
UltraScale Architecture
Gen3 Integrated Block for
PCI Express v4.1
LogiCORE IP Product Guide

Vivado Design Suite

PG156 January 29, 2016

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 2
PG156 January 29, 2016

Table of Contents
IP Facts

Chapter 1: Overview
Feature Summary. 7
Applications . 8
Unsupported Features. 8
Licensing and Ordering Information . 9

Chapter 2: Product Specification
Standards Compliance . 10
Resource Utilization. 10
Available Integrated Blocks for PCI Express . 11
GT Locations . 13
Port Descriptions . 13
Attribute Descriptions . 63
Configuration Space. 66

Chapter 3: Designing with the Core
Shared Logic . 74
Tandem Configuration. 78
Clocking. 104
Resets . 105
AXI4-Stream Interface Description . 106
Clocking Requirements . 113
Interface Operation . 113
Power Management . 183
Generating Interrupt Requests . 186
Designing with Configuration Space Registers and Configuration Interface 190
Link Training: 2-Lane, 4-Lane, and 8-Lane Components . 192
Lane Reversal . 193

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 195
Constraining the Core . 216

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=2

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 3
PG156 January 29, 2016

Simulation . 218
Synthesis and Implementation . 221

Chapter 5: Example Design
Overview of the Example Design . 222
Configurator Example Design . 233
Generating the Core. 240
Simulating the Example Design. 242
Synthesizing and Implementing the Example Design . 244

Chapter 6: Test Bench
Root Port Model Test Bench for Endpoint . 245
Endpoint Model Test Bench for Root Port . 258

Appendix A: Migrating and Upgrading
Migrating to the Vivado Design Suite. 261
Upgrading in the Vivado Design Suite . 261
Migrating From a 7 Series Gen2 Core to UltraScale Architecture-Based Gen3 Core. 262
Package Migration of UltraScale Architecture PCI Express Designs . 271

Appendix B: GT Locations
Kintex UltraScale Device GT Locations . 277
Virtex UltraScale Device GT Locations . 294

Appendix C: Managing Receive-Buffer Space for Inbound Completions
General Considerations and Concepts . 310
Methods of Managing Completion Space . 312

Appendix D: Debugging
Finding Help on Xilinx.com . 318
Hardware Debug . 319

Appendix E: Additional Resources and Legal Notices
Xilinx Resources . 322
References . 322
Revision History . 323
Please Read: Important Legal Notices . 325

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=3

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 4
PG156 January 29, 2016 Product Specification

Introduction
The Xilinx® UltraScale Architecture Gen3
Integrated Block for PCIe® solution IP core is a
high-bandwidth, scalable, and reliable serial
interconnect building block solution for use
with UltraScale™ architecture-based devices.
The Integrated Block for PCI Express (PCIe)
solution supports 1-lane, 2-lane, 4-lane, and
8-lane Endpoint configurations, including Gen1
(2.5 GT/s), Gen2 (5.0 GT/s) and Gen3 (8 GT/s)
speeds. It is compliant with PCI Express Base
Specification, rev. 3.0 [Ref 2]. This solution
supports the AXI4-Stream interface for the
customer user interface.

PCI Express offers a serial architecture that
alleviates many limitations of parallel bus
architectures by using clock data recovery
(CDR) and differential signaling. Using CDR (as
opposed to source synchronous clocking)
lowers pin count, enables superior frequency
scalability, and makes data synchronization
easier. PCI Express technology, adopted by the
PCI-SIG® as the next generation PCI™, is
backward-compatible to the existing PCI
software model.

With higher bandwidth per pin, low overhead,
low latency, reduced signal integrity issues, and
CDR architecture, the integrated block sets the
industry standard for a high-performance,
cost-efficient PCIe solution.

The UltraScale Architecture Gen3 Integrated
Block for PCIe solution is compatible with
industry-standard application form factors such
as the PCI Express Card Electromechanical
(CEM) v3.0 and the PCI Industrial Computer
Manufacturers Group (PICMG) v3.4
specifications [Ref 2].

For a list of features, see Feature Summary.

IP Facts

LogiCORE™ IP Facts Table

Core Specifics
Supported
Device Family(1) UltraScale Architecture

Supported User
Interfaces AXI4-Stream

Resources Resource Utilization

Provided with Core
Design Files Verilog

Example Design Verilog

Test Bench Verilog

Constraints File XDC

Simulation
Model Verilog

Supported
S/W Driver(2) N/A

Tested Design Flows(2)

Design Entry Vivado® Design Suite

Simulation For supported simulators, see the
Xilinx Design Tools: Release Notes Guide

Synthesis Vivado synthesis

Support
Provided by Xilinx at the Xilinx Support web page

Notes:
1. For a complete list of supported devices, see the Vivado

IP catalog.
2. For the supported versions of the tools, see the

Xilinx Design Tools: Release Notes Guide.

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+release+notes
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+release+notes
http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=4

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 5
PG156 January 29, 2016

Chapter 1

Overview
The UltraScale Architecture Gen3 Integrated Block for PCIe® core is a reliable,
high-bandwidth, scalable serial interconnect building block for use with UltraScale™ FPGAs.
The core instantiates the integrated block found in UltraScale devices.

Figure 1-1 shows the interfaces for the core.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=5

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 6
PG156 January 29, 2016

Chapter 1: Overview

X-Ref Target - Figure 1-1

Figure 1-1: UltraScale Architecture Gen3 Integrated Block for PCIe Interfaces

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=6

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 7
PG156 January 29, 2016

Chapter 1: Overview

Feature Summary
The core is a high-bandwidth, scalable, and flexible general-purpose I/O core for use with
most UltraScale devices. The GTH transceivers in the Integrated Block for PCI Express
(PCIe®) solution support 1-lane, 2-lane, 4-lane, and 8-lane operation, running at 2.5 GT/s
(Gen1), 5.0 GT/s (Gen2), and 8.0 GT/s (Gen3) line speeds. Endpoint configurations are
supported.

The customer user interface is compliant with the AMBA® AXI4-Stream interface. This
interface supports separate Requester, Completion, and Message interfaces. It allows for
flexible data alignment and parity checking. Flow control of data is supported in the receive
and transmit directions. The transmit direction additionally supports discontinuation of
in-progress transactions. Optional back-to-back transactions use straddling to provide
greater link bandwidth.

The key features of the core are:

• High-performance, highly flexible, scalable, and reliable general-purpose I/O core

° Compliant with the PCI Express Base Specification, rev. 3.0 [Ref 2]

° Compatible with conventional PCI software model

• GTH transceivers

° 2.5 GT/s, 5.0 GT/s, and 8.0 GT/s line speeds

° 1-lane, 2-lane, 4-lane, and 8-lane operation

• Endpoint configuration

• Multiple Function and Single-Root I/O Virtualization in the Endpoint configuration

° Two physical functions

° Six virtual functions

• Standardized user interface(s)

° Compliant to AXI4-Stream

° Separate Requester, Completion, and Message interfaces

° Flexible Data Alignment

° Parity generation and checking on AXI4-Stream interfaces

° Easy-to-use packet-based protocol

° Full-duplex communication enabling

° Optional back-to-back transactions to enable greater link bandwidth utilization

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=7

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 8
PG156 January 29, 2016

Chapter 1: Overview

° Support for flow control of data and discontinuation of an in-process transaction in
transmit direction

° Support for flow control of data in receive direction

• Compliant with PCI and PCI Express power management functions

• Optional Tag Management feature

• Maximum transaction payload of up to 1024 bytes

• End-to-End Cyclic Redundancy Check (ECRC)

• Advanced Error Reporting (AER)

• Multi-Vector MSI for up to 32 vectors and MSI-X

• Atomic operations and TLP processing hints

Applications
The core architecture enables a broad range of computing and communications target
applications, emphasizing performance, cost, scalability, feature extensibility and
mission-critical reliability. Typical applications include:

• Data communications networks

• Telecommunications networks

• Broadband wired and wireless applications

• Network interface cards

• Chip-to-chip and backplane interface cards

• Server add-in cards for various applications

Unsupported Features
The integrated block does not implement the Address Translation Service, but allows its
implementation in external soft logic.

Switch ports and the Resizable BAR Extended Capability are not supported.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=8

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 9
PG156 January 29, 2016

Chapter 1: Overview

Licensing and Ordering Information
The UltraScale Architecture Gen3 Integrated Block for PCIe core is provided at no additional
cost with the Vivado Design Suite under the terms of the Xilinx End User License.
Information about this and other Xilinx® LogiCORE™ IP modules is available at the Xilinx
Intellectual Property page. For information about pricing and availability of other Xilinx
LogiCORE IP modules and tools, contact your local Xilinx sales representative.

For additional information about the core, see the UltraScale Gen3 Integrated Block for PCIe
Express product page.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/ultrascale_gen3_pciexpress.html
http://www.xilinx.com/products/intellectual-property/ultrascale_gen3_pciexpress.html
http://www.xilinx.com/products/intellectual-property.html
http://www.xilinx.com/products/intellectual-property.html
http://www.xilinx.com/cgi-bin/docs/rdoc?d=end-user-license-agreement.txt
http://www.xilinx.com/about/contact.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=9

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 10
PG156 January 29, 2016

Chapter 2

Product Specification

Standards Compliance
The UltraScale Architecture Gen3 Integrated Block for PCIe solution is compatible with
industry-standard application form factors such as the PCI Express® Card
Electromechanical (CEM) v3.0 and the PCI™ Industrial Computer Manufacturers Group
(PICMG) 3.4 specifications [Ref 2].

Resource Utilization
Resources required for the UltraScale Architecture Gen3 Integrated Block for PCIe core have
been estimated for the Kintex® UltraScale™ devices (Table 2-1). These values were
generated using the Vivado® Design Suite. The resources listed in Table 2-1 are for Gen3
speeds.

Table 2-1: Resource Estimates

Lanes GTHE3 FF(1) LUT(1) CMPS(3) RX Completion
Buffer Size (KB)

RX Request
Buffer Size

(KB)

TX Replay
Buffer Size

(KB)

Block RAM Usage

RAMB18 RAMB36

X1 1 389 146

128-
1024

16

8 8

12 7

X2 2 674 227 16 12 7

X4 4 1244 373 16 12 7

X8 8 2388 670 16 12 7

Notes:
1. Numbers are for the default core configuration. Actual LUT and FF utilization values vary based on specific

configurations.
2. Numbers are based on the Production version of the IP.
3. Capability Maximum Payload Size (CMPS).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=10

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 11
PG156 January 29, 2016

Chapter 2: Product Specification

Available Integrated Blocks for PCI Express
Table 2-2 lists the integrated blocks for PCI Express available for use in FPGAs containing
multiple integrated blocks. In some cases, not all integrated blocks can be used due to lack
of bonded GTH transceiver sites adjacent to the integrated block.

Table 2-2: Available Integrated Blocks for PCI Express

Device Selection PCI Express block location

Device Package X0Y0 X0Y1 X0Y2 X0Y3 X0Y4 X0Y5

XCKU025 FFVA1156 Yes

XCKU035(1)

FBVA676 Yes Yes Yes(2)

FBVA900 Yes Yes Yes(2)

FFVA1156 Yes Yes Yes(2)

SFVA784 Yes

XCKU040

FBVA676 Yes Yes Yes(2)

FBVA900 Yes Yes Yes(2)

FFVA1156 Yes Yes Yes

SFVA784 Yes

XCKU060
FFVA1156 Yes Yes Yes

FFVA1517 Yes Yes Yes

XCKU085

FLVA1517 Yes Yes Yes Yes Yes

FLVB1760 Yes Yes Yes Yes Yes

FLVF1924 Yes Yes Yes Yes Yes

XCKU095

FFVB1760 Yes Yes Yes Yes

FFVB2104 Yes Yes Yes Yes

FFVA1156 Yes Yes Yes

FFVC1517 Yes Yes Yes Yes(2)

XCKU115

FLVA1517 Yes Yes Yes Yes Yes Yes(2)

FLVB1760 Yes Yes Yes Yes Yes Yes

FLVF1924 Yes Yes Yes Yes Yes Yes

FLVD1924 Yes Yes Yes(2) Yes Yes Yes

FLVD1517 Yes Yes Yes Yes Yes Yes

FLVA2104 Yes Yes Yes Yes Yes Yes

FLVB2104 Yes Yes Yes Yes Yes Yes

XCVU065 FFVC1517 Yes Yes

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=11

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 12
PG156 January 29, 2016

Chapter 2: Product Specification

XCVU080

FFVA2104 Yes Yes Yes Yes

FFVB2104 Yes Yes Yes Yes

FFVB1760 Yes Yes Yes Yes

FFVC1517 Yes Yes Yes Yes(2)

FFVD1517 Yes Yes Yes Yes

XCVU095

FFVA2104 Yes Yes Yes Yes

FFVB2104 Yes Yes Yes Yes

FFVB1760 Yes Yes Yes Yes

FFVC1517 Yes Yes Yes Yes(2)

FFVD1517 Yes Yes Yes Yes

FFVC2104 Yes Yes Yes Yes

XCVU125

FLVB1760 Yes Yes Yes Yes

FLVA2104 Yes Yes Yes Yes

FLVB2104 Yes Yes Yes Yes

FLVC2104 Yes Yes Yes Yes

FLVD1517 Yes Yes Yes Yes

XCVU160
FLGB2104 Yes Yes Yes Yes

FLGC2104(1) Yes Yes Yes Yes Yes

XCVU190

FLGB2104 Yes Yes Yes Yes

FLGC2104 Yes Yes Yes Yes Yes Yes

FLGA2577 Yes Yes Yes Yes Yes Yes

XCVU440
FLGA2892 Yes Yes Yes Yes Yes Yes

FLGB2377 Yes Yes Yes Yes Yes Yes

Notes:
1. The software supports only two PCIe blocks for XCKU035 devices (for non SFVA784 packages), and four PCIe blocks

for XCVU160/FLGC2104 devices.
2. Available only when the device/package migration option Enable GT Quad selection is selected. See Package

Migration of UltraScale Architecture PCI Express Designs.

Table 2-2: Available Integrated Blocks for PCI Express (Cont’d)

Device Selection PCI Express block location

Device Package X0Y0 X0Y1 X0Y2 X0Y3 X0Y4 X0Y5

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=12

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 13
PG156 January 29, 2016

Chapter 2: Product Specification

GT Locations
The recommended GT locations for the available UltraScale-based architecture FPGA part
and package combinations are available in Appendix B, GT Locations. The FPGA package
pins are derived directly from the GT X-Y locations listed in the appendix. The Vivado
Design Suite provides an XDC for the selected part and package that matches the contents
of the tables.

For the recommended list of GT locations, see:

• Kintex UltraScale Device GT Locations

• Virtex UltraScale Device GT Locations

Port Descriptions
This section provides detailed port descriptions for the following interfaces:

• AXI4-Stream Core Interfaces

• Other Core Interfaces

Table 2-3: Minimum Device Requirements

Capability Link Speed Capability Link Widths Supported Speed Grades

Gen1 x1, x2, x4, x8 -3,-2,-1,-1L, -1LV, -1H, and -1HV

Gen2 x1, x2, x4, x8 -3,-2,-1,-1L, -1LV, -1H and -1HV

Gen3 x1, x2, x4 -3,-2,-1,-1L, -1LV, -1H and -1HV(1)

Gen3 x8 -3, -2, -1, -1H and -1HV(2)(4)

Notes:
1. The Core Clock Frequency option must be set to 250 MHz for -1LV and -1L speed grades.

The Core Clock Frequency option set to 500 MHz is supported for -3 and -2 speed grades only.
2. Gen3x8 is possible for -1, -1H and -1HV speed grades, depending on user design, but may require additional

timing closure efforts. Gen3x8 is not supported for -1L and -1LV (0.9V and 0.95V) speed grade.
3. Engineering Samples (ES) may have additional restrictions. For more information, see the corresponding errata

documents.
4. Speed grades -1L, -1LV are supported only for Kintex UltraScale devices.

Speed grades -1H and -1HV are supported only for Virtex UltraScale devices.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=13

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 14
PG156 January 29, 2016

Chapter 2: Product Specification

AXI4-Stream Core Interfaces
In addition to status and control interfaces, the core has four required AXI4-Stream
interfaces used to transfer and receive transactions, which are described in this section.

Completer reQuest (CQ) Interface

The Completer reQuest (CQ) interface are the ports through which all received requests
from the link are delivered to the user application. Table 2-4 defines the ports in the CQ
interface of the core. In the Width column, DW denotes the configured data bus width (64,
128, or 256 bits).

Table 2-4: Completer reQuest Interface Port Descriptions

Port Direction Width Description

m_axis_cq_tdata Output DW

Transmit Data from the CQ Interface.
Only the lower 128 bits are to be used when the interface width is
128 bits, and only the lower 64 bits are to be used when the
interface width is 64 bits.
Bits [255:128] are set permanently to 0 by the core when the
interface width is configured as 128 bits, and bits [255:64] are set
permanently to 0 when the interface width is configured as 64 bits.

m_axis_cq_tuser Output 85

CQ User Data.
This set of signals contains sideband information for the TLP being
transferred. These signals are valid when m_axis_cq_tvalid is
High.
Table 2-5, page 16 describes the individual signals in this set.

m_axis_cq_tlast Output 1

TLAST indication for CQ Data.
The core asserts this signal in the last beat of a packet to indicate
the end of the packet. When a TLP is transferred in a single beat, the
core sets this signal in the first beat of the transfer.

m_axis_cq_tkeep Output DW/32

TKEEP indication for CQ Data.
The assertion of bit i of this bus during a transfer indicates to the
user application that Dword i of the m_axis_cq_tdata bus
contains valid data. The core sets this bit to 1 contiguously for all
Dwords starting from the first Dword of the descriptor to the last
Dword of the payload. Thus, m_axis_cq_tdata is set to all 1s in
all beats of a packet, except in the final beat when the total size of
the packet is not a multiple of the width of the data bus (both in
Dwords). This is true for both Dword-aligned and address-aligned
modes of payload transfer.
Bits [7:4] of this bus are set permanently to 0 by the core when the
interface width is configured as 128 bits, and bits [7:2] are set
permanently to 0 when the interface width is configured as 64 bits.

m_axis_cq_tvalid Output 1

CQ Data Valid.
The core asserts this output whenever it is driving valid data on the
m_axis_cq_tdata bus. The core keeps the valid signal asserted
during the transfer of a packet. The user application can pace the
data transfer using the m_axis_cq_tready signal.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=14

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 15
PG156 January 29, 2016

Chapter 2: Product Specification

m_axis_cq_tready Input 1

CQ Data Ready.
Activation of this signal by the user logic indicates to the core that
the user application is ready to accept data. Data is transferred
across the interface when both m_axis_cq_tvalid and
m_axis_cq_tready are asserted in the same cycle.
If the user application deasserts the ready signal when
m_axis_cq_tvalid is High, the core maintains the data on the
bus and keeps the valid signal asserted until the user application has
asserted the ready signal.

pcie_cq_np_req Input 1

CQ Non-Posted Request.
This input is used by the user application to request the delivery of
a Non-Posted request. The core implements a credit-based flow
control mechanism to control the delivery of Non-Posted requests
across the interface, without blocking Posted TLPs.
This input to the core controls an internal credit count. The credit
count is incremented in each clock cycle when pcie_cq_np_req is
High, and decremented on the delivery of each Non-Posted request
across the interface. The core temporarily stops delivering
Non-Posted requests to the user application when the credit count
is zero. It continues to deliver any Posted TLPs received from the link
even when the delivery of Non-Posted requests has been paused.
The user application can either provide a one-cycle pulse on
pcie_cq_np_req each time it is ready to receive a Non-Posted
request, or can keep it High permanently if it does not need to
exercise selective back pressure on Non-Posted requests.
The assertion and deassertion of the pcie_cq_np_req signal does
not need to be aligned with the packet transfers on the completer
request interface. There is a minimum of five user_clk from the
presentation of completion on m_axis_rc_tuser and the reuse of
the tag that was returned on the completion.

pcie_cq_np_req_count Output 6

CQ Non-Posted Request Count.
This output provides the current value of the credit count
maintained by the core for delivery of Non-Posted requests to the
user application. The core delivers a Non-Posted request across the
completer request interface only when this credit count is non-zero.
This counter saturates at a maximum limit of 32.
Because of internal pipeline delays, there can be several cycles of
delay between the core receiving a pulse on the pcie_cq_np_req
input and updating the pcie_cq_np_req_count output in
response.

Table 2-4: Completer reQuest Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=15

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 16
PG156 January 29, 2016

Chapter 2: Product Specification

Table 2-5: Sideband Signal Descriptions in m_axis_cq_tuser

Bit Index Name Width Description

3:0 first_be[3:0] 4

Byte enables for the first Dword of the payload.
This field reflects the setting of the First_BE bits in the Transaction-Layer
header of the TLP. For Memory Reads and I/O Reads, these four bits indicate
the valid bytes to be read in the first Dword. For Memory Writes and I/O
Writes, these bits indicate the valid bytes in the first Dword of the payload.
For Atomic Operations and Messages with a payload, these bits are set to all
1s.
This field is valid in the first beat of a packet, that is, when sop and
m_axis_cq_tvalid are both High.

7:4 last_be[3:0] 4

Byte enables for the last Dword.
This field reflects the setting of the Last_BE bits in the Transaction-Layer
header of the TLP. For Memory Reads, these four bits indicate the valid bytes
to be read in the last Dword of the block of data. For Memory Writes, these
bits indicate the valid bytes in the ending Dword of the payload. For Atomic
Operations and Messages with a payload, these bits are set to all 1s.
This field is valid in the first beat of a packet, that is, when sop and
m_axis_cq_tvalid are both High.

39:8 byte_en[31:0] 32

The user logic can optionally use these byte enable bits to determine the valid
bytes in the payload of a packet being transferred. The assertion of bit i of
this bus during a transfer indicates that byte i of the m_axis_cq_tdata bus
contains a valid payload byte. This bit is not asserted for descriptor bytes.
Although the byte enables can be generated by user logic from information
in the request descriptor (address and length) as well as the settings of the
first_be and last_be signals, you can use these signals directly instead
of generating them from other interface signals.
When the payload size is more than two Dwords (eight bytes), the one bit on
this bus for the payload is always contiguous. When the payload size is two
Dwords or less, the one bit can be non-contiguous.
For the special case of a zero-length memory write transaction defined by the
PCI Express specifications, the byte_en bits are all 0s when the associated
one-DW payload is being transferred.
Bits [31:16] of this bus are set permanently to 0 by the core when the interface
width is configured as 128 bits, and bits [31:8] are set permanently to 0 when
the interface width is configured as 64 bits.

40 sop 1
Start of packet.
This signal is asserted by the core in the first beat of a packet to indicate the
start of the packet. Using this signal is optional.

41 discontinue 1

This signal is asserted by the core in the last beat of a TLP, if it has detected
an uncorrectable error while reading the TLP payload from its internal FIFO
memory. The user application must discard the entire TLP when such an error
is signaled by the core.
This signal is never asserted when the TLP has no payload. It is asserted only
in a cycle when m_axis_cq_tlast is High.
When the core is configured as an Endpoint, the error is also reported by the
core to the Root Complex to which it is attached, using Advanced Error
Reporting (AER).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=16

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 17
PG156 January 29, 2016

Chapter 2: Product Specification

Completer Completion (CC) Interface

The Completer Completion (CC) interface are the ports through which completions
generated by the user application responses to the completer requests are transmitted. You
can process all Non-Posted transactions as split transactions. That is, it can continue to
accept new requests on the Requester Completion interface while sending a completion for
a request.Table 2-6 defines the ports in the CC interface of the core. In the Width column,
DW denotes the configured data bus width (64, 128, or 256 bits).

42 tph_present 1
This bit indicates the presence of a Transaction Processing Hint (TPH) in the
request TLP being delivered across the interface. This bit is valid when sop
and m_axis_cq_tvalid are both High.

44:43 tph_type[1:0] 2
When a TPH is present in the request TLP, these two bits provide the value of
the PH[1:0] field associated with the hint. These bits are valid when sop and
m_axis_cq_tvalid are both High.

52:45 tph_st_tag[7:0] 8
When a TPH is present in the request TLP, this output provides the 8-bit
Steering Tag associated with the hint. These bits are valid when sop and
m_axis_cq_tvalid are both High.

84:53 parity 32

Odd parity for the 256-bit transmit data.
Bit i provides the odd parity computed for byte i of m_axis_cq_tdata. Only
the lower 16 bits are to be used when the interface width is 128 bits, and only
the lower 8 bits are to be used when the interface width is 64 bits. Bits [31:16]
are set permanently to 0 by the core when the interface width is configured
as 128 bits, and bits [31:8] are set permanently to 0 when the interface width
is configured as 64 bits.

Table 2-5: Sideband Signal Descriptions in m_axis_cq_tuser (Cont’d)

Bit Index Name Width Description

Table 2-6: CC Interface Port Descriptions

Port Direction Width Description

s_axis_cc_tdata Input DW

Completer Completion Data bus.
Completion data from the user application to the core. Only the lower 128
bits are to be used when the interface width is 128 bits, and only the lower
64 bits are to be used when the interface width is 64 bits.

s_axis_cc_tuser Input 33

Completer Completion User Data.
This set of signals contain sideband information for the TLP being
transferred. These signals are valid when s_axis_cc_tvalid is High.
Table 2-7, page 18 describes the individual signals in this set.

s_axis_cc_tlast Input 1

TLAST indication for Completer Completion Data.
The user application must assert this signal in the last cycle of a packet to
indicate the end of the packet. When the TLP is transferred in a single beat,
the user applicationmust set this bit in the first cycle of the transfer.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=17

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 18
PG156 January 29, 2016

Chapter 2: Product Specification

s_axis_cc_tkeep Input DW/32

TKEEP indication for Completer Completion Data.
The assertion of bit i of this bus during a transfer indicates to the core that
Dword i of the s_axis_cc_tdata bus contains valid data. Set this bit to
1 contiguously for all Dwords starting from the first Dword of the
descriptor to the last Dword of the payload. Thus, s_axis_cc_tdata
must be set to all 1s in all beats of a packet, except in the final beat when
the total size of the packet is not a multiple of the width of the data bus
(both in Dwords). This is true for both Dword-aligned and address-aligned
modes of payload transfer.
Bits [7:4] of this bus are not used by the core when the interface width is
configured as 128 bits, and bits [7:2] are not used when the interface width
is configured as 64 bits.

s_axis_cc_tvalid Input 1

Completer Completion Data Valid.
The user application must assert this output whenever it is driving valid
data on the s_axis_cc_tdata bus. The user application must keep the
valid signal asserted during the transfer of a packet. The core paces the
data transfer using the s_axis_cc_tready signal.

s_axis_cc_tready Output 4

Completer Completion Data Ready.
Activation of this signal by the core indicates that it is ready to accept
data. Data is transferred across the interface when both
s_axis_cc_tvalid and s_axis_cc_tready are asserted in the same
cycle.
If the core deasserts the ready signal when the valid signal is High, the
user application must maintain the data on the bus and keep the valid
signal asserted until the core has asserted the ready signal.

Table 2-6: CC Interface Port Descriptions (Cont’d)

Port Direction Width Description

Table 2-7: Sideband Signal Descriptions in s_axis_cc_tuser

Bit Index Name Width Description

0 discontinue 1

This signal can be asserted by the user application during a transfer if it has
detected an error (such as an uncorrectable ECC error while reading the payload
from memory) in the data being transferred and desires to abort the packet.
The core nullifies the corresponding TLP on the link to avoid data corruption.
The user application can assert this signal during any cycle during the transfer.
It can either choose to terminate the packet prematurely in the cycle where the
error was signaled, or can continue until all bytes of the payload are delivered
to the core. In the latter case, the core treats the error as sticky for the following
beats of the packet, even if the user application deasserts the discontinue signal
before the end of the packet.
The discontinue signal can be asserted only when s_axis_cc_tvalid is
High. The core samples this signal only when s_axis_cc_tready is High.
Thus, when asserted, it should not be deasserted until s_axis_cc_tready is
High.
When the core is configured as an Endpoint, this error is also reported by the
core to the Root Complex to which it is attached, using AER.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=18

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 19
PG156 January 29, 2016

Chapter 2: Product Specification

Requester reQuest (RQ) Interface

The Requester reQuest (RQ) interface are the ports through which the user application
generates requests to remote PCIe® devices. Table 2-8 defines the ports in the RQ interface
of the core. In the Width column, DW denotes the configured data bus width (64, 128, or
256 bits).

32:1 parity 32

Odd parity for the 256-bit data.
When parity checking is enabled in the core, user logic must set bit i of this bus
to the odd parity computed for byte i of s_axis_cc_tdata. Only the lower
16 bits are to be used when the interface width is 128 bits, and only the lower
8 bits are to be used when the interface width is 64 bits.
When an interface parity error is detected, it is recorded as an uncorrectable
internal error and the packet is discarded. According to the Base Spec 6.2.9, an
uncorrectable internal error is an error that occurs within a component that
results in improper operation of the component. The only method of recovering
from an uncorrectable internal error is reset or hardware replacement.
The parity bits can be permanently tied to 0 if parity check is not enabled in the
core.

Table 2-7: Sideband Signal Descriptions in s_axis_cc_tuser (Cont’d)

Bit Index Name Width Description

Table 2-8: RQ Interface Port Descriptions

Port Direction Width Description

s_axis_rq_tdata Input DW

Requester reQuest Data bus.
This input contains the requester-side request data from the user
application to the core. Only the lower 128 bits are to be used when
the interface width is 128 bits, and only the lower 64 bits are to be
used when the interface width is 64 bits.

s_axis_rq_tuser Input 60

Requester reQuest User Data.
This set of signals contains sideband information for the TLP being
transferred. These signals are valid when s_axis_rq_tvalid is
High.
Table 2-9, page 21 describes the individual signals in this set.

s_axis_rq_tlast Input 1

TLAST Indication for Requester reQuest Data.
The user application must assert this signal in the last cycle of a TLP
to indicate the end of the packet. When the TLP is transferred in a
single beat, the user application must set this bit in the first cycle of
the transfer.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=19

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 20
PG156 January 29, 2016

Chapter 2: Product Specification

s_axis_rq_tkeep Input DW/32

TKEEP Indication for Requester reQuest Data.
The assertion of bit i of this bus during a transfer indicates to the
core that Dword i of the s_axis_rq_tdata bus contains valid
data. The user application must set this bit to 1 contiguously for all
Dwords, starting from the first Dword of the descriptor to the last
Dword of the payload. Thus, s_axis_rq_tdata must be set to all
1s in all beats of a packet, except in the final beat when the total size
of the packet is not a multiple of the width of the data bus (both in
Dwords). This is true for both Dword-aligned and address-aligned
modes of payload transfer.
Bits [7:4] of this bus are not used by the core when the interface
width is configured as 128 bits, and bits [7:2] are not used when the
interface width is configured as 64 bits.

s_axis_rq_tready Output 4

Requester reQuest Data Ready.
Activation of this signal by the core indicates that it is ready to
accept data. Data is transferred across the interface when both
s_axis_rq_tvalid and s_axis_rq_tready are asserted in the
same cycle.
If the core deasserts the ready signal when the valid signal is
High, the user application must maintain the data on the bus and
keep the valid signal asserted until the core has asserted the ready
signal.
You can assign all 4 bits to 1 or 0.

s_axis_rq_tvalid Input 1

 Requester reQuest Data Valid.
The user application must assert this output whenever it is driving
valid data on the s_axis_rq_tdata bus. The user application
must keep the valid signal asserted during the transfer of a packet.
The core paces the data transfer using the s_axis_rq_tready
signal.

pcie_rq_seq_num Output 4

Requester reQuest TLP transmit sequence number.
You can optionally use this output to track the progress of the
request in the core transmit pipeline. To use this feature, provide a
sequence number for each request on the seq_num[3:0] bus. The
core outputs this sequence number on the
pcie_rq_seq_num[3:0] output when the request TLP has
reached a point in the pipeline where a Completion TLP from the
user application cannot pass it. This mechanism enables you to
maintain ordering between Completions sent to the completer
completion interface of the core and Posted requests sent to the
requester request interface. Data on the pcie_rq_seq_num[3:0]
output is valid when pcie_rq_seq_num_vld is High.

pcie_rq_seq_num_vld Output 1
Requester reQuest TLP transmit sequence number valid.
This output is asserted by the core for one cycle when it has placed
valid data on pcie_rq_seq_num[3:0].

Table 2-8: RQ Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=20

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 21
PG156 January 29, 2016

Chapter 2: Product Specification

pcie_rq_tag Output 6

Requester reQuest Non-Posted tag.
When tag management for Non-Posted requests is performed by
the core (AXISTEN_IF_ENABLE_CLIENT_TAG is 0), this output is used
by the core to communicate the allocated tag for each Non-Posted
request received. The tag value on this bus is valid for one cycle
when pcie_rq_tag_vld is High. You must copy this tag and use
it to associate the completion data with the pending request.
There can be a delay of several cycles between the transfer of the
request on the s_axis_rq_tdata bus and the assertion of
pcie_rq_tag_vld by the core to provide the allocated tag for the
request. Meanwhile, the user application can continue to send new
requests. The tags for requests are communicated on this bus in
FIFO order, so the user application can easily associate the tag value
with the request it transferred.

pcie_rq_tag_vld Output 1

Requester reQuest Non-Posted tag valid.
The core asserts this output for one cycle when it has allocated a tag
to an incoming Non-Posted request from the requester request
interface and placed it on the pcie_rq_tag output.

Table 2-8: RQ Interface Port Descriptions (Cont’d)

Port Direction Width Description

Table 2-9: Sideband Signal Descriptions in s_axis_rq_tuser

Bit Index Name Width Description

3:0 first_be[3:0] 4

Byte enables for the first Dword.
This field must be set based on the desired value of the First_BE bits in
the Transaction-Layer header of the request TLP. For Memory Reads,
I/O Reads, and Configuration Reads, these four bits indicate the valid
bytes to be read in the first Dword. For Memory Writes, I/O Writes, and
Configuration Writes, these bits indicate the valid bytes in the first
Dword of the payload.
The core samples this field in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.

7:4 last_be[3:0] 4

Byte enables for the last Dword.
This field must be set based on the desired value of the Last_BE bits in
the Transaction-Layer header of the TLP. For Memory Reads of two
Dwords or more, these four bits indicate the valid bytes to be read in
the last Dword of the block of data. For Memory Writes of two Dwords
or more, these bits indicate the valid bytes in the last Dword of the
payload.
The core samples this field in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=21

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 22
PG156 January 29, 2016

Chapter 2: Product Specification

10:8 addr_offset[2:0] 3

When the address-aligned mode is in use on this interface, the user
application must provide the byte lane number where the payload data
begins on the data bus, modulo 4, on this sideband bus. This enables
the core to determine the alignment of the data block being
transferred.
The core samples this field in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.
When the requester request interface is configured in the
Dword-alignment mode, this field must always be set to 0.
In Root Port configuration, Configuration Packets must always be
aligned to DW0, and therefore for this type of packets, this field must
be set to 0 in both alignment modes.

11 discontinue 1

This signal can be asserted by the user application during a transfer if
it has detected an error in the data being transferred and desires to
abort the packet. The core nullifies the corresponding TLP on the link
to avoid data corruption.
You can assert this signal in any cycle during the transfer. It can either
choose to terminate the packet prematurely in the cycle where the error
was signaled, or can continue until all bytes of the payload are
delivered to the core. In the latter case, the core treats the error as
sticky for the following beats of the packet, even if the user application
deasserts the discontinue signal before the end of the packet.
The discontinue signal can be asserted only when
s_axis_rq_tvalid is High. The core samples this signal only when
s_axis_rq_tready is High. Thus, when asserted, it should not be
deasserted until s_axis_rq_tready is High. Discontinue is not
supported for Non-Posted TLPs. The user logic can assert this signal in
any cycle except the first cycle during the transfer.
When the core is configured as an Endpoint, this error is also reported
by the core to the Root Complex to which it is attached, using
Advanced Error Reporting (AER).

12 tph_present 1

This bit indicates the presence of a Transaction Processing Hint (TPH)
in the request TLP being delivered across the interface. The core
samples this field in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.
This bit must be permanently tied to 0 if the TPH capability is not in use.

14:13 tph_type[1:0] 2

When a TPH is present in the request TLP, these two bits provide the
value of the PH[1:0] field associated with the hint. The core samples this
field in the first beat of a packet, when s_axis_rq_tvalid and
s_axis_rq_tready are both High.
These bits can be set to any value if tph_present is set to 0.

Table 2-9: Sideband Signal Descriptions in s_axis_rq_tuser (Cont’d)

Bit Index Name Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=22

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 23
PG156 January 29, 2016

Chapter 2: Product Specification

Requester Completion (RC) Interface

The Requester Completion (RC) interface are the ports through which the completions
received from the link in response to your requests are presented to the user application.
Table 2-10 defines the ports in the RC interface of the core. In the Width column, DW
denotes the configured data bus width (64, 128, or 256 bits).

15 tph_indirect_tag_en 1

When this bit is set, the core uses the lower bits of tph_st_tag[7:0]
as an index into its Steering Tag Table, and insert the tag from this
location in the transmitted request TLP.
When this bit is 0, the core uses the value on tph_st_tag[7:0]
directly as the Steering Tag.
The core samples this bit in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.
This bit can be set to any value if tph_present is set to 0.

23:16 tph_st_tag[7:0] 8

When a TPH is present in the request TLP, this output provides the 8-bit
Steering Tag associated with the hint. The core samples this field in the
first beat of a packet, when s_axis_rq_tvalid and
s_axis_rq_tready are both High.
These bits can be set to any value if tph_present is set to 0.

27:24 seq_num[3:0] 4

You can optionally supply a 4-bit sequence number in this field to keep
track of the progress of the request in the core transmit pipeline. The
core outputs this sequence number on its pcie_rq_seq_num[3:0]
output when the request TLP has progressed to a point in the pipeline
where a Completion TLP is not able to pass it.
The core samples this field in the first beat of a packet, when
s_axis_rq_tvalid and s_axis_rq_tready are both High.
This input can be hardwired to 0 when the user application is not
monitoring the pcie_rq_seq_num[3:0] output of the core.

59:28 parity 32

Odd parity for the 256-bit data.
When parity checking is enabled in the core, the user logic must set bit
i of this bus to the odd parity computed for byte i of
s_axis_rq_tdata. Only the lower 16 bits are to be used when the
interface width is 128 bits, and only the lower 8 bits are to be used
when the interface width is 64 bits.
When an interface parity error is detected, it is recorded as an
uncorrectable internal error and the packet is discarded. According to
the Base Spec 6.2.9, an uncorrectable internal error is an error that
occurs within a component that results in improper operation of the
component. The only method of recovering from an uncorrectable
internal error is reset or hardware replacement.
The parity bits can be permanently tied to 0 if parity check is not
enabled in the core.

Table 2-9: Sideband Signal Descriptions in s_axis_rq_tuser (Cont’d)

Bit Index Name Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=23

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 24
PG156 January 29, 2016

Chapter 2: Product Specification

Table 2-10: RC Interface Port Descriptions

Port Direction Width Description

m_axis_rc_tdata Output DW

Requester Completion Data bus.
Transmit data from the core requester completion interface to the user
application. Only the lower 128 bits are used when the interface width
is 128 bits, and only the lower 64 bits are used when the interface width
is 64 bits.
Bits [255:128] are set permanently to 0 by the core when the interface
width is configured as 128 bits, and bits [255:64] are set permanently
to 0 when the interface width is configured as 64 bits.

m_axis_rc_tuser Output 75

Requester Completion User Data.
This set of signals contains sideband information for the TLP being
transferred. These signals are valid when m_axis_rc_tvalid is High.
Table 2-11, page 25 describes the individual signals in this set.

m_axis_rc_tlast Output 1

TLAST indication for Requester Completion Data.
The core asserts this signal in the last beat of a packet to indicate the
end of the packet. When a TLP is transferred in a single beat, the core
sets this bit in the first beat of the transfer. This output is used only
when the straddle option is disabled. When the straddle option is
enabled (for 256-bit interface), the core sets this output permanently
to 0.

m_axis_rc_tkeep Output DW/32

TKEEP indication for Requester Completion Data.
The assertion of bit i of this bus during a transfer indicates that Dword
i of the m_axis_rc_tdata bus contains valid data. The core sets this
bit to 1 contiguously for all Dwords starting from the first Dword of the
descriptor to the last Dword of the payload. Thus, m_axis_rc_tkeep
sets to 1s in all beats of a packet, except in the final beat when the total
size of the packet is not a multiple of the width of the data bus (both
in Dwords). This is true for both Dword-aligned and address-aligned
modes of payload transfer.
Bits [7:4] of this bus are set permanently to 0 by the core when the
interface width is configured as 128 bits, and bits [7:2] are set
permanently to 0 when the interface width is configured as 64 bits.
These outputs are permanently set to all 1s when the interface width is
256 bits and the straddle option is enabled. The user logic must use
the signals in m_axis_rc_tuser in that case to determine the start
and end of Completion TLPs transferred over the interface.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=24

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 25
PG156 January 29, 2016

Chapter 2: Product Specification

m_axis_rc_tvalid Output 1

Requester Completion Data Valid.
The core asserts this output whenever it is driving valid data on the
m_axis_rc_tdata bus. The core keeps the valid signal asserted
during the transfer of a packet. The user application can pace the data
transfer using the m_axis_rc_tready signal.

m_axis_rc_tready Input 1

Requester Completion Data Ready.
Activation of this signal by the user logic indicates to the core that the
user application is ready to accept data. Data is transferred across the
interface when both m_axis_rc_tvalid and m_axis_rc_tready
are asserted in the same cycle.
If the user application deasserts the ready signal when the valid
signal is High, the core maintains the data on the bus and keeps the
valid signal asserted until the user application has asserted the
ready signal.

Table 2-10: RC Interface Port Descriptions (Cont’d)

Port Direction Width Description

Table 2-11: Sideband Signal Descriptions in m_axis_rc_tuser

Bit Index Name Width Description

31:0 byte_en 32

The user logic can optionally use these byte enable bits to determine the valid
bytes in the payload of a packet being transferred. The assertion of bit i of this
bus during a transfer indicates that byte i of the m_axis_rc_tdata bus
contains a valid payload byte. This bit is not asserted for descriptor bytes.
Although the byte enables can be generated by user logic from information
in the request descriptor (address and length), the logic has the option to use
these signals directly instead of generating them from other interface signals.
The 1 bit in this bus for the payload of a TLP is always contiguous.
Bits [31:16] of this bus are set permanently to 0 by the core when the interface
width is configured as 128 bits, and bits [31:8] are set permanently to 0 when
the interface width is configured as 64 bits. The byte enable bit is also set on
completions received in response to zero length memory read requests.

32 is_sof_0 1

Start of a first Completion TLP.
For 64-bit and 128-bit interfaces, and for the 256-bit interface with no
straddling, is_sof_0 is asserted by the core in the first beat of a packet to
indicate the start of the TLP. On these interfaces, only a single TLP can be
started in a data beat, and is_sof_1 is permanently set to 0. Use of this
signal is optional when the straddle option is not enabled.
When the interface width is 256 bits and the straddle option is enabled, the
core can straddle two Completion TLPs in the same beat. In this case, the
Completion TLPs are not formatted as AXI4-Stream packets. The assertion of
is_sof_0 indicates a Completion TLP starting in the beat. The first byte of
this Completion TLP is in byte lane 0 if the previous TLP ended before this
beat, or in byte lane 16 if the previous TLP continues in this beat.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=25

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 26
PG156 January 29, 2016

Chapter 2: Product Specification

33 is_sof_1 1

Start of a second Completion TLP.
This signal is used when the interface width is 256 bits and the straddle option
is enabled, when the core can straddle two Completion TLPs in the same beat.
The output is permanently set to 0 in all other cases.
The assertion of is_sof_1 indicates a second Completion TLP starting in the
beat, with its first bye in byte lane 16. The core starts a second TLP at byte
position 16 only if the previous TLP ended in one of the byte positions 0-15
in the same beat; that is, only if is_eof_0[0] is also set in the same beat.

37:34 is_eof_0[3:0] 4

End of a first Completion TLP and the offset of its last Dword.
These outputs are used only when the interface width is 256 bits and the
straddle option is enabled.
The assertion of the bit is_eof_0[0] indicates the end of a first Completion
TLP in the current beat. When this bit is set, the bits is_eof_0[3:1] provide
the offset of the last Dword of this TLP.

41:38 is_eof_1[3:0] 4

End of a second Completion TLP and the offset of its last Dword.
These outputs are used only when the interface width is 256 bits and the
straddle option is enabled. The core can then straddle two Completion TLPs
in the same beat. These outputs are reserved in all other cases.
The assertion of is_eof_1[0] indicates a second TLP ending in the same
beat. When bit 0 of is_eof_1 is set, bits [3:1] provide the offset of the last
Dword of the TLP ending in this beat. Because the second TLP can only end
at a byte position in the range 27–31, is_eof_1[3:1] can only take one of
two values (6 or 7).
The offset for the last byte of the second TLP can be determined from the
starting address and length of the TLP, or from the byte enable signals
byte_en[31:0].
If is_eof_1[0] is High, the signals is_eof_0[0] and is_sof_1 are also
High in the same beat.

42 discontinue 1

This signal is asserted by the core in the last beat of a TLP, if it has detected
an uncorrectable error while reading the TLP payload from its internal FIFO
memory. The user application must discard the entire TLP when such an error
is signaled by the core.
This signal is never asserted when the TLP has no payload. It is asserted only
in the last beat of the payload transfer; that is, when is_eof_0[0] is High.
When the straddle option is enabled, the core does not start a second TLP if
it has asserted discontinue in a beat.
When the core is configured as an Endpoint, the error is also reported by the
core to the Root Complex to which it is attached, using Advanced Error
Reporting (AER).

74:43 parity 32

Odd parity for the 256-bit transmit data.
Bit i provides the odd parity computed for byte i of m_axis_rc_tdata. Only
the lower 16 bits are used when the interface width is 128 bits, and only the
lower 8 bits are used when the interface width is 64 bits. Bits [31:16] are set
permanently to 0 by the core when the interface width is configured as 128
bits, and bits [31:8] are set permanently to 0 when the interface width is
configured as 64 bits.

Table 2-11: Sideband Signal Descriptions in m_axis_rc_tuser (Cont’d)

Bit Index Name Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=26

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 27
PG156 January 29, 2016

Chapter 2: Product Specification

Other Core Interfaces
The core also provides the interfaces described in this section.

Transmit Flow Control Interface

The Transmit Flow Control interface is used by the user application to request which flow
control information the core provides. This interface provides the Posted/Non-Posted
Header Flow Control Credits, Posted/Non-Posted Data Flow Control Credits, the
Completion Header Flow Control Credits, and the Completion Data Flow Control Credits to
the user application based on the setting flow control select input to the core.

Table 2-12 defines the ports in the Transmit Flow Control interface of the core.

Table 2-12: Transmit Flow Control Interface Port Descriptions

Port Direction Width Description

pcie_tfc_nph_av Output 2

Transmit flow control Non-Posted header credits available.
This output indicates the currently available header credit for
Non-Posted TLPs on the transmit side of the core. The user logic can
check this output before transmitting a Non-Posted request on the
requester request interface, to avoid blocking the interface when no
credit is available. The encodings are:
• 00: No credits available
• 01: 1 credit available
• 10: 2 credits available
• 11: 3 or more credits available
Because of pipeline delays, the value on this output does not include
the credit consumed by the Non-Posted requests in the last two clock
cycles. The user logic must adjust the value on this output by the
credit consumed by the Non-Posted requests it sent in the previous
two clock cycles, if any.

pcie_tfc_npd_av Output 2

Transmit flow control Non-Posted data credits available.
This output indicates the currently available payload credit for
Non-Posted TLPs on the transmit side of the core. The user logic can
check this output before transmitting a Non-Posted request on the
requester request interface, to avoid blocking the interface when no
credit is available. The encodings are:
• 00: No credits available
• 01: 1 credit available
• 10: 2 credits available
• 11: 3 or more credits available
Because of pipeline delays, the value on this output does not include
the credit consumed by the Non-Posted requests sent by the user
application in the last two clock cycles. The user logic must adjust the
value on this output by the credit consumed by the Non-Posted
requests it sent in the previous two clock cycles, if any.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=27

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 28
PG156 January 29, 2016

Chapter 2: Product Specification

Configuration Management Interface

The Configuration Management interface is used to read and write to the Configuration
Space Registers. Table 2-13 defines the ports in the Configuration Management interface of
the core.

Table 2-13: Configuration Management Interface Port Descriptions

Port Direction Width Description

cfg_mgmt_addr Input 19

Read/Write Address.
Address is in the Configuration and Management register
space, and is Dword aligned. For accesses from the local
management bus: for the address bits
cfg_mgmt_addr[17:10], select the PCI function
associated with the configuration register; and for the
bits cfg_mgmt_addr[9:0], select the register within
the function. The address bit cfg_mgmt_addr[18] must
be set to zero (0) when accessing the PCI or PCI Express
configuration registers, and to one (1) when accessing the
local management registers.

cfg_mgmt_write Input 1
Write Enable.
Asserted for a write operation. Active-High.

cfg_mgmt_write_data Input 32
Write data.
Write data is used to configure the Configuration and
Management registers.

cfg_mgmt_byte_enable Input 4

Byte Enable.
Byte enable for write data, where
cfg_mgmt_byte_enable[0] corresponds to
cfg_mgmt_write_data[7:0], and so on.

cfg_mgmt_read Input 1
Read Enable.
Asserted for a read operation. Active-High.

cfg_mgmt_read_data Output 32
Read data out.
Read data provides the configuration of the
Configuration and Management registers.

cfg_mgmt_read_write_done Output 1
Read/Write operation complete.
Asserted for 1 cycle when operation is complete.
Active-High.

cfg_mgmt_type1_cfg_reg_access Input 1

Type 1 RO, Write.
When the core is configured in the Root Port mode,
asserting this input during a write to a Type-1 PCI™
Config register forces a write into certain read-only fields
of the register (see description of RC-mode Config
registers). This input has no effect when the core is in the
Endpoint mode, or when writing to any register other
than a Type-1 Config register.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=28

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 29
PG156 January 29, 2016

Chapter 2: Product Specification

Configuration Status Interface

The Configuration Status interface provides information on how the core is configured,
such as the negotiated link width and speed, the power state of the core, and configuration
errors. Table 2-14 defines the ports in the Configuration Status interface of the core.

Table 2-14: Configuration Status Interface Port Descriptions

Port Direction Width Description

cfg_phy_link_down Output 1

Configuration Link Down.
Status of the PCI Express link based on the Physical Layer
LTSSM.
• 1b: Link is Down (LinkUp state variable is 0b)
• 0b: Link is Up (LinkUp state variable is 1b)
Note: Per the PCI Express Base Specification, rev. 3.0 [Ref 2], LinkUp
is 1b in the Recovery, L0, L0s, L1, and L2 cfg_ltssm states. In the
Configuration state, LinkUp can be 0b or 1b. It is always 0b when the
Configuration state is reached using Detect > Polling >
Configuration. LinkUp is 1b if the configuration state is reached
through any other state transition.
Note: While reset is asserted, the output of this signal are 0b until
reset is released.

cfg_phy_link_status Output 2

Configuration Link Status.
Status of the PCI Express link.
• 00b: No receivers detected
• 01b: Link training in progress
• 10b: Link up, DL initialization in progress
• 11b: Link up, DL initialization completed

cfg_negotiated_width Output 4

Configuration Link Status.
Negotiated Link Width: PCI Express Link Status register,
Negotiated Link Width field. This field indicates the negotiated
width of the given PCI Express Link and is valid when
cfg_phy_link_status[1:0] == 11b (DL Initialization is
complete).
Negotiated Link Width values:
• 0001b = x1
• 0010b = x2
• 0100b = x4
• 1000b = x8
Other values are reserved.

cfg_current_speed Output 3

Current Link Speed.
This signal outputs the current link speed from Link Status
register bits 1 down to 0. This field indicates the negotiated
Link speed of the given PCI Express Link.
• 001b: 2.5 GT/s PCI Express Link
• 010b: 5.0 GT/s PCI Express Link
• 100b: 8.0 GT/s PCI Express Link

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=29

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 30
PG156 January 29, 2016

Chapter 2: Product Specification

cfg_max_payload Output 3

Max_Payload_Size.
This signal outputs the maximum payload size from Device
Control register bits 7 down to 5. This field sets the maximum
TLP payload size. As a Receiver, the logic must handle TLPs as
large as the set value. As a Transmitter, the logic must not
generate TLPs exceeding the set value.
• 000b: 128 bytes maximum payload size
• 001b: 256 bytes maximum payload size
• 010b: 512 bytes maximum payload size
• 011b: 1024 bytes maximum payload size
• 100b: 2048 bytes maximum payload size
• 101b: 4096 bytes maximum payload size

cfg_max_read_req Output 3

Max_Read_Request_Size.
This signal outputs the maximum read request size from Device
Control register bits 14 down to 12. This field sets the
maximum Read Request size for the logic as a Requester. The
logic must not generate Read Requests with size exceeding the
set value.
• 000b: 128 bytes maximum Read Request size
• 001b: 256 bytes maximum Read Request size
• 010b: 512 bytes maximum Read Request size
• 011b: 1024 bytes maximum Read Request size
• 100b: 2048 bytes maximum Read Request size
• 101b: 4096 bytes maximum Read Request size

cfg_function_status Output 16

Configuration Function Status.
These outputs indicate the states of the Command register bits
in the PCI configuration space of each function. These outputs
are used to enable requests and completions from the host
logic. The assignment of bits is as follows:
• Bit 0: Function 0 I/O Space Enable
• Bit 1: Function 0 Memory Space Enable
• Bit 2: Function 0 Bus Master Enable
• Bit 3: Function 0 INTx Disable
• Bit 4: Function 1 I/O Space Enable
• Bit 5: Function 1 Memory Space Enable
• Bit 6: Function 1 Bus Master Enable
• Bit 7: Function 1 INTx Disable
• Bits [15:8] are reserved

cfg_vf_status Output 16

Configuration Virtual Function Status.
These outputs indicate the status of virtual functions, two bits
each per virtual function.
• Bit 0: Virtual function 0: Configured/Enabled by the software
• Bit 1: Virtual function 0: PCI Command register, Bus Master

Enable, etc.
• Bits [15:12] are reserved.

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=30

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 31
PG156 January 29, 2016

Chapter 2: Product Specification

cfg_function_power_state Output 12

Configuration Function Power State.
These outputs indicate the current power state of the physical
functions. Bits [2:0] capture the power state of function 0, and
bits [5:3] capture that of function 1. Bits [11:6] are reserved. The
possible power states are:
• 000: D0_uninitialized
• 001: D0_active
• 010: D1
• 100: D3_hot

cfg_vf_power_state Output 24

Configuration Virtual Function Power State.
These outputs indicate the current power state of the virtual
functions. Bits [2:0] capture the power state of virtual function
0, and bits [5:3] capture that of virtual function 1, and so on.
Bits [23:18] are reserved. The possible power states are:
• 000: D0_uninitialized
• 001: D0_active
• 010: D1
• 100: D3_hot

cfg_link_power_state Output 2

Current power state of the PCI Express link.
• 00: L0
• 01: L0s
• 10: L1
• 11: L2/Reserved

cfg_err_cor_out Output 1

Correctable Error Detected.
In Endpoint mode, the core activates this output for one cycle
when it has detected a correctable error and its reporting is not
masked. In a multi-function Endpoint, this is the logical OR of
the correctable error status bits in the Device Status registers
of all functions.
In Root Port mode, this output is activated on detection of a
local correctable error, when its reporting is not masked. This
output does not respond to any errors signaled by remote
devices using PCI Express error messages. These error
messages are delivered through the message interface.

cfg_err_nonfatal_out Output 1

Non-Fatal Error Detected.
In Endpoint mode, the core activates this output for one cycle
when it has detected a non-fatal error and its reporting is not
masked. In a multi-function Endpoint, this is the logical OR of
the non-fatal error status bits in the Device Status registers of
all functions.
In Root Port mode, this output is activated on detection of a
local non-fatal error, when its reporting is not masked. This
output does not respond to any errors signaled by remote
devices using PCI Express error messages. These error
messages are delivered through the message interface.

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=31

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 32
PG156 January 29, 2016

Chapter 2: Product Specification

cfg_err_fatal_out Output 1

Fatal Error Detected.
In Endpoint mode, the core activates this output for one cycle
when it has detected a fatal error and its reporting is not
masked. In a multi-function Endpoint, this is the logical OR of
the fatal error status bits in the Device Status registers of all
functions.
In Root Port mode, this output is activated on detection of a
local fatal error, when its reporting is not masked. This output
does not respond to any errors signaled by remote devices
using PCI Express error messages. These error messages are
delivered through the message interface.

cfg_ltr_enable Output 1

Latency Tolerance Reporting Enable.
The state of this output reflects the setting of the LTR
Mechanism Enable bit in the Device Control 2 register of
physical function 0. When the core is configured as an
Endpoint, the logic uses this output to enable the generation
of LTR messages. This output is not to be used when the core
is configured as a Root Port.

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=32

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 33
PG156 January 29, 2016

Chapter 2: Product Specification

cfg_ltssm_state Output 6

Current LTSSM State. Shows the current LTSSM state:
00: Detect.Quiet
01: Detect.Active
02: Polling.Active
03: Polling.Compliance
04: Polling.Configuration
05: Configuration.Linkwidth.Start
06: Configuration.Linkwidth.Accept
07: Configuration.Lanenum.Accept
08: Configuration.Lanenum.Wait
09: Configuration.Complete
0A: Configuration.Idle
0B: Recovery.RcvrLock
0C: Recovery.Speed
0D: Recovery.RcvrCfg
0E: Recovery.Idle
10: L0
11: Rx_L0s.Entry
12: Rx_L0s.Idle
13: Rx_L0s.FTS
14: Tx_L0s.Entry
15: Tx_L0s.Idle
16: Tx_L0s.FTS
17: L1.Entry
18: L1.Idle
19: L2.Idle
1A: L2.TransmitWake
20: DISABLED
21: LOOPBACK_ENTRY_MASTER
22: LOOPBACK_ACTIVE_MASTER
23: LOOPBACK_EXIT_MASTER
24: LOOPBACK_ENTRY_SLAVE
25: LOOPBACK_ACTIVE_SLAVE
26: LOOPBACK_EXIT_SLAVE
27: HOT_RESET
28: RECOVERY_EQUALIZATION_PHASE0
29: RECOVERY_EQUALIZATION_PHASE1
2A: RECOVERY_EQUALIZATION_PHASE2
2B: RECOVERY_EQUALIZATION_PHASE3

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=33

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 34
PG156 January 29, 2016

Chapter 2: Product Specification

cfg_rcb_status Output 4

RCB Status.
Provides the setting of the Read Completion Boundary (RCB)
bit in the Link Control register of each physical function. In
Endpoint mode, bit 0 indicates the RCB for PF 0, and so on. In
RC mode, bit 0 indicates the RCB setting of the Link Control
register of the RP, bit 1 is reserved.
For each bit, a value of 0 indicates an RCB of 64 bytes and a
value of 1 indicates 128 bytes.

cfg_dpa_substate_change Output 4

Dynamic Power Allocation Substate Change.
In Endpoint mode, the core generates a one-cycle pulse on one
of these outputs when a Configuration Write transaction writes
into the Dynamic Power Allocation Control register to modify
the DPA power state of the device. A pulse on bit 0 indicates
such a DPA event for PF0 and a pulse on bit 1 indicates the
same for PF1. The other 2 bits are reserved.These outputs are
not active in Root Port mode.

cfg_obff_enable Output 2

Optimized Buffer Flush Fill Enable.
This output reflects the setting of the OBFF Enable field in the
Device Control 2 register.
• 00: OBFF disabled
• 01: OBFF enabled using message signaling, Variation A
• 10: OBFF enabled using message signaling, Variation B
• 11: OBFF enabled using WAKE# signaling.

cfg_pl_status_change Output 1

This output is used by the core in Root Port mode to signal one
of the following link training-related events:
(a) The link bandwidth changed as a result of the change in the
link width or operating speed and the change was initiated
locally (not by the link partner), without the link going down.
This interrupt is enabled by the Link Bandwidth Management
Interrupt Enable bit in the Link Control register. The status of
this interrupt can be read from the Link Bandwidth
Management Status bit of the Link Status register; or
(b) The link bandwidth changed autonomously as a result of
the change in the link width or operating speed and the
change was initiated by the remote node. This interrupt is
enabled by the Link Autonomous Bandwidth Interrupt Enable
bit in the Link Control register. The status of this interrupt can
be read from the Link Autonomous Bandwidth Status bit of the
Link Status register; or
(c) The Link Equalization Request bit in the Link Status 2
register was set by the hardware because it received a link
equalization request from the remote node. This interrupt is
enabled by the Link Equalization Interrupt Enable bit in the
Link Control 3 register. The status of this interrupt can be read
from the Link Equalization Request bit of the Link Status 2
register.
The pl_interrupt output is not active when the core is
configured as an Endpoint.

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=34

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 35
PG156 January 29, 2016

Chapter 2: Product Specification

Configuration Received Message Interface

The Configuration Received Message interface indicates to the logic that a decodable
message from the link, the parameters associated with the data, and the type of message
have been received. Table 2-15 defines the ports in the Configuration Received Message
interface of the core.

cfg_tph_requester_enable Output 4

Bit 0 of this output reflect the setting of the TPH Requester
Enable bit [8] of the TPH Requester Control register in the TPH
Requester Capability Structure of physical function 0. Bit 1
corresponds to physical function 1. Other [3:2] are reserved.

cfg_tph_st_mode Output 12

Bits [2:0] of this output reflect the setting of the ST Mode Select
bits in the TPH Requester Control register of physical function
0. Bits [5:3] reflect the setting of the same register field of PF
1. Bits [11:6] are reserved.

cfg_vf_tph_requester_enable Output 8

Each of the six bits of this output reflects the setting of the TPH
Requester Enable bit 8 of the TPH Requester Control register in
the TPH Requester Capability Structure of the corresponding
virtual function. Bits [7:6] are reserved.

cfg_vf_tph_st_mode Output 24

Bits [2:0] of this output reflect the setting of the ST Mode Select
bits in the TPH Requester Control register of virtual function 0.
Bits [5:3] reflect the setting of the same register field of VF 1,
and so on. Bits [23:18] are reserved.

Table 2-14: Configuration Status Interface Port Descriptions (Cont’d)

Port Direction Width Description

Table 2-15: Configuration Received Message Interface Port Descriptions

Port Direction Width Description

cfg_msg_received Output 1

Configuration Received a Decodable Message.
The core asserts this output for one or more consecutive clock
cycles when it has received a decodable message from the link.
The duration of its assertion is determined by the type of
message. The core transfers any parameters associated with the
message on the cfg_msg_data[7:0]output in one or more
cycles when cfg_msg_received is High. Table 3-13 lists the
number of cycles of cfg_msg_received assertion, and the
parameters transferred on cfg_msg_data[7:0] in each cycle,
for each type of message.
The core inserts at least a one-cycle gap between two
consecutive messages delivered on this interface.
This output is active only when the
AXISTEN_IF_ENABLE_RX_MSG_INTFC attribute is set.
The Configuration Received Message interface must be enabled
during core configuration in the Vivado IDE.

cfg_msg_received_data Output 8
This bus is used to transfer any parameters associated with the
Received Message. The information it carries in each cycle for
various message types is listed in Table 3-13.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=35

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 36
PG156 January 29, 2016

Chapter 2: Product Specification

Configuration Transmit Message Interface

The Configuration Transmit Message interface is used by the user application to transmit
messages to the core. The user application supplies the transmit message type and data
information to the core, which responds with the Done signal. Table 2-16 defines the ports
in the Configuration Transmit Message interface of the core.

cfg_msg_received_type Output 5

Received message type.
When cfg_msg_received is High, these five bits indicate the
type of message being signaled by the core. The various
message types are listed in Table 3-12.

Table 2-15: Configuration Received Message Interface Port Descriptions (Cont’d)

Port Direction Width Description

Table 2-16: Configuration Transmit Message Interface Port Descriptions

Port Direction Width Description

cfg_msg_transmit Input 1

Configuration Transmit Encoded Message.
This signal is asserted together with cfg_msg_transmit_type,
which supplies the encoded message type and
cfg_msg_transmit_data, which supplies optional data
associated with the message, until cfg_msg_transmit_done is
asserted in response.

cfg_msg_transmit_type Input 3

Configuration Transmit Encoded Message Type.
Indicates the type of PCI Express message to be transmitted.
Encodings supported are:
• 000b: Latency Tolerance Reporting (LTR)
• 001b: Optimized Buffer Flush/Fill (OBFF)
• 010b: Set Slot Power Limit (SSPL)
• 011b: Power Management (PM PME)
• 100b -111b: Reserved

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=36

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 37
PG156 January 29, 2016

Chapter 2: Product Specification

Configuration Flow Control Interface

Table 2-17 defines the ports in the Configuration Flow Control interface of the core.

cfg_msg_transmit_data Input 32

Configuration Transmit Encoded Message Data.
Indicates message data associated with particular message type.
• 000b: LTR - cfg_msg_transmit_data[31] < Snoop Latency Req.,
cfg_msg_transmit_data[28:26] < Snoop Latency Scale,
cfg_msg_transmit_data[25:16] < Snoop Latency Value,
cfg_msg_transmit_data[15] < No-Snoop Latency Requirement,
cfg_msg_transmit_data[12:10] < No-Snoop Latency Scale,
cfg_msg_transmit_data[9:0] < No-Snoop Latency Value.

• 001b: OBFF - cfg_msg_transmit_data[3:0] < OBFF Code.
• 010b: SSPL - cfg_msg_transmit_data[9:0] < {Slot Power

Limit Scale, Slot Power Limit Value}.
• 011b: PM_PME - cfg_msg_transmit_data[1:0] < PF1, PF0;
cfg_msg_transmit_data[9:4] < VF5, VF4, VF3, VF2, VF1,
VF0, where one or more PFs or VFs can signal PM_PME
simultaneously.

• 100b - 111b: Reserved

cfg_msg_transmit_done Output 1
Configuration Transmit Encoded Message Done.
Asserted in response to cfg_mg_transmit assertion, for 1 cycle
after the request is complete.

Table 2-16: Configuration Transmit Message Interface Port Descriptions (Cont’d)

Port Direction Width Description

Table 2-17: Configuration Flow Control Interface Port Descriptions

Port Direction Width Description

cfg_fc_ph Output 8

Posted Header Flow Control Credits.
This output provides the number of Posted Header Flow Control Credits.
This multiplexed output can be used to bring out various flow control
parameters and variables related to Posted Header Credit maintained by the
core. The flow control information to bring out on this core is selected by
the cfg_fc_sel[2:0] input.

cfg_fc_pd Output 12

Posted Data Flow Control Credits.
This output provides the number of Posted Data Flow Control Credits. This
multiplexed output can be used to bring out various flow control
parameters and variables related to Posted Data Credit maintained by the
core. The flow control information to bring out on this core is selected by
the cfg_fc_sel[2:0] input.

cfg_fc_nph Output 8

Non-Posted Header Flow Control Credits.
This output provides the number of Non-Posted Header Flow Control
Credits. This multiplexed output can be used to bring out various flow
control parameters and variables related to Non-Posted Header Credit
maintained by the core. The flow control information to bring out on this
core is selected by the cfg_fc_sel[2:0] input.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=37

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 38
PG156 January 29, 2016

Chapter 2: Product Specification

Per Function Status Interface

The Function Status interface provides status data as requested by the user application
through the selected function. Table 2-18 and Table 2-19 define the ports in the Function
Status interface of the core.

cfg_fc_npd Output 12

Non-Posted Data Flow Control Credits.
This output provides the number of Non-Posted Data Flow Control Credits.
This multiplexed output can be used to bring out various flow control
parameters and variables related to Non-Posted Data Credit maintained by
the core. The flow control information to bring out on this core is selected
by the cfg_fc_sel[2:0] input.

cfg_fc_cplh Output 8

Completion Header Flow Control Credits.
This output provides the number of Completion Header Flow Control
Credits. This multiplexed output can be used to bring out various flow
control parameters and variables related to Completion Header Credit
maintained by the core. The flow control information to bring out on this
core is selected by the cfg_fc_sel[2:0] input.

cfg_fc_cpld Output 12

Completion Data Flow Control Credits.
This output provides the number of Completion Data Flow Control Credits.
This multiplexed output can be used to bring out various flow control
parameters and variables related to Completion Data Credit maintained by
the core. The flow control information to bring out on this core is selected
by the cfg_fc_sel[2:0].

cfg_fc_sel Input 3

Flow Control Informational Select.
These inputs select the type of flow control to bring out on the cfg_fc_*
outputs of the core. The various flow control parameters and variables that
can be accessed for the different settings of these inputs are:
• 000: Receive credits currently available to the link partner
• 001: Receive credit limit
• 010: Receive credits consumed
• 011: Available space in receive buffer
• 100: Transmit credits available
• 101: Transmit credit limit
• 110: Transmit credits consumed
• 111: Reserved
This value represents the actual unused credits in the receiver FIFO, and the
recommendation is to use it only as an approximate indication of receiver
FIFO fullness, relative to the initial credit limit value advertized, such as, ¼
full, ½ full, ¾ full, full.
Note: Infinite credit for transmit credits available (cfg_fc_sel == 3'b100) is
signaled as 8'h80, 12'h800 for header and data credits, respectively. For all other
cfg_fc_sel selections, infinite credit is signaled as 8'h00, 12'h000,
respectively, for header and data categories.

Table 2-17: Configuration Flow Control Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=38

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 39
PG156 January 29, 2016

Chapter 2: Product Specification

Table 2-18: Overview of Function Status Interface Port Descriptions

Port Direction Width Description

cfg_per_func_status_control Input 3

Configuration Per Function Control.
Controls information presented on the multi-function output
cfg_per_func_status_data. Supported encodings are
000b, 001b, 010b, 011b, 100b, and 101b. All other
encodings are reserved.

cfg_per_func_status_data Output 16

Configuration Per Function Status Data.
Provides a 16-bit status output for the selected function.
Information presented depends on the values of
cfg_per_func_status_control and
cfg_per_function_number.

Table 2-19: Detailed Function Status Interface Port Descriptions

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

0 0 cfg_command_
io_enable 1

Configuration Command – I/O Space Enable:
Command[0].
Endpoints: If 1, allows the device to receive I/O
Space accesses. Otherwise, the core filters these
and respond with an Unsupported Request.
Root/Switch: Core takes no action based on this
setting. If 0, logic must not generate TLPs
downstream.

0 1 cfg_command_
mem_enable 1

Configuration Command – Memory Space Enable:
Command[1].
Endpoints: If 1, allows the device to receive
Memory Space accesses. Otherwise, the core filters
respond with an Unsupported Request.
Root/Switch: Core takes no action based on this
setting. If 0, logic must not generate TLPs
downstream.

0 2 cfg_command_
bus_master_enable 1

Configuration Command – Bus Master Enable:
Command[2].
The core takes no action based on this setting;
logic must do that.
Endpoints: When asserted, the logic is allowed to
issue Memory or I/O Requests (including MSI/X
interrupts); otherwise it must not.
Root and Switch Ports: When asserted, received
Memory or I/O Requests might be forwarded
upstream; otherwise they are handled as
Unsupported Requests (UR), and for Non-Posted
Requests a Completion with UR completion status
is returned.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=39

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 40
PG156 January 29, 2016

Chapter 2: Product Specification

0 3 cfg_command_
interrupt_disable 1

Configuration Command – Interrupt Disable:
Command[10].
When asserted, the core is prevented from
asserting INTx interrupts.

0 4 cfg_command_
serr_en 1

Configuration Command – SERR Enable:
Command[8].
When asserted, this bit enables reporting of
Non-fatal and Fatal errors. Note that errors are
reported if enabled either through this bit or
through the PCI Express specific bits in the Device
Control register. In addition, for a Root Complex or
Switch, this bit controls transmission by the
primary interface of ERR_NONFATAL and
ERR_FATAL error messages forwarded from the
secondary interface.

0 5 cfg_bridge_serr_en 1

Configuration Bridge Control – SERR Enable:
Bridge Ctrl[1].
When asserted, this bit enables the forwarding of
Correctable, Non-fatal and Fatal errors (you must
enforce that).

0 6 cfg_aer_ecrc_check_
en 1

Configuration AER – ECRC Check Enable:
AER_Cap_and_Ctl[8].
When asserted, this bit indicates that ECRC
checking has been enabled by the host.

0 7 cfg_aer_ecrc_gen_
en 1

Configuration AER – ECRC Generation Enable:
AER_Cap_and_Ctl[6].
When asserted, this bit indicates that ECRC
generation has been enabled by the host.

0 15:8 0 8 Reserved

1 0 cfg_dev_status_
corr_err_detected 1

Configuration Device Status – Correctable Error
Detected: Device_Status[0].
Indicates status of correctable errors detected.
Errors are logged in this register regardless of
whether error reporting is enabled or not in the
Device Control register.

1 1
cfg_dev_status_
non_fatal_err_
detected

1

Configuration Device Status – Non-Fatal Error
Detected: Device_Status[1].
Indicates status of Nonfatal errors detected. Errors
are logged in this register regardless of whether
error reporting is enabled or not in the Device
Control register.

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=40

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 41
PG156 January 29, 2016

Chapter 2: Product Specification

1 2 cfg_dev_status_
fatal_err_detected 1

Configuration Device Status – Fatal Error Detected:
Device_Status[2].
Indicates status of Fatal errors detected. Errors are
logged in this register regardless of whether error
reporting is enabled or not in the Device Control
register.

1 3 cfg_dev_status_ur_
detected 1

Configuration Device Status – Unsupported
Request Detected: Device_Status[3].
Indicates that the core received an Unsupported
Request. Errors are logged in this register
regardless of whether error reporting is enabled or
not in the Device Control register.

1 4
cfg_dev_control_
corr_err_reporting_
en

1

Configuration Device Control – Correctable Error
Reporting Enable: Device_Ctrl[0].
This bit, in conjunction with other bits, controls
sending ERR_COR Messages. For a Root Port, the
reporting of correctable errors is internal to the
root; no external ERR_COR Message is generated.

1 5
cfg_dev_control_
non_fatal_
reporting_en

1

Configuration Device Control – Non-Fatal Error
Reporting Enable: Device_Ctrl[1].
This bit, in conjunction with other bits, controls
sending ERR_NONFATAL Messages. For a Root Port,
the reporting of correctable errors is internal to the
root; no external ERR_NONFATAL Message is
generated.

1 6
cfg_dev_control_
fatal_err_reporting_
en

1

Configuration Device Control – Fatal Error
Reporting Enable: Device_Ctrl[2].
This bit, in conjunction with other bits, controls
sending ERR_FATAL Messages. For a Root Port, the
reporting of correctable errors is internal to the
root; no external ERR_FATAL Message is generated.

1 7 cfg_dev_control_
ur_err_reporting_en 1

Configuration Device Control – UR Reporting
Enable: Device_Ctrl[3].
This bit, in conjunction with other bits, controls the
signaling of Unsupported Requests by sending
Error Messages.

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=41

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 42
PG156 January 29, 2016

Chapter 2: Product Specification

1 10:8 cfg_dev_control_
max_payload 3

Configuration Device Control – Max_Payload_Size:
Device_Ctrl[7:5].
This field sets maximum TLP payload size. As a
Receiver, the logic must handle TLPs as large as the
set value. As a Transmitter, the logic must not
generate TLPs exceeding the set value.
• 000b = 128 bytes max payload size
• 001b = 256 bytes max payload size
• 010b = 512 bytes max payload size
• 011b = 1024 bytes max payload size
• 100b = 2048 bytes max payload size
• 101b = 4096 bytes max payload size

1 11 cfg_dev_control_
enable_ro 1

Configuration Device Control – Enable Relaxed
Ordering: Device_Ctrl[4].
When asserted, the logic is permitted to set the
Relaxed Ordering bit in the Attributes field of
transactions it initiates that do not require strong
write ordering.

1 12 cfg_dev_control_
ext_tag_en 1

Configuration Device Control – Tag Field Enable:
Device_Ctrl[8].
When asserted, enables the logic to use an 8-bit
Tag field as a Requester. If deasserted, the logic is
restricted to a 5-bit Tag field. Note that the core
does not enforce the number of Tag bits used,
either in outgoing request TLPs or incoming
Completions.

1 13 cfg_dev_control_
no_snoop_en 1

Configuration Device Control – Enable No Snoop:
Device_Ctrl[11].
When asserted, the logic is permitted to set the No
Snoop bit in TLPs it initiates that do not require
hardware enforced cache coherency.

1 15:14 0 2 Reserved

2 2:0 cfg_dev_control_
max_read_req 3

Configuration Device Control –
Max_Read_Request_Size: Device_Ctrl[14:12].
This field sets the maximum Read Request size for
the logic as a Requester. The logic must not
generate Read Requests with size exceeding the set
value.
• 000b = 128 bytes maximum Read Request size
• 001b = 256 bytes maximum Read Request size
• 010b = 512 bytes maximum Read Request size
• 011b = 1024 bytes maximum Read Request size
• 100b = 2048 bytes maximum Read Request size
• 101b = 4096 bytes maximum Read Request size

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=42

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 43
PG156 January 29, 2016

Chapter 2: Product Specification

2 3 cfg_link_status_
link_training 1

Configuration Link Status – Link Training:
Link_Status[11].
Indicates that the Physical Layer LTSSM is in the
Configuration or Recovery state, or that 1b was
written to the Retrain Link bit but Link training has
not yet begun. The core clears this bit when the
LTSSM exits the Configuration/Recovery state.

2 6:4 cfg_link_status_
current_speed 3

Configuration Link Status – Current Link Speed:
Link_Status[1:0].
This field indicates the negotiated Link speed of
the given PCI Express Link.
• 001b = 2.5 GT/s PCI Express Link
• 010b = 5.0 GT/s PCI Express Link
• 100b = 8.0 GT/s PCI Express Link

2 10:7 cfg_link_status_
negotiated_width 4

Configuration Link Status – Negotiated Link Width:
Link_Status[7:4].
This field indicates the negotiated width of the
given PCI Express Link (only widths up to x8
displayed).
• 0001b = x1
• 0010b = x2
• 0100b = x4
• 1000b = x8

2 11 cfg_link_status_
bandwidth_status 1

Configuration Link Status – Link Bandwidth
Management Status: Link_Status[14].
Indicates that either of the following has occurred
without the Port transitioning through DL_Down
status:
• A Link retraining has completed following a write

of 1b to the Retrain Link bit.

Note: This bit is set following any write of
1b to the Retrain Link bit, including when
the Link is in the process of retraining for
some other reason.

• Hardware has changed Link speed or width to
attempt to correct unreliable Link operation,
either through an LTSSM timeout or a higher
level process. This bit is set if the Physical Layer
reports a speed or width change was initiated by
the Downstream component that was not
indicated as an autonomous change.

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=43

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 44
PG156 January 29, 2016

Chapter 2: Product Specification

2 12
cfg_link_status_
auto_bandwidth_
status

1

Configuration Link Status – Link Autonomous
Bandwidth Status: Link_Status[15].
Indicates the core has autonomously changed Link
speed or width, without the Port transitioning
through DL_Down status, for reasons other than to
attempt to correct unreliable Link operation. This
bit must be set if the Physical Layer reports a speed
or width change was initiated by the Downstream
component that was indicated as an autonomous
change.

2 15:13 0 3 Reserved

3 1:0 cfg_link_control_
aspm_control 2

Configuration Link Control – ASPM Control:
Link_Ctrl[1:0].
Indicates the level of ASPM supported, where:
• 00b = Disabled
• 01b = L0s Entry Enabled
• 10b = L1 Entry Enabled
• 11b = L0s and L1 Entry Enabled

3 2 cfg_link_control_
rcb 1

Configuration Link Control – RCB: Link_Ctrl[3].
Indicates the Read Completion Boundary value,
where,
• 0=64B
• 1=128B

3 3 cfg_link_control_
link_disable 1

Configuration Link Control – Link Disable:
Link_Ctrl[4].
When asserted, indicates the Link is disabled and
directs the LTSSM to the Disabled state.

3 4 cfg_link_control_
common_clock 1

Configuration Link Control – Common Clock
Configuration: Link_Ctrl[6].
When asserted, indicates that this component and
the component at the opposite end of this Link are
operating with a distributed common reference
clock. When deasserted, indicates they are
operating with an asynchronous reference clock.

3 5 cfg_link_control_
extended_sync 1

Configuration Link Control – Extended Synch:
Link_Ctrl[7].
When asserted, forces the transmission of
additional Ordered Sets when exiting the L0s state
and when in the Recovery state.

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=44

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 45
PG156 January 29, 2016

Chapter 2: Product Specification

3 6 cfg_link_control_
clock_pm_en 1

Configuration Link Control – Enable Clock Power
Management: Link_Ctrl[8].
For Upstream Ports that support a CLKREQ#
mechanism, indicates:
• 0b = Clock power management disabled.
• 1b = The device is permitted to use CLKREQ#.
The core takes no action based on the setting of
this bit; external logic must implement this.

3 7 cfg_link_control_
hw_auto_width_dis 1

Configuration Link Control – Hardware
Autonomous Width Disable: Link_Ctrl[9].
When asserted, disables the core from changing
the Link width for reasons other than attempting to
correct unreliable Link operation by reducing Link
width.

3 8 cfg_link_control_
bandwidth_int_en 1

Configuration Link Control – Link Bandwidth
Management Interrupt Enable: Link_Ctrl[10].
When asserted, enables the generation of an
interrupt to indicate that the Link Bandwidth
Management Status bit has been set. The core
takes no action based on the setting of this bit; the
logic must create the interrupt.

3 9
cfg_link_control_
auto_bandwidth_
int_en

1

Configuration Link Control – Link Autonomous
Bandwidth Interrupt Enable: Link_Ctrl[11].
When asserted, this bit enables the generation of
an interrupt to indicate that the Link Autonomous
Bandwidth Status bit has been set. The core takes
no action based on the setting of this bit; the logic
must create the interrupt.

3 10 cfg_tph_requester_
enable 1

TPH Requester Enable: Bit [8] of the TPH Requester
Control register in the TPH Requester Capability
Structure of the function.
These bits are active only in the Endpoint mode.
Indicates whether the software has enabled the
device to generate requests with TPH Hints from
the associated function.

3 13:11 cfg_tph_steering_
tag_mode 3

TPH Steering Tag Mode.
Reflect the setting of the ST Mode Select bits in the
TPH Requester Control register. These bits are
active only in the Endpoint mode. They indicate the
allowed modes for generation of TPH Hints by the
corresponding function.

3 15:14 0 2 Reserved

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=45

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 46
PG156 January 29, 2016

Chapter 2: Product Specification

4 3:0 cfg_dev_control2_
cpl_timeout_val 4

Configuration Device Control 2 – Completion
Timeout Value: Device_Ctrl2[3:0].
This is the time range that the logic regard as a
Request is pending Completion as a Completion
Timeout. The core takes no action based on this
setting.
• 0000b = 50 μs to 50 ms (default)
• 0001b = 50 μs to 100 μs
• 0010b = 1 ms to 10 ms
• 0101b = 16 ms to 55 ms
• 0110b = 65 ms to 210 ms
• 1001b = 260 ms to 900 ms
• 1010b = 1 s to 3.5 s
• 1101b = 4 s to 13 s
• 1110b = 17 s to 64 s

4 4 cfg_dev_control2_
cpl_timeout_dis 1

Configuration Device Control 2 – Completion
Timeout Disable: Device_Ctrl2[4].
This disables the Completion Timeout counters.

4 5
cfg_dev_control2_
atomic_requester_
en

1

Configuration Device Control 2 – Atomic Requester
Enable: Device_Ctrl2[6].
Applicable only to Endpoints and Root Ports; must
be hardwired to 0b for other function types. The
function is allowed to initiate AtomicOp Requests
only if this bit and the Bus Master Enable bit in the
Command register are both set. This bit is required
to be RW if the Endpoint or Root Port is capable of
initiating AtomicOp Requests, but otherwise is
permitted to be hardwired to 0b. This bit does not
serve as a capability bit. This bit is permitted to be
RW even if no AtomicOp Requester capabilities are
supported by the Endpoint or Root Port.
Default value of this bit is 0b. 32 nm

4 6 cfg_dev_control2_
ido_req_en 1

Configuration Device Control 2 – IDO Request
Enable: Device_Ctrl2[8].
If this bit is set, the function is permitted to set the
ID-Based Ordering (IDO) bit (Attribute[2]) of
Requests it initiates (see Section 2.2.6.3 and
Section 2.4). Endpoints, including RC Integrated
Endpoints, and Root Ports are permitted to
implement this capability. A function is permitted
to hardwire this bit to 0b if it never sets the IDO
attribute in Requests. Default value of this bit is
0b. 32 nm

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=46

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 47
PG156 January 29, 2016

Chapter 2: Product Specification

4 7 cfg_dev_control2_
ido_cpl_en 1

Configuration Device Control 2 – IDO Completion
Enable: Device_Ctrl2[9].
If this bit is set, the function is permitted to set the
ID-Based Ordering (IDO) bit (Attribute[2]) of
Completions it returns (see Section 2.2.6.3 and
Section 2.4). Endpoints, including RC Integrated
Endpoints, and Root Ports are permitted to
implement this capability. A function is permitted
to hardwire this bit to 0b if it never sets the IDO
attribute in Requests. Default value of this bit is
0b. 32 nm

4 8 cfg_dev_control2_
ltr_en 1

Configuration Device Control 2 – LTR Mechanism
Enable: Device_Ctrl2[10].
If this bit is set, the function is permitted to set the
ID-Based Ordering (IDO) bit (Attribute[2]) of
Completions it returns (see Section 2.2.6.3 and
Section 2.4). Endpoints, including RC Integrated
Endpoints, and Root Ports are permitted to
implement this capability. A function is permitted
to hardwire this bit to 0b if it never sets the IDO
attribute in Requests. Default value of this bit is
0b. 32 nm

4 13:9 cfg_dpa_substate 5
Dynamic Power Allocation Substate: Reflect the
setting of the Dynamic Power Allocation Substate
field in the DPA Control register.

4 15:14 0 1 Reserved

5 0 cfg_root_control_
syserr_corr_err_en 1

Configuration Root Control – System Error on
Correctable Error Enable: Root_Control[0].
This bit enables the logic to generate a System
Error for reported Correctable Errors.

5 1
cfg_root_control_
syserr_non_fatal_err
_en

1

Configuration Root Control – System Error on
Non-Fatal Error Enable: Root_Control[1].
This bit enables the logic to generate a System
Error for reported Non-Fatal Errors.

5 2 cfg_root_control_
syserr_fatal_err_en 1

Configuration Root Control – System Error on Fatal
Error Enable: Root_Control[2].
This bit enables the logic to generate a System
Error for reported Fatal Errors.

5 3 cfg_root_control_
pme_int_en 1

Configuration Root Control – PME Interrupt
Enable: Root_Control[3].
This bit enables the logic to generate an Interrupt
for received PME Messages.

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=47

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 48
PG156 January 29, 2016

Chapter 2: Product Specification

Configuration Control Interface

The Configuration Control interface signals allow a broad range of information exchange
between the user application and the core. The user application uses this interface to do the
following:

• Set the configuration space.

• Indicate if a correctable or uncorrectable error has occurred.

• Set the device serial number.

• Set the downstream bus, device, and function number.

• Receive per function configuration information.

This interface also provides handshaking between the user application and the core when a
Power State change or function level reset occurs.

Table 2-20 defines the ports in the Configuration Control interface of the core.

5 4
cfg_aer_rooterr_
corr_err_reporting_
en

1

Configuration AER – Correctable Error Reporting
Enable: AER_Root_Error_Command[0].
This bit enables the logic to generate interrupts for
reported Correctable Errors.

5 5
cfg_aer_rooterr_
non_fatal_err_
reporting_en

1

Configuration AER – Non-Fatal Error Reporting
Enable: AER_Root_Error_Command[1].
This bit enables the user logic to generate
interrupts for reported Non-Fatal Errors.

5 6
cfg_aer_rooterr_
fatal_err_reporting_
en

1

Configuration AER – Fatal Error Reporting Enable:
AER_Root_Error_Command[2].
This bit enables the user logic to generate
interrupts for reported Fatal Errors.

5 7 cfg_aer_rooterr_
corr_err_received 1

Configuration AER – Correctable Error Messages
Received: AER_Root_Error_Status[0].
Indicates that an ERR_COR Message was received.

5 8
cfg_aer_rooterr_
non_fatal_err_receiv
ed

1
Configuration AER – Non-Fatal Error Messages
Received: AER_Root_Error_Status[5].
Indicates that an ERR_NFE Message was received.

5 9 cfg_aer_rooterr_
fatal_err_received 1

Configuration AER – Fatal Error Messages Received:
AER_Root_Error_Status[6].
Indicates that an ERR_FATAL Message was received.

5 15:10 0 6 Reserved

Table 2-19: Detailed Function Status Interface Port Descriptions (Cont’d)

cfg_per_func_
status_control

[bit]

cfg_per_func_
status_data
[bit/slice]

Status Output Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=48

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 49
PG156 January 29, 2016

Chapter 2: Product Specification

Table 2-20: Configuration Control Interface Port Descriptions

Port Direction Width Description

cfg_hot_reset_in Input 1
Configuration Hot Reset In.
In RP mode, assertion transitions LTSSM to hot reset
state, active-High.

cfg_hot_reset_out Output 1
Configuration Hot Reset Out.
In EP mode, assertion indicates that EP has transitioned
to the hot reset state, active-High.

cfg_config_space_enable Input 1

Configuration Configuration Space Enable.
When this input is set to 0 in the Endpoint mode, the core
generates a CRS Completion in response to
Configuration Requests. This port should be held
deasserted when the core configuration registers are
loaded from the DRP due to a change in attributes. This
prevents the core from responding to Configuration
Requests before all the registers are loaded. This input
can be High when the power-on default values of the
Configuration registers do not need to be modified
before Configuration space enumeration. This input is
not applicable for Root Port mode.

cfg_per_function_update_done Output 1

Configuration per Function Update Complete.
Asserted in response to
cfg_per_function_output_request assertion, for
one cycle after the request is complete.

cfg_per_function_number Input 4

Configuration Per Function Target Function Number.
The user provides the function number (0-7), where value
0–1 corresponds to PF0–1, and value 2–7 corresponds to
VF0–5, and asserts
cfg_per_function_output_request to obtain per
function output values for the selected function. All other
values are reserved

cfg_per_function_output_request Input 1

Configuration Per Function Output Request.
When this port is asserted with a function number value
on cfg_per_function_number, the core presents
information on per-function configuration output pins
and asserts cfg_update_done when complete.

cfg_dsn Input 64

Configuration Device Serial Number.
Indicates the value that should be transferred to the
Device Serial Number Capability on PF0. Bits [31:0] are
transferred to the first (Lower) Dword (byte offset 0x4h
of the Capability), and bits [63:32] are transferred to the
second (Upper) Dword (byte offset 0x8h of the
Capability). If this value is not statically assigned, the user
application must pulse user_cfg_input_update after
it is stable.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=49

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 50
PG156 January 29, 2016

Chapter 2: Product Specification

cfg_ds_bus_number Input 8

Configuration Downstream Bus Number.
• Downstream Port: Provides the bus number portion of

the Requester ID (RID) of the Downstream Port. This is
used in TLPs generated inside the core, such as UR
Completions and Power-management messages; it
does not affect TLPs presented on the TRN interface.

• Upstream Port: No role.

cfg_ds_device_number Input 5

Configuration Downstream Device Number:
• Downstream Port: Provides the device number portion

of the RID of the Downstream Port. This is used in TLPs
generated inside the core, such as UR Completions and
Power-management messages; it does not affect TLPs
presented on the TRN interface.

• Upstream Port: No role.

cfg_ds_function_number Input 3

Configuration Downstream Function Number.
• Downstream Port: Provides the function number

portion of the RID of the Downstream Port. This is used
in TLPs generated inside the core, such as UR
Completions and power-management messages; it
does not affect TLPs presented on the TRN interface.

• Upstream Port: No role.

cfg_power_state_change_ack Input 1

Configuration Power State Ack.
You must assert this input to the core for one cycle in
response to the assertion of
cfg_power_state_change_interrupt, when it is ready
to transition to the low-power state requested by the
configuration write request. The user application can
permanently hold this input High if it does not need to
delay the return of the completions for the configuration
write transactions, causing power-state changes.

Table 2-20: Configuration Control Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=50

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 51
PG156 January 29, 2016

Chapter 2: Product Specification

cfg_power_state_change_interrupt Output 1

Power State Change Interrupt.
The core asserts this output when the power state of a
physical or virtual function is being changed to the D1 or
D3 states by a write into its Power Management Control
register. The core holds this output High until the user
application asserts the
cfg_power_state_change_ack input to the core.
While cfg_power_state_change_interrupt
remains High, the core does not return completions for
any pending configuration read or write transaction
received by the core. The purpose is to delay the
completion for the configuration write transaction that
caused the state change until the user application is
ready to transition to the low-power state. When
cfg_power_state_change_interrupt is asserted,
the function number associated with the configuration
write transaction is provided on the
cfg_ext_function_number[7:0] output. When the
user application asserts
cfg_power_state_change_ack, the new state of the
function that underwent the state change is reflected on
cfg_function_power_state (for PFs) or the
cfg_vf_power_state (for VFs) outputs of the core.

cfg_err_cor_in Input 1

Correctable Error Detected.
The user application activates this input for one cycle to
indicate a correctable error detected within the user logic
that needs to be reported as an internal error through the
PCI Express Advanced Error Reporting mechanism. In
response, the core sets the Corrected Internal Error
Status bit in the AER Correctable Error Status register of
all enabled functions, and also sends an error message if
enabled to do so. This error is not considered
function-specific.

cfg_err_uncor_in Input 1

Uncorrectable Error Detected.
The user application activates this input for one cycle to
indicate a uncorrectable error detected within the user
logic that needs to be reported as an internal error
through the PCI Express Advanced Error Reporting
mechanism. In response, the core sets the uncorrected
Internal Error Status bit in the AER Uncorrectable Error
Status register of all enabled functions, and also sends an
error message if enabled to do so. This error is not
considered function-specific.

cfg_flr_done Input 4

Function Level Reset Complete.
You must assert bit i of this bus when the reset operation
of physical function i completes. This causes the core to
deassert cfg_flr_in_process for physical function i
and to re-enable configuration accesses to the physical
function. Bits [3:2] are reserved.

Table 2-20: Configuration Control Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=51

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 52
PG156 January 29, 2016

Chapter 2: Product Specification

Configuration Interrupt Controller Interface

The Configuration Interrupt Controller interface allows the user application to set Legacy
PCIe interrupts, MSI interrupts, or MSI-X interrupts. The core provides the interrupt status
on the configuration interrupt sent and fail signals. Table 2-21 defines the ports in the
Configuration Interrupt Controller interface of the core.

cfg_vf_flr_done Input 8

Function Level Reset for virtual Function is Complete.
You must assert bit i of this bus the reset operation of
virtual function i completes. This causes the core to
deassert cfg_vf_flr_in_process for function i and
to re-enable configuration accesses to the virtual
function. Bits [7:6] are reserved.

cfg_flr_in_process Output 4

Function Level Reset In Process.
The core asserts bit i of this bus when the host initiates a
reset of physical function i through its FLR bit in the
configuration space. The core continues to hold the
output High until you set the corresponding
cfg_flr_done input for the corresponding physical
function to indicate the completion of the reset
operation. Bits [3:2] are reserved.

cfg_vf_flr_in_process Output 8

Function Level Reset In Process for Virtual Function.
The core asserts bit i of this bus when the host initiates a
reset of virtual function i though its FLR bit in the
configuration space. The core continues to hold the
output High until the user sets the corresponding
cfg_vf_flr_done input for the corresponding
function to indicate the completion of the reset
operation.

cfg_req_pm_transition_l23_ready Input 1

When the core is configured as an Endpoint, the user
application asserts this input to transition the power
management state of the core to L23_READY (see
Chapter 5 of the PCI Express Specification for a detailed
description of power management). This is done after the
PCI functions in the core are placed in the D3 state and
after the user application acknowledges the
PME_Turn_Off message from the Root Complex.
Asserting this input causes the link to transition to the L3
state, and requires a hard reset to resume operation. This
input can be hardwired to 0 if the link is not required to
transition to L3. This input is not used in Root Complex
mode.

cfg_link_training_enable Input 1
This input must be set to 1 to enable the Link Training
Status State Machine (LTSSM) to bring up the link. Setting
it to 0 forces the LTSSM to stay in the Detect.Quiet state.

Table 2-20: Configuration Control Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=52

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 53
PG156 January 29, 2016

Chapter 2: Product Specification

Table 2-21: Configuration Interrupt Controller Interface Port Descriptions

Port Direction Width Description

cfg_interrupt_int Input 4

Configuration INTx Vector.
When the core is configured as EP, these four inputs are
used by the user application to signal an interrupt from
any of its PCI functions to the RC using the Legacy PCI
Express Interrupt Delivery mechanism of PCI Express.
These four inputs correspond to INTA, INTB, INTC, and
INTD. Asserting one of these signals causes the core to
send out an Assert_INTx message, and deasserting the
signal causes the core to transmit a Deassert_INTx
message.

cfg_interrupt_sent Output 1

Configuration INTx Sent.
A pulse on this output indicates that the core has sent
an INTx Assert or Deassert message in response to a
change in the state of one of the cfg_interrupt_int
inputs.

cfg_interrupt_pending Input 4

Configuration INTx Interrupt Pending (active-High).
Per function indication of a pending interrupt.
cfg_interrupt_pending[0] corresponds to
physical function 0 and so on. Bits [3:2] are reserved.

cfg_interrupt_msi_enable Output 4

Configuration Interrupt MSI Function Enabled.
Indicates that Message Signaling Interrupt (MSI)
messaging is enabled per function. Bits [3:2] are
reserved.

cfg_interrupt_msi_vf_enable Output 8
Configuration Interrupt MSI on VF Enabled.
Indicates that MSI messaging is enabled, per virtual
function. Bits [7:6] are reserved.

cfg_interrupt_msi_int Input 32

Configuration Interrupt MSI Vector.
When the core is configured in Endpoint mode to
support MSI interrupts, these inputs are used to signal
the 32 distinct interrupt conditions associated with a PCI
function (physical or virtual) from the user logic to the
core. The function number must be specified on the
cfg_interrupt_msi_function_number input.
After placing the function number on the input
cfg_interrupt_msi_function_number, the user
logic must activate one of these signals for one cycle to
transmit an interrupt. The user logic must not activate
more than one of the 32 interrupt inputs in the same
cycle. The core internally registers the interrupt
condition on the 0-to-1 transition of any bit in
cfg_interrupt_msi_int. After asserting an
interrupt, the user logic must wait for the
cfg_interrupt_msi_sent or
cfg_interrupt_msi_fail indication from the core
before asserting a new interrupt.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=53

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 54
PG156 January 29, 2016

Chapter 2: Product Specification

cfg_interrupt_msi_sent Output 1

Configuration Interrupt MSI Interrupt Sent.
The core generates a one-cycle pulse on this output to
signal that an MSI interrupt message has been
transmitted on the link. The user logic must wait for this
pulse before signaling another interrupt condition to
the core.

cfg_interrupt_msi_fail Output 1

Configuration Interrupt MSI Interrupt Operation Failed.
A one-cycle pulse on this output indicates that an MSI
interrupt message was aborted before transmission on
the link. The user application must retransmit the MSI
interrupt in this case.

cfg_interrupt_msi_mmenable Output 12

Configuration Interrupt MSI Function Multiple Message
Enable.
When the core is configured in the Endpoint mode to
support MSI interrupts, these outputs are driven by the
Multiple Message Enable bits of the MSI Control
registers associated with physical functions. These bits
encode the number of allocated MSI interrupt vectors
for the corresponding function. Bits [2:0] correspond to
physical function 0 and bits [5:4] to physical function 1.
Bits [12:6] are reserved.

cfg_interrupt_msi_pending_status Input 64

Configuration Interrupt MSI Pending Status.
These inputs provide the status of the MSI pending
interrupts for the physical functions. The setting of these
pins determines the value read from the MSI Pending
Bits register of the corresponding PF. Bits [31:0] belong
to PF 0, bits [63:32] to PF 1. The MSI Pending bits register
contains the pending bits for MSI Interrupts. A read from
this location returns the state of MSI_MASK inputs of the
core. This is a 32-bit wide RO register with a default
value of MSI MASK inputs.

cfg_interrupt_msi_mask_update Output 1

Configuration Interrupt MSI Function Mask Update.
Asserted for one cycle when any enabled functions in
the MSI Mask register change value. MSI Mask register
contains the Mask bits for MSI interrupts. The Multiple
Message Capable field in the MSI Control register
specifies the number of distinct interrupts for the
function, which determines the number of valid mask
bits. This is a 32-bit wide RW register with a default
value of 0.

Table 2-21: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=54

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 55
PG156 January 29, 2016

Chapter 2: Product Specification

cfg_interrupt_msi_select Input 4

Configuration Interrupt MSI Select.
Values 0000b-0001b correspond to PF0-1 selection,
and values 0010b-0111b correspond to VF0-5
selection. cfg_interrupt_msi_data[31:0]
presents the value of the MSI Mask register from the
selected function. When this input is driven to 1111b,
cfg_interrupt_msi_data[17:0] presents the
Multiple Message Enable bits of the MSI Control
registers associated with all virtual functions. These bits
encode the number of allocated MSI interrupt vectors
for the corresponding function.
cfg_interrupt_msi_data[2:0] correspond to
virtual function 0, and so on.

cfg_interrupt_msi_data Output 32
Configuration Interrupt MSI Data.
The value presented depends on
cfg_interrupt_msi_select.

cfg_interrupt_msix_enable Output 2
Configuration Interrupt MSI-X Function Enabled.
When asserted, indicates that the Message Signaling
Interrupt (MSI-X) messaging is enabled, per function.

cfg_interrupt_msix_mask Output 2
Configuration Interrupt MSI-X Function Mask.
Indicates the state of the Function Mask bit in the MSI-X
Message Control field, per function.

cfg_interrupt_msix_vf_enable Output 6

Configuration Interrupt MSI-X on VF Enabled.
When asserted, indicates that Message Signaling
Interrupt (MSI-X) messaging is enabled, per virtual
function.

cfg_interrupt_msix_vf_mask Output 6
Configuration Interrupt MSI-X VF Mask.
Indicates the state of the Function Mask bit in the MSI-X
Message Control field, per virtual function.

cfg_interrupt_msix_address Input 64

Configuration Interrupt MSI-X Address.
When the core is configured to support MSI-X
interrupts, this bus is used by the user logic to
communicate the address to be used for an MSI-X
message.

cfg_interrupt_msix_data Input 32

Configuration Interrupt MSI-X Data.
When the core is configured to support MSI-X
interrupts, this bus is used by the user logic to
communicate the data to be used for an MSI-X message.

Table 2-21: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=55

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 56
PG156 January 29, 2016

Chapter 2: Product Specification

cfg_interrupt_msix_int Input 1

Configuration Interrupt MSI-X Data Valid.
This signal indicates that valid information has been
placed on the
cfg_interrupt_msix_address[63:0] and
cfg_interrupt_msix_data[31:0] buses, and the
originating function number has been placed on
cfg_interrupt_msi_function_number[3:0].
The core internally registers the associated address and
data from cfg_interrupt_msix_address and
cfg_interrupt_msix_data on the 0-to-1 transition
of this valid signal. The user application must ensure
that the cfg_interrupt_msix_enable bit
corresponding to function in use is set before asserting
cfg_interrupt_msix_int. After asserting an
interrupt, the user logic must wait for the
cfg_interrupt_msix_sent or
cfg_interrupt_msix_fail indication from the core
before asserting a new interrupt.

cfg_interrupt_msix_sent Output 1

Configuration Interrupt MSI-X Interrupt Sent.
The core generates a one-cycle pulse on this output to
indicate that it has accepted the information placed on
the cfg_interrupt_msix_address[63:0] and
cfg_interrupt_msix_data[31:0] buses, and an
MSI-X interrupt message has been transmitted on the
link. The user application must wait for this pulse before
signaling another interrupt condition to the core.

cfg_interrupt_msix_fail Output 1

Configuration Interrupt MSI-X Interrupt Operation
Failed.
A one-cycle pulse on this output indicates that the
interrupt controller has failed to transmit MSI-X
interrupt on the link. The user application must
retransmit the MSI-X interrupt in this case.

cfg_interrupt_msi_attr Input 3

Configuration Interrupt MSI/MSI-X TLP Attr.
These bits provide the setting of the Attribute bits to be
used for the MSI/MSI-X interrupt request. Bit 0 is the No
Snoop bit, and bit 1 is the Relaxed Ordering bit. Bit 2 is
the ID-Based Ordering bit. The core samples these bits
on a 0-to-1 transition on cfg_interrupt_msi_int or
cfg_interrupt_msix_int.

cfg_interrupt_msi_tph_present Input 1

Configuration Interrupt MSI/MSI-X TPH Present.
Indicates the presence of a Transaction Processing Hint
(TPH) in the MSI/MSI-X interrupt request. The user
application must set this bit while asserting
cfg_interrupt_msi_int or
cfg_interrupt_msix_int, if it includes a TPH in the
MSI or MSI-X transaction.

Table 2-21: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=56

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 57
PG156 January 29, 2016

Chapter 2: Product Specification

Configuration Extend Interface

The Configuration Extend interface allows the core to transfer configuration information
with the user application when externally implemented configuration registers are
implemented. Table 2-22 defines the ports in the Configuration Extend interface of the
core.

cfg_interrupt_msi_tph_type Input 2

Configuration Interrupt MSI/MSI-X TPH Type.
When cfg_interrupt_msi_tph_present is 1'b1,
these two bits supply the two-bit type associated with
the hint. The core samples these bits on a 0-to-1
transition on cfg_interrupt_msi_int or
cfg_interrupt_msix_int.

cfg_interrupt_msi_tph_st_tag Input 9

Configuration Interrupt MSI/MSI-X TPH Steering Tag.
When cfg_interrupt_msi_tph_present is 1'b1,
the Steering Tag associated with the Hint must be placed
on cfg_interrupt_msi_tph_st_tag[7:0].
Setting cfg_interrupt_msi_tph_st_tag[8] to 1b
activates the Indirect Tag mode. In the Indirect Tag
mode, the core uses bits [5:0] of
cfg_interrupt_msi_tph_st_tag as an index into
its Steering Tag Table (STT) in the TPH Capability
Structure (STT is limited to 64 entries per function), and
inserts the tag from this location in the transmitted
request MSI/X TLP. Setting
cfg_interrupt_msi_tph_st_tag[8] to 0b
activates the Direct Tag mode. In the Direct Tag mode,
the core inserts
cfg_interrupt_msi_tph_st_tag[7:0] directly as
the Tag in the transmitted MSI/X TLP. The core samples
these bits on a 0-to-1 transition on any
cfg_interrupt_msi_int bits or
cfg_interrupt_msix_int.

cfg_interrupt_msi_function_number Input 3

Configuration MSI/MSI-X Initiating Function.
Indicates the Endpoint function number initiating the
MSI or MSI-X transaction:
• 0: PF0
• 1: PF1
• 2: VF0
• 3: VF1
• 4: VF2

...
• 7: VF5

Table 2-21: Configuration Interrupt Controller Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=57

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 58
PG156 January 29, 2016

Chapter 2: Product Specification

Table 2-22: Configuration Extend Interface Port Descriptions

Port Direction Width Description

cfg_ext_read_received Output 1

Configuration Extend Read Received.
The core asserts this output when it has received a
configuration read request from the link. When neither
user-implemented legacy or extended configuration space is
enabled, receipt of a configuration read results in a one-cycle
assertion of this signal, together with valid
cfg_ext_register_number and
cfg_ext_function_number. When user-implemented
legacy, extended configuration space, or both are enabled, for
the cfg_ext_register_number ranges, 0x10-0x1f or
0x100-0x3ff, respectively, this signal is asserted, until user
logic presents cfg_ext_read_data and
cfg_ext_read_data_valid. For
cfg_ext_register_number ranges outside 0x10-0x1f or
0x100-0x3ff, receipt of a configuration read always results in
a one-cycle assertion of this signal.

cfg_ext_write_received Output 1
Configuration Extend Write Received.
The core generates a one-cycle pulse on this output when it
has received a configuration write request from the link.

cfg_ext_register_number Output 10

Configuration Extend Register Number.
The 10-bit address of the configuration register being read or
written. The data is valid when cfg_ext_read_received or
cfg_ext_write_received is High.

cfg_ext_function_number Output 8

Configuration Extend Function Number.
The 8-bit function number corresponding to the configuration
read or write request. The data is valid when
cfg_ext_read_received or cfg_ext_write_received
is High.

cfg_ext_write_data Output 32
Configuration Extend Write Data.
Data being written into a configuration register. This output is
valid when cfg_ext_write_received is High.

cfg_ext_write_byte_enable Output 4
Configuration Extend Write Byte Enable.
Byte enables for a configuration write transaction.

cfg_ext_read_data Input 32

Configuration Extend Read Data.
You can provide data from an externally implemented
configuration register to the core through this bus. The core
samples this data on the next positive edge of the clock after
it sets cfg_ext_read_received High, if you have set
cfg_ext_read_data_valid.

cfg_ext_read_data_valid Input 1

Configuration Extend Read Data Valid.
The user application asserts this input to the core to supply
data from an externally implemented configuration register.
The core samples this input data on the next positive edge of
the clock after it sets cfg_ext_read_received High.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=58

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 59
PG156 January 29, 2016

Chapter 2: Product Specification

Clock and Reset Interface

Fundamental to the operation of the core, the Clock and Reset interface provides the
system-level clock and reset to the core as well as the user application clock and reset
signal. Table 2-23 defines the ports in the Clock and Reset interface of the core.

Table 2-23: Clock and Reset Interface Port Descriptions

Port Direction Width Description

user_clk Output 1
User clock output (62.5, 125, or 250 MHz).
This clock has a fixed frequency and is configured in the Vivado®
Integrated Design Environment (IDE).

user_reset Output 1 This signal is deasserted synchronously with respect to user_clk. It is
deasserted and asserted asynchronously with sys_reset assertion.

sys_clk Input 1
Reference clock.
This clock has a selectable frequency of 100 MHz, 125 MHz, or
250 MHz.

sys_clk_gt Input 1

PCIe reference clock for GT. This clock must be driven directly from
IBUFDS_GTE3 (same definition and frequency as sys_clk). This clock
has a selectable frequency of 100 MHz, 125 MHz, or 250 MHz, which
is the same as in sys_clk.

sys_reset Input 1

Fundamental reset input to the core (asynchronous).
This input is active-Low by default to match the PCIe edge connector
reset polarity. You can reset to active-High using an option in the
Vivado IDE, but this can result in incompatibility with the PCIe edge
connector.
Dedicated routing between the FPGA PERSTN0 package pin and the
PCIe integrated block is enabled by default where available. Table 3-3
identifies the PCIe sites and their corresponding dedicated sys_reset
IOB location. No other PCIe integrated block locations have dedicated
sys_reset connections. Use the dedicated routing and the associated
IOB when possible. To use another sys_reset pin location, the Use the
dedicated PERST routing resources parameter must be disabled in
the Vivado IDE. In addition, use the PERSTN1 package pin for the
sys_reset location of endpoint configurations for PCIe sites not listed
in Table 3-3.

pcie_perstn0_out Output 1

Output that is a direct pass-through from the PERSTN0 package pin
through the sys_reset input port for the PCIe site listed in Table 3-3.
This port is only available when dedicated routing (through the Use
the dedicated PERST routing resources parameter) is enabled
(default), and sys_reset is driven by the PERSTN0 package pin. For all
other configurations and PCIe locations, this port should not be
connected.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=59

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 60
PG156 January 29, 2016

Chapter 2: Product Specification

The PERSTN0/PERSTN1 package pins and the reset input ports described in Table 2-23 are
used for dedicated PCIe reset routing. These are dedicated ports from the PERSTN package
pins to specific PCIe integrated block locations. Users who need Tandem Configuration
support should use these pins as described in Table 2-23. The general guidelines for using
PERSTN0 and PERSTN1 pins are as follows:

• Root Port configurations may use any pin to drive the edge connector reset.

• Endpoint configurations should always use PERSTN0 as PCIe edge connector reset
input pin if dedicated routing is available (see Table 3-3).

• Endpoint configurations should give priority to PERSTN1 as the PCIe edge connector
reset input pin, if dedicated reset routing is not available, but may use any pin as
desired.

PCI Express Interface

The PCI Express (PCI_EXP) interface consists of differential transmit and receive pairs
organized in multiple lanes. A PCI Express lane consists of a pair of transmit differential
signals (pci_exp_txp, pci_exp_txn) and a pair of receive differential signals
{pci_exp_rxp, pci_exp_rxn}. The 1-lane core supports only Lane 0, the 2-lane core
supports lanes 0–1, the 4-lane core supports lanes 0-3, and the 8-lane core supports lanes
0–7. Transmit and receive signals of the PCI_EXP interface are defined in Table 2-24.

pcie_perstn1_in Input 1

Input to a dedicated route from the PERSTN1 package pin to the
pcie_perstn1_out output. This input can be driven only by the
PERSTN1 package pin and should only be used when dedicated
routing (through the Use the dedicated PERST routing resources
parameter) is enabled (default). For PCIe locations that do not
support dedicated reset routing, this port should be tied to a constant
zero (1'b0).

pcie_perstn1_out Output 1

Output that is a direct pass-through from the PERSTN1 package pin
through the pcie_perstn1_in input port for the PCIe integrated blocks
that support dedicated routing. This port can only be used when
dedicated reset routing (through the Use the dedicated PERST
routing resources parameter) is enabled, and pcie_perstn1_in is
driven by the PERSTN1 package pin. For all other configurations, this
port should not be connected. Optionally, the PERSTN1 package pin
can be used to drive the sys_reset input port for PCIe endpoint
configurations that do not support dedicate reset routing.

Table 2-23: Clock and Reset Interface Port Descriptions (Cont’d)

Port Direction Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=60

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 61
PG156 January 29, 2016

Chapter 2: Product Specification

Table 2-24: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores

Lane
Number Name Direction Description

1-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (–)

2-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (–)

1 pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential Input 1 (–)

4-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (–)

1 pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential Input 1 (–)

2 pci_exp_txp2 Output PCI Express Transmit Positive: Serial Differential Output 2 (+)

pci_exp_txn2 Output PCI Express Transmit Negative: Serial Differential Output 2 (–)

pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential Input 2 (+)

pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential Input 2 (–)

3 pci_exp_txp3 Output PCI Express Transmit Positive: Serial Differential Output 3 (+)

pci_exp_txn3 Output PCI Express Transmit Negative: Serial Differential Output 3 (–)

pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential Input 3 (+)

pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential Input 3 (–)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=61

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 62
PG156 January 29, 2016

Chapter 2: Product Specification

8-Lane Cores

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential Output 0 (+)

pci_exp_txn0 Output PCI Express Transmit Negative: Serial Differential Output 0 (–)

pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)

pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (–)

1 pci_exp_txp1 Output PCI Express Transmit Positive: Serial Differential Output 1 (+)

pci_exp_txn1 Output PCI Express Transmit Negative: Serial Differential Output 1 (–)

pci_exp_rxp1 Input PCI Express Receive Positive: Serial Differential Input 1 (+)

pci_exp_rxn1 Input PCI Express Receive Negative: Serial Differential Input 1 (–)

2 pci_exp_txp2 Output PCI Express Transmit Positive: Serial Differential Output 2 (+)

pci_exp_txn2 Output PCI Express Transmit Negative: Serial Differential Output 2 (–)

pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential Input 2 (+)

pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential Input 2 (–)

3 pci_exp_txp3 Output PCI Express Transmit Positive: Serial Differential Output 3 (+)

pci_exp_txn3 Output PCI Express Transmit Negative: Serial Differential Output 3 (–)

pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential Input 3 (+)

pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential Input 3 (–)

4 pci_exp_txp4 Output PCI Express Transmit Positive: Serial Differential Output 4 (+)

pci_exp_txn4 Output PCI Express Transmit Negative: Serial Differential Output 4 (–)

pci_exp_rxp4 Input PCI Express Receive Positive: Serial Differential Input 4 (+)

pci_exp_rxn4 Input PCI Express Receive Negative: Serial Differential Input 4 (–)

5 pci_exp_txp5 Output PCI Express Transmit Positive: Serial Differential Output 5 (+)

pci_exp_txn5 Output PCI Express Transmit Negative: Serial Differential Output 5 (–)

pci_exp_rxp5 Input PCI Express Receive Positive: Serial Differential Input 5 (+)

pci_exp_rxn5 Input PCI Express Receive Negative: Serial Differential Input 5 (–)

6 pci_exp_txp6 Output PCI Express Transmit Positive: Serial Differential Output 6 (+)

pci_exp_txn6 Output PCI Express Transmit Negative: Serial Differential Output 6 (–)

pci_exp_rxp6 Input PCI Express Receive Positive: Serial Differential Input 6 (+)

pci_exp_rxn6 Input PCI Express Receive Negative: Serial Differential Input 6 (–)

7 pci_exp_txp7 Output PCI Express Transmit Positive: Serial Differential Output 7 (+)

pci_exp_txn7 Output PCI Express Transmit Negative: Serial Differential Output 7 (–)

pci_exp_rxp7 Input PCI Express Receive Positive: Serial Differential Input 7 (+)

pci_exp_rxn7 Input PCI Express Receive Negative: Serial Differential Input 7 (–)

Table 2-24: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Lane
Number Name Direction Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=62

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 63
PG156 January 29, 2016

Chapter 2: Product Specification

Attribute Descriptions

User Interface
Table 2-25 lists the configuration attributes controlling the operation of the user interface
of the core.

Table 2-25: Configuration Attributes of the Integrated Block User Interface

Attribute Name Type Description

USER_CLK2_FREQ Integer
• 2: 62.50 MHz (default)
• 3: 125.00 MHz
• 4: 250.00 MHz

PL_LINK_CAP_MAX_LINK_SPEED[2:0] Bit vector

Defines the maximum speed of the PCIe link.
• 001: 2.5 GT/s
• 010: 5.0 GT/s
• 100: 8.0 GT/s
All other encodings are reserved.

PL_LINK_CAP_MAX_LINK_WIDTH[3:0] Bit vector

Maximum Link Width. Valid settings are:
• 0001b: x1
• 0010b: x2
• 0100b: x4
• 1000b: x8
All other encodings are reserved. This setting is
propagated to all layers in the core.

C_DATA_WIDTH Integer

Configures the width of the AXI4-Stream interfaces.
• 64 bit interface
• 128 bit interface
• 256 bit interface

AXISTEN_IF_CQ_ALIGNMENT_MODE String

Defines the data alignment mode for the completer
request interface.
• FALSE: Dword-aligned Mode
• TRUE: Address-aligned Mode

AXISTEN_IF_CC_ALIGNMENT_MODE String

Defines the data alignment mode for the completer
completion interface.
• FALSE: Dword-aligned Mode
• TRUE: Address-aligned Mode

AXISTEN_IF_RQ_ALIGNMENT_MODE String

Defines the data alignment mode for the requester
request interface.
• FALSE: Dword-aligned Mode
• TRUE: Address-aligned Mode

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=63

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 64
PG156 January 29, 2016

Chapter 2: Product Specification

AXISTEN_IF_RC_ALIGNMENT_MODE String

Defines the data alignment mode for the requester
completion interface.
• FALSE: Dword-aligned Mode
• TRUE: Address-aligned Mode

AXISTEN_IF_RC_STRADDLE String

This attribute enables the straddle option on the
requester completion interface.
• FALSE: Straddle option disabled
• TRUE: Straddle option enabled

AXISTEN_IF_RQ_PARITY_CHECK String

This attribute enables parity checking on the requester
request interface.
• FALSE: Parity check disabled
• TRUE: Parity check enabled

AXISTEN_IF_CC_PARITY_CHECK String

This attribute enables parity checking on the completer
completion interface.
• FALSE: Parity check disabled
• TRUE: Parity check enabled

AXISTEN_IF_ENABLE_RX_MSG_INTFC String

This attribute controls how the core delivers a message
received from the link.
When this attribute is set to FALSE, the core delivers the
received message TLPs on the completer request
interface using the AXI4-Stream protocol. In this mode,
you can select the message types to receive using the
AXISTEN_IF_ENABLE_MSG_ROUTE attributes. The receive
message interface is inactive in this mode.
When this attribute is set to TRUE, the core internally
decodes messages received from the link, and signals
them to the user by activating the cfg_msg_received
signal on the receive message interface. The core does
not transfer any message TLPs on the completer request
interface. The settings of the
AXISTEN_ENABLE_MSG_ROUTE attributes have no effect
on the operation of the receive message interface in this
mode.

Table 2-25: Configuration Attributes of the Integrated Block User Interface (Cont’d)

Attribute Name Type Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=64

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 65
PG156 January 29, 2016

Chapter 2: Product Specification

AXISTEN_IF_ENABLE_MSG_ROUTE[17:0] Bit vector

When the AXISTEN_IF_ENABLE_RX_MSG_INTFC attribute is
set to 0, you can use these attributes to select the
specific message types you want to receive on the
completer request interface. Setting a bit to 1 enables
the delivery of the corresponding type of messages on
the interface, and setting it to 0 results in the core
filtering the message.
Table 2-26 defines the attribute bit definitions
corresponding to the various message types.

AXISTEN_IF_ENABLE_CLIENT_TAG String

When set to FALSE, tag management for Non-Posted
transactions initiated from the requester request
interface is performed by the integrated block. That is,
for each Non-Posted request, the core allocates the tag
for the transaction and communicates it to the user
interface.
Setting set to TRUE, disables the internal tag
management, allowing the user logic to supply the tag to
be used for each request. The user logic must present the
Tag field in the Request descriptor header in the range 0–
31 when the PF0_DEV_CAP_EXT_TAG_SUPPORTED
attribute is FALSE, while the Tag field can be in the range
0–63 when the PF0_DEV_CAP_EXT_TAG_SUPPORTED
attribute is TRUE.

Table 2-25: Configuration Attributes of the Integrated Block User Interface (Cont’d)

Attribute Name Type Description

Table 2-26: AXISTEN_IF_ENABLE_MSG_ROUTE Attribute Bit Descriptions

Bit Index Message Type

0 ERR_COR

1 ERR_NONFATAL

2 ERR_FATAL

3 Assert_INTA and Deassert_INTA

4 Assert_INTB and Deassert_INTB

5 Assert_INTC and Deassert_INTC

6 Assert_INTD and Deassert_INTD

7 PM_PME

8 PME_TO_Ack

9 PME_Turn_Off

10 PM_Active_State_Nak

11 Set_Slot_Power_Limit

12 Latency Tolerance Reporting (LTR)

13 Optimized Buffer Flush/Fill (OBFF)

14 Unlock

15 Vendor_Defined Type 0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=65

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 66
PG156 January 29, 2016

Chapter 2: Product Specification

Configuration Space
The PCI configuration space consists of three primary parts, illustrated in Table 2-27. These
include:

• Legacy PCI v3.0 Type 0/1 Configuration Space Header

° Type 0 Configuration Space Header used by Endpoint applications (see Table 2-28)

° Type 1 Configuration Space Header used by Root Port applications (see Table 2-29)

• Legacy Extended Capability Items

° PCIe Capability Item

° Power Management Capability Item

° Message Signaled Interrupt (MSI) Capability Item

° MSI-X Capability Item (optional)

• PCIe Capabilities

° Advanced Error Reporting Extended Capability Structure (AER)

° Alternate Requestor ID (ARI) (optional)

° Device Serial Number Extended Capability Structure (DSN) (optional)

° Power Budgeting Enhanced

° Capability Header (PB) (optional)

° Resizable BAR (RBAR) (optional)

° Latency Tolerance Reporting (LTR) (optional)

° Dynamic Power Allocation (DPA) (optional)

° Single Root I/O Virtualization (SR-IOV) (optional)

° Transaction Processing Hints (TPH) (optional)

° Virtual Channel Extended Capability Structure (VC) (optional)

16 Vendor_Defined Type 1

17 Invalid Request, Invalid Completion, Page Request, PRG Response

Table 2-26: AXISTEN_IF_ENABLE_MSG_ROUTE Attribute Bit Descriptions (Cont’d)

Bit Index Message Type

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=66

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 67
PG156 January 29, 2016

Chapter 2: Product Specification

• PCIe Extended Capabilities

° Device Serial Number Extended Capability Structure (optional)

° Virtual Channel Extended Capability Structure (optional)

° Advanced Error Reporting Extended Capability Structure (optional)

° Media Configuration Access Port (MCAP) Extended Capability Structure (optional)

The core implements up to four legacy extended capability items.

For more information about enabling this feature, see Chapter 4, Customizing and
Generating the Core.

The core can implement up to ten PCI Express Extended Capabilities. The remaining PCI
Express Extended Capability Space is available for users to implement. The starting address
of the space available to users begins at 3DCh. If you choose to implement registers in this
space, you can select the starting location of this space, and this space must be
implemented in the user application.

For more information about enabling this feature, see Extended Capabilities 1 and Extended
Capabilities 2 in Chapter 4.

Table 2-27: Common PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 000h

Status Command 004h

Class Code Rev ID 008h

BIST Header Lat Timer Cache Ln 00Ch

Header Type Specific

(see Table 2-28 and Table 2-29)

010h

014h

018h

01Ch

020h

024h

028h

02Ch

030h

CapPtr 034h

038h

Intr Pin Intr Line 03Ch

Reserved
040h-
07Ch

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=67

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 68
PG156 January 29, 2016

Chapter 2: Product Specification

PM Capability NxtCap PM Cap 080h

Data Reserved PMCSR 084h

Reserved
088h-
08Ch

Customizable(1) MSI Control NxtCap MSI Cap 090h

Message Address (Lower) 094h

Message Address (Upper) 098h

Reserved Message Data 09Ch

Mask Bits 0A0h

Pending Bits 0A4h

Reserved
0A8h-
0ACh

Optional(3) MSl-X Control NxtCap MSl-X Cap 0B0h

Table Offset Table BIR 0B4h

PBA Offset PBA BIR 0B8h

Reserved 0BCh

PE Capability NxtCap PE Cap 0C0h

PCI Express Device Capabilities 0C4h

Device Status Device Control 0C8h

PCI Express Link Capabilities 0CCh

Link Status Link Control 0D0h

Root Port Only(2) Slot Capabilities 0D4h

Slot Status Slot Control 0D8h

Root Capabilities Root Control 0DCh

Root Status 0E0h

PCI Express Device Capabilities 2 0E4h

Device Status 2 Device Control 2 0E8h

PCI Express Link Capabilities 2 0ECh

Link Status 2 Link Control 2 0F0h

Unimplemented Configuration Space
(Returns 0x00000000)

0F4h-
0FCh

Table 2-27: Common PCI Configuration Space Header (Cont’d)

31 16 15 0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=68

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 69
PG156 January 29, 2016

Chapter 2: Product Specification

Always Enabled Next Cap Cap. Ver. PCI Express Extended Cap. ID (AER) 100h

Uncorrectable Error Status Register 104h

Uncorrectable Error Mask Register 108h

Uncorrectable Error Severity Register 10Ch

Correctable Error Status Register 110h

Correctable Error Mask Register 114h

Advanced Error Cap. & Control Register 118h

Header Log Register 1 11Ch

Header Log Register 2 120h

Header Log Register 3 124h

Header Log Register 4 128h

Reserved 12Ch

Optional, Root
Port only(3)

Root Error Command Register 130h

Root Error Status Register 134h

Error Source ID Register 138h

Reserved 13Ch

Optional(3)(4)
Next Cap Cap. Ver.

PCI Express Extended Capability - Alternate
Requester ID (ARI)

140h

Control Next Function Function Groups 144h

Reserved
148h-
14Ch

Optional(3) Next Cap Cap. Ver. PCI Express Extended Capability - DSN 150h

PCI Express Device Serial Number (1st) 154h

PCI Express Device Serial Number (2nd) 158h

Reserved 15Ch

Optional(3)
Next Cap Cap. Ver.

PCI Express Extended Capability - Power
Budgeting Enhanced Capability Header

160h

Reserved DS 164h

Reserved Power Budget Data - State D0, D1, D3, ... 168h

Power Budget Capability 16Ch

Reserved 170h-
1B4h

Optional(3)
Next Cap Cap. Ver.

PCI Express Extended Capability ID -
Latency Tolerance Reporting (LTR)

1B8h

No-Snoop Snoop 1BCh

Table 2-27: Common PCI Configuration Space Header (Cont’d)

31 16 15 0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=69

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 70
PG156 January 29, 2016

Chapter 2: Product Specification

Optional(3)
Next Cap Cap. Ver.

PCI Express Extended Capability ID -
Dynamic Power Allocation

1C0h

Capability Register 1C4h

Latency Indicator 1C8h

Control Status 1CCh

Power Allocation Array Register 0 1D0h

Power Allocation Array Register 1 1D4h

Reserved
1D8h-
1FCh

Optional(3)
Next Cap Cap. Ver.

PCI Express Extended Capability ID - Single
Root I/O Virtualization (SR-IOV)

200h

Capability Register 204h

SR-IOV Status (not supported) Control 208h

Total VFs Initial VFs 20Ch

Function Dependency Link Number VFs 210h

VF Stride First VF Offset 214h

VF Device ID Reserved 218h

Supported Page Sizes 21Ch

System Page Size 220h

VF Base Address Register 0 224h

VF Base Address Register 1 228h

VF Base Address Register 2 22Ch

VF Base Address Register 3 230h

VF Base Address Register 4 234h

VF Base Address Register 5 238h

Reserved 23Ch

Reserved
240h-
270h

Optional(3) Next Cap Cap. Ver. PCI Express Extended Capability ID -
Transaction Processing Hints (TPH)

274h

Capability Register 278h

Requester Control Register 27Ch

Reserved Steering Tag Upper Steering Tag Lower 280h

Reserved
284h -
2FCh

Table 2-27: Common PCI Configuration Space Header (Cont’d)

31 16 15 0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=70

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 71
PG156 January 29, 2016

Chapter 2: Product Specification

Optional(3) Next Cap Cap. Ver. PCI Express Extended Capability ID -
Secondary PCIe Extended Capability

300h

Lane Control (not supported) 304h

Reserved Lane Error Status 308h

Lane Equalization Control Register 0 30Ch

Lane Equalization Control Register 1 310h

Lane Equalization Control Register 2 314h

Lane Equalization Control Register 3 318h

Reserved
31Ch-
33Ch

Optional(3)(5) Next Cap Cap. Ver. PCI Express Extended Capability ID - MCAP 340h

Capability Register 344h

FPGA JTAG ID 348h

FPGA Bitstream Version 34Ch

Status Register 350h

Control Register 354h

Data Write Register 358h

Read Data 0 Register 35Ch

Read Data 1 Register 360h

Read Data 2 Register 364h

Read Data 3 Register 368h

Reserved
36Ch-
3BCh

Optional(3) Next Cap Cap. Ver. PCI Express Extended Capability - VC 3C0h

Port VC Capability Register 1 3C4h

Port VC Capability Register 2 3C8h

Port VC Status Port VC Control 3CCh

VC Resource Capability Register 0 3D0h

VC Resource Control Register 0 3D4h

VC Resource Status Register 0 3D8h

Table 2-27: Common PCI Configuration Space Header (Cont’d)

31 16 15 0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=71

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 72
PG156 January 29, 2016

Chapter 2: Product Specification

Reserved
400h-
FFFh

Notes:
1. The MSI Capability Structure varies depending on the selections in the Vivado IDE.
2. Reserved for Endpoint configurations (returns 0x00000000).
3. The layout of the PCI Express Extended Configuration Space (100h-FFFh) can change dependent on which

optional capabilities are enabled. This table represents the Extended Configuration space layout when all optional
extended capability structures, except RBAR, are enabled.

4. Enabled by default if the SR-IOV option is enabled.
5. A detailed description of the MCAP registers and usage can be found in AR 64761.

Table 2-28: Type 0 PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header Lat Timer Cache Ln 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Base Address Register 2 18h

Base Address Register 3 1Ch

Base Address Register 4 20h

Base Address Register 5 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved CapPtr 34h

Reserved 38h

Max Lat Min Gnt Intr Pin Intr Line 3Ch

Table 2-27: Common PCI Configuration Space Header (Cont’d)

31 16 15 0

Send Feedback

http://www.xilinx.com/support/answers/64761.html
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=72

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 73
PG156 January 29, 2016

Chapter 2: Product Specification

Table 2-29: Type 1 PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header Lat Timer Cache Ln 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Second Lat Timer Sub Bus Number Second Bus Number Primary Bus Number 18h

Secondary Status I/O Limit I/O Base 1Ch

Memory Limit Memory Base 20h

Prefetchable Memory Limit Prefetchable Memory Base 24h

Prefetchable Base Upper 32 Bits 28h

Prefetchable Limit Upper 32 Bits 2Ch

I/O Limit Upper 16 Bits I/O Base Upper 16 Bits 30h

Reserved CapPtr 34h

Expansion ROM Base Address 38h

Bridge Control Intr Pin Intr Line 3Ch

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=73

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 74
PG156 January 29, 2016

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

Shared Logic
This feature allows you to share common logic across multiple instances of PCIe® blocks or
with other cores, with certain limitations. Shared logic minimizes the HDL modifications
needed by locating the logic to be shared to the top module of the design. It also enables
additional ports on the top module to facilitate sharing. Shared logic is applicable for both
Endpoint mode and Root Port mode.

In the Vivado® Design Suite, the shared logic options are available in the Shared Logic
page when customizing the core.

There are two types of logic sharing:

• Shared logic in the core

• Shared logic in the example design

In both cases, the GT_COMMON block is shared.

IMPORTANT: For the Include Shared Logic in Example Design option to generate the corresponding
modules in the support directory, you must run the Open IP Example Design command after the
output products are generated. For the Include Shared Logic in Core (default) option, these modules
are generated in the source directory.

IMPORTANT: The Shared Logic page is visible only when the link speed other than Gen1 is selected. In
the shared logic feature, you can use only the QPLL1 block.
- In the case of Gen1 speeds, the design uses CPLL, hence it cannot be shared and the shared logic
feature is disabled.
- In the case of Gen2 speeds, QPLL1 or CPLL can be selected. If CPLL is selected (using the PLL Type
option on GT Settings Page) the Shared Logic page is disabled.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=74

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 75
PG156 January 29, 2016

Chapter 3: Designing with the Core

Shared Logic in the Core
This feature allows sharing of the GT_COMMON block while it is still internal to the core
(not at the support wrapper). Enable it by selecting Include Shared Logic in Core in the
Shared Logic page (the default option).
X-Ref Target - Figure 3-1

Figure 3-1: Shared Logic in the Core

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=75

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 76
PG156 January 29, 2016

Chapter 3: Designing with the Core

Shared GT_COMMON
A quad phase-locked loop (QPLL) in GT_COMMON can serve a quad of GT_CHANNEL
instances. If the PCIe core is configured as X1 or X2 and is using a QPLL, the remaining
GT_CHANNEL instances can be used by other cores by sharing the same QPLL and
GT_COMMON.

To use the shared GT_COMMON instances, select the Include Shared Logic in example
design option on the Shared Logic tab. When this feature is selected, the GT_COMMON
instance is moved from the pipe wrappers to the support wrapper of the example design. It
also enables additional ports to the top level to facilitate sharing of GT_COMMON.

Shared logic for GT_COMMON helps conserve FPGA resources and also reduces dedicated
clock routing within the single GT quad.

Shared GT_COMMON Use Case with GTH

Limitations

• GTH pipe wrappers reset the QPLL when the PCIe change the rate to Gen3. The sharing
core must be able to handle this situation.

• Pipe wrappers commonly use a channel phase-locked loop (CPLL) for Gen1 or Gen2
PCIe, and QPLL for Gen3. If the Gen3 PCIe can operate at a lower speed, pipe wrappers
might not require a QPLL.

• The settings of the GT_COMMON should not be changed because they are optimized
for the PCIe core.

Table 3-1: Shared GT_COMMON Use Case

GT – PCIe Max Link Speed Device – PCIe Max Link Speed Shared GT_COMMON

GTH Kintex UltraScale (040) – PCIe
Gen3

PCIe pipe wrappers use QPLL for Gen3
and CPLL for Gen1/Gen2. If PCIe is Gen3
capable but operating at a lower speed,
other IP can use it.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=76

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 77
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-2

Figure 3-2: Shared Logic in the Example Design

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=77

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 78
PG156 January 29, 2016

Chapter 3: Designing with the Core

Tandem Configuration
The UltraScale Architecture Gen3 Integrated Block for PCIe solution provides two alternative
configuration methods to meet the time requirements indicated within the PCI Express
Specification. The PCI Express Specification states that PERST# must deassert 100 ms after
the power good of the systems has occurred, and a PCI Express port must be ready to link
train no more than 20ms after PERST# has deasserted. This is commonly referred to as the
100 ms boot time requirement. The two alternative methods for configuration are referred
to as Tandem PROM and Tandem PCI Express (PCIe). These solutions have been explicitly
designed for this specific goal. If other configuration flexibility is needed, such as dynamic
modification of the user application, general Partial Reconfiguration should be considered
instead of Tandem Configuration.

Both Tandem PROM and Tandem PCIe implement a two-stage configuration methodology.
In Tandem PROM and Tandem PCIe, the stage 1 configuration memory cells that are critical
to PCI Express operation are loaded through a local PROM. When these cells have been
loaded, an FPGA start-up command is sent at the end of the stage 1 bitstream to the FPGA
configuration controller. The partially configured FPGA then becomes active with the stage
1 bitstream contents. Stage 1 that contains a fully functional PCI Express port responds to
traffic received during PCI Express enumeration while stage 2 is loaded into the FPGA.
Included inside the stage 1 bitstream are the PCI Express integrated block, transceivers,
block RAM, clocking resources, FPGA logic, and routing resources required to make the
entire PCI Express port functional. Stage 2 consists of the user-specific application and the
remaining clocking and I/O resources, which is basically the rest of the FPGA design. The
mechanism for loading the stage 2 bitstream differs between Tandem PROM and Tandem
PCIe.

Supported Devices
The UltraScale Architecture Gen3 Integrated Block for PCIe core and Vivado tool flow
support implementations targeting Xilinx reference boards and specific part/package
combinations.

For the Vivado Design Suite 2015.3 release, Tandem Configuration is available as a
production solution for specific devices and as a beta solution for others. Bitstream
generation is disabled until Production silicon is available and has been validated by Xilinx.
Until then, you can implement designs and prepare for supported silicon. Contact Xilinx
Support for more information on bitstream generation for Tandem solutions. Tandem
Configuration supports the configurations found in Table 3-2.

Table 3-2: Tandem PROM/PCIe Supported Configurations

HDL Verilog Only

PCIe Configuration All configurations (max: X8Gen3)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=78

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 79
PG156 January 29, 2016

Chapter 3: Designing with the Core

Overview of Tandem Tool Flow
Tandem PROM and Tandem PCIe solutions are only supported in the Vivado Design Suite.
The tool flow for both solutions is as follows:

1. Customize the core: select a supported device from Table 3-2, select the Advanced
configuration Mode option, and select Tandem for the Tandem Configuration or Partial
Reconfiguration option.

2. Generate the core.

3. Open the example project, and implement the example design.

4. Use the IP and XDC from the example project in your project, and instantiate the core.

5. Synthesize and implement your design.

6. Generate bit and then prom files.

As part of the Tandem flows, certain elements located outside of the PCIe core logic must
also be brought up as part of the stage 1 bitstream. Vivado design rule checks (DRCs)

Xilinx Reference Board
Support

KCU105 Evaluation Board for Kintex UltraScale FPGA
VCU108 Evaluation Board for Virtex UltraScale FPGA

Device Support
Supported Part/Package Combinations:

Part Package PCIe Block
Location

PCIe Reset
Location Status

Kintex UltraScale

XCKU025 All PCIE_3_1_X0Y0 IOB_X1Y103 Not Yet Supported

XCKU035 All PCIE_3_1_X0Y0 IOB_X1Y103 Production

XCKU040 All PCIE_3_1_X0Y0 IOB_X1Y103 Production

XCKU060 All PCIE_3_1_X0Y0 IOB_X2Y103 Production

XCKU085 All PCIE_3_1_X0Y0 IOB_X2Y103 Production

XCKU095 All PCIE_3_1_X0Y0 IOB_X1Y103 Production

XCKU115 All PCIE_3_1_X0Y0 IOB_X2Y103 Production

Virtex UltraScale

XCVU065 All PCIE_3_1_X0Y0 IOB_X1Y103 Production

XCVU080 All PCIE_3_1_X0Y0 IOB_X1Y103 Production

XCVU095 All PCIE_3_1_X0Y0 IOB_X1Y103 Production

XCVU125 All PCIE_3_1_X0Y0 IOB_X1Y103 Production

XCVU160 All PCIE_3_1_X0Y1 IOB_X1Y363 Production

XCVU190 All PCIE_3_1_X0Y2 IOB_X1Y363 Production

XCVU440 All PCIE_3_1_X0Y2 IOB_X1Y363 Beta(1)

Notes:
1. Beta support allows users to implement Tandem designs, but bitstream generation is not permitted.

Table 3-2: Tandem PROM/PCIe Supported Configurations (Cont’d)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=79

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 80
PG156 January 29, 2016

Chapter 3: Designing with the Core

identify these situations and provide direction on how to resolve the issue. This normally
consists of modifying or adding additional constraints to the design.

When the example design is created, an example XDC file is generated with certain
constraints that need to be copied over into your XDC file for your specific project. The
specific constraints are documented in the example design XDC file. In addition, this
example design XDC file contains examples of how to set options for flash memory devices,
such as BPI and SPI.

Tandem Configuration is supported only for the AXI4-Stream version of the core, and must
be generated through the IP catalog.

When generating the PCIe IP, you will see there is no distinction between Tandem PROM
and Tandem PCIe. Both methodologies generate the same IP core, so the selection in the
Vivado IDE is simply Tandem. The divergence point is at the write_bitstream step,
where a property (HD.TANDEM_BITSTREAMS) defines whether one BIT file (Tandem PROM)
or two BIT files (Tandem PCIe) are needed. The core and corresponding implementation
results are identical.

Tandem with Field Updates

A new, forthcoming feature is the ability to dynamically update the user application while
the PCIe link remains active. The Tandem with Field Updates selection for this feature can
be seen, selected, and synthesized, but not implemented. This selection is shown in the
Vivado IDE to alert designers that this feature is coming, and to note that the results
through implementation will be different for Tandem versus Tandem with Field Updates.
The Tandem bitstreams created without the Field Updates feature will not be compatible
with the partial bitstreams that will be created later as Field Updates. For compatibility in
silicon, all bitstreams must be synchronized with each other, and to do so, all bitstream
must be implemented with all features (Tandem and Partial Reconfiguration) enabled from
the beginning.

Tandem with Field Updates is Tandem Configuration (either Tandem PROM or Tandem PCIe)
to initially configure the device when the power is turned on, followed by Partial
Reconfiguration of a pre-defined region in the FPGA. This feature can be enabled in a
Tandem IP core, and an example design can be created. The example design is meant to be
the basis of a Tandem with Field Updates design, because a specific design structure is
required. The example project also contains implementation scripts, because a non-project
implementation flow is required.

Contact Xilinx Support for more information on this beta feature.

Tandem PROM
The Tandem PROM solution splits a bitstream into two parts and both of those parts are
loaded from an onboard local configuration memory (typically, any PROM or flash memory
device). The first part of the bitstream configures the PCI Express portion of the design and

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=80

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 81
PG156 January 29, 2016

Chapter 3: Designing with the Core

the second part configures the rest of the FPGA. Although the design is viewed to have two
unique stages, shown in Figure 3-3, the resulting BIT file is monolithic and contains both
stage 1 and stage 2.

Tandem PROM VCU108 Example Tool Flow

This section demonstrates the Vivado tool flow from start to finish when targeting the
VCU108 reference board. Paths and pointers within this flow description assume the default
component name "pcie3_ultrascale_0" is used.

1. Create a new Vivado project, and select a supported part/package shown in Table 3-2.

2. In the Vivado IP catalog, expand Standard Bus Interfaces > PCI Express, and
double-click UltraScale FPGA Gen3 Integrated Block for PCI Express to open the
Customize IP dialog box.

X-Ref Target - Figure 3-3

Figure 3-3: Tandem PROM Bitstream Load Steps

X12490

Tandem PROM

First Stage

Second Stage

Stage 1 – PCIe

Stage 2 – User
Application

User
Application

In
te

gr
at

ed
 B

lo
ck

Fo
r P

C
Ie

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=81

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 82
PG156 January 29, 2016

Chapter 3: Designing with the Core

3. In the Customize IP dialog box Basic tab, ensure the following options are selected:

° Mode: Advanced

° PCIe Block Location: X0Y0

° Tandem Configuration or Partial Reconfiguration: Tandem

X-Ref Target - Figure 3-4

Figure 3-4: Vivado IP Catalog

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=82

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 83
PG156 January 29, 2016

Chapter 3: Designing with the Core

4. Perform additional PCIe customizations, and click OK to generate the core.

5. Click Generate when asked about which Output Products to create.

6. In the Sources tab, right-click the core, and select Open IP Example Design.

A new instance of Vivado is created and the example design is automatically loaded into
the Vivado IDE.

7. Run Synthesis and Implementation.

Click Run Implementation in the Flow Navigator. Select OK to run through synthesis
first. The design runs through the complete tool flow and the result is a fully routed
design that supports Tandem PROM.

8. Setup PROM or Flash settings.

X-Ref Target - Figure 3-5

Figure 3-5: Tandem PROM

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=83

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 84
PG156 January 29, 2016

Chapter 3: Designing with the Core

Set the appropriate settings to correctly generate a bitstream for a PROM or flash
memory device. In the PCIe core constraint file (e.g.
xilinx_pcie3_uscale_ep_x8g3.xdc):

° Uncomment and customize (if needed) the constraints that define the configuration
mode.

° The one constraint that is required is CONFIG_MODE. For example:
set_property CONFIG_MODE BPI16 [current_design]

For more information, see Programming the Device, page 96.

9. Generate the bitstream.

After Synthesis and Implementation is complete, click Generate Bitstream in the Flow
Navigator. A bitstream supporting Tandem configuration is generated in the runs
directory, for example: ./pcie_ultrascale_0_example.runs/impl/
xilinx_pcie3_uscale_ep_tandem.bit.

IMPORTANT: Bitstream generation is disabled until after silicon verification has completed. Devices
marked Production in Table 3-2 have been verified and bitstream generation is enabled. Devices
marked Beta can be implemented, but bitstream generation is restricted. Contact Xilinx for details.

Note: You have the option of creating the first and stage 2 bitstreams independently. This flow
allows you to control the loading of each stage through the JTAG interface for testing purposes.
These bitstreams are the same as the ones used for the Tandem PCIe solution when loaded using
JTAG. Attempting to load only the stage1 bitstream from flash memory does not work in
hardware due to the difference in the HD.OVERRIDE_PERSIST setting that is used for Tandem PCIe
designs.

set_property HD.TANDEM_BITSTREAMS SEPARATE [current_design]

The resulting bit files created are named xilinx_pcie3_uscale_ep_tandem1.bit
and xilinx_pcie3_uscale_ep_tandem2.bit.

10. Generate the PROM file.

Run the following command in the Vivado Tcl Console to create a PROM file supported
on the VCU108 development board.

write_cfgmem -format mcs -interface BPI -size 256 -loadbit "up 0x0
xilinx_pcie3_uscale_ep.bit" xilinx_pcie3_uscale_ep.mcs

Tandem PROM Summary

By using Tandem PROM, you can significantly reduce the amount of time required to
configure the PCIe portion of a UltraScale architecture design. The UltraScale Architecture
Gen3 Integrated Block for PCIe core manages many design details, allowing you to focus
your attention on the user application.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=84

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 85
PG156 January 29, 2016

Chapter 3: Designing with the Core

Tandem PCIe
Tandem PCIe is similar to Tandem PROM. In the f irst stage bitstream, only the conf iguration
memory cells that are necessary for PCI Express operation are loaded from the PROM. After
the stage 1 bitstream is loaded, the PCI Express port is capable of responding to
enumeration traffic. Subsequently, the stage 2 bitstream is transmitted through the PCI
Express link. Figure 3-6 illustrates the bitstream loading flow.

Tandem PCIe is similar to the standard model used today in terms of tool flow and bitstream
generation. Two bitstreams are produced when running bitstream generation. One BIT file
representing the stage 1 is downloaded into the PROM while the other BIT file representing
the user application (stage 2) configures the remainder of the FPGA using the Media
Configuration Access Port (MCAP).

Tandem PCIe VCU108 Example Tool Flow

This section demonstrates the Vivado tool flow from start to finish when targeting the
VCU108 reference board. Paths and pointers within this flow description assume the default
component name pcie3_ultrascale_0 is used.

1. When creating a new Vivado project, select a supported part/package shown in
Table 3-2.

2. In the Vivado IP catalog, expand Standard Bus Interfaces > PCI Express, and
double-click UltraScale FPGA Gen3 Integrated Block for PCI Express to open the
Customize IP dialog box.

X-Ref Target - Figure 3-6

Figure 3-6: Tandem PCIe Bitstream Load Steps

User Application

X12937

Initial PCIe
Interface

FPGA Startup

PROM

C
FG

 P
O

R
T

PCIe link

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=85

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 86
PG156 January 29, 2016

Chapter 3: Designing with the Core

3. In the Customize IP dialog box Basic tab, ensure the following options are selected:

° Mode: Advanced

° PCIe Block Location: X0Y0

° Tandem Configuration or Partial Reconfiguration: Tandem

X-Ref Target - Figure 3-7

Figure 3-7: Vivado IP Catalog

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=86

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 87
PG156 January 29, 2016

Chapter 3: Designing with the Core

4. The example design software attaches to the device through the Vendor ID and Device
ID. The Vendor ID must be 16'h10EE and the Device ID must be 16'h8038.
In the ID tab, set:

° Vendor ID: 10EE

° Device ID: 8038

Note: An alternative solution is the Vendor ID and Device ID can be changed, and the driver and
host PC software updated to match the new values.

X-Ref Target - Figure 3-8

Figure 3-8: Tandem PCIe

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=87

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 88
PG156 January 29, 2016

Chapter 3: Designing with the Core

5. Perform additional PCIe customizations, and select OK to generate the core.

After core generation, the core hierarchy is available in the Sources tab in the Vivado
IDE.

6. In the Sources tab, right-click the core, and select Open IP Example Design.

A new instance of Vivado is created and the example design project automatically loads
in the Vivado IDE.

7. Run Synthesis and Implementation.

Click Run Implementation in the Flow Navigator. Select OK to run through synthesis
first. The design runs through the complete tool flow, and the end result is a fully routed
design supporting Tandem PCIe.

8. Setup PROM or Flash settings, and request two explicit bit files.

Set the appropriate settings to correctly generate a bitstream for a PROM or flash
memory device by:

° modifying the constraints in the PCIe IP constraint file (e.g.
xilinx_pcie3_uscale_ep_x8g3.xdc).

X-Ref Target - Figure 3-9

Figure 3-9: IDs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=88

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 89
PG156 January 29, 2016

Chapter 3: Designing with the Core

° requesting two explicit bitstreams by setting these properties, as seen in the
example design constraint file:

set_property HD.OVERRIDE_PERSIST FALSE [current_design]
set_property HD.TANDEM_BITSTREAMS Separate [current_design]

Other values for HD.TANDEM_BITSTREAMS are Combined (default), which is used for the
Tandem PROM solution, and None, which will generate a standard single-stage
bitstream for the entire device. For more information, see Programming the Device,
page 96.

9. Generate the bitstream.

After Synthesis and Implementation are complete, click Generate Bitstream in the Flow
Navigator. The following two files are created and placed in the runs directory:

xilinx_pcie3_uscale_ep_tandem1.bit|
xilinx_pcie3_uscale_ep_tandem2.bit

IMPORTANT: Bitstream generation is disabled until after silicon verification has completed. Devices
marked Production in Table 3-2 have been verified and bitstream generation is enabled. Devices
marked Beta can be implemented, but bitstream generation is restricted. Contact Xilinx for details.

10. Generate the PROM file for the stage 1.

Run the following command in the Vivado Tcl Console to create a PROM file supported
on the VCU108 development board.

write_cfgmem -format mcs -interface BPI -size 256 -loadbit "up 0x0
xilinx_pcie3_uscale_ep_tandem1.bit" xilinx_pcie3_uscale_ep_tandem1.mcs

Loading Stage 2 Through PCI Express

An example kernel mode driver and user space application is provided with the IP. For
information on retrieving the software and documentation, see AR 64761.

Tandem PCIe Summary

By using Tandem PCIe, you can significantly reduce the amount of time required for
configuration of the PCIe portion of a UltraScale architecture design, and can reduce the
bitstream flash memory storage requirements. The UltraScale Architecture Gen3 Integrated
Block for PCIe core manages many design details, allowing you to focus your attention on
the user application.

Using Tandem With a User Hardware Design
There are two methods available to apply the Tandem flow to a user design. The first
method is to use the example design that comes with the core. The second method is to

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/answers/64761.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=89

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 90
PG156 January 29, 2016

Chapter 3: Designing with the Core

import the PCIe IP into an existing design and change the hierarchy of the design if
required.

Regardless of which method you use, the PCIe example design should be created to get the
example clocking structure, timing constraints, and physical block (Pblock) constraints
needed for the Tandem solution.

Method 1 – Using the Existing PCI Express Example Design

This is the simplest method in terms of what must be done with the PCI Express core, but
might not be feasible for all users. If this approach meets your design structure needs,
follow these steps.

1. Create the example design.

Generate the example design as described in the Tandem PROM VCU108 Example Tool
Flow and Tandem PCIe VCU108 Example Tool Flow.

2. Insert the user application.

Replace the PIO example design with the user design. It is recommended that the global
and top-level elements, such as I/O and global clocking, be inserted in the top-level
design.

3. Uncomment and modify the SPI or BPI flash memory programming settings as required
by your board design.

4. Implement the design as normal.

Method 2 – Migrating the PCIe Design into a New Vivado Project

In cases where it is not possible to use Method 1 above, the following steps should be
followed to use the PCIe core and the desired Tandem flow (PROM or PCIe) in a new project.
The example project has many of the required RTL and scripts that must be migrated into
the user design.

1. Create the example design.

Generate the example design as described in the Tandem PROM VCU108 Example Tool
Flow and Tandem PCIe VCU108 Example Tool Flow.

2. Migrate the clock module.

If the Include Shared Logic (Clocking) in the example design option is set in the
Shared Logic tab during core generation, then the pipe_clock_i clock module is
instantiated in the top level of the example design. This clock module should be
migrated to the user design to provide the necessary PCIe clocks.

Note: These clocks can be used in other parts of the user design if desired.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=90

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 91
PG156 January 29, 2016

Chapter 3: Designing with the Core

3. Migrate the top-level constraint.

The example Xilinx design constraints (XDC) file contains timing constraints, location
constraints, and Pblock constraints for the PCIe core. All of these constraints (other than
the I/O location and I/O standard constraints) need to be migrated to the user design.
Several of the constraints contain hierarchical references that require updating if the
hierarchy of the design is different than the example design.

4. Migrate the top-level Pblock constraint.

The following constraint is easy to miss so it is called out specifically in this step. The
Pblock constraint should point to the top level of the PCIe core.

add_cells_to_pblock [get_pblocks main_pblock_boot] [get_cells -quiet [<path>]]

IMPORTANT: Do not make any changes to the physical constraints defined in the XDC file because the
constraints are device dependent.

5. Add the Tandem PCIe IP to the Vivado project.

Click Add Sources in the Flow Navigator. In the Add Source wizard, select Add Existing
IP and then browse to the XCI file that was used to create the Tandem PCIe example
design.

6. Copy the appropriate SPI or BPI flash memory settings from the example design XDC file
and paste them in your design XDC file.

7. Implement the design as normal.

Tandem Configuration RTL Design
Tandem Configuration requires slight modifications from the non-tandem PCI Express
product. This section indicates the additional logic integrated within the core and the
additional responsibilities of the user application to implement a Tandem PROM solution.

MUXing Critical Inputs

Certain input ports to the core are multiplexed so that they are disabled during the stage 2
configuration process. These MUXes are controlled by the mcap_design_switch signal.

These inputs are held in a deasserted state while the stage 2 bitstream is loaded. This masks
off any unwanted glitching due to the absence of stage 2 logic and keeps the PCIe core in
a valid state. When mcap_design_switch is asserted, the MUXes are switched, and all
interface signals behave as described in this document.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=91

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 92
PG156 January 29, 2016

Chapter 3: Designing with the Core

TLP Requests

In addition to receiving configuration request packets, the PCI Express endpoint might
receive TLP requests that are not processed within the PCI Express hard block. Typical TLP
requests received are Vendor Defined Messages and Read Requests. Before stage 2 is
loaded, TLP requests return unsupported requests (URs). After stage 2 has been loaded, the
mcap_design_switch output is asserted and TLP requests function as defined by the
user design.

Tandem Configuration Logic

The core and example design contain ports (signals) specific to Tandem Configuration.
These signals provide handshaking between stage 1 (the core) and stage 2 (the user logic).
Handshaking is necessary for interaction between the core and the user logic. Table 3-3
defines the handshaking ports on the core.

Table 3-3: Handshaking Ports

Name Direction Polarity Description

mcap_design_
switch Output Active-High

Identifies when the switch to stage 2 user logic is complete.
0: Stage 2 is not yet loaded.
1: Stage 2 is loaded.

mcap_eos_out Output Active-High Pass through output from the End of Startup (EOS) pin on the
STARTUP primitive.

cap_req Output Active-High

Configuration Access Port arbitration request signal. This signal
should be used to arbitrate the use of the FPGA configuration logic
between multiple user implemented configuration interfaces. If the
Media Configuration Access Port (MCAP) is the only user
implemented configuration interface used, this signal should remain
unconnected.

cap_rel Input Active-High

Configuration Access Port arbitration request for release signal. This
signal should be used to arbitrate the use of the FPGA configuration
logic between multiple user implemented configuration interfaces. If
the MCAP is the only user implemented configuration interface used,
this signal should be tied low (1'b0). This will allow the MCAP access
to the FPGA configuration logic as needed.

cap_gnt Input Active-High

Configuration Access Port arbitration grant signal. This signal should
be used to arbitrate the use of the FPGA configuration logic between
multiple user implemented configuration interfaces. If the MCAP is
the only user implemented configuration interface used, this signal
tied high (1'b1). This will grant the MCAP access to the FPGA
configuration logic upon request.

user_reset Output Active-High Can be used to reset PCIe interfacing logic when the PCIe core is
reset. Synchronized with user_clock.

user_clk Output N/A Clock to be used by PCIe interfacing logic.

user_lnk_up Output Active-High Identifies that the PCI Express core is linked up with a host device.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=92

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 93
PG156 January 29, 2016

Chapter 3: Designing with the Core

These signals can coordinate events in the user application, such as the release of output
3-state buffers described in Tandem Configuration Details. Here is some additional
information about these signals:

• mcap_design_switch is asserted after stage 2 is loaded. After stage 2 is loaded this
output is controlled by the Root Port system. Whenever this signal is deasserted the
PCIe solution IP will be isolated from the remainder of the user design and TLP BAR
accesses will return Unsupported Requests (URs).

• mcap_eos_out is a pass through output of the EOS signal from the STARTUP primitive.
This output is deasserted until stage1 is loaded, asserted between stage 1 and stage 2,
and asserted again at the end of stage 2. The FPGA DONE pin also shows similar
behavior when loading Tandem bitstreams.

• cap_req, cap_rel, and cap_gnt signals should be used to arbitrate the use of the
FPGA configuration logic between multiple configuration interfaces such as the
Internal Configuration Access Port (ICAP). The ICAP can be used as part of other IP
cores or be instantiated directly in the user design. To arbitrate between the MCAP and
the ICAP arbitration, logic must be created and use the cap_* signals to allow access to
each interface as desired by the user design. The MCAP should always be granted
exclusive access to the configuration logic until stage 2 is fully loaded. This is identified
by the assertion of the mcap_design_switch output. After the initial stage 2 design
is loaded the MCAP interface can be used as desired by the system level design.
cap_req asserts when the Root Port connection requests access to the configuration
logic. The user design can grant access by asserting cap_gnt in response. The user
design can then request that the MCAP release control of the configuration logic by
asserting the cap_rel. The Root Port connection release control by deasserting
cap_req. The MCAP should not be accessed if the user logic does not assert cap_gnt.
Similarly, other configuration interfaces should not attempt to access the configuration
logic while access has been granted to the MCAP interface.

• user_reset can likewise be used to reset any logic that communicates with the core
when the core itself is reset.

• user_clk is simply the main internal clock for the PCIe IP core. Use this clock to
synchronize any user logic that communicates directly with the core.

• user_lnk_up, as the name implies, indicates that the PCIe core is currently running
with an established link.

User Application Handshake

An internal completion event must exist within the FPGA for Tandem solutions to perform
the hand-off between core control of the PCI Express Block and the user application.
MUXing Critical Inputs explains why this hand-off mechanism is required. The Tandem
solution uses the STARTUP block and the dedicated End Of Startup (EOS) signal to detect
the completion of stage 2 programming and then switch control of the PCI Express Block to
the user application. When this switch occurs, mcap_design_switch is asserted.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=93

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 94
PG156 January 29, 2016

Chapter 3: Designing with the Core

If the STARTUP block is required for other functionality within your design, generate the IP
with the STARTUP primitive external to the IP and connect the EOS output to the IP
mcap_eos_in input within your design. To generate the STARTUP primitive external to the
IP, select the Use an external STARTUP primitive option when customizing the core in the
Vivado IDE.

Tandem Configuration Details

I/O Behavior

For each I/O that is required for stage 1 of a Tandem Configuration design transceiver, the
entire bank in which that I/O resides must be configured in the stage 1 bitstream. In
addition to this bank, the configuration bank (65) is enabled also, so the following details
apply to these two banks (or one, if the reset pin is in the configuration bank). For PCI
Express, the only signal needed in the stage 1 design is the sys_reset input port.
Therefore, any stage 2 I/O in the same I/O bank as sys_reset port is also configured with
stage 1. Any pins in the same I/O bank as sys_reset are unconnected internally, so output
pins demonstrate unknown behavior until their internal connections are completed by the
stage 2 configuration. Also, components requiring initialization for the stage 2 functionality
should not be placed in these I/O banks unless these components are reset by the design
after stage2 is programmed.

If output pins must reside in the same bank as the sys_reset pin and their value cannot
float prior to stage 2 completion, the following approach can be taken. Use an OBUFT that
is held in 3-state between stage 1 completion (when the output becomes active) and stage
2 completion (when the driver logic becomes active). The mcap_design_switch signal
can be used to control the enable pin, releasing that output when the handshake events
complete.

TIP: In your top-level design, infer or instantiate an OBUFT. Control the enable (port named T) with
mcap_design_switch – watch the polarity!

OBUFT test_out_obuf (.O(test_out), .I(test_internal), .T(!mcap_design_switch));

Using the syntax below as an example, create a Pblock to contain the reset pin location.This
Pblock should contain the entire bank of I/O along with the associated XiPhy and clocking
primitives. The first column of FPGA slice resources should also be included in the Pblock so
that it is aligned with partial configuration boundaries. Any logic that should be placed in
this region should be added to the Pblock and identified as stage 1 logic using the
HD.TANDEM property. It is important to note that this logic becomes active after stage 1 is
loaded whereas the driving logic might not become active until stage 2 is loaded. The
system design should be created with this consideration in mind. It is recommended that
they be grouped together in their own Pblock. The following is an example for an output
port named test_out_obuf.

Create a new Pblock
 create_pblock IO_pblock

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=94

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 95
PG156 January 29, 2016

Chapter 3: Designing with the Core

set_property HD.TANDEM 1 [get_cells <my_cell>]

Range the Pblock to include the entire IO Bank and the associate XiPhy and clocking
primitives.
 resize_pblock [get_pblocks IO_pblock] -add { \
 IOB_X1Y52:IOB_X1Y103 \
 SLICE_X86Y60:SLICE_X86Y119 \
 MMCME3_ADV_X1Y1 \
 PLLE3_ADV_X1Y2:PLLE3_ADV_X1Y3 \
 PLL_SELECT_SITE_X1Y8:PLL_SELECT_SITE_X1Y15 \
 BITSLICE_CONTROL_X1Y8:BITSLICE_CONTROL_X1Y15 \
 BITSLICE_TX_X1Y8:BITSLICE_TX_X1Y15 \
 BITSLICE_RX_TX_X1Y52:BITSLICE_RX_TX_X1Y103 \
 XIPHY_FEEDTHROUGH_X4Y1:XIPHY_FEEDTHROUGH_X7Y1 \
 RIU_OR_X1Y4:RIU_OR_X1Y7 \
}

Add components and routes to stage 1 external Pblock
This constraint should be repeated for each primitive within this pblock region

add_cells_to_pblock [get_pblocks IO_pblock] [get_cells test_out_obuf]

Identify the logic within this pblock as stage1 logic by applying the HD.TANDEM
property.
This constraint should be repeated for each primitive within this pblock region
 set_property HD.TANDEM 1 [get_cells test_out_obuf]

The remaining user I/O in the design are pulled High, by default, during the stage 2
configuration. The use of the PUDC_B pin will, when held High, force all I/O in banks beyond
the three noted above to be tristated. Between stage 1 and stage 2, which for Tandem PCIe
could be a considerable amount of time, these pins are pulled Low by the internal weak
pull-down for each I/O as these pins are unconfigured at that time.

Configuration Pin Behavior

The DONE pin indicates completion of configuration with standard approaches. DONE is
also used for Tandem Configuration, but in a slightly different manner. DONE pulses High at
the end of stage 1, when the start-up sequences are run. It returns Low when
stage 2 loading begins. For Tandem PROM, this happens immediately because stage 2 is in
the same bit file. For Tandem PCIe, this happens when the second bitstream is delivered to
the PCIe MCAP interface. It pulls High and stays High at the end of the stage 2
configuration.

Configuration Persist (Tandem PROM Only)

Configuration Persist is required in Tandem PROM configuration for UltraScale devices.
Dual purpose I/O used for stage 1 and stage 2 configuration cannot be re-purposed as user
I/O after stage 2 configuration is complete.

If the PERSIST option is set correctly for the needed configuration mode, but necessary
dual-mode I/O pins are still occupied by user I/O, the following error is issued for each
instance during write_bitstream:

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=95

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 96
PG156 January 29, 2016

Chapter 3: Designing with the Core

ERROR: [Designutils 12-1767] Cannot add persist programming for site IOB_X0Y151.
ERROR: [Designutils 12-1767] Cannot add persist programming for site IOB_X0Y152.

The user I/O occupying these sites must be relocated to use Tandem PROM.

PROM Selection

Configuration PROMs have no specific requirements unique to Tandem Configuration.
However, to meet the 100 ms specification, you must select a PROM that meets the
following three criteria:

1. Supported by Xilinx configuration.

2. Sized appropriately for both stage 1 and stage 2; that is, the PROM must be able to
contain the entire bitstream.

° For Tandem PROM, both stage 1 and stage 2, are stored here; this bitstream is
slightly larger (4-5%) than a standard bitstream.

° For Tandem PCIe, the bitstream size is typically about 1 MB, but this can vary
slightly due to design implementation results, device selection, and effectiveness of
compression.

3. Meets the configuration time requirement for PCI Express based on the f irst-stage
bitstream size and the calculations for the bitstream loading time. See Calculating
Bitstream Load Time for Tandem.

See the UltraScale Architecture Configuration User Guide (UG570) [Ref 4] for a list of
supported PROMs and device bitstream sizes.

Programming the Device

There are no special considerations for programming Tandem bitstreams versus standard
bitstreams into a PROM. You can program a Tandem bitstream using all standard flash
memory programming methods, such as JTAG, Slave and Master SelectMAP, SPI, and BPI.
Regardless of the programming method used, the DONE pin is asserted after the f irst stage
is loaded and operation begins.

To prepare for SPI or BPI flash memory programming, the appropriate settings must be
enabled prior to bitstream generation. This is done by adding the specific flash memory
device settings in the design XDC file, as shown here. Examples can be seen in the
constraints generated with the PCI Express example design. Copy the existing (commented)
options to meet your board and flash memory programming requirements.

Here are examples for Tandem PROM:

BPI Flash Programming
set_property CONFIG_MODE BPI16 [current_design]
set_property BITSTREAM.CONFIG.BPI_SYNC_MODE Type1 [current_design]
set_property BITSTREAM.CONFIG.CONFIGRATE 33 [current_design]
set_property CONFIG_VOLTAGE 1.8 [current_design]

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=96

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 97
PG156 January 29, 2016

Chapter 3: Designing with the Core

set_property CFGBVS GND [current_design]

Both internally generated CCLK and externally provided EMCCLK are supported for SPI and
BPI programming. EMCCLK can be used to provide faster conf iguration rates due to tighter
tolerances on the conf iguration clock . See the UltraScale Architecture Configuration User
Guide (UG570) [Ref 4] for details on the use of EMCCLK with the Design Suite.

For more information on configuration in the Vivado Design Suite, see the Vivado Design
Suite User Guide: Programming and Debugging (UG908) [Ref 15].

Bitstream Encryption

Bitstream encryption is supported for Tandem Configuration, for both Tandem PROM and
Tandem PCIe approaches. For Tandem PCIe, the stage 2 bitstream must remain encrypted
using the same key as the stage 1 bitstream, because the MCAP (unlike the ICAP) cannot
receive unencrypted bitstreams after an encrypted initial load.

Tandem PROM/PCIe Resource Restrictions
The PCIe IP must be isolated from the global chip reset (GSR) that occurs right after the
stage 2 bitstream has completed loading into the FPGA. As a result, stage 1 and stage 2
logic cannot reside within the same configuration frames. Configuration frames used by the
PCIe IP consist of serial transceivers, I/O, FPGA logic, block RAM, or Clocking, and they
(vertically) span a single clock region. The resource restrictions are as follows:

• A GT quad contains four serial transceivers. In a X1 or X2 designs, the entire GT quad is
consumed and the unused serial transceivers are not available to the user
application.The number of GT quads consumed depends on the GT quad selection
made when customizing the core in the Vivado IDE.

• DCI Cascading between a stage 1 I/O bank and a stage 2 I/O bank is not supported.

Moving the PCIe Reset Pin
In general, to achieve the best (smallest) first-stage bitstream size, you should use the
dedicated reset routing and dedicated PCIe reset package pin (PERSTN0). This selection is
enabled by default where applicable. If your system design does not allow for the use of this
dedicated reset, you must disable the use of the dedicated PERST routing resources in the
Vivado IDE. When selecting a new location for the reset pin, you should consider the
location for any I/Os that are intended to be configured in stage 1. I/Os that are physically
placed a long distance from the core cause extra configuration frames to be included in the
f irst stage. This is due to extra routing resources that are required to include these I/Os in
the f irst stage.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=97

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 98
PG156 January 29, 2016

Chapter 3: Designing with the Core

Non-Project Flow
In a non-project environment, the same basic approach as the project environment is used.
First, create the IP using the IP catalog as shown in the Tandem PCIe VCU108 Example Tool
Flow. One of the results of core generation is an .xci file, which is a listing of all the core
details. This file is used to regenerate all the required design sources.

The following is a sample flow in a non-project environment:

1. Read in design sources, either the example design or your design.

read_verilog <verilog_sources>
read_vhdl <vhdl_sources>
read_xdc <xdc_sources>

2. Define the target device.

set_property PART <part> [current_project]

Note: Even though this is a non-project flow, there is an implied project behind the scenes. This
must be done to establish an explicit device before the IP is read in.

3. Read in the PCIe IP.

read_ip pcie_ip_0.xci

4. Synthesize the design. This step generates the IP sources from the .xci input.

synth_design -top <top_level>

Note: When out of context synthesis is used, you might need to apply the Pblock constraints
using a constraints file that is only applied during implementation. This is because some
constraints depend on the entire design being combined to apply the constraints.

5. Ensure that any customizations to the design, such as the identification of the
configuration mode to set the persisted pins, are done in the design XDC file.

6. Implement the design.

opt_design
place_design
route_design

7. Generate the bit files. The -bin_file option should be used for Tandem PCIe. The BIN
file is aligned to a 32-bit boundary and can facilitate the software loading of the
stage 2 bitstream over PCIe.

write_bitstream -bin_file <file>.bit

Simulating the Tandem IP Core
Because the functionality of the Tandem PROM or Tandem PCIe core relies on the STARTUP
module, this must be taken into consideration during simulation.

The PCI Express core relies on the STARTUP block to assert the EOS output status signal in
order to know when the stage 2 bitstream has been loaded into the device. You must

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=98

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 99
PG156 January 29, 2016

Chapter 3: Designing with the Core

simulate the STARTUP block behavior to release the PCIe core to work with the stage 2 logic.
This is done using a hierarchical reference to force the EOS signal on the STARTUP block
because result simulators, which do not support hierarchical reference, cannot be used to
simulate Tandem designs. The following pseudo code shows how this could be done.

// Initialize EOS at time 0
force board.EP.pcie_ip_support_i.pcie_ip_i.inst.startup_i.EOS = 1'b1;

<delay until after PCIe reset is released>

// De-assert EOS to simulate the starting of the 2nd stage bitstream loading
force board.EP.pcie_ip_support_i.pcie_ip_i.inst.startup_i.EOS = 1'b0;

<delay a minimum of 4 user_clk cycles>

// Re-assert EOS to simulate that 2nd stage bitstream completed loading
force board.EP.pcie_ip_support_i.pcie_ip_i.inst.startup_i.EOS = 1'b1;
// Simulate as normal from this point on.

The hierarchy to the PCIe core in the line above must be changed to match that of the user
design. This line can also be found in the example simulation provided with the core in the
file named board.v.

Calculating Bitstream Load Time for Tandem
The configuration loading time is a function of the configuration clock frequency and
precision, data width of the configuration interface, and bitstream size. The calculation is
broken down into three steps:

1. Calculate the minimum clock frequency based on the nominal clock frequency and
subtract any variation from the nominal.

Minimum Clock Frequency = Nominal Clock - Clock Variation

2. Calculate the minimum PROM bandwidth, which is a function of the data bus width,
clock frequency, and PROM type. The PROM bandwidth is the minimum clock frequency
multiplied by the bus width.

PROM Bandwidth = Minimum Clock Frequency × Bus Width

3. Calculate the first-stage bitstream loading time, which is the minimum PROM bandwidth
from step 2, divided by the first-stage bitstream size as reported by
write_bitstream.

Stage 1 Load Time = (PROM Bandwidth) / (Stage 1 Bitstream Size)

The stage 1 bitstream size, reported by write_bitstream, can be read directly from
the terminal or from the log file.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=99

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 100
PG156 January 29, 2016

Chapter 3: Designing with the Core

The following is a snippet from the write_bitstream log showing the bitstream size for
stage 1 in a VU095 device:

Creating bitstream...
Tandem stage1 bitstream contains 9175424 bits.
Tandem stage2 bitstream contains 277708576 bits.
Writing bitstream ./xilinx_pcie_ip.bit...

These values represent the explicit values of the bitstream stages, whether in one bit file or
two. The effects of bitstream compression are reflected in these values.

Example 1

The configuration for Example 1 is:

• Quad SPI flash (x4) operating at 66 MHz ± 200 ppm

• Stage 1 size = 9175424 bits = 8.75 Mb

The steps to calculate the configuration loading time are:

1. Calculate the minimum clock frequency:

66 MHz × (1 - 0.0002) = 65.98 MHz

2. Calculate the minimum PROM bandwidth:

4 bits × 65.98 MHz = 263.92 Mb/s

3. Calculate the first-stage bitstream loading time:

8.75 Mb / 263.92 Mb/s = ~0.0332 or 33.2 ms

Example 2

The configuration for Example 2 is:

• BPI (x16) Synchronous mode, operating at 50 MHz ± 100 ppm

• Stage 1 size = 9175424 bits = 8.75 Mb

The steps to calculate the configuration loading time are:

1. Calculate the minimum clock frequency:

50 MHz × (1 - 0.0001) = 49.995 MHz

2. Calculate the minimum PROM bandwidth:

16 bits × 49.995 MHz = 799.92 Mb/s

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=100

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 101
PG156 January 29, 2016

Chapter 3: Designing with the Core

3. Calculate the first-stage bitstream loading time:

8.75 Mb / 799.92 Mb/s = ~0.0109 s or 10.9 ms

Using Bitstream Compression

Minimizing the stage 1 bitstream size is the ultimate goal of Tandem Configuration, and the
use of bitstream compression aids in this effort. This option uses a multi-frame write
technique to reduce the size of the bitstream and therefore the configuration time required.
The amount of compression varies from design to design. When Tandem is selected,
compression is turned on in the IP level constraints. This can be overridden in the user
design constraints as desired. The following command can be used to enable or disable
bitstream compression.

set_property BITSTREAM.GENERAL.COMPRESS <TRUE|FALSE> [current_design]

Other Bitstream Load Time Considerations

Bitstream configuration times can also be affected by:

• Power supply ramp times, including any delays due to regulators

• TPOR (power on reset)

Power-supply ramp times are design-dependent. Take care to not design in large ramp
times or delays. The FPGA power supplies that must be provided to begin FPGA
configuration are listed in UltraScale Architecture Configuration User Guide (UG570) [Ref 4].

In many cases, the FPGA power supplies can ramp up simultaneously or even slightly before
the system power supply. In these cases, the design gains timing margin because the
100 ms does not start counting until the system supplies are stable. Again, this is
design-dependent. Systems should be characterized to determine the relationship between
FPGA supplies and system supplies.

TPOR is 57 ms for standard power ramp rates, and 20 ms for fast ramp rates for UltraScale
devices. See Kintex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics
(DS892) [Ref 5], and Virtex UltraScale Architecture Data Sheet: DC and AC Switching
Characteristics (DS893) [Ref 6].

Consider two cases for Example 1 (Quad SPI flash [x4] operating at 66 MHz ± 200 ppm) from
Calculating Bitstream Load Time for Tandem:

• Case 1: Without ATX Supply

• Case 2: With ATX Supply

Assume that the FPGA power supplies ramp to a stable level (2 ms) after the 3.3V and 12V
system power supplies. This time difference is called TFPGA_PWR. In this case, because the

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=101

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 102
PG156 January 29, 2016

Chapter 3: Designing with the Core

FPGA supplies ramp after the system supplies, the power supply ramp time takes away from
the 100 ms margin.

The equations to test are:

TPOR + Bitstream Load Time + TFPGA_PWR < 100 ms for non-ATX

TPOR + Bitstream Load Time + TFPGA_PWR - 100 ms < 100 ms for ATX

Case 1: Without ATX Supply

Because there is no ATX supply, the 100 ms begins counting when the 3.3V and 12 V system
supplies reach within 9% and 8% of their nominal voltages, respectively (see the PCI Express
Card Electromechanical Specification).

50 ms (TPOR) + 33.2 ms (bitstream time) + 2 ms (ramp time) = 85.2 ms

85.2 ms < 100 ms PCIe standard (okay)

In this case, the margin is 14.8 ms.

Case 2: With ATX Supply

ATX supplies provide a PWR_OK signal that indicates when system power supplies are
stable. This signal is asserted at least 100 ms after actual supplies are stable. Thus, this extra
100 ms can be added to the timing margin.

50 ms (TPOR) + 33.2 ms (bitstream time) + 2 ms (ramp time) - 100 ms = -14.8 ms

-14.8 ms < 100 ms PCIe standard (okay)

In this case, the margin is 114.8 ms.

Sample Bitstream Sizes

The final size of the stage 1 bitstream varies based on many factors, including:

• IP: The size and shape of the first-stage Pblocks determine the number of frames
required for stage 1.

• Device: Wider devices require more routing frames to connect the IP to clocking
resources.

• Design: Location of the reset pin is one of many factors introduced by the addition of
the user application.

• Variant: The selection of the GT quads used affects the size of the stage 1 bitstream.
For the most efficient use of resources, the GT quad adjacent to the PCI Express hard
block should be used.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=102

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 103
PG156 January 29, 2016

Chapter 3: Designing with the Core

• Compression: As the device utilization increases, the effectiveness of compression
decreases.

As a baseline, here are some sample bitstream sizes and configuration times for the
example (PIO) design generated along with the PCIe IP.

The amount of time it takes to load the stage 2 bitstream using the Tandem PCIe
methodology depends on three additional factors:

• The width and speed of PCI Express link.

• The frequency of the clock used to program the MCAP.

• The efficiency at which the Root Port host can deliver the bitstream to the endpoint
FPGA design. For most designs this will be the limiting factor.

The lower bandwidth of these three factors determines how fast the stage 2 bitstream is
loaded.

Table 3-4: Example Bitstream Size and Configuration Times(1)

Device Full Bitstream Full: BPI16
at 50 MHz Tandem Stage 1(2) Tandem: BPI16

at 50 MHz

KU040 122.1 Mb 152.7 ms 7.6 Mb 9.5 ms

VU095 273.5 Mb 341.8 ms 8.8 Mb 10.9 ms

VU190 577.1 Mb 721.4 ms 11.2 Mb 14.1 ms

Notes:
1. The configuration times shown here do not include TPOR.
2. Because the PIO design is very small, compression is very effective in reducing the bitstream size. These numbers

were obtained without compression to give a more accurate estimate of what a full design might show. These
numbers were generated using a PCIe Gen3x8 configuration in Vivado Design Suite 2015.1.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=103

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 104
PG156 January 29, 2016

Chapter 3: Designing with the Core

Clocking
The core requires a 100 MHz reference clock input. For more information, see the Answer
Records at the Xilinx PCI Express Solution Center.

In a typical PCI Express solution, the PCI Express reference clock is a spread spectrum clock
(SSC), provided at 100 MHz. In most commercial PCI Express systems, SSC cannot be
disabled. For more information regarding SSC and PCI Express, see Section 4.3.7.1.1 of the
PCI Express Base Specification, rev. 3.0 [Ref 2].

IMPORTANT: All add-in card designs must use synchronous clocking due to the characteristics of the
provided reference clock. For devices using the Slot clock, the Slot Clock Configuration setting in the
Link Status register must be enabled in the Vivado IP catalog. See Clocking Requirements, page 113 for
additional information regarding reference clock requirements.

Each link partner device shares the same clock source. Figure 3-10 and Figure 3-11 show a
system using a 100 MHz reference clock.

Even if the device is part of an embedded system, if the system uses commercial PCI Express
root complexes or switches along with typical motherboard clocking schemes, synchronous
clocking should still be used.

Note: Figure 3-10 and Figure 3-11 are high-level representations of the board layout. Ensure that
coupling, termination, and details are correct when laying out a board.
X-Ref Target - Figure 3-10

Figure 3-10: Embedded System Using 100 MHz Reference Clock

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/answers/34536.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=104

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 105
PG156 January 29, 2016

Chapter 3: Designing with the Core

Resets
The core resets the system using sys_reset, an asynchronous, active-Low reset signal
asserted during the PCI Express Fundamental Reset. Asserting this signal causes a hard
reset of the entire core, including the GTH transceivers. After the reset is released, the core
attempts to link train and resume normal operation. In a typical Endpoint application, for
example an add-in card, a sideband reset signal is normally present and should be
connected to sys_reset. For Endpoint applications that do not have a sideband system
reset signal, the initial hardware reset should be generated locally. Four reset events can
occur in PCI Express:

• Cold Reset: A Fundamental Reset that occurs at the application of power. The
sys_reset signal is asserted to cause the cold reset of the core.

• Warm Reset: A Fundamental Reset triggered by hardware without the removal and
re-application of power. The sys_reset signal is asserted to cause the warm reset to
the core.

• Hot Reset: In-band propagation of a reset across the PCI Express Link through the
protocol, resetting the entire Endpoint device. In this case, sys_reset is not used. In
the case of Hot Reset, the cfg_hot_reset_out signal is asserted to indicate the
source of the reset.

X-Ref Target - Figure 3-11

Figure 3-11: Open System Add-In Card Using 100 MHz Reference Clock

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=105

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 106
PG156 January 29, 2016

Chapter 3: Designing with the Core

• Function-Level Reset: In-band propagation of a reset across the PCI Express Link
through the protocol, resetting only a specific function. In this case, the core asserts
the bit of either cfg_flr_in_process and/or cfg_vf_flr_in_process that
corresponds to the function being reset. Logic associated with the function being reset
must assert the corresponding bit of cfg_flr_done or cfg_vf_flr_done to
indicate it has completed the reset process.

Before FLR is initiated, the software temporarily disables the traffic targeting the
specific functions. When the FLR is initiated, Requests and Completions are silently
discarded without logging or signaling an error.

After an FLR has been initiated by writing a 1b to the Initiate Function Level Reset bit,
the function must complete the FLR and any function-specific initialization within 100
ms.

The User Application interface of the core has an output signal, user_reset. This signal is
deasserted synchronously with respect to user_clk. The user_reset signal is asserted
as a result of any of these conditions:

• Fundamental Reset: Occurs (cold or warm) due to assertion of sys_reset.

• PLL within the Core Wrapper: Loses lock, indicating an issue with the stability of the
clock input.

• Loss of Transceiver PLL Lock: Any transceiver loses lock, indicating an issue with the
PCI Express Link.

The user_reset signal is deasserted synchronously with user_clk after all of the listed
conditions are resolved, allowing the core to attempt to train and resume normal operation.

AXI4-Stream Interface Description
This section provides a detailed description of the features, parameters, and signals
associated with the user interfaces of the core.

Overview of Features
Figure 3-12 illustrates the user interface of the core.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=106

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 107
PG156 January 29, 2016

Chapter 3: Designing with the Core

The interface is organized as four separate interfaces through which data can be transferred
between the PCIe link and the user application:

X-Ref Target - Figure 3-12

Figure 3-12: Block Diagram of UltraScale FPGA Gen3 Integrated Block User Interfaces

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=107

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 108
PG156 January 29, 2016

Chapter 3: Designing with the Core

• A PCIe Completer reQuest (CQ) interface through which requests arriving from the link
are delivered to the user application.

• A PCIe Completer Completion (CC) interface through which the user application can
send back responses to the completer requests. The user application can process all
Non-Posted transactions as split transactions. That is, it can continue to accept new
requests on the completer request interface while sending a completion for a request.

• A PCIe Requester reQuest (RQ) interface through which the user application can
generate requests to remote PCIe devices attached to the link.

• A PCIe Requester Completion (RC) interface through which the integrated block returns
the completions received from the link (in response to the user application requests as
PCIe requester) to the user application.

Each of the four interfaces is based on the AMBA4® AXI4-Stream Protocol Specification
[Ref 1]. The width of these interfaces can be configured as 64, 128, or 256 bytes, and the
user clock frequencies can be selected as 62.5, 125, or 250 MHz, depending on the number
of lanes and PCIe generation you choose. Table 3-5 lists the valid combinations of interface
width and user clock frequency for the different link widths and link speeds supported by
the integrated block. All four AXI4-Stream interfaces are configured with the same width in
all cases.

In addition, the integrated block contains two interfaces through which status information
is communicated to the PCIe master side of the user application:

• A flow control status interface that provides information on currently available transmit
credit, so that the user application can schedule requests based on available credit.

• A tag availability status interface that provides information on the number of tags
available to assign to Non-Posted requests, so that the user application can schedule
requests without the risk of being blocked by all tags being in use within the PCIe
controller.

Finally, the integrated block also has a received-message interface which indicates to the
user logic when a message is received from the link, rather than transferring the entire
message over the CQ interface.

Table 3-5: Data Width and Clock Frequency Settings for the User Interfaces

PCI Express Generation/
Maximum Link Speed

Maximum Link
Width Capability

AXI4-Stream
Interface Width

User Clock
Frequency (MHz)

Gen1 (2.5 GT/s)

x1 64 bits 62.5, 125, or 250

x2 64 bits 62.5, 125, or 250

x4 64 bits 125, or 250

x8
64 bits 250

128 bits 125

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=108

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 109
PG156 January 29, 2016

Chapter 3: Designing with the Core

Data Alignment Options

A transaction layer packet (TLP) is transferred on each of the AXI4-Stream interfaces as a
descriptor followed by payload data (when the TLP has a payload). The descriptor has a
fixed size of 16 bytes on the request interfaces and 12 bytes on the completion interfaces.
On its transmit side (towards the link), the integrated block assembles the TLP header from
the parameters supplied by the user application in the descriptor. On its receive side
(towards the user interface), the integrated block extracts parameters from the headers of
received TLP and constructs the descriptors for delivering to the user application. Each TLP
is transferred as a packet, as defined in the AXI4-Stream Interface Protocol.

When a payload is present, there are two options for aligning the first byte of the payload
with respect to the datapath.

1. Dword-aligned mode: In this mode, the descriptor bytes are followed immediately by
the payload bytes in the next Dword position, whenever a payload is present.

2. Address-Aligned Mode: In this mode, the payload can begin at any byte position on the
datapath. For data transferred from the integrated block to the user application, the
position of the first byte is determined as:

n = A mod w

where A is the memory or I/O address specified in the descriptor (for message and
configuration requests, the address is taken as 0), and w is the configured width of the

Gen2 (5.0 GT/s)

x1 64 bits 62.5, 125, or 250

x2 64 bits 125, or 250

x4
64 bits 250

128 bits 125

x8
128 bits 250

256 bits 125

Gen3 (8.0 GT/s)

x1 64 bits 125, or 250

x2
64 bits 250

128 bits 125

x4
128 bits 250

256 bits 125

x8 256 bits 250

Notes:
1. 250 MHz user clock frequency is not supported for -1LV speed grade, non-x8 configurations when AXI-ST width 64

bit is selected.

Table 3-5: Data Width and Clock Frequency Settings for the User Interfaces (Cont’d)

PCI Express Generation/
Maximum Link Speed

Maximum Link
Width Capability

AXI4-Stream
Interface Width

User Clock
Frequency (MHz)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=109

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 110
PG156 January 29, 2016

Chapter 3: Designing with the Core

data bus in bytes. Any gap between the end of the descriptor and the start of the first
byte of the payload is filled with null bytes.

For data transferred from the integrated block to the user application, the data alignment is
determined based on the starting address where the data block is destined to in user
memory. For data transferred from the user application to the integrated block, the user
application must explicitly communicate the position of the first byte to the integrated
block using the tuser sideband signals when the address-aligned mode is in use.

In the address-aligned mode, the payload and descriptor are not allowed to overlap. That is,
the transmitter begins a new beat to start the transfer of the payload after it has transmitted
the descriptor. The transmitter fills any gaps between the last byte of the descriptor and the
first byte of the payload with null bytes.

The Vivado IP catalog applies the data alignment option globally to all four interfaces.
However, advanced users can select the alignment mode independently for each of the four
AXI4-Stream interfaces. This is done by setting the corresponding alignment mode
parameter, with the constraint that the Requester Completion (RC) interface can be set to
the address-aligned mode. See Interface Operation, page 113 for more details on address
alignment and example diagrams.

Straddle Option on Requester Completion Interface

When the Requester Completion (RC) interface is configured for a width of 256 bits,
depending on the type of TLP and Payload size, there can be significant interface utilization
inefficiencies, if a maximum of 1 TLP is allowed to start or end per interface beat. This
inefficient use of RC interface can lead to overflow of the completion FIFO when Infinite
Receiver Credits are advertized. You must either:

• Restrict the number of outstanding Non Posted requests, so as to keep the total
number of completions received less than 64 and within the completion of the FIFO
size selected, or

• Use the RC interface straddle option. See Figure 3-66 for waveforms showing this
option.

The straddle option, available only on the 256-bit wide RC interface, is enabled through the
Vivado IP catalog. See Chapter 4, Design Flow Steps for instructions on enabling the option
in the IP catalog. When this option is enabled, the integrated block can start a new
Completion TLP on byte lane 16 when the previous TLP has ended at or before byte lane 15
in the same beat. Thus, with this option enabled, it is possible for the integrated block to
send two Completion TLPs entirely in the same beat on the RC interface, if neither of them
has more than one Dword of payload.

The straddle setting is only available when the interface width is set to 256 bits and the RC
interface is set to Dword-aligned mode.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=110

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 111
PG156 January 29, 2016

Chapter 3: Designing with the Core

Table 3-6 lists the valid combinations of interface width, addressing mode, and the straddle
option.

Receive Transaction Ordering

The core contains logic on its receive side to ensure that TLPs received from the link and
delivered on its completer request interface and requester completion interface do not
violate the PCI Express transaction ordering constraints. The ordering actions performed by
the integrated block are based on the following key rules:

• Posted requests must be able to pass Non-Posted requests on the Completer reQuest
(CQ) interface. To enable this capability, the integrated block implements a flow control
mechanism on the CQ interface through which user logic can control the flow of
Non-Posted requests without affecting Posted requests. The user logic signals the
availability of a buffer to receive a Non-Posted request by asserting the
pcie_cq_np_req signal.

The integrated block delivers a Non-Posted request to the user application only when
the available credit is non-zero. The integrated block continues to deliver Posted
requests while the delivery of Non-Posted requests has been paused for lack of credit.
When no back pressure is applied by the credit mechanism for the delivery of
Non-Posted requests, the integrated block delivers Posted and Non-Posted requests in
the same order as received from the link. For more information on controlling the flow
of Non-Posted requests, see Selective Flow Control for Non-Posted Requests, page 131.

• PCIe ordering requires that a completion TLP not be allowed to pass a Posted request,
except in the following cases:

° Completions with the Relaxed Ordering attribute bit set can pass Posted requests

° Completions with the ID-based ordering bit set can pass a Posted request if the
Completer ID is different from the Posted Requestor ID.

Table 3-6: Valid Combinations of Interface Width, Alignment Mode, and Straddle

Interface Width Alignment Mode Straddle Option Description

64 bits Dword-aligned Not applicable 64-bit, Dword-aligned

64 bits Address-aligned Not applicable 64-bit, Address-aligned

128 bits Dword-aligned Not applicable 128-bit, Dword-aligned

128 bits Address-aligned Not applicable 128-bit, Address-aligned

256 bits Dword-aligned Disabled 256-bit, Dword-aligned, straddle
disabled

256 bits Dword-aligned Enabled
256-bit, Dword-aligned, straddle

enabled (only allowed for the Requester
Completion interface)

256 bits Address-aligned Not applicable 256-bit, Address-aligned

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=111

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 112
PG156 January 29, 2016

Chapter 3: Designing with the Core

The integrated block does not start the transfer of a Completion TLP received from the link
on the Requester Completion (RC) interface until it has completely transferred all Posted
TLPs that arrived before it, unless one of the two rules applies.

After a TLP has been transferred completely to the user interface, it is the responsibility of
the user application to enforce ordering constraints whenever needed.

Transmit Transaction Ordering

On the transmit side, the integrated block receives TLPs on two different interfaces: the
Requester reQuest (RQ) interface and the Completer Completion (CC) interface. The
integrated block does not re-order transactions received from each of these interfaces. It is
difficult to predict how the requester-side requests and completer-side completions are
ordered in the transmit pipeline of the integrated block, after these have been multiplexed
into a single traffic stream. In cases where completion TLPs must maintain ordering with
respect to requests, user logic can supply a 4-bit sequence number with any request that
needs to maintain strict ordering with respect to a Completion transmitted from the CC
interface, on the seq_num[3:0] inputs within the s_axis_rq_tuser bus. The integrated
block places this sequence number on its pcie_rq_seq_num[3:0] output and asserts
pcie_rq_seq_num_vld when the request TLP has reached a point in the transmit pipeline
at which no new completion TLP from the user application can pass it. This mechanism can
be used in the following situations to maintain TLP order:

• The user logic requires ordering to be maintained between a request TLP and a
completion TLP that follows it. In this case, user logic must wait for the sequence
number of the requester request to appear on the pcie_rq_seq_num[3:0] output
before starting the transfer of the completion TLP on the target completion interface.

• The user logic requires ordering to be maintained between a request TLP and MSI/
MSI-X TLP signaled through the MSI Message interface. In this case, the user logic must
wait for the sequence number of the requester request to appear on the
pcie_rq_seq_num[3:0] output before signaling MSI or MSI-X on the MSI Message
interface.

Table 3-7: Receive Ordering Rules

Row Pass Posted Non-Posted Completion

Posted No Yes Yes

Non-Posted No No Yes

Completion
a) No
b) Yes (Relaxing Ordering)
c) Yes (ID Based Ordering)

Yes No

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=112

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 113
PG156 January 29, 2016

Chapter 3: Designing with the Core

Clocking Requirements
All user interface signals of the core are timed with respect to the user clock (user_clk),
which can have a frequency of 62.5, 125, or 250 MHz, depending on the link speed and link
width configured (see Table 3-5).

Interface Operation
This section describes the operation of the user interfaces of the core.

Completer Interface
This interface maps the transactions (memory, I/O read/write, messages, Atomic
Operations) received from the PCIe link into transactions on the Completer reQuest (CQ)
interface based on the AXI4-Stream protocol. The completer interface consists of two
separate interfaces, one for data transfers in each direction. Each interface is based on the
AXI4-Stream protocol, and its width can be configured as 64, 128, or 256 bits. The CQ
interface is for transfer of requests (with any associated payload data) to the user
application, and the Completer Completion (CC) interface is for transferring the Completion
data (for a Non-Posted request) from the user application for forwarding on the link. The
two interfaces operate independently. That is, the integrated block can transfer new
requests over the CQ interface while receiving a Completion for a previous request.

Completer Request Descriptor Formats

The integrated block transfers each request TLP received from the link over the CQ interface
as an independent AXI4-Stream packet. Each packet starts with a descriptor and can have
payload data following the descriptor. The descriptor is always 16 bytes long, and is sent in
the first 16 bytes of the request packet. The descriptor is transferred during the first two
beats on a 64-bit interface, and in the first beat on a 128-bit or 256-bit interface.

The formats of the descriptor for different request types are illustrated in Figure 3-13,
Figure 3-14, Figure 3-15, and Figure 3-16. The format of Figure 3-13 applies when the
request TLP being transferred is a memory read/write request, an I/O read/write request, or
an Atomic Operation request. The format of Figure 3-14 is used for Vendor-Defined
Messages (Type 0 or Type 1) only. The format of Figure 3-15 is used for all ATS messages
(Invalid Request, Invalid Completion, Page Request, PRG Response). For all other messages,
the descriptor takes the format of Figure 3-16.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=113

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 114
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-13

Figure 3-13: Completer Request Descriptor Format for Memory, I/O, and Atomic Op Requests

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

Address [63:2]

Address Type (AT)

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

Dword Count
01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

TagTC
01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3

Attr

Req Type

96 64

32

BAR Aperture

Bus Device/Function

Requester ID
Target Function

127

63 0

X12217

R R

BAR ID

X-Ref Target - Figure 3-14

Figure 3-14: Completer Request Descriptor Format for Vendor-Defined Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3
96 64

Msg Code

Vendor - Defined Header Bytes
Destination ID

Bus Device/FunctionVendor ID

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type

Bus Device/Function
Requester ID

03263

127

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

X12219

R R

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=114

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 115
PG156 January 29, 2016

Chapter 3: Designing with the Core

Table 3-8 describes the individual fields of the completer request descriptor.

X-Ref Target - Figure 3-15

Figure 3-15: Completer Request Descriptor Format for ATS Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3

96 64

32

Msg Code

TL Header Bytes 8-15

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type

Bus Device/Function
Requester ID

127

63 0

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

TL Header
Byte 11

TL Header
Byte 10

TL Header
Byte 9

TL Header
Byte 8

X12216

RR

X-Ref Target - Figure 3-16

Figure 3-16: Completer Request Descriptor Format for All Other Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

01234567

+4

01234567

+5

01234567

+6

01234567

+7

Dword Count
01234567

+8

01234567

+9

01234567

+10

01234567

+11

Tag
01234567

+12

01234567

+13

01234567

+14

01234567

+15

Req Type

96 64

32

RMsg Code
Message
Routing

TCAttr R

OBFF Code
(for OBFF message);
Reserved (for others)

No-Snoop Latency
(for LTR message);

Reserved (for others)

Snoop Latency
(for LTR message);

Reserved (for others)

R

R Bus Device/Function
Requester ID

0

127

63

DW + 0DW + 1

DW + 2DW + 3

X12218

Table 3-8: Completer Request Descriptor Fields

Bit Index Field Name Description

1:0 Address Type

This field is defined for memory transactions and Atomic
Operations only. It contains the AT bits extracted from the TL
header of the request.
00: Address in the request is untranslated
01: Transaction is a Translation Request
10: Address in the request is a translated address
11: Reserved

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=115

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 116
PG156 January 29, 2016

Chapter 3: Designing with the Core

63:2 Address

This field applies to memory, I/O, and Atomic Op requests. It
provides the address from the TLP header. This is the address
of the first Dword referenced by the request. The
First_BE bits from m_axis_cq_tuser must be used
to determine the byte-level address.
When the transaction specifies a 32-bit address, bits [63:32]
of this field are 0.

74:64 Dword Count

These 11 bits indicate the size of the block (in Dwords) to be
read or written (for messages, size of the message payload).
Its range is 0 - 256 Dwords. For I/O accesses, the Dword count
is always 1.
For a zero length memory read/write request, the Dword
count is 1, with the First_BE bits set to all 0s.

78:75 Request Type Identifies the transaction type. The transaction types and
their encodings are listed in Table 3-9.

95:80 Requester ID

PCI Requester ID associated with the request. With legacy
interpretation of RIDs, these 16 bits are divided into an 8-bit
bus number [95:88], 5-bit device number [87:83], and 3-bit
Function number [82:80]. When ARI is enabled, bits [95:88]
carry the 8-bit bus number and [87:80] provide the Function
number.
When the request is a Non-Posted transaction, the user
completer application must store this field and supply it back
to the integrated block with the completion data.

103:96 Tag

PCIe Tag associated with the request. When the request is a
Non-Posted transaction, the user logic must store this field
and supply it back to the integrated block with the
completion data. This field can be ignored for memory writes
and messages.

111:104 Target Function

This field is defined for memory, I/O, and Atomic Op requests
only. It provides the Function number the request is targeted
at, determined by the BAR check. When ARI is in use, all 8 bits
of this field are valid. Otherwise, only bits [106:104] are valid.
Following are Target Function Value to PF/VF map mappings:
• 0: PF0
• 1: PF1
• 64: VF0
• 65: VF1
• 66: VF2
• 67: VF3
• 68: VF4
• 69: VF5

Table 3-8: Completer Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=116

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 117
PG156 January 29, 2016

Chapter 3: Designing with the Core

114:112 BAR ID

This field is defined for memory, I/O, and Atomic Op requests
only. It provides the matching BAR number for the address in
the request.
• 000: BAR 0 (VF-BAR 0 for VFs)
• 001: BAR 1 (VF-BAR 1 for VFs)
• 010: BAR 2 (VF-BAR 2 for VFs)
• 011: BAR 3 (VF-BAR 3 for VFs)
• 100: BAR 4 (VF-BAR 4 for VFs)
• 101: BAR 5 (VF-BAR 5 for VFs)
• 110: Expansion ROM Access
• 111: No BAR Check (Valid for Root Port only)
For 64-bit transactions, the BAR number is given as the lower
address of the matching pair of BARs (that is, 0, 2, or 4).

120:115 BAR Aperture

This 6-bit field is defined for memory, I/O, and Atomic Op
requests only. It provides the aperture setting of the BAR
matching the request. This information is useful in
determining the bits to be used in addressing its memory or
I/O space. For example, a value of 12 indicates that the
aperture of the matching BAR is 4K, and the user application
can therefore ignore bits [63:12] of the address.
For VF BARs, the value provided on this output is based on
the memory space consumed by a single VF covered by the
BAR.

123:121 Transaction Class
(TC)

PCIe Transaction Class (TC) associated with the request.
When the request is a Non-Posted transaction, the user
completer application must store this field and supply it back
to the integrated block with the completion data.

126:124 Attributes

These bits provide the setting of the Attribute bits associated
with the request. Bit 124 is the No Snoop bit and bit 125 is
the Relaxed Ordering bit. Bit 126 is the ID-Based Ordering bit,
and can be set only for memory requests and messages.
When the request is a Non-Posted transaction, the user
completer application must store this field and supply it back
to the integrated block with the completion data.

15:0 Snoop Latency
This field is defined for LTR messages only. It provides the
value of the 16-bit Snoop Latency field in the TLP header of
the message.

31:16 No-Snoop Latency
This field is defined for LTR messages only. It provides the
value of the 16-bit No-Snoop Latency field in the TLP header
of the message.

Table 3-8: Completer Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=117

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 118
PG156 January 29, 2016

Chapter 3: Designing with the Core

35:32 OBFF Code

This field is defined for OBFF messages only. The OBFF Code
field is used to distinguish between various OBFF cases:
• 1111b: CPU Active – System fully active for all device

actions including bus mastering and interrupts
• 0001b: OBFF – System memory path available for device

memory read/write bus master activities
• 0000b: Idle – System in an idle, low power state
All other codes are reserved.

111:104 Message Code

This field is defined for all messages. It contains the 8-bit
Message Code extracted from the TLP header.
Appendix F of the PCI Express Base Specification, rev. 3.0
[Ref 2] provides a complete list of the supported Message
Codes.

114:112 Message Routing This field is defined for all messages. These bits provide the
3-bit Routing field r[2:0] from the TLP header.

15:0 Destination ID

This field applies to Vendor-Defined Messages only. When
the message is routed by ID (that is, when the Message
Routing field is 010 binary), this field provides the
Destination ID of the message.

63:32 Vendor-Defined
Header

This field applies to Vendor-Defined Messages only. It
contains the bytes extracted from Dword 3 of the TLP header.

63:0 ATS Header This field is applicable to ATS messages only. It contains the
bytes extracted from Dwords 2 and 3 of the TLP header.

Table 3-9: Transaction Types

Request Type
(binary) Description

0000 Memory Read Request

0001 Memory Write Request

0010 I/O Read Request

0011 I/O Write Request

0100 Memory Fetch and Add Request

0101 Memory Unconditional Swap Request

0110 Memory Compare and Swap Request

0111 Locked Read Request (allowed only in Legacy Devices)

1000 Type 0 Configuration Read Request (on Requester side only)

1001 Type 1 Configuration Read Request (on Requester side only)

1010 Type 0 Configuration Write Request (on Requester side only)

1011 Type 1 Configuration Write Request (on Requester side only)

1100 Any message, except ATS and Vendor-Defined Messages

1101 Vendor-Defined Message

Table 3-8: Completer Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=118

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 119
PG156 January 29, 2016

Chapter 3: Designing with the Core

Completer Request Interface Operation

Figure 3-17 illustrates the signals associated with the completer request interface of the
core. The core delivers each TLP on this interface as an AXI4-Stream packet. The packet
starts with a 128-bit descriptor, followed by data in the case of TLPs with a payload.

The completer request interface supports two distinct data alignment modes. In the
Dword-aligned mode, the first byte of valid data appears in lane n = (16 + A mod 4) mod
w, where:

1110 ATS Message

1111 Reserved

Table 3-9: Transaction Types (Cont’d)

Request Type
(binary) Description

X-Ref Target - Figure 3-17

Figure 3-17: Completer Request Interface Signals

UltraScale FPGA Gen3
Integrated Block for PCIe

Client
Application

PCIe Completer
Request Interface

AXI4-Stream
Slave

PCIe
Completer-Side

Interface

m_axis_cq_tdata[255:0]

m_axis_cq_tparity[31:0]

m_axis_cq_valid

m_axis_cq_tready

m_axis_cq_tkeep[7:0]

m_axis_cq_tlast

pcie_cq_np_req
pcie_cq_np_req_count[5:0]

AXI4-Stream
Master

X12442

sop

first_be[3:0]

last_be[3:0]

byte_en[31:0]

discontinue

tph_present

tph_type[1:0]

tph_st_tag[7:0]

m_axis_cq_tuser[52:0]

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=119

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 120
PG156 January 29, 2016

Chapter 3: Designing with the Core

• A is the byte-level starting address of the data block being transferred

• w is the width of the interface in bytes

In the address-aligned mode, the data always starts in a new beat after the descriptor has
ended, and its first valid byte is on lane n = A mod w, where w is the width of the interface
in bytes. For memory, I/O, and Atomic Operation requests, address A is the address
contained in the request. For messages, the address is always taken as 0 for the purpose of
determining the alignment of its payload.

Completer Memory Write Operation

The timing diagrams in Figure 3-18, Figure 3-19, and Figure 3-20 illustrate the
Dword-aligned transfer of a memory write TLP received from the link across the Completer
reQuest (CQ) interface, when the interface width is configured as 64, 128, and 256 bits,
respectively. For illustration purposes, the starting Dword address of the data block being
written into memory is assumed to be (m × 32 + 1), for an integer m > 0. Its size is assumed
to be n Dwords, for some n = k × 32 + 29, k > 0.

In both Dword-aligned and address-aligned modes, the transfer starts with the
16 descriptor bytes, followed immediately by the payload bytes. The m_axis_cq_tvalid
signal remains asserted over the duration of the packet. You can prolong a beat at any time
by deasserting m_axis_cq_tready. The AXI4-Stream interface signals
m_axis_cq_tkeep (one per Dword position) indicate the valid Dwords in the packet
including the descriptor and any null bytes inserted between the descriptor and the
payload. That is, the tkeep bits are set to 1 contiguously from the first Dword of the
descriptor until the last Dword of the payload. During the transfer of a packet, the tkeep bits
can be 0 only in the last beat of the packet, when the packet does not fill the entire width
of the interface. The m_axis_cq_tlast signal is always asserted in the last beat of the
packet.

The CQ interface also includes the First Byte Enable and the Last Enable bits in the
m_axis_cq_tuser bus. These are valid in the first beat of the packet, and specify the valid
bytes of the first and last Dwords of payload.

The m_axi_cq_tuser bus also provides several informational signals that can be used to
simplify the logic associated with the user interface, or to support additional features. The
sop signal is asserted in the first beat of every packet, when its descriptor is on the bus. The
byte enable outputs byte_en[31:0] (one per byte lane) indicate the valid bytes in the
payload. The bits of byte_en are asserted only when a valid payload byte is in the
corresponding lane (that is, not asserted for descriptor or padding bytes between the
descriptor and payload). The asserted byte enable bits are always contiguous from the start
of the payload, except when the payload size is two Dwords or less. For cases of one-Dword
and two-Dword writes, the byte enables can be non-contiguous. Another special case is
that of a zero-length memory write, when the integrated block transfers a one-Dword
payload with all byte_en bits set to 0. Thus, in all cases the user logic can use the byte_en
signals directly to enable the writing of the associated bytes into memory.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=120

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 121
PG156 January 29, 2016

Chapter 3: Designing with the Core

In the Dword-aligned mode, there can be a gap of zero, one, two, or three byte positions
between the end of the descriptor and the first payload byte, based on the address of the
first valid byte of the payload. The actual position of the first valid byte in the payload can
be determined either from first_be[3:0] or byte_en[31:0] in the
m_axis_cq_tuser bus.

When a Transaction Processing Hint is present in the received TLP, the integrated block
transfers the parameters associated with the hint (TPH Steering Tag and Steering Tag Type)
on signals within the m_axis_cq_tuser bus.

X-Ref Target - Figure 3-18

Figure 3-18: Memory Write Transaction on the Completer Request Interface (Dword-Aligned Mode,
Interface Width = 64 Bits)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[1:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DESC 2 DW 0 DW 0 DW 2 DW n-1

DESC 1 DESC 3 DW 1 DW 1 DW 3

0x3 0x3 0x3 0x1

FIRST BE

LAST BE

0 FIRST_BE FIRST_BE 0xF 0xF LAST_BE

0 0xF 0xF 0xF

X12358

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=121

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 122
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-19

Figure 3-19: Memory Write Transaction on the Completer Request Interface (Dword-Aligned Mode,
Interface Width = 128 Bits)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[3:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(byte_en[11:8]) m_axis_cq_tuser[19:16]

(byte_en[15:12]) m_axis_cq_tuser[23:20]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DW 0 DW 0 DW n-1

DESC 1 DW 1 DW 1

DESC 2 DW 2 DW 2

DESC 3 DW 3 DW 3

0xF 0xF 0xF 0x1

FIRST BE

LAST BE

0 FIRST_BE 0xF 0xF LAST_BE

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

X12359

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=122

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 123
PG156 January 29, 2016

Chapter 3: Designing with the Core

The timing diagrams in Figure 3-21, Figure 3-22, and Figure 3-23 illustrate the
address-aligned transfer of a memory write TLP received from the link across the CQ
interface, when the interface width is configured as 64, 128 and 256 bits, respectively. For
the purpose of illustration, the starting Dword address of the data block being written into

X-Ref Target - Figure 3-20

Figure 3-20: Memory Write Transaction on the Completer Request Interface (Dword-Aligned Mode,
Interface Width = 256 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=123

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 124
PG156 January 29, 2016

Chapter 3: Designing with the Core

memory is assumed to be (m × 32 + 1), for an integer m > 0. Its size is assumed to be n
Dwords, for some n = k × 32 + 29, k > 0.

In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. The first byte of the payload can appear on any byte lane,
based on the address of the first valid byte of the payload. The keep outputs
m_axis_cq_tkeep remain High in the gap between the descriptor and the payload. The
actual position of the first valid byte in the payload can be determined either from the least
significant bits of the address in the descriptor or from the byte enable bits
byte_en[31:0] in the m_axis_cq_tuser bus.

For writes of two Dwords or less, the 1s on byte_en cannot be contiguous from the start
of the payload. In the case of a zero-length memory write, the integrated block transfers a
one-Dword payload with the byte_en bits all set to 0 for the payload bytes.

X-Ref Target - Figure 3-21

Figure 3-21: Memory Write Transaction on the Completer Request Interface (Address-Aligned Mode,
Interface Width = 64 Bits)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[1:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DESC 2 DW 1 DW n-2

DESC 1 DESC 3 DW 0 DW 0 DW 2 DW n-1

0x3

FIRST BE

LAST BE

0xF 0xF

0 FIRST_BE FIRST_BE 0xF 0xF LAST_BE

0 0

X12355

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=124

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 125
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-22

Figure 3-22: Memory Write Transaction on the Completer Request Interface (Address-Aligned Mode,
Interface Width = 128 Bits)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[3:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(byte_en[11:8]) m_axis_cq_tuser[19:16]

(byte_en[15:12]) m_axis_cq_tuser[23:20]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DW 3 DW n-2

DESC 1 DW 0 DW 0 DW 4 DW n-1

DESC 2 DW 1 DW 1 DW 5

DESC 3 DW 2 DW 2 DW 6

0xF 0xF 0xF 0x3

FIRST BE

LAST BE

0xF 0xF

0 FIRST_BE FIRST_BE 0xF 0xF LAST_BE

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0

X12356

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=125

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 126
PG156 January 29, 2016

Chapter 3: Designing with the Core

Completer Memory Read Operation

A memory read request is transferred across the completer request interface in the same
manner as a memory write request, except that the AXI4-Stream packet contains only the
16-byte descriptor. The timing diagrams in Figure 3-24, Figure 3-25, and Figure 3-26
illustrate the transfer of a memory read TLP received from the link across the completer
request interface, when the interface width is configured as 64, 128, and 256 bits,

X-Ref Target - Figure 3-23

Figure 3-23: Memory Write Transaction on the Completer Request Interface (Address-Aligned Mode,
Interface Width = 256 Bits)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tdata[159:128]

m_axis_cq_tdata[191:160]

m_axis_cq_tdata[223:192]

m_axis_cq_tdata[255:224]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[7:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[11:8]

(byte_en[7:4]) m_axis_cq_tuser[15:12]

(byte_en[11:8]) m_axis_cq_tuser[19:16]

(byte_en[15:12]) m_axis_cq_tuser[23:20]

(byte_en[19:16]) m_axis_cq_tuser[27:24]

(byte_en[23:20) m_axis_cq_tuser[31:28]

(byte_en[27:24]) m_axis_cq_tuser[35:32]

(byte_en[31:28]) m_axis_cq_tuser[39:36]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DW 7 DW 7 DW n-6

DESC 1 DW 0 DW 8 DW 8 DW n-5

DESC 2 DW 1 DW 9 DW 9 DW n-4

DESC 3 DW 2 DW 10 DW 10 DW n-3

DW 3 DW 11 DW 11 DW n-2

DW 4 DW 12 DW 12 DW n-1

DW 5 DW 13 DW 13

DW 6 DW 14 DW 14

0xFF 0xFF 0xFF 0x3F

FIRST BE

LAST BE

0xF 0xF 0xF

0 FIRST BE 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF LAST BE

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0

X12357

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=126

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 127
PG156 January 29, 2016

Chapter 3: Designing with the Core

respectively. The packet occupies two consecutive beats on the 64-bit interface, while it is
transferred in a single beat on the 128- and 256-bit interfaces. The m_axis_cq_tvalid
signal remains asserted over the duration of the packet. You can prolong a beat at any time
by deasserting m_axis_cq_tready. The sop signal in the m_axis_cq_tuser bus is
asserted when the first descriptor byte is on the bus.

X-Ref Target - Figure 3-24

Figure 3-24: Memory Read Transaction on the Completer Request Interface (Interface Width = 64 Bits)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[1:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[7:0]) m_axis_cq_tuser[15:8]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DESC 0 DESC 2

DESC 1 DESC 1 DESC 3

0x3 0x3

FIRST BE FIRST BE

LAST BE LAST BE

00

X12352

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=127

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 128
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-25

Figure 3-25: Memory Read Transaction on the Completer Request Interface (Interface Width = 128
Bits)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[3:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[15:0]) m_axis_cq_tuser[23:8]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

DESC 3 DESC 3

0xF 0xF

FIRST BE FIRST BE

LAST BE LAST BE

0

X12353

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=128

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 129
PG156 January 29, 2016

Chapter 3: Designing with the Core

The byte enable bits associated with the read request for the first and last Dwords are
supplied by the integrated block on the m_axis_cq_tuser sideband bus. These bits are
valid when the first descriptor byte is being transferred, and must be used to determine the
byte-level starting address and the byte count associated with the request. For the special
cases of one-Dword and two-Dword reads, the byte enables can be non-contiguous. The
byte enables are contiguous in all other cases. A zero-length memory read is sent on the CQ
interface with the Dword count field in the descriptor set to 1 and the first and last byte
enables set to 0.

The user application must respond to each memory read request with a Completion. The
data requested by the read can be sent as a single Completion or multiple Split
Completions. These Completions must be sent through the Completer Completion (CC)
interface of the integrated block. The Completions for two distinct requests can be sent in
any order, but the Split Completions for the same request must be in order. The operation
of the CC interface is described in Completer Completion Interface Operation, page 132.

X-Ref Target - Figure 3-26

Figure 3-26: Memory Read Transaction on the Completer Request Interface (Interface Width = 256
Bits)

user_clk

m_axis_cq_tdata[31:0]

m_axis_cq_tdata[63:32]

m_axis_cq_tdata[95:64]

m_axis_cq_tdata[127:96]

m_axis_cq_tdata[255:128]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[7:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[31:0]) m_axis_cq_tuser[39:8]

(sop) m_axis_cq_tuser[40]

(discontinue) m_axis_cq_tuser[41]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

DESC 3 DESC 3

0x0F 0x0F

FIRST BE FIRST BE

LAST BE LAST BE

0 0

X12354

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=129

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 130
PG156 January 29, 2016

Chapter 3: Designing with the Core

I/O Write Operation

The transfer of an I/O write request on the CQ interface is similar to that of a memory write
request with a one-Dword payload. The transfer starts with the 128-bit descriptor, followed
by the one-Dword payload. When the Dword-aligned mode is in use, the payload Dword
immediately follows the descriptor. When the address-alignment mode is in use, the
payload Dword is supplied in a new beat after the descriptor, and its alignment in the
datapath is based on the address in the descriptor. The First Byte Enable bits in the
m_axis_cq_tuser indicate the valid bytes in the payload. The byte enable bits byte_en
also provide this information.

Because an I/O write is a Non-Posted transaction, the user logic must respond to it with a
Completion containing no data payload. The Completions for I/O requests can be sent in
any order. Errors associated with the I/O write transaction can be signaled to the requester
by setting the Completion Status field in the completion descriptor to CA (Completer
Abort) or UR (Unsupported Request), as is appropriate. The operation of the Completer
Completion interface is described in Completer Completion Interface Operation, page 132.

I/O Read Operation

The transfer of an I/O read request on the CQ interface is similar to that of a memory read
request, and involves only the descriptor. The length of the requested data is always one
Dword, and the First Byte Enable bits in m_axis_cq_tuser indicate the valid bytes to be
read.

The user logic must respond to an I/O read request with a one-Dword Completion (or a
Completion with no data in the case of an error). The Completions for two distinct I/O read
requests can be sent in any order. Errors associated with an I/O read transaction can be
signaled to the requester by setting the Completion Status field in the completion
descriptor to CA (Completer Abort) or UR (Unsupported Request), as is appropriate. The
operation of the Completer Completion interface is described in Completer Completion
Interface Operation, page 132.

Atomic Operations on the Completer Request Interface

The transfer of an Atomic Op request on the completer request interface is similar to that of
a memory write request. The payload for an Atomic Op can range from one Dword to eight
Dwords, and its starting address is always aligned on a Dword boundary. The transfer starts
with the 128-bit descriptor, followed by the payload. When the Dword-aligned mode is in
use, the first payload Dword immediately follows the descriptor. When the
address-alignment mode is in use, the payload starts in a new beat after the descriptor, and
its alignment is based on the address in the descriptor. The m_axis_cq_tkeep output
indicates the end of the payload. The byte_en signals in m_axis_cq_tuser also indicate
the valid bytes in the payload. The First Byte Enable and Last Byte Enable bits in
m_axis_cq_tuser should not be used for Atomic Operations.

Because an Atomic Operation is a Non-Posted transaction, the user logic must respond to
it with a Completion containing the result of the operation. Errors associated with the

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=130

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 131
PG156 January 29, 2016

Chapter 3: Designing with the Core

operation can be signaled to the requester by setting the Completion Status field in the
completion descriptor to Completer Abort (CA) or Unsupported Request (UR), as is
appropriate. The operation of the Completer Completion interface is described in
Completer Completion Interface Operation, page 132.

Message Requests on the Completer Request Interface

The transfer of a message on the CQ interface is similar to that of a memory write request,
except that a payload might not always be present. The transfer starts with the 128-bit
descriptor, followed by the payload, if present. When the Dword-aligned mode is in use, the
payload immediately follows the descriptor. When the address-alignment mode is in use,
the first Dword of the payload is supplied in a new beat after the descriptor, and always
starts in byte lane 0. You can determine the end of the payload from the states of the
m_axis_cq_tlast and m_axis_cq_tkeep signals. The byte_en signals in
m_axis_cq_tuser also indicate the valid bytes in the payload. The First Byte Enable and
Last Byte Enable bits in m_axis_cq_tuser should not be used for Message transactions.

Aborting a Transfer

For any request that includes an associated payload, the integrated block can signal an
error in the transferred payload by asserting the discontinue signal in the
m_axis_cq_tuser bus in the last beat of the packet (along with m_axis_cq_tlast).
This occurs when the integrated block has detected an uncorrectable error while reading
data from its internal memories. The user application must discard the entire packet when
it has detected discontinue asserted in the last beat of a packet. This condition is
considered a fatal error in the integrated block.

Selective Flow Control for Non-Posted Requests

The PCI Express Base Specification [Ref 2] requires that the Completer Request interface
continue to deliver Posted transactions even when the user application is unable to accept
Non-Posted transactions. To enable this capability, the integrated block implements a
credit-based flow control mechanism on the CQ interface through which user logic can
control the flow of Non-Posted requests without affecting Posted requests. The user logic
signals the availability of buffers for receive Non-Posted requests using the
pcie_cq_np_req signal. The core delivers a Non-Posted request only when the available
credit is non-zero. The integrated block continues to deliver Posted requests while the
delivery of Non-Posted requests has been paused for lack of credit. When no back pressure
is applied by the credit mechanism for the delivery of Non-Posted requests, the integrated
block delivers Posted and Non-Posted requests in the same order as received from the link.

The integrated block maintains an internal credit counter to track the credit available for
Non-Posted requests on the completer request interface. The following algorithm is used to
keep track of the available credit:

• On reset, the counter is set to 0.

• After the integrated block comes out of reset, in every clock cycle:

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=131

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 132
PG156 January 29, 2016

Chapter 3: Designing with the Core

° If pcie_cq_np_req is High and no Non-Posted request is being delivered this
cycle, the credit count is incremented by 1, unless it has already reached its
saturation limit of 32.

° If pcie_cq_np_req is Low and a Non-Posted request is being delivered this cycle,
the credit count is decremented by 1, unless it is already 0.

° Otherwise, the credit count remains unchanged.

• The integrated block starts delivery of a Non-Posted TLP only if the credit count is
greater than 0.

The user application can either provide a one-cycle pulse on pcie_cq_np_req each time
it is ready to receive a Non-Posted request, or keep it permanently asserted if it does not
need to exercise selective back pressure of Non-Posted requests. If the credit count is
always non-zero, the integrated block delivers Posted and Non-Posted requests in the same
order as received from the link. If it remains 0 for some time, Non-Posted requests can
accumulate in the integrated block FIFO. When the credit count becomes non-zero later, the
integrated block first delivers the accumulated Non-Posted requests that arrived before
Posted requests already delivered, and then reverts to delivering the requests in the order
received from the link.

The assertion and deassertion of the pcie_cq_np_req signal does not need to be aligned
with the packet transfers on the completer request interface.

You can monitor the current value of the credit count on the output
pcie_cq_np_req_count[5:0]. The counter saturates at 32. Because of internal pipeline
delays, there can be several cycles of delay between the integrated block receiving a pulse
on the pcie_cq_np_req input and updating the pcie_cq_np_req_count output in
response. Thus, when the user application has adequate buffer space available, it should
provide the credit in advance so that Non-Posted requests are not held up by the core for
lack of credit.

Completer Completion Interface Operation

Figure 3-27 illustrates the signals associated with the completer completion interface of the
core. The core delivers each TLP on this interface as an AXI4-Stream packet.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=132

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 133
PG156 January 29, 2016

Chapter 3: Designing with the Core

The core delivers each TLP on the Completer Completion (CC) interface as an AXI4-Stream
packet. The packet starts with a 96-bit descriptor, followed by data in the case of
Completions with a payload.

The CC interface supports two distinct data alignment modes. In the Dword-aligned mode,
the first byte of valid data must be presented in lane n = (12 + A mod 4) mod w, where A is
the byte-level starting address of the data block being transferred (as conveyed in the
Lower Address field of the descriptor) and w the width of the interface in bytes (8, 16, or 32).
In the address-aligned mode, the data always starts in a new beat after the descriptor has
ended. When transferring the Completion payload for a memory or I/O read request, its
first valid byte is on lane n = A mod w. For all other Completions, the payload is aligned with
byte lane 0.

Completer Completion Descriptor Format

The user application sends completion data for a completer request to the CC interface of
the integrated block as an independent AXI4-Stream packet. Each packet starts with a
descriptor and can have payload data following the descriptor. The descriptor is always
12 bytes long, and is sent in the first 12 bytes of the completion packet. The descriptor is
transferred during the first two beats on a 64-bit interface, and in the first beat on a 128-
or 256-bit interface. When the user application splits the completion data for a request into
multiple Split Completions, it must send each Split Completion as a separate AXI4-Stream
packet, with its own descriptor.

The format of the completer completion descriptor is illustrated in Figure 3-28. The
individual fields of the completer request descriptor are described in Table 3-10.

X-Ref Target - Figure 3-27

Figure 3-27: Completer Completion Interface Signals

UltraScale FPGA Gen3
Integrated Block for PCIe

Client
Application

PCIe Completer
Completion Interface AX14-Stream

Master

s_axis_cc_tdata[255:0]

s_axis_cc_tparity[31:0]

s_axis_cc_tvalid

s_axis_cc_tready
s_axis_cc_tlast

discontinue

s_axis_cc_tuser

AX14-Stream
Slave

PCIe
Completer-Side

Interface

X12440

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=133

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 134
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-28

Figure 3-28: Completer Completion Descriptor Format

Table 3-10: Completer Completion Descriptor Fields

Bit Index Field Name Description

6:0 Lower
Address

For memory read Completions, this field must be set to the least significant
7 bits of the starting byte-level address of the memory block being
transferred. For the first (or only) Completion, the Completer can generate
this field from the least significant 5 bits of the address of the Request
concatenated with 2 bits of byte-level address formed by the byte enables
for the first Dword of the Request as shown below.

For any subsequent Completions, the Lower Address field will always be zero
except for Completions generated by a Root Complex with a Read
Completion Boundary (RCB) value of 64 bytes. In this case the least
significant 6 bits of the Lower Address field will always be zero and the most
significant bit of the Lower Address field will toggle according to the
alignment of the 64-byte data payload.
For all other Completions, the Lower Address must be set to all zeros.

9:8 Address Type

This field is defined for Completions of memory transactions and Atomic
Operations only. For these Completions, the user logic must copy the AT bits
from the corresponding request descriptor into this field. This field must be
set to 0 for all other Completions.

first_be[3:0] Lower Address[1:0]

4'b0000 2'b00

4'bxxx1 2'b00

4'bxx10 2'b01

4'bx100 2'b10

4'b1000 2'b11

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=134

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 135
PG156 January 29, 2016

Chapter 3: Designing with the Core

28:16 Byte Count

These 13 bits can have values in the range of 0 – 4,096 bytes. If a Memory
Read Request is completed using a single Completion, the Byte Count value
indicates Payload size in bytes. This field must be set to 4 for I/O read
Completions and I/O write Completions. The byte count must be set to 1
while sending a Completion for a zero-length memory read, and a dummy
payload of 1 Dword must follow the descriptor.
For each Memory Read Completion, the Byte Count field must indicate the
remaining number of bytes required to complete the Request, including the
number of bytes returned with the Completion.
If a Memory Read Request is completed using multiple Completions, the Byte
Count value for each successive Completion is the value indicated by the
preceding Completion minus the number of bytes returned with the
preceding Completion. The total number of bytes required to complete a
Memory Read Request is calculated as shown in Table 3-11, page 136.

29 Locked Read
Completion

This bit must be set when the Completion is in response to a Locked Read
request. It must be set to 0 for all other Completions.

42:32 Dword Count

These 11 bits indicate the size of the payload of the current packet in Dwords.
Its range is 0 - 1K Dwords. This field must be set to 1 for I/O read
Completions and 0 for I/O write Completions. The Dword count must be set
to 1 while sending a Completion for a zero-length memory read. The Dword
count must be set to 0 when sending a UR or CA Completion. In all other
cases, the Dword count must correspond to the actual number of Dwords in
the payload of the current packet.

45:43 Completion
Status

These bits must be set based on the type of Completion being sent. The only
valid settings are:
• 000: Successful Completion
• 001: Unsupported Request (UR)
• 100: Completer Abort (CA)

46 Poisoned
Completion

This bit can be used to poison the Completion TLP being sent. This bit must
be set to 0 for all Completions, except when the user application detects an
error in the block of data following the descriptor and wants to communicate
this information using the Data Poisoning feature of PCI Express.

63:48 Requester ID PCI Requester ID associated with the request (copied from the request).

71:64 Tag PCIe Tag associated with the request (copied from the request).

Table 3-10: Completer Completion Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=135

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 136
PG156 January 29, 2016

Chapter 3: Designing with the Core

79:72

Target
Function/

Device
Number

Function number of the completer Function. The user application must
always supply the function number.When ARI is in use, all 8 bits of this field
must be set to the target Function number. Otherwise, bits [74:72] must be
set to the target Function number. The user application must copy this value
from the Target Function field of the descriptor of the corresponding
request. Otherwise, bits [74:72] must be set to the target Function number.
When ARI is not in use, and the integrated block is configured as a Root
Complex, the user application must supply the 5-bit Device Number of the
completer on bits [79:75].
When ARI is not used and the integrated block is configured as an Endpoint,
the user application can optionally supply a 5-bit Device Number of the
completer on bits [79:75]. The user application must set the Completer ID
Enable bit in the descriptor if a Device Number is supplied on bits [79:75].
This value is used by the integrated block when sending the Completion TLP,
instead of the stored value of the Device Number captured by the integrated
block from Configuration Requests.

87:80 Completer
Bus Number

Bus number associated with the completer Function. When the integrated
block is configured as a Root Complex, the user application must supply the
8-bit Bus Number of the completer in this field.
When the integrated block is configured as an Endpoint, the user application
can optionally supply a Bus Number in this field. The user application must
set the Completer ID Enable bit in the descriptor if a Bus Number is supplied
in this field. This value is used by the integrated block when sending the
Completion TLP, instead of the stored value of the Bus Number captured by
the integrated block from Configuration Requests.

88 Completer ID
Enable

The purpose of this field is to enable the user application to supply the bus
and device numbers to be used in the Completer ID. This field is applicable
only to Endpoint configurations.
If this field is 0, the integrated block uses the captured values of the bus and
device numbers to form the Completer ID. If this input is 1, the integrated
block uses the bus and device numbers supplied in the descriptor to form
the Completer ID.

91:89 Transaction
Class (TC)

PCIe Transaction Class (TC) associated with the request. The user application
must copy this value from the TC field of the associated request descriptor.

94:92 Attributes
PCIe attributes associated with the request (copied from the request). Bit 92
is the No Snoop bit, bit 93 is the Relaxed Ordering bit, and bit 94 is the
ID-Based Ordering bit.

95 Force ECRC
Force ECRC insertion. Setting this bit to 1 forces the integrated block to
append a TLP Digest containing ECRC to the Completion TLP, even when
ECRC is not enabled for the Function sending the Completion.

Table 3-11: Calculating Byte Count from Completer Request first_be[3:0], last_be[3:0], Dword
Count[10:0]

first_be[3:0] last_be[3:0] Total Byte Count

1xx1 0000 4

01x1 0000 3

Table 3-10: Completer Completion Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=136

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 137
PG156 January 29, 2016

Chapter 3: Designing with the Core

Completions with Successful Completion Status

The user application must return a Completion to the CC interface of the core for every
Non-Posted request it receives from the completer request interface. When the request
completes with no errors, the user application must return a Completion with Successful
Completion (SC) status. Such a Completion might or might not contain a payload,
depending on the type of request. Furthermore, the data associated with the request can be
broken up into multiple Split Completions when the size of the data block exceeds the
maximum payload size configured. The user logic is responsible for splitting the data block
into multiple Split Completions when needed. The user application must transfer each Split

1x10 0000 3

0011 0000 2

0110 0000 2

1100 0000 2

0001 0000 1

0010 0000 1

0100 0000 1

1000 0000 1

0000 0000 1

xxx1 1xxx Dword_count × 4

xxx1 01xx (Dword_count × 4)-1

xxx1 001x (Dword_count × 4)-2

xxx1 0001 (Dword_count × 4)-3

xx10 1xxx (Dword_count × 4)-1

xx10 01xx (Dword_count × 4)-2

xx10 001x (Dword_coun × 4)-3

xx10 0001 (Dword_count × 4)-4

x100 1xxx (Dword_count × 4)-2

x100 01xx (Dword_count × 4)-3

x100 001x (Dword_count × 4)-4

x100 0001 (Dword_count × 4)-5

1000 1xxx (Dword_count × 4)-3

1000 01xx (Dword_count × 4)-4

1000 001x (Dword_count × 4)-5

1000 0001 (Dword_count × 4)-6

Table 3-11: Calculating Byte Count from Completer Request first_be[3:0], last_be[3:0], Dword
Count[10:0] (Cont’d)

first_be[3:0] last_be[3:0] Total Byte Count

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=137

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 138
PG156 January 29, 2016

Chapter 3: Designing with the Core

Completion over the completer completion interface as a separate AXI4-Stream packet,
with its own 12-byte descriptor.

In the example timing diagrams of this section, the starting Dword address of the data block
being transferred (as conveyed in bits [6:2] of the Lower Address field of the descriptor) is
assumed to be (m × 8 + 1), for an integer m. The size of the data block is assumed to be n
Dwords, for some n = k × 32 + 28, k > 0.

The CC interface supports two data alignment modes: Dword-aligned and address-aligned.
The timing diagrams in Figure 3-29, Figure 3-30, and Figure 3-31 illustrate the
Dword-aligned transfer of a Completion from the user application across the CC interface,
when the interface width is configured as 64, 128, and 256 bits, respectively. In this case, the
first Dword of the payload starts immediately after the descriptor. When the data block is
not a multiple of four bytes, or when the start of the payload is not aligned on a Dword
address boundary, the user application must add null bytes to align the start of the payload
on a Dword boundary and make the payload a multiple of Dwords. For example, when the
data block starts at byte address 7 and has a size of 3 bytes, the user application must add
three null bytes before the first byte and two null bytes at the end of the block to make it
two Dwords long. Also, in the case of non-contiguous reads, not all bytes in the data block
returned are valid. In that case, the user application must return the valid bytes in the
proper positions, with null bytes added in gaps between valid bytes, when needed. The
interface does not have any signals to indicate the valid bytes in the payload. This is not
required, as the requester is responsible for keeping track of the byte enables in the request
and discarding invalid bytes from the Completion.

In the Dword-aligned mode, the transfer starts with the 12 descriptor bytes, followed
immediately by the payload bytes. The user application must keep the
s_axis_cc_tvalid signal asserted over the duration of the packet. The integrated block
treats the deassertion of s_axis_cc_tvalid during the packet transfer as an error, and
nullifies the corresponding Completion TLP transmitted on the link to avoid data
corruption.

The user application must also assert the s_axis_cc_tlast signal in the last beat of the
packet. The integrated block can deassert s_axis_cc_tready in any cycle if it is not
ready to accept data. The user application must not change the values on the CC interface
during a clock cycle that the integrated block has deasserted s_axis_cc_tready.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=138

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 139
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-29

Figure 3-29: Transfer of a Normal Completion on the Completer Completion Interface (Dword-Aligned
Mode, Interface Width = 64 Bits)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[1:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DESC 2 DW 1 DW 1 DW n-1

DESC 1 DW 0 DW 2 DW 2

0x3 0x3 0x3 0x1

X12349

X-Ref Target - Figure 3-30

Figure 3-30: Transfer of a Normal Completion on the Completer Completion Interface (Dword-Aligned
Mode, Interface Width = 128 Bits)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tdata[95:64]

s_axis_cc_tdata[127:96]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[3:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DW 1 DW 5 DW 5 DW n-3

DESC 1 DW 2 DW 6 DW 6 DW n-2

DESC 2 DW 3 DW 7 DW 7 DW n-1

DW 0 DW 4 DW 8 DW 8

0xF 0xF 0xF 0x7

X12350

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=139

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 140
PG156 January 29, 2016

Chapter 3: Designing with the Core

In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. For memory read Completions, the first byte of the payload
can appear on any byte lane, based on the address of the first valid byte of the payload. For
all other Completions, the payload must start in byte lane 0.

The timing diagrams in Figure 3-32, Figure 3-33, and Figure 3-34 illustrate the
address-aligned transfer of a memory read Completion across the completer completion
interface, when the interface width is configured as 64, 128, and 256 bits, respectively. For
the purpose of illustration, the starting Dword address of the data block being transferred
(as conveyed in bits [6:2] of the Lower Address field of the descriptor) is assumed to be
(m × 8 +1), for some integer m. The size of the data block is assumed to be n Dwords, for
some n = k × 32 + 28, k > 0.

X-Ref Target - Figure 3-31

Figure 3-31: Transfer of a Normal Completion on the Completer Completion Interface (Dword-Aligned
Mode, Interface Width = 256 Bits)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tdata[95:64]

s_axis_cc_tdata[127:96]

s_axis_cc_tdata[159:128]

s_axis_cc_tdata[191:160]

s_axis_cc_tdata[223:192]

s_axis_cc_tdata[255:224]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[7:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DW 5 DW 5 DW n-7

DESC 1 DW 6 DW 6 DW n-6

DESC 2 DW 7 DW 7 DW n-5

DW 0 DW 8 DW 8 DW n-4

DW 1 DW 9 DW 9 DW n-3

DW 2 DW 10 DW 10 DW n-2

DW 3 DW 11 DW 11 DW n-1

DW 4 DW 12 DW 12

0xFF 0xFF 0xFF 0x7F

X12351

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=140

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 141
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-32

Figure 3-32: Transfer of a Normal Completion on the Completer Completion Interface (Address-Aligned
Mode, Interface Width = 64 Bits)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[7:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DESC 2 DW 1 DW n-1

DESC 1 DW 0 DW 0 DW 2

0x3 0x3 0x3 0x1

X12346

X-Ref Target - Figure 3-33

Figure 3-33: Transfer of a Normal Completion on the Completer Completion Interface (Address-Aligned
Mode, Interface Width = 128 Bits)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tdata[95:64]

s_axis_cc_tdata[127:96]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[7:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DW 3 DW 3 DW n-1

DESC 1 DW 0 DW 4 DW 4

DESC 2 DW 1 DW 5 DW 5

DW 2 DW 6 DW 6

0xF 0xF 0xF 0x1

X12347

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=141

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 142
PG156 January 29, 2016

Chapter 3: Designing with the Core

Aborting a Completion Transfer

The user application can abort the transfer of a completion transaction on the completer
completion interface at any time during the transfer of the payload by asserting the
discontinue signal in the s_axis_cc_tuser bus. The integrated block nullifies the
corresponding TLP on the link to avoid data corruption.

The user application can assert this signal in any cycle during the transfer, when the
Completion being transferred has an associated payload. The user application can either
choose to terminate the packet prematurely in the cycle where the error was signaled (by
asserting s_axis_cc_tlast), or can continue until all bytes of the payload are delivered
to the integrated block. In the latter case, the integrated block treats the error as sticky for
the following beats of the packet, even if the user application deasserts the discontinue
signal before reaching the end of the packet.

The discontinue signal can be asserted only when s_axis_cc_tvalid is High. The
integrated block samples this signal when s_axis_cc_tvalid and s_axis_cc_tready
are both asserted. Thus, after assertion, the discontinue signal should not be deasserted
until s_axis_cc_tready is asserted.

When the integrated block is configured as an Endpoint, this error is reported by the
integrated block to the Root Complex to which it is attached, as an Uncorrectable Internal
Error using the Advanced Error Reporting (AER) mechanisms.

X-Ref Target - Figure 3-34

Figure 3-34: Transfer of a Normal Completion on the Completer Completion Interface (Address-Aligned
Mode, Interface Width = 256 Bits)

user_clk

s_axis_cc_tdata[31:0]

s_axis_cc_tdata[63:32]

s_axis_cc_tdata[95:64]

s_axis_cc_tdata[127:96]

s_axis_cc_tdata[159:128]

s_axis_cc_tdata[191:160]

s_axis_cc_tdata[223:192]

s_axis_cc_tdata[255:224]

s_axis_cc_tvalid

s_axis_cc_tready

s_axis_cc_tkeep[7:0]

s_axis_cc_tlast

(discontinue) s_axis_cc_tuser[0]

DESC 0 DW 7 DW 7 DW n-5

DESC 1 DW 0 DW 8 DW 8 DW n-4

DESC 2 DW 1 DW 9 DW 9 DW n-3

DW 2 DW 10 DW 10 DW n-2

DW 3 DW 11 DW 11 DW n-1

DW 4 DW 12 DW 12

DW 5 DW 13 DW 13

DW 6 DW 14 DW 14

0xFF 0xFF 0xFF 0x1F

X12348

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=142

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 143
PG156 January 29, 2016

Chapter 3: Designing with the Core

Completions with Error Status (UR and CA)

When responding to a request received on the completer request interface with an
Unsupported Request (UR) or Completion Abort (CA) status, the user application must send
a three-Dword completion descriptor in the format of Figure 3-28, followed by five
additional Dwords containing information on the request that generated the Completion.
These five Dwords are necessary for the integrated block to log information about the
request in its AER header log registers.

Figure 3-35 shows the sequence of information transferred when sending a Completion
with UR or CA status. The information is formatted as an AXI4-Stream packet with a total of
8 Dwords, which are organized as follows:

• The first three Dwords contain the completion descriptor in the format of Figure 3-28.

• The fourth Dword contains the state of the following signals in m_axis_cq_tuser,
copied from the request:

° The First Byte Enable bits first_be[3:0] in m_axis_cq_tuser.

° The Last Byte Enable bits last_be[3:0] in m_axis_cq_tuser.

° Signals carrying information on Transaction Processing Hint: tph_present,
tph_type[1:0], and tph_st_tag[7:0] in m_axis_cq_tuser.

• The four Dwords of the request descriptor received from the integrated block with the
request.

The entire packet takes four beats on the 64-bit interface, two beats on the 128-bit
interface, and a single beat on the 256-bit interface. The packet is transferred in an identical

X-Ref Target - Figure 3-35

Figure 3-35: Composition of the AXI4-Stream Packet for UR and CA Completions

701234567
+4

01234567
+5

01234567
+6

01234567
+7

DW 3

tph_present

32

first _betph_st_tag

63

R

DW 0 DW 1

Completion Descriptor DW 1 Completion Descriptor DW 0

DW 2

Completion Descriptor DW 2

DW 4 DW 5

DW DW 7

last_be

tph_type[1:0]

R

Request Descriptor, DW 3 Request Descriptor, DW 2

Request Descriptor, DW 1 Request Descriptor, DW 0

X12245

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=143

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 144
PG156 January 29, 2016

Chapter 3: Designing with the Core

manner in both the Dword-aligned mode and the address-aligned mode, with the Dwords
packed together. The user application must keep the s_axis_cc_tvalid signal asserted
over the duration of the packet. It must also assert the s_axis_cc_tlast signal in the last
beat of the packet. The integrated block can deassert s_axis_cc_tready in any cycle if it
is not ready to accept. The user application must not change the values on the CC interface
in any cycle that the integrated block has deasserted s_axis_cc_tready.

Receive Message Interface
The core provides a separate receive-message interface which the user application can use
to receive indications of messages received from the link. When the receive message
interface is enabled, the integrated block signals the arrival of a message from the link by
setting the cfg_msg_received_type[4:0] output to indicate the type of message (see
Table 3-12) and pulsing the cfg_msg_received signal for one or more cycles. The
duration of assertion of cfg_msg_received is determined by the type of message
received (see Table 3-13). When cfg_msg_received is High, the integrated block
transfers any parameters associated with the message on the bus 8 bits at a time on the bus
cfg_msg_received_data. The parameters transferred on this bus in each cycle of
cfg_msg_received assertion for various message types are listed in Table 3-13. For
Vendor-Defined Messages, the integrated block transfers only the first Dword of any
associated payload across this interface. When larger payloads are in use, the completer
request interface should be used for the delivery of messages.

Table 3-12: Message Type Encoding on Receive Message Interface

cfg_msg_received_type[4:0] Message Type

0 ERR_COR

1 ERR_NONFATAL

2 ERR_FATAL

3 Assert_INTA

4 Deassert_ INTA

5 Assert_INTB

6 Deassert_ INTB

7 Assert_INTC

8 Deassert_ INTC

9 Assert_INTD

10 Deassert_ INTD

11 PM_PME

12 PME_TO_Ack

13 PME_Turn_Off

14 PM_Active_State_Nak

15 Set_Slot_Power_Limit

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=144

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 145
PG156 January 29, 2016

Chapter 3: Designing with the Core

16 Latency Tolerance Reporting (LTR)

17 Optimized Buffer Flush/Fill (OBFF)

18 Unlock

19 Vendor_Defined Type 0

20 Vendor_Defined Type 1

21 ATS Invalid Request

22 ATS Invalid Completion

23 ATS Page Request

24 ATS PRG Response

25 – 31 Reserved

Table 3-13: Message Parameters on Receive Message Interface

Message Type
Number of Cycles of

cfg_msg_received
Assertion

Parameter Transferred on
cfg_msg_received_data[7:0]

ERR_COR, ERR_NONFATAL,
ERR_FATAL 2

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Assert_INTx, Deassert_INTx 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

PM_PME, PME_TO_Ack,
PME_Turn_off,

PM_Active_State_Nak
2

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Set_Slot_Power_Limit 6

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: bits [7:0] of payload
Cycle 4: bits [15:8] of payload
Cycle 5: bits [23:16] of payload
Cycle 6: bits [31:24] of payload

Latency Tolerance
Reporting (LTR) 6

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: bits [7:0] of Snoop Latency
Cycle 4: bits [15:8] of Snoop Latency
Cycle 5: bits [7:0] of No-Snoop Latency
Cycle 6: bits [15:8] of No-Snoop Latency

Optimized Buffer Flush/Fill
(OBFF) 3

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: OBFF Code

Unlock 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Table 3-12: Message Type Encoding on Receive Message Interface (Cont’d)

cfg_msg_received_type[4:0] Message Type

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=145

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 146
PG156 January 29, 2016

Chapter 3: Designing with the Core

Figure 3-36 is a timing diagram showing the example of a Set_Slot_Power_Limit message on
the receive message interface. This message has an associated one-Dword payload. For this
message, the parameters are transferred over six consecutive cycles. The following
information appears on the cfg_msg_received_data bus in each cycle:

• Cycle 1: Bus number of Requester ID

• Cycle 2: Device/Function Number of Requester ID

• Cycle 3: Bits [7:0] of the payload Dword

• Cycle 4: Bits [15:8] of the payload Dword

• Cycle 5: Bits [23:16] of the payload Dword

• Cycle 6: Bits [31:24] of the payload Dword

Vendor_Defined Type 0
4 cycles when no data
present, 8 cycles when

data present.

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: Vendor ID[7:0]
Cycle 4: Vendor ID[15:8]
Cycle 5: bits [7:0] of payload
Cycle 6: bits [15:8] of payload
Cycle 7: bits [23:16] of payload
Cycle 8: bits [31:24] of payload

Vendor_Defined Type 1
4 cycles when no data
present, 8 cycles when

data present.

Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number
Cycle 3: Vendor ID[7:0]
Cycle 4: Vendor ID[15:8]
Cycle 5: bits [7:0] of payload
Cycle 6: bits [15:8] of payload
Cycle 7: bits [23:16] of payload
Cycle 8: bits [31:24] of payload

ATS Invalid Request 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

ATS Invalid Completion 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

ATS Page Request 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

ATS PRG Response 2
Cycle 1: Requester ID, Bus Number
Cycle 2: Requester ID, Device/Function Number

Table 3-13: Message Parameters on Receive Message Interface (Cont’d)

Message Type
Number of Cycles of

cfg_msg_received
Assertion

Parameter Transferred on
cfg_msg_received_data[7:0]

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=146

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 147
PG156 January 29, 2016

Chapter 3: Designing with the Core

The integrated block inserts a gap of at least one clock cycle between successive pulses on
the cfg_msg_received output. There is no mechanism to apply back pressure on the
message indications delivered through the receive message interface. When using this
interface, the user logic must always be ready to receive message indications.

Receive Message Interface Design Requirements

When configured as an Endpoint, the user application must implement one of the
following:

1. The user application must issue Non-Posted Requests that result in Completions with
the RO bit set.

2. The user application must not exceed the configured completion space.

This requirement ensures the RX Completion buffer does not overflow.

Requester Interface
The requester interface enables a user Endpoint application to initiate PCI transactions as a
bus master across the PCIe link to the host memory. For Root Complexes, this interface is
also used to initiate I/O and configuration requests. This interface can also be used by both
Endpoints and Root Complexes to send messages on the PCIe link. The transactions on this
interface are similar to those on the completer interface, except that the roles of the core
and the user application are reversed. Posted transactions are performed as single
indivisible operations and Non-Posted transactions as split transactions.

The requester interface consists of two separate interfaces, one for data transfer in each
direction. Each interface is based on the AXI4-Stream protocol, and its width can be
configured as 64, 128, or 256 bits. The Requester reQuest (RQ) interface is for transfer of
requests (with any associated payload data) from the user application to the integrated
block, and the Requester Completion (RC) interface is used by the integrated block to
deliver Completions received from the link (for Non-Posted requests) to the user
application. The two interfaces operate independently. That is, the user application can
transfer new requests over the RQ interface while receiving a completion for a previous
request.

X-Ref Target - Figure 3-36

Figure 3-36: Receive Message Interface

user_clk

cfg_msg_received

cfg_msg_received_type[4:0]

cfg_msg_received_data[7:0]

0xF

Bus Dev/Fn PL[7:0] PL[15:8] PL[31:24]PL[23:16]

X12344

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=147

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 148
PG156 January 29, 2016

Chapter 3: Designing with the Core

Requester Request Interface Operation

On the RQ interface, the user application delivers each TLP as an AXI4-Stream packet. The
packet starts with a 128-bit descriptor, followed by data in the case of TLPs with a payload.
Figure 3-37 shows the signals associated with the requester request interface.

The RQ interface supports two distinct data alignment modes for transferring payloads. In
the Dword-aligned mode, the user logic must provide the first Dword of the payload
immediately after the last Dword of the descriptor. It must also set the bits in
first_be[3:0] to indicate the valid bytes in the first Dword and the bits in
last_be[3:0] (both part of the bus s_axis_rq_tuser) to indicate the valid bytes in the

X-Ref Target - Figure 3-37

Figure 3-37: Requester Request Interface

X12443

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=148

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 149
PG156 January 29, 2016

Chapter 3: Designing with the Core

last Dword of the payload. In the address-aligned mode, the user application must start the
payload transfer in the beat following the last Dword of the descriptor, and its first Dword
can be in any of the possible Dword positions on the datapath. The user application
communicates the offset of the first Dword on the datapath using the addr_offset[2:0]
signals in s_axis_rq_tuser. As in the case of the Dword-aligned mode, the user
application must also set the bits in first_be[3:0] to indicate the valid bytes in the first
Dword and the bits in last_be[3:0] to indicate the valid bytes in the last Dword of the
payload.

When the Transaction Processing Hint Capability is enabled in the integrated block, the user
application can provide an optional Hint with any memory transaction using the tph_*
signals included in the s_axis_rq_tuser bus. To supply a Hint with a request, the user
logic must assert tph_present in the first beat of the packet, and provide the TPH
Steering Tag and Steering Tag Type on tph_st_tag[7:0] and tph_st_type[1:0],
respectively. Instead of supplying the value of the Steering Tag to be used, the user
application also has the option of providing an indirect Steering Tag. This is done by setting
the tph_indirect_tag_en signal to 1 when tph_present is asserted, and placing an
index on tph_st_tag[7:0], instead of the tag value. The integrated block then reads the
tag stored in its Steering Tag Table associated with the requester Function at the offset
specified in the index and inserts it in the request TLP.

Requester Request Descriptor Formats

The user application must transfer each request to be transmitted on the link to the RQ
interface of the integrated block as an independent AXI4-Stream packet. Each packet must
start with a descriptor and can have payload data following the descriptor. The descriptor is
always 16 bytes long, and must be sent in the first 16 bytes of the request packet. The
descriptor is transferred during the first two beats on a 64-bit interface, and in the first beat
on a 128-bit or 256-bit interface.

The formats of the descriptor for different request types are illustrated in Figure 3-38
through Figure 3-42. The format of Figure 3-38 applies when the request TLP being
transferred is a memory read/write request, an I/O read/write request, or an Atomic
Operation request. The format in Figure 3-39 is used for Configuration Requests. The
format in Figure 3-40 is used for Vendor-Defined Messages (Type 0 or Type 1) only. The
format in Figure 3-41 is used for all ATS messages (Invalid Request, Invalid Completion,
Page Request, PRG Response). For all other messages, the descriptor takes the format
shown in Figure 3-42.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=149

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 150
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-38

Figure 3-38: Requester Request Descriptor Format for Memory, I/O, and Atomic Op Requests

01234567
+0

01234567
+1

01234567
+2

01234567
+3

DW + 0

Address [63:2]

Address Type (AT)

01234567
+4

01234567
+5

01234567
+6

01234567
+7

DW + 1

Dword Count
01234567

+8
01234567

+9
01234567

+10
01234567

+11

DW + 2

TagTC
01234567

+12
01234567

+13
01234567

+14
01234567

+15

DW + 3

Attr

Req Type

96 64

32

Poisoned Request

Bus
Completer ID

Requester ID EnableForce ECRC

Bus Device/Function

Requester ID
Device/Function

127

63 0

X12212

X-Ref Target - Figure 3-39

Figure 3-39: Requester Request Descriptor Format for Configuration Requests

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

Reserved
01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

Dword count
01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

TagTC
01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3

Attr

Req Type

96 64

32

Poisoned Request

Bus

Completer ID

Requester ID Enable
Force ECRC

Bus Device/Function
Requester ID

Device/Function

127

63 0

Reserved

Reg NumberExt. Reg
Number

{Bus Number[7:0],
Device Number[4:0],

Function Number[2:0]}
X12631

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=150

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 151
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-40

Figure 3-40: Requester Request Descriptor Format for Vendor-Defined Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW + 3
96 64

Msg Code

Vendor - Defined Header Bytes
Destination ID

Bus Device/FunctionVendor ID

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type
Poisoned Request

Bus Device/Function
Requester ID

Requester ID Enable
Force ECRC

03263

127

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

X12214

X-Ref Target - Figure 3-41

Figure 3-41: Requester Request Descriptor Format for ATS Messages

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW +
0

01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW +
1

01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW +
2

01234567

+12

01234567

+13

01234567

+14

01234567

+15

DW +
3

96 64

32

Msg Code

TL Header Bytes 8-15

TL Header
Byte 15

R Dword CountTag

Message
Routing

TCAttr R

Req Type

Poisoned Request

Bus Device/Function

Requester ID

Requester ID Enable
Force ECRC

127

63 0

TL Header
Byte 14

TL Header
Byte 13

TL Header
Byte 12

TL Header
Byte 11

TL Header
Byte 10

TL Header
Byte 9

TL Header
Byte 8

X12211

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=151

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 152
PG156 January 29, 2016

Chapter 3: Designing with the Core

Table 3-14 describes the individual fields of the completer request descriptor.

X-Ref Target - Figure 3-42

Figure 3-42: Requester Request Descriptor Format for all other Messages

Table 3-14: Requester Request Descriptor Fields

Bit Index Field Name Description

1:0 Address Type

This field is defined for memory transactions and Atomic
Operations only. The integrated block copies this field into
the AT of the TL header of the request TLP.
• 00: Address in the request is untranslated
• 01: Transaction is a Translation Request
• 10: Address in the request is a translated address
• 11: Reserved

63:2 Address

This field applies to memory, I/O, and Atomic Op requests.
This is the address of the first Dword referenced by the
request. The user application must also set the First_BE and
Last_BE bits in s_axis_rq_tuser to indicate the valid
bytes in the first and last Dwords, respectively.
When the transaction specifies a 32-bit address, bits [63:32]
of this field must be set to 0.

74:64 Dword Count

These 11 bits indicate the size of the block (in Dwords) to be
read or written (for messages, size of the message payload).
The valid range for Memory Write Requests is 0-256 Dwords.
Memory Read Requests have a valid range of 1-1024
Dwords. For I/O accesses, the Dword count is always 1.
For a zero length memory read/write request, the Dword
count must be 1, with the First_BE bits set to all zeros.
The integrated block does not check the setting of this field
against the actual length of the payload supplied (for
requests with payload), nor against the maximum payload
size or read request size settings of the integrated block.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=152

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 153
PG156 January 29, 2016

Chapter 3: Designing with the Core

78:75 Request Type Identifies the transaction type. The transaction types and
their encodings are listed in Table 3-9.

79 Poisoned Request

This bit can be used to poison the request TLP being sent.
This feature is supported on all request types except Type 0
and Type 1 Configuration Write Requests. This bit must be
set to 0 for all requests, except when the user application
detects an error in the block of data following the descriptor
and wants to communicate this information using the Data
Poisoning feature of PCI Express.
This feature is supported on all request types except Type 0
and Type 1 Configuration Write Requests.

87:80 Requester Function/
Device Number

Bus number associated with the Requester Function.
When the integrated block is configured as an Endpoint, the
user application must set the Requester ID Enable bit in the
descriptor to 0b and supply 8’b0 in this field. In this case, the
stored value of the Bus Number captured by the integrated
block from Configuration Requests is used.
Otherwise, when the integrated block is configured as a
Root Complex, the user application must set the Requester
ID Enable bit in the descriptor to 1b and supply the 8-bit Bus
Number of the requester in this field.

95:88 Requester Bus
Number

Bus number associated with the Requester Function.
When the integrated block is configured as an Endpoint, the
user application must set the Requester ID Enable bit in the
descriptor to 0b and supply 8’b0 in this field. In this case, the
stored value of the Bus Number captured by the integrated
block from Configuration Requests is used.
Otherwise, when the integrated block is configured as a
Root Complex, the user application must set the Requester
ID Enable bit in the descriptor to 1b and supply the 8-bit Bus
Number of the requester in this field.

103:96 Tag

PCIe Tag associated with the request. For Posted
transactions, the integrated block always uses the value
from this field as the tag for the request.
For Non-Posted transactions, the integrated block uses the
value from this field if the
AXISTEN_IF_ENABLE_CLIENT_TAG parameter is set (that
is, when tag management is performed by the user
application). Bits [101:96] are used as the tag. Bits [103:102]
are reserved. If this parameter is not set, tag management
logic in the integrated block generates the tag to be used,
and the value in the tag field of the descriptor is not used.

119:104 Completer ID

This field is applicable only to Configuration requests and
messages routed by ID. For these requests, this field
specifies the PCI Completer ID associated with the request
(these 16 bits are divided into an 8-bit bus number, 5-bit
device number, and 3-bit function number in the legacy
interpretation mode. In the ARI mode, these 16 bits are
treated as an 8-bit bus number + 8-bit Function number.).

Table 3-14: Requester Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=153

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 154
PG156 January 29, 2016

Chapter 3: Designing with the Core

120 Requester ID Enable

The purpose of this field is to enable the user application to
supply the bus, device and function numbers to be used in
the Requester ID. This field must be set to 1b when the
integrated block is configured as a Root Complex and must
be set to 0b when the integrated block is configured as an
Endpoint. See the Requester Bus Number and Requester
Function/Device Number fields for further requirements.

123:121 Transaction Class
(TC) PCIe Transaction Class (TC) associated with the request.

126:124 Attributes

These bits provide the setting of the Attribute bits
associated with the request. Bit 124 is the No Snoop bit and
bit 125 is the Relaxed Ordering bit. Bit 126 is the ID-Based
Ordering bit, and can be set only for memory requests and
messages.
The integrated block forces the attribute bits to 0 in the
request sent on the link if the corresponding attribute is not
enabled in the Function's PCI Express Device Control
register.

127 Force ECRC

Force ECRC insertion. Setting this bit to 1 forces the
integrated block to append a TLP Digest containing ECRC to
the Request TLP, even when ECRC is not enabled for the
Function sending request.

15:0 Snoop Latency
This field is defined for LTR messages only. It provides the
value of the 16-bit Snoop Latency field in the TLP header of
the message.

31:16 No-Snoop Latency
This field is defined for LTR messages only. It provides the
value of the 16-bit No-Snoop Latency field in the TLP header
of the message.

35:32 OBFF Code

The OBFF Code field is used to distinguish between various
OBFF cases:
• 1111b: “CPU Active” – System fully active for all device

actions including bus mastering and interrupts
• 0001b: “OBFF” – System memory path available for device

memory read/write bus master activities
• 0000b: “Idle” – System in an idle, low power state
All other codes are reserved.

111:104 Message Code

This field is defined for all messages. It contains the 8-bit
Message Code to be set in the TL header.
Appendix F of the PCI Express Base Specification, rev. 3.0
[Ref 2] provides a complete list of the supported Message
Codes.

114:112 Message Routing
This field is defined for all messages. The integrated block
copies these bits into the 3-bit Routing field r[2:0] of the TLP
header of the Request TLP.

Table 3-14: Requester Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=154

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 155
PG156 January 29, 2016

Chapter 3: Designing with the Core

Requester Memory Write Operation

In both Dword-aligned, the transfer starts with the sixteen descriptor bytes, followed
immediately by the payload bytes. The user application must keep the
s_axis_rq_tvalid signal asserted over the duration of the packet. The integrated block
treats the deassertion of s_axis_rq_tvalid during the packet transfer as an error, and
nullifies the corresponding Request TLP transmitted on the link to avoid data corruption.

The user application must also assert the s_axis_rq_tlast signal in the last beat of the
packet. The integrated block can deassert s_axis_rq_tready in any cycle if it is not
ready to accept data. The user application must not change the values on the RQ interface
during cycles when the integrated block has deasserted s_axis_rq_tready. The
AXI4-Stream interface signals m_axis_cq_tkeep (one per Dword position) must be set to
indicate the valid Dwords in the packet including the descriptor and any null bytes inserted
between the descriptor and the payload. That is, the tkeep bits must be set to 1
contiguously from the first Dword of the descriptor until the last Dword of the payload.
During the transfer of a packet, the tkeep bits can be 0 only in the last beat of the packet,
when the packet does not fill the entire width of the interface.

The requester request interface also includes the First Byte Enable and the Last Enable bits
in the s_axis_rq_tuser bus. These must be set in the first beat of the packet, and
provide information of the valid bytes in the first and last Dwords of the payload.

The user application must limit the size of the payload transferred in a single request to the
maximum payload size configured in the integrated block, and must ensure that the
payload does not cross a 4 Kbyte boundary. For memory writes of two Dwords or less, the
1s in first_be and last_be can be non-contiguous. For the special case of a zero-length
memory write request, the user application must provide a dummy one-Dword payload
with first_be and last_be both set to all 0s. In all other cases, the 1 bits in first_be
and last_be must be contiguous.

The timing diagrams in Figure 3-43, Figure 3-44, and Figure 3-45 illustrate the
Dword-aligned transfer of a memory write request from the user application across the
requester request interface, when the interface width is configured as 64, 128, and 256 bits,

15:0 Destination ID

This field applies to Vendor-Defined Messages only. When
the message is routed by ID (that is, when the Message
Routing field is 010 binary), this field must be set to the
Destination ID of the message.

63:32 Vendor-Defined
Header

This field applies to Vendor-Defined Messages only. It is
copied into Dword 3 of the TLP header.

63:0 ATS Header
This field is applicable to ATS messages only. It contains the
bytes that the integrated block copies into Dwords 2 and 3
of the TLP header.

Table 3-14: Requester Request Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=155

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 156
PG156 January 29, 2016

Chapter 3: Designing with the Core

respectively. For illustration purposes, the size of the data block being written into user
application memory is assumed to be n Dwords, for some n = k × 32 + 29, k > 0.

X-Ref Target - Figure 3-43

Figure 3-43: Memory Write Transaction on the Requester Request Interface (Dword-Aligned Mode,
Interface Width = 64 Bits)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[1:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DESC 2 DW 0 DW 0 DW 2 DW n-1

DESC 1 DESC 3 DW 1 DW 1 DW 3

0x3 0x3 0x3 0x1

FIRST BE

LAST BE

X12336

X-Ref Target - Figure 3-44

Figure 3-44: Memory Write Transaction on the Requester Request Interface (Dword-Aligned Mode,
Interface Width = 128 Bits)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[3:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DW 0 DW 0 DW n-1

DESC 1 DW 1 DW 1

DESC 2 DW 2 DW 2

DESC 3 DW 3 DW 3

0xF 0xF 0xF 0x1

FIRST BE

LAST BE

X12337

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=156

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 157
PG156 January 29, 2016

Chapter 3: Designing with the Core

The timing diagrams in Figure 3-46, Figure 3-47, and Figure 3-48 illustrate the
address-aligned transfer of a memory write request from the user application across the RQ
interface, when the interface width is configured as 64, 128, and 256 bits, respectively. For
illustration purposes, the starting Dword offset of the data block being written into user
application memory is assumed to be (m × 32 + 1), for some integer m > 0. Its size is
assumed to be n Dwords, for some n = k × 32 + 29, k > 0.

In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. The first Dword of the payload can appear at any Dword
position. The user application must communicate the offset of the first Dword of the
payload on the datapath using the addr_offset[2:0] signal in s_axis_rq_tuser. The
user application must also set the bits in first_be[3:0] to indicate the valid bytes in the
first Dword and the bits in last_be[3:0] to indicate the valid bytes in the last Dword of
the payload.

X-Ref Target - Figure 3-45

Figure 3-45: Memory Write Transaction on the Requester Request Interface (Dword-Aligned Mode,
Interface Width = 256 Bits)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tdata[159:128]

s_axis_rq_tdata[191:160]

s_axis_rq_tdata[223:192]

s_axis_rq_tdata[255:224]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[7:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) m_axis_cq_tuser[11]

DESC 0 DW 4 DW 4 DW n-1

DESC 1 DW 5 DW 5

DESC 2 DW 6 DW 6

DESC 3 DW 7 DW 7

DW 0 DW 8 DW 8

DW 1 DW 9 DW 9

DW 2 DW 10 DW 10

DW 3 DW 11 DW 11

0xFF 0xFF 0xFF 0x01

FIRST BE

LAST BE

X12338

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=157

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 158
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-46

Figure 3-46: Memory Write Transaction on the Requester Request Interface (Address-Aligned Mode,
Interface Width = 64 Bits)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[1:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(add_offset[2:0]) s_axis_rq_tuser[10:8]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DESC 2 DW 1 DW n-2

DESC 1 DESC 3 DW 0 DW 0 DW 2 DW n-1

0x3

FIRST BE

LAST BE

1

X12333

X-Ref Target - Figure 3-47

Figure 3-47: Memory Write Transaction on the Requester Request Interface (Address-Aligned Mode,
Interface Width = 128 Bits)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[3:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(add_offset[2:0]) s_axis_rq_tuser[10:8]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DW 3 DW n-2

DESC 1 DW 0 DW 0 DW 4 DW n-1

DESC 2 DW 1 DW 1 DW 5

DESC 3 DW 2 DW 2 DW 6

0xF 0xF 0xF 0x3

FIRST BE

LAST BE

1

X12334

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=158

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 159
PG156 January 29, 2016

Chapter 3: Designing with the Core

Non-Posted Transactions with No Payload

Non-Posted transactions with no payload (memory read requests, I/O read requests,
Configuration read requests) are transferred across the RQ interface in the same manner as
a memory write request, except that the AXI4-Stream packet contains only the 16-byte
descriptor. The timing diagrams in Figure 3-49, Figure 3-50, and Figure 3-51 illustrate the
transfer of a memory read request across the RQ interface, when the interface width is
configured as 64, 128, and 256 bits, respectively. The packet occupies two consecutive beats
on the 64-bit interface, while it is transferred in a single beat on the 128- and 256-bit
interfaces. The s_axis_rq_tvalid signal must remain asserted over the duration of the
packet. The integrated block can deassert s_axis_rq_tready to prolong the beat. The
s_axis_rq_tlast signal must be set in the last beat of the packet, and the bits in
s_axis_rq_tkeep[7:0] must be set in all Dword positions where a descriptor is present.

The valid bytes in the first and last Dwords of the data block to be read must be indicated
using first_be[3:0] and last_be[3:0], respectively. For the special case of a
zero-length memory read, the length of the request must be set to one Dword, with both
first_be[3:0] and last_be[3:0] set to all 0s. Additionally when in address-aligned

X-Ref Target - Figure 3-48

Figure 3-48: Memory Write Transaction on the Requester Request Interface (Address-Aligned Mode,
Interface Width = 256 Bits)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tdata[159:128]

s_axis_rq_tdata[191:160]

s_axis_rq_tdata[223:192]

s_axis_rq_tdata[255:224]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[7:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(add_offset[2:0]) s_axis_rq_tuser[10:8]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DW 7 DW 7 DW n-6

DESC 1 DW 0 DW 8 DW 8 DW n-5

DESC 2 DW 1 DW 9 DW 9 DW n-4

DESC 3 DW 2 DW 10 DW 10 DW n-3

DW 3 DW 11 DW 11 DW n-2

DW 4 DW 12 DW 12 DW n-1

DW 5 DW 13 DW 13

DW 6 DW 14 DW 14

0xFF 0xFF 0xFF 0x3F

FIRST BE

LAST BE

1

X12335

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=159

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 160
PG156 January 29, 2016

Chapter 3: Designing with the Core

mode, addr_offset[2:0] in s_axis_rq_tuser specifies the desired starting
alignment of data returned on the Requester Completion interface. The alignment is not
required to be correlated to the address of the request.

X-Ref Target - Figure 3-49

Figure 3-49: Memory Read Transaction on the Requester Request Interface (Interface Width =
64 Bits)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[1:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DESC 0 DESC 2

DESC 1 DESC 1 DESC 3

0x3 0x3

FIRST BE FIRST BE

LAST BE LAST BE

X12230

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=160

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 161
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-50

Figure 3-50: Memory Read Transaction on the Requester Request Interface (Interface Width =
128 Bits)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[3:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

DESC 3 DESC 3

0xF 0xF

FIRST BE FIRST BE

LAST BE LAST BE

X12231

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=161

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 162
PG156 January 29, 2016

Chapter 3: Designing with the Core

Non-Posted Transactions with a Payload

The transfer of a Non-Posted request with payload (an I/O write request, Configuration
write request, or Atomic Operation request) is similar to the transfer of a memory request,
with the following changes in how the payload is aligned on the datapath:

• In the Dword-aligned mode, the first Dword of the payload follows the last Dword of
the descriptor, with no gaps between them.

• In the address-aligned mode, the payload must start in the beat following the last
Dword of the descriptor. The payload can start at any Dword position on the datapath.
The offset of its first Dword must be specified using the addr_offset[2:0] signal.

For I/O and Configuration write requests, the valid bytes in the one-Dword payload must be
indicated using first_be[3:0]. For Atomic Operation requests, all bytes in the first and
last Dwords are assumed valid.

X-Ref Target - Figure 3-51

Figure 3-51: Memory Read Transaction on the Requester Request Interface (Interface Width =
256 Bits)

user_clk

s_axis_rq_tdata[31:0]

s_axis_rq_tdata[63:32]

s_axis_rq_tdata[95:64]

s_axis_rq_tdata[127:96]

s_axis_rq_tdata[255:128]

s_axis_rq_tvalid

s_axis_rq_tready

s_axis_rq_tkeep[7:0]

s_axis_rq_tlast

(first_be) s_axis_rq_tuser[3:0]

(last_be) s_axis_rq_tuser[7:4]

(discontinue) s_axis_rq_tuser[11]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

DESC 3 DESC 3

0x0F 0x0F

FIRST BE FIRST BE

LAST BE LAST BE

X12332

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=162

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 163
PG156 January 29, 2016

Chapter 3: Designing with the Core

Message Requests on the Requester Interface

The transfer of a message on the RQ interface is similar to that of a memory write request,
except that a payload might not always be present. The transfer starts with the 128-bit
descriptor, followed by the payload, if present. When the Dword-aligned mode is in use, the
first Dword of the payload must immediately follow the descriptor. When the
address-alignment mode is in use, the payload must start in the beat following the
descriptor, and must be aligned to byte lane 0. The addr_offset input to the integrated
block must be set to 0 for messages when the address-aligned mode is in use. The
integrated block determines the end of the payload from s_axis_rq_tlast and
s_axis_rq_tkeep signals. The First Byte Enable and Last Byte Enable bits (first_be and
last_be) are not used for message requests.

Aborting a Transfer

For any request that includes an associated payload, the user application can abort the
request at any time during the transfer of the payload by asserting the discontinue
signal in the s_axis_rq_tuser bus. The integrated block nullifies the corresponding TLP
on the link to avoid data corruption.

The user application can assert this signal in any cycle during the transfer, when the request
being transferred has an associated payload. The user application can either choose to
terminate the packet prematurely in the cycle where the error was signaled (by asserting
s_axis_rq_tlast), or can continue until all bytes of the payload are delivered to the
integrated block. In the latter case, the integrated block treats the error as sticky for the
following beats of the packet, even if the user application deasserts the discontinue
signal before reaching the end of the packet.

The discontinue signal can be asserted only when s_axis_rq_tvalid is High. The
integrated block samples this signal when s_axis_rq_tvalid and s_axis_rq_tready
are both High. Thus, after assertion, the discontinue signal should not be deasserted
until s_axis_rq_tready is High.

When the integrated block is configured as an Endpoint, this error is reported by the
integrated block to the Root Complex it is attached to, as an Uncorrectable Internal Error
using the Advanced Error Reporting (AER) mechanisms.

Tag Management for Non-Posted Transactions

The requester side of the integrated block maintains the state of all pending Non-Posted
transactions (memory reads, I/O reads and writes, configuration reads and writes, Atomic
Operations) initiated by the user application, so that the completions returned by the
targets can be matched against the corresponding requests. The state of each outstanding
transaction is held in a Split Completion Table in the requester side of the interface, which
has a capacity of 64 Non-Posted transactions. The returning Completions are matched with
the pending requests using a 6-bit tag. There are two options for management of these
tags.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=163

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 164
PG156 January 29, 2016

Chapter 3: Designing with the Core

• Internal Tag Management: This mode of operation is selected by setting the
AXISTEN_IF_ENABLE_CLIENT_TAG parameter to FALSE, which is the default setting for
the core. In this mode, logic within the integrated block is responsible for allocating the
tag for each Non-Posted request initiated from the requester side. The integrated block
maintains a list of free tags and assigns one of them to each request when the user
application initiates a Non-Posted transaction, and communicates the assigned tag
value to the user application through the output pcie_rq_tag[5:0]. The value on
this bus is valid when the integrated block asserts pcie_rq_tag_vld. The user logic
must copy this tag so that any Completions delivered by the integrated block in
response to the request can be matched to the request.

In this mode, logic within the integrated block checks for the Split Completion Table full
condition, and back pressures a Non-Posted request from the user application (using
s_axis_rq_tready) if the total number of Non-Posted requests currently outstanding
has reached its limit (64).

• External Tag Management: In this mode, the user logic is responsible for allocating the
tag for each Non-Posted request initiated from the requester side. The user logic must
choose the tag value without conflicting with the tags of all other Non-Posted
transactions outstanding at that time, and must communicate this chosen tag value to
the integrated block through the request descriptor. The integrated block still
maintains the outstanding requests in its Split Completion Table and matches the
incoming Completions to the requests, but does not perform any checks for the
uniqueness of the tags, or for the Split Completion Table full condition.

When internal tag management is in use, the integrated block asserts pcie_rq_tag_vld
for one cycle for each Non-Posted request, after it has placed its allocated tag on
pcie_rq_tag[5:0]. There can be a delay of several cycles between the transfer of the
request on the RQ interface and the assertion of pcie_rq_tag_vld by the integrated
block to provide the allocated tag for the request. The user application can, meanwhile,
continue to send new requests. The tags for requests are communicated on the
pcie_rq_tag bus in FIFO order, so it is easy to associate the tag value with the request it
transferred. A tag is reused when the end-of-frame (EOF) of the last completion of a split
completion is accepted by the user application.

Avoiding Head-of-Line Blocking for Posted Requests

The integrated block can hold a Non-Posted request received on its RQ interface for lack of
transmit credit or lack of available tags. This could potentially result in head-of-line (HOL)
blocking for Posted transactions. The integrated block provides a mechanism for the user
logic to avoid this situation through these signals:

• pcie_tfc_nph_av[1:0]: These outputs indicate the Header Credit currently
available for Non-Posted requests, where:

° 00 = no credit available

° 01 = 1 credit

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=164

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 165
PG156 January 29, 2016

Chapter 3: Designing with the Core

° 10 = 2 credits

° 11 = 3 or more credits

• pcie_tfc_npd_av[1:0]: These outputs indicate the Data Credit currently available
for Non-Posted requests, where:

° 00 = no credit available

° 01 = 1 credit

° 10 = 2 credits

° 11 = 3 or more credits

The user logic can optionally check these outputs before transmitting Non-Posted requests.
Because of internal pipeline delays, the information on these outputs is delayed by two user
clock cycles from the cycle in which the last byte of the descriptor is transferred on the RQ
interface. Thus, the user logic must adjust these values, taking into account any Non-Posted
requests transmitted in the two previous clock cycles. Figure 3-52 illustrates the operation
of these signals for the 256-bit interface. In this example, the integrated block initially had
three Non-Posted Header Credits and two Non-Posted Data Credits, and had three free tags
available for allocation. Request 1 from the user application had a one-Dword payload, and
therefore consumed one header and data credit each, and also one tag. Request 2 in the
next clock cycle consumed one header credit, but no data credit. When the user application
presents Request 3 in the following clock cycle, it must adjust the available credit and
available tag count by taking into account requests 1 and 2. If Request 3 consumes one
header credit and one data credit, both available credits are 0 two cycles later, as also the
number of available tags.

Figure 3-53 and Figure 3-54 illustrate the timing of the credit and tag available signals for
the same example, for interface width of 128 bits and 64 bits, respectively.

X-Ref Target - Figure 3-52

Figure 3-52: Credit and Tag Availability Signals on the Requester Request Interface (Interface
Width = 256 Bits)

user_clk

s_axis_rq_data[255:0]

s_axis_rq_data_tvalid

s_axis_rq_data_ready

s_axis_rq_data_tlast

pcie_tfc_nph[1:0]

pcie_tfc_npd[1:0]

pcie_rq_tag_av[1:0]

NP Req 1 NP Req 2 NP Req 3

0x3 0x2 0x1 0x0

0x2 0x1 0x0

0x3 0x2 0x1 0x0

X12339

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=165

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 166
PG156 January 29, 2016

Chapter 3: Designing with the Core

Maintaining Transaction Order

The integrated block does not change the order of requests received from the user
application on its requester interface when it transmits them on the link. In cases where the
user application would like to have precise control of the order of transactions sent on the
RQ interface and the CC interface (typically to avoid Completions from passing Posted
requests when using strict ordering), the integrated block provides a mechanism for the
user application to monitor the progress of a Posted transaction through its pipeline, so
that it can determine when to schedule a Completion on the completer completion
interface without the risk of passing a specific Posted request transmitted from the
requester request interface,

X-Ref Target - Figure 3-53

Figure 3-53: Credit and Tag Availability Signals on the Requester Request Interface (Interface
Width = 128 Bits)

X-Ref Target - Figure 3-54

Figure 3-54: Credit and Tag Availability Signals on the Requester Request Interface (Interface Width =
64 Bits)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=166

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 167
PG156 January 29, 2016

Chapter 3: Designing with the Core

When transferring a Posted request (memory write transactions or messages) across the
requester request interface, the user application can provide an optional 4-bit sequence
number to the integrated block on its seq_num[3:0] input within s_axis_rq_tuser.
The sequence number must be valid in the first beat of the packet. The user application can
then monitor the pcie_rq_seq_num[3:0] output of the core for this sequence number
to appear. When the transaction has reached a stage in the internal transmit pipeline of the
integrated block where a Completion cannot pass it, the integrated block asserts
pcie_rq_seq_num_valid for one cycle and provides the sequence number of the Posted
request on the pcie_rq_seq_num[3:0] output. Any Completions transmitted by the
integrated block after the sequence number has appeared on pcie_rq_seq_num[3:0]
cannot pass the Posted request in the internal transmit pipeline.

Requester Completion Interface Operation

Completions for requests generated by the user logic are presented on the integrated block
Request Completion (RC) interface. See Figure 3-55 for an illustration of signals associated
with the requester completion interface. When straddle is not enabled, the integrated block
delivers each TLP on this interface as an AXI4-Stream packet. The packet starts with a 96-bit
descriptor, followed by data in the case of Completions with a payload.

The RC interface supports two distinct data alignment modes for transferring payloads. In
the Dword-aligned mode, the integrated block transfers the first Dword of the Completion
payload immediately after the last Dword of the descriptor. In the address-aligned mode,
the integrated block starts the payload transfer in the beat following the last Dword of the

X-Ref Target - Figure 3-55

Figure 3-55: Requester Completion Interface

UltraScale FPGA Gen3
Integrated Block for PCIe

Client Application

PCIe Requester
Completion

Interface

AX14-
Stream
Slave

PCIe
Requester
Interface

m_axis_rc_tdata[255:0]

m_axis_rc_tparity[31:0]

m_axis_rc_tvalid

m_axis_rc_tready

m_axis_rc_tkeep[7:0]

m_axis_rc_tlast

byte_en[31:0]

is_sof_0

is_sof_1
is_eof_0[3:0]

is_eof_1[3:0]

m_asix_rc_tuser[42:0]

AX14-Stream
Master

X12441

discontinue

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=167

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 168
PG156 January 29, 2016

Chapter 3: Designing with the Core

descriptor, and its first Dword can be in any of the possible Dword positions on the
datapath. The alignment of the first Dword of the payload is determined by an address
offset provided by the user application when it sent the request to the integrated block
(that is, the setting of the addr_offset[2:0] input of the RQ interface). Thus, the
address-aligned mode can be used on the RC interface only if the RQ interface is also
configured to use the address-aligned mode.

Requester Completion Descriptor Format

The RC interface of the integrated block sends completion data received from the link to the
user application as AXI4-Stream packets. Each packet starts with a descriptor and can have
payload data following the descriptor. The descriptor is always 12 bytes long, and is sent in
the first 12 bytes of the completion packet. The descriptor is transferred during the first two
beats on a 64-bit interface, and in the first beat on a 128- or 256-bit interface. When the
completion data is split into multiple Split Completions, the integrated block sends each
Split Completion as a separate AXI4-Stream packet, with its own descriptor.

The format of the Requester Completion descriptor is illustrated in Figure 3-56. The
individual fields of the RC descriptor are described in Table 3-15.

X-Ref Target - Figure 3-56

Figure 3-56: Requester Completion Descriptor Format

01234567

+0

01234567

+1

01234567

+2

01234567

+3

DW + 0

Byte CountDword count
01234567

+4

01234567

+5

01234567

+6

01234567

+7

DW + 1

TagTC
01234567

+8

01234567

+9

01234567

+10

01234567

+11

DW + 2

Device / FunctionAttr

Poisoned Completion

63 32

Address [11:0]

Completion Status

Bus

Completer ID

Locked Read
Completion

R R

Error CodeRequest Completed

Bus Device /Function

Requester ID
R

0

6495

X12210

Table 3-15: Requester Completion Descriptor Fields

Bit Index Field Name Description

11:0 Lower Address

This field provides the 12 least significant bits of the first byte
referenced by the request. The integrated block returns this address
from its Split Completion Table, where it stores the address and other
parameters of all pending Non-Posted requests on the requester side.
When the Completion delivered has an error, only bits [6:0] of the
address should be considered valid.
This is a byte-level address.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=168

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 169
PG156 January 29, 2016

Chapter 3: Designing with the Core

15:12 Error Code

Completion error code.
These three bits encode error conditions detected from error checking
performed by the integrated block on received Completions. Its
encodings are:
• 0000: Normal termination (all data received).
• 0001: The Completion TLP is Poisoned.
• 0010: Request terminated by a Completion with UR, CA or CRS

status.
• 0011: Request terminated by a Completion with no data, or the byte

count in the Completion was higher than the total number of bytes
expected for the request.

• 0100: The current Completion being delivered has the same tag of
an outstanding request, but its Requester ID, TC, or Attr fields did
not match with the parameters of the outstanding request.

• 0101: Error in starting address. The low address bits in the
Completion TLP header did not match with the starting address of
the next expected byte for the request.

• 0110: Invalid tag. This Completion does not match the tags of any
outstanding request.

• 1001: Request terminated by a Completion timeout. The other fields
in the descriptor, except bit [30], the requester Function [55:48], and
the tag field [71:64], are invalid in this case, because the descriptor
does not correspond to a Completion TLP.

• 1000: Request terminated by a Function-Level Reset (FLR) targeted
at the Function that generated the request. The other fields in the
descriptor, except bit [30], the requester Function [55:48], and the
tag field [71:64], are invalid in this case, because the descriptor does
not correspond to a Completion TLP.

28:16 Byte Count

These 13 bits can have values in the range of 0 – 4,096 bytes. If a
Memory Read Request is completed using a single Completion, the
Byte Count value indicates Payload size in bytes. This field must be set
to 4 for I/O read Completions and I/O write Completions. The byte
count must be set to 1 while sending a Completion for a zero-length
memory read, and a dummy payload of 1 Dword must follow the
descriptor.
For each Memory Read Completion, the Byte Count field must indicate
the remaining number of bytes required to complete the Request,
including the number of bytes returned with the Completion.
If a Memory Read Request is completed using multiple Completions,
the Byte Count value for each successive Completion is the value
indicated by the preceding Completion minus the number of bytes
returned with the preceding Completion.

29 Locked Read
Completion

This bit is set to 1 when the Completion is in response to a Locked
Read request. It is set to 0 for all other Completions.

Table 3-15: Requester Completion Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=169

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 170
PG156 January 29, 2016

Chapter 3: Designing with the Core

Transfer of Completions with no Data

The timing diagrams in Figure 3-57, Figure 3-58, and Figure 3-59 illustrate the transfer of a
Completion TLP received from the link with no associated payload across the RC interface,
when the interface width is configured as 64, 128, and 256 bits, respectively. The timing
diagrams in this section assume that the Completions are not straddled on the 256-bit
interface. The straddle feature is described in Straddle Option for 256-Bit Interface,
page 178.

30 Request
Completed

The integrated block asserts this bit in the descriptor of the last
Completion of a request. The assertion of the bit can indicate normal
termination of the request (because all data has been received) or
abnormal termination because of an error condition. The user logic
can use this indication to clear its outstanding request status.
When tags are assigned, the user logic should not re-assign a tag
allocated to a request until it has received a Completion Descriptor
from the integrated block with a matching tag field and the Request
Completed bit set to 1.

42:32 Dword Count

These 11 bits indicate the size of the payload of the current packet in
Dwords. Its range is 0 - 1K Dwords. This field is set to 1 for I/O read
Completions and 0 for I/O write Completions. The Dword count is also
set to 1 while transferring a Completion for a zero-length memory
read. In all other cases, the Dword count corresponds to the actual
number of Dwords in the payload of the current packet.

45:43 Completion Status

These bits reflect the setting of the Completion Status field of the
received Completion TLP. The valid settings are:
• 000: Successful Completion
• 001: Unsupported Request (UR)
• 010: Configuration Request Retry Status (CRS)
• 100: Completer Abort (CA)

46 Poisoned
Completion

This bit is set to indicate that the Poison bit in the Completion TLP was
set. Data in the packet should then be considered corrupted.

63:48 Requester ID PCI Requester ID associated with the Completion.

71:64 Tag PCIe Tag associated with the Completion.

87:72 Completer ID

Completer ID received in the Completion TLP. (These 16 bits are
divided into an 8-bit bus number, 5-bit device number, and 3-bit
function number in the legacy interpretation mode. In the ARI mode,
these 16 bits must be treated as an 8-bit bus number + 8-bit Function
number.).

91:89 Transaction Class
(TC)

PCIe Transaction Class (TC) associated with the Completion.

94:92 Attributes
PCIe attributes associated with the Completion. Bit 92 is the No Snoop
bit, bit 93 is the Relaxed Ordering bit, and bit 94 is the ID-Based
Ordering bit.

Table 3-15: Requester Completion Descriptor Fields (Cont’d)

Bit Index Field Name Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=170

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 171
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-57

Figure 3-57: Transfer of a Completion with no Data on the Requester Completion Interface
(Interface Width = 64 Bits)

X-Ref Target - Figure 3-58

Figure 3-58: Transfer of a Completion with no Data on the Requester Completion Interface
(Interface Width = 128 Bits)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tvalid

m_axis_cc_tready

m_axis_rc_tkeep[1:0]

m_axis_rc_tlast

(byte_en[7:0]) m_axis_rc_tuser[7:0]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DESC 2 DESC 2

DESC 1

0x3 0x1 0x1

0 0

X12226

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tvalid

m_axis_cc_tready

m_axis_rc_tkeep[3:0]

m_axis_rc_tlast

(byte_en[15:0]) m_axis_rc_tuser[15:0]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

0x7 0x7

0

X12227

0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=171

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 172
PG156 January 29, 2016

Chapter 3: Designing with the Core

The entire transfer of the Completion TLP takes only a single beat on the 256- and 128-bit
interfaces, and two beats on the 64-bit interface. The integrated block keeps the
m_axis_rc_tvalid signal asserted over the duration of the packet. The user application
can prolong a beat at any time by deasserting m_axis_rc_tready. The AXI4-Stream
interface signals m_axis_rc_tkeep (one per Dword position) indicate the valid descriptor
Dwords in the packet. That is, the tkeep bits are set to 1 contiguously from the first Dword
of the descriptor until its last Dword. During the transfer of a packet, the tkeep bits can be
0 only in the last beat of the packet. The m_axis_cq_tlast signal is always asserted in the
last beat of the packet.

The m_axi_cq_tuser bus also includes an is_sof_0 signal, which is asserted in the first
beat of every packet. The user application can optionally use this signal to qualify the start
of the descriptor on the interface. No other signals within m_axi_cq_tuser are relevant
to the transfer of Completions with no data, when the straddle option is not in use.

Transfer of Completions with Data

The timing diagrams in Figure 3-60, Figure 3-61, and Figure 3-62 illustrate the
Dword-aligned transfer of a Completion TLP received from the link with an associated

X-Ref Target - Figure 3-59

Figure 3-59: Transfer of a Completion with no Data on the Requester Completion Interface
(Interface Width = 256 Bits)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tdata[255:128]

m_axis_rc_tvalid

m_axis_cc_tready

m_axis_rc_tkeep[7:0]

m_axis_rc_tlast

(byte_en[31:0]) m_axis_rc_tuser[31:0]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DESC 0

DESC 1 DESC 1

DESC 2 DESC 2

0x07

0 0

0x07

X12228

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=172

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 173
PG156 January 29, 2016

Chapter 3: Designing with the Core

payload across the RC interface, when the interface width is configured as 64, 128, and 256
bits, respectively. For illustration purposes, the size of the data block being written into user
application memory is assumed to be n Dwords, for some n = k × 32 + 28, k > 0. The timing
diagrams in this section assume that the Completions are not straddled on the 256-bit
interface. The straddle feature is described in Straddle Option for 256-Bit Interface,
page 178.

In the Dword-aligned mode, the transfer starts with the three descriptor Dwords, followed
immediately by the payload Dwords. The entire TLP, consisting of the descriptor and
payload, is transferred as a single AXI4-Stream packet. Data within the payload is always a
contiguous stream of bytes when the length of the payload exceeds two Dwords. The
positions of the first valid byte within the first Dword of the payload and the last valid byte
in the last Dword can then be determined from the Lower Address and Byte Count fields of
the Request Completion Descriptor. When the payload size is two Dwords or less, the valid
bytes in the payload cannot be contiguous. In these cases, the user application must store
the First Byte Enable and the Last Byte Enable fields associated with each request sent out
on the RQ interface and use them to determine the valid bytes in the completion payload.
The user application can optionally use the byte enable outputs byte_en[31:0] within
the m_axi_cq_tuser bus to determine the valid bytes in the payload, in the cases of
contiguous as well as non-contiguous payloads.

The integrated block keeps the m_axis_rc_tvalid signal asserted over the entire
duration of the packet. The user application can prolong a beat at any time by deasserting
m_axis_rc_tready. The AXI4-Stream interface signals m_axis_rc_tkeep (one per
Dword position) indicate the valid Dwords in the packet including the descriptor and any
null bytes inserted between the descriptor and the payload. That is, the tkeep bits are set to
1 contiguously from the first Dword of the descriptor until the last Dword of the payload.
During the transfer of a packet, the tkeep bits can be 0 only in the last beat of the packet,
when the packet does not fill the entire width of the interface. The m_axis_rc_tlast
signal is always asserted in the last beat of the packet.

The m_axi_rc_tuser bus provides several informational signals that can be used to
simplify the logic associated with the user application side of the interface, or to support
additional features. The is_sof_0 signal is asserted in the first beat of every packet, when
its descriptor is on the bus. The byte enable outputs byte_en[31:0] (one per byte lane)
indicate the valid bytes in the payload. These signals are asserted only when a valid payload
byte is in the corresponding lane (it is not asserted for descriptor or null bytes). The
asserted byte enable bits are always contiguous from the start of the payload, except when
payload size is 2 Dwords or less. For Completion payloads of two Dwords or less, the 1s on
byte_en might not be contiguous. Another special case is that of a zero-length memory
read, when the integrated block transfers a one-Dword payload with the byte_en bits all
set to 0. Thus, the user logic can, in all cases, use the byte_en signals directly to enable the
writing of the associated bytes into memory.

The is_sof_1, is_eof_0[3:0], and is_eof_1[3:0] signals within the
m_axis_rc_tuser bus are not to be used for 64-bit and 128-bit interfaces, and for
256-bit interfaces when the straddle option is not enabled.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=173

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 174
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-60

Figure 3-60: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, Interface Width = 64 Bits)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tvalid

m_axis_cc_tready

m_axis_rc_tkeep[1:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DESC 2 DW 1 DW 1 DW n-1

DESC 1 DW 0 DW 2 DW 2

0x3 0x3 0x3 0x1

0xF 0xF 0xF LAST BE

0 FIRST BE 0xF 0xF 0xF 0

0 0

X12223

X-Ref Target - Figure 3-61

Figure 3-61: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, Interface Width = 128 Bits)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tvalid

m_axis_cc_tready

m_axis_rc_tkeep[3:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(byte_en[11:8]) m_axis_rc_tuser[11:8]

(byte_en[15:12]) m_axis_rc_tuser[15:12]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DW 1 DW 5 DW 5 DW n-3

DESC 1 DW 2 DW 6 DW 6 DW n-2

DESC 2 DW 3 DW 7 DW 7 DW n-1

DW 0 DW 4 DW 8 DW 8

0xF 0xF 0xF 0x7

0 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF LAST BE

FIRST BE 0xF 0xF 0xF 0

X12224

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=174

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 175
PG156 January 29, 2016

Chapter 3: Designing with the Core

The timing diagrams in Figure 3-63, Figure 3-64, and Figure 3-65 illustrate the
address-aligned transfer of a Completion TLP received from the link with an associated
payload across the RC interface, when the interface width is configured as 64, 128, and 256
bits, respectively. In the example timing diagrams, the starting Dword address of the data
block being transferred (as conveyed in bits [6:2] of the Lower Address field of the
descriptor) is assumed to be (m × 8 + 1), for an integer m. The size of the data block is
assumed to be n Dwords, for some n = k × 32 + 28, k > 0. The straddle option is not valid
for address-aligned transfers, so the timing diagrams assume that the Completions are not
straddled on the 256-bit interface.

X-Ref Target - Figure 3-62

Figure 3-62: Transfer of a Completion with Data on the Requester Completion Interface
(Dword-Aligned Mode, Interface Width = 256 Bits)

user_cl

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tdata[159:128]

m_axis_rc_tdata[191:160]

m_axis_rc_tdata[223:192]

m_axis_rc_tdata[255:224]

m_axis_rc_tvalid

m_axis_cc_tready

m_axis_rc_tkeep[7:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(byte_en[11:8]) m_axis_rc_tuser[11:8]

(byte_en[15:12]) m_axis_rc_tuser[15:12]

(byte_en[19:16]) m_axis_rc_tuser[19:16]

(byte_en[23:20]) m_axis_rc_tuser[23:20]

(byte_en[27:24]) m_axis_rc_tuser[27:24]

(byte_en[31:28]) m_axis_rc_tuser[31:28]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DW 5 DW 5 DW n-7

DESC 1 DW 6 DW 6 DW n-6

DESC 2 DW 7 DW 7 DW n-5

DW 0 DW 8 DW 8 DW n-4

DW 1 DW 9 DW 9 DW n-3

DW 2 DW 10 DW 10 DW n-2

DW 3 DW 11 DW 11 DW n-1

DW 4 DW 12 DW 12

0xFF 0xFF 0xFF 0x7F

0 0xFF 0xFF 0xFF

0 0xFF 0xFF 0xFF

0 0xFF 0xFF 0xFF

FIRST BE 0xFF 0xFF 0xFF

0xFF 0xFF 0xFF

0xFF 0xFF 0xFF

0xFF 0xFF 0xFF LAST BE

0xFF 0xFF 0xFF 0

X12225

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=175

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 176
PG156 January 29, 2016

Chapter 3: Designing with the Core

In the address-aligned mode, the delivery of the payload always starts in the beat following
the last byte of the descriptor. The first byte of the payload can appear on any byte lane,
based on the address of the first valid byte of the payload. The tkeep bits are set to 1
contiguously from the first Dword of the descriptor until the last Dword of the payload. The
alignment of the first Dword on the data bus is determined by the setting of the
addr_offset[2:0] input of the requester request interface when the user application
sent the request to the integrated block. The user application can optionally use the byte
enable outputs byte_en[31:0] to determine the valid bytes in the payload.

X-Ref Target - Figure 3-63

Figure 3-63: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, Interface Width = 64 Bits)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tvalid

m_axis_cc_tready

m_axis_rc_tkeep[1:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DESC 2 DW 1 DW n-1

DESC 1 DW 0 DW 0 DW 2

0x3 0x3 0x3 0x1

0
0 0xF 0xF 0xF LAST BE

0 FIRST BE FIRST BE 0xF 0xF 0

X12220

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=176

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 177
PG156 January 29, 2016

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-64

Figure 3-64: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, Interface Width = 128 Bits)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tvalid

m_axis_cc_tready

m_axis_rc_tkeep[3:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(byte_en[11:8]) m_axis_rc_tuser[11:8]

(byte_en[15:12]) m_axis_rc_tuser[15:12]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DW 3 DW 3 DW n-1

DESC 1 DW 0 DW 4 DW 4

DESC 2 DW 1 DW 5 DW 5

DW 2 DW 6 DW 6

0xF 0xF 0xF 0x1

0 0xF 0xF 0xF LAST BE

0 FIRST BE 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

X12221

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=177

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 178
PG156 January 29, 2016

Chapter 3: Designing with the Core

Straddle Option for 256-Bit Interface

When the interface width is configured as 256 bits, the integrated block can start a new
Completion transfer on the RC interface in the same beat when the previous Completion
has ended on or before Dword position 3 on the data bus. The straddle option can be used
only with the Dword-aligned mode.

When the straddle option is enabled, Completion TLPs are transferred on the RC interface
as a continuous stream, with no packet boundaries (from an AXI4-Stream perspective).
Thus, the m_axis_rc_tkeep and m_axis_rc_tlast signals are not useful in
determining the boundaries of Completion TLPs delivered on the interface (the integrated

X-Ref Target - Figure 3-65

Figure 3-65: Transfer of a Completion with Data on the Requester Completion Interface
(Address-Aligned Mode, Interface Width = 256 Bits)

user_clk

m_axis_rc_tdata[31:0]

m_axis_rc_tdata[63:32]

m_axis_rc_tdata[95:64]

m_axis_rc_tdata[127:96]

m_axis_rc_tdata[159:128]

m_axis_rc_tdata[191:160]

m_axis_rc_tdata[223:192]

m_axis_rc_tdata[255:224]

m_axis_rc_tvalid

m_axis_cc_tready

m_axis_rc_tkeep[7:0]

m_axis_rc_tlast

(byte_en[3:0]) m_axis_rc_tuser[3:0]

(byte_en[7:4]) m_axis_rc_tuser[7:4]

(byte_en[11:8]) m_axis_rc_tuser[11:8]

(byte_en[15:12]) m_axis_rc_tuser[15:12]

(byte_en[19:16]) m_axis_rc_tuser[19:16]

(byte_en[23:20]) m_axis_rc_tuser[23:20]

(byte_en[27:24]) m_axis_rc_tuser[27:24]

(byte_en[31:28]) m_axis_rc_tuser[31:28]

(is_sof_0) m_axis_rc_tuser[32]

(discontinue) m_axis_rc_tuser[42]

DESC 0 DW 7 DW 7 DW n-5

DESC 1 DW 0 DW 8 DW 8 DW n-4

DESC 2 DW 1 DW 9 DW 9 DW n-3

DW 2 DW 10 DW 10 DW n-2

DW 3 DW 11 DW 11 DW n-1

DW 4 DW 12 DW 12

DW 5 DW 13 DW 13

DW 6 DW 14 DW 14

0xFF 0xFF 0xFF 0x1F

0 0xF 0xF 0xF

0 FIRST BE 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF

0 0xF 0xF 0xF LAST BE

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

0 0xF 0xF 0xF 0

X12222

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=178

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 179
PG156 January 29, 2016

Chapter 3: Designing with the Core

block sets m_axis_rc_tkeep to all 1s and m_axis_rc_tlast to 0 permanently when
the straddle option is in use). Instead, delineation of TLPs is performed using the following
signals provided within the m_axis_rc_tuser bus:

• is_sof_0: The integrated block drives this output High in a beat when there is at least
one Completion TLP starting in the beat. The position of the first byte of this
Completion TLP is determined as follows:

° If the previous Completion TLP ended before this beat, the first byte of this
Completion TLP is in byte lane 0.

° If a previous TLP is continuing in this beat, the first byte of this Completion TLP is in
byte lane 16. This is possible only when the previous TLP ends in the current beat,
that is when is_eof_0[0] is also set.

• is_sof_1: The integrated block asserts this output in a beat when there are two
Completion TLPs starting in the beat. The first TLP always starts at byte position 0 and
the second TLP at byte position 16. The integrated block starts a second TLP at byte
position 16 only if the previous TLP ended before byte position 16 in the same beat,
that is only if is_eof_0[0] is also set in the same beat.

• is_eof_0[3:0]: These outputs are used to indicate the end of a Completion TLP and
the position of its last Dword on the data bus. The assertion of the bit is_eof_0[0]
indicates that there is at least one Completion TLP ending in this beat. When bit 0 of
is_eof_0 is set, bits [3:1] provide the offset of the last Dword of the TLP ending in this
beat. The offset for the last byte can be determined from the starting address and
length of the TLP, or from the byte enable signals byte_en[31:0]. When there are
two Completion TLPs ending in a beat, the setting of is_eof_0[3:1] is the offset of
the last Dword of the first Completion TLP (in that case, its range is 0 through 3).

• is_eof_1[3:0]: The assertion of is_eof_1[0] indicates a second TLP ending in the
same beat. When bit 0 of is_eof_1 is set, bits [3:1] provide the offset of the last
Dword of the second TLP ending in this beat. Because the second TLP can start only on
byte lane 16, it can only end at a byte lane in the range 27–31. Thus the offset
is_eof_1[3:1] can only take one of two values: 6 or 7. If is_sof_1[0] is High, the
signals is_eof_0[0] and is_sof_0 are also High in the same beat. If is_sof_1 is
High, is_sof_0 is High. If is_eof_1 is High, is_eof_0 is High.

Figure 3-66 illustrates the transfer of four Completion TLPs on the 256-bit RC interface
when the straddle option is enabled. The first Completion TLP (COMPL 1) starts at Dword
position 0 of Beat 1 and ends in Dword position 0 of Beat 3. The second TLP (COMPL 2)
starts in Dword position 4 of the same beat. This second TLP has only a one-Dword payload,
so it also ends in the same beat. The third and fourth Completion TLPs are transferred
completely in Beat 4, because Completion 3 has only a one-Dword payload and Completion
4 has no payload.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=179

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 180
PG156 January 29, 2016

Chapter 3: Designing with the Core

Aborting a Completion Transfer

For any Completion that includes an associated payload, the integrated block can signal an
error in the transferred payload by asserting the discontinue signal in the
m_axis_rc_tuser bus in the last beat of the packet. This occurs when the integrated
block has detected an uncorrectable error while reading data from its internal memories.
The user application must discard the entire packet when it has detected the discontinue

X-Ref Target - Figure 3-66

Figure 3-66: Transfer of Completion TLPs on the Requester Completion Interface with the Straddle
Option Enabled

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=180

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 181
PG156 January 29, 2016

Chapter 3: Designing with the Core

signal asserted in the last beat of a packet. This is also considered a fatal error in the
integrated block.

When the straddle option is in use, the integrated block does not start a second Completion
TLP in the same beat when it has asserted discontinue, aborting the Completion TLP ending
in the beat.

Handling of Completion Errors

When a Completion TLP is received from the link, the integrated block matches it against
the outstanding requests in the Split Completion Table to determine the corresponding
request, and compares the fields in its header against the expected values to detect any
error conditions. The integrated block then signals the error conditions in a 4-bit error code
sent to the user application as part of the completion descriptor. The integrated block also
indicates the last completion for a request by setting the Request Completed bit (bit 30) in
the descriptor. Table 3-16 defines the error conditions signaled by the various error codes.

Table 3-16: Encoding of Error Codes

Error Code Description

0000 No errors detected.

0001

The Completion TLP received from the link was poisoned. The user application should
discard any data that follows the descriptor. In addition, if the Request Completed bit
in the descriptor is not set, the user application should continue to discard the data
subsequent completions for this tag until it receives a completion descriptor with the
Request Completed bit set. On receiving a completion descriptor with the Request
Completed bit set, the user application can remove all state for the corresponding
request.

0010

Request terminated by a Completion TLP with UR, CA, or CRS status. In this case, there
is no data associated with the completion, and the Request Completed bit in the
completion descriptor is set. On receiving such a Completion from the integrated block,
the user application can discard the corresponding request.

0011

Read Request terminated by a Completion TLP with incorrect byte count. This condition
occurs when a Completion TLP is received with a byte count not matching the expected
count. The Request Completed bit in the completion descriptor is set. On receiving such
a completion from the integrated block, the user application can discard the
corresponding request.

0100

This code indicates the case when the current Completion being delivered has the same
tag of an outstanding request, but its Requester ID, TC, or Attr fields did not match with
the parameters of the outstanding request. The user application should discard any
data that follows the descriptor. In addition, if the Request Completed bit in the
descriptor is not set, the user application should continue to discard the data
subsequent completions for this tag until it receives a completion descriptor with the
Request Completed bit set. On receiving a completion descriptor with the Request
Completed bit set, the user application can remove all state associated with the request.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=181

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 182
PG156 January 29, 2016

Chapter 3: Designing with the Core

When the tags are managed internally by the integrated block, logic within the integrated
block ensures that a tag allocated to a pending request is not re-used until either all the
Completions for the request were received or the request was timed out.

When tags are managed by the user application, however, the user application must ensure
that a tag assigned to a request is not re-used until the integrated block has signaled the
termination of the request by setting the Request Completed bit in the completion
descriptor. The user application can close out a pending request on receiving a completion
with a non-zero error code, but should not free the associated tag if the Request Completed
bit in the completion descriptor is not set. Such a situation might occur when a request
receives multiple split completions, one of which has an error. In this case, the integrated
block can continue to receive Completion TLPs for the pending request even after the error
was detected, and these Completions are incorrectly matched to a different request if its tag
is re-assigned too soon. In some cases, the integrated block might have to wait for the

0101

Error in starting address. The low address bits in the Completion TLP header did not
match with the starting address of the next expected byte for the request. The user
application should discard any data that follows the descriptor. In addition, if the
Request Completed bit in the descriptor is not set, the user application should continue
to discard the data subsequent Completions for this tag until it receives a completion
descriptor with the Request Completed bit set. On receiving a completion descriptor
with the Request Completed bit set, the user application can discard the corresponding
request.

0110
Invalid tag. This error code indicates that the tag in the Completion TLP did not match
with the tags of any outstanding request. The user application should discard any data
following the descriptor.

0111

Invalid byte count. The byte count in the Completion was higher than the total number
of bytes expected for the request. In this case, the Request Completed bit in the
completion descriptor is also set. On receiving such a completion from the integrated
block, the user application can discard the corresponding request.

1001

Request terminated by a Completion timeout. This error code is used when an
outstanding request times out without receiving a Completion from the link. The
integrated block maintains a completion timer for each outstanding request, and
responds to a completion timeout by transmitting a dummy completion descriptor on
the requester completion interface to the user application, so that the user application
can terminate the pending request, or retry the request. Because this descriptor does
not correspond to a Completion TLP received from the link, only the Request
Completed bit (bit 30), the tag field (bits [71: 64]) and the requester Function field (bits
[55: 48]) are valid in this descriptor.

1000

Request terminated by a Function-Level Reset (FLR) targeting the Function that
generated the request. In this case, the integrated block transmits a dummy completion
descriptor on the requester completion interface to the user application, so that the
user application can terminate the pending request. Because this descriptor does not
correspond to a Completion TLP received from the link, only the Request Completed bit
(bit 30), the tag field (bits [71:64]) and the requester Function field (bits [55:48]) are
valid in this descriptor.

Table 3-16: Encoding of Error Codes (Cont’d)

Error Code Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=182

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 183
PG156 January 29, 2016

Chapter 3: Designing with the Core

request to time out even when a split completion is received with an error, before it can
allow the tag to be re-used.

Power Management
The core supports these power management modes:

• Active State Power Management (ASPM)

• Programmed Power Management (PPM)

Implementing these power management functions as part of the PCI Express design
enables the PCI Express hierarchy to seamlessly exchange power-management messages to
save system power. All power management message identification functions are
implemented. The subsections in this section describe the user logic definition to support
the above modes of power management.

For additional information on ASPM and PPM implementation, see the PCI Express Base
Specification [Ref 2].

Active State Power Management
The core advertises an N_FTS value of 255 to ensure proper alignment when exiting L0s. If
the N_FTS value is modified, you must ensure enough FTS sequences are received to
properly align and avoid transition into the Recovery state.

The Active State Power Management (ASPM) functionality is autonomous and transparent
from a user-logic function perspective. The core supports the conditions required for ASPM.
The integrated block supports ASPM L0s and ASPM L1. L0 and L1 should not be enabled in
parallel.

Note: ASPM is not supported in non-synchronous clocking mode.

Note: L0s is not supported for Gen3 targeted designs. It is supported only on designs generated for
Gen1 and Gen2.

Programmed Power Management
To achieve considerable power savings on the PCI Express hierarchy tree, the core supports
these link states of Programmed Power Management (PPM):

• L0: Active State (data exchange state)

• L1: Higher Latency, lower power standby state

• L3: Link Off State

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=183

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 184
PG156 January 29, 2016

Chapter 3: Designing with the Core

The Programmed Power Management Protocol is initiated by the Downstream Component/
Upstream Port.

PPM L0 State

The L0 state represents normal operation and is transparent to the user logic. The core
reaches the L0 (active state) after a successful initialization and training of the PCI Express
Link(s) as per the protocol.

PPM L1 State

These steps outline the transition of the core to the PPM L1 state:

1. The transition to a lower power PPM L1 state is always initiated by an upstream device,
by programming the PCI Express device power state to D3-hot (or to D1 or D2, if they
are supported).

2. The device power state is communicated to the user logic through the
cfg_function_power_state output.

3. The core then throttles/stalls the user logic from initiating any new transactions on the
user interface by deasserting s_axis_rq_tready. Any pending transactions on the
user interface are, however, accepted fully and can be completed later.

There are two exceptions to this rule:

° The core is configured as an Endpoint and the User Configuration Space is enabled.
In this situation, the user application must refrain from sending new Request TLPs if
cfg_function_power_state indicates non-D0, but the user application can
return Completions to Configuration transactions targeting User Configuration
space.

° The core is configured as a Root Port. To be compliant in this situation, the user
application should refrain from sending new Requests if
cfg_function_power_state indicates non-D0.

4. The core exchanges appropriate power management DLLPs with its link partner to
successfully transition the link to a lower power PPM L1 state. This action is transparent
to the user logic.

5. All user transactions are stalled for the duration of time when the device power state is
non-D0, with the exceptions indicated in step 3.

PPM L3 State

These steps outline the transition of the Endpoint for PCI Express to the PPM L3 state:

1. The core negotiates a transition to the L23 Ready Link State upon receiving a
PME_Turn_Off message from the upstream link partner.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=184

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 185
PG156 January 29, 2016

Chapter 3: Designing with the Core

2. Upon receiving a PME_Turn_Off message, the core initiates a handshake with the user
logic through cfg_power_state_change_interrupt (see Table 3-17) and expects
a cfg_power_state_change_ack back from the user logic.

3. A successful handshake results in a transmission of the Power Management Turn-off
Acknowledge (PME-turnoff_ack) Message by the core to its upstream link partner.

4. The core closes all its interfaces, disables the Physical/Data-Link/Transaction layers and
is ready for removal of power to the core.

There are two exceptions to this rule:

° The core is configured as an Endpoint and the User Configuration Space is enabled.
In this situation, the user application must refrain from sending new Request TLPs if
cfg_function_power_state indicates non-D0, but the user application can
return Completions to Configuration transactions targeting User Configuration
space.

° The core is configured as a Root Port. To be compliant in this situation, the user
application should refrain from sending new Requests if
cfg_function_power_state indicates non-D0.

Power-down negotiation follows these steps:

1. Before power and clock are turned off, the Root Complex or the Hot-Plug controller in a
downstream switch issues a PME_Turn_Off broadcast message.

2. When the core receives this TLP, it asserts cfg_power_state_change_interrupt to
the user application and starts polling the cfg_power_state_change_ack input.

3. When the user application detects the assertion of cfg_to_turnoff, it must complete
any packet in progress and stop generating any new packets. After the user application
is ready to be turned off, it asserts cfg_power_state_change_ack to the core. After
assertion of cfg_power_state_change_ack, the user application is committed to
being turned off.

4. The core sends a PME_TO_Ack message when it detects assertion of
cfg_power_state_change_ack.

Table 3-17: Power Management Handshaking Signals

Port Name Direction Description

cfg_power_state_change_interrupt Output Asserted if a power-down request TLP is received
from the upstream device. After assertion,
cfg_power_state_change_interrupt
remains asserted until the user application asserts
cfg_power_state_change_ack.

cfg_power_state_change_ack Input Asserted by the user application when it is safe to
power down.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=185

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 186
PG156 January 29, 2016

Chapter 3: Designing with the Core

Generating Interrupt Requests
See the cfg_interrupt_msi* and cfg_interrupt_msix_* descriptions in Table 2-21,
page 53.

Note: This section only applies to the Endpoint Configuration of the Gen3 Integrated Block for PCIe
core.

The integrated block core supports sending interrupt requests as either legacy, Message
MSI, or MSI-X interrupts. The mode is programmed using the MSI Enable bit in the Message
Control register of the MSI Capability Structure and the MSI-X Enable bit in the MSI-X
Message Control register of the MSI-X Capability Structure. For more information on the
MSI and MSI-X capability structures, see section 6.8 of the PCI Local Base Specification v3.0.

The state of the MSI Enable and MSI-X Enabled bits is reflected by the
cfg_interrupt_msi_enable and cfg_interrupt_msix_enable outputs,
respectively. Table 3-18 describes the Interrupt Mode to which the device has been
programmed, based on the cfg_interrupt_msi_enable and
cfg_interrupt_msix_enable outputs of the core.

X-Ref Target - Figure 3-67

Figure 3-67: Power Management Handshaking: 64-Bit

user_clk_out

rx_data[63:0]*

cfg_to_turnoff

cfg_turnoff_ok

tx_data[63:0]*

PME_Turn_Off

PME_TO_ACK

* Internal signal not appearing on User Interface

X12465

Table 3-18: Interrupt Modes

cfg_interrupt_msixenable=0 cfg_interrupt_msixenable=1

cfg_interrupt_
msi_enable=0

Legacy Interrupt (INTx) mode.
The cfg_interrupt interface only sends
INTx messages.

MSI-X mode.
MSI-X interrupts can be generated using
the cfg_interrupt interface.

cfg_interrupt_
msi_enable=1

MSI mode. The cfg_interrupt interface
only sends MSI interrupts (MWr TLPs).

Undefined.
System software is not supposed to permit
this. However, the cfg_interrupt
interface is active and sends MSI interrupts
(MWr TLPs) if you choose to do so.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=186

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 187
PG156 January 29, 2016

Chapter 3: Designing with the Core

The MSI Enable bit in the MSI control register, the MSI-X Enable bit in the MSI-X Control
register, and the Interrupt Disable bit in the PCI Command register are programmed by the
Root Complex. The user application has no direct control over these bits.

The Internal Interrupt Controller in the core only generates Legacy Interrupts and MSI
Interrupts. MSI-X Interrupts need to be generated by the user application and presented on
the transmit AXI4-Stream interface. The status of cfg_interrupt_msi_enable
determines the type of interrupt generated by the internal Interrupt Controller:

If the MSI Enable bit is set to a 1, then the core generates MSI requests by sending Memory
Write TLPs. If the MSI Enable bit is set to 0, the core generates legacy interrupt messages as
long as the Interrupt Disable bit in the PCI Command register is set to 0.

• cfg_interrupt_msi_enable = 0: Legacy interrupt

• cfg_interrupt_msi_enable = 1: MSI

• Command register bit 10 = 0: INTx interrupts enabled

• Command register bit 10 = 1: INTx interrupts disabled (requests are blocked by the
core)

The user application can monitor cfg_function_status to check whether INTx
interrupts are enabled or disabled. For more information, see Table 2-14.

The user application requests interrupt service in one of two ways, each of which are
described in the following section.

Legacy Interrupt Mode
• The user application first asserts cfg_interrupt_int and

cfg_interrupt_pending to assert the interrupt.

• The core then asserts cfg_interrupt_sent to indicate the interrupt is accepted. If
the Interrupt Disable bit in the PCI Command register is set to 0, the core sends an
assert interrupt message (Assert_INTA). On the following clock cycle, the user
application deasserts cfg_interrupt_int.

• After the user application deasserts cfg_interrupt_int , the core sends a deassert
interrupt message (Deassert_INTA). This is indicated by the assertion of
cfg_interrupt_sent a second time.

cfg_interrupt_int must be asserted until the user application receives confirmation of
ASSERT_INTA, which is indicated by the assertion of cfg_interrupt_sent. Deasserting
cfg_interrupt_int causes the core to send DEASSERT_INTA.
cfg_interrupt_pending must be asserted until the interrupt has been serviced,
otherwise the interrupt status bit in the status register will not be updated correctly. If the
software reads this bit, it detects no interrupt pending.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=187

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 188
PG156 January 29, 2016

Chapter 3: Designing with the Core

MSI Mode
• As shown in Figure 3-68, the user application first asserts a value on

cfg_interrupt_msi_int.

• The core asserts cfg_interrupt_msi_sent to signal that the interrupt is accepted
and the core sends a MSI Memory Write TLP.

The MSI request is either a 32-bit addressable Memory Write TLP or a 64-bit addressable
Memory Write TLP. The address is taken from the Message Address and Message Upper
Address fields of the MSI Capability Structure, while the payload is taken from the Message
Data field. These values are programmed by system software through configuration writes
to the MSI Capability structure. When the core is configured for Multi-Vector MSI, system
software can permit Multi-Vector MSI messages by programming a non-zero value to the
Multiple Message Enable field.

The type of MSI TLP sent (32-bit addressable or 64-bit addressable) depends on the value
of the Upper Address field in the MSI capability structure. By default, MSI messages are sent
as 32-bit addressable Memory Write TLPs. MSI messages use 64-bit addressable Memory
Write TLPs only if the system software programs a non-zero value into the Upper Address
register.

When Multi-Vector MSI messages are enabled, the user application can override one or
more of the lower-order bits in the Message Data field of each transmitted MSI TLP to
differentiate between the various MSI messages sent upstream. The number of lower-order
bits in the Message Data field available to the user application is determined by the lesser

X-Ref Target - Figure 3-68

Figure 3-68: Legacy Interrupt Signaling

cfg_interrupt_msi_enable

cfg_interrupt_int[3:0]

cfg_interrupt_pending[1:0]

cfg_interrupt_sent

4'h01 4'h0 4'h01

2'b01 2'b00

X13127

X-Ref Target - Figure 3-69

Figure 3-69: MSI Mode

X14332

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=188

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 189
PG156 January 29, 2016

Chapter 3: Designing with the Core

of the value of the Multiple Message Capable field, as set in the IP catalog, and the Multiple
Message Enable field, as set by system software and available as the
cfg_interrupt_msi_mmenable[2:0] core output. The core masks any bits in
cfg_interrupt_msi_select which are not configured by system software through
Multiple Message Enable.

This pseudo code shows the processing required:

// Value MSI_Vector_Num must be in range: 0 ≤ MSI_Vector_Num ≤
(2^cfg_interrupt_mmenable)-1

if (cfg_interrupt_msienable) { // MSI Enabled
if (cfg_interrupt_mmenable > 0) { // Multi-Vector MSI Enabled

cfg_interrupt_msi_int[MSI_Vector_Num] = 1;
} else { // Single-Vector MSI Enabled

cfg_interrupt_msi_int[MSI_Vector_Num] = 0;
}

} else {
// Legacy Interrupts Enabled

}

For example:

1. If cfg_interrupt_mmenable[2:0] == 000b, that is, 1 MSI Vector Enabled,
then cfg_interrupt_msi_int = 01h;

2. if cfg_interrupt_mmenable[2:0] == 101b, that is, 32 MSI Vectors Enabled,
then cfg_interrupt_msi_int = {32'b1 << {MSI_Vector#}};

where MSI_Vector# is a 5-bit value and is allowed to be 00000b ≤ MSI_Vector# ≤ 11111b.

If Per-Vector Masking is enabled, first verify that the vector being signaled is not masked in
the Mask register. This is done by reading this register on the Configuration interface (the
core does not look at the Mask register).

MSI-X Mode
The Gen3 Integrated Block for PCIe core optionally supports the MSI-X Capability Structure,
as shown in Figure 3-70. The MSI-X vector table and the MSI-X Pending Bit Array need to be
implemented as part of the user logic, by claiming a BAR aperture.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=189

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 190
PG156 January 29, 2016

Chapter 3: Designing with the Core

Note: Applications that need to generate MSI/MSIX interrupts with traffic class bits not equal to 0
or address translation bits not equal to 0 must use the RQ interface to generate the interrupt
(memory write descriptor).

Designing with Configuration Space Registers and
Configuration Interface
The ports used by configuration registers are described in Table 2-14, page 29. Root Ports
must use the Configuration Port to set up the Configuration Space. Endpoints can also use
the Configuration Port to read and write; however, care must be taken to avoid adverse
system side effects.

The user application must supply the address as a Dword address, not a byte address.

TIP: To calculate the Dword address for a register, divide the byte address by four.

For example:

For the Command/Status register in the PCI Configuration Space Header:

• The Dword address of is 01h.

Note: The byte address is 04h.

For BAR0:

• The Dword address is 04h.

Note: The byte address is 10h.

To read any register in configuration space, the user application drives the register Dword
address onto cfg_mgmt_addr[9:0]. cfg_mgmt_addr[17:10] selects the PCI Function
associated with the configuration register. The core drives the content of the addressed
register onto cfg_mgmt_read_data[31:0]. The value on cfg_mgmt_read_data

X-Ref Target - Figure 3-70

Figure 3-70: MSI-X Mode
X14336

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=190

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 191
PG156 January 29, 2016

Chapter 3: Designing with the Core

[31:0] is qualified by signal assertion on cfg_mgmt_read_write_done. Figure 3-71
illustrates an example with read from the Configuration Space.

To perform any register in configuration space, the user logic places the address on the
cfg_mgmt_addr bus, write data on cfg_mgmt_write_data, byte-valid on
cfg_mgmt_byte_enable [3:0], and asserts the cfg_mgmt_write signal. In response,
the core asserts the cfg_mgmt_read_write_done signal when the write is complete
(which can take several cycles). The user logic must keep cfg_mgmt_addr ,
cfg_mgmt_write_data, cfg_mgmt_byte_enable and cfg_mgmt_write stable until
cfg_mgmt_read_write_done is asserted. The user logic must also deassert
cfg_mgmt_write in the cycle following the cfg_mgmt_read_write_done from the
core.

When the core is configured in the Root Port mode, when you assert
cfg_mgmt_type1_cfg_reg_access input during a write to a Type-1 PCI™ Config register
forces a write into certain read-only fields of the register. This input has no effect when the core
is in the Endpoint mode, or when writing to any register other than a Type-1 Config register.

X-Ref Target - Figure 3-71

Figure 3-71: cfg_mgmt_read_type0_type1

X-Ref Target - Figure 3-72

Figure 3-72: cfg_mgmt_write_type0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=191

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 192
PG156 January 29, 2016

Chapter 3: Designing with the Core

Link Training: 2-Lane, 4-Lane, and 8-Lane
Components
The 2-lane, 4-lane, and 8-lane core can operate at less than the maximum lane width as
required by the PCI Express Base Specification [Ref 2]. Two cases cause core to operate at
less than its specified maximum lane width, as defined in these subsections.

Link Partner Supports Fewer Lanes
When the 2-lane core is connected to a device that implements only 1 lane, the 2-lane core
trains and operates as a 1-lane device using lane 0.

When the 4-lane core is connected to a device that implements 1 lane, the 4-lane core
trains and operates as a 1-lane device using lane 0, as shown in Figure 3-74. Similarly, if the
4-lane core is connected to a 2-lane device, the core trains and operates as a 2-lane device
using lanes 0 and 1.

When the 8-lane core is connected to a device that only implements 4 lanes, it trains and
operates as a 4-lane device using lanes 0-3. Additionally, if the connected device only
implements 1 or 2 lanes, the 8-lane core trains and operates as a 1- or 2-lane device.

X-Ref Target - Figure 3-73

Figure 3-73: cfg_mgmt_write_type1_override

X14335

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=192

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 193
PG156 January 29, 2016

Chapter 3: Designing with the Core

Lane Becomes Faulty
If a link becomes faulty after training to the maximum lane width supported by the core and
the link partner device, the core attempts to recover and train to a lower lane width, if
available. If lane 0 becomes faulty, the link is irrecoverably lost. If any or all of lanes 1–7
become faulty, the link goes into recovery and attempts to recover the largest viable link
with whichever lanes are still operational.

For example, when using the 8-lane core, loss of lane 1 yields a recovery to 1-lane operation
on lane 0, whereas the loss of lane 6 yields a recovery to 4-lane operation on lanes 0-3.
After recovery occurs, if the failed lane(s) becomes alive again, the core does not attempt to
recover to a wider link width. The only way a wider link width can occur is if the link actually
goes down and it attempts to retrain from scratch.

The user_clk clock output is a fixed frequency configured in IP catalog. user_clk does
not shift frequencies in case of link recovery or training down.

Lane Reversal
The integrated block supports limited lane reversal capabilities and therefore provides
flexibility in the design of the board for the link partner. The link partner can choose to lay
out the board with reversed lane numbers and the integrated block continues to link train
successfully and operate normally. The configurations that have lane reversal support are
x8 and x4 (excluding downshift modes). Downshift refers to the link width negotiation
process that occurs when link partners have different lane width capabilities advertised. As
a result of lane width negotiation, the link partners negotiate down to the smaller of the two
advertised lane widths. Table 3-19 describes the several possible combinations including
downshift modes and availability of lane reversal support.

X-Ref Target - Figure 3-74

Figure 3-74: Scaling of 4-Lane Endpoint Block from 4-Lane to 1-Lane Operation

Lane 0 Lane 3Lane 2Lane 1

4-lane Downstream Port

Note: Shaded blocks
indicate disabled lanes.

Lane 0 Lane 3Lane 2Lane 1

Lane 0 Lane 3Lane 2Lane 1

1-lane Downstream Port

Lane 0 Lane 3Lane 2Lane 1

4-lane Integrated Block 4-lane Integrated Block

Upstream DeviceUpstream Device

X12470

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=193

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 194
PG156 January 29, 2016

Chapter 3: Designing with the Core

Table 3-19: Lane Reversal Support

Integrated Block
Advertised
Lane Width

Negotiated
Lane

Width

Lane Number Mapping
(Endpoint Link Partner) Lane

Reversal
SupportedEndpoint Link Partner

x8 x8 Lane 0... Lane 7 Lane 7... Lane 0 Yes

x8 x4 Lane 0... Lane 3 Lane 7... Lane 4 No(1)

x8 x2 Lane 0... Lane 3 Lane 7... Lane 6 No(1)

x4 x4 Lane 0... Lane 3 Lane 3... Lane 0 Yes

x4 x2 Lane 0... Lane 1 Lane 3... Lane 2 No(1)

x2 x2 Lane 0... Lane 1 Lane 1... Lane 0 Yes

x2 x1 Lane 0... Lane 1 Lane 1 No(1)

Notes:
1. When the lanes are reversed in the board layout and a downshift adapter card is inserted between the Endpoint

and link partner, Lane 0 of the link partner remains unconnected (as shown by the lane mapping in this table) and
therefore does not link train.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=194

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 195
PG156 January 29, 2016

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 10]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 9]

• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 11]

• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 13]

Customizing and Generating the Core
This section includes information about using Xilinx tools to customize and generate the
core in the Vivado Design Suite.

IMPORTANT: If you are customizing and generating the core in the Vivado IP Integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 10] for detailed
information. IP Integrator might auto-compute certain configuration values when validating or
generating the design. To check whether the values do change, see the description of the parameter in
this chapter. To view the parameter value you can run the validate_bd_design command in the Tcl
console.

You can customize the Gen3 Integrated Block for PCIe core for use in your design by
specifying values for the various parameters associated with the IP core using the following
steps:

1. Select the IP from the Vivado IP catalog.

2. Double-click the selected IP, or select the Customize IP command from the toolbar or
right-click menu.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=195

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 196
PG156 January 29, 2016

Chapter 4: Design Flow Steps

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 9], and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 11]

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE).
This layout might vary from the current version.

The Customize IP dialog box for the UltraScale Architecture Gen3 Integrated Block for PCIe
FPGAs consists of two modes: Basic Mode and Advanced Mode. To select a mode, use the
Mode drop-down list on the first page of the Customize IP dialog box.

Basic Mode
The Basic mode parameters are explained in this section.

Basic Parameter Settings

The initial customization screen is used to define the basic parameters for the core,
including the component name, reference clock frequency, and silicon type.

Component Name

Base name of the output files generated for the core. The name must begin with a letter and
can be composed of these characters: a to z, 0 to 9, and “_.”

Mode

Allows you to select the Basic or Advanced mode of the configuration of core.

PCIe Device / Port Type

Indicates the PCI Express logical device type.

PCIe Block Location

Selects from the available integrated blocks to enable generation of location-specific
constraint files and pinouts. This selection is used in the default example design scripts.

This option is not available if a Xilinx Development Board is selected.

Number of Lanes

The core requires the selection of the initial lane width. Table 4-1 defines the available
widths and associated generated core. Wider lane width cores can train down to smaller
lane widths if attached to a smaller lane-width device. See Link Training: 2-Lane, 4-Lane, and
8-Lane Components for more information.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=196

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 197
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Maximum Link Speed

The core allows you to select the Maximum Link Speed supported by the device. Table 4-2
defines the lane widths and link speeds supported by the device. Higher link speed cores
are capable of training to a lower link speed if connected to a lower link speed capable
device.

AXI-ST Interface Width

The core allows you to select the Interface Width, as defined in Table 4-3. The default
interface width set in the Customize IP dialog box is the lowest possible interface width.

AXI-ST Interface Frequency

The frequency is set to 250 Mhz.

AXI-ST Alignment Mode

When a payload is present, there are two options for aligning the first byte of the payload
with respect to the datapath. See Data Alignment Options, page 109.

Enable AXI-ST Frame Straddle

The core provides an option to straddle packets on the Requestor Completion interface
when the interface width is 256 bits. See Straddle Option for 256-Bit Interface, page 178.

Enable Client Tag

Enables you to use the client tag.

Table 4-1: Lane Width and Product Generated

Lane Width Product Generated

x8 8-Lane UltraScale FPGA Gen3 Integrated Block for PCI Express

Table 4-2: Lane Width and Link Speed

Lane Width Link Speed

x8 8 Gb/s

Table 4-3: Lane Width, Link Speed, and Interface Width

Lane Width Link Speed (Gb/s) Interface Width (Bits)

x8 8.0 256

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=197

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 198
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Reference Clock Frequency

Selects the frequency of the reference clock provided on sys_clk. For important
information about clocking the core, see Clocking.

Xilinx Development Board

Selects the Xilinx Development Board to enable the generation of Xilinx Development
Board-specific constraints files.

Enable External PIPE Interface

When selected, this option enables an external third-party bus functional model (BFM) to
connect to the PIPE interface of integrated block for PCIe. For details, see XAPP1184
[Ref 17], which provides examples of using Gen2 and Gen3 cores in Endpoint configurations.
Refer to these designs to connect the External PIPE Interface ports of the UltraScale device
core to third-party BFMs.

Additional Transceiver Control and status Ports

When this option is selected, transceiver debug and status ports are brought to the core
boundary level.

Capabilities

The Capabilities settings are explained in this section.

Enable Physical Function 0

The core implements an additional physical function (PF).

The integrated block implements up to six virtual functions that are associated to PF0 (if
enabled).

PF0 Legacy Interrupt PIN

This parameter allows you to select the Interrupt pin INTA, INTB, INTC and INTD. The default
value is INTA.

MPS

This field indicates the maximum payload size that the device or function can support for
TLPs. This is the value advertised to the system in the Device Capabilities Register.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=198

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 199
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Extended Tag

This field indicates the maximum supported size of the Tag field as a Requester. The options
are:

• When selected, 6-bit Tag field support (64 tags)

• When deselected, 5-bit Tag field support (32 tags)

Slot Clock Configuration

Enables the Slot Clock Configuration bit in the Link Status register. When you select this
option, the link is synchronously clocked. For more information on clocking options, see
Clocking.

Identity Settings (PF0 IDs and PF1 IDs)

The Identity Settings customize the IP initial values, class code, and Cardbus CIS pointer
information. The page for physical function 1 (PF1) is only displayed when PF1 is enabled.

PF0 ID Initial Values

• Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers
are assigned by the PCI Special Interest Group to guarantee that each identifier is
unique. The default value, 10EEh, is the Vendor ID for Xilinx. Enter a vendor
identification number here. FFFFh is reserved.

• Device ID: A unique identifier for the application; the default value, which depends on
the configuration selected, is 70<link speed><link width>h. This field can be any value;
change this value for the application.

• Revision ID: Indicates the revision of the device or application; an extension of the
Device ID. The default value is 00h; enter values appropriate for the application.

• Subsystem Vendor ID: Further qualifies the manufacturer of the device or application.
Enter a Subsystem Vendor ID here; the default value is 10EEh. Typically, this value is the
same as Vendor ID. Setting the value to 0000h can cause compliance testing issues.

• Subsystem ID: Further qualifies the manufacturer of the device or application. This
value is typically the same as the Device ID; the default value depends on the lane
width and link speed selected. Setting the value to 0000h can cause compliance testing
issues.

Class Code

The Class Code identifies the general function of a device, and is divided into three
byte-size fields:

• Base Class: Broadly identifies the type of function performed by the device.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=199

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 200
PG156 January 29, 2016

Chapter 4: Design Flow Steps

• Sub-Class: More specifically identifies the device function.

• Interface: Defines a specific register-level programming interface, if any, allowing
device-independent software to interface with the device.

Class code encoding can be found at the PCI SIG website.

Class Code Look-up Assistant

The Class Code Look-up Assistant provides the Base Class, Sub-Class and Interface values
for a selected general function of a device. This Look-up Assistant tool only displays the
three values for a selected function. You must enter the values in Class Code for these
values to be translated into device settings.

Base Address Registers (PF0 and PF1)

The Base Address Registers (BARs) screens set the base address register space for the
Endpoint configuration. Each BAR (0 through 5) configures the BAR Aperture Size and
Control attributes of the physical function.

Base Address Register Overview

In Endpoint configuration, the core supports up to six 32-bit BARs or three 64-bit BARs, and
the Expansion read-only memory (ROM) BAR. In Root Port configuration, the core supports
up to two 32-bit BARs or one 64-bit BAR, and the Expansion ROM BAR.

BARs can be one of two sizes:

• 32-bit BARs: The address space can be as small as 128 bytes or as large as 2 gigabytes.
Used for Memory to I/O.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as 256
gigabytes. Used for Memory only.

All BAR registers share these options:

• Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

• Type: BARs can either be I/O or Memory.

° I/O: I/O BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

° Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible.

• Size: The available Size range depends on the PCIe Device/Port Type and the Type of
BAR selected. Table 4-4 lists the available BAR size ranges.

Send Feedback

http://www.xilinx.com
http://www.pcisig.com/
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=200

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 201
PG156 January 29, 2016

Chapter 4: Design Flow Steps

• Prefetchable: Identifies the ability of the memory space to be prefetched.

• Value: The value assigned to the BAR based on the current selections.

For more information about managing the Base Address Register settings, see Managing
Base Address Register Settings.

Expansion ROM Base Address Register

If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB. According
to the PCI 3.0 Local Bus Specification [Ref 2], the maximum size for the Expansion ROM BAR
should be no larger than 16 MB. Selecting an address space larger than 16 MB can result in
a non-compliant core.

Managing Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate
settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or I/O.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum
I/O space allowed is 16 bytes; use of I/O space should be avoided in all new designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading,
as from a RAM). Byte-write operations can be merged into a single double word write, when
applicable.

When configuring the core as an Endpoint for PCIe (non-Legacy), 64-bit addressing must be
supported for all BARs (except BAR5) that have the prefetchable bit set. 32-bit addressing
is permitted for all BARs that do not have the prefetchable bit set. The prefetchable
bit-related requirement does not apply to a Legacy Endpoint. The minimum memory
address range supported by a BAR is 128 bytes for a PCI Express Endpoint and 16 bytes for
a Legacy PCI Express Endpoint.

Table 4-4: BAR Size Ranges for Device Configuration

PCIe Device / Port Type BAR Type BAR Size Range

PCI Express Endpoint
32-bit Memory 128 bytes (B) – 2 gigabytes (GB)

64-bit Memory 128 B – 256 GB

Legacy PCI Express Endpoint

32-bit Memory 128 B – 2 GB

64-bit Memory 128 B – 256 GB

I/O 16 B – 2 GB

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=201

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 202
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A base
address register is disabled by deselecting unused BARs in the Customize IP dialog box.

Legacy/MSI Capabilities

On this page, you set the Legacy Interrupt Settings and MSI Capabilities for all applicable
physical and virtual functions.

Legacy Interrupt Settings

• Enable MSI Per Vector Masking: Enables MSI Per Vector Masking Capability of all the
Physical functions enabled.

Note: Enabling this option for individual physical functions is not supported.

• PF0/PF1 Interrupt PIN: Indicates the mapping for Legacy Interrupt messages. A
setting of None indicates no Legacy Interrupts are used.

MSI Capabilities

• PF0/PF1 Enable MSI Capability Structure: Indicates that the MSI Capability structure
exists.

Note: Although it is possible not to enable MSI or MSI-X, the result would be a non-compliant
core. The PCI Express Base Specification [Ref 2] requires that MSI, MSI-X, or both be enabled.

• Multiple Message Capable: Selects the number of MSI vectors to request from the
Root Complex.

Advanced Mode
The Customize IP dialog box provides configuration options described in this section.

Basic

The Basic page for Advanced mode includes some additional settings. The following
parameters are on the Basic page when the Advanced mode is selected.

Use the dedicated PERST routing resources

Enables sys_rst dedicated routing for the PCIE_X0Y0 block.

System reset polarity

This parameter is used to set the polarity of the sys_rst ACTIVE_HIGH or ACTIVE_LOW.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=202

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 203
PG156 January 29, 2016

Chapter 4: Design Flow Steps

PCIe DRP Ports

When checked, enables the PCIe DRP interface.

GT Channel DRP

When checked, enables the GT channel DRP interface.

Enable RX Message INTFC

When checked, messages are routed to the cfg_msg_received signal at the Receive
Message Interface. Otherwise, they are routed to the CQ Interface

Enable GT Quad Selection

This parameter is used to enable the device/package migration. See Package Migration of
UltraScale Architecture PCI Express Designs.

GT Quad

This parameter has drop-down menu to select the desired GTH quad. This is available only
when Enable GT Quad Selection is checked.

CORE CLOCK Frequency

This parameter allows you to select the core clock frequencies.

For Gen3 link speed:

• The values of 250 MHz and 500 MHz are available for selection for speed grades -1, -2,
-3, -1H and -1HV, and for a link width other than x8. For this configuration, this
parameter is available when Advanced mode is selected.

• For speed grades -1, -2, -3, -1H and -1HV, and for a link width of x8, this parameter
defaults to 500 MHz and is not available for selection.

• For a -1L or -1LV speed grade and a link width other than x8, this parameter defaults to
250 MHz and is not available for selection.

For Gen1 and Gen2 link speeds:

• This parameter defaults to 250 MHz and is not available for selection.

Note: When a -1L or -1LV speed grade is selected, and non production parts of XCVU440 (ES2),
XCKU060 (ES2) and XCKU115 (ES2) is selected, this parameter defaults to 250 MHz and is not
available for selection.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=203

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 204
PG156 January 29, 2016

Chapter 4: Design Flow Steps

PLL Selection

This parameter allows you to select the CPLL or QPLL1 for Gen2 line rates. This parameter is
available in the GT Settings tab. Table 4-5 shows the options and default for each line
speed.

PPM Offset between receiver and transmitter

Specifies the Parts Per Million (PPM) offset between received data and transmitted data.
This parameter is available in the GT Settings tab.

Spread spectrum clocking

Specifies the spread spectrum clocking modulation in the PPM. This parameter is available
in GT Settings tab.

Insertion loss at Nyquist

Indicate the transmitter to receiver insertion loss at the Nyquist frequency, in dB. This
parameter is available in GT Settings tab.

Link Partner TX Preset

It is not advisable to change the default value of 4. Preset value of 5 might work better on
some systems. This parameter is available on GT Settings tab.

Receiver Detect

Indicates the type of Receiver Detect Default or Falling Edge. This parameter is available on
the GT Settings Tab when Advanced mode is selected. This parameter is available only for
Production devices. When the Falling Edge option is selected, the GT Channel DRP
Parameter on the Basic tab (in Advanced mode) is disabled. For more information about this
option, see the UltraScale Architecture GTH Transceivers User Guide (UG576) [Ref 8].

Capabilities

The Capabilities settings for Advanced mode contains three additional parameters to those
for Basic mode and are described below.

Table 4-5: PLL Type

Link Speed PLL Type Comments

2.5_GT/s CPLL The default is CPLL, and not available for selection.

5.0_GT/s QPLL1, CPLL The default is QPLL1, and available for selection.

8.0_GT/s QPLL1 The default is QPLL1, and not available for selection.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=204

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 205
PG156 January 29, 2016

Chapter 4: Design Flow Steps

SRIOV Capabilities

Enables Single Root Port I/O Virtualization (SRIOV) capabilities. The integrated block
implements extended Single Root Port I/O Virtualization PCIe. When this is enabled, SRIOV
is implemented for both PF0 and PF1 (if selected).

Function Level Reset

Indicates that the Function Level Reset is enabled. You can reset a specific device function.
This applicable only to Endpoint configurations.

Device Capabilities Registers 2

Specifies options for AtomicOps and TPH Completer support. See the Device Capability
register 2 description in Chapter 7 of the PCI Express Base Specification [Ref 2] for more
information. These settings apply to both physical functions if PF1 is enabled.

PF0 ID and PF1 ID

The Identity settings (PF0 and PF1 Initial ID) are the same for both Basic and Advanced
modes.

PF0 BAR and PF1 BAR

The PF0 and PF1 BAR settings are the same for both Basic and Advanced modes.

SRIOV Config (PF0 and PF1)

SRIOV Capability Version

Indicates the 4-bit SRIOV Capability version for the physical function.

SRIOV Function Select

Indicates the number of virtual functions associated to the physical function. A maximum of
six virtual functions are available to PF0 and PF1.

SRIOV Functional Dependency Link

Indicates the SRIOV Functional Dependency Link for the physical function. The
programming model for a device can have vendor-specific dependencies between sets of
functions. The Function Dependency Link field is used to describe these dependencies.

SRIOV First VF Offset

Indicates the offset of the first virtual function (VF) for the physical function (PF). PF0 always
resides at Offset 0, and PF1 always resides at Offset 1. Six virtual functions are available in
the Gen3 Integrated Block for PCIe core and reside at the function number range 64–69.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=205

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 206
PG156 January 29, 2016

Chapter 4: Design Flow Steps

virtual functions are mapped sequentially with VFs for PF0 taking precedence. For example,
if PF0 has two virtual functions and PF1 has three, the following mapping occurs:

The PFx_FIRST_VF_OFFSET is calculated by taking the first offset of the virtual function
and subtracting that from the offset of the physical function.

PFx_FIRST_VF_OFFSET = (PFx first VF offset - PFx offset)

In the example above, the following offsets are used:

PF0_FIRST_VF_OFFSET = (64 - 0) = 64
PF1_FIRST_VF_OFFSET = (66 - 1) = 65

PF0 is always 64 assuming that PF0 has one or more virtual functions. The initial offset
for PF1 is a function of how many VFs are attached to PF0 and is defined in the following
pseudo code:

PF1_FIRST_VF_OFFSET = 63 + NUM_PF0_VFS

SRIOV VF Device ID

Indicates the 16-bit Device ID for all virtual functions associated with the physical function.

SRIOV Supported Page Size

Indicates the page size supported by the physical function. This physical function supports
a page size of 2n+12, if bit n of the 32-bit register is set.

PF0 SRIOV BARs and PF1 SRIVO BARs

The SRIOV Base Address Registers (BARs) set the base address register space for the
Endpoint configuration. Each BAR (0 through 5) configures the SRIOV BAR Aperture Size
and SRIOV Control attributes.

SRIOV Base Address Register Overview

In Endpoint configuration, the core supports up to six 32-bit BARs or three 64-bit BARs. In Root
Port configuration, the core supports up to two 32-bit BARs or one 64-bit BAR. SRIOV BARs can
be one of two sizes:

Table 4-6: Example Virtual Function Mappings

Physical Function Virtual Function Function Number Range

PF0 VF0 64

PF0 VF1 65

PF1 VF0 66

PF1 VF1 67

PF1 VF1 68

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=206

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 207
PG156 January 29, 2016

Chapter 4: Design Flow Steps

• 32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes.
Used for memory to I/O.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as
256 gigabytes. Used for memory only.

All SRIOV BAR registers have these options:

• Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

• Type: SRIOV BARs can either be I/O or Memory.

° I/O: I/O BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

° Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible.

• Size: The available size range depends on the PCIe device/port type and the type of
BAR selected. Table 4-7 lists the available BAR size ranges.

• Prefetchable: Identifies the ability of the memory space to be prefetched.

• Value: The value assigned to the BAR based on the current selections.

For more information about managing the SRIOV Base Address Register settings, see
Managing Base Address Register Settings.

Managing SRIOV Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate
Customize IP dialog box settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or I/O.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum
I/O space allowed is 16 bytes. I/O space should be avoided in all new designs.

Table 4-7: SRIOV BAR Size Ranges for Device Configuration

PCIe Device / Port Type BAR Type BAR Size Range

PCI Express Endpoint
32-bit Memory 128 B – 2 GB

64-bit Memory 128 B – 256 GB

Legacy PCI Express Endpoint

32-bit Memory 16 B – 2 GB

64-bit Memory 16 B – 256 GB

I/O 16 B – 2 GB

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=207

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 208
PG156 January 29, 2016

Chapter 4: Design Flow Steps

A memory space is prefetchable if there are no side effects on reads (that is, data is not
destroyed by reading, as from RAM). Byte-write operations can be merged into a single
double-word write, when applicable.

When configuring the core as an Endpoint for PCIe (non-Legacy), 64-bit addressing must be
supported for all SRIOV BARs (except BAR5) that have the prefetchable bit set. 32-bit
addressing is permitted for all SRIOV BARs that do not have the prefetchable bit set. The
prefetchable bit related requirement does not apply to a Legacy Endpoint. The minimum
memory address range supported by a BAR is 128 bytes for a PCI Express Endpoint and 16
bytes for a Legacy PCI Express Endpoint.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources.
Disable base address register by deselecting unused BARs in the Customize IP dialog box.

Legacy/MSI Capabilities

This page is the same as that of Basic mode.

MSI-X Capabilities

Available in Advanced mode only.

• Enable MSIx Capability Structure: Indicates that the MSI-X Capability structure exists.

Note: The Capability Structure needs at least one Memory BAR to be configured. You must
maintain the MSI-X Table and Pending Bit Array in the application.

• MSIx Table Settings: Defines the MSI-X Table structure.

° Table Size: Specifies the MSI-X Table size.

° Table Offset: Specifies the offset from the Base Address Register that points to the
base of the MSI-X Table.

° BAR Indicator: Indicates the Base Address Register in the Configuration Space
used to map the function in the MSI-X Table onto memory space. For a 64-bit Base
Address Register, this indicates the lower DWORD.

• MSIx Pending Bit Array (PBA) Settings: Defines the MSI-X Pending Bit Array (PBA)
structure.

° PBA Offset: Specifies the offset from the Base Address Register that points to the
base of the MSI-X PBA.

° PBA BAR Indicator: Indicates the Base Address Register in the Configuration Space
used to map the function in the MSI-X PBA onto Memory Space.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=208

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 209
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Power Management

The Power Management page includes settings for the Power Management registers, power
consumption, and power dissipation options. These settings apply to both physical
functions, if PF1 is enabled.

• D1 Support: Indicates that the function supports the D1 Power Management State. See
section 3.2.3 of the PCI Bus Power Management Interface Specification Revision 1.2
[Ref 2].

• PME Support From: Indicates the power states in which the function can assert
cfg_pm_wake. See section 3.2.3 of the PCI Bus Power Management Interface
Specification Revision 1.2 [Ref 2].

• BRAM Configuration Options: Specify the number of receive block RAMs used for the
solution. The table displays the number of receiver credits available for each packet
type.

Extended Capabilities 1 and Extended Capabilities 2

The PCIe Extended Capabilities allow you to enable PCI Express Extended Capabilities. The
Advanced Error Reporting Capability (offset 0x100h) is always enabled. The Customize IP
dialog box sets up the link list based on the capabilities enabled. After enabling, you must
configure the capability by setting the applicable attributes in the core top-level defined in
Output Generation.

• Device Serial Number Capability: An optional PCIe Extended Capability containing a
unique Device Serial Number. When this Capability is enabled, the DSN identifier must
be presented on the Device Serial Number input pin of the port. This Capability must
be turned on to enable the Virtual Channel and Vendor Specific Capabilities

• Virtual Channel Capability: An optional PCIe Extended Capability which allows the
user application to be operated in TCn/VC0 mode. Checking this allows Traffic Class
filtering to be supported. This capability only exists for physical function 0.

• Reject Snoop Transactions (Root Port Configuration Only): When enabled, any
transactions for which the No Snoop attribute is applicable, but is not set in the TLP
header, can be rejected as an Unsupported Request.

• Enable AER Capability: Optional PCIe Extended Capability that allows Advanced Error
Reporting. This capability is always enabled.

Additional Optional Capabilities

• Enable ARI: Allows Alternate Requester ID. This capability is automatically enabled and
should not be disabled if SRIOV is enabled.

• Enable PB: Implements the Power Budgeting Enhanced capability header.

• Enable RBAR: Implements the Resizable BAR capability.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=209

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 210
PG156 January 29, 2016

Chapter 4: Design Flow Steps

• Enable LTR: Implements the Latency Tolerance Reporting capability.

• Enable DPA: Implements Dynamic Power Allocation capability.

• Enable TPH: Implements Transaction Processing Hints capability.

Shared Logic

Enables you to share common blocks across multiple instantiations by selecting one or
more of the options on this page. For more information, see Shared Logic in Chapter 3.

GT Settings

Settings in this page allow you to customize specific transceiver settings that are normally
not accessible.

PLL Selection (only available when Gen2 link speed is selected) allows for either the QPLL
or CPLL to be selected as the clock source. This feature is useful when additional protocols
are desired to be in the same GT Quad when operating at Gen2 links speeds. Gen3 speeds
require the QPLL, and Gen1 speeds always use the CPLL.

IMPORTANT: The remainder of the settings should not be modified unless instructed to do so by Xilinx.

Core Interface Parameters

You can select the core interface parameters. By default, all ports are brought out. You can
disable some interfaces if they are not used. When disabled, the interfaces (ports) are
removed from the core top.

RECOMMENDED: For a typical use case, do not disable the interfaces. Disable the ports only in special
cases.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=210

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 211
PG156 January 29, 2016

Chapter 4: Design Flow Steps

.
X-Ref Target - Figure 4-1

Figure 4-1: Core Interfaces Parameters

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=211

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 212
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Tansmit FC Interface

Enables you to request which flow control information the core provides. When you disable
the Transmit Flow Control (FC) Interface option, the following ports are removed:

• pcie_tfc_nph_av

• pcie_tfc_npd_av

Config FC Interface

Enables you to control the configuration flow control for the UltraScale Architecture Gen3
Integrated Block for PCIe core. When you disable the Config Flow Control (FC) Interface
option, the following ports are removed from the core:

• cfg_fc_ph

• cfg_fc_pd

• cfg_fc_nph

• cfg_fc_npd

• cfg_fc_cplh

• cfg_fc_cpld

• cfg_fc_sel

Config External Interface

Allows the core to transfer configuration information with the user application when
externally implemented configuration registers are implemented. When you disable the
Config Ext Interface option, the following ports are removed from the core:

• cfg_ext_read_received

• cfg_ext_write_received

• cfg_ext_register_number

• cfg_ext_function_number

• cfg_ext_write_data

• cfg_ext_write_byte_enable

• cfg_ext_read_data

• cfg_ext_read_data_valid

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=212

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 213
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Config Status Interface

Provides information on how the core is configured. When you disable the Config Status
Interface option, the following ports are removed from the core:

• cfg_phy_link_down

• cfg_phy_link_status

• cfg_negotiated_width

• cfg_current_speed

• cfg_max_payload

• cfg_max_read_req

• cfg_function_status

• cfg_vf_status

• cfg_function_power_state

• cfg_vf_power_state

• cfg_link_power_state

• cfg_err_cor_out

• cfg_err_nonfatal_out

• cfg_err_fatal_out

• cfg_ltr_enable

• cfg_ltssm_state

• cfg_rcb_status

• cfg_dpa_substate_change

• cfg_obff_enable

• cfg_pl_status_change

• cfg_tph_requester_enable

• cfg_tph_st_mode

• cfg_vf_tph_requester_enable

• cfg_vf_tph_st_mode

• pcie_rq_seq_num

• pcie_rq_seq_num_vld

• pcie_cq_np_req_count

• pcie_rq_tag

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=213

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 214
PG156 January 29, 2016

Chapter 4: Design Flow Steps

• pcie_rq_tag_vld

• pcie_cq_np_req

Per Function Status Interface

Provides status data as requested by the user application through the selected function.
When you disable the Per Function Status Interface option, the following ports are removed
from the core:

• cfg_per_func_status_control

• cfg_per_func_status_data

Config Management Interface

Used to read and write to the Configuration Space registers. When you disable the Config
Management Interface option, the following ports are removed from the core:

• cfg_mgmt_addr

• cfg_mgmt_write

• cfg_mgmt_write_data

• cfg_mgmt_byte_enable

• cfg_mgmt_read

• cfg_mgmt_read_data

• cfg_mgmt_read_write_done

• cfg_mgmt_type1_cfg_reg_access

Receive Message Interface

Indicates to the logic that a decodable message from the link, the parameters associated
with the data, and type of message have been received. When you disable the Receive
Message Interface option, the following ports are removed from the core:

• cfg_msg_received

• cfg_msg_received_data

• cfg_msg_received_type

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=214

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 215
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Config Transmit Message Interface

Used by the user application to transmit messages to the PCIe Gen3 core. When you disable
the Config Transmit Message Interface option, the following ports are removed from the
core:

• cfg_msg_transmit

• cfg_msg_transmit_type

• cfg_msg_transmit_data

• cfg_msg_transmit_done

Physical Layer Interface

The Physical Layer (PL) Interface parameter is set to false by default (unchecked), so these
ports do not appear at the core boundary. To enable these ports, turn on this parameter.

• pl_eq_in_progress

• pl_eq_phase

• pl_eq_reset_eieos_count

• pl_gen2_upstream_prefer_deemph

Config Interface

This parameter is set to false by default (unchecked), so these ports do not appear at the
core boundary. To enable these ports, turn on this parameter.

• conf_req_data

• conf_req_ready

• conf_req_reg_num

• conf_req_type

• conf_req_valid

• conf_resp_rdata

• conf_resp_valid

Config Control Interface

Allows a broad range of information exchange between the user application and the core.
When you disable the Config Control Interface option, the following ports are removed:

• cfg_hot_reset_in

• cfg_hot_reset_out

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=215

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 216
PG156 January 29, 2016

Chapter 4: Design Flow Steps

• cfg_config_space_enable

• cfg_per_function_update_done

• cfg_per_function_number

• cfg_per_function_output_request

• cfg_dsn

• cfg_ds_port_number

• cfg_ds_bus_number

• cfg_ds_device_number

• cfg_ds_function_number

• cfg_power_state_change_ack

• cfg_power_state_change_interrupt

• cfg_err_cor_in

• cfg_err_uncor_in

• cfg_flr_done

• cfg_vf_flr_done

• cfg_flr_in_process

• cfg_vf_flr_in_process

• cfg_req_pm_transition_l23_ready

• cfg_link_training_enable

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 9].

Constraining the Core
This section contains information about constraining the core in the Vivado® Design Suite.

Required Constraints
The UltraScale Architecture Gen3 Integrated Block for PCIe solution requires the
specification of timing and other physical implementation constraints to meet specified
performance requirements for PCI Express®. These constraints are provided with the
Endpoint and Root Port solutions in a Xilinx Design Constraints (XDC) file. Pinouts and
hierarchy names in the generated XDC correspond to the provided example design.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=216

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 217
PG156 January 29, 2016

Chapter 4: Design Flow Steps

IMPORTANT: If the example design top file is not used, copy the IBUFDS_GTE3 instance for the
reference clock, IBUF Instance for sys_rst and also the location and timing constraints associated with
them into your local design top.

To achieve consistent implementation results, an XDC containing these original, unmodified
constraints must be used when a design is run through the Xilinx tools. For additional
details on the definition and use of an XDC or specific constraints, see Vivado Design Suite
User Guide: Using Constraints (UG903) [Ref 12].

Constraints provided with the integrated block solution have been tested in hardware and
provide consistent results. Constraints can be modified, but modifications should only be
made with a thorough understanding of the effect of each constraint. Additionally, support
is not provided for designs that deviate from the provided constraints.

Device, Package, and Speed Grade Selections
The device selection portion of the XDC informs the implementation tools which part,
package, and speed grade to target for the design.

IMPORTANT: Because Gen3 Integrated Block for PCIe cores are designed for specific part and package
combinations, this section should not be modified.

The device selection section always contains a part selection line, but can also contain part
or package-specific options. An example part selection line follows:

CONFIG PART = XCKU040-ffva1156-3-e-es1

Clock Frequencies
See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Clock Management
See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Clock Placement
See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Banking
This section is not applicable for this IP core.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=217

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 218
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
This section is not applicable for this IP core.

Relocating the Integrated Block Core
By default, the IP core-level constraints lock block RAMs, transceivers, and the PCIe block to
the recommended location. To relocate these blocks, you must override the constraints for
these blocks in the XDC constraint file. To do so:

1. Copy the constraints for the block that needs to be overwritten from the core-level XDC
constraint file.

2. Place the constraints in the user XDC constraint file.

3. Update the constraints with the new location.

The user XDC constraints are usually scoped to the top-level of the design; therefore, you
must ensure that the cells referred by the constraints are still valid after copying and
pasting them. Typically, you need to update the module path with the full hierarchy name.

Note: If there are locations that need to be swapped (i.e., the new location is currently being
occupied by another module), there are two ways to do this.

• If there is a temporary location available, move the first module out of the way to a
new temporary location first. Then, move the second module to the location that was
occupied by the first module. Then, move the first module to the location of the
second module. These steps can be done in XDC constraint file.

• If there is no other location available to be used as a temporary location, use the
reset_property command from Tcl command window on the first module before
relocating the second module to this location. The reset_property command
cannot be done in XDC constraint file and must be called from the Tcl command file or
typed directly into the Tcl Console.

Simulation
For comprehensive information about Vivado simulation components, as well as
information about using supported third-party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 13].

For information regarding simulating the example design, see Simulating the Example
Design in Chapter 5.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=218

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 219
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Pipe Mode Simulation
The UltraScale Architecture Gen3 Integrated Block for PCIe core supports the PIPE mode
simulation where the PIPE interface of the core is connected to the PIPE interface of the link
partner. This mode increases the simulation speed.

Use the Enable External PIPE Interface option on the Basic page of the Customize IP
dialog box to enable PIPE mode simulation in the current Vivado Design Suite solution
example design, in either Endpoint mode or Root Port mode. The External PIPE Interface
signals are generated at the core boundary for access to the external device. Enabling this
feature also provides the necessary hooks to use third-party PCI Express VIPs/BFMs instead
of the Root Port model provided with the example design.

For details, see Enable External PIPE Interface, page 198.

Table 4-8 and Table 4-9 describe the PIPE bus signals available at the top level of the core
and their corresponding mapping inside the EP core (pcie_top) PIPE signals.

IMPORTANT: A new file, xil_sig2pipe.v, is delivered in the simulation directory, and the file
replaces phy_sig_gen.v. BFM/VIPs should interface with the xil_sig2pipe instance in board.v.

Table 4-8: Common In/Out Commands and Endpoint PIPE Signals Mappings

In Commands Endpoint PIPE Signals
Mapping Out Commands Endpoint PIPE Signals

Mapping

common_commands_in[25:0] not used common_commands_out[0] pipe_clk(1)

common_commands_out[2:1] pipe_tx_rate_gt(2)

common_commands_out[3] pipe_tx_rcvr_det_gt

common_commands_out[6:4] pipe_tx_margin_gt

common_commands_out[7] pipe_tx_swing_gt

common_commands_out[8] pipe_tx_reset_gt

common_commands_out[9] pipe_tx_deemph_gt

common_commands_out[16:10] not used(3)

Notes:
1. pipe_clk is an output clock based on the core configuration. For Gen1 rate, pipe_clk is 125 MHz. For Gen2 and Gen3,

pipe_clk is 250 MHz.
2. pipe_tx_rate_gt indicates the pipe rate (2’b00-Gen1, 2’b01-Gen2 and 2’b10-Gen3).
3. This ports functionality has been deprecated and can be left unconnected.

Table 4-9: Input/Output Buses With Endpoint PIPE Signals Mapping

Input Bus Endpoint PIPE Signals
Mapping Output Bus Endpoint PIPE Signals

Mapping

pipe_rx_0_sigs[31:0] pipe_rx0_data_gt pipe_tx_0_sigs[31: 0] pipe_tx0_data_gt

pipe_rx_0_sigs[33:32] pipe_rx0_char_is_k_gt pipe_tx_0_sigs[33:32] pipe_tx0_char_is_k_gt

pipe_rx_0_sigs[34] pipe_rx0_elec_idle_gt pipe_tx_0_sigs[34] pipe_tx0_elec_idle_gt

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=219

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 220
PG156 January 29, 2016

Chapter 4: Design Flow Steps

Post-Synthesis/Post-Implementation Netlist Simulation
The UltraScale Architecture Gen3 Integrated Block for PCIe core supports post-synthesis/
post-implementation netlist functional simulations. However, some configurations do not
support this feature in this release. See Table 4-10 for the configuration support of netlist
functional simulations.

Note: Post-synthesis/implementation netlist timing simulations are not supported for any of the
configurations this release.

Post-Synthesis Netlist Functional Simulation

To run a post-synthesis netlist functional simulation:

1. Generate the core with required configuration

2. Open the example design and run Synthesis

3. After synthesis is completed, in the Flow Navigator, right-click the Run Simulation
option and select Run Post-Synthesis Functional Simulation.

Post-Implementation Netlist Functional Simulation

To run post-implementation netlist functional simulations:

1. Complete the above steps post-synthesis netlist function simulation.

pipe_rx_0_sigs[35] pipe_rx0_data_valid_gt pipe_tx_0_sigs[35] pipe_tx0_data_valid_gt

pipe_rx_0_sigs[36] pipe_rx0_start_block_gt pipe_tx_0_sigs[36] pipe_tx0_start_block_gt

pipe_rx_0_sigs[38:37] pipe_rx0_syncheader_gt pipe_tx_0_sigs[38:37] pipe_tx0_syncheader_gt

pipe_rx_0_sigs[83:39] not used pipe_tx_0_sigs[39] pipe_tx0_polarity_gt

pipe_tx_0_sigs[41:40] pipe_tx0_powerdown_gt

pipe_tx_0_sigs[69:42] not used(1)

Notes:
1. This ports functionality has been deprecated and can be left unconnected.

Table 4-9: Input/Output Buses With Endpoint PIPE Signals Mapping (Cont’d)

Input Bus Endpoint PIPE Signals
Mapping Output Bus Endpoint PIPE Signals

Mapping

Table 4-10: Configuration Support for Functional Simulation

Configuration Verilog VHDL External PIPE
Interface Mode

Shared Logic
in Core

Shared Logic in
Example Design

Endpoint Yes
Yes (Except Tandem mode

with External Startup
Primitive selected)

No Yes Yes

Root Port Not Supported at this time

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=220

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 221
PG156 January 29, 2016

Chapter 4: Design Flow Steps

2. Run the implementation for the generated example design.

3. After implementation is completed, in the Flow Navigator, right-click the Run
Simulation option and select Run Post-Implementation Functional Simulation.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 9].

For information regarding synthesizing and implementing the example design, see
Synthesizing and Implementing the Example Design in Chapter 5.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=221

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 222
PG156 January 29, 2016

Chapter 5

Example Design
This chapter contains information about the example design provided in the Vivado®
Design Suite.

Overview of the Example Design
This section provides an overview of the UltraScale Architecture Gen3 Integrated Block for
PCIe example design.

Integrated Block Endpoint Configuration Overview
The example simulation design for the Endpoint configuration of the integrated block
consists of two discrete parts:

• The Root Port Model, a test bench that generates, consumes, and checks PCI Express®
bus traffic.

• The Programmed Input/Output (PIO) example design, a completer application for PCI
Express. The PIO example design responds to Read and Write requests to its memory
space and can be synthesized for testing in hardware.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=222

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 223
PG156 January 29, 2016

Chapter 5: Example Design

Simulation Design Overview

For the simulation design, transactions are sent from the Root Port Model to the core
(configured as an Endpoint) and processed by the PIO example design. Figure 5-1
illustrates the simulation design provided with the core. For more information about the
Root Port Model, see Root Port Model Test Bench for Endpoint, page 245.

Implementation Design Overview

The implementation design consists of a simple PIO example that can accept read and write
transactions and respond to requests, as illustrated in Figure 5-2. Source code for the
example is provided with the core. For more information about the PIO example design, see
Programmed Input/Output: Endpoint Example Design, page 224.

X-Ref Target - Figure 5-1

Figure 5-1: Simulation Example Design Block Diagram

Test
Program

Endpoint DUT for PCI Express

PCI Express Fabric

Endpoint Core for
PCI Express

PIO Design

dsport

usrapp_tx

usrapp_com

usrapp_rx

Output
Logs

Root Port
Model TPI for

Express

X12471

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=223

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 224
PG156 January 29, 2016

Chapter 5: Example Design

Example Design Elements

The PIO example design elements include:

• Core wrapper

• An example Verilog HDL wrapper (instantiates the cores and example design)

• A customizable demonstration test bench to simulate the example design

The example design has been tested and verified with Vivado Design Suite and these
simulators:

• Vivado simulator

• Mentor Graphics QuestaSim

• Cadence Incisive Enterprise Simulator (IES)

• Synopsys Verilog Compiler Simulator (VCS)

For the supported versions of these tools, see the Xilinx Design Tools: Release Notes
Guide(2).

Programmed Input/Output: Endpoint Example Design
Programmed Input/Output (PIO) transactions are generally used by a PCI Express system
host CPU to access Memory Mapped Input/Output (MMIO) and Configuration Mapped
Input/Output (CMIO) locations in the PCI Express logic. Endpoints for PCI Express accept

X-Ref Target - Figure 5-2

Figure 5-2: Implementation Example Design Block Diagram

X12459

UltraScale FPGA Gen3 Integrated Block for PCI Express (Configured as an Endpoint)

EP_TX EP_RX

PIO_TO_CTRLep_io_mem

ep_mem32

ep_mem64

ep_mem_erom

EP_MEM

PIO_EP

PIO

PIO_INTR_CTRL

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=224

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 225
PG156 January 29, 2016

Chapter 5: Example Design

Memory and I/O Write transactions and respond to Memory and I/O Read transactions with
Completion with Data transactions.

The PIO example design (PIO design) is included with the core in Endpoint configuration
generated by the Vivado IP catalog, which allows you to bring up your system board with a
known established working design to verify the link and functionality of the board.

The PIO design Port Model is shared by the core, Endpoint Block Plus for PCI Express, and
Endpoint PIPE for PCI Express solutions. This section generically represents all solutions
using the name Endpoint for PCI Express (or Endpoint for PCIe™).

System Overview

The PIO design is a simple target-only application that interfaces with the Endpoint for the
PCIe core Transaction (AXI4-Stream) interface and is provided as a starting point for you to
build your own designs. These features are included:

• Four transaction-specific 2 KB target regions using the internal FPGA block RAMs,
providing a total target space of 8,192 bytes

• Supports single Dword payload Read and Write PCI Express transactions to 32-/64-bit
address memory spaces and I/O space with support for completion TLPs

• Utilizes the BAR ID[2:0] and Completer Request Descriptor[114:112] of the core to
differentiate between TLP destination Base Address Registers

• Provides separate implementations optimized for 64-bit, 128-bit, and 256-bit
AXI4-Stream interfaces

Figure 5-3 illustrates the PCI Express system architecture components, consisting of a Root
Complex, a PCI Express switch device, and an Endpoint for PCIe. PIO operations move data
downstream from the Root Complex (CPU register) to the Endpoint, and/or upstream from
the Endpoint to the Root Complex (CPU register). In either case, the PCI Express protocol
request to move the data is initiated by the host CPU.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=225

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 226
PG156 January 29, 2016

Chapter 5: Example Design

Data is moved downstream when the CPU issues a store register to a MMIO address
command. The Root Complex typically generates a Memory Write TLP with the appropriate
MMIO location address, byte enables, and the register contents. The transaction terminates
when the Endpoint receives the Memory Write TLP and updates the corresponding local
register.

Data is moved upstream when the CPU issues a load register from a MMIO address
command. The Root Complex typically generates a Memory Read TLP with the appropriate
MMIO location address and byte enables. The Endpoint generates a Completion with Data
TLP after it receives the Memory Read TLP. The Completion is steered to the Root Complex
and payload is loaded into the target register, completing the transaction.

PIO Hardware

The PIO design implements an 8,192 byte target space in FPGA block RAM, behind the
Endpoint for PCIe. This 32-bit target space is accessible through single Dword I/O Read, I/
O Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write 32 TLPs.

X-Ref Target - Figure 5-3

Figure 5-3: System Overview

PCIe Root
Complex

Memory
Controller

Device

Main
Memory

CPU

PCI
 Port

PCIe
Endpoint

PCIe
Switch

PCI_BUS_X

PCI_BUS_1

PCI_BUS_0

X12472

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=226

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 227
PG156 January 29, 2016

Chapter 5: Example Design

The PIO design generates a completion with one Dword of payload in response to a valid
Memory Read 32 TLP, Memory Read 64 TLP, or I/O Read TLP request presented to it by the
core. In addition, the PIO design returns a completion without data with successful status
for I/O Write TLP request.

The PIO design can initiate:

• a Memory Read transaction when the received write address is 11'hEA8 and the write
data is 32'hAAAA_BBBB, and Targeting the BAR0.

• a Legacy Interrupt when the received write address is 11'hEEC and the write data is
32'hCCCC_DDDD, and Targeting the BAR0.

• an MSI when the received write address is 11'hEEC and the write data is
32'hEEEE_FFFF, and Targeting the BAR0.

• an MSIx when the received write address is 11'hEEC and the write data is
32'hDEAD_BEEF, and Targeting the BAR0.

The PIO design processes a Memory or I/O Write TLP with one Dword payload by updating
the payload into the target address in the FPGA block RAM space.

Base Address Register Support

The PIO design supports four discrete target spaces, each consisting of a 2 KB block of
memory represented by a separate Base Address Register (BAR). Using the default
parameters, the Vivado IP catalog produces a core configured to work with the PIO design
defined in this section, consisting of:

• One 64-bit addressable Memory Space BAR

• One 32-bit Addressable Memory Space BAR

You can change the default parameters used by the PIO design; however, in some cases you
might need to change the user application depending on your system. See Changing IP
Catalog Tool Default BAR Settings for information about changing the default Vivado
Design Suite IP parameters and the effect on the PIO design.

Each of the four 2 KB address spaces represented by the BARs corresponds to one of four
2 KB address regions in the PIO design. Each 2 KB region is implemented using a 2 KB
dual-port block RAM. As transactions are received by the core, the core decodes the
address and determines which of the four regions is being targeted. The core presents the
TLP to the PIO design and asserts the appropriate bits of (BAR ID[2:0]), Completer Request
Descriptor[114:112], as defined in Table 5-1.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=227

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 228
PG156 January 29, 2016

Chapter 5: Example Design

Changing IP Catalog Tool Default BAR Settings

You can change the Vivado IP catalog parameters and continue to use the PIO design to
create customized Verilog source to match the selected BAR settings. However, because the
PIO design parameters are more limited than the core parameters, consider the following
example design limitations when changing the default IP catalog parameters:

• The example design supports one I/O space BAR, one 32-bit Memory space (that
cannot be the Expansion ROM space), and one 64-bit Memory space. If these limits are
exceeded, only the first space of a given type is active—accesses to the other spaces do
not result in completions.

• Each space is implemented with a 2 KB memory. If the corresponding BAR is configured
to a wider aperture, accesses beyond the 2 KB limit wrap around and overlap the 2 KB
memory space.

• The PIO design supports one I/O space BAR, which by default is disabled, but can be
changed if desired.

Although there are limitations to the PIO design, Verilog source code is provided so you can
tailor the example design to your specific needs.

TLP Data Flow

This section defines the data flow of a TLP successfully processed by the PIO design.

The PIO design successfully processes single Dword payload Memory Read and Write TLPs
and I/O Read and Write TLPs. Memory Read or Memory Write TLPs of lengths larger than
one Dword are not processed correctly by the PIO design; however, the core does accept
these TLPs and passes them along to the PIO design. If the PIO design receives a TLP with
a length of greater than one Dword, the TLP is received completely from the core and
discarded. No corresponding completion is generated.

Memory and I/O Write TLP Processing

When the Endpoint for PCIe receives a Memory or I/O Write TLP, the TLP destination
address and transaction type are compared with the values in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design. The PIO design handles Memory writes and I/O TLP writes in different

Table 5-1: TLP Traffic Types

Block RAM TLP Transaction Type Default BAR BAR ID[2:0]

ep_io_mem I/O TLP transactions Disabled Disabled

ep_mem32 32-bit address Memory TLP transactions 2 000b

ep_mem64 64-bit address Memory TLP transactions 0-1 001b

ep_mem_erom 32-bit address Memory TLP transactions
destined for EROM

Expansion ROM 110b

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=228

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 229
PG156 January 29, 2016

Chapter 5: Example Design

ways: the PIO design responds to I/O writes by generating a Completion Without Data (cpl),
a requirement of the PCI Express specification.

Along with the start of packet, end of packet, and ready handshaking signals, the Completer
Requester AXI4-Stream interface also asserts the appropriate (BAR ID[2:0]), Completer
Request Descriptor[114:112] signal to indicate to the PIO design the specific destination
BAR that matched the incoming TLP. On reception, the PIO design RX State Machine
processes the incoming Write TLP and extracts the TLPs data and relevant address fields so
that it can pass this along to the PIO design internal block RAM write request controller.

Based on the specific BAR ID[2:0] signals asserted, the RX state machine indicates to the
internal write controller the appropriate 2 KB block RAM to use prior to asserting the write
enable request. For example, if an I/O Write Request is received by the core targeting BAR0,
the core passes the TLP to the PIO design and sets BAR ID[2:0] to 000b. The RX state
machine extracts the lower address bits and the data field from the I/O Write TLP and
instructs the internal Memory Write controller to begin a write to the block RAM.

In this example, the assertion of setting BAR ID[2:0] to 000b instructed the PIO memory
write controller to access ep_mem0 (which by default represents 2 KB of I/O space). While
the write is being carried out to the FPGA block RAM, the PIO design RX state machine
deasserts m_axis_cq_tready, causing the Receive AXI4-Stream interface to stall
receiving any further TLPs until the internal Memory Write controller completes the write to
the block RAM. Deasserting m_axis_cq_tready in this way is not required for all designs
using the core; the PIO design uses this method to simplify the control logic of the RX state
machine.

Memory and I/O Read TLP Processing

When the Endpoint for PCIe receives a Memory or I/O Read TLP, the TLP destination address
and transaction type are compared with the values programmed in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design.

Along with the start of packet, end of packet, and ready handshaking signals, the Completer
Requester AXI4-Stream interface also asserts the appropriate BAR ID[2:0] signal to indicate
to the PIO design the specific destination BAR that matched the incoming TLP. On
reception, the PIO design state machine processes the incoming Read TLP and extracts the
relevant TLP information and passes it along to the internal block RAM read request
controller of the PIO design.

Based on the specific BAR ID[2:0] signal asserted, the RX state machine indicates to the
internal read request controller the appropriate 2 KB block RAM to use before asserting the
read enable request. For example, if a Memory Read 32 Request TLP is received by the core
targeting the default Mem32 BAR2, the core passes the TLP to the PIO design and sets BAR
ID[2:0] to 010b. The RX state machine extracts the lower address bits from the Memory 32
Read TLP and instructs the internal Memory Read Request controller to start a read
operation.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=229

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 230
PG156 January 29, 2016

Chapter 5: Example Design

In this example, the setting BAR ID[2:0] to 010b instructs the PIO memory read controller to
access the Mem32 space, which by default represents 2 KB of memory space. A notable
difference in handling of memory write and read TLPs is the requirement of the receiving
device to return a Completion with Data TLP in the case of memory or I/O read request.

While the read is being processed, the PIO design RX state machine deasserts
m_axis_cq_tready, causing the Receive AXI4-Stream interface to stall receiving any
further TLPs until the internal Memory Read controller completes the read access from the
block RAM and generates the completion. Deasserting m_axis_cq_tready in this way is
not required for all designs using the core. The PIO design uses this method to simplify the
control logic of the RX state machine.

PIO File Structure

Table 5-2 defines the PIO design file structure. Based on the specific core targeted, not all
files delivered by the Vivado IP catalog are necessary, and some files might not be
delivered. The major difference is that some of the Endpoint for PCIe solutions use a 32-bit
user datapath, others use a 64-bit datapath, and the PIO design works with both. The width
of the datapath depends on the specific core being targeted.

Three configurations of the PIO design are provided: PIO_64, PIO_128, and PIO_256 with
64-, 128-, and 256-bit AXI4-Stream interfaces, respectively. The PIO configuration that is
generated depends on the selected Endpoint type (that is, UltraScale™ architecture
integrated block, PIPE, PCI Express, and Block Plus) as well as the number of PCI Express
lanes and the interface width selected. Table 5-3 identifies the PIO configuration generated
based on your selection.

Table 5-2: PIO Design File Structure

File Description

PIO.v Top-level design wrapper

PIO_INTR_CTRL.v PIO interrupt controller

PIO_EP.v PIO application module

PIO_TO_CTRL.v PIO turn-off controller module

PIO_RX_ENGINE.v 32-bit Receive engine

PIO_TX_ENGINE.v 32-bit Transmit engine

PIO_EP_MEM_ACCESS.v Endpoint memory access module

PIO_EP_MEM.v Endpoint memory

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=230

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 231
PG156 January 29, 2016

Chapter 5: Example Design

Figure 5-4 shows the various components of the PIO design, which is separated into four
main parts: the TX Engine, RX Engine, Memory Access Controller, and Power Management
Turn-Off Controller.

PIO Operation

PIO Read Transaction

Figure 5-5 depicts a Back-to-Back Memory Read request to the PIO design. The receive
engine deasserts m_axis_rx_tready as soon as the first TLP is completely received. The
next Read transaction is accepted only after compl_done_o is asserted by the transmit
engine, indicating that Completion for the first request was successfully transmitted.

Table 5-3: PIO Configuration

Core x1 x2 x4 x8

UltraScale FPGA Gen3 Integrated Block PIO_64 PIO_64,
PIO_128

PIO_64,
PIO_128,
PIO_256

PIO_64,
PIO_128(1),

PIO_256

Notes:
1. The core does not support 128-bit x8 8.0 Gb/s configuration and 500 MHz user clock frequency.

X-Ref Target - Figure 5-4

Figure 5-4: PIO Design Components

X12455

UltraScale FPGA Gen3 Integrated Block for PCI Express (Configured as an Endpoint)

EP_TX EP_RX

PIO_TO_CTRLep_io_mem

ep_mem32

ep_mem64

ep_mem_erom

EP_MEM

PIO_EP

PIO

PIO_INTR_CTRL

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=231

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 232
PG156 January 29, 2016

Chapter 5: Example Design

PIO Write Transaction

Figure 5-6 depicts a back-to-back Memory Write to the PIO design. The next Write
transaction is accepted only after wr_busy_o is deasserted by the memory access unit,
indicating that data associated with the first request was successfully written to the
memory aperture.

X-Ref Target - Figure 5-5

Figure 5-5: Back-to-Back Read Transactions

user_clk

m_axis_cq_tdata[63:0]

m_axis_cq_tvalid

m_axis_cq_tready

m_axis_cq_tkeep[1:0]

m_axis_cq_tlast

(first_be) m_axis_cq_tuser[3:0]

(last_be) m_axis_cq_tuser[7:4]

(byte_en[3:0]) m_axis_cq_tuser[15:8]

(sop) m_axis_cq_tuser[40]

compl_done

m_axis_cc_tdata[63:0]

m_axis_cc_tvalid

m_axis_cc_tready

m_axis_cc_tkeep[1:0]

m_axis_cc_tlast

DS1DS0 DS3DS2 DS1DS0 DS3DS2

0x3

FIRST_BE FIRST_BE

LAST_BE LAST_BE

0

DS1DS0 DW0 DS2 - - DW1

0x3 0x1

X12523

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=232

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 233
PG156 January 29, 2016

Chapter 5: Example Design

Device Utilization

Table 5-4 shows the PIO design FPGA resource utilization.

Configurator Example Design
The Configurator example design, included with the UltraScale Architecture Gen3
Integrated Block for PCIe® in Root Port configuration generated by the Vivado IDE, is a
synthesizable, lightweight design that demonstrates the minimum setup required for the
integrated block in Root Port configuration to begin application-level transactions with an
Endpoint.

System Overview
PCI Express devices require setup after power-on, before devices in the system can begin
application specific communication with each other. At least two devices connected
through a PCI Express Link must have their Configuration spaces initialized and be
enumerated to communicate.

X-Ref Target - Figure 5-6

Figure 5-6: Back-to-Back Write Transactions

Table 5-4: PIO Design FPGA Resources

Resources Utilization

LUTs 300

Flip-Flops 500

Block RAMs 4

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=233

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 234
PG156 January 29, 2016

Chapter 5: Example Design

Root Ports facilitate PCI Express enumeration and configuration by sending Configuration
Read (CfgRd) and Write (CfgWr) TLPs to the downstream devices such as Endpoints and
Switches to set up the configuration spaces of those devices. When this process is
complete, higher-level interactions, such as Memory Reads (MemRd TLPs) and Writes
(MemWr TLPs), can occur within the PCI Express System.

The Configurator example design described here performs the configuration transactions
required to enumerate and configure the Configuration space of a single connected PCI
Express Endpoint and allow application-specific interactions to occur.

Configurator Example Design Hardware
The Configurator example design consists of four high-level blocks:

• Root Port: The UltraScale Architecture Gen3 Integrated Block for PCIe core in Root Port
configuration.

• Configurator Block: Logical block which interacts with the configuration space of a
PCI Express Endpoint device connected to the Root Port.

• Configurator ROM: Read-only memory that sources configuration transactions to the
Configurator Block.

• PIO Master: Logical block which interacts with the user logic connected to the
Endpoint by exchanging data packets and checking the validity of the received data.
The data packets are limited to a single DWORD and represent the type of traffic that
would be generated by a CPU.

Note: The Configurator Block, Configurator ROM, and Root Port are logically grouped in the RTL
code within a wrapper file called the Configurator Wrapper.

The Configurator example design, as delivered, is designed to be used with the PIO Slave
example included with Xilinx Endpoint cores and described in Chapter 6, Test Bench. The
PIO Master is useful for simple bring-up and debugging, and is an example of how to
interact with the Configurator Wrapper. The Configurator example design can be modified
to be used with other Endpoints.

Figure 5-7 shows the various components of the Configurator example design.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=234

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 235
PG156 January 29, 2016

Chapter 5: Example Design

Figure 5-8 shows how the blocks are connected in an overall system view.

X-Ref Target - Figure 5-7

Figure 5-7: Configurator Example Design Components

X14683

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=235

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 236
PG156 January 29, 2016

Chapter 5: Example Design

Configurator Block

The Configurator Block generates CfgRd and CfgWr TLPs and presents them to the
AXI4-Stream interface of the integrated block in Root Port configuration. The TLPs that the
Configurator Block generates are determined by the contents of the Configurator ROM.

The generated configuration traffic is predetermined by you to address your particular
system requirements. The configuration traffic is encoded in a memory-initialization file
(the Configurator ROM) which is synthesized as part of the Configurator. The Configurator
Block and the attached Configurator ROM is intended to be usable a part of a real-world
embedded design.

The Configurator Block steps through the Configuration ROM file and sends the TLPs
specified therein. Supported TLP types are Message, Message w/Data, Configuration Write
(Type 0), and Configuration Read (Type 0). For the Configuration packets, the Configurator
Block waits for a Completion to be returned before transmitting the next TLP. If the
Completion TLP fields do not match the expected values, PCI Express configuration fails.
However, the Data field of Completion TLPs is ignored and not checked

X-Ref Target - Figure 5-8

Figure 5-8: Configurator Example Design

X14684

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=236

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 237
PG156 January 29, 2016

Chapter 5: Example Design

Note: There is no completion timeout mechanism in the Configurator Block, so if no completion is
returned, the Configurator Block waits forever.

The Configurator Block has these parameters, which you can modify:

• TCQ: Clock-to-out delay modeled by all registers in design.

• EXTRA_PIPELINE: Controls insertion of an extra pipeline stage on the Receive
AXI4-Stream interface for timing.

• ROM_FILE: File name containing configuration steps to perform.

• ROM_SIZE: Number of lines in ROM_FILE containing data (equals number of TLPs to
send/2).

• REQUESTER_ID: Value for the Requester ID field in outgoing TLPs.

When the Configurator Block design is used, all TLP traffic must pass through the
Configurator Block. The user design is responsible for asserting the start_config input
(for one clock cycle) to initiate the configuration process when user_lnk_up has been
asserted by the core. Following start_config, the Configurator Block performs whatever
configuration steps have been specified in the Configuration ROM. During configuration,
the Configurator Block controls the core AXI4-Stream interface. Following configuration, all
AXI4-Stream traffic is routed to/from the user application, which in the case of this example
design is the PIO Master. The end of configuration is signaled by the assertion of
finished_config. If configuration is unsuccessful for some reason, failed_config is
also asserted.

If used in a system that supports PCIe® v2.2 5.0 Gb/s links, the Configurator Block begins
its process by attempting to up-train the link from 2.5 Gb/s to 5.0 Gb/s. This feature is
enabled depending on the LINK_CAP_MAX_LINK_SPEED parameter on the Configurator
Wrapper.

The Configurator does not support the user throttling received data on the Receive
AXI4-Stream interface. Because of this, the Root Port inputs which control throttling are not
included on the Configurator Wrapper. These signals are m_axis_rx_tready and
rx_np_ok. This is a limitation of the Configurator example design and not of the core in
Root Port configuration. This means that the user design interfacing with the Configurator
example design must be able to accept received data at line rate.

Configurator ROM

The Configurator ROM stores the necessary configuration transactions to configure a PCI
Express Endpoint. This ROM interfaces with the Configurator Block to send these
transactions over the PCI Express link.

The example ROM file included with this design shows the operations needed to configure
a UltraScale Architecture Gen3 Integrated Block for PCIe and PIO Example Design.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=237

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 238
PG156 January 29, 2016

Chapter 5: Example Design

The Configurator ROM can be customized for other Endpoints and PCI Express system
topologies. The unique set of configuration transactions required depends on the Endpoint
that interacts with the Root Port. This information can be obtained from the documentation
provided with the Endpoint.

The ROM file follows the format specified in the Verilog specification (IEEE 1364-2001)
section 17.2.8, which describes using the $readmemb function to pre-load data into a RAM
or ROM. Verilog-style comments are allowed.

The file is read by the simulator or synthesis tool and each memory value encountered is
used as a single location in memory. Digits can be separated by an underscore character (_)
for clarity without constituting a new location.

Each configuration transaction specified uses two adjacent memory locations:

• The first location specifies the header fields. Header fields are on even addresses.

• The second location specifies the 32-bit data payload. (For CfgRd TLPs and Messages
without data, the data location is unused but still present.) Data payloads are on odd
addresses.

For headers, Messages and CfgRd/CfgWr TLPs use different fields. For all TLPs, two bits
specify the TLP type. For Messages, Message Routing and Message Code are specified. For
CfgRd/CfgWr TLPs, Function Number, Register Number, and 1st DWORD Byte-Enable are
specified. The specific bit layout is shown in the example ROM file.

PIO Master

The PIO Master demonstrates how a user application design might interact with the
Configurator Block. It directs the Configurator Block to bring up the link partner at the
appropriate time, and then (after successful bring-up) generates and consumes bus traffic.
The PIO Master performs writes and reads across the PCI Express Link to the PIO Slave
Example Design (from the Endpoint core) to confirm basic operation of the link and the
Endpoint.

The PIO Master waits until user_lnk_up is asserted by the Root Port. It then asserts
start_config to the Configurator Block. When the Configurator Block asserts
finished_config, the PIO Master writes and reads to/from each BAR in the PIO Slave design.
If the readback data matches what was written, the PIO Master asserts its
pio_test_finished output. If there is a data mismatch or the Configurator Block fails to
configure the Endpoint, the PIO Master asserts its pio_test_failed output. The PIO
Master operation can be restarted by asserting its pio_test_restart input for one clock
cycle.

Configurator File Structure

Table 5-5 defines the Configurator example design file structure.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=238

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 239
PG156 January 29, 2016

Chapter 5: Example Design

The hierarchy of the Configurator example design is:

xilinx_pcie_uscale_rp.v topdirectory

• cgator_wrapper

° pcie_uscale_core_top (in the source directory)
This directory contains all the source files for the core in Root Port Configuration.

° cgator

- cgator_cpl_decoder

- cgator_pkt_generator

- cgator_tx_mux

- cgator_gen2_enabler

- cgator_controller
This directory contains <cgator_cfg_rom.data> (specified by ROM_FILE).

• pio_master

° pio_master_controller

° pio_master_checker

° pio_master_pkt_generator

Note: cgator_cfg_rom.data is the default name of the ROM data file. You can override this by
changing the value of the ROM_FILE parameter.

Table 5-5: Example Design File Structure

File Description

xilinx_pcie_uscale_rp.v Top-level wrapper file for Configurator example design

cgator_wrapper.v Wrapper for Configurator and Root Port

cgator.v Wrapper for Configurator sub-blocks

cgator_cpl_decoder.v Completion decoder

cgator_pkt_generator.v Configuration TLP generator

cgator_tx_mux.v Transmit AXI4-Stream muxing logic

cgator_gen2_enabler.v 5.0 Gb/s directed speed change module

cgator_controller.v Configurator transmit engine

cgator_cfg_rom.data Configurator ROM file

pio_master.v Wrapper for PIO Master

pio_master_controller.v TX and RX Engine for PIO Master

pio_master_checker.v Checks incoming User-Application Completion TLPs

pio_master_pkt_generator.v Generates User-Application TLPs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=239

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 240
PG156 January 29, 2016

Chapter 5: Example Design

Summary
The Configurator example design is a synthesizable design that demonstrates the
capabilities of the UltraScale Architecture Gen3 Integrated Block for PCIe when configured
as a Root Port. The example is provided through the Vivado IDE and uses the Endpoint PIO
example as a target for PCI Express enumeration and configuration. The design can be
modified to target other Endpoints by changing the contents of a ROM file.

Generating the Core
To generate a core using the default values in the Vivado IDE, follow these steps:

1. Start the Vivado IP catalog.

2. Select File > New Project.

3. Enter a project name and location, then click Next. This example uses
project_name.cpg and project_dir.

4. In the New Project wizard pages, do not add sources, existing IP, or constraints.

5. From the Part tab (Figure 5-9), select these options:

° Family: Kintex UltraScale

° Device: xcku040

° Package: ffva1156

° Speed Grade: -3

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=240

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 241
PG156 January 29, 2016

Chapter 5: Example Design

Note: If an unsupported silicon device is selected, the core is grayed out (unavailable) in the list
of cores.

6. In the final project summary page, click OK.

7. In the Vivado IP catalog, expand Standard Bus Interfaces > PCI Express, and
double-click the UltraScale Architecture Gen3 Integrated Block for PCIe core to
display the Customize IP dialog box.

8. In the Component Name field, enter a name for the core.

Note: <component_name> is used in this example.

X-Ref Target - Figure 5-9

Figure 5-9: Part Selection

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=241

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 242
PG156 January 29, 2016

Chapter 5: Example Design

9. From the Device/Port Type drop-down menu, select the appropriate device/port type of
the core (Endpoint or Root Port).

10. Click OK to generate the core using the default parameters.

11. In the Design sources tab, right-click the XCI file, and select Generate.

12. Select All to generate the core with the default parameters.

Simulating the Example Design
The example design provides a quick way to simulate and observe the behavior of the core
for PCI Express Endpoint and Root port Example design projects generated using the
Vivado Design Suite.

The currently supported simulators are:

• Vivado simulator (default)

X-Ref Target - Figure 5-10

Figure 5-10: Configuration Parameters

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=242

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 243
PG156 January 29, 2016

Chapter 5: Example Design

• Mentor Graphics QuestaSim

• Cadence Incisive Enterprise Simulator (IES)

• Synopsys Verilog Compiler Simulator (VCS)

The simulator uses the example design test bench and test cases provided along with the
example design for both the design configurations.

For any project (PCI Express core) generated out of the box, the simulations using the
default Vivado simulator can be run as follows:

1. In the Sources Window, right-click the example project file (.xci), and select Open IP
Example Design.

The example project is created.

2. In the Flow Navigator (left-hand pane), under Simulation, right-click Run Simulation
and select Run Behavioral Simulation.

IMPORTANT: The post-synthesis and post-implementation simulation options are not supported for the
PCI Express block.

After the Run Behavioral Simulation Option is running, you can observe the compilation
and elaboration phase through the activity in the Tcl Console, and in the Simulation tab
of the Log Window.

3. In Tcl Console, type the run all command and press Enter. This runs the complete
simulation as per the test case provided in example design test bench.

After the simulation is complete, the result can be viewed in the Tcl Console.

In Vivado IDE, change the simulation settings as follows:

1. In the Flow Navigator, under Simulation, select Simulation Settings.

2. Set the Target simulator to QuestaSim/ModelSim Simulator, Incisive Enterprise
Simulator (IES) or Verilog Compiler Simulator.

3. In the simulator tab, select Run Simulation > Run behavioral simulation.

4. When prompted, click Yes to change and then run the simulator.

Endpoint Configuration
The simulation environment provided with the Gen3 Integrated Block for PCIe core in
Endpoint configuration performs simple memory access tests on the PIO example design.
Transactions are generated by the Root Port Model and responded to by the PIO example
design.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=243

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 244
PG156 January 29, 2016

Chapter 5: Example Design

• PCI Express Transaction Layer Packets (TLPs) are generated by the test bench transmit
user application (pci_exp_usrapp_tx). As it transmits TLPs, it also generates a log
file, tx.dat.

• PCI Express TLPs are received by the test bench receive user application
(pci_exp_usrapp_rx). As the user application receives the TLPs, it generates a log
file, rx.dat.

For more information about the test bench, see Root Port Model Test Bench for Endpoint,
page 245.

Synthesizing and Implementing the Example Design
To run synthesis and implementation on the example design in the Vivado Design Suite
environment:

1. Go to the XCI file, right-click, and select Open IP Example Design.

A new Vivado tool window opens with the project name “example_project” within the
project directory.

2. In the Flow Navigator, click Run Synthesis and Run Implementation.

TIP: Click Run Implementation first to run both synthesis and implementation.
Click Generate Bitstream to run synthesis, implementation, and then bitstream.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=244

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 245
PG156 January 29, 2016

Chapter 6

Test Bench
This chapter contains information about the test bench provided in the Vivado® Design
Suite.

Root Port Model Test Bench for Endpoint
The PCI Express Root Port Model is a robust test bench environment that provides a test
program interface that can be used with the provided PIO design or with your design. The
purpose of the Root Port Model is to provide a source mechanism for generating
downstream PCI Express TLP traffic to stimulate the customer design, and a destination
mechanism for receiving upstream PCI Express TLP traffic from the customer design in a
simulation environment.

Source code for the Root Port Model is included to provide the model for a starting point
for your test bench. All the significant work for initializing the core configuration space,
creating TLP transactions, generating TLP logs, and providing an interface for creating and
verifying tests are complete, allowing you to dedicate efforts to verifying the correct
functionality of the design rather than spending time developing an Endpoint core test
bench infrastructure.

The Root Port Model consists of:

• Test Programming Interface (TPI), which allows you to stimulate the Endpoint device for
the PCI Express

• Example tests that illustrate how to use the test program TPI

• Verilog source code for all Root Port Model components, which allow you to customize
the test bench

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=245

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 246
PG156 January 29, 2016

Chapter 6: Test Bench

Figure 6-1 illustrates the illustrates the Root Port Model coupled with the PIO design.

Architecture
The Root Port Model consists of these blocks, illustrated in Figure 6-1:

• dsport (Root Port)

• usrapp_tx

• usrapp_rx

• usrapp_com (Verilog only)

The usrapp_tx and usrapp_rx blocks interface with the dsport block for transmission and
reception of TLPs to/from the Endpoint Design Under Test (DUT). The Endpoint DUT
consists of the Endpoint for PCIe and the PIO design (displayed) or customer design.

The usrapp_tx block sends TLPs to the dsport block for transmission across the PCI Express
Link to the Endpoint DUT. In turn, the Endpoint DUT device transmits TLPs across the PCI
Express Link to the dsport block, which are subsequently passed to the usrapp_rx block. The
dsport and core are responsible for the data link layer and physical link layer processing
when communicating across the PCI Express logic. Both usrapp_tx and usrapp_rx utilize the
usrapp_com block for shared functions, for example, TLP processing and log file outputting.
Transaction sequences or test programs are initiated by the usrapp_tx block to stimulate the

X-Ref Target - Figure 6-1

Figure 6-1: Root Port Model and Top-Level Endpoint

Test
Program

Endpoint DUT for PCI Express

PCI Express Fabric

Endpoint Core for
PCI Express

PIO Design

dsport

usrapp_tx

usrapp_com

usrapp_rx

Output
Logs

Root Port
Model TPI for

Express

X12468

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=246

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 247
PG156 January 29, 2016

Chapter 6: Test Bench

Endpoint device fabric interface. TLP responses from the Endpoint device are received by
the usrapp_rx block. Communication between the usrapp_tx and usrapp_rx blocks allow the
usrapp_tx block to verify correct behavior and act accordingly when the usrapp_rx block has
received TLPs from the Endpoint device.

Scaled Simulation Timeouts
The simulation model of the core uses scaled down times during link training to allow for
the link to train in a reasonable amount of time during simulation. According to the PCI
Express Specification, rev. 3.0 [Ref 2], there are various timeouts associated with the link
training and status state machine (LTSSM) states. The core scales these timeouts by a factor
of 256 in simulation, except in the Recovery Speed_1 LTSSM state, where the timeouts are
not scaled.

Test Selection
Table 6-1 describes the tests provided with the Root Port Model, followed by specific
sections for Verilog test selection.

Verilog Test Selection

The Verilog test model used for the Root Port Model lets you specify the name of the test
to be run as a command line parameter to the simulator.

To change the test to be run, change the value provided to TESTNAME, which is defined in
the test files sample_tests1.v and pio_tests.v. This mechanism is used for Mentor
Graphics QuestaSim. Vivado simulator uses the -testplusarg options to specify
TESTNAME, for example:

demo_tb.exe -gui -view wave.wcfg -wdb wave_isim -tclbatch isim_cmd.tcl -testplusarg
TESTNAME=sample_smoke_test0.

Table 6-1: Root Port Model Provided Tests

Test Name Test in Verilog Description

sample_smoke_test0 Verilog Issues a PCI Type 0 Configuration Read TLP and waits for the
completion TLP; then compares the value returned with the
expected Device/Vendor ID value.

sample_smoke_test1 Verilog Performs the same operation as sample_smoke_test0 but
makes use of expectation tasks. This test uses two separate test
program threads: one thread issues the PCI Type 0
Configuration Read TLP and the second thread issues the
Completion with Data TLP expectation task. This test illustrates
the form for a parallel test that uses expectation tasks. This test
form allows for confirming reception of any TLPs from your
design. Additionally, this method can be used to confirm
reception of TLPs when ordering is unimportant.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=247

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 248
PG156 January 29, 2016

Chapter 6: Test Bench

Waveform Dumping
For information on simulator waveform dumping, see the Vivado Design Suite User Guide:
Logic Simulation (UG900) [Ref 13].

Verilog Flow

The Root Port Model provides a mechanism for outputting the simulation waveform to file
by specifying the +dump_all command line parameter to the simulator.

Output Logging
When a test fails on the example or customer design, the test programmer debugs the
offending test case. Typically, the test programmer inspects the wave file for the simulation
and cross-reference this to the messages displayed on the standard output. Because this
approach can be very time consuming, the Root Port Model offers an output logging
mechanism to assist the tester with debugging failing test cases to speed the process.

The Root Port Model creates three output files (tx.dat, rx.dat, and error.dat) during
each simulation run. The log files, rx.dat and tx.dat, each contain a detailed record of
every TLP that was received and transmitted, respectively, by the Root Port Model.

TIP: With an understanding of the expected TLP transmission during a specific test case, you can
isolate the failure.

The log file error.dat is used in conjunction with the expectation tasks. Test programs
that use the expectation tasks generate a general error message to standard output.
Detailed information about the specific comparison failures that have occurred due to the
expectation error is located within error.dat.

Parallel Test Programs
There are two classes of tests are supported by the Root Port Model:

• Sequential tests. Tests that exist within one process and behave similarly to sequential
programs. The test depicted in Test Program: pio_writeReadBack_test0, page 250 is an
example of a sequential test. Sequential tests are very useful when verifying behavior
that have events with a known order.

• Parallel tests. Tests involving more than one process thread. The test
sample_smoke_test1 is an example of a parallel test with two process threads. Parallel
tests are very useful when verifying that a specific set of events have occurred, however
the order of these events are not known.

A typical parallel test uses the form of one command thread and one or more expectation
threads. These threads work together to verify the device functionality. The role of the

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=248

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 249
PG156 January 29, 2016

Chapter 6: Test Bench

command thread is to create the necessary TLP transactions that cause the device to receive
and generate TLPs. The role of the expectation threads is to verify the reception of an
expected TLP. The Root Port Model TPI has a complete set of expectation tasks to be used
in conjunction with parallel tests.

Because the example design is a target-only device, only Completion TLPs can be expected
by parallel test programs while using the PIO design. However, the full library of expectation
tasks can be used for expecting any TLP type when used in conjunction with the customer
design (which can include bus-mastering functionality).

Test Description
The Root Port Model provides a Test Program Interface (TPI). The TPI provides the means to
create tests by invoking a series of Verilog tasks. All Root Port Model tests should follow the
same six steps:

1. Perform conditional comparison of a unique test name

2. Set up master timeout in case simulation hangs

3. Wait for Reset and link-up

4. Initialize the configuration space of the Endpoint

5. Transmit and receive TLPs between the Root Port Model and the Endpoint DUT

6. Verify that the test succeeded

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=249

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 250
PG156 January 29, 2016

Chapter 6: Test Bench

Test Program: pio_writeReadBack_test0

Expanding the Root Port Model
The Root Port Model was created to work with the PIO design, and for this reason is tailored
to make specific checks and warnings based on the limitations of the PIO design. These
checks and warnings are enabled by default when the Root Port Model is generated by the
Vivado IP catalog. However, these limitations can be disabled so that they do not affect the
customer design.

Because the PIO design was created to support at most one I/O BAR, one Mem64 BAR, and
two Mem32 BARs (one of which must be the EROM space), the Root Port Model by default
makes a check during device configuration that verifies that the core has been configured
to meet this requirement. A violation of this check causes a warning message to be
displayed as well as for the offending BAR to be gracefully disabled in the test bench. This
check can be disabled by setting the pio_check_design variable to zero in the
pci_exp_usrapp_tx.v file.

1. else if(testname == "pio_writeReadBack_test1"
2. begin
3. // This test performs a 32 bit write to a 32 bit Memory space and performs a read back
4. TSK_SIMULATION_TIMEOUT(10050);
5. TSK_SYSTEM_INITIALIZATION;
6. TSK_BAR_INIT;
7. for (ii = 0; ii <= 6; ii = ii + 1) begin
8. if (BAR_INIT_P_BAR_ENABLED[ii] > 2'b00) // bar is enabled
9. case(BAR_INIT_P_BAR_ENABLED[ii])
10. 2'b01 : // IO SPACE
11. begin
12. $display("[%t] : NOTHING: to IO 32 Space BAR %x", $realtime, ii);
13. end
14. 2'b10 : // MEM 32 SPACE
15. begin
16. $display("[%t] : Transmitting TLPs to Memory 32 Space BAR %x",
17. $realtime, ii);
18. //--
19. // Event : Memory Write 32 bit TLP
20. //--
21. DATA_STORE[0] = 8'h04;
22. DATA_STORE[1] = 8'h03;
23. DATA_STORE[2] = 8'h02;
24. DATA_STORE[3] = 8'h01;
25. P_READ_DATA = 32'hffff_ffff; // make sure P_READ_DATA has known initial value
26. TSK_TX_MEMORY_WRITE_32(DEFAULT_TAG, DEFAULT_TC, 10'd1, BAR_INIT_P_BAR[ii][31:0] , 4'hF,

4'hF, 1'b0);
27. TSK_TX_CLK_EAT(10);
28. DEFAULT_TAG = DEFAULT_TAG + 1;
29. //--
30. // Event : Memory Read 32 bit TLP
31. //--
32. TSK_TX_MEMORY_READ_32(DEFAULT_TAG, DEFAULT_TC, 10'd1, BAR_INIT_P_BAR[ii][31:0], 4'hF,

4'hF);
33. TSK_WAIT_FOR_READ_DATA;
34. if (P_READ_DATA != {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0] })
35. begin
36. $display("[%t] : Test FAILED --- Data Error Mismatch, Write Data %x != Read Data %x",

$realtime,{DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0]}, P_READ_DATA);
37. end
38. else
39. begin
40. $display("[%t] : Test PASSED --- Write Data: %x successfully received", $realtime,

P_READ_DATA);
41. end

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=250

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 251
PG156 January 29, 2016

Chapter 6: Test Bench

Root Port Model TPI Task List

The Root Port Model TPI tasks include these tasks, which are further defined in these tables.

• Table 6-2, Test Setup Tasks

• Table 6-3, TLP Tasks

• Table 6-4, BAR Initialization Tasks

• Table 6-5, Example PIO Design Tasks

• Table 6-6, Expectation Tasks

Table 6-2: Test Setup Tasks

Name Input(s) Description

TSK_SYSTEM_INITIALIZATION None Waits for transaction interface reset and
link-up between the Root Port Model
and the Endpoint DUT.
This task must be invoked prior to the
Endpoint core initialization.

TSK_USR_DATA_SETUP_SEQ None Initializes global 4096 byte DATA_STORE
array entries to sequential values from
zero to 4095.

TSK_TX_CLK_EAT clock count 31:30 Waits clock_count transaction interface
clocks.

TSK_SIMULATION_TIMEOUT timeout 31:0 Sets master simulation timeout value in
units of transaction interface clocks.
This task should be used to ensure that
all DUT tests complete.

Table 6-3: TLP Tasks

Name Input(s) Description

TSK_TX_TYPE0_CONFIGURATION_READ tag_
reg_addr_
first_dw_be_

7:0
11:0
3:0

Waits for transaction interface reset and
link-up between the Root Port Model and
the Endpoint DUT.
This task must be invoked prior to Endpoint
core initialization.

TSK_TX_TYPE1_CONFIGURATION_READ tag_
reg_addr_
first_dw_be_

7:0
11:0
3:0

Sends a Type 1 PCI Express Config Read TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and first_dw_be_
inputs.
CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=251

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 252
PG156 January 29, 2016

Chapter 6: Test Bench

TSK_TX_TYPE0_CONFIGURATION_WRITE tag_
reg_addr_
reg_data_
first_dw_be_

7:0
11:0
31:0
3:0

Sends a Type 0 PCI Express Config Write TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and first_dw_be_
inputs.
Cpl returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_TYPE1_CONFIGURATION_WRITE tag_
reg_addr_
reg_data_
first_dw_be_

7:0
11:0
31:0
3:0

Sends a Type 1 PCI Express Config Write TLP
from Root Port Model to reg_addr_ of
Endpoint DUT with tag_ and first_dw_be_
inputs.
Cpl returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_MEMORY_READ_32 tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_

7:0
2:0

10:0
31:0
3:0
3:0

Sends a PCI Express Memory Read TLP from
Root Port to 32-bit memory address addr_
of Endpoint DUT.
CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_MEMORY_READ_64 tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_

7:0
2:0

10:0
63:0
3:0
3:0

Sends a PCI Express Memory Read TLP from
Root Port Model to 64-bit memory address
addr_ of Endpoint DUT.
CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_MEMORY_WRITE_32 tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_
ep_

7:0
2:0

10:0
31:0
3:0
3:0
–

Sends a PCI Express Memory Write TLP from
Root Port Model to 32-bit memory address
addr_ of Endpoint DUT.
CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.
The global DATA_STORE byte array is used
to pass write data to task.

TSK_TX_MEMORY_WRITE_64 tag_
tc_
len_
addr_
last_dw_be_
first_dw_be_
ep_

7:0
2:0

10:0
63:0
3:0
3:0
–

Sends a PCI Express Memory Write TLP from
Root Port Model to 64-bit memory address
addr_ of Endpoint DUT.
CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.
The global DATA_STORE byte array is used
to pass write data to task.

TSK_TX_COMPLETION tag_
tc_
len_
comp_status_

7:0
2:0

10:0
2:0

Sends a PCI Express Completion TLP from
Root Port Model to the Endpoint DUT using
global COMPLETE_ID_CFG as the
completion ID.

Table 6-3: TLP Tasks (Cont’d)

Name Input(s) Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=252

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 253
PG156 January 29, 2016

Chapter 6: Test Bench

TSK_TX_COMPLETION_DATA tag_
tc_
len_
byte_count
lower_addr
comp_status
ep_

7:0
2:0

10:0
11:0
6:0
2:0
–

Sends a PCI Express Completion with Data
TLP from Root Port Model to the Endpoint
DUT using global COMPLETE_ID_CFG as the
completion ID.
The global DATA_STORE byte array is used
to pass completion data to task.

TSK_TX_MESSAGE tag_
tc_
len_
data
message_rtg
message_code

7:0
2:0

10:0
63:0
2:0
7:0

Sends a PCI Express Message TLP from Root
Port Model to Endpoint DUT.
Completion returned from the Endpoint
DUT uses the contents of global
COMPLETE_ID_CFG as the completion ID.

TSK_TX_MESSAGE_DATA tag_
tc_
len_
data
message_rtg
message_code

7:0
2:0

10:0
63:0
2:0
7:0

Sends a PCI Express Message with Data TLP
from Root Port Model to Endpoint DUT.
The global DATA_STORE byte array is used
to pass message data to task.
Completion returned from the Endpoint
DUT uses the contents of global
COMPLETE_ID_CFG as the completion ID.

TSK_TX_IO_READ tag_
addr_
first_dw_be_

7:0
31:0
3:0

Sends a PCI Express I/O Read TLP from Root
Port Model to I/O address addr_[31:2] of the
Endpoint DUT.
CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_IO_WRITE tag_
addr_
first_dw_be_
data

7:0
31:0
3:0

31:0

Sends a PCI Express I/O Write TLP from Root
Port Model to I/O address addr_[31:2] of the
Endpoint DUT.
CplD returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_BAR_READ bar_index
byte_offset
tag_
tc_

2:0
31:0
7:0
2:0

Sends a PCI Express one Dword Memory 32,
Memory 64, or I/O Read TLP from the Root
Port Model to the target address
corresponding to offset byte_offset from
BAR bar_index of the Endpoint DUT. This
task sends the appropriate Read TLP based
on how BAR bar_index has been configured
during initialization. This task can only be
called after TSK_BAR_INIT has successfully
completed.
CplD returned from the Endpoint DUT use
the contents of global COMPLETE_ID_CFG as
the completion ID.

Table 6-3: TLP Tasks (Cont’d)

Name Input(s) Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=253

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 254
PG156 January 29, 2016

Chapter 6: Test Bench

TSK_TX_BAR_WRITE bar_index
byte_offset
tag_
tc_
data_

2:0
31:0
7:0
2:0

31:0

Sends a PCI Express one Dword Memory 32,
Memory 64, or I/O Write TLP from the Root
Port to the target address corresponding to
offset byte_offset from BAR bar_index of the
Endpoint DUT.
This task sends the appropriate Write TLP
based on how BAR bar_index has been
configured during initialization. This task
can only be called after TSK_BAR_INIT has
successfully completed.

TSK_WAIT_FOR_READ_DATA None Waits for the next completion with data TLP
that was sent by the Endpoint DUT. On
successful completion, the first Dword of
data from the CplD is stored in the global
P_READ_DATA. This task should be called
immediately following any of the read tasks
in the TPI that request Completion with Data
TLPs to avoid any race conditions.
By default this task locally times out and
terminate the simulation after 1000
transaction interface clocks. The global
cpld_to_finish can be set to zero so that
local timeout returns execution to the
calling test and does not result in simulation
timeout. For this case test programs should
check the global cpld_to, which when set to
one indicates that this task has timed out
and that the contents of P_READ_DATA are
invalid.

Table 6-3: TLP Tasks (Cont’d)

Name Input(s) Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=254

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 255
PG156 January 29, 2016

Chapter 6: Test Bench

Table 6-4: BAR Initialization Tasks

Name Input(s) Description

TSK_BAR_INIT None Performs a standard sequence of Base Address Register
initialization tasks to the Endpoint device using the PCI
Express fabric. Performs a scan of the Endpoint PCI BAR
range requirements, performs the necessary memory and
I/O space mapping calculations, and finally programs the
Endpoint so that it is ready to be accessed.
On completion, the user test program can begin memory
and I/O transactions to the device. This function displays
to standard output a memory and I/O table that details
how the Endpoint has been initialized. This task also
initializes global variables within the Root Port Model that
are available for test program usage. This task should only
be called after TSK_SYSTEM_INITIALIZATION.

TSK_BAR_SCAN None Performs a sequence of PCI Type 0 Configuration Writes
and Configuration Reads using the PCI Express logic to
determine the memory and I/O requirements for the
Endpoint.
The task stores this information in the global array
BAR_INIT_P_BAR_RANGE[]. This task should only be called
after TSK_SYSTEM_INITIALIZATION.

TSK_BUILD_PCIE_MAP None Performs memory and I/O mapping algorithm and
allocates Memory 32, Memory 64, and I/O space based on
the Endpoint requirements.
This task has been customized to work in conjunction with
the limitations of the PIO design and should only be called
after completion of TSK_BAR_SCAN.

TSK_DISPLAY_PCIE_MAP None Displays the memory mapping information of the Endpoint
core PCI Base Address Registers. For each BAR, the BAR
value, the BAR range, and BAR type is given. This task
should only be called after completion of
TSK_BUILD_PCIE_MAP.

Table 6-5: Example PIO Design Tasks

Name Input(s) Description

TSK_TX_READBACK_CONFIG None Performs a sequence of PCI Type 0 Configuration Reads
to the Endpoint device Base Address Registers, PCI
Command register, and PCIe Device Control register
using the PCI Express logic.
This task should only be called after
TSK_SYSTEM_INITIALIZATION.

TSK_MEM_TEST_DATA_BUS bar_index 2:0 Tests whether the PIO design FPGA block RAM data bus
interface is correctly connected by performing a 32-bit
walking ones data test to the I/O or memory address
pointed to by the input bar_index.
For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=255

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 256
PG156 January 29, 2016

Chapter 6: Test Bench

TSK_MEM_TEST_ADDR_BUS bar_index
nBytes

2:0
31:0

Tests whether the PIO design FPGA block RAM address
bus interface is accurately connected by performing a
walking ones address test starting at the I/O or memory
address pointed to by the input bar_index.
For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire
size of the individual block RAM.

TSK_MEM_TEST_DEVICE bar_index
nBytes

2:0
31:0

Tests the integrity of each bit of the PIO design FPGA
block RAM by performing an increment/decrement test
on all bits starting at the block RAM pointed to by the
input bar_index with the range specified by input
nBytes.
For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire
size of the individual block RAM.

TSK_RESET Reset 0 Initiates PERSTn. Forces the PERSTn signal to assert the
reset. Use TSK_RESET (1’b1) to assert the reset and
TSK_RESET (1’b0) to release the reset signal.

TSK_MALFORMED malformed
_bits

7:0 Control bits for creating malformed TLPs:
• 0001: Generate Malformed TLP for I/O Requests and

Configuration Requests called immediately after this
task

• 0010: Generate Malformed Completion TLPs for
Memory Read requests received at the Root Port

Table 6-5: Example PIO Design Tasks (Cont’d)

Name Input(s) Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=256

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 257
PG156 January 29, 2016

Chapter 6: Test Bench

Table 6-6: Expectation Tasks

Name Input(s) Output Description

TSK_EXPECT_CPLD traffic_class
td
ep
attr
length
completer_id
completer_status
bcm
byte_count
requester_id
tag
address_low

2:0
-
-

1:0
10:0
15:0
2:0
-

11:0
15:0
7:0
6:0

Expect status Waits for a Completion with
Data TLP that matches
traffic_class, td, ep, attr, length,
and payload.
Returns a 1 on successful
completion; 0 otherwise.

TSK_EXPECT_CPL traffic_class
td
ep
attr
completer_id
completer_status
bcm
byte_count
requester_id
tag
address_low

2:0
-
-

1:0
15:0
2:0
-

11:0
15:0
7:0
6:0

Expect status Waits for a Completion without
Data TLP that matches
traffic_class, td, ep, attr, and
length.
Returns a 1 on successful
completion; 0 otherwise.

TSK_EXPECT_MEMRD traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-

1:0
10:0
15:0
7:0
3:0
3:0

29:0

Expect status Waits for a 32-bit Address
Memory Read TLP with
matching header fields.
Returns a 1 on successful
completion; 0 otherwise. This
task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_MEMRD64 traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-

1:0
10:0
15:0
7:0
3:0
3:0

61:0

Expect status Waits for a 64-bit Address
Memory Read TLP with
matching header fields. Returns
a 1 on successful completion; 0
otherwise.
This task can only be used in
conjunction with Bus Master
designs.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=257

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 258
PG156 January 29, 2016

Chapter 6: Test Bench

Endpoint Model Test Bench for Root Port
The Endpoint model test bench for the core in Root Port configuration is a simple example
test bench that connects the Configurator example design and the PCI Express Endpoint
model allowing the two to operate like two devices in a physical system. As the
Configurator example design consists of logic that initializes itself and generates and
consumes bus traffic, the example test bench only implements logic to monitor the
operation of the system and terminate the simulation.

The Endpoint model test bench consists of:

• Verilog or VHDL source code for all Endpoint model components

• PIO slave design

TSK_EXPECT_MEMWR traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-

1:0
10:0
15:0
7:0
3:0
3:0

29:0

Expect status Waits for a 32-bit Address
Memory Write TLP with
matching header fields. Returns
a 1 on successful completion; 0
otherwise.
This task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_MEMWR64 traffic_class
td
ep
attr
length
requester_id
tag
last_dw_be
first_dw_be
address

2:0
-
-

1:0
10:0
15:0
7:0
3:0
3:0

61:0

Expect status Waits for a 64-bit Address
Memory Write TLP with
matching header fields. Returns
a 1 on successful completion; 0
otherwise.
This task can only be used in
conjunction with Bus Master
designs.

TSK_EXPECT_IOWR td
ep
requester_id
tag
first_dw_be
address
data

-
-

15:0
7:0
3:0

31:0
31:0

Expect status Waits for an I/O Write TLP with
matching header fields. Returns
a 1 on successful completion; 0
otherwise.
This task can only be used in
conjunction with Bus Master
designs.

Table 6-6: Expectation Tasks (Cont’d)

Name Input(s) Output Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=258

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 259
PG156 January 29, 2016

Chapter 6: Test Bench

Figure 6-1 illustrates the Endpoint model coupled with the Configurator example design.

Architecture
The Endpoint model consists of these blocks:

• PCI Express Endpoint (the core in Endpoint configuration) model.

• PIO slave design, consisting of:

° PIO_RX_ENGINE

° PIO_TX_ENGINE

° PIO_EP_MEM

° PIO_TO_CTRL

The PIO_RX_ENGINE and PIO_TX_ENGINE blocks interface with the ep block for reception
and transmission of TLPs from/to the Root Port Design Under Test (DUT). The Root Port DUT
consists of the core configured as a Root Port and the Configurator Example Design, which
consists of a Configurator block and a PIO Master design, or customer design.

The PIO slave design is described in detail in Programmed Input/Output: Endpoint Example
Design.

Simulating the Design
A simulation script file ,simulate_mti.do, is provided with the model to facilitate
simulation with the Mentor Graphics QuestaSim simulator.

The example simulation script files are located in this directory:

<project_dir>/<component_name>/simulation/functional

Instructions for simulating the Configurator example design with the Endpoint model are
provided in Simulation in Chapter 4.

Note: For Cadence IES users, the work construct must be manually inserted into the cds.lib file:

DEFINE WORK WORK.

Scaled Simulation Timeouts
The simulation model of the core uses scaled down times during link training to allow for
the link to train in a reasonable amount of time during simulation. According to the PCI
Express Specification, rev. 3.0 [Ref 2], there are various timeouts associated with the link
training and status state machine (LTSSM) states. The core scales these timeouts by a factor
of 256 in simulation, except in the Recovery Speed_1 LTSSM state, where the timeouts are
not scaled.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=259

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 260
PG156 January 29, 2016

Chapter 6: Test Bench

Waveform Dumping
For information on simulator waveform dumping, see the Vivado Design Suite User Guide:
Logic Simulation (UG900) [Ref 13].

Output Logging
The test bench outputs messages, captured in the simulation log, indicating the time at
which these occur:

• user_reset deasserted

• user_lnk_up asserted

• cfg_done asserted by the Configurator

• pio_test_finished asserted by the PIO Master

• Simulation Timeout (if pio_test_finished or pio_test_failed never asserted)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=260

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 261
PG156 January 29, 2016

Appendix A

Migrating and Upgrading
This appendix contains information about upgrading to a more recent version of the IP
core.

Migrating to the Vivado Design Suite
For information on migrating to the Vivado Design Suite, see ISE to Vivado Design Suite
Migration Methodology Guide (UG911) [Ref 14].

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

Parameter Changes
Table A-1 shows the changes to parameters in the current version of the core.

Table A-1: Parameter Changes

User Parameter name Display Name New/Change/
Removed Details Default

Value

Message_Signal_Interrupt Message Signal
Interrupt Removed Indicates the type of message

signal interruption selection MSI

RX_DETECT Receiver Detect New
Indicates the type of receiver
detect, either default or falling
edge

Default

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=261

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 262
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

Port Changes
There are no changes to the ports this release.

Migrating From a 7 Series Gen2 Core to UltraScale
Architecture-Based Gen3 Core
This section provides guidance for users migrating from the 7 series Gen2 core to the
UltraScale™ architecture-based Gen3 core.

Note: The 7 Series Gen3 core interface is the same as that of the UltraScale architecture-based Gen3
core.

In the 7 series Gen2 core, the AXI4-Stream (and TRN) payload byte ordering matches that of
the PCIe bus, because the user application is responsible for the formation of the PCIe
packets. However, in the UltraScale architecture-based Gen3 v3.1 core, the byte ordering of
the payload (after the descriptor) is endian compliant with the AXI4-Stream protocol.

Figure 1-1 shows the AXI4-Stream TX and RX interfaces.

mcap_enablement
Tandem Configuration
or
Partial Reconfiguration

Change

Change in the name of one of the
option from Tandem With Field
Update to Tandem With Field
Updates

None

axisten_if_enable_rx_msg
_intfc

Enable RX Message
INTFC New

When checked, messages are
routed to the cfg_msg_received
signal at the Receive Message
Interface. Otherwise, they are
routed to CQ Interface

Enabled

Table A-1: Parameter Changes (Cont’d)

User Parameter name Display Name New/Change/
Removed Details Default

Value

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=262

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 263
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

PCIe 3.1 AXI4 ST Enhanced Interface

Completer Request (CQ) Interface

m_axis_rx_tstrb (64-Bit Interface Only)

Table A-3 shows the CR Interface signals used to generate the m_axis_rx_tstrb signal
bus.

m_axis_rx_tuser

Table A-4 shows the CR Interface signals used to generate the m_axis_rx_tuser signal
bus.

Table A-2: Signal mapping of AXI-4 ST Basic Receive Interface to AXI4-ST Enhanced CQ Interface

AXI4-Stream (Basic) Receive
Interface Name

AXI4-Stream (Enhanced) CQ
Interface Name Differences

m_axis_rx_tlast m_axis_cq_tlast None

m_axis_rx_tdada
(64/128)

m_axis_cq_tdata
(64/128/256)

None

m_axis_rx_tvalid m_axis_cq_tvalid None

m_axis_rx_tready m_axis_cq_tready None

m_axis_rx_tstrb m_axis_cq_tkeep and
m_axis_cq_tuser

See m_axis_rx_tstrb
(64-Bit Interface Only)

m_axis_rx_tuser m_axis_cq_tuser and
m_axis_cq_tdata (Descriptor)

See m_axis_rx_tuser

rx_np_ok No equivalent signal N/A

rx_np_req pcie_cq_np_req None

No equivalent signal pcie_cq_np_req_count N/A

Table A-3: CR Interface Signals for m_axis_rx_tstrb

 AXI4-Stream(Enhanced) CQ Interface Name Mnemonic

m_axis_cq_tkeep(Data Width/32)

m_axis_cq_tuser[3:0] first_be [3:0]

m_axis_cq_tuser[7:4] last_be [3:0]

m_axis_cq_tuser[39:8] byte_en [31:0]

Table A-4: CR Interface Signals for m_axis_rx_tuser

 AXI4-Stream (Basic)
Receive Interface Name Mnemonic AXI4-Stream (Enhanced)

CQ Interface Name Mnemonic Notes

m_axis_rx_tuser[0] rx_ecrc_err m_axis_cq_tuser[41] Discontinue Not exact
equivalent

m_axis_rx_tuser[1] rx_err_fwd No equivalent signal N/A N/A

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=263

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 264
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

AXI4-Stream Requester Completion (RC) Interface

Completions for requests generated by user logic are presented on the Request Completion
(RC) interface.

m_axis_rx_tuser[9:2] rx_bar_hit[7:0] m_axis_cq_tdata[114:112]
m_axis_cq_tdata[78:75]

Bar ID [2:0]
Request Type [3:0]

• Assumed 128/
256bit interface

• Valid only when
Descriptor is
present on data
bus (sop = 1)

m_axis_rx_tuser[14:10]
(128bit Only)

rx_is_sof[4:0] m_axis_cq_tuser[40] sop m_axis_rx_tuser
[13:10] can be tied
to all 0s.

m_axis_rx_tuser[21:17]
(128-bit only)

rx_is_eof [4:0] m_axis_cq_tlast
m_axis_cq_tuser[39:8]

byte_en[31:0]

No equivalent signal m_axis_cq_tuser[10:8] addr_offset[2:0]

No equivalent signal m_axis_cq_tuser[12] tph_present

No equivalent signal m_axis_cq_tuser[14:13] tph_type[1:0]

No equivalent signal m_axis_cq_tuser[15] tph_indirect_tag_en

No equivalent signal m_axis_cq_tuser[23:16] tph_st_tag[7:0]

No equivalent signal m_axis_cq_tuser[27:24] seq_num[3:0]

No equivalent signal m_axis_cq_tuser[59:28] parity

Table A-4: CR Interface Signals for m_axis_rx_tuser (Cont’d)

 AXI4-Stream (Basic)
Receive Interface Name Mnemonic AXI4-Stream (Enhanced)

CQ Interface Name Mnemonic Notes

Table A-5: AXI4-Stream RC Interface Signal Mapping

AXI4-Stream (Basic)
Receive Interface Name

AXI4-Stream (Enhanced)
RC Interface Name Differences

m_axis_rx_tlast m_axis_rc_tlast None

m_axis_rx_tdada
(64/128)

m_axis_rc_tdata
(64/128/256)

None

m_axis_rx_tvalid m_axis_rc_tvalid None

m_axis_rx_tready m_axis_rc_tready None

m_axis_rx_tstrb
m_axis_rc_tkeep and

m_axis_rc_tuser
See m_axis_rx_tstrb (64-Bit Interface
Only)

m_axis_rx_tuser
m_axis_rc_tuser and

m_axis_rc_tdata (Descriptor)
See m_axis_rx_tuser

rx_np_ok No equivalent signal N/A

rx_np_req No equivalent signal cq_np_req and cq_np_req_count
are used for NP FC.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=264

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 265
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

m_axis_rx_tstrb (64-Bit Interface Only)

Table A-6 shows the Requester Completion interface signals used to generate the
m_axis_rx_tstrb signal bus.

m_axis_rx_tuser

Table A-7 shows the Requester Completion interface signals used to generate the
m_axis_rx_tuser signal bus.

Table A-6: RC Interface Signals for m_axis_rx_tstrb

AXI4-Stream (Enhanced)RC Interface Name Mnemonic

m_axis_rc_tkeep (Data Width/32)

m_axis_rc_tuser[31:0] byte_en [31:0]

Table A-7: RC Interface Signals for m_axis_rx_tuser

AXI4-Stream Receive
Interface Name Mnemonic AXI4-Stream Completer

Request Interface Name Mnemonic Notes

m_axis_rx_tuser[0] rx_ecrc_err m_axis_rc_tuser[41] Discontinue Not exact equivalent

m_axis_rx_tuser[1] rx_err_fwd m_axis_rx_tdata[46] Poisoned
completion

Valid only when
Descriptor is present on
the data bus (is_sof0/
is_sof1=1).

m_axis_rx_tuser[9:2] rx_bar_hit[7:0] N/A (Refer to CQ
interface)

N/A N/A

m_axis_rx_tuser[14:10]
(128-bit only)

rx_is_sof[4:0] m_axis_rc_tuser[32]
m_axis_rc_tuser[33]
(only for 256-bit straddle)

is_sof_0
is_sof_1

• 256-bit RC interface
provides straddling
option. If enabled,
the core can straddle
two completion TLPs
in the same beat.

• is_sof_1 is used only
when straddling is
enabled for 256-bit
interface.

m_axis_rx_tuser[21:17]
(128-bit only)

rx_is_eof [4:0] m_axis_rc_tuser[37:34]
m_axis_rx_tuser[41:38]
(only for 256-bit straddle)

Is_eof_0[3:0]
Is_eof_1[3:0]

is_eof_1 is used only
when straddling is
enabled for 256-bit
interface.

No equivalent signal m_axis_rc_tuser[74:43] Parity

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=265

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 266
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

AXI4-Stream (Enhanced) Completer Completion Interface

s_axis_tx_tstrb

Use s_axis_cc_tkeep with Byte Count Descriptor (s_axis_cc_tdata[28:16]) to indicate the byte
enables for the last Dword of the payload.

Table A-9 shows the mapping between s_axis_cc_tkeep from the Completer
Completion interface and the s_axis_tx_tstrb signal bus from the AXI4-Stream (Basic)
Transmit interface when tlast is not asserted.

Table A-8: Signal Mapping of AXI-4 Stream (Basic) Transmit Interface to AXI4-Stream
(Enhanced) Completer Completion Interface

AXI4-Stream (Basic) Transmit
Interface Name

AXI4-Stream (Enhanced)
Completer Completion

Interface Name
Differences

s_axis_tx_tlast s_axis_cc_tlast None

s_axis_tx_tdada (64/128) s_axis_cc_tdata (64/128/256) None

s_axis_tx_tvalid s_axis_cc_tvalid None

s_axis_tx_tready s_axis_cc_tready None

s_axis_tx_tstrb
s_axis_cc_tkeep

s_axis_cc_tdata[28:16]
See s_axis_tx_tstrb

 s_axis_tx_tuser s_axis_cc_tuser See s_axis_tx_tuser

tx_buf_av[5:0]

tx_terr_drop

tx_cfg_req NA None

tx_cfg_gnt NA None

Table A-9: Mapping Between s_axis_cc_tkeep and s_axis_tx_tstrb

Interface Width s_axis_tx_tstrb s_axis_cc_tkeep

64
0x0F 0x1

0xFF 0x3

128

0x0F 0x1

0xFF 0x3

0xFFF 0x7

0xFFFF 0xF

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=266

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 267
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

s_axis_tx_tuser

Table A-10 shows the mapping between s_axis_cc_tuser from the Completer
Completion interface and the s_axis_tx_tuser signal bus from the AXI4-Stream (Basic)
Transmit interface.

Table A-10: Mapping Between s_axis_cc_tkeep and s_axis_tx_tstrb

AXI4-Stream (Basic)
Receive Interface

Name
Mnemonic

AXI4-Stream (Enhanced)
Completer Request

Interface Name
Mnemonic Notes

s_axis_tx_tuser[0] tx_ecrc_gen s_axis_cc_tdata[95] Force ECRC Same
functionality

s_axis_tx_tuser[1] tx_err_fwd s_axis_cc_tdata[46] Poisoned
completion

Same
functionality

s_axis_tx_tuser[2] tx_str NA NA No equivalent
signal

s_axis_tx_tuser[2] t_src_dsc s_axis_cc_tuser[0] Discontinue Same
functionality

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=267

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 268
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

AXI4-Stream Requester Request Interface

s_axis_tx_tstrb

Table A-12 shows the Requester Request interface signals used to generate the
s_axis_tx_tstrb signal bus.

Table A-13 shows the mapping between s_axis_cc_tkeep from the Completer
Completion interface and the s_axis_tx_tstrb signal bus from the AXI-Stream (Basic)
Transmit interface when tlast is not asserted.

Table A-11: AXI-4 Stream Requester Request Interface Signal Mapping

AXI4-Stream (Basic) Transmit
Interface Name

AXI4-Stream (Enhanced) Requester
Request Interface Name Differences

s_axis_tx_tlast s_axis_rq_tlast None

s_axis_tx_tdada
(64/128)

s_axis_rq_tdata
(64/128/256)

None

s_axis_tx_tvalid s_axis_rq_tvalid None

s_axis_tx_tready s_axis_rq_tready None

s_axis_tx_tstrb s_axis_rq_tkeep See s_axis_tx_tstrb

 s_axis_tx_tuser s_axis_rq_tuser See s_axis_tx_tuser

tx_buf_av[5:0]
pcie_tfc_nph_av /
pcie_tfc_npd_av/
pcie_rq_tag_av

See tx_buf_av

tx_terr_drop

tx_cfg_req NA The feature is not available.

tx_cfg_gnt NA The feature is not available.

Table A-12: Requester Request Interface Signals for m_axis_rx_tuser

AXI4-Stream Requester (Enhanced) Request Interface Name Mnemonic

s_axis_rq_tkeep

s_axis_rq_tuser[3:0] first_be [3:0]

s_axis_rq_tuser[7:4] last_be [3:0]

Table A-13: Mapping Between s_axis_cc_tkeep and s_axis_tx_tstrb

Interface Width s_axis_tx_tstrb s_axis_rq_tkeep

64
0x0F 0x1

0xFF 0x3

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=268

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 269
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

s_axis_tx_tuser

Table A-14 shows the mapping between s_axis_rq_tuser from Requester Request
interface and s_axis_tx_tuser signal bus from the AXI-Stream (Basic) Transmit
interface.

tx_buf_av

The buffer availability has been split into three individual signals for the AXI4-Stream
(Enhanced) Requester Request interface.

• pcie_tfc_nph_av indicates the currently available header credit for non-posted TLPs
on the transmit side of the core.

• pcie_tfc_npd_av indicates the currently available payload credit for non-posted
TLPs on the transmit side of the core.

• pcie_rq_tag_av indicates the currently available header credit for non-posted TLPs
on the transmit side of the core.

Other Interfaces

Table A-15 describes additional interfaces provided by the core.

128

0x0F 0x1

0xFF 0x3

0xFFF 0x7

0xFFFF 0xF

Table A-14: Mapping between s_axis_rq_tuser and s_axis_tx_tuser

AXI4-Stream (Basic)
Receive Interface Name Mnemonic

AXI4-Stream (Enhanced)
Requester Request

Interface Name
Mnemonic Comments

s_axis_tx_tuser[0] tx_ecrc_gen s_axis_rq_tdata[127] Force ECRC Same
Functionality

s_axis_tx_tuser[1] tx_err_fwd s_axis_rq_tdata[79] Poisoned
request

Same
Functionality

s_axis_tx_tuser[2] tx_str NA NA No
Equivalent
Signal

s_axis_tx_tuser[2] t_src_dsc s_axis_rq_tuser[11] discontinue Same
Functionality

Table A-13: Mapping Between s_axis_cc_tkeep and s_axis_tx_tstrb

Interface Width s_axis_tx_tstrb s_axis_rq_tkeep

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=269

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 270
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

Table A-15: Additional Interfaces Provided by the Core

Interfaces Description Notes

Transmit Flow Control Used by the user application to request which flow
control information the core provides.
Based on the setting flow control input to the core, this
interface provides the following to the user application:
• Posted/Non-Posted Header Flow Control Credits
• Posted/Non-Posted Data Flow Control Credits
• Completion Header Flow Control Credits
• Completion Data Flow Control Credits

Similar functionality

Configuration Management Used to read and write to the Configuration Space
registers.

Similar functionality

Configuration Status Provides information about how the core is configured,
such as the negotiated link width and speed, the power
state of the core, and configuration errors.

Similar functionality as
Configuration Specific
register ports

Configuration Received
Message

Indicates the logic of a decodable message from the
link, the parameters associated with the data, and the
type of message received

Similar functionality as
Received Message TLP
status ports

Configuration Transmit
Message

Used by the user application to transmit messages to
the core. The user application supplies the transmit
message type and data information to the core, which
responds with the Done signal.

Per Function Status Provides status data requested by the user application
through the selected function.

Similar functionality as
Error Reporting Ports

Configuration Control Allows information exchange between the user
application and the core. The user application uses this
interface to:
• set the configuration space
• indicate if a correctable or uncorrectable error has

occurred
• set the device serial number
• set the Downstream Bus, Device, and Function

Number
• receive per-function configuration information.
This interface also provides handshaking between the
user application and the core when a Power State
change or function level reset occurs.

Similar functionality as
the Power Management
Port

Configuration Interrupt
Controller

Allows the user application to set Legacy PCIe
interrupts, MSI interrupts, or MSI-X interrupts. The core
provides the interrupt status on the configuration
interrupt sent and fail signals.

Similar functionality as
Interrupt Generation and
Status Ports

Configuration Extended Allows the core to transfer configuration information
with the user application when externally implemented
configuration registers are implemented.

Similar functionality as
Received Configuration
TLP Status Ports

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=270

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 271
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

Package Migration of UltraScale Architecture PCI
Express Designs
The UltraScale architecture offers many devices that share the same package footprint. This
migration path allows you to switch between devices to accommodate changes in design
size or the need for specific additional functionality, such as moving from Virtex® to
Kintex® devices when additional DSP blocks are needed.

While most PCI Express configurations can easily migrate in a package, there are some
designs and settings where migration of a specific PCI Express implementation might not be
possible. This section walks you through how to create PCI Express designs that can be
migrated across the desired parts, and identifies migration pin outs that cannot be
migrated.

For details on pin migration as a whole for the UltraScale family, see UltraScale Architecture
PCB Design: Advance Specification User Guide (UG583) [Ref 7].

Placement Rules
The UltraScale Architecture Gen3 Integrated Block for PCIe solution delivered from the
Vivado IP catalog has certain placement restrictions to ensure that your design will close
timing. Following are two of the rules that impact the ability of the PCI Express solution to
migrate across packages.

• Rule #1 – Lane 0 of the PCIe Interface is limited to the GTH quad one clock region
above, in the same clock region or one clock region below the PCI Express hard block.
When eight PCI Express lanes are used, the GTH quads must be in adjacent quads.

• Rule #2 – The integrated block for PCIe and the GTH transceivers that are connected
together must reside on the same Super Logic Region (SLR).

These two rules are explained in further detail in the following sections.

GTH Location

With each PCI Express core generated from the Vivado IDE, Xilinx provides recommended
locations of the GTH for the specified PCI Express block. While you can change the GTH
locations, Xilinx cannot guarantee that timing closure will be possible with these alternative
locations.

Starting with the Vivado 2014.3 software release, you have more flexibility to choose the GT
locations used in a design. You can choose:

• The PCIe block and GTH quad location in which lane 0 is placed.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=271

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 272
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

• The location of the GT quad, which can be one clock region above the PCIe block, in the
same region as the PCIe block, or one clock region below the PCIe block.

After the quad location is chosen, the remaining GTH locations are constrained based on the
link width selected. Note that SLR boundaries and non-bonded out GTs affect which GTHs
are available. When a x8 link width is selected, both GTH quads used must be adjacent to
each other.

Figure A-1 show how lanes are distributed for each initial GTH quad locations for a x8 PCIe
link width.

Stacked	Silicon	Interconnect	(SSI)	Devices

When SSI devices are used, the PCI Express hard block and the GTH quads connected to the
PCIe hard block must be on the same Super Logic Region (SLR).

Figure A-2 shows the XCVU125 device in an A2377 package. Notice that the integrated
block for PCIe located at location Y2 cannot select the GTH at bank 228, because an SLR
boundary would be crossed.

X-Ref Target - Figure A-1

Figure A-1: GTH Quad Locations

X14330

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=272

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 273
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

X-Ref Target - Figure A-2

Figure A-2: XCVU125 Device in an A2377 Package

X14329

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=273

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 274
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

Creating a Migration Plan for PCI Express
Keeping placement rules in mind, you can make a PCI Express package migration plan as
follows:

1. Choose a part and package to which you want to migrate, such as parts for the D1517
package, as in the example in Figure A-3.

2. Choose the PCI Express link width that is desired.

3. Evaluate how the GTH location for that PCI Express location will migrate.

4. Look for possible issues crossing SLR boundaries or for transceivers that are not bonded
out.

For instance, choosing PCIe location Y2 in the XCVU095 with the GTH location of 229
that is eight lanes wide cannot migrate to the XCVU125. This is because the SLR
boundary crossing rule would be violated. See Figure A-3.

For this example, the GT quad one clock region above the integrated block for PCIe at Y2
can be selected for an X8 design and can migrate across these two parts.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=274

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 275
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

5. It might be necessary to recompile the IP to generate new location constraints in some
cases. To accomplish this in the Vivado IDE, update the PCI Express location in the IP
settings, and then generate the core.

X-Ref Target - Figure A-3

Figure A-3: Migration Example

X14331

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=275

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 276
PG156 January 29, 2016

Appendix A: Migrating and Upgrading

Migrating Tandem Configuration
Migrating Tandem Configuration designs across different parts in the same package is
straight forward. Be sure that the PCI Express block that supports Tandem PCIe is selected.

IMPORTANT: Tandem PCIe is only supported for one PCIe hard block per device.

For a list of PCI Express block locations and dedicated reset pin locations that support
Tandem, see Table 3-2 and Table 3-3.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=276

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 277
PG156 January 29, 2016

Appendix B

GT Locations
This appendix provides a list of recommended GT locations for this IP core.

The FPGA package pins are derived directly from the GT locations listed in the Table B-1 and
Table B-2. The specific package pins are not listed in this guide because they can change
between device packages. From the Vivado Device view, use the following commands to
print out the FPGA package pins and their associated function for a specific GT location:

foreach pin [get_package_pins -of_objects [get_sites GTHE3_CHANNEL_<location>]]
{puts "Pin $pin: function [get_property PIN_FUNC $pin]"}

For more information about other selectable locations, see Package Migration of UltraScale
Architecture PCI Express Designs in Appendix A.

Kintex UltraScale Device GT Locations
Table B-1 provides a list of the recommended Kintex® UltraScale™ device GT locations.

Table B-1: Kintex UltraScale Device GT Locations

Package Device PCIe Blocks Lane x1 x2 x4 x8

FFVA1156 XCKU025 X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=277

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 278
PG156 January 29, 2016

Appendix B: GT Locations

FBVA676
FBVA900

XCKU035
XCKU040

X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

SFVA784
XCKU035
XCKU040

X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

FFVA1156
XCKU035
XCKU040
XCKU095

X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=278

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 279
PG156 January 29, 2016

Appendix B: GT Locations

FFVA1156
(continued)

XCKU035
XCKU040
XCKU095

(continued)

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

XCKU060

X0Y0

Lane0 X1Y7 X1Y7 X1Y7 X1Y7

Lane1 X1Y6 X1Y6 X1Y6

Lane2 X1Y5 X1Y5

Lane3 X1Y4 X1Y4

Lane4 X1Y3

Lane5 X1Y2

Lane6 X1Y1

Lane7 X1Y0

X0Y1

Lane0 X1Y15 X1Y15 X1Y15 X1Y15

Lane1 X1Y14 X1Y14 X1Y14

Lane2 X1Y13 X1Y13

Lane3 X1Y12 X1Y12

Lane4 X1Y11

Lane5 X1Y10

Lane6 X1Y9

Lane7 X1Y8

XCKU040
XCKU095

X0Y2

Lane0 X0Y19 X0Y19 X0Y19

Not
supported

Lane1 X0Y18 X0Y18

Lane2 X0Y17

Lane3 X0Y16

XCKU060

Lane0 X1Y19 X1Y19 X1Y19

Not
supported

Lane1 X1Y18 X1Y18

Lane2 X1Y17

Lane3 X1Y16

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=279

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 280
PG156 January 29, 2016

Appendix B: GT Locations

FFVA1517

XCKU060

X0Y0

Lane0 X1Y7 X1Y7 X1Y7 X1Y7

Lane1 X1Y6 X1Y6 X1Y6

Lane2 X1Y5 X1Y5

Lane3 X1Y4 X1Y4

Lane4 X1Y3

Lane5 X1Y2

Lane6 X1Y1

Lane7 X1Y0

X0Y1

Lane0 X1Y15 X1Y15 X1Y15 X1Y15

Lane1 X1Y14 X1Y14 X1Y14

Lane2 X1Y13 X1Y13

Lane3 X1Y12 X1Y12

Lane4 X1Y11

Lane5 X1Y10

Lane6 X1Y9

Lane7 X1Y8

XCKU060 X0Y2

Lane0 X1Y19 X1Y19 X1Y19

Not
supported

Lane1 X1Y18 X1Y18

Lane2 X1Y17

Lane3 X1Y16

FLVA1517
XCKU085
XCKU115

X0Y0

Lane 0 X1Y7 X1Y7 X1Y7 X1Y7

Lane 1 X1Y6 X1Y6 X1Y6

Lane 2 X1Y5 X1Y5

Lane 3 X1Y4 X1Y4

Lane 4 X1Y3

Lane 5 X1Y2

Lane 6 X1Y1

Lane 7 X1Y0

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=280

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 281
PG156 January 29, 2016

Appendix B: GT Locations

FLVA1517
(continued)

XCKU085
XCKU115

(continued)

X0Y1

Lane 0 X1Y15 X1Y15 X1Y15 X1Y15

Lane 1 X1Y14 X1Y14 X1Y14

Lane 2 X1Y13 X1Y13

Lane 3 X1Y12 X1Y12

Lane 4 X1Y11

Lane 5 X1Y10

Lane 6 X1Y9

Lane 7 X1Y8

X0Y2

Lane 0 X1Y19 X1Y19 X1Y19

Not
supported

Lane 1 X1Y18 X1Y18

Lane 2 X1Y17

Lane 3 X1Y16

X0Y3

Lane 0 X1Y27 X1Y27 X1Y27 X1Y27

Lane 1 X1Y26 X1Y26 X1Y26

Lane 2 X1Y25 X1Y25

Lane 3 X1Y24 X1Y24

Lane 4 X1Y23

Lane 5 X1Y22

Lane 6 X1Y21

Lane 7 X1Y20

X0Y4

Lane 0 X1Y35 X1Y35 X1Y35 X1Y35

Lane 1 X1Y34 X1Y34 X1Y34

Lane 2 X1Y33 X1Y33

Lane 3 X1Y32 X1Y32

Lane 4 X1Y31

Lane 5 X1Y30

Lane 6 X1Y29

Lane 7 X1Y28

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=281

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 282
PG156 January 29, 2016

Appendix B: GT Locations

FLVB1760 XCKU085

X0Y0

Lane0 X1Y7 X1Y7 X1Y7 X1Y7

Lane1 X1Y6 X1Y6 X1Y6

Lane2 X1Y5 X1Y5

Lane3 X1Y4 X1Y4

Lane4 X1Y3

Lane5 X1Y2

Lane6 X1Y1

Lane7 X1Y0

X0Y1

Lane0 X1Y15 X1Y15 X1Y15 X1Y15

Lane1 X1Y14 X1Y14 X1Y14

Lane2 X1Y13 X1Y13

Lane3 X1Y12 X1Y12

Lane4 X1Y11

Lane5 X1Y10

Lane6 X1Y9

Lane7 X1Y8

X0Y2

Lane0 X1Y19 X1Y19 X1Y19

Not
supported

Lane1 X1Y18 X1Y18

Lane2 X1Y17

Lane3 X1Y16

X0Y3

Lane0 X1Y31 X1Y31 X1Y31 X1Y31

Lane1 X1Y30 X1Y30 X1Y30

Lane2 X1Y29 X1Y29

Lane3 X1Y28 X1Y28

Lane4 X1Y27

Lane5 X1Y26

Lane6 X1Y25

Lane7 X1Y24

X0Y4

Lane0 X1Y35 X1Y35 X1Y35

Not
supported

Lane1 X1Y34 X1Y34

Lane2 X1Y33

Lane3 X1Y32

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=282

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 283
PG156 January 29, 2016

Appendix B: GT Locations

FLVF1924 XCKU085

X0Y0

Lane 0 X1Y7 X1Y7 X1Y7 X1Y7

Lane 1 X1Y6 X1Y6 X1Y6

Lane 2 X1Y5 X1Y5

Lane 3 X1Y4 X1Y4

Lane 4 X1Y3

Lane 5 X1Y2

Lane 6 X1Y1

Lane 7 X1Y0

X0Y1

Lane 0 X1Y15 X1Y15 X1Y15 X1Y15

Lane 1 X1Y14 X1Y14 X1Y14

Lane 2 X1Y13 X1Y13

Lane 3 X1Y12 X1Y12

Lane 4 X1Y11

Lane 5 X1Y10

Lane 6 X1Y9

Lane 7 X1Y8

X0Y2

Lane 0 X1Y19 X1Y19 X1Y19

Not
supported

Lane 1 X1Y18 X1Y18

Lane 2 X1Y17

Lane 3 X1Y16

X0Y3

Lane 0 X1Y27 X1Y27 X1Y27 X1Y27

Lane 1 X1Y26 X1Y26 X1Y26

Lane 2 X1Y25 X1Y25

Lane 3 X1Y24 X1Y24

Lane 4 X1Y23

Lane 5 X1Y22

Lane 6 X1Y21

Lane 7 X1Y20

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=283

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 284
PG156 January 29, 2016

Appendix B: GT Locations

FLVF1924
(continued)

XCKU085
(continued)

X0Y4

Lane 0 X1Y35 X1Y35 X1Y35 X1Y35

Lane 1 X1Y34 X1Y34 X1Y34

Lane 2 X1Y33 X1Y33

Lane 3 X1Y32 X1Y32

Lane 4 X1Y31

Lane 5 X1Y30

Lane 6 X1Y29

Lane 7 X1Y28

FLVD1924 XCKU115

X0Y0

Lane 0 X1Y7 X1Y7 X1Y7 X1Y7

Lane 1 X1Y6 X1Y6 X1Y6

Lane 2 X1Y5 X1Y5

Lane 3 X1Y4 X1Y4

Lane 4 X1Y3

Lane 5 X1Y2

Lane 6 X1Y1

Lane 7 X1Y0

X0Y1

Lane 0 X1Y15 X1Y15 X1Y15 X1Y15

Lane 1 X1Y14 X1Y14 X1Y14

Lane 2 X1Y13 X1Y13

Lane 3 X1Y12 X1Y12

Lane 4 X1Y11

Lane 5 X1Y10

Lane 6 X1Y9

Lane 7 X1Y8

X0Y3

Lane 0 X1Y31 X1Y31 X1Y31

Not
supported

Lane 1 X1Y30 X1Y30

Lane 2 X1Y29

Lane 3 X1Y28

X0Y4

Lane 0 X1Y35 X1Y35 X1Y35

Not
supported

Lane 1 X1Y34 X1Y34

Lane 2 X1Y33

Lane 3 X1Y32

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=284

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 285
PG156 January 29, 2016

Appendix B: GT Locations

FLVD1924
(continued)

XCKU115
(continued)

X0Y5

Lane 0 X1Y39 X1Y39 X1Y39

Not
supported

Lane 1 X1Y38 X1Y38

Lane 2 X1Y37

Lane 3 X1Y36

FLVF1924 XCKU115

X0Y0

Lane 0 X1Y7 X1Y7 X1Y7 X1Y7

Lane 1 X1Y6 X1Y6 X1Y6

Lane 2 X1Y5 X1Y5

Lane 3 X1Y4 X1Y4

Lane 4 X1Y3

Lane 5 X1Y2

Lane 6 X1Y1

Lane 7 X1Y0

X0Y1

Lane 0 X1Y15 X1Y15 X1Y15 X1Y15

Lane 1 X1Y14 X1Y14 X1Y14

Lane 2 X1Y13 X1Y13

Lane 3 X1Y12 X1Y12

Lane 4 X1Y11

Lane 5 X1Y10

Lane 6 X1Y9

Lane 7 X1Y8

X0Y2

Lane 0 X1Y19 X1Y19 X1Y19

Not
supported

Lane 1 X1Y18 X1Y18

Lane 2 X1Y17

Lane 3 X1Y16

X0Y3

Lane 0 X1Y27 X1Y27 X1Y27 X1Y27

Lane 1 X1Y26 X1Y26 X1Y26

Lane 2 X1Y25 X1Y25

Lane 3 X1Y24 X1Y24

Lane 4 X1Y23

Lane 5 X1Y22

Lane 6 X1Y21

Lane 7 X1Y20

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=285

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 286
PG156 January 29, 2016

Appendix B: GT Locations

FLVF1924
(continued)

XCKU115
(continued)

X0Y4

Lane 0 X1Y35 X1Y35 X1Y35 X1Y35

Lane 1 X1Y34 X1Y34 X1Y34

Lane 2 X1Y33 X1Y33

Lane 3 X1Y32 X1Y32

Lane 4 X1Y31

Lane 5 X1Y30

Lane 6 X1Y29

Lane 7 X1Y28

X0Y5

Lane 0 X1Y39 X1Y39 X1Y39

Not
supported

Lane 1 X1Y38 X1Y38

Lane 2 X1Y37

Lane 3 X1Y36

FLVD1517 XCKU115

X0Y0

Lane 0 X1Y7 X1Y7 X1Y7 X1Y7

Lane 1 X1Y6 X1Y6 X1Y6

Lane 2 X1Y5 X1Y5

Lane 3 X1Y4 X1Y4

Lane 4 X1Y3

Lane 5 X1Y2

Lane 6 X1Y1

Lane 7 X1Y0

X0Y1

Lane 0 X1Y15 X1Y15 X1Y15 X1Y15

Lane 1 X1Y14 X1Y14 X1Y14

Lane 2 X1Y13 X1Y13

Lane 3 X1Y12 X1Y12

Lane 4 X1Y11

Lane 5 X1Y10

Lane 6 X1Y9

Lane 7 X1Y8

X0Y2

Lane 0 X1Y19 X1Y19 X1Y19

Not
supported

Lane 1 X1Y18 X1Y18

Lane 2 X1Y17

Lane 3 X1Y16

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=286

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 287
PG156 January 29, 2016

Appendix B: GT Locations

FLVD1517
(continued)

XCKU115
(continued)

X0Y3

Lane 0 X1Y27 X1Y27 X1Y27 X1Y27

Lane 1 X1Y26 X1Y26 X1Y26

Lane 2 X1Y25 X1Y25

Lane 3 X1Y24 X1Y24

Lane 4 X1Y23

Lane 5 X1Y22

Lane 6 X1Y21

Lane 7 X1Y20

X0Y4

Lane 0 X1Y35 X1Y35 X1Y35 X1Y35

Lane 1 X1Y34 X1Y34 X1Y34

Lane 2 X1Y33 X1Y33

Lane 3 X1Y32 X1Y32

Lane 4 X1Y31

Lane 5 X1Y30

Lane 6 X1Y29

Lane 7 X1Y28

X0Y5

Lane 0 X1Y39 X1Y39 X1Y39

Not
supported

Lane 1 X1Y38 X1Y38

Lane 2 X1Y37

Lane 3 X1Y36

FLVB1760 XCKU115 X0Y0

Lane0 X1Y7 X1Y7 X1Y7 X1Y7

Lane1 X1Y6 X1Y6 X1Y6

Lane2 X1Y5 X1Y5

Lane3 X1Y4 X1Y4

Lane4 X1Y3

Lane5 X1Y2

Lane6 X1Y1

Lane7 X1Y0

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=287

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 288
PG156 January 29, 2016

Appendix B: GT Locations

FLVB1760 XCKU115

X0Y1

Lane0 X1Y15 X1Y15 X1Y15 X1Y15

Lane1 X1Y14 X1Y14 X1Y14

Lane2 X1Y13 X1Y13

Lane3 X1Y12 X1Y12

Lane4 X1Y11

Lane5 X1Y10

Lane6 X1Y9

Lane7 X1Y8

X0Y2

Lane0 X1Y19 X1Y19 X1Y19

Not
supported

Lane1 X1Y18 X1Y18

Lane2 X1Y17

Lane3 X1Y16

X0Y3

Lane0 X1Y31 X1Y31 X1Y31 X1Y31

Lane1 X1Y30 X1Y30 X1Y30

Lane2 X1Y29 X1Y29

Lane3 X1Y28 X1Y28

Lane4 X1Y27

Lane5 X1Y26

Lane6 X1Y25

Lane7 X1Y24

X0Y4

Lane0 X1Y35 X1Y35 X1Y35

Not
supported

Lane1 X1Y34 X1Y34

Lane2 X1Y33

Lane3 X1Y32

X0Y5

Lane0 X1Y39 X1Y39 X1Y39

Not
supported

Lane1 X1Y38 X1Y38

Lane2 X1Y37

Lane3 X1Y36

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=288

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 289
PG156 January 29, 2016

Appendix B: GT Locations

FLVA2104 XCKU115

X0Y0

Lane 0 X1Y7 X1Y7 X1Y7 X1Y7

Lane 1 X1Y6 X1Y6 X1Y6

Lane 2 X1Y5 X1Y5

Lane 3 X1Y4 X1Y4

Lane 4 X1Y3

Lane 5 X1Y2

Lane 6 X1Y1

Lane 7 X1Y0

X0Y1

Lane 0 X1Y15 X1Y15 X1Y15 X1Y15

Lane 1 X1Y14 X1Y14 X1Y14

Lane 2 X1Y13 X1Y13

Lane 3 X1Y12 X1Y12

Lane 4 X1Y11

Lane 5 X1Y10

Lane 6 X1Y9

Lane 7 X1Y8

X0Y3

Lane 0 X1Y31 X1Y31 X1Y31

Not
supported

Lane 1 X1Y30 X1Y30

Lane 2 X1Y29

Lane 3 X1Y28

X0Y4

Lane 0 X1Y35 X1Y35 X1Y35

Not
supported

Lane 1 X1Y34 X1Y34

Lane 2 X1Y33

Lane 3 X1Y32

X0Y5

Lane 0 X1Y39 X1Y39 X1Y39

Not
supported

Lane 1 X1Y38 X1Y38

Lane 2 X1Y37

Lane 3 X1Y36

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=289

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 290
PG156 January 29, 2016

Appendix B: GT Locations

FLVB2104 XCKU115

X0Y0

Lane 0 X1Y7 X1Y7 X1Y7 X1Y7

Lane 1 X1Y6 X1Y6 X1Y6

Lane 2 X1Y5 X1Y5

Lane 3 X1Y4 X1Y4

Lane 4 X1Y3

Lane 5 X1Y2

Lane 6 X1Y1

Lane 7 X1Y0

X0Y1

Lane 0 X1Y15 X1Y15 X1Y15 X1Y15

Lane 1 X1Y14 X1Y14 X1Y14

Lane 2 X1Y13 X1Y13

Lane 3 X1Y12 X1Y12

Lane 4 X1Y11

Lane 5 X1Y10

Lane 6 X1Y9

Lane 7 X1Y8

X0Y2

Lane 0 X1Y19 X1Y19 X1Y19

Not
supported

Lane 1 X1Y18 X1Y18

Lane 2 X1Y17

Lane 3 X1Y16

X0Y3

Lane 0 X1Y27 X1Y27 X1Y27 X1Y27

Lane 1 X1Y26 X1Y26 X1Y26

Lane 2 X1Y25 X1Y25

Lane 3 X1Y24 X1Y24

Lane 4 X1Y23

Lane 5 X1Y22

Lane 6 X1Y21

Lane 7 X1Y20

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=290

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 291
PG156 January 29, 2016

Appendix B: GT Locations

FLVB2104
(continued)

XCKU115
(continued)

X0Y4

Lane 0 X1Y35 X1Y35 X1Y35 X1Y35

Lane 1 X1Y34 X1Y34 X1Y34

Lane 2 X1Y33 X1Y33

Lane 3 X1Y32 X1Y32

Lane 4 X1Y31

Lane 5 X1Y30

Lane 6 X1Y29

Lane 7 X1Y28

X0Y5

Lane 0 X1Y39 X1Y39 X1Y39

Not
supported

Lane 1 X1Y38 X1Y38

Lane 2 X1Y37

Lane 3 X1Y36

FFVB1760
FFVB2104

XCKU095

X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=291

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 292
PG156 January 29, 2016

Appendix B: GT Locations

FFVB1760
FFVB2104

(continued)

XCKU095
(continued)

X0Y2

Lane0 X0Y23 X0Y23 X0Y23 X0Y23

Lane1 X0Y22 X0Y22 X0Y22

Lane2 X0Y21 X0Y21

Lane3 X0Y20 X0Y20

Lane4 X0Y19

Lane5 X0Y18

Lane6 X0Y17

Lane7 X0Y16

X0Y3

Lane0 X0Y31 X0Y31 X0Y31 X0Y31

Lane1 X0Y30 X0Y30 X0Y30

Lane2 X0Y29 X0Y29

Lane3 X0Y28 X0Y28

Lane4 X0Y27

Lane5 X0Y26

Lane6 X0Y25

Lane7 X0Y24

FFVC1517 XCKU095

X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=292

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 293
PG156 January 29, 2016

Appendix B: GT Locations

Notes:
1. x8 link width is not supported when the static GT locations are used. However, you can enable GT selection mode

(using the Enable GT Quad Selection Advanced mode option) and then select x8 link width for these PCIe blocks.
For details, see Package Migration of UltraScale Architecture PCI Express Designs.

FFVC1517
(continued)

XCKU095
(continued)

X0Y2

Lane0 X0Y19 X0Y19 X0Y19

Not
supported

Lane1 X0Y18 X0Y18

Lane2 X0Y17

Lane3 X0Y16

Table B-1: Kintex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=293

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 294
PG156 January 29, 2016

Appendix B: GT Locations

Virtex UltraScale Device GT Locations
Table B-2 provides a list of recommended Virtex® UltraScale device GT locations.

Table B-2: Virtex UltraScale Device GT Locations

Package Device PCIe Blocks Lane x1 x2 x4 x8

FFVC1517

XCVU065
XCVU080
XCVU095

X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

XCVU080
XCVU095

X0Y2

Lane0 X0Y19 X0Y19 X0Y19

Not supported
Lane1 X0Y18 X0Y18

Lane2 X0Y17

Lane3 X0Y16

FFVA2104
XCVU080
XCVU095

X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=294

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 295
PG156 January 29, 2016

Appendix B: GT Locations

FFVA2104
(continued)

XCVU080
XCVU095

(continued)

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

X0Y2

Lane0 X0Y23 X0Y23 X0Y23 X0Y23

Lane1 X0Y22 X0Y22 X0Y22

Lane2 X0Y21 X0Y21

Lane3 X0Y20 X0Y20

Lane4 X0Y19

Lane5 X0Y18

Lane6 X0Y17

Lane7 X0Y16

X0Y3

Lane0 X0Y27 X0Y27 X0Y27

Not supported
Lane1 X0Y26 X0Y26

Lane2 X0Y25

Lane3 X0Y24

FFVB2104
FFVB1760
FFVD1517

XCVU080
XCVU095

X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=295

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 296
PG156 January 29, 2016

Appendix B: GT Locations

FFVB2104
FFVB1760
FFVD1517

(continued)

XCVU080
XCVU095

(continued)

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

X0Y2

Lane0 X0Y23 X0Y23 X0Y23 X0Y23

Lane1 X0Y22 X0Y22 X0Y22

Lane2 X0Y21 X0Y21

Lane3 X0Y20 X0Y20

Lane4 X0Y19

Lane5 X0Y18

Lane6 X0Y17

Lane7 X0Y16

X0Y3

Lane0 X0Y31 X0Y31 X0Y31 X0Y31

Lane1 X0Y30 X0Y30 X0Y30

Lane2 X0Y29 X0Y29

Lane3 X0Y28 X0Y28

Lane4 X0Y27

Lane5 X0Y26

Lane6 X0Y25

Lane7 X0Y24

FFVC2104 XCVU095 X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=296

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 297
PG156 January 29, 2016

Appendix B: GT Locations

FFVC2104
(continued)

XCVU095
(continued)

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

X0Y2

Lane0 X0Y23 X0Y23 X0Y23 X0Y23

Lane1 X0Y22 X0Y22 X0Y22

Lane2 X0Y21 X0Y21

Lane3 X0Y20 X0Y20

Lane4 X0Y19

Lane5 X0Y18

Lane6 X0Y17

Lane7 X0Y16

X0Y3

Lane0 X0Y31 X0Y31 X0Y31 X0Y31

Lane1 X0Y30 X0Y30 X0Y30

Lane2 X0Y29 X0Y29

Lane3 X0Y28 X0Y28

Lane4 X0Y27

Lane5 X0Y26

Lane6 X0Y25

Lane7 X0Y24

FLVB1760 XCVU125 X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=297

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 298
PG156 January 29, 2016

Appendix B: GT Locations

FLVB1760
(continued)

XCVU125
(continued)

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

X0Y2

Lane0 X0Y31 X0Y31 X0Y31 X0Y31

Lane1 X0Y30 X0Y30 X0Y30

Lane2 X0Y29 X0Y29

Lane3 X0Y28 X0Y28

Lane4 X0Y27

Lane5 X0Y26

Lane6 X0Y25

Lane7 X0Y24

X0Y3

Lane0 X0Y39 X0Y39 X0Y39 X0Y39

Lane1 X0Y38 X0Y38 X0Y38

Lane2 X0Y37 X0Y37

Lane3 X0Y36 X0Y36

Lane4 X0Y35

Lane5 X0Y34

Lane6 X0Y33

Lane7 X0Y32

FLVA2104 XCVU125 X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=298

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 299
PG156 January 29, 2016

Appendix B: GT Locations

FLVA2104
(continued)

XCVU125
(continued)

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

X0Y2

Lane0 X0Y35 X0Y35 X0Y35 X0Y35

Lane1 X0Y34 X0Y34 X0Y34

Lane2 X0Y33 X0Y33

Lane3 X0Y32 X0Y32

Lane4 X0Y31

Lane5 X0Y30

Lane6 X0Y29

Lane7 X0Y28

X0Y3

Lane0 X0Y39 X0Y39 X0Y39

Not supported
Lane1 X0Y38 X0Y38

Lane2 X0Y37

Lane3 X0Y36

FLVB2104
FLVC2104
FLVD1517

XCVU125 X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=299

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 300
PG156 January 29, 2016

Appendix B: GT Locations

FLVB2104
FLVC2104
FLVD1517

(continued)

XCVU125
(continued)

X0Y1

Lane0 X0Y19 X0Y19 X0Y19 X0Y19

Lane1 X0Y18 X0Y18 X0Y18

Lane2 X0Y17 X0Y17

Lane3 X0Y16 X0Y16

Lane4 X0Y15

Lane5 X0Y14

Lane6 X0Y13

Lane7 X0Y12

X0Y2

Lane0 X0Y27 X0Y27 X0Y27 X0Y27

Lane1 X0Y26 X0Y26 X0Y26

Lane2 X0Y25 X0Y25

Lane3 X0Y24 X0Y24

Lane4 X0Y23

Lane5 X0Y22

Lane6 X0Y21

Lane7 X0Y20

X0Y3

Lane0 X0Y39 X0Y39 X0Y39 X0Y39

Lane1 X0Y38 X0Y38 X0Y38

Lane2 X0Y37 X0Y37

Lane3 X0Y36 X0Y36

Lane4 X0Y35

Lane5 X0Y34

Lane6 X0Y33

Lane7 X0Y32

FLGA2577 XCVU190 X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=300

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 301
PG156 January 29, 2016

Appendix B: GT Locations

FLGA2577
(continued)

XCVU190
(continued)

X0Y1

Lane0 X0Y19 X0Y19 X0Y19 X0Y19

Lane1 X0Y18 X0Y18 X0Y18

Lane2 X0Y17 X0Y17

Lane3 X0Y16 X0Y16

Lane4 X0Y15

Lane5 X0Y14

Lane6 X0Y13

Lane7 X0Y12

X0Y2

Lane0 X0Y27 X0Y27 X0Y27 X0Y27

Lane1 X0Y26 X0Y26 X0Y26

Lane2 X0Y25 X0Y25

Lane3 X0Y24 X0Y24

Lane4 X0Y23

Lane5 X0Y22

Lane6 X0Y21

Lane7 X0Y20

X0Y3

Lane0 X0Y39 X0Y39 X0Y39 X0Y39

Lane1 X0Y38 X0Y38 X0Y38

Lane2 X0Y37 X0Y37

Lane3 X0Y36 X0Y36

Lane4 X0Y35

Lane5 X0Y34

Lane6 X0Y33

Lane7 X0Y32

X0Y4

Lane0 X0Y47 X0Y47 X0Y47 X0Y47

Lane1 X0Y46 X0Y46 X0Y46

Lane2 X0Y45 X0Y45

Lane3 X0Y44 X0Y44

Lane4 X0Y43

Lane5 X0Y42

Lane6 X0Y41

Lane7 X0Y40

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=301

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 302
PG156 January 29, 2016

Appendix B: GT Locations

FLGA2577
(continued)

XCVU190
(continued)

X0Y5

Lane0 X0Y59 X0Y59 X0Y59 X0Y59

Lane1 X0Y58 X0Y58 X0Y58

Lane2 X0Y57 X0Y57

Lane3 X0Y56 X0Y56

Lane4 X0Y55

Lane5 X0Y54

Lane6 X0Y53

Lane7 X0Y52

FLGB2104 XCVU160

X0Y1

Lane0 X0Y23 X0Y23 X0Y23 X0Y23

Lane1 X0Y22 X0Y22 X0Y22

Lane2 X0Y21 X0Y21

Lane3 X0Y20 X0Y20

Lane4 X0Y19

Lane5 X0Y18

Lane6 X0Y17

Lane7 X0Y16

X0Y2

Lane0 X0Y35 X0Y35 X0Y35 X0Y35

Lane1 X0Y34 X0Y34 X0Y34

Lane2 X0Y33 X0Y33

Lane3 X0Y32 X0Y32

Lane4 X0Y31

Lane5 X0Y30

Lane6 X0Y29

Lane7 X0Y28

X0Y3

Lane0 X0Y43 X0Y43 X0Y43 X0Y43

Lane1 X0Y42 X0Y42 X0Y42

Lane2 X0Y41 X0Y41

Lane3 X0Y40 X0Y40

Lane4 X0Y39

Lane5 X0Y38

Lane6 X0Y37

Lane7 X0Y36

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=302

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 303
PG156 January 29, 2016

Appendix B: GT Locations

FLGB2104
(continued)

XCVU160
(continued)

X0Y4

Lane0 X0Y55 X0Y55 X0Y55 X0Y55

Lane1 X0Y54 X0Y54 X0Y54

Lane2 X0Y53 X0Y53

Lane3 X0Y52 X0Y52

Lane4 X0Y51

Lane5 X0Y50

Lane6 X0Y49

Lane7 X0Y48

FLGB2104 XCVU190

X0Y2

Lane0 X0Y27 X0Y27 X0Y27 X0Y27

Lane1 X0Y26 X0Y26 X0Y26

Lane2 X0Y25 X0Y25

Lane3 X0Y24 X0Y24

Lane4 X0Y23

Lane5 X0Y22

Lane6 X0Y21

Lane7 X0Y20

X0Y3

Lane0 X0Y39 X0Y39 X0Y39 X0Y39

Lane1 X0Y38 X0Y38 X0Y38

Lane2 X0Y37 X0Y37

Lane3 X0Y36 X0Y36

Lane4 X0Y35

Lane5 X0Y34

Lane6 X0Y33

Lane7 X0Y32

X0Y4

Lane0 X0Y47 X0Y47 X0Y47 X0Y47

Lane1 X0Y46 X0Y46 X0Y46

Lane2 X0Y45 X0Y45

Lane3 X0Y44 X0Y44

Lane4 X0Y43

Lane5 X0Y42

Lane6 X0Y41

Lane7 X0Y40

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=303

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 304
PG156 January 29, 2016

Appendix B: GT Locations

FLGB2104
(continued)

XCVU190
(continued)

X0Y5

Lane0 X0Y59 X0Y59 X0Y59 X0Y59

Lane1 X0Y58 X0Y58 X0Y58

Lane2 X0Y57 X0Y57

Lane3 X0Y56 X0Y56

Lane4 X0Y55

Lane5 X0Y54

Lane6 X0Y53

Lane7 X0Y52

FLGC2104 XCVU160

X0Y0

Lane0 X0Y11 X0Y11 X0Y11 X0Y11

Lane1 X0Y10 X0Y10 X0Y10

Lane2 X0Y9 X0Y9

Lane3 X0Y8 X0Y8

Lane4 X0Y7

Lane5 X0Y6

Lane6 X0Y5

Lane7 X0Y4

X0Y1

Lane0 X0Y23 X0Y23 X0Y23 X0Y23

Lane1 X0Y22 X0Y22 X0Y22

Lane2 X0Y21 X0Y21

Lane3 X0Y20 X0Y20

Lane4 X0Y19

Lane5 X0Y18

Lane6 X0Y17

Lane7 X0Y16

X0Y2

Lane0 X0Y35 X0Y35 X0Y35 X0Y35

Lane1 X0Y34 X0Y34 X0Y34

Lane2 X0Y33 X0Y33

Lane3 X0Y32 X0Y32

Lane4 X0Y31

Lane5 X0Y30

Lane6 X0Y29

Lane7 X0Y28

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=304

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 305
PG156 January 29, 2016

Appendix B: GT Locations

FLGC2104
(continued)

XCVU160
(continued)

X0Y3

Lane0 X0Y43 X0Y43 X0Y43 X0Y43

Lane1 X0Y42 X0Y42 X0Y42

Lane2 X0Y41 X0Y41

Lane3 X0Y40 X0Y40

Lane4 X0Y39

Lane5 X0Y38

Lane6 X0Y37

Lane7 X0Y36

X0Y4

Lane0 X0Y55 X0Y55 X0Y55 X0Y55

Lane1 X0Y54 X0Y54 X0Y54

Lane2 X0Y53 X0Y53

Lane3 X0Y52 X0Y52

Lane4 X0Y51

Lane5 X0Y50

Lane6 X0Y49

Lane7 X0Y48

FLGC2104 XCVU190

X0Y0

Lane0 X0Y11 X0Y11 X0Y11 X0Y11

Lane1 X0Y10 X0Y10 X0Y10

Lane2 X0Y9 X0Y9

Lane3 X0Y8 X0Y8

Lane4 X0Y7

Lane5 X0Y6

Lane6 X0Y5

Lane7 X0Y4

X0Y1

Lane0 X0Y15 X0Y15 X0Y15

Not supported
Lane1 X0Y14 X0Y14

Lane2 X0Y13

Lane3 X0Y12

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=305

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 306
PG156 January 29, 2016

Appendix B: GT Locations

FLGC2104
(continued)

XCVU190
(continued)

X0Y2

Lane0 X0Y27 X0Y27 X0Y27 X0Y27

Lane1 X0Y26 X0Y26 X0Y26

Lane2 X0Y25 X0Y25

Lane3 X0Y24 X0Y24

Lane4 X0Y23

Lane5 X0Y22

Lane6 X0Y21

Lane7 X0Y20

X0Y3

Lane0 X0Y39 X0Y39 X0Y39 X0Y39

Lane1 X0Y38 X0Y38 X0Y38

Lane2 X0Y37 X0Y37

Lane3 X0Y36 X0Y36

Lane4 X0Y35

Lane5 X0Y34

Lane6 X0Y33

Lane7 X0Y32

X0Y4

Lane0 X0Y47 X0Y47 X0Y47 X0Y47

Lane1 X0Y46 X0Y46 X0Y46

Lane2 X0Y45 X0Y45

Lane3 X0Y44 X0Y44

Lane4 X0Y43

Lane5 X0Y42

Lane6 X0Y41

Lane7 X0Y40

X0Y5

Lane0 X0Y59 X0Y59 X0Y59 X0Y59

Lane1 X0Y58 X0Y58 X0Y58

Lane2 X0Y57 X0Y57

Lane3 X0Y56 X0Y56

Lane4 X0Y55

Lane5 X0Y54

Lane6 X0Y53

Lane7 X0Y52

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=306

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 307
PG156 January 29, 2016

Appendix B: GT Locations

FLGB2377 XCVU440

X0Y0

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

X0Y1

Lane0 X0Y19 X0Y19 X0Y19

Not supported
Lane1 X0Y18 X0Y18

Lane2 X0Y17

Lane3 X0Y16

X0Y2

Lane0 X0Y27 X0Y27 X0Y27 X0Y27

Lane1 X0Y26 X0Y26 X0Y26

Lane2 X0Y25 X0Y25

Lane3 X0Y24 X0Y24

Lane4 X0Y23

Lane5 X0Y22

Lane6 X0Y21

Lane7 X0Y20

X0Y3

Lane0 X0Y31 X0Y31 X0Y31

Not supported
Lane1 X0Y30 X0Y30

Lane2 X0Y29

Lane3 X0Y28

X0Y4

Lane0 X0Y55 X0Y55 X0Y55 X0Y55

Lane1 X0Y54 X0Y54 X0Y54

Lane2 X0Y53 X0Y53

Lane3 X0Y52 X0Y52

Lane4 X0Y51

Lane5 X0Y50

Lane6 X0Y49

Lane7 X0Y48

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=307

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 308
PG156 January 29, 2016

Appendix B: GT Locations

FLGB2377
(continued)

XCVU440
(continued

X0Y5

Lane0 X0Y59 X0Y59 X0Y59

Not supported
Lane1 X0Y58 X0Y58

Lane2 X0Y57

Lane3 X0Y56

FLGA2892 XCVU440

X0Y0

Lane0 X0Y7 X0Y7 X0Y7 X0Y7

Lane1 X0Y6 X0Y6 X0Y6

Lane2 X0Y5 X0Y5

Lane3 X0Y4 X0Y4

Lane4 X0Y3

Lane5 X0Y2

Lane6 X0Y1

Lane7 X0Y0

X0Y1

Lane0 X0Y15 X0Y15 X0Y15 X0Y15

Lane1 X0Y14 X0Y14 X0Y14

Lane2 X0Y13 X0Y13

Lane3 X0Y12 X0Y12

Lane4 X0Y11

Lane5 X0Y10

Lane6 X0Y9

Lane7 X0Y8

X0Y2

Lane0 X0Y27 X0Y27 X0Y27 X0Y27

Lane1 X0Y26 X0Y26 X0Y26

Lane2 X0Y25 X0Y25

Lane3 X0Y24 X0Y24

Lane4 X0Y23

Lane5 X0Y22

Lane6 X0Y21

Lane7 X0Y20

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=308

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 309
PG156 January 29, 2016

Appendix B: GT Locations

Notes:
1. x8 link width is not supported when the static GT locations are used. However, you can enable GT selection mode

(using the Enable GT Quad Selection Advanced mode option) and then select x8 link width for these PCIe blocks.
For details, see Package Migration of UltraScale Architecture PCI Express Designs.

FLGA2892
(continued)

XCVU440
(continued)

X0Y3

Lane0 X0Y35 X0Y35 X0Y35 X0Y35

Lane1 X0Y34 X0Y34 X0Y34

Lane2 X0Y33 X0Y33

Lane3 X0Y32 X0Y32

Lane4 X0Y31

Lane5 X0Y30

Lane6 X0Y29

Lane7 X0Y28

X0Y4

Lane0 X0Y47 X0Y47 X0Y47 X0Y47

Lane1 X0Y46 X0Y46 X0Y46

Lane2 X0Y45 X0Y45

Lane3 X0Y44 X0Y44

Lane4 X0Y43

Lane5 X0Y42

Lane6 X0Y41

Lane7 X0Y40

X0Y5

Lane0 X0Y55 X0Y55 X0Y55 X0Y55

Lane1 X0Y54 X0Y54 X0Y54

Lane2 X0Y53 X0Y53

Lane3 X0Y52 X0Y52

Lane4 X0Y51

Lane5 X0Y50

Lane6 X0Y49

Lane7 X0Y48

Table B-2: Virtex UltraScale Device GT Locations (Cont’d)

Package Device PCIe Blocks Lane x1 x2 x4 x8

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=309

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 310
PG156 January 29, 2016

Appendix C

Managing Receive-Buffer Space for
Inbound Completions

The PCI Express® Base Specification [Ref 2] requires all Endpoints to advertise infinite Flow
Control credits for received Completions to their link partners. This means that an Endpoint
must only transmit Non-Posted Requests for which it has space to accept Completion
responses. This appendix describes how a user application can manage the receive-buffer
space in the UltraScale Architecture Gen3 Integrated Block for PCIe core to fulfill this
requirement.

General Considerations and Concepts

Completion Space
Table C-1 defines the completion space reserved in the receive buffer by the core. The
values differ depending on the different Capability Max Payload Size settings of the core
and the performance level that you selected. Values are credits, expressed in decimal.

Maximum Request Size
A Memory Read cannot request more than the value stated in Max_Request_Size, which is
given by Configuration bits cfg_dcommand[14:12] as defined in Table C-2. If the user
application does not read the Max_Request_Size value, it must use the default value of 128
bytes.

Table C-1: Receiver-Buffer Completion Space

Capability Max Payload Size
(bytes)

Performance Level: Good Performance Level: High

CPH CPD CPH CPD

128 64 7,936B 64 15,872B

256 64 7,936B 64 15,872B

512 64 7,936B 64 15,872B

1024 64 7,936B 64 15,872B

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=310

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 311
PG156 January 29, 2016

Appendix C: Managing Receive-Buffer Space for Inbound Completions

Read Completion Boundary
A memory read can be answered with multiple completions, which when put together
return all requested data. To make room for packet-header overhead, the user application
must allocate enough space for the maximum number of completions that might be
returned.

To make this process easier, the PCI Express Base Specification quantizes the length of all
completion packets such that each completion must start and end on a naturally aligned
read completion boundary (RCB), unless, it services the starting or ending address of the
original request. Requests which cross the address boundaries at integer multiples of RCB
bytes can be completed using more than one completion, but the returned data must not be
fragmented except along the following address boundaries:

• The first completion must start with the address specified in the request, and must end
at one of the following:

° The address specified in the request plus the length specified by the request (for
example, the entire request).

° An address boundary between the start and end of the request at an integer
multiple of RCB bytes.

• The final completion must end with the address specified in the request plus the length
specified by the request.

• All completions between, but not including, the first and final completions must be an
integer multiple of RCB bytes in length.

The programmed value of RCB is provided on cfg_rcb_status[1:0]. Here
cfg_rcb_status[0] and cfg_rcb_status[1] are associated with physical functions 0
and 1 respectively (Per Function Link Control register [3]). If the user application does not
read the RCB value, it must use the default value of 64 bytes.

Table C-2: Max_Request_Size Settings

cfg_dcommand[14:12]
Max_Request_Size

Bytes DW QW Credits

000b 128 32 16 8

001b 256 64 32 16

010b 512 128 64 32

011b 1024 256 128 64

100b 2048 512 256 128

101b 4096 1024 512 256

110b–111b Reserved

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=311

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 312
PG156 January 29, 2016

Appendix C: Managing Receive-Buffer Space for Inbound Completions

When calculating the number of completion credits a non-posted request requires, you
must determine how many RCB-bounded blocks the completion response might be
required, which is the same as the number of completion header credits required.

Important Note For High Performance Applications

While a programmed RCB value can be used by the user application to compute the
maximum number of completions returned for a request, most high performance memory
controllers have the optional feature to combine RCB-sized completions in response to
large read requests (read lengths multiples of RCB value), into completions that are at or
near the programmed Max_Payload_Size value for the link. You are encouraged to take
advantage of this feature, if supported, by a memory controller on the host CPU. Data
exchange based on completions that are integer multiples (>1) of RCB value results in
greater PCI Express interface utilization and payload efficiency, as well as, more efficient
use of completion space in the Endpoint receiver.

Methods of Managing Completion Space
A user application can choose one of five methods to manage receive-buffer completion
space, as listed in Table C-4. For convenience, this discussion refers to these methods as
LIMIT_FC, PACKET_FC, RCB_FC, and DATA_FC. Each method has advantages and
disadvantages that you need to consider when developing the user application.

Table C-3: Read Completion Boundary Settings

cfg_rcb_status[0] or
cfg_rcb_status[1]

Read Completion Boundary

Bytes DW QW Credits

0 64 16 8 4

1 128 32 16 8

Table C-4: Managing Receive Completion Space Methods

Method Description Advantage Disadvantage

LIMIT_FC Limit the total number of
outstanding NP Requests

Simplest method to
implement in user logic

Much Completion
capacity goes unused

PACKET_FC Track the number of
outstanding CplH and CplD
credits; allocate and deallocate
on a per-packet basis

Relatively simple user
logic; finer allocation
granularity means less
wasted capacity than
LIMIT_FC

As with LIMIT_FC,
credits for an NP are
still tied up until the
request is completely
satisfied

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=312

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 313
PG156 January 29, 2016

Appendix C: Managing Receive-Buffer Space for Inbound Completions

LIMIT_FC Method
The LIMIT_FC method is the simplest to implement. The user application assesses the
maximum number of outstanding Non-Posted Requests allowed at one time, MAX_NP. To
calculate this value, perform these steps:

1. Determine the number of CplH credits required by a Max_Request_Size packet:

Max_Header_Count = ceiling(Max_Request_Size / RCB)

2. Determine the greatest number of maximum-sized completions supported by the CplD
credit pool:

Max_Packet_Count_CplD = floor(CplD / Max_Request_Size)

3. Determine the greatest number of maximum-sized completions supported by the CplH
credit pool:

Max_Packet_Count_CplH = floor(CplH / Max_Header_Count)

4. Use the smaller of the two quantities from steps 2 and 3 to obtain the maximum number
of outstanding Non-Posted requests:

MAX_NP = min(Max_Packet_Count_CplH, Max_Packet_Count_CplD)

With knowledge of MAX_NP, the user application can load a register NP_PENDING with zero
at reset and make sure it always stays with the range 0 to MAX_NP. When a non-posted
request is transmitted, NP_PENDING decreases by one. When all completions for an
outstanding non-posted request are received, NP_PENDING increases by one.

For example:

• Max_Request_Size = 128B

• RCB = 64B

• CplH = 64

• CplD = 15,872B

RCB_FC Track the number of
outstanding CplH and CplD
credits; allocate and deallocate
on a per-RCB basis

Ties up credits for less
time than PACKET_FC

More complex user
logic than LIMIT_FC or
PACKET_FC

DATA_FC Track the number of
outstanding CplH and CplD
credits; allocate and deallocate
on a per-RCB basis

Lowest amount of
wasted capacity

More complex user
logic than LIMIT_FC,
PACKET_FC, and RCB_FC

Table C-4: Managing Receive Completion Space Methods (Cont’d)

Method Description Advantage Disadvantage

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=313

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 314
PG156 January 29, 2016

Appendix C: Managing Receive-Buffer Space for Inbound Completions

• Max_Header_Count = 2

• Max_Packet_Count_CplD = 124

• Max_Packet_Count_CplH = 32

• MAX_NP = 32

Although this method is the simplest to implement, it can waste the greatest receiver space
because an entire Max_Request_Size block of completion credit is allocated for each
non-posted request, regardless of actual request size. The amount of waste becomes
greater when the user application issues a larger proportion of short memory reads (on the
order of a single DWORD), I/O reads and I/O writes.

PACKET_FC Method
The PACKET_FC method allocates blocks of credit in finer granularities than LIMIT_FC, using
the receive completion space more efficiently with a small increase in user logic.

Start with two registers, CPLH_PENDING and CPLD_PENDING, (loaded with zero at reset),
and then perform these steps:

1. When the user application needs to send an NP request, determine the potential
number of CplH and CplD credits it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) /16 bytes]
(except I/O Write, which returns zero data) [(req_size + 15)/16]

The modulo and ceiling functions ensure that any fractional RCB or credit blocks are
rounded up. For example, if a memory read requests 8 bytes of data from address 7Ch,
the returned data can potentially be returned over two completion packets (7Ch-7Fh,
followed by 80h-83h). This would require two RCB blocks and two data credits.

2. Check these:

CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CplD < Total_CplD

3. If both inequalities are true, transmit the non-posted request, and increase
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD. For each non-posted
request transmitted, keep NP_CplH and NP_CplD for later use.

4. When all completion data is returned for an non-posted request, decrease
CPLH_PENDING and CPLD_PENDING accordingly.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=314

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 315
PG156 January 29, 2016

Appendix C: Managing Receive-Buffer Space for Inbound Completions

This method is less wasteful than LIMIT_FC but still ties up all of an non-posted request
completion space until the entire request is satisfied. RCB_FC and DATA_FC provide finer
de-allocation granularity at the expense of more logic.

RCB_FC Method
The RCB_FC method allocates and de-allocates blocks of credit in RCB granularity. Credit is
freed on a per-RCB basis.

As with PACKET_FC, start with two registers, CPLH_PENDING and CPLD_PENDING (loaded
with zero at reset).

1. Calculate the number of data credits per RCB:

CplD_PER_RCB = RCB / 16 bytes

2. When the user application needs to send an non-posted request, determine the
potential number of CplH credits it might require. Use this to allocate CplD credits with
RCB granularity:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = NP_CplH × CplD_PER_RCB

3. Check these:

CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CplD < Total_CplD

4. If both inequalities are true, transmit the non-posted request, increase CPLH_PENDING
by NP_CplH and CPLD_PENDING by NP_CplD.

5. At the start of each incoming completion, or when that completion begins at or crosses
an RCB without ending at that RCB, decrease CPLH_PENDING by 1 and CPLD_PENDING
by CplD_PER_RCB. Any completion could cross more than one RCB. The number of RCB
crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are fields that can be parsed from the Completion header.
Alternatively, you can load a register CUR_ADDR with Lower_Address at the start of each
incoming completion, increment per DW or QW as appropriate, then count an RCB
whenever CUR_ADDR rolls over.

This method is less wasteful than PACKET_FC but still gives an RCB granularity. If a user
application transmits I/O requests, the user application could adopt a policy of only
allocating one CplD credit for each I/O read and zero CplD credits for each I/O write. The

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=315

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 316
PG156 January 29, 2016

Appendix C: Managing Receive-Buffer Space for Inbound Completions

user application would have to match each tag for incoming completions with the type
(Memory Write, I/O Read, I/O Write) of the original non-posted request.

DATA_FC Method
The DATA_FC method provides the finest allocation granularity at the expense of logic.

As with PACKET_FC and RCB_FC, start with two registers, CPLH_PENDING and
CPLD_PENDING (loaded with zero at reset).

1. When the user application needs to send an non-posted request, determine the
potential number of CplH and CplD credits it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) / 16 bytes]
(except I/O Write, which returns zero data)

2. Check these:

CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CplD < Total_CplD

3. If both inequalities are true, transmit the non-posted request, increase CPLH_PENDING
by NP_CplH and CPLD_PENDING by NP_CplD.

4. At the start of each incoming completion, or when that completion begins at or crosses
an RCB without ending at that RCB, decrease CPLH_PENDING by 1. The number of RCB
crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are fields that can be parsed from the completion header.
Alternatively, you can load a register CUR_ADDR with Lower_Address at the start of each
incoming completion, increment per DW or QW as appropriate, then count an RCB
whenever CUR_ADDR rolls over.

5. At the start of each incoming completion, or when that completion begins at or crosses
at a naturally aligned credit boundary, decrease CPLD_PENDING by 1. The number of
credit-boundary crossings is given by:

DATA_CROSSED = ceiling[((Lower_Address mod 16 B) + Length) / 16 B]

Alternatively, you can load a register CUR_ADDR with Lower_Address at the start of each
incoming completion, increment per DW or QW as appropriate, then count an RCB
whenever CUR_ADDR rolls over each 16-byte address boundary.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=316

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 317
PG156 January 29, 2016

Appendix C: Managing Receive-Buffer Space for Inbound Completions

This method is the least wasteful but requires the greatest amount of user logic. If even
finer granularity is desired, you can scale the Total_CplD value by 2 or 4 to get the number
of completion QWORDs or DWORDs, respectively, and adjust the data calculations
accordingly.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=317

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 318
PG156 January 29, 2016

Appendix D

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the UltraScale Architecture Gen3
Integrated Block for PCIe, the Xilinx Support web page contains key resources such as
product documentation, release notes, answer records, information about known issues,
and links for obtaining further product support.

Documentation
This product guide is the main document associated with the UltraScale FPGA Gen3
Integrated Block for PCIe. This guide, along with documentation related to all products that
aid in the design process, can be found on the Xilinx Support web page or by using the
Xilinx® Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/download.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=318

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 319
PG156 January 29, 2016

Appendix D: Debugging

A filter search is available after results are returned to further target the results.

Master Answer Record for the UltraScale FPGA Gen3 Integrated Block for PCIe

AR: 57945

Technical Support
Xilinx provides technical support in the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Hardware Debug

Transceiver Control and Status Ports
Table D-1 describes the ports used to debug transceiver related issues.

IMPORTANT: The ports in the Transceiver Control And Status Interface must be driven in accordance
with the appropriate GT user guide. Using the input signals listed in Table D-1 may result in
unpredictable behavior of the IP core.

Table D-1: Ports Used for Transceiver Debug

Port Direction
(I/O) Width Description

gt_pcieuserratedone I 1 Connects to PCIEUSERRATEDONE on transceiver channel
primitives

gt_loopback I 3 Connects to LOOPBACK on transceiver channel primitives

gt_txprbsforceerr I 1 Connects to TXPRBSFORCEERR on transceiver channel
primitives

gt_txinhibit I 1 Connects to TXINHIBIT on transceiver channel primitives

gt_txprbssel I 4 PRBS input

gt_rxprbssel I 4 PRBS input

gt_rxprbscntreset I 1 Connects to RXPRBSCNTRESET on transceiver channel
primitives

gt_txelecidle O 1 Connects to TXELECIDLE on transceiver channel primitives

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/answers/57945.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=319

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 320
PG156 January 29, 2016

Appendix D: Debugging

gt_txresetdone O 1 Connects to TXRESETDONE on transceiver channel primitives

gt_rxresetdone O 1
Connects to RXRECCLKOUT on transceiver
channel primitives

gt_rxpmaresetdone O 1 Connects to TXPMARESETDONE on transceiver channel
primitives

gt_txphaligndone O 1 Connects to TXPHALIGNDONE of transceiver channel
primitives

gt_txphinitdone O 1 Connects to TXPHINITDONE of transceiver channel primitives

gt_txdlysresetdone O 1 Connects to TXDLYSRESETDONE of transceiver channel
primitives

gt_rxphaligndone O 1 Connects to RXPHALIGNDONE of transceiver channel
primitives

gt_rxdlysresetdone O 1 Connects to RXDLYSRESETDONE of transceiver channel
primitives

gt_rxsyncdone O 1 Connects to RXSYNCDONE of transceiver channel primitives

gt_eyescandataerror O 1 Connects to EYESCANDATAERROR on transceiver channel
primitives

gt_rxprbserr O 1 Connects to RXPRBSERR on transceiver channel primitives

gt_dmonitorout O 17 Connects to DMONITOROUT on transceiver channel
primitives

gt_rxcommadet O 1 Connects to RXCOMMADETEN on transceiver channel
primitives

gt_phystatus O 1 Connects to PHYSTATUS on transceiver channel primitives

gt_rxvalid O 1 Connects to RXVALID on transceiver channel primitives

gt_rxcdrlock O 1 Connects to RXCDRLOCK on transceiver channel primitives

gt_pcierateidle O 1 Connects to PCIERATEIDLE on transceiver channel primitives

gt_pcieuserratestart O 1 Connects to PCIEUSERRATESTART on transceiver channel
primitives

gt_gtpowergood O 1 Connects to GTPOWERGOOD on transceiver channel
primitives

gt_cplllock O 1 Connects to CPLLLOCK on transceiver channel primitives

gt_rxoutclk O 1 Connects to RXOUTCLK on transceiver channel primitives

gt_rxrecclkout O 1 Connects to RXRECCLKOUT on transceiver channel primitives

gt_qpll1lock O 1 Connects to QPLL1LOCK on transceiver common primitives

gt_rxstatus O 3 Connects to RXSTATUS on transceiver channel primitives

gt_rxbufstatus O 3 Connects to RXBUFSTATUS on transceiver channel primitives

gt_bufgtdiv O 9 Connects to BUFGTDIV on transceiver channel primitives

phy_txeq_ctrl O 2 PHY TX Equalization contrl bits

Table D-1: Ports Used for Transceiver Debug (Cont’d)

Port Direction
(I/O) Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=320

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 321
PG156 January 29, 2016

Appendix D: Debugging

phy_txeq_preset O 4 PHY TX Equalization Preset bits

phy_rst_fsm O 4 PHY RST FSM state bits

phy_txeq_fsm O 3 PHY RX Equalization FSM state bits (Gen3)

phy_rxeq_fsm O 3 PHY TX Equalization FSM state bits (Gen3)

phy_rst_idle O 1 PHY is in IDLE state

phy_rrst_n O 1 Synchronized reset generation by sys_clk

phy_prst_n O 1 Synchronized reset generation by pipe_clk

Table D-1: Ports Used for Transceiver Debug (Cont’d)

Port Direction
(I/O) Width Description

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=321

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 322
PG156 January 29, 2016

Appendix E

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

References
These documents provide supplemental material useful with this product guide:

1. AMBA AXI4-Stream Protocol Specification

2. PCI-SIG Documentation (www.pcisig.com/specifications)

3. Virtex-7 FPGA Integrated Block for PCI Express Product Guide (PG023)

4. UltraScale Architecture Configuration User Guide (UG570)

5. Kintex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics (DS892)

6. Virtex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics (DS893)

7. UltraScale Architecture PCB Design: Advance Specification User Guide (UG583)

8. UltraScale Architecture GTH Transceivers User Guide (UG576)

9. Vivado Design Suite User Guide: Designing with IP (UG896)

10. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

11. Vivado Design Suite User Guide: Getting Started (UG910)

12. Vivado Design Suite User Guide: Using Constraints (UG903)

13. Vivado Design Suite User Guide: Logic Simulation (UG900)

14. ISE to Vivado Design Suite Migration Methodology Guide (UG911)

15. Vivado Design Suite User Guide: Programming and Debugging (UG908)

16. ATX Power Supply Design Guide

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.pcisig.com/specifications
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_7x;v=latest;d=pg023_v7_pcie_gen3.pdf
http://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds892-kintex-ultrascale-data-sheet.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds893-virtex-ultrascale-data-sheet.pdf
http://www.xilinx.com/support/documentation/user_guides/ug583-ultrascale-pcb-design.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.formfactors.org/developer/specs/ATX12V_PSDG_2_2_public_br2.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=322

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 323
PG156 January 29, 2016

Appendix E: Additional Resources and Legal Notices

17. PIPE Mode Simulation Using Integrated Endpoint PCI Express Block in Gen2 x8 and Gen3 x8
Configurations (XAPP1184)

Revision History
The following table shows the revision history for this document.

Date Version Revision

01/29/2016 4.1 • Updated Table: 2-2 Available Integrated Blocks for PCI Express.

11/20/2015 4.1 • Updated details for Gen3 in Table 2-3: Minimum Device Requirements.

11/18/2015 4.1 • Added the FFVA1156 package to the XCKU095 device in the Available
Integrated Blocks For PCI Express table (Chapter 2), and Kintex®
UltraScale™ Device GT Locations table (Appendix B).

• Updated the supported speed grades.
• Updated the width for the following ports: cfg_function_status,

cfg_vf_status, cfg_function_power_state, cfg_vf_power_state, cfg_rcb_status,
cfg_dpa_substate_change, cfg_tph_requester_enable, cfg_tph_st_mode,
cfg_vf_tph_requester_enable, cfg_vf_tph_st_mode, cfg_vf_flr_in_process,
cfg_per_function_number, cfg_flr_done, cfg_flr_in_process,
cfg_interrupt_pending, cfg_interrupt_msi_enable, cfg_interrupt_msi_vf_enable,
and cfg_interrupt_msi_mmenable.

• Added available negotiated link width values for cfg_negotiated_width.
• Updated the status (Not Supported, Beta, Production) in the Tandem

PROM/PCIe Supported Configurations table.
• Removed the Message Signal Interrupt option from the Vivado IDE.
• Added the Enable RX Message INTFC option to the Vivado IDE.

09/30/2015 4.1 • Updated the available integrated blocks for PCIe.
• Updated the Tandem Configuration section.
• Updated PIPE signal mapping tables: Common In/Out Commands and

Endpoint PIPE Signals Mappings, and Input/Output Bus with Endpoint PIPE
Signals Mapping.

• Updated the recommended Virtex® UltraScale device, and Kintex
UltraScale device GT locations.

07/02/2015 4.0 • Corrected resource utilization data.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1184-PIPE-mode-PCIe.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=323

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 324
PG156 January 29, 2016

Appendix E: Additional Resources and Legal Notices

06/24/2015 4.0 • Updated the available integrated blocks for PCI Express.
• Added the Minimum Device Requirements table.
• Updated the documented m_axis_cq_tdata signal width.
• Updated the signal description for addr_offset[2:0].
• Added the sys_clk_gt signal.
• Updated the Common PCI Configuration Space Header table.
• Updated the USER_CLK2_FREQ attribute values.
• Added an Important note regarding when Shared Logic is available.
• Updated the Tandem Configuration section.
• Added the Receive Ordering Rules table (Receive Transaction Ordering

section).
• Added the Relocating the Integrated Block Core section.
• GT locations:

° Renamed core pinouts to GT locations throughout.

° Added command to print specific package pins for a GT location.

° Updated the Recommended Virtex UltraScale GT Locations table.

05/07/2015 4.0 • Updated the Tandem Configuration section.

04/01/2015 4.0 • Updated Clock and Reset Interface port descriptions: sys_reset,
pcie_perstn0_out, pcie_perstn1_in, and pcie_perstn1_out.

• Updated the core pinouts information.
• Updated the tandem configuration information.
• Added core parameters: Additional Transceiver Control and Status Ports,

CORE CLOCK Frequency, PLL Selection, and Link Partner TX Preset.
• Updated parameters: Legacy Interrupt Settings, and MSI Capabilities.
• Moved existing parameters to new GT Settings tab: PPM Offset between

receiver and transmitter, Spread spectrum clocking, and Insertion loss at
Nyquist.

• Added support for post-synthesis and post-implementation netlist
simulation for Endpoint configuration.

• Added support for Pipe Mode implementation.
• Added configurator design example details.

02/23/2015 3.1 • Updated the device selection and PCIe integrated block location
information.

• Updated the device core pinouts.
• Clarified information regarding Pipe Mode Simulation.
• Corrected the minimum 32-bit BARs number and the maximum 64-bit BARs

number for the Base Address Register Overview parameter (per the
Vivado IDE).

11/19/2014 3.1 • Updated the Configuration Space section with Media Configuration Access
Port (MCAP) Extended Capability Structure.

• Updated the tandem configuration information.
• Added support for Cadence Incisive Enterprise Simulator (IES) and

Synopsys Verilog Compiler Simulator (VCS).
• Updated the device core pinouts.

Date Version Revision

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=324

Gen3 Integrated Block for PCIe v4.1 www.xilinx.com 325
PG156 January 29, 2016

Appendix E: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2013–2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.
This document contains preliminary information and is subject to change without notice. Information provided herein relates to
products and/or services not yet available for sale, and provided solely for information purposes and are not intended, or to be
construed, as an offer for sale or an attempted commercialization of the products and/or services referred to herein.

10/01/2014 3.1 • Updated for core v3.1.
• Updated the tandem configuration information.
• Added package migration information for UltraScale architecture designs.

06/04/2014 3.0 • Updated device information.

04/02/2014 3.0 • Updated block selection.
• Updated core pinout information.
• Updated shared logic information.

12/18/2013 2.0 Initial release.

Date Version Revision

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG156&Title=UltraScale%20Architecture%20Gen3%20Integrated%20Block%20for%20PCI%20Express%20v4.1&releaseVersion=4.1&docPage=325

	UltraScale Architecture Gen3 Integrated Block for PCI Express v4.1
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Feature Summary
	Applications
	Unsupported Features
	Licensing and Ordering Information

	Ch. 2: Product Specification
	Standards Compliance
	Resource Utilization
	Available Integrated Blocks for PCI Express
	GT Locations
	Port Descriptions
	AXI4-Stream Core Interfaces
	Completer reQuest (CQ) Interface
	Completer Completion (CC) Interface
	Requester reQuest (RQ) Interface
	Requester Completion (RC) Interface

	Other Core Interfaces
	Transmit Flow Control Interface
	Configuration Management Interface
	Configuration Status Interface
	Configuration Received Message Interface
	Configuration Transmit Message Interface
	Configuration Flow Control Interface
	Per Function Status Interface
	Configuration Control Interface
	Configuration Interrupt Controller Interface
	Configuration Extend Interface
	Clock and Reset Interface
	PCI Express Interface

	Attribute Descriptions
	User Interface

	Configuration Space

	Ch. 3: Designing with the Core
	Shared Logic
	Shared Logic in the Core
	Shared GT_COMMON
	Shared GT_COMMON Use Case with GTH
	Limitations

	Tandem Configuration
	Supported Devices
	Overview of Tandem Tool Flow
	Tandem with Field Updates

	Tandem PROM
	Tandem PROM VCU108 Example Tool Flow
	Tandem PROM Summary

	Tandem PCIe
	Tandem PCIe VCU108 Example Tool Flow
	Loading Stage 2 Through PCI Express
	Tandem PCIe Summary

	Using Tandem With a User Hardware Design
	Method 1 – Using the Existing PCI Express Example Design
	Method 2 – Migrating the PCIe Design into a New Vivado Project

	Tandem Configuration RTL Design
	MUXing Critical Inputs
	TLP Requests
	Tandem Configuration Logic
	User Application Handshake

	Tandem Configuration Details
	I/O Behavior
	Configuration Pin Behavior
	Configuration Persist (Tandem PROM Only)
	PROM Selection
	Programming the Device
	Bitstream Encryption

	Tandem PROM/PCIe Resource Restrictions
	Moving the PCIe Reset Pin
	Non-Project Flow
	Simulating the Tandem IP Core
	Calculating Bitstream Load Time for Tandem
	Example 1
	Example 2
	Using Bitstream Compression
	Other Bitstream Load Time Considerations
	Sample Bitstream Sizes

	Clocking
	Resets
	AXI4-Stream Interface Description
	Overview of Features
	Data Alignment Options
	Straddle Option on Requester Completion Interface
	Receive Transaction Ordering
	Transmit Transaction Ordering

	Clocking Requirements
	Interface Operation
	Completer Interface
	Completer Request Descriptor Formats
	Completer Request Interface Operation
	Completer Completion Interface Operation

	Receive Message Interface
	Requester Interface
	Requester Request Interface Operation
	Requester Request Descriptor Formats
	Requester Completion Interface Operation

	Power Management
	Active State Power Management
	Programmed Power Management
	PPM L0 State
	PPM L1 State
	PPM L3 State

	Generating Interrupt Requests
	Legacy Interrupt Mode
	MSI Mode
	MSI-X Mode

	Designing with Configuration Space Registers and Configuration Interface
	Link Training: 2-Lane, 4-Lane, and 8-Lane Components
	Link Partner Supports Fewer Lanes
	Lane Becomes Faulty

	Lane Reversal

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Basic Mode
	Basic Parameter Settings
	Component Name
	Mode
	PCIe Device / Port Type
	PCIe Block Location
	Number of Lanes
	Maximum Link Speed
	AXI-ST Interface Width
	AXI-ST Interface Frequency
	AXI-ST Alignment Mode
	Enable AXI-ST Frame Straddle
	Enable Client Tag
	Reference Clock Frequency
	Xilinx Development Board
	Enable External PIPE Interface
	Additional Transceiver Control and status Ports
	Capabilities
	Enable Physical Function 0
	PF0 Legacy Interrupt PIN
	MPS
	Extended Tag
	Slot Clock Configuration
	Identity Settings (PF0 IDs and PF1 IDs)
	PF0 ID Initial Values
	Class Code
	Class Code Look-up Assistant
	Base Address Registers (PF0 and PF1)
	Base Address Register Overview
	Expansion ROM Base Address Register
	Managing Base Address Register Settings
	Disabling Unused Resources
	Legacy/MSI Capabilities
	Legacy Interrupt Settings
	MSI Capabilities

	Advanced Mode
	Basic
	Capabilities
	PF0 ID and PF1 ID
	PF0 BAR and PF1 BAR
	SRIOV Config (PF0 and PF1)
	PF0 SRIOV BARs and PF1 SRIVO BARs
	SRIOV Base Address Register Overview
	Disabling Unused Resources
	Legacy/MSI Capabilities
	MSI‐X Capabilities
	Power Management
	Extended Capabilities 1 and Extended Capabilities 2
	Shared Logic
	GT Settings
	Core Interface Parameters

	Output Generation

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement
	Relocating the Integrated Block Core

	Simulation
	Pipe Mode Simulation
	Post-Synthesis/Post-Implementation Netlist Simulation
	Post-Synthesis Netlist Functional Simulation
	Post-Implementation Netlist Functional Simulation

	Synthesis and Implementation

	Ch. 5: Example Design
	Overview of the Example Design
	Integrated Block Endpoint Configuration Overview
	Simulation Design Overview
	Implementation Design Overview
	Example Design Elements

	Programmed Input/Output: Endpoint Example Design
	System Overview
	PIO Hardware
	PIO Operation

	Configurator Example Design
	System Overview
	Configurator Example Design Hardware
	Configurator Block
	Configurator ROM
	PIO Master
	Configurator File Structure

	Summary

	Generating the Core
	Simulating the Example Design
	Endpoint Configuration

	Synthesizing and Implementing the Example Design

	Ch. 6: Test Bench
	Root Port Model Test Bench for Endpoint
	Architecture
	Scaled Simulation Timeouts
	Test Selection
	Verilog Test Selection

	Waveform Dumping
	Verilog Flow

	Output Logging
	Parallel Test Programs
	Test Description
	Test Program: pio_writeReadBack_test0

	Expanding the Root Port Model
	Root Port Model TPI Task List

	Endpoint Model Test Bench for Root Port
	Architecture
	Simulating the Design
	Scaled Simulation Timeouts
	Waveform Dumping
	Output Logging

	Appx. A: Migrating and Upgrading
	Migrating to the Vivado Design Suite
	Upgrading in the Vivado Design Suite
	Parameter Changes
	Port Changes

	Migrating From a 7 Series Gen2 Core to UltraScale Architecture-Based Gen3 Core
	PCIe 3.1 AXI4 ST Enhanced Interface
	Completer Request (CQ) Interface
	AXI4-Stream Requester Completion (RC) Interface
	AXI4-Stream (Enhanced) Completer Completion Interface
	AXI4-Stream Requester Request Interface
	Other Interfaces

	Package Migration of UltraScale Architecture PCI Express Designs
	Placement Rules
	GTH Location
	Stacked Silicon Interconnect (SSI) Devices

	Creating a Migration Plan for PCI Express
	Migrating Tandem Configuration

	Appx. B: GT Locations
	Kintex UltraScale Device GT Locations
	Virtex UltraScale Device GT Locations

	Appx. C: Managing Receive-Buffer Space for Inbound Completions
	General Considerations and Concepts
	Completion Space
	Maximum Request Size
	Read Completion Boundary
	Important Note For High Performance Applications

	Methods of Managing Completion Space
	LIMIT_FC Method
	PACKET_FC Method
	RCB_FC Method
	DATA_FC Method

	Appx. D: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Technical Support

	Hardware Debug
	Transceiver Control and Status Ports

	Appx. E: Additional Resources and Legal Notices
	Xilinx Resources
	References
	Revision History
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

