, if a maximum of 1 TLP is allowed to start or end per interface beat. This
ineff icient use of RC interface can lead to overflow of the completion FIFO when Infinite
Receiver Credits are advertized. You must either:

• Restrict the number of outstanding Non Posted requests, so as to keep the total
number of completions received less than 64 and within the completion of the FIFO
size selected, or

• Use the RC interface straddle option. See Figure 3-64 for waveforms showing this
option.

The straddle option, available only on the 256-bit wide RC interface, is enabled through the
IP catalog. See Chapter 4, Customizing and Generating the Core for instructions on
enabling the option in the IP catalog. When this option is enabled, the integrated block can
start a new Completion TLP on byte lane 16 when the previous TLP has ended at or before
byte lane 15 in the same beat. Thus, with this option enabled, it is possible for the
integrated block to send two Completion TLPs entirely in the same beat on the RC interface,
if neither of them has more than one Dword of payload.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=91

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 92
PG023 November 19, 2014

Chapter 3: Designing with the Core

The straddle setting is only available when the interface width is set to 256 bits and the RC
interface is set to Dword-aligned mode.

Table 3-3 lists the valid combinations of interface width, addressing mode, and the straddle
option.

Receive Transaction Ordering

The core contains logic on its receive side to ensure that TLPs received from the link and
delivered on its completer request interface and requester completion interface do not
violate the PCI Express transaction ordering constraints. The ordering actions performed by
the integrated block are based on the following key rules:

• Posted requests must be able to pass Non-Posted requests on the Completer reQuest
(CQ) interface. To enable this capability, the integrated block implements a flow control
mechanism on the CQ interface through which user logic can control the flow of
Non-Posted requests without affecting Posted requests. The user logic signals the
availability of a buffer to receive a Non-Posted request by asserting the
pcie_cq_np_req signal.

The integrated block delivers a Non-Posted request to the user only when the available
credit is non-zero. The integrated block continues to deliver Posted requests while the
delivery of Non-Posted requests has been paused for lack of credit. When no
backpressure is applied by the credit mechanism for the delivery of Non-Posted
requests, the integrated block delivers Posted and Non-Posted requests in the same
order as received from the link. For more information on controlling the flow of
Non-Posted requests, see Selective Flow Control for Non-Posted Requests, page 113.

• PCIe ordering requires that a completion TLP not be allowed to pass a Posted request,
except in the following cases:

° Completions with the Relaxed Ordering attribute bit set can pass Posted requests

Table 3-3: Valid Combinations of Interface Width, Alignment Mode, and Straddle

Interface Width Alignment Mode Straddle Option Description

64 bits Dword-aligned Not applicable 64-bit, Dword-aligned

64 bits Address-aligned Not applicable 64-bit, Address-aligned

128 bits Dword-aligned Not applicable 128-bit, Dword-aligned

128 bits Address-aligned Not applicable 128-bit, Address-aligned

256 bits Dword-aligned Disabled 256-bit, Dword-aligned, straddle
disabled

256 bits Dword-aligned Enabled
256-bit, Dword-aligned, straddle
enabled (only allowed for the Requester
Completion interface)

256 bits Address-aligned Not applicable 256-bit, Address-aligned

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=92

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 93
PG023 November 19, 2014

Chapter 3: Designing with the Core

° Completions with the ID-based ordering bit set can pass a Posted request if the
Completer ID is different from the Posted Requester ID.

The integrated block does not start the transfer of a Completion TLP received from the link
on the Requester Completion (RC) interface until it has completely transferred all Posted
TLPs that arrived before it, unless one of the two rules applies.

After a TLP has been transferred completely to the user side, it is the responsibility of the
user application to enforce ordering constraints whenever needed.

Transmit Transaction Ordering

On the transmit side, the integrated block receives TLPs from the user on two different
interfaces: the Requester reQuest (RQ) interface and the Completer Completion (CC)
interface. The integrated block does not re-order transactions received from each of these
interfaces. It is diff icult to predict how the requester-side requests and completer-side
completions are ordered in the transmit pipeline of the integrated block, after these have
been multiplexed into a single traffic stream. In cases where completion TLPs must maintain
ordering with respect to requests, user logic can supply a 4-bit sequence number with any
request that needs to maintain strict ordering with respect to a Completion transmitted
from the CC interface, on the seq_num[3:0] inputs within the s_axis_rq_tuser bus.
The integrated block places this sequence number on its pcie_rq_seq_num[3:0] output
and assert pcie_rq_seq_num_vld when the request TLP has reached a point in the
transmit pipeline at which no new completion TLP from the user can pass it. This mechanism
can be used in the following situations to maintain TLP order:

• The user logic requires ordering to be maintained between a request TLP and a
completion TLP that follows it. In this case, user logic must wait for the sequence
number of the requester request to appear on the pcie_rq_seq_num[3:0] output
before starting the transfer of the completion TLP on the target completion interface.

• The user logic requires ordering to be maintained between a request TLP and
MSI/MSI-X TLP signaled through the MSI Message interface. In this case, the user logic
must wait for the sequence number of the requester request to appear on the
pcie_rq_seq_num[3:0] output before signaling MSI or MSI-X on the MSI Message
interface.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=93

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 94
PG023 November 19, 2014

Chapter 3: Designing with the Core

Interface Operation
This section describes the operation of the user-side interfaces of the core.

Completer Interface
This interface maps the transactions (memory, I/O read/write, messages, Atomic
Operations) received from the PCIe link into transactions on the Completer reQuest (CQ)
interface based on the AXI4-Stream protocol. The completer interface consists of two
separate interfaces, one for data transfers in each direction. Each interface is based on the
AXI4-Stream protocol, and its width can be configured as 64, 128, or 256 bits. The CQ
interface is for transfer of requests (with any associated payload data) to the user
application, and the Completer Completion (CC) interface is for transferring the Completion
data (for a Non-Posted request) from the user application for forwarding on the link. The
two interfaces operate independently. That is, the integrated block can transfer new
requests over the CQ interface while receiving a Completion for a previous request.

Completer Request Descriptor Formats

The integrated block transfers each request TLP received from the link over the CQ interface
as an independent AXI4-Stream packet. Each packet starts with a descriptor and can have
payload data following the descriptor. The descriptor is always 16 bytes long, and is sent in
the first 16 bytes of the request packet. The descriptor is transferred during the first two
beats on a 64-bit interface, and in the first beat on a 128-bit or 256-bit interface.

The formats of the descriptor for different request types are illustrated in Figure 3-11,
Figure 3-12, Figure 3-13, and Figure 3-14. The format of Figure 3-11 applies when the
request TLP being transferred is a memory read/write request, an I/O read/write request, or
an Atomic Operation request. The format of Figure 3-12 is used for Vendor-Defined
Messages (Type 0 or Type 1) only. The format of Figure 3-13 is used for all ATS messages
(Invalid Request, Invalid Completion, Page Request, PRG Response). For all other messages,
the descriptor takes the format of Figure 3-14.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=94

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 95
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-11

Figure 3-11: Completer Request Descriptor Format for Memory, I/O, and Atomic Op Requests

X-Ref Target - Figure 3-12

Figure 3-12: Completer Request Descriptor Format for Vendor-Defined Messages

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=95

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 96
PG023 November 19, 2014

Chapter 3: Designing with the Core

Table 3-4 describes the individual f ields of the completer request descriptor.

X-Ref Target - Figure 3-13

Figure 3-13: Completer Request Descriptor Format for ATS Messages

X-Ref Target - Figure 3-14

Figure 3-14: Completer Request Descriptor Format for All Other Messages

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=96

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 97
PG023 November 19, 2014

Chapter 3: Designing with the Core

Table 3-4: Completer Request Descriptor Fields

Bit Index Field Name Description

1:0 Address Type

This f ield is defined for memory transactions and Atomic
Operations only. It contains the AT bits extracted from the TL
header of the request.
• 00: Address in the request is untranslated.
• 01: Transaction is a Translation Request.
• 10: Address in the request is a translated address.
• 11: Reserved.

63:2 Address

This f ield applies to memory, I/O, and Atomic Op requests. It
provides the address from the TLP header. This is the address
of the first Dword referenced by the request. The First_BE
bits from m_axis_cq_tuser must be used to determine the
byte-level address.
When the transaction specifies a 32-bit address, bits [63:32]
of this f ield are 0.

74:64 Dword Count

These 11 bits indicate the size of the block (in Dwords) to be
read or written (for messages, size of the message payload).
Its range is 0 - 256 Dwords. For I/O accesses, the Dword count
is always 1.
For a zero length memory read/write request, the Dword
count is 1, with the First_BE bits set to all 0s.

78:75 Request Type Identif ies the transaction type. The transaction types and
their encodings are listed in Table 3-5.

95:80 Requester ID

PCI Requester ID associated with the request. With legacy
interpretation of RIDs, these 16 bits are divided into an 8-bit
bus number [95:88], 5-bit device number [87:83], and 3-bit
Function number [82:80]. When ARI is enabled, bits [95:88]
carry the 8-bit bus number and [87:80] provide the Function
number.
When the request is a Non-Posted transaction, the user
completer application must store this f ield and supply it back
to the integrated block with the completion data.

103:96 Tag

PCIe Tag associated with the request. When the request is a
Non-Posted transaction, the user logic must store this f ield
and supply it back to the integrated block with the
completion data. This f ield can be ignored for memory writes
and messages.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=97

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 98
PG023 November 19, 2014

Chapter 3: Designing with the Core

111:104 Target Function

This f ield is defined for memory, I/O, and Atomic Op requests
only. It provides the Function number the request is targeted
at, determined by the BAR check. When ARI is in use, all 8 bits
of this f ield are valid. Otherwise, only bits [106:104] are valid.
Following are Target Function Value to PF/VF map mappings:
• 0: PF0
• 1: PF1
• 64: VF0
• 65: VF1
• 66: VF2
• 67: VF3
• 68: VF4
• 69: VF5

114:112 BAR ID

This f ield is defined for memory, I/O, and Atomic Op requests
only. It provides the matching BAR number for the address in
the request.
• 000: BAR 0 (VF-BAR 0 for VFs).
• 001: BAR 1 (VF-BAR 1 for VFs).
• 010: BAR 2 (VF-BAR 2 for VFs).
• 011: BAR 3 (VF-BAR 3 for VFs).
• 100: BAR 4 (VF-BAR 4 for VFs).
• 101: BAR 5 (VF-BAR 5 for VFs).
• 110: Expansion ROM Access
For 64-bit transactions, the BAR number is given as the lower
address of the matching pair of BARs (that is, 0, 2, or 4).

120:115 BAR Aperture

This 6-bit f ield is defined for memory, I/O, and Atomic Op
requests only. It provides the aperture setting of the BAR
matching the request. This information is useful in
determining the bits to be used by the user in addressing its
memory or I/O space. For example, a value of 12 indicates
that the aperture of the matching BAR is 4K, and the user can
therefore ignore bits [63:12] of the address.
For VF BARs, the value provided on this output is based on
the memory space consumed by a single VF covered by the
BAR.

123:121 Transaction Class
(TC)

PCIe Transaction Class (TC) associated with the request.
When the request is a Non-Posted transaction, the user
completer application must store this f ield and supply it back
to the integrated block with the completion data.

126:124 Attributes

These bits provide the setting of the Attribute bits associated
with the request. Bit 124 is the No Snoop bit and bit 125 is
the Relaxed Ordering bit. Bit 126 is the ID-Based Ordering bit,
and can be set only for memory requests and messages.
When the request is a Non-Posted transaction, the user
completer application must store this f ield and supply it back
to the integrated block with the completion data.

Table 3-4: Completer Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=98

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 99
PG023 November 19, 2014

Chapter 3: Designing with the Core

15:0 Snoop Latency
This f ield is defined for LTR messages only. It provides the
value of the 16-bit Snoop Latency f ield in the TLP header of
the message.

31:16 No-Snoop Latency
This f ield is defined for LTR messages only. It provides the
value of the 16-bit No-Snoop Latency f ield in the TLP header
of the message.

35:32 OBFF Code

This f ield is defined for OBFF messages only. The OBFF Code
field is used to distinguish between various OBFF cases:
• 1111b: CPU Active – System fully active for all device

actions including bus mastering and interrupts
• 0001b: OBFF – System memory path available for device

memory read/write bus master activities
• 0000b: Idle – System in an idle, low power state
All other codes are reserved.

111:104 Message Code

This f ield is defined for all messages. It contains the 8-bit
Message Code extracted from the TLP header.
Appendix F of the PCI Express Base Specification, rev. 3.0
[Ref 2] provides a complete list of the supported Message
Codes.

114:112 Message Routing This f ield is defined for all messages. These bits provide the
3-bit Routing f ield r[2:0] from the TLP header.

15:0 Destination ID

This f ield applies to Vendor-Defined Messages only. When
the message is routed by ID (that is, when the Message
Routing f ield is 010 binary), this f ield provides the
Destination ID of the message.

63:32 Vendor-Defined
Header

This f ield applies to Vendor-Defined Messages only. It
contains the bytes extracted from Dword 3 of the TLP header.

63:0 ATS Header This f ield is applicable to ATS messages only. It contains the
bytes extracted from Dwords 2 and 3 of the TLP header.

Table 3-5: Transaction Types

Request Type
(binary) Description

0000 Memory Read Request

0001 Memory Write Request

0010 I/O Read Request

0011 I/O Write Request

0100 Memory Fetch and Add Request

0101 Memory Unconditional Swap Request

0110 Memory Compare and Swap Request

0111 Locked Read Request (allowed only in Legacy Devices)

1000 Type 0 Configuration Read Request (on Requester side only)

Table 3-4: Completer Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=99

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 100
PG023 November 19, 2014

Chapter 3: Designing with the Core

Completer Request Interface Operation

Figure 3-15 illustrates the signals associated with the completer request interface of the
core. The core delivers each TLP on this interface as an AXI4-Stream packet. The packet
starts with a 128-bit descriptor, followed by data in the case of TLPs with a payload.

1001 Type 1 Configuration Read Request (on Requester side only)

1010 Type 0 Configuration Write Request (on Requester side only)

1011 Type 1 Configuration Write Request (on Requester side only)

1100 Any message, except ATS and Vendor-Defined Messages

1101 Vendor-Defined Message

1110 ATS Message

1111 Reserved

Table 3-5: Transaction Types (Cont’d)

Request Type
(binary) Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=100

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 101
PG023 November 19, 2014

Chapter 3: Designing with the Core

The completer request interface supports two distinct data alignment modes, selected by
the attribute AXISTEN_IF_CQ_ALIGNMENT_MODE. In the Dword-aligned mode, the f irst
byte of valid data appears in lane n = (16 + A mod 4) mod w, where:

• A is the byte-level starting address of the data block being transferred

• w is the width of the interface in bytes

In the address-aligned mode, the data always starts in a new beat after the descriptor has
ended, and its f irst valid byte is on lane n = A mod w, where w is the width of the interface
in bytes. For memory, I/O, and Atomic Operation requests, address A is the address
contained in the request. For messages, the address is always taken as 0 for the purpose of
determining the alignment of its payload.

X-Ref Target - Figure 3-15

Figure 3-15: Completer Request Interface Signals

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=101

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 102
PG023 November 19, 2014

Chapter 3: Designing with the Core

Completer Memory Write Operation

The timing diagrams in Figure 3-16, Figure 3-17, and Figure 3-18 illustrate the
Dword-aligned transfer of a memory write TLP received from the link across the Completer
reQuest (CQ) interface, when the interface width is configured as 64, 128, and 256 bits,
respectively. For illustration purposes, the starting Dword address of the data block being
written into user memory is assumed to be (m * 32 + 1), for an integer m > 0. Its size is
assumed to be n Dwords, for some n = k * 32 + 29, k > 0.

In both Dword-aligned and address-aligned modes, the transfer starts with the
16 descriptor bytes, followed immediately by the payload bytes. The m_axis_cq_tvalid
signal remains asserted over the duration of the packet. The user can prolong a beat at any
time by deasserting m_axis_cq_tready. The AXI4-Stream interface signals
m_axis_cq_tkeep (one per Dword position) indicate the valid Dwords in the packet
including the descriptor and any null bytes inserted between the descriptor and the
payload. That is, the tkeep bits are set to 1 contiguously from the f irst Dword of the
descriptor until the last Dword of the payload. During the transfer of a packet, the tkeep bits
can be 0 only in the last beat of the packet, when the packet does not f ill the entire width
of the interface. The m_axis_cq_tlast signal is always asserted in the last beat of the
packet.

The CQ interface also includes the First Byte Enable and the Last Enable bits in the
m_axis_cq_tuser bus. These are valid in the f irst beat of the packet, and specify the valid
bytes of the first and last Dwords of payload.

The m_axi_cq_tuser bus also provides several informational signals that can be used to
simplify the logic associated with the user side of the interface, or to support additional
features. The sop signal is asserted in the f irst beat of every packet, when its descriptor is
on the bus. The byte enable outputs byte_en[31:0] (one per byte lane) indicate the valid
bytes in the payload. The bits of byte_en are asserted only when a valid payload byte is in
the corresponding lane (that is, not asserted for descriptor or padding bytes between the
descriptor and payload). The asserted byte enable bits are always contiguous from the start
of the payload, except when the payload size is two Dwords or less. For cases of one-Dword
and two-Dword writes, the byte enables can be non-contiguous. Another special case is
that of a zero-length memory write, when the integrated block transfers a one-Dword
payload with all byte_en bits set to 0. Thus, the user logic can, in all cases, use the
byte_en signals directly to enable the writing of the associated bytes into memory.

In the Dword-aligned mode, there can be a gap of zero, one, two, or three byte positions
between the end of the descriptor and the first payload byte, based on the address of the
f irst valid byte of the payload. The actual position of the first valid byte in the payload can
be determined either from first_be[3:0] or byte_en[31:0] in the
m_axis_cq_tuser bus.

When a Transaction Processing Hint is present in the received TLP, the integrated block
transfers the parameters associated with the hint (TPH Steering Tag and Steering Tag Type)
on signals within the m_axis_cq_tuser bus.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=102

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 103
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-16

Figure 3-16: Memory Write Transaction on the Completer Request Interface (Dword-Aligned Mode,
Interface Width = 64 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=103

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 104
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-17

Figure 3-17: Memory Write Transaction on the Completer Request Interface (Dword-Aligned Mode,
Interface Width = 128 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=104

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 105
PG023 November 19, 2014

Chapter 3: Designing with the Core

The timing diagrams in Figure 3-19, Figure 3-20, and Figure 3-21 illustrate the
address-aligned transfer of a memory write TLP received from the link across the CQ
interface, when the interface width is configured as 64, 128 and 256 bits, respectively. For
the purpose of illustration, the starting Dword address of the data block being written into
user memory is assumed to be (m * 32 + 1), for an integer m > 0. Its size is assumed to be
n Dwords, for some n = k * 32 + 29, k > 0.

X-Ref Target - Figure 3-18

Figure 3-18: Memory Write Transaction on the Completer Request Interface (Dword-Aligned Mode,
Interface Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=105

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 106
PG023 November 19, 2014

Chapter 3: Designing with the Core

In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. The f irst byte of the payload can appear on any byte lane,
based on the address of the f irst valid byte of the payload. The keep outputs
m_axis_cq_tkeep remain High in the gap between the descriptor and the payload. The
actual position of the first valid byte in the payload can be determined either from the least
signif icant bits of the address in the descriptor or from the byte enable bits
byte_en[31:0] in the m_axis_cq_tuser bus.

For writes of two Dwords or less, the 1s on byte_en cannot be contiguous from the start
of the payload. In the case of a zero-length memory write, the integrated block transfers a
one-Dword payload with the byte_en bits all set to 0 for the payload bytes.

X-Ref Target - Figure 3-19

Figure 3-19: Memory Write Transaction on the Completer Request Interface (Address-Aligned Mode,
Interface Width = 64 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=106

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 107
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-20

Figure 3-20: Memory Write Transaction on the Completer Request Interface (Address-Aligned Mode,
Interface Width = 128 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=107

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 108
PG023 November 19, 2014

Chapter 3: Designing with the Core

Completer Memory Read Operation

A memory read request is transferred across the completer request interface in the same
manner as a memory write request, except that the AXI4-Stream packet contains only the
16-byte descriptor. The timing diagrams in Figure 3-22, Figure 3-23, and Figure 3-24
illustrate the transfer of a memory read TLP received from the link across the completer
request interface, when the interface width is configured as 64, 128, and 256 bits,

X-Ref Target - Figure 3-21

Figure 3-21: Memory Write Transaction on the Completer Request Interface (Address-Aligned Mode,
Interface Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=108

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 109
PG023 November 19, 2014

Chapter 3: Designing with the Core

respectively. The packet occupies two consecutive beats on the 64-bit interface, while it is
transferred in a single beat on the 128- and 256-bit interfaces. The m_axis_cq_tvalid
signal remains asserted over the duration of the packet. The user can prolong a beat at any
time by deasserting m_axis_cq_tready. The sop signal in the m_axis_cq_tuser bus is
asserted when the f irst descriptor byte is on the bus.

X-Ref Target - Figure 3-22

Figure 3-22: Memory Read Transaction on the Completer Request Interface (Interface Width = 64 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=109

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 110
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-23

Figure 3-23: Memory Read Transaction on the Completer Request Interface (Interface Width = 128
Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=110

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 111
PG023 November 19, 2014

Chapter 3: Designing with the Core

The byte enable bits associated with the read request for the f irst and last Dwords are
supplied by the integrated block on the m_axis_cq_tuser sideband bus. These bits are
valid when the f irst descriptor byte is being transferred, and must be used by the user to
determine the byte-level starting address and the byte count associated with the request.
For the special cases of one-Dword and two-Dword reads, the byte enables can be
non-contiguous. The byte enables are contiguous in all other cases. A zero-length memory
read is sent on the CQ interface with the Dword count field in the descriptor set to 1 and the
f irst and last byte enables set to 0.

The user must respond to each memory read request with a Completion. The data
requested by the read can be sent as a single Completion or multiple Split Completions.
These Completions must be sent through the Completer Completion (CC) interface of the
integrated block. The Completions for two distinct requests can be sent in any order, but
the Split Completions for the same request must be in order. The operation of the CC
interface is described in Completer Completion Interface Operation, page 114.

I/O Write Operation

The transfer of an I/O write request on the CQ interface is similar to that of a memory write
request with a one-Dword payload. The transfer starts with the 128-bit descriptor, followed
by the one-Dword payload. When the Dword-aligned mode is in use, the payload Dword

X-Ref Target - Figure 3-24

Figure 3-24: Memory Read Transaction on the Completer Request Interface (Interface Width = 256
Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=111

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 112
PG023 November 19, 2014

Chapter 3: Designing with the Core

immediately follows the descriptor. When the address-alignment mode is in use, the
payload Dword is supplied in a new beat after the descriptor, and its alignment in the
datapath is based on the address in the descriptor. The First Byte Enable bits in the
m_axis_cq_tuser indicate the valid bytes in the payload. The byte enable bits byte_en
also provide this information.

Because an I/O write is a Non-Posted transaction, the user logic must respond to it with a
Completion containing no data payload. The Completions for I/O requests can be sent in
any order. Errors associated with the I/O write transaction can be signaled to the requester
by setting the Completion Status f ield in the completion descriptor to CA (Completer
Abort) or UR (Unsupported Request), as is appropriate. The operation of the Completer
Completion interface is described in Completer Completion Interface Operation, page 114.

I/O Read Operation

The transfer of an I/O read request on the CQ interface is similar to that of a memory read
request, and involves only the descriptor. The length of the requested data is always one
Dword, and the First Byte Enable bits in m_axis_cq_tuser indicate the valid bytes to be
read.

The user logic must respond to an I/O read request with a one-Dword Completion (or a
Completion with no data in the case of an error). The Completions for two distinct I/O read
requests can be sent in any order. Errors associated with an I/O read transaction can be
signaled to the requester by setting the Completion Status f ield in the completion
descriptor to CA (Completer Abort) or UR (Unsupported Request), as is appropriate. The
operation of the Completer Completion interface is described in Completer Completion
Interface Operation, page 114.

Atomic Operations on the Completer Request Interface

The transfer of an Atomic Op request on the completer request interface is similar to that of
a memory write request. The payload for an Atomic Op can range from one Dword to eight
Dwords, and its starting address is always aligned on a Dword boundary. The transfer starts
with the 128-bit descriptor, followed by the payload. When the Dword-aligned mode is in
use, the f irst payload Dword immediately follows the descriptor. When the
address-alignment mode is in use, the payload starts in a new beat after the descriptor, and
its alignment is based on the address in the descriptor. The m_axis_cq_tkeep output
indicates the end of the payload. The byte_en signals in m_axis_cq_tuser also indicate
the valid bytes in the payload. The First Byte Enable and Last Byte Enable bits in
m_axis_cq_tuser should not be used for Atomic Operations.

Because an Atomic Operation is a Non-Posted transaction, the user logic must respond to
it with a Completion containing the result of the operation. Errors associated with the
operation can be signaled to the requester by setting the Completion Status field in the
completion descriptor to Completer Abort (CA) or Unsupported Request (UR), as is
appropriate. The operation of the Completer Completion interface is described in
Completer Completion Interface Operation, page 114.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=112

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 113
PG023 November 19, 2014

Chapter 3: Designing with the Core

Message Requests on the Completer Request Interface

The transfer of a message on the CQ interface is similar to that of a memory write request,
except that a payload might not always be present. The transfer starts with the 128-bit
descriptor, followed by the payload, if present. When the Dword-aligned mode is in use, the
payload immediately follows the descriptor. When the address-alignment mode is in use,
the first Dword of the payload is supplied in a new beat after the descriptor, and always
starts in byte lane 0. The user can determine the end of the end of the payload from the
states of the m_axis_cq_tlast and m_axis_cq_tkeep signals. The byte_en signals in
m_axis_cq_tuser also indicate the valid bytes in the payload. The First Byte Enable and
Last Byte Enable bits in m_axis_cq_tuser should not be used for Message transactions.

The AXISTEN_IF_ENABLE_RX_MSG_INTFC parameter must be set to 0 to enable the delivery
of messages through the CQ interface. When this parameter is set to 0, the component bits
of the AXISTEN_IF_ENABLE_MSG_ROUTE[17:0] parameter can be used to select the specific
message types that you want delivered over the CQ interface. Setting a parameter bit to 1
enables the delivery of the corresponding type of messages on the interface, and setting it
to 0 results in the integrated block f iltering the message.

When AXISTEN_IF_ENABLE_RX_MSG_INTFC is set to 1, no messages are delivered on the CQ
interface. Indications of received message are instead sent through a dedicated receive
message interface (see Receive Message Interface, page 125).

Aborting a Transfer

For any request that includes an associated payload, the integrated block can signal an
error in the transferred payload by asserting the discontinue signal in the
m_axis_cq_tuser bus in the last beat of the packet (along with m_axis_cq_tlast).
This occurs when the integrated block has detected an uncorrectable error while reading
data from its internal memories. The user application must discard the entire packet when
it has detected discontinue asserted in the last beat of a packet. This condition is
considered a fatal error in the integrated block.

Selective Flow Control for Non-Posted Requests

The PCI Express Base Specification, rev 3.0 [Ref 2] requires that the Completer Request
interface continue to deliver Posted transactions even when the user application is unable
to accept Non-Posted transactions. To enable this capability, the integrated block
implements a credit-based flow control mechanism on the CQ interface through which user
logic can control the flow of Non-Posted requests without affecting Posted requests. The
user logic signals the availability of buffers for receive Non-Posted requests using the
pcie_cq_np_req signal. The core delivers a Non-Posted request to the user application
only when the available credit is non-zero. The integrated block continues to deliver Posted
requests while the delivery of Non-Posted requests has been paused for lack of credit.
When no backpressure is applied by the credit mechanism for the delivery of Non-Posted
requests, the integrated block delivers Posted and Non-Posted requests in the same order
as received from the link.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=113

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 114
PG023 November 19, 2014

Chapter 3: Designing with the Core

The integrated block maintains an internal credit counter to track the credit available for
Non-Posted requests on the completer request interface. The following algorithm is used to
keep track of the available credit:

• On reset, the counter is set to 0.

• After the integrated block comes out of reset, in every clock cycle:

° If pcie_cq_np_req is High and no Non-Posted request is being delivered this
cycle, the credit count is incremented by 1, unless it has already reached its
saturation limit of 32.

° If pcie_cq_np_req is Low and a Non-Posted request is being delivered this cycle,
the credit count is decremented by 1, unless it is already 0.

° Otherwise, the credit count remains unchanged.

• The integrated block starts delivery of a Non-Posted TLP to the user application only if
the credit count is greater than 0.

The user application can either provide a one-cycle pulse on pcie_cq_np_req each time
it is ready to receive a Non-Posted request, or can keep it permanently asserted if it does
not need to exercise selective backpressure of Non-Posted requests. If the credit count is
always non-zero, the integrated block delivers Posted and Non-Posted requests in the same
order as received from the link. If it remains 0 for some time, Non-Posted requests can
accumulate in the integrated block FIFO. When the credit count becomes non-zero later, the
integrated block f irst delivers the accumulated Non-Posted requests that arrived before
Posted requests already delivered to the user application, and then reverts to delivering the
requests in the order received from the link.

The assertion and deassertion of the pcie_cq_np_req signal does not need to be aligned
with the packet transfers on the completer request interface.

You can monitor the current value of the credit count on the output
pcie_cq_np_req_count[5:0]. The counter saturates at 32. Because of internal pipeline
delays, there can be several cycles of delay between the integrated block receiving a pulse
on the pcie_cq_np_req input and updating the pcie_cq_np_req_count output in
response. Thus, when the user application has adequate buffer space available, it should
provide the credit in advance so that Non-Posted requests are not held up by the core for
lack of credit.

Completer Completion Interface Operation

Figure 3-25 illustrates the signals associated with the Completer Completion Interface of
the core. The core delivers each TLP on this interface as an AXI4-Stream packet.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=114

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 115
PG023 November 19, 2014

Chapter 3: Designing with the Core

The core delivers each TLP on the Completer Completion (CC) interface as an AXI4-Stream
packet. The packet starts with a 96-bit descriptor, followed by data in the case of
Completions with a payload.

The CC interface supports two distinct data alignment modes, selected by the
AXISTEN_IF_CC_ALIGNMENT_MODE parameter. In the Dword-aligned mode, the f irst byte
of valid data must be presented in lane n = (12 + A mod 4) mod w, where A is the byte-level
starting address of the data block being transferred (as conveyed in the Lower Address field
of the descriptor) and w the width of the interface in bytes (8, 16, or 32). In the
address-aligned mode, the data always starts in a new beat after the descriptor has ended.
When transferring the Completion payload for a memory or I/O read request, its f irst valid
byte is on lane n = A mod w. For all other Completions, the payload is aligned with byte lane
0.

Completer Completion Descriptor Format

The user application sends completion data for a completer request to the CC interface of
the integrated block as an independent AXI4-Stream packet. Each packet starts with a
descriptor and can have payload data following the descriptor. The descriptor is always
12 bytes long, and is sent in the first 12 bytes of the completion packet. The descriptor is
transferred during the first two beats on a 64-bit interface, and in the f irst beat on a 128-
or 256-bit interface. When the user application splits the completion data for a request into
multiple Split Completions, it must send each Split Completion as a separate AXI4-Stream
packet, with its own descriptor.

The format of the completer completion descriptor is illustrated in Figure 3-26. The
individual f ields of the completer request descriptor are described in Table 3-6.

X-Ref Target - Figure 3-25

Figure 3-25: Completer Completion Interface Signals

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=115

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 116
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-26

Figure 3-26: Completer Completion Descriptor Format

Table 3-6: Completer Completion Descriptor Fields

Bit Index Field Name Description

6:0 Lower
Address

For memory read Completions, this f ield must be set to the least significant
7 bits of the starting byte-level address of the memory block being
transferred. For all other Completions, the Lower Address must be set to all
zeros.

9:8 Address Type

This f ield is defined for Completions of memory transactions and Atomic
Operations only. For these Completions, the user logic must copy the AT bits
from the corresponding request descriptor into this f ield. This f ield must be
set to 0 for all other Completions.

28:16 Byte Count

These 13 bits can have values in the range of 0 – 4096 bytes. If a Memory
Read Request is completed using a single Completion, the Byte Count value
indicates Payload size in bytes. This f ield must be set to 4 for I/O read
Completions and I/O write Completions. The byte count must be set to 1
while sending a Completion for a zero-length memory read, and a dummy
payload of 1 Dword must follow the descriptor.
For each Memory Read Completion, the Byte Count f ield must indicate the
remaining number of bytes required to complete the Request, including the
number of bytes returned with the Completion.
If a Memory Read Request is completed using multiple Completions, the Byte
Count value for each successive Completion is the value indicated by the
preceding Completion minus the number of bytes returned with the
preceding Completion. The total number of bytes required to complete a
Memory Read Request is calculated as shown in Table 3-7, page 118.

29 Locked Read
Completion

This bit must be set when the Completion is in response to a Locked Read
request. It must be set to 0 for all other Completions.

42:32 Dword Count

These 11 bits indicate the size of the payload of the current packet in Dwords.
Its range is 0 - 1K Dwords. This f ield must be set to 1 for I/O read
Completions and 0 for I/O write Completions. The Dword count must be set
to 1 while sending a Completion for a zero-length memory read. The Dword
count must be set to 0 when sending a UR or CA Completion. In all other
cases, the Dword count must correspond to the actual number of Dwords in
the payload of the current packet.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=116

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 117
PG023 November 19, 2014

Chapter 3: Designing with the Core

45:43 Completion
Status

These bits must be set based on the type of Completion being sent. The only
valid settings are:
• 000: Successful Completion.
• 001: Unsupported Request (UR).
• 100: Completer Abort (CA).

46 Poisoned
Completion

This bit can be used to poison the Completion TLP being sent. This bit must
be set to 0 for all Completions, except when the user application has
detected an error in the block of data following the descriptor and wants to
communicate this information using the Data Poisoning feature of PCI
Express.

63:48 Requester ID PCI Requester ID associated with the request (copied from the request).

71:64 Tag PCIe Tag associated with the request (copied from the request).

79:72

Target
Function/

Device
Number

Function number of the completer Function. The user application must
always supply the function number. When ARI is in use, all 8 bits of this f ield
must be set to the target Function number. Otherwise, bits [74:72] must be
set to the target Function number. The user application must copy this value
from the Target Function f ield of the descriptor of the corresponding
request. Otherwise, bits [74:72] must be set to the target Function number.
When ARI is not in use, and the integrated block is configured as a Root
Complex, the user application must supply the 5-bit Device Number of the
completer on bits [79:75].
When ARI is not used and the integrated block is configured as an Endpoint,
the user application can optionally supply a 5-bit Device Number of the
completer on bits [79:75]. The user application must set the Completer ID
Enable bit in the descriptor if a Device Number is supplied on bits [79:75].
This value is used by the integrated block when sending the Completion TLP,
instead of the stored value of the Device Number captured by the integrated
block from Configuration Requests.

87:80 Completer
Bus Number

Bus number associated with the completer Function. When the integrated
block is configured as a Root Complex, the user application must supply the
8-bit Bus Number of the completer in this f ield.
When the integrated block is configured as an Endpoint, the user application
can optionally supply a Bus Number in this f ield. The user application must
set the Completer ID Enable bit in the descriptor if a Bus Number is supplied
in this f ield. This value is used by the integrated block when sending the
Completion TLP, instead of the stored value of the Bus Number captured by
the integrated block from Configuration Requests.

88 Completer ID
Enable

The purpose of this f ield is to enable the user application to supply the bus
and device numbers to be used in the Completer ID. This f ield is applicable
only to Endpoint configurations.
If this f ield is 0, the integrated block uses the captured values of the bus and
device numbers to form the Completer ID. If this input is 1, the integrated
block uses the bus and device numbers supplied by the user application in
the descriptor to form the Completer ID.

91:89 Transaction
Class (TC)

PCIe Transaction Class (TC) associated with the request. The user application
copies this value from the TC f ield of the associated request descriptor.

Table 3-6: Completer Completion Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=117

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 118
PG023 November 19, 2014

Chapter 3: Designing with the Core

94:92 Attributes
PCIe attributes associated with the request (copied from the request). Bit 92
is the No Snoop bit, bit 93 is the Relaxed Ordering bit, and bit 94 is the
ID-Based Ordering bit.

95 Force ECRC
Force ECRC insertion. Setting this bit to 1 forces the integrated block to
append a TLP Digest containing ECRC to the Completion TLP, even when
ECRC is not enabled for the Function sending the Completion.

Table 3-7: Calculating Byte Count from Completer Request first_be[3:0], last_be[3:0], Dword
Count[10:0]

first_be[3:0] last_be[3:0] Total Byte Count

1xx1 0000 4

01x1 0000 3

1x10 0000 3

0011 0000 2

0110 0000 2

1100 0000 2

0001 0000 1

0010 0000 1

0100 0000 1

1000 0000 1

0000 0000 1

xxx1 1xxx Dword_count*4

xxx1 01xx (Dword_count*4)-1

xxx1 001x (Dword_count*4)-2

xxx1 0001 (Dword_count*4)-3

xx10 1xxx (Dword_count*4)-1

xx10 01xx (Dword_count*4)-2

xx10 001x (Dword_count*4)-3

xx10 0001 (Dword_count*4)-4

x100 1xxx (Dword_count*4)-2

x100 01xx (Dword_count*4)-3

x100 001x (Dword_count*4)-4

x100 0001 (Dword_count*4)-5

1000 1xxx (Dword_count*4)-3

1000 01xx (Dword_count*4)-4

1000 001x (Dword_count*4)-5

1000 0001 (Dword_count*4)-6

Table 3-6: Completer Completion Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=118

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 119
PG023 November 19, 2014

Chapter 3: Designing with the Core

Completions with Successful Completion Status

The user application must return a Completion to the CC interface of the core for every
Non-Posted request it receives from the completer request interface. When the request
completes with no errors, the user application must return a Completion with Successful
Completion (SC) status. Such a Completion might or might not contain a payload,
depending on the type of request. Furthermore, the data associated with the request can be
broken up into multiple Split Completions when the size of the data block exceeds the
maximum payload size configured. user logic is responsible for splitting the data block into
multiple Split Completions when needed. The user application must transfer each Split
Completion over the Completer Completion Interface as a separate AXI4-Stream packet,
with its own 12-byte descriptor.

In the example timing diagrams of this section, the starting Dword address of the data block
being transferred (as conveyed in bits [6:2] of the Lower Address field of the descriptor) is
assumed to be (m * 8 + 1), for an integer m. The size of the data block is assumed to be n
Dwords, for some n = k * 32 + 28, k > 0.

The CC interface supports two data alignment modes: Dword-aligned and address-aligned.
The timing diagrams in Figure 3-27, Figure 3-28, and Figure 3-29 illustrate the
Dword-aligned transfer of a Completion from the user application across the CC interface,
when the interface width is configured as 64, 128, and 256 bits, respectively. In this case, the
f irst Dword of the payload starts immediately after the descriptor. When the data block is
not a multiple of four bytes, or when the start of the payload is not aligned on a Dword
address boundary, the user application must add null bytes to align the start of the payload
on a Dword boundary and make the payload a multiple of Dwords. For example, when the
data block starts at byte address 7 and has a size of 3 bytes, the user application must add
three null bytes before the f irst byte and two null bytes at the end of the block to make it
two Dwords long. Also, in the case of non-contiguous reads, not all bytes in the data block
returned are valid. In that case, the user application must return the valid bytes in the
proper positions, with null bytes added in gaps between valid bytes, when needed. The
interface does not have any signals to indicate the valid bytes in the payload. This is not
required, as the requester is responsible for keeping track of the byte enables in the request
and discarding invalid bytes from the Completion.

In the Dword-aligned mode, the transfer starts with the 12 descriptor bytes, followed
immediately by the payload bytes. You must keep the s_axis_cc_tvalid signal asserted
over the duration of the packet. The integrated block treats the deassertion of
s_axis_cc_tvalid during the packet transfer as an error, and nullif ies the corresponding
Completion TLP transmitted on the link to avoid data corruption.

The user application must also assert the s_axis_cc_tlast signal in the last beat of the
packet. The integrated block can deassert s_axis_cc_tready in any cycle if it is not
ready to accept data. Do not change the values on the CC interface during a clock cycle that
the integrated block has deasserted s_axis_cc_tready.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=119

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 120
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-27

Figure 3-27: Transfer of a Normal Completion on the Completer Completion Interface (Dword-Aligned
Mode, Interface Width = 64 Bits)

X-Ref Target - Figure 3-28

Figure 3-28: Transfer of a Normal Completion on the Completer Completion Interface (Dword-Aligned
Mode, Interface Width = 128 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=120

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 121
PG023 November 19, 2014

Chapter 3: Designing with the Core

In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. For memory read Completions, the f irst byte of the payload
can appear on any byte lane, based on the address of the first valid byte of the payload. For
all other Completions, the payload must start in byte lane 0.

The timing diagrams in Figure 3-30, Figure 3-31, and Figure 3-32 illustrate the
address-aligned transfer of a memory read Completion across the Completer Completion
Interface, when the interface width is configured as 64, 128, and 256 bits, respectively. For
the purpose of illustration, the starting Dword address of the data block being transferred
(as conveyed in bits [6:2] of the Lower Address f ield of the descriptor) is assumed to be
(m * 8 +1), for some integer m. The size of the data block is assumed to be n Dwords, for
some n = k * 32 + 28, k > 0.

X-Ref Target - Figure 3-29

Figure 3-29: Transfer of a Normal Completion on the Completer Completion Interface (Dword-Aligned
Mode, Interface Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=121

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 122
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-30

Figure 3-30: Transfer of a Normal Completion on the Completer Completion Interface (Address-Aligned
Mode, Interface Width = 64 Bits)

X-Ref Target - Figure 3-31

Figure 3-31: Transfer of a Normal Completion on the Completer Completion Interface (Address-Aligned
Mode, Interface Width = 128 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=122

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 123
PG023 November 19, 2014

Chapter 3: Designing with the Core

Aborting a Completion Transfer

You can abort the transfer of a Completion on the Completer Completion Interface at any
time during the transfer of the payload by asserting the discontinue signal in the
s_axis_cc_tuser bus. The integrated block nullif ies the corresponding TLP on the link to
avoid data corruption.

You can assert this signal in any cycle during the transfer, when the Completion being
transferred has an associated payload. You can either choose to terminate the packet
prematurely in the cycle where the error was signaled (by asserting s_axis_cc_tlast), or
can continue until all bytes of the payload are delivered to the integrated block. In the latter
case, the integrated block treats the error as sticky for the following beats of the packet,
even if the user application deasserts the discontinue signal before reaching the end of the
packet.

The discontinue signal can be asserted only when s_axis_cc_tvalid is High. The
integrated block samples this signal when s_axis_cc_tvalid and s_axis_cc_tready
are both asserted. Thus, after assertion, the discontinue signal should not be deasserted
until s_axis_cc_tready is asserted.

X-Ref Target - Figure 3-32

Figure 3-32: Transfer of a Normal Completion on the Completer Completion Interface (Address-Aligned
Mode, Interface Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=123

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 124
PG023 November 19, 2014

Chapter 3: Designing with the Core

When the integrated block is configured as an Endpoint, this error is reported by the
integrated block to the Root Complex to which it is attached, as an Uncorrectable Internal
Error using the Advanced Error Reporting (AER) mechanisms.

Completions with Error Status (UR and CA)

When responding to a request received on the completer request interface with an
Unsupported Request (UR) or Completion Abort (CA) status, the user application must send
a three-Dword completion descriptor in the format of Figure 3-26, followed by f ive
additional Dwords containing information on the request that generated the Completion.
These f ive Dwords are necessary for the integrated block to log information about the
request in its AER header log registers.

Figure 3-33 shows the sequence of information transferred when sending a Completion
with UR or CA status. The information is formatted as an AXI4-Stream packet with a total of
8 Dwords, which are organized as follows:

• The first three Dwords contain the completion descriptor in the format of Figure 3-26.

• The fourth Dword contains the state of the following signals in m_axis_cq_tuser,
copied from the request:

° The First Byte Enable bits first_be[3:0] in m_axis_cq_tuser.

° The Last Byte Enable bits last_be[3:0] in m_axis_cq_tuser.

° Signals carrying information on Transaction Processing Hint: tph_present,
tph_type[1:0], and tph_st_tag[7:0] in m_axis_cq_tuser.

• The four Dwords of the request descriptor received from the integrated block with the
request.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=124

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 125
PG023 November 19, 2014

Chapter 3: Designing with the Core

The entire packet takes four beats on the 64-bit interface, two beats on the 128-bit
interface, and a single beat on the 256-bit interface. The packet is transferred in an identical
manner in both the Dword-aligned mode and the address-aligned mode, with the Dwords
packed together. Keep the s_axis_cc_tvalid signal asserted over the duration of the
packet. Also assert the s_axis_cc_tlast signal in the last beat of the packet. The
integrated block can deassert s_axis_cc_tready in any cycle if it is not ready to accept.
Do not change the values on the CC interface in any cycle that the integrated block has
deasserted s_axis_cc_tready.

Receive Message Interface
The core provides a separate receive-message interface that can use to receive indications
of messages received from the link. To use this interface, it must be enabled in the Vivado
IP catalog during core customization and is active only when the
AXISTEN_IF_ENABLE_RX_MSG_INTFC parameter is set to TRUE. When the receive message
interface is enabled, the integrated block signals the arrival of a message from the link by
setting the cfg_msg_received_type[4:0] output to indicate the type of message (see
Table 3-8) and pulsing the cfg_msg_received signal for one or more cycles. The duration
of assertion of cfg_msg_received is determined by the type of message received (see
Table 3-9). When cfg_msg_received is High, the integrated block transfers any
parameters associated with the message on the bus 8 bits at a time on the bus
cfg_msg_received_data. The parameters transferred on this bus in each cycle of
cfg_msg_received assertion for various message types are listed in Table 3-9. For
Vendor-Defined Messages, the integrated block transfers only the first Dword of any

X-Ref Target - Figure 3-33

Figure 3-33: Composition of the AXI4-Stream Packet for UR and CA Completions

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=125

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 126
PG023 November 19, 2014

Chapter 3: Designing with the Core

associated payload across this interface. When larger payloads are in use, the completer
request interface should be used for the delivery of messages.

Table 3-8: Message Type Encoding on Receive Message Interface

cfg_msg_received_type[4:0] Message Type

0 ERR_COR

1 ERR_NONFATAL

2 ERR_FATAL

3 Assert_INTA

4 Deassert_ INTA

5 Assert_INTB

6 Deassert_ INTB

7 Assert_INTC

8 Deassert_ INTC

9 Assert_INTD

10 Deassert_ INTD

11 PM_PME

12 PME_TO_Ack

13 PME_Turn_Off

14 PM_Active_State_Nak

15 Set_Slot_Power_Limit

16 Latency Tolerance Reporting (LTR)

17 Optimized Buffer Flush/Fill (OBFF)

18 Unlock

19 Vendor_Defined Type 0

20 Vendor_Defined Type 1

21 ATS Invalid Request

22 ATS Invalid Completion

23 ATS Page Request

24 ATS PRG Response

25 - 31 Reserved

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=126

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 127
PG023 November 19, 2014

Chapter 3: Designing with the Core

Table 3-9: Message Parameters on Receive Message Interface

Message Type
Number of Cycles of

cfg_msg_received
Assertion

Parameter Transferred on
cfg_msg_received_data[7:0]

ERR_COR, ERR_NONFATAL,
ERR_FATAL 2

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Assert_IN TX,
Deassert_IN TX 2

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

PM_PME, PME_TO_Ack,
PME_Turn_off,
PM_Active_State_Nak

2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Set_Slot_Power_Limit 6

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: bits [7:0] of payload
Cycle 4: bits [15:8] of payload
Cycle 5: bits [23:16] of payload
Cycle 6: bits [31:24] of payload

Latency Tolerance
Reporting (LTR) 6

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: bits [7:0] of Snoop Latency
Cycle 4: bits [15:8] of Snoop Latency
Cycle 5: bits [7:0] of No-Snoop Latency
Cycle 6: bits [15:8] of No-Snoop Latency

Optimized Buffer Flush/Fill
(OBFF) 3

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: OBFF Code

Unlock 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Vendor_Defined Type 0
4 when no data present.
 8 when data present.

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: Vendor ID[7:0]
Cycle 4: Vendor ID[15:8]
Cycle 5: bits [7:0] of payload
Cycle 6: bits [15:8] of payload
Cycle 7: bits [23:16] of payload
Cycle 8: bits [31:24] of payload

Vendor_Defined Type 1
4 when no data present.
 8 when data present.

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: Vendor ID[7:0]
Cycle 4: Vendor ID[15:8]
Cycle 5: bits [7:0] of payload
Cycle 6: bits [15:8] of payload
Cycle 7: bits [23:16] of payload
Cycle 8: bits [31:24] of payload

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=127

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 128
PG023 November 19, 2014

Chapter 3: Designing with the Core

Figure 3-34 is a timing diagram showing the example of a Set_Slot_Power_Limit message on
the receive message interface. This message has an associated one-Dword payload. For this
message, the parameters are transferred over six consecutive cycles. The following
information appears on the cfg_msg_received_data bus in each cycle:

• Cycle 1: Bus number of Requester ID

• Cycle 2: Device/Function Number of Requester ID

• Cycle 3: Bits [7:0] of the payload Dword

• Cycle 4: Bits [15:8] of the payload Dword

• Cycle 5: Bits [23:16] of the payload Dword

• Cycle 6: Bits [31:24] of the payload Dword

The integrated block inserts a gap of at least one clock cycle between successive pulses on
the cfg_msg_received output. There is no mechanism to apply backpressure on the
message indications delivered through the receive message interface. When using this
interface, the user logic must always be ready to receive message indications.

Receive Message Interface Design Requirements

When configured as an Endpoint, the user application must implement one of the
following:

ATS Invalid Request 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

ATS Invalid Completion 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

ATS Page Request 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

ATS PRG Response 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

X-Ref Target - Figure 3-34

Figure 3-34: Receive Message Interface

Table 3-9: Message Parameters on Receive Message Interface (Cont’d)

Message Type
Number of Cycles of

cfg_msg_received
Assertion

Parameter Transferred on
cfg_msg_received_data[7:0]

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=128

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 129
PG023 November 19, 2014

Chapter 3: Designing with the Core

• The user application must issue Non-Posted Requests that result in Completions with
the RO bit set.

• The user application must not exceed the configured completion space.

This requirement ensures the RX Completion buffer does not overflow.

Requester Interface
The requester interface enables a user Endpoint application to initiate PCI transactions as a
bus master across the PCIe link to the host memory. For Root Complexes, this interface is
also used to initiate I/O and configuration requests. This interface can also be used by both
Endpoints and Root Complexes to send messages on the PCIe link. The transactions on this
interface are similar to those on the completer interface, except that the roles of the core
and the user application are reversed. Posted transactions are performed as single
indivisible operations and Non-Posted transactions as split transactions.

The requester interface consists of two separate interfaces, one for data transfer in each
direction. Each interface is based on the AXI4-Stream protocol, and its width can be
configured as 64, 128, or 256 bits. The Requester reQuest (RQ) interface is for transfer of
requests (with any associated payload data) from the user application to the integrated
block, and the Requester Completion (RC) interface is used by the integrated block to
deliver Completions received from the link (for Non-Posted requests) to the user
application. The two interfaces operate independently. That is, the user application can
transfer new requests over the RQ interface while receiving a completion for a previous
request.

Requester Request Interface Operation

On the RQ interface, the user application delivers each TLP as an AXI4-Stream packet. The
packet starts with a 128-bit descriptor, followed by data in the case of TLPs with a payload.
Figure 3-35 shows the signals associated with the requester request interface.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=129

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 130
PG023 November 19, 2014

Chapter 3: Designing with the Core

The RQ interface supports two distinct data alignment modes for transferring payloads,
selected by the AXISTEN_IF_RQ_ALIGNMENT_MODE parameter. In the Dword-aligned
mode, the user logic must provide the f irst Dword of the payload immediately after the last
Dword of the descriptor. It must also set the bits in first_be[3:0] to indicate the valid
bytes in the f irst Dword and the bits in last_be[3:0] (both part of the bus

X-Ref Target - Figure 3-35

Figure 3-35: Requester Request Interface

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=130

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 131
PG023 November 19, 2014

Chapter 3: Designing with the Core

s_axis_rq_tuser) to indicate the valid bytes in the last Dword of the payload. In the
address-aligned mode, start the payload transfer in the beat following the last Dword of the
descriptor, and its f irst Dword can be in any of the possible Dword positions on the
datapath. The user application communicates the offset of the first Dword on the datapath
using the addr_offset[2:0] signals in s_axis_rq_tuser. As in the case of the
Dword-aligned mode, set the bits in first_be[3:0] to indicate the valid bytes in the f irst
Dword and the bits in last_be[3:0] to indicate the valid bytes in the last Dword of the
payload.

When the Transaction Processing Hint Capability is enabled in the integrated block, the user
application can provide an optional Hint with any memory transaction using the tph_*
signals included in the s_axis_rq_tuser bus. To supply a Hint with a request, the user
logic must assert tph_present in the f irst beat of the packet, and provide the TPH
Steering Tag and Steering Tag Type on tph_st_tag[7:0] and tph_st_type[1:0],
respectively. Instead of supplying the value of the Steering Tag to be used, you also have the
option of providing an indirect Steering Tag. This is done by setting the
tph_indirect_tag_en signal to 1 when tph_present is asserted, and placing an index
on tph_st_tag[7:0], instead of the tag value. The integrated block then reads the tag
stored in its Steering Tag Table associated with the requester Function at the offset
specified in the index and inserts it in the request TLP.

Requester Request Descriptor Formats

Transfer each request to be transmitted on the link to the RQ interface of the integrated
block as an independent AXI4-Stream packet. Each packet must start with a descriptor and
can have payload data following the descriptor. The descriptor is always 16 bytes long, and
must be sent in the first 16 bytes of the request packet. The descriptor is transferred during
the first two beats on a 64-bit interface, and in the f irst beat on a 128-bit or 256-bit
interface.

The formats of the descriptor for different request types are illustrated in Figure 3-36
through Figure 3-40. The format of Figure 3-36 applies when the request TLP being
transferred is a memory read/write request, an I/O read/write request, or an Atomic
Operation request. The format in Figure 3-37 is used for Configuration Requests. The
format in Figure 3-38 is used for Vendor-Defined Messages (Type 0 or Type 1) only. The
format in Figure 3-39 is used for all ATS messages (Invalid Request, Invalid Completion,
Page Request, PRG Response). For all other messages, the descriptor takes the format
shown in Figure 3-40.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=131

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 132
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-36

Figure 3-36: Requester Request Descriptor Format for Memory, I/O, and Atomic Op Requests

X-Ref Target - Figure 3-37

Figure 3-37: Requester Request Descriptor Format for Configuration Requests

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=132

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 133
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-38

Figure 3-38: Requester Request Descriptor Format for Vendor-Defined Messages

X-Ref Target - Figure 3-39

Figure 3-39: Requester Request Descriptor Format for ATS Messages

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=133

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 134
PG023 November 19, 2014

Chapter 3: Designing with the Core

Table 3-10 describes the individual f ields of the requester request descriptor.

X-Ref Target - Figure 3-40

Figure 3-40: Requester Request Descriptor Format for all other Messages

Table 3-10: Requester Request Descriptor Fields

Bit Index Field Name Description

1:0 Address Type

This f ield is defined for memory transactions and Atomic
Operations only. The integrated block copies this f ield into the AT
of the TL header of the request TLP.
• 00: Address in the request is untranslated.
• 01: Transaction is a Translation Request.
• 10: Address in the request is a translated address.
• 11: Reserved.

63:2 Address

This f ield applies to memory, I/O, and Atomic Op requests. This is
the address of the first Dword referenced by the request. Set the
First_BE and Last_BE bits in s_axis_rq_tuser to indicate the
valid bytes in the f irst and last Dwords, respectively.
When the transaction specifies a 32-bit address, bits [63:32] of this
f ield must be set to 0.

74:64 Dword Count

These 11 bits indicate the size of the block (in Dwords) to be read
or written (for messages, size of the message payload). The valid
range for Memory Write Requests is 0-256 Dwords. Memory Read
Requests have a valid range of 1-1024 Dwords. For I/O accesses,
the Dword count is always 1.
For a zero length memory read/write request, the Dword count
must be 1, with the First_BE bits set to all zeros.
The integrated block does not check the setting of this f ield
against the actual length of the payload supplied (for requests with
payload), nor against the maximum payload size or read request
size settings of the integrated block.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=134

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 135
PG023 November 19, 2014

Chapter 3: Designing with the Core

78:75 Request Type Identif ies the transaction type. The transaction types and their
encodings are listed in Table 3-5.

79 Poisoned Request

This bit can be used to poison the request TLP being sent. This
feature is supported on all request types except Type 0 and Type 1
Configuration Write Requests. This bit must be set to 0 for all
requests, except when the user application detects an error in the
block of data following the descriptor and wants to communicate
this information using the Data Poisoning feature of PCI Express.
This feature is supported on all request types except Type 0 and
Type 1 Configuration Write Requests.

87:80 Requester Function/Device
Number

Function number of the Requester Function. When ARI is used, all
8 bits of this f ield must be set to the Function number. Otherwise,
bits [84:82] must be set to the completer Function number.
When ARI is not used, and the integrated block is configured as a
Root Complex, you must supply the 5-bit Device Number of the
requester on bits [87:83].
When ARI is not used, and the integrated block is configured as an
Endpoint, you can optionally supply a 5-bit Device Number of the
requester on bits [87:83]. Set the Requester ID Enable bit in the
descriptor if a Device Number is supplied on bits [87:83]. This value
is used by the integrated block when sending the Request TLP,
instead of the stored value of the Device Number captured by the
integrated block from Configuration Requests.

95:88 Requester Bus Number

Bus number associated with the requester Function. When the
integrated block is configured as a Root Complex, you must supply
the 8-bit bus number of the requester in this f ield.
When the integrated block is configured as an Endpoint, you can
optionally supply a bus number in this f ield. Set the Requester ID
Enable bit in the descriptor if a bus number is supplied in this f ield.
This value is used by the integrated block when sending the
Request TLP, instead of the stored value of the Bus Number
captured by the integrated block from Configuration Requests.

103:96 Tag

PCIe Tag associated with the request. For Posted transactions, the
integrated block always uses the value from this f ield as the tag for
the request.
For Non-Posted transactions, the integrated block uses the value
from this f ield if the AXISTEN_IF_ENABLE_user_TAG parameter is
set (that is, when tag management is performed by the user
application). If this parameter is not set, tag management logic in
the integrated block generates the tag to be used, and the value in
the tag field of the descriptor is not used.

119:104 Completer ID

This f ield is applicable only to Configuration requests and
messages routed by ID. For these requests, this f ield specif ies the
PCI Completer ID associated with the request (these 16 bits are
divided into an 8-bit bus number, 5-bit device number, and 3-bit
function number in the legacy interpretation mode. In the ARI
mode, these 16 bits are treated as an 8-bit bus number + 8-bit
Function number.).

Table 3-10: Requester Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=135

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 136
PG023 November 19, 2014

Chapter 3: Designing with the Core

120 Requester ID Enable

This f ield lets you supply the bus and device numbers to be used
in the Requester ID. This f ield is applicable only to Endpoints.
If this f ield is 0, the integrated block uses the captured values of
the bus and device numbers to form the Requester ID. If this input
is 1, the integrated block uses the bus and device numbers
supplied in the descriptor to form the Requester ID.

123:121 Transaction Class (TC) PCIe Transaction Class (TC) associated with the request.

126:124 Attributes

These bits provide the setting of the Attribute bits associated with
the request. Bit 124 is the No Snoop bit and bit 125 is the Relaxed
Ordering bit. Bit 126 is the ID-Based Ordering bit, and can be set
only for memory requests and messages.
The integrated block forces the attribute bits to 0 in the request
sent on the link if the corresponding attribute is not enabled in the
PCI Express Device Control Register of the function.

127 Force ECRC
Force ECRC insertion. Setting this bit to 1 forces the integrated
block to append a TLP Digest containing ECRC to the Request TLP,
even when ECRC is not enabled for the Function sending request.

15:0 Snoop Latency This f ield is defined for LTR messages only. It provides the value of
the 16-bit Snoop Latency field in the TLP header of the message.

31:16 No-Snoop Latency
This f ield is defined for LTR messages only. It provides the value of
the 16-bit No-Snoop Latency f ield in the TLP header of the
message.

35:32 OBFF Code

The OBFF Code f ield is used to distinguish between various OBFF
cases:
• 1111b: CPU Active – System fully active for all device actions

including bus mastering and interrupts.
• 0001b: OBFF – System memory path available for device memory

read/write bus master activities.
• 0000b: Idle. – System in an idle, low power state.
All other codes are reserved.

111:104 Message Code

This f ield is defined for all messages. It contains the 8-bit Message
Code to be set in the TL header.
For a complete list of the supported Message Code, see
Appendix F of the PCI Express Base Specification, rev. 3.0 [Ref 2].

114:112 Message Routing
This f ield is defined for all messages. The integrated block copies
these bits into the 3-bit Routing field r[2:0] of the TLP header of the
Request TLP.

15:0 Destination ID

This f ield applies to Vendor-Defined Messages only. When the
message is routed by ID (that is, when the Message Routing field
is 010 binary), this f ield must be set to the Destination ID of the
message.

63:32 Vendor-Defined Header This f ield applies to Vendor-Defined Messages only. It is copied
into Dword 3 of the TLP header.

63:0 ATS Header
This f ield is applicable to ATS messages only. It contains the bytes
that the integrated block copies into Dwords 2 and 3 of the TLP
header.

Table 3-10: Requester Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=136

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 137
PG023 November 19, 2014

Chapter 3: Designing with the Core

Requester Memory Write Operation

In Dword-aligned mode, the transfer starts with the sixteen descriptor bytes, followed
immediately by the payload bytes. Keep the s_axis_rq_tvalid signal asserted over the
duration of the packet. The integrated block treats the deassertion of s_axis_rq_tvalid
during the packet transfer as an error, and nullif ies the corresponding Request TLP
transmitted on the link to avoid data corruption.

The user application must also assert the s_axis_rq_tlast signal in the last beat of the
packet. The integrated block can deassert s_axis_rq_tready in any cycle if it is not
ready to accept data. Do not change the values on the RQ interface during cycles when the
integrated block has deasserted s_axis_rq_tready. The AXI4-Stream interface signals
m_axis_cq_tkeep (one per Dword position) must be set to indicate the valid Dwords in
the packet including the descriptor and any null bytes inserted between the descriptor and
the payload. That is, the tkeep bits must be set to 1 contiguously from the f irst Dword of the
descriptor until the last Dword of the payload. During the transfer of a packet, the tkeep bits
can be 0 only in the last beat of the packet, when the packet does not f ill the entire width
of the interface.

The requester request interface also includes the First Byte Enable and the Last Enable bits
in the s_axis_rq_tuser bus. These must be set in the first beat of the packet, and
provides information of the valid bytes in the f irst and last Dwords of the payload.

You must limit the size of the payload transferred in a single request to the maximum
payload size configured in the integrated block, and must ensure that the payload does not
cross a 4 Kbyte boundary. For memory writes of two Dwords or less, the 1s in first_be
and last_be can be non-contiguous. For the special case of a zero-length memory write
request, provide a dummy one-Dword payload with first_be and last_be both set to all
0s. In all other cases, the 1 bits in first_be and last_be must be contiguous.

The timing diagrams in Figure 3-41, Figure 3-42, and Figure 3-43 illustrate the
Dword-aligned transfer of a memory write request from the user application across the
requester request interface, when the interface width is configured as 64, 128, and 256 bits,
respectively. For illustration purposes, the size of the data block being written into user
memory is assumed to be n Dwords, for some n = k * 32 + 29, k > 0.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=137

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 138
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-41

Figure 3-41: Memory Write Transaction on the Requester Request Interface (Dword-Aligned Mode,
Interface Width = 64 Bits)

X-Ref Target - Figure 3-42

Figure 3-42: Memory Write Transaction on the Requester Request Interface (Dword-Aligned Mode,
Interface Width = 128 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=138

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 139
PG023 November 19, 2014

Chapter 3: Designing with the Core

The timing diagrams in Figure 3-44, Figure 3-45, and Figure 3-46 illustrate the
address-aligned transfer of a memory write request from the user application across the RQ
interface, when the interface width is configured as 64, 128, and 256 bits, respectively. For
illustration purposes, the starting Dword offset of the data block being written into user
memory is assumed to be (m * 32 + 1), for some integer m > 0. Its size is assumed to be n
Dwords, for some n = k * 32 + 29, k > 0.

In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. The f irst Dword of the payload can appear at any Dword
position. The user application communicates the offset of the first Dword of the payload on
the datapath using the addr_offset[2:0] signal in s_axis_rq_tuser. It sets the bits
in first_be[3:0] to indicate the valid bytes in the f irst Dword and the bits in
last_be[3:0] to indicate the valid bytes in the last Dword of the payload.

X-Ref Target - Figure 3-43

Figure 3-43: Memory Write Transaction on the Requester Request Interface (Dword-Aligned Mode,
Interface Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=139

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 140
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-44

Figure 3-44: Memory Write Transaction on the Requester Request Interface (Address-Aligned Mode,
Interface Width = 64 Bits)

X-Ref Target - Figure 3-45

Figure 3-45: Memory Write Transaction on the Requester Request Interface (Address-Aligned Mode,
Interface Width = 128 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=140

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 141
PG023 November 19, 2014

Chapter 3: Designing with the Core

Non-Posted Transactions with No Payload

Non-Posted transactions with no payload (memory read requests, I/O read requests,
Configuration read requests) are transferred across the RQ interface in the same manner as
a memory write request, except that the AXI4-Stream packet contains only the 16-byte
descriptor. The timing diagrams in Figure 3-47, Figure 3-48, and Figure 3-49 illustrate the
transfer of a memory read request across the RQ interface, when the interface width is
configured as 64, 128, and 256 bits, respectively. The packet occupies two consecutive beats
on the 64-bit interface, while it is transferred in a single beat on the 128- and 256-bit
interfaces. The s_axis_rq_tvalid signal must remain asserted over the duration of the
packet. The integrated block can deassert s_axis_rq_tready to prolong the beat. The
s_axis_rq_tlast signal must be set in the last beat of the packet, and the bits in
s_axis_rq_tkeep[7:0] must be set in all Dword positions where a descriptor is present.

The valid bytes in the first and last Dwords of the data block to be read must be indicated
using first_be[3:0] and last_be[3:0], respectively. For the special case of a
zero-length memory read, the length of the request must be set to one Dword, with both
first_be[3:0] and last_be[3:0] set to all 0s. Additionally when in address-aligned

X-Ref Target - Figure 3-46

Figure 3-46: Memory Write Transaction on the Requester Request Interface (Address-Aligned Mode,
Interface Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=141

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 142
PG023 November 19, 2014

Chapter 3: Designing with the Core

mode, addr_offset[2:0] in s_axis_rq_tuser specifies the desired starting
alignment of data returned on the Requester Completion interface. The alignment is not
required to be correlated to the address of the request.

X-Ref Target - Figure 3-47

Figure 3-47: Memory Read Transaction on the Requester Request Interface (Interface Width =
64 Bits)

X-Ref Target - Figure 3-48

Figure 3-48: Memory Read Transaction on the Requester Request Interface (Interface Width =
128 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=142

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 143
PG023 November 19, 2014

Chapter 3: Designing with the Core

Non-Posted Transactions with a Payload

The transfer of a Non-Posted request with payload (an I/O write request, Configuration
write request, or Atomic Operation request) is similar to the transfer of a memory request,
with the following changes in how the payload is aligned on the datapath:

• In the Dword-aligned mode, the f irst Dword of the payload follows the last Dword of
the descriptor, with no gaps between them.

• In the address-aligned mode, the payload must start in the beat following the last
Dword of the descriptor. The payload can start at any Dword position on the datapath.
The offset of its f irst Dword must be specif ied using the addr_offset[2:0] signal.

For I/O and Configuration write requests, the valid bytes in the one-Dword payload must be
indicated using first_be[3:0]. For Atomic Operation requests, all bytes in the f irst and
last Dwords are assumed valid.

Message Requests on the Requester Interface

The transfer of a message on the RQ interface is similar to that of a memory write request,
except that a payload might not always be present. The transfer starts with the 128-bit
descriptor, followed by the payload, if present. When the Dword-aligned mode is in use, the
f irst Dword of the payload must immediately follow the descriptor. When the
address-alignment mode is in use, the payload must start in the beat following the
descriptor, and must be aligned to byte lane 0. The addr_offset input to the integrated

X-Ref Target - Figure 3-49

Figure 3-49: Memory Read Transaction on the Requester Request Interface (Interface Width =
256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=143

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 144
PG023 November 19, 2014

Chapter 3: Designing with the Core

block must be set to 0 for messages when the address-aligned mode is in use. The
integrated block determines the end of the payload from s_axis_rq_tlast and
s_axis_rq_tkeep signals. The First Byte Enable and Last Byte Enable bits (first_be and
last_be) are not used for message requests.

Aborting a Transfer

For any request that includes an associated payload, you can abort the request at any time
during the transfer of the payload by asserting the discontinue signal in the
s_axis_rq_tuser bus. The integrated block nullif ies the corresponding TLP on the link to
avoid data corruption.

You can assert this signal in any cycle during the transfer, when the request being
transferred has an associated payload. You can either terminate the packet prematurely in
the cycle where the error was signaled (by asserting s_axis_rq_tlast), or continue until
all bytes of the payload are delivered to the integrated block. In the latter case, the
integrated block treats the error as sticky for the following beats of the packet, even if the
user application deasserts the discontinue signal before reaching the end of the packet.

The discontinue signal can be asserted only when s_axis_rq_tvalid is High. The
integrated block samples this signal when s_axis_rq_tvalid and s_axis_rq_tready
are both High. Thus, after assertion, the discontinue signal should not be deasserted until
s_axis_rq_tready is High.

When the integrated block is configured as an Endpoint, this error is reported by the
integrated block to the Root Complex it is attached to, as an Uncorrectable Internal Error
using the Advanced Error Reporting (AER) mechanisms.

Tag Management for Non-Posted Transactions

The requester side of the integrated block maintains the state of all pending Non-Posted
transactions (memory reads, I/O reads and writes, configuration reads and writes, Atomic
Operations) initiated by the user application, so that the completions returned by the
targets can be matched against the corresponding requests. The state of each outstanding
transaction is held in a Split Completion Table in the requester side of the interface, which
has a capacity of 64 Non-Posted transactions. The returning Completions are matched with
the pending requests using a 6-bit tag. There are two options for managing these tags.

• Internal Tag Management: This mode of operation is selected by setting the
AXISTEN_IF_ENABLE_user_TAG parameter to FALSE, which is the default setting for the
core. In this mode, logic within the integrated block is responsible for allocating the tag
for each Non-Posted request initiated from the requester side. The integrated block
maintains a list of free tags and assigns one of them to each request when the user
application initiates a Non-Posted transaction, and communicates the assigned tag
value through the output pcie_rq_tag[5:0]. The value on this bus is valid when the
integrated block asserts pcie_rq_tag_vld. The user logic must copy this tag so that
any Completions delivered by the integrated block in response to the request can be
matched to the request.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=144

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 145
PG023 November 19, 2014

Chapter 3: Designing with the Core

In this mode, logic within the integrated block checks for the Split Completion Table full
condition, and backpressures a Non-Posted request (using s_axis_rq_tready) if the
total number of Non-Posted requests currently outstanding has reached its limit (64).

• External Tag Management: This mode of operation is selected by setting the
AXISTEN_IF_ENABLE_user_TAG parameter to 1. In this mode, the user logic is
responsible for allocating the tag for each Non-Posted request initiated from the
requester side. The user logic must choose the tag value without conflicting with the
tags of all other Non-Posted transactions outstanding at that time, and must
communicate this chosen tag value to integrated block through the request descriptor.
The integrated block still maintains the outstanding requests in its Split Completion
Table and matches the incoming Completions to the requests, but does not perform
any checks for the uniqueness of the tags, or for the Split Completion Table full
condition.

When internal tag management is in use, the integrated block asserts pcie_rq_tag_vld
for one cycle for each Non-Posted request, after it has placed its allocated tag on
pcie_rq_tag[5:0]. There can be a delay of several cycles between the transfer of the
request on the RQ interface and the assertion of pcie_rq_tag_vld by the integrated
block to provide the allocated tag for the request. The user application can, meanwhile,
continue to send new requests. The tags for requests are communicated on the
pcie_rq_tag bus in FIFO order, so it is easy to associate the tag value with the request it
transferred. A tag is reused when the end-of-frame (EOF) of the last completion of a split
completion is accepted by the user application.

Avoiding Head-of-Line Blocking for Posted Requests

The integrated block can hold a Non-Posted request received on its RQ interface for lack of
transmit credit or lack of available tags. This could potentially result in head-of-line (HOL)
blocking for Posted transactions. The integrated block provides a mechanism for the user
logic to avoid this situation through these signals:

• pcie_tfc_nph_av[1:0]: These outputs indicate the Header Credit currently
available for Non-Posted requests, where:

° 00 = no credit available

° 01 = 1 credit

° 10 = 2 credits

° 11 = 3 or more credits

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=145

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 146
PG023 November 19, 2014

Chapter 3: Designing with the Core

• pcie_tfc_npd_av[1:0]: These outputs indicate the Data Credit currently available
for Non-Posted requests, where:

° 00 = no credit available

° 01 = 1 credit

° 10 = 2 credits

° 11 = 3 or more credits

The user logic can optionally check these outputs before transmitting Non-Posted requests.
Because of internal pipeline delays, the information on these outputs is delayed by two user
clock cycles from the cycle in which the last byte of the descriptor is transferred on the RQ
interface. Thus the user logic must adjust these values, taking into account any Non-Posted
requests transmitted in the two previous clock cycles. Figure 3-50 illustrates the operation
of these signals for the 256-bit interface. In this example, the integrated block initially had
three Non-Posted Header Credits and two Non-Posted Data Credits, and had three free tags
available for allocation.

• Request 1 had a one-Dword payload, and therefore consumed one header and data
credit each, and also one tag.

• Request 2 in the next clock cycle consumed one header credit, but no data credit.

• When the user logic presents Request 3 in the following clock cycle, it must adjust the
available credit and available tag count by taking into account requests 1 and 2. If
Request 3 consumes one header credit and one data credit, both available credits are 0
two cycles later, as also the number of available tags.

Figure 3-51 and Figure 3-52 illustrate the timing of the credit and tag available signals for
the same example, for interface width of 128 bits and 64 bits, respectively.

X-Ref Target - Figure 3-50

Figure 3-50: Credit and Tag Availability Signals on the Requester Request Interface (Interface
Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=146

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 147
PG023 November 19, 2014

Chapter 3: Designing with the Core

Maintaining Transaction Order

The integrated block does not change the order of requests received from the user logic on
its requester interface when it transmits them on the link. In cases where the user logic
would like to have precise control of the order of transactions sent on the RQ interface and
the CC interface (typically to avoid Completions from passing Posted requests when using
strict ordering), the integrated block provides a mechanism to monitor the progress of a
Posted transaction through its pipeline. Using this, it can determine when to schedule a
Completion on the Completer Completion Interface without the risk of passing a specific
Posted request transmitted from the requester request interface,

When transferring a Posted request (memory write transactions or messages) across the
requester request interface, the user logic can provide an optional 4-bit sequence number
to the integrated block on its seq_num[3:0] input within s_axis_rq_tuser. The

X-Ref Target - Figure 3-51

Figure 3-51: Credit and Tag Availability Signals on the Requester Request Interface (Interface
Width = 128 Bits)

X-Ref Target - Figure 3-52

Figure 3-52: Credit and Tag Availability Signals on the Requester Request Interface (Interface Width =
64 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=147

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 148
PG023 November 19, 2014

Chapter 3: Designing with the Core

sequence number must be valid in the first beat of the packet. The user logic can then
monitor the pcie_rq_seq_num[3:0] output of the core for this sequence number to
appear. When the transaction has reached a stage in the internal transmit pipeline of the
integrated block where a Completion cannot pass it, the integrated block asserts
pcie_rq_seq_num_valid for one cycle and provides the sequence number of the Posted
request on the pcie_rq_seq_num[3:0] output. Any Completions transmitted by the
integrated block after the sequence number has appeared on pcie_rq_seq_num[3:0]
cannot pass the Posted request in the internal transmit pipeline.

Requester Completion Interface Operation

Completions for requests generated by user logic are presented on the integrated block
Requester Completion (RC) interface. See Figure 3-53 for an illustration of signals
associated with the requester completion interface. When straddle is not enabled, the
integrated block delivers each TLP on this interface as an AXI4-Stream packet. The packet
starts with a 96-bit descriptor, followed by data in the case of Completions with a payload.

The RC interface supports two distinct data alignment modes for transferring payloads,
selected by the AXISTEN_IF_RC_ALIGNMENT_MODE parameter. In the Dword-aligned mode,
the integrated block transfers the first Dword of the Completion payload immediately after

X-Ref Target - Figure 3-53

Figure 3-53: Requester Completion Interface

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=148

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 149
PG023 November 19, 2014

Chapter 3: Designing with the Core

the last Dword of the descriptor. In the address-aligned mode, the integrated block starts
the payload transfer in the beat following the last Dword of the descriptor, and its f irst
Dword can be in any of the possible Dword positions on the datapath. The alignment of the
f irst Dword of the payload is determined by address offset provided by the user logic when
it sent the request to the integrated block (that is, the setting of the addr_offset[2:0]
input of the RQ interface). Thus, the address-aligned mode can be used on the RC interface
only if the RQ interface is also configured to use the address-aligned mode.

Requester Completion Descriptor Format

The RC interface of the integrated block sends completion data received from the link to the
user application as AXI4-Stream packets. Each packet starts with a descriptor and can have
payload data following the descriptor. The descriptor is always 12 bytes long, and is sent in
the f irst 12 bytes of the completion packet. The descriptor is transferred during the f irst two
beats on a 64-bit interface, and in the first beat on a 128- or 256-bit interface. When the
completion data is split into multiple Split Completions, the integrated block sends each
Split Completion as a separate AXI4-Stream packet, with its own descriptor.

The format of the Requester Completion descriptor is illustrated in Figure 3-54. The
individual f ields of the RC descriptor are described in Table 3-11.

X-Ref Target - Figure 3-54

Figure 3-54: Requester Completion Descriptor Format

Table 3-11: Requester Completion Descriptor Fields

Bit Index Field Name Description

11:0 Lower Address

This f ield provides the 12 least significant bits of the first byte referenced
by the request. The integrated block returns this address from its Split
Completion Table, where it stores the address and other parameters of
all pending Non-Posted requests on the requester side.
When the Completion delivered has an error, only bits [6:0] of the
address should be considered valid.
This is a byte-level address.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=149

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 150
PG023 November 19, 2014

Chapter 3: Designing with the Core

15:12 Error Code

Completion error code. These three bits encode error conditions
detected from error checking performed by the integrated block on
received Completions. Its encodings are:
• 0000: Normal termination (all data received).
• 0001: The Completion TLP is poisoned.
• 0010: Request terminated by a Completion with UR, CA or CRS status.
• 0011: Request terminated by a Completion with no data, or the byte

count in the Completion was higher than the total number of bytes
expected for the request.

• 0100: The current Completion being delivered has the same tag of an
outstanding request, but its Requester ID, TC, or Attr f ields did not
match with the parameters of the outstanding request.

• 0101: Error in starting address. The low address bits in the Completion
TLP header did not match with the starting address of the next
expected byte for the request.

• 0110: Invalid tag. This Completion does not match the tags of any
outstanding request.

• 1001: Request terminated by a Completion timeout. The other f ields in
the descriptor, except bit [30], the requester Function [55:48], and the
tag field [71:64], are invalid in this case, because the descriptor does
not correspond to a Completion TLP.

• 1000: Request terminated by a Function-Level Reset (FLR) targeted at
the Function that generated the request. The other f ields in the
descriptor, except bit [30], the requester Function [55:48], and the tag
field [71:64], are invalid in this case, because the descriptor does not
correspond to a Completion TLP.

28:16 Byte Count

These 13 bits can have values in the range of 0 – 4096 bytes. If a Memory
Read Request is completed using a single completion, the Byte Count
value indicates Payload size in bytes. This f ield must be set to 4 for I/O
read Completions and I/O write Completions. The byte count must be set
to 1 while sending a Completion for a zero-length memory read, and a
dummy payload of 1 Dword must follow the descriptor.
For each Memory Read Completion, the Byte Count f ield must indicate
the remaining number of bytes required to complete the Request,
including the number of bytes returned with the Completion.
If a Memory Read Request is completed using multiple Completions, the
Byte Count value for each successive Completion is the value indicated
by the preceding Completion minus the number of bytes returned with
the preceding Completion.

29 Locked Read Completion This bit is set to 1 when the completion is in response to a Locked Read
request. It is set to 0 for all other completions.

Table 3-11: Requester Completion Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=150

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 151
PG023 November 19, 2014

Chapter 3: Designing with the Core

Transfer of Completions With No Data

The timing diagrams in Figure 3-55, Figure 3-56, and Figure 3-57 illustrate the transfer of a
Completion TLP received from the link with no associated payload across the RC interface,
when the interface width is configured as 64, 128, and 256 bits, respectively. The timing
diagrams in this section assume that the Completions are not straddled on the 256-bit
interface. The straddle feature is described in Straddle Option for 256-Bit Interface,
page 159.

30 Request Completed

The integrated block asserts this bit in the descriptor of the last
Completion of a request. The assertion of the bit can indicate normal
termination of the request (because all data has been received) or
abnormal termination because of an error condition. The user logic can
use this indication to clear its outstanding request status.
When tags are assigned, the user logic should not re-assign a tag
allocated to a request until it has received a Completion Descriptor from
the integrated block with a matching tag f ield and the Request
Completed bit set to 1.

42:32 Dword Count

These 11 bits indicate the size of the payload of the current packet in
Dwords. Its range is 0 - 1K Dwords. This f ield is set to 1 for I/O read
Completions and 0 for I/O write Completions. The Dword count is also
set to 1 while transferring a Completion for a zero-length memory read.
In all other cases, the Dword count corresponds to the actual number of
Dwords in the payload of the current packet.

45:43 Completion Status

These bits reflect the setting of the Completion Status field of the
received Completion TLP. The valid settings are:
• 000: Successful Completion.
• 001: Unsupported Request (UR).
• 010: Configuration Request Retry Status (CRS).
• 100: Completer Abort (CA).

46 Poisoned Completion This bit is set to indicate that the Poison bit in the Completion TLP was
set. Data in the packet should then be considered corrupted.

63:48 Requester ID PCI Requester ID associated with the completion.

71:64 Tag PCIe Tag associated with the completion.

87:72 Completer ID

Completer ID received in the Completion TLP. (These 16 bits are divided
into an 8-bit bus number, 5-bit device number, and 3-bit function
number in the legacy interpretation mode. In the ARI mode, these 16 bits
must be treated as an 8-bit bus number + 8-bit Function number.).

91:89 Transaction Class (TC) PCIe Transaction Class (TC) associated with the completion.

94:92 Attributes
PCIe attributes associated with the Completion. Bit 92 is the No Snoop
bit, bit 93 is the Relaxed Ordering bit, and bit 94 is the ID-Based Ordering
bit.

Table 3-11: Requester Completion Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=151

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 152
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-55

Figure 3-55: Transfer of a Completion with no Data on the Requester Completion Interface
(Interface Width = 64 Bits)

X-Ref Target - Figure 3-56

Figure 3-56: Transfer of a Completion with no Data on the Requester Completion Interface
(Interface Width = 128 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=152

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 153
PG023 November 19, 2014

Chapter 3: Designing with the Core

The entire transfer of the Completion TLP takes only a single beat on the 256- and 128-bit
interfaces, and two beats on the 64-bit interface. The integrated block keeps the
m_axis_rc_tvalid signal asserted over the duration of the packet. Deassert
m_axis_rc_tready to prolong a beat at any time. The AXI4-Stream interface signals
m_axis_rc_tkeep (one per Dword position) indicate the valid descriptor Dwords in the
packet. That is, the tkeep bits are set to 1 contiguously from the f irst Dword of the
descriptor until its last Dword. During the transfer of a packet, the tkeep bits can be 0 only
in the last beat of the packet. The m_axis_cq_tlast signal is always asserted in the last
beat of the packet.

The m_axi_cq_tuser bus also includes an is_sof_0 signal, which is asserted in the f irst
beat of every packet. The user logic can optionally use this signal to qualify the start of the
descriptor on the interface. No other signals within m_axi_cq_tuser are relevant to the
transfer of Completions with no data, when the straddle option is not in use.

Transfer of Completions With Data

The timing diagrams in Figure 3-58, Figure 3-59, and Figure 3-60 illustrate the
Dword-aligned transfer of a Completion TLP received from the link with an associated
payload across the RC interface, when the interface width is configured as 64, 128, and 256
bits, respectively. For illustration purposes, the size of the data block being written into user
memory is assumed to be n Dwords, for some n = k * 32 + 28, k > 0. The timing diagrams
in this section assume that the Completions are not straddled on the 256-bit interface. The
straddle feature is described in Straddle Option for 256-Bit Interface, page 159.

X-Ref Target - Figure 3-57

Figure 3-57: Transfer of a Completion with no Data on the Requester Completion Interface
(Interface Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=153

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 154
PG023 November 19, 2014

Chapter 3: Designing with the Core

In the Dword-aligned mode, the transfer starts with the three descriptor Dwords, followed
immediately by the payload Dwords. The entire TLP, consisting of the descriptor and
payload, is transferred as a single AXI4-Stream packet. Data within the payload is always a
contiguous stream of bytes when the length of the payload exceeds two Dwords. The
positions of the first valid byte within the f irst Dword of the payload and the last valid byte
in the last Dword can then be determined from the Lower Address and Byte Count f ields of
the Request Completion Descriptor. When the payload size is two Dwords or less, the valid
bytes in the payload cannot be contiguous. In these cases, the user logic must store the
First Byte Enable and the Last Byte Enable f ields associated with each request sent out on
the RQ interface and use them to determine the valid bytes in the completion payload. Use
the byte enable outputs byte_en[31:0] within the m_axi_cq_tuser bus to determine
the valid bytes in the payload, in the cases of contiguous as well as non-contiguous
payloads.

The integrated block keeps the m_axis_rc_tvalid signal asserted over the entire
duration of the packet. Deassert m_axis_rc_tready to prolong a beat at any time. The
AXI4-Stream interface signals m_axis_rc_tkeep (one per Dword position) indicate the
valid Dwords in the packet including the descriptor and any null bytes inserted between the
descriptor and the payload. That is, the tkeep bits are set to 1 contiguously from the f irst
Dword of the descriptor until the last Dword of the payload. During the transfer of a packet,
the tkeep bits can be 0 only in the last beat of the packet, when the packet does not f ill the
entire width of the interface. The m_axis_rc_tlast signal is always asserted in the last
beat of the packet.

The m_axi_rc_tuser bus provides several informational signals that can be used to
simplify the logic associated with the user side of the interface, or to support additional
features. The is_sof_0 signal is asserted in the f irst beat of every packet, when its
descriptor is on the bus. The byte enable outputs byte_en[31:0] (one per byte lane)
indicate the valid bytes in the payload. These signals are asserted only when a valid payload
byte is in the corresponding lane (it is not asserted for descriptor or null bytes). The
asserted byte enable bits are always contiguous from the start of the payload, except when
payload size is 2 Dwords or less. For Completion payloads of two Dwords or less, the 1s on
byte_en might not be contiguous. Another special case is that of a zero-length memory
read, when the integrated block transfers a one-Dword payload with the byte_en bits all
set to 0. Thus, the user logic can, in all cases, use the byte_en signals directly to enable the
writing of the associated bytes into memory.

The is_sof_1, is_eof_0[3:0], and is_eof_1[3:0] signals within the
m_axis_rc_tuser bus are not to be used for 64-bit and 128-bit interfaces, and for
256-bit interfaces when the straddle option is not enabled.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=154

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 155
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-58

Figure 3-58: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, Interface Width = 64 Bits)

X-Ref Target - Figure 3-59

Figure 3-59: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, Interface Width = 128 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=155

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 156
PG023 November 19, 2014

Chapter 3: Designing with the Core

The timing diagrams in Figure 3-61, Figure 3-62, and Figure 3-63 illustrate the
address-aligned transfer of a Completion TLP received from the link with an associated
payload across the RC interface, when the interface width is configured as 64, 128, and 256
bits, respectively. In the example timing diagrams, the starting Dword address of the data
block being transferred (as conveyed in bits [6:2] of the Lower Address field of the
descriptor) is assumed to be (m * 8 + 1), for an integer m. The size of the data block is
assumed to be n Dwords, for some n = k * 32 + 28, k > 0. The straddle option is not valid for
address-aligned transfers, so the timing diagrams assume that the Completions are not
straddled on the 256-bit interface.

X-Ref Target - Figure 3-60

Figure 3-60: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, Interface Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=156

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 157
PG023 November 19, 2014

Chapter 3: Designing with the Core

In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. The f irst byte of the payload can appear on any byte lane,
based on the address of the f irst valid byte of the payload. The tkeep bits are set to 1
contiguously from the first Dword of the descriptor until the last Dword of the payload. The
alignment of the f irst Dword on the data bus is determined by the setting of the
addr_offset[2:0] input of the requester request interface when the user sent the
request to the integrated block. The user can optionally use the byte enable outputs
byte_en[31:0] to determine the valid bytes in the payload.

X-Ref Target - Figure 3-61

Figure 3-61: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, Interface Width = 64 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=157

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 158
PG023 November 19, 2014

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-62

Figure 3-62: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, Interface Width = 128 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=158

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 159
PG023 November 19, 2014

Chapter 3: Designing with the Core

Straddle Option for 256-Bit Interface

When the interface width is configured as 256 bits, the integrated block can start a new
Completion transfer on the RC interface in the same beat when the previous Completion
has ended on or before Dword position 3 on the data bus. This straddle option is enabled
by setting the AXISTEN_IF_RC_STRADDLE parameter. The straddle option can be used only
with the Dword-aligned mode.

When the straddle option is enabled, Completion TLPs are transferred on the RC interface
as a continuous stream, with no packet boundaries (from an AXI4-Stream perspective).
Thus, the m_axis_rc_tkeep and m_axis_rc_tlast signals are not useful in

X-Ref Target - Figure 3-63

Figure 3-63: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, Interface Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=159

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 160
PG023 November 19, 2014

Chapter 3: Designing with the Core

determining the boundaries of Completion TLPs delivered on the interface (the integrated
block sets m_axis_rc_tkeep to all 1s and m_axis_rc_tlast to 0 permanently when
the straddle option is in use). Instead, delineation of TLPs is performed using the following
signals provided within the m_axis_rc_tuser bus:

• is_sof_0: The integrated block drives this output High in a beat when there is at least
one Completion TLP starting in the beat. The position of the f irst byte of this
Completion TLP is determined as follows:

° If the previous Completion TLP ended before this beat, the f irst byte of this
Completion TLP is in byte lane 0.

° If a previous TLP is continuing in this beat, the first byte of this Completion TLP is in
byte lane 16. This is possible only when the previous TLP ends in the current beat,
that is when is_eof_0[0] is also set.

• is_sof_1: The integrated block asserts this output in a beat when there are two
Completion TLPs starting in the beat. The f irst TLP always starts at byte position 0 and
the second TLP at byte position 16. The integrated block starts a second TLP at byte
position 16 only if the previous TLP ended before byte position 16 in the same beat,
that is only if is_eof_0[0] is also set in the same beat.

• is_eof_0[3:0]: These outputs are used to indicate the end of a Completion TLP and
the position of its last Dword on the data bus. The assertion of the bit is_eof_0[0]
indicates that there is at least one Completion TLP ending in this beat. When bit 0 of
is_eof_0 is set, bits [3:1] provide the offset of the last Dword of the TLP ending in this
beat. The offset for the last byte can be determined from the starting address and
length of the TLP, or from the byte enable signals byte_en[31:0]. When there are
two Completion TLPs ending in a beat, the setting of is_eof_0[3:1] is the offset of
the last Dword of the first Completion TLP (in that case, its range is 0 through 3).

• is_eof_1[3:0]: The assertion of is_eof_1[0] indicates a second TLP ending in the
same beat. When bit 0 of is_eof_1 is set, bits [3:1] provide the offset of the last
Dword of the second TLP ending in this beat. Because the second TLP can start only on
byte lane 16, it can only end at a byte lane in the range 27–31. Thus the offset
is_eof_1[3:1] can only take one of two values: 6 or 7. If is_sof_1[0] is High, the
signals is_eof_0[0] and is_sof_0 are also High in the same beat. If is_sof_1 is
High, is_sof_0 is High. If is_eof_1 is High, is_eof_0 is High.

The timing diagram in Figure 3-64 illustrates the transfer of four Completion TLPs on the
256-bit RC interface when the straddle option is enabled. The f irst Completion TLP (COMPL
1) starts at Dword position 0 of Beat 1 and ends in Dword position 0 of Beat 3. The second
TLP (COMPL 2) starts in Dword position 4 of the same beat. This second TLP has only a
one-Dword payload, so it also ends in the same beat. The third and fourth Completion TLPs
are transferred completely in Beat 4, because Completion 3 has only a one-Dword payload
and Completion 4 has no payload.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=160

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 161
PG023 November 19, 2014

Chapter 3: Designing with the Core

Aborting a Completion Transfer

For any Completion that includes an associated payload, the integrated block can signal an
error in the transferred payload by asserting the discontinue signal in the
m_axis_rc_tuser bus in the last beat of the packet. This occurs when the integrated
block has detected an uncorrectable error while reading data from its internal memories.
The user application must discard the entire packet when it has detected the discontinue

X-Ref Target - Figure 3-64

Figure 3-64: Transfer of Completion TLPs on the Requester Completion Interface with the Straddle
Option Enabled

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=161

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 162
PG023 November 19, 2014

Chapter 3: Designing with the Core

signal asserted in the last beat of a packet. This is also considered a fatal error in the
integrated block.

When the straddle option is in use, the integrated block does not start a second Completion
TLP in the same beat when it has asserted discontinue, aborting the Completion TLP ending
in the beat.

Handling of Completion Errors

When a Completion TLP is received from the link, the integrated block matches it against
the outstanding requests in the Split Completion Table to determine the corresponding
request, and compares the fields in its header against the expected values to detect any
error conditions. The integrated block then signals the error conditions in a 4-bit error code
sent to the user application as part of the completion descriptor. The integrated block also
indicates the last completion for a request by setting the Request Completed bit (bit 30) in
the descriptor. Table 3-12 defines the error conditions signaled by the various error codes.

Table 3-12: Encoding of Error Codes

Error Code Description

0000 No errors detected.

0001

The Completion TLP received from the link was Poisoned. You should discard any data that
follows the descriptor. In addition, if the Request Completed bit in the descriptor is not
set,you should continue to discard the data subsequent completions for this tag until it
receives a completion descriptor with the Request Completed bit set. On receiving a
completion descriptor with the Request Completed bit set, you can remove all state for
the corresponding request.

0010

Request terminated by a Completion TLP with UR, CA, or CRS status. In this case, there is
no data associated with the completion, and the Request Completed bit in the completion
descriptor is set. On receiving such a Completion from the integrated block, you can
discard the corresponding request.

0011

Read Request terminated by a Completion TLP with incorrect byte count. This condition
occurs when a Completion TLP is received with a byte count not matching the expected
count. The Request Completed bit in the completion descriptor is set. On receiving such
a completion from the integrated block, you can discard the corresponding request.

0100

This code indicates the case when the current Completion being delivered has the same
tag of an outstanding request, but its Requester ID, TC, or Attr f ields did not match with
the parameters of the outstanding request. You should discard any data that follows the
descriptor. In addition, if the Request Completed bit in the descriptor is not set, you
should continue to discard the data subsequent completions for this tag until it receives
a completion descriptor with the Request Completed bit set. On receiving a completion
descriptor with the Request Completed bit set, you can remove all state associated with
the request.

0101

Error in starting address. The low address bits in the Completion TLP header did not match
with the starting address of the next expected byte for the request. You should discard
any data that follows the descriptor. In addition, if the Request Completed bit in the
descriptor is not set, you should continue to discard the data subsequent Completions for
this tag until it receives a completion descriptor with the Request Completed bit set. On
receiving a completion descriptor with the Request Completed bit set, you can discard the
corresponding request.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=162

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 163
PG023 November 19, 2014

Chapter 3: Designing with the Core

When the tags are managed internally by the integrated block, logic within the integrated
block ensures that a tag allocated to a pending request is not re-used until either all the
Completions for the request were received or the request was timed out.

When tags are managed by the user logic, however, you must ensure that a tag assigned to
a request is not re-used until the integrated block has signaled the termination of the
request by setting the Request Completed bit in the completion descriptor. You can close
out a pending request on receiving a completion with a non-zero error code, but should not
free the associated tag if the Request Completed bit in the completion descriptor is not set.
Such a situation might occur when a request receives multiple split completions, one of
which has an error. In this case, the integrated block can continue to receive Completion
TLPs for the pending request even after the error was detected, and these Completions are
incorrectly matched to a different request if its tag is re-assigned too soon. In some cases,
the integrated block might have to wait for the request to time out even when a split
completion is received with an error, before it can allow the tag to be re-used.

0110 Invalid tag. This error code indicates that the tag in the Completion TLP did not match with
the tags of any outstanding request. You should discard any data following the descriptor.

0111

Invalid byte count. The byte count in the Completion was higher than the total number of
bytes expected for the request. In this case, the Request Completed bit in the completion
descriptor is also set. On receiving such a completion from the integrated block, you can
discard the corresponding request.

1001

 Request terminated by a Completion timeout. This error code is used when an
outstanding request times out without receiving a Completion from the link. The
integrated block maintains a completion timer for each outstanding request, and
responds to a completion timeout by transmitting a dummy completion descriptor on the
requester completion interface so that you can terminate the pending request, or retry
the request. Because this descriptor does not correspond to a Completion TLP received
from the link, only the Request Completed bit (bit 30), the tag field (bits [71:64]) and the
requester Function f ield (bits [55: 48]) are valid in this descriptor.

1000

Request terminated by a Function-Level Reset (FLR) targeting the Function that generated
the request. In this case, the integrated block transmits a dummy completion descriptor
on the requester completion interface, so that you can terminate the pending request.
Because this descriptor does not correspond to a Completion TLP received from the link,
only the Request Completed bit (bit 30), the tag f ield (bits [71:64]) and the requester
Function field (bits [55:48]) are valid in this descriptor.

Table 3-12: Encoding of Error Codes (Cont’d)

Error Code Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=163

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 164
PG023 November 19, 2014

Chapter 3: Designing with the Core

Power Management
The core supports these power management modes:

• Active State Power Management (ASPM)

• Programmed Power Management (PPM)

Implementing these power management functions as part of the PCI Express design
enables the PCI Express hierarchy to seamlessly exchange power-management messages to
save system power. All power management message identif ication functions are
implemented. The subsections in this section describe the user logic definition to support
the above modes of power management.

For additional information on ASPM and PPM implementation, see the PCI Express Base
Specification, rev 3.0 [Ref 2].

Active State Power Management
The core advertises an N_FTS value of 255 to ensure proper alignment when exiting L0s. If
the N_FTS value is modif ied, you must ensure enough FTS sequences are received to
properly align and avoid transition into the Recovery state.

The Active State Power Management (ASPM) functionality is autonomous and transparent
from a user-logic function perspective. The core supports the conditions required for ASPM.
The integrated block supports ASPM L0s and not ASPM L1.

Note: ASPM is not supported in non-synchronous clocking mode.

Note: L0s is not supported for Gen3 targeted designs. It is supported only on designs generated for
Gen1 and Gen2.

Programmed Power Management
To achieve considerable power savings on the PCI Express hierarchy tree, the core supports
these link states of Programmed Power Management (PPM):

• L0: Active State (data exchange state)

• L1: Higher Latency, lower power standby state

• L3: Link Off State

The Programmed Power Management Protocol is initiated by the Downstream
Component/Upstream Port.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=164

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 165
PG023 November 19, 2014

Chapter 3: Designing with the Core

PPM L0 State

The L0 state represents normal operation and is transparent to the user logic. The core
reaches the L0 (active state) after a successful initialization and training of the PCI Express
Link(s) as per the protocol.

PPM L1 State

These steps outline the transition of the core to the PPM L1 state:

1. The transition to a lower power PPM L1 state is always initiated by an upstream device,
by programming the PCI Express device power state to D3-hot (or to D1 or D2, if they
are supported).

2. The device power state is communicated to the user logic through the
cfg_function_power_state output.

3. The core then throttles/stalls the user logic from initiating any new transactions on the
user interface by deasserting s_axis_rq_tready. Any pending transactions on the
user interface are, however, accepted fully and can be completed later.

There are two exceptions to this rule:

° The core is configured as an Endpoint and the User Configuration Space is enabled.
In this situation, the user must refrain from sending new Request TLPs if
cfg_function_power_state indicates non-D0, but the user can return
Completions to Configuration transactions targeting User Configuration space.

° The core is configured as a Root Port. To be compliant in this situation, you should
refrain from sending new Requests if cfg_function_power_state indicates
non-D0.

4. The core exchanges appropriate power management DLLPs with its link partner to
successfully transition the link to a lower power PPM L1 state. This action is transparent
to the user logic.

5. All user transactions are stalled for the duration of time when the device power state is
non-D0, with the exceptions indicated in step 3.

PPM L3 State

These steps outline the transition of the Endpoint for PCI Express to the PPM L3 state:

1. The core negotiates a transition to the L23 Ready Link State upon receiving a
PME_Turn_Off message from the upstream link partner.

2. Upon receiving a PME_Turn_Off message, the core initiates a handshake with the user
logic through cfg_power_state_change_interrupt (see Table 3-13) and expects
a cfg_power_state_change_ack back from the user logic.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=165

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 166
PG023 November 19, 2014

Chapter 3: Designing with the Core

3. A successful handshake results in a transmission of the Power Management Turn-off
Acknowledge (PME-turnoff_ack) Message by the core to its upstream link partner.

4. The core closes all its interfaces, disables the Physical/Data-Link/Transaction layers and
is ready for removal of power to the core.

There are two exceptions to this rule:

° The core is configured as an Endpoint and the User Configuration Space is enabled.
In this situation, you must refrain from sending new Request TLPs if
cfg_function_power_state indicates non-D0, but you can return Completions
to Configuration transactions targeting User Configuration space.

° The core is configured as a Root Port. To be compliant in this situation, the user
should refrain from sending new Requests if cfg_function_power_state
indicates non-D0.

Power-down negotiation follows these steps:

1. Before power and clock are turned off, the Root Complex or the Hot-Plug controller in a
downstream switch issues a PME_Turn_Off broadcast message.

2. When the core receives this TLP, it asserts cfg_power_state_change_interrupt to
the user application and starts polling the cfg_power_state_change_ack input.

3. When the user application detects the assertion of cfg_to_turnoff, it must complete any
packet in progress and stop generating any new packets. After the user application is
ready to be turned off, it asserts cfg_power_state_change_ack to the core. After
assertion of cfg_power_state_change_ack , the user application is committed to
being turned off.

4. The core sends a PME_TO_Ack when it detects assertion of
cfg_power_state_change_ack .

Table 3-13: Power Management Handshaking Signals

Port Name Direction Description

cfg_power_state_change_interrupt Output Asserted if a power-down request TLP is received
from the upstream device. After assertion,
cfg_power_state_change_interrupt
remains asserted until the user asserts
cfg_power_state_change_ack .

cfg_power_state_change_ack Input Asserted by the user application when it is safe to
power down.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=166

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 167
PG023 November 19, 2014

Chapter 3: Designing with the Core

Generating Interrupt Requests
See the cfg_interrupt_msi* and cfg_interrupt_msix_* descriptions in Table 2-21,
page 54.

Note: This section only applies to the Endpoint Configuration of the Gen3 Integrated Block for PCIe
core.

The integrated block core supports sending interrupt requests as either legacy, Message
MSI, or MSI-X interrupts. The mode is programmed using the MSI Enable bit in the Message
Control Register of the MSI Capability Structure and the MSI-X Enable bit in the MSI-X
Message Control Register of the MSI-X Capability Structure. For more information on the
MSI and MSI-X capability structures, see section 6.8 of the PCI Local Base Specification v3.0.

The state of the MSI Enable and MSI-X Enabled bits is reflected by the
cfg_interrupt_msi_enable and cfg_interrupt_msix_enable outputs,
respectively. Table 3-14 describes the Interrupt Mode to which the device has been
programmed, based on the cfg_interrupt_msi_enable and
cfg_interrupt_msix_enable outputs of the core.

The MSI Enable bit in the MSI control register, the MSI-X Enable bit in the MSI-X Control
Register, and the Interrupt Disable bit in the PCI Command register are programmed by the
Root Complex. The user application has no direct control over these bits.

The Internal Interrupt Controller in the core only generates Legacy Interrupts and MSI
Interrupts. MSI-X Interrupts need to be generated by the user application and presented on
the transmit AXI4-Stream interface. The status of cfg_interrupt_msi_enable
determines the type of interrupt generated by the internal Interrupt Controller:

If the MSI Enable bit is set to a 1, then the core generates MSI requests by sending Memory
Write TLPs. If the MSI Enable bit is set to 0, the core generates legacy interrupt messages as
long as the Interrupt Disable bit in the PCI Command Register is set to 0.

• cfg_interrupt_msi_enable = 0: Legacy interrupt

• cfg_interrupt_msi_enable = 1: MSI

Table 3-14: Interrupt Modes

cfg_interrupt_msixenable=0 cfg_interrupt_msixenable=1

cfg_interrupt_
msi_enable=0

Legacy Interrupt (INTx) mode.
The cfg_interrupt interface only sends
INTx messages.

MSI-X interrupts can be generated using
the cfg_interrupt interface.

cfg_interrupt_
msi_enable=1

MSI mode.
The cfg_interrupt interface only sends
MSI interrupts (MWr TLPs).

Undefined. System software is not
supposed to permit this.
However, the cfg_interrupt interface is
active and sends MSI interrupts (MWr TLPs)
if you choose to do so.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=167

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 168
PG023 November 19, 2014

Chapter 3: Designing with the Core

• Command register bit 10 = 0: INTx interrupts enabled

• Command register bit 10 = 1: INTx interrupts disabled (requests are blocked by the
core)

The user application can monitor cfg_function_status to check whether INTx
interrupts are enabled or disabled. For more information, see Table 2-14.

The user application requests interrupt service in one of two ways, each of which are
described in the following section.

Legacy Interrupt Mode
Figure 3-65 illustrates the behavior of the Legacy Interrupt Mode.

• The user application first asserts cfg_interrupt_int and
cfg_interrupt_pending to assert the interrupt.

• The core then asserts cfg_interrupt_sent to indicate the interrupt is accepted. On
the following clock cycle, the user application deasserts cfg_interrupt_int and, if
the Interrupt Disable bit in the PCI Command register is set to 0, the core sends an
assert interrupt message (Assert_INTA).

• After the user application deasserts cfg_interrupt_int , the core sends a deassert
interrupt message (Deassert_INTA). This is indicated by the assertion of
cfg_interrupt_sent a second time.

• cfg_interrupt_int must be asserted until the user application receives
confirmation of ASSERT_INTA, which is indicated by the assertion of
cfg_interrupt_sent. Deasserting cfg_interrupt_int causes the core to send
DEASSERT_INTA. cfg_interrupt_pending must be asserted until the interrupt has
been serviced, otherwise the interrupt status bit in the status register will not be
updated correctly. If the software reads this bit, it detects no interrupt pending.

X-Ref Target - Figure 3-65

Figure 3-65: Legacy Interrupt Signaling

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=168

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 169
PG023 November 19, 2014

Chapter 3: Designing with the Core

MSI Mode
• As shown in Figure 3-65, the user application f irst asserts a value on

cfg_interrupt_msi_int.

• The core asserts cfg_interrupt_msi_sent to signal that the interrupt is accepted
and the core sends a MSI Memory Write TLP.

The MSI request is either a 32-bit addressable Memory Write TLP or a 64-bit addressable
Memory Write TLP. The address is taken from the Message Address and Message Upper
Address f ields of the MSI Capability Structure, while the payload is taken from the Message
Data field. These values are programmed by system software through configuration writes
to the MSI Capability structure. When the core is configured for Multi-Vector MSI, the
system software can permit Multi-Vector MSI messages by programming a non-zero value
to the Multiple Message Enable f ield.

The type of MSI TLP sent (32-bit addressable or 64-bit addressable) depends on the value
of the Upper Address field in the MSI capability structure. By default, MSI messages are sent
as 32-bit addressable Memory Write TLPs. MSI messages use 64-bit addressable Memory
Write TLPs only if the system software programs a non-zero value into the Upper Address
register.

When Multi-Vector MSI messages are enabled, the user application can override one or
more of the lower-order bits in the Message Data f ield of each transmitted MSI TLP to
differentiate between the various MSI messages sent upstream. The number of lower-order
bits in the Message Data field available to the user application is determined by the lesser
of the value of the Multiple Message Capable field, as set in the IP catalog, and the Multiple
Message Enable field, as set by system software and available as the
cfg_interrupt_msi_mmenable[2:0] core output. The core masks any bits in
cfg_interrupt_msi_select which are not configured by system software using the
Multiple Message Enable field.

X-Ref Target - Figure 3-66

Figure 3-66: MSI Mode

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=169

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 170
PG023 November 19, 2014

Chapter 3: Designing with the Core

This pseudo code shows the processing required:

// Value MSI_Vector_Num must be in range: 0 ≤ MSI_Vector_Num ≤
(2^cfg_interrupt_mmenable)-1

if (cfg_interrupt_msienable) { // MSI Enabled
if (cfg_interrupt_mmenable > 0) { // Multi-Vector MSI Enabled

cfg_interrupt_msi_int = {Padding_0s, MSI_Vector_Num};
} else { // Single-Vector MSI Enabled

cfg_interrupt_msi_int = Padding_0s;
}

} else {
// Legacy Interrupts Enabled

}

For example:

1. If cfg_interrupt_mmenable[2:0] == 000b, that is, 1 MSI Vector Enabled,
then cfg_interrupt_msi_int = 00h;

2. if cfg_interrupt_mmenable[2:0] == 101b, that is, 32 MSI Vectors Enabled,
then cfg_interrupt_msi_int = {{27'b0}, {MSI_Vector#}};

where MSI_Vector# is a 5-bit value and is allowed to be 00000b ≤ MSI_Vector# ≤ 11111b.

Each bit of cfg_interrupt_msi_int indicates one MSI vector.

If Per-Vector Masking is enabled, you must f irst verify that the vector being signaled is not
masked in the Mask register. This is done by reading this register on the Configuration
interface (the core does not look at the Mask register).

MSI-X Mode
The Gen3 Integrated Block for PCIe core optionally supports the MSI-X Capability Structure,
as shown in Figure 3-67. The MSI-X vector table and the MSI-X Pending Bit Array need to be
implemented as part of the user logic, by claiming a BAR aperture.

X-Ref Target - Figure 3-67

Figure 3-67: MSI-X Mode

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=170

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 171
PG023 November 19, 2014

Chapter 3: Designing with the Core

Designing with Configuration Space Registers and
Configuration Interface
The ports used by configuration registers are described in Table 2-13, page 29. Root Ports
must use the Configuration Port to set up the Configuration Space. Endpoints can also use
the Configuration Port to read and write; however, care must be taken to avoid adverse
system side effects.

The user application must supply the address as a Dword address, not a byte address.

TIP: To calculate the Dword address for a register, divide the byte address by four.

For example:

For the Command/Status Register in the PCI Configuration Space Header:

• The Dword address of is 01h.

Note: The byte address is 04h.

For BAR0:

• The Dword address is 04h.

Note: The byte address is 10h.

To read any register in configuration space, shown in Table 2-29, page 69, the User
Application drives the register Dword address onto cfg_mgmt_addr[9:0].
cfg_mgmt_addr[17:10] selects the PCI Function associated with the configuration
register. The core drives the content of the addressed register onto
cfg_mgmt_read_data[31:0]. The value on cfg_mgmt_read_data [31:0] is
qualif ied by signal assertion on cfg_mgmt_read_write_done. Figure 3-68 illustrates an
example with read from the Configuration Space.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=171

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 172
PG023 November 19, 2014

Chapter 3: Designing with the Core

To perform any register in configuration space, the user logic places the address on the
cfg_mgmt_addr bus, write data on cfg_mgmt_write_data, byte-valid on
cfg_mgmt_byte_enable [3:0], and asserts the cfg_mgmt_write signal. In response,
the core asserts the cfg_mgmt_read_write_done signal when the write is complete
(which might take several cycles). The user logic must keep cfg_mgmt_addr ,
cfg_mgmt_write_data, cfg_mgmt_byte_enable and cfg_mgmt_write stable until
cfg_mgmt_read_write_done is asserted. The user logic must also deassert
cfg_mgmt_write in the cycle following the cfg_mgmt_read_write_done from the
core.

When the core is configured in the Root Port mode, when you assert
cfg_mgmt_type1_cfg_reg_access input during a write to a Type-1 PCI™ Config Register
forces a write into certain read-only fields of the register. This input has no effect when the core
is in the Endpoint mode, or when writing to any register other than a Type-1 Config Register.

X-Ref Target - Figure 3-68

Figure 3-68: cfg_mgmt_read_type0_type1

X-Ref Target - Figure 3-69

Figure 3-69: cfg_mgmt_write_type0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=172

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 173
PG023 November 19, 2014

Chapter 3: Designing with the Core

Link Training: 2-Lane, 4-Lane, and 8-Lane
Components
The 2-lane, 4-lane, and 8-lane core can operate at less than the maximum lane width as
required by the PCI Express Base Specification, rev 3.0 [Ref 2]. Two cases cause core to
operate at less than its specif ied maximum lane width, as defined in these subsections.

Link Partner Supports Fewer Lanes
When the 2-lane core is connected to a device that implements only 1 lane, the 2-lane core
trains and operates as a 1-lane device using lane 0.

When the 4-lane core is connected to a device that implements 1 lane, the 4-lane core
trains and operates as a 1-lane device using lane 0, as shown in Figure 3-71. Similarly, if the
4-lane core is connected to a 2-lane device, the core trains and operates as a 2-lane device
using lanes 0 and 1.

When the 8-lane core is connected to a device that only implements 4 lanes, it trains and
operates as a 4-lane device using lanes 0-3. Additionally, if the connected device only
implements 1 or 2 lanes, the 8-lane core trains and operates as a 1- or 2-lane device.

X-Ref Target - Figure 3-70

Figure 3-70: cfg_mgmt_write_type1_override

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=173

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 174
PG023 November 19, 2014

Chapter 3: Designing with the Core

Lane Becomes Faulty
If a link becomes faulty after training to the maximum lane width supported by the core and
the link partner device, the core attempts to recover and train to a lower lane width, if
available. If lane 0 becomes faulty, the link is irrecoverably lost. If any or all of lanes 1–7
become faulty, the link goes into recovery and attempts to recover the largest viable link
with whichever lanes are still operational.

For example, when using the 8-lane core, loss of lane 1 yields a recovery to 1-lane operation
on lane 0, whereas the loss of lane 6 yields a recovery to 4-lane operation on lanes 0-3.
After recovery occurs, if the failed lane(s) becomes alive again, the core does not attempt to
recover to a wider link width. The only way a wider link width can occur is if the link actually
goes down and it attempts to retrain from scratch.

The user_clk clock output is a f ixed frequency configured in IP catalog. user_clk does
not shift frequencies in case of link recovery or training down.

Lane Reversal
The integrated block supports limited lane reversal capabilities and therefore provides
flexibility in the design of the board for the link partner. The link partner can choose to lay
out the board with reversed lane numbers and the integrated block continues to link train
successfully and operate normally. The configurations that have lane reversal support are
x8 and x4 (excluding downshift modes). Downshift refers to the link width negotiation
process that occurs when link partners have different lane width capabilities advertised. As
a result of lane width negotiation, the link partners negotiate down to the smaller of the two
advertised lane widths. Table 3-15 describes the several possible combinations including
downshift modes and availability of lane reversal support.

X-Ref Target - Figure 3-71

Figure 3-71: Scaling of 4-Lane Endpoint Block from 4-Lane to 1-Lane Operation

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=174

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 175
PG023 November 19, 2014

Chapter 3: Designing with the Core

Tandem Configuration
The Gen3 Integrated Block for PCIe solution provides two alternative configuration
methods to meet the time requirements indicated within the PCI Express Specif ication. The
PCI Express Specif ication states that PERST# must de-assert 100 ms after the power good of
the systems has occurred, and a PCI Express port must be ready to link train no more than
20ms after PERST# has de-asserted. This is commonly referred to as the 100 ms boot time
requirement. The two alternative methods for configuration are referred to as Tandem
PROM and Tandem PCI Express (PCIe). These solutions have been explicitly designed for this
specific goal. If other configuration flexibility is needed, such as dynamic f ield updates of
the user application, general Partial Reconfiguration should be used instead of Tandem
Configuration.

Both Tandem PROM and Tandem PCIe implement a two stage configuration methodology.
In Tandem PROM and Tandem PCIe, the f irst stage configuration memory cells that are
critical to PCI Express operation are loaded through a local PROM. When these cells have
been loaded, an FPGA start-up command is sent at the end of the f irst stage bitstream to
the FPGA configuration controller. The partially configured FPGA then becomes active with
the first-stage bitstream contents. The f irst stage containing a fully functional PCI Express
port responds to traff ic received during PCI Express enumeration while the second stage is
loaded into the FPGA. Included inside the first stage bitstream are the PCI Express
integrated block, Gigabit Transceivers, block RAM, clocking resources, FPGA logic, and
routing resources required to make the entire PCI Express port functional. The second stage
consists of the user-specif ic application and the remaining clocking and I/O resources,
which is basically the rest of the FPGA design. The mechanism for loading the second stage
bitstream differs between Tandem PROM and Tandem PCIe.

Table 3-15: Lane Reversal Support

Integrated Block
Advertised
Lane Width

Negotiated
Lane

Width

Lane Number Mapping
(Endpoint Link Partner) Lane

Reversal
SupportedEndpoint Link Partner

x8 x8 Lane 0... Lane 7 Lane 7... Lane 0 Yes

x8 x4 Lane 0... Lane 3 Lane 7... Lane 4 No(1)

x8 x2 Lane 0... Lane 3 Lane 7... Lane 6 No(1)

x4 x4 Lane 0... Lane 3 Lane 3... Lane 0 Yes

x4 x2 Lane 0... Lane 1 Lane 3... Lane 2 No(1)

x2 x2 Lane 0... Lane 1 Lane 1... Lane 0 Yes

x2 x1 Lane 0... Lane 1 Lane 1 No(1)

Notes:
1. When the lanes are reversed in the board layout and a downshift adapter card is inserted between the Endpoint

and link partner, Lane 0 of the link partner remains unconnected (as shown by the lane mapping in this table) and
therefore does not link train.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=175

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 176
PG023 November 19, 2014

Chapter 3: Designing with the Core

Supported Devices
The Gen3 Integrated Block for PCIe core and Vivado tool flow support implementations
targeting Xilinx reference boards and specif ic part/package combinations.

For the Vivado Design Suite 2014.4 release, Tandem Configuration is production for specif ic
devices and packages only. Tandem Configuration supports the configurations in
Table 3-16.

Overview of Tandem Tool Flow
Tandem PROM and Tandem PCIe solutions are only supported in the Vivado Design Suite.
The tool flow for both solutions is as follows:

1. Customize the core by selecting a supported device from Table 3-16, and Tandem
PROM or Tandem PCIe for the Tandem Configuration option.

2. Generate the core.

3. Open the example project, and implement the example design.

4. Use the IP and XDC from the example project in your project, and instantiate the core.

5. Synthesize and implement your design.

6. Generate bit and then prom files.

As part of the Tandem flows, certain elements located outside of the PCIe core logic must
also be brought up as part of the f irst stage bitstream. This is implemented using a Tcl f ile
which is generated during core generation. When running through the project based flow,

Table 3-16: Tandem PROM/PCIe Supported Configurations

HDL Verilog Only

PCIe Configuration All configurations (max: X8Gen3)

Xilinx Reference Board Support VC709 Evaluation Board for Virtex-7 FPGA

Device Support

Supported Part/Package Combinations:

Part Package PCIe Location Status

XC7VX330T All All (X0Y0
recommended

Production

XC7VX415T All All (X0Y0
recommended)

Production

XC7VX550T All All (X0Y1
recommended)

Production

XC7VX690T All All (X0Y1
recommended)

Production

XC7VX980T All All (X0Y1
recommended)

Production

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=176

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 177
PG023 November 19, 2014

Chapter 3: Designing with the Core

the Tcl f ile is invoked automatically prior to design optimization (opt_design). This f ile is
called build_stage1.tcl and can be found under the IP sources tree in the example
design:

<project_name>.srcs\sources_1\ip\<core_name>\source

It is important that the clocking and reset structure remain the same even if the hierarchy
level in the design changes. The Tcl script searches for and finds the appropriate clock and
reset nets, and add them to the f irst stage boot logic if the structure is not modified from
what is delivered in the example design.

Prior to bitstream generation, a Tcl f ile named create_bitstreams.tcl is invoked to set
specific bitstream options required for the Tandem flow. The create_bitstreams.tcl
should not be modified because it is be overwritten if the PCIe core is regenerated.

IMPORTANT: Starting with 2013.3, the create_bitstreams.tcl and build_stage1.tcl should
not be modified. The create_bitstreams.tcl file contains examples of how to configure both SPI
and BPI configuration options, but these examples should be placed in their own script or design
constraint file, and run before bitstream creation.

When the example design is created, an example XDC file is generated with certain
constraints that need to be copied over into your XDC file for your specif ic project. The
specific constraints are documented in the example design XDC file. In addition, this
example design XDC file contains examples of how to set options for flash devices, such as
BPI and SPI.

Tandem Configuration is supported only for the AXI4-Stream version of the core, and must
be generated through the IP Catalog. IP integrator flows are not yet supported.

Tandem PROM
The Tandem PROM solution splits a bitstream into two parts and both of those parts are
loaded from an onboard local configuration memory (typically, any PROM or flash device).
The first part of the bitstream configures the PCI Express portion of the design and the
second part configures the rest of the FPGA. Although the design is viewed to have two
unique stages, shown in Figure 3-72, the resulting BIT f ile is monolithic and contains both
the first and second stages.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=177

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 178
PG023 November 19, 2014

Chapter 3: Designing with the Core

Tandem PROM VC709 Example Tool Flow

This section demonstrates the Vivado tool flow from start to f inish when targeting the
VC709 reference board. Paths and pointers within this flow description assume the default
component name “pcie3_7x_0” is used.

1. Create a new Vivado project, and select a supported part/package shown in Table 3-16
to activate the Tandem configuration within the PCIe core in the IP catalog.

2. In the Vivado IP catalog, expand Standard Bus Interfaces > PCI Express, and
double-click Virtex-7 FPGA Gen3 Integrated Block for PCI Express to open the
Customize IP dialog box.

3. In the Customize IP dialog box Basic tab, ensure the following options are selected:

° Silicon Revision: Production

Note: Tandem Configuration is only supported on General Engineering Sample and
Production silicon.

° Tandem Configuration: Tandem PROM

X-Ref Target - Figure 3-72

Figure 3-72: Tandem PROM Bitstream Load Steps

X-Ref Target - Figure 3-73

Figure 3-73: Vivado IP Catalog

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=178

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 179
PG023 November 19, 2014

Chapter 3: Designing with the Core

4. Perform additional PCIe customizations, and click OK to generate the core.

5. Click Generate when asked about which Output Products to create.

6. In the Sources tab, right-click the core, and select Open IP Example Design.

A new instance of Vivado is created and the example design is automatically loaded into
the Vivado Integrated Design Environment.

7. Run Synthesis and Implementation.

Click Run Implementation in the Flow Navigator. Select OK to run through synthesis
f irst. The design runs through the complete tool flow and the result is a fully routed
design that supports Tandem PROM.

8. Setup PROM or Flash settings.

Set the appropriate settings to correctly generate a bitstream for a PROM or Flash
device. For more information, see Programming the Device, page 191.

X-Ref Target - Figure 3-74

Figure 3-74: Tandem PROM

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=179

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 180
PG023 November 19, 2014

Chapter 3: Designing with the Core

9. Generate the bitstream.

After Synthesis and Implementation is complete, click Generate Bitstream in the
Flow Navigator. A bitstream supporting Tandem configuration is generated in the runs
directory, for example:
./pcie3_7x_0_example.runs/impl/xilinx_pcie_3_0_ep_7x.bit.

Note: You have the option of creating the f irst and second stage bitstreams independently. This
flow allows you to control the loading of each stage through the JTAG interface. Here are the
commands required to generate the bitstreams. This command can be edited in the
create_bitstreams.tcl f ile, and can be added to a Tcl script f ile and included as a tcl.pre
f ile for the Write Bitstream step. This can be done through the Bitstream Settings dialog box
under the “tcl.pre” setting.

set_property bitstream.config.tandem_writebitstream separate [current_design]

The resulting bit f iles created are named xilinx_pcie_3_0_ep_7x_tandem1.bit
and xilinx_pcie_3_0_ep_7x_tandem2.bit.

10. Generate the PROM file.

Run the following command in the Vivado Tcl Console to create a PROM file supported
on the VC709 development board.

write_cfgmem -format mcs -interface bpix16 -size 256 -loadbit "up 0x0
xilinx_pcie_3_0_ep_7x.bit" xilinx_pcie_3_0_ep_7x.mcs

Tandem PROM Summary

By using Tandem PROM, you can signif icantly reduce the amount of time required to
configure the PCIe portion of a Virtex-7 FPGA design. The Gen3 Integrated Block for PCIe
core manages many design details, allowing you to focus your attention on the user
application.

Tandem PCIe
Tandem PCIe is similar to Tandem PROM. In the f irst stage bitstream, only the conf iguration
memory cells that are critical to PCI Express operation are loaded from the PROM. After the
f irst stage bitstream is loaded, the PCI Express port is capable of responding to
enumeration traff ic. Subsequently, the second stage of the bitstream is transmitted through
the PCI Express link . Figure 3-75 illustrates the bitstream loading flow.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=180

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 181
PG023 November 19, 2014

Chapter 3: Designing with the Core

Tandem PCIe is similar to the standard model used today in terms of tool flow and bitstream
generation. Two bitstreams are produced when running bitstream generation. One BIT f ile
representing the f irst stage is downloaded into the PROM while the other BIT f ile
representing the user application (the second stage) configures the remainder of the FPGA
using the Internal Configuration Access Port (ICAP).

Note: Field updates of the second stage bitstream, that is, multiple user application images for an
unchanging f irst stage bitstream, require partial reconfiguration, which is not yet a supported flow.
If this capability is required, a standard partial reconfiguration flow, utilizing a black box
configuration and compression, should be used.

Tandem PCIe VC709 Example Tool Flow

This section demonstrates the Vivado tool flow from start to f inish when targeting the
VC709 reference board. Paths and pointers within this flow description assume the default
component name pcie3_7x_0 is used.

1. When creating a new Vivado project, select a supported part/package shown in
Table 3-16.

2. In the Vivado IP catalog, expand Standard Bus Interfaces > PCI Express, and
double-click Virtex-7 FPGA Gen3 Integrated Block for PCI Express to open the
Customize IP dialog box.

3. In the Customize IP dialog box Basic tab, ensure the following options are selected:

° Silicon Revision: Production

Note: Tandem Configuration is only supported on General Engineering Sample and
Production silicon.

X-Ref Target - Figure 3-75

Figure 3-75: Tandem PCIe Bitstream Load Steps

X-Ref Target - Figure 3-76

Figure 3-76: Vivado IP Catalog

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=181

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 182
PG023 November 19, 2014

Chapter 3: Designing with the Core

° Tandem Configuration: Tandem PCIe

4. Select the correct Tandem PCIe memory aperture in the BAR tab:

° Select BAR0

Note: The Fast PCIe Configuration (FPC) module assumes the second stage bitstream is
received on BAR0.

° Size Unit: 128 Megabytes Memory

X-Ref Target - Figure 3-77

Figure 3-77: Tandem PCIe

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=182

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 183
PG023 November 19, 2014

Chapter 3: Designing with the Core

5. The example design software attaches to the device through the Vendor ID and Device
ID. The Vendor ID must be 16'h10EE and the Device ID must be 16'h7024.
In the ID tab, set:

° Vendor ID: 10EE

° Device ID: 7024

Note: An alternative solution is the Vendor ID and Device ID can be changed, and the software
is updated to match the new values.

X-Ref Target - Figure 3-78

Figure 3-78: BARs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=183

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 184
PG023 November 19, 2014

Chapter 3: Designing with the Core

6. Perform additional PCIe customizations, and select OK to generate the core.

After core generation, the core hierarchy is available in the Sources tab in the Vivado
IDE.

7. In the Sources tab, right-click the core, and select Open IP Example Design.

A new instance of Vivado is created and the example design project is automatically
loaded into the Vivado IDE.

8. Run Synthesis and Implementation.

Click Run Implementation in the Flow Navigator. Click OK to run through synthesis
f irst. The design runs through the complete tool flow, and the end result is a fully routed
design supporting Tandem PCIe.

X-Ref Target - Figure 3-79

Figure 3-79: IDs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=184

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 185
PG023 November 19, 2014

Chapter 3: Designing with the Core

9. Setup PROM or Flash settings.

Set the appropriate settings to correctly generate a bitstream for a PROM or flash
device. For more information, see Programming the Device, page 191.

10. Generate the bitstream.

After Synthesis and Implementation are complete, click Generate Bitstream in the Flow
Navigator. The following four f iles are created and placed in the runs directory:

xilinx_pcie_3_0_ep_7x_tandem1.bit|
xilinx_pcie_3_0_ep_7x_tandem2.bit|
xilinx_pcie_3_0_ep_7x_tandem1.bin|
xilinx_pcie_3_0_ep_7x_tandem2.bin

Note: The .bit f iles allow you to control the loading of each stage through the JTAG interface.
The second stage .bin f ile is 32-bit word aligned and should be used to load the second stage
configuration through the PCIe interface.

11. Generate the PROM file for the f irst stage.

Run the following command in the Vivado Tcl Console to create a PROM file supported
on the VC709 development board.

write_cfgmem -format mcs -interface bpix16 -size 256 -loadbit "up 0x0
xilinx_pcie_3_0_ep_7x_tandem1.bit" xilinx_pcie_3_0_ep_7x_tandem1.mcs

Loading The Second Stage Through PCI Express

An example kernel mode driver and user space application is provided with the IP. For
information on retrieving the software and documentation, see AR 51950.

Tandem PCIe Summary

By using Tandem PCIe, you can signif icantly reduce the amount of time required for
configuration of the PCIe portion of a Virtex-7 design, and can reduce the bitstream flash
storage requirements. The Gen3 Integrated Block for PCIe core manages many design
details, allowing you to focus your attention on the user application.

Using Tandem With a User Hardware Design
There are two methods available to apply the Tandem flow to a user design. The first
method is to use the example design that comes with the core. The second method is to
import the PCIe IP into an existing design and change the hierarchy of the design if
required.

Regardless of which method you use, the PCIe example design should be created to get the
example clocking structure, timing constraints, and physical block (Pblock) constraints
needed for the Tandem solution.

Send Feedback

www.xilinx.com/support/answers/51950.htm
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=185

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 186
PG023 November 19, 2014

Chapter 3: Designing with the Core

Method 1 – Using the Existing PCI Express Example Design

This is the simplest method in terms of what must be done with the PCI Express core, but
might not be feasible for all users. If this approach meets your design structure needs,
follow these steps.

1. Create the example design.

Generate the example design as described in the Tandem PROM VC709 Example Tool
Flow and Tandem PCIe VC709 Example Tool Flow.

2. Insert the user application.

Replace the PIO example design with the user design. It is recommended that the global
and top-level elements, such as I/O and global clocking, be inserted to the top-level
design.

3. Copy the appropriate SPI or BPI settings from the create_bitstream.tcl f ile and
paste them in a new Tcl f ile.

Update the Vivado settings to run this Tcl f ile before the bitstream is generated.

4. Implement the design as normal.

Method 2 – Migrating the PCIe Design into a New Vivado Project

In cases where it is not possible to use method one above, the following steps should be
followed to use the PCIe core and the desired Tandem flow (PROM or PCIe) in a new project.
The example project has many of the required RTL and scripts that must be migrated into
the user design.

1. Create the example design.

Generate the example design as described in the Tandem PROM VC709 Example Tool
Flow and Tandem PCIe VC709 Example Tool Flow.

2. Migrate the clock module.

If the Include Shared Logic (Clocking) in the example design option is set in the
Shared Logic tab during core generation, then the pipe_clock_i clock module is
instantiated in the top level of the example design. This clock module should be
migrated to the user design to provide the necessary PCIe clocks.

Note: These clocks can be used in other parts of the user design if desired.

3. Migrate the top-level constraint.

The example Xilinx design constraints (XDC) f ile contains timing constraints, location
constraints and Pblock constraints for the PCIe core. All of these constraints (other than

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=186

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 187
PG023 November 19, 2014

Chapter 3: Designing with the Core

the I/O location and I/O standard constraints) need to be migrated to the user design.
Several of the constraints contain hierarchical references that require updating if the
hierarchy of the design is different than the example design.

4. Migrate the top-level Pblock constraint.

The following constraint is easy to miss so it is called out specif ically in this step. The
Pblock constraint should point to the top level of the PCIe core.

add_cells_to_pblock [get_pblocks main_pblock_boot] [get_cells -quiet [<path>]]

IMPORTANT: Do not make any changes to the physical constraints defined in the XDC file because the
constraints are device dependent.

5. Add the Tandem PCIe IP to the Vivado project.

Click Add Sources in the Flow Navigator. In the Add Source wizard, select Add Existing
IP and then browse to the XCI f ile that was used to create the Tandem PCIe example
design.

6. Copy the appropriate SPI or BPI settings from the example design XDC file and paste
them in to your design XDC file.

Update the Vivado settings to run this Tcl f ile before the bitstream is generated.

7. Implement the design as normal.

Tandem Configuration RTL Design
Tandem Configuration requires slight modif ications from the non-tandem PCI Express
product. This section indicates the additional logic integrated within the core and the
additional responsibilities of the user application to implement a Tandem PROM solution.

MUXing Critical Inputs

Certain input ports to the core are multiplexed so that they are disabled during the second
stage configuration process. These MUXes are located in the top-level core f ile and are
controlled by the user_app_rdy signal.

These inputs are held in a deasserted state while the second stage bitstream is loaded. This
masks off any unwanted glitching due to the absence of second stage drivers and keeps the
PCIe core in a valid state. When user_app_rdy is asserted, the MUXes are switched, and
all interface signals behave as described in this document.

Tandem Completer

In addition to receiving configuration request packets, the PCI Express endpoint might
receive TLP requests that are not processed within the PCI Express Hardblock. Typical TLP

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=187

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 188
PG023 November 19, 2014

Chapter 3: Designing with the Core

requests received are Vendor Defined Messages and Read Requests. To avoid a lockup
scenario within the PCI Express IP, TLP requests must be drained from the core to allow
Configuration requests to be completed successfully.

A completer module is implemented when a Tandem mode is selected to process these
packets. A Tandem Fast PCIe Configuration (FPC) module is implemented to process these
packets. All read requests are expected to be 1DW and a CPLD is returned with a payload of
32’h0. All Vendor Defined Message requests are purged from the cores receive buffer and
no further processing is performed. Each Memory Write request targeting BAR0 is
processed by the FPC and assumed to be second stage bitstream data. The payload is
forwarded to the ICAP. After the second stage bitstream is loaded and user_app_rdy
asserted, the Tandem FPC module becomes inactive.

Tandem Configuration Logic

The core and example design contain ports (signals) specif ic to Tandem Configuration.
These signals provide handshaking between the f irst stage (the core) and the second stage
(user logic). Handshaking is necessary for interaction between the core and the user logic.
Table 3-17 defines the handshaking ports on the core.

These signals can coordinate events in the user application, such as the release of output
3-state buffers described in Tandem Configuration Details. Here is some additional
information about these signals:

• user_app_rdy is asserts 2 to 12 clock cycles after stage two is loaded. The delay
ensures that user_app_rdy is not asserted in the middle of a PCIe transaction.

• user_reset can likewise be used to reset any logic that communicates with the core
when the core itself is reset.

• user_clk is simply the main internal clock for the PCIe IP core. Use this clock to
synchronize any user logic that communicates directly with the core.

• user_lnk_up, as the name implies, indicates that the PCIe core is currently running
with an established link.

Table 3-17: Handshaking Ports

Name Direction Polarity Description

user_app_rdy Output Active-High Identif ies when the switch to stage two user logic is complete.
0: Stage two is not yet loaded.
1: Stage two is loaded.

user_reset Output Active-High Can be used to reset PCIe interfacing logic when the PCIe core is
reset. Synchronized with user_clock .

user_clock Output N/A Clock to be used by PCIe interfacing logic.

user_lnk_up Output Active-High Identif ies that the PCI Express core is linked up with a host device.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=188

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 189
PG023 November 19, 2014

Chapter 3: Designing with the Core

In addition to these interface signals, the PCIe IP module interface replicates the ports for
the ICAP (Tandem PCIe only) and STARTUP blocks, as these blocks are instantiated within
the IP core. Look for the icap_* and startup_* ports to connect any user application to
these blocks. The only requirement is that the user application must not access these ports
until user_app_rdy has been asserted, meaning the design is fully operational.

User Application Handshake

An internal completion event must exist within the FPGA for Tandem solutions to perform
the hand-off between core control of the PCI Express Block and the user application.
MUXing Critical Inputs explains why this handoff mechanism is required. The Tandem
solution uses the STARTUP block and the dedicated EOS (End Of Startup) signal to detect
the completion of stage two programming and then switch control of the PCI Express Block
to the user application. When this switch occurs, user_app_rdy is asserted.

If the STARTUP block is required for other functionality within your design, connect to this
primitive through the PCIe IP instantiation. The 13 ports of the STARTUPE2 primitive are
available through the startup_* ports on the IP (Tandem PROM and Tandem PCIe). The
same is true for the five ports of the ICAPE2 primitive, whose ports are named icap_*
(Tandem PCIe only).

Tandem Configuration Details

I/O Behavior

For each I/O that is required for the f irst stage of a Tandem Configuration design
transceiver, the entire bank in which that I/O resides must be configured in the f irst stage
bitstream. In addition to this bank, the two configuration banks (14 and 15) are enabled
also, so the following details apply to these three banks (or two, if the reset pin is in a
configuration bank). For PCI Express, the only signal needed in the f irst stage design is the
sys_rst_n input port. Therefore, any second stage I/O in the same I/O bank as
sys_rst_n port is also configured with the f irst stage. Any pins in the same I/O bank as
sys_rst_n are unconnected internally, so output pins demonstrate unknown behavior
until their internal connections are completed by second stage configuration. Also,
components requiring initialization for second stage functionality should not be placed in
these I/O banks unless these components are reset by the user_reset signal from PCI
Express.

If output pins must reside in the same bank as the sys_rst_n pin and their value cannot
float prior to stage two completion, the following approach can be taken. Use an OBUFT
that is held in 3-state between stage one completion (when the output becomes active) and
stage two completion (when the driver logic becomes active). The user_app_rdy signal
can be used to control the enable pin, releasing that output when the handshake events
complete.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=189

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 190
PG023 November 19, 2014

Chapter 3: Designing with the Core

TIP: In your top-level design, infer or instantiate an OBUFT. Control the enable (port named T) with
user_app_rdy – watch the polarity!

OBUFT test_out_obuf (.O(test_out), .I(test_internal), .T(!user_app_rdy));

Using the syntax below as an example, create a Pblock to contain the reset pin location. This
Pblock must have the same BOOT_BLOCK property as the rest of the PCIe IP. In
build_stage1.tcl, these I/O components must be added to Pblocks identif ied as being
part of the f irst stage, as they reside in f irst stage banks. This ensures that the
user_app_rdy connection from the PCIe IP block is active after stage one, actively
holding the enable while stage two loads. It is recommended that they be grouped together
in their own Pblock. The following is an example for an output port named
test_out_obuf.

Create a new Pblock
 create_pblock IO_pblock

Range the Pblock to just the I/O to be targeted.
These XY coordinates can be found by calling get_sites on the requested I/O.
 resize_pblock -add {IOB_X0Y49:IOB_X0Y49} [get_pblocks IO_pblock]

Add components and routes to first stage external Pblock
 add_cells_to_pblock [get_pblocks IO_pblock] [get_cells test_out_obuf]

Add this Pblock to the set of Pblocks to be included in the first stage bitstream.
This ensures the route for user_app_rdy is included in stage one.
set_property BOOT_BLOCK 1 [get_pblocks IO_pblock]

The remaining user I/O in the design is currently pulled High during the second stage of
configuration. The use of the PUDC_B pin will, when held High, force all I/O in banks beyond
the three noted above to be tristated. Between stage one and stage two, which for Tandem
PCIe could be a considerable amount of time, these pins are pulled Low by the internal
weak pull-down for each I/O as these pins are unconfigured at that time.

Configuration Pin Behavior

The DONE pin indicates completion of configuration with standard approaches. DONE is
also used for Tandem Configuration, but in a slightly different manner. DONE pulses High at
the end of the f irst stage, when the start-up sequences are run. It returns Low when stage
two loading begins. For Tandem PROM, this happens immediately because stage two is in
the same bit f ile. For Tandem PCIe, this happens when the second bitstream is delivered to
the ICAP interface. It pulls High and stays High at the end of the second stage of
configuration.

Configuration Persist (Tandem PROM Only)

Configuration Persist is required in Tandem PROM configuration. Dual purpose I/O used for
f irst and second stage configuration cannot be re-purposed as user I/O after second stage
configuration is complete.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=190

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 191
PG023 November 19, 2014

Chapter 3: Designing with the Core

IMPORTANT: Examples for PERSIST settings are shown in the create_bitstreams.tcl script,
generated with the Tandem IP. You must copy the PERSIST, CONFIGRATE and
(optionally)SPI_BUSWIDTH properties to their design XDC file, and modify the values to meet your
needs. This action ensures the PERSIST settings required for the design are not overwritten when the IP
core is updated.

If the PERSIST option is set correctly for the needed configuration mode, but necessary
dual-mode I/O pins are still occupied by user I/O, the following error is issued for each
instance during write_bitstream:

ERROR: [Designutils 12-1767] Cannot add persist programming for site IOB_X0Y151.
ERROR: [Designutils 12-1767] Cannot add persist programming for site IOB_X0Y152.

The user I/O occupying these sites must be relocated to use Tandem PROM.

PROM Selection

Conf iguration PROMs have no specif ic requirements unique to Tandem Configuration.
However, to meet the 100 ms specif ication, you must select a PROM that meets the
following three criteria:

1. Supported by X ilinx conf iguration.

2. Sized appropriately for both f irst and second stages; that is, the PROM must be able to
contain the entire bitstream.

° For Tandem PROM, both f irst and second stages are stored here; this bitstream is
slightly larger (4-5%) than a standard bitstream.

° For Tandem PCIe, the bitstream size is typically about 1 MB, but this can vary
slightly due to design implementation results, device selection, and effectiveness of
compression.

3. Meets the conf iguration time requirement for PCI Express based on the f irst-stage
bitstream size and the calculations for the bitstream loading time. See Calculating
Bitstream Load Time for Tandem, page 194.

See the 7 Series FPGAs Configuration User Guide (UG470) [Ref 4] for a list of supported
PROMs and device bitstream sizes.

Programming the Device

There are no special considerations for programming Tandem bitstreams versus standard
bitstreams into a PROM. You can program a Tandem bitstream using all standard
programming methods, such as JTAG, Slave and Master SelectMAP, SPI, and BPI. Regardless
of the programming method used, the DONE pin is asserted after the f irst stage is loaded
and operation begins.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=191

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 192
PG023 November 19, 2014

Chapter 3: Designing with the Core

To prepare for SPI or BPI flash programming, the appropriate settings must be enabled prior
to bitstream generation. This is done by adding the specif ic flash device settings in the
design XDC file, as shown here. Examples can be seen in the create_bitstreams.tcl
script. Copy the existing (commented) options to meet your board and flash programming
requirements.

Here are examples for Tandem PROM:

set_property BITSTREAM.CONFIG.CONFIGRATE 3 [current_design]
 # This can vary up to 66MHz
set_property BITSTREAM.CONFIG.PERSIST BPI16 [current_design]
 # Set this option to match your flash device requirements

Both internally generated CCLK and externally provided EMCCLK are supported for SPI and
BPI programming. EMCCLK can be used to provide faster conf iguration rates due to tighter
tolerances on the conf iguration clock . See the 7 Series FPGAs Configuration User Guide
(UG470) [Ref 4] for details on the use of EMCCLK with the Design Suite.

For more information on configuration in the Vivado Design Suite, see the Vivado Design
Suite User Guide: Programming and Debugging (UG908) [Ref 14].

Known Limitation

Bitstream encryption is not yet supported for Tandem Configuration. After the first stage is
configured and the device has become active, only an internal configuration port (ICAP or
PCAP) can be used to deliver a second stage bitstream (encrypted or otherwise). Thus,
Tandem PROM cannot support encrypted bitstreams. Tandem PCIe is planned for a future
release.

Tandem PROM/PCIe Resource Restrictions
The PCIe IP must be isolated from the global chip reset (GSR) that occurs right after the
second stage bitstream has completed loading into the FPGA. As a result, f irst stage and
second stage logic cannot reside within the same configuration frames. Configuration
frames used by the PCIe IP consist of serial transceivers, I/O, FPGA logic, block RAM, or
Clocking, and they (vertically) span a single clock region. The resource restrictions are as
follows:

• The PCIe IP uses a single MMCM and associated BUFGs to generate the required clocks.
Unused resources within these frames are not available to the user application (second
stage). Additional resources within the clocking frame are the PLL, Phaser, and INOUT
FIFO.

• A GT quad contains four serial transceivers. In a X1 or X2 designs, the entire GT quad is
consumed and the unused serial transceivers are not available to the user application.
Current implementations require that two GT quads be consumed regardless of the link
width configuration.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=192

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 193
PG023 November 19, 2014

Chapter 3: Designing with the Core

• DCI Cascading between a f irst stage I/O bank and a second stage I/O bank is not
supported.

Moving the PCIe Reset Pin
In general, to achieve the best (smallest) f irst-stage bitstream size, you should consider the
location for any I/Os that are intended to be configured in the first stage. I/Os that are
physically placed a long distance from the core cause extra configuration frames to be
included in the f irst stage. This is due to extra routing resources that are required to include
these I/Os in the f irst stage.

The build_stage1.tcl f ile automatically traces the reset path to the input pin and adds
the logic appropriately. Ensure that the reset comes from a single pin as show in the
PCI Express example design.

Non-Project Flow
In a non-project environment, the same basic approach as the project environment is used,
but the individual steps for synthesis and implementation are executed directly through Tcl.
First, create the IP using the IP Catalog as shown in the Tandem PCIe VC709 Example Tool
Flow. One of the results of core generation is an .xci f ile, which is a listing of all the core
details. This f ile is used to regenerate all the required design sources.

The following is a sample flow in a non-project environment:

1. Read in design sources, either the example design or your design.

read_verilog <verilog_sources>
read_vhdl <vhdl_sources>
read_xdc <xdc_sources>

2. Define the target device.

set_property PART <part> [current_project]

Note: Even though this is a non-project flow, there is an implied project behind the scenes. This
must be done to establish an explicit device before the IP is read in.

3. Read in the PCIe IP.

read_ip pcie3_7x_0.xci

4. Synthesize the design. This step generates the IP sources from the .xci input.

synth_design -top <top_level>

Note: The entire IP, including the build_stage1.tcl and create_bitstreams.tcl
sources, is created each time.

5. Ensure that any customizations to the design, such as the identif ication of the
configuration mode to set the persisted pins, are done in the design.xdc f ile.

6. Implement the design. build_stage1.tcl is called automatically prior to opt_design.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=193

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 194
PG023 November 19, 2014

Chapter 3: Designing with the Core

opt_design
place_design
route_design

7. Generate the bit f iles. create_bitstreams.tcl is called automatically. For Tandem
PCIe, the bit f ile name receives _tandem1 and _tandem2 to differentiate the two
stages. The -bin_file option is only needed for Tandem PCIe.

write_bitstream -bin_file <file>.bit

Simulating the Tandem IP Core
Because the functionality of the Tandem PROM or Tandem PCIe core relies on the STARTUP
module, this must be taken into consideration during simulation.

The PCI Express core relies on the STARTUP block to assert the EOS output status signal in
order to know when the second stage bitstream has been loaded into the device. You must
simulate the STARTUP block behavior to release the PCIe core to work with second stage
logic. This is done using a hierarchical reference to force the EOS signal on the STARTUP
block. The following pseudo code shows how this could be done.

// Initialize EOS at time 0
force board.EP.pcie3_7x_0_support_i.pcie3_7x_0_i.inst.inst.pcie3_7x_0_fast_cfg_init_cntr_
i.startup_inst.EOS = 1'b1;

<delay until after PCIe reset is released>

// De-assert EOS to simulate the starting of the 2nd stage bitstream loading
force board.EP.pcie3_7x_0_support_i.pcie3_7x_0_i.inst.inst.pcie3_7x_0_fast_cfg_init_cntr_
i.startup_inst.EOS = 1'b0;

<delay a minimum of 4 user_clk cycles>

// Re-assert EOS to simulate that 2nd stage bitstream completed loading
force board.EP.pcie3_7x_0_support_i.pcie3_7x_0_i.inst.inst.pcie3_7x_0_fast_cfg_init_cntr_
i.startup_inst.EOS = 1'b1;
// Simulate as normal from this point on.

The hierarchy to the PCIe core in the line above must be changed to match that of the
design. This line can also be found in the example simulation provided with the core in the
f ile named board.v.

Calculating Bitstream Load Time for Tandem
The configuration loading time is a function of the configuration clock frequency and
precision, data width of the configuration interface, and bitstream size. The calculation is
broken down into three steps:

1. Calculate the minimum clock frequency based on the nominal clock frequency and
subtract any variation from the nominal.

Minimum Clock Frequency = Nominal Clock - Clock Variation

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=194

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 195
PG023 November 19, 2014

Chapter 3: Designing with the Core

2. Calculate the minimum PROM bandwidth, which is a function of the data bus width,
clock frequency, and PROM type. The PROM bandwidth is the minimum clock frequency
multiplied by the bus width.

PROM Bandwidth = Minimum Clock Frequency * Bus Width

3. Calculate the first-stage bitstream loading time, which is the minimum PROM bandwidth
from step 2, divided by the first-stage bitstream size as reported by
write_bitstream.

First Stage Load Time = (PROM Bandwidth) / (First Stage Bitstream Size)

The first stage bitstream size, reported by write_bitstream, can be read directly
from the terminal or from the log f ile.

The following is a snippet from the write_bitstream log showing the bitstream size for
the first stage:

Creating bitstream...
Tandem stage1 bitstream contains 17376896 bits.
Tandem stage2 bitstream contains 98652800 bits.
Writing bitstream ./xilinx_pcie_3_0_ep_7x.bit...

These values represent the explicit values of the bitstream stages, whether in one bit f ile or
two. The effects of bitstream compression are reflected in these values.

Example 1

The configuration for Example 1 is:

• QSPI (x4) operating at 66 MHz ± 200 ppm

• First stage size = 17376896 bits

The steps to calculate the configuration loading time are:

1. Calculate the minimum clock frequency:

66 MHz * (1 - 0.0002) = 65.98 MHz

2. Calculate the minimum PROM bandwidth:

4 bits * 65.98 MHz = 263.92 Mb/s

3. Calculate the f irst-stage bitstream loading time:

16.57 Mb / 263.92 Mb/s = ~0.0628 s or 62.8 ms

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=195

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 196
PG023 November 19, 2014

Chapter 3: Designing with the Core

Example 2

The configuration for Example 2 is:

• BPI (x16) Synchronous mode, operating at 50 MHz ± 100 ppm

• First stage size = 17376896 bits

The steps to calculate the configuration loading time are:

1. Calculate the minimum clock frequency:

50 MHz * (1 - 0.0001) = 49.995 MHz

2. Calculate the minimum PROM bandwidth:

16 bits * 49.995 MHz = 799.92 Mb/s

3. Calculate the f irst-stage bitstream loading time:

16.57 Mb / 799.92 Mb/s = ~0.0207 s or 20.7 ms

Using Bitstream Compression

Minimizing the f irst stage bitstream size is the ultimate goal of Tandem Configuration, and
the use of bitstream compression aids in this effort. This option uses a multi-frame write
technique to reduce the size of the bitstream and therefore the configuration time required.
The amount of compression varies from design to design. To enable bitstream compression,
add this property to the create_bitstreams.tcl script:

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]

Other Bitstream Load Time Considerations

Bitstream configuration times can also be affected by:

• Power supply ramp times, including any delays due to regulators

• TPOR (power on reset)

Power-supply ramp times are design-dependent. Take care to not design in large ramp
times or delays. The FPGA power supplies that must be provided to begin FPGA
configuration are listed in 7 Series FPGAs Configuration User Guide (UG470) [Ref 4].

In many cases, the FPGA power supplies can ramp up simultaneously or even slightly before
the system power supply. In these cases, the design gains timing margin because the
100 ms does not start counting until the system supplies are stable. Again, this is
design-dependent. Systems should be characterized to determine the relationship between
FPGA supplies and system supplies.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=196

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 197
PG023 November 19, 2014

Chapter 3: Designing with the Core

TPOR is 50 ms for standard power ramp rates, and 35 ms for fast ramp rates for 7 series
devices. See Virtex-7 FPGAs Data Sheet: DC and AC Switching Characteristics (DS183)
[Ref 3].

Consider two cases for Example 2 (BPI [x16] operating at 80 MHz ± 100 ppm) from
Calculating Bitstream Load Time for Tandem:

• Case 1: Without ATX Supply

• Case 2: With ATX Supply

Assume that the FPGA power supplies ramp to a stable level (2 ms) after the 3.3V and 12V
system power supplies. This time difference is called TFPGA_PWR. In this case, because the
FPGA supplies ramp after the system supplies, the power supply ramp time takes away from
the 100 ms margin.

The equations to test are:

TPOR + Bitstream Load Time + TFPGA_PWR < 100 ms for non-ATX

TPOR + Bitstream Load Time + TFPGA_PWR - 100 ms < 100 ms for ATX

Case 1: Without ATX Supply

Because there is no ATX supply, the 100 ms begins counting when the 3.3V and 12 V system
supplies reach within 9% and 8% of their nominal voltages, respectively (see the PCI Express
Card Electromechanical Specification [Ref 2]).

50 ms (TPOR) + 20.7 ms (bitstream time) + 2 ms (ramp time) = 72.7 ms

72.7 ms < 100 ms PCIe standard (okay)

In this case, the margin is 27.3 ms.

Case 2: With ATX Supply

ATX supplies provide a PWR_OK signal that indicates when system power supplies are
stable. This signal is asserted at least 100 ms after actual supplies are stable. Thus, this extra
100 ms can be added to the timing margin.

50 ms (TPOR) + 20.7 ms (bitstream time) + 2 ms (ramp time) - 100 ms = -27.3 ms

-27.3 ms < 100 ms PCIe standard (okay)

In this case, the margin is 127.3 ms.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=197

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 198
PG023 November 19, 2014

Chapter 3: Designing with the Core

Sample Bitstream Sizes

The final size of the f irst stage bitstream varies based on many factors, including:

• IP: The size and shape of the first-stage Pblocks determine the number of frames
required for stage one.

• Device: Wider devices require more routing frames to connect the IP to clocking
resources.

• Design: Location of the reset pin is one of many factors introduced by the addition of
the user application.

• Variant: Tandem PCIe is a bit larger than Tandem PROM due to the inclusion of the
32-bit connection to the ICAP.

• Compression: As the device utilization increases, the effectiveness of compression
decreases.

As a baseline, here are some sample bitstream sizes and configuration times for the
example (PIO) design generated along with the PCIe IP.

The amount of time it takes to load the second-stage bitstream using the Tandem PCIe
methodology depends on two additional factors:

• The width and speed of PCI Express link.

• The frequency of the clock used to program the ICAP.

The lower bandwidth of these two factors determines how fast the second-stage bitstream
is loaded.

Table 3-18: Example Bitstream Sizes and Configuration Times(1)

Device Variant Full Bitstream Full: BPI16
at 50 MHz

Tandem Stage
One(2)

Tandem: BPI16
at 50 MHz

7VX330T
Tandem PROM 106.1 Mb 132.6 ms 16.6 Mb 20.7 ms

Tandem PCIe 106.1 Mb 132.6 ms 20.9 Mb 26.2 ms

7VX690T
Tandem PROM 219.2 Mb 274.0 ms 25.2 Mb 31.5 ms

Tandem PCIe 219.2 Mb 274.0 ms 32.5 Mb 40.7 ms

7VX980T
Tandem PROM 269.4 Mb 336.8 ms 28.8 Mb 36.0 ms

Tandem PCIe 269.4 Mb 336.8 ms 38.1 Mb 47.6 ms

Notes:
1. The configuration times shown here do not include TPOR.
2. Because the PIO design is very small, compression is very effective in reducing the bitstream size. These numbers

were obtained without compression to give a more accurate estimate for what a full design might show. These
numbers were generated using a PCIe Gen3x8 configuration in Vivado Design Suite 2014.4.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=198

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 199
PG023 November 19, 2014

Chapter 3: Designing with the Core

Known Restrictions
This section describes several restrictions and anomalies in the functionality of the Virtex-7
FPGA Gen3 Integrated Block for PCI Express core. This section also clearly describes the
action required to work around the restrictions and anomalies. In some cases, there are no
workarounds available. Wherever applicable, the availability of the workaround in the core
wrapper is indicated.

RECOMMENDED: Before proceeding to design, read these descriptions and workarounds carefully to
understand potential impacts on your design.

Poisoned Atomic Completion Unsupported Request

Description

When a Poisoned Atomic packet is received that results in an unsupported request (UR)
being generated by the core, the byte count in the UR completion packet has an incorrect
byte count.

Workaround

This issue can be avoided in several ways.

1. Do not poison atomic transactions that are sent to the PCI Express core.

2. Ensure that poisoned atomic packets that are sent do not have an error resulting in a UR.

3. Ensure that the device that receives the upstream UR can tolerate an incorrect byte
count.

Memory Read Lock That Misses BAR

Description

When a Memory Read Locked (MRdLk) packet is received and it does not “hit” any BAR, a
completion (Cpl) instead of a completion lock (CplLk) is used to respond.

Workaround

Locked transactions are very rare and have been deprecated from the PCI Express Base
Specif ication. To avoid this error, ensure that MRdLk transactions hit a defined BAR.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=199

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 200
PG023 November 19, 2014

Chapter 3: Designing with the Core

SRIOV MSI Pending Bits

Description

The SRIOV MSI capability virtual function is missing the Pending Bits Register.

Workaround

MSI-X must be used in place of MSI when using SRIOV. MSI-X contains all of the
functionality of MSI plus additional functionality.

Root Port Signaled System Error Bit

Description

When operating in Root Port mode, the Signaled System Error bit in the type 1 PCI
Configuration Space Header “Status” f ield (0x06h) is incorrectly set when a correctable error
(ERRCOR) is received.

Workaround

When operating in Root Port mode, you can monitor the output signal cfg_err_cor_out
and if this signal is asserted, clear the Signal System Error bit using a configuration write.

Root Port De-Emphasis

Description

When operating in Root Port mode at 5.0 GT/s speed, de-emphasis is not selectable and is
always -6 dB.

Workaround

In most cases, -6 dB does not have any impact on a design. For designs with very short trace
lengths, the link can become over equalized resulting in bit errors which might degrade the
link performance. If you plan to use Root Port, ensure that the board operates with
de-emphasis always set to -3.5 dB.

Root PORT LABS Bit

Description

When operating in Root Port mode, the Link Autonomous Bandwidth Status (LABS) bit does
not appear to be set in the Link Status register (0x06h).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=200

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 201
PG023 November 19, 2014

Chapter 3: Designing with the Core

Workaround

The link autonomously changes and cfg_pl_status_change operates correctly based
on an autonomous link change even though the LABS bit does not update with the correct
value.

Root Port Received Master Abort

Description

When operating in Root Port mode, the Received Master Abort bit in the Status register
(0x06h) is incorrectly set when a Completion with Unsupported Request Completion Status
is received. In addition, the Received Master Abort bit in the Secondary Status register
(0x1E) is not set.

Workaround

This is a status bit that has no impact on the core. Be aware that the Received Master Abort
bit in register 0x06h and 0x1E behave the opposite of what is expected when a Completion
with an Unsupported Request is received.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=201

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 202
PG023 November 19, 2014

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard design flows in the Vivado® IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 9]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 8]

• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 11]

• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 12]

Customizing and Generating the Core
This section includes information on using the Vivado Design Suite to customize and
generate the core.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 9] for
detailed information. IP integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values do change, see the
description of the parameter in this section. To view the parameter value you can run the
validate_bd_design command in the Tcl Console.

You can customize the Gen3 Integrated Block for PCIe core for use in your design by
specifying values for the various parameters associated with the IP core using the following
steps:

1. Select the IP from the Vivado IP catalog.

2. Double-click the selected IP, or select the Customize IP command from the toolbar or
right-click menu.

The Customize IP dialog box box for the core consists two modes: Basic Mode and
Advanced Mode. To select a mode, use the Mode drop-down list on the first page of the
Customize IP dialog box.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=202

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 203
PG023 November 19, 2014

Chapter 4: Design Flow Steps

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 8], and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 11].

Note: Figures in this section are illustrations of the Vivado Integrated Design Environment (IDE).
This layout might vary from the current version.

Basic Mode
The Customize IP dialog box provides configuration options that are described in this
section.

Basic

The initial customization screen shown in Figure 4-1 is used to define the basic parameters
for the core, including the component name, reference clock frequency, and silicon type.

Component Name

Base name of the output f iles generated for the core. The name must begin with a letter and
can be composed of these characters: a to z, 0 to 9, and “_.”

X-Ref Target - Figure 4-1

Figure 4-1: Basic Parameters

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=203

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 204
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Mode

Allows you to select the Basic or Advanced mode of the configuration of core.

Device / Port Type

Indicates the PCI Express logical device type.

PCIe Block Location

Selects from the available integrated blocks to enable generation of location-specif ic
constraint f iles and pinouts. This selection is used in the default example design scripts.

This option is not available if a Xilinx Development Board is selected.

Reference Clock Frequency

Selects the frequency of the reference clock provided on sys_clk . For important
information about clocking the core, see System Clocking, page 75.

Xilinx Development Board

Selects the Xilinx Development Board to enable the generation of Xilinx Development
Board-specif ic constraints f iles.

Silicon Revision

Selects the silicon revision.

Number of Lanes

The core requires the selection of the initial lane width. Table 4-1 defines the available
widths and associated generated core. Wider lane width cores can train down to smaller
lane widths if attached to a smaller lane-width device. See Link Training: 2-Lane, 4-Lane, and
8-Lane Components, page 173 for more information.

Maximum Link Speed

The core allows you to select the Maximum Link Speed supported by the device. Table 4-2
defines the lane widths and link speeds supported by the device. Higher link speed cores

Table 4-1: Lane Width and Product Generated

Lane Width Product Generated

x1 1-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express

x2 2-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express

x4 4-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express

x8 8-Lane Virtex-7 FPGA Gen3 Integrated Block for PCI Express

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=204

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 205
PG023 November 19, 2014

Chapter 4: Design Flow Steps

are capable of training to a lower link speed if connected to a lower link speed capable
device.

AXI-ST Interface Width

The core allows you to select the Interface Width, as defined in Table 4-3. The default
interface width set in the Customize IP dialog box is the lowest possible interface width.

AXI-ST Interface Frequency

The frequency is set to 62.5 Mhz.

AXI-ST Alignment Mode

When a payload is present, there are two options for aligning the f irst byte of the payload
with respect to the datapath. See Data Alignment Options, page 90.

Tandem Configuration

The radio buttons None, Tandem PROM and Tandem PCIe allow to generate the Tandem
Configuration as per your choice. See Tandem Configuration for details.

Table 4-2: Lane Width and Link Speed

Lane Width Link Speed

x1 2.5 Gb/s, 5 Gb/s, 8 Gb/s

x2 2.5 Gb/s, 5 Gb/s, 8 Gb/s

x4 2.5 Gb/s, 5 Gb/s, 8 Gb/s

x8 2.5 Gb/s, 5 Gb/s, 8 Gb/s

Table 4-3: Lane Width, Link Speed, and Interface Width

Lane Width Link Speed
(Gb/s) Interface Width (Bits)

x1 2.5, 5.0, 8.0 64

x2 2.5, 5.0 64

x2 8.0 64, 128

x4 2.5 64

x4 5.0 64, 128

x4 8.0 128, 256

x8 2.5 64, 128

x8 5.0 128 256

x8 8.0 256

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=205

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 206
PG023 November 19, 2014

Chapter 4: Design Flow Steps

PIPE Mode Simulations

This group box provides two radio buttons to select either of two PIPE mode simulation
mechanisms. This option is enabled for both Endpoint and Root Port configurations only
when the Shared Logic (clocking) in example design option is selected (see Shared
Logic, page 224).

° None: No PIPE mode simulation is available. This is the default value.

° Enable Pipe Simulation: When selected, this option generates a core that can be
simulated with PIPE interfaces connected.

° Enable External PIPE Interface: When selected, this option enables an external
third-party bus functional model (BFM) to connect to the PIPE interface of the PCIe
Integrated Block.

Requester Completion Straddle

The core provides an option to straddle packets on the Requester Completion interface
when the interface width is 256 bits. See Straddle Option for 256-Bit Interface, page 159.

Enable User Tag

Enables you to use the user tag.

Additional Transceiver Control and Status Ports

Ports are described in Additional Transceiver Control and Status Ports in Appendix C.

Enable External GT Channel DRP

External GT Channel DRP ports are pulled out to the core top.

• ext_ch_gt_drpdo[15:0]

• ext_ch_gt_drpdi[15:0]

• ext_ch_gt_drpen[0:0]

• ext_ch_gt_drwe[0:0]

• ext_ch_gt_drprdy[:0]

• ext_ch_gt_drpaddr[8:0]

gt_ch_drp_rdy indicates that external GT Channel DRP is ready to use and not in use by
internal logic.

Enable External Startup Primitive

This option enables the STARTUP primitive. By default, the option is disabled.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=206

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 207
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Capabilities

The Capabilities settings page is shown in Figure 4-2.

Enable Physical Function 0 and 1

The core implements an additional Physical Function (PF).

The integrated block implements up to six Virtual Functions that are associated to either
PF0 or PF1 (if enabled).

MPS

This f ield indicates the maximum payload size that the device or function can support for
TLPs. This is the value advertised to the system in the Device Capabilities Register.

Extended Tag

This f ield indicates the maximum supported size of the Tag field as a Requester. The options
are:

• When selected, 6-bit Tag f ield support.

X-Ref Target - Figure 4-2

Figure 4-2: Capabilities Settings

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=207

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 208
PG023 November 19, 2014

Chapter 4: Design Flow Steps

• When deselected, 5-bit Tag field support.

Slot Clock Configuration

Enables the Slot Clock Configuration bit in the Link Status register. When you select this
option, the link is synchronously clocked. For more information on clocking options, see
System Clocking, page 75.

Identity Settings (PF0 IDs and PF1 IDs)

The Identity Settings pages are shown in Figure 4-3 and Figure 4-4. These settings
customize the IP initial values, class code, and Cardbus CIS pointer information. The page
for Physical Function 1 (PF1) is only displayed when PF1 is enabled.

PF0 ID Initial Values

• Vendor ID: Identif ies the manufacturer of the device or application. Valid identif iers
are assigned by the PCI Special Interest Group to guarantee that each identif ier is
unique. The default value, 10EEh, is the Vendor ID for Xilinx. Enter a vendor
identif ication number here. FFFFh is reserved.

X-Ref Target - Figure 4-3

Figure 4-3: Identity Settings (PF0)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=208

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 209
PG023 November 19, 2014

Chapter 4: Design Flow Steps

• Device ID: A unique identif ier for the application; the default value, which depends on
the configuration selected, is 70<link speed><link width>h. This f ield can be any value;
change this value for the application.

• Revision ID: Indicates the revision of the device or application; an extension of the
Device ID. The default value is 00h; enter values appropriate for the application.

• Subsystem Vendor ID: Further qualif ies the manufacturer of the device or application.
Enter a Subsystem Vendor ID here; the default value is 10EEh. Typically, this value is the
same as Vendor ID. Setting the value to 0000h can cause compliance testing issues.

• Subsystem ID: Further qualif ies the manufacturer of the device or application. This
value is typically the same as the Device ID; the default value depends on the lane
width and link speed selected. Setting the value to 0000h can cause compliance testing
issues.

Class Code

The Class Code identif ies the general function of a device, and is divided into three
byte-size f ields:

• Base Class: Broadly identif ies the type of function performed by the device.

• Sub-Class: More specif ically identif ies the device function.

• Interface: Defines a specific register-level programming interface, if any, allowing
device-independent software to interface with the device.

Class code encoding can be found at www.pcisig.com.

Class Code Look-up Assistant

The Class Code Look-up Assistant provides the Base Class, Sub-Class and Interface values
for a selected general function of a device. This Look-up Assistant tool only displays the
three values for a selected function. The user must enter the values in Class Code for these
values to be translated into device settings.

Base Address Registers (PF0 and PF1)

The Base Address Registers (BARs) screens shown in Figure 4-5 and Figure 4-6 set the base
address register space for the Endpoint configuration. Each BAR (0 through 5) configures
the BAR Aperture Size and Control attributes of the Physical Function.

Send Feedback

http://www.xilinx.com
http://www.pcisig.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=209

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 210
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Base Address Register Overview

In Endpoint configuration, the core supports up to six 32-bit BARs or three 64-bit BARs, and
the Expansion read-only memory (ROM) BAR. In Root Port configuration, the core supports
up to two 32-bit BARs or one 64-bit BAR, and the Expansion ROM BAR.

BARs can be one of two sizes:

• 32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes.
Used for Memory to I/O.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as 256
gigabytes. Used for Memory only.

All BAR registers share these options:

• Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

• Type: BARs can either be I/O or Memory.

° I/O: I/O BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

X-Ref Target - Figure 4-4

Figure 4-4: Base Address Register (PF0)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=210

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 211
PG023 November 19, 2014

Chapter 4: Design Flow Steps

° Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible to the user.

• Size: The available Size range depends on the PCIe Device/Port Type and the Type of
BAR selected. Table 4-4 lists the available BAR size ranges.

• Prefetchable: Identif ies the ability of the memory space to be prefetched.

• Value: The value assigned to the BAR based on the current selections.

For more information about managing the Base Address Register settings, see Managing
Base Address Register Settings.

Expansion ROM Base Address Register

If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB. According
to the PCI 3.0 Local Bus Specification [Ref 2], the maximum size for the Expansion ROM BAR
should be no larger than 16 MB. Selecting an address space larger than 16 MB can result in
a non-compliant core.

Managing Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate
settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or I/O.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum
I/O space allowed is 16 bytes; use of I/O space should be avoided in all new designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading,
as from a RAM). Byte write operations can be merged into a single double word write, when
applicable.

When configuring the core as an Endpoint for PCIe (non-Legacy), 64-bit addressing must be
supported for all BARs (except BAR5) that have the prefetchable bit set. 32-bit addressing
is permitted for all BARs that do not have the prefetchable bit set. The prefetchable
bit-related requirement does not apply to a Legacy Endpoint. The minimum memory

Table 4-4: BAR Size Ranges for Device Configuration

PCIe Device / Port Type BAR Type BAR Size Range

PCI Express Endpoint
32-bit Memory 128 Bytes – 2 Gigabytes

64-bit Memory 128 Bytes – 8 Exabytes

Legacy PCI Express Endpoint

32-bit Memory 16 Bytes – 2 Gigabytes

64-bit Memory 16 Bytes – 8 Exabytes

I/O 16 Bytes – 2 Gigabytes

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=211

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 212
PG023 November 19, 2014

Chapter 4: Design Flow Steps

address range supported by a BAR is 128 bytes for a PCI Express Endpoint and 16 bytes for
a Legacy PCI Express Endpoint.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A base
address register is disabled by deselecting unused BARs in the Customize IP dialog box.

Legacy/MSI Capabilities

On this page, you set the Legacy Interrupt Settings and MSI Capabilities for all applicable
Physical and Virtual Functions.

Legacy Interrupt Settings

• Enable INTX: Enables the ability of the PCI Express function to generate INTx
interrupts.

• Interrupt PIN: Indicates the mapping for Legacy Interrupt messages. A setting of
“None” indicates no Legacy Interrupts are used.

X-Ref Target - Figure 4-5

Figure 4-5: Legacy/MSI Capabilities

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=212

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 213
PG023 November 19, 2014

Chapter 4: Design Flow Steps

MSI Capabilities

• Enable MSI Capability Structure: Indicates that the MSI Capability structure exists.

Note: Although it is possible not to enable MSI or MSI-X, the result would be a non-compliant
core. The PCI Express Base Specification [Ref 2] requires that MSI, MSI-X, or both be enabled.

• Multiple Message Capable: Selects the number of MSI vectors to request from the
Root Complex.

• Per Vector Masking Capable: Indicates that the function supports MSI per-vector
Masking.

Advanced Mode
The Customize IP dialog box provides configuration options that are described in this
section.

Basic

The Basic setting page is the same for both Basic or Advanced modes, except the "PCIe DRP
Ports" and "Enable RX Message INTFC" parameters which are Advanced modes only. For the
common parameters, see Basic, page 203.

PCIe DRP Ports

When checked, enables the PCIe DRP ports.

Enable RX Message INTFC

Indicates that AXISTEN_IF_ENABLE_RX_MSG_INTFC is enabled.

Capabilities

The Capabilities settings for Advanced mode contains three additional parameters those for
Basic mode. For a description of the basic mode settings, see Capabilities, page 207. The
Advanced mode settings are described below.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=213

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 214
PG023 November 19, 2014

Chapter 4: Design Flow Steps

SRIOV Capabilities

Enables Single Root Port I/O Virtualization (SRIOV) Capabilities. The integrated block
implements the Single Root Port I/O Virtualization PCIe extended capability. When this
capability is enabled, the SRIOV capability is implemented for both PF0 and PF1 (if
selected).

Function Level Reset

Indicates the Function Level Reset is enabled. The integrated block enables you to reset a
specific device function. This mechanism is only applicable to Endpoint configurations.

Device Capabilities Registers 2

Specif ies options for AtomicOps and TPH Completer Support. See the Device Capability
Register 2 description in Chapter 7 of the PCI Express Base Specification [Ref 2] for more
information. These settings apply to both Physical Functions, if PF1 is enabled.

PF0 ID and PF1 ID

The Identity settings (PF0 and PF1 Initial ID) are the same for both Basic and Advanced
modes. See Identity Settings (PF0 IDs and PF1 IDs), page 208.

X-Ref Target - Figure 4-6

Figure 4-6: Capabilities Settings (Advanced Mode)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=214

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 215
PG023 November 19, 2014

Chapter 4: Design Flow Steps

PF0 BAR and PF1 BAR

The PF0 and PF1 BAR settings are the same for both Basic and Advanced modes. See Base
Address Registers (PF0 and PF1), page 209.

SRIOV Config (PF0 and PF1)

The SRIOV Config page is shows in Figure 4-7.

SRIOV Capability Version

Indicates the 4-bit SRIOV Capability Version for the Physical Function.

SRIOV Function Select

Indicates the number of Virtual Functions associated to the Physical Function. A maximum
of six Virtual Functions are available to PF0 and PF1.

X-Ref Target - Figure 4-7

Figure 4-7: SRIOV Config (PF0 and PF1)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=215

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 216
PG023 November 19, 2014

Chapter 4: Design Flow Steps

SRIOV Functional Dependency Link

Indicates the SRIOV Functional Dependency Link for the Physical Function. The
programming model for a device can have vendor-specific dependencies between sets of
Functions. The Function Dependency Link field is used to describe these dependencies.

SRIOV First VF Offset

Indicates the offset of the first Virtual Function (VF) for the Physical Function (PF). PF0
always resides at Offset 0 while PF1 always resides at Offset 1. There are six Virtual
Functions available in the Gen3 Integrated Block for PCIe core, and the Virtual Functions
reside at the function number range 64 - 69.

Virtual functions are mapped sequentially with VFs for PF0 taking precedence. For example,
if PF0 has 2 Virtual Functions and PF1 has 3 Virtual Functions, the following mapping would
occur:

The PFx_FIRST_VF_OFFSET is calculated by taking the f irst offset of the Virtual Function and
subtracting that from the offset of the Physical Function.

PFx_FIRST_VF_OFFSET = (PFx first VF offset - PFx offset)

In the example above, the following offsets is used:

PF0_FIRST_VF_OFFSET = (64 - 0) = 64
PF1_FIRST_VF_OFFSET = (66 - 1) = 65

PF0 is always 64 assuming PF0 has 1 or more Virtual Functions. The initial offset for PF1 is
a function of how many VFs are attached to PF0 and is defined in pseudo code below:

PF1_FIRST_VF_OFFSET = 63 + NUM_PF0_VFS

SRIOV VF Device ID

Indicates the 16-bit Device ID for all Virtual Functions associated with the Physical Function.

Table 4-5: Example Virtual Function Mappings

Physical Function Virtual Function Function Number
Range

PF0 VF0 64

PF0 VF1 65

PF1 VF0 66

PF1 VF1 67

PF1 VF2 68

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=216

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 217
PG023 November 19, 2014

Chapter 4: Design Flow Steps

SRIOV Supported Page Size

Indicates the page size supported by the Physical Function. This Physical Function supports
a page size of 2n+12, if bit n of the 32-bit register is set.

PF0 SRIOV BARs and PF1 SRIVO BARs

The SRIOV Base Address Registers (BARs) screens shown in Table 4-8 and Table 4-9 set the
base address register space for the Endpoint configuration. Each BAR (0 through 5)
configures the SRIOV BAR Aperture Size and SRIOV Control attributes.

X-Ref Target - Figure 4-8

Figure 4-8: PF0 SRIOV BARs Settings

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=217

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 218
PG023 November 19, 2014

Chapter 4: Design Flow Steps

SRIOV Base Address Register Overview

In Endpoint configuration, the core supports up to six 32-bit BARs or three 64-bit BARs. In
Root Port configuration, the core supports up to two 32-bit BARs or one 64-bit BAR.

SRIOV BARs can be one of two sizes:

• 32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes.
Used for Memory to I/O.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes.
Used for Memory only.

All SRIOV BAR registers share these options:

• Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

• Type: SRIOV BARs can either be I/O or Memory.

° I/O: I/O BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

° Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible.

X-Ref Target - Figure 4-9

Figure 4-9: PF1 SRIOV BARs Settings

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=218

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 219
PG023 November 19, 2014

Chapter 4: Design Flow Steps

• Size: The available Size range depends on the PCIe® Device/Port Type and the Type of
BAR selected. Table 4-6 lists the available BAR size ranges.

• Prefetchable: Identif ies the ability of the memory space to be prefetched.

• Value: The value assigned to the BAR based on the current selections.

For more information about managing the SRIOV Base Address Register settings, see
Managing Base Address Register Settings.

Managing SRIOV Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate
Customize IP dialog box settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or I/O.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum
I/O space allowed is 16 bytes; use of I/O space should be avoided in all new designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading,
as from a RAM). Byte write operations can be merged into a single double word write, when
applicable.

When configuring the core as an Endpoint for PCIe (non-Legacy), 64-bit addressing must be
supported for all SRIOV BARs (except BAR5) that have the prefetchable bit set. 32-bit
addressing is permitted for all SRIOV BARs that do not have the prefetchable bit set. The
prefetchable bit related requirement does not apply to a Legacy Endpoint. The minimum
memory address range supported by a BAR is 128 bytes for a PCI Express Endpoint and
16 bytes for a Legacy PCI Express Endpoint.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A base
address register is disabled by deselecting unused BARs in the Customize IP dialog box.

Table 4-6: SRIOV BAR Size Ranges for Device Configuration

PCIe Device / Port Type BAR Type BAR Size Range

PCI Express Endpoint
32-bit Memory 128 Bytes – 2 Gigabytes

64-bit Memory 128 Bytes – 8 Exabytes

Legacy PCI Express Endpoint

32-bit Memory 16 Bytes – 2 Gigabytes

64-bit Memory 16 Bytes – 8 Exabytes

I/O 16 Bytes – 2 Gigabytes

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=219

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 220
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Legacy/MSI Capabilities

This page is same as that of Basic mode. See Legacy/MSI Capabilities, page 212.

MSI-X Capabilities

The MSI-X Capabilities page is available in Advanced mode only.

• Enable MSIx Capability Structure: Indicates that the MSI-X Capability structure exists.

Note: The Capability Structure needs at least one Memory BAR to be configured. You must
maintain the MSI-X Table and Pending Bit Array in the application.

• MSIx Table Settings: Defines the MSI-X Table Structure.

° Table Size: Specifies the MSI-X Table Size.

° Table Offset: Specif ies the Offset from the Base Address Register that points to the
Base of the MSI-X Table.

° BAR Indicator : Indicates the Base Address Register in the Configuration Space that
is used to map the function in the MSI-X Table onto Memory Space. For a 64-bit
Base Address Register, this indicates the lower DWORD.

• MSIx Pending Bit Array (PBA) Settings: Defines the MSI-X Pending Bit Array (PBA)
Structure.

X-Ref Target - Figure 4-10

Figure 4-10: MSIx Cap Settings

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=220

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 221
PG023 November 19, 2014

Chapter 4: Design Flow Steps

° PBA Offset: Specif ies the Offset from the Base Address Register that points to the
Base of the MSI-X PBA.

° PBA BAR Indicator : Indicates the Base Address Register in the Configuration Space
that is used to map the function in the MSI-X PBA onto Memory Space.

Power Management

The Power Management page shown in Figure 4-11 includes settings for the Power
Management Registers, power consumption, and power dissipation options. These settings
apply to both Physical Functions, if PF1 is enabled.

• D1 Support: When selected, this option indicates that the function supports the D1
Power Management State. See section 3.2.3 of the PCI Bus Power Management Interface
Specification Revision 1.2 [Ref 2].

• PME Support From: When this option is selected, it indicates the power states in which
the function can assert cfg_pm_wake. See section 3.2.3 of the PCI Bus Power
Management Interface Specification Revision 1.2 [Ref 2].

• BRAM Configuration Options: Can specify the number of receive block RAMs used for
the solution. The table displays the number of receiver credits available for each packet
type.

X-Ref Target - Figure 4-11

Figure 4-11: Page 12: Power Management Registers

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=221

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 222
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Extended Capabilities 1 and Extended Capabilities 2

The PCIe Extended Capabilities screens shown in Figure 4-12 and Figure 4-13 allow you to
enable PCI Express Extended Capabilities. The Advanced Error Reporting Capability (offset
0x100h) is always enabled. The Customize IP dialog box sets up the link list based on the
capabilities enabled. After enabling, you must configure the capability by setting the
applicable attributes in the core top-level defined in Output Generation, page 229.

X-Ref Target - Figure 4-12

Figure 4-12: Extended Capabilities 1

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=222

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 223
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Device Serial Number Capability

• Device Serial Number Capability: An optional PCIe Extended Capability containing a
unique Device Serial Number. When this Capability is enabled, the DSN identif ier must
be presented on the Device Serial Number input pin of the port. This Capability must
be turned on to enable the Virtual Channel and Vendor Specific Capabilities

Virtual Channel Capability

• Virtual Channel Capability: An optional PCIe Extended Capability which allows the
user application to be operated in TCn/VC0 mode. Checking this allows Traffic Class
f iltering to be supported. This capability only exists for Physical Function 0.

• Reject Snoop Transactions (Root Port Configuration Only): When enabled, any
transactions for which the No Snoop attribute is applicable, but is not set in the TLP
header, can be rejected as an Unsupported Request.

AER Capability

• Enable AER Capability: An optional PCIe Extended Capability that allows Advanced
Error Reporting. This capability is always enabled.

X-Ref Target - Figure 4-13

Figure 4-13: Extended Capabilities 2

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=223

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 224
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Additional Optional Capabilities

• Enable ARI: An optional PCIe Extended Capability that allows Alternate Requester ID.
This capability is automatically enabled and should not be disabled if SRIOV is enabled.

• Enable PB: An optional PCIe Extended Capability that implements the Power Budgeting
Enhanced Capability Header.

• Enable RBAR: An optional PCIe Extended Capability that implements the Resizable BAR
Capability.

• Enable LTR: An optional PCIe Extended Capability that implements the Latency
Tolerance Reporting Capability.

• Enable DPA: An optional PCIe Extended Capability that implements Dynamic Power
Allocation Capability.

• Enable TPH: An optional PCIe Extended Capability that implements Transaction
Processing Hints Capability.

Shared Logic

Enables you to share common blocks across multiple instantiations by selecting one or
more of the options on this page. For a details description of the shared logic feature, see
Shared Logic in Chapter 3.

Core Interface Parameters

You can select the core interface parameters to use. By default all ports are brought out. For
cases you might choose to disable some of the interfaces if they are not used. When
disabled, the interfaces (ports) are removed from the core top.

RECOMMENDED: For a typical use case, do not disable the interfaces. Disable the ports only in special
cases.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=224

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 225
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Tansmit FC Interface

When you disable the Transmit Flow Control (FC) Interface option, the following ports are
removed from the core. This option enables you to request which flow control information
the core provides.

• pcie_tfc_nph_av

• pcie_tfc_npd_av

Config FC Interface

When you disable the Config Flow Control (FC) Interface option, the following ports are
removed from the core. This option enables you to control the configuration flow control
for the PCIe Gen3 core.

• cfg_fc_ph

X-Ref Target - Figure 4-14

Figure 4-14: Core Interface Parameters

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=225

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 226
PG023 November 19, 2014

Chapter 4: Design Flow Steps

• cfg_fc_pd

• cfg_fc_nph

• cfg_fc_npd

• cfg_fc_cplh

• cfg_fc_cpld

• cfg_fc_sel

Config Ext Interface

When you disable the Config Ext Interface option, the following ports are removed from the
core. This option allows the PCIe Gen3 core to transfer configuration information with the
user application when externally implemented configuration registers are implemented.

• cfg_ext_read_received

• cfg_ext_write_received

• cfg_ext_register_number

• cfg_ext_function_number

• cfg_ext_write_data

• cfg_ext_write_byte_enable

• cfg_ext_read_data

• cfg_ext_read_data_valid

Config Status Interface

When you disable the Config Status Interface option, the following ports are removed from
the core. This option provides information on how the core is configured.

• cfg_phy_link_down

• cfg_phy_link_status

• cfg_negotiated_width

• cfg_current_speed

• cfg_max_payload

• cfg_max_read_req

• cfg_function_status

• cfg_vf_status

• cfg_function_power_state

• cfg_vf_power_state

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=226

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 227
PG023 November 19, 2014

Chapter 4: Design Flow Steps

• cfg_link_power_state

• cfg_err_cor_out

• cfg_err_nonfatal_out

• cfg_err_fatal_out

• cfg_ltr_enable

• cfg_ltssm_state

• cfg_rcb_status

• cfg_dpa_substate_change

• cfg_obff_enable

• cfg_pl_status_change

• cfg_tph_requester_enable

• cfg_tph_st_mode

• cfg_vf_tph_requester_enable

• cfg_vf_tph_st_mode

• pcie_rq_seq_num

• pcie_rq_seq_num_vld

• pcie_cq_np_req_count

• pcie_rq_tag

• pcie_rq_tag_vld

• pcie_cq_np_req

Per Function Status Interface

When you disable the Per Function Status Interface option, the following ports are removed
from the core. This option provides status data as requested by the user application
through the selected function.

• cfg_per_func_status_control

• cfg_per_func_status_data

Config Management Interface

When you disable the Config Management Interface option, the following ports are
removed from the core. This option is used to read and write to the Configuration Space
registers.

• cfg_mgmt_addr

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=227

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 228
PG023 November 19, 2014

Chapter 4: Design Flow Steps

• cfg_mgmt_write

• cfg_mgmt_write_data

• cfg_mgmt_byte_enable

• cfg_mgmt_read

• cfg_mgmt_read_data

• cfg_mgmt_read_write_done

• cfg_mgmt_type1_cfg_reg_access

Receive Message Interface

When you disable the Receive Message Interface option, the following ports are removed
from the core. This option indicates to the logic that a decodable message from the link, the
parameters associated with the data, and type of message have been received.

• cfg_msg_received

• cfg_msg_received_data

• cfg_msg_received_type

Config TX Message Interface

When you disable the Config TX Message Interface option, the following ports are removed
from the core. This option is used by the user application to transmit messages to the PCIe
Gen3 core.

• cfg_msg_transmit

• cfg_msg_transmit_type

• cfg_msg_transmit_data

• cfg_msg_transmit_done

Config Control Interface

When you disable the Config Control Interface option, the following ports are removed
from the core. This option allows a broad range of information exchange between the user
application and the core.

• cfg_hot_reset_in

• cfg_hot_reset_out

• cfg_config_space_enable

• cfg_per_function_update_done

• cfg_per_function_number

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=228

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 229
PG023 November 19, 2014

Chapter 4: Design Flow Steps

• cfg_per_function_output_request

• cfg_dsn

• cfg_ds_port_number

• cfg_ds_bus_number

• cfg_ds_device_number

• cfg_ds_function_number

• cfg_power_state_change_ack

• cfg_power_state_change_interrupt

• cfg_err_cor_in

• cfg_err_uncor_in

• cfg_flr_done

• cfg_vf_flr_done

• cfg_flr_in_process

• cfg_vf_flr_in_process

• cfg_req_pm_transition_l23_ready

• cfg_link_training_enable

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 8].

Endpoint Configuration

This section shows the directory structure for the Endpoint configuration of the generated
core. See Chapter 5, Detailed Example Design for descriptions of the contents of each
directory.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=229

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 230
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Root Port Configuration

This section shows the directory structure for the Root Port configuration of the generated
core. See Chapter 5, Detailed Example Design for descriptions of the contents of each
directory.

X-Ref Target - Figure 4-15

Figure 4-15: Endpoint Configuration Directory Structure

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=230

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 231
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Constraining the Core

Required Constraints
The Virtex-7 FPGA Gen3 Integrated Block for PCI Express® solution requires the
specification of timing and other physical implementation constraints to meet specified
performance requirements for PCI Express. These constraints are provided with the
Endpoint and Root Port solutions in a Xilinx Device Constraints (XDC) f ile. Pinouts and
hierarchy names in the generated XDC correspond to the provided example design.

To achieve consistent implementation results, an XDC containing these original, unmodified
constraints must be used when a design is run through the Xilinx tools. For additional
details on the definition and use of an XDC or specif ic constraints, see Vivado Design Suite
User Guide: Using Constraints (UG903) [Ref 10].

Constraints provided with the integrated block solution have been tested in hardware and
provide consistent results. Constraints can be modif ied, but modif ications should only be

X-Ref Target - Figure 4-16

Figure 4-16: Root Port Configuration Directory Structure

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=231

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 232
PG023 November 19, 2014

Chapter 4: Design Flow Steps

made with a thorough understanding of the effect of each constraint. Additionally, support
is not provided for designs that deviate from the provided constraints.

TIP: Copy the constraints found in the Example Design directory for your constraints file, even if you
are not using the example design flow. Remember to change the hierarchy paths of the constraints.

Device, Package, and Speed Grade Selections
The device selection portion of the XDC informs the implementation tools which part,
package, and speed grade to target for the design.

IMPORTANT: Because Gen3 Integrated Block for PCIe cores are designed for specific part and package
combinations, this section should not be modified.

The device selection section always contains a part selection line, but can also contain part
or package-specific options. An example part selection line follows:

CONFIG PART = XC7VX690T-FFG1761-3

Clock Frequencies
See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Clock Management
See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Clock Placement
See the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 7] for guidelines
regarding clock resource selection.

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Stacked Silicon Interconnect Devices
Some Virtex-7 devices utilize stacked silicon interconnect (SSI) technology. The I/O and
integrated block must remain on the same die when targeting an SSI device.

The sys_clk must be chosen to be in the same bank as the GTH transceiver it is connected
to, or one bank above/below the GTH transceiver being used.

For more information, see the “Placement Information by Package” and “Placement
Information by Device” appendices in the 7 Series FPGAs GTX/GTH Transceivers User Guide
(UG476) [Ref 7].

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=232

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 233
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Transceiver Placement
These constraints select which transceivers to use and dictates the pinout for the
transceiver differential pairs. For more information, see the “Placement Information by
Package” appendix in the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 7].

Table 4-7 through Table 4-14 list the supported transceiver locations available for
supported Virtex-7 FPGA part and package combinations. The Vivado IP Catalog provides
an XDC for the selected part and package that matches the table contents. The following
lists all devices with their associated tables containing transceiver locations:

• XC7VX330T: Table 4-7

• XC7VX415T: Table 4-8

• XC7VX550T: Table 4-9

• XC7VX690T: Table 4-10

• XC7VX980T: Table 4-11

• XC7VX1140T: Table 4-12

• XC7VH580T: Table 4-13

• XC7VH870T: Table 4-14

Note: Other configurations might work, but are not tested by Xilinx.

Table 4-7: Supported Transceiver Locations for the XC7VX330T

Package Block Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

FFG1157

X0Y0 X0Y11 X0Y10 X0Y9 X0Y8 X0Y7 X0Y6 X0Y5 X0Y4

X0Y1 X0Y23 X0Y22 X0Y21 X0Y20 X0Y19 X0Y18 X0Y17 X0Y16

X0Y2 N/A

X0Y3 N/A

FFG1761

X0Y0 X0Y11 X0Y10 X0Y9 X0Y8 X0Y7 X0Y6 X0Y5 X0Y4

X0Y1 X0Y23 X0Y22 X0Y21 X0Y20 X0Y19 X0Y18 X0Y17 X0Y16

X0Y2 N/A

X0Y3 N/A

Notes:
1. Blocks marked as N/A are not support.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=233

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 234
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Table 4-8: Supported Transceiver Locations for the XC7VX415T

Package Block Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

FFG1157

X0Y0 X1Y7 X1Y6 X1Y5 X1Y4 X1Y3 X1Y2 X1Y1 X1Y0

X0Y1 X1Y19 X1Y18 X1Y17 X1Y16 X1Y15 X1Y14 X1Y13 X1Y12

X0Y2 N/A

X0Y3 N/A

FFG1158

X0Y0 X1Y7 X1Y6 X1Y5 X1Y4 X1Y3 X1Y2 X1Y1 X1Y0

X0Y1 X1Y19 X1Y18 X1Y17 X1Y16 X1Y15 X1Y14 X1Y13 X1Y12

X0Y2 N/A

X0Y3 N/A

FFG1927

X0Y0 X1Y7 X1Y6 X1Y5 X1Y4 X1Y3 X1Y2 X1Y1 X1Y0

X0Y1 X1Y19 X1Y18 X1Y17 X1Y16 X1Y15 X1Y14 X1Y13 X1Y12

X0Y2 N/A

X0Y3 N/A

Notes:
1. Blocks marked as N/A are not support.

Table 4-9: Supported Transceiver Locations for the XC7VX550T

Package Block Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

FFG1158

X0Y0 N/A

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

FFG1927

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

Notes:
1. Blocks marked as N/A are not support.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=234

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 235
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Table 4-10: Supported Transceiver Locations for the XC7VX690T

Package Block Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

FFG1157

X0Y0 N/A

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

FFG1158

X0Y0 N/A

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

FFG1761

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

FLG1926

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

FFG1927

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

FFG1930

X0Y0 N/A

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

Notes:
1. Blocks marked as N/A are not support.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=235

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 236
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Table 4-11: Supported Transceiver Locations for the XC7VX980T

Package Block Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

FFG1926

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

FFG1928

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

FFG1930

X0Y0 N/A

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

Notes:
1. Blocks marked as N/A are not support.

Table 4-12: Supported Transceiver Locations for the XC7VX1140T

Package Block Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

FLG1926

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

FLG1928

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 X1Y47 X1Y46 X1Y45 X1Y44 X1Y43 X1Y42 X1Y41 X1Y40

FLG1930

X0Y0 N/A

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

Notes:
1. Blocks marked as N/A are not support.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=236

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 237
PG023 November 19, 2014

Chapter 4: Design Flow Steps

I/O Standard and Placement
This section controls the placement and options for I/Os belonging to the System (SYS)
interface and PCI Express (PCI_EXP) interface of the core. NET constraints in this section
control the pin location and I/O options for signals in the SYS group. Locations and options
vary depending on which derivative of the core is used and should not be changed without
fully understanding the system requirements.

For example:

set_property IOSTANDARD LVCMOS18 [get_ports sys_rst_n]
set_property LOC IBUFDS_GTE2_X0Y3 [get_cells refclk_ibuf]

INST constraints control placement of signals that belong to the PCI_EXP group. These
constraints control the location of the transceiver(s) used, which implicitly controls pin
locations for the transmit and receive differential pair.

For example:

Table 4-13: Supported Transceiver Locations for the XC7VH580T

Package Block Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

HCG1155

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 N/A

X0Y2 N/A

X0Y3 N/A

HCG1931

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 N/A

X0Y3 N/A

Notes:
1. Blocks marked as N/A are not support.

Table 4-14: Supported Transceiver Locations for the XC7VH870T

Package Block Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

HCG1932

X0Y0 X1Y11 X1Y10 X1Y9 X1Y8 X1Y7 X1Y6 X1Y5 X1Y4

X0Y1 X1Y23 X1Y22 X1Y21 X1Y20 X1Y19 X1Y18 X1Y17 X1Y16

X0Y2 X1Y35 X1Y34 X1Y33 X1Y32 X1Y31 X1Y30 X1Y29 X1Y28

X0Y3 N/A

Notes:
1. Blocks marked as N/A are not support.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=237

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 238
PG023 November 19, 2014

Chapter 4: Design Flow Steps

set_property LOC GTXE2_CHANNEL_X0Y7 [get_cells {pcie_7x_v1_6_0_i/inst/inst/
gt_top_i/pipe_wrapper_i/pipe_lane[0].gt_wrapper_i/gtx_channel.gtxe2_channel_i}]

Simulation
This section contains information about simulating IP in the Vivado Design Suite.

• For comprehensive information about Vivado simulation components, as well as
information about using supported third party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 12].

• For information regarding simulating the example design, see Simulating the Example
Design in Chapter 5.

Simulating with Tandem
For specif ic requirements for simulating with Tandem, see Simulating the Tandem IP Core,
page 194.

PIPE MODE Simulation
The PIPE Simulation mode allows you to run the simulations without GT block, which speeds
up simulations.

To run the simulations using the PIPE interface to speed up the simulation, generate the
core using the Enable PIPE simulation option, as shown on the Basic page of the
Customize IP dialog box described in Basic Mode. With this option, the PIPE interface of the
core top module in the PCIe example design is connected to PIPE interface of the model.

IMPORTANT: A new file pcie3_7x_v3_0_gt_top_pipe.v is created in the simulation directory,
and the file replaces the GT block for PIPE mode simulation.

To run simulations using GT block with the same core, define ENABLE_GT during run time
so that the original GT block is instantiated in the core top module and simulations are run
using the GT block. Comments are included in the simulation scripts to define which
parameters need to be passed to run the simulations using GT block.

TIP: Implementation is always run with the GT block. The PIPE mode is only for simulation.

External PIPE Interface
There is another method for PIPE mode simulations where any external BFM/VIP can be
connected to the PIPE interface of the Endpoint device to speed up the simulation time. Use
the Enable External PIPE Interface option to enable or disable this feature. For details, see

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=238

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 239
PG023 November 19, 2014

Chapter 4: Design Flow Steps

PIPE Mode Simulations, page 206.

Table 4-15 and Table 4-16 describe the PIPE bus signals available at the top level of the core
and their corresponding mapping inside the EP core (pcie_top) PIPE signals.

Table 4-15: Common In/Out Commands and Endpoint PIPE Signals Mappings

In Commands Endpoint PIPE Signals
Mapping Out Commands Endpoint PIPE Signals

Mapping

common_commands_in[0]
common_commands_in[1]
common_commands_in[2]
common_commands_in[3]
common_commands_in[4]
common_commands_in[5]
common_commands_in[11:6]
common_commands_in[17:12]
common_commands_in[25:18]

pipe_clk(1)

core_clk(2)

user_clk(3)

rec_clk(4)

phy_rdy(5)

mmcm_lock(6)

pipe_tx_eqfs(7)

pipe_rx_eqlf(8)

pipe_rx_syncdone(9)

common_commands_out[0]
common_commands_out[2:1]
common_commands_out[3]
common_commands_out[6:4]
common_commands_out[7]
common_commands_out[8]
common_commands_out[16:9]

pipe_tx_rcvr_det_gt
pipe_tx_rate_gt
pipe_tx_deemph_gt
pipe_tx_margin_gt
pipe_tx_swing_gt
pipe_tx_reset_gt
pipe_tx_slide_gt

Notes:
1. pipe_clk is a regenerated clock based on the phase of the AveryDesign Systems BFM clock signal aclk250M. When the link

speed is Gen1, pipe_clk is 125 MHz. In Gen3, pipe_clk is 250 MHz.
2. core_clk is a Xilinx PCI Express Endpoint clock. In Gen3 x8 configuration, core_clk = 500 MHz.
3. user_clk is a Xilinx PCI Express Endpoint clock. In Gen3 x8 configuration, user_clk = 250 MHz.
4. rec_clk is a Xilinx PCI Express Endpoint clock. Tie it to the pipe_clk signal.
5. phy_rdy should be asserted after 10 µs.
6. mmcm_lock can be asserted after 10 ns.
7. Assign 6’d40 to pipe_tx_eqfs.
8. Assign 6’d15 to pipe_tx_eqlf.
9. Assign 8’d0 to pipe_rx_syncdone.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=239

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 240
PG023 November 19, 2014

Chapter 4: Design Flow Steps

Synthesis and Implementation
This section contains information about synthesis and implementation in the Vivado Design
Suite.

• For details about synthesis and implementation, see the Vivado Design Suite User
Guide: Designing with IP (UG896) [Ref 8].

• For information regarding synthesizing and implementing the example design, see
Synthesizing and Implementing the Example Design in Chapter 5.

Table 4-16: Input/Output Bus with Endpoint PIPE Signals Mapping

Input Bus Endpoint PIPE Signals Mapping Output Bus Endpoint PIPE Signals
Mapping

pipe_rx_0_sigs[31:0]
pipe_rx_0_sigs[33:32]
pipe_rx_0_sigs[34]
pipe_rx_0_sigs[35]
pipe_rx_0_sigs[36]
pipe_rx_0_sigs[38:37]
pipe_rx_0_sigs[41:39]
pipe_rx_0_sigs[42]
pipe_rx_0_sigs[43]
pipe_rx_0_sigs[44](1)

pipe_rx_0_sigs[62:45](2)

pipe_rx_0_sigs[80:63](3)

pipe_rx_0_sigs[81](4)

pipe_rx_0_sigs[82](5)

pipe_rx_0_sigs[83](6)

pipe_rx0_data_gt
pipe_rx0_char_is_k_gt
pipe_rx0_data_valid_gt
pipe_rx0_elec_idle_gt
pipe_rx0_start_block_gt
pipe_rx0_syncheader_gt
pipe_rx0_status_gt
pipe_rx0_valid_gt
pipe_rx0_phy_status_gt
pipe_rx0_eqdone_gt
pipe_rx0_eqcoeff_gt
pipe_rx0_eqlp_new_txcoef_forpreset_gt
pipe_rx0_eqlp_lffs_sel_gt
pipe_rx0_eqlp_adaptdone_gt
pipe_rx0_eqdone_gt

pipe_tx_0_sigs[31: 0]
pipe_tx_0_sigs[33:32]
pipe_tx_0_sigs[34]
pipe_tx_0_sigs[35]
pipe_tx_0_sigs[36]
pipe_tx_0_sigs[38:37]
pipe_tx_0_sigs[39]
pipe_tx_0_sigs[41:40]
pipe_tx_0_sigs[43:42]
pipe_tx_0_sigs[47:44](7)

pipe_tx_0_sigs[53:48](7)

pipe_tx_0_sigs[55:54]
pipe_tx_0_sigs[58:56](7)

pipe_tx_0_sigs[64:59](7)

pipe_tx_0_sigs[68:65](7)

pipe_tx_0_sigs[69]

pipe_tx0_data_gt
pipe_tx0_char_is_k_gt
pipe_tx0_elec_idle_gt
pipe_tx0_data_valid_gt
pipe_tx0_start_block_gt
pipe_tx0_syncheader_gt
pipe_tx0_polarity_gt
pipe_tx0_powerdown_gt
pipe_tx0_eqcontrol_gt
pipe_tx0_eqpreset_gt
pipe_tx0_eqdeemph_gt
pipe_rx0_eqcontrol_gt
pipe_rx0_eqpreset_gt
pipe_rx0_eqlp_lffs_gt
pipe_rx0_eqlp_txpreset_gt
pipe_tx0_compliance_gt

Notes:
1. Asserted whenever pipe_tx0_eqcontrol_gt (pipe_tx_0_sigs[43:42]) is toggled.
2. Assign 18'd2.
3. Assign 18'd0.
4. Assign 1'b1.
5. Assign 1'b0.
6. Asserted whenever pipe_rx0_eqcontrol_gt (pipe_tx_0_sigs[55:54]) is toggled.
7. Ignore these signals.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=240

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 241
PG023 November 19, 2014

Chapter 5

Detailed Example Design

Overview of the Example Design
This section provides an overview of the Virtex®-7 FPGA Gen3 Integrated Block for PCI
Express® example design.

Integrated Block Endpoint Configuration Overview
The example simulation design for the Endpoint configuration of the integrated block
consists of two discrete parts:

• The Root Port Model, a test bench that generates, consumes, and checks PCI Express
bus traff ic.

• The Programmed Input/Output (PIO) example design, a completer application for PCI
Express. The PIO example design responds to Read and Write requests to its memory
space and can be synthesized for testing in hardware.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=241

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 242
PG023 November 19, 2014

Chapter 5: Detailed Example Design

Simulation Design Overview

For the simulation design, transactions are sent from the Root Port Model to the core
(configured as an Endpoint) and processed by the PIO example design. Figure 5-1
illustrates the simulation design provided with the core. For more information about the
Root Port Model, see Root Port Model Test Bench for Endpoint, page 263.

X-Ref Target - Figure 5-1

Figure 5-1: Simulation Example Design Block Diagram

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=242

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 243
PG023 November 19, 2014

Chapter 5: Detailed Example Design

Implementation Design Overview

The implementation design consists of a simple PIO example that can accept read and write
transactions and respond to requests, as illustrated in Figure 5-2. Source code for the
example is provided with the core. For more information about the PIO example design, see
Programmed Input/Output: Endpoint Example Design, page 244.

Example Design Elements

The PIO example design elements include:

• Core wrapper

• An example Verilog HDL wrapper (instantiates the cores and example design)

• A customizable demonstration test bench to simulate the example design

The example design has been tested and verif ied with Vivado® Design Suite and these
simulators:

• Vivado simulator

• Mentor Graphics Questa® SIM

• Cadence Incisive Enterprise Simulator (IES)

• Synopsys Verilog Compiler Simularor (VCS)

X-Ref Target - Figure 5-2

Figure 5-2: Implementation Example Design Block Diagram

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=243

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 244
PG023 November 19, 2014

Chapter 5: Detailed Example Design

For the supported versions of these tools, see the Xilinx Design Tools: Release Notes
Guide(3).

Programmed Input/Output: Endpoint Example Design
Programmed Input/Output (PIO) transactions are generally used by a PCI Express system
host CPU to access Memory Mapped Input/Output (MMIO) and Configuration Mapped
Input/Output (CMIO) locations in the PCI Express logic. Endpoints for PCI Express accept
Memory and I/O Write transactions and respond to Memory and I/O Read transactions with
Completion with Data transactions.

The PIO example design (PIO design) is included with the core in Endpoint configuration
generated by the Vivado IP catalog, which allows users to bring up their system board with
a known established working design to verify the link and functionality of the board.

The PIO design Port Model is shared by the core, Endpoint Block Plus for PCI Express, and
Endpoint PIPE for PCI Express solutions. This section generically represents all solutions
using the name Endpoint for PCI Express (or Endpoint for PCIe®).

System Overview

The PIO design is a simple target-only application that interfaces with the Endpoint for the
PCIe core Transaction (AXI4-Stream) interface and is provided as a starting point for you to
build their own designs. These features are included:

• Four transaction-specif ic 2 KB target regions using the internal FPGA block RAMs,
providing a total target space of 8192 bytes

• Supports single Dword payload Read and Write PCI Express transactions to 32-/64-bit
address memory spaces and I/O space with support for completion TLPs

• Utilizes the BAR ID[2:0] and Completer Request Descriptor[114:112] of the core to
differentiate between TLP destination Base Address Registers

• Provides separate implementations optimized for 64-bit, 128-bit, and 256-bit
AXI4-Stream interfaces

Figure 5-3 illustrates the PCI Express system architecture components, consisting of a Root
Complex, a PCI Express switch device, and an Endpoint for PCIe. PIO operations move data
downstream from the Root Complex (CPU register) to the Endpoint, and/or upstream from
the Endpoint to the Root Complex (CPU register). In either case, the PCI Express protocol
request to move the data is initiated by the host CPU.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=244

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 245
PG023 November 19, 2014

Chapter 5: Detailed Example Design

Data is moved downstream when the CPU issues a store register to a MMIO address
command. The Root Complex typically generates a Memory Write TLP with the appropriate
MMIO location address, byte enables, and the register contents. The transaction terminates
when the Endpoint receives the Memory Write TLP and updates the corresponding local
register.

Data is moved upstream when the CPU issues a load register from a MMIO address
command. The Root Complex typically generates a Memory Read TLP with the appropriate
MMIO location address and byte enables. The Endpoint generates a Completion with Data
TLP after it receives the Memory Read TLP. The Completion is steered to the Root Complex
and payload is loaded into the target register, completing the transaction.

PIO Hardware

The PIO design implements a 8192 byte target space in FPGA block RAM, behind the
Endpoint for PCIe. This 32-bit target space is accessible through single Dword I/O Read, I/
O Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write 32 TLPs.

The PIO design generates a completion with one Dword of payload in response to a valid
Memory Read 32 TLP, Memory Read 64 TLP, or I/O Read TLP request presented to it by the
core. In addition, the PIO design returns a completion without data with successful status
for I/O Write TLP request.

X-Ref Target - Figure 5-3

Figure 5-3: System Overview

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=245

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 246
PG023 November 19, 2014

Chapter 5: Detailed Example Design

The PIO design can initiate:

• a Memory Read transaction when the received write address is 11'hEA8 and the write
data is 32'hAAAA_BBBB, and Targeting the BAR0.

• a Legacy Interrupt when the received write address is 11'hEEC and the write data is
32'hCCCC_DDDD, and Targeting the BAR0.

• an MSI when the received write address is 11'hEEC and the write data is
32'hEEEE_FFFF, and Targeting the BAR0.

• an MSIx when the received write address is 11'hEEC and the write data is
32'hDEAD_BEEF, and Targeting the BAR0.

The PIO design processes a Memory or I/O Write TLP with one Dword payload by updating
the payload into the target address in the FPGA block RAM space.

Base Address Register Support

The PIO design supports four discrete target spaces, each consisting of a 2 KB block of
memory represented by a separate Base Address Register (BAR). Using the default
parameters, the Vivado IP catalog produces a core configured to work with the PIO design
defined in this section, consisting of:

• One 64-bit addressable Memory Space BAR

• One 32-bit Addressable Memory Space BAR

Users can change the default parameters used by the PIO design; however, in some cases
they might need to change the back-end user application depending on their system. See
Changing IP Catalog Tool Default BAR Settings for information about changing the default
Vivado Design Suite IP parameters and the effect on the PIO design.

Each of the four 2 KB address spaces represented by the BARs corresponds to one of four
2 KB address regions in the PIO design. Each 2 KB region is implemented using a 2 KB
dual-port block RAM. As transactions are received by the core, the core decodes the
address and determines which of the four regions is being targeted. The core presents the
TLP to the PIO design and asserts the appropriate bits of (BAR ID[2:0]), Completer Request
Descriptor[114:112], as defined in Table 5-1.

Table 5-1: TLP Traffic Types

Block RAM TLP Transaction Type Default BAR BAR ID[2:0]

ep_io_mem I/O TLP transactions Disabled Disabled

ep_mem32 32-bit address Memory TLP transactions 2 000b

ep_mem64 64-bit address Memory TLP transactions 0-1 001b

ep_mem_erom 32-bit address Memory TLP transactions
destined for EROM

Expansion ROM 110b

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=246

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 247
PG023 November 19, 2014

Chapter 5: Detailed Example Design

Changing IP Catalog Tool Default BAR Settings

You can change the Vivado IP catalog parameters and continue to use the PIO design to
create customized Verilog source to match the selected BAR settings. However, because the
PIO design parameters are more limited than the core parameters, consider the following
example design limitations when changing the default IP catalog parameters:

• The example design supports one I/O space BAR, one 32-bit Memory space (that
cannot be the Expansion ROM space), and one 64-bit Memory space. If these limits are
exceeded, only the f irst space of a given type is active—accesses to the other spaces do
not result in completions.

• Each space is implemented with a 2 KB memory. If the corresponding BAR is configured
to a wider aperture, accesses beyond the 2 KB limit wrap around and overlap the 2 KB
memory space.

• The PIO design supports one I/O space BAR, which by default is disabled, but can be
changed if desired.

Although there are limitations to the PIO design, Verilog source code is provided so users
can tailor the example design to their specif ic needs.

TLP Data Flow

This section defines the data flow of a TLP successfully processed by the PIO design.

The PIO design successfully processes single Dword payload Memory Read and Write TLPs
and I/O Read and Write TLPs. Memory Read or Memory Write TLPs of lengths larger than
one Dword are not processed correctly by the PIO design; however, the core does accept
these TLPs and passes them along to the PIO design. If the PIO design receives a TLP with
a length of greater than one Dword, the TLP is received completely from the core and
discarded. No corresponding completion is generated.

Memory and I/O Write TLP Processing

When the Endpoint for PCIe receives a Memory or I/O Write TLP, the TLP destination
address and transaction type are compared with the values in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design. The PIO design handles Memory writes and I/O TLP writes in different
ways: the PIO design responds to I/O writes by generating a Completion Without Data (cpl),
a requirement of the PCI Express specif ication.

Along with the start of packet, end of packet, and ready handshaking signals, the Completer
Requester AXI4-Stream interface also asserts the appropriate (BAR ID[2:0]), Completer
Request Descriptor[114:112] signal to indicate to the PIO design the specific destination
BAR that matched the incoming TLP. On reception, the PIO design RX State Machine
processes the incoming Write TLP and extracts the TLPs data and relevant address fields so
that it can pass this along to the PIO design internal block RAM write request controller.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=247

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 248
PG023 November 19, 2014

Chapter 5: Detailed Example Design

Based on the specif ic BAR ID[2:0] signals asserted, the RX state machine indicates to the
internal write controller the appropriate 2 KB block RAM to use prior to asserting the write
enable request. For example, if an I/O Write Request is received by the core targeting BAR0,
the core passes the TLP to the PIO design and sets BAR ID[2:0] to 000b. The RX state
machine extracts the lower address bits and the data f ield from the I/O Write TLP and
instructs the internal Memory Write controller to begin a write to the block RAM.

In this example, the assertion of setting BAR ID[2:0] to 000b instructed the PIO memory
write controller to access ep_mem0 (which by default represents 2 KB of I/O space). While
the write is being carried out to the FPGA block RAM, the PIO design RX state machine
deasserts m_axis_cq_tready, causing the Receive AXI4-Stream interface to stall
receiving any further TLPs until the internal Memory Write controller completes the write to
the block RAM. Deasserting m_axis_cq_tready in this way is not required for all designs
using the core—the PIO design uses this method to simplify the control logic of the RX
state machine.

Memory and I/O Read TLP Processing

When the Endpoint for PCIe receives a Memory or I/O Read TLP, the TLP destination address
and transaction type are compared with the values programmed in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design.

Along with the start of packet, end of packet, and ready handshaking signals, the Completer
Requester AXI4-Stream interface also asserts the appropriate BAR ID[2:0] signal to indicate
to the PIO design the specif ic destination BAR that matched the incoming TLP. On
reception, the PIO design state machine processes the incoming Read TLP and extracts the
relevant TLP information and passes it along to the PIO design's internal block RAM read
request controller.

Based on the specif ic BAR ID[2:0] signal asserted, the RX state machine indicates to the
internal read request controller the appropriate 2 KB block RAM to use before asserting the
read enable request. For example, if a Memory Read 32 Request TLP is received by the core
targeting the default Mem32 BAR2, the core passes the TLP to the PIO design and sets BAR
ID[2:0] to 010b. The RX state machine extracts the lower address bits from the Memory 32
Read TLP and instructs the internal Memory Read Request controller to start a read
operation.

In this example, the setting BAR ID[2:0] to 010b instructs the PIO memory read controller to
access the Mem32 space, which by default represents 2 KB of memory space. A notable
difference in handling of memory write and read TLPs is the requirement of the receiving
device to return a Completion with Data TLP in the case of memory or I/O read request.

While the read is being processed, the PIO design RX state machine deasserts
m_axis_cq_tready, causing the Receive AXI4-Stream interface to stall receiving any
further TLPs until the internal Memory Read controller completes the read access from the
block RAM and generates the completion. Deasserting m_axis_cq_tready in this way is

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=248

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 249
PG023 November 19, 2014

Chapter 5: Detailed Example Design

not required for all designs using the core. The PIO design uses this method to simplify the
control logic of the RX state machine.

PIO File Structure

Table 5-2 defines the PIO design file structure. Based on the specif ic core targeted, not all
f iles delivered by the Vivado IP catalog are necessary, and some files might not be
delivered. The major difference is that some of the Endpoint for PCIe solutions use a 32-bit
user datapath, others use a 64-bit datapath, and the PIO design works with both. The width
of the datapath depends on the specif ic core being targeted.

Three configurations of the PIO design are provided: PIO_64, PIO_128, and PIO_256 with
64-, 128-, and 256-bit AXI4-Stream interfaces, respectively. The PIO configuration
generated depends on the selected Endpoint type (that is, Virtex-7 FPGA integrated block,
PIPE, PCI Express, and Block Plus) as well as the number of PCI Express lanes and the
interface width selected by the user. Table 5-3 identif ies the PIO configuration generated
based on your selection.

Table 5-2: PIO Design File Structure

File Description

PIO.v Top-level design wrapper

PIO_INTR_CTRL.v PIO interrupt controller

PIO_EP.v PIO application module

PIO_TO_CTRL.v PIO turn-off controller module

PIO_RX_ENGINE.v 32-bit Receive engine

PIO_TX_ENGINE.v 32-bit Transmit engine

PIO_EP_MEM_ACCESS.v Endpoint memory access module

PIO_EP_MEM.v Endpoint memory

Table 5-3: PIO Configuration

Core x1 x2 x4 x8

Virtex-7 FPGA Gen3 Integrated Block PIO_64 PIO_64,
PIO_128

PIO_64,
PIO_128,
PIO_256

PIO_64,
PIO_128(1),

PIO_256

Notes:
1. The core does not support 128-bit x8 8.0 Gb/s configuration and 500 MHz user clock frequency.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=249

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 250
PG023 November 19, 2014

Chapter 5: Detailed Example Design

Figure 5-4 shows the various components of the PIO design, which is separated into four
main parts: the TX Engine, RX Engine, Memory Access Controller, and Power Management
Turn-Off Controller.

X-Ref Target - Figure 5-4

Figure 5-4: PIO Design Components

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=250

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 251
PG023 November 19, 2014

Chapter 5: Detailed Example Design

PIO Operation

PIO Read Transaction

Figure 5-5 depicts a Back-to-Back Memory Read request to the PIO design. The receive
engine deasserts m_axis_rx_tready as soon as the first TLP is completely received. The
next Read transaction is accepted only after compl_done_o is asserted by the transmit
engine, indicating that Completion for the f irst request was successfully transmitted.

X-Ref Target - Figure 5-5

Figure 5-5: Back-to-Back Read Transactions

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=251

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 252
PG023 November 19, 2014

Chapter 5: Detailed Example Design

PIO Write Transaction

Figure 5-6 depicts a back-to-back Memory Write to the PIO design. The next Write
transaction is accepted only after wr_busy_o is deasserted by the memory access unit,
indicating that data associated with the f irst request was successfully written to the
memory aperture.

Device Utilization

Table 5-4 shows the PIO design FPGA resource utilization.

X-Ref Target - Figure 5-6

Figure 5-6: Back-to-Back Write Transactions

Table 5-4: PIO Design FPGA Resources

Resources Utilization

LUTs 300

Flip-Flops 500

Block RAMs 4

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=252

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 253
PG023 November 19, 2014

Chapter 5: Detailed Example Design

Simulating the Example Design
The example design provides a quick way to simulate and observe the behavior of the core
for PCI Express Endpoint and Root port Example design projects generated using the
Vivado Design Suite.

The currently supported simulators are:

• Vivado simulator (default)

• ModelSim Questa® SIM

• Cadence Incisive Enterprise Simulator (IES)

• Synopsys Verilog Compiler Simulator (VCS)

The simulator uses the example design test bench and test cases provided along with the
example design for both the design configurations.

For any project (PCI Express core) generated out of the box, the simulation using the default
Vivado simulator can be run as follows:

1. In the Sources Window, right-click the example project f ile (.xci), and select Open IP
Example Design.

The example project is created.

2. In the Flow Navigator (left-hand pane), under Simulation, right-click Run Simulation
and select Run Behavioral Simulation.

IMPORTANT: The post-synthesis and post-implementation simulation options are not supported for the
PCI Express block.

After the Run Behavioral Simulation Option is running, you can observe the compilation
and elaboration phase through the activity in the Tcl Console, and in the Simulation tab
of the Log Window.

3. In Tcl Console, type the run all command and press Enter. This runs the complete
simulation as per the test case provided in example design test bench.

After the simulation is complete, the result can be viewed in the Tcl Console.

In Vivado IDE, change the simulation settings as follows:

1. In the Flow Navigator, under Simulation, select Simulation Settings.

2. Set the Target simulator to QuestaSim/ModelSim Simulator, Incisive Enterprise
Simulator (IES) or Verilog Compiler Simulator.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=253

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 254
PG023 November 19, 2014

Chapter 5: Detailed Example Design

3. In the simulator tab, select Run Simulation > Run behavioral simulation.

4. When prompted, click Yes to change and then run the simulator.

Endpoint Configuration
The simulation environment provided with the Gen3 Integrated Block for PCIe core in
Endpoint configuration performs simple memory access tests on the PIO example design.
Transactions are generated by the Root Port Model and responded to by the PIO example
design.

• PCI Express Transaction Layer Packets (TLPs) are generated by the test bench transmit
user application (pci_exp_usrapp_tx). As it transmits TLPs, it also generates a log
f ile, tx.dat.

• PCI Express TLPs are received by the test bench receive user application
(pci_exp_usrapp_rx). As the user application receives the TLPs, it generates a log
f ile, rx.dat.

For more information about the test bench, see Root Port Model Test Bench for Endpoint,
page 263.

Synthesizing and Implementing the Example Design
To run synthesis and implementation on the example design in the Vivado Design Suite
environment:

1. Go to the XCI f ile, right-click, and select Open IP Example Design.

A new Vivado tool window opens with the project name “example_project” within the
project directory.

2. In the Flow Navigator, click Run Synthesis and Run Implementation.

TIP: Click Run Implementation first to run both synthesis and implementation.
Click Generate Bitstream to run synthesis, implementation, and then bitstream.

Directory and File Contents
This section describes the Gen3 Integrated Block for PCIe core example design directories
and their associated files.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=254

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 255
PG023 November 19, 2014

Chapter 5: Detailed Example Design

When core is generated in the Vivado Design Suite, the directory structure for Endpoint
design and Root port design differ, as explained below.

The default project name and the component name is project_1 and pcie3_7x_0.

IMPORTANT: The default project and component names are used in the explanation of the example
design.

Note: The core supports Verilog only.

Endpoint Solution
The Endpoint Solution directory structure is shown in Figure 5-7.

project_1/project_1.src/sources_1/ip/pcie3_7x_0

This is the main directory in which all other directories described below exits. The name of
the directory project_1 is optional, meaning that user can change the name as desired. The
default name is project_1.

X-Ref Target - Figure 5-7

Figure 5-7: Example Design: Endpoint Solution Directory Structure

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=255

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 256
PG023 November 19, 2014

Chapter 5: Detailed Example Design

sim

This directory contains the Vivado Design Suite-generated top-level wrapper f ile used for
simulation. The file name is generated based on the component name you specify. The
default name is pcie3_7x_0.v. This f ile instantiates the core top module
pcie3_7x_0_pcie_3_0_7vx.

synth

This directory contains the Vivado Design Suite-generated top-level wrapper f ile used for
synthesis. The f ile name is generated based on the component name you specify. The
default name is pcie3_7x_0.v. This f ile instantiates the core top module
pcie3_7x_0_pcie_3_0_7vx.

source

Table 5-5: source Directory Contents

Name Description

pcie3_7x_0_pcie_tlp_tph_tbl_7vx.v

PCIe wrapper f iles for the core.
pcie3_7x_0_pcie_init_ctrl_7vx.v

pcie3_7x_0_pcie_7vx.v

pcie3_7x_0_pcie_top.v

pcie3_7x_0_pcie_bram_7vx_16k.v

Block RAM modules for the core.

pcie3_7x_0_pcie_bram_7vx_8k.v

pcie3_7x_0_pcie_bram_7vx_cpl.v

pcie3_7x_0_pcie_bram_7vx_rep_8k.v

pcie3_7x_0_pcie_bram_7vx_rep.v

pcie3_7x_0_pcie_bram_7vx_req.v

pcie3_7x_0_pcie_bram_7vx.v

pcie3_7x_0_pcie_pipe_lane.v

PIPE module for the core.pcie3_7x_0_pcie_pipe_misc.v

pcie3_7x_0_pcie_pipe_pipeline.v

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=256

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 257
PG023 November 19, 2014

Chapter 5: Detailed Example Design

pcie3_7x_0_example/pcie3_7x_0_example.srcs/sim_1/imports/pcie3_7x_0/
example_design

This directory contains all the example design files required for the example_design.

pcie3_7x_0_gt_top.v

GTH Wrapper f iles for the core.

pcie3_7x_0_gt_wrapper.v

pcie3_7x_0_pipe_clock.v

pcie3_7x_0_pipe_drp.v

pcie3_7x_0_pipe_eq.v

pcie3_7x_0_pipe_rate.v

pcie3_7x_0_pipe_reset.v

pcie3_7x_0_pipe_sync.v

pcie3_7x_0_pipe_user.v

pcie3_7x_0_pipe_wrapper.v

pcie3_7x_0_qpll_drp.v

pcie3_7x_0_qpll_reset.v

pcie3_7x_0_qpll_wrapper.v

pcie3_7x_0_rxeq_scan.v

pcie3_7x_0-PCIE_X0Y0.xdc PCIe core level XDC file.

pcie3_7x_v3_0_pcie_3_0_7vx.v PCIe core top-level f ile.

Table 5-6: example_design Directory Contents

Name Description

EP_MEM.v

PIO Example design f iles.

pcie_app_7vx.v

PIO_EP_MEM_ACCESS.v

PIO_EP.v

PIO_INTR_CTRL.v

PIO_RX_ENGINE.v

PIO_TO_CTRL.v

PIO_TX_ENGINE.v

PIO.v

Table 5-5: source Directory Contents (Cont’d)

Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=257

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 258
PG023 November 19, 2014

Chapter 5: Detailed Example Design

pcie3_7x_0/source

sim_1/simulation

This directory contains all the simulation related f iles. This directory consists of three
additional directories: dsport, functional and tests.

simulation/dsport

This directory contains the dsport model f iles.

simulation/functional

This directory consists of the top-level test bench and clock generation modules.

xilinx_pcie_3_0_7vx_ep.v

Example design top-level f ile. The f ile contains the
instances of the pipe_clock block PIO design top
module and core top module (the wrapper is
generated by Vivado Design Suite).

xilinx_pcie3_7vx_ep_8_lane_gen3.xdc Example design XDC file.

Table 5-7: pcie3_7x_0/source Directory Contents

Name Description

pcie3_7x_v3_0_ooc.xdc Out Of Context XDC file.

pcie3_7x_0.v Vivado Design Suite-generated top-level wrapper.

Table 5-8: simulation/dsport Directory Contents

Name Description

pci_exp_expect_tasks.vh

DSPORT model f iles.

pci_exp_usrapp_cfg.v

pci_exp_usrapp_com.v

pci_exp_usrapp_pl.v

pci_exp_usrapp_rx.v

pci_exp_usrapp_tx.v

xilinx_pcie_3_0_7vx_rp.v

Table 5-9: pcie3_7x_0/simulation/functional

Name Description

board_common.vh Contains test bench definitions.

board.v Top-level test bench f ile.

Table 5-6: example_design Directory Contents (Cont’d)

Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=258

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 259
PG023 November 19, 2014

Chapter 5: Detailed Example Design

simulation/tests

This directory consists of the test cases.

Root Port Solution
The Root Port Solution directory structure is shown in Figure 5-8.

sys_clk_gen_ds.v System differential clock source.

sys_clk_gen.v System clock source.

Table 5-10: pcie3_7x_0/simulation/tests

Name Description

sample_tests.vh
Test definition for example test bench.

tests.vh

X-Ref Target - Figure 5-8

Figure 5-8: Example Design: Root Port Solution Directory Structure

Table 5-9: pcie3_7x_0/simulation/functional (Cont’d)

Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=259

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 260
PG023 November 19, 2014

Chapter 5: Detailed Example Design

project_1/project_1.src/sources_1/ip/pcie3_7x_0

This is the main directory in which all other directories described below exits. The name of
the directory project_1 is optional, meaning that user can change the name as desired. The
default name is project_1.

sim

This directory contains the Vivado Design Suite-generated top-level wrapper f ile used for
simulation. The file name is generated based on the component name you specify. The
default name is pcie3_7x_0.v. This f ile instantiates the core top module
pcie3_7x_0_pcie_3_0_7vx.

synth

This directory contains the Vivado Design Suite-generated top-level wrapper f ile used for
synthesis. The f ile name is generated based on the component name you specify. The
default name is pcie3_7x_0.v. This f ile instantiates the core top module
pcie3_7x_0_pcie_3_0_7vx.

source

This directory contains all source files for the PCI Express core.

Table 5-11: Directory Contents

Name Description

pcie3_7x_0_pcie_tlp_tph_tbl_7vx.v

PCIE wrapper f iles for the core.
pcie3_7x_0_pcie_init_ctrl_7vx.v

pcie3_7x_0_pcie_7vx.v

pcie3_7x_0_pcie_top.v

pcie3_7x_0_pcie_bram_7vx_16k.v

Block RAM modules for the core.

pcie3_7x_0_pcie_bram_7vx_8k.v

pcie3_7x_0_pcie_bram_7vx_cpl.v

pcie3_7x_0_pcie_bram_7vx_rep_8k.v

pcie3_7x_0_pcie_bram_7vx_rep.v

pcie3_7x_0_pcie_bram_7vx_req.v

pcie3_7x_0_pcie_bram_7vx.v

pcie3_7x_0_pcie_pipe_lane.v

PIPE module for the core.pcie3_7x_0_pcie_pipe_misc.v

pcie3_7x_0_pcie_pipe_pipeline.v

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=260

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 261
PG023 November 19, 2014

Chapter 5: Detailed Example Design

example_design

This directory contains all the example design files required for the example_design.

pcie3_7x_0_gt_top.v

GTH Wrapper f iles for the core.

pcie3_7x_0_gt_wrapper.v

pcie3_7x_0_pipe_clock.v

pcie3_7x_0_pipe_drp.v

pcie3_7x_0_pipe_eq.v

pcie3_7x_0_pipe_rate.v

pcie3_7x_0_pipe_reset.v

pcie3_7x_0_pipe_sync.v

pcie3_7x_0_pipe_user.v

pcie3_7x_0_pipe_wrapper.v

pcie3_7x_0_qpll_drp.v

pcie3_7x_0_qpll_reset.v

pcie3_7x_0_qpll_wrapper.v

pcie3_7x_0_rxeq_scan.v

pcie3_7x_0-PCIE_X0Y0.xdc PCIe core level XDC file.

pcie3_7x_v3_0_pcie_3_0_7vx.v PCIe core top-level f ile.

Table 5-12: example_design Directory Contents

Name Description

cgator_cfg_rom.data

Configurator block f iles.

cgator_controller.v

cgator_cpl_decoder.v

cgator_pkt_generator.v

cgator_tx_mux.v

cgator.v

cgator_wrapper.v

pio_master_checker.v

PIO Master f iles.
pio_master_controller.v

pio_master_pkt_generator.v

pio_master.v

xilinx_pcie_3_0_7vx_rp.v Example design top-level f ile.

xilinx_pcie3_7vx_rp_8_lane_gen3.xdc Example design XDC file.

Table 5-11: Directory Contents (Cont’d)

Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=261

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 262
PG023 November 19, 2014

Chapter 5: Detailed Example Design

source

This directory contains the IP core level XDC file.

simulation/ep

This directory contains the ep model f iles.

simulation/functional

This directory consists of the top-level test bench and clock generation modules.

Table 5-13: source Directory Contents

Name Description

pcie3_7x_v3_0_ooc.xdc Out Of Context XDC file.

pcie3_7x_0.v Vivado Design Suite-generated wrapper f ile.

Table 5-14: simulation/ep Directory Contents

Name Description

EP_MEM.v

EP Model f iles.

pcie_app_7vx.v

PIO_EP_MEM_ACCESS.v

PIO_EP.v

PIO_INTR_CTRL.v

PIO_RX_ENGINE.v

PIO_TO_CTRL.v

PIO_TX_ENGINE.v

PIO.v

xilinx_pcie_3_0_7vx_ep.v EP model top-level module.

Table 5-15: simulation/functional Directory Contents

Name Description

board_common.vh Contains test bench definitions .

board.v Top-level test bench f ile.

sys_clk_gen_ds.v System differential clock source.

sys_clk_gen.v System clock source.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=262

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 263
PG023 November 19, 2014

Chapter 6

Test Bench
This chapter contains information about the provided test benches in the Vivado® Design
Suite environment. They are:

• Root Port Model Test Bench for Endpoint

• Endpoint Model Test Bench for Root Port

Root Port Model Test Bench for Endpoint
The PCI Express Root Port Model is a robust test bench environment that provides a test
program interface that can be used with the provided PIO design or with your design. The
purpose of the Root Port Model is to provide a source mechanism for generating
downstream PCI Express TLP traff ic to stimulate the customer design, and a destination
mechanism for receiving upstream PCI Express TLP traffic from the customer design in a
simulation environment.

Source code for the Root Port Model is included to provide the model for a starting point
for your test bench. All the signif icant work for initializing the core configuration space,
creating TLP transactions, generating TLP logs, and providing an interface for creating and
verifying tests are complete, allowing you to dedicate efforts to verifying the correct
functionality of the design rather than spending time developing an Endpoint core test
bench infrastructure.

The Root Port Model consists of:

• Test Programming Interface (TPI), which allows you to stimulate the Endpoint device for
the PCI Express

• Example tests that illustrate how to use the test program TPI

• Verilog source code for all Root Port Model components, which allow you to customize
the test bench

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=263

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 264
PG023 November 19, 2014

Chapter 6: Test Bench

Figure 6-1 illustrates the Root Port Model coupled with the PIO design.

Architecture
The Root Port Model consists of these blocks, illustrated in Figure 6-1:

• dsport (Root Port)

• usrapp_tx

• usrapp_rx

• usrapp_com (Verilog only)

The usrapp_tx and usrapp_rx blocks interface with the dsport block for transmission and
reception of TLPs to/from the Endpoint Design Under Test (DUT). The Endpoint DUT
consists of the Endpoint for PCIe and the PIO design (displayed) or customer design.

X-Ref Target - Figure 6-1

Figure 6-1: Root Port Model and Top-Level Endpoint

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=264

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 265
PG023 November 19, 2014

Chapter 6: Test Bench

The usrapp_tx block sends TLPs to the dsport block for transmission across the PCI Express
Link to the Endpoint DUT. In turn, the Endpoint DUT device transmits TLPs across the PCI
Express Link to the dsport block, which are subsequently passed to the usrapp_rx block. The
dsport and core are responsible for the data link layer and physical link layer processing
when communicating across the PCI Express logic. Both usrapp_tx and usrapp_rx use the
usrapp_com block for shared functions, for example, TLP processing and log f ile outputting.
Transaction sequences or test programs are initiated by the usrapp_tx block to stimulate the
Endpoint device fabric interface. TLP responses from the Endpoint device are received by
the usrapp_rx block. Communication between the usrapp_tx and usrapp_rx blocks allow the
usrapp_tx block to verify correct behavior and act accordingly when the usrapp_rx block has
received TLPs from the Endpoint device.

Simulating the Design
To simulate the design, see Chapter 4, Design Flow Steps.

Scaled Simulation Timeouts
The simulation model of the core uses scaled down times during link training to allow for
the link to train in a reasonable amount of time during simulation. According to the PCI
Express Specification, rev. 3.0 [Ref 2], there are various timeouts associated with the link
training and status state machine (LTSSM) states. The core scales these timeouts by a factor
of 256 in simulation, except in the Recovery Speed_1 LTSSM state, where the timeouts are
not scaled.

Test Selection
Table 6-1 describes the tests provided with the Root Port Model, followed by specif ic
sections for Verilog test selection.

Table 6-1: Root Port Model Provided Tests

Test Name Test in Verilog Description

sample_smoke_test0 Verilog Issues a PCI Type 0 Configuration Read TLP and waits for the
completion TLP; then compares the value returned with the expected
Device/Vendor ID value.

sample_smoke_test1 Verilog Performs the same operation as sample_smoke_test0 but makes use
of expectation tasks. This test uses two separate test program
threads: one thread issues the PCI Type 0 Configuration Read TLP and
the second thread issues the Completion with Data TLP expectation
task. This test illustrates the form for a parallel test that uses
expectation tasks. This test form allows for confirming reception of
any TLPs from your design. Additionally, this method can be used to
confirm reception of TLPs when ordering is unimportant.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=265

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 266
PG023 November 19, 2014

Chapter 6: Test Bench

Verilog Test Selection

The Verilog test model used for the Root Port Model lets you specify the name of the test
to be run as a command line parameter to the simulator.

To change the test to be run, change the value provided to TESTNAME, which is defined in
the test f iles sample_tests1.v and pio_tests.v. This mechanism is used for Questa®
SIM. Vivado simulator uses the -testplusarg options to specify TESTNAME, for example:
demo_tb.exe -gui -view wave.wcfg -wdb wave_isim -tclbatch
isim_cmd.tcl -testplusarg TESTNAME=sample_smoke_test0.

Waveform Dumping
For information on simulator waveform dumping, see the Vivado Design Suite User Guide:
Logic Simulation (UG900) [Ref 12].

Verilog Flow

The Root Port Model provides a mechanism for outputting the simulation waveform to f ile
by specifying the +dump_all command line parameter to the simulator.

Output Logging
When a test fails on the example or customer design, the test programmer debugs the
offending test case. Typically, the test programmer inspects the wave f ile for the simulation
and cross-reference this to the messages displayed on the standard output. Because this
approach can be very time consuming, the Root Port Model offers an output logging
mechanism to assist the tester with debugging failing test cases to speed the process.

The Root Port Model creates three output files (tx.dat, rx.dat, and error.dat) during
each simulation run. The log f iles, rx.dat and tx.dat, each contain a detailed record of
every TLP that was received and transmitted, respectively, by the Root Port Model.

TIP: With an understanding of the expected TLP transmission during a specific test case, you can
isolate the failure.

The log f ile error.dat is used in conjunction with the expectation tasks. Test programs
that utilize the expectation tasks generate a general error message to standard output.
Detailed information about the specif ic comparison failures that have occurred due to the
expectation error is located within error.dat.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=266

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 267
PG023 November 19, 2014

Chapter 6: Test Bench

Parallel Test Programs
There are two classes of tests are supported by the Root Port Model:

• Sequential tests. Tests that exist within one process and behave similarly to sequential
programs. The test depicted in Test Program: pio_writeReadBack_test0, page 268 is an
example of a sequential test. Sequential tests are very useful when verifying behavior
that have events with a known order.

• Parallel tests. Tests involving more than one process thread. The test
sample_smoke_test1 is an example of a parallel test with two process threads. Parallel
tests are very useful when verifying that a specif ic set of events have occurred, however
the order of these events are not known.

A typical parallel test uses the form of one command thread and one or more expectation
threads. These threads work together to verify the device functionality. The role of the
command thread is to create the necessary TLP transactions that cause the device to receive
and generate TLPs. The role of the expectation threads is to verify the reception of an
expected TLP. The Root Port Model TPI has a complete set of expectation tasks to be used
in conjunction with parallel tests.

Because the example design is a target-only device, only Completion TLPs can be expected
by parallel test programs while using the PIO design. However, the full library of expectation
tasks can be used for expecting any TLP type when used in conjunction with the customer
design (which can include bus-mastering functionality).

Test Description
The Root Port Model provides a Test Program Interface (TPI). The TPI provides the means to
create tests by invoking a series of Verilog tasks. All Root Port Model tests should follow the
same six steps:

1. Perform conditional comparison of a unique test name.

2. Set up master timeout in case simulation hangs.

3. Wait for Reset and link-up.

4. Initialize the configuration space of the Endpoint.

5. Transmit and receive TLPs between the Root Port Model and the Endpoint DUT.

6. Verify that the test succeeded.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=267

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 268
PG023 November 19, 2014

Chapter 6: Test Bench

Test Program: pio_writeReadBack_test0

Expanding the Root Port Model
The Root Port Model was created to work with the PIO design, and for this reason is tailored
to make specif ic checks and warnings based on the limitations of the PIO design. These
checks and warnings are enabled by default when the Root Port Model is generated by the
Vivado IP catalog. However, these limitations can be disabled so that they do not affect the
customer design.

Because the PIO design was created to support at most one I/O BAR, one Mem64 BAR, and
two Mem32 BARs (one of which must be the EROM space), the Root Port Model by default
makes a check during device configuration that verif ies that the core has been configured
to meet this requirement. A violation of this check causes a warning message to be
displayed as well as for the offending BAR to be gracefully disabled in the test bench. This
check can be disabled by setting the pio_check_design variable to zero in the
pci_exp_usrapp_tx.v f ile.

1. else if(testname == "pio_writeReadBack_test1"
2. begin
3. // This test performs a 32 bit write to a 32 bit Memory space and performs a read back
4. TSK_SIMULATION_TIMEOUT(10050);
5. TSK_SYSTEM_INITIALIZATION;
6. TSK_BAR_INIT;
7. for (ii = 0; ii <= 6; ii = ii + 1) begin
8. if (BAR_INIT_P_BAR_ENABLED[ii] > 2'b00) // bar is enabled
9. case(BAR_INIT_P_BAR_ENABLED[ii])
10. 2'b01 : // IO SPACE
11. begin
12. $display("[%t] : NOTHING: to IO 32 Space BAR %x", $realtime, ii);
13. end
14. 2'b10 : // MEM 32 SPACE
15. begin
16. $display("[%t] : Transmitting TLPs to Memory 32 Space BAR %x",
17. $realtime, ii);
18. //--
19. // Event : Memory Write 32 bit TLP
20. //--
21. DATA_STORE[0] = 8'h04;
22. DATA_STORE[1] = 8'h03;
23. DATA_STORE[2] = 8'h02;
24. DATA_STORE[3] = 8'h01;
25. P_READ_DATA = 32'hffff_ffff; // make sure P_READ_DATA has known initial value
26. TSK_TX_MEMORY_WRITE_32(DEFAULT_TAG, DEFAULT_TC, 10'd1, BAR_INIT_P_BAR[ii][31:0] , 4'hF,

4'hF, 1'b0);
27. TSK_TX_CLK_EAT(10);
28. DEFAULT_TAG = DEFAULT_TAG + 1;
29. //--
30. // Event : Memory Read 32 bit TLP
31. //--
32. TSK_TX_MEMORY_READ_32(DEFAULT_TAG, DEFAULT_TC, 10'd1, BAR_INIT_P_BAR[ii][31:0], 4'hF,

4'hF);
33. TSK_WAIT_FOR_READ_DATA;
34. if (P_READ_DATA != {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0] })
35. begin
36. $display("[%t] : Test FAILED --- Data Error Mismatch, Write Data %x != Read Data %x",

$realtime,{DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0]}, P_READ_DATA);
37. end
38. else
39. begin
40. $display("[%t] : Test PASSED --- Write Data: %x successfully received", $realtime,

P_READ_DATA);
41. end

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=268

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 269
PG023 November 19, 2014

Chapter 6: Test Bench

Root Port Model TPI Task List

The Root Port Model TPI tasks include these tasks, which are further defined in these tables.

• Table 6-2, Test Setup Tasks

• Table 6-3, TLP Tasks

• Table 6-4, BAR Initialization Tasks

• Table 6-5, Example PIO Design Tasks

• Table 6-6, Expectation Tasks

Table 6-2: Test Setup Tasks

Name Input(s) Description

TSK_SYSTEM_INITIALIZATION None Waits for transaction interface reset and link-up between
the Root Port Model and the Endpoint DUT.
This task must be invoked prior to the Endpoint core
initialization.

TSK_USR_DATA_SETUP_SEQ None Initializes global 4096 byte DATA_STORE array entries to
sequential values from zero to 4095.

TSK_TX_CLK_EAT clock count 31:30 Waits clock_count transaction interface clocks.

TSK_SIMULATION_TIMEOUT timeout 31:0 Sets master simulation timeout value in units of
transaction interface clocks. This task should be used to
ensure that all DUT tests complete.

Table 6-3: TLP Tasks

Name Input(s) Description

TSK_TX_TYPE0_CONFIGURATION_READ

tag_
reg_addr_
first_dw_be_

7:0
11:0
3:0

Waits for transaction interface reset and
link-up between the Root Port Model and the
Endpoint DUT.
This task must be invoked prior to Endpoint
core initialization.

TSK_TX_TYPE1_CONFIGURATION_READ

tag_
reg_addr_
first_dw_be_

7:0
11:0
3:0

Sends a Type 1 PCI Express Config Read TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and f irst_dw_be_
inputs.
CplD returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_TYPE0_CONFIGURATION_WRITE

tag_
reg_addr_
reg_data_
first_dw_be_

7:0
11:0
31:0
3:0

Sends a Type 0 PCI Express Config Write TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and f irst_dw_be_
inputs.
Cpl returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=269

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 270
PG023 November 19, 2014

Chapter 6: Test Bench

TSK_TX_TYPE1_CONFIGURATION_WRITE

tag_
reg_addr_
reg_data_
first_dw_be_

7:0
11:0
31:0
3:0

Sends a Type 1 PCI Express Config Write TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and f irst_dw_be_
inputs.
Cpl returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_MEMORY_READ_32

tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_

7:0
2:0

10:0
31:0
3:0
3:0

Sends a PCI Express Memory Read TLP from
Root Port to 32-bit memory address addr_ of
Endpoint DUT.
CplD returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_MEMORY_READ_64

tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_

7:0
2:0

10:0
63:0
3:0
3:0

Sends a PCI Express Memory Read TLP from
Root Port Model to 64-bit memory address
addr_ of Endpoint DUT.
CplD returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_MEMORY_WRITE_32

tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_
ep_

7:0
2:0

10:0
31:0
3:0
3:0
–

Sends a PCI Express Memory Write TLP from
Root Port Model to 32-bit memory address
addr_ of Endpoint DUT.
CplD returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.
The global DATA_STORE byte array is used to
pass write data to task.

TSK_TX_MEMORY_WRITE_64

tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_
ep_

7:0
2:0

10:0
63:0
3:0
3:0
–

Sends a PCI Express Memory Write TLP from
Root Port Model to 64-bit memory address
addr_ of Endpoint DUT.
CplD returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.
The global DATA_STORE byte array is used to
pass write data to task.

TSK_TX_COMPLETION

tag_
tc_
len_
comp_status_

7:0
2:0

10:0
2:0

Sends a PCI Express Completion TLP from Root
Port Model to the Endpoint DUT using global
COMPLETE_ID_CFG as the completion ID.

Table 6-3: TLP Tasks (Cont’d)

Name Input(s) Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=270

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 271
PG023 November 19, 2014

Chapter 6: Test Bench

TSK_TX_COMPLETION_DATA

tag_
tc_
len_
byte_count
lower_addr
comp_status
ep_

7:0
2:0

10:0
11:0
6:0
2:0
–

Sends a PCI Express Completion with Data TLP
from Root Port Model to the Endpoint DUT
using global COMPLETE_ID_CFG as the
completion ID.
The global DATA_STORE byte array is used to
pass completion data to task.

TSK_TX_MESSAGE

tag_
tc_
len_
data
message_rtg
message_code

7:0
2:0

10:0
63:0
2:0
7:0

Sends a PCI Express Message TLP from Root
Port Model to Endpoint DUT.
Completion returned from the Endpoint DUT
uses the contents of global COMPLETE_ID_CFG
as the completion ID.

TSK_TX_MESSAGE_DATA

tag_
tc_
len_
data
message_rtg
message_code

7:0
2:0

10:0
63:0
2:0
7:0

Sends a PCI Express Message with Data TLP
from Root Port Model to Endpoint DUT.
The global DATA_STORE byte array is used to
pass message data to task.
Completion returned from the Endpoint DUT
uses the contents of global COMPLETE_ID_CFG
as the completion ID.

TSK_TX_IO_READ

tag_
addr_
first_dw_be_

7:0
31:0
3:0

Sends a PCI Express I/O Read TLP from Root
Port Model to I/O address addr_[31:2] of the
Endpoint DUT.
CplD returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_IO_WRITE

tag_
addr_
first_dw_be_
data

7:0
31:0
3:0

31:0

Sends a PCI Express I/O Write TLP from Root
Port Model to I/O address addr_[31:2] of the
Endpoint DUT.
CplD returned from the Endpoint DUT uses the
contents of global COMPLETE_ID_CFG as the
completion ID.

TSK_TX_BAR_READ

bar_index
byte_offset
tag_
tc_

2:0
31:0
7:0
2:0

Sends a PCI Express one Dword Memory 32,
Memory 64, or I/O Read TLP from the Root
Port Model to the target address
corresponding to offset byte_offset from BAR
bar_index of the Endpoint DUT. This task sends
the appropriate Read TLP based on how BAR
bar_index has been configured during
initialization. This task can only be called after
TSK_BAR_INIT has successfully completed.
CplD returned from the Endpoint DUT use the
contents of global COMPLETE_ID_CFG as the
completion ID.

Table 6-3: TLP Tasks (Cont’d)

Name Input(s) Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=271

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 272
PG023 November 19, 2014

Chapter 6: Test Bench

TSK_TX_BAR_WRITE

bar_index
byte_offset
tag_
tc_
data_

2:0
31:0
7:0
2:0

31:0

Sends a PCI Express one Dword Memory 32,
Memory 64, or I/O Write TLP from the Root
Port to the target address corresponding to
offset byte_offset from BAR bar_index of the
Endpoint DUT.
This task sends the appropriate Write TLP
based on how BAR bar_index has been
configured during initialization. This task can
only be called after TSK_BAR_INIT has
successfully completed.

TSK_WAIT_FOR_READ_DATA

None Waits for the next completion with data TLP
that was sent by the Endpoint DUT. On
successful completion, the first Dword of data
from the CplD is stored in the global
P_READ_DATA. This task should be called
immediately following any of the read tasks in
the TPI that request Completion with Data
TLPs to avoid any race conditions.
By default this task locally times out and
terminate the simulation after 1000
transaction interface clocks. The global
cpld_to_finish can be set to zero so that local
timeout returns execution to the calling test
and does not result in simulation timeout. For
this case test programs should check the
global cpld_to, which when set to one
indicates that this task has timed out and that
the contents of P_READ_DATA are invalid.

Table 6-3: TLP Tasks (Cont’d)

Name Input(s) Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=272

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 273
PG023 November 19, 2014

Chapter 6: Test Bench

Table 6-4: BAR Initialization Tasks

Name Input(s) Description

TSK_BAR_INIT None

Performs a standard sequence of Base Address Register
initialization tasks to the Endpoint device using the PCI
Express fabric. Performs a scan of the Endpoint PCI BAR
range requirements, performs the necessary memory and
I/O space mapping calculations, and f inally programs the
Endpoint so that it is ready to be accessed.
On completion, your test program can begin memory and
I/O transactions to the device. This function displays to
standard output a memory and I/O table that details how
the Endpoint has been initialized. This task also initializes
global variables within the Root Port Model that are
available for test program usage. This task should only be
called after TSK_SYSTEM_INITIALIZATION.

TSK_BAR_SCAN None

Performs a sequence of PCI Type 0 Configuration Writes
and Configuration Reads using the PCI Express logic to
determine the memory and I/O requirements for the
Endpoint.
The task stores this information in the global array
BAR_INIT_P_BAR_RANGE[]. This task should only be called
after TSK_SYSTEM_INITIALIZATION.

TSK_BUILD_PCIE_MAP None

Performs memory and I/O mapping algorithm and
allocates Memory 32, Memory 64, and I/O space based on
the Endpoint requirements.
This task has been customized to work in conjunction with
the limitations of the PIO design and should only be called
after completion of TSK_BAR_SCAN.

TSK_DISPLAY_PCIE_MAP None

Displays the memory mapping information of the Endpoint
core PCI Base Address Registers. For each BAR, the BAR
value, the BAR range, and BAR type is given. This task
should only be called after completion of
TSK_BUILD_PCIE_MAP.

Table 6-5: Example PIO Design Tasks

Name Input(s) Description

TSK_TX_READBACK_CONFIG None Performs a sequence of PCI Type 0 Configuration Reads to the
Endpoint device Base Address Registers, PCI Command
Register, and PCIe Device Control Register using the PCI
Express logic.
This task should only be called after
TSK_SYSTEM_INITIALIZATION.

TSK_MEM_TEST_DATA_BUS bar_index 2:0 Tests whether the PIO design FPGA block RAM data bus
interface is correctly connected by performing a 32-bit
walking ones data test to the I/O or memory address pointed
to by the input bar_index.
For an exhaustive test, this task should be called four times,
once for each block RAM used in the PIO design.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=273

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 274
PG023 November 19, 2014

Chapter 6: Test Bench

TSK_MEM_TEST_ADDR_BUS bar_index
nBytes

2:0
31:0

Tests whether the PIO design FPGA block RAM address bus
interface is accurately connected by performing a walking
ones address test starting at the I/O or memory address
pointed to by the input bar_index.
For an exhaustive test, this task should be called four times,
once for each block RAM used in the PIO design. Additionally,
the nBytes input should specify the entire size of the
individual block RAM.

TSK_MEM_TEST_DEVICE bar_index
nBytes

2:0
31:0

Tests the integrity of each bit of the PIO design FPGA block
RAM by performing an increment/decrement test on all bits
starting at the block RAM pointed to by the input bar_index
with the range specif ied by input nBytes.
For an exhaustive test, this task should be called four times,
once for each block RAM used in the PIO design. Additionally,
the nBytes input should specify the entire size of the
individual block RAM.

TSK_RESET Reset 0 Initiates PERSTn. Forces the PERSTn signal to assert the
reset. Use TSK_RESET (1’b1) to assert the reset and
TSK_RESET (1’b0) to release the reset signal.

TSK_MALFORMED malformed
_bits

7:0 Control bits for creating malformed TLPs:
• 0001: Generate Malformed TLP for I/O Requests and

Configuration Requests called immediately after this task
• 0010: Generate Malformed Completion TLPs for Memory

Read requests received at the Root Port

Table 6-5: Example PIO Design Tasks (Cont’d)

Name Input(s) Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=274

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 275
PG023 November 19, 2014

Chapter 6: Test Bench

Table 6-6: Expectation Tasks

Name Input(s) Output Description

TSK_EXPECT_CPLD

traffic_class
td
ep
attr
length
completer_id
completer_status
bcm
byte_count
requester_id
tag
address_low

2:0
-
-

1:0
10:0
15:0
2:0
-

11:0
15:0
7:0
6:0

Expect
status

Waits for a Completion with
Data TLP that matches
traffic_class, td, ep, attr, length,
and payload.
Returns a 1 on successful
completion; 0 otherwise.

TSK_EXPECT_CPL

traffic_class
td
ep
attr
completer_id
completer_status
bcm
byte_count
requester_id
tag
address_low

2:0
-
-

1:0
15:0
2:0
-

11:0
15:0
7:0
6:0

Expect
status

Waits for a Completion without
Data TLP that matches
traffic_class, td, ep, attr, and
length.
Returns a 1 on successful
completion; 0 otherwise.

TSK_EXPECT_MEMRD

traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-

1:0
10:0
15:0
7:0
3:0
3:0

29:0

Expect
status

Waits for a 32-bit Address
Memory Read TLP with
matching header f ields.
Returns a 1 on successful
completion; 0 otherwise. This
task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_MEMRD64

traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-

1:0
10:0
15:0
7:0
3:0
3:0

61:0

Expect
status

Waits for a 64-bit Address
Memory Read TLP with
matching header f ields. Returns
a 1 on successful completion; 0
otherwise.
This task can only be used in
conjunction with Bus Master
designs.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=275

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 276
PG023 November 19, 2014

Chapter 6: Test Bench

Endpoint Model Test Bench for Root Port
The Endpoint model test bench for the core in Root Port configuration is a simple example
test bench that connects the Configurator example design and the PCI Express Endpoint
model allowing the two to operate like two devices in a physical system. As the
Configurator example design consists of logic that initializes itself and generates and
consumes bus traffic, the example test bench only implements logic to monitor the
operation of the system and terminate the simulation.

The Endpoint model test bench consists of:

• Verilog or VHDL source code for all Endpoint model components

• PIO slave design

TSK_EXPECT_MEMWR

traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-

1:0
10:0
15:0
7:0
3:0
3:0

29:0

Expect
status

Waits for a 32-bit Address
Memory Write TLP with
matching header f ields. Returns
a 1 on successful completion; 0
otherwise.
This task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_MEMWR64

traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-

1:0
10:0
15:0
7:0
3:0
3:0

61:0

Expect
status

Waits for a 64-bit Address
Memory Write TLP with
matching header f ields. Returns
a 1 on successful completion; 0
otherwise.
This task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_IOWR

td
ep
requester_id
tag
first_dw_be
address
data

-
-

15:0
7:0
3:0

31:0
31:0

Expect
status

Waits for an I/O Write TLP with
matching header f ields. Returns
a 1 on successful completion; 0
otherwise.
This task can only be used in
conjunction with Bus Master
designs.

Table 6-6: Expectation Tasks (Cont’d)

Name Input(s) Output Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=276

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 277
PG023 November 19, 2014

Chapter 6: Test Bench

Figure 6-1, page 264 illustrates the Endpoint model coupled with the Configurator example
design.

Architecture
The Endpoint model consists of these blocks:

• PCI Express Endpoint (the core in Endpoint configuration) model.

• PIO slave design, consisting of:

° PIO_RX_ENGINE

° PIO_TX_ENGINE

° PIO_EP_MEM

° PIO_TO_CTRL

The PIO_RX_ENGINE and PIO_TX_ENGINE blocks interface with the ep block for reception
and transmission of TLPs from/to the Root Port Design Under Test (DUT). The Root Port DUT
consists of the core configured as a Root Port and the Configurator Example Design, which
consists of a Configurator block and a PIO Master design, or customer design.

The PIO slave design is described in detail in Programmed Input/Output: Endpoint Example
Design, page 244.

Simulating the Design
A simulation script f ile called simulate_mti.do is provided with the model to facilitate
simulation with the Mentor Graphics Questa® SIM simulator:

The example simulation script f iles are located in this directory:

<project_dir>/<component_name>/simulation/functional

Instructions for simulating the Configurator example design with the Endpoint model are
provided in Chapter 4, Design Flow Steps.

Note: For Cadence IES users, the work construct must be manually inserted into the cds.lib f ile:

DEFINE WORK WORK.

Scaled Simulation Timeouts
The simulation model of the core uses scaled down times during link training to allow for
the link to train in a reasonable amount of time during simulation. According to the PCI
Express Specification, rev. 3.0 [Ref 2], there are various timeouts associated with the link
training and status state machine (LTSSM) states. The core scales these timeouts by a factor

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=277

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 278
PG023 November 19, 2014

Chapter 6: Test Bench

of 256 in simulation, except in the Recovery Speed_1 LTSSM state, where the timeouts are
not scaled.

Waveform Dumping
For information on simulator waveform dumping, see the Vivado Design Suite User Guide:
Logic Simulation (UG900) [Ref 12].

Output Logging
The test bench outputs messages, captured in the simulation log, indicating the time at
which these occur:

• user_reset deasserted

• user_lnk_up asserted

• cfg_done asserted by the Configurator

• pio_test_f inished asserted by the PIO Master

• Simulation Timeout (if pio_test_f inished or pio_test_failed never asserted)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=278

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 279
PG023 November 19, 2014

Appendix A

Migrating and Upgrading
This appendix contains information about migrating a design from ISE® Design Suite to the
Vivado® Design Suite, and for upgrading to a more recent version of the IP core. For
customers upgrading in the Vivado Design Suite, important details (where applicable)
about any port changes and other impact to user logic are included.

Migrating to the Vivado Design Suite
For information on migrating to the Vivado® Design Suite, see ISE to Vivado Design Suite
Migration Methodology Guide (UG911) [Ref 13].

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

Parameter Changes
Figure A-1 shows the changes to parameters in the current version of the core.

Table A-1: Parameter Changes

User Parameter name Display Name
New/

Changed/
Removed

Details Default Value

1 en_ext_startup
Enable External
STARTUP
primitive

New Enables the STARTUP
interface

Unchecked
(FALSE)

2 en_ext_pipe_interface Enable External
PIPE Interface New

Added to enable/disable
external PIPE Interface.
Mutually exclusive with
previously existing
parameter pipe_sim
(Enable PIPE
Simulation).

Unchecked
(FALSE)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=279

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 280
PG023 November 19, 2014

Appendix A: Migrating and Upgrading

Port Changes
The ports in Table A-2 are enabled when the Enable External Startup Primitive option is
set to FALSE and either Tandem PROM or Tandem PCIe is selected, with one exception: the
startup_eos_in port, which is enabled only when option Enable External Startup
Primitive is set to TRUE and either Tandem PROM or Tandem PCIe is selected.

3

axisten_if_enable_rx_m
sg_intfc

New
Indicates that
AXISTEN_IF_ENABLE_RX
_MSG_INTFC is enabled

Unchecked
(FALSE)

4 en_power_down
Enable
Powerdown
Interface

New

When enabled the
powerdown ports are
brought to the core top
level

Unchecked
(FALSE)

Table A-2: Startup Interface Ports

Port Direction (I/O) Width

startup_cfgmclk O 1 bit

startup_usrcclko I 1 bit

startup_usrdoneo I 1 bit

startup_clk I 1 bit

startup_pack I 1 bit

startup_gsr I 1 bit

startup_keyclearb I 1 bit

startup_gts I 1 bit

startup_usrcclkts I 1 bit

startup_eos O 1 bit

startup_preq O 1 bit

startup_cfgclk O 1 bit

startup_usrdonets I 1 bit

stratup_eos_in I 1 bit

Table A-1: Parameter Changes (Cont’d)

User Parameter name Display Name
New/

Changed/
Removed

Details Default Value

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=280

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 281
PG023 November 19, 2014

Appendix A: Migrating and Upgrading

The ports in Table A-3 are enabled when the Tandem PCIe option is selected..

The ports in Table A-4 are added to the existing transceiver_debug interface. This interface
is referred to as pcie_pipe_debug in previous versions of the core. These ports are also
enabled when the Additional Transceiver Control and Status Ports option is set to TRUE.

Table A-3: ICAP Interface Ports

Port Direction (I/O) Width

icap_csib I 1 bit

icap_o O 32 bits

icap_rdwrb I 1 bit

icap_clk I 1 bit

icap_i I 32 bits

Table A-4: Transceiver Debug Interface Signals

Port Direction (I/O) Width

pipe_rxstatus O [(PL_LINK_CAP_MAX_LINK_WIDTH*3)-1:0]

pipe_dmonitorout O [(PL_LINK_CAP_MAX_LINK_WIDTH*3)-1:0]

pipe_eyescandataerror O [(PL_LINK_CAP_MAX_LINK_WIDTH*15)-1:0]

pipe_cpll_lock O [(PL_LINK_CAP_MAX_LINK_WIDTH)-1:0]

pipe_qpll_lock O [(PL_LINK_CAP_MAX_LINK_WIDTH-1)>>2:0]

pipe_rxpmaresetdone O [(PL_LINK_CAP_MAX_LINK_WIDTH)-1:0]

pipe_rxbufstatus O [(PL_LINK_CAP_MAX_LINK_WIDTH*3)-1:0]

pipe_txphaligndone O [(PL_LINK_CAP_MAX_LINK_WIDTH)-1:0]

pipe_txphinitdone O [(PL_LINK_CAP_MAX_LINK_WIDTH)-1:0]

pipe_txdlysresetdone O [(PL_LINK_CAP_MAX_LINK_WIDTH)-1:0]

pipe_rxphaligndone O [(PL_LINK_CAP_MAX_LINK_WIDTH)-1:0]

pipe_rxdlysresetdone O [(PL_LINK_CAP_MAX_LINK_WIDTH)-1:0]

pipe_rxsyncdone O [(PL_LINK_CAP_MAX_LINK_WIDTH)-1:0]

pipe_rxdisperr O [(PL_LINK_CAP_MAX_LINK_WIDTH*8)-1:0]

pipe_rxnotintable O [(PL_LINK_CAP_MAX_LINK_WIDTH*8)-1:0]

pipe_rxcommadet O [(PL_LINK_CAP_MAX_LINK_WIDTH)-1:0]

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=281

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 282
PG023 November 19, 2014

Appendix A: Migrating and Upgrading

The ports in Table A-5 are enabled when the External PIPE Interface is set to TRUE.

The port in Table A-6 is added to the existing pcie3_cfg_control interface. This port is
available in the port list of core top only when the Config Control Interface parameter is
set TRUE. When this parameter is set to FALSE, it obtains the value set to the
PF0_SUBSYSTEM_VENDOR_ID parameter in the Vivado Integrated Design Environment. .

Table A-5: External Pipe Interface Ports

Port Direction (I/O) Width

common_commands_in I 26 bits

pipe_rx_0_sigs I 84 bits

pipe_rx_1_sigs I 84 bits

pipe_rx_2_sigs I 84 bits

pipe_rx_3_sigs I 84 bits

pipe_rx_4_sigs I 84 bits

pipe_rx_5_sigs I 84 bits

pipe_rx_6_sigs I 84 bits

pipe_rx_7_sigs I 84 bits

common_commands_out O 17 bits

pipe_tx_0_sigs O 70 bits

pipe_tx_1_sigs O 70 bits

pipe_tx_2_sigs O 70 bits

pipe_tx_3_sigs O 70 bits

pipe_tx_4_sigs O 70 bits

pipe_tx_5_sigs O 70 bits

pipe_tx_6_sigs O 70 bits

pipe_tx_7_sigs O 70 bits

Table A-6: Shared Logic (Transceiver GT_COMMON) In Example Design Ports

Port Direction (I/O) Width

cfg_subsys_vend_id I 16 bits

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=282

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 283
PG023 November 19, 2014

Appendix A: Migrating and Upgrading

The ports in Table A-7 are enabled when the Enable Powerdown Interface parameter is set
TRUE.

Table A-7: Enable Powerdown Interface Ports

Port
Direction

(I/O) Width

CPLLPD I [(PL_LINK_CAP_LINK_WIDTH-1):0]

TXPD I [(PL_LINK_CAP_LINK_WIDTH*2-1):0]

RXPD I [(PL_LINK_CAP_LINK_WIDTH*2-1):0]

TXPDELECIDLEMODE I [(PL_LINK_CAP_LINK_WIDTH-1):0]

TXDETECTRX I [(PL_LINK_CAP_LINK_WIDTH-1):0]

TXELECIDLE I [(PL_LINK_CAP_LINK_WIDTH-1):0]

QPLLPD I [(PL_LINK_CAP_LINK_WIDTH-1)>>2:0]

POWERDOWN I 1 bit

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=283

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 284
PG023 November 19, 2014

Appendix B

Managing Receive-Buffer Space for
Inbound Completions

The PCI Express® Base Specification [Ref 2] requires all Endpoints to advertise infinite Flow
Control credits for received Completions to their link partners. This means that an Endpoint
must only transmit Non-Posted Requests for which it has space to accept Completion
responses. This appendix describes how a user application can manage the receive-buffer
space in the Virtex-7 Gen3 Integrated Block for PCIe core to fulf ill this requirement.

General Considerations and Concepts

Completion Space
Table B-1 defines the completion space reserved in the receive buffer by the core. The
values differ depending on the different Capability Max Payload Size settings of the core
and the performance level that you selected. Values are credits, expressed in decimal.

Maximum Request Size
A Memory Read cannot request more than the value stated in Max_Request_Size, which is
given by Configuration bits cfg_dcommand[14:12] as defined in Table B-2. If the user
application does not read the Max_Request_Size value, it must use the default value of 128
bytes.

Table B-1: Receiver-Buffer Completion Space

Capability Max Payload Size
(bytes)

Performance Level: Good Performance Level: High

CPH CPD CPH CPD

128 64 7,936B 64 15,872B

256 64 7,936B 64 15,872B

512 64 7,936B 64 15,872B

1024 64 7,936B 64 15,872B

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=284

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 285
PG023 November 19, 2014

Appendix B: Managing Receive-Buffer Space for Inbound Completions

Read Completion Boundary
A memory read can be answered with multiple completions, which when put together return
all requested data. To make room for packet-header overhead, the user application must
allocate enough space for the maximum number of completions that might be returned.

To make this process easier, the PCI Express Base Specification quantizes the length of all
completion packets such that each completion must start and end on a naturally aligned
read completion boundary (RCB), unless, it services the starting or ending address of the
original request. Requests which cross the address boundaries at integer multiples of RCB
bytes can be completed using more than one completion, but the returned data must not be
fragmented except along the following address boundaries:

• The first completion must start with the address specif ied in the request, and must end
at one of the following:

° The address specif ied in the request plus the length specified by the request (for
example, the entire request).

° An address boundary between the start and end of the request at an integer
multiple of RCB bytes.

• The f inal completion must end with the address specif ied in the request plus the length
specified by the request.

• All completions between, but not including, the first and f inal completions must be an
integer multiple of RCB bytes in length.

The programmed value of RCB is provided on cfg_rcb_status[1:0]. Here
cfg_rcb_status[0] and cfg_rcb_status[1] are associated with Physical Functions 0
and 1 respectively (Per Function Link Control register [3]). If the user application does not
read the RCB value, it must use the default value of 64 bytes.

Table B-2: Max_Request_Size Settings

cfg_dcommand[14:12]
Max_Request_Size

Bytes DW QW Credits

000b 128 32 16 8

001b 256 64 32 16

010b 512 128 64 32

011b 1024 256 128 64

100b 2048 512 256 128

101b 4096 1024 512 256

110b–111b Reserved

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=285

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 286
PG023 November 19, 2014

Appendix B: Managing Receive-Buffer Space for Inbound Completions

When calculating the number of completion credits a non-posted request requires, you
must determine how many RCB-bounded blocks the completion response might be
required, which is the same as the number of completion header credits required.

Important Note For High Performance Applications

While programmed RCB value can be used by the user application to compute the
maximum number of completions returned for a request, most high performance memory
controllers have the optional feature to combine RCB-sized completions in response to
large read requests (read lengths multiples of RCB value), into completions that are at or
near the programmed Max_Payload_Size value for the link. You are encouraged to take
advantage of this feature, if supported, by memory controller on the host CPU. Data
exchange based on completions that are integer multiples (>1) of RCB value results in
greater PCI Express interface utilization and payload efficiency, as well as, more efficient use
of completion space in the Endpoint receiver.

Methods of Managing Completion Space
A user application can choose one of f ive methods to manage receive-buffer completion
space, as listed in Table B-4. For convenience, this discussion refers to these methods as
LIMIT_FC, PACKET_FC, RCB_FC, and DATA_FC. Each method has advantages and
disadvantages that you need to consider when developing the user application.

Table B-3: Read Completion Boundary Settings

cfg_rcb_status[0] or
cfg_rcb_status[1]

Read Completion Boundary

Bytes DW QW Credits

0 64 16 8 4

1 128 32 16 8

Table B-4: Managing Receive Completion Space Methods

Method Description Advantage Disadvantage

LIMIT_FC Limit the total number of
outstanding NP Requests

Simplest method to
implement in user logic

Much Completion capacity
goes unused

PACKET_FC
Track the number of outstanding
CplH and CplD credits; allocate and
deallocate on a per-packet basis

Relatively simple user
logic; f iner allocation
granularity means less
wasted capacity than
LIMIT_FC

As with LIMIT_FC, credits
for an NP are still tied up
until the request is
completely satisfied

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=286

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 287
PG023 November 19, 2014

Appendix B: Managing Receive-Buffer Space for Inbound Completions

LIMIT_FC Method
The LIMIT_FC method is the simplest to implement. The user application assesses the
maximum number of outstanding Non-Posted Requests allowed at one time, MAX_NP. To
calculate this value, perform these steps:

1. Determine the number of CplH credits required by a Max_Request_Size packet:

Max_Header_Count = ceiling(Max_Request_Size / RCB)

2. Determine the greatest number of maximum-sized completions supported by the CplD
credit pool:

Max_Packet_Count_CplD = floor(CplD / Max_Request_Size)

3. Determine the greatest number of maximum-sized completions supported by the CplH
credit pool:

Max_Packet_Count_CplH = floor(CplH / Max_Header_Count)

4. Use the smaller of the two quantities from steps 2 and 3 to obtain the maximum number
of outstanding Non-Posted requests:

MAX_NP = min(Max_Packet_Count_CplH, Max_Packet_Count_CplD)

With knowledge of MAX_NP, the user application can load a register NP_PENDING with zero
at reset and make sure it always stays with the range 0 to MAX_NP. When a non-posted
request is transmitted, NP_PENDING decreases by one. When all completions for an
outstanding non-posted request are received, NP_PENDING increases by one.

For example:

• Max_Request_Size = 128B

• RCB = 64B

• CplH = 64

• CplD = 15,872B

• Max_Header_Count = 2

RCB_FC
Track the number of outstanding
CplH and CplD credits; allocate and
deallocate on a per-RCB basis

Ties up credits for less
time than PACKET_FC

More complex user logic
than LIMIT_FC or
PACKET_FC

DATA_FC
Track the number of outstanding
CplH and CplD credits; allocate and
deallocate on a per-RCB basis

Lowest amount of
wasted capacity

More complex user logic
than LIMIT_FC, PACKET_FC,
and RCB_FC

Table B-4: Managing Receive Completion Space Methods (Cont’d)

Method Description Advantage Disadvantage

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=287

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 288
PG023 November 19, 2014

Appendix B: Managing Receive-Buffer Space for Inbound Completions

• Max_Packet_Count_CplD = 124

• Max_Packet_Count_CplH = 32

• MAX_NP = 32

Although this method is the simplest to implement, it can waste the greatest receiver space
because an entire Max_Request_Size block of completion credit is allocated for each
non-posted request, regardless of actual request size. The amount of waste becomes
greater when the user application issues a larger proportion of short memory reads (on the
order of a single DWORD), I/O reads and I/O writes.

PACKET_FC Method
The PACKET_FC method allocates blocks of credit in f iner granularities than LIMIT_FC, using
the receive completion space more efficiently with a small increase in user logic.

Start with two registers, CPLH_PENDING and CPLD_PENDING, (loaded with zero at reset),
and then perform these steps:

1. When the user application needs to send an NP request, determine the potential number
of CplH and CplD credits it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) /16 bytes]
(except I/O Write, which returns zero data) [(req_size + 15)/16]

The modulo and ceiling functions ensure that any fractional RCB or credit blocks are
rounded up. For example, if a memory read requests 8 bytes of data from address 7Ch,
the returned data can potentially be returned over two completion packets (7Ch-7Fh,
followed by 80h-83h). This would require two RCB blocks and two data credits.

2. Check these:

CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CplD < Total_CplD

3. If both inequalities are true, transmit the non-posted request, and increase
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD. For each non-posted
request transmitted, keep NP_CplH and NP_CplD for later use.

4. When all completion data is returned for an non-posted request, decrease
CPLH_PENDING and CPLD_PENDING accordingly.

This method is less wasteful than LIMIT_FC but still ties up all of an non-posted request
completion space until the entire request is satisf ied. RCB_FC and DATA_FC provide f iner
de-allocation granularity at the expense of more logic.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=288

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 289
PG023 November 19, 2014

Appendix B: Managing Receive-Buffer Space for Inbound Completions

RCB_FC Method
The RCB_FC method allocates and de-allocates blocks of credit in RCB granularity. Credit is
freed on a per-RCB basis.

As with PACKET_FC, start with two registers, CPLH_PENDING and CPLD_PENDING (loaded
with zero at reset).

1. Calculate the number of data credits per RCB:

CplD_PER_RCB = RCB / 16 bytes

2. When the user application needs to send an non-posted request, determine the
potential number of CplH credits it might require. Use this to allocate CplD credits with
RCB granularity:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = NP_CplH × CplD_PER_RCB

3. Check these:

CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CplD < Total_CplD

4. If both inequalities are true, transmit the non-posted request, increase CPLH_PENDING
by NP_CplH and CPLD_PENDING by NP_CplD.

5. At the start of each incoming completion, or when that completion begins at or crosses
an RCB without ending at that RCB, decrease CPLH_PENDING by 1 and CPLD_PENDING
by CplD_PER_RCB. Any completion could cross more than one RCB. The number of RCB
crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are f ields that can be parsed from the Completion header.
Alternatively, you can load a register CUR_ADDR with Lower_Address at the start of each
incoming completion, increment per DW or QW as appropriate, then count an RCB
whenever CUR_ADDR rolls over.

This method is less wasteful than PACKET_FC but still gives an RCB granularity. If a user
application transmits I/O requests, the user application could adopt a policy of only
allocating one CplD credit for each I/O read and zero CplD credits for each I/O write. The
user application would have to match each incoming completion tag with the type (Memory
Write, I/O Read, I/O Write) of the original non-posted request.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=289

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 290
PG023 November 19, 2014

Appendix B: Managing Receive-Buffer Space for Inbound Completions

DATA_FC Method
The DATA_FC method provides the finest allocation granularity at the expense of logic.

As with PACKET_FC and RCB_FC, start with two registers, CPLH_PENDING and
CPLD_PENDING (loaded with zero at reset).

1. When the user application needs to send an non-posted request, determine the
potential number of CplH and CplD credits it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) / 16 bytes]
(except I/O Write, which returns zero data)

2. Check these:

CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CplD < Total_CplD

3. If both inequalities are true, transmit the non-posted request, increase CPLH_PENDING
by NP_CplH and CPLD_PENDING by NP_CplD.

4. At the start of each incoming completion, or when that completion begins at or crosses
an RCB without ending at that RCB, decrease CPLH_PENDING by 1. The number of RCB
crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are f ields that can be parsed from the completion header.
Alternatively, you can load a register CUR_ADDR with Lower_Address at the start of each
incoming completion, increment per DW or QW as appropriate, then count an RCB
whenever CUR_ADDR rolls over.

5. At the start of each incoming completion, or when that completion begins at or crosses
at a naturally aligned credit boundary, decrease CPLD_PENDING by 1. The number of
credit-boundary crossings is given by:

DATA_CROSSED = ceiling[((Lower_Address mod 16 B) + Length) / 16 B]

Alternatively, you can load a register CUR_ADDR with Lower_Address at the start of each
incoming completion, increment per DW or QW as appropriate, then count an RCB
whenever CUR_ADDR rolls over each 16-byte address boundary.

This method is the least wasteful but requires the greatest amount of user logic. If even f iner
granularity is desired, you can scale the Total_CplD value by 2 or 4 to get the number of
completion QWORDs or DWORDs, respectively, and adjust the data calculations accordingly.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=290

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 291
PG023 November 19, 2014

Appendix C

Debugging
This appendix provides details about resources available on the Xilinx® Support website
and debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the Virtex®-7 FPGA, the Xilinx
Support web page (www.xilinx.com/support) contains key resources such as product
documentation, release notes, answer records, information about known issues, and links
for obtaining further product support.

Documentation
This product guide is the main document associated with the Gen3 Integrated Block for
PCIe® core. This guide, along with documentation related to all products that aid in the
design process, can be found on the Xilinx Support web page (www.xilinx.com/support) or
by using the Xilinx Documentation Navigator.

You can download the Xilinx Documentation Navigator from the Design Tools tab on the
Downloads page (www.xilinx.com/download). For more information about this tool and the
features available, refer to the online help after installation.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips. The Solution Center for the PCIe core is located at at Xilinx PCI Express
Solution Center. Extensive debugging information is available in AR: 56802.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/answers/56802.htm
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/answers/34536.htm
http://www.xilinx.com/support/answers/34536.htm
www.xilinx.com/support
www.xilinx.com/download
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=291

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 292
PG023 November 19, 2014

Appendix C: Debugging

Answer Records for this core are listed below, and can be located by using the Search
Support box on the main Xilinx support web page. To maximize your search results, use
proper keywords such as

• Product name

• Tool messages

• Summary of the issue encountered.

A f ilter search is available after results are returned to further target the results.

Master Answer Record for the Gen3 Integrated Block for PCIe

AR: 54645

Contacting Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

To contact Technical Support:

• Navigate to www.xilinx.com/support.

• Open a WebCase by selecting the WebCase link located under Support Quick Links.

When opening a WebCase, include:

• Target FPGA including package and speed grade

• All applicable Vivado® Design Suite, synthesis, and simulator software versions

• Additional f iles based on the specific issue might be required. See the relevant sections
in this debug guide for further information on specific f iles to include with the
WebCase.

Note: Access to WebCase is not available in all cases. Log in to the WebCase tool to see your specif ic
support options.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/answers/54645.htm
http://www.xilinx.com/support
http://www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=292

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 293
PG023 November 19, 2014

Appendix C: Debugging

Debug Tools
There are many tools available to debug PCI Express design issues. This section indicates
which tools are useful for debugging the various situations encountered.

Vivado Lab Tools
Vivado lab tools inserts logic analyzer (ILA) and virtual I/O (VIO) cores directly into your
design. Vivado lab tools also allow you to set trigger conditions to capture application and
integrated block port signals in hardware. Captured signals can then be analyzed. This
feature in the Vivado IDE is used for logic debugging and validation of a design running in
Xilinx devices.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores,
including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

See Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 14].

Link Analyzers
Third-party link analyzers show link traff ic in a graphical or text format. Lecroy, Agilent, and
Vmetro are companies that make common analyzers available today. These tools greatly
assist in debugging link issues and allow users to capture data which Xilinx support
representatives can view to assist in interpreting link behavior.

Third-Party Software Tools
This section describes third-party software tools that can be useful in debugging.

LSPCI (Linux)

LSPCI is available on Linux platforms and allows users to view the PCI Express device
configuration space. LSPCI is usually found in the /sbin directory. LSPCI displays a list of
devices on the PCI buses in the system. See the LSPCI manual for all command options.
Some useful commands for debugging include:

• lspci -x -d [<vendor>]:[<device>]

This displays the f irst 64 bytes of configuration space in hexadecimal form for the device
with vendor and device ID specif ied (omit the -d option to display information for all

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=293

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 294
PG023 November 19, 2014

Appendix C: Debugging

devices). The default Vendor/Device ID for Xilinx cores is 10EE:6012. Here is a sample of
a read of the configuration space of a Xilinx device:

> lspci -x -d 10EE:6012
81:00.0 Memory controller: Xilinx Corporation: Unknown device 6012
00: ee 10 12 60 07 00 10 00 00 00 80 05 10 00 00 00
10: 00 00 80 fa 00 00 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 ee 10 6f 50
30: 00 00 00 00 40 00 00 00 00 00 00 00 05 01 00 00

Included in this section of the configuration space are the Device ID, Vendor ID, Class
Code, Status and Command, and Base Address Registers.

• lspci -xxxx -d [<vendor>]:[<device>]

This displays the extended configuration space of the device. It can be useful to read the
extended configuration space on the root and look for the Advanced Error Reporting
(AER) registers. These registers provide more information on why the device has flagged
an error (for example, it might show that a correctable error was issued because of a
replay timer timeout).

• lspci -k

Shows kernel drivers handling each device and kernel modules capable of handling it
(works with kernel 2.6 or later).

PCItree (Windows)

PCItree can be downloaded at www.pcitree.de and allows the user to view the PCI Express
device configuration space and perform one DWORD memory writes and reads to the
aperture.

The configuration space is displayed by default in the lower right corner when the device is
selected, as shown in Figure C-1.

Send Feedback

http://www.xilinx.com
http://www.pcitree.de
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=294

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 295
PG023 November 19, 2014

Appendix C: Debugging

HWDIRECT (Windows)

HWDIRECT can be purchased at www.eprotek.com and allows you to view the PCI Express
device configuration space as well as the extended configuration space (including the AER
registers on the root).

X-Ref Target - Figure C-1

Figure C-1: PCItree with Read of Configuration Space

Send Feedback

http://www.xilinx.com
http://www.eprotek.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=295

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 296
PG023 November 19, 2014

Appendix C: Debugging

PCI-SIG Software Suites

PCI-SIG® software suites such as PCIE-CV can be used to test compliance with the
specif ication. This software can be downloaded at www.pcisig.com.

Simulation Debug
This section provides simulation debug flow diagrams for some of the most common issues
experienced by users. Endpoints that are shaded gray indicate that more information can be
found in sections after Figure C-3.

Questa SIM Debug
Figure C-3 shows the flowchart for Mentor Graphics Questa® SIM debug.

X-Ref Target - Figure C-2

Figure C-2: HWDIRECT with Read of Configuration Space

Send Feedback

http://www.xilinx.com
http://www.pcisig.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=296

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 297
PG023 November 19, 2014

Appendix C: Debugging

Hardware Debug
Hardware issues can range from device recognition issues to problems seen after hours of
testing. This section provides debug flow diagrams for some of the most common issues.
The Vivado lab tools are a valuable resource to use in hardware debug. The signal names
mentioned in the following individual sections can be probed using the Vivado lab tools for
debugging the specific problems.

Endpoints that are shaded gray indicate that more information can be found in sections
after Figure C-4.

X-Ref Target - Figure C-3

Figure C-3: Questa SIM Debug Flow Diagram

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=297

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 298
PG023 November 19, 2014

Appendix C: Debugging

X-Ref Target - Figure C-4

Figure C-4: Design Fails in Hardware Debug Flow Diagram

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=298

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 299
PG023 November 19, 2014

Appendix C: Debugging

FPGA Configuration Time Debug
Device initialization and configuration issues can be caused by not having the FPGA
configured fast enough to enter link training and be recognized by the system. Section 6.6
of PCI Express Base Specification, rev. 3.0 [Ref 2] states two rules that might be impacted by
FPGA Configuration Time:

• A component must enter the LTSSM Detect state within 20 ms of the end of the
Fundamental reset.

• A system must guarantee that all components intended to be software visible at boot
time are ready to receive Configuration Requests within 100 ms of the end of
Conventional Reset at the Root Complex.

These statements basically mean the FPGA must be configured within a certain f inite time,
and not meeting these requirements could cause problems with link training and device
recognition.

Configuration can be accomplished using an onboard PROM or dynamically using JTAG.
When using JTAG to configure the device, configuration typically occurs after the Chipset
has enumerated each peripheral. After configuring the FPGA, a soft reset is required to
restart enumeration and configuration of the device. A soft reset on a Windows based PC is
performed by going to Start > Shut Down and then selecting Restart.

To eliminate FPGA configuration as a root cause, the designer should perform a soft restart
of the system. Performing a soft reset on the system keeps power applied and forces
re-enumeration of the device. If the device links up and is recognized after a soft reset is
performed, the FPGA configuration is most likely the issue. Most typical systems use ATX
power supplies which provide some margin on this 100 ms window as the power supply is
normally valid before the 100 ms window starts. For more information on FPGA
configuration, see FPGA Configuration, page 308.

Link is Training Debug
Figure C-5 shows the flowchart for link trained debug.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=299

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 300
PG023 November 19, 2014

Appendix C: Debugging

Clock Debug

One reason to not deassert the user_reset signal is that the FPGA logic PLL (MMCM) and
Transceiver PLL have not locked to the incoming clock. To verify lock, monitor the
transceiver CPLLLOCK or QPLLLOCK output and the MMCM LOCK output. If the PLLs do not

X-Ref Target - Figure C-5

Figure C-5: Link Trained Debug Flow Diagram

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=300

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 301
PG023 November 19, 2014

Appendix C: Debugging

lock as expected, it is necessary to ensure the incoming reference clock meets the
requirements in the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 7]. The
REFCLK signal should be routed to the dedicated reference clock input pins on the serial
transceiver, and the user design should instantiate the IBUFDS_GTE2 primitive in the user
design. See the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 7] for more
information on PCB layout requirements, including reference clock requirements.

Reference clock jitter can potentially close both the TX and RX eyes, depending on the
frequency content of the phase jitter. Therefore, as clean a reference clock as possible must
be maintained. Reduce crosstalk on REFCLK by isolating the clock signal from nearby
high-speed traces. Maintain a separation of at least 25 mils from the nearest aggressor
signals. The PCI Special Interest Group website provides other tools for ensuring the
reference clocks are compliant to the requirements of the PCI Express Specification:
www.pcisig.com/specifications/pciexpress/compliance/compliance_library

Debugging PCI Configuration Space Parameters

Often, a user application fails to be recognized by the system, but the Xilinx PIO Example
design works. In these cases, the user application is often using a PCI configuration space
setting that is interfering with the system systems ability to recognize and allocate
resources to the card.

Xilinx solutions for PCI Express handle all configuration transactions internally and generate
the correct responses to incoming configuration requests. Chipsets have limits as to the
amount of system resources it can allocate and the core must be configured to adhere to
these limitations.

The resources requested by the Endpoint are identif ied by the BAR settings within the
Endpoint configuration space. You should verify that the resources requested in each BAR
can be allocated by the chipset. I/O BARs are especially limited so configuring a large I/O
BAR typically prevents the chipset from configuring the device. Generate a core that
implements a small amount of memory (approximately 2 KB) to identify if this is the root
cause.

The Class Code setting selected in the Vivado IP catalog can also affect configuration. The
Class Code informs the Chipset as to what type of device the Endpoint is. Chipsets might
expect a certain type of device to be plugged into the PCI Express slot and configuration
might fail if it reads an unexpected Class Code. The BIOS could be configurable to work
around this issue.

Use the PIO design with default settings to rule out any device allocation issues. The PIO
design default settings have proven to work in all systems encountered when debugging
problems. If the default settings allow the device to be recognized, then change the PIO
design settings to match the intended user application by changing the PIO configuration
the Vivado IP catalog. Trial and error might be required to pinpoint the issue if a link
analyzer is not available.

Send Feedback

http://www.xilinx.com
http://www.pcisig.com/specifications/pciexpress/compliance/compliance_library
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=301

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 302
PG023 November 19, 2014

Appendix C: Debugging

Using a link analyzer, it is possible to monitor the link traff ic and possibly determine when
during the enumeration and configuration process problems occur.

Application Requirements

During enumeration, it is possible for the chipset to issue TLP traffic that is passed from the
core to the backend application. A common oversight when designing custom backend
applications is to not have logic which handles every type incoming request. As a result, no
response is created and problems arise. The PIO design has the necessary backend functions
to respond correctly to any incoming request. It is the responsibility of the application to
generate the correct response. These packet types are presented to the application:

• Requests targeting the Expansion ROM (if enabled)

• Message TLPs

• Memory or I/O requests targeting a BAR

• All completion packets

The PIO design, can be used to rule out any of these types of concerns, as the PIO design
responds to all incoming transactions to the user application in some way to ensure the host
receives the proper response allowing the system to progress. If the PIO design works, but
the custom application does not, some transaction is not being handled properly.

The Vivado lab tools should be implemented on the wrapper Receive AXI4-Stream interface
to identify if requests targeting the backend application are drained and completed
successfully.

Using a Link Analyzer to Debug Device Recognition Issues

In cases where the link is up (cfg_phy_link_down = 0), but the device is not recognized
by the system, a link analyzer can help solve the issue. It is likely the FPGA is not responding
properly to some type of access. The link view can be used to analyze the traff ic and see if
anything looks out of place.

To focus on the issue, it might be necessary to try different triggers. Here are some trigger
examples:

• Trigger on the first INIT_FC1 and/or UPDATE_FC in either direction. This allows the
analyzer to begin capture after link up.

• The f irst TLP normally transmitted to an Endpoint is the Set Slot Power Limit Message.
This usually occurs before Configuration traff ic begins. This might be a good trigger
point.

• Trigger on Configuration TLPs.

• Trigger on Memory Read or Memory Write TLPs.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=302

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 303
PG023 November 19, 2014

Appendix C: Debugging

Data Transfer Failing Debug
Figure C-6 shows the flowchart for data transfer debug.

X-Ref Target - Figure C-6

Figure C-6: Data Transfer Debug Flow Diagram

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=303

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 304
PG023 November 19, 2014

Appendix C: Debugging

Identifying Errors
Hardware symptoms of system lock up issues are indicated when the system hangs or a blue
screen appears (PC systems). The PCI Express Base Specification, rev. 3.0 [Ref 2] requires that
error detection be implemented at the receiver. A system lock up or hang is commonly the
result of a Fatal Error and is reported in bit 2 of the receiver Device Status register. Using the
Vivado lab tools, monitor the device status register of the core to see if a fatal error is being
reported.

A fatal error reported at the Root complex implies an issue on the transmit side of the EP.
The Root Complex Device Status register can often times be seen using PCITree (Windows)
or LSPCI (Linux). If a fatal error is detected, see the Transmit section. A Root Complex can
often implement Advanced Error Reporting, which further distinguishes the type of error
reported. AER provides valuable information as to why a certain error was flagged and is
provided as an extended capability within a devices configuration space. Section 7.10 of the
PCI Express Base Specification, rev. 3.0 [Ref 2] provides more information on AER registers.

Transmit

Fatal Error Detected on Root or Link Partner

Check to make sure the TLP is correctly formed and that the payload (if one is attached)
matches what is stated in the header length f ield. The Endpoints device status register does
not report errors created by traff ic on the transmit channel.

Monitor the AXI4-Stream signals to verify all traff ic is being initiated correctly (see Port
Descriptions, page 13).

Fatal Error Not Detected

Ensure that the address provided in the TLP header is valid. The kernel mode driver attached
to the device is responsible for obtaining the system resources allocated to the device. In a
Bus Mastering design, the driver is also responsible for providing the application with a
valid address range. System hangs or blue screens might occur if a TLP contains an address
that does not target the designated address range for that device.

Receive

System lock up conditions due to issues on the receive channel of the PCI Express core are
often result of an error message being sent upstream to the root. Error messages are only
sent when error reporting is enabled in the Device Control register.

A fatal condition is reported if any of these events occur:

• Training Error

• DLL Protocol Error

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=304

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 305
PG023 November 19, 2014

Appendix C: Debugging

• Flow Control Protocol Error

• Malformed TLP

• Receiver Overflow

Non-Fatal Errors
This subsection lists conditions reported as Non-Fatal errors. See the PCI Express Base
Specification, rev. 3.0 [Ref 2] for more details.

If the error is being reported by the root, the AER registers can be read to determine the
condition that led to the error. Use a tool such as HWDIRECT, discussed in Third-Party
Software Tools, page 293, to read the root AER registers. Chapter 7 of the PCI Express Base
Specification [Ref 2] defines the AER registers. If the error is signaled by the Endpoint, debug
ports are available to help determine the specif ic cause of the error.

Correctable Non-Fatal errors are:

• Receiver Error

• Bad TLP

• Bad DLLP

• Replay Timeout

• Replay NUM Rollover

The f irst three errors listed above are detected by the receiver and are not common in
hardware systems. The replay error conditions are signaled by the transmitter. If an ACK is
not received for a packet within the allowed time, it is replayed by the transmitter.
Throughput can be reduced if many packets are being replayed, and the source can usually
be determined by examining the link analyzer or Vivado lab tools captures.

Uncorrectable Non-Fatal errors are:

• Poisoned TLP

• Received ECRC Check Failed

• Unsupported Request (UR)

• Completion Timeout

• Completer Abort

• Unexpected Completion

• ACS Violation

An unsupported request usually indicates that the address in the TLP did not fall within the
address space allocated to the BAR. This often points to an issue with the address

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=305

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 306
PG023 November 19, 2014

Appendix C: Debugging

translation performed by the driver. Ensure also that the BAR has been assigned correctly by
the root at start-up. LSPCI or PCItree discussed in Third-Party Software Tools, page 293 can
be used to read the BAR values for each device.

A completion timeout indicates that no completion was returned for a transmitted TLP and
is reported by the requester. This can cause the system to hang (could include a blue screen
on Windows) and is usually caused when one of the devices locks up and stops responding
to incoming TLPs. If the root is reporting the completion timeout, the Vivado lab tools can
be used to investigate why the user application did not respond to a TLP (for example, the
user application is busy, there are no transmit buffers available, or s_axis_tx_tready is
deasserted). If the Endpoint is reporting the Completion timeout, a link analyzer would show
the traff ic patterns during the time of failure and would be useful in determining the root
cause.

Next Steps
If the debug suggestions listed previously do not resolve the issue, open a support case to
have the appropriate Xilinx expert assist with the issue.

To create a technical support case in WebCase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

• Detailed description of the issue and results of the steps listed above.

• Attach Vivado lab tools VCD captures taken in the steps above.

To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com/xlnx/

Additional Transceiver Control and Status Ports
Table C-1 describes the ports used to debug transceiver related issues.

RECOMMENDED: Debugging transceiver related issues is recommended for advanced users only.

Table C-1: Ports Used for Transceiver Debug

Port Direction
(I/O) Width Description

pipe_txprbssel I 3 PRBS input

pipe_rxprbssel I 3 PRBS input

pipe_rxprbsforceerr I 1 PRBS input

pipe_rxprbscntrreset I 1 PRBS input

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/clearexpress/websupport.htm
http://forums.xilinx.com/xlnx/
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=306

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 307
PG023 November 19, 2014

Appendix C: Debugging

pipe_loopback I 1 PIPE loopback.

pipe_rxprbserr O 1 PRBS output.

pipe_rst_fsm O Should be examined if PIPE_RST_IDLE is stuck at 0.

pipe_qrst_fsm O Should be examined if PIPE_RST_IDLE is stuck at 0.

pipe_sync_fsm_tx O
Should be examined if PIPE_RST_FSM stuck at
11'b10000000000, or PIPE_RATE_FSM stuck at
24'b000100000000000000000000.

pipe_sync_fsm_rx O Deprecated.

pipe_drp_fsm O Should be examined if PIPE_RATE_FSM is stuck at
100000000.

pipe_rst_idle O Wrapper is in IDLE state if PIPE_RST_IDLE is High.

pipe_qrst_idle O Wrapper is in IDLE state if PIPE_QRST_IDLE is High.

pipe_rate_idle O Wrapper is in IDLE state if PIPE_RATE_IDLE is High.

PIPE_DEBUG_0/gt_txresetdone O

Generic debug ports to assist debug. These are generic
debug ports to bring out internal PIPE Wrapper signals,
such as raw GT signals. DEBUG_0 to DEBUGT_9 are intended
for per lane signals. The bus width of these generic debug
ports depends on the number of lanes configured in the
wrapper.

PIPE_DEBUG_1/gt_rxresetdone O

Generic debug ports to assist debug. These are generic
debug ports to bring out internal PIPE Wrapper signals,
such as raw GT signals. DEBUG_0 to DEBUGT_9 are intended
for per lane signals.The bus width of these generic debug
ports depends on the number of lanes configured in the
wrapper.

PIPE_DEBUG_2/gt_phystatus O

Generic debug ports to assist debug. These are generic
debug ports to bring out internal PIPE Wrapper signals,
such as raw GT signals. DEBUG_0 to DEBUGT_9 are intended
for per lane signals. The bus width of these generic debug
ports depends on the number of lanes configured in the
wrapper.

PIPE_DEBUG_3/gt_rxvalid O

Generic debug ports to assist debug. These are generic
debug ports to bring out internal PIPE Wrapper signals,
such as raw GT signals. DEBUG_0 to DEBUGT_9 are intended
for per lane signals. The bus width of these generic debug
ports depends on the number of lanes configured in the
wrapper.

PIPE_DEBUG_4/
gt_txphaligndone O

Generic debug ports to assist debug. These generic debug
ports bring out internal PIPE Wrapper signals, such as raw
GT signals. DEBUG_0 to DEBUGT_9 are intended for per lane
signals. The bus width of these generic debug ports
depends on the number of lanes configured in the wrapper.

Table C-1: Ports Used for Transceiver Debug (Cont’d)

Port Direction
(I/O) Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=307

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 308
PG023 November 19, 2014

Appendix C: Debugging

FPGA Configuration
This section discusses how to configure the Virtex-7 FPGA so that the device can link up and
be recognized by the system. This information is provided for you to choose the correct
FPGA configuration method for the system and verify that it works as expected.

This section discusses how specific requirements of the PCI Express Base Specification and
PCI Express Card Electromechanical Specification [Ref 2] apply to FPGA configuration.

RECOMMENDED: Where appropriate, Xilinx recommends that you read the actual specifications for
detailed information. .

PIPE_DEBUG_5/
gt_rxphaligndone O

Generic debug ports to assist debug. These generic debug
ports bring out internal PIPE Wrapper signals, such as raw
GT signals. DEBUG_0 to DEBUGT_9 are intended for per lane
signals. The bus width of these generic debug ports
depends on the number of lanes configured in the wrapper.

PIPE_DEBUG_6/
gt_rxcommadet O

Generic debug ports to assist debug. These generic debug
ports bring out internal PIPE Wrapper signals, such as raw
GT signals. DEBUG_0 to DEBUGT_9 are intended for per lane
signals. The bus width of these generic debug ports
depends on the number of lanes configured in the wrapper.

PIPE_DEBUG_7/gt_rdy O

Generic debug ports to assist debug. These generic debug
ports bring out internal PIPE Wrapper signals, such as raw
GT signals. DEBUG_0 to DEBUGT_9 are intended for per lane
signals. The bus width of these generic debug ports
depends on the number of lanes configured in the wrapper.

PIPE_DEBUG_8/
user_rx_converge O

Generic debug ports to assist debug. These generic debug
ports bring out internal PIPE Wrapper signals, such as raw
GT signals. DEBUG_0 to DEBUGT_9 are intended for per lane
signals. The bus width of these generic debug ports
depends on the number of lanes configured in the wrapper.

PIPE_DEBUG_9/
PIPE_TXELECIDLE O

Generic debug ports to assist debug. These generic debug
ports bring out internal PIPE Wrapper signals, such as raw
GT signals. DEBUG_0 to DEBUGT_9 are intended for per lane
signals. The bus width of these generic debug ports
depends on the number of lanes configured in the wrapper.

Table C-1: Ports Used for Transceiver Debug (Cont’d)

Port Direction
(I/O) Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=308

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 309
PG023 November 19, 2014

Appendix C: Debugging

Configuration Terminology
In this section, these terms are used to differentiate between FPGA configuration and
configuration of the PCI Express® device:

• Configuration of the FPGA. FPGA configuration is used.

• Configuration of the PCI Express device. After the link is active, configuration is used.

Configuration Access Time
In standard systems for PCI Express, when the system is powered up, the configuration
software running on the processor starts scanning the PCI Express bus to discover the
machine topology.

The process of scanning the PCI Express hierarchy to determine its topology is referred to as
the enumeration process. The root complex accomplishes this by initiating configuration
transactions to devices as it traverses and determines the topology.

All PCI Express devices are expected to have established the link with their link partner and
be ready to accept configuration requests during the enumeration process. As a result,
there are requirements as to when a device needs to be ready to accept configuration
requests after power up; if the requirements are not met, this occurs:

• If a device is not ready and does not respond to configuration requests, the root
complex does not discover it and treats it as non-existent.

• The operating system does not report the existence of the device, and the user
application is not able to communicate with the device.

Choosing the appropriate FPGA configuration method is key to ensuring the device is able
to communicate with the system in time to achieve link up and respond to the configuration
accesses.

Configuration Access Specification Requirements

Two PCI Express specif ication items are relevant to configuration access:

1. Section 6.6 of PCI Express Base Specification, rev. 3.0 [Ref 2] states “A system must
guarantee that all components intended to be software visible at boot time are ready to
receive Configuration Requests within 100 ms of the end of Fundamental Reset at the
Root Complex.” For detailed information about how this is accomplished, see the
specification; it is beyond the scope of this discussion.

Xilinx compliance to this specification is validated by the PCI Express-CV tests. The PCI
Special Interest Group (PCI-SIG) website [Ref 2] provides the PCI Express Configuration
Test Software to verify the device meets the requirement of being able to receive
configuration accesses within 100 ms of the end of the fundamental reset. The software,

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=309

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 310
PG023 November 19, 2014

Appendix C: Debugging

available to any member of the PCI-SIG, generates several resets using the in-band reset
mechanism and PERST# toggling to validate robustness and compliance to the
specification.

2. Section 6.6 of PCI Express Base Specification rev. 3.0 [Ref 2] defines three parameters
necessary “where power and PERST# are supplied.” The parameter TPVPERL applies to FPGA
configuration timing and is defined as:

TPVPERL - PERST# must remain active at least this long after power becomes valid.

The PCI Express Base Specification [Ref 2] does not give a specific value for TPVPERL – only
its meaning is defined. The most common form factor used by designers with the core is
an ATX-based form factor. The PCI Express Card Electromechanical Specification [Ref 2]
focuses on requirements for ATX-based form factors. This applies to most designs
targeted to standard desktop or server type motherboards. Figure C-7 shows the
relationship between Power Stable and PERST#.

Section 2.6.2 of the PCI Express Card Electromechanical Specification, rev. 3.0 [Ref 2] defines
TPVPREL as a minimum of 100 ms, indicating that from the time power is stable the system
reset is asserted for at least 100 ms (as shown in Table C-2).

From Figure C-7 and Table C-2, it is possible to obtain a simple equation to define the FPGA
configuration time as follows:

FPGA Configuration Time ≤ TPWRVLD + TPVPERL Equation C-1

Given that TPVPERL is defined as 100 ms minimum, this becomes:

X-Ref Target - Figure C-7

Figure C-7: Power Up

Table C-2: TPVPERL Specification

Symbol Parameter Min Max Units

TPVPERL Power stable to PERST# inactive 100 ms

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=310

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 311
PG023 November 19, 2014

Appendix C: Debugging

FPGA Configuration Time ≤ TPWRVLD + 100 ms Equation C-2

Note: Although TPWRVLD is included in Equation C-2, it has yet to be defined in this discussion
because it depends on the type of system in use. The Board Power in Real-World Systems section
defines TPWRVLD for both ATX-based and non ATX-based systems.

FPGA configuration time is only relevant at cold boot; subsequent warm or hot resets do not
cause reconfiguration of the FPGA. If the design appears to be having issues due to FPGA
configuration, you should issue a warm reset as a simple test, which resets the system,
including the PCI Express link, but keep the board powered. If the issue does not appear, the
issue could be FPGA configuration time related.

Board Power in Real-World Systems
Several boards are used in PCI Express systems. The ATX Power Supply Design specif ication,
endorsed by Intel, is used as a guideline and for this reason followed in the majority of
mother boards and 100% of the time if it is an Intel-based motherboard. The relationship
between power rails and power valid signaling is described in the ATX 12V Power Supply
Design Guide [Ref 16]. Figure C-8, redrawn here and simplif ied to show the information
relevant to FPGA configuration, is based on the information and diagram found in section
3.3 of the ATX 12V Power Supply Design Guide. For the entire diagram and definition of all
parameters, see the ATX 12V Power Supply Design Guide.

Figure C-8 shows that power stable indication from Figure C-7 for the PCI Express system is
indicated by the assertion of PWR_OK. PWR_OK is asserted High after some delay when the
power supply has reached 95% of nominal.

X-Ref Target - Figure C-8

Figure C-8: ATX Power Supply

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=311

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 312
PG023 November 19, 2014

Appendix C: Debugging

Figure C-8 shows that power is valid before PWR_OK is asserted High. This is represented by
T3 and is the PWR_OK delay. The ATX 12V Power Supply Design Guide defines PWR_OK as
100 ms < T3 < 500 ms, indicating that from the point at which the power level reaches 95%
of nominal, there is a minimum of at least 100 ms but no more than 500 ms of delay before
PWR_OK is asserted. Remember, according to the PCI Express Card Electromechanical
Specification [Ref 2], the PERST# is guaranteed to be asserted a minimum of 100 ms from
when power is stable indicated in an ATX system by the assertion of PWR_OK.

Again, the FPGA configuration time equation is:

FPGA Configuration Time ≤ TPWRVLD + 100 ms Equation C-3

TPWRVLD is defined as PWR_OK delay period; that is, TPWRVLD represents the amount of time
that power is valid in the system before PWR_OK is asserted. This time can be added to the
amount of time the FPGA has to configure. The minimum values of T2 and T4 are negligible
and considered zero for purposes of these calculations. For ATX-based motherboards, which
represent the majority of real-world motherboards in use, TPWRVLD can be defined as:

100 ms ≤ TPWRVLD ≤ 500 ms Equation C-4

This provides these requirements for FPGA configuration time in both ATX and
non-ATX-based motherboards:

• FPGA Configuration Time ≤ 200 ms (for ATX based motherboard)

• FPGA Configuration Time ≤ 100 ms (for non-ATX based motherboard)

The second equation for the non-ATX based motherboards assumes a TPWRVLD value of 0 ms
because it is not defined in this context. Designers with non-ATX based motherboards
should evaluate their own power supply design to obtain a value for TPWRVLD.

This section assumes that the FPGA power (VCCINT) is stable before or at the same time that
PWR_OK is asserted. If this is not the case, additional time must be subtracted from the
available time for FPGA configuration.

RECOMMENDED: Avoid designing add-in cards with staggered voltage regulators with long delays.

Hot Plug Systems

Hot Plug systems generally employ the use of a Hot-Plug Power Controller located on the
system motherboard. Many discrete Hot-Plug Power Controllers extend TPVPERL beyond the
minimum 100 ms. Add-in card designers should consult the Hot-Plug Power Controller data
sheet to determine the value of TPVPERL. If the Hot-Plug Power Controller is unknown, then
a TPVPERL value of 100 ms should be assumed.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=312

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 313
PG023 November 19, 2014

Appendix C: Debugging

Recommendations
This section describes the methods for FPGA configuration and includes sample problem
analysis for FPGA configuration timing issues.

RECOMMENDED: For minimum FPGA configuration time, use the BPI configuration mode with a
parallel NOR flash, which supports high-speed synchronous read operation.

In addition, an external clock source can be supplied to the external master configuration
clock (EMCCLK) pin to ensure a consistent configuration clock frequency for all conditions.
See the 7 Series FPGAs Configuration User Guide (UG470) [Ref 4] for descriptions of the BPI
configuration mode and EMCCLK pin. This section discusses these recommendations and
includes sample analysis of potential issues that might arise during FPGA configuration.

FPGA Configuration Times for Virtex-7 Devices

During power up, the FPGA configuration sequence is performed in three steps:

1. Wait for power on reset (POR) for all voltages (VCCINT, VCCAUX, and VCCO_0) in the FPGA
to trip, referred to as POR Trip Time.

2. Wait for completion (deassertion) of INIT_B to allow the FPGA to initialize before
accepting a bitstream transfer.

Note: As a general rule, steps 1 and 2 require ≤ 50 ms

3. Wait for assertion of DONE, the actual time required for a bitstream to transfer depends
on:

° Bitstream size

° Clock (CCLK) frequency

° Transfer mode (and data bus width) from the flash device

- SPI = Serial Peripheral Interface (x1, x2, or x4)

- BPI = Byte Peripheral Interface (x8 or x16)

Bitstream transfer time can be estimated using this equation.

Bitstream transfer time = (bitstream size in bits)/(CCLK frequency)/ (data bus width in bits) Equation C-5

For detailed information about the configuration process, see the 7 Series FPGAs
Configuration User Guide (UG470) [Ref 4].

Sample Problem Analysis

This section presents data from an ASUS PL5 system to demonstrate the relationships
between Power Valid, FPGA Configuration, and PERST#. Figure C-9 shows a case where the
Endpoint failed to be recognized due to an FPGA configuration time issue. Figure C-10

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=313

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 314
PG023 November 19, 2014

Appendix C: Debugging

shows a successful FPGA configuration with the Endpoint being recognized by the system.

Failed FPGA Recognition

Figure C-9 illustrates an example of a cold boot where the host failed to recognize the Xilinx
FPGA. Although a second PERST# pulse assists in allowing more time for the FPGA to
configure, the slowness of the FPGA configuration clock (2 MHz) causes configuration to
complete well after this second deassertion. During this time, the system enumerated the
bus and did not recognize the FPGA.

Successful FPGA Recognition

Figure C-10 illustrates a successful cold boot test on the same system. In this test, the CCLK
was running at 50 MHz, allowing the FPGA to configure in time to be enumerated and
recognized. The f igure shows that the FPGA began initialization approximately 250 ms
before PWR_OK. DONE going High shows that the FPGA was configured even before
PWR_OK was asserted.

X-Ref Target - Figure C-9

Figure C-9: Host Fails to Recognize FPGA Due to Slow Configuration Time

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=314

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 315
PG023 November 19, 2014

Appendix C: Debugging

Workarounds for Closed Systems

For failing FPGA configuration combinations, designers might be able to work around the
issue in closed systems or systems where they can guarantee behavior. These options are
not recommended for products where the targeted end system is unknown.

1. Check if the motherboard and BIOS generate multiple PERST# pulses at start-up. This
can be determined by capturing the signal on the board using an oscilloscope. This is
similar to what is shown in Figure C-9. If multiple PERST# pulses are generated, this
typically adds extra time for FPGA configuration.

Define TPERSTPERIOD as the total sum of the pulse width of PERST# and deassertion
period before the next PERST# pulse arrives. Because the FPGA is not power cycled or
reconfigured with additional PERST# assertions, the TPERSTPERIOD number can be added
to the FPGA configuration equation.

FPGA Configuration Time ≤ TPWRVLD + TPERSTPERIOD + 100 ms Equation C-6

2. In closed systems, it might be possible to create scripts to force the system to perform
a warm reset after the FPGA is configured, after the initial power up sequence. This
resets the system along with the PCI Express subsystem allowing the device to be
recognized by the system.

Compiling Simulation Libraries

Use the compile_simlib command to compile simulation libraries. This tool is delivered
as part of the Xilinx software. For more information see Vivado Design Suite User Guide:
Logic Simulation (UG900) [Ref 12] and Vivado Design Suite Tcl Command Reference Guide
(UG835) [Ref 15].

X-Ref Target - Figure C-10

Figure C-10: Host Successfully Recognizes FPGA

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=315

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 316
PG023 November 19, 2014

Appendix C: Debugging

compile_simlib produces a modelsim.ini f ile containing the library mappings. In
Questa SIM, type vmap at the prompt to see the current library mappings. The mappings
can be updated in the ini f ile, or you can map a library at the Questa SIM prompt by typing:

vmap [<logical_name>] [<path>]

For example:

Vmap unisims_ver C:\my_unisim_lib

Next Steps
If the debug suggestions listed previously do not resolve the issue, a support case should be
opened to have the appropriate Xilinx expert assist with the issue.

To create a technical support case in WebCase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

• Detailed description of the issue and results of the steps listed above.

• Attach a VCD or WLF dump of the simulation.

To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com/xlnx/

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/clearexpress/websupport.htm
http://forums.xilinx.com/xlnx/
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=316

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 317
PG023 November 19, 2014

Appendix D

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

References
These documents provide supplemental material useful with this product guide:

1. AMBA AXI4-Stream Protocol Specification

2. PCI-SIG® Specif ications

3. Virtex-7 FPGAs Data Sheet: DC and Switching Characteristics (DS183)

4. 7 Series FPGAs Configuration User Guide (UG470)

5. 7 Series FPGAs SelectIO Resources User Guide (UG471)

6. 7 Series FPGAs Clocking Resources User Guide (UG472)

7. 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)

8. Vivado Design Suite User Guide: Designing with IP (UG896)

9. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

10. Vivado Design Suite User Guide: Using Constraints (UG903)

11. Vivado Design Suite User Guide: Getting Started (UG910)

12. Vivado Design Suite User Guide: Logic Simulation (UG900)

13. ISE to Vivado Design Suite Migration Methodology Guide (UG911)

14. Vivado Design Suite User Guide: Programming and Debugging (UG908)

15. Vivado Design Suite Tcl Command Reference Guide (UG835)

16. ATX Power Supply Design Guide

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.pcisig.com/specifications
http://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_Sheet.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf
http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
http://www.formfactors.org/developer/specs/ATX12V_PSDG_2_2_public_br2.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=317

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 318
PG023 November 19, 2014

Appendix D: Additional Resources and Legal Notices

Revision History
The following table shows the revision history for this document.

Date Version Revision

11/19/2014 3.0 • Corrected the value for the Extended Tag parameter.
• Updated the tandem configuration information.
• Clarif ication made to the PIPE Mode Simulation parameter description.
• Added support for Cadence Incisive Enterprise Simulator (IES) and

Synopsys Verilog Compiler Simulator (VCS).
• Corrected to the pipe_rxstatus transceiver debug signal width, and added

the new Enable Powerdown Interface parameter in the Migrating and
Upgrading chapter.

10/01/2014 3.0 • Updated the applicable packages for XC7VH580T and XC7VH870T devices.
• Additional details added to description for cfg_vf_status.
• Updated tandem configuration information.
• Added guidance to use example design constraints even when not using

the example design.

06/04/2014 3.0 • Updated device information.
• Updated the Tandem Configuration information.

04/02/2014 3.0 • Updated device information.

12/18/2013 3.0 • Updated for core v3.0.
• Updated logic sharing information in Designing with the Core.

10/02/2013 2.2 • Updated for core v2.2.
• Added BUFG resource utilization numbers.
• Added Vivado IP integrator support.
• Added information about the Shared Logic feature, and the new Shared

Logic and Core Interface Parameters options in the Vivado IDE.
• Updated the Tandem Configuration information.
• Added Simulation, Synthesis and Implementation, and Test Bench chapters.
• Reorganized content: moved test bench information from Example Design

chapter to Test Bench chapter, and moved core simulation content into
Simulation chapter.

• Added Additional Transceiver Control and Status Ports section to
Debugging appendix.

06/19/2013 2.1 • Updated for core v2.1.
• Major updates to the Tandem Configuration section in Chapter 3.
• Updated the Directory and Files Content section in Chapter 5.
• Added simulation instructions in Chapter 5.

03/20/2013 2.0 • Updated for core v2.0 and Vivado Design Suite-only support.
• Added Clocking Interface for Partial Reconfiguration, User TPH Interface,

Non-Project Flow and Known Restrictions.
• Updated Tandem Configuration.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=318

Gen3 Integrated Block for PCIe v3.0 www.xilinx.com 319
PG023 November 19, 2014

Appendix D: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2012 - 2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe and PCI Express are trademarks
of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

12/18/2012 1.3 • Updated core to v1.4, ISE Design Suite to 14.4 and Vivado Design Suite to
2012.4.

• Added Tandem Configuration in Chapter 3.

10/16/2012 1.2 • Updated core to v1.3, ISE Design Suite to 14.3 and Vivado Design Suite to
2012.3.

• New screenshots and descriptions in Chapter 4, Customizing and
Generating the Core.

• Removed XC7VH290T
• Updated description for cfg_mgmt_addr, cfg_ltssm_state, and

cfg_interrupt_msi_int.
• Added Table 2-19, and made major updates to Table 2-27.
• Added Target Function Value to PF/VF map mappings (Table 3-4).
• Added note to contact Xilinx regarding Root Port configuration availability.
• Added PIPE MODE Simulation section in Chapter 5 and Chapter 9.
• Added new PIO write address and write data numbers in Programmed

Input/Output: Endpoint Example Design.
• Updated description for PFx_SRIOV_FIRST_VF_OFFSET attribute.

07/25/2012 1.1 • Updated core to v1.2 and ISE Design Suite version to 14.2.
• Added support for Vivado Design Suite 2012.2.
• Added Endpoint Model Test Bench for Root Port in Chapter 9.

04/24/2012 1.0 Initial Xilinx release.

Date Version Revision

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG023&Title=Virtex-7%20FPGA%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=319

	Virtex-7 FPGA Gen3 Integrated Block for PCI Express v3.0
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Feature Summary
	Applications
	Unsupported Features
	Licensing and Ordering Information

	Ch. 2: Product Specification
	Standards Compliance
	Resource Utilization
	Block Selection
	Port Descriptions
	AXI4-Stream Core Interfaces
	Completer reQuest (CQ) Interface
	Completer Completion (CC) Interface
	Requester reQuest (RQ) Interface
	Requester Completion (RC) Interface

	Other Core Interfaces
	Transmit Flow Control Interface
	Configuration Management Interface
	Configuration Status Interface
	Configuration Received Message Interface
	Configuration Transmit Message Interface
	Configuration Flow Control Interface
	Per Function Status Interface
	Configuration Control Interface
	Configuration Interrupt Controller Interface
	Configuration Extend Interface
	Clock and Reset Interface
	Clocking Interface for Partial Reconfiguration
	PCI Express Interface
	User TPH Interface

	Attribute Descriptions
	Client Interface

	Configuration Space

	Ch. 3: Designing with the Core
	General Design Guidelines
	System Clocking
	Synchronous and Non-Synchronous Clocking

	Clocking Requirements
	Resets
	Shared Logic
	Shared Clocking
	Example: Clock Sharing when Include Shared Logic (Clocking) in Example Design Is Selected
	Limitations

	Shared GT_COMMON
	Shared GT_COMMON Use Cases with GTH
	Limitations

	Shared GT_COMMON and Clocking
	Internal Shared GT_COMMON and Clocking

	AXI4-Stream Interface Description
	Overview of Features
	Data Alignment Options
	Straddle Option on Requester Completion Interface
	Receive Transaction Ordering
	Transmit Transaction Ordering

	Interface Operation
	Completer Interface
	Completer Request Descriptor Formats
	Completer Request Interface Operation
	Completer Completion Interface Operation

	Receive Message Interface
	Requester Interface
	Requester Request Interface Operation
	Requester Request Descriptor Formats
	Requester Completion Interface Operation

	Power Management
	Active State Power Management
	Programmed Power Management
	PPM L0 State
	PPM L1 State
	PPM L3 State

	Generating Interrupt Requests
	Legacy Interrupt Mode
	MSI Mode
	MSI-X Mode

	Designing with Configuration Space Registers and Configuration Interface
	Link Training: 2-Lane, 4-Lane, and 8-Lane Components
	Link Partner Supports Fewer Lanes
	Lane Becomes Faulty

	Lane Reversal
	Tandem Configuration
	Supported Devices
	Overview of Tandem Tool Flow
	Tandem PROM
	Tandem PROM VC709 Example Tool Flow
	Tandem PROM Summary

	Tandem PCIe
	Tandem PCIe VC709 Example Tool Flow
	Loading The Second Stage Through PCI Express
	Tandem PCIe Summary

	Using Tandem With a User Hardware Design
	Method 1 – Using the Existing PCI Express Example Design
	Method 2 – Migrating the PCIe Design into a New Vivado Project

	Tandem Configuration RTL Design
	MUXing Critical Inputs
	Tandem Completer
	Tandem Configuration Logic
	User Application Handshake

	Tandem Configuration Details
	I/O Behavior
	Configuration Pin Behavior
	Configuration Persist (Tandem PROM Only)
	PROM Selection
	Programming the Device
	Known Limitation

	Tandem PROM/PCIe Resource Restrictions
	Moving the PCIe Reset Pin
	Non-Project Flow
	Simulating the Tandem IP Core
	Calculating Bitstream Load Time for Tandem
	Example 1
	Example 2
	Using Bitstream Compression
	Other Bitstream Load Time Considerations
	Sample Bitstream Sizes

	Known Restrictions
	Poisoned Atomic Completion Unsupported Request
	Description
	Workaround

	Memory Read Lock That Misses BAR
	Description
	Workaround

	SRIOV MSI Pending Bits
	Description
	Workaround

	Root Port Signaled System Error Bit
	Description
	Workaround

	Root Port De-Emphasis
	Description
	Workaround

	Root PORT LABS Bit
	Description
	Workaround

	Root Port Received Master Abort
	Description
	Workaround

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Basic Mode
	Basic
	Capabilities
	Identity Settings (PF0 IDs and PF1 IDs)
	Base Address Registers (PF0 and PF1)
	Legacy/MSI Capabilities

	Advanced Mode
	Basic
	Capabilities
	PF0 ID and PF1 ID
	PF0 BAR and PF1 BAR
	SRIOV Config (PF0 and PF1)
	PF0 SRIOV BARs and PF1 SRIVO BARs
	SRIOV Base Address Register Overview
	Legacy/MSI Capabilities
	MSI-X Capabilities
	Power Management
	Extended Capabilities 1 and Extended Capabilities 2
	Shared Logic
	Core Interface Parameters

	Output Generation
	Endpoint Configuration
	Root Port Configuration

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Stacked Silicon Interconnect Devices
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Simulating with Tandem
	PIPE MODE Simulation
	External PIPE Interface

	Synthesis and Implementation

	Ch. 5: Detailed Example Design
	Overview of the Example Design
	Integrated Block Endpoint Configuration Overview
	Simulation Design Overview
	Implementation Design Overview
	Example Design Elements

	Programmed Input/Output: Endpoint Example Design
	System Overview
	PIO Hardware
	PIO Operation

	Simulating the Example Design
	Endpoint Configuration

	Synthesizing and Implementing the Example Design
	Directory and File Contents
	Endpoint Solution
	project_1/project_1.src/sources_1/ip/pcie3_7x_0
	pcie3_7x_0_example/pcie3_7x_0_example.srcs/sim_1/imports/pcie3_7x_0/ example_design
	pcie3_7x_0/source
	sim_1/simulation

	Root Port Solution
	project_1/project_1.src/sources_1/ip/pcie3_7x_0

	Ch. 6: Test Bench
	Root Port Model Test Bench for Endpoint
	Architecture
	Simulating the Design
	Scaled Simulation Timeouts
	Test Selection
	Verilog Test Selection

	Waveform Dumping
	Verilog Flow

	Output Logging
	Parallel Test Programs
	Test Description
	Test Program: pio_writeReadBack_test0

	Expanding the Root Port Model
	Root Port Model TPI Task List

	Endpoint Model Test Bench for Root Port
	Architecture
	Simulating the Design
	Scaled Simulation Timeouts
	Waveform Dumping
	Output Logging

	Appx. A: Migrating and Upgrading
	Migrating to the Vivado Design Suite
	Upgrading in the Vivado Design Suite
	Parameter Changes
	Port Changes

	Appx. B: Managing Receive-Buffer Space for Inbound Completions
	General Considerations and Concepts
	Completion Space
	Maximum Request Size
	Read Completion Boundary
	Important Note For High Performance Applications

	Methods of Managing Completion Space
	LIMIT_FC Method
	PACKET_FC Method
	RCB_FC Method
	DATA_FC Method

	Appx. C: Debugging
	Finding Help on Xilinx.com
	Documentation
	Solution Centers
	Answer Records
	Master Answer Record for the Gen3 Integrated Block for PCIe

	Contacting Technical Support

	Debug Tools
	Vivado Lab Tools
	Link Analyzers
	Third-Party Software Tools
	LSPCI (Linux)
	PCItree (Windows)
	HWDIRECT (Windows)
	PCI-SIG Software Suites

	Simulation Debug
	Questa SIM Debug

	Hardware Debug
	FPGA Configuration Time Debug
	Link is Training Debug
	Clock Debug
	Debugging PCI Configuration Space Parameters
	Application Requirements
	Using a Link Analyzer to Debug Device Recognition Issues

	Data Transfer Failing Debug
	Identifying Errors
	Transmit
	Receive

	Non-Fatal Errors
	Next Steps
	Additional Transceiver Control and Status Ports

	FPGA Configuration
	Configuration Terminology
	Configuration Access Time
	Configuration Access Specification Requirements

	Board Power in Real-World Systems
	Hot Plug Systems

	Recommendations
	FPGA Configuration Times for Virtex-7 Devices
	Sample Problem Analysis
	Workarounds for Closed Systems
	Compiling Simulation Libraries

	Next Steps

	Appx. D: Additional Resources and Legal Notices
	Xilinx Resources
	References
	Revision History
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

